SAS/OR ${ }^{\circledR}$ 9.1.2 User’s Guide: Mathematical Programming

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/OR ${ }^{\circledR}$ 9.1.2 User's Guide: Mathematical Programming. Cary, NC: SAS Institute Inc.

SAS/OR ${ }^{\circledR}$ 9.1.2 User's Guide: Mathematical Programming

Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-527-5
All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, March 2004
SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS ${ }^{\oplus}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. \circledR^{\circledR} indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What's New in SAS/OR 9, 9.1, and 9.1.2 1
Using This Book 7
Chapter 1. Introduction to Optimization 13
Chapter 2. The ASSIGN Procedure 47
Chapter 3. The INTPOINT Procedure 63
Chapter 4. The LP Procedure 187
Chapter 5. The NETFLOW Procedure 315
Chapter 6. The NLP Procedure 509
Chapter 7. The QP Procedure 653
Chapter 8. The TRANS Procedure 751
Subject Index 771
Syntax Index 781

Acknowledgments

Credits

Documentation

Writing Trevor Kearney, Dmitry V. Golovashkin, Michelle Opp, Ben-Hao Wang
Editing
Virginia Clark, Donna Sawyer
Documentation Support Tim Arnold, Michelle Opp
Technical Review Tao Huang, Edward P. Hughes, John Jasperse, Rob Pratt, Bengt Pederson, Charles B. Kelly, Donna Fulenwider, Bill Gjertsen

Software

The procedures in SAS/OR software were implemented by the Operations Research and Development Department. Substantial support was given to the project by other members of the Analytical Solutions Division. Core Development Division, Display Products Division, Graphics Division, and the Host Systems Division also contributed to this product.

In the following list, the name of the developer currently supporting the procedure is listed.

ASSIGN	Ben-Hao Wang
INTPOINT	Trevor Kearney
LP	Ben-Hao Wang
NETFLOW	Trevor Kearney
NLP	Trevor Kearney
QP	Dmitry V. Golovashkin
TRANS	Trevor Kearney

Support Groups

Software Testing	Tao Huang, Edward P. Hughes, John Jasperse, Charles B. Kelly, Rob Pratt, Bengt Pederson, Marcelo Bartroli
Technical Support	Tonya Chapman

Acknowledgments

Many people have been instrumental in the development of SAS/OR software. The individuals acknowledged here have been especially helpful.

Richard Brockmeier	Union Electric Company
Ken Cruthers	Goodyear Tire \& Rubber Company
Patricia Duffy	Auburn University
Richard A. Ehrhardt	University of North Carolina at Greensboro
Paul Hardy	Babcock \& Wilcox
Don Henderson	ORI Consulting Group
Dave Jennings	Lockheed Martin
Vidyadhar G. Kulkarni	University of North Carolina at Chapel Hill
Wayne Maruska	Basin Electric Power Cooperative
Roger Perala	United Sugars Corporation
Bruce Reed	Auburn University
Charles Rissmiller	Lockheed Martin
David Rubin	University of North Carolina at Chapel Hill
John Stone	North Carolina State University
Keith R. Weiss	ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.

What's New in SAS/OR 9, 9.1, and 9.1.2

Contents

OVERVIEW 3
THE BOM PROCEDURE 3
THE CLP PROCEDURE (EXPERIMENTAL) 4
THE CPM PROCEDURE 4
THE GA PROCEDURE (EXPERIMENTAL) 4
THE GANTT PROCEDURE 5
THE INTPOINT PROCEDURE 5
THE LP PROCEDURE 5
THE PM PROCEDURE 5
THE NETFLOW PROCEDURE 5
THE QP PROCEDURE (EXPERIMENTAL) 6
BILL OF MATERIAL POST PROCESSING MACROS 6

2 - What's New in SAS/OR 9, 9.1, and 9.1.2

What's New in SAS/OR 9, 9.1, and 9.1.2

Overview

SAS/OR software contains several new and enhanced features since SAS 8.2. Brief descriptions of the new features appear in the following sections. For more information, refer to the SAS/OR documentation, which is now available in the following six volumes:

- SAS/OR User's Guide: Bills of Material Processing
- SAS/OR User's Guide: Constraint Programming
- SAS/OR User's Guide: Local Search Optimization
- SAS/OR User's Guide: Mathematical Programming
- SAS/OR User's Guide: Project Management
- SAS/OR User's Guide: The QSIM Application

The online help can also be found under the corresponding classification.

The BOM Procedure

The BOM procedure in SAS/OR User's Guide: Bills of Material Processing was introduced in Version 8.2 of the SAS System to perform bill of material processing. Several new features have been added to the procedure, enabling it to read all product structure records from a product structure data file and all part "master" records from a part master file, and compose the combined information into indented bills of material. This data structure mirrors the most common method for storing bill-of-material data in enterprise settings; the part master file contains data on each part while the product structure file holds data describing the various part-component relationships represented in bills of material.

The PMDATA= option on the PROC BOM statement enables you to specify the name of the Part Master data set. If you do not specify this option, PROC BOM uses the Product Structure data set (as specified in the DATA= option) as the Part Master data set. The BOM procedure now looks up the Part, LeadTime, Requirement, QtyOnHand, and ID variables in the Part Master data set. On the other hand, the Component and Quantity variables remain in the Product Structure data set.

You can use the NRELATIONSHIPS= (or NRELTS=) option to specify the number of parent-component relationships in the Product Structure data set. You have greater
control over the handling of redundant relationships in the Product Structure data set using the DUPLICATE $=$ option.

Several options have been added to the STRUCTURE statement enabling you to specify information related to the parent-component relationships. In particular, the variable specified with the PARENT= option identifies the parent item, while the variables listed in the LTOFFSET= option specify lead-time offset information. You can also specify variables identifying scrap factor information for all parent-component relationships using the SFACTOR= option. The RID= option identifies all variables in the Product Structure data set that are to be included in the Indented BOM output data set.

The CLP Procedure (Experimental)

The new CLP procedure in SAS/OR User's Guide: Constraint Programming is an experimental finite domain constraint programming solver for solving constraint satisfaction problems (CSPs) with linear, logical, global, and scheduling constraints. In addition to having an expressive syntax for representing CSPs, the solver features powerful built-in consistency routines and constraint propagation algorithms, a choice of nondeterministic search strategies, and controls for guiding the search mechanism that enable you to solve a diverse array of combinatorial problems.

The CPM Procedure

The CPM procedure in SAS/OR User's Guide: Project Management adds more options for describing resource consumption by activities, enhancing its applicability to production scheduling models.

A new keyword, RESUSAGE, has been added to the list of values for the OBSTYPE variable in the Resource data set. This keyword enables you to specify whether a resource is consumed at the beginning or at the end of a given activity.

The MILESTONERESOURCE option enables you to specify a nonzero usage of consumable resources for milestone activities. For example, this option is useful if you wish to designate specific milestones to be the points of payment for a subcontractor. The MILESTONENORESOURCE option is the current default behavior of the CPM procedure, which indicates that all resource requirements are to be ignored for milestone activities.

The GA Procedure (Experimental)

The new GA procedure in SAS/OR User's Guide: Local Search Optimization facilitates the application of genetic algorithms to general optimization. Genetic algorithms adapt the biological processes of natural selection and evolution to search for optimal solutions. The procedure can be applied to optimize problems involving integer, continuous, binary, or combinatorial variables. The GA procedure is especially useful for finding optima for problems where the objective function may
have discontinuities or may not otherwise be suitable for optimization by traditional calculus-based methods.

The GANTT Procedure

The GANTT procedure in SAS/OR User's Guide: Project Management includes a new option for controlling the width of the Gantt chart. The CHARTWIDTH= option specifies the width of the axis area as a percentage of the total Gantt chart width. This option enables you to generate Gantt charts that are consistent in appearance, independent of the total time spanned by the project.

The INTPOINT Procedure

The INTPOINT procedure in SAS/OR User's Guide: Mathematical Programming contains two new options in SAS 9.1.2. The FACT_METHOD= option enables you to choose the type of algorithm used to factorize and solve the main linear systems at each iteration of the interior point algorithm. Specifically, you can use a leftlooking method to perform Cholesky optimization, which may be faster and require less memory than other algorithms.

The OPTIM_TIMER option instructs the INTPOINT procedure to issue a message to the SAS \log giving the CPU time spent doing optimization. This includes the time spent preprocessing, performing optimization, and postprocessing; it does not include the time spent reading the data and creating output SAS data sets. The time spent optimizing can be small compared to the total CPU time used by the procedure, particularly in cases when the problem is quite small.

The LP Procedure

The performances of primal and dual simplex algorithms in the LP procedure (SAS/OR User's Guide: Mathematical Programming) have been significantly improved on large scale linear or mixed integer programming problems.

The PM Procedure

The new options added to the CPM procedure are also available with PROC PM.

The NETFLOW Procedure

The NETFLOW procedure in SAS/OR User's Guide: Mathematical Programming contains two new options in SAS 9.1.2. When using the interior point method in the NETFLOW procedure, the FACT_METHOD= option enables you to choose the type of algorithm used to factorize and solve the main linear systems at each iteration. Specifically, you can use a left-looking method to perform Cholesky optimization, which may be faster and require less memory than other algorithms.

The OPTIM_TIMER option instructs the NETFLOW procedure to issue a message to the SAS \log giving the CPU time spent doing optimization. This includes the time spent preprocessing, performing optimization, and postprocessing; it does not include the time spent reading the data and creating output SAS data sets. The time spent optimizing can be small compared to the total CPU time used by the procedure, particularly in cases when the problem is quite small.

The QP Procedure (Experimental)

The new QP procedure in SAS/OR User's Guide: Mathematical Programming implements a primal-dual predictor-corrector interior-point algorithm for large sparse quadratic programs. Depending on the distribution of the eigenvalues of the Hessian matrix, H, two main classes of quadratic programs are distinguished (assuming minimization):

- convex: H is positive semi-definite
- nonconvex: H has at least one negative eigenvalue

Diagonal and nonseparable Hessian matrices are recognized and handled automatically.

Bill of Material Post Processing Macros

Several macros enable users to generate miscellaneous reports using the Indented BOM output data set from the BOM procedure in SAS/OR User's Guide: Bills of Material Processing. Other transactional macros perform specialized transactions for maintaining and updating the bills of material for a product, product line, plant, or company.

Using This Book

Contents

PURPOSE 9
ORGANIZATION 9
TYPOGRAPHICAL CONVENTIONS 10
CONVENTIONS FOR EXAMPLES 11
ACCESSING THE SAS/OR SAMPLE LIBRARY 11
ONLINE HELP SYSTEM AND UPDATES 11
ADDITIONAL DOCUMENTATION FOR SAS/OR SOFTWARE 12

8 - Using This Book

Using This Book

Purpose

SAS/OR User's Guide: Mathematical Programming provides a complete reference for the mathematical programming procedures in SAS/OR software. This book serves as the primary documentation for the ASSIGN, INTPOINT, LP, NETFLOW, NLP, and TRANS procedures, in addition to the new QP procedure for solving quadratic programming problems.
"Using This Book" describes the organization of this book and the conventions used in the text and example code. To gain full benefit from using this book, you should familiarize yourself with the information presented in this section and refer to it when needed. "Additional Documentation" at the end of this section provides references to other books that contain information on related topics.

Organization

Chapter 1 contains a brief overview of the mathematical programming procedures in SAS/OR software and provides an introduction to optimization and the use of the optimization tools in the SAS System. The first chapter also describes the flow of data between the procedures and how the components of the SAS System fit together.

After the introductory chapter, the next seven chapters describe the ASSIGN, INTPOINT, LP, NETFLOW, NLP, QP, and TRANS procedures. Each procedure description is self-contained; you need to be familiar with only the basic features of the SAS System and SAS terminology to use most procedures. The statements and syntax necessary to run each procedure are presented in a uniform format throughout this book.

The following list summarizes the types of information provided for each procedure:

Overview provides a general description of what the procedure does. It outlines major capabilities of the procedure and lists all input and output data sets that are used with it.

Getting Started illustrates simple uses of the procedure using a few short examples. It provides introductory hands-on information for the procedure.

Syntax
constitutes the major reference section for the syntax of the procedure. First, the statement syntax is summarized. Next, a functional summary table lists all the statements and options in the procedure, classified by function. In addition, the online version includes a Dictionary of Options, which provides an alphabetical list of all options. Following these tables, the PROC statement is described, and then all other statements are described in alphabetical order.

Details describes the features of the procedure, including algorithmic details and computational methods. It also explains how the various options interact with each other. This section describes input and output data sets in greater detail, with definitions of the output variables, and explains the format of printed output, if any.

Examples
consists of examples designed to illustrate the use of the procedure. Each example includes a description of the problem and lists the options highlighted by the example. The example shows the data and the SAS statements needed, and includes the output produced. You can duplicate the examples by copying the statements and data and running the SAS program. The SAS Sample Library contains the code used to run the examples shown in this book; consult your SAS Software representative for specific information about the Sample Library.

References lists references that are relevant to the chapter.

Typographical Conventions

The printed version of SAS/OR User's Guide: Mathematical Programming uses various type styles, as explained by the following list:
roman
UPPERCASE ROMAN
is the standard type style used for most text.
is used for SAS statements, options, and other SAS language elements when they appear in the text. However, you can enter these elements in your own SAS code in lowercase, uppercase, or a mixture of the two. This style is also used for identifying arguments and values (in the Syntax specifications) that are literals (for example, to denote valid keywords for a specific option).

UPPERCASE BOLD
bold
helvetica
oblique
italic
monospace
is used in the "Syntax" section to identify SAS keywords, such as the names of procedures, statements, and options.
is used in the "Syntax" section to identify options.
is used for the names of SAS variables and data sets when they appear in the text.
is used for user-supplied values for options (for example, VARSELECT= rule).
is used for terms that are defined in the text, for emphasis, and for references to publications.
is used to show examples of SAS statements. In most cases, this book uses lowercase type for SAS code. You can enter your own SAS code in lowercase, uppercase, or a mixture of the two. This style is also used for values of character variables when they appear in the text.

Conventions for Examples

Most of the output shown in this book is produced with the following SAS System options:
options linesize=80 pagesize=60 nonumber nodate;

Accessing the SAS/OR Sample Library

The SAS/OR sample library includes many examples that illustrate the use of SAS/OR software, including the examples used in this documentation. To access these sample programs, select Learning to Use SAS->Sample SAS Programs from the SAS Help and Documentation window, and then select SAS/OR from the list of available topics.

Online Help System and Updates

You can access online help information about SAS/OR software in two ways, depending on whether you are using the SAS windowing environment in the command line mode or the pull-down menu mode.

If you are using a command line, you can access the SAS/OR help menus by typing help or on the command line. If you are using the pull-down menus, you can select SAS Help and Documentation->SAS Products from the Help pull-down menu, and then select SAS/OR from the list of available topics.

Additional Documentation for SAS/OR Software

In addition to SAS/OR User's Guide: Mathematical Programming, you may find these other documents helpful when using SAS/OR software:

SAS/OR User's Guide: Bills of Material Processing

provides documentation for the BOM procedure and all bill-of-material postprocessing SAS macros. The BOM procedure and SAS macros provide the ability to generate different reports and to perform several transactions to maintain and update bills of material.

SAS/OR User's Guide: Constraint Programming

provides documentation for the constraint programming procedure in SAS/OR software. This book serves as the primary documentation for the CLP procedure, an experimental procedure new to SAS/OR software.

SAS/OR User's Guide: Local Search Optimization

provides documentation for the local search optimization procedure in SAS/OR software. This book serves as the primary documentation for the GA procedure, an experimental procedure that uses genetic algorithms to solve optimization problems.

SAS/OR User's Guide: Project Management

provides documentation for the project management procedures in SAS/OR software. This book serves as the primary documentation for the CPM, DTREE, GANTT, NETDRAW, and PM procedures, as well as the PROJMAN Application, a graphical user interface for project management.

SAS/OR User's Guide: The QSIM Application

provides documentation for the QSIM Application, which is used to build and analyze models of queueing systems using discrete event simulation. This book shows you how to build models using the simple point-and-click graphical user interface, how to run the models, and how to collect and analyze the sample data to give you insight into the behavior of the system.

SAS/OR Software: Project Management Examples, Version 6

contains a series of examples that illustrate how to use SAS/OR software to manage projects. Each chapter contains a complete project management scenario and describes how to use PROC GANTT, PROC CPM, and PROC NETDRAW, in addition to other reporting and graphing procedures in the SAS System, to perform the necessary project management tasks.

SAS/IRP User's Guide: Inventory Replenishment Planning

provides documentation for SAS/IRP software. This book serves as the primary documentation for the IRP procedure for determining replenishment policies, as well as the \%IRPSIM SAS programming macro for simulating replenishment policies.

Chapter 1 Introduction to Optimization

Chapter Contents

OVERVIEW 15
DATA FLOW 16
PROC LP 17
PROC NETFLOW 17
PROC INTPOINT 19
PROC NLP 20
PROC QP (Experimental) 21
PROC TRANS 22
PROC ASSIGN 22
Model Formats: PROC LP and PROC NETFLOW 23
Model Formats: PROC ASSIGN and PROC TRANS 33
MODEL BUILDING 34
MATRIX GENERATION 36
Exploiting Model Structure 38
REPORT WRITING 41
The DATA Step 41
Other Reporting Procedures 43
DECISION SUPPORT SYSTEMS 44
The Full-Screen Interface 44
Communicating with the Optimization Procedures 45
REFERENCES 45

14 - Chapter 1. Introduction to Optimization

Chapter 1
 Introduction to Optimization

Overview

This chapter describes how to use SAS/OR software to solve a wide variety of optimization problems. The basic optimization problem is that of minimizing or maximizing an objective function subject to constraints imposed on the variables of that function. The objective function and constraints can be linear or nonlinear; the constraints can be bound constraints, equality or inequality constraints, or integer constraints.

Traditionally, optimization problems are divided into linear programming (LP; all functions are linear) and nonlinear programming (NLP). Variations of LP problems are assignment problems, network flow problems, and transportation problems. Nonlinear regression (fitting a nonlinear model to a set of data and the subsequent statistical analysis of the results) is a special NLP problem. Since these applications are so common, SAS/OR software has separate procedures or facilities within procedures for solving each type of these problems. Model data are supplied in a form suited for the particular type of problem. Another benefit is that an optimization algorithm can be specialized for the particular type of problem, reducing solution times. Optimizers can exploit some structure in problems such as embedded networks, special ordered sets, least squares, and quadratic objective functions.

SAS/OR software has seven procedures used for optimization:

- PROC ASSIGN for solving assignment problems
- PROC INTPOINT for network programming problems with side constraints, and linear programming problems solved by an interior point algorithm
- PROC LP for solving linear and mixed integer programming problems
- PROC NETFLOW for solving network programming problems with side constraints
- PROC NLP for solving nonlinear programming problems
- PROC QP for solving quadratic programming problems
- PROC TRANS for solving transportation problems

SAS/OR procedures use syntax that is similar to other SAS procedures. In particular, all SAS retrieval, data management, reporting, and analysis can be used with SAS/OR software. Each optimizer is designed to integrate with the SAS System to simplify model building, maintenance, solution, and report writing.

Data for models are supplied to SAS/OR procedures in SAS data sets. These data sets can be saved and easily changed and the problem can be solved. Because the models
are in SAS data sets, problem data that can represent pieces of a larger model can be concatenated and merged. The SAS/OR procedures output SAS data sets containing the solutions. These can then be used to produce customized reports. This structure allows decision support systems to be constructed using SAS/OR procedures and other tools in the SAS System as building blocks.

The following list suggests application areas where decision support systems have been used. In practice, models often contain elements of several applications listed here.

- Product-Mix problems find the mix of products that generates the largest return when there are several products that compete for limited resources.
- Blending problems find the mix of ingredients to be used in a product so that it meets minimum standards at minimum cost.
- Time-Staged problems are models whose structure repeats as a function of time. Production and inventory models are classic examples of time-staged problems. In each period, production plus inventory minus current demand equals inventory carried to the next period.
- Scheduling problems assign people to times, places, or tasks so as to optimize people's preferences while satisfying the demands of the schedule.
- Multiple objective problems have multiple conflicting objectives. Typically, the objectives are prioritized and the problems are solved sequentially in a priority order.
- Capital budgeting and project selection problems ask for the project or set of projects that will yield the greatest return.
- Location problems seek the set of locations that meets the distribution needs at minimum cost.
- Cutting stock problems find the partition of raw material that minimizes waste.

Data Flow

The LP, NETFLOW, INTPOINT, NLP, QP, TRANS, and ASSIGN procedures take a model that has been saved in one or more SAS data sets, solve it, and save the solution in other SAS data sets. Most of the procedures define a SAS macro variable that contains a character string indicating whether or not the procedure terminated successfully and the status of the optimizer (for example, whether the optimum was found). This information is useful when the procedure is one of the steps in a larger program.

PROC LP

The LP procedure solves linear and mixed integer programs. It can perform several types of post-optimality analysis, including range analysis, sensitivity analysis, and parametric programming. The procedure can also be used interactively.

PROC LP requires a problem data set that contains the model. In addition, a primal and active data set can be used for warm starting a problem that has been partially solved previously.

Figure 1.1 illustrates all the input and output data sets that are possible with PROC LP. It also shows the macro variable _ORLP_ that PROC LP defines.

Figure 1.1. Data Flow in PROC LP
The problem data describing the model can be in one of two formats: a sparse or a dense format. The dense format represents the model as a rectangular matrix. The sparse format represents only the nonzero elements of a rectangular matrix. The sparse and dense input formats are described in more detail later in this chapter.

PROC NETFLOW

The NETFLOW procedure solves network flow problems with linear side constraints using either the network simplex algorithm or the interior point algorithm. In addition, it can solve linear programming (LP) problems using the interior point algorithm.

Networks and the Network Simplex Algorithm

PROC NETFLOW's network simplex algorithm solves pure network flow problems and network flow problems with linear side constraints. The procedure accepts the network specification in a format that is particularly suited to networks. Although network problems could be solved by PROC LP, the NETFLOW procedure generally solves network flow problems more efficiently than PROC LP.

Network flow problems, such as finding the minimum cost flow in a network, require model representation in a format that is simpler than PROC LP. The network is represented in two data sets: a node data set that names the nodes in the network and gives supply and demand information at them, and an arc data set that defines the arcs
in the network using the node names and gives arc costs and capacities. In addition, a side-constraint data set is included that gives any side constraints that apply to the flow through the network. Examples of these are found later in this chapter.

The NETFLOW procedure saves solutions in four data sets. Two of these store solutions for the pure network model, ignoring the restrictions imposed by the side constraints. The remaining two data sets contain the solutions to the network flow problem when the side constraints apply.

Figure 1.2 illustrates the input and output data sets that are possible with PROC NETFLOW when using the network simplex method. It also shows the macro variable _ORNETFL that PROC NETFLOW defines.

Figure 1.2. Data Flow in PROC NETFLOW: Simplex Algorithm
The constraint data can be specified in either the sparse or dense input formats. This is the same format that is used by PROC LP; therefore, any model-building techniques that apply to models for PROC LP also apply to network flow models having side constraints.

Linear and Network Programs Solved by the Interior Point Algorithm

The data required by PROC NETFLOW for a linear program resembles the data for nonarc variables and constraints for constrained network problems. It is similar to the data required by PROC LP.

The LP representation requires a data set that defines the variables in the LP using variable names, and gives objective function coefficients and upper and lower bounds. In addition, a constraint data set can be included that specifies any constraints.

Figure 1.3 illustrates the input and output data sets that are possible with PROC NETFLOW for solving linear programs using the interior point algorithm. It also shows the macro variable _ORNETFL that PROC NETFLOW defines.

Figure 1.3. Data Flow in PROC NETFLOW: LP Problems
When solving a constrained network problem, you can specify the INTPOINT option to indicate that the interior point algorithm is to be used. The input data is the same whether the simplex or interior point method is used. The interior point method is often faster when problems have many side constraints.

Figure 1.4 illustrates the input and output data sets that are possible with PROC NETFLOW for solving network problems using the interior point algorithm. It also shows the macro variable _ORNETFL that PROC NETFLOW defines.

Figure 1.4. Data Flow in PROC NETFLOW: Interior Point Algorithm
The constraint data can be specified in either the sparse or dense input format. This is the same format that is used by PROC LP; therefore, any model-building techniques that apply to models for PROC LP also apply to LP models solved by PROC NETFLOW.

PROC INTPOINT

The INTPOINT procedure solves the Network Program with Side Constraints (NPSC) problem and the more general Linear Programming (LP) problem using the interior point algorithm.

The data required by PROC INTPOINT is similar to the data required by PROC NETFLOW when solving network flow models using the interior point algorithm.

Figure 1.5 illustrates the input and output data sets that are possible with PROC INTPOINT.

Figure 1.5. Data Flow in PROC INTPOINT
The constraint data can be specified in either the sparse or dense input format. This is the same format that is used by PROC LP and PROC NETFLOW; therefore, any model-building techniques that apply to models for PROC LP or PROC NETFLOW also apply to PROC INTPOINT.

PROC NLP

The NLP procedure (NonLinear Programming) offers a set of optimization techniques for minimizing or maximizing a continuous nonlinear function subject to linear and nonlinear, equality and inequality, and lower and upper bound constraints. Problems of this type are found in many settings ranging from optimal control to maximum likelihood estimation.

Nonlinear programs can be input into the procedure in various ways. The objective, constraint, and derivative functions are specified using the programming statements of PROC NLP. In addition, information in SAS data sets can be used to define the structure of objectives and constraints, and to specify constants used in objectives, constraints, and derivatives.

PROC NLP uses data sets to input various pieces of information:

- The DATA= data set enables you to specify data shared by all functions involved in a least squares problem.
- The INQUAD= data set contains the arrays appearing in a quadratic programming problem.
- The INEST= data set specifies initial values for the decision variables, the values of constants that are referred to in the program statements, and simple boundary and general linear constraints.
- The MODEL= data set specifies a model (functions, constraints, derivatives) saved at a previous execution of the NLP procedure.

PROC NLP uses data sets to output various results:

- The OUTEST= data set saves the values of the decision variables, the derivatives, the solution, and the covariance matrix at the solution.
- The OUT= output data set contains variables generated in the program statements defining the objective function, as well as selected variables of the DATA= input data set, if available.
- The OUTMODEL= data set saves the programming statements. It can be used to input a model in the MODEL= input data set.

Figure 1.6 illustrates all the input and output data sets that are possible with PROC NLP.

Figure 1.6. Data Flow in PROC NLP
As an alternative to supplying data in SAS data sets, some or all data for the model can be specified using SAS programming statements. These are similar to those used in the SAS DATA step.

PROC QP (Experimental)

The experimental QP procedure solves Quadratic Programming (QP) problems and Quadratic Network Problems with Side Constraints (QNPSC).

The data required by PROC QP is similar to the data required by PROC INTPOINT, with the addition of a Hessian matrix that must be specified in a data set. Figure 1.7 illustrates the input and output data sets that are possible with PROC QP.

Figure 1.7. Data Flow in PROC QP
The constraint data can be specified in either the sparse or dense input format. This is the same format that is used by PROC LP, PROC NETFLOW, and PROC INTPOINT; therefore, any model-building techniques that apply to these models also apply to PROC QP.

PROC TRANS

Transportation networks are a special type of network, called bipartite networks, that have only supply and demand nodes and arcs directed from supply nodes to demand nodes. For these networks, data can be given most efficiently in a rectangular or matrix form. The TRANS procedure takes cost, capacity, and lower bound data in this form. The observations in these data sets correspond to supply nodes, and the variables correspond to demand nodes. The solution is saved in a single output data set.

Figure 1.8 illustrates the input and output data sets that are possible with PROC TRANS. It also shows the macro variable _ORTRANS that PROC TRANS defines.

Figure 1.8. Data Flow in PROC TRANS

PROC ASSIGN

The assignment problem is a special type of transportation problem, one having supply and demand values of one unit. As with the transportation problem, the cost data for this type of problem are saved in a SAS data set in rectangular form. The ASSIGN procedure saves the solution in a SAS data set.

Figure 1.9 illustrates the input and output data sets that are possible with PROC ASSIGN. It also shows the macro variable _ORASSIG that PROC ASSIGN defines.

Figure 1.9. Data Flow in PROC ASSIGN

Model Formats: PROC LP and PROC NETFLOW

Model generation and maintenance are often difficult and expensive aspects of applying mathematical programming techniques. The flexible input formats for the optimization procedures in SAS/OR software simplify this task.

A small product mix problem serves as a starting point for a discussion of different types of model formats supported in SAS/OR software.

A candy manufacturer makes two products: chocolates and toffee. What combination of chocolates and toffee should be produced in a day in order to maximize the company's profit? Chocolates contribute $\$ 0.25$ per pound to profit, and toffee contributes $\$ 0.75$ per pound. The decision variables are chocolates and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolates and toffee.
2. Process 2 adds colors and flavors to the toffee, then cools and shapes the confection.
3. Process 3 chops and mixes nuts and raisins, adds them to the chocolates, then cools and cuts the bars.
4. Process 4 is packaging: chocolates are placed in individual paper shells; toffee are wrapped in cellophane packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.
Firm time standards have been established for each process. For Process 1, mixing and cooking take 15 seconds for each pound of chocolate, and 40 seconds for each pound of toffee. Process 2 takes 56.25 seconds per pound of toffee. For Process 3, each pound of chocolate requires 18.75 seconds of processing. In packaging, a pound of chocolates can be wrapped in 12 seconds, whereas 50 seconds are required for a pound of toffee. These data are summarized below:

	Available Time	Required per chocolates	Pound toffee $(s e c)$	
	Process	(sec)	(sec)	40
1 Cooking	27,000	15	56.25	
2 Color/Flavor	27,000			
3 Condiments	27,000	18.75	50	
4	Packaging	27,000	12	50

The objective is to
Maximize: $\quad 0.25($ chocolates $)+0.75$ (toffee)
which is the company's total profit.
The production of the candy is limited by the time available for each process. The limits placed on production by Process 1 are expressed by the following inequality.

Process 1: $\quad 15$ (chocolates) $+40($ toffee $) \leq 27,000$

Process 1 can handle any combination of chocolates and toffee that satisfies this inequality.

The limits on production by other processes generate constraints described by the following inequalities.

$$
\begin{array}{ll}
\text { Process 2: } & 56.25(\text { toffee }) \leq 27,000 \\
\text { Process 3: } & 18.75(\text { chocolates }) \leq 27,000 \\
\text { Process 4: } & 12(\text { chocolates })+50(\text { toffee }) \leq 27,000
\end{array}
$$

This linear program illustrates the type of problem known as a product mix example. The mix of products that maximizes the objective without violating the constraints is the solution. Two formats - dense or sparse - can be used to represent this model.

Dense Format

The following DATA step creates a SAS data set for this product mix problem. Notice that the values of CHOCO and TOFFEE in the data set are the coefficients of those variables in the equations corresponding to the objective function and constraints. The variable _id_ contains a character string that names the rows in the data set. The variable_type_ is a character variable that contains keywords that describes the type of each row in the problem data set. The variable _rhs_ contains the right-hand-side values.

```
data factory;
    input _id_ $ CHOCO TOFFEE _type_ $ _rhs_;
    datalines;
object 0.25 0.75 MAX .
process1 15.00 40.00 LE 27000
process2 0.00 56.25 LE 27000
process3 18.75 0.00 LE 27000
process4 12.00 50.00 LE 27000
;
```

To solve this problem using the interior point algorithm of PROC NETFLOW, specify

```
proc netflow arcdata=factory condata=factory;
```

However, this example will be solved by the LP procedure. Because the special variables _id_, _type_, and _rhs_ are used in the problem data set, there is no need to identify them to the LP procedure. Therefore, the following statement is all that is needed to solve this problem.

```
proc lp;
```

The output from the LP procedure is in four sections.

Problem Summary

The first section of the output, the Problem Summary, describes the problem by identifying the objective function (defined by the first observation in the data set used as input), the right-hand-side variable, the type variable, and the density of the problem. The problem density describes the relative number of elements in the problem matrix that are nonzero. The fewer zeros in the matrix, the higher the problem density. The Problem Summary describes the problem, giving the number and type of variables in the model and the number and type of constraints. The types of variables in the problem are also identified. Variables are either structural or logical. Structural variables are identified in the VAR statement when the dense format is used. They are the unknowns in the equations defining the objective function and constraints. By default, PROC LP assumes that structural variables have the additional constraint that they must be nonnegative. Upper and lower bounds to structural variables can be defined.

Figure 1.10. Problem Summary
The Problem Summary shows, for example, that there are two nonnegative decision variables, namely CHOCO and TOFFEE. It also shows that there are four constraints of type LE.

After the procedure displays this information, it solves the problem and displays the Solution Summary.

Solution Summary

The Solution Summary (shown in Figure 1.11) gives information about the solution that was found, including whether the optimizer terminated successfully, having found the optimum.

When PROC LP solves a problem, an iterative process is used. First, the procedure finds a feasible solution that satisfies the constraints. The second phase finds the
optimal solution from the set of feasible solutions. The Solution Summary lists the number of iterations in each of these phases, the number of variables in the initial feasible solution, the time the procedure used to solve the problem, and the number of matrix inversions necessary.

Figure 1.11. Solution Summary
After performing three Phase 2 iterations, the procedure terminated successfully with optimal objective value of 475 .

Variable Summary

The next section of the output is the Variable Summary, as shown in Figure 1.12. For each variable, the Variable Summary gives the value, objective function coefficient, status in the solution, and reduced cost.

Figure 1.12. Variable Summary

The Variable Summary contains details about each variable in the solution. The Activity variable shows that optimum profitability is achieved when 1000 pounds of chocolate and 300 pounds of toffee are produced. The variables process1, process2, process3, and process 4 correspond to the four slack variables in the Process 1, Process 2, Process 3, and Process 4 constraints, respectively. Producing 1000 pounds of chocolate and 300 pounds of toffee a day leaves 10,125 seconds of slack time in Process 2 (where colors and flavors are added to the toffee), and 8,250 seconds of slack time in Process 3 (where nuts and raisins are mixed and added to the chocolate).

Constraint Summary

The last section of the output is the Constraint Summary, as shown in Figure 1.13. The Constraint Summary gives the value of the objective function, the value of each constraint, and the dual activities.

The Activity variable gives the value of the right-hand side of each equation when the problem is solved using the information given in the Variable Summary.

The Dual Activity variable reveals that each second in Process 1 (mixing-cooking) is worth approximately $\$.013$, and each second in Process 4 (Packaging) is worth approximately $\$.005$. These figures (called shadow prices) can be used to decide whether the total available time for Process 1 and Process 4 should be increased. If a second can be added to the total production time in Process 1 for less than $\$.013$, it would be profitable to do so. The dual activities for Process 2 and Process 3 are zero, since adding time to those processes does not increase profits. Keep in mind that the dual activity gives the marginal improvement to the objective, and that adding time to Process 1 changes the original problem and solution.

Figure 1.13. Constraint Summary
For a complete description of the output from PROC LP, see Chapter 4, "The LP Procedure."

Sparse Format

Typically, mathematical programming models are sparse. That is, few of the coefficients in the constraint matrix are nonzero. The dense problem format shown in
the previous section is an inefficient way to represent sparse models. The LP procedure also accepts data in a sparse input format. Only the nonzero coefficients must be specified. It is consistent with the standard MPS sparse format, and much more flexible; models using the MPS format can be easily converted to the LP format.

Although the factory example of the last section is not sparse, an example of the sparse input format for that problem is illustrated here. The sparse data set has four variables: a row type identifying variable (_type_), a row name variable (_row_), a column name variable (_col_), and a coefficient variable (_coef_).

```
data factory;
    format _type_ $8. _row_ $10. _col_ $10.;
    input _type_ $_row_ $ _col_ $ _coef_ ;
    datalines;
max object
. object chocolate . 25
. object toffee .75
le process1
    process1
    chocolate i5
. process1 chocolate 15
. process1 _RHS_ 27000
le process2 . .
. process2 toffee 56.25
. process2 _RHS_ 27000
le process3 .
    process3 chocolate 18.75
. process3 _RHS_ 27000
le process4 .
    process4 chocolate 12
. process4 chocolate 12
. process4 torfee 2 process4 _RHS_ 27000
;
```

To solve this problem using the interior point algorithm of PROC NETFLOW, specify

```
proc netflow sparsecondata arcdata=factory condata=factory;
```

However, this example will be solved by the LP procedure.
Notice that the _type_ variable contains keywords as for the dense format, the _row_ variable contains the row names in the model, the _col_ variable contains the column names in the model, and the _coef_ variable contains the coefficients for that particular row and column. Since the row and column names are the values of variables in a SAS data set, they are not limited to eight characters. This feature, as well as the order independence of the format, simplifies matrix generation.

The SPARSEDATA option in the PROC LP statement tells the LP procedure that the model in the problem data set is in the sparse format. This example also illustrates how the solution of the linear program is saved in two output data sets: the primal data set and the dual data set.

```
proc lp
    data=factory sparsedata
    primalout=primal dualout=dual;
    run;
```

The primal data set (shown in Figure 1.14) contains the information that is displayed in the Variable Summary, plus additional information about the bounds on the variables.

Obs	_OBJ_ID_	_RHS_ID_	_VAR_	_TYPE_ _STATUS_
1	object	RHS_	chocolate	NON-NEG _BASIC_
2	object	RHS	toffee	NON-NEG _BASIC_
3	object	RHS	process1	SLACK
4	object	RHS	process2	SLACK _BASIC
5	object	RHS	process3	SLACK _BASIC_
6	object	RHS	process 4	SLACK
7	object	RHS	PHASE_1_OBJECTIV	OBJECT _DEGEN
8	object	RHS	object	OBJECT _BASIC
Obs	_LBOUND	_VALUE	_UBOUND_ _PRICE_	_R_COST_
1	0	1000	1.7977 E 308 0.25	0.000000
2	0	300	1.7977 E 308 0.75	0.000000
3	0	0	$1.7977 \mathrm{E} 308 \quad 0.00$	-0.012963
4	0	10125	$1.7977 \mathrm{E} 308 \quad 0.00$	0.000000
5	0	8250	$1.7977 \mathrm{E} 308 \quad 0.00$	0.000000
6	0	0	$1.7977 \mathrm{E} 308 \quad 0.00$	-0.004630
7	0	0	$0 \quad 0.00$	0.000000
8	0	475	$1.7977 \mathrm{E} 308 \quad 0.00$	0.000000

Figure 1.14. Primal Data Set
The dual data set (shown in Figure 1.15) contains the information that is displayed in the Constraint Summary, plus additional information about bounds on the rows.

Obs	_OBJ_ID	RHS	ROW_ID	TYPE	RHS	L_RHS	VALUE	U_RHS	DUAL
1	object	RHS	object	OBJECT	475	475	475	475	.
2	object	RHS	process1	LE	27000	-1.7977E308	27000	27000	0.012963
3	object	RHS	process2	LE	27000	-1.7977E308	16875	27000	0.000000
4	object	RHS	process3	LE	27000	-1.7977E308	18750	27000	0.000000
5	object	RHS	process4	LE	27000	-1.7977E308	27000	27000	0.004630

Figure 1.15. Dual Data Set

Network Format

Network flow problems can be described by specifying the nodes in the network and their supplies and demands, and the arcs in the network and their costs, capacities, and lower flow bounds. Consider the simple transshipment problem in Figure 1.16 as an illustration.

Figure 1.16. Transshipment Problem
Suppose the candy manufacturing company has two factories, two warehouses, and three customers for chocolate. The two factories each have a production capacity of 500 pounds per day. The three customers have demands of 100,200 , and 50 pounds per day, respectively.

The following data set describes the supplies (positive values for the supdem variable) and the demands (negative values for the supdem variable) for each of the customers and factories.

```
data nodes;
    format node $10. ;
    input node $ supdem;
    datalines;
customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;
```

Suppose that there are two warehouses that are used to store the chocolate before shipment to the customers, and that there are different costs for shipping between each factory, warehouse, and customer. What is the minimum cost routing for supplying the customers?

Arcs are described in another data set. Each observation defines a new arc in the network and gives data about the arc. For example, there is an arc between the node factory_1 and the node warehouse_1. Each unit of flow on that arc costs 10.

Although this example does not include it, lower and upper bounds on the flow across that arc can be listed here.

```
data network;
    format from $12. to $12.;
    input from $ to $ cost ;
    datalines;
factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;
```

You can use PROC NETFLOW to find the minimum cost routing. This procedure takes the model as defined in the network and nodes data sets and finds the minimum cost flow.

```
proc netflow arcout=arc_sav
    arcdata=network nodedata=nodes;
    node node; /* node data set information */
    supdem supdem;
    tail from; /* arc data set information */
    head to;
    cost cost;
    run;
proc print;
    var from to cost _capac_ _lo_ _supply_ _demand_
        _flow_ _fcost_ _rcost_;
    sum _fcost_;
    run;
```

PROC NETFLOW produces the following messages on the SAS log:

```
NOTE: Number of nodes= 7 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 3 .
NOTE: Total supply= 1000 , total demand= 350 .
NOTE: Number of arcs= 10 .
NOTE: Number of iterations performed (neglecting
    any constraints)= 7 .
NOTE: Of these, 2 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 3050 .
NOTE: The data set WORK.ARC_SAV has 10 observations
        and }13\mathrm{ variables.
```

The solution (Figure 1.17) saved in the arc_sav data set shows the optimal amount of chocolate to send across each arc (the amount to ship from each factory to each warehouse and from each warehouse to each customer) in the network per day.

Figure 1.17. ARCOUT Data Set
Notice which arcs have positive flow (_FLOW_ is greater than 0). These arcs indicate the amount of chocolate that should be sent from factory_2 to warehouse_1 and from there on to the three customers. The model indicates no production at factory_1 and no use of warehouse_2.

Figure 1.18. Optimal Solution for the Transshipment Problem

Model Formats: PROC ASSIGN and PROC TRANS

The transportation and assignment models are described in rectangular data sets. Suppose that instead of sending chocolate from factories to warehouses and then to the customers, chocolate is sent directly from the factories to the customers.

Finding the minimum cost routing could be done using the NETFLOW procedure. However, since the network represents a transportation problem, the data for the problem can be represented more simply.

```
data transprt;
    input source $ supply cust_1 cust_2 cust_3 ;
    datalines;
demand . 100 200 50
factory1 500 10 9
factory2 500 9 10 8
;
```

This data set shows the source names as the values for the source variable, the supply at each source node as the values for the supply variable, and the unit shipping cost for source to sink as the values for the sink variables cust_1 to cust_3. Notice that the first record contains the demands at each of the sink nodes.

The TRANS procedure finds the minimum cost routing. It solves the problem and saves the solution in an output data set.

```
proc trans
    nothrunet data=transprt out=transout;
    supply supply;
    id source;
proc print; run;
```

The optimum solution total (3050) is reported on the SAS log. The entire solution, saved in the output data set transout and shown in Figure 1.19, shows the amount of chocolate to ship from each factory to each customer per day.

The transout data set contains the variables listed in the transprt data set, and a new variable called _DUAL_. The _DUAL_ variable contains the marginal costs of increasing the supply at each origin point. The last observation in the transout data set has the marginal costs of increasing the demand at each destination point. These variables are called dual variables.

Obs	source	supply	cust_1	cust_2	cust_3	DUAL_
1	DEMAND	.	100	200	50	.
2	factory1	500	0	200	50	0
3	factory ${ }^{2}$	500	100	0	0	0
4	_DUAL_		9	9	7	.

Figure 1.19. TRANSOUT Data Set

Model Building

It is often desirable to keep the data separate from the structure of the model. This is useful for large models with numerous identifiable components. The data are best organized in rectangular tables that can be easily examined and modified. Then, before the problem is solved, the model is built using the stored data. This process of model building is known as matrix generation. In conjunction with the sparse format, the SAS DATA step provides a good matrix generation language.

For example, consider the candy manufacturing example introduced previously. Suppose that, for the user interface, it is more convenient to organize the data so that each record describes the information related to each product (namely, the contribution to the objective function and the unit amount needed for each process). A DATA step for saving the data might look like this:

```
data manfg;
    format product $12.;
    input product $ object process1 - process4 ;
    datalines;
chocolate . .25 15 0.00 18.75 12
toffee . 75 40 56.25 0.00 50
licorice 1.00 29 30.00 20.00 20
jelly_beans .85 10 0.00 30.00 10
_RHS_ . 27000 27000 27000 27000
;
```

Notice that there is a special record at the end having product _RHS_. This record gives the amounts of time available for each of the processes. This information could have been stored in another data set. The next example illustrates a model where the data are stored in separate data sets.

Building the model involves adding the data to the structure. There are as many ways to do this as there are programmers and problems. The following DATA step shows one way to use the candy data to build a sparse format model to solve the product mix problem.

```
data model;
    array process object process1-process4;
    format _type_ $8. _row_ $12. _col_ $12. ;
    keep _type_ _row_ _col_ _coef_;
    set manfg; /* read the manufacturing data */
    /* build the object function */
    if _n_=1 then do;
        _type_='max'; _row_='object'; _col_=' '; _coef_=.;
        output;
    end;
    /* build the constraints */
```

```
    do over process;
    if _i_>1 then do;
            _type_='le'; _row_='process'||put(_i_-1,1.);
    end;
    else _row_='object';
    _col_=product; _coef_=process;
    output;
    end;
run;
```

The sparse format data set is shown in Figure 1.20.

Obs	_type_	_row_	_col	_coef
1	max	object		
2	\max	object	chocolate	0.25
3	le	process1	chocolate	15.00
4	le	process2	chocolate	0.00
5	le	process3	chocolate	18.75
6	le	process4	chocolate	12.00
7		object	toffee	0.75
8	le	process1	toffee	40.00
9	le	process2	toffee	56.25
10	le	process3	toffee	0.00
11	le	process4	toffee	50.00
12		object	licorice	1.00
13	le	process1	licorice	29.00
14	le	process2	licorice	30.00
15	le	process3	licorice	20.00
16	le	process4	licorice	20.00
17		object	jelly_beans	0.85
18	le	process1	jelly_beans	10.00
19	le	process2	jelly_beans	0.00
20	le	process3	jelly_beans	30.00
21	le	process4	jelly_beans	10.00
22		object	RHS	.
23	le	process1	RHS	27000.00
24	le	process2	RHS	27000.00
25	le	process3	RHS	27000.00
26	le	process4	RHS	27000.00

Figure 1.20. Sparse Data Format
The model data set looks a little different from the sparse representation of the candy model shown earlier. It not only includes additional products (licorice and jelly_beans), but it also defines the model in a different order. Since the sparse format is robust, the model can be generated in ways that are convenient for the DATA step program.

If the problem had more products, you could increase the size of the manfg data set to include the new product data. Also, if the problem had more than four processes, you could add the new process variables to the manfg data set and increase the size of the process array in the model data set. With these two simple changes and additional data, a product mix problem having hundreds of processes and products can be solved.

Matrix Generation

It is desirable to keep data in separate tables, then automate model building and reporting. This example illustrates a problem that has elements of a product mix problem and a blending problem. Suppose four kinds of ties are made; all silk, all polyester, a 50-50 polyester-cotton blend, and a 70-30 cotton-polyester blend.

The data includes cost and supplies of raw material, selling price, minimum contract sales, maximum demand of the finished products, and the proportions of raw materials that go into each product. The product mix that maximizes profit is to be found.

The data are saved in three SAS data sets. The program that follows demonstrates one way for these data to be saved. Alternatively, the full-screen editor PROC FSEDIT can be used to store and edit these data.

```
data material;
    format descpt $20.;
    input descpt $ cost supply;
    datalines;
silk_material . 21 25.8
polyester_material . }
cotton_material .9 13.6
;
data tie;
    format descpt $20.;
    input descpt $ price contract demand;
    datalines;
all_silk 6.70 6.0 7.00
all_polyester 3.55 10.0 14.00
poly_cotton_blend 4.31 13.0 16.00
cotton_poly_blend 4.81 6.0 8.50
;
data manfg;
    format descpt $20.;
    input descpt $ silk poly cotton;
    datalines;
\begin{tabular}{lrrr} 
all_silk & 100 & 0 & 0 \\
all_polyester & 0 & 100 & 0 \\
poly_cotton_blend & 0 & 50 & 50 \\
cotton_poly_blend & 0 & 30 & 70
\end{tabular}
;
```

The following program takes the raw data from the three data sets and builds a linear program model in the data set called model. Although it is designed for the threeresource, four-product problem described here, it can be easily extended to include more resources and products. The model-building DATA step remains essentially the same; all that changes are the dimensions of loops and arrays. Of course, the data tables must increase to accommodate the new data.

```
data model;
    array raw_mat {3} $ 20 ;
    array raw_comp {3} silk poly cotton;
    length _type_ $ 8 _col_ $ 20 _row_ $ 20 _coef_ 8 ;
    keep _type_ _col_ _row_ _coef_ ;
    /* define the objective, lower, and upper bound rows */
    _row_='profit'; _type_='max'; output;
    _row_='lower'; _type_='lowerbd'; output;
    _row_='upper'; _type_='upperbd'; output;
    _type_=' ';
    /* the object and upper rows for the raw materials */
    do i=1 to 3;
        set material;
        raw_mat[i]=descpt; _col_=descpt;
        _row_='profit'; _coef_=-cost; output;
        _row_='upper'; _coef_=supply; output;
    end;
    /* the object, upper, and lower rows for the products */
    do i=1 to 4;
        set tie;
        _col_=descpt;
        _row_='profit'; _coef_=price; output;
        _row_='lower'; _coef_=contract; output;
        _row_='upper'; _coef_=demand; output;
    end;
    /* the coefficient matrix for manufacturing */
    _type_=' eq' ;
    do i=1 to 4; /* loop for each raw material */
        set manfg;
        do j=1 to 3; /* loop for each product */
        _col_=descpt; /* % of material in product */
        _row_ = raw_mat[j];
        _coef_ = raw_comp[j]/100;
        output;
            _col_ = raw_mat[j]; _coef_ = -1;
            output;
                /* the right-hand-side */
                if i=1 then do;
                    _col_='_RHS_';
                _coef_=0;
                output;
            end;
```

```
                end;
                _type_=' ';
    end;
    stop;
run;
```

The model is solved using PROC LP, which saves the solution in the PRIMALOUT data set named solution. PROC PRINT displays the solution, shown in Figure 1.21.

```
proc lp sparsedata primalout=solution;
proc print ;
    id _var_;
    var _lbound_--_r_cost_;
run;
```

VAR	_LBOUND_	_VALUE	_UBOUND_	_PRICE	_R_COST
all_polyester	10	11.800	14.0	3.55	0.000
all_silk	6	7.000	7.0	6.70	6.490
cotton_material	0	13.600	13.6	-0.90	4.170
cotton_poly_blend	6	8.500	8.5	4.81	0.196
polyester_material	0	22.000	22.0	-0.60	2.950
poly_cotton_blend	13	15.300	16.0	4.31	0.000
silk_material	0	7.000	25.8	-0.21	0.000
PHASE_1_OBJECTIVE	0	0.000	0.0	0.00	0.000
profit	0	168.708	1.7977E308	0.00	0.000

Figure 1.21. Solution Data Set
The solution shows that 11.8 units of polyester ties, 7 units of silk ties, 8.5 units of the cotton-polyester blend, and 15.3 units of the polyester-cotton blend should be produced. It also shows the amounts of raw materials that go into this product mix to generate a total profit of 168.708 .

Exploiting Model Structure

Another example helps to illustrate how the model can be simplified by exploiting the structure in the model when using the NETFLOW procedure.

Recall the chocolate transshipment problem discussed previously. The solution required no production at factory_1 and no storage at warehouse_2. Suppose this solution, although optimal, is unacceptable. An additional constraint requiring the production at the two factories to be balanced is required. Now, the production at the two factories can differ by, at most, 100 units. Such a constraint might look like

```
-100 <= (factory_1_warehouse_1 + factory_1_warehouse_2 -
    factory_2_warehouse_1 - factory_2_warehouse_2) <= 100
```

The network and supply and demand information are saved in two data sets.

```
data network;
    format from $12. to $12.;
    input from $ to $ cost ;
    datalines;
factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;
data nodes;
    format node $12. ;
    input node $ supdem;
    datalines;
customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;
```

The factory-balancing constraint is not a part of the network. It is represented in the sparse format in a data set for side constraints.

```
data side_con;
    format _type_ $8. _row_ $8. _col_ $21. ;
    input _type_ _row_ _col_ _coef_ ;
    datalines;
eq balance
    balance factory_1_warehouse_1 1
    balance factory_1_warehouse_2 1
    balance factory_2_warehouse_1 -1
    balance factory_2_warehouse_2 -1
    balance diff -1
lo lowerbd diff -100
up upperbd diff 100
;
```

This data set contains an equality constraint that sets the value of DIFF to be the amount that factory 1 production exceeds factory 2 production. It also contains implicit bounds on the DIFF variable. Note that the DIFF variable is a nonarc variable.

```
proc netflow
    conout=con_sav
    arcdata=network nodedata=nodes condata=side_con
    sparsecondata ;
    node node;
    supdem supdem;
    tail from;
    head to;
    cost cost;
    run;
proc print;
    var from to _name_ cost _capac_ _lo_ _supply_ _demand_
        _flow_ _fcost_ _rcost_;
    sum _fcost_;
    run;
```

The solution is saved in the con_sav data set (Figure 1.22).

						$\overline{\mathrm{S}}$	$\overline{\mathrm{D}}$			
		-		C		U	E		F	R
		N		A		P	M	F	C	C
f		A	c	P		P	A	L	0	0
0 r		M	\bigcirc	A	L	L	N	0	S	S
b 0	t	E	s	C	0	Y	D	W	T	T
$s \mathrm{~m}$	\bigcirc	-	t	-	-	-	-	-	-	-
1 warehouse_1	customer_1		3	99999999	0		100	100	300	.
2 warehouse_2	customer_1		5	99999999	0		100	0	0	1.0
3 warehouse_1	customer_2		4	99999999	0		200	75	300	.
4 warehouse_2	customer_2		5	99999999	0	.	200	125	625	.
5 warehouse_1	customer_3		4	99999999	0	.	50	50	200	.
6 warehouse_2	customer_3		6	99999999	0	.	50	0	0	1.0
7 factory_1	warehouse_1		10	99999999	0	500	.	0	0	2.0
8 factory_2	warehouse_1		5	99999999	0	500	.	225	1125	.
9 factory_1	warehouse_2		7	99999999	0	500		125	875	.
10 factory_2	warehouse_2		9	99999999	0	500		0	0	5.0
11		diff	0	100	-100	.		-100	0	1.5
									====	
									3425	

Figure 1.22. CON_SAV Data Set
Notice that the solution now has production balanced across the factories; the production at factory 2 exceeds that at factory 1 by 100 units.

Figure 1.23. Constrained Optimum for the Transshipment Problem

Report Writing

The reporting of the solution is also an important aspect of modeling. Since the optimization procedures save the solution in one or more SAS data sets, report writing can be written using any of the tools in the SAS language.

The DATA Step

Use of the DATA step and PROC PRINT is the most general way to produce reports. For example, a table showing the revenue generated from the production and a table of the cost of material can be produced with the following program.

```
data product (keep= _var_ _value_ _price_ revenue)
    material(keep=_var_ _value__ _price_ cost);
    set solution;
    if _price_>0 then do;
        revenue=_price_*_value_; output product;
    end;
    else if _price_<0 then do;
        _price_=-_price_;
        cost = _price_*_value_; output material;
    end;
run;
```

```
/* display the product report */
proc print data=product;
    id _var_;
    var _value_ _price_ revenue ;
    sum revenue;
    title 'Revenue Generated from Tie Sales';
run;
/* display the materials report */
proc print data=material;
    id _var_;
    var _value_ _price_ cost;
    sum cost;
    title 'Cost of Raw Materials';
run;
```

This DATA step reads the solution data set saved by PROC LP and segregates the records based on whether they correspond to materials or products, namely whether the contribution to profit is positive or negative. Each of these is then displayed to produce Figure 1.24.

Revenue Generated from Tie Sales			
_VAR	_VALUE	_PRICE	revenue
all_polyester	11.8	3.55	41.890
all_silk	7.0	6.70	46.900
cotton_poly_blend	8.5	4.81	40.885
poly_cotton_blend	15.3	4.31	65.943
			=======
			195.618

Cost of Raw Materials			
VAR	_VALUE	_PRICE	cost
cotton_material	13.6	0.90	12.24
polyester_material	22.0	0.60	13.20
silk_material	7.0	0.21	1.47
			26.91

Figure 1.24. Tie Problem: Revenues and Costs

Other Reporting Procedures

The GCHART procedure can be a useful tool for displaying the solution to mathematical programming models. The con_solv data set that contains the solution to the balanced transshipment problem can be effectively displayed using PROC GCHART. In Figure 1.25, the amount that is shipped from each factory and warehouse can be seen by submitting the following.

```
title;
proc gchart data=con_sav;
    hbar from / sumvar=_flow_;
run;
```


Figure 1.25. Tie Problem: Throughputs
The horizontal bar chart is just one way of displaying the solution to a mathematical program. The solution to the Tie Product Mix problem that was solved using PROC LP can also be illustrated using PROC GCHART. Here, a pie chart shows the relative contribution of each product to total revenues.

```
proc gchart data=product;
    pie _var_ / sumvar=revenue;
title 'Projected Tie Sales Revenue';
run;
```


Figure 1.26. Tie Problem: Projected Tie Sales Revenue
The TABULATE procedure is another procedure that can help automate solution reporting. Several examples in Chapter 4, "The LP Procedure," illustrate its use.

Decision Support Systems

The close relationship between a SAS data set and the representation of the mathematical model makes it easy to build decision support systems.

The Full-Screen Interface

The ability to manipulate data using the full-screen tools in the SAS language further enhances the decision support capabilities. The several data set pieces that are components of a decision support model can be edited using the full-screen editing procedures FSEDIT and FSPRINT. The screen control language SCL directs data editing, model building, and solution reporting through its menuing capabilities.

The compatibility of each of these pieces in the SAS System makes construction of a full-screen decision support system based on mathematical programming an easy task.

Communicating with the Optimization Procedures

The optimization procedures communicate with any decision support system through the various problem and solution data sets. However, there is a need for the system to have a more intimate knowledge of the status of the optimization procedures. This is achieved through the use of macro variables defined by each of the optimization procedures.

References

Rosenbrock, H. H. (1960), "An Automatic Method for Finding the Greatest or Least Value of a Function," Computer Journal, 3, 175-184.

46 - Chapter 1. Introduction to Optimization

Chapter 2
 The ASSIGN Procedure

Chapter Contents

OVERVIEW 49
GETTING STARTED 50
Introductory Example 50
SYNTAX 52
Functional Summary 52
PROC ASSIGN Statement 52
BY Statement 53
COST Statement 53
ID Statement 54
DETAILS 54
Missing Values 54
Output Data Set 54
The Objective Value 54
Macro Variable _ORASSIG 55
Scaling 55
EXAMPLES 56
Example 2.1. Assigning Subcontractors to Construction Jobs 56
Example 2.2. Assigning Construction Jobs to Subcontractors 58
Example 2.3. Minimizing Swim Times 59
Example 2.4. Using PROC ASSIGN with a BY Statement 61

48 - Chapter 2. The ASSIGN Procedure

Chapter 2
 The ASSIGN Procedure

Overview

The ASSIGN procedure finds the minimum or maximum cost assignment of m sink nodes to n source nodes. The procedure can handle problems where $m=,<,>n$.

When $n=m$, the number of source nodes equals the number of sink nodes and the procedure solves

$$
\begin{array}{ll}
\min (\max) & \sum_{j=1}^{m} \sum_{i=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{m} x_{i j}=1 \quad \text { for } i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i j}=1 \quad \text { for } j=1, \ldots, m
\end{array}
$$

where $x=0$ or 1 for $i=1, \ldots, n$ and $j=1, \ldots, m$.

When $n<m$, the number of source nodes is less than the number of sink nodes and the procedure solves

$$
\begin{array}{ll}
\min (\max) & \sum_{j=1}^{m} \sum_{i=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{m} x_{i j}=1 \quad \text { for } i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i j} \leq 1 \quad \text { for } j=1, \ldots, m
\end{array}
$$

where $x=0$ or 1 for $i=1, \ldots, n$ and $j=1, \ldots, m$.

When $n>m$, the number of source nodes is greater than the number of sink nodes and the procedure solves

$$
\begin{array}{ll}
\min (\max) & \sum_{j=1}^{m} \sum_{i=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{m} x_{i j} \leq 1 \quad \text { for } i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i j}=1 \quad \text { for } j=1, \ldots, m
\end{array}
$$

where $x=0$ or 1 for $i=1, \ldots, n$ and $j=1, \ldots, m$.

Getting Started

The ASSIGN procedure finds the minimum or maximum cost assignment of sink nodes to source nodes. Many practical problems can be formulated in a way that is solvable by PROC ASSIGN.

Introductory Example

Consider assigning five programmers to five programming jobs. Each programmer prefers specific programming jobs over others. You can use PROC ASSIGN to assign jobs to programmers in such a way that the total preferences of the group are maximized. Suppose you ask each programmer to rank the jobs according to preference (using 1 for the most preferred job and 5 for the least preferred job). PROC ASSIGN maximizes the total preference of the group by minimizing the sum of the preferences. In the matrix that follows, each row of the matrix represents a programmer and each column represents a programming job. Each entry in the matrix is a preference ranking that each programmer has given to each job.

PRGMER	JOB1	JOB2	JOB3	JOB4	JOB5
PRGMER1	4	1	3	5	2
PRGMER2	2	1	3	4	5
PRGMER3	3	2	4	1	5
PRGMER4	2	3	4	5	1
PRGMER5	4	2	3	1	5

To solve this problem using PROC ASSIGN, the data must be in a SAS data set; the solution is output to a SAS data set and no output is produced. Each observation corresponds to a programmer and contains the programming job assigned to it. In this way, the procedure identifies the assignment of the five jobs to the five programmers. To solve this assignment problem, place the preference data into a SAS data set (PREFER). Then, call PROC ASSIGN, identifying the cost variables in the input data set. The solution is output by PROC ASSIGN to a SAS data set (PREFER1) and displayed with the PRINT procedure. The following statements produce Figure 2.1:

```
title 'Assigning Programming Jobs to Programmers';
data prefer;
    input prgmer $ job1-job5;
    datalines;
PRGMER1 4 1 3 5 2
PRGMER2 2 1 1 3 4 5
PRGMER3 3 2 4 1 5
PRGMER4 2 3 4 5 1
PRGMER5 4 2 3 1 5
;
```

```
proc assign data=prefer out=prefer1;
    cost job1-job5;
    id prgmer;
run;
proc print data=prefer1;
    sum _fcost_;
run;
```

The following note is written to the SAS log:

```
NOTE: The minimum cost assignment costs 8.
```

Obs	prgmer	Assigning Programming Jobs to Programmers						
		job1	job2	job3	job4	job5	_ASSIGN_	_ ${ }^{\text {FCOST_ }}$
1	PRGMER1	4	1	3	5	2	job2	1
2	PRGMER2	2	1	3	4	5	job1	2
3	PRGMER3	3	2	4	1	5	job4	1
4	PRGMER4	2	3	4	5	1	job5	1
5	PRGMER5	4	2	3	1	5	job3	3
								8

Figure 2.1. Assigning Programming Jobs to Programmers
The solution, given in column _ASSIGN_, shows how each programming job should be assigned to each worker in order to minimize the assignment cost, which is equivalent to maximizing the worker preferences. The _FCOST_ column expresses in units of preference the cost of the assignment. The SUM statement in the PRINT procedure is used to total the assignment cost.

Syntax

```
PROC ASSIGN options;
    BY variables ;
    COST variables;
    ID variable ;
```

The statements and options available on PROC ASSIGN are discussed in the order in which they appear in the preceding list of syntax elements.

Functional Summary

The options available with PROC ASSIGN and its statements are summarized by purpose in the following table.

Table 2.1. Functional Summary
Description Statement Option

Data Set Options:

input data set
output data set containing the solution

PROC ASSIGN DATA=
PROC ASSIGN OUT=
Optimization Control Options:
scaling factor for input cost data
find maximum cost assignment
Variable Lists:
process data in groups
cost variables
source node names

PROC ASSIGN DEC=
PROC ASSIGN MAXIMUM

PROC ASSIGN Statement

PROC ASSIGN options;
The PROC ASSIGN statement invokes the procedure. The following options can appear in the PROC ASSIGN statement.

Data Set Options

DATA=SAS-data-set
names the SAS data set that contains the network specification. If the DATA= option is omitted, the most recently created SAS data set is used.

OUT=SAS-data-set

specifies a name for the output data set. If the OUT= option is omitted, the SAS System creates a data set and names it according to the DATA n convention. Refer to base SAS documentation for more information.

Optimization Control Options

DEC=n

specifies a scaling factor for the input cost data. The input data are scaled by 10^{n}. The default value of n is 3 . For more information, see the discussion on scaling in the "Details" section on page 54 .

MAXIMUM

specifies that the objective is to find an assignment that maximizes the sum of the costs. By default, PROC ASSIGN minimizes the sum of the costs.

BY Statement

BY variables;

A BY statement can be used with PROC ASSIGN to obtain separate solutions on problems in groups defined by the BY variables. When you use a BY statement, the procedure expects the input data to be sorted in ascending order of the BY variables. If your input data set is not sorted, use the SORT procedure with a similar BY statement to sort the data, or, if appropriate, use the BY statement option NOTSORTED or DESCENDING. See Example 2.4 in the "Examples" section. For more information, refer to the discussion of the BY statement in base SAS documentation.

COST Statement

COST variables;

The COST statement identifies the variables to be interpreted as sink nodes in the input DATA= data set. The values of a COST variable are the costs (or preferences) of assigning each source node (named in the ID variable) to the sink node identified with the COST variable.

If the value of a COST variable is missing, then that particular assignment between source and sink node is infeasible. If you do not use a COST statement, then all numeric variables not specified in the ID or BY statement are assumed to be cost variables.

To find an assignment that maximizes profit instead of minimizing cost, include the MAXIMUM option in the PROC ASSIGN statement and let the COST variables represent profit instead of cost. The COST variables must be numeric. See Example 2.1 for an illustration of the COST statement.

ID Statement

ID variable;
The ID statement identifies a variable in the input DATA= data set that gives the names of the source nodes. The ID variable can be character or numeric.

Details

Missing Values

Because the value of a cost variable is interpreted as the cost of an assignment, a missing value for a cost variable is assumed to mean that the assignment is not allowed. Refer to Example 2.1 for an illustration of a data set with missing values.

Output Data Set

The output data set contains the m cost variables in the input data set, any variables identified in the ID statement, and two new variables named _ASSIGN_ and _FCOST_. The variable named _ASSIGN_ is a character variable containing the names of the sink nodes (names of COST variables) assigned to the source nodes (values of the ID variable). The variable named _FCOST_ is a numeric variable containing the costs of assigning the sink nodes to the source nodes. Note that the values of the m cost variables in the output data set reflect any effects of scaling performed by PROC ASSIGN.

The Objective Value

If the problem is infeasible, an error message is written to the SAS log. Otherwise, the value of the objective function

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} c_{i j} x_{i j}
$$

under the optimal assignment is reported on the SAS log.

Macro Variable _ORASSIG

On termination, the ASSIGN procedure defines a macro variable named _ORASSIG. This variable contains a character string that indicates the status of the procedure on termination and gives the objective value at termination. The form of the _ORASSIG character string is

STATUS $=$ charstr OBJECTIVE=objective
where charstr can be any one of the following:

- SUCCESSFUL
- INFEASIBLE
- MEMORY_ERROR
- IO_ERROR
- SYNTAX_ERROR
- SEMANTIC_ERROR
- BADDATA_ERROR
- UNKNOWN_ERROR

This information is useful when PROC ASSIGN comprises one step in a larger program that needs to identify just how the ASSIGN procedure terminated. Because _ORASSIG is a standard SAS macro variable, it can be used in the ways that all macro variables can be used. See the SAS Guide to Macro Processing for more information. Example 2.2 illustrates the method to write the _ORASSIG variable to the log.

Scaling

PROC ASSIGN uses a variant of the out-of-kilter algorithm. Integral cost data are important for maintaining a rapid rate of convergence with this algorithm. To assure integrality, the cost data are automatically scaled by $\mathrm{DEC}=$ decimal places on input to PROC ASSIGN. If this scaling can result in loss of accuracy in the input data, a warning is written to the log indicating a nonzero fractional component in the data after scaling. The output data set produced by PROC ASSIGN contains the scaled input cost data rescaled to its original order of magnitude. Since the input cost data and the output cost data may differ because of scaling, you can use this difference as a measure of how poorly the input cost data were scaled.

Examples

The following examples illustrate some of the capabilities of PROC ASSIGN. These examples, together with the other SAS/OR examples, can be found in the SAS sample library.

Example 2.1. Assigning Subcontractors to Construction Jobs

This example shows how PROC ASSIGN can be used to maximize an objective function. Consider a construction project that consists of nine jobs. Because of the nature of the project, each job must be performed by a different subcontractor. Each job is bid upon by twelve subcontractors. The matrix that follows shows the expected profit to the contractor if each job is given to each subcontractor. Each row in the matrix represents a different job, and each column represents a different subcontractor.

The negative profit in the third column means that if job 7 is awarded to subcontractor 3 , the contractor loses money. The missing value in the fourth column means that subcontractor 4 did not bid on job 9 . PROC ASSIGN treats a missing value differently from the way it treats a 0 . While it is possible that an optimal assignment could include a 0 (or even a negative) contribution to profit, the missing value is never included in an assignment. In this case, subcontractor 4 is never awarded job 9 , regardless of the profit structure.

You can use PROC ASSIGN to find how the contractor should award the jobs to the subcontractors to maximize his profit. First, put the data in a SAS data set. Then, call PROC ASSIGN using the MAXIMUM option.

The following statements produce Output 2.1.1:

```
title 'Assigning Subcontractors to Construction Jobs';
data profit;
    input job $ subcon1-subcon12;
    datalines;
JOB1 79 24 13 53 47 66 85 17 92 47 46 13
JOB2 43 59 33 95 55 97 34 55 84 94 26 56
JOB3 29 52 0 27 13 33 0
JOB4 88 83 64 72 0 67 27 47 83 62 35 38
```

```
JOB5 65 90 56 62 53 91 48 23 6 89 49 33
JOB6 44 79 86 93 71 7 7 86 59 0 56 45 59
JOB7 35 51 -9 91 39 32 3 12 79 25 79 81
JOB8 50 12 59 32 23 64 20 94 97 14 111 97
ЈOB9 25 17 39 . 38 63 87 14 4 18 11 45
;
proc assign maximum data=profit;
    cost subcon1-subcon12;
    id job;
run;
proc print;
    sum _fcost_;
run;
```

The cost of the optimal assignment is written to the SAS log:

NOTE: The maximum return assignment yields 814.

This means that the contractor can expect a profit of $\$ 814$ if he follows the optimal assignment.

Output 2.1.1. Assigning Subcontractors to Construction Jobs

		Assigning S				Subcontractors to				Construction			Jobs		
											s	s	s	-	
		s	s	s	s	s	s	s	s	s	u	u	u	A	-
		u	u	u	u	u	u	u	u	u	b	b	b	S	F
		b	b	b	b	b	b	b	b	b	c	c	c	S	C
		c	c	c	c	c	c	c	c	c	\bigcirc	\bigcirc	\bigcirc	I	0
0	j	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	n	n	n	G	S
b	\bigcirc	n	n	n	n	n	n	n	n	n	1	1	1	N	T
s	b	1	2	3	4	5	6	7	8	9	0	1	2	-	_
1	JOB1	79	24	13	53	47	66	85	17	92	47	46	13	subcon9	92
2	JоB2	43	59	33	95	55	97	34	55	84	94	26	56	subcon6	97
3	ЈоB3	29	52	0	27	13	33	0	11	71	86	6	76	subcon10	86
4	JOB4	88	83	64	72	0	67	27	47	83	62	35	38	subcon1	88
5	JOB5	65	90	56	62	53	91	48	23	6	89	49	33	subcon2	90
6	JOB6	44	79	86	93	71	7	86	59	0	56	45	59	subcon3	86
7	JоB7	35	51	-9	91	39	32	3	12	79	25	79	81	subcon4	91
8	ЈОB8	50	12	59	32	23	64	20	94	97	14	11	97	subcon12	97
9	JOB9	25	17	39	.	38	63	87	14	4	18	11	45	subcon7	87
															$===$
															814

Note that three subcontractors, SUBCON5, SUBCON8, and SUBCON11, are not assigned to any jobs.

Example 2.2. Assigning Construction Jobs to Subcontractors

Suppose that the data from Example 2.1 are transposed so that the variables are jobs. Then each observation contains the profit from awarding each job to a single subcontractor. The following program finds the maximum profit assignment and produces Output 2.2.1.

```
title 'Assigning Construction Jobs to Subcontractors';
data profit;
    input subcont $ job1-job9;
    datalines;
\begin{tabular}{llllllllll} 
SUBCON1 & 79 & 43 & 29 & 88 & 65 & 44 & 35 & 50 & 25 \\
SUBCON2 & 24 & 59 & 52 & 83 & 90 & 79 & 51 & 12 & 17
\end{tabular}
\begin{tabular}{llllllllll} 
SUBCON3 & 13 & 33 & 0 & 64 & 56 & 86 & -9 & 59 & 39
\end{tabular}
SUBCON4 \(53 \quad 95 \quad 27 \quad 72 \quad 62 \quad 93 \quad 91 \quad 32 \quad\).
SUBCON5 47 55 13 0
\begin{tabular}{llllllllll} 
SUBCON6 & 66 & 97 & 33 & 67 & 91 & 7 & 32 & 64 & 63
\end{tabular}
\begin{tabular}{llllllllll} 
SUBCON7 & 85 & 34 & 0 & 27 & 48 & 86 & 32 & 0 & 87
\end{tabular}
\begin{tabular}{llllllllll} 
SUBCON8 & 17 & 55 & 11 & 47 & 23 & 59 & 12 & 94 & 14
\end{tabular}
\begin{tabular}{llllllllll} 
SUBCON9 & 92 & 84 & 71 & 83 & 6 & 0 & 79 & 97 & 4
\end{tabular}
\begin{tabular}{llllllllll} 
SUBCON10 & 47 & 94 & 86 & 62 & 89 & 56 & 25 & 14 & 18
\end{tabular}
SUBCON11 46 \begin{tabular}{lllllllll} 
& 46 & 6 & 35 & 49 & 45 & 79 & 11 & 11
\end{tabular}
```



```
;
proc assign maximum data=profit;
    cost job1-job9;
    id subcont;
run;
proc print;
    sum _fcost_;
run;
```

The cost of the optimal assignment is written to the SAS log:

NOTE: The maximum return assignment yields 814.

This means that the contractor can expect a profit of $\$ 814$ if the optimal assignment is followed.

Output 2.2.1. Assigning Construction Jobs to Subcontractors

Assigning Construction Jobs to Subcontractors												
Obs	subcont	job1	job2	job3	job4	job5	job6	job7	job8	job9	ASSIGN	_FCOST_
1	SUBCON1	79	43	29	88	65	44	35	50	25	job4	88
2	SUBCON2	24	59	52	83	90	79	51	12	17	job5	90
3	SUBCON3	13	33	0	64	56	86	-9	59	39	job6	86
4	SUBCON4	53	95	27	72	62	93	91	32	.	job7	91
5	SUBCON5	47	55	13	0	53	71	39	23	38		0
6	SUBCON6	66	97	33	67	91	7	32	64	63	job2	97
7	SUBCON7	85	34	0	27	48	86	32	0	87	job9	87
8	SUBCON8	17	55	11	47	23	59	12	94	14		0
9	SUBCON9	92	84	71	83	6	0	79	97	4	job1	92
10	SUBCON10	47	94	86	62	89	56	25	14	18	job3	86
11	SUBCON11	46	26	6	35	49	45	79	11	11		0
12	SUBCON12	13	56	76	38	33	59	81	97	45	job8	97
												814

The macro variable _ORASSIG defined by PROC ASSIGN contains information regarding the termination of the procedure.

This information can be useful when you use PROC ASSIGN as part of a larger SAS program. For example, information can be written to the SAS \log with the statement

```
%put &_orassig;
```

On the log the following appears:

```
STATUS=SUCCESSFUL OBJECTIVE=814.
```


Example 2.3. Minimizing Swim Times

A swimming coach needs to assign male and female swimmers to each stroke of a medley relay team. The swimmers' best times for each stroke are stored in a SAS data set. The ASSIGN procedure is used to evaluate the times and to match strokes and swimmers to minimize the total relay swim time. The following statements produce Output 2.3.1:

```
title 'Assigning Strokes Using the BY Statement';
data relay;
    input name $ sex $ back breast fly free;
    datalines;
SUE F 35.1 36.7 28.3 36.1
KAREN F 34.6 32.6 26.9 26.2
JAN F 31.3 33.9 27.1 31.2
ANDREA F 28.6 34.1 29.1 30.3
CAROL F 32.9 32.2 26.6 24.0
ELLEN F 27.8 32.5 27.8 27.0
```

```
JIM M 26.3 27.6 23.5 22.4
MIKE M 29.0 24.0 27.9 25.4
SAM M 27.2 33.8 25.2 24.1
CLAYTON M 27.0 29.2 23.0 21.9
;
proc assign out=fast;
        cost back--free;
        id name;
        by sex;
proc print;
        by sex;
        sum _fcost_;
run;
```

Output 2.3.1. Assigning Strokes Using the BY Statement

Obs	Assigning Strokes Using the BY Statement						
	name	back	breast	$f 1 y$	free	_ASSIGN_	_FCOST
1	SUE	35.1	36.7	28.3	36.1		0.0
2	KAREN	34.6	32.6	26.9	26.2	breast	32.6
3	JAN	31.3	33.9	27.1	31.2	fly	27.1
4	ANDREA	28.6	34.1	29.1	30.3		0.0
5	CAROL	32.9	32.2	26.6	24.0	free	24.0
6	ELLEN	27.8	32.5	27.8	27.0	back	27.8
sex 111.5							
Obs	name	back	breast	$f 1 y$	free	_ASSIGN_	FCOST
7	JIM	26.3	27.6	23.5	22.4	free	22.4
8	MIKE	29.0	24.0	27.9	25.4	breast	24.0
9	SAM	27.2	33.8	25.2	24.1	back	27.2
10	CLAYTON	27.0	29.2	23.0	21.9	$f 1 y$	23.0
sex							96.6
							208.1

On the basis of this solution, Jim will swim freestyle, Mike will swim breast stroke, Sam will swim back stroke, and Clayton will swim butterfly. For the women's team, Karen will swim breast stroke, Jan will swim butterfly, Carol will swim freestyle, and Ellen will swim back stroke.

Example 2.4. Using PROC ASSIGN with a BY Statement

A major beverage company wants to assign TV commercials to television commercial time slot openings in a way that maximizes the overall effectiveness of its television advertising. The time slots in this example begin at 7:00 on a Saturday morning and run hourly through 3:00 p.m. A combination of Nielsen TV ratings and market research testing produces an effectiveness rating for each time slot and commercial combination. The commercials are of three types: children, lifestyle, and sports. The company is willing to show up to three commercials in each time slot as long as the commercials are of different types. Which commercials should be assigned to which time slots in order to maximize the total effectiveness of its television advertising campaign? Data are missing for those time slots where certain programs are not available; for instance, no sports shows are presented during the 7:00 a.m. time slot.

The following statements produce Output 2.4.1:

```
title 'Assigning Television Commercials Using the BY Statement';
data beverage;
    input commercl $ type $ slot1-slot9;
    datalines;
COMM1 KIDS 27.2 32.8 30.4 31.5 20.9 19.8
COMM2 KIDS 37.4 33.5 38.4 32.4 25.6 27.2
COMM3 KIDS 32.5 31.9 34.6 34.5 26.7 28.3
COMM4 LIFEST . 22.6 25.9 25.3 26.4 28.3 29.1 22.2 20.2
COMM5 LIFEST . 25.1 36.6 36.8 38.2 33.5 33.2 33.1 30.1
COMM6 LIFEST . 20.2 31.3 29.3 24.6 25.1 20.0 22.4 23.1
COMM7 SPORTS . . 25.1 26.1 28.3 36.1 29.4 31.7 34.5
COMM8 SPORTS . . 24.7 27.2 36.4 31.2 28.7 33.2 33.1
COMM9 SPORTS . 20.2 20.4 20.2 25.6 37.8 35.6 32.4 34.3
;
proc assign maximum out=newslots;
    cost slot1-slot9;
    id commercl;
    by type;
run;
proc print;
    by type;
    sum _fcost_;
run;
```

Output 2.4.1. Assigning Television Commercials using the BY Statement

On the basis of this survey, this company has decided to drop commercial advertising from the 7:00 a.m. (slot1) and 2:00 p.m. (slot8) time slots.

Chapter 3 The INTPOINT Procedure

Chapter Contents

OVERVIEW 65
Mathematical Description of NPSC 66
Mathematical Description of LP 67
The Interior Point Algorithm 68
Network Models 76
INTRODUCTION 84
Getting Started: NPSC Problems 84
Getting Started: LP Problems 91
Typical PROC INTPOINT Run 99
SYNTAX 100
Functional Summary 100
PROC INTPOINT Statement 103
CAPACITY Statement 123
COEF Statement 123
COLUMN Statement 124
COST Statement 124
DEMAND Statement 125
HEADNODE Statement 125
ID Statement 125
LO Statement 126
NAME Statement 126
NODE Statement 126
QUIT Statement 126
RHS Statement 127
ROW Statement 127
RUN Statement 127
SUPDEM Statement 128
SUPPLY Statement 128
TAILNODE Statement 128
TYPE Statement 129
VAR Statement 130
DETAILS 131
Input Data Sets 131
Output Data Set 141
Case Sensitivity 142
Loop Arcs 143
Multiple Arcs 143
Flow and Value Bounds 143
Tightening Bounds and Side Constraints 144
Reasons for Infeasibility 144
Missing S Supply and Missing D Demand Values 145
Balancing Total Supply and Total Demand 150
How to Make the Data Read of PROC INTPOINT More Efficient 151
Stopping Criteria 156
EXAMPLES 160
Example 3.1. Production, Inventory, Distribution Problem 161
Example 3.2. Altering Arc Data 166
Example 3.3. Adding Side Constraints 170
Example 3.4. Using Constraints and More Alteration to Arc Data 175
Example 3.5. Nonarc Variables in the Side Constraints 179
Example 3.6. Solving an LP Problem with Data in MPS Format 184
REFERENCES 185

Chapter 3
 The INTPOINT Procedure

Overview

The INTPOINT procedure solves the Network Program with Side Constraints (NPSC) problem (defined in the "Mathematical Description of NPSC" section on page 66) and the more general Linear Programming (LP) problem (defined in the "Mathematical Description of LP" section on page 67). NPSC and LP models can be used to describe a wide variety of real-world applications ranging from production, inventory, and distribution problems to financial applications.

Whether your problem is NPSC or LP, PROC INTPOINT uses the same optimization algorithm, the interior point algorithm. This algorithm is outlined in the "The Interior Point Algorithm" section on page 68.

While many of your problems may best be formulated as LP problems, there may be other instances when your problems are better formulated as NPSC problems. The "Network Models" section on page 76 describes typical models that have a network component and suggests reasons why NPSC may be preferable to LP. The "Getting Started: NPSC Problems" section on page 84 outlines how you supply data of any NPSC problem to PROC INTPOINT and call the procedure. After it reads the NPSC data, PROC INTPOINT converts the problem into an equivalent LP problem, performs interior point optimization, then converts the solution it finds back into a form you can use as the optimum to the original NPSC model.

If your model is an LP problem, the way you supply the data to PROC INTPOINT and run the procedure is described in the "Getting Started: LP Problems" section on page 91.

The remainder of this chapter is organized as follows:

- The "Typical PROC INTPOINT Run" section on page 99 describes how to use this procedure.
- The "Syntax" section on page 100 describes all the statements and options of PROC INTPOINT.
- The "Functional Summary" section on page 100 lists the statements and options that can be used to control PROC INTPOINT.
- The "Details" section on page 131 contains detailed explanations, descriptions, and advice on the use and behavior of the procedure.
- PROC INTPOINT is demonstrated by solving several examples in the "Examples" section on page 160.

Mathematical Description of NPSC

A network consists of a collection of nodes joined by a collection of arcs. The arcs connect nodes and convey flow of one or more commodities that are supplied at supply nodes and demanded at demand nodes in the network. Each arc has a cost per unit of flow, a flow capacity, and a lower flow bound associated with it. An important concept in network modeling is conservation of flow. Conservation of flow means that the total flow in arcs directed toward a node, plus the supply at the node, minus the demand at the node, equals the total flow in arcs directed away from the node.

Often all the details of a problem cannot be specified in a network model alone. In many of these cases, these details can be represented by the addition of side constraints to the model. Side constraints are linear functions of arc variables (variables containing flow through an arc) and nonarc variables (variables that are not part of the network). The data for a side constraint consist of coefficients of arcs and coefficients of nonarc variables, a constraint type (that is, $\leq,=$, or \geq) and a right-hand-side value (rhs). A nonarc variable has a name, an objective function coefficient analogous to an arc cost, an upper bound analogous to an arc capacity, and a lower bound analogous to an arc lower flow bound.

If a network component of NPSC is removed by merging arcs and nonarc variables into a single set of variables, and if the flow conservation constraints and side constraints are merged into a single set of constraints, the result is an LP problem. PROC INTPOINT will automatically transform an NPSC problem into an equivalent LP problem, perform the optimization, then transform the problem back into its original form. By doing this, PROC INTPOINT finds the flow through the network and the values of any nonarc variables that minimize the total cost of the solution. Flow conservation is met, flow through each arc is on or between the arc's lower flow bound and capacity, the value of each nonarc variable is on or between the nonarc's lower and upper bounds, and the side constraints are satisfied.

Note that, since many LPs have large embedded networks, PROC INTPOINT is an attractive alternative to the LP procedure in many cases. Rather than formulating all problems as LPs, network models remain conceptually easy since they are based on network diagrams that represent the problem pictorially. PROC INTPOINT accepts the network specification in a format that is particularly suited to networks. This not only simplifies problem description but also aids in the interpretation of the solution. The conversion to and from the equivalent LP is done "behind the scenes" by the procedure.

If a network programming problem with side constraints has n nodes, a arcs, g nonarc variables, and k side constraints, then the formal statement of the problem solved by PROC INTPOINT is

$$
\begin{array}{cl}
\operatorname{minimize} & c^{T} x+d^{T} z \\
\text { subject to } & F x=b \\
& H x+Q z\{\geq,=, \leq\} r \\
& l \leq x \leq u \\
& m \leq z \leq v
\end{array}
$$

where

- c is the $a \times 1$ arc variable objective function coefficient vector (the cost vector)
- x is the $a \times 1$ arc variable value vector (the flow vector)
- d is the $g \times 1$ nonarc variable objective function coefficient vector
- z is the $g \times 1$ nonarc variable value vector
- F is the $n \times a$ node-arc incidence matrix of the network, where

$$
F_{i, j}=\left\{\begin{aligned}
-1, & \text { if arc } j \text { is directed from node } i \\
1, & \text { if arc } j \text { is directed toward node } i \\
0, & \text { otherwise }
\end{aligned}\right.
$$

- b is the $n \times 1$ node supply/demand vector, where

$$
b_{i}=\left\{\begin{aligned}
s, & \text { if node } i \text { has supply capability of } s \text { units of flow } \\
-d, & \text { if node } i \text { has demand of } d \text { units of flow } \\
0, & \text { if node } i \text { is a transshipment node }
\end{aligned}\right.
$$

- H is the $k \times a$ side constraint coefficient matrix for arc variables, where $H_{i, j}$ is the coefficient of arc j in the i th side constraint
- Q is the $k \times g$ side constraint coefficient matrix for nonarc variables, where $Q_{i, j}$ is the coefficient of nonarc j in the i th side constraint
- r is the $k \times 1$ side constraint right-hand-side vector
- l is the $a \times 1$ arc lower flow bound vector
- u is the $a \times 1$ arc capacity vector
- m is the $g \times 1$ nonarc variable lower bound vector
- v is the $g \times 1$ nonarc variable upper bound vector

The INTPOINT procedure can also be used to solve an unconstrained network problem, that is, one in which H, Q, d, r, and z do not exist. It can also be used to solve a network problem with side constraints but no nonarc variables, in which case Q, d, and z do not exist.

Mathematical Description of LP

A linear programming (LP) problem has a linear objective function and a collection of linear constraints. PROC INTPOINT finds the values of variables that minimize the total cost of the solution. The value of each variable is on or between the variable's lower and upper bounds, and the constraints are satisfied.

If an LP has g variables and k constraints, then the formal statement of the problem solved by PROC INTPOINT is

$$
\begin{array}{ll}
\operatorname{minimize} & d^{T} z \\
\text { subject to } & Q z\{\geq,=, \leq\} r \\
& m \leq z \leq v
\end{array}
$$

where

- d is the $g \times 1$ variable objective function coefficient vector
- z is the $g \times 1$ variable value vector
- Q is the $k \times g$ constraint coefficient matrix for the variables, where $Q_{i, j}$ is the coefficient of variable j in the i th constraint
- r is the $k \times 1$ side constraint right-hand-side vector
- m is the $g \times 1$ variable lower bound vector
- v is the $g \times 1$ variable upper bound vector

The Interior Point Algorithm

The simplex algorithm, developed shortly after World War II, was for many years the main method used to solve linear programming problems. Over the last fifteen years, however, the interior point algorithm has been developed. This algorithm also solves linear programming problems. From the start it showed great theoretical promise, and considerable research in the area resulted in practical implementations that performed competitively with the simplex algorithm. More recently, interior point algorithms have evolved to become superior to the simplex algorithm, in general, especially when the problems are large.

There are many variations of interior point algorithms. PROC INTPOINT uses the Primal-Dual with Predictor-Corrector algorithm. More information on this particular algorithm and related theory can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye (1996).

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed c, x, and A, respectively, as these symbols are by convention used more, the problem to be solved is different from the original because of preprocessing, and there has been a change of primal variable to transform the LP into one whose variables have zero lower bounds. To simplify the algebra here, assume that variables have infinite upper bounds, and constraints are equalities. (Interior point algorithms do efficiently handle finite upper bounds, and it is easy to introduce primal slack variables to change inequalities into equalities.) The problem has n variables; i is a variable number; k is an iteration number, and if used as a subscript or superscript it denotes "of iteration k".

There exists an equivalent problem, the dual problem, stated as

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & A^{T} y+s=c \\
& s \geq 0
\end{array}
$$

where y are dual variables, and s are dual constraint slacks.
The interior point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT) conditions for optimality:

$$
\begin{aligned}
& A x=b \\
& A^{T} y+s=c \\
& X S e=0 \\
& x \geq 0 \\
& s \geq 0
\end{aligned}
$$

where

$$
\begin{aligned}
& S=\operatorname{diag}(s)\left(\text { that is, } S_{i, j}=s_{i} \text { if } i=j, S_{i, j}=0 \text { otherwise }\right) \\
& X=\operatorname{diag}(x) \\
& e_{i}=1 \forall i
\end{aligned}
$$

These are the conditions for feasibility, with the complementarity condition $X S e=0$ added. Complementarity forces the optimal objectives of the primal and dual to be equal, $c^{T} x_{o p t}=b^{T} y_{\text {opt }}$, as

$$
\begin{aligned}
& 0=x_{o p t}^{T} s_{o p t}=s_{o p t}^{T} x_{o p t}=\left(c-A^{T} y_{o p t}\right)^{T} x_{o p t}= \\
& c^{T} x_{o p t}-y_{o p t}^{T}\left(A x_{o p t}\right)=c^{T} x_{o p t}-b^{T} y_{o p t}
\end{aligned}
$$

Before the optimum is reached, a solution (x, y, s) may not satisfy the KKT conditions:

- Primal constraints may be violated, infeas $_{c}=b-A x \neq 0$.
- Dual constraints may be violated, infeas $_{d}=c-A^{T} y-s \neq 0$.
- Complementarity may not be satisfied, $x^{T} s=c^{T} x-b^{T} y \neq 0$. This is called the duality gap.

The interior point algorithm works by using Newton's method to find a direction to move $\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)$ from the current solution $\left(x^{k}, y^{k}, s^{k}\right)$ toward a better solution:

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

where α is the step length and is assigned a value as large as possible but not so large that an x_{i}^{k+1} or s_{i}^{k+1} is "too close" to zero. The direction in which to move is found using

$$
\begin{aligned}
& A \Delta x^{k}=\text { infeas }_{c} \\
& A^{T} \Delta y^{k}+\Delta s^{k}=\text { infeas }_{d} \\
& S^{k} \Delta x^{k}+X^{k} \Delta s^{k}=-X^{k} S^{k} e
\end{aligned}
$$

To greatly improve performance, the third equation is changed to

$$
S^{k} \Delta x^{k}+X^{k} \Delta s^{k}=-X^{k} S^{k} e+\sigma_{k} \mu_{k} e
$$

where $\mu_{k}=\left(x^{k}\right)^{T} s^{k} / n$, the average complementarity, and $0 \leq \sigma_{k} \leq 1$.
The effect now is to find a direction in which to move to reduce infeasibilities and to reduce the complementarity toward zero, but if any $x_{i}^{k} s_{i}^{k}$ is too close to zero, it is "nudged out" to μ, and any $x_{i}^{k} s_{i}^{k}$ that is larger than μ is "nudged into" μ. A σ_{k} close to or equal to 0.0 biases a direction toward the optimum, and a value of σ_{k} close to or equal to 1.0 "centers" the direction toward a point where all pairwise products $x_{i}^{k} s_{i}^{k}=\mu$. Such points make up the central path in the interior. Although centering directions make little, if any, progress in reducing μ and moving the solution closer to the optimum, substantial progress toward the optimum can usually be made in the next iteration.

The central path is crucial to why the interior point algorithm is so efficient. As μ is decreased, this path "guides" the algorithm to the optimum through the interior of feasible space. Without centering, the algorithm would find a series of solutions near each other close to the boundary of feasible space. Step lengths along the direction would be small and many more iterations would probably be required to reach the optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algorithm differ in the way α and σ_{k} are chosen and the direction adjusted during each iteration. A wealth of information can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point algorithm. Assume the k th iteration is being performed, so the subscript and superscript k can be dropped from the algebra:

$$
\begin{aligned}
& A \Delta x=\text { infeas }_{c} \\
& A^{T} \Delta y+\Delta s=\text { infeas }_{d} \\
& S \Delta x+X \Delta s=-X S e+\sigma \mu e
\end{aligned}
$$

Rearranging the second equation,

$$
\Delta s=\text { infeas }_{d}-A^{T} \Delta y
$$

Rearranging the third equation,

$$
\begin{aligned}
& \Delta s=X^{-1}(-S \Delta x-X S e+\sigma \mu e) \\
& \Delta s=-\Theta \Delta x-S e+X^{-1} \sigma \mu e
\end{aligned}
$$

where $\Theta=S X^{-1}$.
Equating these two expressions for Δs and rearranging,

$$
\begin{aligned}
& -\Theta \Delta x-S e+X^{-1} \sigma \mu e=\text { infeas }_{d}-A^{T} \Delta y \\
& -\Theta \Delta x=S e-X^{-1} \sigma \mu e+\text { infeas }_{d}-A^{T} \Delta y \\
& \Delta x=\Theta^{-1}\left(-S e+X^{-1} \sigma \mu e-\text { infeas }_{d}+A^{T} \Delta y\right) \\
& \Delta x=\rho+\Theta^{-1} A^{T} \Delta y
\end{aligned}
$$

where $\rho=\Theta^{-1}\left(-S e+X^{-1} \sigma \mu e-\right.$ infeas $\left._{d}\right)$.
Substituting into the first direction equation,

$$
\begin{aligned}
& A \Delta x=\text { infeas }_{c} \\
& A\left(\rho+\Theta^{-1} A^{T} \Delta y\right)=\text { infeas }_{c} \\
& A \Theta^{-1} A^{T} \Delta y=\text { infeas }_{c}-A \rho \\
& \Delta y=\left(A \Theta^{-1} A^{T}\right)^{-1}\left(\text { infeas }_{c}-A \rho\right)
\end{aligned}
$$

$\Theta, \rho, \Delta y, \Delta x$, and Δs are calculated in that order. The hardest term is the factorization of the $\left(A \Theta^{-1} A^{T}\right)$ matrix to determine Δy. Fortunately, although the values of $\left(A \Theta^{-1} A^{T}\right)$ are different for each iteration, the locations of the nonzeros in this matrix remain fixed; the nonzero locations are the same as those in the matrix $\left(A A^{T}\right)$. This is because $\Theta^{-1}=X S^{-1}$ is a diagonal matrix that has the effect of merely scaling the columns of $\left(A A^{T}\right)$.

The fact that the nonzeros in $A \Theta^{-1} A^{T}$ have a constant pattern is exploited by all interior point algorithms and is a major reason for their excellent performance. Before iterations begin, $A A^{T}$ is examined and its rows and columns are symmetrically permuted so that during Cholesky factorization, the number of fill-ins created is smaller. A list of arithmetic operations to perform the factorization is saved in concise computer data structures (working with memory locations rather than actual numerical values). This is called symbolic factorization. During iterations, when memory has been initialized with numerical values, the operations list is performed sequentially. Determining how the factorization should be performed again and again is unnecessary.

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC INTPOINT is a Primal-Dual Predictor-Corrector interior point algorithm. At first, Newton's method is used to find a direction $\left(\Delta x_{\text {aff }}^{k}, \Delta y_{\text {aff }}^{k}, \Delta s_{\text {aff }}^{k}\right)$ to move, but calculated as if μ is zero, that is, as a step with no centering, known as an affine step:

$$
\begin{aligned}
& A \Delta x_{a f f}^{k}=\text { infeas }_{c} \\
& A^{T} \Delta y_{a f f}^{k}+\Delta s_{a f f}^{k}=\text { infeas }_{d} \\
& S^{k} \Delta x_{a f f}^{k}+X^{k} \Delta s_{a f f}^{k}=-X^{k} S^{k} e \\
& \left(x_{a f f}^{k}, y_{a f f}^{k}, s_{a f f}^{k}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x_{a f f}^{k}, \Delta y_{\text {aff }}^{k}, \Delta s_{a f f}^{k}\right)
\end{aligned}
$$

where α is the step length as before.
Complementarity $x^{T} s$ is calculated at $\left(x_{a f f}^{k}, y_{a f f}^{k}, s_{a f f}^{k}\right)$ and compared with the complementarity at the starting point $\left(x^{k}, y^{k}, s^{k}\right)$, and the success of the affine step is gauged. If the affine step was successful in reducing the complementarity by a substantial amount, the need for centering is not great, and σ_{k} in the following linear system is assigned a value close to zero. If, however, the affine step was unsuccessful, centering would be beneficial, and σ_{k} in the following linear system is assigned a value closer to 1.0 . The value of σ_{k} is therefore adaptively altered depending on the progress made toward the optimum.

A second linear system is solved to determine a centering vector $\left(\Delta x_{c}^{k}, \Delta y_{c}^{k}, \Delta s_{c}^{k}\right)$ from $\left(x_{a f f}^{k}, y_{a f f}^{k}, s_{a f f}^{k}\right)$:

$$
\begin{aligned}
& A \Delta x_{c}^{k}=0 \\
& A^{T} \Delta y_{c}^{k}+\Delta s_{c}^{k}=0 \\
& S^{k} \Delta x_{c}^{k}+X^{k} \Delta s_{c}^{k}=-X_{a f f}^{k} S_{a f f}^{k} e+\sigma_{k} \mu_{k} e
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)=\left(\Delta x_{a f f}^{k}, \Delta y_{a f f}^{k}, \Delta s_{a f f}^{k}\right)+\left(\Delta x_{c}^{k}, \Delta y_{c}^{k}, \Delta s_{c}^{k}\right) \\
& \left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
\end{aligned}
$$

where, as before, α is the step length assigned a value as large as possible but not so large that an x_{i}^{k+1} or s_{i}^{k+1} is "too close" to zero.

Although the Predictor-Corrector variant entails solving two linear systems instead of one, fewer iterations are usually required to reach the optimum. The additional overhead of calculating the second linear system is small, as the factorization of the $\left(A \Theta^{-1} A^{T}\right)$ matrix has already been performed to solve the first linear system.

Interior Point: Upper Bounds

If the LP had upper bounds ($0 \leq x \leq u$ where u is the upper bound vector), then the primal and dual problems, the duality gap, and the KKT conditions would have to be expanded.

The primal linear program to be solved is

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& 0 \leq x \leq u
\end{array}
$$

where $0 \leq x \leq u$ is split into $x \geq 0$ and $x \leq u$. Let z be primal slack so that $x+z=u$, and associate dual variables w with these constraints. The interior point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT) conditions for optimality:

$$
\begin{aligned}
& A x=b \\
& x+z=u \\
& A^{T} y+s-w=c \\
& X S e=0 \\
& Z W e=0 \\
& x, s, z, w \geq 0
\end{aligned}
$$

These are the conditions for feasibility, with the complementarity conditions $X S e=$ 0 and $Z W e=0$ added. Complementarity forces the optimal objectives of the primal and dual to be equal, $c^{T} x_{o p t}=b^{T} y_{o p t}-u^{T} w_{o p t}$, as

$$
\begin{aligned}
& 0=z_{o p t}^{T} w_{o p t}=\left(u-x_{o p t}\right)^{T} w_{o p t}=u^{T} w_{o p t}-x_{o p t}^{T} w_{o p t} \\
& 0=x_{o p t}^{T} s_{o p t}=s_{o p t}^{T} x_{o p t}=\left(c-A^{T} y_{o p t}+w_{o p t}\right)^{T} x_{o p t}= \\
& c^{T} x_{o p t}-y_{o p t}^{T}\left(A x_{o p t}\right)+w_{o p t}^{T} x_{o p t}=c^{T} x_{o p t}-b^{T} y_{o p t}+u^{T} w_{o p t}
\end{aligned}
$$

Before the optimum is reached, a solution (x, y, s, z, w) might not satisfy the KKT conditions:

- Primal bound constraints may be violated, infeas $_{b}=u-x-z \neq 0$.
- Primal constraints may be violated, infeas $_{c}=b-A x \neq 0$.
- Dual constraints may be violated, infeas $_{d}=c-A^{T} y-s+w \neq 0$.
- Complementarity conditions may not be satisfied, $x^{T} s \neq 0$ or $z^{T} w \neq 0$.

The calculations of the interior point algorithm can easily be derived in a fashion similar to calculations for when an LP has no upper bounds. See the paper by Lustig, Marsten, and Shanno (1992).

In some iteration k, the affine step system that must be solved is

$$
\begin{aligned}
& \Delta x_{a f f}+\Delta z_{a f f}=\text { infeas }_{b} \\
& A \Delta x_{\text {aff }}=\text { infeas }_{c} \\
& A^{T} \Delta y_{a f f}+\Delta s_{\text {aff }}-\Delta w_{\text {aff }}=\text { infeas }_{d} \\
& S \Delta x_{\text {aff }}+X \Delta s_{\text {aff }}=-X S e \\
& Z \Delta w_{\text {aff }}+W \Delta z_{\text {aff }}=-Z W e
\end{aligned}
$$

Therefore, the computations involved in solving the affine step are

$$
\begin{aligned}
& \Theta=S X^{-1}+W Z^{-1} \\
& \rho=\Theta^{-1}\left(\text { infeas }_{d}+(S-W) e-Z^{-1} W \text { infeas }_{b}\right) \\
& \Delta y_{\text {aff }}=\left(A \Theta^{-1} A^{T}\right)^{-1}\left(\text { infeas }_{c}+A \rho\right) \\
& \Delta x_{\text {aff }}=\Theta^{-1} A^{T} \Delta y_{\text {aff }}-\rho \\
& \Delta z_{\text {aff }}=\text { infeas }_{b}-\Delta x_{\text {aff }} \\
& \Delta w_{\text {aff }}=-W e-Z^{-1} W \Delta z_{\text {aff }} \\
& \Delta s_{\text {aff }}=-S e-X^{-1} S \Delta x_{\text {aff }} \\
& \\
& \left(x_{\text {aff }}, y_{\text {aff }}, s_{\text {aff }}, z_{\text {aff }}, w_{\text {aff }}\right)=(x, y, s, z, w)+ \\
& \alpha\left(\Delta x_{\text {aff }}, \Delta y_{\text {aff }}, \Delta s_{\text {aff }}, \Delta z_{\text {aff }}, \Delta w_{\text {aff }}\right)
\end{aligned}
$$

and α is the step length as before.
A second linear system is solved to determine a centering vector $\left(\Delta x_{c}, \Delta y_{c}, \Delta s_{c}, \Delta z_{c}, \Delta w_{c}\right)$ from $\left(x_{\text {aff }}, y_{\text {aff }}, s_{\text {aff }}, z_{\text {aff }}, w_{\text {aff }}\right)$:

$$
\begin{aligned}
& \Delta x_{c}+\Delta z_{c}=0 \\
& A \Delta x_{c}=0 \\
& A^{T} \Delta y_{c}+\Delta s_{c}-\Delta w_{c}=0 \\
& S \Delta x_{c}+X \Delta s_{c}=-X_{\text {aff }} S_{\text {aff }} e+\sigma \mu e \\
& Z \Delta w_{c}+W \Delta z_{c}=-Z_{\text {aff }} W_{\text {aff }} e+\sigma \mu e
\end{aligned}
$$

where
$\zeta_{\text {start }}=x^{T} s+z^{T} w$, complementarity at the start of the iteration
$\zeta_{\text {aff }}=x_{\text {aff }}^{T} s_{\text {aff }}+z_{\text {aff }}^{T} w_{\text {aff }}$, the affine complementarity
$\mu=\zeta_{\text {aff }} / 2 n$, the average complementarity
$\sigma=\left(\zeta_{\text {aff }} / \zeta_{\text {start }}\right)^{3}$

Therefore, the computations involved in solving the centering step are

$$
\begin{aligned}
& \rho=\Theta^{-1}\left(\sigma \mu\left(X^{-1}-Z^{-1}\right) e-X^{-1} X_{a f f} S_{a f f} e+Z^{-1} Z_{a f f} W_{\text {aff }} e\right) \\
& \Delta y_{c}=\left(A \Theta^{-1} A^{T}\right)^{-1} A \rho \\
& \Delta x_{c}=\Theta^{-1} A^{T} \Delta y_{c}-\rho \\
& \Delta z_{c}=-\Delta x_{c} \\
& \Delta w_{c}=\sigma \mu Z^{-1} e-Z^{-1} Z_{a f f} W_{a f f} e-Z^{-1} W_{a f f} \Delta z_{c} \\
& \Delta s_{c}=\sigma \mu X^{-1} e-X^{-1} X_{\text {aff }} S_{\text {aff }} e-X^{-1} S_{a f f} \Delta x_{c}
\end{aligned}
$$

Then

$$
\begin{aligned}
& (\Delta x, \Delta y, \Delta s, \Delta z, \Delta w)= \\
& \quad\left(\Delta x_{\text {aff }}, \Delta y_{\text {aff }}, \Delta s_{\text {aff }}, \Delta z_{\text {aff }}, \Delta w_{\text {aff }}\right) \\
& \quad+\left(\Delta x_{c}, \Delta y_{c}, \Delta s_{c}, \Delta z_{c}, \Delta w_{c}\right) \\
& \left(x^{k+1}, y^{k+1}, s^{k+1}, z^{k+1}, w^{k+1}\right)= \\
& \quad\left(x^{k}, y^{k}, s^{k}, z^{k}, w^{k}\right) \\
& \quad+\alpha(\Delta x, \Delta y, \Delta s, \Delta z, \Delta w)
\end{aligned}
$$

where, as before, α is the step length assigned a value as large as possible but not so large that an $x_{i}^{k+1}, s_{i}^{k+1}, z_{i}^{k+1}$, or w_{i}^{k+1} is "too close" to zero.

The algebra in this section has been simplified by assuming that all variables have finite upper bounds. If the number of variables with finite upper bounds $n_{u}<n$, you need to change the algebra to reflect that the Z and W matrices have dimension $n_{u} \times 1$ or $n_{u} \times n_{u}$. Other computations need slight modification. For example, the average complementarity is

$$
\mu=x_{a f f}^{T} s_{a f f} / n+z_{a f f}^{T} w_{a f f} / n_{u}
$$

An important point is that any upper bounds can be handled by specializing the algorithm and not by generating the constraints $x \leq u$ and adding these to the main primal constraints $A x=b$.

Network Models

The following are descriptions of some typical NPSC models.

Production, Inventory, and Distribution (Supply Chain) Problems

One common class of network models is the production-inventory-distribution or supply-chain problem. The diagram in Figure 3.1 illustrates this problem. The subscripts on the Production, Inventory, and Sales nodes indicate the time period. By replicating sections of the model, the notion of time can be included.

Figure 3.1. Production-Inventory-Distribution Problem
In this type of model, the nodes can represent a wide variety of facilities. Several examples are suppliers, spot markets, importers, farmers, manufacturers, factories, parts of a plant, production lines, waste disposal facilities, workstations, warehouses, coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road intersections, cities, regions, shops, customers, and consumers. The diversity of this selection demonstrates how rich the potential applications of this model are.

Depending upon the interpretation of the nodes, the objectives of the modeling exercise can vary widely. Some common types of objectives are

- to reduce collection or purchase costs of raw materials
- to reduce inventory holding or backorder costs. Warehouses and other storage facilities sometimes have capacities, and there can be limits on the amount of goods that can be placed on backorder.
- to decide where facilities should be located and what the capacity of these should be. Network models have been used to help decide where factories, hospitals, ambulance and fire stations, oil and water wells, and schools should be sited.
- to determine the assignment of resources (machines, production capability, workforce) to tasks, schedules, classes, or files
- to determine the optimal distribution of goods or services. This usually means minimizing transportation costs and reducing transit time or distances covered.
- to find the shortest path from one location to another
- to ensure that demands (for example, production requirements, market demands, contractual obligations) are met
- to maximize profits from the sale of products or the charge for services
- to maximize production by identifying bottlenecks

Some specific applications are

- car distribution models. These help determine which models and numbers of cars should be manufactured in which factories and where to distribute cars from these factories to zones in the United States in order to meet customer demand at least cost.
- models in the timber industry. These help determine when to plant and mill forests, schedule production of pulp, paper, and wood products, and distribute products for sale or export.
- military applications. The nodes can be theaters, bases, ammunition dumps, logistical suppliers, or radar installations. Some models are used to find the best ways to mobilize personnel and supplies and to evacuate the wounded in the least amount of time.
- communications applications. The nodes can be telephone exchanges, transmission lines, satellite links, and consumers. In a model of an electrical grid, the nodes can be transformers, powerstations, watersheds, reservoirs, dams, and consumers. The effect of high loads or outages might be of concern.

Proportionality Constraints

In many models, you have the characteristic that a flow through an arc must be proportional to the flow through another arc. Side constraints are often necessary to model that situation. Such constraints are called proportionality constraints and are useful in models where production is subject to refining or modification into different materials. The amount of each output, or any waste, evaporation, or reduction can be specified as a proportion of input.

Typically, the arcs near the supply nodes carry raw materials and the arcs near the demand nodes carry refined products. For example, in a model of the milling industry, the flow through some arcs may represent quantities of wheat. After the wheat is processed, the flow through other arcs might be flour. For others it might be bran. The side constraints model the relationship between the amount of flour or bran produced as a proportion of the amount of wheat milled. Some of the wheat can end up as neither flour, bran, nor any useful product, so this waste is drained away via arcs to a waste node.

Figure 3.2. Proportionality Constraints
In order for arcs to be specified in side constraints, they must be named. By default, PROC INTPOINT names arcs using the names of the nodes at the head and tail of the arc. An arc is named with its tail node name followed by an underscore and its head node name. For example, an arc from node from to node to is called from_to.

Consider the network fragment in Figure 3.2. The arc Wheat_Mill conveys the wheat milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the capacity of the mill. The lower flow bound on this arc is the minimum quantity that must be milled for the mill to operate economically. The constraints

$$
\begin{aligned}
& \text { 0.3 Wheat_Mill }- \text { Mill_Flour }=0.0 \\
& \text { 0.2 Wheat_Mill }- \text { Mill_Bran }=0.0
\end{aligned}
$$

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of bran. Note that it is not necessary to specify the constraint

$$
\text { 0.5 Wheat_Mill - Mill_Other }=0.0
$$

since flow conservation implies that any flow that does not traverse through Mill_Flour or Mill_Bran must be conveyed through Mill_Other. And, computationally, it is better if this constraint is not specified, since there is one less side constraint and fewer problems with numerical precision. Notice that the sum of the proportions must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of ingredients that are mixed. For example, different raw materials can have different properties. In an application of the oil industry, the amount of products that are obtained could be different for each type of crude oil. Furthermore, fuel might have a minimum octane requirement or limited sulphur or lead content, so that a blending of crudes is needed to produce the product.

The network fragment in Figure 3.3 shows an example of this.

Figure 3.3. Blending Constraints
The arcs MidEast_Port and USA_Port convey crude oil from the two sources. The arc Port_Refinery represents refining while the arcs Refinery_Gasoline and Refinery_Diesel carry the gas and diesel produced. The proportionality constraints

$$
\begin{aligned}
& \text { 0.4 Port_Refinery - Refinery_Gasoline }=0.0 \\
& \text { 0.2 Port_Refinery - Refinery_Diesel }=0.0
\end{aligned}
$$

capture the restrictions for producing gasoline and diesel from crude. Suppose that only crude from the Middle East is used, then the resulting diesel would contain 5 units of sulphur per liter. If only crude from the U.S.A. is used, the resulting diesel would contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of sulphur per liter. Some crude from the U.S.A. must be used if Middle East crude is used in order to meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is

$$
5 \text { MidEast_Port }+4 \text { USA_Port }-4.75 \text { Port_Refinery } \leq 0.0
$$

Since Port_Refinery $=$ MidEast_Port + USA_Port, flow conservation allows this constraint to be simplified to

$$
1 \text { MidEast_Port }-3 \text { USA_Port } \leq 0.0
$$

If, for example, 120 units of crude from the Middle East is used, then at least 40 units of crude from the U.S.A. must be used. The preceding constraint is simplified because you assume that the sulphur concentration of diesel is proportional to the sulphur concentration of the crude mix. If this is not the case, the relation
is used to obtain

$$
5 \text { MidEast_Port }+4 \text { USA_Port }-4.75(1.0 / 0.2 \text { Refinery_Diesel }) \leq 0.0
$$

which equals

$$
5 \text { MidEast_Port }+4 \text { USA_Port }-23.75 \text { Refinery_Diesel } \leq 0.0
$$

An example similar to this oil industry problem is solved in the "Introductory NPSC Example" section on page 85.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transportation or some other shared resource, or there are limits on overall production or demand in multicommodity, multidivisional, or multiperiod problems. Each commodity, division, or period can have a separate network coupled to one main system by the side constraints. Side constraints are used to combine the outputs of subdivisions of a problem (either commodities, outputs in distinct time periods, or different process streams) to meet overall demands or to limit overall production or expenditures. This method is more desirable than doing separate local optimizations for individual commodity, process, or time networks and then trying to establish relationships between each when determining an overall policy if the global constraint is not satisfied. Of course, to make models more realistic, side constraints may be necessary in the local problems.

Figure 3.4. Multicommodity Problem

Figure 3.4 shows two network fragments. They represent identical production and distribution sites of two different commodities. Suffix coml represents commodity 1 and suffix com2 represents commodity 2. The nodes Factorycom1 and Factorycom2 model the same factory, and nodes City1com1 and City1com2 model the same location, city 1. Similarly, City2com1 and City2com2 are the same location, city 2 . Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occupies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters, and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of each commodity can be loaded onto each truck? The side constraints for this case are

$$
\begin{aligned}
& 2 \text { Factorycom1_City1com1 +3 Factorycom2_City1com2 } \leq 200 \\
& 2 \text { Factorycom1_City2com1 }+3 \text { Factorycom2_City2com2 } \leq 250
\end{aligned}
$$

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement of a commodity from place to place or from time period to time period. However, sometimes an arc is included in the network as a method of capturing some aspect of the problem that you would not normally think of as part of a network model. There is no commodity movement associated with that arc. For example, in a multiprocess, multiproduct model (Figure 3.5), there might be subnetworks for each process and each product. The subnetworks can be joined together by a set of arcs that have flows that represent the amount of product j produced by process i. To model an upperlimit constraint on the total amount of product j that can be produced, direct all arcs carrying product j to a single node and from there through a single arc. The capacity of this arc is the upper limit of product j production. It is preferable to model this structure in the network rather than to include it in the side constraints because the efficiency of the optimizer may be less affected by a reasonable increase in the size of the network rather than increasing the number or complicating side constraints.

Figure 3.5. Multiprocess, Multiproduct Example
When starting a project, it is often a good strategy to use a small network formulation and then use that model as a framework upon which to add detail. For example, in the multiprocess, multiproduct model, you might start with the network depicted in

Figure 3.5. Then, for example, the process subnetwork can be enhanced to include the distribution of products. Other phases of the operation could be included by adding more subnetworks. Initially, these subnetworks can be single nodes, but in subsequent studies they can be expanded to include greater detail.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such problems often result when modeling manufacturing processes, transportation or distribution networks, or resource allocation, or when deciding where to locate facilities. Often, some commodity is to be moved from place to place, so the more natural formulation in many applications is that of a constrained network rather than a linear program.

Using a network diagram to visualize a problem makes it possible to capture the important relationships in an easily understood picture form. The network diagram aids the communication between model builder and model user, making it easier to comprehend how the model is structured, how it can be changed, and how results can be interpreted.

If a network structure is embedded in a linear program, the problem is an NPSC (see the "Mathematical Description of NPSC" section on page 66). When the network part of the problem is large compared to the nonnetwork part, especially if the number of side constraints is small, it is worthwhile to exploit this structure to describe the model. Rather than generating the data for the flow conservation constraints, generate instead the data for the nodes and arcs of the network.

Flow Conservation Constraints

The constraints $F x=b$ in NPSC (see the "Mathematical Description of NPSC" section on page 66) are referred to as the nodal flow conservation constraints. These constraints algebraically state that the sum of the flow through arcs directed toward a node plus that node's supply, if any, equals the sum of the flow through arcs directed away from that node plus that node's demand, if any. The flow conservation constraints are implicit in the network model and should not be specified explicitly in side constraint data when using PROC INTPOINT to solve NPSC problems.

Nonarc Variables

Nonarc variables can be used to simplify side constraints. For example, if a sum of flows appears in many constraints, it may be worthwhile to equate this expression with a nonarc variable and use this in the other constraints. This keeps the constraint coefficient matrix sparse. By assigning a nonarc variable a nonzero objective function, it is then possible to incur a cost for using resources above some lowest feasible limit. Similarly, a profit (a negative objective function coefficient value) can be made if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or supply needed resources. Then, either the excess resource can be used or the needed resource can be supplied to another component of the model.

For example, consider a multicommodity problem of making television sets that have either 19- or 25 -inch screens. In their manufacture, three and four chips, respectively, are used. Production occurs at two factories during March and April. The supplier of chips can supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 each month. The names of arcs are in the form $\operatorname{Prod} n_{-} s _m$, where n is the factory number, s is the screen size, and m is the month. For example, Prod1_25_Apr is the arc that conveys the number of 25 -inch TVs produced in factory 1 during April. You might have to determine similar systematic naming schemes for your application.

As described, the constraints are

$$
\begin{aligned}
& \text { 3 Prod1_19_Mar +4 Prod1_25_Mar } \leq 2600 \\
& 3 \text { Prod2_19_Mar +4 Prod2_25_Mar } \leq 3750 \\
& \text { 3Prod1_19_Apr + 4Prod1_25_Apr } \leq 2600 \\
& 3 \text { Prod2_19_Apr +4Prod2_25_Apr } \leq 3750
\end{aligned}
$$

If there are chips that could be obtained for use in March but not used for production in March, why not keep these unused chips until April? Furthermore, if the March excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the model becomes

$$
\begin{gathered}
\text { 3Prod1_19_Mar +4Prod1_25_Mar + F1_Unused_Mar =2600 } \\
\text { 3Prod2_19_Mar +4Prod2_25_Mar + F2_Unused_Mar = }=3750 \\
\text { 3Prod1_19_Apr +4Prod1_25_Apr -F1_Kept_Since_Mar = }=2600 \\
\text { 3Prod2_19_Apr +4Prod2_25_Apr - F2_Kept_Since_Mar = }=3750 \\
\text { F1_Unused_Mar + F2_Unused_Mar (continued) } \\
\text {-F1_Kept_Since_Mar - F2_Kept_Since_Mar } \geq 0.0
\end{gathered}
$$

where F1_Kept_Since_Mar is the number of chips used during April at factory 1 that were obtained in March at either factory 1 or factory 2, and F2_Kept_Since_Mar is the number of chips used during April at factory 2 that were obtained in March. The last constraint ensures that the number of chips used during April that were obtained in March does not exceed the number of chips not used in March. There may be a cost to hold chips in inventory. This can be modeled having a positive objective function coefficient for the nonarc variables F1_Kept_Since_Mar and F2_Kept_Since_Mar. Moreover, nonarc variable upper bounds represent an upper limit on the number of chips that can be held in inventory between March and April.

See Example 3.1 through Example 3.5, which use this TV problem. The use of nonarc variables as described previously is illustrated.

Introduction

Getting Started: NPSC Problems

To solve NPSC problems using PROC INTPOINT, you save a representation of the network and the side constraints in three SAS data sets. These data sets are then passed to PROC INTPOINT for solution. There are various forms that a problem's data can take. You can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand associated with each. These are the elements in the column vector b in the NPSC problem (see the "Mathematical Description of NPSC" section on page 66).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but there can be data related to nonarc variables in the ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed). Each observation can be used to identify an arc in the network and, optionally, the cost per flow unit across the arc, the arc's capacity, lower flow bound, and name. These data are associated with the matrix F and the vectors c, l, and u in the NPSC problem (see the "Mathematical Description of NPSC" section on page 66).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc definitions. Do not explicitly specify these flow conservation constraints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including objective function coefficients, lower and upper value bounds, and names. These data are the elements of the vectors d, m, and v in the NPSC problem (see the "Mathematical Description of NPSC" section on page 66). Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements of the matrices H and Q and the vector r. Constraint types are also specified in the CONDATA= data set. You can include in this data set upper bound values or capacities, lower flow or value bounds, and costs or objective function coefficients. It is possible to give all information about some or all nonarc variables in the CONDATA $=$ data set.

An arc is identified in this data set by its name. If you specify an arc's name in the ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that arc. Each arc also has a default name that is the name of the tail and head node of the arc concatenated together and separated by an underscore character; tail_head, for example.

If you use the dense side constraint input format (described in the "CONDATA= Data Set" section on page 132), and want to use the default arc names, these arc names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (see the "CONDATA= Data Set" section on page 132) and want to use the default arc names, these arc names are values of the COLUMN list variable of the CONDATA= data set.

PROC INTPOINT reads the data from the NODEDATA= data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is performed, and the model is converted into an equivalent LP. This LP is preprocessed. Preprocessing is optional but highly recommended. Preprocessing analyzes the model and tries to determine before optimization whether variables can be "fixed" to their optimal values. Knowing that, the model can be modified and these variables dropped out. It can be determined that some constraints are redundant. Sometimes, preprocessing succeeds in reducing the size of the problem, thereby making the subsequent optimization easier and faster.

The optimal solution to the equivalent LP is then found. This LP is converted back to the original NPSC problem, and the optimum for this is derived from the optimum of the equivalent LP. If the problem was preprocessed, the model is now post-processed, where fixed variables are reintroduced. The solution can be saved in the CONOUT= data set.

Introductory NPSC Example

Consider the following transshipment problem for an oil company. Crude oil is shipped to refineries where it is processed into gasoline and diesel fuel. The gasoline and diesel fuel are then distributed to service stations. At each stage, there are shipping, processing, and distribution costs. Also, there are lower flow bounds and capacities.

In addition, there are two sets of side constraints. The first set is that two times the crude from the Middle East cannot exceed the throughput of a refinery plus 15 units. (The phrase "plus 15 units" that finishes the last sentence is used to enable some side constraints in this example to have a nonzero rhs.) The second set of constraints are necessary to model the situation that one unit of crude mix processed at a refinery yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow through the network, an NPSC is an appropriate model for this example (see Figure 3.6). The side constraints are used to model the limitations on the amount of Middle Eastern crude that can be processed by each refinery and the conversion proportions of crude to gasoline and diesel fuel.

Figure 3.6. Oil Industry Example
To solve this problem with PROC INTPOINT, save a representation of the model in three SAS data sets. In the NODEDATA= data set, you name the supply and demand nodes and give the associated supplies and demands. To distinguish demand nodes from supply nodes, specify demands as negative quantities. For the oil example, the NODEDATA= data set can be saved as follows:

```
title 'Oil Industry Example';
title3 'Setting Up Nodedata = Noded For PROC INTPOINT';
data noded;
    input _node_&$15. _sd_;
    datalines;
middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
```

The ARCDATA= data set contains the rest of the information about the network. Each observation in the data set identifies an arc in the network and gives the cost per flow unit across the arc, the capacities of the arc, the lower bound on flow across the arc, and the name of the arc.

```
title3 'Setting Up Arcdata = Arcd1 For PROC INTPOINT';
data arcd1;
    input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
    datalines;
middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1 gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . . 
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;
```

Finally, the CONDATA= data set contains the side constraints for the model:

```
title3 'Setting Up Condata = Cond1 For PROC INTPOINT';
data cond1;
    input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
            _type_ $ _rhs_;
    datalines;
-2 . 1 . . . >= -15
    . -2 . . 1 . GE -15
    . . -3 4 . . EQ 0
;
```

Note that the SAS variable names in the CONDATA= data set are the names of arcs given in the ARCDATA= data set. These are the arcs that have nonzero constraint coefficients in side constraints. For example, the proportionality constraint that specifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel is given for refinery 1 in the third observation and for refinery 2 in the last observation. The third observation requires that each unit of flow on the arc thruput1 equals three-fourths of a unit of flow on the arc r1_gas. Because all crude processed at refinery 1 flows through thruput1 and all gasoline produced at refinery 1 flows through r1_gas, the constraint models the situation. It proceeds similarly for refinery 2 in the last observation.

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints, invoke PROC INTPOINT as follows:

```
proc intpoint
    bytes=1000000
    nodedata=noded /* the supply and demand data */
    arcdata=arcd1
    condata=cond1
    /* the arc descriptions */
/* the side constraints */
    conout=solution; /* the solution data set */
    run;
```

The following messages, which appear on the SAS log, summarize the model as read by PROC INTPOINT and note the progress toward a solution.

```
NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180, total demand= 180.
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent
        Linear Programming problem solved by the Interior
        Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: Number of variables= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 5.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 11 constraints from the
        problem.
NOTE: The preprocessor eliminated 25 constraint
        coefficients from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the
        problem.
NOTE: 2 columns, O rows and 2 coefficients were added to
        the problem to handle unrestricted variables,
        variables that are split, and constraint slack or
        surplus variables.
NOTE: There are 13 nonzero elements in A * A transpose.
NOTE: Of the }7\mathrm{ rows and columns, 2 are sparse.
NOTE: There are 6 nonzero superdiagonal elements in the
        sparse rows of the factored A * A transpose. This
        includes fill-in.
NOTE: There are 2 operations of the form
        u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
```

```
    sparse rows of A * A transpose.
NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point
    algorithm performed 7 iterations.
NOTE: Objective = 50875.01279.
NOTE: The data set WORK.SOLUTION has 18 observations and
    10 variables.
NOTE: There were 18 observations read from the data set
    WORK.ARCD1.
NOTE: There were 6 observations read from the data set
    WORK.NODED.
NOTE: There were 4 observations read from the data set
    WORK.COND1.
```

The first set of messages shows the size of the problem. The next set of messages provides statistics on the size of the equivalent LP problem. The number of variables may not equal the number of arcs if the problem has nonarc variables. This example has none. To convert a network to the equivalent LP problem, a flow conservation constraint must be created for each node (including an excess or bypass node, if required). This explains why the number of equality constraints and the number of constraint coefficients differ from the number of equality side constraints and the number of coefficients in all side constraints.

If the preprocessor was successful in decreasing the problem size, some messages will report how well it did. In this example, the model size was cut approximately in half!

The next set of messages describes aspects of the interior point algorithm. Of particular interest are those concerned with the Cholesky factorization of $A A^{T}$ where A is the coefficient matrix of the final LP. It is crucial to preorder the rows and columns of this matrix to prevent fill-in and reduce the number of row operations to undertake the factorization. See the "Interior Point Algorithmic Details" section on page 68 for a more extensive explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC INTPOINT saves the optimum in the output SAS data set that you specify. For this example, the solution is saved in the SOLUTION data set. It can be displayed with the PRINT procedure as

```
title3 'Optimum';
proc print data=solution;
    var _from_ _to_ _cost_ _capac_ _lo_ __name_
        _supply_ _demand_ _flow_ _fcost_;
    sum _fcost_;
    run;
```


Figure 3.7. \quad CONOUT=SOLUTION
Notice that, in CONOUT=SOLUTION (Figure 3.7), the optimal flow through each arc in the network is given in the variable named _FLOW through each arc is given in the variable _FCOST_.

Figure 3.8. Oil Industry Solution

Getting Started: LP Problems

Data for an LP problem resembles the data for side constraints and nonarc variables supplied to PROC INTPOINT when solving an NPSC problem. It is also very similar to the data required by the LP procedure.

To solve LP problems using PROC INTPOINT, you save a representation of the LP variables and the constraints in one or two SAS data sets. These data sets are then passed to PROC INTPOINT for solution. There are various forms that a problem's data can take. You can use any one or a combination of several of these forms.

The ARCDATA= data set contains information about the LP variables of the problem. Although this data set is called ARCDATA, it contains data for no arcs. Instead, all data in this data set are related to LP variables. This data set has no SAS variables containing values that are node names.

The ARCDATA= data set can be used to specify information about LP variables, including objective function coefficients, lower and upper value bounds, and names. These data are the elements of the vectors d, m, and v in problem (LP). Data for an LP variable can be given in more than one observation.

The CONDATA= data set describes the constraints and their right-hand sides. These data are elements of the matrix Q and the vector r.

Constraint types are also specified in the CONDATA= data set. You can include in this data set LP variable data such as upper bound values, lower value bounds, and objective function coefficients. It is possible to give all information about some or all LP variables in the CONDATA= data set.

Because PROC INTPOINT evolved from PROC NETFLOW, another procedure in SAS/OR software that was originally designed to solve models with networks, the ARCDATA= data set is always expected. If the ARCDATA= data set is not specified, by default the last data set created before PROC INTPOINT is invoked is assumed to be the ARCDATA= data set. However, these characteristics of PROC INTPOINT are not helpful when an LP problem is being solved and all data is provided in a single data set specified by the CONDATA= data set, and that data set is not the last data set created before PROC INTPOINT starts. In this case, you must specify that the ARCDATA= data set and the CONDATA= data set are both equal to the input data set. PROC INTPOINT then knows that an LP problem is to be solved and that the data reside in one data set.

An LP variable is identified in this data set by its name. If you specify an LP variable's name in the ARCDATA= data set, then this name is used to associate data in the CONDATA $=$ data set with that LP variable.

If you use the dense constraint input format (described in the "CONDATA= Data Set" section on page 132), these LP variable names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format (described in the "CONDATA= Data Set" section on page 132), these LP variable names are values of the SAS variables in the COLUMN list of the CONDATA= data set.

PROC INTPOINT reads the data from the ARCDATA= data set (if there is one) and the CONDATA= data set. Error checking is performed, and the LP is preprocessed. Preprocessing is optional but highly recommended. The preprocessor analyzes the model and tries to determine before optimization whether LP variables can be "fixed" to their optimal values. Knowing that, the model can be modified and these LP variables dropped out. Some constraints may be found to be redundant. Sometimes, preprocessing succeeds in reducing the size of the problem, thereby making the subsequent optimization easier and faster.

The optimal solution is then found for the resulting LP. If the problem was preprocessed, the model is now post-processed, where fixed LP variables are reintroduced. The solution can be saved in the CONOUT= data set.

Introductory LP Example

Consider the linear programming problem in the section "An Introductory Example" on page 192. The SAS data set in that section is created the same way here:

```
title 'Linear Programming Example';
title3 'Setting Up Condata = dcon1 For PROC INTPOINT';
data dcon1;
    input _id_ $17.
        a_light a_heavy brega naphthal naphthai
        heatingo jet_1 jet_2
        _type_ $ _rhs_;
    datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045-1 0 0 0 0 eq 0
naphtha_i_conv . 100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv . 390 . 300.430 0 0 -1 0 0 eq 0
recipe_1 0
```



```
available 110 165 80 . . . . . upperbd .
```

;

To solve this problem, use

```
proc intpoint
    bytes=1000000
    condata=dcon1
    conout=solutn1;
    run;
```

Note how it is possible to use an input SAS data set of PROC LP and, without requiring any changes to be made to the data set, to use that as an input data set for PROC INTPOINT.

The following messages that appear on the SAS log summarize the model as read by PROC INTPOINT and note the progress toward a solution

```
NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 0.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 5 constraints from the
    problem.
NOTE: The preprocessor eliminated 18 constraint
    coefficients from the problem.
NOTE: After preprocessing, number of variables= 0.
NOTE: The preprocessor eliminated 8 variables from the
    problem.
WARNING: Optimization is unnecessary as the problem no
    longer has any variables and rows.
NOTE: Preprocessing could have caused that.
NOTE: Objective = 1544.
NOTE: The data set WORK.SOLUTN1 has }8\mathrm{ observations and 6
        variables.
```

```
NOTE: There were 7 observations read from the data set WORK.DCON1.
```

Notice that the preprocessor succeeded in fixing all LP variables to their optimal values, eliminating the need to do any actual optimization.

Unlike PROC LP, which displays the solution and other information as output, PROC INTPOINT saves the optimum in the output SAS data set you specify. For this example, the solution is saved in the SOLUTION data set. It can be displayed with PROC PRINT as

```
title3 'LP Optimum';
proc print data=solutn1;
    var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
    sum _fcost_;
    run;
```

Notice that in the CONOUT=SOLUTION (Figure 3.9) the optimal value through each variable in the LP is given in the variable named _VALUE_, and that the cost of value for each variable is given in the variable _FCOST_.

		Lin		Example		
			LP Optim			
Obs	_NAME_	_OBJFN_	_UPPERBD	_LOWERBD	_VALUE_	_FCOST
1	a_heavy	-165	165	0	0.00	0
2	a_light	-175	110	0	110.00	-19250
3	brega	-205	80	0	80.00	-16400
4	heatingo	0	99999999	0	77.30	0
5	jet_1	300	99999999	0	60.65	18195
6	jet_2	300	99999999	0	63.33	18999
7	naphthai	0	99999999	0	21.80	0
8	naphthal	0	99999999	0	7.45	0
						= $===$ 1544

Figure 3.9. CONOUT=SOLUTN1
The same model can be specified in the sparse format as in the following scon2 data set. This format enables you to omit the zero coefficients.

```
title3 'Setting Up Condata = scon2 For PROC INTPOINT';
data scon2;
    format _type_ $8. _col_ $8. _row_ $16.;
    input _type_ $ _col_ $ _row_ $ _coef_;
    datalines;
max . profit
eq . napha_l_conv
eq . napha_i_conv
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
```

.	a_light	napha_l_conv	.035
.	a_light	napha_i_conv	.100
.	a_light	heating_oil_conv	.390
.	a_light	available	110
.	a_heavy	profit	-165
.	a_heavy	napha_l_conv	.030
.	a_heavy	napha_i_conv	.075
.	a_heavy	heating_oil_conv	.300
.	a_heavy	available	165
.	brega	profit	-205
.	brega	napha_1_conv	.045
.	brega	napha_i_conv	.135
.	brega	heating_oil_conv	.430
.	brega	available	80
.	naphthal	napha_1_conv	-1
.	naphthal	recipe_2	.2
.	naphthai	napha_i_conv	-1
.	naphthai	recipe_1	.3
.	heatingo	heating_oil_conv	-1
.	heatingo	recipe_1	.7
.	heatingo	recipe_2	.8
.	jet_1	profit	300
.	jet_1	recipe_1	-1
.	jet_2	profit	300
.	jet_2	recipe_2	-1
;			

To find the minimum cost solution, invoke PROC INTPOINT (note the SPARSECONDATA option which must be specified) as follows:

```
proc intpoint
    bytes=1000000
    sparsecondata
    condata=scon2
    conout=solutn2;
    run;
```

A data set that can be used as the ARCDATA= data set can be initialized as follows:

```
data vars3;
    input _name_ $ profit available;
    datalines;
a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;
```

The following CONDATA= data set is the original dense format CONDATA= dcon1 data set after the LP variable's nonconstraint information has been removed. (You could have left some or all of that information in CONDATA as PROC INTPOINT "merges" data, but doing that and checking for consistency takes time.)

```
data dcon3;
    input _id_ $17.
        a_light a_heavy brega naphthal naphthai
        heatingo jet_1 jet_2
        _type_ $ _rhs_;
    datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 0 eq 0
naphtha_i_conv .100 .075 . 135 0-1 0 0 0 eq 0
heating_o_conv . 390 . 300.430 0 0 -1 0 0 0 eq 0
recipe_1 
;
```

Note: You must now specify the MAXIMIZE option; otherwise, PROC INTPOINT will optimize to the minimum (which, incidentally, has a total objective $=-3539.25$). You must indicate that the SAS variable profit in the ARCDATA=vars3 data set has values that are objective function coefficients, by specifying the OBJFN statement. The UPPERBD must be specified as the SAS variable available that has as values upper bounds:

```
proc intpoint
    maximize /* ***** necessary ***** */
    bytes=1000000
    arcdata=vars3
    condata=dcon3
    conout=solutn3;
objfn profit;
upperbd available;
run;
```

The ARCDATA=vars3 data set can become more concise by noting that the model variables heatingo, naphthai, and naphthal have zero objective function coefficients (the default) and default upper bounds, so those observations need not be present:

```
data vars4;
    input _name_ $ profit available;
    datalines;
a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;
```

The CONDATA=dcon 3 data set can become more concise by noting that all the constraints have the same type (eq) and zero (the default) rhs values. This model is a good candidate for using the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the same type as is the case here, but also when most constraints have the same type and you want to change the default type from \leq to $=$ or \geq. The essential constraint type data in the CONDATA= data set is that which overrides the DEFCONTYPE= type you specified.

```
data dcon4;
    input _id_ $17.
        a_light a_heavy brega naphthal naphthai
            heatingo jet_1 jet_2;
    datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv . . 100 .075 .135 0 -1 0 0 0
heating_o_conv . 390 . 300 .430 0 0 -1 0 0
recipe_1 
recipe_2 0 0 0 .2 0 . 8 0 0 -1
;
proc intpoint
    maximize defcontype=eq
    arcdata=vars3
    condata=dcon3
    conout=solutn3;
    objfn profit;
    upperbd available;
    run;
```

Here are several different ways of using the ARCDATA= data set and a sparse format CONDATA= data set for this LP. The following CONDATA= data set is the result of removing the profit and available data from the original sparse format CONDATA=scon2 data set.

The CONDATA=scon5 data set can become more concise by noting that all the constraints have the same type (eq) and zero (the default) rhs values. Use the DEFCONTYPE= option again. Once the first five observations of the CONDATA=scon5 data set are removed, the _type_ variable has values that are missing in all of the remaining observations. Therefore, this variable can be removed.

```
data scon6;
    input _col_ $ _row_&$16. _coef_;
    datalines;
a_light napha_l_conv . 035
a_light napha_i_conv . }10
a_light heating_oil_conv . }39
a_heavy napha_l_conv . 030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv . }30
brega napha_l_conv . 045
brega napha_i_conv . }13
brega heating_oil_conv . 430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 . }
heatingo heating_oil_conv -1
heatingo recipe_1 . }
heatingo recipe_2 . 8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;
```

```
proc intpoint
    maximize
    defcontype=eq
    sparsecondata
    arcdata=vars4
    condata=scon6
    conout=solutn6;
objfn profit;
upperbd available;
run;
```


Typical PROC INTPOINT Run

You start PROC INTPOINT by giving the PROC INTPOINT statement. You can specify many options in the PROC INTPOINT statement to control the procedure, or you can rely on default settings and specify very few options. However, there are some options you must specify:

- You must specify the BYTES= parameter indicating the size of the working memory that the procedure is allowed to use. This option has no default.
- In many instances (and certainly when solving NPSC problems), you need to specify the ARCDATA= data set. This option has a default (which is the SAS data set that was created last before PROC INTPOINT began running), but that may need to be overridden.
- The CONDATA= data set must also be specified if the problem is NPSC and has side constraints, or if it is an LP problem.
- When solving a network problem, you have to specify the NODEDATA= data set, if some model data is given in such a data set.

Some options, while optional, are frequently required. To have the optimal solution output to a SAS data set, you have to specify the CONOUT= data set. You may want to indicate reasons why optimization should stop (for example, you can indicate the maximum number of iterations that can be performed), or you might want to alter stopping criteria so that optimization does not stop prematurely. Some options enable you to control other aspects of the interior point algorithm. Specifying certain values for these options can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have SAS variables in the input data sets that have special names (for example, a SAS variable in the ARCDATA= data set named _TAIL_ that has tail nodes of arcs as values), it may not be necessary to have many or any variable lists. If you do not specify a TAIL variable list, PROC INTPOINT will search the ARCDATA= data set for a SAS variable named _TAIL_.

What usually follows is a RUN statement, which indicates that all information that you, the user, need to supply to PROC INTPOINT has been given, and the procedure is to start running. This also happens if you specify a statement in your SAS program that PROC INTPOINT does not recognize as one of its own, the next DATA step or procedure.

The QUIT statement indicates that PROC INTPOINT must immediately finish.
For example, a PROC INTPOINT run might look something like this:

```
proc intpoint
    bytes= /* working memory size */
    arcdata= /* data set */
    condata= /* data set */
    /* other options */
;
variable list specifications; /* if necessary */
run; /* start running, read data, */
    /* and do the optimization. */
```


Syntax

Below are statements used in PROC INTPOINT, listed in alphabetical order as they appear in the text that follows.

PROC INTPOINT options;
CAPACITY variable ;
COEF variables;
COLUMN variable;
COST variable ;
DEMAND variable;
HEADNODE variable ;
ID variables;
LO variable;
NAME variable;
NODE variable;
QUIT;
RHS variable;
ROW variables;
RUN;
SUPDEM variable;
SUPPLY variable;
TAILNODE variable;
TYPE variable;
VAR variables;

Functional Summary

Table 3.1 outlines the options that can be specified in the INTPOINT procedure. All options are specified in the PROC INTPOINT statement.

Table 3.1. Functional Summary
Description Statement Option

Input Data Set Options:

arcs input data set
nodes input data set
constraint input data set

Output Data Set Option:

constrained solution data set

Data Set Read Options:

CONDATA has sparse data format default constraint type
special COLUMN variable value special COLUMN variable value used to interpret arc and variable names no nonarc data in ARCDATA data for an arc found once in ARCDATA data for a constraint found once in CONDATA data for a coefficient found once in CONDATA data is grouped, exploited during data read

Problem Size Specification Options:

approximate number of nodes
approximate number of arcs
approximate number of variables
approximate number of coefficients
approximate number of constraints

Network Options:

default arc cost, objective function coefficient default arc capacity, variable upper bound default arc flow and variable lower bound network's only supply node
SOURCE's supply capability
network's only demand node
SINK's demand
convey excess supply/demand through network find max flow between SOURCE and SINK cost of bypass arc, MAXFLOW problem find shortest path from SOURCE to SINK

Interior Point Algorithm Options:

factorization method
allowed amount of dual infeasibility
allowed amount of primal infeasibility

PROC INTPOINT
PROC INTPOINT
PROC INTPOINT

PROC INTPOINT CONOUT=

PROC INTPOINT

PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT

PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT
PROC INTPOINT

ARCDATA=
NODEDATA=
CONDATA=

SPARSECONDATA
 DEFCONTYPE= TYPEOBS= RHSOBS= NAMECTRL= ARCS_ONLY_ARCDATA ARC_SINGLE_OBS
 CON_SINGLE_OBS
 NON_REPLIC= GROUPED=

NNODES= NARCS= NNAS= NCOEFS= NCONS=

DEFCOST=
DEFCAPACITY= DEFMINFLOW=
SOURCE=
SUPPLY= SINK= DEMAND= THRUNET MAXFLOW BYPASSDIVIDE= SHORTPATH

FACT_METHOD= TOLDINF= TOLPINF=

Description	Statement	Option
allowed total amount of dual infeasibility allowed total amount of primal infeasibility cut-off tolerance for Cholesky factorization density threshold for Cholesky processing step-length multiplier preprocessing type print optimization progress on SAS log ratio test zero tolerance	PROC INTPOINT	TOLTOTDINF= TOLTOTPINF= CHOLTINYTOL= DENSETHR= PDSTEPMULT= PRSLTYPE= PRINTLEVEL2= RTTOL=
Interior Point Algorithm Stopping Criteria: maximum number of interior point iterations primal-dual (duality) gap tolerance stop because of complementarity stop because of duality gap stop because of infeas $_{b}$ stop because of infeas ${ }_{c}$ stop because of infeas $_{d}$ stop because of complementarity stop because of duality gap stop because of infeas $_{b}$ stop because of infeas ${ }_{c}$ stop because of infeas $_{d}$ stop because of complementarity stop because of duality gap stop because of infeas $_{b}$ stop because of infeas ${ }_{c}$ stop because of infeas $_{d}$ stop because of complementarity stop because of duality gap stop because of infeas $_{b}$ stop because of infeas ${ }_{c}$ stop because of infeas $_{d}$	PROC INTPOINT	MAXITERB= PDGAPTOL= STOP_C= STOP_DG= STOP_IB= STOP_IC= STOP_ID= AND_STOP_C= AND_STOP_DG= AND_STOP_IB= AND_STOP_IC= AND_STOP_ID= KEEPGOING_C= KEEPGOING_DG= KEEPGOING_IB= KEEPGOING_IC= KEEPGOING_ID= AND_KEEPGOING_C= AND_KEEPGOING_DG= AND_KEEPGOING_IB= AND_KEEPGOING_IC= AND_KEEPGOING_ID=
Memory Control Options: issue memory usage messages to SAS \log number of bytes to use for main memory	PROC INTPOINT PROC INTPOINT	MEMREP BYTES=
Miscellaneous Options: infinity value maximization instead of minimization zero tolerance - optimization zero tolerance - real number comparisons suppress similar SAS log messages scale problem data write optimization time to SAS \log	PROC INTPOINT	INFINITY= MAXIMIZE ZERO2= ZEROTOL= VERBOSE= SCALE= OPTIM_TIMER

PROC INTPOINT Statement

PROC INTPOINT options;

This statement invokes the procedure. The following options can be specified in the PROC INTPOINT statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC INTPOINT. The ARCDATA= data set, the NODEDATA= data set, and the CONDATA= data set can contain SAS variables that have special names, for instance _CAPAC_, _COST_, and _HEAD_. PROC INTPOINT looks for such variables if you do not give explicit variable list specifications. If a SAS variable with a special name is found and that SAS variable is not in another variable list specification, PROC INTPOINT determines that values of the SAS variable are to be interpreted in a special way. By using SAS variables that have special names, you may not need to have any variable list specifications.

ARCDATA=SAS-data-set

names the data set that contains arc and, optionally, nonarc variable information and nodal supply/demand data. The ARCDATA= data set must be specified in all PROC INTPOINT statements when solving NPSC problems.

If your problem is an LP, the ARCDATA= data set is optional. You can specify LP variable information such as objective function coefficients, and lower and upper bounds.

CONDATA=SAS-data-set

names the data set that contains the side constraint data. The data set can also contain other data such as arc costs, capacities, lower flow bounds, nonarc variable upper and lower bounds, and objective function coefficients. PROC INTPOINT needs a CONDATA= data set to solve a constrained problem. See the "CONDATA= Data Set" section on page 132 for more information.

If your problem is an LP, this data set contains the constraint data, and can also contain other data such as objective function coefficients, and lower and upper bounds. PROC INTPOINT needs a CONDATA $=$ data set to solve an LP.

CONOUT=SAS-data-set

COUT=SAS-data-set
names the output data set that receives an optimal solution. See the "CONOUT= Data Set" section on page 141 for more information.

If PROC INTPOINT is outputting observations to the output data set and you want this to stop, press the keys used to stop SAS procedures.
NODEDATA=SAS-data-set
names the data set that contains the node supply and demand specifications. You do not need observations in the NODEDATA= data set for transshipment nodes. (Transshipment nodes neither supply nor demand flow.) All nodes are assumed to
be transshipment nodes unless supply or demand data indicate otherwise. It is acceptable for some arcs to be directed toward supply nodes or away from demand nodes.

This data set is used only when you are solving network problems (not when solving LP problems), in which case the use of the NODEDATA= data set is optional provided that, if the NODEDATA= data set is not used, supply and demand details are specified by other means. Other means include using the MAXFLOW or SHORTPATH option, SUPPLY or DEMAND variable list (or both) in the ARCDATA = data set, and the SOURCE $=$, SUPPLY $=$, SINK $=$, or DEMAND $=$ option in the PROC INTPOINT statement.

General Options

The following is a list of options you can use with PROC INTPOINT. The options are listed in alphabetical order.

ARCS_ONLY_ARCDATA

indicates that data for arcs only are in the ARCDATA= data set. When PROC INTPOINT reads the data in the ARCDATA= data set, memory would not be wasted to receive data for nonarc variables. The read might then be performed faster. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

ARC_SINGLE_OBS

indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is found in only one observation of the ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC INTPOINT knows that the data in an observation is for an arc or a nonarc variable that has not had data previously read and that needs to be checked for consistency. The read might then be performed faster.

When solving an LP, specifying the ARC_SINGLE_OBS option indicates that for all LP variables, data for each LP variable is found in only one observation of the ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC INTPOINT knows that the data in an observation is for an LP variable that has not had data previously read and that needs to be checked for consistency. The read might then be performed faster.

If you specify ARC_SINGLE_OBS, PROC INTPOINT automatically works as if GROUPED=ARCDATA is also specified.

See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

BYPASSDIVIDE= b

BYPASSDIV=b
BPD=b
should be used only when the MAXFLOW option has been specified; that is, PROC INTPOINT is solving a maximal flow problem. PROC INTPOINT prepares to solve maximal flow problems by setting up a bypass arc. This arc is directed from the SOURCE $=$ to the $\mathrm{SINK}=$ and will eventually convey flow equal to INFINITY minus the maximal flow through the network. The cost of the bypass arc must be great
enough to drive flow through the network, rather than through the bypass arc. Also, the cost of the bypass arc must be greater than the eventual total cost of the maximal flow, which can be nonzero if some network arcs have nonzero costs. The cost of the bypass is set to the value of the INFINITY= option. Valid values for the BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the bypass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE= option. The default value for the BYPASSDIVIDE= option (in the presence of nonzero arc costs) is 100.0 .

BYTES=b

indicates the size of the main working memory (in bytes) that PROC INTPOINT will allocate. Specifying this option is mandatory. The working memory is used to store all the arrays and buffers used by PROC INTPOINT. If this memory has a size smaller than what is required to store all arrays and buffers, PROC INTPOINT uses various schemes that page information between auxiliary memory (often your machine's disk) and RAM.

For small problems, specify BYTES $=100000$. For large problems (those with hundreds of thousands or millions of variables), BYTES $=1000000$ might do. For solving problems of that size, if you are running on a machine with an inadequate amount of RAM, PROC INTPOINT's performance will suffer since it will be forced to page or to rely on virtual memory.

If you specify the MEMREP option, PROC INTPOINT will issue messages on the SAS log informing you of its memory usage; that is, how much memory is required to prevent paging, and details about the amount of paging that must be performed, if applicable.

CON_SINGLE_OBS

improves how the CONDATA= data set is read. How it works depends on whether the CONDATA has a dense or sparse format.

If the CONDATA= data set has the dense format, specifying CON_SINGLE_OBS indicates that, for each constraint, data for each can be found in only one observation of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each arc, nonarc variable, or LP variable can be found in only one observation of the CONDATA, then specify the CON_SINGLE_OBS option. If there are n SAS variables in the ROW and COEF list, then each arc or nonarc can have at most n constraint coefficients in the model. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151 .

DEFCAPACITY=c

$D C=c$
requests that the default arc capacity and the default nonarc variable value upper bound (or for LP problems, the default LP variable value upper bound) be c. If this option is not specified, then DEFCAPACITY=INFINITY.

DEFCONTYPE=c

DEFTYPE=c

DCT=c
specifies the default constraint type. This default constraint type is either less than or equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option are

LE, le, or $<=\quad$ for less than or equal to
EQ, eq, or $=$ for equal to
GE, ge, or $>=$ for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c

requests that the default arc cost and the default nonarc variable objective function coefficient (or for an LP, the default LP variable objective function coefficient) be c. If this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m

DMF= m
requests that the default lower flow bound through arcs and the default lower value bound of nonarc variables (or for an LP, the default lower value bound of LP variables) be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND $=d$

specifies the demand at the SINK node specified by the SINK= option. The DEMAND = option should be used only if the SINK= option is given in the PROC INTPOINT statement and neither the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost network problem and the SINK= option is used to identify the sink node, and the DEMAND= option is not specified, then the demand at the sink node is made equal to the network's total supply.

GROUPED=grouped

PROC INTPOINT can take a much shorter time to read data if the data have been grouped prior to the PROC INTPOINT call. This enables PROC INTPOINT to conclude that, for instance, a new NAME list variable value seen in the ARCDATA= data set grouped by the values of the NAME list variable before PROC INTPOINT was called is new. PROC INTPOINT does not need to check that the NAME has been read in a previous observation. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

- GROUPED=ARCDATA indicates that the ARCDATA= data set has been grouped by values of the NAME list variable. If _NAME_ is the name of the NAME list variable, you could use

```
proc sort data=arcdata; by _name_;
```

prior to calling PROC INTPOINT. Technically, you do not have to sort the data, only to ensure that all similar values of the NAME list variable are
grouped together. If you specify the ARCS_ONLY_ARCDATA option, PROC INTPOINT automatically works as if GROUPED=ARCDATA is also specified.

- GROUPED=CONDATA indicates that the CONDATA= data set has been grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indicates that the CONDATA= data set has been grouped by values of the ROW list variable. If _ROW_ is the name of the ROW list variable, you could use

```
proc sort data=condata; by _row_;
```

prior to calling PROC INTPOINT. Technically, you do not have to sort the data, only to ensure that all similar values of the ROW list variable are grouped together. If you specify the CON_SINGLE_OBS option, or if there is no ROW list variable, PROC INTPOINT automatically works as if GROUPED=CONDATA has been specified.

If the CONDATA= data set has the sparse format, GROUPED=CONDATA indicates that CONDATA has been grouped by values of the COLUMN list variable. If _COL_ is the name of the COLUMN list variable, you could use

```
proc sort data=condata; by _col_;
```

prior to calling PROC INTPOINT. Technically, you do not have to sort the data, only to ensure that all similar values of the COLUMN list variable are grouped together.

- GROUPED=BOTH indicates that both GROUPED=ARCDATA and GROUPED=CONDATA are TRUE.
- GROUPED=NONE indicates that the data sets have not been grouped, that is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE. This is the default, but it is much better if GROUPED=ARCDATA, or GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

```
... _XXXXX_ ....
        bbb
        bbb
        aaa
        Ccc
        Ccc
```

is a candidate for the GROUPED= option. Similar values are grouped together. When PROC INTPOINT is reading the i th observation, either the value of the _ XXXXX variable is the same as the $(i-1)$ st (that is, the previous observation's) _ XXXXX value, or it is a new _ $X X X X X$ _ value not seen in any previous observation. This also means that if the i th $\quad \mathbf{X X X X X} \mathbf{_}$ value is different from the $(i-1)$ st $\quad \mathbf{X X X X X} \mathbf{-}$ value, the value of the $(i-1)$ st $_X X X X X _$variable will not be seen in any observations $i, i+1, \ldots$.

INFINITY=i
 INF=i

is the largest number used by PROC INTPOINT in computations. A number too small can adversely affect the solution process. You should avoid specifying an enormous value for the INFINITY= option because numerical roundoff errors can result. If a value is not specified, then INFINITY=999999. The INFINITY= option cannot be assigned a value less than 9999.

MAXFLOW

MF
specifies that PROC INTPOINT solve a maximum flow problem. In this case, the PROC INTPOINT procedure finds the maximum flow from the node specified by the SOURCE= option to the node specified by the SINK= option. PROC INTPOINT automatically assigns an INFINITY= option supply to the SOURCE= option node and the SINK= option is assigned the INFINITY= option demand. In this way, the MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost problem.

You can use the MAXFLOW option when solving any flow problem (not necessarily a maximum flow problem) when the network has one supply node (with infinite supply) and one demand node (with infinite demand). The MAXFLOW option can be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and DEMAND=) and capabilities of PROC INTPOINT.

MAXIMIZE
 MAX

specifies that PROC INTPOINT find the maximum cost flow through the network. If both the MAXIMIZE and the SHORTPATH options are specified, the solution obtained is the longest path between the SOURCE $=$ and $\operatorname{SINK}=$ nodes. Similarly, MAXIMIZE and MAXFLOW together cause PROC INTPOINT to find the minimum flow between these two nodes; this is zero if there are no nonzero lower flow bounds. If solving an LP, specifying the MAXIMIZE option is necessary if you want the maximal optimal solution found instead of the minimal optimum.

MEMREP

indicates that information on the memory usage and paging schemes (if necessary) is reported by PROC INTPOINT on the SAS log.

NAMECTRL=i

is used to interpret arc and nonarc variable names in the CONDATA= data set. In the ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA= data set, arcs are identified by names. You can give a name to an arc by having a NAME list specification that indicates a SAS variable in the ARCDATA= data set that has names of arcs as values.

PROC INTPOINT requires that arcs that have information about them in the CONDATA= data set have names, but arcs that do not have information about them in the CONDATA= data set can also have names. Unlike a nonarc variable whose name uniquely identifies it, an arc can have several different names. An arc has a default name in the form tail_head, that is, the name of the arc's tail node followed
by an underscore and the name of the arc's head node.
In the CONDATA= data set, if the dense data format is used (described in the "CONDATA= Data Set" section on page 132), a name of an arc or a nonarc variable is the name of a SAS variable listed in the VAR list specification. If the sparse data format of the CONDATA= data set is used, a name of an arc or a nonarc variable is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or a nonarc variable in the CONDATA= data set (either a VAR list variable name or a value of the COLUMN list variable) is in the form tail_head and there exists an arc with these end nodes. If tail_head has not already been tagged as belonging to an arc or nonarc variable in the ARCDATA= data set, PROC INTPOINT needs to know whether tail_head is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail_head as the name of the arc with these endnodes, provided no other name is used to associate data in the CONDATA= data set with this arc. If the arc does have other names that appear in the CONDATA= data set, tail_head is assumed to be the name of a nonarc variable. If you specify NAMECTRL=3, tail_head is assumed to be a name of the arc with these end nodes, whether the arc has other names or not. The default value of NAMECTRL is 3 .

If the dense format is used for the CONDATA= data set, there are two circumstances that affect how this data set is read:

1. if you are running SAS Version 6, or a previous version to that, or if you are running SAS Version 7 onward and you specify
```
options validvarname=v6;
```

in your SAS session. Let's refer to this as case 1 .
2. if you are running SAS Version 7 onward and you do not specify
options validvarname=v6;
in your SAS session. Let's refer to this as case 2 .

For case 1, the SAS System converts SAS variable names in a SAS program to uppercase. The VAR list variable names are uppercased. Because of this, PROC INTPOINT automatically uppercases names of arcs and nonarc variables or LP variables (the values of the NAME list variable) in the ARCDATA= data set. The names of arcs and nonarc variables or LP variables (the values of the NAME list variable) appear uppercased in the CONOUT= data set.

Also, if the dense format is used for the CONDATA= data set, be careful with default arc names (names in the form tailnode_headnode). Node names (values in the TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not automatically uppercased by PROC INTPOINT. Consider the following code.

```
data arcdata;
    input _from_ $ _to_ $ _name $ ;
    datalines;
from to1 .
from to2 arc2
TAIL TO3.
;
data densecon;
    input from_to1 from_to2 arc2 tail_to3;
    datalines;
2 3 3 5
;
proc intpoint
    arcdata=arcdata condata=densecon;
    run;
```

The SAS System does not uppercase character string values within SAS data sets. PROC INTPOINT never uppercases node names, so the arcs in observations 1,2 , and 3 in the preceding ARCDATA= data set have the default names from_to1, from_to2, and TAIL_TO3, respectively. When the dense format of the CONDATA= data set is used, PROC INTPOINT does uppercase values of the NAME list variable, so the name of the arc in the second observation of the ARCDATA= data set is ARC2. Thus, the second arc has two names: its default from_to2 and the other that was specified ARC2.

As the SAS System uppercases program code, you must think of the input statement
input from_to1 from_to2 arc2 tail_to3;
as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named FROM_TO1 and FROM_TO2 are not associated with any of the arcs in the preceding ARCDATA= data set. The values FROM_TO1 and FROM_TO2 are different from all of the arc names from_to1, from_to2, TAIL_TO3, and ARC2. FROM_TO1 and FROM_TO2 could end up being the names of two nonarc variables.

The SAS variable named ARC2 is the name of the second arc in the ARCDATA= data set, even though the name specified in the ARCDATA= data set looks like arc2. The SAS variable named TAIL_TO3 is the default name of the third arc in the ARCDATA = data set.

For case 2, the SAS System does not convert SAS variable names in a SAS program to uppercase. The VAR list variable names are not uppercased. PROC INTPOINT does not automatically uppercase names of arcs and nonarc variables or LP variables (the values of the NAME list variable) in the ARCDATA= data set. PROC INTPOINT does not uppercase any SAS variable names, data set values, or indeed anything. Therefore, PROC INTPOINT respects case, and characters in the data if compared
must have the right case if you mean them to be the same. Note how the input statement in the data step that initialized the data set densecon below is specified in the following code:

```
data arcdata;
    input _from_ $ _to_ $ _name $ ;
    datalines;
from tol.
from to2 arc2
TAIL TO3.
;
data densecon;
    input from_to1 from_to2 arc2 TAIL_TO3;
    datalines;
2 3 5
;
proc intpoint
    arcdata=arcdata condata=densecon;
    run;
```


NARCS=n

specifies the approximate number of arcs. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

NCOEFS=n

specifies the approximate number of constraint coefficients. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

NCONS= n

specifies the approximate number of constraints. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

NNAS=n
specifies the approximate number of nonarc variables. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

NNODES=n

specifies the approximate number of nodes. See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151.

NON_REPLIC=non_replic prevents PROC INTPOINT from doing unnecessary checks of data previously read.

- NON_REPLIC=COEFS indicates that each constraint coefficient is specified once in the CONDATA= data set.
- NON_REPLIC=NONE indicates that constraint coefficients can be specified more than once in the CONDATA= data set. NON_REPLIC=NONE is the default.

See the section "How to Make the Data Read of PROC INTPOINT More Efficient" on page 151 .

OPTIM_TIMER

indicates that the procedure is to issue a message to the SAS log giving the CPU time spent doing optimization. This includes the time spent preprocessing, performing optimization, and postprocessing. Not counted in that time is the rest of the procedure execution, which includes reading the data and creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the procedure. This is especially true when the problem is quite small (e.g., fewer than 10,000 variables).

RHSOBS=charstr

specifies the keyword that identifies a right-hand-side observation when using the sparse format for data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data set named in the COLUMN list specification. The default value of the RHSOBS= option is _RHS_ or _rhs_. If charstr is not a valid SAS variable name, enclose it in quotes.

SCALE=scale

indicates that the NPSC side constraints or the LP constraints are to be scaled. Scaling is useful when some coefficients are either much larger or much smaller than other coefficients. Scaling might make all coefficients have values that have a smaller range, and this can make computations more stable numerically. Try the SCALE= option if PROC INTPOINT is unable to solve a problem because of numerical instability. Specify

- SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if you want the largest absolute value of coefficients in each constraint to be about 1.0
- SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if you want NPSC nonarc variable columns or LP variable columns to be scaled so that the absolute value of the largest constraint coefficient of that variable is near to 1
- SCALE=BOTH if you want the largest absolute value of coefficients in each constraint, and the absolute value of the largest constraint coefficient of an NPSC nonarc variable or LP variable to be near to 1 . This is the default.
- SCALE=NONE if no scaling should be done

SHORTPATH

SP
specifies that PROC INTPOINT solve a shortest path problem. The INTPOINT procedure finds the shortest path between the nodes specified in the SOURCE= option and the SINK= option. The costs of arcs are their lengths. PROC INTPOINT automatically assigns a supply of one flow unit to the SOURCE= node, and the SINK= node is assigned to have a one flow unit demand. In this way, the SHORTPATH option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node (with demand of one unit), you could specify the SHORTPATH option, with the SOURCE $=$ and SINK = nodes, even if the problem is not a shortest path problem. You then should not provide any supply or demand data in the NODEDATA= data set or the ARCDATA= data set.

SINK=sinkname

SINKNODE=sinkname
identifies the demand node. The SINK= option is useful when you specify the MAXFLOW option or the SHORTPATH option and you need to specify toward which node the shortest path or maximum flow is directed. The SINK= option also can be used when a minimum cost problem has only one demand node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set, use the SINK= option with an accompanying DEMAND= specification for this node. The SINK= option must be the name of a head node of at least one arc; thus, it must have a character value. If the value of the SINK= option is not a valid SAS character variable name (if, for example, it contains embedded blanks), it must be enclosed in quotes.

SOURCE=sourcename

SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the MAXFLOW or the SHORTPATH option and need to specify from which node the shortest path or maximum flow originates. The SOURCE= option also can be used when a minimum cost problem has only one supply node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set, use the SOURCE= option with an accompanying SUPPLY= amount of supply at this node. The SOURCE= option must be the name of a tail node of at least one arc; thus, it must have a character value. If the value of the SOURCE $=$ option is not a valid SAS character variable name (if, for example, it contains embedded blanks), it must be enclosed in quotes.

SPARSECONDATA

SCDATA
indicates that the CONDATA= data set has data in the sparse data format. Otherwise, it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS software Version 6 or you have specified

```
options validvarname=v6;
```

all NAME list variable values in the ARCDATA= data set are uppercased. See the "Case Sensitivity" section on page 142.

SUPPLY=s

specifies the supply at the source node specified by the SOURCE= option. The SUPPLY = option should be used only if the SOURCE= option is given in the PROC INTPOINT statement and neither the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost network problem and the SOURCE $=$ option is used to identify the source node and the SUPPLY= option is not specified, then by default the supply at the source node is made equal to the network's total demand.

THRUNET

tells PROC INTPOINT to force through the network any excess supply (the amount by which total supply exceeds total demand) or any excess demand (the amount by which total demand exceeds total supply) as is required. If a network problem has unequal total supply and total demand and the THRUNET option is not specified, PROC INTPOINT drains away the excess supply or excess demand in an optimal manner. The consequences of specifying or not specifying THRUNET are discussed in the "Balancing Total Supply and Total Demand" section on page 150.

TYPEOBS=charstr

specifies the keyword that identifies a type observation when using the sparse format for data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data set named in the COLUMN list specification. The default value of the TYPEOBS= option is _TYPE_ or _type_. If charstr is not a valid SAS variable name, enclose it in quotes.

VERBOSE=v

limits the number of similar messages that are displayed on the SAS log.
For example, when reading the ARCDATA= data set, PROC INTPOINT might have cause to issue the following message many times:

```
ERROR: The HEAD list variable value in obs i in ARCDATA is
    missing and the TAIL list variable value of this obs
    is nonmissing. This is an incomplete arc specification.
```

If there are many observations that have this fault, messages that are similar are issued for only the first VERBOSE= such observations. After the ARCDATA= data set has been read, PROC INTPOINT will issue the message

```
NOTE: More messages similar to the ones immediately above
    could have been issued but were suppressed as
    VERBOSE=v.
```

If observations in the ARCDATA= data set have this error, PROC INTPOINT stops and you have to fix the data. Imagine that this error is only a warning and PROC INTPOINT proceeded to other operations such as reading the CONDATA= data set. If PROC INTPOINT finds there are numerous errors when reading that data set, the number of messages issued to the SAS log are also limited by the VERBOSE= option.

When PROC INTPOINT finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.
is issued. The value of vmin is the smallest value that should be specified for the VERBOSE= option so that all messages are displayed if PROC INTPOINT is run again with the same data and everything else (except VERBOSE=vmin) unchanged.

The default value for the VERBOSE= option is 12 .

ZERO2=z

Z2=Z

specifies the zero tolerance level used when determining whether the final solution has been reached. ZERO2= is also used when outputting the solution to the CONOUT $=$ data set. Values within z of zero are set to 0.0 , where z is the value of the ZERO2= option. Flows close to the lower flow bound or capacity of arcs are reassigned those exact values. If there are nonarc variables, values close to the lower or upper value bound of nonarc variables are reassigned those exact values. When solving an LP problem, values close to the lower or upper value bound of LP variables are reassigned those exact values.

The ZERO2= option works when determining whether optimality has been reached or whether an element in the vector $\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)$ is less than or greater than zero. It is crucial to know that when determining the maximal value for the step length α in the formula

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

See the description of the PDSTEPMULT= option for more details on this computation.

Two values are deemed to be close if one is within z of the other. The default value for the ZERO2 $=$ option is 0.000001 . Any value specified for the ZERO2 $=$ option that is <0.0 or >0.0001 is not valid.

ZEROTOL=z

specifies the zero tolerance used when PROC INTPOINT must compare any real number with another real number, or zero. For example, if x and y are real numbers, then for x to be considered greater than y, x must be at least $y+z$. The ZEROTOL= option is used throughout any PROC INTPOINT run.

ZEROTOL=z controls the way PROC INTPOINT performs all double precision comparisons; that is, whether a double precision number is equal to, not equal to, greater than (or equal to), or less than (or equal to) zero or some other double precision number. A double precision number is deemed to be the same as another such value if the absolute difference between them is less than or equal to the value of the ZEROTOL= option.

The default value for the ZEROTOL= option is $1.0 \mathrm{E}-14$. You can specify the ZEROTOL= option in the INTPOINT statement. Valid values for the ZEROTOL= option must be >0.0 and <0.0001. Do not specify a value too close to zero as this defeats the purpose of the ZEROTOL= option. Neither should the value be too large, as comparisons might be incorrectly performed.

Interior Point Algorithm Options

FACT_METHOD= f

enables you to choose the type of algorithm used to factorize and solve the main linear systems at each iteration of the interior point algorithm.
FACT_METHOD=LEFT_LOOKING is new for SAS 9.1.2. It uses algorithms described in George, Liu, and Ng (2001). Left looking is one of the main methods used to perform Cholesky optimization and, along with some recently developed implementation approaches, can be faster and require less memory than other algorithms.

Specify FACT_METHOD=USE_OLD if you want the procedure to use the only factorization available prior to SAS 9.1.2.

TOLDINF= t

RTOLDINF= t
specifies the allowed amount of dual infeasibility. In the "Interior Point Algorithmic Details" section on page 68, the vector infeas $_{d}$ is defined. If all elements of this vector are $\leq t$, the solution is considered dual feasible. infeas $_{d}$ is replaced by a zero vector, making computations faster. This option is the dual equivalent to the TOLPINF= option. Increasing the value of the TOLDINF= option too much can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration count. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

TOLPINF= t

RTOLPINF= t
specifies the allowed amount of primal infeasibility. This option is the primal equivalent to the TOLDINF= option. In the "Interior Point: Upper Bounds" section on page 73, the vector infeas $_{b}$ is defined. In the "Interior Point Algorithmic Details" section on page 68, the vector infeas $_{c}$ is defined. If all elements in these vectors are $\leq t$, the solution is considered primal feasible. infeas ${ }_{b}$ and infeas $_{c}$ are replaced by zero vectors, making computations faster. Increasing the value of the TOLPINF= option too much can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration count. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

TOLTOTDINF= t

RTOLTOTDINF= t
specifies the allowed total amount of dual infeasibility. In the "Interior Point Algorithmic Details" section on page 68, the vector infeas $_{d}$ is defined. If $\sum_{i=1}^{n}$ infeas $_{d i} \leq t$, the solution is considered dual feasible. infeas ${ }_{d}$ is replaced by a zero vector, making computations faster. This option is the dual equivalent to the TOLTOTPINF= option. Increasing the value of the TOLTOTDINF= option too much can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration count. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

TOLTOTPINF= t
 RTOLTOTPINF= t

specifies the allowed total amount of primal infeasibility. This option is the primal equivalent to the TOLTOTDINF= option. In the "Interior Point: Upper Bounds" section on page 73, the vector infeas $_{b}$ is defined. In the "Interior Point Algorithmic Details" section on page 68, the vector infeas $_{c}$ is defined. If $\sum_{i=1}^{n}$ infeas $_{b i} \leq t$ and $\sum_{i=1}^{m}$ infeas $_{c i} \leq t$, the solution is considered primal feasible. infeas ${ }_{b}$ and infeas $_{c}$ are replaced by zero vectors, making computations faster. Increasing the value of the TOLTOTPINF $=$ option too much can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration count. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

CHOLTINYTOL=c

RCHOLTINYTOL=c
specifies the cut-off tolerance for Cholesky factorization of the $A \Theta A^{-1}$. If a diagonal value drops below c, the row is essentially treated as dependent and is ignored in the factorization. Valid values for c are between $1.0 \mathrm{E}-30$ and $1.0 \mathrm{E}-6$. The default value is $1.0 \mathrm{E}-8$.

DENSETHR=d

RDENSETHR= d
specifies the density threshold for Cholesky factorization. When the symbolic factorization encounters a column of L (where L is the remaining unfactorized submatrix) that has DENSETHR $=$ proportion of nonzeros and the remaining part of L is at least 12×12, the remainder of L is treated as dense. In practice, the lower right part of the Cholesky triangular factor L is quite dense and it can be computationally more efficient to treat it as 100% dense. The default value for d is 0.7 . A specification of $d \leq 0.0$ causes all dense processing; $d \geq 1.0$ causes all sparse processing.

PDSTEPMULT=p

RPDSTEPMULT= p
specifies the step-length multiplier. The maximum feasible step-length chosen by the interior point algorithm is multiplied by the value of the PDSTEPMULT= option. This number must be less than 1 to avoid moving beyond the barrier. An actual steplength greater than 1 indicates numerical difficulties. Valid values for p are between 0.01 and 0.999999 . The default value is 0.99995 .

In the "Interior Point Algorithmic Details" section on page 68, the solution of the next iteration is obtained by moving along a direction from the current iteration's solution:

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

where α is the maximum feasible step-length chosen by the interior point algorithm. If $\alpha \leq 1$, then α is reduced slightly by multiplying it by p. α is a value as large as possible but ≤ 1.0 and not so large that an x_{i}^{k+1} or s_{i}^{k+1} of some variable i is "too close" to zero.

PRSLTYPE=p IPRSLTYPE=p

Preprocessing the linear programming problem often succeeds in allowing some variables and constraints to be temporarily eliminated from the resulting LP that must be solved. This reduces the solution time and possibly also the chance that the optimizer will run into numerical difficulties. The task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE $=p$, where p can be $-1,0,1,2$, or 3 :
$-1 \quad$ Do not perform preprocessing. For most problems, specifying PRSLTYPE $=-1$ is not recommended.
$0 \quad$ Given upper and lower bounds on each variable, the greatest and least contribution to the row activity of each variable is computed. If these are within the limits set by the upper and lower bounds on the row activity, then the row is redundant and can be discarded. Otherwise, whenever possible, the bounds on any of the variables are tightened. For example, if all coefficients in a constraint are positive and all variables have zero lower bounds, then the row's smallest contribution is zero. If the rhs value of this constraint is zero, then if the constraint type is $=$ or \leq, all the variables in that constraint are fixed to zero. These variables and the constraint are removed. If the constraint type is \geq, the constraint is redundant. If the rhs is negative and the constraint is \leq, the problem is infeasible. If just one variable in a row is not fixed, the row to used to impose an implicit upper or lower bound on the variable and then this row is eliminated. The preprocessor also tries to tighten the bounds on constraint right-hand sides.
1 When there are exactly two unfixed variables with coefficients in an equality constraint, one variable is solved in terms of the other. The problem will have one less variable. The new matrix will have at least two fewer coefficients and one less constraint. In other constraints where both variables appear, two coefficients are combined into one. PRSLTYPE=0 reductions are also done.
2 It may be possible to determine that an equality constraint is not constraining a variable. That is, if all variables are nonnegative, then $x-\sum_{i} y_{i}=0$ does not constrain x, since it must be nonnegative if all the y_{i} 's are nonnegative. In this case, x is eliminated by subtracting this equation from all others containing x. This is useful when the only other entry for x is in the objective function. This reduction is performed if there is at most one other nonobjective coefficient. PRSLTYPE=0 reductions are also done.
3 All possible reductions are performed. PRSLTYPE $=3$ is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are found to be redundant and they too are eliminated, and as variable bounds and constraint right-hand sides are tightened, the LP to be optimized is modified to reflect these changes. Another iteration of preprocessing of the modified LP may reveal more variables and constraints that are eliminated, or tightened.

PRINTLEVEL2=p

is used when you want to see PROC INTPOINT's progress to the optimum. PROC INTPOINT will produce a table on the SAS log. A row of the table is generated during each iteration and may consist of values of

- the affine step complementarity
- the complementarity of the solution for the next iteration
- the total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 73)
- the total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas $_{c}$ array in the "Interior Point Algorithmic Details" section on page 68)
- the total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 68)

As optimization progresses, the values in all columns should converge to zero. If you specify PRINTLEVEL2 $=2$, all columns will appear in the table. If PRINTLEVEL2 $=1$ is specified, only the affine step complementarity and the complementarity of the solution for the next iteration will appear. Some time is saved by not calculating the infeasibility values.

PRINTLEVEL2=2 is specified in all PROC INTPOINT runs in the "Examples" section on page 160.

RTTOL=r

specifies the zero tolerance used during the ratio test of the interior point algorithm. The ratio test determines α, the maximum feasible step length.

Valid values for r are greater than $1.0 \mathrm{E}-14$. The default value is $1.0 \mathrm{E}-10$.
In the "Interior Point Algorithmic Details" section on page 68, the solution of the next iteration is obtained by moving along a direction from the current iteration's solution:

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

where α is the maximum feasible step-length chosen by the interior point algorithm. If $\alpha \leq 1$, then α is reduced slightly by multiplying it by the value of the PDSTEPMULT $=$ option. α is a value as large as possible but ≤ 1.0 and not so large that an x_{i}^{k+1} or s_{i}^{k+1} of some variable i is negative. When determining α, only negative elements of Δx and Δs are important.

RTTOL $=r$ indicates a number close to zero so that another number n is considered truly negative if $n \leq-r$. Even though $n<0$, if $n>-r, n$ may be too close to zero and may have the wrong sign due to rounding error.

Interior Point Algorithm Options: Stopping Criteria

MAXITERB= m

IMAXITERB= m
specifies the maximum number of iterations that the interior point algorithm can perform. The default value for m is 100 . One of the most remarkable aspects of the interior point algorithm is that for most problems, it usually needs to do a small number of iterations, no matter the size of the problem.

PDGAPTOL=p

RPDGAPTOL=p
specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in the "Interior Point Algorithmic Details" section on page 68. If the relative gap (duality gap $/\left(c^{T} x\right)$) between the primal and dual objectives is smaller than the value of the PDGAPTOL= option and both the primal and dual problems are feasible, then PROC INTPOINT stops optimization with a solution that is deemed optimal. Valid values for p are between $1.0 \mathrm{E}-12$ and $1.0 \mathrm{E}-1$. The default is $1.0 \mathrm{E}-7$.

STOP_C=s

is used to determine whether optimization should stop. At the beginning of each iteration, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $<=s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

STOP_DG=s

is used to determine whether optimization should stop. At the beginning of each iteration, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $<=s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

STOP_IB=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 73; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is $<=s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

STOP_IC=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas ${ }_{c}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $<=s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

STOP_ID=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $<=s$, opti-
mization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

AND_STOP_C=s

is used to determine whether optimization should stop. At the beginning of each iteration, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is $<=s$, and the other conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

AND_STOP_DG=s

is used to determine whether optimization should stop. At the beginning of each iteration, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is $<=s$, and the other conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

AND_STOP_IB=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 73; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is $<=s$, and the other conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

AND_STOP_IC=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas ${ }_{c}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $<=s$, and the other conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

AND_STOP_ID=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $<=s$, and the other conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 156.

KEEPGOING_C=s

is used to determine whether optimization should stop. When a stopping condition is met, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

KEEPGOING_DG=s

is used to determine whether optimization should stop. When a stopping condition is met, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

KEEPGOING_IB=s

is used to determine whether optimization should stop. When a stopping condition is met, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 73; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

KEEPGOING_IC=s

is used to determine whether optimization should stop. When a stopping condition is met, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas $_{c}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

KEEPGOING_ID=s

is used to determine whether optimization should stop. When a stopping condition is met, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

AND_KEEPGOING_C=s

is used to determine whether optimization should stop. When a stopping condition is met, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $>s$, and the other conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

AND_KEEPGOING_DG=s

is used to determine whether optimization should stop. When a stopping condition is met, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $>s$, and the other conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

AND_KEEPGOING_IB=s

is used to determine whether optimization should stop. When a stopping condition is met, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 73; this value appears in the Tot_infeasb
column in the table produced when you specify PRINTLEVEL2=2) is $>s$, and the other conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156 .

AND_KEEPGOING_IC=s
is used to determine whether optimization should stop. When a stopping condition is met, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas ${ }_{c}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $>s$, and the other conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156.

AND_KEEPGOING_ID=s

is used to determine whether optimization should stop. When a stopping condition is met, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas ${ }_{d}$ array in the "Interior Point Algorithmic Details" section on page 68; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $>s$, and the other conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 156 .

CAPACITY Statement

CAPACITY variable;

CAPAC variable;

UPPERBD variable;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set that contains the maximum feasible flow or capacity of the network arcs. If an observation contains nonarc variable information, the CAPACITY list variable is the upper value bound for the nonarc variable named in the NAME list variable in that observation.

When solving an LP, the CAPACITY statement identifies the SAS variable in the ARCDATA = data set that contains the maximum feasible value of the LP variables.

The CAPACITY list variable must have numeric values. It is not necessary to have a CAPACITY statement if the name of the SAS variable is _CAPAC_, _UPPER_, _UPPERBD, or _HI_.

COEF Statement

COEF variables;

The COEF list is used with the sparse input format of the CONDATA= data set. The COEF list can contain more than one SAS variable, each of which must have numeric values. If the COEF statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _COE are used. The number of SAS
variables in the COEF list must be no greater than the number of SAS variables in the ROW list.

The values of the COEF list variables in an observation can be interpreted differently than these variables' values in other observations. The values can be coefficients in the side constraints, costs and objective function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value that is a name of an arc or a nonarc variable, the i th COEF list variable is associated with the constraint or special row name named in the i th ROW list variable. Otherwise, the COEF list variables indicate type values, rhs values, or missing values.

When solving an LP, the values of the COEF list variables in an observation can be interpreted differently than these variables' values in other observations. The values can be coefficients in the constraints, objective function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value that is a name of an LP variable, the i th COEF list variable is associated with the constraint or special row name named in the i th ROW list variable. Otherwise, the COEF list variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable;

The COLUMN list is used with the sparse input format of the CONDATA= data set.
This list consists of one SAS variable in the CONDATA= data set that has as values the names of arc variables, nonarc variables, or missing values. When solving an LP, this list consists of one SAS variable in the CONDATA= data set that has as values the names of LP variables, or missing values. Some, if not all, of these values also can be values of the NAME list variables of the ARCDATA= data set. The COLUMN list variable can have other special values (Refer to the TYPEOBS $=$ and RHSOBS $=$ options). If the COLUMN list is not specified after the PROC INTPOINT statement, the CONDATA = data set is searched and a SAS variable named _COLUMN_ is used. The COLUMN list variable must have character values.

COST Statement

COST variable;

OBJFN variable;
The COST statement identifies the SAS variable in the ARCDATA= data set that contains the per unit flow cost through an arc. If an observation contains nonarc variable information, the value of the COST list variable is the objective function coefficient of the nonarc variable named in the NAME list variable in that observation.

If solving an LP, the COST statement identifies the SAS variable in the ARCDATA= data set that contains the per unit objective function coefficient of an LP variable named in the NAME list variable in that observation.

The COST list variable must have numeric values. It is not necessary to specify a COST statement if the name of the SAS variable is _COST_ or _LENGTH_.

DEMAND Statement

DEMAND variable;
The DEMAND statement identifies the SAS variable in the ARCDATA= data set that contains the demand at the node named in the corresponding HEADNODE list variable. The DEMAND list variable must have numeric values. It is not necessary to have a DEMAND statement if the name of this SAS variable is _DEMAND_. See the "Missing S Supply and Missing D Demand Values" section on page 145 for cases when the SUPDEM list variable values can have other values. There should be no DEMAND statement if you are solving an LP.

HEADNODE Statement

HEADNODE variable;

HEAD variable;
TONODE variable;
TO variable;
The HEADNODE statement specifies the SAS variable that must be present in the ARCDATA= data set that contains the names of nodes toward which arcs are directed. It is not necessary to have a HEADNODE statement if the name of the SAS variable is _HEAD_ or _TO_. The HEADNODE variable must have character values.

There should be no HEAD statement if you are solving an LP.

ID Statement

ID variables;

The ID statement specifies SAS variables containing values for pre- and post-optimal processing and analysis. These variables are not processed by PROC INTPOINT but are read by the procedure and written in the CONOUT= data set. For example, imagine a network used to model a distribution system. The SAS variables listed on the ID statement can contain information on the type of vehicle, the transportation mode, the condition of the road, the time to complete the journey, the name of the driver, or other ancillary information useful for report writing or describing facets of the operation that do not have bearing on the optimization. The ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not included in any other implicit or explicit list specification. If the ID list is specified, any SAS variables in the ARCDATA= data set not in any list are dropped and do not appear in the CONOUT= data set.

LO Statement

LO variable;
LOWERBD variable;
MINFLOW variable ;
The LO statement identifies the SAS variable in the ARCDATA= data set that contains the minimum feasible flow or lower flow bound for arcs in the network. If an observation contains nonarc variable information, the LO list variable has the value of the lower bound for the nonarc variable named in the NAME list variable. If solving an LP, the LO statement identifies the SAS variable in the ARCDATA= data set that contains the lower value bound for LP variables. The LO list variables must have numeric values. It is not necessary to have a LO statement if the name of this SAS variable is _LOWER_,_LO_, _LOWERBD, or _MINFLOW.

NAME Statement

NAME variable;

ARCNAME variable;
VARNAME variable;
Each arc and nonarc variable in an NPSC, or each variable in an LP, that has data in the CONDATA= data set must have a unique name. This name is a value of the NAME list variable. The NAME list variable must have character values (see the NAMECTRL= option in the PROC INTPOINT statement for more information). It is not necessary to have a NAME statement if the name of this SAS variable is _NAME_.

NODE Statement

NODE variable;

The NODE list variable, which must be present in the NODEDATA= data set, has names of nodes as values. These values must also be values of the TAILNODE list variable, the HEADNODE list variable, or both. If this list is not explicitly specified, the NODEDATA= data set is searched for a SAS variable with the name _NODE_. The NODE list variable must have character values.

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC INTPOINT is to stop immediately. The solution is not saved in the CONOUT= data set. The QUIT statement has no options.

RHS Statement

RHS variable;

The RHS variable list is used when the dense format of the CONDATA= data set is used. The values of the SAS variable specified in the RHS list are constraint right-hand-side values. If the RHS list is not specified, the CONDATA= data set is searched and a SAS variable with the name _ RHS_ is used. The RHS list variable must have numeric values. If there is no RHS list and no SAS variable named _RHS_, all constraints are assumed to have zero right-hand-side values.

ROW Statement

ROW variables;

The ROW list is used when either the sparse or the dense format of the CONDATA= data set is being used. SAS variables in the ROW list have values that are constraint or special row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In this case, if a ROW list is not specified, the CONDATA= data set is searched and the SAS variable with the name _ ROW $\mathbf{-}_{-}$or CON_{-}is used. If that search fails to find a suitable SAS variable, data for each constraint must reside in only one observation.

If the sparse data format is used and the ROW statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _ROW or _CON are used. The number of SAS variables in the ROW list must not be less than the number of SAS variables in the COEF list. The i th ROW list variable is paired with the i th COEF list variable. If the number of ROW list variables is greater than the number of COEF list variables, the last ROW list variables have no COEF partner. These ROW list variables that have no corresponding COEF list variable are used in observations that have a TYPE list variable value. All ROW list variable values are tagged as having the type indicated. If there is no TYPE list variable, all ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement causes optimization to be started. The RUN statement has no options. If PROC INTPOINT is called and is not terminated because of an error or a QUIT statement, and you have not used a RUN statement, a RUN statement is assumed implicitly as the last statement of PROC INTPOINT. Therefore, PROC INTPOINT reads that data, performs optimization, and saves the optimal solution in the CONOUT= data set.

SUPDEM Statement

SUPDEM variable;

The SAS variable in this list, which must be present in the NODEDATA= data set, contains supply and demand information for the nodes in the NODE list. A positive SUPDEM list variable value $s(s>0)$ denotes that the node named in the NODE list variable can supply s units of flow. A negative SUPDEM list variable value $-d(d>$ 0) means that this node demands d units of flow. If a SAS variable is not explicitly specified, a SAS variable with the name_SUPDEM_ or_SD_ in the NODEDATA= data set is used as the SUPDEM variable. If a node is a transshipment node (neither a supply nor a demand node), an observation associated with this node need not be present in the NODEDATA= data set. If present, the SUPDEM list variable value must be zero or a missing value. See the "Missing S Supply and Missing D Demand Values" section on page 145 for cases when the SUPDEM list variable values can have other values.

SUPPLY Statement

SUPPLY variable;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that contains the supply at the node named in that observation's TAILNODE list variable. If a tail node does not supply flow, use zero or a missing value for the observation's SUPPLY list variable value. If a tail node has supply capability, a missing value indicates that the supply quantity is given in another observation. It is not necessary to have a SUPPLY statement if the name of this SAS variable is _SUPPLY_. See the "Missing S Supply and Missing D Demand Values" section on page 145 for cases when the SUPDEM list variable values can have other values. There should be no SUPPLY statement if you are solving an LP.

TAILNODE Statement

TAILNODE variable;

TAIL variable;
FROMNODE variable;
FROM variable;
The TAILNODE statement specifies the SAS variable that must (when solving an NPSC problem) be present in the ARCDATA= data set that has as values the names of tail nodes of arcs. The TAILNODE variable must have character values. It is not necessary to have a TAILNODE statement if the name of the SAS variable is _TAIL or _FROM_. If the TAILNODE list variable value is missing, it is assumed that the observation of the ARCDATA= data set contains information concerning a nonarc variable. There should be no TAILNODE statement if you are solving an LP.

TYPE Statement

TYPE variable;

CONTYPE variable;

The TYPE list, which is optional, names the SAS variable that has as values keywords that indicate either the constraint type for each constraint or the type of special rows in the CONDATA= data set. The values of the TYPE list variable also indicate, in each observation of the CONDATA= data set, how values of the VAR or COEF list variables are to be interpreted and how the type of each constraint or special row name is determined. If the TYPE list is not specified, the CONDATA= data set is searched and a SAS variable with the name _TYPE_ is used. Valid keywords for the TYPE variable are given below. If there is no TYPE statement and no other method is used to furnish type information (see the DEFCONTYPE= option), all constraints are assumed to be of the type "less than or equal to" and no special rows are used. The TYPE list variable must have character values and can be used when the data in the CONDATA = data set is in either the sparse or the dense format. If the TYPE list variable value has a* as its first character, the observation is ignored because it is a comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the characters that PROC INTPOINT uses to determine what type the value suggests. You need to have at least these characters. In the following list, the minimal TYPE list variable values have additional characters to aid you in remembering these values.

$<$	less than or equal to (\leq)
$=$	equal to ($=$)
$>$	greater than or equal to (\geq)
capacity	

The valid TYPE list variable values in function order are

- LE less than or equal to (\leq)
- EQ equal to (=)
- GE greater than or equal to (\geq)
- COST

MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

- CAPAC

UPPER
capacity or upper value bound

- LOWERBD

LOWblank
lower flow or value bound

- RHS rhs of constraint
- TYPE type of constraint

A TYPE list variable value that has the first character $*$ causes the observation to be treated as a comment. If the first character is a negative sign, then \leq is the type. If the first character is a zero, then $=$ is the type. If the first character is a positive number, then \geq is the type.

VAR Statement

VAR variables;
The VAR variable list is used when the dense data format is used for the CONDATA= data set. The names of these SAS variables are also names of the arc and nonarc variables that have data in the CONDATA= data set. If solving an LP, the names of these SAS variables are also names of the LP variables. If no explicit VAR list is specified, all numeric SAS variables in the CONDATA= data set that are not in other SAS variable lists are put onto the VAR list. The VAR list variables must have numeric values. The values of the VAR list variables in some observations can be interpreted differently than in other observations. The values can be coefficients in the side constraints, costs and objective function coefficients, or bound data. When solving an LP, the values of the SAS variables in the VAR list can be constraint coefficients, objective function coefficients, or bound data. How these numeric values are interpreted depends on the value of each observation's TYPE or ROW list variable value. If there are no TYPE list variables, the VAR list variable values are all assumed to be side constraint coefficients.

Details

Input Data Sets

PROC INTPOINT is designed so that there are as few rules as possible that you must obey when inputting a problem's data. Raw data are acceptable. This should cut the amount of processing required to groom the data before it is input to PROC INTPOINT. Data formats are so flexible that, due to space restrictions, all possible forms for a problem's data are not shown here. Try any reasonable form for your problem's data; it should be acceptable. PROC INTPOINT will outline its objections.

You can supply the same piece of data several ways. You do not have to restrict yourself to using any particular one. If you use several ways, PROC INTPOINT checks that the data are consistent each time that the data are encountered. After all input data sets have been read, data are merged so that the problem is described completely. The observations can be in any order.

ARCDATA = Data Set

See the "Getting Started: NPSC Problems" section on page 84 and the "Introductory NPSC Example" section on page 85 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one observation. For example, consider an arc directed from node A toward node B that has a cost of 50 , capacity of 100 , and lower flow bound of 10 flow units. Some possible observations in the ARCDATA= data set are as follows:

tail	_head_	_cost_	_capac_	10
A	B	50	.	.
A	B	.	100	.
A	B	.	.	10
A	B	50	100	-
A	B	.	100	10
A	B	50	.	10
A	B	50	100	10

Similarly, for a nonarc variable that has an upper bound of 100, a lower bound of 10 , and an objective function coefficient of 50 , the _TAIL_ and _HEAD_ values are missing.

When solving an LP that has an LP variable named my_var with an upper bound of 100 , a lower bound of 10 , and an objective function coefficient of 50 , some possible observations in the ARCDATA= data set are

name	_cost_	_capac_	_lo_
my_var	50	$\dot{100}$.
my_var	\cdot	100	$\dot{0}$
my_var	\cdot	$\dot{0}$	10
my_var	50	100	$\dot{0}$
my_var	\cdot	100	10
my_var	50	.	10
my_var	50	100	10

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense format, you will receive a warning if PROC INTPOINT finds a constraint row that has no coefficients. You will also be warned if any nonarc or LP variable has no constraint coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong to the VAR list. The names of the SAS variables belonging to this list have names of arc and nonarc variables or, if solving an LP, names of the LP variables. These names can be values of the SAS variables in the ARCDATA= data set that belong to the NAME list, or names of nonarc variables, or names in the form tail_head, or any combination of these three forms. Names in the form tail_head are default arc names, and if you use them, you must specify node names in the ARCDATA= data set (values of the TAILNODE and HEADNODE list variables).

The CONDATA= data set can have three other SAS variables belonging, respectively, to the ROW, the TYPE, and the RHS lists. The CONDATA= data set of the oil industry example in the "Introductory NPSC Example" section on page 85 uses the dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data for three constraints. This data set was used in the "Introductory NPSC Example" section on page 85 .

```
data cond1;
    input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
            _type_ $ _rhs_;
        datalines;
-2 . 1 . . . >= -15
    . -2 . . 1 . GE -15
    . . -3 4 . . EQ 0
    . . . . -3 4 = 0
;
```

You can use nonconstraint type values to furnish data on costs, capacities, lower flow bounds (and, if there are nonarc or LP variables, objective function coefficients and upper and lower bounds). You need not have such (or as much) data in the ARCDATA= data set. The first three observations in the following data set are examples of observations that provide cost, capacity, and lower bound data.

```
data cond1b;
    input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
            _type_ $ _rhs_;
    datalines;
63 81 200 . 220 . cost .
95 80 175 140 100 100 capac.
20 10 50 . 35 . 10 .
-2 . 1 . . . >= -15
    . -2 . . 1 . GE -15
    . . -3 4 . . EQ 0
;
```

If a ROW list variable is used, the data for a constraint can be spread over more than one observation. To illustrate, the data for the first constraint (which is called con1) and the cost and capacity data (in special rows called costrow and caprow, respectively) are spread over more than one observation in the following data set.

```
data cond1c;
    input _row_ $
        m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
        _type_ $ _rhs_;
    datalines;
costrow }6
costrow . 81 200 . . . cost
. . . . . 220 . cost .
caprow . . . . . . capac .
caprow 95 . 175 . 100 100.
caprow . }80175140 . . .
lorow 20 10 50 . 35 . lo .
con1 -2 . 1 . . . . .
con1 . . . . . . >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 . . . . -3 4 = 0
;
```

Using both ROW and TYPE lists, you can use special row names. Examples of these are costrow and caprow in the last data set. It should be restated that in any of the input data sets of PROC INTPOINT, the order of the observations does not matter. However, the CONDATA= data set can be read more quickly if PROC INTPOINT knows what type of constraint or special row a ROW list variable value is. For example, when the first observation is read, PROC INTPOINT does not know whether costrow is a constraint or special row and how to interpret the value 63 for the arc with the name m_e_ref1. When PROC INTPOINT reads the second observation, it learns that costrow has cost type and that the values 81 and 200 are costs. When the entire CONDATA= data set has been read, PROC INTPOINT knows the type of all special rows and constraints. Data that PROC INTPOINT had to set aside (such as the first observation 63 value and the costrow ROW list variable value, which at the time had unknown type, but is subsequently known to be a cost special row) is reprocessed. During this second pass, if a ROW list variable value has unassigned
constraint or special row type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default) type. Associated VAR list variable values are coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When the sparse data format of the CONDATA= data set is used, only nonzero constraint coefficients must be specified. Remember to specify the SPARSECONDATA option in the PROC INTPOINT statement. With the sparse method of specifying constraint information, the names of arc and nonarc variables or, if solving an LP, the names of LP variables do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the "Introductory NPSC Example" section on page 85 is displayed below.

```
title 'Setting Up Condata = Cond2 for PROC INTPOINT';
data cond2;
    input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
    datalines;
m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
_type_ con1 1 con2 1
_type_ con3 0 con4 0
_rhs_ con1 -15 con2 -15
;
```

Recall that the COLUMN list variable values _type_ and _rhs_ are the default values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of constraints (con3 and con4) is zero. The third to last observation has the value _type_ for the COLUMN list variable. The _ROW1 variable value is con1, and the _COEF1_ variable has the value 1 . This indicates that the constraint con1 is greater than or equal to type (because the value 1 is greater than zero). Similarly, the data in the second to last observation's _ROW2 and _COEF2 variables indicate that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable, is

```
title 'Setting Up Condata = Cond3 for PROC INTPOINT';
data cond3;
    input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $ ;
    datalines;
m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . . 
thruput1 con1 1 con3 -3.
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3.
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
```

If the COLUMN list variable is missing in a particular observation (the last 2 observations in the data set cond3, for instance), the constraints named in the ROW list variables all have the constraint type indicated by the value in the TYPE list variable. It is for this type of observation that you are allowed more ROW list variables than COEF list variables. If corresponding COEF list variables are not missing (for example, the last observation in the data set cond3), these values are the rhs values of those constraints. Therefore, you can specify both constraint type and rhs in the same observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or nonarc variable, the COEF list variable values are coefficient values for that arc or nonarc variable in the constraints indicated in the corresponding ROW list variables. If in this same observation the TYPE list variable contains a constraint type, all constraints named in the ROW list variables in that observation have this constraint type (for example, the first observation in the data set cond3). Therefore, you can specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from having to include in the data that con3 and con4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented in the ARCDATA= data set. Alternatively, you could have used the following input data sets. The arcd2 data set has only two SAS variables. For each arc, there is an observation in which the arc's tail and head node are specified.

```
title3 'Setting Up Arcdata = Arcd2 for PROC INTPOINT';
data arcd2;
    input _from_&$11. _to_&$15. ;
    datalines;
middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 rl
refinery 2 r2
r1 ref1 gas
```

```
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;
title 'Setting Up Condata = Cond4 for PROC INTPOINT';
data cond4;
    input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $ ;
    datalines;
.
middle east_refinery 1
middle east_refinery 2
refinery 1_r1
r1_ref1 gas
refinery 2_r2
r2_ref2 gas
middle east_refinery 1
middle east_refinery 2
u.s.a._refinery 1
u.s.a._refinery 2
refinery 1_r1
refinery 2_r2
r1_ref1 gas
r1_ref1 diesel
r2_ref2 gas
r2_ref2 diesel
ref1 gas_servstn1 gas
ref1 gas_servstn2 gas
ref1 diesel_servstn1 diesel
ref1 diesel_servstn2 diesel
ref2 gas_servstn1 gas
ref2 gas_servstn2 gas
ref2 diesel_servstn1 diesel
ref2 diesel_servstn2 diesel
middle east_refinery 1
middle east_refinery 2
refinery 1_r1
refinery 2_r2
ref2 gas_servstn1 gas . 5 . . lo
;
```

The first observation in the cond4 data set defines con1 and con2 as greater than or equal to (\geq) constraints that both (by coincidence) have rhs values of -15 . The second observation defines the special row costrow as a cost row. When costrow is a ROW list variable value, the associated COEF list variable value is interpreted as a cost or objective function coefficient. PROC INTPOINT has to do less work if constraint names and special rows are defined in observations near the top of a data set, but this is not a strict requirement. The fourth to ninth observations contain constraint coefficient data. Observations seven and nine have TYPE list variable values that indicate that constraints con3 and con4 are equality constraints. The last five observations contain lower flow bound data. Observations that have an arc or nonarc variable name in the COLUMN list variable, a nonconstraint type TYPE list variable value, and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.

Converting from an NPSC to an LP Problem

If you have data for a linear programming program that has an embedded network, the steps required to change that data into a form that is acceptable by PROC INTPOINT are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these constraints (a submatrix of the LP's constraint coefficient matrix) has only two nonzero elements in each column, -1 and 1 .
2. Assign a node to each nodal flow conservation constraint.
3. The rhs values of conservation constraints are the corresponding node's supplies and demands. Use this information to create the NODEDATA= data set.
4. Assign an arc to each column of the flow conservation constraint coefficient matrix. The arc is directed from the node associated with the row that has the 1 element in it and directed toward to the node associated with the row that has the -1 element in it. Set up the ARCDATA= data set that has two SAS variables. This data set could resemble ARCDATA=arcd2. These will eventually be the TAILNODE and HEADNODE list variables when PROC INTPOINT is used. Each observation consists of the tail and head node of each arc.
5. Remove from the data of the linear program all data concerning the nodal flow conservation constraints.
6. Put the remaining data into a CONDATA= data set. This data set will probably resemble CONDATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse formats. a1, b1, b2, b3 and c1 have as a _COLUMN _ variable value either the name of an arc (possibly in the form tail_head) or the name of a nonarc variable (if you are solving an NPSC), or the name of the LP variable (if you are solving an LP). These are collectively referred to as variable in the tables that follow.

- If there is no TYPE list variable in the CONDATA= data set, the problem must be constrained and there is no nonconstraint data in the CONDATA= data set:

	_COLUMN	_ROWx	_COEFx	$\begin{aligned} & \text { _-ROWy_- } \\ & \text { (no COEFy_) } \\ & \text { (may not be } \\ & \text { in CONDATA) } \end{aligned}$	
a1	variable	constraint	lhs coef	+	
a2	_TYPE_ or	constraint	-1 01	\|	
	TYPEOBS $=$			1	
a3	RHS_ or	constraint	rhs value	\| constraint	
	RHSOBS $=$ or			\\| or	
	missing			\| missing	
a4	_TYPE_ or	constraint	missing	\|	
	TYPEOBS $=$			I	
a5	RHS_ or	constraint	missing	I	
	$\text { RHSOBS }=\text { or }$			+------------+	

Observations of the form a4 and a5 serve no useful purpose but are still allowed to make problem generation easier.

- If there are no ROW list variables in the data set, the problem has no constraints and the information is nonconstraint data. There must be a TYPE list variable and only one COEF list variable in this case. The COLUMN list variable has as values the names of arcs or nonarc variables and must not have missing values or special row names as values:

	COLUMN	_TYPE_	_COEFx_
b1 variable	UPPERBD	capacity	
b2 variable	LOWERBD	lower flow	
b3 variable	COST	cost	

- Using a TYPE list variable for constraint data implies the following:

If the observation is in form c4 or c5, and the _COEFx_ values are missing, the constraint is assigned the type data specified in the _TYPE_ variable.

- Using a TYPE list variable for arc and nonarc variable data implies the following:

The observations of the form d1 to d5 can have ROW list variable values. Observation d4 must have ROW list variable values. The ROW value is put into the ROW name tree so that when dealing with observation d4 or d5, the COEF list variable value is interpreted according to the type of ROW list variable value. For example, the following three observations define the _ROWx_ variable values up_row, lo_row, and co_row as being an upper value bound row, lower value bound row, and cost row, respectively:

COLUMN	_TYPE_	_ROWx_	_COEFx_
variable_a	UPPERBD	up_row	
variable_b	COWERBD	lo_row	lower flow
vast	co_row	cost	

PROC INTPOINT is now able to correctly interpret the following observation:

_COLUMN	TYPE	ROW1	COEF1	ROW2	COEF2	ROW3	COEF3
var_c	.	up_row	upval	lo_row	loval	co_row	cost

If the TYPE list variable value is a constraint type and the value of the COLUMN list variable equals the value of the TYPEOBS= option or the default value _TYPE_, the TYPE list variable value is ignored.

NODEDATA= Data Set

See the "Getting Started: NPSC Problems" section on page 84 and the "Introductory NPSC Example" section on page 85 for a description of this input data set.

Output Data Set

For NPSC problems, the procedure determines the flow that should pass through each arc as well as the value that should be assigned to each nonarc variable. The goal is that the minimum flow bounds, capacities, lower and upper value bounds, and side constraints are not violated. This goal is reached when total cost incurred by such a flow pattern and value assignment is feasible and optimal. The solution found must also conserve flow at each node.

For LP problems, the procedure determines the value that should be assigned to each variable. The goal is that the lower and upper value bounds and the constraints are not violated. This goal is reached when the total cost incurred by such a value assignment is feasible and optimal.

The CONOUT= data set can be produced and contains a solution obtained after performing optimization.

CONOUT = Data Set

The variables in the CONOUT= data set depend on whether or not the problem has a network component. If the problem has a network component, the variables and their possible values in an observation are as follows:

_FROM	a tail node of an arc. This is a missing value if an observation has information about a nonarc variable.
TO	a head node of an arc. This is a missing value if an observation has information about a nonarc variable.
COST	the cost of an arc or the objective function coefficient of a nonarc variable
$\begin{aligned} & \text { _CAPAC_ } \\ & \text {-LO_ } \end{aligned}$	the capacity of an arc or upper value bound of a nonarc variable the lower flow bound of an arc or lower value bound of a nonare variable
AME	a name of an arc or nonarc variable
_SUPPLY	the supply of the tail node of the arc in the observation. This is a missing value if an observation has information about a nonarc variable.
_DEMAND	the demand of the head node of the arc in the observation. This is a missing value if an observation has information about a nonarc variable.
_FLOW	flow through the arc or value of the nonarc variable
_FCOST	ost, the product of _COST ${ }_{-}$and _FLOW
RCOST	duced cost of the arc or nonarc
ANUMB	the number of the arc (positive) or nonarc variable (nonpositive); used for warm starting PROC NETFLOW
TNUMB	number of the tail node in the network basis spanning tree; ed for warm starting PROC NETFLOW
	status of the are or nonare variable

If the problem does not have a network component, the variables and their possible values in an observation are as follows:

OBJFN	the objective function coefficient of a variable _OPPERBD the upper value bound of a variable
_LOWERBD	the lower value bound of a variable
-NAME_	the name of a variable the value of the variable
-VALUE_-	
FCOST	objective function value for that variable; the product of _OBJFN_ and _VALUE__

The variables present in the ARCDATA= data set are present in a CONOUT= data set. For example, if there is a variable called tail in the ARCDATA= data set and you specified the SAS variable list

```
from tail;
```

then tail is a variable in the CONOUT= data sets instead of _FROM_. Any ID list variables also appear in the CONOUT= data sets.

Case Sensitivity

Whenever the INTPOINT procedure has to compare character strings, whether they are node names, arc names, nonarc names, LP variable names, or constraint names, if the two strings have different lengths, or on a character by character basis the character is different or has different cases, PROC INTPOINT judges the character strings to be different.

Not only is this rule enforced when one or both character strings are obtained as values of SAS variables in PROC INTPOINT's input data sets, it also should be obeyed if one or both character strings were originally SAS variable names, or were obtained as the values of options or statements parsed to PROC INTPOINT. For example, if the network has only one node that has supply capability, or if you are solving a MAXFLOW or SHORTPATH problem, you can indicate that node using the SOURCE= option. If you specify

```
proc intpoint source=NotableNode
```

then PROC INTPOINT looks for a value of the TAILNODE list variable that is NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase. The name of the node searched for would be NOTABLENODE, even if this was your SAS code:

```
proc intpoint source=NotableNode
```

If you want PROC INTPOINT to behave as it did in Version 6, specify

```
options validvarname=v6;
```

If the SPARSECONDATA option is not specified, and you are running SAS software Version 6, or you are running SAS software Version 7 onward and have specified

```
options validvarname=v6;
```

all values of the SAS variables that belong to the NAME list are uppercased. This is because the SAS System has uppercased all SAS variable names, particularly those in the VAR list of the CONDATA= data set.

Entities that contain blanks must be enclosed in quotes.

Loop Arcs

Loop arcs (which are arcs directed toward nodes from which they originate) are prohibited. Rather, introduce a dummy intermediate node in loop arcs. For example, replace arc (A, A) with (A, B) and (B, A); B is the name of a new node, and it must be distinct for each loop arc.

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC INTPOINT checks to ensure there are no such arcs before proceeding with the optimization. Introduce a new dummy intermediate node in multiple arcs. This node must be distinct for each multiple arc. For example, if some network has three arcs directed from node A toward node B, then replace one of these three with arcs (A, C) and (C, B) and replace another one with (A, D) and $(D, B) . C$ and D are new nodes added to the network.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities and lower flow bounds are permitted. If both arc capacities and lower flow bounds are negative, the lower flow bound must be at least as negative as the capacity. An arc (A, B) that has a negative flow of $-f$ units can be interpreted as an arc that conveys f units of flow from node B to node A.

The upper and lower value bound of a nonarc variable can be equal. Negative upper and lower bounds are permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

When solving an LP, the upper and lower value bounds of an LP variable can be equal. Negative upper and lower bounds are permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

In short, for any problem to be feasible, a lower bound must be \leq the associated upper bound.

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC INTPOINT more than once, PROC INTPOINT checks for consistency so that no conflict exists concerning the data values. For example, if the cost of some arc is seen to be one value and as more data are read, the cost of the same arc is seen to be another value, PROC INTPOINT issues an error message on the SAS log and stops. There are two exceptions to this:

- The bounds of arcs and nonarc variables, or the bounds of LP variables, are made as tight as possible. If several different values are given for the lower flow bound of an arc, the greatest value is used. If several different values are given for the lower bound of a nonarc or LP variable, the greatest value is used. If several different values are given for the capacity of an arc, the smallest value is used. If several different values are given for the upper bound of a nonarc or LP variable, the smallest value is used.
- Several values can be given for inequality constraint right-hand sides. For a particular constraint, the lowest rhs value is used for the rhs if the constraint is of less than or equal to type. For a particular constraint, the greatest rhs value is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility

Before optimization commences, PROC INTPOINT tests to ensure that the problem is not infeasible by ensuring that, with respect to supplies, demands, and arc flow bounds, flow conservation can be obeyed at each node:

- Let $I N$ be the sum of lower flow bounds of arcs directed toward a node plus the node's supply. Let $O U T$ be the sum of capacities of arcs directed from that node plus the node's demand. If $I N$ exceeds $O U T$, not enough flow can leave the node.
- Let $O U T$ be the sum of lower flow bounds of arcs directed from a node plus the node's demand. Let $I N$ be the total capacity of arcs directed toward the node plus the node's supply. If $O U T$ exceeds $I N$, not enough flow can arrive at the node.

Reasons why a network problem can be infeasible are similar to those previously mentioned but apply to a set of nodes rather than for an individual node.

Consider the network illustrated in Figure 3.10.

Figure 3.10. An Infeasible Network
The demand of NODE_4 is 120. That can never be satisfied because the maximal flow through arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) is 117. More specifically, the implicit supply of NODE_2 and NODE_6 is only 117, which is insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) are greater than the flow that can reach the tail nodes of these arcs, that, by coincidence, is the total supply of the network. The implicit demand of nodes NODE_ 1 and NODE_5 is 110, which is greater than the amount of flow that can reach these nodes.

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node but you want the node to supply or demand the optimal number of flow units. To indicate that a node is such a supply node, use a missing S value in the SUPPLY list variable in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data set. To indicate that a node is such a demand node, use a missing D value in the DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data set.

Suppose the oil example in the "Introductory NPSC Example" section on page 85 is changed so that crude oil can be obtained from either the Middle East or U.S.A. in any amounts. You should specify that the node middle east is a supply node, but you do not want to stipulate that it supplies 100 units, as before. The node u.s.a. should also remain a supply node, but you do not want to stipulate that it supplies 80 units. You must specify that these nodes have missing S supply capabilities:

```
title 'Oil Industry Example';
title3 'Crude Oil can come from anywhere';
data miss_s;
    missing S;
    input _node_&$15. _sd_;
    datalines;
middle east S
u.s.a. S
```

```
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
```

The following PROC INTPOINT run uses the same ARCDATA= and CONDATA= data sets used in the "Introductory NPSC Example" section on page 85:

```
proc intpoint
    bytes=100000
    nodedata=miss_s /* the supply (missing S) and */
    /* demand data */
    arcdata=arcd1 /* the arc descriptions */
    condata=cond1 /* the side constraints */
    conout=solution; /* the solution data set */
    run;
proc print;
    var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
    sum _fcost_;
    run;
```

The following messages appear on the SAS log:

```
NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent
        Linear Programming problem solved by the Interior
        Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 7.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from the
    problem.
NOTE: The preprocessor eliminated 23 constraint
    coefficients from the problem.
NOTE: After preprocessing, number of variables= 11.
```

```
NOTE: The preprocessor eliminated 9 variables from the
    problem.
NOTE: 2 columns, O rows and 2 coefficients were added to
    the problem to handle unrestricted variables,
    variables that are split, and constraint slack or
    surplus variables.
NOTE: There are 16 nonzero elements in A * A transpose.
NOTE: Of the }9\mathrm{ rows and columns, 4 are sparse.
NOTE: There are 11 nonzero superdiagonal elements in the
    sparse rows of the factored A * A transpose. This
    includes fill-in.
NOTE: There are 5 operations of the form
    u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
    sparse rows of A * A transpose.
NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point
    algorithm performed 7 iterations.
NOTE: Objective = 50075.
NOTE: The data set WORK.SOLUTION has 18 observations and
    10 variables.
NOTE: There were 18 observations read from the data set
    WORK.ARCD1.
NOTE: There were 6 observations read from the data set
    WORK.MISS_S.
NOTE: There were 4 observations read from the data set
    WORK.COND1.
```

The CONOUT= data set is shown in Figure 3.11.

Obs	_from_	Oil Industry Example Crude Oil can come from anywhere				_FLOW	_ FCOST_{-}
		_to	_cost_	_capac_	_10_		
1	refinery 1	r1	200	175	50	145.000	29000.00
2	refinery 2	r2	220	100	35	35.000	7700.00
3	r1	ref1 diesel	0	75	0	36.250	0.00
4	r1	ref1 gas	0	140	0	108.750	0.00
5	r2	ref2 diesel	0	75	0	8.750	0.00
6	r2	ref2 gas	0	100	0	26.250	0.00
7	middle east	refinery 1	63	95	20	20.000	1260.00
8	u.s.a.	refinery 1	55	99999999	0	125.000	6875.00
9	middle east	refinery 2	81	80	10	10.000	810.00
10	u.s.a.	refinery 2	49	99999999	0	25.000	1225.00
11	ref1 diesel	servstn1 diesel	18	99999999	0	30.000	540.00
12	ref2 diesel	servstn1 diesel	36	99999999	0	0.000	0.00
13	ref1 gas	servstn1 gas	15	70	0	68.750	1031.25
14	ref2 gas	servstn1 gas	17	35	5	26.250	446.25
15	ref1 diesel	servstn2 diesel	17	99999999	0	6.250	106.25
16	ref2 diesel	servstn2 diesel	23	99999999	0	8.750	201.25
17	ref1 gas	servstn2 gas	22	60	0	40.000	880.00
18	ref2 gas	servstn2 gas	31	99999999	0	0.000	0.00
							======== 50075.00

Figure 3.11. Missing S SUPDEM values in NODEDATA

The optimal supplies of nodes middle east and u.s.a. are 30 and 150 units, respectively. For this example, the same optimal solution is obtained if these nodes had supplies less than these values (each supplies 1 unit, for example) and the THRUNET option was specified in the PROC INTPOINT statement. With the THRUNET option active, when total supply exceeds total demand, the specified nonmissing demand values are the lowest number of flow units that must be absorbed by the corresponding node. This is demonstrated in the following PROC INTPOINT run. The missing S is most useful when nodes are to supply optimal numbers of flow units and it turns out that for some nodes, the optimal supply is 0 .

```
data miss_s_x;
    missing S;
    input _node_&$15. _sd_;
    datalines;
middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
proc intpoint
    bytes=100000
    thrunet
    nodedata=miss_s_x /* No supply (missing S) */
    arcdata=arcd1 /* the arc descriptions */
    condata=cond1 /* the side constraints */
    conout=solution; /* the solution data set */
    run;
proc print;
    var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
    sum _fcost_;
    run;
```

The following messages appear on the SAS log. Note that the Total supply $=2$, not 0 as in the last run:

```
NOTE: Number of nodes= 14.
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent
    Linear Programming problem solved by the Interior
    Point algorithm.
```

NOTE: Number of <= constraints= 0 .

```
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 7.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from the
    problem.
NOTE: The preprocessor eliminated 23 constraint
    coefficients from the problem.
NOTE: After preprocessing, number of variables= 11.
NOTE: The preprocessor eliminated 9 variables from the
    problem.
NOTE: 2 columns, O rows and 2 coefficients were added to
    the problem to handle unrestricted variables,
    variables that are split, and constraint slack or
    surplus variables.
NOTE: There are 16 nonzero elements in A * A transpose.
NOTE: Of the }9\mathrm{ rows and columns, 4 are sparse.
NOTE: There are 11 nonzero superdiagonal elements in the
    sparse rows of the factored A * A transpose. This
    includes fill-in.
NOTE: There are 5 operations of the form
    u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
    sparse rows of A * A transpose.
NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point
    algorithm performed 7 iterations.
NOTE: Objective = 50075.
NOTE: The data set WORK.SOLUTION has 18 observations and
    10 variables.
NOTE: There were 18 observations read from the data set
    WORK.ARCD1.
NOTE: There were 6 observations read from the data set
    WORK.MISS_S_X.
NOTE: There were 4 observations read from the data set WORK. COND1.
```

If total supply exceeds total demand, any missing S values are ignored. If total demand exceeds total supply, any missing D values are ignored.

Balancing Total Supply and Total Demand

When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC INTPOINT adds an extra node (called the excess node) to the problem and sets the demand at that node equal to the difference between total supply and total demand. There are three ways that this excess node can be joined to the network. All three ways entail PROC INTPOINT generating a set of arcs (henceforth referred to as the generated arcs) that are directed toward the excess node. The total amount of flow in generated arcs equals the demand of the excess node. The generated arcs originate from one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs originate from are all demand nodes, even those demand nodes with unspecified demand capability. You indicate that a node has unspecified demand capability by using a missing D value instead of an actual value for demand data (discussed in the "Missing S Supply and Missing D Demand Values" section on page 145). The value specified as the demand of a demand node is in effect a lower bound of the number of flow units that node can actually demand. For missing D demand nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network depends on whether there are demand nodes with unspecified demand capability (nodes with missing D demand) or not.

If there are missing D demand nodes, these nodes are the set of nodes that generated arcs originate from. The value specified as the demand of a demand node, if not missing D , is the number of flow units that node can actually demand. For a missing D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate from are the set of supply nodes. The value specified as the supply of a supply node is in effect an upper bound of the number of flow units that node can actually supply. For missing S supply nodes (discussed in the "Missing S Supply and Missing D Demand Values" section on page 145), this upper bound is zero, so missing S nodes when total supply exceeds total demand are transshipment nodes, that is, nodes that neither supply nor demand flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC INTPOINT adds an extra node (called the excess node) to the problem and sets the supply at that node equal to the difference between total demand and total supply. There are three ways that this excess node can be joined to the network. All three ways entail PROC INTPOINT generating a set of arcs (henceforth referred to as the generated arcs) that originate from the excess node. The total amount of flow in generated arcs equals the supply of the excess node. The generated arcs are directed toward one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are directed toward are all supply nodes, even those supply nodes with unspecified supply
capability. You indicate that a node has unspecified supply capability by using a missing S value instead of an actual value for supply data (discussed in the "Missing S Supply and Missing D Demand Values" section on page 145). The value specified as the supply of a supply node is in effect a lower bound of the number of flow units that the node can actually supply. For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network depends on whether there are supply nodes with unspecified supply capability (nodes with missing S supply) or not.

If there are missing S supply nodes, these nodes are the set of nodes that generated arcs are directed toward. The value specified as the supply of a supply node, if not missing S, is the number of flow units that the node can actually supply. For a missing S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed toward are the set of demand nodes. The value specified as the demand of a demand node is in effect an upper bound of the number of flow units that node can actually demand. For missing D demand nodes (discussed in the "Missing S Supply and Missing D Demand Values" section on page 145), this upper bound is zero, so missing D nodes when total supply is less than total demand are transshipment nodes, that is, nodes that neither supply nor demand flow.

How to Make the Data Read of PROC INTPOINT More Efficient

This section contains information that is useful when you want to solve large constrained network problems. However, much of this information is also useful if you have a large linear programming problem. All of the options described in this section that are not directly applicable to networks (options such as ARCS_ONLY_ARCDATA, ARC_SINGLE_OBS, NNODES=, and NARCS=) can be specified to improve the speed at which LP data is read.

Large Constrained Network Problems

Many of the models presented to PROC INTPOINT are enormous. They can be considered large by linear programming standards; problems with thousands, even millions, of variables and constraints. When dealing with side constrained network programming problems, models can have not only a linear programming component of that magnitude, but also a larger, possibly much larger, network component.

The majority of network problem's decision variables are arcs. Like an LP decision variable, an arc has an objective function coefficient, upper and lower value bounds, and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite similar to an LP variable and places the same memory demands on optimization software as an LP variable. But a typical network model has many more arcs and nonarc variables than the typical LP model has variables. And arcs have tail and head nodes. Storing and processing node names require huge amounts of memory. To make matters worse, node names occupy memory at times when a large amount of other data should reside in memory as well.

While memory requirements are lower for a model with embedded network component compared with the equivalent LP once optimization starts, the same is usually not true during the data read. Even though nodal flow conservation constraints in the LP should not be specified in the constrained network formulation, the memory requirements to read the latter are greater because each arc (unlike an LP variable) originates at one node and is directed toward another.

Paging

PROC INTPOINT has facilities to read data when the available memory is insufficient to store all the data at once. PROC INTPOINT does this by allocating memory for different purposes; for example, to store an array or receive data read from an input SAS data set. After that memory has filled, the information is written to disk and PROC INTPOINT can resume filling that memory with new information. Often, information must be retrieved from disk so that data previously read can be examined or checked for consistency. Sometimes, to prevent any data from being lost, or to retain any changes made to the information in memory, the contents of the memory must be sent to disk before other information can take its place. This process of swapping information to and from disk is called paging. Paging can be very timeconsuming, so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC INTPOINT read the data of network and linear programming models more efficiently, particularly when memory is scarce and the amount of paging must be reduced. PROC INTPOINT will then be able to tackle large problems in what can be considered reasonable amounts of time.

The Order of Observations

PROC INTPOINT is quite flexible in the ways data can be supplied to it. Data can be given by any reasonable means. PROC INTPOINT has convenient defaults that can save you work when generating the data. There can be several ways to supply the same piece of data, and some pieces of data can be given more than once. PROC INTPOINT reads everything, then merges it all together. However, this flexibility and convenience come at a price; PROC INTPOINT may not assume the data has a characteristic that, if possessed by the data, could save time and memory during the data read. Several options can indicate that the data has some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= data set or the CONDATA= data set, or both. Every time it is given in the ARCDATA= data set, a check is made to ensure that the new value is the same as any corresponding value read in a previous observation of the ARCDATA= data set. Every time it is given in the CONDATA= data set, a check is made to ensure that the new value is the same as the value read in a previous observation of the CONDATA= data set, or previously in the ARCDATA= data set. PROC INTPOINT would save time if it knew that arc cost data would be encountered only once while reading the ARCDATA= data set, so performing the time-consuming check for consistency would not be necessary. Also, if you indicate that the CONDATA= data set contains data for constraints only, PROC INTPOINT will not expect any arc information, so memory will not be allocated to receive such data while reading the CONDATA= data set. This memory is used for other purposes and this might lead to a reduction in paging. If applicable,
use the ARC_SINGLE_OBS or the CON_SINGLE_OBS option, or both, and the NON_REPLIC=COEFS specification to improve how the ARCDATA= data set and the CONDATA= data set are read.

PROC INTPOINT allows the observations in input data sets to be in any order. However, major time savings can result if you are prepared to order observations in particular ways. Time spent by the SORT procedure to sort the input data sets, particularly the CONDATA= data set, may be more than made up for when PROC INTPOINT reads them, because PROC INTPOINT has in memory information possibly used when the previous observation was read. PROC INTPOINT can assume a piece of data is either similar to that of the last observation read or is new. In the first case, valuable information such as an arc or a nonarc variable number or a constraint number is retained from the previous observation. In the last case, checking the data with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain data for the same arc or nonarc variable or the same row pays off. PROC INTPOINT establishes whether an observation being read is similar to the observation just read.

In practice, many input data sets for PROC INTPOINT have this characteristic, because it is natural for data for each constraint to be grouped together (when using the dense format of the CONDATA= data set) or data for each column to be grouped together (when using the sparse format of the CONDATA= data set). If data for each arc or nonarc is spread over more than one observation of the ARCDATA= data set, it is natural to group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA= data set, the CONDATA= data set, or both, are grouped in a way that can be exploited during data read.

You can save time if the type data for each row appears near the top of the CONDATA= data set, especially if it has the sparse format. Otherwise, when reading an observation, if PROC INTPOINT does not know if a row is a constraint or special row, the data is set aside. Once the data set has been completely read, PROC INTPOINT must reprocess the data it set aside. By then, it knows the type of each constraint or row or, if its type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC INTPOINT to make better utilization of available memory, you can specify options that indicate the approximate size of the model. PROC INTPOINT then knows what to expect. For example, if you indicate that the problem has no nonarc variables, PROC INTPOINT will not allocate memory to store nonarc data. That memory is better utilized for other purposes. Memory is often allocated to receive or store data of some type. If you indicate that the model does not have much data of a particular type, the memory that would otherwise have been allocated to receive or store that data can be used to receive or store data of another type.

The problem size options are as follows:

- NNODES= approximate number of nodes
- NARCS= approximate number of arcs
- NNAS= approximate number of nonarc variables or LP variables
- NCONS = approximate number of NPSC side constraints or LP constraints
- NCOEFS= approximate number of NPSC side constraint coefficients or LP constraint coefficients

These options will sometimes be referred to as Nxxxx= options.
You do not need to specify all these options for the model, but the more you do, the better. If you do not specify some or all of these options, PROC INTPOINT guesses the size of the problem by using what it already knows about the model. Sometimes PROC INTPOINT guesses the size of the model by looking at the number of observations in the ARCDATA= and the CONDATA= data sets. However, PROC INTPOINT uses rough rules of thumb, that typical models are proportioned in certain ways (for example, if there are constraints, then arcs, nonarc variables, or LP variables usually have about five constraint coefficients). If your model has an unusual shape or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overestimate the values. For example, if you specify NARCS=10000 but the model has 10100 arcs, when dealing with the last 100 arcs, PROC INTPOINT might have to page out data for 10000 arcs each time one of the last arcs must be dealt with. Memory could have been allocated for all 10100 arcs without affecting (much) the rest of the data read, so NARCS $=10000$ could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC INTPOINT does not know it. When PROC INTPOINT knows the "real" value, that value is used instead of $N x x x x=$.

ARCS_ONLY_ARCDATA indicates that data for only arcs are in the ARCDATA= data set. Memory would not be wasted to receive data for nonarc variables.

Use the memory usage options:

- The BYTES= option specifies the size of PROC INTPOINT main working memory in number of bytes.
- The MEMREP option indicates that memory usage report is to be displayed on the SAS log.

Specifying an appropriate value for the BYTES= parameter is particularly important. Specify as large a number as possible, but not so large a number that will cause PROC INTPOINT (that is, the SAS System running underneath PROC INTPOINT) to run out of memory.

PROC INTPOINT reports its memory requirements on the SAS log if you specify the MEMREP option.

Use Defaults to Reduce the Amount of Data

Use the parameters that specify default values as much as possible. For example, if there are many arcs with the same cost value c, use $\operatorname{DEFCOST}=c$ for arcs that have that cost. Use missing values in the COST variable in the ARCDATA= data set instead of c. PROC INTPOINT ignores missing values, but must read, store, and process nonmissing values, even if they are equal to a default option or could have been equal to a default parameter had it been specified. Sometimes, using default parameters makes the need for some SAS variables in the ARCDATA= and the CONDATA= data sets no longer necessary, or reduces the quantity of data that must be read. The default options are

- DEFCOST= default cost of arcs, objective function of nonarc variables or LP variables
- DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc variables or LP variables
- DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or LP variables
- DEFCONTYPE $=$ LE or DEFCONTYPE $=<=$ DEFCONTYPE=EQ or DEFCONTYPE= = DEFCONTYPE= GE or DEFCONTYPE $=>=$

DEFCONTYPE=LE is the default.
The default options themselves have defaults. For example, you do not need to specify DEFCOST=0 in the PROC INTPOINT statement. You should still have missing values in the COST variable in the ARCDATA= data set for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

- SOURCE $=$ name of single node that has supply capability
- SUPPLY= the amount of supply at SOURCE
- $\operatorname{SINK=}$ name of single node that demands flow
- DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default. The only time it might be practical to specify a zero rhs is in observations of the CONDATA = data set read early so that PROC INTPOINT can infer that a row is a constraint. This could prevent coefficient data from being put aside because PROC INTPOINT did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the longest node name, the longest arc name, the longest nonarc variable name, the longest LP variable name, and the longest constraint name to 8 bytes or less. The longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC INTPOINT can have a default name for each arc. If an arc is directed from node tailname toward node headname, the default name for that arc is tailname_headname. If you do not want PROC INTPOINT to use these default arc names, specify NAMECTRL=1. Otherwise, PROC INTPOINT must use memory for storing node names and these node names must be searched often.

If you want to use the default tailname_headname name, that is, NAMECTRL=2 or NAMECTRL=3, do not use underscores in node names. If the CONDATA has a dense format and has a variable in the VAR list $A _B _C _D$, or if the value A_B_C_D is encountered as a value of the COLUMN list variable when reading the CONDATA= data set that has the sparse format, PROC INTPOINT first looks for a node named A. If it finds it, it looks for a node called B_C_D. It then looks for a node with the name $A _B$ and possibly a node with name $C _D$. A search is then conducted for a node named $A _B _C$ and possibly a node named D is done. Underscores could have caused PROC INTPOINT to look unnecessarily for nonexistent nodes. Searching for node names can be expensive, and the amount of memory to store node names is often large. It might be better to assign the arc name A_B_C_D directly to an arc by having that value as a NAME list variable value for that arc in the ARCDATA= data set and specify NAMECTRL=1.

Other Ways to Speed-up Data Reads

Arcs and nonarc variables, or LP variables, can have associated with them values or quantities that have no bearing on the optimization. This information is given in the ARCDATA = data set in the ID list variables. For example, in a distribution problem, information such as truck number and driver's name can be associated with each arc. This is useful when the optimal solution saved in the CONOUT= data set is analyzed. However, PROC INTPOINT needs to reserve memory to process this information when data is being read. For large problems when memory is scarce, it might be better to remove ancillary data from the ARCDATA. After PROC INTPOINT runs, use SAS software to merge this information into the CONOUT= data set that contains the optimal solution.

Stopping Criteria

There are several reasons why PROC INTPOINT stops interior point optimization. Optimization stops when

- the number of iteration equals MAXITERB $=m$
- the relative gap (duality gap $\left(c^{T} x\right)$) between the primal and dual objectives is smaller than the value of the PDGAPTOL= option, and both the primal and dual problems are feasible. Duality gap is defined in the "Interior Point Algorithmic Details" section on page 68.

PROC INTPOINT may stop optimization when it detects that the rate at which the complementarity or duality gap is being reduced is too slow; that is, that there are consecutive iterations when the complementarity or duality gap has stopped getting smaller and the infeasibilities, if nonzero, have also stalled. Sometimes this indicates that the problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed the usual stopping conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual stopping criteria are inappropriate. PROC INTPOINT might stop optimizing prematurely. If it were allowed to perform additional optimization, a better solution would be found. On other occasions, PROC INTPOINT might do too much work. A sufficiently good solution might be reached several iterations before PROC INTPOINT eventually stops.

You can see PROC INTPOINT's progress to the optimum by specifying PRINTLEVEL2=2. PROC INTPOINT will produce a table on the SAS log. A row of the table is generated during each iteration and consists of values of the affine step complementarity, the complementarity of the solution for the next iteration, the total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 73), the total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas $_{c}$ array in the "Interior Point Algorithmic Details" section on page 68), and the total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 68). As optimization progresses, the values in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parameters: the STOP_x and the KEEPGOING_x parameters. The STOP_x parameters (STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID) are used to test for some condition at the beginning of each iteration and if met, to stop optimizing immediately. The KEEPGOING_x parameters (KEEPGOING_C, KEEPGOING_DG, KEEPGOING_IB, KEEPGOING_IC, and KEEPGOING_ID) are used when PROC INTPOINT would ordinarily stop optimizing but does not if some conditions are not met.

For the sake of conciseness, a set of options might be referred to as the part of the option name they have in common followed by the suffix x. For example, STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID will collectively be referred to as STOP_x.

At the beginning of each iteration, PROC INTPOINT will test whether complementarity is <= STOP_C (provided you have specified a STOP_C parameter) and if it is, PROC INTPOINT will stop optimizing. If the duality gap is $<=$ STOP_DG (provided you have specified a STOP_DG parameter), PROC INTPOINT will stop optimizing immediately. This is true as well for the other STOP_x parameters that are related to infeasibilities, STOP_IB, STOP_IC, and STOP_ID.

For example, if you want PROC INTPOINT to stop optimizing for the usual stopping conditions, plus the additional condition, complementarity ≤ 100 or duality gap \leq 0.001 , then use

```
proc intpoint stop_c=100 stop_dg=0.001
```

If you want PROC INTPOINT to stop optimizing for the usual stopping conditions, plus the additional condition, complementarity ≤ 1000 and duality gap ≤ 0.001 and constraint infeasibility ≤ 0.0001, then use

```
proc intpoint
    and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001
```

Unlike the STOP_x parameters that cause PROC INTPOINT to stop optimizing when any one of them is satisfied, the corresponding AND_STOP_x parameters (AND_STOP_C, AND_STOP_DG, AND_STOP_IB, AND_STOP_IC, and AND_STOP_ID) cause PROC INTPOINT to stop only if all (more precisely, all that are specified) options are satisfied. For example, if PROC INTPOINT should stop optimizing when

- complementarity ≤ 100 or duality gap ≤ 0.001 or
- complementarity ≤ 1000 and duality gap ≤ 0.001 and constraint infeasibility ≤ 0.000
then use

```
proc intpoint
    stop_c=100 stop_dg=0.001
    and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001
```

Just as the STOP_x parameters have AND_STOP_x partners, the KEEPGOING_x parameters have AND_KEEPGOING_x partners. The role of the KEEPGOING_x and AND_KEEPGOING_x parameters is to prevent optimization from stopping too early, even though a usual stopping criteria is met.

When PROC INTPOINT detects that it should stop optimizing for a usual stopping condition, it will perform the following tests:

- It will test whether complementarity is > KEEPGOING_C (provided you have specified a KEEPGOING_C parameter), and if it is, PROC INTPOINT will perform more optimization.
- Otherwise, PROC INTPOINT will then test whether the primal-dual gap is $>$ KEEPGOING_DG (provided you have specified a KEEPGOING_DG parameter), and if it is, PROC INTPOINT will perform more optimization.
- Otherwise, PROC INTPOINT will then test whether the total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}>$ KEEPGOING_IB (provided you have specified a KEEPGOING_IB parameter), and if it is, PROC INTPOINT will perform more optimization.
- Otherwise, PROC INTPOINT will then test whether the total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}>$ KEEPGOING_IC (provided you have specified a KEEPGOING_IC parameter), and if it is, PROC INTPOINT will perform more optimization.
- Otherwise, PROC INTPOINT will then test whether the total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}>$ KEEPGOING_ID (provided you have specified a KEEPGOING_ID parameter), and if it is, PROC INTPOINT will perform more optimization.
- Otherwise it will test whether complementarity is > AND_KEEPGOING_C (provided you have specified an AND_KEEPGOING_C parameter), and the primal-dual gap is > AND_KEEPGOING_DG (provided you have specified an AND_KEEPGOING_DG parameter), and the total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}>$ AND_KEEPGOING_IB (provided you have specified an AND_KEEPGOING_IB parameter), and the total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}>$ AND_KEEPGOING_IC (provided you have specified an AND_KEEPGOING_IC parameter), and the total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}>$ AND_KEEPGOING_ID (provided you have specified an AND_KEEPGOING_ID parameter), and if it is, PROC INTPOINT will perform more optimization.

If all these tests to decide whether more optimization should be performed are false, optimization is stopped.

The following PROC INTPOINT example is used to illustrate how several stopping criteria options can be used together:

```
proc intpoint
    stop_c=1000
    and_stop_c=2000 and_stop_dg=0.01
    and_stop_ib=1 and_stop_ic=1 and_stop_id=1
    keepgoing_c=1500
    and_keepgoing_c=2500 and_keepgoing_dg=0.05
    and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1
```

At the beginning of each iteration, PROC INTPOINT will stop optimizing if

- complementarity ≤ 1000 or
- complementarity ≤ 2000 and duality gap ≤ 0.01 and the total bound, constraint, and dual infeasibilities are each ≤ 1

When PROC INTPOINT determines it should stop optimizing because a usual stopping condition is met, it will stop optimizing only if

- complementarity ≤ 1500 or
- complementarity ≤ 2500 and duality gap ≤ 0.05 and the total bound, constraint, and dual infeasibilities are each ≤ 1

Examples

The following examples illustrate some of the capabilities of PROC INTPOINT. These examples, together with the other SAS/OR examples, can be found in the SAS sample library.

In order to illustrate variations in the use of the INTPOINT procedure, Example 3.1 through Example 3.5 use data from a company that produces two sizes of televisions. The company makes televisions with a diagonal screen measurement of either 19 inches or 25 inches. These televisions are made between March and May at both of the company's two factories. Each factory has a limit on the total number of televisions of each screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they were made, and sold later or shipped to the other factory. Some sets can be used to fill backorders from the previous months. Each shop demands a number of each type of TV for the months of March through May. The following network in Figure 3.12 illustrates the model. Arc costs can be interpreted as production costs, storage costs, backorder penalty costs, inter-factory transportation costs, and sales profits. The arcs can have capacities and lower flow bounds.

Figure 3.12. TV Problem

There are two similarly structured networks, one for the 19 -inch televisions and the other for the 25 -inch screen TVs. The minimum cost production, inventory, and distribution plan for both TV types can be determined in the same run of PROC INTPOINT. To ensure that node names are unambiguous, the names of nodes in the 19 -inch network have suffix _ 1 , and the node names in the 25 -inch network have suffix _2.

Example 3.1. Production, Inventory, Distribution Problem

The following code shows how to save a specific problem's data in data sets and solve the model with PROC INTPOINT.

```
title 'Production Planning/Inventory/Distribution';
title2 'Minimum Cost Flow problem';
title3;
data node0;
    input _node_ $ _supdem_ ;
    datalines;
fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;
data arc0;
    input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory
                key_id $10. mth_made $ _name_&$17. ;
    datalines;
fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
```



```
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April.
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April.
f1_may_2 shop1_2 -475.02 . . 25 1 sales May
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April.
f1_may_2 shop2_2 -460.00 . . 25 1 sales May
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March.
f2_apr_2 f2_may_2 38 50 . 25 2 storage April.
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April.
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April.
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March.
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April.
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May
;
proc intpoint
    bytes=1000000
    printlevel2=2
    nodedata=node0
    arcdata=arc0
    conout=arc1;
    run;
proc print data=arc1;
    var _tail__ _head_ _cost_ _capac_ _lo__ _flow__ _fcost_
        diagonal factory key_id mth_made;
    sum _fcost_;
    run;
```

The following notes appear on the SAS log:

```
    NOTE: Number of nodes= 20.
    NOTE: Number of supply nodes= 4 .
    NOTE: Number of demand nodes= 4 .
    NOTE: Total supply= 4350 , total demand= 4150 .
    NOTE: Number of arcs= 64 .
    NOTE: The following messages relate to the equivalent
    Linear Programming problem solved by the Interior
    Point algorithm.
    NOTE: Number of <= constraints= 0 .
    NOTE: Number of == constraints= 21 .
    NOTE: Number of >= constraints= 0 .
    NOTE: Number of constraint coefficients= 136 .
    NOTE: Number of variables= 68 .
    NOTE: After preprocessing, number of <= constraints= 0.
    NOTE: After preprocessing, number of == constraints= 20.
    NOTE: After preprocessing, number of >= constraints= 0.
    NOTE: The preprocessor eliminated 1 constraints from the
    problem.
    NOTE: The preprocessor elimiated 9 constraint coefficients
        from the problem.
    NOTE: 0 columns, 0 rows and 0 coefficients were added to
        the problem to handle unrestricted variables,
        variables that are split, and constraint slack or
        surplus variables.
    NOTE: There are 48 nonzero elements in A * A transpose.
    NOTE: Of the 20 rows and columns, 11 are sparse.
    NOTE: There are 40 nonzero superdiagonal elements in the
        sparse rows of the factored A * A transpose. This
        includes fill-in.
    NOTE: There are 49 operations of the form
        u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
        sparse rows of A * A transpose.
\begin{tabular}{rrrrrrrr} 
Iter Complem_aff & Complem-ity & Duality_gap & Tot_infeasb & Tot_infeasc & Tot_infeasd \\
0 & -1.000000 & 169009903 & 0.835362 & 52835 & 25664 & 38005 \\
1 & 36984291 & 17566249 & 0.914108 & 1649.363089 & 801.164462 & 0 \\
2 & 1982553 & 866890 & 0.413012 & 0 & \(1.461734 \mathrm{E}-12\) & 0 \\
3 & 542347 & 234381 & 0.153440 & 0 & 0 & 0 \\
4 & 129900 & 52560 & 0.038044 & 0 & 0 & 0 \\
5 & 25835 & 18168 & 0.013343 & 0 & 0 & 0 \\
6 & 8923.214994 & 2976.020480 & 0.002203 & 0 & 0 & 0 \\
7 & 928.231932 & 624.792307 & 0.000463 & 0 & 0 & 0 \\
8 & 218.771392 & 74.386900 & 0.000055131 & 0 & 0 & 0 \\
9 & 11.639195 & 2.197862 & 0.000001629 & 0 & 0 & 0 \\
10 & 0.089160 & 0.000399 & \(2.958631 \mathrm{E}-10\) & 0 & 0
\end{tabular}
    NOTE: The Primal-Dual Predictor-Corrector Interior Point
                algorithm performed 10 iterations.
    NOTE: Objective = -1281110.35.
    NOTE: The data set WORK.ARC1 has }64\mathrm{ observations and 14
                variables.
    NOTE: There were 64 observations read from the data set
        WORK. ARCO .
    NOTE: There were 8 observations read from the data set
        WORK.NODEO.
```

The solution is given in the CONOUT=arc1 data sets. In the CONOUT= data set, shown in Output 3.1.1, the variables diagonal, factory, key_id, and mth_made form an implicit ID list. The diagonal variable has one of two values, 19 or 25. factory also has one of two values, 1 or 2 , to denote the factory where either production or storage occurs, from where TVs are either sold to shops or used to satisfy backorders. production, storage, sales, and backorder are values of the key_id variable.

Other values of this variable, f1_to_2 and f2_to_1, are used when flow through arcs represents the transportation of TVs between factories. The mth_made variable has values March, April, and May, the months when TVs that are modeled as flow through an arc were made (assuming that no televisions are stored for more than one month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC INTPOINT run to produce reports and perform analysis on particular parts of the company's operation. For example, reports can be generated for production numbers for each factory; optimal sales figures for each shop; and how many TVs should be stored, used to fill backorders, sent to the other factory, or any combination of these, for TVs with a particular screen, those produced in a particular month, or both.

Output 3.1.1. CONOUT=ARC1

Production Planning/Inventory/Distribution Minimum Cost Flow problem											
Obs	_tail_	_head_	_cost_	_capac_	_lo_	FLOW	FCOST	diagonal	factory	key_id	mth_made
	fact1_1	f1_apr_1	78.60	600	50	600.000	47160.00	19	1	production	April
2	f1_mar_1	f1_apr_1	15.00	50	0	0.000	0.00	19	1	storage	March
3	f1_may_1	f1_apr_1	28.00	20	0	0.000	0.00	19	1	backorder	May
4	f2_apr_1	f1_apr_1	11.00	40	0	0.000	0.00	19		f2_to_1	April
5	fact1_2	f1_apr_2	174.50	550	50	550.000	95975.00	25	1	production	April
6	f1_mar_2	f1_apr_2	20.00	40	0	0.000	0.00	25	1	storage	March
7	f1_may_2	f1_apr_2	41.00	15	0	15.000	615.00	25	1	backorder	May
8	f2_apr_2	f1_apr_2	21.00	25	0	0.000	0.00	25		f2_to_1	April
9	fact1_1	f1_mar_1	127.90	500	50	345.000	44125.49	19	1	production	March
10	f1_apr_1	f1_mar_1	28.00	20	0	20.000	560.00	19	1	backorder	April
11	f2_mar_1	f1_mar_1	10.00	40	0	40.000	400.00	19		f2_to_1	March
12	fact1_2	f1_mar_2	217.90	400	40	400.000	87160.00	25	1	production	March
13	f1_apr_2	f1_mar_2	32.00	30	0	30.000	960.00	25	1	backorder	April
14	f2_mar_2	f1_mar_2	20.00	25	0	25.000	500.00	25		f2_to_1	March
15	fact1_1	f1_may_1	95.10	400	50	50.000	4755.00	19	1	production	May
16	f1_apr_1	f1_may_1	12.00	50	0	50.000	600.00	19	1	storage	April
17	f2_may_1	f1_may_1	13.00	40	0	0.000	0.00	19		f2_to_1	May
18	fact1_2	f1_may_2	133.30	350	40	40.000	5332.00	25	1	production	May
19	f1_apr_2	f1_may_2	18.00	40	0	0.000	0.00	25	1	storage	April
20	f2_may_2	f1_may_2	43.00	25	0	0.000	0.00	25		f2_to_1	May
21	f1_apr_1	f2_apr_1	11.00	99999999	0	30.000	330.00	19		f1_to_2	April
22	fact2_1	f2_apr_1	62.40	480	35	480.000	29952.00	19	2	production	April
23	f2_mar_1	f2_apr_1	18.00	30	0	0.000	0.00	19	2	storage	March
24	f2_may_1	f2_apr_1	25.00	15	0	0.000	0.00	19	2	backorder	May
25	f1_apr_2	f2_apr_2	23.00	99999999	0	0.000	0.00	25		f1_to_2	April
26	fact2_2	f2_apr_2	196.70	680	35	680.000	133756.00	25	2	production	April
27	f2_mar_2	f2_apr_2	28.00	50	0	0.000	0.00	25	2	storage	March
28	f2_may_2	f2_apr_2	54.00	15	0	15.000	810.00	25	2	backorder	May
29	f1_mar_1	f2_mar_1	11.00	99999999	0	0.000	0.00	19		f1_to_2	March
30	fact2_1	f2_mar_1	88.00	450	35	290.000	25520.00	19	2	production	March
	f2_apr_1	f2_mar_1	17.00	15	0	0.000	0.00	19	2	backorder	April
32	f1_mar_2	f2_mar_2	23.00	99999999	0	0.000	0.00	25		f1_to_2	March
33	fact2_2	f2_mar_2	182.00	650	35	645.000	117390.00	25	2	production	March
34	f2_apr_2	f2_mar_2	31.00	15	0	0.000	0.00	25	2	backorder	April
35	f1_may_1	f2_may_1	16.00	99999999	0	100.000	1600.00	19		f1_to_2	May
36	fact2_1	f2_may_1	133.80	250	35	35.000	4683.00	19	2	production	May
	f2_apr_1	f2_may_1	20.00	30	0	15.000	300.00	19	2	storage	April
38	f1_may_2	f2_may_2	26.00	99999999	0	0.000	0.00	25		f1_to_2	May
39	fact2_2	f2_may_2	201.40	550	35	35.000	7049.00	25	2	production	May
40	f2_apr_2	f2_may_2	38.00	50	0	0.000	0.00	25	2	storage	April
41	f1_mar_1	shop1_1	-327.65	250	0	155.000	-50785.73	19	1	sales	March
42	f1_apr_1	shop1_1	-300.00	250	0	250.000	-75000.00	19	1	sales	April
43	f1_may_1	shop1_1	-285.00	250	0	0.000	0.00	19	1	sales	May
44	f2_mar_1	shop1_1	-297.40	250	0	250.000	-74350.00	19	2	sales	March
45	f2_apr_1	shop1_1	-290.00	250	0	245.000	-71050.01	19	2	sales	April
46	f2_may_1	shop1_1	-292.00	250	0	0.000	0.00	19	2	sales	May
47	f1_mar_2	shop1_2	-559.76	99999999	0	0.000	0.00	25	1	sales	March
48	f1_apr_2	shop1_2	-524.28	99999999	0	0.000	0.00	25	1	sales	April
49	f1_may_2	shop1_2	-475.02	99999999	0	25.000	-11875.50	25	1	sales	May
50	f2_mar_2	shop1_2	-567.83	500	0	500.000	-283915.00	25	2	sales	March
	f2_apr_2	shop1_2	-542.19	500	0	375.000	-203321.25	25	2	sales	April
52	f2_may_2	shop1_2	-461.56	500	0	0.000	0.00	25	2	sales	May
53	f1_mar_1	shop2_1	-362.74	250	0	250.000	-90685.00	19	1	sales	March
54	f1_apr_1	shop2_1	-300.00	250	0	250.000	-75000.00	19	1	sales	April
55	f1_may_1	shop2_1	-245.00	250	0	0.000	0.00	19	1	sales	May
56	f2_mar_1	shop2_1	-272.70	250	0	0.000	0.00	19	2	sales	March
57	f2_apr_1	shop2_1	-312.00	250	0	250.000	-78000.00	19	2	sales	April
58	f2_may_1	shop2_1	-299.00	250	0	150.000	-44850.00	19	2	sales	May
59	f1_mar_2	shop2_2	-623.89	99999999	0	455.000	-283869.95	25	1	sales	March
60	f1_apr_2	shop2_2	-549.68	99999999	0	535.000	-294078.80	25	1	sales	April
61	f1_may_2	shop2_2	-460.00	99999999	0	0.000	0.00	25	1	sales	May
62	f2_mar_2	shop2_2	-542.83	500	0	120.000	-65139.60	25	2	sales	March
63	f2_apr_2	shop2_2	-559.19	500	0	320.000	-178940.80	25	2	sales	April
64	f2_may_2	shop2_2	-489.06	500	0	20.000	-9781. 20	25	2	sales	May
							===========				
							-1281110.35				

Example 3.2. Altering Arc Data

This example examines the effect of changing some of the arc costs. The backorder penalty costs are increased by 20 percent. The sales profit of 25 -inch TVs sent to the shops in May is increased by 30 units. The backorder penalty costs of 25 -inch TVs manufactured in May for April consumption is decreased by 30 units. The production cost of 19 -inch and 25 -inch TVs made in May are decreased by 5 units and 20 units, respectively. How does the optimal solution of the network after these arc cost alterations compare with the optimum of the original network?

These SAS statements produce the new NODEDATA= and ARCDATA= data sets:

```
title2 'Minimum Cost Flow problem- Altered Arc Data';
data arc2;
    set arc1;
    oldcost=_cost_;
    oldfc=_fcost_;
    oldflow=_flow_;
    if key_id='backorder'
        then _cost_=_cost_*1.2;
        else if _tail_='f2_may_2' then _cost_=_cost_-30;
    if key_id='production' & mth_made='May' then
            if diagonal=19 then _cost_=_cost_-5;
                    else _cost_=_cost_-20;
    run;
proc intpoint
    bytes=100000
    printlevel2=2
    nodedata=node0
    arcdata=arc2
    conout=arc3;
    run;
proc print data=arc3;
    var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_
        _cost_ _flow_ _fcost_ oldcost oldflow oldfc
        diagonal factory key_id mth_made;
        /* to get this variable order */
                sum oldfc _fcost_;
    run;
```

The following notes appear on the SAS log:

```
    NOTE: Number of nodes= 20 .
    NOTE: Number of supply nodes= 4 .
    NOTE: Number of demand nodes= 4 .
    NOTE: Total supply= 4350 , total demand= 4150 .
    NOTE: Number of arcs= 64 .
    NOTE: The following messages relate to the equivalent Linear
    Programming problem solved by the Interior Point algorithm.
    NOTE: Number of <= constraints= 0 .
    NOTE: Number of == constraints= 21.
    NOTE: Number of >= constraints= 0 .
    NOTE: Number of constraint coefficients= 136 .
    NOTE: Number of variables= 68 .
    NOTE: After preprocessing, number of <= constraints= 0.
    NOTE: After preprocessing, number of == constraints= 20.
    NOTE: After preprocessing, number of >= constraints= 0.
    NOTE: The preprocessor eliminated 1 constraints from the
    problem.
NOTE: The preprocessor eliminated 9 constraint coefficients
    from the problem
    NOTE: O columns, O rows and O coefficients were added to
        the problem to handle unrestricted variables,
        variables that are split, and constraint slack or
        surplus variables
    NOTE: There are 48 nonzero elements in A * A transpose.
    NOTE: Of the }20\mathrm{ rows and columns, }11\mathrm{ are sparse.
    NOTE: There are 40 nonzero superdiagonal elements in the
        sparse rows of the factored A * A transpose. This
        includes fill-in.
    NOTE: There are 49 operations of the form
        u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
        sparse rows of A * A transpose.
\begin{tabular}{rrrrrrrr} 
Iter Complem_aff & Complem-ity & Duality_gap & Tot_infeasb & Tot_infeasc & Tot_infeasd \\
0 & -1.000000 & 169822194 & 0.834344 & 52835 & 25664 & 38174 \\
1 & 37113367 & 17651592 & 0.912723 & 1650.135100 & 801.539460 & 0 \\
2 & 1990318 & 739344 & 0.369751 & 0 & \(1.363097 E-12\) & 0 \\
3 & 358794 & 186448 & 0.125234 & 0 & 0 & 0 \\
4 & 116081 & 45454 & 0.033002 & 0 & 0 & 0 \\
5 & 26298 & 16467 & 0.012077 & 0 & 0 & 0 \\
6 & 8963.676317 & 3893.499547 & 0.002875 & 0 & 0 & 0 \\
7 & 1615.258886 & 718.590270 & 0.000532 & 0 & 0 & 0 \\
8 & 178.225920 & 47.380105 & 0.000035062 & 0 & 0 & 0 \\
9 & 6.698353 & 0.020987 & \(1.5531175 E-8\) & 0 & 0 & 0
\end{tabular}
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm
        performed 9 iterations.
    NOTE: Objective = -1285086.46.
    NOTE: The data set WORK.ARC3 has }64\mathrm{ observations and 17
        variables.
    NOTE: There were 64 observations read from the data set
            WORK. ARC2 .
    NOTE: There were }8\mathrm{ observations read from the data set
        WORK.NODEO.
```

The solution is displayed in Output 3.2.1.

Output 3.2.1. \quad CONOUT=ARC3

Minimum Cost flow problem- Altered arc data									
Obs	_tail_	_head_	_capac_	_10_	_SUPPLY	DEMAND_	_name_	_cost_	_FLOW_
1	fact1_1	f1_apr_1	600	50	1000	.	prod f1 19 apl	78.60	540.001
2	f1_mar_1	f1_apr_1	50	0	.	.		15.00	0.000
3	f1_may_1	f1_apr_1	20	0	.	.	back f1 19 may	33.60	0.000
4	f2_apr_1	f1_apr_1	40	0		.		11.00	0.000
5	fact1_2	f1_apr_2	550	50	1000	.	prod f1 25 apl	174.50	250.000
6	f1_mar_2	f1_apr_2	40	0	.	.		20.00	0.000
7	f1_may_2	f1_apr_2	15	0	.	.	back f1 25 may	49.20	15.000
8	f2_apr_2	f1_apr_2	25	0		.		21.00	0.000
9	fact1_1	f1_mar_1	500	50	1000	.	prod f1 19 mar	127.90	340.000
10	f1_apr_1	f1_mar_1	20	0	.	-	back f1 19 apl	33.60	20.000
11	f2_mar_1	f1_mar_1	40	0		.		10.00	40.000
12	fact1_2	f1_mar_2	400	40	1000	.	prod f1 25 mar	217.90	400.000
13	f1_apr_2	f1_mar_2	30	0	.	.	back f1 25 apl	38.40	30.000
14	f2_mar_2	f1_mar_2	25	0		.		20.00	25.000
15	fact1_1	f1_may_1	400	50	1000	.		90.10	114.999
16	f1_apr_1	f1_may_1	50	0	.	.		12.00	0.001
17	f2_may_1	f1_may_1	40	0		-		13.00	0.000
18	fact1_2	f1_may_2	350	40	1000	.		113.30	350.000
19	f1_apr_2	f1_may_2	40	0	.	.		18.00	0.000
20	f2_may_2	f1_may_2	25	0		.		13.00	0.000
21	f1_apr_1	f2_apr_1	99999999	0		-		11.00	20.000
22	fact2_1	f2_apr_1	480	35	850	.	prod f2 19 apl	62.40	480.000
23	f2_mar_1	f2_apr_1	30	0		.		18.00	0.000
24	f2_may_1	f2_apr_1	15	0	.	-	back f2 19 may	30.00	0.000
25	f1_apr_2	f2_apr_2	99999999	0	${ }^{\circ}$.		23.00	0.000
26	fact2_2	f2_apr_2	680	35	1500	-	prod f2 25 apl	196.70	680.000
27	f2_mar_2	f2_apr_2	50	0	.	.		28.00	0.000
28	f2_may_2	f2_apr_2	15	0	.	.	back f2 25 may	64.80	0.000
29	f1_mar_1	f2_mar_1	99999999	0		.		11.00	0.000
30	fact2_1	f2_mar_1	450	35	850	.	prod f2 19 mar	88.00	290.000
31	f2_apr_1	f2_mar_1	15	0	.	.	back f2 19 apl	20.40	0.000
32	f1_mar_2	f2_mar_2	99999999	0		-		23.00	0.000
33	fact2_2	f2_mar_2	650	35	1500	.	prod f2 25 mar	182.00	635.000
34	f2_apr_2	f2_mar_2	15	0	.	.	back f2 25 apl	37.20	0.000
35	f1_may_1	f2_may_1	99999999	0	.	.		16.00	115.000
36	fact2_1	f2_may_1	250	35	850	.		128.80	35.000
37	f2_apr_1	f2_may_1	30	0		.		20.00	0.000
38	f1_may_2	f2_may_2	99999999	0	${ }^{\circ}$.		26.00	335.000
39	fact2_2	f2_may_2	550	35	1500	-		181.40	35.000
40	f2_apr_2	f2_may_2	50	0	.	.		38.00	0.000
41	f1_mar_1	shop1_1	250	0	.	900		-327.65	150.000
42	f1_apr_1	shop1_1	250	0		900		-300.00	250.000
43	f1_may_1	shop1_1	250	0	.	900		-285.00	0.000
44	f2_mar_1	shop1_1	250	0	.	900		-297.40	250.000
45	f2_apr_1	shop1_1	250	0	.	900		-290.00	250.000
46	f2_may_1	shop1_1	250	0		900		-292.00	0.000
47	f1_mar_2	shop1_2	99999999	0	.	900		-559.76	0.000
48	f1_apr_2	shop1_2	99999999	0	.	900		-524.28	0.000
49	f1_may_2	shop1_2	99999999	0		900		-475.02	0.000
50	f2_mar_2	shop1_2	500	0	.	900		-567.83	500.000
51	f2_apr_2	shop1_2	500	0	.	900		-542.19	400.000
52	f2_may_2	shop1_2	500	0	.	900		-491.56	0.000
53	f1_mar_1	shop2_1	250	0	.	900		-362.74	250.000
54	f1_apr_1	shop2_1	250	0	.	900		-300.00	250.000
55	f1_may_1	shop2_1	250	0	.	900		-245.00	0.000
56	f2_mar_1	shop2_1	250	0		900		-272.70	0.000
57	f2_apr_1	shop2_1	250	0	.	900		-312.00	250.000
58	f2_may_1	shop2_1	250	0	.	900		-299.00	150.000
59	f1_mar_2	shop2_2	99999999	0	.	1450		-623.89	455.000
60	f1_apr_2	shop2_2	99999999	0	.	1450		-549.68	235.000
61	f1_may_2	shop2_2	99999999	0	.	1450		-460.00	0.000
62	f2_mar_2	shop2_2	500	0		1450		-542.83	110.000
63	f2_apr_2	shop2_2	500	0		1450		-559.19	280.000
64	f2_may_2	shop2_2	500	0		1450		-519.06	370.000

Obs	_FCOST	oldcost	oldflow	oldfc	diagonal	factory	key_id	mth_made
1	42444.05	78.60	600.000	47160.00	19	1	production	April
2	0.00	15.00	0.000	0.00	19	1	storage	March
3	0.00	28.00	0.000	0.00	19	1	backorder	May
4	0.00	11.00	0.000	0.00	19	.	f2_to_1	April
5	43625.01	174.50	550.000	95975.00	25	1	production	April
6	0.00	20.00	0.000	0.00	25	1	storage	March
7	738.00	41.00	15.000	615.00	25	1	backorder	May
8	0.00	21.00	0.000	0.00	25	.	f2_to_1	April
9	43486.02	127.90	345.000	44125.49	19	1	production	March
10	672.00	28.00	20.000	560.00	19	1	backorder	April
11	400.00	10.00	40.000	400.00	19	.	f2_to_1	March
12	87160.00	217.90	400.000	87160.00	25	1	production	March
13	1152.00	32.00	30.000	960.00	25	1	backorder	April
14	500.00	20.00	25.000	500.00	25	.	f2_to_1	March
15	10361.42	95.10	50.000	4755.00	19	1	production	May
16	0.01	12.00	50.000	600.00	19	1	storage	April
17	0.00	13.00	0.000	0.00	19	.	f2_to_1	May
18	39655.00	133.30	40.000	5332.00	25	1	production	May
19	0.00	18.00	0.000	0.00	25	1	storage	April
20	0.00	43.00	0.000	0.00	25	.	f2_to_1	May
21	220.00	11.00	30.000	330.00	19	-	f1_to_2	April
22	29952.00	62.40	480.000	29952.00	19	2	production	April
23	0.00	18.00	0.000	0.00	19	2	storage	March
24	0.00	25.00	0.000	0.00	19	2	backorder	May
25	0.00	23.00	0.000	0.00	25	.	f1_to_2	April
26	133755.98	196.70	680.000	133756.00	25	2	production	April
27	0.00	28.00	0.000	0.00	25	2	storage	March
28	0.00	54.00	15.000	810.00	25	2	backorder	May
29	0.00	11.00	0.000	0.00	19	.	f1_to_2	March
30	25520.00	88.00	290.000	25520.00	19	2	production	March
31	0.00	17.00	0.000	0.00	19	2	backorder	April
32	0.00	23.00	0.000	0.00	25	.	f1_to_2	March
33	115570.02	182.00	645.000	117390.00	25	2	production	March
34	0.00	31.00	0.000	0.00	25	2	backorder	April
35	1840.00	16.00	100.000	1600.00	19	.	f1_to_2	May
36	4508.00	133.80	35.000	4683.00	19	2	production	May
37	0.00	20.00	15.000	300.00	19	2	storage	April
38	8710.00	26.00	0.000	0.00	25	.	f1_to_2	May
39	6349.00	201.40	35.000	7049.00	25	2	production	May
40	0.00	38.00	0.000	0.00	25	2	storage	April
41	-49147.54	-327.65	155.000	-50785.73	19	1	sales	March
42	-75000.00	-300.00	250.000	-75000.00	19	1	sales	April
43	-0.01	-285.00	0.000	0.00	19	1	sales	May
44	-74349.99	-297.40	250.000	-74350.00	19	2	sales	March
45	-72499.96	-290.00	245.000	-71050.01	19	2	sales	April
46	-0.00	-292.00	0.000	0.00	19	2	sales	May
47	0.00	-559.76	0.000	0.00	25	1	sales	March
48	-0.01	-524.28	0.000	0.00	25	1	sales	April
49	-0.08	-475.02	25.000	-11875.50	25	1	sales	May
50	-283915.00	-567.83	500.000	-283915.00	25	2	sales	March
51	-216875.89	-542.19	375.000	-203321.25	25	2	sales	April
52	-0.01	-461.56	0.000	0.00	25	2	sales	May
53	-90685.00	-362.74	250.000	-90685.00	19	1	sales	March
54	-75000.00	-300.00	250.000	-75000.00	19	1	sales	April
55	0.00	-245.00	0.000	0.00	19	1	sales	May
56	-0.01	-272.70	0.000	0.00	19	2	sales	March
57	-78000.00	-312.00	250.000	-78000.00	19	2	sales	April
58	-44850.00	-299.00	150.000	-44850.00	19	2	sales	May
59	-283869.94	-623.89	455.000	-283869.95	25	1	sales	March
60	-129174.79	-549.68	535.000	-294078.80	25	1	sales	April
61	0.00	-460.00	0.000	0.00	25	1	sales	May
62	-59711.36	-542.83	120.000	-65139.60	25	2	sales	March
63	-156573.27	-559.19	320.000	-178940.80	25	2	sales	April
64	-192052.10	-489.06	20.000	-9781.20	25	2	sales	May
	$\begin{aligned} & ========== \\ & -1285086.45 \end{aligned}$			$\begin{aligned} & ========== \\ & -1281110.35 \end{aligned}$				

Example 3.3. Adding Side Constraints

The manufacturer of Gizmo chips, which are parts needed to make televisions, can supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 in time for production in each of the months of March and April. However, Gizmo chips will not be in short supply in May. Three chips are required to make each 19 -inch TV while the 25 inch TVs require four chips each. To limit the production of televisions produced at factory 1 in March so that the TVs have the correct number of chips, a side constraint called FACT1 MAR GIZMO is used. The form of this constraint is

```
3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600
```

prod f 119 mar is the name of the arc directed from the node fact1_1 toward node f1_mar_1 and, in the previous constraint, designates the flow assigned to this arc. The ARCDATA= and CONOUT= data sets have arc names in a variable called _name_.

The other side constraints (shown below) are called FACT2 MAR GIZMO, FACT1 APL GIZMO, and FACT2 APL GIZMO.

```
3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750
```

To maintain customer goodwill, the total number of backorders is not to exceed 50 sets. The side constraint TOTAL BACKORDER that models this restriction is

```
back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50
```

The sparse CONDATA= data set format is used. All side constraints are of less than or equal type. Because this is the default type value for the DEFCONTYPE= option, type information is not necessary in the following CONDATA=con3. Also, DEFCONTYPE= <= does not have to be specified in the PROC INTPOINT statement that follows. Notice that the _column_ variable value CHIP/BO LIMIT indicates that an observation of the con3 data set contains rhs information. Therefore, specify RHSOBS=‘CHIP/BO LIMIT'.

```
title2 'Adding Side Constraints';
data con3;
    input _column_ &$14. _row_ &$15. _coef_ ;
    datalines;
prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
```

```
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER }5
;
```

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA= data sets in the following PROC INTPOINT run. The set used depends on which cost information the arcs are to have.

```
ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node0
ARCDATA=arc2 NODEDATA=node0
ARCDATA=arc3 NODEDATA=node0
```

$\operatorname{arc} 0$, node0, and arc1 were created in Example 3.1. The first two data sets are the original input data sets.

In the previous example, arc2 was created by modifying arc1 to reflect different arc costs. arc2 and node0 can also be used as the ARCDATA= and NODEDATA= data sets in a PROC INTPOINT run.

If you are going to continue optimization using the changed arc costs, it is probably best to use arc3 and node0 as the ARCDATA= and NODEDATA= data sets.

PROC INTPOINT is used to find the changed cost network solution that obeys the chip limit and backorder side constraints. An explicit ID list has also been specified so that the variables oldcost, oldfc, and oldflow do not appear in the subsequent output data sets:

```
proc intpoint
    bytes=1000000
    printlevel2=2
    nodedata=node0 arcdata=arc3
    condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
    conout=arc4;
    id diagonal factory key_id mth_made;
    run;
```

```
proc print data=arc4;
    var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_;
        /* to get this variable order */
    sum _fcost_;
    run;
```

The following messages appear on the SAS log:

NOTE: The following variables in ARCDATA do not belong to any SAS variable list. These will be ignored.
FLOW
FCOST
oldcost
oldfc oldflow
NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent Linear Programming problem solved by the Interior Point algorithm.
NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of $==$ constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0 .
NOTE: The preprocessor eliminated 1 constraints from the problem.
NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to the problem to handle unrestricted variables, variables that are split, and constraint slack or surplus variables.
NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the sparse rows of the factored A * A transpose. This includes fill-in.
NOTE: There are 65 operations of the form $u[i, j]=u[i, j]-u[q, j] * u[q, i] / u[q, q]$ to factorize the sparse rows of A * A transpose.

Iter Complem_aff	Complem-ity	Duality_gap	Tot_infeasb	Tot_infeasc Tot_infeasd		
0	-1.000000	176663849	0.834344	52835	39643	49140
1	51289701	21890177	0.912033	2958.813395	2220.091192	2621.647223
2	4297808	1359558	0.517260	0	$7.06244 \mathrm{E}-11$	42.614836
3	341918	246210	0.159762	0	0	7.723054
4	124303	68295	0.049237	0	0	1.115512
5	46970	29876	0.021786	0	0	0.482224

6	9976.439552	6294.587840	0.004647	0	0	0.094764
7	3266.423958	1984.437170	0.001468	0	0	0.022740
8	472.139836	257.075141	0.000190	0	0	0.003062
9	24.953361	6.458585	0.000004781	0	0	0.000114
10	0.007991	0.000361	$2.671196 \mathrm{E}-10$	0	0	0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10 iterations.
NOTE: Objective $=-1282708.625$.
NOTE: The data set WORK.ARC4 has 64 observations and 14 variables.
NOTE: There were 64 observations read from the data set WORK. ARC3.
NOTE: There were 8 observations read from the data set WORK. NODEO.
NOTE: There were 21 observations read from the data set WORK. CON3.

Output 3.3.1. \quad CONOUT=ARC4

Adding Side Constraints								
Obs	_tail_	_head_	_cost_	_capac_	_10_	_FLOW_	_FCOST	
1	fact1_1	f1_apr_1	78.60	600	50	533.333	41920.00	
2	f1_mar_1	f1_apr_1	15.00	50	0	0.000	0.00	
3	f1_may_1	f1_apr_1	33.60	20	0	0.000	0.00	
4	f2_apr_1	f1_apr_1	11.00	40	0	0.000	0.00	
5	fact1_2	f1_apr_2	174.50	550	50	250.000	43625.00	
6	f1_mar_2	f1_apr_2	20.00	40	0	0.000	0.00	
7	f1_may_2	f1_apr_2	49.20	15	0	0.000	0.00	
8	f2_apr_2	f1_apr_2	21.00	25	0	0.000	0.00	
9	fact1_1	f1_mar_1	127.90	500	50	333.333	42633.33	
10	f1_apr_1	f1_mar_1	33.60	20	0	20.000	672.00	
11	f2_mar_1	f1_mar_1	10.00	40	0	40.000	400.00	
12	fact1_2	f1_mar_2	217.90	400	40	400.000	87160.00	
13	f1_apr_2	f1_mar_2	38.40	30	0	30.000	1152.00	
14	f2_mar_2	f1_mar_2	20.00	25	0	25.000	500.00	
15	fact1_1	f1_may_1	90.10	400	50	128.333	11562.83	
16	f1_apr_1	f1_may_1	12.00	50	0	0.000	0.00	
17	f2_may_1	f1_may_1	13.00	40	0	0.000	0.00	
18	fact1_2	f1_may_2	113.30	350	40	350.000	39655.00	
19	f1_apr_2	f1_may_2	18.00	40	0	0.000	0.00	
20	f2_may_2	f1_may_2	13.00	25	0	0.000	0.00	
21	f1_apr_1	f2_apr_1	11.00	99999999	0	13.333	146.67	
22	fact2_1	f2_apr_1	62.40	480	35	480.000	29952.00	
23	f2_mar_1	f2_apr_1	18.00	30	0	0.000	0.00	
24	f2_may_1	f2_apr_1	30.00	15	0	0.000	0.00	
25	f1_apr_2	f2_apr_2	23.00	99999999	0	0.000	0.00	
26	fact2_2	f2_apr_2	196.70	680	35	577.500	113594.25	
27	f2_mar_2	f2_apr_2	28.00	50	0	0.000	0.00	
28	f2_may_2	f2_apr_2	64.80	15	0	0.000	0.00	
29	f1_mar_1	f2_mar_1	11.00	99999999	0	0.000	0.00	
30	fact2_1	f2_mar_1	88.00	450	35	290.000	25520.00	
31	f2_apr_1	f2_mar_1	20.40	15	0	0.000	0.00	
32	f1_mar_2	f2_mar_2	23.00	99999999	0	0.000	0.00	
33	fact2_2	f2_mar_2	182.00	650	35	650.000	118300.00	
34	f2_apr_2	f2_mar_2	37.20	15	0	0.000	0.00	
35	f1_may_1	f2_may_1	16.00	99999999	0	115.000	1840.00	
36	fact2_1	f2_may_1	128.80	250	35	35.000	4508.00	
37	f2_apr_1	f2_may_1	20.00	30	0	0.000	0.00	
38	f1_may_2	f2_may_2	26.00	99999999	0	350.000	9100.00	
39	fact2_2	f2_may_2	181.40	550	35	122.500	22221.50	
40	f2_apr_2	f2_may_2	38.00	50	0	0.000	0.00	
41	f1_mar_1	shop1_1	-327.65	250	0	143.333	-46963.17	
42	f1_apr_1	shop1_1	-300.00	250	0	250.000	-75000.00	
43	f1_may_1	shop1_1	-285.00	250	0	13.333	-3800.00	
44	f2_mar_1	shop1_1	-297.40	250	0	250.000	-74350.00	
45	f2_apr_1	shop1_1	-290.00	250	0	243.333	-70566.67	
46	f2_may_1	shop1_1	-292.00	250	0	0.000	0.00	
47	f1_mar_2	shop1_2	-559.76	99999999	0	0.000	0.00	
48	f1_apr_2	shop1_2	-524.28	99999999	0	0.000	0.00	
49	f1_may_2	shop1_2	-475.02	99999999	0	0.000	0.00	
50	f2_mar_2	shop1_2	-567.83	500	0	500.000	-283915.00	
51	f2_apr_2	shop1_2	-542.19	500	0	400.000	-216876.00	
52	f2_may_2	shop1_2	-491.56	500	0	0.000	0.00	
53	f1_mar_1	shop2_1	-362.74	250	0	250.000	-90685.00	
54	f1_apr_1	shop2_1	-300.00	250	0	250.000	-75000.00	
55	f1_may_1	shop2_1	-245.00	250	0	0.000	0.00	
56	f2_mar_1	shop2_1	-272.70	250	0	0.000	0.00	
57	f2_apr_1	shop2_1	-312.00	250	0	250.000	-78000.00	
58	f2_may_1	shop2_1	-299.00	250	0	150.000	-44850.00	
59	f1_mar_2	shop2_2	-623.89	99999999	0	455.000	-283869.95	
60	f1_apr_2	shop2_2	-549.68	99999999	0	220.000	-120929.60	
61	f1_may_2	shop2_2	-460.00	99999999	0	0.000	0.00	
62	f2_mar_2	shop2_2	-542.83	500	0	125.000	-67853.75	
63	f2_apr_2	shop2_2	-559.19	500	0	177.500	-99256.23	
64	f2_may_2	shop2_2	-519.06	500	0	472.500	-245255.85	
							===========	
							-1282708.62	

Example 3.4. Using Constraints and More Alteration to Arc Data

Suppose the 25 -inch screen TVs produced at factory 1 in May can be sold at either shop with an increased profit of 40 dollars each. What is the new optimal solution?

```
title2 'Using Constraints and Altering arc data';
data new_arc4;
    set arc4;
    oldcost=_cost_;
    oldflow=_flow_;
    oldfc=_fcost_;
    if _tail_='f1_may_2' & (_head_='shop1_2' | _head_='shop2_2')
        then _cost_=_cost_-40;
    run;
proc intpoint
    bytes=1000000
    printlevel2=2
    arcdata=new_arc4 nodedata=node0
    condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
    conout=arc5;
    run;
proc print data=arc5;
    var _tail__ _head__ _cost_ _capac_ _lo_
        _supply_ _demand_ _name_
        _flow_ _fcost_ oldflow oldfc;
            /* to get this variable order */
    sum oldfc _fcost_;
    run;
```

The following messages appear on the SAS log:

```
NOTE: Number of nodes= 20.
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent
    Linear Programming problem solved by the Interior
    Point algorithm.
NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the
    problem.
NOTE: The preprocessor eliminated 9 constraint coefficients
```

from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to the problem to handle unrestricted variables, variables that are split, and constraint slack or surplus variables.
NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the sparse rows of the factored $A * A$ transpose. This includes fill-in.
NOTE: There are 65 operations of the form $u[i, j]=u[i, j]-u[q, j] * u[q, i] / u[q, q]$ to factorize the sparse rows of A * A transpose.

Iter Complem_aff	Complem-ity	Duality_gap	Tot_infeasb	Tot_infeasc Tot_infeasd		
0	-1.000000	178045680	0.833846	52835	39643	49592
1	51679271	22114244	0.911781	2979.752508	2235.802470	2678.044487
2	4360227	1397064	0.521965	0	$2.084022 \mathrm{E}-11$	46.964760
3	337615	239843	0.155358	0	0	8.067907
4	119497	59613	0.042674	0	0	1.263035
5	30689	20758	0.015076	0	0	0.430638
6	9107.182114	7099.343072	0.005192	0	0	0.109413
7	3406.632390	1496.513249	0.001098	0	0	0.003935
8	616.222707	155.883444	0.000114	0	0	0.000480
9	23.880446	1.372116	0.000001007	0	0	0
10	0.000755	0.000068819	$-4.28512 \mathrm{E}-10$	0	0	0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10 iterations.
NOTE: Objective $=-1295661.8$.
NOTE: The data set WORK.ARC5 has 64 observations and 17 variables.
NOTE: There were 64 observations read from the data set WORK.NEW_ARC4.
NOTE: There were 8 observations read from the data set WORK. NODEO.
NOTE: There were 21 observations read from the data set WORK. CON3.

Output 3.4.1. CONOUT=ARC5

Using Constraints and Altering arc data							
Obs	_tail_	_head	_cost_	_capac_	_lo_	_SUPPLY_	_DEMAND_
1	fact1_1	f1_apr_1	78.60	600	50	1000	-
2	f1_mar_1	f1_apr_1	15.00	50	0	.	.
3	f1_may_1	f1_apr_1	33.60	20	0	-	-
4	f2_apr_1	f1_apr_1	11.00	40	0	.	-
5	fact1_2	f1_apr_2	174.50	550	50	1000	-
6	f1_mar_2	f1_apr_2	20.00	40	0	.	-
7	f1_may_2	f1_apr_2	49.20	15	0	.	-
8	f2_apr_2	f1_apr_2	21.00	25	0	-	.
9	fact1_1	f1_mar_1	127.90	500	50	1000	-
10	f1_apr_1	f1_mar_1	33.60	20	0	.	.
11	f2_mar_1	f1_mar_1	10.00	40	0	${ }^{\text {• }}$.
12	fact1_2	f1_mar_2	217.90	400	40	1000	.
13	f1_apr_2	f1_mar_2	38.40	30	0	.	-
14	f2_mar_2	f1_mar_2	20.00	25	0	-	-
15	fact1_1	f1_may_1	90.10	400	50	1000	.
16	f1_apr_1	f1_may_1	12.00	50	0	.	.
17	f2_may_1	f1_may_1	13.00	40	0	${ }^{\circ}$	-
18	fact1_2	f1_may_2	113.30	350	40	1000	-
19	f1_apr_2	f1_may_2	18.00	40	0	.	.
20	f2_may_2	f1_may_2	13.00	25	0	-	-
21	f1_apr_1	f2_apr_1	11.00	99999999	0	.	-
22	fact2_1	f2_apr_1	62.40	480	35	850	.
23	f2_mar_1	f2_apr_1	18.00	30	0	.	-
24	f2_may_1	f2_apr_1	30.00	15	0	.	-
25	f1_apr_2	f2_apr_2	23.00	99999999	0	${ }^{\circ}$	-
26	fact2_2	f2_apr_2	196.70	680	35	1500	-
27	f2_mar_2	f2_apr_2	28.00	50	0	.	-
28	f2_may_2	f2_apr_2	64.80	15	0	.	.
29	f1_mar_1	f2_mar_1	11.00	99999999	0	.	.
30	fact2_1	f2_mar_1	88.00	450	35	850	-
31	f2_apr_1	f2_mar_1	20.40	15	0	.	.
32	f1_mar_2	f2_mar_2	23.00	99999999	0	.	.
33	fact2_2	f2_mar_2	182.00	650	35	1500	-
34	f2_apr_2	f2_mar_2	37.20	15	0	.	.
35	f1_may_1	f2_may_1	16.00	99999999	0	-	-
36	fact2_1	f2_may_1	128.80	250	35	850	.
37	f2_apr_1	f2_may_1	20.00	30	0	.	.
38	f1_may_2	f2_may_2	26.00	99999999	0	.	.
39	fact2_2	f2_may_2	181.40	550	35	1500	.
40	f2_apr_2	f2_may_2	38.00	50	0	.	${ }^{\circ}$
41	f1_mar_1	shop1_1	-327.65	250	0	.	900
42	f1_apr_1	shop1_1	-300.00	250	0	-	900
43	f1_may_1	shop1_1	-285.00	250	0	-	900
44	f2_mar_1	shop1_1	-297.40	250	0	-	900
45	f2_apr_1	shop1_1	-290.00	250	0	-	900
46	f2_may_1	shop1_1	-292.00	250	0	-	900
47	f1_mar_2	shop1_2	-559.76	99999999	0	-	900
48	f1_apr_2	shop1_2	-524.28	99999999	0	.	900
49	f1_may_2	shop1_2	-515.02	99999999	0	.	900
50	f2_mar_2	shop1_2	-567.83	500	0	.	900
51	f2_apr_2	shop1_2	-542.19	500	0	.	900
52	f2_may_2	shop1_2	-491.56	500	0	.	900
53	f1_mar_1	shop2_1	-362.74	250	0	-	900
54	f1_apr_1	shop2_1	-300.00	250	0	-	900
55	f1_may_1	shop2_1	-245.00	250	0	.	900
56	f2_mar_1	shop2_1	-272.70	250	0	-	900
57	f2_apr_1	shop2_1	-312.00	250	0	.	900
58	f2_may_1	shop2_1	-299.00	250	0	.	900
59	f1_mar_2	shop2_2	-623.89	99999999	0	-	1450
60	f1_apr_2	shop2_2	-549.68	99999999	0	.	1450
61	f1_may_2	shop2_2	-500.00	99999999	0	.	1450
62	f2_mar_2	shop2_2	-542.83	500	0	.	1450
63	f2_apr_2	shop2_2	-559.19	500	0	.	1450
64	f2_may_2	shop2_2	-519.06	500	0	-	1450

Example 3.5. Nonarc Variables in the Side Constraints

You can verify that the FACT2 MAR GIZMO constraint has a left-hand-side activity of 3,470 , which is not equal to the _RHS_ of this constraint. Not all of the 3,750 chips that can be supplied to factory 2 for March production are used. It is suggested that all the possible chips be obtained in March and those not used be saved for April production. Because chips must be kept in an air-controlled environment, it costs one dollar to store each chip purchased in March until April. The maximum number of chips that can be stored in this environment at each factory is 150 . In addition, a search of the parts inventory at factory 1 turned up 15 chips available for their March production.

Nonarc variables are used in the side constraints that handle the limitations of supply of Gizmo chips. A nonarc variable called $f 1$ unused chips has as a value the number of chips that are not used at factory 1 in March. Another nonarc variable, f2 unused chips, has as a value the number of chips that are not used at factory 2 in March. f1 chips from mar has as a value the number of chips left over from March used for production at factory 1 in April. Similarly, $\mathfrak{\text { f chips from mar has as a value }}$ the number of chips left over from March used for April production at factory 2 in April. The last two nonarc variables have objective function coefficients of 1 and upper bounds of 150 . The Gizmo side constraints are

```
3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0
```

The last side constraint states that the number of chips not used in March is not less than the number of chips left over from March and used in April. Here, this constraint is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems that most of the constraints are now equalities, so you specify DEFCONTYPE=EQ in the PROC INTPOINT statement from now on and provide constraint type data for constraints that are not "equal to" type, using the default TYPEOBS value _TYPE_ as the _COLUMN_ variable value to indicate observations that contain constraint type data. Also, from now on, the default RHSOBS value is used.

```
title2 'Nonarc Variables in the Side Constraints';
data con6;
    input _column_ &$17. _row_ &$15. _coef_ ;
    datalines;
prod f1 19 mar FACT1 MAR GIZMO
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
_RHS_ FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
_RHS_ FACT2 MAR GIZMO 3750
```

```
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
_RHS_ FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
_RHS_
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar
f2 chips from mar
_TYPE_
back f1 19 apl
back f1 25 apl
back f2 19 apl
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
    _TYPE_
    _RHS_
;
```

The nonarc variables $\mathfrak{f 1}$ chips from mar and $\mathfrak{f} 2$ chips from mar have objective function coefficients of 1 and upper bounds of 150 . There are various ways in which this information can be furnished to PROC INTPOINT. If there were a TYPE list variable in the CONDATA= data set, observations could be in the form

COLUMN_		_TYPE_	_ROW_	COEF_
f1 chips	from mar	objfn	\cdot	1
f1 chips from mar	upperbd	.	150	
f2 chips from mar	objfn	.	1	
f2 chips from mar	upperbd	.	150	

It is desirable to assign ID list variable values to all the nonarc variables:

```
data arc6;
    set arc5;
    drop oldcost oldfc oldflow _flow_ _fcost_ ;
    run;
data arc6_b;
    input _name_ &$17. _cost_ _capac_ factory key_id $ ;
    datalines;
f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;
```

```
proc append force
    base=arc6 data=arc6_b;
    run;
proc intpoint
    bytes=1000000
    printlevel2=2
    nodedata=node0 arcdata=arc6
    condata=con6 defcontype=eq sparsecondata
    conout=arc7;
    run;
```

The following messages appear on the SAS log:

NOTE: Number of nodes= 20						
NOTE: Number of supply nodes= 4						
NOTE: Number of demand nodes= 4						
NOTE: Total supply 4350 , total demand= 4150						
NOTE: Number of arcs= 64						
NOTE: Number of nonarc variables= 4 .						
NOTE: Number of <= side constraints= 1						
NOTE: Number of $==$ side constraints= 4						
NOTE: Number of >= side constraints= 1						
NOTE: Number of side constraint coefficients= 24						
	TE: The fol Linear Point a	owing messa rogramming gorithm.	es relate to roblem solved	the equival d by the Int	ent rior	
NOTE: Number of <= constraints= 1 .						
NOTE: Number of == constraints= 25						
NOTE: Number of >= constraints= 1 .						
NOTE: Number of constraint coefficients= 160						
NOTE: Number of variables= 72						
NOTE: After preprocessing, number of <= constraints= 1.						
NOTE: After preprocessing, number of == constraints= 24.						
NOTE: After preprocessing, number of >= constraints= 1						
NOTE: The preprocessor eliminated 1 constraints from the problem.						
NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.						
NOTE: 2 columns, 0 rows and 2 coefficients were added to the problem to handle unrestricted variables, variables that are split, and constraint slack or surplus variables.						
NOTE: There are 78 nonzero elements in A * A transpose.						
NOTE: Of the 26 rows and columns, 15 are sparse.						
NOTE: There are 87 nonzero superdiagonal elements in the sparse rows of the factored A * A transpose. This						
NOTE: There are 104 operations of the form $u[i, j]=u[i, j]-u[q, j] * u[q, i] / u[q, q]$ to factorize th sparse rows of A * A transpose.						
	Complem_aff	Complem-ity	Duality_gap	Tot_infeasb	Tot_infeasc	Tot_infeasd
0	-1.000000	182185121	0.837584	55030	37757	47382
1	56730833	28510760	0.910015	5004.066395	3433.344938	6917.139928
2	9604878	2589633	0.665677	0	1.309672E-10	226.047223
3	328091	309636	0.191136	0	0	26.943297
4	135892	89815	0.063031	0	0	6.389904
5	62039	31604	0.022877	0	0	0

```
\begin{tabular}{rrrrlrl}
6 & 16881 & 7606.584128 & 0.005568 & 0 & 0 & 0 \\
7 & 3753.426021 & 1918.980183 & 0.001408 & 0 & 0 & 0 \\
8 & 709.549939 & 330.027670 & 0.000242 & 0 & 0 & 0 \\
9 & 155.181759 & 36.697802 & 0.000026949 & 0 & 0 & 0 \\
10 & 3.865957 & 0.421161 & 0.000000309 & 0 & 0 & 0 \\
11 & 0.001557 & 0.000021177 & \(1.557982 \mathrm{E}-11\) & 0 & 0 & 0
\end{tabular}
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm
    performed 11 iterations.
NOTE: Objective = -1295542.742.
NOTE: The data set WORK.ARC7 has }68\mathrm{ observations and 14
    variables.
NOTE: There were }68\mathrm{ observations read from the data set
WORK.ARC6.
NOTE: There were 8 observations read from the data set
    WORK.NODEO.
NOTE: There were 31 observations read from the data set
WORK.CON6.
```

The optimal solution data set, CONOUT=ARC7, is given in Output 3.5.1.

```
proc print data=arc7;
    var _tail_ _head_ _name_ _cost_ _capac_ _lo_
        _flow_ _fcost_;
    sum _fcost_;
    run;
```

The optimal value of the nonarc variable $\mathfrak{f} 2$ unused chips is 280 . This means that although there are 3,750 chips that can be used at factory 2 in March, only 3,470 are used. As the optimal value of $\mathfrak{f 1}$ unused chips is zero, all chips available for production in March at factory 1 are used. The nonarc variable f2 chips from mar also has zero optimal value. This means that the April production at factory 2 does not need any chips that could have been held in inventory since March. However, the nonarc variable f1 chips from mar has value of 20. Thus, 3,490 chips should be ordered for factory 2 in March. Twenty of these chips should be held in inventory until April, then sent to factory 1.

Output 3.5.1. CONOUT=ARC7

Nonarc Variables in the Side Constraints								
Obs	_tail_	_head_	_name_	_cost_	_capac_	_10_	_FLOW_	_FCOST
1	fact1_1	f1_apr_1	prod f1 19 apl	78.60	600	50	540.000	42444.00
2	f1_mar_1	f1_apr_1		15.00	50	0	0.000	0.00
3	f1_may_1	f1_apr_1	back f1 19 may	33.60	20	0	0.000	0.00
4	f2_apr_1	f1_apr_1		11.00	40	0	0.000	0.00
5	fact1_2	f1_apr_2	prod f1 25 apl	174.50	550	50	250.000	43625.00
6	f1_mar_2	f1_apr_2		20.00	40	0	0.000	0.00
7	f1_may_2	f1_apr_2	back f1 25 may	49.20	15	0	0.000	0.00
8	f2_apr_2	f1_apr_2		21.00	25	0	25.000	525.00
9	fact1_1	f1_mar_1	prod f1 19 mar	127.90	500	50	338.333	43272.83
10	f1_apr_1	f1_mar_1	back f1 19 apl	33.60	20	0	20.000	672.00
11	f2_mar_1	f1_mar_1		10.00	40	0	40.000	400.00
12	fact1_2	f1_mar_2	prod f1 25 mar	217.90	400	40	400.000	87160.00
13	f1_apr_2	f1_mar_2	back f1 25 apl	38.40	30	0	30.000	1152.00
14	f2_mar_2	f1_mar_2		20.00	25	0	25.000	500.00
15	fact1_1	f1_may_1		90.10	400	50	116.667	10511.67
16	f1_apr_1	f1_may_1		12.00	50	0	0.000	0.00
17	f2_may_1	f1_may_1		13.00	40	0	0.000	0.00
18	fact1_2	f1_may_2		113.30	350	40	350.000	39655.00
19	f1_apr_2	f1_may_2		18.00	40	0	0.000	0.00
20	f2_may_2	f1_may_2		13.00	25	0	0.000	0.00
21	f1_apr_1	f2_apr_1		11.00	99999999	0	20.000	220.00
22	fact2_1	f2_apr_1	prod f2 19 apl	62.40	480	35	480.000	29952.00
23	f2_mar_1	f2_apr_1		18.00	30	0	0.000	0.00
24	f2_may_1	f2_apr_1	back f2 19 may	30.00	15	0	0.000	0.00
25	f1_apr_2	f2_apr_2		23.00	99999999	0	0.000	0.00
26	fact2_2	f2_apr_2	prod f2 25 apl	196.70	680	35	577.500	113594.25
27	f2_mar_2	f2_apr_2		28.00	50	0	0.000	0.00
28	f2_may_2	f2_apr_2	back f2 25 may	64.80	15	0	0.000	0.00
29	f1_mar_1	f2_mar_1		11.00	99999999	0	0.000	0.00
30	fact2_1	f2_mar_1	prod f2 19 mar	88.00	450	35	290.000	25520.00
31	f2_apr_1	f2_mar_1	back f2 19 apl	20.40	15	0	0.000	0.00
32	f1_mar_2	f2_mar_2		23.00	99999999	0	0.000	0.00
33	fact2_2	f2_mar_2	prod f2 25 mar	182.00	650	35	650.000	118300.00
34	f2_apr_2	f2_mar_2	back f2 25 apl	37.20	15	0	0.000	0.00
35	f1_may_1	f2_may_1		16.00	99999999	0	115.000	1840.00
36	fact2_1	f2_may_1		128.80	250	35	35.000	4508.00
37	f2_apr_1	f2_may_1		20.00	30	0	0.000	0.00
38	f1_may_2	f2_may_2		26.00	99999999	0	0.000	0.00
39	fact2_2	f2_may_2		181.40	550	35	122.500	22221.50
40	f2_apr_2	f2_may_2		38.00	50	0	0.000	0.00
41	f1_mar_1	shop1_1		-327.65	250	0	148.333	-48601.42
42	f1_apr_1	shop1_1		-300.00	250	0	250.000	-75000.00
43	f1_may_1	shop1_1		-285.00	250	0	1.667	-475.00
44	f2_mar_1	shop1_1		-297.40	250	0	250.000	-74350.00
45	f2_apr_1	shop1_1		-290.00	250	0	250.000	-72500.00
46	f2_may_1	shop1_1		-292.00	250	0	0.000	0.00
47	f1_mar_2	shop1_2		-559.76	99999999	0	0.000	0.00
48	f1_apr_2	shop1_2		-524.28	99999999	0	0.000	0.00
49	f1_may_2	shop1_2		-515.02	99999999	0	347.500	-178969.45
50	f2_mar_2	shop1_2		-567.83	500	0	500.000	-283915.00
51	f2_apr_2	shop1_2		-542.19	500	0	52.500	-28464.98
52	f2_may_2	shop1_2		-491.56	500	0	0.000	0.00
53	f1_mar_1	shop2_1		-362.74	250	0	250.000	-90685.00
54	f1_apr_1	shop2_1		-300.00	250	0	250.000	-75000.00
55	f1_may_1	shop2_1		-245.00	250	0	0.000	0.00
56	f2_mar_1	shop2_1		-272.70	250	0	0.000	0.00
57	f2_apr_1	shop2_1		-312.00	250	0	250.000	-78000.00
58	f2_may_1	shop2_1		-299.00	250	0	150.000	-44850.00
59	f1_mar_2	shop2_2		-623.89	99999999	0	455.000	-283869.95
60	f1_apr_2	shop2_2		-549.68	99999999	0	245.000	-134671.60
61	f1_may_2	shop2_2		-500.00	99999999	0	2.500	-1250.00
62	f2_mar_2	shop2_2		-542.83	500	0	125.000	-67853.75
63	f2_apr_2	shop2_2		-559.19	500	0	500.000	-279595.00
64	f2_may_2	shop2_2		-519.06	500	0	122.500	-63584.85
65			f1 chips from mar	1.00	150	0	20.000	20.00
66			f1 unused chips	0.00	99999999	0	0.000	0.00
67			f2 chips from mar	1.00	150	0	0.000	0.00
68			f2 unused chips	0.00	99999999	0	280.000	0.00
								$\begin{aligned} & ========== \\ & -1295542.74 \end{aligned}$

Example 3.6. Solving an LP Problem with Data in MPS Format

In this example, PROC INTPOINT is ultimately used to solve an LP. But prior to that, there is SAS code that is used to read a MPS format file and initialize an input SAS data set. MPS was an optimization package developed for IBM computers many years ago and the format by which data had to be supplied to that system became the industry standard for other optimization software packages, including those developed recently. The MPS format is described in Murtagh (1981). If you have an LP which has data in MPS format in a file /your-directory/your-filename.dat, then the following SAS code should be run:

```
filename w '/your-directorys/your-filename.dat';
data raw;
    infile w lrecl=80 pad;
    input field1 $ 2-3 field2 $ 5-12 field3 $ 15-22
        field4 25-36 field5 $ 40-47 field6 50-61;
    run;
%sasmpsxs;
data lp;
    set;
    if _type_="FREE" then _type_="MIN";
    if lag(_type_)="*HS" then _type_="RHS";
    run;
proc sort data=lp;
    by _col_;
    run;
proc intpoint
    arcdata=lp
    condata=lp sparsecondata rhsobs=rhs grouped=condata
    conout=solutn /* SAS data set for the optimal solution */
    bytes=20000000
    nnas=1700 ncoefs=4000 ncons=700
    printlevel2=2 memrep;
    run;
proc lp
    data=lp sparsedata
    endpause time=3600 maxit1=100000 maxit 2=100000;
    run;
    show status;
    quit;
```

You will have to specify the appropriate path and file name in which your MPS format data resides.

SASMPSXS is a SAS macro provided within SAS/OR software. The MPS format resembles the sparse format of the CONDATA= data set for PROC INTPOINT. The SAS macro SASMPSXS examines the MPS data and transfers it into a SAS data set while automatically taking into account how the MPS format differs slightly from PROC INTPOINT's sparse format.

The parameters NNAS $=1700$, NCOEFS $=4000$, and NCONS=700 indicate the approximate (overestimated) number of variables, coefficients and constraints this model has. You must change these to your problems dimensions. Knowing these, PROC INTPOINT is able to utilize memory better and read the data faster. These parameters are optional.

The PROC SORT preceding PROC INTPOINT is not necessary, but sorting the SAS data set can speed up PROC INTPOINT when it reads the data. After the sort, data for each column is grouped together. GROUPED=condata can be specified.

For small problems, presorting and specifying those additional options is not going to greatly influence PROC INTPOINT's run time. However, when problems are large, presorting and specifying those additional options can be very worthwhile.

If you generate the model yourself, you will be familiar enough with it to know what to specify for the RHSOBS= parameter. If the value of the SAS variable in the COLUMN list is equal to the character string specified as the RHSOBS= option, the data in that observation is interpreted as right-hand-side data as opposed to coefficient data. If you do not know what to specify for the RHSOBS= option, you should first run PROC LP and optionally set MAXIT1=1 and MAXIT2=1. PROC LP will output a Problem Summary that includes the line

Rhs Variable rhs-charstr

BYTES $=20000000$ is the size of working memory PROC INTPOINT is allowed.
The options PRINTLEVEL2=2 and MEMREP indicate that you want to see an iteration \log and messages about memory usage. Specifying these options is optional.

References

George, A., Liu, J., and Ng, E. (2001), "Computer Solution of Positive Definite Systems," Unpublished book obtainable from authors.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), "On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming," SIAM Journal of Optimization, 2, 435-449.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice, McGraw-Hill Inc.

Reid, J. K. (1975), "A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Programming Bases," Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear Optimization, Chichester, England: John Wiley \& Sons.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.
Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John Wiley \& Sons.

186 - Chapter 3. The INTPOINT Procedure

Chapter 4
 The LP Procedure

Chapter Contents

OVERVIEW 189
GETTING STARTED 191
An Introductory Example 192
An Integer Programming Example 196
An MPS Format Conversion Example 198
SYNTAX 199
Functional Summary 200
PROC LP Statement 204
COEF Statement 214
COL Statement 214
ID Statement 214
IPIVOT Statement 215
PIVOT Statement 215
PRINT Statement 215
QUIT Statement 217
RANGE Statement 217
RESET Statement 218
RHS Statement 218
RHSSEN Statement 219
ROW Statement 219
RUN Statement 220
SHOW Statement 220
TYPE Statement 220
VAR Statement 222
DETAILS 223
Missing Values 223
Dense Data Input Format 223
Sparse Data Input Format 224
Converting MPS Format 226
The Reduced Costs, Dual Activities, and Current Tableau 229
Macro Variable _ORLP_ 229
Pricing 231
Scaling 232
Preprocessing 232
Integer Programming 233
Sensitivity Analysis 241
Range Analysis 244
Parametric Programming 244
Interactive Facilities 246
Memory Management 247
Output Data Sets 248
Input Data Sets 250
Displayed Output 251
ODS Table and Variable Names 254
EXAMPLES 256
Example 4.1. An Oil Blending Problem 256
Example 4.2. A Sparse View of the Oil Blending Problem 261
Example 4.3. Analyzing the Sensitivity of the Solution to Changes in the Objective Coefficients 265
Example 4.4. Additional Analysis of the Sensitivity of the Solution to Changes in the Objective Coefficients 267
Example 4.5. Price Parametric Programming for the Oil Blending Problem 269
Example 4.6. Special Ordered Sets and the Oil Blending Problem 271
Example 4.7. Goal-Programming a Product Mix Problem 274
Example 4.8. A Simple Integer Program 280
Example 4.9. An Infeasible Problem 283
Example 4.10. Restarting an Integer Program 286
Example 4.11. Alternative Search of the Branch-and-Bound Tree 291
Example 4.12. An Assignment Problem 295
Example 4.13. A Scheduling Problem 302
Example 4.14. A Multicommodity Transshipment Problem with Fixed Charges309312

Chapter 4
 The LP Procedure

Overview

The LP procedure solves linear programs, integer programs, and mixed-integer programs. It also performs parametric programming, range analysis, and reports on solution sensitivity to changes in the right-hand-side constants and price coefficients.
The LP procedure provides various control options and solution strategies. It also provides the functionality to produce various kinds of intermediate and final solution information. The procedure's interactive features enable you to take control of the problem solving process. During linear or integer iterations, for example, you can stop the procedure at intermediate stages and examine current results. If necessary, you can change options or strategies and resume the execution of the procedure.

The LP procedure is used to optimize a linear function subject to linear and integer constraints. Specifically, the LP procedure solves the general mixed-integer program of the form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x\{\geq,=, \leq\} b \\
& \ell \leq x \leq u \\
& x_{i} \text { is integer, } i \in \mathcal{S}
\end{array}
$$

where

- A is an $m \times n$ matrix of technological coefficients
- b is an $m \times 1$ matrix of right-hand-side (RHS) constants
- c is an $n \times 1$ matrix of objective function coefficients
- x is an $n \times 1$ matrix of structural variables
- l is an $n \times 1$ matrix of lower bounds on x
- u is an $n \times 1$ matrix of upper bounds on x
- \mathcal{S} is a subset of the set of indices $\{1, \ldots, n\}$

Linear programs (when \mathcal{S} is empty) are denoted by (LP). For these problems, the procedure employs the two-phase revised simplex method, which uses the BartelsGolub update of the LU decomposed basis matrix to pivot between feasible solutions (Bartels 1971). In phase 1, PROC LP finds a basic feasible solution to (LP), while in phase 2, PROC LP finds an optimal solution, $x^{o p t}$. The procedure implicitly handles unrestricted variables, lower-bounded variables, upper-bounded variables, and ranges on constraints. When no explicit lower bounds are specified, PROC LP assumes that all variables are bounded below by zero.

When a variable is specified as an integer variable, \mathcal{S} has at least one element. The procedure then uses the branch-and-bound technique for optimization.

The relaxed problem (the problem with no integer constraints) is solved initially using the primal algorithm described previously. Constraints are added in defining the subsequent descendant problems in the branch-and-bound tree. These problems are then solved using the dual simplex algorithm. Dual pivots are referred to as phase 3 pivots.

The preprocessing option enables the procedure to identify redundant and infeasible constraints, fix variables, and reduce the feasible region before solving a problem. For linear programs, the option often can reduce the number of constraints and variables, leading to a quicker elapsed solution time and improved reliability. For integer programs, it often reduces the gap between an integer program and its relaxed linear program, which will likely lead to a reduced branch-and-bound tree and a quicker CPU time. In general, it provides users an alternative to solving large, complicated operations research problems.

The LP procedure can also analyze the sensitivity of the solution $x^{o p t}$ to changes in both the objective function and the right-hand-side constants. There are three techniques available for this analysis: sensitivity analysis, parametric programming, and range analysis. Sensitivity analysis enables you to examine the size of a perturbation to the right-hand-side or objective vector by an arbitrary change vector for which the basis of the current optimal solution remains optimal.

Parametric programming, on the other hand, enables you to specify the size of the perturbation beforehand and examine how the optimal solution changes as the desired perturbation is realized. With this technique, the procedure pivots to maintain optimality as the right-hand-side or objective vector is perturbed beyond the range for which the current solution is optimal. Range analysis is used to examine the range of each right-hand-side value or objective coefficient for which the basis of the current optimal solution remains optimal.

The LP procedure can also save both primal and dual solutions, the current tableau, and the branch-and-bound tree in SAS data sets. This enables you to generate solution reports and perform additional analyses with the SAS System. Although PROC LP reports solutions, this feature is particularly useful for reporting solutions in formats tailored to your specific needs. Saving computational results in a data set also enables you to continue executing a problem not solved because of insufficient time or other computational problems.

The LP procedure uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for displaying and controlling the output from SAS procedures. ODS enables you to modify the headers, column names, data formats, and layouts of the output tables in PROC LP.

There are no restrictions on the problem size in the LP procedure. The number of constraints and variables in a problem that PROC LP can solve depends on the host platform, the available memory, and the available disk space for utility data sets.

Getting Started

PROC LP expects the definition of one or more linear, integer, or mixed-integer programs in an input data set. There are two formats, a dense format and a sparse format, for this data set.

In the dense format, a model is expressed in a similar way as it is formulated. Each SAS variable corresponds to a model's column, and each SAS observation corresponds to a model's row. A SAS variable in the input data set is one of the following:

- a type variable
- an id variable
- a structural variable
- a right-hand-side variable
- a right-hand-side sensitivity analysis variable or
- a range variable

The type variable tells PROC LP how to interpret the observation as a part of the mathematical programming problem. It identifies and classifies objectives, constraints, and the rows that contain information of variables like types, bounds, and so on. PROC LP recognizes the following keywords as values for the type variable: MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRCT, LOWERBD, UPPERBD, FIXED, INTEGER, BINARY, BASIC, PRICESEN, and FREE. The values of the id variable are the names of the rows in the model. The other variables identify and classify the columns with numerical values.
The sparse format to PROC LP is designed to enable you to specify only the nonzero coefficients in the description of linear programs, integer programs, and mixedinteger programs. The SAS data set that describes the sparse model must contain at least four SAS variables:

- a type variable
- a column variable
- a row variable and
- a coefficient variable

Each observation in the data set associates a type with a row or a column, or defines a coefficient or a numerical value in the model, or both. In addition to the keywords in the dense format, PROC LP also recognizes the keywords RHS, RHSSEN, and RANGE as values of the type variable. The values of the row and column variables are the names of the rows and columns in the model. The values of the coefficient variables give the coefficients or other numerical data. The SAS data set can contain multiple pairs of row and coefficient variables. In this way, more information about the model can be specified in each observation in the data set. See the "Sparse Data Input Format" section on page 224 for further discussion.

With both the dense and sparse formats for model specification, the observation order is not important. This feature is particularly useful when using the sparse model input.

An Introductory Example

A simple blending problem illustrates the dense and sparse input formats and the use of PROC LP. A step in refining crude oil into finished oil products involves a distillation process that splits crude into various streams. Suppose there are three types of crude available: Arabian light, Arabian heavy, and Brega. These types of crude are distilled into light naphtha, intermediate naphtha, and heating oil. These in turn are blended into jet fuel using one of two recipes. What amounts of the three crudes maximize the profit from producing jet fuel? A formulation to answer this question is as follows:

$$
\begin{aligned}
& \max -175 \text { a_light }-165 \text { a_heavy }-205 \text { brega }+300 \text { jet_ } 1+300 \text { jet_ } 2 \\
& \text { subject to } \quad .035 \text { a_light }+.03 \text { a_heavy }+.045 \text { brega }=\text { naphthal } \\
& .1 \text { a_light }+.075 \text { a_heavy }+.135 \text { brega }=\text { naphthai } \\
& .39 \text { a_light }+.3 \text { a_heavy }+.43 \text { brega }=\text { heatingo } \\
& .3 \text { naphthai }+.7 \text { heatingo }=\text { jet_1 } \\
& .2 \text { naphthal }+.8 \text { heatingo }=\text { jet_2 } \\
& \text { a_light } \leq 110 \\
& \text { a_heavy } \leq 165 \\
& \text { brega } \leq 80 \\
& \text { a_light, a_heavy, brega, naphthai, } \\
& \text { naphthal, heatingo, jet_1, jet_2 } \geq 0
\end{aligned}
$$

The following data set gives the representation of this formulation. Notice that the variable names are the structural variables, the rows are the constraints, and the coefficients are given as the values for the structural variables.

```
data;
    input _id_ $17.
        a_light a_heavy brega naphthal naphthai
            heatingo jet_1 jet_2
            _type_ $ _rhs_;
    datalines;
profit
naphtha l conv 035 030 045 1 0 0
.045-1-0 0 0-0 eq
naphtha_i_conv .100 .075 .135 0-1 0 0 0 eq 0
heating_o_conv . 390.300.430 0 0 -1 0 0 0 eq 0
recipe_1 2 0 0
recipe_2
available 110 165 80 . . . . . upperbd .
```

;

The same model can be specified in the sparse format, as follows. This format enables you to omit the zero coefficients.

```
data;
    format _type_ $8. _col_ $8. _row_ $16. ;
    input _type_ $_col_ $_row_ $ _coef_ ;
    datalines;
max 
    a_light available 110
    a_heavy profit -165
        a_heavy napha_l_conv . 030
        a_heavy napha_i_conv . 075
        a_heavy heating_oil_conv . }30
        a_heavy available 165
        brega profit -205
        brega napha_l_conv . 045
        brega napha_i_conv . }13
        brega heating_oil_conv . 430
        brega available 80
        naphthal napha_l_conv -1
        naphthal recipe_2 .2
        naphthai napha_i_conv -1
        naphthai recipe_1 . }
        heatingo heating_oil_conv -1
        heatingo recipe_1 .7
        heatingo recipe_2 . 8
        jet_1 profit 300
        jet_1 recipe_1 -1
        jet_2 profit 300
        jet_2 recipe_2 -1
        _rhs_ recipe_1 0
```

Because the input order of the model into PROC LP is unimportant, this model can be specified in sparse input in arbitrary row order. Example 4.2 in the "Examples" section demonstrates this.

The dense and sparse forms of model input give you flexibility to generate models using the SAS language. The dense form of the model is solved with the statements

```
proc lp;
run;
```

The sparse form is solved with the statements

```
proc lp sparsedata;
run;
```

Example 4.1 and Example 4.2 in the "Examples" section continue with this problem.

Problem Input

As default, PROC LP uses the most recently created SAS data set as the problem input data set. However, if you want to input the problem from a specific SAS data set, use the DATA= option. For example, if the previous dense form data set has the name DENSE, the PROC LP statements can be written as

```
proc lp data=dense;
run;
```


Problem Definition Statements

In the previous dense form data set, the _ID_, _TYPE_, and _RHS_ variables are special variables in PROC LP. They stand for id variable, type variable, and right-hand-side variable. If you replace those variable names with, for example, ROWNAME, TYPE, and RHS, you need the problem definition statements (ID, TYPE and RHS) in PROC LP:

```
proc lp;
    id rowname;
    type type;
    rhs rhs;
run;
```

Other special variables for the dense format are _ RHSSEN_ and _RANGE_, which identify the vectors for the right-hand-side sensitivity and range analyses. The corresponding statements are the RHSSEN and RANGE statements. (Notice that a variable name can be identical to a statement name.)

In the same way, if you replace the variables _COL_, _ROW_, _TYPE _COEF_ in the previous sparse form data set by COLUMN, ROW, TYPE, and COEF, you need the problem definition statements (COL, ROW, TYPE, and COEF) in PROC LP.

```
proc lp sparsedata;
    col column;
    row row;
    type type;
    coef coef;
run;
```

In the sparse form data set, the value '_RHS_' under the variable _COL_ is a special column name, which represents the model's right-hand-side column. If you replace it by a value ' R ', the PROC LP statements would be

```
proc lp sparsedata;
    rhs r;
run;
```

Other special column names for the sparse format are '_RHSSEN_' and '_RANGE_'. The corresponding statements are the RHSSEN and RANGE statements.

PROC LP is case insensitive to variable names and all character values, including the row and column names in the sparse format. The order of the problem definition statements is not important.

For the dense format, a model's row names appear as character values in a SAS data set. For the sparse format, both the row and the column names of the model appear as character values in the data set. Thus, you can put spaces or other special characters in the names. When referring to these names in the problem definition statement or other LP statements, you must use single or double quotes around them. For example, if you replace '_RHS_' by 'R H S' in the previous sparse form data set, the PROC LP statements would become

```
proc lp sparsedata;
    rhs "r h s";
run;
```


LP Options

The specifications SPARSEDATA and DATA= in the previous examples are PROC LP options. PROC LP options include

- data set options
- display control options
- interactive control options
- preprocessing options
- branch-and-bound control options
- sensitivity/parametric/ranging control options
- simplex options

Interactive Processing

Interactive control options include READPAUSE, ENDPAUSE, and so forth. You can run PROC LP interactively using those options. For example, for the blending problem example in the dense form, you can first pause the procedure before iterations start with the READPAUSE option. The PROC LP statements are

```
proc lp readpause;
run;
```

When the procedure pauses, you run the PRINT statement to display the initial technological matrix and see if the input is correct. Then you run the PIVOT statement to do one simplex pivot and pause. After that you use the SHOW statement to check the current solution status. Then you apply the RESET statement to tell the procedure to stop as soon as it finds a solution. Now you use the RUN statement to continue the execution. When the procedure stops, you run the PRINT statement again to do a price range analysis and QUIT the procedure. Use a SAS \%PUT statement to display the contents of PROC LP's macro variable, _ORLP_, which contains iterations and solution information. What follows are the complete statements in batch mode:

```
proc lp readpause;
run;
print matrix(,); /* display all rows and columns. */
pivot;
show status;
reset endpause;
run;
print rangeprice;
quit;
%put &_orlp_;
```

Note: You can force PROC LP to pause during iterations by using the CTRL-BREAK key.

An Integer Programming Example

The following is a simple mixed-integer programming problem. Details can be found in Example 4.8 in the "Examples" section.

```
data;
    format _row_ $10.;
    input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
    datalines;
\begin{tabular}{lrrrrl} 
object & .25 & .75 & -100 & -75 max &. \\
cooking & 15 & 40 & 0 & 0 le & 27000 \\
color & 0 & 56.25 & 0 & 0 & le \\
package & 18.75 & 0 & 0 & 0 & 27000 \\
condiments & 12 & 50 & 0 & 0 & le \\
chocolate & 1 & 0 & -10000 & 0 & 27000 \\
gum le & 0 & 1 & 0 & -10000 le & 0 \\
only_one & 0 & 0 & 1 & 1 eq & 1 \\
binary &. &. & 1 & 2 binary &.
\end{tabular}
;
```

The row with 'binary' type indicates that this problem is a mixed-integer program and all the integer variables are binary. The integer values of the row set an ordering
for PROC LP to pick the branching variable when VARSELECT=PRIOR is chosen. Smaller values will have higher priorities. The _ROW_ variable here is an alias of the _ID_ variable.

This problem can be solved with the following statements:

```
proc lp canselect=lifo backtrack=obj varselect=far endpause;
run;
quit;
%put &_orlp_;
```

The options CANSELECT=, BACKTRACK=, and VARSELECT= specify the rules for picking the next active problem and the rule to choose the branching variable. In this example, the values LIFO, OBJ and FAR serve as the default values, so the three options can be omitted from the PROC LP statement. The following is the output from the \%PUT statement:

```
STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=3
    INT_FEAS=2 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
    PHASE3_ITER=5
```

Figure 4.1. The Output of _ORLP_

Preprocessing

Using the PREPROCESS = option, you can apply the preprocessing techniques to pre-solve and then solve the preceding mixed-integer program:

```
proc lp preprocess=1 endpause;
run;
quit;
%put &_orlp_;
```

The preprocessing statistics are written to the SAS \log file as follows:

```
NOTE: Preprocessing 1 ...
NOTE: 2 upper bounds decreased.
NOTE: 2 coefficients reduced.
NOTE: Preprocessing 2 ...
NOTE: 2 constraints eliminated.
NOTE: Preprocessing done.
```

The new output _ORLP_ is as follows:

```
STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=0
    INT_FEAS=1 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
    PHASE3_ITER=0
```

Figure 4.2. The Output of _ORLP_ with Preprocessing Option On
In this example, the number of integer iterations (INT_ITER=) is zero, which means that the preprocessing has reduced the gap between the relaxed linear problem and the mixed-integer program to zero.

An MPS Format Conversion Example

If your model input is in MPS input format, you can convert it to the sparse input format of PROC LP using the SAS macro function SASMPSXS. For example, if your have an MPS file called MODEL.MPS and it is stored in the directory $\mathrm{C}:$ IOR on a PC, the following program can help you to convert the file and solve the problem.

```
%sasmpsxs(mpsfile="c:\or\model.mps",lpdata=lp);
data;
    set lp;
    retain i=1;
    if _type_="FREE" and i=1 then
        do;
            _type_="MIN";
            i=0;
            end;
run;
proc lp sparsedata;
run;
```

In the MPS input format, all objective functions, price change rows, and free rows have the type ' N '. The SASMPSXS macro marks them as 'FREE' rows. After the conversion, you must run a DATA step to identify the objective rows and price change rows. In this example, assume that the problem is one of minimization and the first 'FREE' row is an objective row.

Syntax

Below are statements used in PROC LP, listed in alphabetical order as they appear in the text that follows.

```
PROC LP options;
    COEF variables;
    COL variable ;
    ID variable(s);
    IPIVOT;
    PIVOT;
    PRINT options;
    QUIT options;
    RANGE variable ;
    RESET options;
    RHS variables;
    RHSSEN variables;
    ROW variable(s);
    RUN;
    SHOW options;
    TYPE variable;
    VAR variables;
```

The TYPE, ID (or ROW), VAR, RHS, RHSSEN, and RANGE statements are used for identifying variables in the problem data set when the model is in the dense input format. In the dense input format, a model's variables appear as variables in the problem data set. The TYPE, ID (or ROW), and RHS statements can be omitted if the input data set contains variables _TYPE_, _ID_ (or _ROW_), and _RHS_; otherwise, they must be used. The VAR statement is optional. When it is omitted, PROC LP treats all numeric variables that are not explicitly or implicitly included in RHS, RHSSEN, and RANGE statements as structural variables. The RHSSEN and RANGE statements are optional statements for sensitivity and range analyses. They can be omitted if the input data set contains the _RHSSEN_ and _RANGE_ variables.

The TYPE, COL, ROW (or ID), COEF, RHS, RHSSEN, and RANGE statements are used for identifying variables in the problem data set when the model is in the sparse input format. In the sparse input format, a model's rows and columns appear as observations in the problem data set. The TYPE, COL, ROW (or ID), and COEF statements can be omitted if the input data set contains the _TYPE_ and _COL_ variables, as well as variables beginning with the prefixes _ROW (or _ID) and _COEF. Otherwise, they must be used. The RHS, RHSSEN, and RANGE statements identify the corresponding columns in the model. These statements can be omitted if there are observations that contain the RHS, RHSSEN, and RANGE types or the _RHS_, _RHSSEN_, and _RANGE_ column values.

The SHOW, RESET, PRINT, QUIT, PIVOT, IPIVOT, and RUN statements are especially useful when executing PROC LP interactively. However, they can also be used in batch mode.

Functional Summary

The statements and options available with PROC LP are summarized by purpose in the following table.

Table 4.1. Functional Summary

Description
 Statement Option

Interactive Statements:

perform one integer pivot and pause IPIVOT
perform one simplex pivot and pause
display information at current iteration
terminate processing immediately
reset options specified
start or resume optimization
show settings of options
PIVOT
PRINT
QUIT
RESET
RUN
SHOW

Variable Lists:

variables containing coefficients (sparse)
variable containing column names (sparse)
alias for the ROW statement
variable (column) containing the range constant
for the dense (sparse) format
variables (columns) containing RHS constants for
RHS
the dense (sparse) format
variables (columns) defining RHS change vectors
RHSSEN
for the dense (sparse) format
variable containing names of constraints and ob-
ROW
jective functions (names of rows) for the dense (sparse) format
variable containing the type of each observation
structural variables (dense)
TYPE
VAR

Data Set Options:

active nodes input data set
active nodes output data set
input data set
dual output data set
primal input data set
primal output data set
sparse format data input flag
tableau output data set

Display Control Options:

display iteration log
nonzero tolerance displaying
inverse of FLOW option
inverse of PARAPRINT option

PROC LP	ACTIVEIN=
PROC LP	ACTIVEOUT=
PROC LP	DATA=
PROC LP	DUALOUT=
PROC LP	PRIMALIN=
PROC LP	PRIMALOUT=
PROC LP	SPARSEDATA
PROC LP	TABLEAUOUT=

PROC LP	FLOW
PROC LP	FUZZ $=$
PROC LP	NOFLOW
PROC LP	NOPARAPRINT

Description

omit some displaying
inverse of TABLEAUPRINT
parametric programming displaying
inverse of NOPRINT
iteration frequency of display
level of display desired
display the final tableau

Interactive Control Options:

pause before displaying the solution pause after first feasible solution pause frequency of integer solutions pause frequency of integer iterations inverse of ENDPAUSE inverse of FEASIBLEPAUSE pause frequency of iterations pause if within specified proximity pause after data is read

Preprocessing Options:

do not perform preprocessing preprocessing error tolerance limit preprocessing iterations perform preprocessing techniques

Branch-and-Bound (BB) Control Options: perform automatic node selection technique backtrack strategy to be used branch on binary variables first active node selection strategy comprehensive node selection control parameter backtrack related technique measure for pruning BB tree integer tolerance limit integer iterations measure for pruning BB tree
order of two branched nodes in adding to BB tree inverse of AUTO inverse of BINFST inverse of POSTPROCESS
limit number of branching variables
measure for pruning BB tree
perform variables fixing technique percentage used in updating WOBJECTIVE compression algorithm for storing active nodes

Statement Option

PROC LP NOPRINT
PROC LP NOTABLEAUPRINT
PROC LP PARAPRINT
PROC LP PRINT
PROC LP PRINTFREQ= PROC LP PRINTLEVEL=
PROC LP TABLEAUPRINT

PROC LP ENDPAUSE
PROC LP FEASIBLEPAUSE
PROC LP IFEASIBLEPAUSE=
PROC LP IPAUSE=
PROC LP NOENDPAUSE
PROC LP NOFEASIBLEPAUSE
PROC LP PAUSE=
PROC LP PROXIMITYPAUSE=
PROC LP READPAUSE

PROC LP	NOPREPROCESS
PROC LP	PEPSILON=
PROC LP	PMAXIT=
PROC LP	PREPROCESS

PROC LP	AUTO
PROC LP	BACKTRACK=
PROC LP	BINFST
PROC LP	CANSELECT=
PROC LP	CONTROL=
PROC LP	DELTAIT=
PROC LP	DOBJECTIVE=
PROC LP	IEPSILON=
PROC LP	IMAXIT=
PROC LP	IOBJECTIVE=
PROC LP	LIFOTYPE=
PROC LP	NOAUTO
PROC LP	NOBINFST
PROC LP	NOPOSTPROCESS
PROC LP	PENALTYDEPTH=
PROC LP	POBJECTIVE=
PROC LP	POSTPROCESS
PROC LP	PWOBJECTIVE=
PROC LP	TREETYPE=

Description	Statement	Option
branching variable selection strategy delay examination of some active nodes	PROC LP	VARSELECT=
	PROC LP	WOBJECTIVE=
Sensitivity/Parametric/Ranging Control Options:		
inverse of RANGEPRICE	PROC LP	NORANGEPRICE
inverse of RANGERHS	PROC LP	NORANGERHS
limit perturbation of the price vector	PROC LP	PRICEPHI=
range analysis on the price coefficients	PROC LP	RANGEPRICE
range analysis on the RHS vector	PROC LP	RANGERHS
limit perturbation of the RHS vector	PROC LP	RHSPHI=
Simplex Algorithm Control Options:	PROC LP	DEVEX
use devex method	PROC LP	EPSILON=
general error tolerance	PROC LP	GOALPROGRAM
perform goal programming	PROC LP	INFINITY=
largest number used in computation	PROC LP	INVFREQ=
reinversion frequency	PROC LP	INVTOL=
reinversion tolerance		
simultaneously set MAXIT1, MAXIT2, MAXIT3	PROC LP	MAXIT=
and IMAXIT values		
limit phase 1 iterations	PROC LP	MAXIT1=
limit phase 2 iterations	PROC LP	MAXIT2=
limit phase 3 iterations	PROC LP	MAXIT3=
inverse of devex	PROC LP	NODEVEX
restore basis after parametric programming	PROC LP	PARARESTORE
weight of the phase 2 objective function in phase 1	PROC LP	PHASEMIX=
multiple pricing strategy	PROC LP	PRICETYPE=
number of columns to subset in multiple pricing	PROC LP	PRICE=
limit the number of iterations randomly selecting	PROC LP	RANDOMPRICEMULT=
each entering variable during phase 1		
zero tolerance in ratio test	PROC LP	REPSILON=
scaling type to be performed	PROC LP	SCALE=
zero tolerance in LU decomposition	PROC LP	SMALL=
time pause limit	PROC LP	TIME=
control pivoting during LU decomposition	PROC LP	U=

RESET Statement Options:

The RESET statement supports the same options as the PROC LP statement except for the DATA=, PRIMALIN=, and ACTIVEIN= options, and supports the following additional options:
new variable lower bound during phase 3
new variable upper bound during phase 3

RESET LOWER=
RESET UPPER=

Description

PRINT Statement Options:

display the best integer solution
display variable summary for specified columns
display variable summary and price sensitivity analysis for specified columns
display variable summary for integer variables
display variable summary for nonzero integer variables
display variable summary for integer variables with zero activity
display submatrix for specified rows and columns
display formatted submatrix for specified rows and columns
display variable summary for continuous variables
display variable summary for nonzero continuous variables
display variable summary for variables with nonzero activity
display price sensitivity analysis or price paramet-
ric programming
display price range analysis PRINT
display RHS range analysis PRINT
display RHS sensitivity analysis or RHS paramet- PRINT ric programming
display constraint summary for specified rows PRINT
display constraint summary and RHS sensitivity PRINT
analysis for specified rows
display solution, variable, and constraint sum- PRINT maries
display current tableau
display variables with zero activity

SHOW Statement Options:

display options applied
display status of the current solution

QUIT Statement Option:

save the defined output data sets and then termi- QUIT nate PROC LP

Statement Option

PRINT
PRINT
PRINT

PRINT PRINT

PRINT

PRINT PRINT

PRINT

PRINT

PRINT

PRINT
PRINT RANGEPRICE
RANGERHS
RHSSEN

ROW
ROW / SENSITIVITY
SOLUTION

TABLEAU
ZEROS

OPTIONS
STATUS
/ SAVE

PROC LP Statement

PROC LP options;
This statement invokes the procedure. The following options can appear in the PROC LP statement.

Data Set Options

ACTIVEIN=SAS-data-set

names the SAS data set containing the active nodes in a branch-and-bound tree that is to be used to restart an integer program.

ACTIVEOUT=SAS-data-set

names the SAS data set in which to save the current branch-and-bound tree of active nodes.

DATA=SAS-data-set

names the SAS data set containing the problem data. If the DATA= option is not specified, PROC LP uses the most recently created SAS data set.

DUALOUT=SAS-data-set

names the SAS data set that contains the current dual solution (shadow prices) on termination of PROC LP. This data set contains the current dual solution only if PROC LP terminates successfully.

PRIMALIN=SAS-data-set

names the SAS data set that contains a feasible solution to the problem defined by the DATA= data set. The data set specified in the PRIMALIN= option should have the same format as a data set saved using the PRIMALOUT= option. Specifying the PRIMALIN= option is particularly useful for continuing iteration on a problem previously attempted. It is also useful for performing sensitivity analysis on a previously solved problem.

PRIMALOUT=SAS-data-set

names the SAS data set that contains the current primal solution when PROC LP terminates.

SPARSEDATA

tells PROC LP that the data are in the sparse input format. If this option is not specified, PROC LP assumes that the data are in the dense input format. See the "Sparse Data Input Format" section on page 224 for information about the sparse input format.

TABLEAUOUT=SAS-data-set

names the SAS data set in which to save the final tableau.

Display Control Options

FLOW
requests that a journal of pivot information (the Iteration Log) be displayed after every PRINTFREQ= iterations. This includes the names of the variables entering and leaving the basis, the reduced cost of the entering variable, and the current objective value.

FUZZ=e

displays all numbers within e of zero as zeros. The default value is $1.0 \mathrm{E}-10$.
NOFLOW
is the inverse of the FLOW option.
NOPARAPRINT
is the inverse of the PARAPRINT option.
NOPRINT
suppresses the display of the Variable, Constraint, and Sensitivity Analysis summaries. This option is equivalent to the PRINTLEVEL $=0$ option.
NOTABLEAUPRINT
is the inverse of the TABLEAUPRINT option.
PARAPRINT
indicates that the solution be displayed at each pivot when performing parametric programming.

PRINT
is the inverse of the NOPRINT option.

PRINTFREQ= m

indicates that after every m th iteration, a line in the (Integer) Iteration Log be displayed. The default value is 1 .

PRINTLEVEL=i

indicates the amount of displaying that the procedure should perform.

PRINTLEVEL=-2 only messages to the SAS \log are displayed
PRINTLEVEL=-1 is equivalent to NOPRINT unless the problem is infeasible. If it is infeasible, the infeasible rows are displayed in the Constraint Summary along with the Infeasible Information Summary.
PRINTLEVEL=0 is identical to NOPRINT
PRINTLEVEL=1 all output is displayed

The default value is 1 .

TABLEAUPRINT

indicates that the final tableau be displayed.

Interactive Control Options

ENDPAUSE

requests that PROC LP pause before displaying the solution. When this pause occurs, you can enter the RESET, SHOW, PRINT, RUN, and QUIT statements.

FEASIBLEPAUSE

requests that PROC LP pause after a feasible (not necessarily integer feasible) solution has been found. At a pause, you can enter the RESET, SHOW, PRINT, PIVOT, RUN, and QUIT statements.

IFEASIBLEPAUSE=n

requests that PROC LP pause after every n integer feasible solutions. At a pause, you can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 99999999 .

IPAUSE=n

requests that PROC LP pause after every n integer iterations. At a pause, you can enter RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 99999999 .

NOENDPAUSE

is the inverse of the ENDPAUSE option.

NOFEASIBLEPAUSE

is the inverse of the FEASIBLEPAUSE option.

PAUSE=n

requests that PROC LP pause after every n iterations. At a pause, you can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 99999999 .

PROXIMITYPAUSE=r

causes the procedure to pause if at least one integer feasible solution has been found and the objective value of the current best integer solution can be determined to be within r units of the optimal integer solution. This distance, called proximity, is also displayed on the Integer Iteration Log. Note that the proximity is calculated using the minimum (maximum if the problem is maximization) objective value among the nodes that remain to be explored in the branch-and-bound tree as a bound on the value of the optimal integer solution. Following the first PROXIMITYPAUSE= pause, in order to avoid a pause at every iteration thereafter, it is recommended that you reduce this measure through the use of a RESET statement. Otherwise, if any other option or statement that causes the procedure to pause is used while the PROXIMITYPAUSE= option is in effect, pause interferences may occur. When this pause occurs, you can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 0 .

READPAUSE

requests that PROC LP pause after the data have been read and the initial basis inverted. When this pause occurs, you can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements.

Preprocessing Control Options

NOPREPROCESS

is the inverse of the PREPROCESS option.

PEPSILON=e

specifies a positive number close to zero. This value is an error tolerance in the preprocessing. If the value is too small, any marginal changes may cause the preprocessing to repeat itself. However, if the value is too large, it may alter the optimal solution or falsely claim that the problem is infeasible. The default value is $1.0 \mathrm{E}-8$.

PMAXIT=n
performs at most n preprocessings. Preprocessing repeats itself if it improves some bounds or fixes some variables. However when a problem is large and dense, each preprocessing may take a significant amount of CPU time. This option limits the number of preprocessings PROC LP performs. It can also reduce the build-up of round-off errors. The default value is 100 .

PREPROCESS

performs preprocessing techniques. See the "Preprocessing" section on page 232 for further discussion.

Branch-and-Bound Algorithm Control Options

AUTO, AUTO (m, n)
automatically sets and adjusts the value of the CONTROL= option. Initially, it sets CONTROL $=0.70$, concentrating on finding an integer feasible solution or an upper bound. When an upper bound is found, it sets CONTROL $=0.5$, concentrating on efficiency and lower bound improvement. When the number of active problems exceeds m, it starts to gradually increase the value of the CONTROL= option to keep the size of active problems under control. When total active problems exceed n, CONTROL=1 will keep the active problems from growing further. You can alter the automatic process by resetting the value of the CONTROL= option interactively.

The default values of m and n are 20000 and 250000 , respectively. You can change the two values according to your computer's space and memory capacities.

BACKTRACK=rule

specifies the rule used to choose the next active problem when backtracking is required. One of the following can be specified:

- BACKTRACK=LIFO
- BACKTRACK=FIFO
- BACKTRACK=OBJ
- BACKTRACK=PROJECT

- BACKTRACK=PSEUDOC

- BACKTRACK=ERROR

The default value is OBJ. See the "Integer Programming" section on page 233 for further discussion.

BINFST

requests that PROC LP branch on binary variables first when integer and binary variables are present. The reasoning behind this is that a subproblem will usually be fathomed or found integer feasible after less than 20% of its variables have been fixed. Considering binary variables first attempts to reduce the size of the branch-and-bound tree. It is a heuristic technique.

CANSELECT=rule

specifies the rule used to choose the next active problem when backtracking is not required or used. One of the following can be specified:

- CANSELECT=LIFO
- CANSELECT=FIFO
- CANSELECT=OBJ
- CANSELECT=PROJECT
- CANSELECT=PSEUDOC
- CANSELECT=ERROR

The default value is LIFO. See the "Integer Programming" section on page 233 for further discussion.

CONTROL=r

specifies a number between 0 and 1 . This option combines CANSELECT $=$ and other rules to choose the next active problem. It takes into consideration three factors: efficiency, improving lower bounds, and improving upper bounds. When r is close to 0 , PROC LP concentrates on improving lower bounds (upper bounds for maximization). However, the efficiency per integer iteration is usually the worst. When r is close to 1, PROC LP concentrates on improving upper bounds (lower bounds for maximization). In addition, the growth of active problems will be controlled and stopped at $r=1$. When its value is around 0.5, PROC LP will be in the most efficient state in terms of CPU time and integer number of iterations. The CONTROL= option will be automatically adjusted when the AUTO option is applied.

DELTAIT=r

is used to modify the exploration of the branch-and-bound tree. If more than r integer iterations have occurred since the last integer solution was found, then the procedure uses the backtrack strategy in choosing the next node to be explored. The default value is 3 times the number of integer variables.

DOBJECTIVE=r

specifies that PROC LP should discard active nodes that cannot lead to an integer solution with the objective at least as small (or as large for maximizations) as the objective of the relaxed problem plus (minus) r. The default value is $+\infty$.

IEPSILON=e

requests that PROC LP consider an integer variable as having an integer value if its value is within e units of an integer. The default value is $1.0 \mathrm{E}-7$.

IMAXIT=n
performs at most n integer iterations. The default value is 100 .

IOBJECTIVE=r

specifies that PROC LP should discard active nodes unless the node could lead to an integer solution with the objective smaller (or larger for maximizations) than r. The default value is $+\infty$ for minimization ($-\infty$ for maximization).

LIFOTYPE=c

specifies the order in which to add the two newly branched active nodes to the LIFO list.

LIFOTYPE $=0 \quad$ add the node with minimum penalty first
LIFOTYPE $=1 \quad$ add the node with maximum penalty first
LIFOTYPE=2
LIFOTYPE=3 add the node resulting from adding $x_{i} \geq\left\lceil x^{o p t}(k)_{i}\right\rceil$ first add the node resulting from adding $x_{i} \leq\left\lfloor x^{o p t}(k)_{i}\right\rfloor$ first

The default value is 0 .

NOAUTO

is the inverse of the AUTO option.

NOBINFST

is the inverse of the BINFST option.

NOPOSTPROCESS

is the inverse of the POSTPROCESS option.

PENALTYDEPTH= m

requests that PROC LP examine m variables as branching candidates when VARSELECT=PENALTY. If the PENALTYDEPTH= option is not specified when VARSELECT=PENALTY, then all of the variables are considered branching candidates. The default value is the number of integer variables. See the "Integer Programming" section on page 233 for further discussion.

POBJECTIVE=r

specifies that PROC LP should discard active nodes that cannot lead to an integer solution with objective at least as small as $o+|o| \times r$ (at least as large as $o-|o| \times r$ for maximizations) where o is the objective of the relaxed noninteger constrained problem. The default value is $+\infty$.

POSTPROCESS

attempts to fix binary variables globally based on the relationships among the reduced cost and objective value of the relaxed problem and the objective value of the current best integer feasible solution.

PWOBJECTIVE=r

specifies a percentage for use in the automatic update of the WOBJECTIVE= option. If the WOBJECTIVE= option is not specified in PROC LP, then when an integer feasible solution is found, the value of the option is updated to be $b+q \times r$ where b is the best bound on the value of the optimal integer solution and q is the current proximity. Note that for maximizations, $b-q \times r$ is used. The default value is 0.95 .

TREETYPE=i

specifies a data compression algorithm.
TREETYPE=0 no data compression
TREETYPE=1 Huffman coding compression routines
TREETYPE=2 adaptive Huffman coding compression routines
TREETYPE=3 adaptive arithmetic coding compression routines

For IP or MIP problems, the basis and bounds information of each active node is saved to a utility file. When the number of active nodes increases, the size of the utility file becomes larger and larger. If PROC LP runs into a disk problem, like "disk full ..." or "writing failure ...", you can use this option to compress the utility file. For more information on the data compression routines, refer to Nelson (1992). The default value is 0 .

VARSELECT=rule

specifies the rule used to choose the branching variable on an integer iteration.

- VARSELECT=CLOSE
- VARSELECT=PRIOR
- VARSELECT=PSEUDOC
- VARSELECT=FAR
- VARSELECT=PRICE
- VARSELECT=PENALTY

The default value is FAR. See the "Integer Programming" section on page 233 for further discussion.

WOBJECTIVE=r

specifies that PROC LP should delay examination of active nodes that cannot lead to an integer solution with objective at least as small (as large for maximizations) as r, until all other active nodes have been explored. The default value is $+\infty$ for minimization ($-\infty$ for maximization).

Sensitivity/Parametric/Ranging Control Options

NORANGEPRICE
is the inverse of the RANGEPRICE option.

NORANGERHS

is the inverse of the RANGERHS option.

PRICEPHI= Φ

specifies the limit for parametric programming when perturbing the price vector. See the "Parametric Programming" section on page 244 for further discussion. See Example 4.5 for an illustration of this option.

RANGEPRICE

indicates that range analysis is to be performed on the price coefficients. See the "Range Analysis" section on page 244 for further discussion.

RANGERHS

indicates that range analysis is to be performed on the right-hand-side vector. See the "Range Analysis" section on page 244 for further discussion.

RHSPHI= Φ

specifies the limit for parametric programming when perturbing the right-hand-side vector. See the "Parametric Programming" section on page 244 for further discussion.

Simplex Algorithm Control Options

DEVEX

indicates that the devex method of weighting the reduced costs be used in pricing (Harris 1975).

EPSILON=e

specifies a positive number close to zero. It is used in the following instances:
During phase 1, if the sum of the basic artificial variables is within e of zero, the current solution is considered feasible. If this sum is not exactly zero, then there are artificial variables within e of zero in the current solution. In this case, a note is displayed on the SAS log.

During phase 1 , if all reduced costs are $\leq e$ for nonbasic variables at their lower bounds and $\geq e$ for nonbasic variables at their upper bounds and the sum of infeasibilities is greater than e, then the problem is considered infeasible. If the maximum reduced cost is within e of zero, a note is displayed on the SAS log.

During phase 2, if all reduced costs are $\leq e$ for nonbasic variables at their lower bounds and $\geq e$ for nonbasic variables at their upper bounds, then the current solution is considered optimal.

During phases 1, 2, and 3, the EPSILON= option is also used to test if the denominator is different from zero before performing the ratio test to determine which basic variable should leave the basis.

The default value is $1.0 \mathrm{E}-8$.

GOALPROGRAM

specifies that multiple objectives in the input data set are to be treated as sequential objectives in a goal-programming model. The value of the right-hand-side variable in the objective row gives the priority of the objective. Lower numbers have higher priority.

INFINITY=r

specifies the largest number PROC LP uses in computation. The INFINITY= option is used to determine when a problem has an unbounded variable value. The default value is the largest double precision number. *

INVFREQ=m

reinverts the current basis matrix after m major and minor iterations. The default value is 100 .

INVTOL=r

reinverts the current basis matrix if the largest element in absolute value in the decomposed basis matrix is greater than r. If after reinversion this condition still holds, then the value of the INVTOL= option is increased by a factor of 10 and a note indicating this modification is displayed on the SAS \log. When r is frequently exceeded, this may be an indication of a numerically unstable problem. The default value is 1000.

MAXIT=n

simultaneously sets the values of the MAXIT1=, MAXIT2=, MAXIT3=, and IMAXIT= options.

MAXIT1=n

performs at most $n \geq 0$ phase 1 iterations. The default value is 100 .

MAXIT2=n

performs at most $n \geq 0$ phase 2 iterations. If MAXIT $2=0$, then only phase 1 is entered so that on successful termination PROC LP will have found a feasible, but not necessarily optimal, solution. The default value is 100 .

MAXIT3=n

performs at most $n \geq 0$ phase 3 iterations. All dual pivots are counted as phase 3 pivots. The default value is 99999999 .

NODEVEX

is the inverse of the DEVEX option.

PARARESTORE

indicates that following a parametric programming analysis, PROC LP should restore the basis.

PHASEMIX=r

specifies a number between 0 and 1 . When the number is positive, PROC LP tries to improve the objective function of phase 2 during phase 1 . The PHASEMIX= option is a weight factor of the phase 2 objective function in phase 1 . The default value is 0 .

PRICE=m

specifies the number of columns to subset when multiple pricing is used in selecting the column to enter the basis (Greenberg 1978). The type of suboptimization used is determined by the PRICETYPE= option. See the "Pricing" section on page 231 for a description of this process.

PRICETYPE=pricetype

specifies the type of multiple pricing to be performed. If this option is specified and the PRICE $=$ option is not specified, then PRICE= is assumed to be 10 . Valid values for the PRICETYPE= option are

- PRICETYPE=COMPLETE
- PRICETYPE=DYNAMIC
- PRICETYPE=NONE
- PRICETYPE=PARTIAL

The default value is PARTIAL. See the "Pricing" section on page 231 for a description of this process.

RANDOMPRICEMULT=r

specifies a number between 0 and 1 . This option sets a limit, in phase 1 , on the number of iterations when PROC LP will randomly pick the entering variables. The limit equals r times the number of nonbasic variables, or the number of basic variables, whichever is smaller. The default value of the RANDOMPRICEMULT= option is 0.01 .

REPSILON=e

specifies a positive number close to zero. The REPSILON= option is used in the ratio test to determine which basic variable is to leave the basis. The default value is $1.0 \mathrm{E}-10$.

SCALE=scale
specifies the type of scaling to be used. Valid values for the SCALE= option are

- SCALE=BOTH
- SCALE=COLUMN
- SCALE=NONE
- SCALE=ROW

The default value is BOTH. See the "Scaling" section on page 232 for further discussion.

SMALL=e

specifies a positive number close to zero. Any element in a matrix with a value less than e is set to zero. The default value is machine dependent.

TIME= t

checks at each iteration to see if t seconds have elapsed since PROC LP began. If more than t seconds have elapsed, the procedure pauses and displays the current solution. The default value is 120 seconds.

$\mathrm{U}=r$

enables PROC LP to control the choice of pivots during LU decomposition and updating the basis matrix. The variable r should take values between EPSILON and 1.0 because small values of r bias the algorithm toward maintaining sparsity at the expense of numerical stability and vice versa. The more sparse the decomposed basis is, the less time each iteration takes. The default value is 0.1 .

COEF Statement

COEF variables;
For the sparse input format, the COEF statement specifies the numeric variables in the problem data set that contain the coefficients in the model. The value of the coefficient variable in a given observation is the value of the coefficient in the column and row specified in the COLUMN and ROW variables in that observation. For multiple ROW variables, the LP procedure maps the ROW variables to the COEF variables on the basis of their order in the COEF and ROW statements. There must be the same number of COEF variables as ROW variables. If the COEF statement is omitted, the procedure looks for the default variable names that have the prefix _COEF.

COL Statement

COL variable;
For the sparse input format, the COL statement specifies a character variable in the problem data set that contains the names of the columns in the model. Columns in the model are either structural variables, right-hand-side vectors, right-hand-side change vectors, or a range vector. The COL variable must be a character variable. If the COL statement is omitted, the LP procedure looks for the default variable name _COL_.

ID Statement

ID variable(s);

For the dense input format, the ID statement specifies a character variable in the problem data set that contains a name for each constraint coefficients row, objective coefficients row, and variable definition row. If the ID statement is omitted, the LP procedure looks for the default variable name, _ID_. If this variable is not in the problem data set, the procedure assigns the default name _OBS $x x_{-}$to each row, where $x x$ specifies the observation number in the problem data set.

For the sparse input format, the ID statement specifies the character variables in the problem data set that contain the names of the rows in the model. Rows in the model are one of the following types: constraints, objective functions, bounding rows, or variable describing rows. The ID variables must be character variables. There must
be the same number of ID variables as variables specified in the COEF statement. If the ID statement is omitted, the LP procedure looks for the default variable names having the prefix _ID.

Note: The ID statement is an alias for the ROW statement.

IPIVOT Statement

IPIVOT ;

The IPIVOT statement causes the LP procedure to execute one integer branch-and-bound pivot and pause. If you use the IPIVOT statement while the PROXIMITYPAUSE $=$ option is in effect, pause interferences may occur. To avoid such interferences, you must either reset the PROXIMITYPAUSE value or submit IPIVOT; RUN; instead of IPIVOT;

PIVOT Statement

PIVOT ;

The PIVOT statement causes the LP procedure to execute one simplex pivot and pause.

PRINT Statement

PRINT options;

The PRINT statement is useful for displaying part of a solution summary, examining intermediate tableaus, performing sensitivity analysis, and using parametric programming. In the options, the colnames and rownames lists can be empty, in which case the LP procedure displays tables with all columns or rows, or both. If a column name or a row name has spaces or other special characters in it, the name must be enclosed in single or double quotes when it appears in the argument. The options that can be used with this statement are as follows.

BEST

displays a Solution, Variable, and Constraint Summary for the best integer solution found.

COLUMN(colnames) / SENSITIVITY

displays a Variable Summary containing the logical and structural variables listed in the colnames list. If the / SENSITIVITY option is included, then sensitivity analysis is performed on the price coefficients for the listed colnames structural variables.

INTEGER

displays a Variable Summary containing only the integer variables.

INTEGER_NONZEROS

displays a Variable Summary containing only the integer variables with nonzero activity.

INTEGER_ZEROS

displays a Variable Summary containing only the integer variables with zero activity.

MATRIX(rownames,colnames) / PICTURE

displays the submatrix of the matrix of constraint coefficients defined by the rownames and colnames lists. If the / PICTURE option is included, then the formatted submatrix is displayed. The format used is summarized in Table 4.2.
Table 4.2. Format Summary

Condition on the Coefficient x							Symbols Printed	
			abs(x)	=	0			""
0		$<$	abs(x)	$<$. 000001	$\operatorname{sgn}(\mathrm{x})$	"Z"
	. 000001	\leq	abs(x)	$<$. 00001	$\operatorname{sgn}(\mathrm{x})$	"Y"
	. 00001	\leq	abs(x)	$<$. 0001	$\operatorname{sgn}(\mathrm{x})$	"X"
	. 0001	\leq	abs(x)	$<$. 001	$\operatorname{sgn}(\mathrm{x})$	"W"
	. 001	\leq	abs(x)	$<$. 01	$\operatorname{sgn}(\mathrm{x})$	"V"
	. 01	\leq	abs(x)	$<$. 1	$\operatorname{sgn}(\mathrm{x})$	"U"
	. 1	\leq	abs(x)	$<$	1		$\operatorname{sgn}(\mathrm{x})$	"T"
			abs(x)	=	1		$\operatorname{sgn}(\mathrm{x})$	"1"
1		$<$	abs(x)	$<$	10		$\operatorname{sgn}(\mathrm{x})$	"A"
10		\leq	abs(x)	$<$	100		$\operatorname{sgn}(\mathrm{x})$	"B"
100		\leq	abs(x)	$<$	1000		$\operatorname{sgn}(\mathrm{x})$	"C"
1000		\leq	abs(x)	$<$	10000		$\operatorname{sgn}(\mathrm{x})$	"D"
10000		\leq	abs(x)	$<$	100000		$\operatorname{sgn}(\mathrm{x})$	"E"
100000		\leq	abs(x)	<	1.0 E 06		$\operatorname{sgn}(\mathrm{x})$	"F"

NONINTEGER

displays a Variable Summary containing only the continuous variables.

NONINTEGER_NONZEROS

displays a Variable Summary containing only the continuous variables with nonzero activity.

NONZEROS

displays a Variable Summary containing only the variables with nonzero activity.

PRICESEN

displays the results of parametric programming for the current value of the PRICEPHI= option, the price coefficients, and all of the price change vectors.

RANGEPRICE

performs range analysis on the price coefficients.

RANGERHS

performs range analysis on the right-hand-side vector.

RHSSEN

displays the results of parametric programming for the current value of the RHSPHI= option, the right-hand-side coefficients, and all of the right-hand-side change vectors.

ROW(rownames) / SENSITIVITY

displays a constraint summary containing the rows listed in the rowname list. If the / SENSITIVITY option is included, then sensitivity analysis is performed on the right-hand-side coefficients for the listed rownames.

SOLUTION

displays the Solution Summary, including the Variable Summary and the Constraint Summary.

TABLEAU
displays the current tableau.

ZEROS

displays a Variable Summary containing only the variables with zero activity. This may be useful in the analysis of ON/OFF, ZERO/ONE, scheduling, and assignment applications.

QUIT Statement

QUIT options;

The QUIT statement causes the LP procedure to terminate processing immediately. No further displaying is performed and no output data sets are created.

The QUIT/SAVE statement causes the LP procedure to save the output data sets, defined in the PROC LP statement or in the RESET statement, and then terminate the procedure.

RANGE Statement

RANGE variable;
For the dense input format, the RANGE statement identifies the variable in the problem data set that contains the range coefficients. These coefficients enable you to specify the feasible range of a row. For example, if the i th row is

$$
a^{T} x \leq b_{i}
$$

and the range coefficient for this row is $r_{i}>0$, then all values of x that satisfy

$$
b_{i}-r_{i} \leq a^{T} x \leq b_{i}
$$

are feasible for this row. Table 4.3 shows the bounds on a row as a function of the row type and the sign on a nonmissing range coefficient r.

Table 4.3. Interpretation of the Range Coefficient

		Bounds	
r	_TYPE__	Lower	Upper
$\neq 0$	LE	$b-\|r\|$	b
$\neq 0$	GE	b	$b+\|r\|$
>0	EQ	b	$b+r$
<0	EQ	$b+r$	b

If you include a range variable in the model and have a missing value or zero for it in a constraint row, then that constraint is treated as if no range variable had been included.

If the RANGE statement is omitted, the LP procedure assumes that the variable named _RANGE_ contains the range coefficients.

For the sparse input format, the RANGE statement gives the name of a column in the problem data set that contains the range constants. If the RANGE statement is omitted, then the LP procedure assumes that the column named _RANGE_ or the column with the 'RANGE' keyword in the problem data set contains the range constants.

RESET Statement

RESET options;

The RESET statement is used to change options after the LP procedure has started execution. All of the options that can be set in the PROC LP statement can also be reset with the RESET statement, except for the DATA=, the PRIMALIN=, and the ACTIVEIN= options. In addition to the options available with the PROC LP statement, the following two options can be used.

LOWER(colnames)=n;

During phase 3, this sets the lower bound on all of the structural variables listed in the colnames list to an integer value n. This may contaminate the branch-and-bound tree. All nodes that descend from the current problem have lower bounds that may be different from those input in the problem data set.

UPPER(colnames)=n;

During phase 3, this sets the upper bound on all of the structural variables listed in the colnames list to an integer value n. This may contaminate the branch-and-bound tree. All nodes that descend from the current problem have upper bounds that may be different from those input in the problem data set.

Note that the LOWER $=$ and UPPER= options only apply to phase 3 for integer problems. Therefore, they should only be applied once the integer iterations have started; if they are applied before then, they will be ignored.

RHS Statement

RHS variables;

For the dense input format, the RHS statement identifies variables in the problem data set that contain the right-hand-side constants of the linear program. Only numeric variables can be specified. If more than one variable is included in the RHS statement, the LP procedure assumes that problems for several linear programs are defined in the problem data set. A new linear program is defined for each variable in the RHS list. If the RHS statement is omitted, the procedure assumes that a variable named _ RHS_ contains the right-hand-side constants.

For the sparse input format, the RHS statement gives the names of one or more columns in the problem data set that are to be considered as right-hand-side constants. If the RHS statement is omitted, then the LP procedure assumes that the column named _RHS_ or columns with the 'RHS' keyword in the problem data set contain the right-hand-side constants. See the "Sparse Data Input Format" section on page 224 for further discussion.

As default, the LP procedure assumes that the RHS constant is a zero vector for the dense and sparse input formats.

RHSSEN Statement

RHSSEN variables;

For the dense input format, the RHSSEN statement identifies variables in the problem data set that define change vectors for examining the sensitivity of the optimal solution to changes in the RHS constants. If the RHSSEN statement is omitted, then the LP procedure assumes that a variable named _RHSSEN_ contains a right-hand-side change vector.

For the sparse input format, the RHSSEN statement gives the names of one or more columns in the problem data set that are to be considered as change vectors. If the RHSSEN statement is omitted, then the LP procedure assumes that the column named _RHSSEN_ or columns with the 'RHSSEN' keyword in the problem data set contain the right-hand-side change vectors. For further information, see the "Sparse Data Input Format", "Right-Hand-Side Sensitivity Analysis", and "Right-Hand-Side Parametric Programming" sections.

ROW Statement

ROW variable(s);

For the dense input format, the ROW statement specifies a character variable in the problem data set that contains a name for each row of constraint coefficients, each row of objective coefficients and each variable describing row. If the ROW statement is omitted, the LP procedure looks for the default variable name, _ROW_. If there is no such variable in the problem data set, the procedure assigns the default name _OBS $x x_{\text {_ }}$ to each row, where $x x$ specifies the observation number in the problem data set.

For the sparse input format, the ROW statement specifies the character variables in the problem data set that contain the names of the rows in the model. Rows in the model are one of the following types: constraints, objective functions, bounding rows, or variable describing rows. The ROW variables must be character variables. There must be the same number of ROW variables as variables specified in the COEF statement. If the ROW statement is omitted, the LP procedure looks for the default variable names having the prefix _ROW.

RUN Statement

RUN ;

The RUN statement causes optimization to be started or resumed. The TITLE or OPTIONS statement should not appear between PROC LP and RUN statements.

SHOW Statement

SHOW options;

The SHOW statement specifies that the LP procedure display either the current options or the current solution status on the SAS log.

OPTIONS

requests that the current options be displayed on the SAS log.

STATUS

requests that the status of the current solution be displayed on the SAS log.

TYPE Statement

TYPE variable;
The TYPE statement specifies a character variable in the problem data set that contains the type identifier for each observation. This variable has keyword values that specify how the LP procedure should interpret the observation. If the TYPE statement is omitted, the procedure assumes that a variable named _TYPE_ contains the type keywords.

For the dense input format, the type variable identifies the constraint and objective rows and rows that contain information about the variables. The type variable should have nonmissing values in all observations.

For the sparse input format, the type variable identifies a model's rows and columns. In an observation, a nonmissing type is associated with either a row or a column. If there are many columns sharing the same type, you can define a row of that type. Then, any nonmissing values in that row set the types of the corresponding columns.

The following are valid values for the TYPE variable in an observation:

MIN	contains the price coefficients of an objective row, for example, c in the problem (MIP), to be minimized. contains the price coefficients of an objective row, for example,
MAX	c, to be maximized.
$\mathrm{EQ}(=)$	contains coefficients of an equality constrained row. contains coefficients of an inequality, less than or equal to, con- strained row.
$\mathrm{GE}(\geq)$	contains coefficients of an inequality, greater than or equal to, constrained row.

SOSEQ identifies the row as specifying a special ordered set. The variables flagged in this row are members of a set exactly one of which must be above its lower bound in the optimal solution. Note that variables in this type of special ordered set must be integer.
SOSLE identifies the row as specifying a special ordered set. The variables flagged in this row are members of a set in which only one can be above its lower bound in the optimal solution.
UNRSTRCT identifies those structural variables to be considered as unrestricted variables. These are variables for which $\ell_{i}=-\infty$ and $u_{i}=+\infty$. Any variable that has a 1 in this observation is considered an unrestricted variable.
LOWERBD identifies lower bounds on the structural variables. If all structural variables are to be nonnegative, that is, $\ell_{i}=0$, then you do not need to include an observation with the 'LOWERBD' keyword in a variable specified in the TYPE statement. Missing values for variables in a lower-bound row indicate that the variable has lower bound equal to zero.
Note: A variable with lower or upper bounds cannot be identified as unrestricted.
UPPERBD identifies upper bounds u_{i} on the structural variables. For each structural variable that is to have an upper bound $u_{i}=+\infty$, the observation must contain a missing value or the current value of INFINITY. All other values are interpreted as upper bounds, including 0 .

FIXED

INTEGER

BINARY
identifies variables that have fixed values. A nonmissing value in a row with 'FIXED' type keyword gives the constant value of that variable.
identifies variables that are integer-constrained. In a feasible solution, these variables must have integer values. A missing value in a row with 'INTEGER' type keyword indicates that the variable is not integer-constrained. The value of variables in the 'INTEGER' row gives an ordering to the integer-constrained variables that is used when the VARSELECT= option equals PRIOR.
Note: Every integer-constrained variable must have an upper bound defined in a row with type 'UPPERBD'. See the "Controlling the Branch-and-Bound Search" section on page 236 for further discussion.
identifies variables that are constrained to be either 0 or 1 . This is equivalent to specifying that the variable is an integer variable and has a lower bound of 0 and an upper bound of 1 . A missing value in a row with 'BINARY' type keyword indicates that the variable is not constrained to be 0 or 1 . The value of variables in the 'BINARY' row gives an ordering to the integerconstrained variables that is used when the VARSELECT= option equals PRIOR. See the "Controlling the Branch-and-Bound Search" section on page 236 for further discussion.

BASIC	identifies variables that form an initial basic feasible solution. A missing value in a row with 'BASIC' type indicates that the variable is not basic. identifies a vector that is used to evaluate the sensitivity of the op- timal solution to changes in the objective function. See the "Price
Sensitivity Analysis" and "Price Parametric Programming" sec-	
tions for further discussion.	
identifies a nonbinding constraint. Any number of FREE con-	
straints can appear in a problem data set.	
identifies a right-hand-side column in the sparse input format.	
FRICESEN	
This replaces the RHS statement. It is useful when converting	
the MPS format into the sparse format of PROC LP. See the	
"Converting MPS Format" section on page 226 for more infor-	

VAR Statement

VAR variables;

For the dense input format, the VAR statement identifies variables in the problem data set that are to be interpreted as structural variables in the linear program. Only numeric variables can be specified. If no VAR statement is specified, the LP procedure uses all numeric variables not included in an RHS or RHSSEN statement as structural variables.

Details

Missing Values

The LP procedure treats missing values as missing in all rows except those that identify either upper or lower bounds on structural variables. If the row is an upper-bound row, then the type identifier is 'UPPERBD' and the LP procedure treats missing values as $+\infty$. If the row is a lower-bound row, then the type identifier is 'LOWERBD' and the LP procedure treats missing values as 0 , except for the variables that are identified as 'UNRSTRCT'.

Dense Data Input Format

In the dense format, a model is expressed in a similar way as it is formulated. Each SAS variable corresponds to a model's column and each SAS observation corresponds to a model's row. A SAS variable in the input data set is one of the following:

- a type variable
- an id variable
- a structural variable
- a right-hand-side variable
- a right-hand-side sensitivity analysis variable
- a range variable

The type variable tells PROC LP how to interpret the observation as a part of the mathematical programming problem. It identifies and classifies objectives, constraints, and the rows that contain information of variables like types, bounds, and so on. PROC LP recognizes the following keywords as values for the type variable: MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRCT, LOWERBD, UPPERBD, FIXED, INTEGER, BINARY, BASIC, PRICESEN, and FREE. The values of the id variable are the names of the rows in the model. The other variables identify and classify the columns with numerical values.

The TYPE, ID (or ROW), and RHS statements can be omitted if the input data set contains variables _TYPE_,_ID_ (or _ROW_), and _RHS_; otherwise, they must be used. The VAR statement is optional. When it is not specified, PROC LP uses as structural variables all numeric variables not explicitly or implicitly included in statement lists. The RHSSEN and RANGE statements are optional statements for sensitivity and range analyses. They can be omitted if the input data set contains the _RHSSEN_ and _RANGE_ variables.

Sparse Data Input Format

The sparse format to PROC LP is designed to enable you to specify only the nonzero coefficients in the description of linear programs, integer programs, and mixedinteger programs. The SAS data set that describes the sparse model must contain at least four SAS variables:

- a type variable
- a column variable
- a row variable
- a coefficient variable

Each observation in the data set associates a type with a row or column, and defines a coefficient or numerical value in the model. The value of the type variable is a keyword that tells PROC LP how to interpret the observation. In addition to the keywords in the dense format, PROC LP also recognizes the keywords RHS, RHSSEN, and RANGE as values of the type variable. Table 4.4 shows the keywords that are recognized by PROC LP and in which variables can appear in the problem data set.

The values of the row and column variables are the names of the rows and columns in the model. The values of the coefficient variables define basic coefficients and lower and upper bounds, and identify model variables with types BASIC, FIXED, BINARY, and INTEGER. All character values in the sparse data input format are case insensitive.

The SAS data set can contain multiple pairs of rows and coefficient variables. In this way, more information about the model can be specified in each observation in the data set. See Example 4.2 for details.

Table 4.4. Variable Keywords Used in the Problem Data Set

TYPE (_TYPE_)	COL (_COL_)
MIN	
MAX	
EQ	
LE	
GE	
SOSEQ	
SOSLE	
UNRSTRCT	
LOWERBD	
UPPERBD	
FIXED	
INTEGER	
BINARY	
BASIC	
PRICESEN	
FREE	_RHS_-
RHS	_RHSSEN_
RHSSEN	RANGE
RANGE_	
*xxxxxxx	

Follow these rules for sparse data input:

- The order of the observations is unimportant.
- Each unique column name appearing in the COL variable defines a unique column in the model.
- Each unique row name appearing in the ROW variable defines a unique row in the model.
- The type of the row is identified when an observation in which the row name appears (in a ROW variable) has type MIN, MAX, LE, GE, EQ, SOSLE, SOSEQ, LOWERBD, UPPERBD, UNRSTRCT, FIXED, BINARY, INTEGER, BASIC, FREE, or PRICESEN.
- The type of each row must be identified at least once. If a row is given a type more than once, the multiple definitions must be identical.
- When there are multiple rows named in an observation (that is, when there are multiple ROW variables), the TYPE variable applies to each row named in the observation.
- The type of a column is identified when an observation in which the column name but no row name appears has the type LOWERBD, UPPERBD, UNRSTRCT, FIXED, BINARY, INTEGER, BASIC, RHS, RHSSEN, or RANGE. A column type can also be identified in an observation in which both
column and row names appear and the row name has one of the preceding types.
- Each column is assumed to be a structural column in the model unless the column is identified as a right-hand-side vector, a right-hand-side change vector, or a range vector. A column can be identified as one of these types using either the keywords RHS, RHSSEN, or RANGE in the TYPE variable, the special column names _RHS_, _RHSSEN_, or _RANGE_, or the RHS, RHSSEN, or RANGE statements following the PROC LP statement.
- A TYPE variable beginning with the character $*$ causes the observation to be interpreted as a comment.

When the column names appear in the Variable Summary in the PROC LP output, they are listed in alphabetical order. The row names appear in the order in which they appear in the problem data set.

Converting MPS Format

MPS input format was introduced by IBM. It has been a way of creating inputs for linear and integer programs. SASMPSXS is a SAS macro function that converts the standard MPS format to the sparse format of the LP procedure. The following is an example of the MPS format:

NAME EXAMPLE				
ROWS				
N PROFIT				
L STAMP				
L ASSEMB				
L FINISH				
N CHNROW				
N PRICE				
COLUMNS				
DESK	STAMP	3.00000	ASSEMB	10.00000
DESK	FINISH	10.00000	PROFIT	95.00000
DESK	PRICE	175.00000		
CHAIR	STAMP	1.50000	ASSEMB	6.00000
CHAIR	FINISH	8.00000	PROFIT	41.00000
CHAIR	PRICE	95.00000		
CABINET	STAMP	2.00000	ASSEMB	8.00000
CABINET	FINISH	8.00000	PROFIT	84.00000
CABINET	PRICE	145.00000		
BOOKCSE	STAMP	2.00000	ASSEMB	7.00000
BOOKCSE	FINISH	7.00000	PROFIT	76.00000
BOOKCSE	PRICE	130.00000	CHNROW	1.00000
RHS				
TIME	STAMP	800.00000	ASSEMB	1200.0000
TIME	FINISH	800.00000		
RANGES				
T1	ASSEMB	900.00000		
BOUNDS				

UP	CHAIR	75.00000
LO	BOOKCSE	50.00000
ENDATA		

In this example, the company tries to find an optimal product mix of four items: a DESK, a CHAIR, a CABINET, and a BOOKCASE. Each item is processed in a stamping department (STAMP), an assembly department (ASSEMB), and a finishing department (FINISH). The time each item requires in each department is given in the input data. Because of resource limitations, each department has an upper limit on the time available for processing. Furthermore, because of labor constraints, the assembly department must work at least 300 hours. Finally, marketing tells you not to make more than 75 chairs, to make at least 50 bookcases, and to find the range over which the selling price of a bookcase can vary without changing the optimal product mix.

The SASMPSXS macro function uses MPSFILE=‘FILENAME' as an argument to read an MPS input file. It then converts the file and saves the conversion to a default SAS data set, PROB. The FILENAME should include the path.

Running the following statements on the preceding example

```
%sasmpsxs(mpsfile=' filename');
proc print data=prob;
run;
```

produces the sparse input form of the LP procedure:

OBS	_TYPE_	_COL_	_ROW1_	COEF1_	_ROW2	COEF2
1	*OW			-		.
2	FREE		PROFIT	-		
3	LE		STAMP	.		.
4	LE		ASSEMB	.		.
5	LE		FINISH	.		-
6	FREE		CHNROW	.		-
7	FREE		PRICE	-		.
8	*OL	MNS		.		.
9		DESK	STAMP	3.0	ASSEMB	10
10		DESK	FINISH	10.0	PROFIT	95
11		DESK	PRICE	175.0		.
12		CHAIR	STAMP	1.5	ASSEMB	6
13		CHAIR	FINISH	8.0	PROFIT	41
14		CHAIR	PRICE	95.0		.
15		CABINET	STAMP	2.0	ASSEMB	8
16		CABINET	FINISH	8.0	PROFIT	84
17		CABINET	PRICE	145.0		.
18		BOOKCSE	STAMP	2	ASSEMB	7
19		BOOKCSE	FINISH	7	PROFIT	76
20		BOOKCSE	PRICE	130	CHNROW	1
21	*HS					

22	RHS	TIME	STAMP	800	ASSEMB	1200
23	RHS	TIME	FINISH	800		.
24	*AN	ES		.	.	
25	RANGE	T1	ASSEMB	900		.
26	*OU	DS		.	.	
27	UPPERBDD	CHAIR	UP	75		.
28	LOWERBDD	BOOKCSE	LO	50		.

SASMPSXS recognizes four MPS row types: E, L, G, and N. It converts them into types EQ, LE, GE, and FREE. Since objective rows, price change rows and free rows all share the same type N in the MPS format, you need a DATA step to assign proper types to the objective rows and price change rows.

```
data;
    set prob;
    if _type_='free' and _row1_='profit' then _type_='max';
    if _type_=' free' and _row1_=' chnrow' then _type_='pricesen';
run;
proc lp sparsedata;
run;
```

In the MPS format, the variable types include LO, UP, FX, FR, MI, and BV. The SASMPSXS macro converts them into types LOWERBD, UPPERBD, FIXED, UNRESTRICTED, -INFINITY, and BINARY, respectively. Occasionally, you may need to define your own variable types, in which case, you must add corresponding type handling entries in the SASMPSXS.SAS program and use the SAS \%INCLUDE macro to include the file at the beginning of your program. The SASMPSXS macro function can be found in the SAS sample library. Information on the MPS format can be obtained from Murtagh (1981).

SASMPSXS can take no arguments, or it can take one or two arguments. If no arguments are present, SASMPSXS assumes that the MPS input file has been saved to a SAS data set named RAW. The macro then takes information from that data set and converts it into the sparse form of the LP procedure. The RAW data set should have the following six variables:

```
data RAW;
    infile ...;
    input field1 $ 2-3 field2 $ 5-12
                field3 $ 15-22 field4 25-36
                field5 $ 40-47 field6 50-61;
run;
```

If the preceding MPS input data set has a name other than RAW, you can use MPSDATA=SAS-data-set as an argument in the SASMPSXS macro function. If you want the converted sparse form data set to have a name other than PROB, you can use LPDATA=SAS-data-set as an argument. The order of the arguments in the SASMPSXS macro function is not important.

The Reduced Costs, Dual Activities, and Current Tableau

The evaluation of reduced costs and the dual activities is independent of problem structure. For a basic solution, let B be the matrix composed of the basic columns of A and let N be the matrix composed of the nonbasic columns of A. The reduced cost associated with the i th variable is

$$
\left(c^{T}-c_{B}^{T} B^{-1} A\right)_{i}
$$

and the dual activity of the j th row is

$$
\left(c_{B}^{T} B^{-1}\right)_{j}
$$

The Current Tableau is a section displayed when you specify either the TABLEAUPRINT option in the PROC LP statement or the TABLEAU option in the PRINT statement. The output contains a row for each basic variable and a column for each nonbasic variable. In addition, there is a row for the reduced costs and a column for the product

$$
B^{-1} b
$$

This column is labeled $\operatorname{INV}(B)^{*} R$. The body of the tableau contains the matrix

$$
B^{-1} N
$$

Macro Variable _ORLP_

The LP procedure defines a macro variable named _ORLP_. This variable contains a character string that indicates the status of the procedure. It is set whenever the user gets control, at breakpoints, and at procedure termination. The form of the _ORLP_ character string is STATUS = PHASE= OBJECTIVE= P_FEAS= D_FEAS= INT_ITER= INT_FEAS= ACTIVE= INT_BEST= PHASE1_ITER= PHASE2_ITER= PHASE3_ITER=. The terms are interpreted as follows:
\(\left.\begin{array}{ll}STATUS= \& the status of the current solution

PHASE= \& the phase the procedure is in(1,2, or 3)

OBJECTIVE= \& the current objective value\end{array}\right]\)| P_FEAS $=$ | whether the current solution is primal feasible |
| :--- | :--- |
| D_FEAS $=$ | the number of integer iterations performed |
| INT_ITER $=$ | the number of integer feasible solutions found |
| INT_FEAS $=$ | the number of active nodes in the current branch-and-bound
 tree |
| ACTIVE $=$ | |

INT_BEST $=$	the best integer objective value found
PHASE1_ITER $=$	the number of iterations performed in phase 1
PHASE2_ITER $=$	the number of iterations performed in phase 2
PHASE3_ITER $=$	the number of iterations performed in phase 3

Table 4.5 shows the possible values for the nonnumeric terms in the string.
Table 4.5. Possible Values for Nonnumeric Terms

STATUS=	P_FEAS=	D_FEAS=
SUCCESSFUL	YES	YES
UNBOUNDED	NO	NO
INFEASIBLE		
MAX_TIME		
MAX_ITER		
PIVOT		
BREAK		
INT_FEASIBLE		
INT_INFEASIBLE		
INT_MAX_ITER		
PAUSE		
FEASIBLEPAUSE		
IPAUSE		
PROXIMITYPAUSE		
ACTIVE		
RELAXED		
FATHOMED		
IPIVOT		
UNSTABLE		
SINGULAR		
MEMORY_ERROR		
IO_ERROR		
SYNTAX_ERROR		
SEMANTIC_ERROR		
BADDATA_ERROR		
UNKNOWN_ERROR		

This information can be used when PROC LP is one step in a larger program that needs to identify how the LP procedure terminated. Because _ORLP_ is a standard SAS macro variable, it can be used in the ways that all macro variables can be used (see the SAS Guide to Macro Processing).

Pricing

PROC LP performs multiple pricing when determining which variable will enter the basis at each pivot (Greenberg 1978). This heuristic can shorten execution time in many problems. The specifics of the multiple pricing algorithm depend on the value of the PRICETYPE= option. However, in general, when some form of multiple pricing is used, during the first iteration PROC LP places the PRICE= nonbasic columns yielding the greatest marginal improvement to the objective function in a candidate list. This list identifies a subproblem of the original. On subsequent iterations, only the reduced costs for the nonbasic variables in the candidate list are calculated. This accounts for the potential time savings. When either the candidate list is empty or the subproblem is optimal, a new candidate list must be identified and the process repeats. Because identification of the subproblem requires pricing the complete problem, an iteration in which this occurs is called a major iteration. A minor iteration is an iteration in which only the subproblem is to be priced.

The value of the PRICETYPE= option determines the type of multiple pricing that is to be used. The types of multiple pricing include partial suboptimization (PRICETYPE=PARTIAL), complete suboptimization (PRICETYPE=COMPLETE), and complete suboptimization with dynamically varying the value of the PRICE= option (PRICETYPE=DYNAMIC).

When partial suboptimization is used, in each minor iteration the nonbasic column in the subproblem yielding the greatest marginal improvement to the objective is brought into the basis and removed from the candidate list. The candidate list now has one less entry. At each subsequent iteration, another column from the subproblem is brought into the basis and removed from the candidate list. When there are either no remaining candidates or the remaining candidates do not improve the objective, the subproblem is abandoned and a major iteration is performed. If the objective cannot be improved on a major iteration, the current solution is optimal and PROC LP terminates.

Complete suboptimization is identical to partial suboptimization with one exception. When a nonbasic column from the subproblem is brought into the basis, it is replaced in the candidate list by the basic column that is leaving the basis. As a result, the candidate list does not diminish at each iteration.

When PRICETYPE=DYNAMIC, complete suboptimization is performed, but the value of the PRICE= option changes so that the ratio of minor to major iterations is within two units of the PRICE= option.

These heuristics can shorten execution time for small values of the PRICE= option. Care should be exercised in choosing a value from the PRICE= option because too large a value can use more time than if pricing were not used.

Scaling

Based on the SCALE= option specified, the procedure scales the coefficients of both the constraints and objective rows before iterating. This technique can improve the numerical stability of an ill-conditioned problem. If you want to modify the default matrix scaling used, which is SCALE=BOTH, use the SCALE=COLUMN, SCALE=ROW, or SCALE=NONE option in the PROC LP statement. If SCALE=BOTH, the matrix coefficients are scaled so that the largest element in absolute value in each row or column equals 1 . They are scaled by columns first and then by rows. If SCALE=COLUMN (ROW), the matrix coefficients are scaled so that the largest element in absolute value in each column (row) equals 1 . If SCALE=NONE, no scaling is performed.

Preprocessing

With the preprocessing option, you can identify redundant and infeasible constraints, improve lower and upper bounds of variables, fix variable values and improve coefficients and RHS values before solving a problem. Preprocessing can be applied to LP, IP and MIP problems. For an LP problem, it may significantly reduce the problem size. For an IP or MIP problem, it can often reduce the gap between the optimal solution and the solution of the relaxed problem, which could lead to a smaller search tree in the branch-and-bound algorithm. As a result, the CPU time may be reduced on many problems. Although there is no guarantee that preprocessing will always yield a faster solution, it does provide a highly effective approach to solving large and difficult problems.

Preprocessing is especially useful when the original problem causes numerical difficulties to PROC LP. Since preprocessing could identify redundant constraints and tighten lower and upper bounds of variables, the reformulated problem may eliminate the numerical difficulties in practice.

When a constraint is identified as redundant, its type is marked as 'FREE' in the Constraint Summary. If a variable is fixed, its type is marked as 'FIXED' in the Variables Summary. If a constraint is identified as infeasible, PROC LP stops immediately and displays the constraint name in the SAS \log file. This capability sometimes gives valuable insight into the model or the formulation and helps establish if the model is reasonable and the formulation is correct.

For a large and dense problem, preprocessing may take a longer time for each iteration. To limit the number of preprocessings, use the PMAXIT= option. To stop any further preprocessings during the preprocessing stage, press the CTRL-BREAK key. PROC LP will enter phase 1 at the end of the current iteration.

Integer Programming

Formulations of mathematical programs often require that some of the decision variables take only integer values. Consider the formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x\{\geq,=, \leq\} b \\
& \ell \leq x \leq u \\
& x_{i} \text { is integer, } i \in \mathcal{S}
\end{array}
$$

The set of indices \mathcal{S} identifies those variables that must take only integer values. When \mathcal{S} does not contain all of the integers between 1 and n, inclusive, this problem is called a mixed-integer program (MIP). Otherwise, it is known as an integer program. Let $x^{\text {opt }}$ (MIP) denote an optimal solution to (MIP). An integer variable with bounds between 0 and 1 is also called a binary variable.

Specifying the Problem

An integer or mixed-integer problem can be solved with PROC LP. To solve this problem, you must identify the integer variables. You can do this with a row in the input data set that has the keyword 'INTEGER' for the type variable. Any variable that has a nonmissing and nonzero value for this row is interpreted as an integer variable. It is important to note that integer variables must have upper bounds explicitly defined using the 'UPPERBD' keyword. The values in the 'INTEGER' row not only identify those variables that must be integral, but they also give an ordering to the integer variables that can be used in the solution technique.

You can follow the same steps to identify binary variables. For the binary variables, there is no need to supply any upper bounds.

Following the rules of sparse data input format, you can also identify individual integer or binary variables.

The Branch-and-Bound Technique

The branch-and-bound approach is used to solve integer and mixed-integer problems. The following discussion outlines the approach and explains how to use several options to control the procedure.

The branch-and-bound technique solves an integer program by solving a sequence of linear programs. The sequence can be represented by a tree, with each node in the tree being identified with a linear program that is derived from the problems on the path leading to the root of the tree. The root of the tree is identified with a linear program that is identical to (MIP), except that \mathcal{S} is empty. This relaxed version of (MIP), called (LP(0)), can be written as

$$
\begin{array}{ll}
x^{o p t}(0)= & \min c^{T} x \\
\text { subject to } & A x\{\geq,=, \leq\} b \\
& \ell \leq x \leq u
\end{array}
$$

The branch-and-bound approach generates linear programs along the nodes of the tree using the following scheme. Consider $x^{\text {opt }}(0)$, the optimal solution to $(\operatorname{LP}(0))$. If $x^{\text {opt }}(0)_{i}$ is integer for all $i \in \mathcal{S}$, then $x^{\text {opt }}(0)$ is optimal in (MIP). Suppose for some $i \in \mathcal{S}, x^{\text {opt }}(0)_{i}$ is nonintegral. In that case, define two new problems (LP(1)) and $(\operatorname{LP}(2))$, descendants of the parent problem $(\operatorname{LP}(0))$. The problem $(\operatorname{LP}(1))$ is identical to $(\operatorname{LP}(0))$ except for the additional constraint

$$
x_{i} \leq\left\lfloor x^{o p t}(0)_{i}\right\rfloor
$$

and the problem $(\operatorname{LP}(2))$ is identical to $(\operatorname{LP}(0))$ except for the additional constraint

$$
x_{i} \geq\left\lceil x^{o p t}(0)_{i}\right\rceil
$$

The notation $\lceil y\rceil$ means the smallest integer greater than or equal to y, and the notation $\lfloor y\rfloor$ means the largest integer less than or equal to y. Note that the two new problems do not have $x^{o p t}(0)$ as a feasible solution, but because the solution to (MIP) must satisfy one of the preceding constraints, $x_{i}^{\text {opt }}$ (MIP) must satisfy one of the new constraints. The two problems thus defined are called active nodes in the branch-andbound tree, and the variable x_{i} is called the branching variable.

Next, the algorithm chooses one of the problems associated with an active node and attempts to solve it using the dual simplex algorithm. The problem may be infeasible, in which case the problem is dropped. If it can be solved, and it in turn does not have an integer solution (that is, a solution for which x_{i} is integer for all $i \in \mathcal{S}$), then it defines two new problems. These new problems each contain all of the constraints of the parent problems plus the appropriate additional one.

Branching continues in this manner until either there are no active nodes or an integer solution is found. When an integer solution is found, its objective value provides a bound for the objective of (MIP). In particular, if z is the objective value of the current best integer solution, then any active problems whose parent problem has objective value $\geq z$ can be discarded (assuming that the problem is a minimization). This can be done because all problems that descend from this parent will also have objective value $\geq z$. This technique is known as fathoming. When there are no active nodes remaining to be solved, the current integer solution is optimal in (MIP). If no integer solution has been found, then (MIP) is (integer) infeasible.

It is important to realize that integer programs are NP-complete. Roughly speaking, this means that the effort required to solve them grows exponentially with the size of the problem. For example, a problem with 10 binary variables can, in the worst case, generate $2^{10}=1024$ nodes in the branch-and-bound tree. A problem with 20 binary variables can, in the worst case, generate $2^{20}=1048576$ nodes in the branch-and-bound tree. Although the algorithm is unlikely to have to generate every single possible node, the need to explore even a small fraction of the potential number of nodes for a large problem can be resource intensive.

The Integer Iteration Log

To help monitor the growth of the branch-and-bound tree, the LP procedure reports on the status of each problem that is solved. The report, displayed in the Integer Iteration Log, can be used to reconstruct the branch-and-bound tree. Each row in the report describes the results of the attempted solution of the linear program at a node in the tree. In the following discussion, a problem on a given line in the log is called the current problem. The following columns are displayed in the report:

Iter	identifies the number of the branch-and-bound iteration.
Problem	identifies how the current problem fits in the branch-and- bound tree.
Condition	reports the result of the attempted solution of the current problem. Values for Condition are:

- ACTIVE: The current problem was solved successfully.
- INFEASIBLE: The current problem is infeasible.
- FATHOMED: The current problem cannot lead to an improved integer solution and therefore it is dropped.
- SINGULAR: A singular basis was encountered in attempting to solve the current problem. Solution of this relaxed problem is suspended and will be attempted later if necessary.
- SUBOPTIMAL: The current problem has an integer feasible solution.

Objective	reports the objective value of the current problem. Branched names the variable that is branched in subtrees defined by the descendants of this problem.
Value	gives the current value of the variable named in the column labeled Branched.
Sinfeas	gives the sum of the integer infeasibilities in the optimal so- lution to the current problem.
Active	reports the total number of nodes currently active in the branch-and-bound tree.
Proximity	reports the gap between the best integer solution and the current lower (upper for maximizations) bound of all active nodes.

To reconstruct the branch-and-bound tree from this report, consider the interpretation of iteration j. If Iter $=j$ and Problem $=k$, then the problem solved on iteration j is identical to the problem solved on iteration $|k|$ with an additional constraint. If
$k>0$, then the constraint is an upper bound on the variable named in the Branched column on iteration $|k|$. If $k<0$, then the constraint is a lower bound on that variable. The value of the bound can be obtained from the value of Value in iteration $|k|$ as described in the previous section.

Example 4.8 in the "Examples" section shows an Integer Iteration Log in its output.

Controlling the Branch-and-Bound Search

There are several options you can use to control branching. This is accomplished by controlling the program's choice of the branching variable and of the next active node. In the discussion that follows, let

$$
f_{i}(k)=x^{o p t}(k)_{i}-\left\lfloor x^{o p t}(k)_{i}\right\rfloor
$$

where $x^{o p t}(k)$ is the optimal solution to the problem solved in iteration k.
The CANSELECT= option directs the choice of the next active node. Valid keywords for this option include LIFO, FIFO, OBJ, PROJECT, PSEUDOC, and ERROR. The following list describes the action that each of these causes when the procedure must choose for solution a problem from the list of active nodes.

LIFO chooses the last problem added to the tree of active nodes. This search has the effect of a depth-first search of the branch-andbound tree.

FIFO chooses the first node added to the tree of active nodes. This search has the effect of a breadth-first search of the branch-and-bound tree.

OBJ chooses the problem whose parent has the smallest (largest if the problem is a maximization) objective value.
PROJECT chooses the problem with the largest (smallest if the problem is a maximization) projected objective value. The projected objective value is evaluated using the sum of integer infeasibilities, $s(k)$, associated with an active node ($\operatorname{LP}(k)$), defined by

$$
s(k)=\sum_{i \in \mathcal{S}} \min \left\{f_{i}(k), 1-f_{i}(k)\right\}
$$

An empirical measure of the rate of increase (decrease) in the objective value is defined as

$$
\lambda=\left(z^{*}-z(0)\right) / s(0)
$$

where

- $z(k)$ is the optimal objective value for $(\operatorname{LP}(k))$
- z^{*} is the objective value of the current best integer solution

The projected objective value for problems $(\operatorname{LP}(k+1))$ and $(\operatorname{LP}(k+2))$ is defined as

$$
z(k)+\lambda s(k)
$$

PSEUDOC chooses the problem with the largest (least if the problem is a maximization) projected pseudocost. The projected pseudocost is evaluated using the weighted sum of infeasibilities $s_{w}(k)$ associated with an active problem $(\operatorname{LP}(k))$, defined by

$$
s_{w}(k)=\sum_{i \in \mathcal{S}} \min \left\{d_{i}(k) f_{i}(k), u_{i}(k)\left(1-f_{i}(k)\right)\right\}
$$

The weights u_{i} and d_{i} are initially equal to the absolute value of the i th objective coefficient and are updated at each integer iteration. They are modified by examining the empirical marginal change in the objective as additional constraints are placed on the variables in \mathcal{S} along the path from $(\operatorname{LP}(0))$ to a node associated with an integer feasible solution. In particular, if the definition of problems $(\mathrm{LP}(k+1))$ and $(\operatorname{LP}(k+2))$ from parent $(\operatorname{LP}(k))$ involve the addition of constraints $x_{i} \leq\left\lfloor x^{o p t}(k)_{i}\right\rfloor$ and $x_{i} \geq\left\lceil x^{o p t}(k)_{i}\right\rceil$, respectively, and one of them is on a path to an integer feasible solution, then only one of the following is true:

$$
\begin{aligned}
& d_{i}(k)=(z(k+1)-z(k)) / f_{i}(k) \\
& u_{i}(k)=(z(k+2)-z(k)) /\left(1-f_{i}(k)\right)
\end{aligned}
$$

Note the similarity between $s_{w}(k)$ and $s(k)$. The weighted quantity $s_{w}(k)$ accounts to some extent for the influence of the objective function. The projected pseudocost for problems $(\operatorname{LP}(k+1))$ and $(\operatorname{LP}(k+2))$ is defined as

$$
z_{w}(k) \equiv z(k)+s_{w}(k)
$$

ERROR chooses the problem with the largest error. The error associated with problems $(\operatorname{LP}(k+1))$ and $(\operatorname{LP}(k+2))$ is defined as

$$
\left(z^{*}-z_{w}(k)\right) /\left(z^{*}-z(k)\right)
$$

The BACKTRACK= option controls the search for the next problem. This option can take the same values as the CANSELECT= option. In addition to the case outlined under the DELTAIT= option, backtracking is required as follows based on the CANSELECT= option in effect:

- If CANSELECT=LIFO and there is no active node in the portion of the active tree currently under exploration with a bound better than the value of WOBJECTIVE=, then the procedure must backtrack.
- If CANSELECT=FIFO, PROJECT, PSEUDOC, or ERROR and the bound corresponding to the node under consideration is not better than the value of WOBJECTIVE=, then the procedure must backtrack.

The default value is OBJ.
The VARSELECT= option directs the choice of branching variable. Valid keywords for this option include CLOSE, FAR, PRIOR, PSEUDOC, PRICE, and PENALTY. The following list describes the action that each of these causes when $x^{o p t}(k)$, an optimal solution of problem $(\operatorname{LP}(k))$, is used to define active problems $(\operatorname{LP}(k+1))$ and ($\mathrm{LP}(k+2)$).

CLOSE chooses as branching variable the variable x_{i} such that i minimizes

$$
\begin{aligned}
& \left\{\min \left\{f_{i}(k), 1-f_{i}(k)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \left.\quad \mathrm{IEPSILON} \leq f_{i}(k) \leq 1-\mathrm{IEPSILON}\right\}
\end{aligned}
$$

FAR chooses as branching variable the variable x_{i} such that i maximizes

$$
\begin{aligned}
& \left\{\min \left\{f_{i}(k), 1-f_{i}(k)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \left.\quad \mathrm{IEPSILON} \leq f_{i}(k) \leq 1-\mathrm{IEPSILON}\right\}
\end{aligned}
$$

PRIOR chooses as branching variable x_{i} such that $i \in \mathcal{S}, x^{o p t}(k)_{i}$ is nonintegral, and variable x_{i} has the minimum value in the INTEGER row in the input data set. This choice for the VARSELECT= option is recommended when you have enough insight into the model to identify those integer variables that have the most significant effect on the objective value.

PENALTY chooses as branching variable x_{i} such that $i \in \mathcal{S}$ and a bound on the increase in the objective of $(\operatorname{LP}(k))$ (penalty) resulting from adding the constraint

$$
x_{i} \leq\left\lfloor x^{o p t}(k)_{i}\right\rfloor \quad \text { or } \quad x_{i} \geq\left\lceil x^{o p t}(k)_{i}\right\rceil
$$

is maximized. The bound is calculated without pivoting using techniques of sensitivity analysis (Garfinkel and Nemhauser 1972). Because the cost of calculating the maximum penalty can be large if \mathcal{S} is large, you may want to limit the number of variables in \mathcal{S} for which the penalty is calculated. The penalty is calculated for PENALTYDEPTH= variables in \mathcal{S}.

PRICE chooses as branching variable x_{i} such that $i \in \mathcal{S}, x^{o p t}(k)_{i}$ is nonintegral, and variable x_{i} has the minimum price coefficient (maximum for maximization).

PSEUDOC chooses as branching variable the variable x_{i} such that i maximizes

$$
\begin{aligned}
& \left\{\min \left\{d_{i} f_{i}(k), u_{i}\left(1-f_{i}(k)\right)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \text { IEPSILON } \left.\leq f_{i}(k) \leq 1-\text { IEPSILON }\right\}
\end{aligned}
$$

The weights u_{i} and d_{i} are initially equal to the absolute value of the i th objective coefficient and are updated whenever an integer feasible solution is encountered. See the discussion on the CANSELECT= option for details on the method of updating the weights.

Customizing Search Heuristics

Often a good heuristic for searching the branch-and-bound tree of a problem can be found. You are tempted to continue using this heuristic when the problem data changes but the problem structure remains constant. The ability to reset procedure options interactively enables you to experiment with search techniques in an attempt to identify approaches that perform well. Then you can easily reapply these techniques to subsequent problems.

For example, the PIP branch-and-bound strategy (Crowder, Johnson, and Padberg 1983) describes one such heuristic. The following program uses a similar strategy. Here, the OBJ rule (choose the active node with least parent objective function in the case of a minimization problem) is used for selecting the next active node to be solved until an integer feasible solution is found. Once such a solution is found, the search procedure is changed to the LIFO rule: choose the problem most recently placed in the list of active nodes.

```
proc lp canselect=obj ifeasiblepause=1;
run;
    reset canselect=lifo ifeasiblepause=9999999;
run;
```


Further Discussion on AUTO and CONTROL= options

Consider a minimization problem. At each integer iteration, PROC LP will select a node to solve from a pool of active nodes. The best bound strategy (CANSELECT=OBJ) will pick the node with the smallest projected objective value. This strategy improves the lower bound of the integer program and usually takes fewer integer iterations. One disadvantage is that PROC LP must recalculate the inverse of the basis matrix at almost every integer iteration; such recalculation is relatively expensive. Another disadvantage is that this strategy does not pay attention to improving the upper bound of the integer program. Thus the number of active nodes tends to grow rapidly if PROC LP cannot quickly find an optimal integer solution.

On the other hand, the LIFO strategy is very efficient and does not need to calculate the inverse of the basis matrix unless the previous node is fathomed. It is a depth-first strategy so it tends to find an integer feasible solution quickly. However, this strategy will pick nodes locally and usually will take longer integer iterations than the best bound strategy.

There is another strategy that is often overlooked. Here it is called the best upper bound strategy. With this strategy, each time you select an active node, instead of picking the node with the smallest projected objective value, you select the one with the largest projected objective value. This strategy is as efficient as the LIFO strategy. Moreover, it selects active nodes globally. This strategy tries to improve the upper bound of the integer program by searching for new integer feasible solutions. It also fathoms active nodes quickly and keeps the total number of active nodes below the current level. A disadvantage is that this strategy may evaluate more nodes that do not have any potential in finding an optimal integer solution.

The best bound strategy has the advantage of improving the lower bound. The LIFO strategy has the advantages of efficiency and finding a local integer feasible solution. The best upper bound strategy has the advantages of keeping the size of active nodes under control and at the same time trying to identify any potential integer feasible solution globally.

Although the best bound strategy is generally preferred, in some instances other strategies may be more effective. For example, if you have found an integer optimal solution but you do not know it, you still have to enumerate all possible active nodes. Then the three strategies will basically take the same number of integer iterations after an optimal solution is found but not yet identified. Since the LIFO and best upper bound strategies are very efficient per integer iteration, both will outperform the best bound strategy.

Since no one strategy suits all situations, a hybrid strategy has been developed to increase applicability. The CONTROL= option combines the above three strategies naturally and provides a simple control parameter in $[0,1]$ dealing with different integer programming problems and different solution situations. The AUTO option automatically sets and adjusts the CONTROL= parameter so that you do not need to know any problem structure or decide a node selection strategy in advance.

Since the LIFO strategy is less costly, you should use it as much as possible in the combinations. The following process is called a diving process. Starting from an active node, apply the LIFO strategy as much as you can until the current node becomes feasible or is fathomed, or exceeds a preset limit. During this process, there is no inverse matrix calculation involved except for the first node. When the diving process is over, apply one of the three strategies to select the next starting node. One set of combinations is called a cycle.

The control parameter r controls the frequency of the three strategies being applied and the depth of the diving process in a cycle. It starts with a pure best bound strategy at $r=0$, and then gradually increases the frequency of the diving processes and their depths as r increases. At $r=0.5$, one cycle contains a best bound strategy plus a full diving process. After $r=0.5$, the number of the diving processes will gradually
increase in a cycle. In addition, the best upper bound strategy will join the cycle. As r continues to increase, the frequency of the best upper bound strategy will increase. At $r=1$, it becomes a pure best upper bound strategy.

The AUTO option will automatically adjust the value of the CONTROL= option. At the start, it sets CONTROL=0.7, which emphasizes finding an upper bound. After an integer feasible solution is found, it sets CONTROL $=0.5$, which emphasizes efficiency and lower bound improvement. When the number of active nodes grows over the default or user defined limit m, the number indicates that a better upper bound is needed. The AUTO option will start to increase the value of CONTROL= from 0.5. If the size of the active nodes continues to grow, so will the value of the CONTROL= option. When the size of active nodes reaches to the default or user-defined limit n, CONTROL= will be set to 1 . At this moment, the growth of active nodes is stopped. When the size of active nodes reduces, AUTO will decrease the value of CONTROL= option.

You can use other strategies to improve the lower bound by setting CANSELECT= to other options.

Saving and Restoring the List of Active Nodes

The list of active nodes can be saved in a SAS data set for use at a subsequent invocation of PROC LP. The ACTIVEOUT= option in the PROC LP statement names the data set into which the current list of active nodes is saved when the procedure terminates due to an error termination condition. Examples of such conditions are time limit exceeded, integer iterations exceeded, and phase 3 iterations exceeded. The ACTIVEIN= option in the PROC LP statement names a data set that can be used to initialize the list of active nodes. To achieve the greatest benefit when restarting PROC LP, use the PRIMALOUT= and PRIMALIN= options in conjunction with the ACTIVEOUT= and ACTIVEIN= options. See Example 4.10 in the "Examples" section for an illustration.

Sensitivity Analysis

Sensitivity analysis is a technique for examining the effects of changes in model parameters on the optimal solution. The analysis enables you to examine the size of a perturbation to the right-hand-side or objective vector by an arbitrary change vector for which the basis of the current optimal solution remains optimal.

Note: When sensitivity analysis is performed on integer-constrained problems, the integer variables are fixed at the value they obtained in the integer optimal solution. Therefore, care must be used when interpreting the results of such analyses. Care must also be taken when preprocessing is enabled, because preprocessing usually alters the original formulation.

Right-Hand-Side Sensitivity Analysis

Consider the problem $(\operatorname{lpr}(\phi))$:

$$
\begin{aligned}
x^{o p t}(\phi)= & \min c^{T} x \\
\text { subject to } & A x\{\geq,=, \leq\} b+\phi r \\
& \ell \leq x \leq u
\end{aligned}
$$

where r is a right-hand-side change vector.
Let $x^{\text {opt }}(\phi)$ denote an optimal basic feasible solution to $(\operatorname{lpr}(\phi))$. PROC LP can be used to examine the effects of changes in ϕ on the solution $x^{o p t}(0)$ of problem $(\operatorname{lpr}(0))$. For the basic solution $x^{\text {opt }}(0)$, let B be the matrix composed of the basic columns of A and let N be the matrix composed of the nonbasic columns of A. For the basis matrix B, the basic components of $x^{o p t}(0)$, written as $x^{o p t}(0)_{B}$, can be expressed as

$$
x^{o p t}(0)_{B}=B^{-1}\left(b-N x^{o p t}(0)_{N}\right)
$$

Furthermore, because $x^{o p t}(0)$ is feasible,

$$
\ell_{B} \leq B^{-1}\left(b-N x^{o p t}(0)_{N}\right) \leq u_{B}
$$

where ℓ_{B} is a column vector of the lower bounds on the structural basic variables, and u_{B} is a column vector of the upper bounds on the structural basic variables. For each right-hand-side change vector r identified in the RHSSEN statement, PROC LP finds an interval $\left[\phi_{\text {min }}, \phi_{\text {max }}\right]$ such that

$$
\ell_{B} \leq B^{-1}\left(b+\phi r-N x^{o p t}(0)_{N}\right) \leq u_{B}
$$

for $\phi \in\left[\phi_{\text {min }}, \phi_{\text {max }}\right]$. Furthermore, because changes in the right-hand side do not affect the reduced costs, for $\phi \in\left[\phi_{\text {min }}, \phi_{\max }\right]$,

$$
x^{o p t}(\phi)^{T}=\left(\left(B^{-1}\left(b+\phi r-N x^{o p t}(0)_{N}\right)\right)^{T}, x^{o p t}(0)_{N}^{T}\right)
$$

is optimal in $(\operatorname{lpr}(\phi))$.
For $\phi=\phi_{\min }$ and $\phi=\phi_{\max }$, PROC LP reports the following:

- the names of the leaving variables
- the value of the optimal objective in the modified problems
- the RHS values in the modified problems
- the solution status, reduced costs and activities in the modified problems

The leaving variable identifies the basic variable x_{i} that first reaches either the lower bound ℓ_{i} or the upper bound u_{i} as ϕ reaches $\phi_{\min }$ or $\phi_{\max }$. This is the basic variable that would leave the basis to maintain primal feasibility. Multiple RHSSEN variables can appear in a problem data set.

Price Sensitivity Analysis

Consider the problem $(\operatorname{lpp}(\phi))$:

$$
\begin{array}{ll}
x^{o p t}(\phi)= & \min (c+\phi r)^{T} x \\
\text { subject to } & A x\{\geq,=, \leq\} b \\
& \ell \leq x \leq u
\end{array}
$$

where r is a price change vector.
Let $x^{\text {opt }}(\phi)$ denote an optimal basic feasible solution to $(\operatorname{lpp}(\phi))$. PROC LP can be used to examine the effects of changes in ϕ on the solution $x^{o p t}(0)$ of problem $(\operatorname{lpp}(0))$. For the basic solution $x^{o p t}(0)$, let B be the matrix composed of the basic columns of A and let N be the matrix composed of the nonbasic columns of A. For basis matrix B, the reduced cost associated with the i th variable can be written as

$$
r c_{i}(\phi)=\left((c+\phi r)_{N}^{T}-(c+\phi r)_{B}^{T} B^{-1} N\right)_{i}
$$

where $(c+\phi r)_{N}$ and $(c+\phi r)_{B}$ is a partition of the vector of price coefficients into nonbasic and basic components. Because $x^{o p t}(0)$ is optimal in $(l p p(0))$, the reduced costs satisfy

$$
r c_{i}(\phi) \geq 0
$$

if the nonbasic variable in column i is at its lower bound, and

$$
r c_{i}(\phi) \leq 0
$$

if the nonbasic variable in column i is at its upper bound.
For each price coefficient change vector r identified with the keyword PRICESEN in the TYPE variable, PROC LP finds an interval $\left[\phi_{\min }, \phi_{\max }\right]$ such that for $\phi \in\left[\phi_{\text {min }}, \phi_{\text {max }}\right]$,

$$
r c_{i}(\phi) \geq 0
$$

if the nonbasic variable in column i is at its lower bound, and

$$
r c_{i}(\phi) \leq 0
$$

if the nonbasic variable in column i is at its upper bound. Because changes in the price coefficients do not affect feasibility, for $\phi \in\left[\phi_{\min }, \phi_{\max }\right], x^{\text {opt }}(\phi)$ is optimal in $(\operatorname{lpp}(\phi))$. For $\phi=\phi_{\min }$ and $\phi=\phi_{\max }$, PROC LP reports the following:

- the names of entering variables
- the value of the optimal objective in the modified problems
- the price coefficients in the modified problems
- the solution status, reduced costs, and activities in the modified problems

The entering variable identifies the variable whose reduced cost first goes to zero as ϕ reaches $\phi_{\min }$ or $\phi_{\max }$. This is the nonbasic variable that would enter the basis to maintain optimality (dual feasibility). Multiple PRICESEN variables may appear in a problem data set.

Range Analysis

Range analysis is sensitivity analysis for specific change vectors. As with the sensitivity analysis case, care must be used in interpreting the results of range analysis when the problem has integers or the preprocessing option is enabled.

Right-Hand-Side Range Analysis

The effects on the optimal solution of changes in each right-hand-side value can be studied using the RANGERHS option in the PROC LP or RESET statement. This option results in sensitivity analysis for the m right-hand-side change vectors specified by the columns of the $m \times m$ identity matrix.

Price Range Analysis

The effects on the optimal solution of changes in each price coefficient can be studied using the RANGEPRICE option in the PROC LP or RESET statement. This option results in sensitivity analysis for the n price change vectors specified by the rows of the $n \times n$ identity matrix.

Parametric Programming

Sensitivity analysis and range analysis examine how the optimal solution behaves with respect to perturbations of model parameter values. These approaches assume that the basis at optimality is not allowed to change. When greater flexibility is desired and a change of basis is acceptable, parametric programming can be used.

As with the sensitivity analysis case, care must be used in interpreting the results of parametric programming when the problem has integers or the preprocessing option is enabled.

Right-Hand-Side Parametric Programming

As discussed in the "Right-Hand-Side Sensitivity Analysis" section on page 242, for each right-hand-side change vector r, PROC LP finds an interval $\left[\phi_{\text {min }}, \phi_{\max }\right]$ such that for $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$,

$$
x^{o p t}(\phi)^{T}=\left(\left(B^{-1}\left(b+\phi r-N x^{o p t}(0)_{N}\right)\right)^{T}, x^{o p t}(0)_{N}^{T}\right)
$$

is optimal in $(\operatorname{lpr}(\phi))$ for the fixed basis B. Leaving variables that inhibit further changes in ϕ without a change in the basis B are associated with the quantities $\phi_{\text {min }}$ and $\phi_{\text {max }}$. By specifying RHSPHI $=\Phi$ in either the PROC LP statement or the RESET
statement, you can examine the solution $x^{o p t}(\phi)$ as ϕ increases or decreases from 0 to Φ.

When RHSPHI $=\Phi$ is specified, the procedure first finds the interval $\left[\phi_{\min }, \phi_{\max }\right]$ as described previously. Then, if $\Phi \in\left[\phi_{\min }, \phi_{\max }\right]$, no further investigation is needed. However, if $\Phi>\phi_{\max }$ or $\Phi<\phi_{\min }$, then the procedure attempts to solve the new problem $(\operatorname{lpr}(\Phi))$. To accomplish this, it pivots the leaving variable out of the basis while maintaining dual feasibility. If this new solution is primal feasible in $(\operatorname{lpr}(\Phi))$, no further investigation is needed; otherwise, the procedure identifies the new leaving variable and pivots it out of the basis, again maintaining dual feasibility. Dual pivoting continues in this manner until a solution that is primal feasible in $(\operatorname{lpr}(\Phi))$ is identified. Because dual feasibility is maintained at each pivot, the $(\operatorname{lpr}(\Phi))$ primal feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the current range of ϕ, and the objective value. When $x^{o p t}(\Phi)$ is found, it is displayed. If you want the solution $x^{o p t}(\phi)$ at each pivot, then specify the PARAPRINT option in either the PROC LP or the RESET statement.

Price Parametric Programming

As discussed in the "Price Sensitivity Analysis" section on page 243, for each price change vector r, PROC LP finds an interval $\left[\phi_{\min }, \phi_{\max }\right.$] such that for each $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$,

$$
r c_{i}(\phi)=\left((c+\phi r)_{N}^{T}-(c+\phi r)_{B}^{T} B^{-1} N\right)_{i}
$$

satisfies the conditions for optimality in $(\operatorname{lpp}(\phi))$ for the fixed basis B. Entering variables that inhibit further changes in ϕ without a change in the basis B are associated with the quantities $\phi_{\min }$ and $\phi_{\max }$. By specifying PRICEPHI $=\Phi$ in either the PROC LP statement or the RESET statement, you can examine the solution $x^{o p t}(\phi)$ as ϕ increases or decreases from 0 to Φ.

When PRICEPHI $=\Phi$ is specified, the procedure first finds the interval $\left[\phi_{\min }, \phi_{\max }\right]$, as described previously. Then, if $\Phi \in\left[\phi_{\min }, \phi_{\max }\right]$, no further investigation is needed. However, if $\Phi>\phi_{\max }$ or $\Phi<\phi_{\min }$, the procedure attempts to solve the new problem $(\operatorname{lpp}(\Phi))$. To accomplish this, it pivots the entering variable into the basis while maintaining primal feasibility. If this new solution is dual feasible in $(\operatorname{lpp}(\Phi))$, no further investigation is needed; otherwise, the procedure identifies the new entering variable and pivots it into the basis, again maintaining primal feasibility. Pivoting continues in this manner until a solution that is dual feasible in $(\operatorname{lpp}(\Phi))$ is identified. Because primal feasibility is maintained at each pivot, the $(\operatorname{lpp}(\Phi))$ dual feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the current range of ϕ, and the objective value. When $x^{o p t}(\Phi)$ is found, it is displayed. If you want the solution $x^{o p t}(\phi)$ at each pivot, then specify the PARAPRINT option in either the PROC LP or the RESET statement.

Interactive Facilities

The interactive features of the LP procedure enable you to examine intermediate results, perform sensitivity analysis, parametric programming, and range analysis, and control the solution process.

Controlling Interactive Features

You can gain control of the LP procedure for interactive processing by setting a breakpoint or pressing the CTRL-BREAK key combination, or when certain error conditions are encountered:

- when a feasible solution is found
- at each pivot of the simplex algorithm
- when an integer feasible solution is found
- at each integer pivot of the branch-and-bound algorithm
- after the data are read but before iteration begins
- after at least one integer feasible solution has been found which is within desirable proximity of optimality
- after the problem has been solved but before results are displayed

When the LP procedure pauses, you can enter any of the interactive statements RESET, PIVOT, IPIVOT, PRINT, SHOW, QUIT, and RUN.

Breakpoints are set using the FEASIBLEPAUSE, PAUSE=, IFEASIBLEPAUSE=, IPAUSE=, PROXIMITYPAUSE=, READPAUSE, and ENDPAUSE options. The LP procedure displays a message on the SAS log when it gives you control because of encountering one of these breakpoints.

During phase 1, 2, or 3, the CTRL-BREAK key pauses the LP procedure and releases the control at the beginning of the next iteration.

The error conditions, which usually cause the LP procedure to pause, include time limit exceeded, phase 1 iterations exceeded, phase 2 iterations exceeded, phase 3 iterations exceeded, and integer iterations exceeded. You can use the RESET statement to reset the option that caused the error condition.

The PIVOT and IPIVOT statements result in control being returned to you after a single simplex algorithm pivot and an integer pivot. The PRINT and SHOW statements display current solution information and return control to you. On the other hand, the QUIT statement requests that you leave the LP procedure immediately. If you want to quit but save output data sets, then type QUIT/SAVE. The RUN statement requests the LP procedure to continue its execution immediately.

Displaying Intermediate Results

Once you have control of the procedure, you can examine the current values of the options and the status of the problem being solved using the SHOW statement. All displaying done by the SHOW statement goes to the SAS log.

Details about the current status of the solution are obtained using the PRINT statement. The various display options enable you to examine parts of the variable and constraint summaries, display the current tableau, perform sensitivity analysis on the current solution, and perform range analysis.

Interactive Facilities in Batch Mode

All of the interactive statements can be used when processing in batch mode. This is particularly convenient when the interactive facilities are used to combine different search strategies in solving integer problems.

Sensitivity Analysis

Two features that enhance the ability to perform sensitivity analysis need further explanation. When you specify /SENSITIVITY in a PRINT COLUMN(colnames) statement, the LP procedure defines a new change row to use in sensitivity analysis and parametric programming. This new change row has a +1 entry for each variable listed in the PRINT statement. This enables you to define new change rows interactively.

When you specify /SENSITIVITY in a PRINT ROW (rownames) statement, the LP procedure defines a new change column to use in sensitivity analysis and parametric programming. This new change column has $a+1$ entry for each right-hand-side coefficient listed in the PRINT statement. This enables you to define new change columns interactively.

In addition, you can interactively change the RHSPHI= and PRICEPHI= options using the RESET statement. This enables you to perform parametric programming interactively.

Memory Management

There are no restrictions on the problem size in the LP procedure. The number of constraints and variables in a problem that PROC LP can solve depends on the host platform, the available memory, and the available disk space for utility data sets.

Memory usage is affected by a great many factors including the density of the technological coefficient matrix, the model structure, and the density of the decomposed basis matrix. The algorithm requires that the decomposed basis fit completely in memory. Any additional memory is used for nonbasic columns. The partition between the decomposed basis and the nonbasic columns is dynamic so that as the inverse grows, which typically happens as iterations proceed, more memory is available to it and less is available for the nonbasic columns.

The LP procedure determines the initial size of the decomposed basis matrix. If the area used is too small, PROC LP must spend time compressing this matrix, which degrades performance. If PROC LP must compress the decomposed basis matrix on the
average more than 15 times per iteration, then the size of the memory devoted to the basis is increased. If the work area cannot be made large enough to invert the basis, an error return occurs. On the other hand, if PROC LP compresses the decomposed basis matrix on the average once every other iteration, then memory devoted to the decomposed basis is decreased, freeing memory for the nonbasic columns.

For many models, memory constraints are not a problem because both the decomposed basis and all the nonbasic columns will have no problem fitting. However, when the models become large relative to the available memory, the algorithm tries to adjust memory distribution in order to solve the problem. In the worst cases, only one nonbasic column fits in memory with the decomposed basis matrix.
Problems involving memory use can occur when solving mixed-integer problems. Data associated with each node in the branch-and-bound tree must be kept in memory. As the tree grows, competition for memory by the decomposed basis, the nonbasic columns, and the branch-and-bound tree may become critical. If the situation becomes critical, the procedure automatically switches to branching strategies that use less memory. However, it is possible to reach a point where no further processing is possible. In this case, PROC LP terminates on a memory error.

Output Data Sets

The LP procedure can optionally produce four output data sets. These are the ACTIVEOUT=, PRIMALOUT=, DUALOUT=, and TABLEAUOUT= data sets. Each contains two variables that identify the particular problem in the input data set. These variables are
_OBJ_ID_ identifies the objective function ID.
_RHS_ID_ identifies the right-hand-side variable.

Additionally, each data set contains other variables, which are discussed below.

ACTIVEOUT= Data Set

The ACTIVEOUT= data set contains a representation of the current active branch-and-bound tree. You can use this data set to initialize the branch-and-bound tree to continue iterations on an incompletely solved problem. Each active node in the tree generates two observations in this data set. The first is a 'LOWERBD' observation that is used to reconstruct the lower-bound constraints on the currently described active node. The second is an 'UPPERBD' observation that is used to reconstruct the upper-bound constraints on the currently described active node. In addition to these, an observation that describes the current best integer solution is included. The data set contains the following variables:

STATUS	contains the keywords LOWERBD, UPPERBD, and INTBEST for identifying the type of observation.
PROB	contains the problem number for the current observation.

OBJECT contains the objective value of the parent problem that generated the current observation's problem.
_SINFEA contains the sum of the integer infeasibilities of the current observation's problem.
PROJEC contains the data needed for CANSELECT=PROJECT when the branch-and-bound tree is read using the ACTIVEIN= option.
PSEUDO contains the data needed for CANSELECT=PSEUDOC when the branch-and-bound tree is read using the ACTIVEIN= option.
INTEGER VARIABLES Integer-constrained structural variables are also included in the ACTIVEOUT= data set. For each observation, these variables contain values for defining the active node in the branch-andbound tree.

PRIMALOUT= Data Set

The PRIMALOUT= data set contains the current primal solution. If the problem has integer-constrained variables, the PRIMALOUT= data set contains the current best integer feasible solution. If none have been found, the PRIMALOUT= data set contains the relaxed solution. In addition to _OBJ_ID_ and _RHS_ID_, the data set contains the following variables:
VAR identifies the variable name.
TYPE identifies the type of the variable as specified in the input data set. Artificial variables are labeled as type 'ARTIFCL'.
identifies whether the variable is basic, nonbasic, or at an upper bound in the current solution.
STATUS
LBOUND
VALUE
UBOUND
-PRICE-
_R_COST_
contains the input upper bound on the variable unless the variable is integer-constrained and an integer solution is given. In this case, _UBOUND_ contains the upper bound on the variable needed to realize the integer solution on subsequent calls to PROC LP when using the PRIMALIN= option.
contains the input price coefficient of the variable.
identifies the value of the reduced cost in the current solution. Example 4.3 in the "Examples" section shows a typical PRIMALOUT= data set. Note that it is necessary to include the information on objective function and right-hand side in order to distinguish problems in multiple problem data sets.

DUALOUT= Data Set

The DUALOUT= data set contains the dual solution for the current solution. If the problem has integer-constrained variables, the DUALOUT= data set contains the dual for the current best integer solution, if any. Otherwise it contains the dual for the relaxed solution. In addition to _OBJ_ID_ and _RHS_ID_, it contains the following variables:
_ROW_ID_ identifies the row or constraint name.
TYPE identifies the type of the row as specified in the input data set.
RHS gives the value of the right-hand side on input.
_L_RHS_ gives the lower bound for the row evaluated from the input right-hand-side value, the TYPE of the row, and the value of the RANGE variable for the row.
VALUE gives the value of the row, at optimality, excluding logical variables.
_U_RHS_ gives the upper bound for the row evaluated from the input right-hand-side value, the TYPE of the row, and the value of the RANGE variable for the row.
DUAL gives the value of the dual variable associated with the row.

TABLEAUOUT= Data Set

The TABLEAUOUT= data set contains the current tableau. Each observation, except for the first, corresponds to a basic variable in the solution. The observation labeled R_COSTS contains the reduced costs $c_{N}^{T}-c_{B}^{T} B^{-1} N$. In addition to _OBJ_ID_ and _RHS_ID_, it contains the following variables:
BASIC
INVB_R
gives the names of the basic variables in the solution.
gives the values of $B^{-1} r$, where r is the right-hand-side vector.

STRUCTURAL VARIABLES give the values in the tableau, namely $B^{-1} A$.

Input Data Sets

In addition to the DATA= input data set, PROC LP recognizes the ACTIVEIN= and the PRIMALIN= data sets.

ACTIVEIN= Data Set

The ACTIVEIN= data set contains a representation of the current active tree. The format is identical to that of the ACTIVEOUT= data set.

PRIMALIN= Data Set

The format of the PRIMALIN= data set is identical to the PRIMALOUT= data set. PROC LP uses the PRIMALIN= data set to identify variables at their upper bounds in the current solution and variables that are basic in the current solution.

You can add observations to the end of the problem data set if they define cost (right-hand-side) sensitivity change vectors and have PRICESEN (RHSSEN) types. This enables you to solve a problem, save the solution in a SAS data set, and perform sensitivity analysis later. You can also use the PRIMALIN= data set to restart problems that have not been completely solved or to which new variables have been added.

Displayed Output

The output from the LP procedure is discussed in the following six sections:

- Problem Summary
- Solution Summary including a Variable Summary and a Constraint Summary
- Infeasible Information Summary
- RHS Sensitivity Analysis Summary (the RHS Range Analysis Summary is not discussed)
- Price Sensitivity Analysis Summary (the Price Range Analysis Summary is not discussed)
- Iteration Log

For integer-constrained problems, the procedure also displays an Integer Iteration Log. The description of this Log can be found in the "Integer Programming" section on page 233 . When you request that the tableau be displayed, the procedure displays the Current Tableau. The description of this can be found in the "The Reduced Costs, Dual Activities, and Current Tableau" section on page 229.

A problem data set can contain a set of constraints with several right-hand sides and several objective functions. PROC LP considers each combination of right-hand side and objective function as defining a new linear programming problem and solves each, performing all specified sensitivity analysis on each problem. For each problem defined, PROC LP displays a new sequence of output sections. Example 4.1 in the "Examples" section on page 256 discusses each of these elements.

The LP procedure produces the following displayed output by default.

The Problem Summary

The problem summary includes the

- type of optimization and the name of the objective row (as identified by the ID or ROW variable)
- name of the SAS variable that contains the right-hand-side constants
- name of the SAS variable that contains the type keywords
- density of the coefficient matrix (the ratio of the number of nonzero elements to the number of total elements) after the slack and surplus variables have been appended
- number of each type of variable in the mathematical program
- number of each type of constraint in the mathematical program

The Solution Summary

The solution summary includes the

- termination status of the procedure
- objective value of the current solution
- number of phase 1 iterations that were completed
- number of phase 2 iterations that were completed
- number of phase 3 iterations that were completed
- number of integer iterations that were completed
- number of integer feasible solutions that were found
- number of initial basic feasible variables identified
- time used in solving the problem excluding reading the data and displaying the solution
- number of inversions of the basis matrix
- current value of several of the options

The Variable Summary

The variable summary includes the

- column number associated with each structural or logical variable in the problem
- name of each structural or logical variable in the problem. (PROC LP gives the logical variables the name of the constraint ID. If no ID variable is specified, the procedure names the logical variable _OBS n_{-}, where n is the observation that describes the constraint.)
- variable's status in the current solution. The status can be BASIC, DEGEN, ALTER, blank, LOWBD, or UPPBD, depending upon whether the variable is a basic variable, a degenerate variable (that is, a basic variable whose activity is at its input lower bound), a nonbasic variable that can be brought into the basis to define an alternate optimal solution, a nonbasic variable at its default lower bound 0 , a nonbasic variable at its lower bound, or a nonbasic variable at its upper bound.
- type of variable (whether it is logical or structural, and, if structural, its bound type, or other value restriction). See Example 4.1 for a list of possible types in the variable summary.
- value of the objective coefficient associated with each variable
- activity of the variable in the current solution
- variable's reduced cost in the current solution

The Constraint Summary

The constraint summary includes the

- constraint row number and its ID
- kind of constraint (whether it is an OBJECTIVE, LE, EQ, GE, RANGELE, RANGEEQ, RANGEGE, or FREE row)
- number of the slack or surplus variable associated with the constraint row
- value of the right-hand-side constant associated with the constraint row
- current activity of the row (excluding logical variables)
- current activity of the dual variable (shadow price) associated with the constraint row

The Infeasible Information Summary

The infeasible information summary includes the

- name of the infeasible row or variable
- current activity for the row or variable
- type of the row or variable
- value of right-hand-side constant
- name of each nonzero and nonmissing variable in the row
- activity and upper and lower bounds for the variable

The RHS Sensitivity Analysis Summary

The RHS sensitivity analysis summary includes the

- value of $\phi_{\text {min }}$
- leaving variable when $\phi=\phi_{\text {min }}$
- objective value when $\phi=\phi_{\text {min }}$
- value of $\phi_{\text {max }}$
- leaving variable when $\phi=\phi_{\text {max }}$
- objective value when $\phi=\phi_{\text {max }}$
- column number and name of each logical and structural variable
- variable's status when $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$
- variable's reduced cost when $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$
- value of right-hand-side constant when $\phi=\phi_{\text {min }}$
- activity of the variable when $\phi=\phi_{\text {min }}$
- value of right-hand-side constant when $\phi=\phi_{\max }$
- activity of the variable when $\phi=\phi_{\text {max }}$

The Price Sensitivity Analysis Summary

The price sensitivity analysis summary includes the

- value of $\phi_{\text {min }}$
- entering variable when $\phi=\phi_{\text {min }}$
- objective value when $\phi=\phi_{\text {min }}$
- value of $\phi_{\max }$
- entering variable when $\phi=\phi_{\text {max }}$
- objective value when $\phi=\phi_{\max }$
- column number and name of each logical and structural variable
- variable's status when $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$
- activity of the variable when $\phi \in\left[\phi_{\min }, \phi_{\max }\right]$
- price of the variable when $\phi=\phi_{\text {min }}$
- variable's reduced cost when $\phi=\phi_{\text {min }}$
- price of the variable when $\phi=\phi_{\text {max }}$
- variable's reduced cost when $\phi=\phi_{\text {max }}$

The Iteration Log

The iteration \log includes the

- phase number
- iteration number in each phase
- name of the leaving variable
- name of the entering variable
- variable's reduced cost
- objective value

ODS Table and Variable Names

PROC LP assigns a name to each table it creates. You can use these names to select output tables when using the Output Delivery System (ODS).

Table 4.6. ODS Tables Produced in PROC LP

Table Name	Description	Statement/Option
ProblemSummary	Problem summary	default
SolutionSummary	Solution summary	default
VariableSummary	Variable summary	default
ConstraintSummary	Constraint summary	default
IterationLog	Iteration log	FLOW
IntegerIterationLog	Integer iteration log	default

Table 4.6. (continued)

Table Name	Description	Statement/Option
PriceSensitivitySummary	Price sensitivity analysis	default, PRINT PRICESEN, or PRINT COLUMN/SENSITIVITY
PriceActivities	Price activities at $\phi_{\min }$ and $\phi_{\text {max }}$	default, PRINT PRICESEN, or PRINT COLUMN/SENSITIVITY
PriceActivity	Price activity at $\phi_{\text {min }}$ or $\phi_{\text {max }}$	PRICEPHI= and PARAPRINT
PriceParametricLog	Price parametric programming log	PRICEPHI=
PriceRangeSummary	Price range analysis	RANGEPRICE or PRINT RANGEPRICE
RhsSensitivitySummary	RHS sensitivity analysis summary	default, PRINT RHSSEN, or PRINT ROW/SENSITIVITY
RhsActivities	RHS activities at $\phi_{\min }$ and $\phi_{\text {max }}$	default, PRINT RHSSEN, or PRINT ROW/SENSITIVITY
RhsActivity	RHS activity at $\phi_{\text {min }}$ or $\phi_{\text {max }}$	RHSPHI= and PARAPRINT
RhsParametricLog	RHS parametric programming log	RHSPHI=
RhsRangeSummary	RHS range analysis	RANGERHS or PRINT RANGERHS
InfeasibilitySummary	Infeasible row or variable summary	default
Infeasibility Activity	Variable activity in an infeasible row	default
CurrentTableau	Current tableau	TABLEAUPRINT or PRINT TABLEAU
Matrix	Technological matrix	PRINT MATRIX
MatrixPicture	Technological matrix picture	PRINT MATRIX/PICTURE
MatrixPictureLegend	Technological matrix picture legend	PRINT MATRIX/PICTURE

The following table lists the variable names of the preceding tables used in the ODS template of the LP procedure.
Table 4.7. Variable Names for the ODS Tables Produced in PROC LP

Table Name	Variables
VariableSummary	VarName, Status, Type, Price, Activity, ReducedCost
ConstraintSummary	Row, RowName, Type, SSCol, Rhs, Activity, Dual IterationLog
Phase, Iteration, EnterVar, EnterCol, LeaveVar, LeaveCol, ReducedCost,	
ObjValue	
IntegerIterationLog	
Iteration, Problem, Condition, Objective, Branch, Value, SumOfInfeas, Active,	
Proximity	
Col, VarName, Status, Activity, MinPrice, MinReducedCost, MaxPrice,	
PriceActivities	MaxReducedCost Col, VarName, Status, Activity, Price, ReducedCost
PriceActivity	LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi PriceParametricLog PriceRangeSummary Col, VarName, MinPrice, MinEnterVar, MinObj, MaxPrice, MaxEnterVar, MaxObj Col, VarName, Status, ReducedCost, MinRhs, MinActivity, MaxRhs, MaxActivity
RhsActivities	Man

Table 4.7. (continued)

Table Name	Variables
RhsActivity	Col, VarName, Status, ReducedCost, Rhs, Activity,
RhsParametricLog	LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
RhsRangeSummary	RowName, MinRhs, MinLeaveVar, MinObj, MaxRhs, MaxLeaveVar, MaxObj
InfeasibilityActivity	VarName, Coefficient, Activity, Lower, Upper

Examples

The following fourteen examples illustrate some of the capabilities of PROC LP. These examples, together with the other SAS/OR examples, can be found in the SAS sample library. A description of the features of PROC LP as shown in the examples are

Example 4.1 dense input format
Example 4.2 sparse input format
Example 4.3 the RANGEPRICE option to show you the range over which each objective coefficient can vary without changing the variables in the basis
Example 4.4 more sensitivity analysis and restarting a problem
Example 4.5 parametric programming
Example 4.6 special ordered sets
Example 4.7 goal programming
Example 4.8 integer programming
Example 4.9 an infeasible problem
Example 4.10 restarting integer programs
Example 4.11 controlling the search of the branch-and-bound tree
Example 4.12 matrix generation and report writing for an assignment problem
Example 4.13 matrix generation and report writing for a scheduling problem
Example 4.14 a multicommodity transshipment problem

Example 4.1. An Oil Blending Problem

The blending problem presented in the introduction is a good example for demonstrating some of the features of the LP procedure. Recall that a step in refining crude oil into finished oil products involves a distillation process that splits crude into various streams. Suppose that there are three types of crude available: Arabian light, Arabian heavy, and Brega. These are distilled into light naphtha, intermediate naphtha, and heating oil. Using one of two recipes, these in turn are blended into jet fuel.

Assume that you can sell as much fuel as is produced. What production strategy maximizes the profit from jet fuel sales? The following SAS code demonstrates a
way of answering this question using linear programming. The SAS data set is a representation of the formulation for this model given in the introductory section.

```
data;
    input _row_ $17.
        a_light a_heavy brega naphthal naphthai heatingo jet_1
            jet_2 _type_ $ _rhs_;
    datalines;
```

```
profit -175 -165 -205 0 0 0 300 300 max
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 0 eq 0
heating_o_conv . 390 .300.430 0 0-1 0 0 0
recipe_1 
```



```
;
proc lp;
run;
```

The _ROW_ variable contains the names of the rows in the model; the variables A_LIGHT to JET_2 are the names of the structural variables in the model; the _TYPE_ variable contains the keywords that tell the LP procedure how to interpret each row in the model; and the _RHS_ variable gives the value of the right-hand-side constants.

The structural variables are interpreted as the quantity of each type of constituent or finished product. For example, the value of A_HEAVY in the solution is the amount of Arabian heavy crude to buy while the value of JET_1 in the solution is the amount of recipe 1 jet fuel that is produced. As discussed previously, the values given in the model data set are the technological coefficients whose interpretation depends on the model. In this example, the coefficient -175 in the PROFIT row for the variable A_LIGHT gives a cost coefficient (because the row with _ROW_=PROFIT has _TYPE_=MAX) for the structural variable A_LIGHT. This means that for each unit of Arabian heavy crude purchased, a cost of 175 units is incurred.
The coefficients $0.035,0.100$, and 0.390 for the A_LIGHT variable give the percentages of each unit of Arabian light crude that is distilled into the light naphtha, intermediate naphtha, and heating oil components. The 110 value in the row _ROW_=AVAILABLE gives the quantity of Arabian light that is available.
PROC LP produces the following Problem Summary output. Included in the summary is an identification of the objective, defined by the first observation of the problem data set; the right-hand-side variable, defined by the variable _RHS_; and the type identifier, defined by the variable_TYPE_. See Output 4.1.1.

Output 4.1.1. Problem Summary for the Oil Blending Problem

The next section of output (Output 4.1.2) contains the Solution Summary, which indicates whether or not an optimal solution was found. In this example, the procedure terminates successfully (with an optimal solution), with 1544 as the value of the objective function. Also included in this section of output is the number of phase 1 and phase 2 iterations, the number of variables used in the initial basic feasible solution, and the time used to solve the problem. For several options specified in the PROC LP statement, the current option values are also displayed.
Output 4.1.2. Solution Summary for the Oil Blending Problem

The LP Procedure	
Solution Summary	
Terminated Successfully	
Objective Value	1544
Phase 1 Iterations	0
Phase 2 Iterations	4
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	5
Time Used (seconds)	0
Number of Inversions	3
Epsilon	$1 \mathrm{E}-8$
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	100
Time Limit (seconds)	120

The next section of output (Output 4.1.3) contains the Variable Summary. A line is displayed for each variable in the mathematical program with the variable name, the status of the variable in the solution, the type of variable, the variable's price coefficient, the activity of the variable in the solution, and the reduced cost for the variable. The status of a variable can be

BASIC	if the variable is a basic variable in the solution.
DEGEN	if the variable is a basic variable whose activity is at its input lower bound.
ALTER	if the variable is nonbasic and is basic in an alternate optimal solution.
LOWBD	if the variable is nonbasic and is at its lower bound.
UPPBD	if the variable is nonbasic and is at its upper bound.

The TYPE column shows how PROC LP interprets the variable in the problem data set. Types include the following:

NON-NEG if the variable is a nonnegative variable with lower bound 0 and upper bound $+\infty$.

LOWERBD if the variable has a lower bound specified in a LOWERBD observation and upper bound $+\infty$.

UPPERBD

UPLOWBD if the variable has a lower bound specified in a LOWERBD observation and an upper bound specified in an UPPERBD observation.
if the variable is constrained to take integer values. If this is the case, then it must also be upper and lower bounded.

BINARY
UNRSTRCT
if the variable is constrained to take value 0 or 1 .
if the variable is an unrestricted variable having bounds of $-\infty$ and $+\infty$.

SLACK if the variable is a slack variable that PROC LP has appended to a LE constraint. For variables of this type, the variable name is the same as the name of the constraint (given in the ROW variable) for which this variable is the slack. A nonzero slack variable indicates that the constraint is not tight. The slack is the amount by which the right-hand side of the constraint exceeds the left-hand side.

SURPLUS if the variable is a surplus variable that PROC LP has appended to a GE constraint. For variables of this type, the variable name is the same as the name of the constraint (given in the ROW variable) for which this variable is the surplus. A nonzero surplus variable indicates that the constraint is not tight. The surplus is the amount by which the left-hand side of the constraint exceeds the right-hand side.

The Variable Summary gives the value of the structural variables at optimality. In this example, it tells you how to produce the jet fuel to maximize your profit. You should buy 110 units of A_LIGHT and 80 units of BREGA. These are used to make 7.45 units of NAPHTHAL, 21.8 units of NAPHTHAI, and 77.3 units of HEATINGO. These in turn are used to make 60.65 units of JET_1 using recipe 1 and 63.33 units of JET_2 using recipe 2.

Output 4.1.3. Variable Summary for the Oil Blending Problem

Col Variable Name	The LP Procedure Variable Summary				Reduced Cost
	Status	Type	Price	Activity	
1 a_light	UPPBD	UPPERBD	-175	110	11.6
2 a_heavy		UPPERBD	-165	0	-21.45
3 brega	UPPBD	UPPERBD	-205	80	3.35
4 naphthal	BASIC	NON-NEG	0	7.45	0
5 naphthai	BASIC	NON-NEG	0	21.8	0
6 heatingo	BASIC	NON-NEG	0	77.3	0
7 jet_1	BASIC	NON-NEG	300	60.65	0
8 jet_2	BASIC	NON-NEG	300	63.33	0

The reduced cost associated with each nonbasic variable is the marginal value of that variable if it is brought into the basis. In other words, the objective function value would (assuming no constraints were violated) increase by the reduced cost of a nonbasic variable if that variable's value increased by one. Similarly, the objective function value would (assuming no constraints were violated) decrease by the reduced cost of a nonbasic variable if that variable's value were decreased by one. Basic variables always have a zero reduced cost. At optimality, for a maximization problem, nonbasic variables that are not at an upper bound have nonpositive reduced costs (for example, A_HEAVY has a reduced cost of -21.45). The objective would decrease if they were to increase beyond their optimal values. Nonbasic variables at upper bounds have nonnegative reduced costs, showing that increasing the upper bound (if the reduced cost is not zero) does not decrease the objective. For a nonbasic variable at its upper bound, the reduced cost is the marginal value of increasing its upper bound, often called its shadow price.

For minimization problems, the definition of reduced costs remains the same but the conditions for optimality change. For example, at optimality the reduced costs of
all non-upper-bounded variables are nonnegative, and the reduced costs of upperbounded variables at their upper bound are nonpositive.

The next section of output (Output 4.1.4) contains the Constraint Summary. For each constraint row, free row, and objective row, a line is displayed in the Constraint Summary. Included on the line are the constraint name, the row type, the slack or surplus variable associated with the row, the right-hand-side constant associated with the row, the activity of the row (not including the activity of the slack and surplus variables), and the dual activity (shadow prices).

A dual variable is associated with each constraint row. At optimality, the value of this variable, the dual activity, tells you the marginal value of the right-hand-side constant. For each unit increase in the right-hand-side constant, the objective changes by this amount. This quantity is also known as the shadow price. For example, the marginal value for the right-hand-side constant of constraint HEATING_O_CONV is -450 .

Output 4.1.4. Constraint Summary for the Oil Blending Problem

Row	Constraint Name	The LP Procedure Constraint Summary			Activity	Dual Activity
		Type	$\begin{aligned} & \mathrm{S} / \mathrm{s} \\ & \mathrm{Col} \end{aligned}$	Rhs		
	profit	OBJECTVE	.	0	1544	-
	naphtha_l_conv	EQ	-	0	0	-60
	naphtha_i_conv	EQ	-	0	0	-90
	heating_o_conv	EQ	-	0	0	-450
	5 recipe_1	EQ	-	0	0	-300
	6 recipe_2	EQ	-	0	0	-300

Example 4.2. A Sparse View of the Oil Blending Problem

Typically, mathematical programming models are very sparse. This means that only a small percentage of the coefficients are nonzero. The sparse problem input is ideal for these models. The oil blending problem in the "An Introductory Example" section on page 192 has a sparse form. This example shows the same problem in a sparse form with the data given in a different order. In addition to representing the problem in a concise form, the sparse format

- allows long column names
- enables easy matrix generation (see Example 4.12, Example 4.13, and Example 4.14)
- is compatible with MPS sparse format

The model in the sparse format is solved by invoking PROC LP with the SPARSEDATA option as follows.

```
data oil;
    format _type_ $8. _col_ $14. _row_ $16. ;
    input _type_ $ _col_ $ _row_ $ _coef_ ;
    datalines;
max arabian_light profit aritr
. arabian_heavy profit -165
. brega profit -205
. jet_1 profit 300
. jet_2 profit 300
eq . napha_l_conv .
. arabian_light napha_l_conv . 035
. arabian_heavy napha_l_conv . brega napha_l_conv . 030
. naphtha_light napha_l_conv -1
eq arabian light napha_i_conv i conv . . . . . 
. arabian_light napha_i_conv . arabian_heavy napha_i_conv . }07
. brega napha_i_conv . }13
. naphtha_inter napha_i_conv -1
eq . heating_oil_conv .
. arabian_light heating_oil_conv . }39
. arabian_heavy heating_oil_conv . }30
. brega heating_oil_conv . }43
. heating_oil heating_oil_conv -1
eq . recipe_1 .
. naphtha_inter recipe_1 . 3
. heating_oil recipe_1 .7
eq . recipe_2 .
. jet_1 recipe_1 -1
. naphtha_light recipe_2 . 2
. heating_oil recipe_2 . 8
. jet_2 recipe_2 -1
upperbd . available .
. arabian_light available 110
. arabian_heavy available }16
; brega available 80
proc lp data=oil sparsedata;
run;
```

The output from PROC LP follows.

Output 4.2.1. Output for the Sparse Oil Blending Problem

The LP Procedure

Solution Summary
Terminated Successfully

Objective Value	1544
Phase 1 Iterations	0
Phase 2 Iterations	5
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	5
Time Used (seconds)	0
Number of Inversions	3
Epsilon	$1.797693 E 308$
Infinity	100
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	99999999
Maximum Phase 3 Iterations	100
Maximum Integer Iterations	120

Example 4.3. Analyzing the Sensitivity of the Solution to Changes in the Objective Coefficients

Simple solution of a linear program is often not enough. A manager needs to evaluate how sensitive the solution is to changing assumptions. The LP procedure provides several tools that are useful for "what if," or sensitivity, analysis. One tool studies the effects of changes in the objective coefficients.

For example, in the oil blending problem, the cost of crude and the selling price of jet fuel can be highly variable. If you want to know the range over which each objective coefficient can vary without changing the variables in the basis, you can use the RANGEPRICE option in the PROC LP statement.

```
proc lp data=oil sparsedata
    rangeprice primalout=solution;
run;
```

In addition to the Problem and Solution summaries, the LP procedure produces a Price Range Summary, shown in Output 4.3.1.

For each structural variable, the upper and lower ranges of the price (objective function coefficient) and the objective value are shown. The blocking variables, those variables that would enter the basis if the objective coefficient were perturbed further, are also given. For example, the output shows that if the cost of ARABIAN_LIGHT crude were to increase from 175 to 186.6 per unit (remember that you are maximizing profit so the ARABIAN_LIGHT objective coefficient would decrease from -175 to -186.6), then it would become optimal to use less of this crude for any fractional increase in its cost. Increasing the unit cost to 186.6 would drive its reduced cost to zero. Any additional increase would drive its reduced cost negative and would destroy the optimality conditions; thus, you would want to use less of it in your processing. The output shows that, at the point where the reduced cost is zero, you would only be realizing a profit of $268=1544-(110 \times 11.6)$ and that ARABIAN_LIGHT enters the basis, that is, leaves its upper bound. On the other hand, if the cost of ARABIAN_HEAVY were to decrease to 143.55 , you would want to stop using the formulation of 110 units of ARABIAN_LIGHT and 80 units of BREGA and switch to a production scheme that included ARABIAN_HEAVY, in which case the profit would increase from the 1544 level.

Output 4.3.1. Price Range Summary for the Oil Blending Problem

Note that in the PROC LP statement, the PRIMALOUT=SOLUTION option was given. This caused the procedure to save the optimal solution in a SAS data set named SOLUTION. This data set can be used to perform further analysis on the problem without having to restart the solution process. Example 4.4 shows how this is done. A display of the data follows in Output 4.3.2.

Output 4.3.2. The PRIMALOUT= Data Set for the Oil Blending Problem

	${ }_{0}$	R			$\overline{\mathrm{S}}$	\bar{L}		U		\bar{R}
	B	H			T	B	v	B	P	-
	J	S		T	A	\bigcirc	A	\bigcirc	R	C
			v	Y	T	U	L	U	I	\bigcirc
\bigcirc	I	I	A	P	U	N	U	N	C	S
b	D	D	R	E	S	D	E	D	E	T
s	-	-	-	-	-	-	-	-	-	-
	profit	_rhs	arabian_heavy	UPPERBD		0	0.00	165	-165	-21.45
2	profit	_rhs	arabian_light	UPPERBD	_UPPER_	0	110.00	110	-175	11.60
3	profit	_rhs	brega	UPPERBD	_UPPER	0	80.00	80	-205	3.35
4	profit	_rhs	heating_oil	NON-NEG	_BASIC	0	77.30	1.7977E308	0	0.00
5	profit	_rhs	jet_1	NON-NEG	_BASIC	0	60.65	1.7977E308	300	0.00
6	profit	_rhs	jet_2	NON-NEG	_BASIC-	0	63.33	1.7977E308	300	0.00
7	profit	_rhs	naphtha_inter	NON-NEG	_BASIC	0	21.80	1.7977E308	0	-0.00
8	profit	_rhs	naphtha_light	NON-NEG	BASIC	0	7.45	1.7977E308	0	0.00
9	profit	_rhs	PHASE_1_OBJECTIVE	OBJECT	_DEGEN_	0	0.00	0	0	0.00
10	profit	_rhs_	profit	OBJECT	_BASIC	0	1544.00	1.7977E308	0	0.00

Example 4.4. Additional Analysis of the Sensitivity of the Solution to Changes in the Objective Coefficients

The objective coefficient ranging analysis, discussed in the last example, is useful for assessing the effects of changing costs and returns on the optimal solution if each objective function coefficient is modified in isolation. However, this is often not the case.

Suppose you anticipate that the cost of crude will be increasing and you want to examine how that will affect your optimal production plans. Furthermore, you estimate that if the price of ARABIAN_LIGHT goes up by 1 unit, then the price of ARABIAN_HEAVY will rise by 1.2 units and the price of BREGA will increase by 1.5 units. However, you plan on passing some of your increased overhead on to your jet fuel customers, and you decide to increase the price of jet fuel 1 unit for each unit of increased cost of ARABIAN_LIGHT.

An examination of the solution sensitivity to changes in the cost of crude is a twostep process. First, add the information on the proportional rates of change in the crude costs and the jet fuel price to the problem data set. Then, invoke the LP procedure. The following program accomplishes this. First, it adds a new row, named CHANGE, to the model. It gives this row a type of PRICESEN. That tells PROC LP to perform objective function coefficient sensitivity analysis using the given rates of change. The program then invokes PROC LP to perform the analysis. Notice that the PRIMALIN=SOLUTION option is used in the PROC LP statement. This tells the LP procedure to use the saved solution. Although it is not necessary to do this, it will eliminate the need for PROC LP to re-solve the problem and can save computing time.

```
data sen;
    format _type_ $8. _col_ $14. _row_ $6.;
    input _type_ $ _col_ $ _row_ $ _coef_;
    datalines;
pricesen . change .
. arabian_light change 1
. arabian_heavy change 1.2
. brega change 1.5
. jet_1 change -1
. jet_2 change -1
;
data;
    set oil sen;
run;
proc lp sparsedata primalin=solution;
run;
```

Output 4.4.1 shows the range over which the current basic solution remains optimal so that the current production plan need not change. The objective coefficients are modified by adding ϕ times the change vector given in the SEN data set, where
ϕ ranges from a minimum of -4.15891 to a maximum of 29.72973 . At the minimum value of ϕ, the profit decreases to 1103.073. This value of ϕ corresponds to an increase in the cost of ARABIAN_HEAVY to 169.99 (namely, $-175+\phi \times 1.2$), ARABIAN_LIGHT to $179.16(=-175+\phi \times 1)$, and BREGA to $211.24(=-205+$ $\phi \times 1.5$), and corresponds to an increase in the price of JET_1 and JET_2 to 304.16 $(=300+\phi \times(-1))$. These values can be found in the Price column under the section labeled Minimum Phi.

Output 4.4.1. The Price Sensitivity Analysis Summary for the Oil Blending Problem

The Price Sensitivity Analysis Summary also shows the effects of lowering the cost of crude and lowering the price of jet fuel. In particular, at the maximum ϕ of 29.72973, the current optimal production plan yields a profit of 4695.95 . Any increase or decrease in ϕ beyond the limits given results in a change in the production plan. More precisely, the columns that constitute the basis change.

Example 4.5. Price Parametric Programming for the Oil Blending Problem

This example continues to examine the effects of a change in the cost of crude and the selling price of jet fuel. Suppose that you know the cost of ARABIAN_LIGHT crude is likely to increase 30 units, with the effects on oil and fuel prices as described in Example 4.4. The analysis in the last example only accounted for an increase of a little over 4 units (because the minimum ϕ was -4.15891). Because an increase in the cost of ARABIAN_LIGHT beyond 4.15891 units requires a change in the optimal basis, it may require a change in the optimal production strategy as well. This type of analysis, where you want to find how the solution changes with changes in the objective function coefficients or right-hand-side vector, is called parametric programming.

You can answer this question by using the PRICEPHI= option in the PROC LP statement. The following program instructs PROC LP to continually increase the cost of the crudes and the return from jet fuel using the ratios given previously, until the cost of ARABIAN_LIGHT increases at least 30 units.

```
proc lp sparsedata primalin=solution pricephi=-30;
run;
```

The PRICEPHI= option in the PROC LP statement tells PROC LP to perform parametric programming on any price change vectors specified in the problem data set. The value of the PRICEPHI= option tells PROC LP how far to change the value of ϕ and in what direction. A specification of PRICEPHI=-30 tells PROC LP to continue pivoting until the problem has objective function equal to (original objective function value) $-30 \times$ (change vector).

Output 4.5.1 shows the result of this analysis. The first page is the Price Sensitivity Analysis Summary, as discussed in Example 4.4. The next page is an accounting for the change in basis as a result of decreasing ϕ beyond -4.1589. It shows that BREGA left the basis at an upper bound and entered the basis at a lower bound. The interpretation of these basis changes can be difficult (Hadley 1962; Dantzig 1963).

The last page of output shows the optimal solution at the displayed value of ϕ, namely -30.6878 . At an increase of 30.6878 units in the cost of ARABIAN_LIGHT and the related changes to the other crudes and the jet fuel, it is optimal to modify the production of jet fuel as shown in the activity column. Although this plan is optimal, it results in a profit of 0 . This may suggest that the ratio of a unit increase in the price of jet fuel per unit increase in the cost of ARABIAN_LIGHT is lower than desirable.

Output 4.5.1. Price Parametric Programming for the Oil Blending Problem

The LP Procedure
Price Parametric Programming Log
Sensitivity Vector change

			Current
Leaving Variable	Entering Variable Objective	Phi	
brega	brega	1103.0726	-4.158908

The LP Procedure
Price Sensitivity Analysis Summary
Sensitivity Vector change
Minimum Phi
Entering Variable
-30.68783069
arabian_light
Optimal Objective

Col Variable Name	Status	Activity	----Minim Price	m Phi---- Reduced Cost
1 arabian_heavy		0	-201.8254	-43.59127
2 arabian_light	ALTER	110	-205.6878	0
3 brega		0	-251.0317	-21.36905
4 heating_oil	BASIC	42.9	0	0
5 jet_1	BASIC	33.33	330.68783	0
6 jet_2	BASIC	35.09	330.68783	0
7 naphtha_inter	BASIC	11	0	0
8 naphtha_light	BASIC	3.85	0	0

What is the optimal return if ϕ is exactly -30 ? Because the change in the objective is linear as a function of ϕ, you can calculate the objective for any value of ϕ between those given by linear interpolation. For example, for any ϕ between -4.1589 and -30.6878 , the optimal objective value is

$$
\phi \times(1103.0726-0) /(-4.1589-30.6878)+b
$$

where

$$
b=30.6878 \times(1103.0726-0) /(-4.1589-30.6878)
$$

For $\phi=-30$, this is 28.5988 .

Example 4.6. Special Ordered Sets and the Oil Blending Problem

Often managers want to evaluate the cost of making a choice among alternatives. In particular, they want to make the most profitable choice. Suppose that only one oil crude can be used in the production process. This identifies a set of variables of which only one can be above its lower bound. This additional restriction could be included in the model by adding a binary integer variable for each of the three crudes. Constraints would be needed that would drive the appropriate binary variable to 1 whenever the corresponding crude is used in the production process. Then a constraint limiting the total of these variables to only one would be added. A similar formulation for a fixed charge problem is shown in Example 4.8.

The SOSLE type implicitly does this. The following DATA step adds a row to the model that identifies which variables are in the set. The SOSLE type tells the LP procedure that only one of the variables in this set can be above its lower bound. If you use the SOSEQ type, it tells PROC LP that exactly one of the variables in the set must be above its lower bound. Only integer variables can be in an SOSEQ set.

```
data special;
    format _type_ $6. _col_ $14. _row_ $8. ;
    input _type_ $ _col_ $ _row_ $ _coef_;
    datalines;
SOSLE . special .
. arabian_light special 1
. arabian_heavy special 1
. brega special 1
;
data;
    set oil special;
run;
proc lp sparsedata;
run;
```

Output 4.6.1 includes an Integer Iteration Log. This \log shows the progress that PROC LP is making in solving the problem. This is discussed in some detail in Example 4.8.

Output 4.6.1. The Oil Blending Problem with a Special Ordered Set

The LP Procedure

Integer Iteration Log

The LP Procedure					
Variable Summary					
Col Variable Name	Status	Type	Price	Activity	Reduced Cost
1 arabian_heavy		UPPERBD	-165	0	-21.45
2 arabian_light	UPPBD	UPPERBD	-175	110	11.6
3 brega		UPPERBD	-205	0	3.35
4 heating_oil	BASIC	NON-NEG	0	42.9	0
5 jet_1	BASIC	NON-NEG	300	33.33	0
6 jet_2	BASIC	NON-NEG	300	35.09	0
7 naphtha_inter	BASIC	NON-NEG	0	11	0
8 naphtha_light	BASIC	NON-NEG	0	3.85	0

The LP Procedure						
Constraint Summary						
Row	Constraint Name	Type	$\begin{aligned} & \mathrm{S} / \mathrm{S} \\ & \mathrm{Col} \end{aligned}$	Rhs	Activity	$\begin{array}{r} \text { Dual } \\ \text { Activity } \end{array}$
	profit	OBJECTVE	.	0	1276	.
2	napha_l_conv	EQ	-	0	0	-60
3	napha_i_conv	EQ	-	0	0	-90
4	heating_oil_conv	EQ	.	0	0	-450
5	recipe_1	EQ	.	0	0	-300
	recipe_2	EQ	.	0	0	-300

The solution shows that only the ARABIAN_LIGHT crude is purchased. The requirement that only one crude be used in the production is met, and the profit is 1276 . This tells you that the value of purchasing crude from an additional source, namely BREGA, is worth $1544-1276=268$.

Example 4.7. Goal-Programming a Product Mix Problem

This example shows how to use PROC LP to solve a linear goal-programming problem. PROC LP has the ability to solve a series of linear programs, each with a new objective function. These objective functions are ordered by priority. The first step is to solve a linear program with the highest priority objective function constrained only by the formal constraints in the model. Then, the problem with the next highest priority objective function is solved, constrained by the formal constraints in the model and by the value that the highest priority objective function realized. That is, the second problem optimizes the second highest priority objective function among the alternate optimal solutions to the first optimization problem. The process continues until a linear program is solved for each of the objectives.

This technique is useful for differentiating among alternate optimal solutions to a linear program. It also fits into the formal paradigm presented in goal programming. In goal programming, the objective functions typically take on the role of driving a linear function of the structural variables to meet a target level as closely as possible. The details of this can be found in many books on the subject, including Ignizio (1976).

Consider the following problem taken from Ignizio (1976). A small paint company manufactures two types of paint, latex and enamel. In production, the company uses 10 hours of labor to produce 100 gallons of latex and 15 hours of labor to produce 100 gallons of enamel. Without hiring outside help or requiring overtime, the company has 40 hours of labor available each week. Furthermore, each paint generates a profit at the rate of $\$ 1.00$ per gallon. The company has the following objectives listed in decreasing priority:

- avoid the use of overtime
- achieve a weekly profit of $\$ 1000$
- produce at least 700 gallons of enamel paint each week

The program to solve this problem follows.

```
data object;
    input _row_ $ latex enamel n1 n2 n3 p1 p2 p3 _type_ $ _rhs_;
    datalines;
overtime . . . . . 1 . . min 1
profit . . . 1 . . . . min 2
enamel . . . . 1 . . . min 3
overtime 10 15 1 . . -1 . . eq 40
profit 100 100 . 1 . . -1 . eq 1000
enamel . 1 . . 1 . . -1 eq }
;
proc lp data=object goalprogram;
run;
```

The data set called OBJECT contains the model. Its first three observations are the objective rows, and the next three observations are the constraints. The values in the right-hand-side variable _RHS_ in the objective rows give the priority of the objectives. The objective in the first observation with _ROW_=‘OVERTIME' has the highest priority, the objective named PROFIT has the next highest, and the objective named ENAMEL has the lowest. Note that the value of the right-hand-side variable determines the priority, not the order, in the data set.

Because this example is set in the formal goal-programming scheme, the model has structural variables representing negative ($\mathrm{n} 1, \mathrm{n} 2$, and n 3) and positive (p 1 , p 2 , and p 3) deviations from target levels. For example, $n 1+p 1$ is the deviation from the objective of avoiding the use of overtime and underusing the normal work time, namely using exactly 40 work hours. The other objectives are handled similarly.

Notice that the PROC LP statement includes the GOALPROGRAM option. Without this option, the procedure would solve three separate problems: one for each of the three objective functions. In that case, however, the procedure would not constrain the second and third programs using the results of the preceding programs; also, the values 1,2 , and 3 for _RHS_ in the objective rows would have no effect.

Output 4.7.1 shows the solution of the goal program, apparently as three linear program outputs. However, examination of the constraint summaries in the second and third problems shows that the constraints labeled by the objectives OVERTIME and PROFIT have type FIXEDOBJ. This indicates that these objective rows have become constraints in the subsequent problems.

Output 4.7.1. Goal Programming

The LP Procedure
 Variable Summary

Variable	Status	Type	Price	Activity	Reduced Cost
Col Name	Star				
1 latex	ALTER	NON-NEG	0	0	0
2 enamel	ALTER	NON-NEG	0	0	0
3 n1	BASIC	NON-NEG	0	40	0
4 n2	BASIC	NON-NEG	0	1000	0
5 n3	BASIC	NON-NEG	0	7	0
6 p1		NON-NEG	1	0	1
7 p2	ALTER	NON-NEG	0	0	0
8 p3	ALTER	NON-NEG	0	0	0

The LP Procedure

Problem Summary

Objective Function	Min profit
Rhs Variable	rhs_
Type Variable	type
Problem Density (\%)	45.83
Variables	Number
Non-negative	8
Total	8
Constraints	Number
EQ	3
Objective	3
Total	6

> The LP Procedure
> Constraint Summary

Constraint Row Name	Type	S/S Col	Rhs	Activity	Dual Activity
l overtime	FIXEDOBJ	.	0	0	
2 profit	OBJECTVE	.	0	600	.
3 enamel	FREE_OBJ	.	0	7	.
4 overtime	EQ	.	40	40	-10
5 profit	EQ	.	1000	1000	1
6 enamel	EQ	.	7	7	0

The LP Procedure Problem Summary	
Objective Function Rhs Variable Type Variable Problem Density (\%)	Min enamel _rhs_ -type_ 45.83
Variables	Number
Non-negative	8
Total	8
Constraints	Number
EQ	3
Objective	3
Total	6

The LP Procedure	
Solution Summary	
Terminated Successfully	
Objective Value	7
Phase 1 Iterations	0
Phase 2 Iterations	1
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	7
Time Used (seconds)	0
Number of Inversions	8
Epsilon	$1 \mathrm{E}-8$
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	100
Time Limit (seconds)	120

The LP Procedure

Variable Summary

The LP Procedure

Constraint Summary

	Constrain		S/S			Dual
Row	Name	Type	Col	Rhs	Activity	Activity
1	overtime	FIXEDOBJ	.	0	0	
2	profit	FIXEDOBJ	.	0	600	
3	enamel	OBJECTVE	.	0	7	
4	overtime	EQ	.	40	40	-0.2
5	profit	EQ	.	1000	1000	0.02
6	enamel	EQ		7	7	1

The solution to the last linear program shows a value of 4 for the variable LATEX and a value of 0 for the variable ENAMEL. This tells you that the solution to the linear goal program is to produce 400 gallons of latex and no enamel paint.

The values of the objective functions in the three linear programs tell you whether you can achieve the three objectives. The activities of the constraints labeled OVERTIME, PROFIT, and ENAMEL tell you values of the three linear program objectives. Because the first linear programming objective OVERTIME is 0 , the highest priority objective, which is to avoid using additional labor, is accomplished. However, because the second and third objectives are nonzero, the second and third priority objectives are not satisfied completely. The PROFIT objective is 600 . Because the PROFIT objective is to minimize the negative deviation from the profit constraint, this means that a profit of only $400=1000-600$ is realized. Similarly, the ENAMEL objective is 7, indicating that there is a negative deviation from the ENAMEL target of 7 units.

Example 4.8. A Simple Integer Program

Recall the linear programming problem presented in Chapter 1, "Introduction to Optimization." In that problem, a firm produces two products, chocolates and gumdrops, that are processed by four processes: cooking, color/flavor, condiments, and packaging. The objective is to determine the product mix that maximizes the profit to the firm while not exceeding manufacturing capacities. The problem is extended to demonstrate a use of integer-constrained variables.

Suppose that you must manufacture only one of the two products. In addition, there is a setup cost of 100 if you make the chocolates and 75 if you make the gumdrops. To identify which product will maximize profit, you define two zero-one integer variables, ICHOCO and IGUMDR, and you also define two new constraints, CHOCOLATE and GUM. The constraint labeled CHOCOLATE forces ICHOCO to equal one when chocolates are manufactured. Similarly, the constraint labeled GUM forces IGUMDR to equal 1 when gumdrops are manufactured. Also, you should include a constraint labeled ONLY_ONE that requires the sum of ICHOCO and IGUMDR to equal 1. (Note that this could be accomplished more simply by including ICHOCO and IGUMDR in a SOSEQ set.) Since ICHOCO and IGUMDR are integer variables, this constraint eliminates the possibility of both products being manufactured. Notice the coefficients -10000 , which are used to force ICHOCO or IGUMDR to 1 whenever CHOCO and GUMDR are nonzero. This technique, which is often used in integer programming, can cause severe numerical problems. If this driving coefficient is too large, then arithmetic overflows and underflow may result. If the driving coefficient is too small, then the integer variable may not be driven to 1 as desired by the modeler.

The objective coefficients of the integer variables ICHOCO and IGUMDR are the negatives of the setup costs for the two products. The following is the data set that describes this problem and the call to PROC LP to solve it:

```
data;
    format _row_ $10. ;
    input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
    datalines;
\begin{tabular}{lrrrrlr} 
object & .25 & .75 & -100 & -75 max &. \\
cooking & 15 & 40 & 0 & 0 le & 27000 \\
color & 0 & 56.25 & 0 & 0 le & 27000 \\
package & 18.75 & 0 & 0 & 0 & le & 27000 \\
condiments & 12 & 50 & 0 & 0 & le & 27000 \\
chocolate & 1 & 0 & -10000 & 0 & le & 0 \\
gum & 0 & 1 & 0 & -10000 le & 0 \\
only_one & 0 & 0 & 1 & 1 eq & 1 \\
binary &. &. & 1 & 2 binary &.
\end{tabular}
proc lp;
run;
```

The solution shows that gumdrops are produced. See Output 4.8.1.
Output 4.8.1. Summaries and an Integer Programming Iteration Log

Iter Problem		Condition	The LP Procedure						
		Integer Iteration Log							
		Objective	Branche	Value Sinfeas Active Proximity					
1	0		ACTIVE	397.5	ichoco	0.1	0.2	2	.
2	-1		SUBOPTIMAL	260	.	.	.	1	70
3	1	SUBOPTIMAL	285	.	-	-	0	.	

The branch-and-bound tree can be reconstructed from the information contained in the integer iteration log. The column labeled Iter numbers the integer iterations. The column labeled Problem identifies the Iter number of the parent problem from which the current problem is defined. For example, Iter=2 has Problem=-1. This means that problem 2 is a direct descendant of problem 1. Furthermore, because problem 1 branched on ICHOCO , you know that problem 2 is identical to problem 1 with an additional constraint on variable ICHOCO. The minus sign in the Problem $=-1$ in Iter=2 tells you that the new constraint on variable ICHOCO is a lower bound. Moreover, because Value $=0.1$ in Iter $=1$, you know that $\mathrm{ICHOCO}=0.1$ in Iter $=1$ so that the added constraint in Iter $=2$ is $\mathrm{ICHOCO} \geq\lceil 0.1\rceil$. In this way, the information in the \log can be used to reconstruct the branch-and-bound tree. In fact, when you save an ACTIVEOUT= data set, it contains information in this format that is used to reconstruct the tree when you restart a problem using the ACTIVEIN= data set. See Example 4.10.

Note that if you defined a SOSEQ special ordered set containing the variables CHOCO and GUMDR, the integer variables ICHOCO and IGUMDR and the three associated constraints would not have been needed.

Example 4.9. An Infeasible Problem

This is an example of the Infeasible Information Summary that is displayed when an infeasible problem is encountered. Consider the following problem:

$$
\begin{array}{ll}
\max & x+y+z+w \\
\text { subject to } & x+3 y+2 z+4 w \leq 5 \\
& 3 x+y+2 z+w \leq 4 \\
& 5 x+3 y+3 z+3 w=9 \\
& x, y, z, w \geq 0
\end{array}
$$

Examination of this problem reveals that it is unsolvable. Consequently, PROC LP identifies it as infeasible. The following program attempts to solve it.

```
data infeas;
    format _id_ $6.;
    input _id_ $ x1-x4 _type_ $ _rhs_;
    datalines;
profit 1 1 1 1 1 max .
const1 1 3 3 2 4 le 5
const2 }
const3 5 5 3 3 3 3 % eq }
;
proc lp;
run;
```

The results are shown in Output 4.9.1.

Output 4.9.1. The Solution of an Infeasible Problem

ERROR: Infeasible problem. Note the constraints in the constraint summary that are identified as infeasible. If none of the constraints are flagged then check the implicit bounds on the variables.

> The LP Procedure
> Solution Summary
> Infeasible Problem

Objective Value	2.5
Phase 1 Iterations	2
Phase 2 Iterations	0
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	5
Time Used (seconds)	0
Number of Inversions	2
	1.797693 E 308
Epsilon	100
Infinity	100
Maximum Phase 1 Iterations	99999999
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	120
Maximum Integer Iterations	
Time Limit (seconds)	

The LP Procedure

Constraint Summary

Constraint	S/S			Dual	
Row Name	Type	Col	Rhs	Activity	Activity

The LP Procedure				
Infeasible Information Summary				
	Infeasible	Row	const1	
	Constraint	Activity	6	
	Row Type		LE	
	Rhs Data		5	
Variable	Coefficient	Activity	Lower Bound	Upper Bound
x1	1	0.75	0	INFINITY
x2	3	1.75	0	INFINITY
x3	2	0	0	INFINITY
x 4	4	0	0	INFINITY

Note the information given in the Infeasible Information Summary for the infeasible row CONST1. It shows that the inequality row CONST1 with right-hand side 5 was found to be infeasible with activity 6 . The summary also shows each variable that has a nonzero coefficient in that row and its activity level at the infeasibility. Examination of these model parameters might give you a clue as to the cause of infeasibility, such as an incorrectly entered coefficient or right-hand-side value.

Example 4.10. Restarting an Integer Program

The following example is attributed to Haldi (Garfinkel and Nemhauser 1972) and is used in the literature as a test problem. Notice that the ACTIVEOUT= and the PRIMALOUT $=$ options are used when invoking PROC LP. These cause the LP procedure to save the primal solution in the data set named P and the active tree in the data set named A. If the procedure fails to find an optimal integer solution on the initial call, it can be called later using the A and P data sets as starting information.

The ACTIVEOUT= data set contains a representation of the current active problems in the branch-and-bound tree. The PRIMALOUT= data set contains a representation of the solution to the current problem. These two can be used to restore the procedure to an equivalent state to the one it was in when it stopped.

The results from the call to PROC LP is shown in Output 4.10.1. Notice that the procedure performed 100 iterations and then terminated on maximum integer iterations. This is because, by default, IMAXIT=100. The procedure reports the current best integer solution.

Output 4.10.1. Output from the HALDI10 Problem

The LP Procedure Problem Summary	
Objective Function Rhs Variable Type Variable Problem Density	$\begin{array}{r} \text { Max _OBS1_ } \\ \text { - rhs- } \\ \text { _type }_{31.82} \end{array}$
Variables	Number
Integer	6
${ }_{\text {Binary }}$	${ }_{10}^{6}$
Slack	10
Total	22
Constraints	Number
${ }_{\text {LE }}$	10
Objective	1
Total	11

The LP Procedure

Integer Iteration Log
Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

51	50	ACTIVE	17		0.083	0.15	13	3
52	-51	FATHOMED	15.933333		.	.	12	3
53	51	ACTIVE	16	x 2	0.067	0.06667	12	3
54	-53	SUBOPTIMAL	16		.	.	8	2
55	-8	ACTIVE	17.655399	x12	7.721	0.56127	9	2
56	55	ACTIVE	17.519375	x10	6.56	0.76125	10	2
57	56	ACTIVE	17.256874	x 2	0.265	0.67388	11	2
58	57	INFEASIBLE	17.167622		.	.	10	2
59	-57	FATHOMED	16.521755	.			9	2
60	-56	FATHOMED	17.03125	.		.	8	2
61	-55	ACTIVE	17.342857	x9	0.343	0.50476	8	2
62	61	ACTIVE	17.2225	x7	0.16	0.37333	9	2
63	62	ACTIVE	17.1875	x8	2.188	0.33333	9	2
64	63	ACTIVE	17.153651	x11	0.154	0.30095	10	2
65	-64	FATHOMED	12.381818				9	2
66	64	ACTIVE	17	x 2	0.133	0.18571	9	2
67	-66	FATHOMED	13	.	.	.	8	2
68	-62	FATHOMED	14.2		.	-	7	2
69	7	FATHOMED	15.428583	.	.	-	6	2
70	6	FATHOMED	16.75599				5	2
71	-5	ACTIVE	17.25974	x6	0.727	0.82078	5	2
72	-71	FATHOMED	17.142857	.			4	2
73	-4	ACTIVE	18.078095	x4	0.792	0.70511	5	2
74	-73	ACTIVE	17.662338	$\times 10$	7.505	0.91299	5	2
75	74	ACTIVE	17.301299	x9	0.301	0.57489	5	2
76	75	ACTIVE	17.210909	x7	0.211	0.47697	5	2
77	76	FATHOMED	17.164773	.		.	4	2
78	73	FATHOMED	12.872727	.	.	.	3	2
79	3	ACTIVE	18.368316	$\times 10$	7.602	1.20052	4	2
80	79	ACTIVE	18.198323	$\times 7$	1.506	1.85351	5	2
81	80	ACTIVE	18.069847	x12	8.517	1.67277	6	2
82	-81	ACTIVE	17.910909	x 4	0.7	0.73015	7	2
83	-82	ACTIVE	17.790909	x7	0.791	0.54015	8	2
84	-83	ACTIVE	17.701299	x9	0.701	0.62229	8	2
85	84	ACTIVE	17.17619	x6	0.818	0.45736	8	2
86	-85	ACTIVE	17.146667	x11	0.147	0.24333	8	2
87	86	ACTIVE	17	x1	0.167	0.16667	8	2
88	87	INFEASIBLE	16	.	.	.	7	2
89	83	ACTIVE	17.58	$\times 11$	0.58	0.73788	8	2
90	-89	FATHOMED	17.114286	.	-	.	7	2
91	-80	ACTIVE	18.044048	x12	8.542	1.71158	8	2
92	91	ACTIVE	17.954536	$\times 11$	0.477	1.90457	9	2
93	92	ACTIVE	17.875084	x 4	0.678	1.16624	10	2
94	93	FATHOMED	13.818182				9	2
95	-93	ACTIVE	17.231221	x6	0.727	0.76182	9	2
96	-95	FATHOMED	17.085714		.	.	8	2
97	-92	FATHOMED	17.723058		-	.	7	2
98	-91	FATHOMED	16.378788		-	-	6	2
99	89	ACTIVE	17	x6	0.818	0.26515	6	2
100	-99	ACTIVE		x3	0.083	0.08333	6	2

WARNING: The maximum number of integer iterations has been exceeded. Increase this limit with the 'IMAXIT=' option on the RESET statement.

To continue with the solution of this problem, invoke PROC LP with the ACTIVEIN= and PRIMALIN= options and reset the IMAXIT= option. This restores the branch-and-bound tree and simplifies calculating a basic feasible solution from which to start processing.

```
proc lp data=haldi10 activein=a primalin=p imaxit=250;
run;
```

The procedure picks up iterating from a equivalent state to where it left off. The problem will still not be solved when IMAXIT=250 occurs.

Example 4.11. Alternative Search of the Branch-and-Bound Tree

In this example, the HALDI10 problem from Example 4.10 is solved. However, here the default strategy for searching the branch-and-bound tree is modified. By default, the search strategy has VARSELECT=FAR. This means that when searching for an integer variable on which to branch, the procedure uses the one that has a value farthest from an integer value. An alternative strategy has VARSELECT=PENALTY. This strategy causes PROC LP to look at the cost, in terms of the objective function, of branching on an integer variable. The procedure looks at PENALTYDEPTH= integer variables before choosing the one with the largest cost. This is a much more expensive strategy (in terms of execution time) than the VARSELECT=FAR strategy, but it can be beneficial if fewer integer iterations must be done to find an optimal solution.

```
proc lp data=haldi10 varselect=penalty;
run;
```

Compare the number of integer iterations needed to solve the problem using this heuristic with the default strategy used in Example 4.10. In this example, the difference is profound; in general, solution times can vary significantly with the search technique. See Output 4.11.1.

Output 4.11.1. Summaries and an Integer Programming Iteration Log: Using VARSELECT=PENALTY

The LP Procedure Problem Summary	
Objective Function Rhs Variable Type Variable Problem Density (\%)	$\begin{array}{r} \text { Max _OBS1_ } \\ \text { _rhs_ } \\ \text { _type_ } \\ 31.82 \end{array}$
Variables	Number
Integer	6
Binary	6
Slack	10
Total	22
Constraints	Number
LE	10
Objective	1
Total	11

The LP Procedure
Variable Summary

Col	Variable	Status	Type	Price	Activity	Reduced
1	x1	DEGEN	BINARY	0	0	0
2	x2		BINARY	0	0	-4
3	x3		BINARY	0	0	-4
4	x 4		BINARY	0	1	-18
5	x5	DEGEN	BINARY	0	0	0
6	x6		BINARY	0	1	-1
7	x7		INTEGER	1	0	-6. 5
8	x8		INTEGER	1	0	-3
9	x9		INTEGER	1	0	-1
10	x10		INTEGER	1	8	-8
11	x11		INTEGER	1	0	-8.545455
12	x12	BASIC	INTEGER	1	9	0
13	_OBS2	BASIC	SLACK	0	20	0
14	_OBS3	BASIC	SLACK	0	5	0
15	_OBS4	BASIC	SLACK	0	10	0
16	_OBS5		SLACK	0	0	-1
17	_OBS6		SLACK	0	0	-1. 5
18	_OBS7	DEGEN	SLACK	0	0	0
19	_OBS8_	DEGEN	SLACK	0	0	0
20	_OBS9	BASIC	SLACK	0	2	0
21	_OBS10_		SLACK	0	0	-2.545455
22	_OBS11_	BASIC	SLACK	0	2	0

Although the VARSELECT=PENALTY strategy works well in this example, there is no guarantee that it will work well with your model. Experimentation with various strategies is necessary to find the one that works well with your model and data, particularly if a model is solved repeatedly with few changes to either the structure or the data.

Example 4.12. An Assignment Problem

This example departs somewhat from the emphasis of previous ones. Typically, linear programming models are large, have considerable structure, and are solved with some regularity. Some form of automatic model building, or matrix generation as it is commonly called, is a useful aid. The sparse input format provides a great deal of flexibility in model specification so that, in many cases, the DATA step can be used to generate the matrix.
The following assignment problem illustrates some techniques in matrix generation. In this example, you have four machines that can produce any of six grades of cloth, and you have five customers that demand various amounts of each grade of cloth. The return from supplying a customer with a demanded grade depends on the machine on which the cloth was made. In addition, the machine capacity depends both upon the specific machine used and the grade of cloth made.
To formulate this problem, let i denote customer, j denote grade, and k denote machine. Then let $x_{i j k}$ denote the amount of cloth of grade j made on machine k for customer i; let $r_{i j k}$ denote the return from selling one unit of grade j cloth made on machine k to customer i; let $d_{i j}$ denote the demand for grade j cloth by customer i; let $c_{j k}$ denote the number of units of machine k required to produce one unit of grade j cloth; and let a_{k} denote the number of units of machine k available. Then, you get

$$
\begin{array}{lll}
\max & \sum_{i j k} r_{i j k} x_{i j k} & \\
\text { subject to } & \sum_{k} x_{i j k}=d_{i j} & \text { for all } i \text { and } j \\
& \sum_{i j} c_{j k} x_{i j k} \leq a_{k} & \text { for all } k \\
& x_{i j k} \geq 0 & \text { for all } i, j \text { and } k
\end{array}
$$

The data are saved in three data sets. The OBJECT data set contains the returns for satisfying demand, the DEMAND data set contains the amounts demanded, and the RESOURCE data set contains the conversion factors for each grade and the total amounts of machine resources available.

```
title 'An Assignment Problem';
data object;
    input machine customer
        grade1 grade2 grade3 grade4 grade5 grade6;
    datalines;
1 1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3
1 4
1 5
2 1 123 150 125 124 154
2 2 130 157 132 131 166
2 3 103 130}1115 114 129
2 4 101 128 108 107 137
2 5 118 145 130}10129 154 .
3 1 83 . . . 97 122 147
32119 . . 133 163 180
3 3 67 . . 9 01 101 101
3 4 85 . . . 104 129 129
3 5 90 . . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;
data demand;
    input customer
                grade1 grade2 grade3 grade4 grade5 grade6;
    datalines;
1 100 100 150 150 175 250
2 300 125 300 275 310
3400}00400\quad500 340 
4 250}007750 750 0 0,
5 0 600 300 0 210 360
;
data resource;
    input machine
            grade1 grade2 grade3 grade4 grade5 grade6 avail;
    datalines;
1 . 250 . 275 . 300 . 350 . 310 . 295 744
2 . 300 . 300 . 305 . 315 . 320 . }24
3 . 350 . . . 320 . 315 . 300 790
4 . 280 . 275 . 260 . . 250 . 295 672
;
```

The linear program is built using the DATA step. The model is saved in a SAS data set in the sparse input format for PROC LP. Each section of the following DATA step generates a piece of the linear program. The first section generates the objective function; the next section generates the demand constraints; and the last section generates the machine resource availability constraints.

```
/* build the linear programming model */
data model;
    array grade{6} grade1-grade6;
    length _type_ $ 8 _row_ $ 8 _col_ $ 8;
    keep _type_ _row_ _col_ _coef_;
    ncust=5;
    nmach=4;
    ngrade=6;
    /* generate the objective function */
    _type_='MAX';
    _rOw_='OBJ';
    do k=1 to nmach;
        do i=1 to ncust;
            link readobj; /* read the objective coefficient data */
            do j=1 to ngrade;
                    if grade{j}^=. then do;
                        _col_=' X'||put(i, 1.)||put(j,1.)||put(k,1.);
                                _coef_=grade{j};
                                output;
                    end;
            end;
        end;
    end;
    /* generate the demand constraints */
    do i=1 to ncust;
        link readdmd; /* read the demand data */
        do j=1 to ngrade;
            if grade{j}^=. then do;
                _type_='EQ';
                _row_='DEMAND' | |put(i, 1.)||put(j,1.);
            _col_='_RHS_';
            _coef_=grade{j};
            output;
            _type_=' ';
            do k=1 to nmach;
                        _col_='X'||put(i,1.)||put(j,1.)||put(k,1.);
                        _coef_=1.0;
                        output;
            end;
        end;
```

end;
end;
/* generate the machine constraints */
do $\mathbf{k}=1$ to nmach;
link readres; /* read the machine data */
type='LE';
row=' MACHINE' | |put (k,1.);
col=' _RHS_' ;
coef=avail;
output;
type=' ';
do i=1 to ncust;
do $j=1$ to ngrade;
if grade\{j\}^=. then do;
col=' $X^{\prime}| | p u t(i, 1).| | p u t(j, 1).| | p u t(k, 1$.
coef=grade\{j\};
output;
end;
end;
end;
end;

```
readobj: set object;
return;
readdmd: set demand;
return;
readres: set resource;
return;
run;
```

With the model built and saved in a data set, it is ready for solution using PROC LP. The following program solves the model and saves the solution in the data set called PRIMAL:

```
/* solve the linear program */
proc lp data=model sparsedata noprint primalout=primal;
run;
```

The following output is produced by PROC LP.

Output 4.12.1. An Assignment Problem

The LP Procedure	
Solution Summary	
Terminated Successfully	
Objective Value	871426.03763
Phase 1 Iterations	0
Phase 2 Iterations	40
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	36
Time Used (seconds)	0
Number of Inversions	3
Epsilon	1E-8
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	100
Time Limit (seconds)	120

The solution is prepared for reporting using the DATA step, and a report is written using PROC TABULATE.

```
/* report the solution */
data solution;
    set primal;
    keep customer grade machine amount;
    if substr(_var_, 1,1)='X' then do;
            if _value_^=0 then do;
                customer = substr(_var_,2,1);
                grade = substr(_var_,3,1);
                machine = substr(_var_,4,1);
                amount = _value_;
                output;
            end;
        end;
run;
proc tabulate data=solution;
    class customer grade machine;
    var amount;
    table (machine*customer), (grade*amount);
run;
```

The report shown in Output 4.12.2 gives the assignment of customer, grade of cloth, and machine that maximizes the return and does not violate the machine resource availability.

Output 4.12.2. An Assignment Problem

Example 4.13. A Scheduling Problem

Scheduling is an application area where techniques in model generation can be valuable. Problems involving scheduling are often solved with integer programming and are similar to assignment problems. In this example, you have eight one-hour time slots in each of five days. You have to assign four people to these time slots so that each slot is covered on every day. You allow the people to specify preference data for each slot on each day. In addition, there are constraints that must be satisfied:

- Each person has some slots for which they are unavailable.
- Each person must have either slot 4 or 5 off for lunch.
- Each person can work only two time slots in a row.
- Each person can work only a specified number of hours in the week.

To formulate this problem, let i denote person, j denote time slot, and k denote day. Then, let $x_{i j k}=1$ if person i is assigned to time slot j on day k, and 0 otherwise;
let $p_{i j k}$ denote the preference of person i for slot j on day k; and let h_{i} denote the number of hours in a week that person i will work. Then, you get

$$
\begin{array}{lll}
\max & \sum_{i j k} p_{i j k} x_{i j k} & \\
\text { subject to } & \sum_{i} x_{i j k}=1 & \text { for all } j \text { and } k \\
& x_{i 4 k}+x_{i 5 k} \leq 1 & \text { for all } i \text { and } k \\
& x_{i, \ell, k}+x_{i, \ell+1, k}+x_{i, \ell+2, k} \leq 2 & \text { for all } i \text { and } k, \text { and } \ell=1, \ldots, 6 \\
& \sum_{j k} x_{i j k} \leq h_{i} & \text { for all } i \\
& x_{i j k}=0 \text { or } 1 & \text { for all } i \text { and } k \text { such that } p_{i j k}>0, \\
& & \text { otherwise } x_{i j k}=0
\end{array}
$$

To solve this problem, create a data set that has the hours and preference data for each individual, time slot, and day. A 10 represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0 indicates that the time slot is not available.

```
data raw;
    input name $ hour slot mon tue wed thu fri;
    datalines;
marc 20 1. 1 
marc 20 3 % 8 8 8 8 8 8
marc 20 4 
marc 20 5 1 1 1 1 1 1 1 1
marc 20 6 1 1 1 1 1 1 1 1
marc 20 7 7 1 1 1 1 1 1 1 1
marc 20 8 1 1 1 1 1 1 1
mike }\begin{array}{llllllll}{20}&{1}&{10}&{9}&{8}&{7}&{6}
mike 20 20 10
mike }\begin{array}{llllllll}{20}&{3}&{10}&{9}&{8}&{7}&{6}
mike }\begin{array}{llllllll}{20}&{4}&{10}&{3}&{3}&{3}&{3}
mike 20 5 1 1 1 1 1 1 1 1
mike 20 6 % 1 2 2 3 4
mike 20 7 7 1 1 2 2 3
```



```
bill 20 1 10 10 10 10 10
bill 20 2 % 9
bill 20 3 % 8 8 8 8 8 8 8
bill 20 4 0 0 0 0 0
bill 20 5
bill 20 6 1 1 1 1 1 1 1
bill 20 7 7 1 1 1 1 1 1 1 1
bill 20 8 % 1 1 1 1 1 1 1
bob }20
```



```
bob }20\begin{array}{llllllll}{10}&{3}&{10}&{9}&{8}&{7}&{6}
```



```
bob 20 5 1 1 1 1 1 1 1 1
bob }20\quad6\quad10\mp@code{2 
bob }20\begin{array}{llllllll}{\mathrm{ bo }}&{7}&{1}&{2}&{3}&{4}&{5}
```



```
;
```

These data are read by the following DATA step, and an integer program is built to solve the problem. The model is saved in the data set named MODEL. First, the objective function is built using the data saved in the RAW data set. Then, the constraints requiring a person to be working in each time slot are built. Next, the constraints allowing each person time for lunch are added. Then, the constraints restricting people to only two consecutive hours are added. Next, the constraints limiting the time that any one person works in a week are added. Finally, the constraints allowing a person to be assigned only to a time slot for which he is available are added. The code to build each of these constraints follows the formulation closely.

```
data model;
    array workweek{5} mon tue wed thu fri;
    array hours{4} hours1 hours2 hours3 hours4;
    retain hours1-hours4;
    set raw end=eof;
    length _row_ $ 8 _col_ $ 8 _type_ $ 8;
    keep _type_ _col_ _row_ _coef_;
    if name='marc' then i=1;
    else if name='mike' then i=2;
    else if name='bill' then i=3;
    else if name='bob' then i=4;
    hours{i}=hour;
    /* build the objective function */
    do k=1 to 5;
        _col_='x' ||put(i,1.)||put(slot,1.)||put(k,1.);
        _row_=' object';
        _coef_=workweek{k} * 1000;
        output;
        _row_='upper';
        if workweek{k}^=0 then _coef_=1;
        output;
        _row_='integer';
        _coef_=1;
        output;
    end;
    /* build the rest of the model */
    if eof then do;
        _coef_=.;
        _col_=' ';
        _type_='upper';
        _row_='upper';
        output;
```

```
_type_='max';
_row_=' object';
output;
_type_='int';
_row_='integer';
output;
/* every hour 1 person working */
do j=1 to 8;
    do k=1 to 5;
        _row_='work'||put(j,1.)||put(k,1.);
        _type_='eq';
        _Col_='_RHS_';
        _coef_=1;
        output;
        _coef_=1;
        _type_=' ';
        do i=1 to 4;
            _col_=' x'||put(i,1.)||put(j,1.)||put(k,1.);
            output;
        end;
    end;
end;
/* each person has a lunch */
do i=1 to 4;
    do k=1 to 5;
        _row_='lunch'||put(i,1.)||put(k,1.);
        _type_='le';
        _COl_='_RHS_';
        _coef_=1;
        output;
        _coef_=1;
        _type_=' ';
        _col_='x' | |put(i,1.)||'4'||put(k,1.);
        output;
        _col_='x'||put(i,1.)||'5'||put(k,1.);
        output;
    end;
end;
/* work at most 2 slots in a row */
do i=1 to 4;
    do k=1 to 5;
        do l=1 to 6;
        _row_='seq'||put(i,1.)||put(k,1.)||put(1,1.);
        _type_='le';
        _col_='_RHS_';
        _coef_=2;
            output;
```

```
                        _coef_=1;
                _type_=' ';
                    do j=0 to 2;
                                _col_='x'||put(i,1.)||put(1+j,1.)||put(k,1.);
                                output;
                                end;
                    end;
            end;
        end;
            /* work at most n hours in a week */
        do i=1 to 4;
        _row_=' capacit'||put(i,1.);
        _type_='le';
        _col_='_RHS_';
        _coef_=hours{i};
        output;
        _coef_=1;
        _type_=' ';
        do j=1 to 8;
                do k=1 to 5;
                _col_='x'||put(i,1.)||put(j,1.)||put(k,1.);
                output;
            end;
        end;
        end;
        end;
run;
```

The model saved in the data set named MODEL is in the sparse format. The constraint that requires one person to work in time slot 1 on day 2 is named WORK12; it is $\sum_{i} x_{i 12}=1$.
The following model is saved in the MODEL data set (which has 1387 observations).

_TYPE	_COL	_ROW	_COEF_
eq	RHS	work12	1
	$\times 112$	work12	1
	$\times 212$	work12	1
	$\times 312$	work12	1
	$\times 412$	work12	1

The model is solved using the LP procedure. The option PRIMALOUT=SOLUTION causes PROC LP to save the primal solution in the data set named SOLUTION.

```
/* solve the linear program */
proc lp sparsedata noprint primalout=solution
    time=1000 maxit1=1000 maxit2=1000;
run;
```

The following DATA step below takes the solution data set SOLUTION and generates a report data set named REPORT. It translates the variable names $x_{i j k}$ so that a more meaningful report can be written. Then, the PROC TABULATE procedure is used to display a schedule showing how the eight time slots are covered for the week.

```
/* report the solution */
title 'Reported Solution';
data report;
    set solution;
    keep name slot mon tue wed thu fri;
    if substr(_var_,1,1)=' x' then do;
            if _value_>0 then do;
                n=substr(_var_, 2,1);
                slot=substr(_var_, 3,1);
                d=substr(_var_, 4,1);
                if n='1' then name='marc';
                else if n='2' then name='mike';
                else if n='3' then name='bill';
                else name='bob';
                if d='1' then mon=1;
                else if d='2' then tue=1;
                else if d='3' then wed=1;
                else if d='4' then thu=1;
                else fri=1;
                output;
        end;
    end;
run;
proc format;
    value xfmt 1=' xxx ';
run;
proc tabulate data=report;
    class name slot;
    var mon--fri;
    table (slot * name), (mon tue wed thu fri)*sum=' '*f=xfmt.
            /misstext=' ';
run;
```

Output 4.13.1 from PROC TABULATE summarizes the schedule. Notice that the constraint requiring that a person be assigned to each possible time slot on each day is satisfied.

Output 4.13.1. A Scheduling Problem

Recall that PROC LP puts a character string in the macro variable _ORLP_ that describes the characteristics of the solution on termination. This string can be parsed using macro functions and the information obtained can be used in report writing. The variable can be written to the log with the command

```
%put &_orlp_;
```

which produces Output 4.13.2.
Output 4.13.2. _ORLP_ Macro Variable

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=211000 P_FEAS=YES D_FEAS=YES INT_ITER=0 INT_FEAS=1 ACTIVE=0 INT_BEST=211000 PHASE1_ITER=34 PHASE2_ITER=49 PHASE3_ITER=0

From this you learn, for example, that at termination the solution is integer optimal and has an objective value of 211000 .

Example 4.14. A Multicommodity Transshipment Problem with Fixed Charges

The following example illustrates a DATA step program for generating a linear program to solve a multicommodity network flow model that has fixed charges. Consider a network consisting of the following nodes: farm-a, farm-b, farm-c, Chicago, St. Louis, and New York. You can ship four commodities from each farm to Chicago or St. Louis and from Chicago or St. Louis to New York. The following table shows the unit shipping cost for each of the four commodities across each of the arcs. The table also shows the supply (positive numbers) at each of the from nodes and the demand (negative numbers) at each of the to nodes. The fixed charge is a fixed cost for shipping any nonzero amount across an arc. For example, if any amount of any of the four commodities is sent from farm-c to St. Louis, then a fixed charge of 75 units is added to the shipping cost.

Table 4.8. Farms to cities network problem

From Node	To Node	Unit Shipping Cost				Supply and Demand				Fixed Charge
		1	2	3	4	1	2	3	4	
farm-a	Chicago	20	15	17	22	100	100	40	.	100
farm-b	Chicago	15	15	15	30	100	200	50	50	75
farm-c	Chicago	30	30	10	10	40	100	75	100	100
farm-a	StLouis	30	25	27	22	.	.			150
farm-c	StLouis	10	9	11	10	.	.			75
Chicago	NY	75	75	75	75	-150	-200		-75	200
StLouis	NY	80	80	80	80					200

The following program is designed to take the data in the form given in the preceding table. It builds the node arc incidence matrix for a network given in this form and adds integer variables to capture the fixed charge using the type of constraints discussed in Example 4.8. The program solves the model using PROC LP, saves the solution in the PRIMALOUT= data set named SOLUTION, and displays the solution. The DATA step can be easily modified to handle larger problems with similar structure.

```
title 'Multi-commodity Transshipment Problem with Fixed Charges';
data network;
    retain M 1.0e6;
    length _col_ $ 22 _row_ $ 22;
    keep _type_ _col_ _row_ _coef_;
    array sd sd1-sd4;
    array c c1-c4;
    format arc $10.;
    input arc $ from $ to $ c1 c2 c3 c4 sd1 sd2 sd3 sd4 fx;
    /* for the first observation define some of the rows */
    if _n_=1 then do;
        _type_=' upperbd' ;
```

```
    _row_='upper';
    output;
    _type_=' lowerbd';
    _row_=' lower';
    output;
    _type_='min';
    _row_='obj';
    output;
    _type_='integer';
    _row_='int';
    output;
    end;
_col_='_rhs_';
_type_='le';
do over sd; /* loop for each commodity */
    _coef_=sd;
    if sd>0 then do; /* the node is a supply node */
        _row_=from||' commodity'||put(_i_,2.);
        if from^=' ' then output;
    end;
    else if sd<0 then do; /* the node is a demand node */
        _row_=to||' commodity'||put(_i_,2.);
        if to^=' ' then output;
    end;
    else if from^=' ' & to^=' ' then do; /* a transshipment node */
        _coef_=0;
        _row_=from||' commodity'||put(_i_,2.);
        output;
        _row_=to ||' commodity'||put(_i_,2.);
        output;
    end;
end;
do over c; /* loop for each commodity */
_col_=arc||' commodity'||put(_i_,2.);
if from^=' ' & to^=' ' then do;
                                    /* add node arc incidence matrix*/
    _type_='le';
    _row_=from||' commodity'||put(_i_,2.);
    _coef_=1;
    output;
    _row_=to ||' commodity'||put(_i_,2.);
    _coef_=-1;
    output;
    _type_=' ';
    _row_='obj';
    _coef_=c;
    output;
                                    /* add fixed charge variables
                                    */
    _type_='le';
    _row_=arc;
    _coef_=1;output;
```

```
_col_='_rhs_';
_type_=' ';
_coef_=0;
output;
_col_=arc||'fx';
_coef_=-M;
output;
_row_='int';
_coef_=1;
output;
_row_='obj';
_coef_=fx;
output;
_row_='upper';
_coef_=1;
output;
    end;
    end;
    datalines;
a-Chicago farm-a Chicago 20 15 17 22 100 100 40 . 100
b-Chicago farm-b Chicago 15 15 15 30 100 200 50 50 50 75
c-Chicago farm-c Chicago 30 30 10 10 40 40 100 75 100 100
a-StLouis farm-a StLouis 30 25 27 22 . . . . 150
c-StLouis farm-c StLouis 10 9 11 10 . . . . }7
Chicago-NY Chicago NY }\begin{array}{l}{75}\\{75}\\{75}\\{75}
StLous-NY StLouis NY 80 80 80 80 . . . . 200
;
/* solve the model */
proc lp sparsedata pout=solution noprint;
run;
/* print the solution */
data;
    set solution;
    rename _var_=arc _value_=amount;
    if _value_^=0 & _type_='NON-NEG';
run;
proc print;
    id arc;
    var amount;
run;
```

The results from this example are shown in Output 4.14.1. The NOPRINT option in the PROC LP statement suppresses the Variable and Constraint Summary sections. This is useful when solving large models for which a report program is available. Here, the solution is saved in data set SOLUTION and reported using PROC PRINT. The solution shows the amount that is shipped over each arc.

Output 4.14.1. Multicommodity Transshipment Problem with Fixed Charges

```
Multi-commodity Transshipment Problem with Fixed Charges
\begin{tabular}{llr}
\multicolumn{1}{l}{ arc } & amount \\
a-Chicago commodity 1 & 10 \\
b-Chicago commodity 1 & 100 \\
b-Chicago commodity 2 & 100 \\
c-Chicago commodity 3 & 50 \\
c-Chicago commodity 4 & 75 \\
c-StLouis commodity 1 & 40 \\
C-StLouis commodity 2 & 100 \\
Chicago-NY commodity 1 & 110 \\
Chicago-NY commodity 2 & 100 \\
Chicago-NY commodity 3 & 50 \\
Chicago-NY commodity 4 & 75 \\
StLous-NY commodity 1 & 40 \\
StLous-NY commodity 2 & 100
\end{tabular}
```


References

Bartels, R. (1971), "A Stabilization of the Simplex Method," Numerical Mathematics, 16, 414-434.

Bland, R. G. (1977), "New Finite Pivoting Rules for the Simplex Method," Mathematics of Operations Research, 2, 103-107.

Breau, R. and Burdet, C. A. (1974), "Branch and Bound Experiments in Zero-One Programming," Mathematical Programming Study, 2, 1-50.

Crowder, H., Johnson, E. L., and Padberg, M. W. (1983), "Solving Large-Scale ZeroOne Linear Programming Problems," Operations Research, 31, 803-834.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton: Princeton University Press.

Garfinkel, R. S. and Nemhauser, G. L. (1972), Integer Programming, New York: John Wiley \& Sons.

Greenberg, H. J. (1978), "Pivot Selection Tactics," in H. J. Greenberg, ed., "Design and Implementation of Optimization Software," $143-174$, Netherlands: Sijthoff \& Noordhoff.

Hadley, G. (1962), Linear Programming, Reading, MA: Addison-Wesley Publishing Company, Inc.

Harris, P. (1975), "Pivot Selection Methods of the Devex LP Code," Mathematical Programming Study, 4, 30-57.

Ignizio, J. P. (1976), Goal Programming and Extensions, Lexington, MA: D.C. Heath and Company.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice, McGraw-Hill Inc.

Nelson, M. (1992), The Data Compression Book, M\&T Books.
Reid, J. K. (1975), "A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Programming Bases," Harwell Report CSS 20.

Reid, J. K. (1976), "Fortran Subroutines for Handling Sparse Linear Programming Bases," Harwell Report R 8269.

Savelsbergh, M. W. (1996), "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," ORSA J. on Computing, 6, 445-454.

Taha, H. A. (1975), Integer Programming, New York: Academic Press.

314 - Chapter 4. The LP Procedure

Chapter 5 The NETFLOW Procedure

Chapter Contents

OVERVIEW 317
Introduction 317
Network Models 317
Side Constraints 319
Advantages of Network Models over LP Models 324
Mathematical Description of NPSC 325
Flow Conservation Constraints 326
Nonarc Variables 326
Warm Starts 327
GETTING STARTED 328
Introductory Example 329
SYNTAX 335
Functional Summary 335
Interactivity 340
PROC NETFLOW Statement 342
CAPACITY Statement 356
COEF Statement 356
COLUMN Statement 356
CONOPT Statement 357
COST Statement 357
DEMAND Statement 357
HEADNODE Statement 357
ID Statement 358
LO Statement 358
NAME Statement 358
NODE Statement 359
PIVOT Statement 359
PRINT Statement 359
QUIT Statement 366
RESET Statement 366
RHS Statement 387
ROW Statement 388
RUN Statement 388
SAVE Statement 388
SHOW Statement 390
SUPDEM Statement 394
SUPPLY Statement 395
TAILNODE Statement 395
TYPE Statement 395
VAR Statement 397
DETAILS 397
Input Data Sets 397
Output Data Sets 406
Case Sensitivity 409
Loop Arcs 410
Multiple Arcs 410
Pricing Strategies 410
Dual Variables, Reduced Costs, and Status 414
The Working Basis Matrix 415
Flow and Value Bounds 417
Tightening Bounds and Side Constraints 417
Reasons for Infeasibility 417
Missing S Supply and Missing D Demand Values 419
Balancing Total Supply and Total Demand 423
Warm Starts 424
How to Make the Data Read of PROC NETFLOW More Efficient 428
Macro Variable _ORNETFL 434
THE INTERIOR POINT ALGORITHM 436
Introduction 436
Network Models: Interior Point Algorithm 437
Linear Programming Models: Interior Point Algorithm 448
EXAMPLES 471
Example 5.1. Shortest Path Problem 471
Example 5.2. Minimum Cost Flow Problem 474
Example 5.3. Using a Warm Start 477
Example 5.4. Production, Inventory, Distribution Problem 478
Example 5.5. Using an Unconstrained Solution Warm Start 485
Example 5.6. Adding Side Constraints, Using a Warm Start 489
Example 5.7. Using a Constrained Solution Warm Start 496
Example 5.8. Nonarc Variables in the Side Constraints 500
REFERENCES 507

Chapter 5
 The NETFLOW Procedure

Overview

Introduction

Constrained network models can be used to describe a wide variety of real-world applications ranging from production, inventory, and distribution problems to financial applications. These problems can be solved with the NETFLOW procedure.

These models are conceptually easy since they are based on network diagrams that represent the problem pictorially. PROC NETFLOW accepts the network specification in a format that is particularly suited to networks. This not only simplifies problem description but also aids in the interpretation of the solution.

Certain algebraic features of networks are exploited by a specialized version of the simplex method so that solution times are reduced. Another optimization algorithm, the interior point algorithm, has been implemented in PROC NETFLOW and can be used as an alternative to the simplex algorithm to solve network problems.

Should PROC NETFLOW detect there are no arcs and nodes in the model's data, (that is, there is no network component), it assumes it is dealing with a linear programming (LP) problem. The interior point algorithm is automatically selected to perform the optimization.

Network Models

A network consists of a collection of nodes joined by a collection of arcs. The arcs connect nodes and convey flow of one or more commodities that are supplied at supply nodes and demanded at demand nodes in the network. Each arc has a cost per unit of flow, a flow capacity, and a lower flow bound associated with it. An important concept in network modeling is conservation of flow. Conservation of flow means that the total flow in arcs directed toward a node, plus the supply at the node, minus the demand at the node, equals the total flow in arcs directed away from the node.

A network and its associated data can be described in SAS data sets. PROC NETFLOW uses this description and finds the flow through each arc in the network that minimizes the total cost of flow, meets the demand at demand nodes using the supply at supply nodes so that the flow through each arc is on or between the arc's lower flow bound and its capacity, and satisfies the conservation of flow.

One class of network models is the production-inventory-distribution problem. The diagram in Figure 5.1 illustrates this problem. The subscripts on the Production, Inventory, and Sales nodes indicate the time period. Notice that if you replicate sections of the model, the notion of time can be included.

Figure 5.1. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several examples are suppliers, spot markets, importers, farmers, manufacturers, factories, parts of a plant, production lines, waste disposal facilities, workstations, warehouses, coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road intersections, cities, regions, shops, customers, and consumers. The diversity of this selection demonstrates the richness of potential applications of this model.

Depending upon the interpretation of the nodes, the objectives of the modeling exercise can vary widely. Some common types of objectives are

- to reduce collection or purchase costs of raw materials
- to reduce inventory holding or backorder costs. Warehouses and other storage facilities sometimes have capacities, and there can be limits on the amount of goods that can be placed on backorder.
- to decide where facilities should be located and what the capacity of these should be. Network models have been used to help decide where factories, hospitals, ambulance and fire stations, oil and water wells, and schools should be sited.
- to determine the assignment of resources (machines, production capability, workforce) to tasks, schedules, classes, or files
- to determine the optimal distribution of goods or services. This usually means minimizing transportation costs, and reducing time in transit or distances covered.
- to find the shortest path from one location to another
- to ensure that demands (for example, production requirements, market demands, contractual obligations) are met
- to maximize profits from the sale of products or the charge for services
- to maximize production by identifying bottlenecks

Some specific applications are

- car distribution models. These help determine which models and numbers of cars should be manufactured in which factories and where to distribute cars from these factories to zones in the United States in order to meet customer demand at least cost.
- models in the timber industry. These help determine when to plant and mill forests, schedule production of pulp, paper and wood products, and distribute products for sale or export.
- military applications. The nodes can be theatres, bases, ammunition dumps, logistical suppliers, or radar installations. Some models are used to find the best ways to mobilize personnel and supplies and to evacuate the wounded in the least amount of time.
- communications applications. The nodes can be telephone exchanges, transmission lines, satellite links, and consumers. In a model of an electrical grid, the nodes can be transformers, powerstations, watersheds, reservoirs, dams, and consumers. Of concern might be the effect of high loads or outages.

Side Constraints

Often all the details of a problem cannot be specified in a network model alone. In many of these cases, these details can be represented by the addition of side constraints to the model. Side constraints are a linear function of arc variables (variables containing flow through an arc) and nonarc variables (variables that are not part of the network). This enhancement to the basic network model allows for very general problems. In fact, any linear program can be represented with network models having these types of side constraints. The examples that follow help to clarify the notion of side constraints.

PROC NETFLOW enables you to specify side constraints. The data for a side constraint consist of coefficients of arcs and coefficients of nonarc variables, a constraint type (that is, $\leq,=$, or \geq) and a right-hand-side value (rhs). A nonarc variable has a name, an objective function coefficient analogous to an arc cost, an upper bound analogous to an arc capacity, and a lower bound analogous to an arc lower flow bound. PROC NETFLOW finds the flow through the network and the values of any nonarc variables that minimize the total cost of the solution. Flow conservation is met, flow through each arc is on or between the arc's lower flow bound and capacity, the value of each nonarc variable is on or between the nonarc's lower and upper bounds, and the side constraints are satisfied. Note that, since many linear programs have large embedded networks, PROC NETFLOW is an attractive alternative to the LP procedure in many cases.

In order for arcs to be specified in side constraints, they must be named. By default, PROC NETFLOW names arcs using the names of the nodes at the head and tail of the arc. An arc is named with its tail node name followed by an underscore and its head node name. For example, an arc from node from to node to is called from_to.

Proportionality Constraints

Side constraints in network models fall into several categories that have special structure. They are frequently used when the flow through an arc must be proportional to the flow through another arc. Such constraints are called proportionality constraints and are useful in models where production is subject to refining or modification into different materials. The amount of each output, or any waste, evaporation, or reduction can be specified as a proportion of input.

Typically the arcs near the supply nodes carry raw materials and the arcs near the demand nodes carry refined products. For example, in a model of the milling industry, the flow through some arcs may represent quantities of wheat. After the wheat is processed, the flow through other arcs might be flour. For others it might be bran. The side constraints model the relationship between the amount of flour or bran produced as a proportion of the amount of wheat milled. Some of the wheat can end up as neither flour, bran, nor any useful product, so this waste is drained away via arcs to a waste node.

Figure 5.2. Proportionality Constraints
Consider the network fragment in Figure 5.2. The arc Wheat_Mill conveys the wheat milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the capacity of the mill. The lower flow bound on this arc is the minimum quantity that must be milled for the mill to operate economically. The constraints

$$
\begin{aligned}
& \text { 0.3 Wheat_Mill - Mill_Flour }=0.0 \\
& \text { 0.2 Wheat_Mill }- \text { Mill_Bran }=0.0
\end{aligned}
$$

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of bran. Note that it is not necessary to specify the constraint

$$
\text { 0.5 Wheat_Mill - Mill_Other }=0.0
$$

since flow conservation implies that any flow that does not traverse through Mill_Flour or Mill_Bran must be conveyed through Mill_Other. And, computationally, it is better if this constraint is not specified, since there is one less side constraint
and fewer problems with numerical precision. Notice that the sum of the proportions must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of ingredients that are mixed. For example, different raw materials can have different properties. In an application of the oil industry, the amount of products that are obtained could be different for each type of crude oil. Furthermore, fuel might have a minimum octane requirement or limited sulphur or lead content, so that a blending of crudes is needed to produce the product.

The network fragment in Figure 5.3 shows an example of this.

Figure 5.3. Blending Constraints
The arcs MidEast_Port and USA_Port convey crude oil from the two sources. The arc Port_Refinery represents refining while the arcs Refinery_Gasoline and Refinery_Diesel carry the gas and diesel produced. The proportionality constraints

$$
\begin{gathered}
\text { 0.4 Port_Refinery - Refinery_Gasoline }=0.0 \\
\text { 0.2 Port_Refinery - Refinery_Diesel }=0.0
\end{gathered}
$$

capture the restrictions for producing gasoline and diesel from crude. Suppose that, if only crude from the Middle East is used, the resulting diesel would contain 5 units of sulphur per liter. If only crude from the USA is used, the resulting diesel would contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of sulphur per liter. Some crude from the USA must be used if Middle East crude is used in order to meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is

$$
5 \text { MidEast_Port }+4 \text { USA_Port }-4.75 \text { Port_Refinery } \leq 0.0
$$

Since Port_Refinery $=$ MidEast_Port + USA_Port, flow conservation allows this constraint to be simplified to

$$
1 \text { MidEast_Port }-3 \text { USA_Port } \leq 0.0
$$

If, for example, 120 units of crude from the Middle East is used, then at least 40 units of crude from the USA must be used. The preceding constraint is simplified because you assume that the sulphur concentration of diesel is proportional to the sulphur concentration of the crude mix. If this is not the case, the relation
0.2 Port_Refinery = Refinery_Diesel
is used to obtain

$$
5 \text { MidEast_Port }+4 \text { USA_Port }-4.75(1.0 / 0.2 \text { Refinery_Diesel }) \leq 0.0
$$

which equals

$$
5 \text { MidEast_Port }+4 \text { USA_Port }-23.75 \text { Refinery_Diesel } \leq 0.0
$$

An example similar to this Oil Industry problem is solved in the "Introductory Example" section on page 329.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transportation or some other shared resource, or there are limits on overall production or demand in multicommodity, multidivisional or multiperiod problems. Each commodity, division or period can have a separate network coupled to one main system by the side constraints. Side constraints are used to combine the outputs of subdivisions of a problem (either commodities, outputs in distinct time periods, or different process streams) to meet overall demands or to limit overall production or expenditures. This method is more desirable than doing separate local optimizations for individual commodity, process, or time networks and then trying to establish relationships between each when determining an overall policy if the global constraint is not satisfied. Of course, to make models more realistic, side constraints may be necessary in the local problems.

Figure 5.4. Multicommodity Problem

Figure 5.4 shows two network fragments. They represent identical production and distribution sites of two different commodities. Suffix coml represents commodity 1 and suffix com2 represents commodity 2. The nodes Factorycom1 and Factorycom2 model the same factory, and nodes City1com1 and City1com2 model the same location, city 1. Similarly, City2com1 and City2com2 are the same location, city 2 . Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occupies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters, and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of each commodity can be loaded onto each truck? The side constraints for this case are

$$
\begin{aligned}
& 2 \text { Factorycom1_City1com1 }+3 \text { Factorycom2_City1com2 } \leq 200 \\
& 2 \text { Factorycom1_City2com1 }+3 \text { Factorycom2_City2com2 } \leq 250
\end{aligned}
$$

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement of a commodity from place to place or from time period to time period. However, sometimes an arc is included in the network as a method of capturing some aspect of the problem that you would not normally think of as part of a network model. For example, in a multiprocess, multiproduct model (Figure 5.5), there might be subnetworks for each process and each product. The subnetworks can be joined together by a set of arcs that have flows that represent the amount of product j produced by process i. To model an upper limit constraint on the total amount of product j that can be produced, direct all arcs carrying product j to a single node and from there through a single arc. The capacity of this arc is the upper limit of product j production. It is preferable to model this structure in the network rather than to include it in the side constraints because the efficiency of the optimizer is affected less by a reasonable increase in the size of the network.

Figure 5.5. Multiprocess, Multiproduct Example
It is often a good strategy when starting a project to use a small network formulation and then use that model as a framework upon which to add detail. For example, in the multiprocess, multiproduct model, you might start with the network depicted in Figure 5.5. Then, for example, the process subnetwork can be enhanced to include the distribution of products. Other phases of the operation could be included by adding more subnetworks. Initially, these subnetworks can be single nodes, but in subsequent studies they can be expanded to include greater detail.

The NETFLOW procedure accepts the side constraints in the same dense and sparse formats that the LP procedure provides. Although PROC LP can solve network problems, the NETFLOW procedure generally solves network flow problems more efficiently than PROC LP.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such problems often result when modeling manufacturing processes, transportation or distribution networks, or resource allocation, or when deciding where to locate facilities. Often, some commodity is to be moved from place to place, so the more natural formulation in many applications is that of a constrained network rather than a linear program.

Using a network diagram to visualize a problem makes it possible to capture the important relationships in an easily understood picture form. The network diagram aids the communication between model builder and model user, making it easier to comprehend how the model is structured, how it can be changed, and how results can be interpreted.

If a network structure is embedded in a linear program, the problem is a network programming problem with side constraints (NPSC). When the network part of the problem is large compared to the nonnetwork part, especially if the number of side constraints is small, it is worthwhile to exploit this structure in the solution process. This is what PROC NETFLOW does. It uses a variant of the revised primal simplex algorithm that exploits the network structure to reduce solution time.

Mathematical Description of NPSC

If a network programming problem with side constraints has n nodes, a arcs, g nonarc variables, and k side constraints, then the formal statement of the problem solved by PROC NETFLOW is

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d^{T} z \\
\text { subject to } & F x=b \\
& H x+Q z \geq,=, \leq r \\
& l \leq x \leq u \\
& m \leq z \leq v
\end{array}
$$

where

- c is the $a \times 1$ arc variable objective function coefficient vector (the cost vector)
- x is the $a \times 1$ arc variable value vector (the flow vector)
- d is the $g \times 1$ nonarc variable objective function coefficient vector
- z is the $g \times 1$ nonarc variable value vector
- F is the $n \times a$ node-arc incidence matrix of the network, where

$$
F_{i, j}=\left\{\begin{aligned}
-1, & \text { if arc } j \text { is directed from node } i \\
1, & \text { if arc } j \text { is directed toward node } i \\
0, & \text { otherwise }
\end{aligned}\right.
$$

- b is the $n \times 1$ node supply/demand vector, where

$$
b_{i}=\left\{\begin{aligned}
s, & \text { if node } i \text { has supply capability of } s \text { units of flow } \\
-d, & \text { if node } i \text { has demand of } d \text { units of flow } \\
0, & \text { if node } i \text { is a transshipment node }
\end{aligned}\right.
$$

- H is the $k \times a$ side constraint coefficient matrix for arc variables, where $H_{i, j}$ is the coefficient of arc j in the i th side constraint
- Q is the $k \times g$ side constraint coefficient matrix for nonarc variables, where $Q_{i, j}$ is the coefficient of nonarc j in the i th side constraint
- r is the $k \times 1$ side constraint right-hand-side vector
- l is the $a \times 1$ arc lower flow bound vector
- u is the $a \times 1$ arc capacity vector
- m is the $g \times 1$ nonarc variable lower bound vector
- v is the $g \times 1$ nonarc variable upper bound vector

Flow Conservation Constraints

The constraints $F x=b$ are referred to as the nodal flow conservation constraints. These constraints algebraically state that the sum of the flow through arcs directed toward a node plus that node's supply, if any, equals the sum of the flow through arcs directed away from that node plus that node's demand, if any. The flow conservation constraints are implicit in the network model and should not be specified explicitly in side constraint data when using PROC NETFLOW. The constrained problems most amenable to being solved by the NETFLOW procedure are those that, after the removal of the flow conservation constraints, have very few constraints. PROC NETFLOW is superior to linear programming optimizers when the network part of the problem is significantly larger than the nonnetwork part.

The NETFLOW procedure can also be used to solve an unconstrained network problem, that is, one in which H, Q, d, r, and z do not exist.

Nonarc Variables

If the constrained problem to be solved has no nonarc variables, then Q, d, and z do not exist. However, nonarc variables can be used to simplify side constraints. For example, if a sum of flows appears in many constraints, it may be worthwhile to equate this expression with a nonarc variable and use this in the other constraints. By assigning a nonarc variable a nonzero objective function, it is then possible to incur a cost for using resources above some lowest feasible limit. Similarly, a profit (a negative objective function coefficient value) can be made if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or supply needed resources. Then, either the excess resource can be used or the needed resource can be supplied to another component of the model.

For example, consider a multicommodity problem of making television sets that have either 19- or 25 -inch screens. In their manufacture, 3 and 4 chips, respectively, are used. Production occurs at 2 factories during March and April. The supplier of chips can supply only 2600 chips to factory 1 and 3750 chips to factory 2 each month. The names of arcs are in the form Prod $n_{-} s_{-} m$, where n is the factory number, s is the screen size, and m is the month. For example, Prod1_25_Apr is the arc that conveys the number of 25 -inch TVs produced in factory 1 during April. You might have to determine similar systematic naming schemes for your application.

As described, the constraints are

$$
\begin{aligned}
& \text { 3 Prod1_19_Mar +4 Prod1_25_Mar } \leq 2600 \\
& 3 \text { Prod2_19_Mar +4Prod2_25_Mar } \leq 3750 \\
& \text { 3Prod1_19_Apr + 4Prod1_25_Apr } \leq 2600 \\
& \text { 3Prod2_19_Apr +4Prod2_25_Apr } \leq 3750
\end{aligned}
$$

If there are chips that could be obtained for use in March but not used for production in March, why not keep these unused chips until April? Furthermore, if the March
excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the model becomes

$$
\begin{gathered}
\text { 3Prod1_19_Mar +4Prod1_25_Mar + F1_Unused_Mar =2600 } \\
\text { 3Prod2_19_Mar +4Prod2_25_Mar + F2_Unused_Mar }=3750 \\
\text { 3Prod1_19_Apr +4Prod1_25_Apr - F1_Kept_Since_Mar }=2600 \\
\text { 3Prod2_19_Apr +4Prod2_25_Apr - F2_Kept_Since_Mar = }=3750 \\
\text { F1_Unused_Mar + F2_Unused_Mar (continued) } \\
\text {-F1_Kept_Since_Mar - F2_Kept_Since_Mar } \geq 0.0
\end{gathered}
$$

where F1_Kept_Since_Mar is the number of chips used during April at factory 1 that were obtained in March at either factory 1 or factory 2 and F2_Kept_Since_Mar is the number of chips used during April at factory 2 that were obtained in March. The last constraint ensures that the number of chips used during April that were obtained in March does not exceed the number of chips not used in March. There may be a cost to hold chips in inventory. This can be modeled having a positive objective function coefficient for the nonarc variables F1_Kept_Since_Mar and F2_Kept_Since_Mar. Moreover, nonarc variable upper bounds represent an upper limit on the number of chips that can be held in inventory between March and April.

See Example 5.4 through Example 5.8 for a series of examples that use this TV problem. The use of nonarc variables as described previously is illustrated.

Warm Starts

If you have a problem that has already been partially solved and is to be solved further to obtain a better, optimal solution, information describing the solution now available may be used as an initial solution. This is called warm starting the optimization, and the supplied solution data are called the warm start.

Some data can be changed between the time when a warm start is created and when it is used as a warm start for a subsequent PROC NETFLOW run. Elements in the arc variable cost vector, the nonarc variable objective function coefficient vector, and sometimes capacities, upper value bounds, and side constraint data can be changed between PROC NETFLOW calls. See the "Warm Starts" section on page 424. Also, see Example 5.4 through Example 5.8 (the TV problem) for a series of examples that show the use of warm starts.

Getting Started

To solve network programming problems with side constraints using PROC NETFLOW, you save a representation of the network and the side constraints in three SAS data sets. These data sets are then passed to PROC NETFLOW for solution. There are various forms that a problem's data can take. You can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand associated with each. These are the elements in the column vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but there can be data related to nonarc variables in the ARCDATA = data set as well.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed). Each observation can be used to identify an arc in the network and, optionally, the cost per flow unit across the arc, the arc's capacity, lower flow bound, and name. These data are associated with the matrix F and the vectors c, l, and u in problem (NPSC).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc definitions.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including objective function coefficients, lower and upper value bounds, and names. These data are the elements of the vectors d, m, and v in problem (NPSC). Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements of the matrices H and Q and the vector r. Constraint types are also specified in the CONDATA= data set. You can include in this data set upper bound values or capacities, lower flow or value bounds, and costs or objective function coefficients. It is possible to give all information about some or all nonarc variables in the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc's name in the ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that arc. Each arc also has a default name that is the name of the tail and head node of the arc concatenated together and separated by an underscore character; tail_head, for example.

If you use the dense side constraint input format (described in the "CONDATA= Data Set" section on page 398) and want to use the default arc names, these arc names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (see the "CONDATA= Data Set" section on page 398) and want to use the default arc names, these arc names are values of the COLUMN list SAS variable of the CONDATA= data set.

The execution of PROC NETFLOW has three stages. In the preliminary (zeroth) stage, the data are read from the NODEDATA= data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is performed, and an initial basic feasible solution is found. If an unconstrained solution warm start is being used, then an initial basic feasible solution is obtained by reading additional data containing that information in the NODEDATA = data set and the ARCDATA= data set. In this case, only constraint data and nonarc variable data are read from the CONDATA= data set.

In the first stage, an optimal solution to the network flow problem neglecting any side constraints is found. The primal and dual solutions for this relaxed problem can be saved in the ARCOUT= data set and the NODEOUT= data set, respectively. These data sets are named in the PROC NETFLOW, RESET, and SAVE statements.

In the second stage, an optimal solution to the network flow problem with side constraints is found. The primal and dual solutions for this side constrained problem are saved in the CONOUT= data set and the DUALOUT= data set, respectively. These data sets are also named in the PROC NETFLOW, RESET, and SAVE statements.

If a constrained solution warm start is being used, PROC NETFLOW does not perform the zeroth and first stages. This warm start can be obtained by reading basis data containing additional information in the NODEDATA= data set (also called the DUALIN= data set) and the ARCDATA= data set.

If warm starts are to be used in future optimizations, the FUTURE1 and FUTURE2 options must be used in addition to specifying names for the data sets that contain the primal and dual solutions in stages one and two. Then, most of the information necessary for restarting problems is available in the output data sets containing the primal and dual solutions of both the relaxed and side constrained network programs.

Introductory Example

Consider the following transshipment problem for an oil company. Crude oil is shipped to refineries where it is processed into gasoline and diesel fuel. The gasoline and diesel fuel are then distributed to service stations. At each stage, there are shipping, processing, and distribution costs. Also, there are lower flow bounds and capacities.

In addition, there are two sets of side constraints. The first set is that two times the crude from the Middle East cannot exceed the throughput of a refinery plus 15 units. (The phrase "plus 15 units" that finishes the last sentence is used to enable some side constraints in this example to have a nonzero rhs.) The second set of constraints are necessary to model the situation that one unit of crude mix processed at a refinery yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow through the network, a network programming problem with side constraints is an appropriate model for this example (see Figure 5.6). The side constraints are used to model the limitations on the amount of Middle Eastern crude that can be processed by each refinery and the conversion proportions of crude to gasoline and diesel fuel.

Figure 5.6. Oil Industry Example
To solve this problem with PROC NETFLOW, save a representation of the model in three SAS data sets. In the NODEDATA= data set, you name the supply and demand nodes and give the associated supplies and demands. To distinguish demand nodes from supply nodes, specify demands as negative quantities. For the oil example, the NODEDATA= data set can be saved as follows:

```
title 'Oil Industry Example';
title3 'Setting Up Nodedata = Noded For Proc Netflow';
data noded;
    input _node_&$15. _sd_;
    datalines;
middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
```

The ARCDATA= data set contains the rest of the information about the network. Each observation in the data set identifies an arc in the network and gives the cost per flow unit across the arc, the capacities of the arc, the lower bound on flow across the arc, and the name of the arc.

```
title3 'Setting Up Arcdata = Arcd1 For Proc Netflow';
data arcd1;
    input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
    datalines;
middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
```

Finally, the CONDATA= data set contains the side constraints for the model.

```
title3 'Setting Up Condata = Cond1 For Proc Netflow';
data cond1;
    input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
    _type_ $ _rhs_;
    datalines;
-2 . 1 . . . >= -15
    . -2 . . 1 . GE -15
    . . -3 4 . . EQ 0
    . . . . -3 4 = 0
;
```

Note that the SAS variable names in the CONDATA= data set are the names of arcs given in the ARCDATA= data set. These are the arcs that have nonzero constraint coefficients in side constraints. For example, the proportionality constraint that specifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel is given for REFINERY 1 in the third observation and for REFINERY 2 in the last observation. The third observation requires that each unit of flow on arc THRUPUT1 equals three-fourths of a unit of flow on arc R1_GAS. Because all crude processed at REFINERY 1 flows through THRUPUT1 and all gasoline produced at REFINERY 1 flows through R1_GAS, the constraint models the situation. It proceeds similarly for REFINERY 2 in the last observation.

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints, invoke PROC NETFLOW as follows:

```
proc netflow
    nodedata=noded /* the supply and demand data */
    arcdata=arcd1 /* the arc descriptions */
    condata=cond1 /* the side constraints */
    conout=solution; /* the solution data set */
    run;
```

The following messages, which appear on the SAS log, summarize the model as read by PROC NETFLOW and note the progress toward a solution:

```
NOTE: Number of nodes= 14.
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180, total demand= 180.
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any
    constraints)= 8 .
NOTE: Of these, O were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50600 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side constraint
    coefficients= 8 .
NOTE: Number of iterations, optimizing with constraints= 4 .
NOTE: Of these, O were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50875 .
NOTE: The data set WORK.SOLUTION has 18 observations and 14
        variables.
```

Unlike PROC LP, which displays the solution and other information as output, PROC NETFLOW saves the optimum in output SAS data sets that you specify. For this example, the solution is saved in the SOLUTION data set. It can be displayed with the PRINT procedure as

```
proc print data=solution;
    var _from_ _to_ _cost_ _capac_ _lo_ _name_
        _supply_ _demand_ _flow_ _fcost_ _rcost_;
    sum _fcost_;
    title3 'Constrained Optimum';
    run;
```


Figure 5.7. CONOUT=SOLUTION
Notice that, in CONOUT=SOLUTION (Figure 5.7), the optimal flow through each arc in the network is given in the variable named _FLOW_, and the cost of flow through each arc is given in the variable _FCOST_.

Figure 5.8. Oil Industry Solution

Syntax

Below are statements used in PROC NETFLOW, listed in alphabetical order as they appear in the text that follows.

PROC NETFLOW options;
CAPACITY variable ;
COEF variables;
COLUMN variable ;
CONOPT;
COST variable ;
DEMAND variable;
HEADNODE variable;
ID variables;
LO variable;
NAME variable;
NODE variable;
PIVOT;
PRINT options;
QUIT;
RESET options;
RHS variables;
ROW variables;
RUN;
SAVE options;
SHOW options;
SUPDEM variable;
SUPPLY variable;
TAILNODE variable;
TYPE variable;
VAR variables;

Functional Summary

The following table outlines the options available for the NETFLOW procedure classified by function.

Table 5.1. Functional Summary

Description	Statement	Option
Input Data Set Options: arcs input data set nodes input data set constraint input data set	PROC NETFLOW	ARCDATA=
Output Data Set Options: unconstrained primal solution data set	PROC NETFLOW	NODEDATA=
	PROC NETFLOW	CONDATA=
	PROC NETFLOW	ARCOUT=

Description

Statement Option
unconstrained dual solution data set constrained primal solution data set constrained dual solution data set

Data Set Read Options:

CONDATA has sparse data format default constraint type special COLUMN variable value special COLUMN variable value used to interpret arc and nonarc variable names no new nonarc variables no nonarc data in ARCDATA data for an arc found once in ARCDATA data for a constraint found once in CONDATA data for a coefficient found once in CONDATA data is grouped, exploited during data read

Problem Size Specification Options:

approximate number of nodes
approximate number of arcs
approximate number of nonarc variables
approximate number of coefficients
approximate number of constraints

Network Options:

default arc cost
default arc capacity
default arc lower flow bound network's only supply node SOURCE's supply capability network's only demand node SINK's demand convey excess supply/demand through network find maximal flow between SOURCE and SINK cost of bypass arc for MAXFLOW problem find shortest path from SOURCE to SINK

Memory Control Options:

issue memory usage messages to SAS log number of bytes to use for main memory proportion of memory for arrays memory allocated for LU factors linked list for updated column use 2-dimensional array for basis matrix maximum bytes for a single array

PROC NETFLOW	NODEOUT=
PROC NETFLOW	CONOUT=
PROC NETFLOW	DUALOUT=

PROC NETFLOW SPARSECONDATA
PROC NETFLOW DEFCONTYPE= PROC NETFLOW TYPEOBS= PROC NETFLOW RHSOBS= PROC NETFLOW NAMECTRL= PROC NETFLOW SAME_NONARC_DATA
PROC NETFLOW ARCS_ONLY_ARCDATA
PROC NETFLOW ARC_SINGLE_OBS
PROC NETFLOW CON_SINGLE_OBS
PROC NETFLOW NON_REPLIC= PROC NETFLOW GROUPED=

PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW

PROC NETFLOW
PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW BYPASSDIVIDE= PROC NETFLOW

PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW

SHORTPATH
DEFCOST=
DEFCAPACITY= DEFMINFLOW= SOURCE= SUPPLY= SINK= DEMAND= THRUNET MAXFLOW

MEMREP
BYTES= COREFACTOR= DWIA= SPARSEP2 INVD_2D
MAXARRAYBYTES=

Description

Simplex Options:		
use big-M instead of two-phase method, stage 1	RESET	BIGM1
use Big-M instead of two-phase method, stage 2	RESET	BIGM2
anti-cycling option	RESET	CYCLEMULT1=
interchange first nonkey with leaving key arc	RESET	INTFIRST
controls working basis matrix inversions	RESET	INVFREQ=
maximum number of L row operations allowed	RESET	MAXL=
before refactorization		
maximum number of LU factor column updates	RESET	MAXLUUPDATES=
anti-cycling option	RESET	MINBLOCK1=
use first eligible leaving variable, stage 1	RESET	LRATIO1
use first eligible leaving variable, stage 2	RESET	LRATIO2
negates INTFIRST	RESET	NOINTFIRST
negates LRATIO1	RESET	NOLRATIO1
negates LRATIO2	RESET	NOLRATIO2
negates PERTURB1	RESET	NOPERTURB1
anti-cycling option	RESET	PERTURB1
controls working basis matrix refactorization	RESET	REFACTFREQ=
use two-phase instead of big-M method, stage 1	RESET	TWOPHASE1
use two-phase instead of big-M method, stage 2	RESET	TWOPHASE2
pivot element selection parameter	RESET	U=
zero tolerance, stage 1	RESET	ZERO1=
zero tolerance, stage 2	RESET	ZERO2=
zero tolerance, real number comparisons	RESET	ZEROTOL=
Pricing Options:	RESET	DUALFREQ=
frequency of dual value calculation	RESET	PRICETYPE1=
pricing strategy, stage 1	RESET	PRICETYPE2=
pricing strategy, stage 2	RESET	P1NPARTIAL=
used when P1SCAN=PARTIAL	RESET	P1SCAN=
controls search for entering candidate, stage 1	RESET	P2NPARTIAL=
used when P2SCAN=PARTIAL	R2SCAN=	
controls search for entering candidate, stage 2	RESET	RESET

use big-M instead of two-phase method, stage 1 RESET use Big-M instead of two-phase method, stage 2 anti-cycling option interchange first nonkey with leaving key arc controls working basis matrix inversions
maximum number of L row operations allowed before refactorization maximum number of LU factor column updates anti-cycling option use first eligible leaving variable, stage 1 use first eligible leaving variable, stage 2
negates INTFIRST
negates LRATIO1
negates LRATIO2
negates PERTURB1
anti-cycling option
controls working basis matrix refactorization
use two-phase instead of big-M method, stage 1
use two-phase instead of big-M method, stage 2
pivot element selection parameter
zero tolerance, stage 1
zero tolerance, stage 2
zero tolerance, real number comparisons

Pricing Options:

frequency of dual value calculation
pricing strategy, stage 1
pricing strategy, stage 2
used when P1SCAN=PARTIAL
controls search for entering candidate, stage 1
used when P2SCAN=PARTIAL
controls search for entering candidate, stage 2
initial queue size, stage 1
initial queue size, stage 2
used when Q1FILLSCAN=PARTIAL
controls scan when filling queue, stage 1
used when Q2FILLSCAN=PARTIAL
controls scan when filling queue, stage 2
queue size reduction factor, stage 1
queue size reduction factor, stage 2
frequency of refreshing queue, stage 1
frequency of refreshing queue, stage 2

Statement Option

RESET
RESET
RESET
RESET
RESET
RESET
RESET
ESET

RESET
RESET
RESET
RESET
RESET
RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RES

RESET
RESET
RESET

BIGM1
BIGM2
CYCLEMULT1=
NTFIRST
INVFREQ=
MAXL=

MAXLUUPDATES=
MINBLOCK1=
LRATIOI
LRATIO2
NOINTFIRST
NOLRATIO1
NOLRATIO2
NOPERTURB1
RTURB
REFACTFREQ=
TWOPHASE1
TWOPHASE2

ZERO1=
ZERO2=
ZEROTOL=

DUALFREQ= PRICETYPE1= PRICETYPE2= P1NPARTIAL= P1SCAN= P2NPARTIAL= P2SCAN= QSIZE1= QSIZE2= Q1FILLNPARTIAL= Q1FILLSCAN= Q2FILLNPARTIAL= Q2FILLSCAN= REDUCEQSIZE1= REDUCEQSIZE2= REFRESHQ2=

Description

Optimization Termination Options:
pause after stage 1 ; don't start stage 2
pause when feasible, stage 1
pause when feasible, stage 2
maximum number of iterations, stage 1
maximum number of iterations, stage 2
negates ENDPAUSE1
negates FEASIBLEPAUSE1
negates FEASIBLEPAUSE2
pause every PAUSE1 iterations, stage 1
pause every PAUSE2 iterations, stage 2
Interior Point Algorithm Options:
use interior point algorithm
factorization method
allowed amount of dual infeasibility
allowed amount of primal infeasibility
allowed total amount of dual infeasibility
allowed total amount of primal infeasibility
cut-off tolerance for Cholesky factorization
density threshold for Cholesky processing
step-length multiplier
preprocessing type
print optimization progress on SAS log

Interior Point Stopping Criteria Options:

maximum number of interior point iterations
primal-dual (duality) gap tolerance
stop because of complementarity
stop because of duality gap
stop because of infeas $_{b}$
stop because of infeas ${ }_{c}$
stop because of infeas $_{d}$
stop because of complementarity
stop because of duality gap
stop because of infeas $_{b}$
stop because of infeas $_{c}$
stop because of infeas $_{d}$
stop because of complementarity
stop because of duality gap
stop because of infeas $_{b}$
stop because of infeas $_{c}$
stop because of infeas $_{d}$
stop because of complementarity
stop because of duality gap

RESET

ENDPAUSE1
FEASIBLEPAUSE1
FEASIBLEPAUSE2
MAXIT1=
MAXIT2=
NOENDPAUSE1
NOFEASIBLEPAUSE1
NOFEASIBLEPAUSE2
PAUSE1=
PAUSE2=

PROC NETFLOW
RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

Option

INTPOINT
FACT_METHOD=
TOLDINF=
TOLPINF=
TOLTOTDINF= TOLTOTPINF= CHOLTINYTOL= DENSETHR= PDSTEPMULT= PRSLTYPE= PRINTLEVEL2=

MAXITERB=
PDGAPTOL=
STOP_C=
STOP_DG=
STOP_IB=
STOP_IC=
STOP_ID=
AND_STOP_C=
AND_STOP_DG=
AND_STOP_IB=
AND_STOP_IC=
AND_STOP_ID=
KEEPGOING_C=
KEEPGOING_DG=
KEEPGOING_IB=
KEEPGOING_IC=
KEEPGOING_ID=
AND_KEEPGOING_C=
AND_KEEPGOING_DG=

Description	Statement	Option
stop because of infeas $_{b}$	RESET	AND_KEEPGOING_IB=
stop because of infeas $_{c}$	RESET	AND_KEEPGOING_IC=
stop because of infeas $_{d}$	RESET	AND_KEEPGOING_ID=
PRINT Statement Options:		
display everything	PRINT	PROBLEM
display arc information	PRINT	ARCS
display nonarc variable information	PRINT	NONARCS
display variable information	PRINT	VARIABLES
display constraint information	PRINT	CONSTRAINTS
display information for some arcs	PRINT	SOME_ARCS
display information for some nonarc variables	PRINT	SOME_NONARCS
display information for some variables	PRINT	SOME_VARIABLES
display information for some constraints	PRINT	SOME_CONS
display information for some constraints associated with some arcs	PRINT	CON_ARCS
display information for some constraints associated with some nonarc variables	PRINT	CON_NONARCS
display information for some constraints associated with some variables	PRINT	CON_VARIABLES
PRINT Statement Qualifiers:		
produce a short report	PRINT	/ SHORT
produce a long report	PRINT	/ LONG
display arcs/variables with zero flow/value	PRINT	/ ZERO
display arcs/variables with nonzero flow/value	PRINT	/ NONZERO
display basic arcs/variables	PRINT	/ BASIC
display nonbasic arcs/variables	PRINT	/ NONBASIC
SHOW Statement Options:		
show problem, optimization status	SHOW	STATUS
show network model parameters	SHOW	NETSTMT
show data sets that have been or will be created	SHOW	DATASETS
show options that pause optimization	SHOW	PAUSE
show simplex algorithm options	SHOW	SIMPLEX
show pricing strategy options	SHOW	PRICING
show miscellaneous options	SHOW	MISC
SHOW Statement Qualifiers:		
display information only on relevant options	SHOW	/ RELEVANT
display options for current stage only	SHOW	/ STAGE

Description	Statement	Option
Miscellaneous Options: infinity value scale constraint row, nonarc variable column co- efficients, or both maximization instead of minimization	PROC NETFLOW	SCALE=
use warm start solution	PROC NETFLOW	MAXIMIZE
all-artificial starting solution	PROC NETFLOW	WARM
output complete basis information to ARCOUT=	PROC NETFLOW	ALLART
and NODEOUT= data sets	FUTURE1	
output complete basis information to CONOUT=	RESET	
and DUALOUT= data sets turn off infeasibility or optimality flags negates FUTURE1	RESET	FUTURE2
negates FUTURE2	RESET	MOREOPT
negates SCRATCH	RESET	NOFUTURE1
negates ZTOL1	RESET	NOFUTURE2
negates ZTOL2	RESET	NOSCRATCH
write optimization time to SAS log	RESET	NOZTOL1
no stage 1 optimization; do stage 2 optimization	RESET	RESET

Interactivity

PROC NETFLOW can be used interactively. You begin by giving the PROC NETFLOW statement, and you must specify the ARCDATA= data set. The CONDATA= data set must also be specified if the problem has side constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets that have special names (for example, a variable in the ARCDATA= data set named _TAIL_ that has tail nodes of arcs as values), it may not be necessary to have many or any variable lists.

The CONOPT, PIVOT, PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be listed in any order. The CONOPT and QUIT statements can be used only once. The others can be used as many times as needed.

Use the RESET or SAVE statement to change the names of the output data sets. With RESET, you can also indicate the reasons why optimization should stop (for example, you can indicate the maximum number of stage 1 or stage 2 iterations that can be performed). PROC NETFLOW then has a chance to either execute the next statement, or, if the next statement is one that PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS session), do any allowed optimization and
finish. If no new statement has been submitted, you are prompted for one. Some options of the RESET statement enable you to control aspects of the primal simplex algorithm. Specifying certain values for these options can reduce the time it takes to solve a problem. Note that any of the RESET options can be specified in the PROC NETFLOW statement.

The RUN statement starts or resumes optimization. The PIVOT statement makes PROC NETFLOW perform one simplex iteration. The QUIT statement immediately stops PROC NETFLOW. The CONOPT statement forces PROC NETFLOW to consider constraints when it next performs optimization. The SAVE statement has options that enable you to name output data sets; information about the current solution is put in these output data sets. Use the SHOW statement if you want to examine the values of options of other statements. Information about the amount of optimization that has been done and the STATUS of the current solution can also be displayed using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem. PRINT ARCS produces information on all arcs. PRINT SOME_ARCS limits this output to a subset of arcs. There are similar PRINT statements for nonarc variables and constraints:

```
print nonarcs;
print some_nonarcs;
print constraints;
print some_cons;
```

PRINT CON_ARCS enables you to limit constraint information that is obtained to members of a set of arcs that have nonzero constraint coefficients in a set of constraints. PRINT CON_NONARCS is the corresponding statement for nonarc variables.

For example, an interactive PROC NETFLOW run might look something like this:

```
proc netflow arcdata=data set
    other options;
    variable list specifications; /* if necessary */
    reset options;
    print options; /* look at problem */
    run; /* do some optimization */
    /* suppose that optimization stopped for */
    /* some reason or you manually stopped it */
    print options; /* look at the current solution */
    save options; /* keep current solution */
    show options; /* look at settings */
    reset options; /* change some settings, those that */
    /* caused optimization to stop */
    run; /* do more optimization */
    print options; /* look at the optimal solution */
    save options; /* keep optimal solution */
```

If you are interested only in finding the optimal solution, have used SAS variables that have special names in the input data sets, and want to use default settings for everything, then the following statement is all you need:

PROC NETFLOW ARCDATA= data set;

PROC NETFLOW Statement

PROC NETFLOW options;

This statement invokes the procedure. The following options and the options listed with the RESET statement can appear in the PROC NETFLOW statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC NETFLOW. The ARCDATA= data set, NODEDATA= data set, and CONDATA= data set can contain SAS variables that have special names, for instance _CAPAC_, _COST_, and _HEAD_. PROC NETFLOW looks for such variables if you do not give explicit variable list specifications. If a SAS variable with a special name is found and that SAS variable is not in another variable list specification, PROC NETFLOW determines that values of the SAS variable are to be interpreted in a special way. By using SAS variables that have special names, you may not need to have any variable list specifications.

ARCDATA=SAS-data-set

names the data set that contains arc and, optionally, nonarc variable information and nodal supply/demand data. The ARCDATA= data set must be specified in all PROC NETFLOW statements.

ARCOUT=SAS-data-set

AOUT=SAS-data-set
names the output data set that receives all arc and nonarc variable data, including flows or values, and other information concerning the unconstrained optimal solution. The supply and demand information can also be found in the ARCOUT= data set. Once optimization that considers side constraints starts, you are not able to obtain an ARCOUT= data set. Instead, use the CONOUT= data set to get the current solution. See the "ARCOUT= and CONOUT= Data Sets" section on page 406 for more information.

CONDATA=SAS-data-set

names the data set that contains the side constraint data. The data set can also contain other data such as arc costs, capacities, lower flow bounds, nonarc variable upper and lower bounds, and objective function coefficients. PROC NETFLOW needs a CONDATA $=$ data set to solve a constrained problem or a linear programming problem. See the "CONDATA= Data Set" section on page 398 for more information.

CONOUT=SAS-data-set
 COUT=SAS-data-set

names the output data set that receives an optimal primal solution to the problem obtained by performing optimization that considers the side constraints. See the "ARCOUT $=$ and CONOUT $=$ Data Sets" section on page 406 for more information.

```
DUALOUT=SAS-data-set
DOUT=SAS-data-set
```

names the output data set that receives an optimal dual solution to the problem obtained by performing optimization that considers the side constraints. See the "NODEOUT = and DUALOUT = Data Sets" section on page 408 for more information.

NODEDATA=SAS-data-set
DUALIN=SAS-data-set
names the data set that contains the node supply and demand specifications. You do not need observations in the NODEDATA= data set for transshipment nodes. (Transshipment nodes neither supply nor demand flow.) All nodes are assumed to be transshipment nodes unless supply or demand data indicate otherwise. It is acceptable for some arcs to be directed toward supply nodes or away from demand nodes.

The use of the NODEDATA= data set is optional in the PROC NETFLOW statement provided that, if the NODEDATA= data set is not used, supply and demand details are specified by other means. Other means include using the MAXFLOW or SHORTPATH option, SUPPLY or DEMAND list variables (or both) in the ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= option in the PROC NETFLOW statement.

NODEOUT=SAS-data-set

names the output data set that receives all information about nodes (supply and demand and nodal dual variable values) and other information concerning the optimal solution found by the optimizer when neglecting side constraints. Once optimization that considers side constraints starts, you are not able to obtain a NODEOUT= data set. Instead, use the DUALOUT= data set to get the current solution dual information. See the "NODEOUT= and DUALOUT= Data Sets" section on page 408 for a more complete description.

General Options

The following is a list of options you can use with PROC NETFLOW. The options are listed in alphabetical order.

ALLART

indicates that PROC NETFLOW uses an all artificial initial solution (Kennington and Helgason 1980, p. 68) instead of the default good path method for determining an initial solution (Kennington and Helgason 1980, p. 245). The ALLART initial solution is generally not as good; more iterations are usually required before the optimal solution is obtained. However, because less time is used when setting up an ALLART start, it can offset the added expenditure of CPU time in later computations.

ARCS_ONLY_ARCDATA

indicates that data for only arcs are in the ARCDATA= data set. When PROC NETFLOW reads the data in ARCDATA= data set, memory would not be wasted to receive data for nonarc variables. The read might then be performed faster. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

ARC_SINGLE_OBS

indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is found in only one observation of the ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC NETFLOW knows that the data in an observation is for an arc or a nonarc variable that has not had data previously read that needs to be checked for consistency. The read might then be performed faster.

If you specify ARC_SINGLE_OBS, PROC NETFLOW automatically works as if GROUPED=ARCDATA is also specified.

See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428 .

BYPASSDIVIDE= b

BYPASSDIV=b
BPD=b
should be used only when the MAXFLOW option has been specified; that is, PROC NETFLOW is solving a maximal flow problem. PROC NETFLOW prepares to solve maximal flow problems by setting up a bypass arc. This arc is directed from the SOURCE to the SINK and will eventually convey flow equal to INFINITY minus the maximal flow through the network. The cost of the bypass arc must be expensive enough to drive flow through the network, rather than through the bypass arc. However, the cost of the bypass arc must be less than the cost of artificial variables (otherwise these might have nonzero optimal value and a false infeasibility error will result). Also, the cost of the bypass arc must be greater than the eventual total cost of the maximal flow, which can be nonzero if some network arcs have nonzero costs. The cost of the bypass is set to the value of the INFINITY= option. Valid values for the BYPASSDIVIDE= option must be greater than or equal to 1.1 .

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the bypass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE= option. The reduced costs in the ARCOUT= data set and the CONOUT= data set will correctly reflect the value that would be added to the maximal flow if the capacity of the arc is increased by one unit. If there are nonzero costs, or if you specify the BYPASSDIVIDE= option, the reduced costs may be contaminated by the cost of the bypass arc and no economic interpretation can be given to reduced cost values. The default value for the BYPASSDIVIDE= option (in the presence of nonzero arc costs) is 100.0 .

BYTES=b

indicates the size of the main working memory (in bytes) that PROC NETFLOW will allocate. The default value for the BYTES= option is near to the number of bytes of the largest contiguous memory that can be allocated for this purpose. The working
memory is used to store all the arrays and buffers used by PROC NETFLOW. If this memory has a size smaller than what is required to store all arrays and buffers, PROC NETFLOW uses various schemes that page information between memory and disk.

PROC NETFLOW uses more memory than the main working memory. The additional memory requirements cannot be determined at the time when the main working memory is allocated. For example, every time an output data set is created, some additional memory is required. Do not specify a value for the BYTES= option equal to the size of available memory.

CON_SINGLE_OBS

improves how the CONDATA= data set is read. How it works depends on whether the CONDATA has a dense or sparse format.

If CONDATA has the dense format, specifying CON_SINGLE_OBS indicates that, for each constraint, data can be found in only one observation of CONDATA.

If CONDATA has a sparse format, and data for each arc and nonarc variable can be found in only one observation of CONDATA, then specify the CON_SINGLE_OBS option. If there are n SAS variables in the ROW and COEF list, then each arc or nonarc can have at most n constraint coefficients in the model. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

COREFACTOR=c
 $\mathrm{CF}=\mathrm{C}$

enables you to specify the maximum proportion of memory to be used by the arrays frequently accessed by PROC NETFLOW. PROC NETFLOW strives to maintain all information required during optimization in core. If the amount of available memory is not great enough to store the arrays completely in core, either initially or as memory requirements grow, PROC NETFLOW can change the memory management scheme it uses. Large problems can still be solved. When necessary, PROC NETFLOW transfers data from random access memory (RAM) or core that can be accessed quickly but is of limited size to slower access large capacity disk memory. This is called paging.

Some of the arrays and buffers used during constrained optimization either vary in size, are not required as frequently as other arrays, or are not required throughout the simplex iteration. Let a be the amount of memory in bytes required to store frequently accessed arrays of nonvarying size. Specify the MEMREP option in the PROC NETFLOW statement to get the value for a and a report of memory usage. If the size of the main working memory $\mathrm{BYTES}=b$ multiplied by COREFACTOR $=c$ is greater than a, PROC NETFLOW keeps the frequently accessed arrays of nonvarying size resident in core throughout the optimization. If the other arrays cannot fit into core, they are paged in and out of the remaining part of the main working memory.

If b multiplied by c is less than a, PROC NETFLOW uses a different memory scheme. The working memory is used to store only the arrays needed in the part of the algorithm being executed. If necessary, these arrays are read from disk into the main working area. Paging, if required, is done for all these arrays, and sometimes information is written back to disk at the end of that part of the algorithm. This memory
scheme is not as fast as the other memory schemes. However, problems can be solved with memory that is too small to store every array.

PROC NETFLOW is capable of solving very large problems in a modest amount of available memory. However, as more time is spent doing input/output operations, the speed of PROC NETFLOW decreases. It is important to choose the value of the COREFACTOR= option carefully. If the value is too small, the memory scheme that needs to be used might not be as efficient as another that could have been used had a larger value been specified. If the value is too large, too much of the main working memory is occupied by the frequently accessed, nonvarying sized arrays, leaving too little for the other arrays. The amount of input/output operations for these other arrays can be so high that another memory scheme might have been used more beneficially.
The valid values of COREFACTOR $=c$ are between 0.0 and 0.95 , inclusive. The default value for c is 0.75 when there are over 200 side constraints, and 0.9 when there is only one side constraint. When the problem has between 2 and 200 constraints, the value of c lies between the two points $(1,0.9)$ and $(201,0.75)$.

DEFCAPACITY=c

DC=c
requests that the default arc capacity and the default nonarc variable value upper bound be c. If this option is not specified, then DEFCAPACITY= INFINITY.

DEFCONTYPE=c

DEFTYPE=c
DCT $=c$
specifies the default constraint type. This default constraint type is either less than or equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option are

$$
\begin{array}{ll}
\mathrm{LE}, \mathrm{le},<= & \text { for less than or equal to } \\
\mathrm{EQ}, \text { eq },= & \text { for equal to } \\
\mathrm{GE}, \mathrm{ge},>= & \text { for greater than or equal to }
\end{array}
$$

The values do not need to be enclosed in quotes.

DEFCOST= c

requests that the default arc cost and the default nonarc variable objective function coefficient be c. If this option is not specified, then $\operatorname{DEFCOST}=0.0$.

DEFMINFLOW= m
 DMF=m

requests that the default lower flow bound through arcs and the default lower value bound of nonarc variables be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND $=d$

specifies the demand at the SINK node specified by the SINK= option. The DEMAND $=$ option should be used only if the SINK= option is given in the PROC NETFLOW statement and neither the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost network problem and the SINK=
option is used to identify the sink node, but the DEMAND= option is not specified, then the demand at the sink node is made equal to the network's total supply.

DWIA=i

controls the initial amount of memory to be allocated to store the $\mathbf{L} \mathbf{U}$ factors of the working basis matrix. DWIA stands for D_{W} initial allocation and i is the number of nonzeros and matrix row operations in the $\mathbf{L} \mathbf{U}$ factors that can be stored in this memory. Due to fill-in in the \mathbf{U} factor and the growth in the number of row operations, it is often necessary to move information about elements of a particular row or column to another location in the memory allocated for the $\mathbf{L} \mathbf{U}$ factors. This process leaves some memory temporarily unoccupied. Therefore, DWIA=i must be greater than the memory required to store only the $\mathbf{L} \mathbf{U}$ factors.

Occasionally, it is necessary to compress the \mathbf{U} factor so that it again occupies contiguous memory. Specifying too large a value for DWIA means that more memory is required by PROC NETFLOW. This might cause more expensive memory mechanisms to be used than if a smaller but adequate value had been specified for DWIA=. Specifying too small a value for the DWIA= option can make time-consuming compressions more numerous. The default value for the DWIA= option is eight times the number of side constraints.

GROUPED=grouped

PROC NETFLOW can take a much shorter time to read data if the data have been grouped prior to the PROC NETFLOW call. This enables PROC NETFLOW to conclude that, for instance, a new NAME list variable value seen in an ARCDATA= data set grouped by the values of the NAME list variable before PROC NETFLOW was called is new. PROC NETFLOW does not need to check that the NAME has been read in a previous observation. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

- GROUPED=ARCDATA indicates that the ARCDATA= data set has been grouped by values of the NAME list variable. If _NAME_ is the name of the NAME list variable, you could use PROC SORT DATA=ARCDATA; BY _NAME_; prior to calling PROC NETFLOW. Technically, you do not have to sort the data, only ensure that all similar values of the NAME list variable are grouped together. If you specify the ARCS_ONLY_ARCDATA option, PROC NETFLOW automatically works as if GROUPED=ARCDATA is also specified.
- GROUPED=CONDATA indicates that the CONDATA= data set has been grouped.
If the CONDATA= data set has a dense format, GROUPED=CONDATA indicates that the CONDATA= data set has been grouped by values of the ROW list variable. If _ROW_ is the name of the ROW list variable, you could use PROC SORT DATA=CONDATA; BY _ROW_; prior to calling PROC NETFLOW. Technically, you do not have to sort the data, only ensure that all similar values of the ROW list variable are grouped together. If you specify the CON_SINGLE_OBS option, or if there is no ROW list variable, PROC NETFLOW automatically works as if GROUPED=CONDATA has been specified.

If the CONDATA= data set has the sparse format, GROUPED=CONDATA indicates that the CONDATA= data set has been grouped by values of the COLUMN list variable. If _COL_ is the name of the COLUMN list variable, you could use PROC SORT DATA=CONDATA; BY _COL_; prior to calling PROC NETFLOW. Technically, you do not have to sort the data, only ensure that all similar values of the COLUMN list variable are grouped together.

- GROUPED=BOTH indicates that both GROUPED=ARCDATA and GROUPED=CONDATA are TRUE.
- GROUPED=NONE indicates that the data sets have not been grouped, that is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE. This is the default, but it is much better if GROUPED=ARCDATA, or GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

$$
\begin{gathered}
\cdots \quad \text { xxxxx } \quad \cdots \\
\text { bbb } \\
\text { bbb } \\
\text { aaa } \\
\text { ccc } \\
\text { ccc }
\end{gathered}
$$

is a candidate for the GROUPED= option. Similar values are grouped together. When PROC NETFLOW is reading the i th observation, either the value of the _XXXXX_ variable is the same as the $(i-1)$ st (that is, the previous observation's) _ XXXXX_ value, or it is a new _ $X X X X X$ _ value not seen in any previous observation. This also means that if the i th_ $\mathbf{X X X X X} _$value is different from the $(i-1)$ st $_\mathbf{X X X X X} _$value, the value of the $(i-1)$ st _ XXXXX_ variable will not be seen in any observations $i, i+1, \ldots$.

INFINITY=i
 INF=i

is the largest number used by PROC NETFLOW in computations. A number too small can adversely affect the solution process. You should avoid specifying an enormous value for the INFINITY= option because numerical roundoff errors can result. If a value is not specified, then INFINITY=999999. The INFINITY= option cannot be assigned a value less than 9999 .

INTPOINT

indicates that the interior point algorithm is to be used. The INTPOINT option must be specified if you want the interior point algorithm to be used for solving network problems, otherwise the simplex algorithm is used instead. For linear programming problems (problems with no network component), PROC NETFLOW must use the interior point algorithm, so you need not specify the INTPOINT option.

INVD_2D

controls the way in which the inverse of the working basis matrix is stored. How this matrix is stored affects computations as well as how the working basis or its inverse is updated. The working basis matrix is defined in the "Details" section on page 397. If INVD_2D is specified, the working basis matrix inverse is stored as a matrix. Typically, this memory scheme is best when there are few side constraints or when the working basis is dense.

If INVD_2D is not specified, lower (\mathbf{L}) and upper (\mathbf{U}) factors of the working basis matrix are used. \mathbf{U} is an upper triangular matrix and \mathbf{L} is a lower triangular matrix corresponding to a sequence of elementary matrix row operations. The sparsityexploiting variant of the Bartels-Golub decomposition is used to update the $\mathbf{L U}$ factors. This scheme works well when the side constraint coefficient matrix is sparse or when many side constraints are nonbinding.

MAXARRAYBYTES=m

specifies the maximum number of bytes an individual array can occupy. This option is of most use when solving large problems and the amount of available memory is insufficient to store all arrays at once. Specifying the MAXARRAYBYTES= option ensures that arrays that need a large amount of memory do not consume too much memory at the expense of other arrays.

There is one array that contains information about nodes and the network basis spanning tree description. This tree description enables computations involving the network part of the basis to be performed very quickly and is the reason why PROC NETFLOW is more suited to solving constrained network problems than PROC LP. It is beneficial that this array be stored in core when possible, otherwise this array must be paged, slowing down the computations. Try not to specify a MAXARRAYBYTES $=m$ value smaller than the amount of memory needed to store the main node array. You are told what this memory amount is on the SAS \log if you specify the MEMREP option in the PROC NETFLOW statement.

MAXFLOW

MF
specifies that PROC NETFLOW solve a maximum flow problem. In this case, the PROC NETFLOW procedure finds the maximum flow from the node specified by the SOURCE= option to the node specified by the SINK= option. PROC NETFLOW automatically assigns an INFINITY= option supply to the SOURCE= option node and the SINK= option is assigned the INFINITY= option demand. In this way, the MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost problem.

You can use the MAXFLOW option when solving any flow problem (not necessarily a maximum flow problem) when the network has one supply node (with infinite supply) and one demand node (with infinite demand). The MAXFLOW option can be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and DEMAND=) and capabilities of PROC NETFLOW.

MAXIMIZE
 MAX

specifies that PROC NETFLOW find the maximum cost flow through the network. If both the MAXIMIZE and the SHORTPATH options are specified, the solution obtained is the longest path between the SOURCE $=$ and $\mathrm{SINK}=$ nodes. Similarly, MAXIMIZE and MAXFLOW together cause PROC NETFLOW to find the minimum flow between these two nodes; this is zero if there are no nonzero lower flow bounds.

MEMREP

indicates that information on the memory usage and paging schemes (if necessary) is reported by PROC NETFLOW on the SAS log. As optimization proceeds, you are informed of any changes in the memory requirements and schemes used by PROC NETFLOW.

NAMECTRL=i

is used to interpret arc and nonarc variable names in the CONDATA= data set.
In the ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA= data set, arcs are identified by names. You can give a name to an arc by having a NAME list specification that indicates a SAS variable in the ARCDATA= data set that has names of arcs as values.

PROC NETFLOW requires arcs that have information about them in the CONDATA= data set to have names, but arcs that do not have information about them in the CONDATA= data set can also have names. Unlike a nonarc variable whose name uniquely identifies it, an arc can have several different names. An arc has a default name in the form tail_head, that is, the name of the arc's tail node followed by an underscore and the name of the arc's head node.

In the CONDATA= data set, if the dense data format is used, (described in the "CONDATA= Data Set" section on page 398) a name of an arc or a nonarc variable is the name of a SAS variable listed in the VAR list specification. If the sparse data format of the CONDATA= data set is used, a name of an arc or a nonarc variable is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or nonarc variable in the CONDATA= data set (either a VAR list SAS variable name or value of the COLUMN list SAS variable) is in the form tail_head and there exists an arc with these end nodes. If tail_head has not already been tagged as belonging to an arc or nonarc variable in the ARCDATA= data set, PROC NETFLOW needs to know whether tail_head is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail_head as the name of the arc with these endnodes, provided no other name is used to associate data in the CONDATA= data set with this arc. If the arc does have other names that appear in the CONDATA= data set, tail_head is assumed to be the name of a nonarc variable. If you specify NAMECTRL=3, tail_head is assumed to be a name of the arc with these end nodes, whether the arc has other names or not. The default value of NAMECTRL is 3 . Note that if you use the dense side constraint input format, the
default arc name tail_head is not recognized (regardless of the NAMECTRL value) unless the head node and tail node names contain no lowercase letters.

If the dense format is used for the CONDATA= data set, the SAS System converts SAS variable names in a SAS program to uppercase. The VAR list variable names are uppercased. Because of this, PROC NETFLOW automatically uppercases names of arcs and nonarc variables (the values of the NAME list variable) in the ARCDATA= data set. The names of arcs and nonarc variables (the values of the NAME list variable) appear uppercased in the ARCOUT= data set and the CONOUT= data set, and in the PRINT statement output.

Also, if the dense format is used for the CONDATA= data set, be careful with default arc names (names in the form tailnode_headnode). Node names (values in the TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not uppercased by PROC NETFLOW. Consider the following code:

```
data arcdata;
    input _from_ $ _to_ $ _name $ ;
    datalines;
from to1 .
from to2 arc2
TAIL TO3.
;
data densecon;
    input from_to1 from_to2 arc2 tail_to3;
    datalines;
2 3 3 5
;
proc netflow
    arcdata=arcdata condata=densecon;
    run;
```

The SAS System does not uppercase character string values. PROC NETFLOW never uppercases node names, so the arcs in observations 1,2 , and 3 in the preceding ARCDATA= data set have the default names "from_to1", "from_to2", and "TAIL_TO3", respectively. When the dense format of the CONDATA= data set is used, PROC NETFLOW does uppercase values of the NAME list variable, so the name of the arc in the second observation of the ARCDATA= data set is "ARC2". Thus, the second arc has two names: its default "from_to2" and the other that was specified "ARC2".

As the SAS System does uppercase program code, you must think of the input statement

```
input from_to1 from_to2 arc2 tail_to3;
```

as really being

The SAS variables named "FROM_TO1" and "FROM_TO2" are not associated with any of the arcs in the preceding ARCDATA= data set. The values "FROM_TO1" and "FROM_TO2" are different from all of the arc names "from_to1", "from_to2", "TAIL_TO3", and "ARC2". "FROM_TO1" and "FROM_TO2" could end up being the names of two nonarc variables. It is sometimes useful to specify PRINT NONARCS; before commencing optimization to ensure that the model is correct (has the right set of nonarc variables).

The SAS variable named "ARC2" is the name of the second arc in the ARCDATA= data set, even though the name specified in the ARCDATA= data set looks like "arc2". The SAS variable named "TAIL_TO3" is the default name of the third arc in the ARCDATA = data set.

NARCS= n

specifies the approximate number of arcs. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

NCOEFS= n

specifies the approximate number of constraint coefficients. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

NCONS=n

specifies the approximate number of constraints. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

NNAS=n

specifies the approximate number of nonarc variables. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

NNODES=n

specifies the approximate number of nodes. See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

NON_REPLIC=non_replic

prevents PROC NETFLOW from doing unnecessary checks of data previously read.

- NON_REPLIC=COEFS indicates that each constraint coefficient is specified once in the CONDATA= data set.
- NON_REPLIC=NONE indicates that constraint coefficients can be specified more than once in the CONDATA= data set. NON_REPLIC=NONE is the default.

See the section "How to Make the Data Read of PROC NETFLOW More Efficient" on page 428.

RHSOBS=charstr

specifies the keyword that identifies a right-hand-side observation when using the sparse format for data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data set named in the COLUMN list specification. The default value of the RHSOBS= option is _RHS_ or _rhs_. If charstr is not a valid SAS variable name, enclose it in single quotes.

SAME_NONARC_DATA
 SND

If all nonarc variable data are given in the ARCDATA= data set, or if the problem has no nonarc variables, the unconstrained warm start can be read more quickly if the option SAME_NONARC_DATA is specified. SAME_NONARC_DATA indicates that any nonconstraint nonarc variable data in the CONDATA= data set is to be ignored. Only side constraint data in the CONDATA= data set are read.

If you use an unconstrained warm start and SAME_NONARC_DATA is not specified, any nonarc variable objective function coefficient, upper bound, or lower bound can be changed. Any nonarc variable data in the CONDATA= data set overrides (without warning messages) corresponding data in the ARCDATA= data set. You can possibly introduce new nonarc variables to the problem, that is, nonarc variables that were not in the problem when the warm start was generated.

SAME_NONARC_DATA should be specified if nonarc variable data in the CONDATA= data set are to be deliberately ignored. Consider

```
proc netflow options arcdata=arc0 nodedata=node0
            condata=con0
                /* this data set has nonarc variable */
                    /* objective function coefficient data */
            future1 arcout=arc1 nodeout=node1;
    run;
data arc2;
    reset arc1; /* this data set has nonarc variable obs */
    if _cost_<50.0 then _cost_=_cost_*1.25;
                                    /* some objective coefficients of nonarc */
                            /* variable might be changed */
proc netflow options
            warm arcdata=arc2 nodedata=node1
            condata=con0 same_nonarc_data
                    /* This data set has old nonarc variable */
                    /* obj, fn. coefficients. same_nonarc_data */
                    /* indicates that the "new" coefs in the */
                    /* arcdata=arc2 are to be used. */
    run;
```

SCALE=scale
indicates that the side constraints are to be scaled. Scaling is useful when some coefficients of a constraint or nonarc variable are either much larger or much smaller than other coefficients. Scaling might make all coefficients have values that have a smaller range, and this can make computations more stable numerically. Try the SCALE= option if PROC NETFLOW is unable to solve a problem because of numerical instability. Specify

- SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if the largest absolute value of coefficients in each constraint is about 1.0
- SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if nonarc variable columns are scaled so that the absolute value of the largest constraint coefficient of a nonarc variable is near to 1
- SCALE=BOTH if the largest absolute value of coefficients in each constraint, and the absolute value of the largest constraint coefficient of a nonarc variable is near to 1 . This is the default.
- SCALE=NONE if no scaling should be done

SHORTPATH

SP
specifies that PROC NETFLOW solve a shortest path problem. The NETFLOW procedure finds the shortest path between the nodes specified in the SOURCE= option and the SINK= option. The costs of arcs are their lengths. PROC NETFLOW automatically assigns a supply of one flow unit to the SOURCE= node, and the SINK= node is assigned to have a one flow unit demand. In this way, the SHORTPATH option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node (with demand of one unit), you could specify the SHORTPATH option, with the SOURCE $=$ and SINK= nodes, even if the problem is not a shortest path problem. You then should not provide any supply or demand data in the NODEDATA= data set or the ARCDATA= data set.

SINK=sinkname

SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the MAXFLOW option or the SHORTPATH option and need to specify toward which node the shortest path or maximum flow is directed. The SINK= option also can be used when a minimum cost problem has only one demand node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set, use the SINK= option with an accompanying DEMAND= specification for this node. The SINK= option must be the name of a head node of at least one arc; thus, it must have a character value. If the value of the SINK= option is not a valid SAS character variable name, it must be enclosed in single quotes and can contain embedded blanks.

SOURCE=sourcename

SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the MAXFLOW or the SHORTPATH option and need to specify from which node the shortest path or maximum flow originates. The SOURCE= option also can be used when a minimum cost problem has only one supply node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set, use the SOURCE $=$ option with an accompanying SUPPLY= amount of supply at this node. The SOURCE= option must be the name of a tail node of at least one arc; thus, it must have a character value. If the value of the SOURCE= option is not a valid SAS character variable name, it must be enclosed in single quotes and can contain embedded blanks.

SPARSECONDATA

SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise, it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS software Version 6 or you have specified options validvarname=v6;, all NAME list variable values in the ARCDATA= data set are uppercased. See the "Case Sensitivity" section on page 409.

SPARSEP2

SP2
indicates that the new column of the working basis matrix that replaces another column be held in a linked list. If the SPARSEP2 option is not specified, a onedimensional array is used to store this column's information, that can contain elements that are 0.0 and use more memory than the linked list. The linked list mechanism requires more work if the column has numerous nonzero elements in many iterations. Otherwise, it is superior. Sometimes, specifying SPARSEP2 is beneficial when the side constrained coefficient matrix is very sparse or when some paging is necessary.

SUPPLY=s

specifies the supply at the source node specified by the SOURCE= option. The SUPPLY= option should be used only if the SOURCE= option is given in the PROC NETFLOW statement and neither the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost network problem and the SOURCE= option is used to identify the source node and the SUPPLY= option is not specified, then by default the supply at the source node is made equal to the network's total demand.

THRUNET

tells PROC NETFLOW to force through the network any excess supply (the amount by which total supply exceeds total demand) or any excess demand (the amount by which total demand exceeds total supply) as is required. If a network problem has unequal total supply and total demand and the THRUNET option is not specified, PROC NETFLOW drains away the excess supply or excess demand in an optimal manner. The consequences of specifying or not specifying THRUNET are discussed in the "Balancing Total Supply and Total Demand" section on page 423.

TYPEOBS=charstr

specifies the keyword that identifies a type observation when using the sparse format for data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data set named in the COLUMN list specification. The default value of the TYPEOBS= option is _TYPE_ or _type_. If charstr is not a valid SAS variable name, enclose it in single quotes.

WARM

indicates that the NODEDATA= data set or the DUALIN= data set and the ARCDATA= data set contain extra information of a warm start to be used by PROC NETFLOW. See the "Warm Starts" section on page 424.

CAPACITY Statement

CAPACITY variable;
CAPAC variable;
UPPERBD variable;
The CAPACITY statement identifies the SAS variable in the ARCDATA= data set that contains the maximum feasible flow or capacity of the network arcs. If an observation contains nonarc variable information, the CAPACITY list variable is the upper value bound for the nonarc variable named in the NAME list variable in that observation. The CAPACITY list variable must have numeric values. It is not necessary to have a CAPACITY statement if the name of the SAS variable is _CAPAC_, _UPPER_, _UPPERBD, or _HI_.

COEF Statement

COEF variables;

The COEF list is used with the sparse input format of the CONDATA= data set. The COEF list can contain more than one SAS variable, each of which must have numeric values. If the COEF statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _COE are used. The number of SAS variables in the COEF list must be no greater than the number of SAS variables in the ROW list.

The values of the COEF list variables in an observation can be interpreted differently than these variables' values in other observations. The values can be coefficients in the side constraints, costs and objective function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value that is a name of an arc or nonarc variable, the i th COEF list variable is associated with the constraint or special row name named in the i th ROW list variable. Otherwise, the COEF list variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable;

The COLUMN list is used with the sparse input format of side constraints. This list consists of one SAS variable in the CONDATA= data set that has as values the names of arc variables, nonarc variables, or missing values. Some, if not all of these values, also can be values of the NAME list variables of the ARCDATA= data set. The COLUMN list variable can have other special values (refer to the TYPEOBS = and RHSOBS = options). If the COLUMN list is not specified after the PROC NETFLOW statement, the CONDATA= data set is searched and a SAS variable named _COLUMN_ is used. The COLUMN list variable must have character values.

CONOPT Statement

CONOPT ;

The CONOPT statement has no options. It is equivalent to specifying RESET SCRATCH;. The CONOPT statement should be used before stage 2 optimization commences. It indicates that the optimization performed next should consider the side constraints.

Usually, the optimal unconstrained network solution is used as a starting solution for constrained optimization. Finding the unconstrained optimum usually reduces the amount of stage 2 optimization. Furthermore, the unconstrained optimum is almost always "closer" to the constrained optimum than the initial basic solution determined before any optimization is performed. However, as the optimum is approached during stage 1 optimization, the flow change candidates become scarcer and a solution good enough to start stage 2 optimization may already be at hand. You should then specify the CONOPT statement.

COST Statement

COST variable;
OBJFN variable;
The COST statement identifies the SAS variable in the ARCDATA= data set that contains the per unit flow cost through an arc. If an observation contains nonarc variable information, the value of the COST list variable is the objective function coefficient of the nonarc variable named in the NAME list variable in that observation. The COST list variable must have numeric values. It is not necessary to specify a COST statement if the name of the SAS variable is _COST_ or _LENGTH_.

DEMAND Statement

DEMAND variable;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set that contains the demand at the node named in the corresponding HEADNODE list variable. The DEMAND list variable must have numeric values. It is not necessary to have a DEMAND statement if the name of this SAS variable is _DEMAND_.

HEADNODE Statement

HEADNODE variable;

HEAD variable;
TONODE variable;
TO variable;
The HEADNODE statement specifies the SAS variable that must be present in the ARCDATA= data set that contains the names of nodes toward which arcs are directed. It is not necessary to have a HEADNODE statement if the name of the SAS variable is _HEAD_ or _TO_. The HEADNODE variable must have character values.

ID Statement

ID variables;
The ID statement specifies SAS variables containing values for pre- and post-optimal processing and analysis. These variables are not processed by PROC NETFLOW but are read by the procedure and written in the ARCOUT= and CONOUT= data sets and the output of PRINT statements. For example, imagine a network used to model a distribution system. The SAS variables listed on the ID statement can contain information on type of vehicle, transportation mode, condition of road, time to complete journey, name of driver, or other ancillary information useful for report writing or describing facets of the operation that do not have bearing on the optimization. The ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not included in any other implicit or explicit list specification. If the ID list is specified, any SAS variables in the ARCDATA= data set not in any list are dropped and do not appear in the ARCOUT= or CONOUT= data sets, or in the PRINT statement output.

LO Statement

LO variable;

LOWERBD variable;
MINFLOW variable;
The LO statement identifies the SAS variable in the ARCDATA= data set that contains the minimum feasible flow or lower flow bound for arcs in the network. If an observation contains nonarc variable information, the LO list variable has the value of the lower bound for the nonarc variable named in the NAME list variable. The LO list variables must have numeric values. It is not necessary to have a LO statement if the name of this SAS variable is _LOWER_,_LO_,_LOWERBD, or _MINFLOW.

NAME Statement
 NAME variable;
 ARCNAME variable;
 VARNAME variable;

Each arc and nonarc variable that has data in the CONDATA= data set must have a unique name. This name is a value of the NAME list variable. The NAME list variable must have character values (see the NAMECTRL= option in the PROC NETFLOW statement for more information). It is not necessary to have a NAME statement if the name of this SAS variable is _NAME_.

NODE Statement

NODE variable;

The NODE list variable, which must be present in the NODEDATA= data set, has names of nodes as values. These values must also be values of the TAILNODE list variable, the HEADNODE list variable, or both. If this list is not explicitly specified, the NODEDATA= data set is searched for a SAS variable with the name _NODE_. The NODE list variable must have character values.

PIVOT Statement

PIVOT ;

The PIVOT statement has no options. It indicates that one simplex iteration is to be performed. The PIVOT statement forces a simplex iteration to be performed in spite of the continued presence of any reasons or solution conditions that caused optimization to be halted. For example, if the number of iterations performed exceeds the value of the MAXIT1 = or MAXIT2= option and you issue a PIVOT statement, the iteration is performed even though the MAXIT1 = or MAXIT2= value has not yet been changed using a RESET statement.

PRINT Statement

PRINT options / qualifiers;

The options available with the PRINT statement of PROC NETFLOW are summarized by purpose in the following table.

Table 5.2. Functional Summary, PRINT statement

Description

PRINT Statement Options:

display everything	PRINT	PROBLEM
display arc information	PRINT	ARCS
display nonarc variable information	PRINT	NONARCS
display variable information	PRINT	VARIABLES
display constraint information	PRINT	CONSTRAINTS
display information for some arcs	PRINT	SOME_ARCS
display information for some nonarc variables	PRINT	SOME_NONARCS
display information for some variables display information for some constraints display information for some constraints associ-	PRINT	PRINT

Statement Option

Description

PRINT Statement Qualifiers:

produce a short report	PRINT	/ SHORT
produce a long report	PRINT	/ LONG
display arcs/variables with zero flow/value	PRINT	/ ZERO
display arcs/variables with nonzero flow/value	PRINT	/ NONZERO
display basic arcs/variables	PRINT	/ BASIC
display nonbasic arcs/variables	PRINT	/ NONBASIC

Statement Option

The PRINT statement enables you to examine part or all of the problem. You can limit the amount of information displayed when a PRINT statement is processed by specifying PRINT statement options. The name of the PRINT option indicates what part of the problem is to be examined. If no options are specified, or PRINT PROBLEM is specified, information about the entire problem is produced.

The amount of displayed information can be limited further by following any PRINT statement options with a slash (/) and one or more of the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC or NONBASIC.

Some of the PRINT statement options require you to specify a list of some type of entity, thereby enabling you to indicate what entities are of interest. The entities of interest are the ones you want to display. These entities might be tail node names, head node names, nonarc variable names, or constraint names. The entity list is made up of one or more of the following constructs. Each construct can add none, one, or more entities to the set of entities to be displayed.

- _ALL_

Display all entities in the required list.

- entity

Display the named entity that is interesting.

- entity 1 - entity 2 (one hyphen)
entity1 -- entity 2 (two hyphens)
entity 1 - CHARACTER - entity 2 or
entity1-CHAR - entity2
Both entity 1 and entity 2 have names made up of the same character string prefix followed by a numeric suffix. The suffixes of both entity 1 and entity 2 have the same number of numerals but can have different values. A specification of entity1 - entity 2 indicates that all entities with the same prefix and suffixes with values on or between the suffixes of entity 1 and entity 2 are to be put in the set of entities to be displayed. The numeric suffix of both entity1 and entity2 can be followed by a character string. For example, _OBS07_ - _OBS13_ is a valid construct of the forms entity 1 - entity 2.
- part_of_entity_name:

Display all entities in the required list that have names beginning with the character string preceding the colon.

The following options can appear in the PRINT statement:

- ARCS

indicates that you want to have displayed information about all arcs.

- SOME_ARCS (taillist, headlist)
is similar to the statement PRINT ARCS except that, instead of displaying information about all arcs, only arcs directed from nodes in a specified set of tail nodes to nodes in a specified set of head nodes are included. The nodes or node constructs belonging to the taillist list are separated by blanks. The nodes or node constructs belonging to the headlist list are also separated by blanks. The lists are separated by a comma.
- NONARCS
indicates that information is to be displayed about all nonarc variables.
- SOME_NONARCS (nonarclist)
is similar to the PRINT NONARCS statement except that, instead of displaying information about all nonarc variables, only those belonging to a specified set of nonarc variables have information displayed. The nonarc variables or nonarc variable constructs belonging to the nonarclist list are separated by blanks.
- CONSTRAINTS
indicates that you want to have displayed information about all constraint coefficients.
- SOME_CONS (conlist)
displays information for coefficients in a specified set of constraints. The constraints or constraint constructs belonging to the conlist list are separated by blanks.
- CON_ARCS (conlist, taillist, headlist)
is similar to the PRINT SOME_CONS (conlist) statement except that, instead of displaying information about all coefficients in specified constraints, information about only those coefficients that are associated with arcs directed from a set of specified tail nodes toward a set of specified head nodes is displayed. The constraints or constraint constructs belonging to the conlist list are separated by blanks; so too are the nodes or node constructs belonging to the taillist list and the nodes or node constructs belonging to the headlist list. The lists are separated by commas.
- CON_NONARCS (conlist, nonarclist)
is similar to the PRINT SOME_CONS (conlist) statement except that, instead of displaying information about all coefficients in specified constraints, information about only those coefficients that are associated with nonarc variables in a specified set is displayed. The constraints or constraint constructs belonging to the conlist list are separated by blanks. The nonarc variables or nonarc variable constructs belonging to the nonarclist list are separated by blanks. The lists are separated by a comma.
- PROBLEM
is equivalent to the statement PRINT ARCS NONARCS CONSTRAINTS.

Following a slash (/), the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC or NONBASIC can appear in any PRINT statement. These qualifiers are described below.

- BASIC

Only rows that are associated with arcs or nonarc variables that are basic are displayed. The _STATUS_ column values are KEY_ARC BASIC or NONKEY ARC BASIC for arcs, and NONKEY_BASIC for nonarc variables.

- LONG

All table columns are displayed (the default when no qualifier is used).

- NONBASIC

Only rows that are associated with arcs or nonarc variables that are nonbasic are displayed. The _STATUS_ column values are LOWERBD NONBASIC or UPPERBD NONBASIC.

- NONZERO

Only rows that have nonzero _FLOW_ column values (nonzero arc flows, nonzero nonarc variable values) are displayed.

- SHORT

The table columns are _N_, _FROM_, _TO_, _COST_, _CAPAC_, _LO_, _NAME_, and _FLOW_, or the names of the SAS variables specified in the corresponding variable lists (TAILNODE, HEADNODE, COST, CAPACITY, LO, and NAME lists). _COEF_ or the name of the SAS variable in the COEF list specification will head a column when the SHORT qualifier is used in PRINT CONSTRAINTS, SOME_CONS, CON_ARCS, or CON_NONARCS.

- ZERO

Only rows that have zero _FLOW_ column values (zero arc flows, zero nonarc variable values) are displayed.

The default qualifiers are BASIC, NONBASIC, ZERO, NONZERO, and LONG.

Displaying Information On All Constraints

In the oil refinery problem, if you had entered

```
print constraints;
```

after the RUN statement, the output in Figure 5.9 would have been produced.

Displaying Information About Selected Arcs

In the oil refinery problem, if you had entered

```
print some_arcs(refin:,_all_)/short;
```

after the RUN statement, the output in Figure 5.10 would have been produced.

Figure 5.9. print constraints

The NETFLOW Procedure							
N	_from_	_to		_cost_	_capac_	-10_	_name_
1	refinery 1	r1		200	175	50	thruput1
2	refinery 2	r2		220	100	35	thruput2
			N	_FLOW			
			1	145			
			2	35			

Figure 5.10. print some_arcs

Displaying Information About Selected Constraints

In the oil refinery problem, if you had entered

```
print some_cons(_obs3_-_obs4_)/nonzero short;
```

after the RUN statement, the output in Figure 5.11 would have been produced.

N	_CON	_type_	The NETFLOW _rhs_	Procedure _name_	_from_	_to_
1	_OBS3	EQ	0	thruput1	refinery 1	r1
2	_OBS3	EQ	0	r1_gas	r1	ref1 gas
3	_OBS4_	EQ	0	thruput2	refinery 2	r2
4	_OBS4_	EQ	0	r2_gas	r2	ref2 gas
	_N	_cost_	_capac_	_10_	_FLOW	_COEF-
	1	200	175	50	145	-3
	2	0	140	0	108.75	4
	3	220	100	35	35	-3
	4	0	100	0	26.25	4

Figure 5.11. print some_cons
If you had entered

```
print con_arcs(_all_,r1 r2,_all_)/short;
```

after the RUN statement, the output in Figure 5.12 would have been produced. Constraint information about arcs directed from selected tail nodes is displayed.

_N	The NETFLOW Procedure					
	_CON	_type_	_rhs_	_name_	_from	-to_
1	_OBS3	EQ	0	r1_gas	r1	ref1 gas
2	_OBS4	EQ	0	r2_gas	r2	ref2 gas
	_	_cost_	_capac_	_10_	_FLOW	_COEF_
	1	0	140	0	108.75	4
	2	0	100	0	26.25	4

Figure 5.12. print con_arcs

Cautions

This subsection has two parts; the first part is applicable if you are running Version 7 or later of the SAS System, and the second part is applicable if you are running Version 6. You can get later versions to "act" like Version 6 by specifying

```
options validvarname=v6;
```

For Version 7 onward, PROC NETFLOW strictly respects case sensitivity. The PRINT statements of PROC NETFLOW that require lists of entities will work properly only if the entities have the same case as in the input data sets. Entities that contain blanks must be enclosed in single or double quotes. For example,

```
print some_arcs (_all_,"Ref1 Gas");
```

In this example, a head node of an arc in the model is "Ref1 Gas" (without the quotes). If you omit the quotes, PROC NETFLOW issues a message on the SAS log:

```
WARNING: The node Ref1 in the list of head nodes in the PRINT
    SOME_ARCS or PRINT CON_ARCS is not a node in the
    problem. This statement will be ignored.
```

If you had specified

```
print some_arcs (_all_,"ref1 Gas");
```

(note the small r), you would have been warned

```
WARNING: The node ref1 Gas in the list of head nodes in the PRINT
    SOME_ARCS or PRINT CON_ARCS is not a node in the
    problem. This statement will be ignored.
```

If you are running Version 6, or if you are running a later version and you have specified

```
options validvarname=v6;
```

when information is parsed to procedures, the SAS System converts the text that makes up statements into uppercase. The PRINT statements of PROC NETFLOW that require lists of entities will work properly only if the entities are uppercase in the input data sets. If you do not want this uppercasing to occur, you must enclose the entity in single or double quotes.

```
print some_arcs('lowercase tail','lowercase head');
print some_cons('factory07'-'factory12');
print some_cons('_factory07_'_'_factory12_');
print some_nonarcs("CO2 content":);
```

Entities that contain blanks must be enclosed in single or double quotes.

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC NETFLOW is to be terminated immediately. The solution is not saved in the current output data sets. The QUIT statement has no options.

RESET Statement

RESET options;

SET options;

The RESET statement is used to change options after PROC NETFLOW has started execution. Any of the following options can appear in the PROC NETFLOW statement.

Another name for the RESET statement is SET. You can use RESET when you are resetting options and SET when you are setting options for the first time.

The following options fall roughly into five categories:

- output data set specifications
- options that indicate conditions under which optimization is to be halted temporarily, giving you an opportunity to use PROC NETFLOW interactively
- options that control aspects of the operation of the network primal simplex optimization
- options that control the pricing strategies of the network simplex optimizer
- miscellaneous options

If you want to examine the setting of any options, use the SHOW statement. If you are interested in looking at only those options that fall into a particular category, the SHOW statement has options that enable you to do this.

The execution of PROC NETFLOW has three stages. In stage zero the problem data are read from the NODEDATA $=$, ARCDATA $=$, and CONDATA= data sets. If a warm start is not available, an initial basic feasible solution is found. Some options of the PROC NETFLOW statement control what occurs in stage zero. By the time the first RESET statement is processed, stage zero has already been completed.

In the first stage, an optimal solution to the network flow problem neglecting any side constraints is found. The primal and dual solutions for this relaxed problem can be saved in the ARCOUT= data set and the NODEOUT= data set, respectively.

In the second stage, the side constraints are examined and some initializations occur. Some preliminary work is also needed to commence optimization that considers the constraints. An optimal solution to the network flow problem with side constraints is found. The primal and dual solutions for this side-constrained problem are saved in the CONOUT= data set and the DUALOUT= data set, respectively.

Many options in the RESET statement have the same name except that they have as a suffix the numeral 1 or 2 . Such options have much the same purpose, but option 1 controls what occurs during the first stage when optimizing the network neglecting any side constraints and option 2 controls what occurs in the second stage when PROC NETFLOW is performing constrained optimization.

Some options can be turned off by the option prefixed by the word $N O$. For example, FEASIBLEPAUSE1 may have been specified in a RESET statement and in a later RESET statement, you can specify NOFEASIBLEPAUSE1. In a later RESET statement, you can respecify FEASIBLEPAUSE1 and, in this way, toggle this option.

The options available with the RESET statement are summarized by purpose in the following table.

Table 5.3. Functional Summary, RESET statement

Description Statement Option

Output Data Set Options:

unconstrained primal solution data set unconstrained dual solution data set constrained primal solution data set constrained dual solution data set

RESET
RESET
RESET
RESET

ARCOUT= NODEOUT= CONOUT= DUALOUT=

Simplex Options:

use big-M instead of two-phase method, stage 1 use Big-M instead of two-phase method, stage 2 anti-cycling option interchange first nonkey with leaving key arc controls working basis matrix inversions maximum number of L row operations allowed before refactorization maximum number of LU factor column updates anti-cycling option use first eligible leaving variable, stage 1 use first eligible leaving variable, stage 2
negates INTFIRST
negates LRATIO1
negates LRATIO2
negates PERTURB1
anti-cycling option
controls working basis matrix refactorization use two-phase instead of big-M method, stage 1 use two-phase instead of big-M method, stage 2 pivot element selection parameter
zero tolerance, stage 1
zero tolerance, stage 2
zero tolerance, real number comparisons

RESET
RESET
RESET
RESET
RESET RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

BIGM1
BIGM2
CYCLEMULT1= INTFIRST INVFREQ= MAXL=

MAXLUUPDATES= MINBLOCK1= LRATIO1
LRATIO2
NOINTFIRST
NOLRATIO1
NOLRATIO2
NOPERTURB1
PERTURB1
REFACTFREQ=
TWOPHASE1
TWOPHASE2
U=
ZERO1=
ZERO2=
ZEROTOL=

Description

Pricing Options:

frequency of dual value calculation pricing strategy, stage 1
pricing strategy, stage 2
used when P1SCAN=PARTIAL
controls search for entering candidate, stage 1
used when P2SCAN=PARTIAL
controls search for entering candidate, stage 2
initial queue size, stage 1
initial queue size, stage 2
used when Q1FILLSCAN=PARTIAL
controls scan when filling queue, stage 1
used when Q2FILLSCAN=PARTIAL
controls scan when filling queue, stage 2
queue size reduction factor, stage 1
queue size reduction factor, stage 2
frequency of refreshing queue, stage 1
frequency of refreshing queue, stage 2

Optimization Termination Options:

pause after stage 1 ; don't start stage 2
pause when feasible, stage 1
pause when feasible, stage 2
maximum number of iterations, stage 1
maximum number of iterations, stage 2
negates ENDPAUSE1
negates FEASIBLEPAUSE1
negates FEASIBLEPAUSE2
pause every PAUSE1 iterations, stage 1
pause every PAUSE2 iterations, stage 2

Interior Point Algorithm Options:

factorization method
allowed amount of dual infeasibility
allowed amount of primal infeasibility
allowed total amount of dual infeasibility
allowed total amount of primal infeasibility
cut-off tolerance for Cholesky factorization
density threshold for Cholesky processing
step-length multiplier
preprocessing type
print optimization progress on SAS log

RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

DUALFREQ=
PRICETYPE1=
PRICETYPE2=
P1NPARTIAL= P1SCAN=
P2NPARTIAL=
P2SCAN=
QSIZE1=
QSIZE2=
Q1FILLNPARTIAL=
Q1FILLSCAN=
Q2FILLNPARTIAL= Q2FILLSCAN= REDUCEQSIZE1= REDUCEQSIZE2= REFRESHQ1= REFRESHQ2=

ENDPAUSE1
FEASIBLEPAUSE1
FEASIBLEPAUSE2
MAXIT1=
MAXIT2=
NOENDPAUSE1
NOFEASIBLEPAUSE1
NOFEASIBLEPAUSE2
PAUSE1=
PAUSE2=

FACT_METHOD= TOLDINF= TOLPINF= TOLTOTDINF= TOLTOTPINF= CHOLTINYTOL= DENSETHR= PDSTEPMULT= PRSLTYPE= PRINTLEVEL2=

Description

Interior Point Stopping Criteria Options:

maximum number of interior point iterations
primal-dual (duality) gap tolerance
stop because of complementarity
stop because of duality gap
stop because of infeas $_{b}$
stop because of infeas $_{c}$ stop because of infeas $_{d}$ stop because of complementarity
stop because of duality gap
stop because of infeas $_{b}$
stop because of infeas $_{c}$
stop because of infeas $_{d}$ stop because of complementarity
stop because of duality gap
stop because of infeas $_{b}$ stop because of infeas $_{c}$ stop because of infeas $_{d}$ stop because of complementarity stop because of duality gap
stop because of infeas $_{b}$
stop because of infeas $_{c}$
stop because of infeas $_{d}$

Miscellaneous Options:

output complete basis information to ARCOUT= and NODEOUT= data sets
output complete basis information to CONOUT= and DUALOUT= data sets
turn off infeasibility or optimality flags
negates FUTURE1
negates FUTURE2
negates SCRATCH
negates ZTOL1
negates ZTOL2
write optimization time to SAS \log
no stage 1 optimization; do stage 2 optimization
suppress similar SAS log messages
use zero tolerance, stage 1
use zero tolerance, stage 2

Statement Option

RESET	MAXITERB=
RESET	PDGAPTOL=
RESET	STOP_C= $=$
RESET	STOP_DG=
RESET	STOP_IB=
RESET	STOP_IC=
RESET	STOP_ID=
RESET	AND_STOP_C= $=$
RESET	AND_STOP_DG=
RESET	AND_STOP_IB=
RESET	AND_STOP_IC=
RESET	AND_STOP_ID=
RESET	KEEPGOING_C=
RESET	KEEPGOING_DG=
RESET	KEEPGOING_IB=
RESET	KEEPGOING_IC=
RESET	KEEPGOING_ID=
RESET	AND_KEEPGOING_C=
RESET	AND_KEEPGOING_DG=
RESET	AND_KEEPGOING_IB=
RESET	AND_KEEPGOING_IC=
RESET	AND_KEEPGOING_ID=

RESET

RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

FUTURE1
FUTURE2

MOREOPT
NOFUTURE1
NOFUTURE2
NOSCRATCH
NOZTOL1
NOZTOL2
OPTIM_TIMER
SCRATCH
VERBOSE=
ZTOL1
ZTOL2

Output Data Set Specifications

In a RESET statement, you can specify an ARCOUT= data set, a NODEOUT= data set, a CONOUT= data set, or a DUALOUT= data set. You are advised to specify these output data sets early because if you make a syntax error when using PROC NETFLOW interactively or, for some other reason, PROC NETFLOW encounters or does something unexpected, these data sets will contain information about the solution that was reached. If you had specified the FUTURE1 or FUTURE2 option in a RESET statement, PROC NETFLOW may be able to resume optimization in a subsequent run.

You can turn off these current output data set specifications by specifying ARCOUT=NULL, NODEOUT=NULL, CONOUT=NULL, or DUALOUT=NULL.

If PROC NETFLOW is outputting observations to an output data set and you want this to stop, press the keys used to stop SAS procedures. PROC NETFLOW waits, if necessary, and then executes the next statement.

ARCOUT=SAS-data-set

AOUT=SAS-data-set
names the output data set that receives all information concerning arc and nonarc variables, including flows and and other information concerning the current solution and the supply and demand information. The current solution is the latest solution found by the optimizer when the optimization neglecting side constraints is halted or the unconstrained optimum is reached.

You can specify an ARCOUT= data set in any RESET statement before the unconstrained optimum is found (even at commencement). Once the unconstrained optimum has been reached, use the SAVE statement to produce observations in an ARCOUT $=$ data set. Once optimization that considers constraints starts, you will be unable to obtain an ARCOUT= data set. Instead, use a CONOUT= data set to get the current solution. See the "ARCOUT= and CONOUT= Data Sets" section on page 406 for more information.

CONOUT=SAS-data-set

COUT=SAS-data-set

names the output data set that contains the primal solution obtained after optimization considering side constraints reaches the optimal solution. You can specify a CONOUT= data set in any RESET statement before the constrained optimum is found (even at commencement or while optimizing neglecting constraints). Once the constrained optimum has been reached, or during stage 2 optimization, use the SAVE statement to produce observations in a CONOUT= data set. See the "ARCOUT= and CONOUT = Data Sets" section on page 406 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set
names the output data set that contains the dual solution obtained after doing optimization that considers side constraints reaches the optimal solution. You can specify a DUALOUT = data set in any RESET statement before the constrained optimum is found (even at commencement or while optimizing neglecting constraints). Once the constrained optimum has been reached, or during stage 2 optimization, use the SAVE
statement to produce observations in a DUALOUT= data set. See the "NODEOUT= and DUALOUT= Data Sets" section on page 408 for more information.

NODEOUT=SAS-data-set
NOUT=SAS-data-set
names the output data set that receives all information about nodes (supply/demand and nodal dual variable values) and other information concerning the unconstrained optimal solution.

You can specify a NODEOUT= data set in any RESET statement before the unconstrained optimum is found (even at commencement). Once the unconstrained optimum has been reached, or during stage 1 optimization, use the SAVE statement to produce observations in a NODEOUT= data set. Once optimization that considers constraints starts, you will not be able to obtain a NODEOUT= data set. Instead use a DUALOUT= data set to get the current solution. See the "NODEOUT= and DUALOUT= Data Sets" section on page 408 for more information.

Options to Halt Optimization

The following options indicate conditions when optimization is to be halted. You then have a chance to use PROC NETFLOW interactively. If the NETFLOW procedure is optimizing and you want optimization to halt immediately, press the CTRL-BREAK key combination used to stop SAS procedures. Doing this is equivalent to PROC NETFLOW finding that some prespecified condition of the current solution under which optimization should stop has occurred.

If optimization does halt, you may need to change the conditions for when optimization should stop again. For example, if the number of iterations exceeded MAXIT2, use the RESET statement to specify a larger value for the MAXIT2= option before the next RUN statement. Otherwise, PROC NETFLOW will immediately find that the number of iterations still exceeds MAXIT2 and halt without doing any additional optimization.

ENDPAUSE1

indicates that PROC NETFLOW will pause after the unconstrained optimal solution has been obtained and information about this solution has been output to the current ARCOUT= data set, NODEOUT= data set, or both. The procedure then executes the next statement, or waits if no subsequent statement has been specified.

FEASIBLEPAUSE1

indicates that unconstrained optimization should stop once a feasible solution is reached. PROC NETFLOW checks for feasibility every 10 iterations. A solution is feasible if there are no artificial arcs having nonzero flow assigned to be conveyed through them. The presence of artificial arcs with nonzero flows means that the current solution does not satisfy all the nodal flow conservation constraints implicit in network problems.

MAXIT1=m

specifies the maximum number of primal simplex iterations PROC NETFLOW is to perform in stage 1 . The default value for the MAXIT1= option is 1000 . If MAXIT1 $=m$ iterations are performed and you want to continue unconstrained optimization, reset MAXIT1 $=$ to a number larger than the number of iterations already performed and issue another RUN statement.

NOENDPAUSE1

NOEP1
negates the ENDPAUSE1 option.

NOFEASIBLEPAUSE1

NOFP1
negates the FEASIBLEPAUSE1 option.

PAUSE1=p

indicates that PROC NETFLOW will halt unconstrained optimization and pause when the remainder of the number of stage 1 iterations divided by the value of the PAUSE1 $=$ option is zero. If present, the next statement is executed; if not, the procedure waits for the next statement to be specified. The default value for PAUSE1 $=$ is 999999.

FEASIBLEPAUSE2

FP2
NOFEASIBLEPAUSE2
NOFP2
PAUSE2=p
MAXIT2=m
are the stage 2 constrained optimization counterparts of the options described previously and having as a suffix the numeral 1 .

Options Controlling the Network Simplex Optimization

BIGM1

NOTWOPHASE1
TWOPHASE1
NOBIGM1
BIGM1 indicates that the "big-M" approach to optimization is used. Artificial variables are treated like real arcs, slacks, surpluses and nonarc variables. Artificials have very expensive costs. BIGM1 is the default.

TWOPHASE1 indicates that the two-phase approach is used instead of the big-M approach. At first, artificial variables are the only variables to have nonzero objective function coefficients. An artificial variable's objective function coefficient is temporarily set to 1 and PROC NETFLOW minimizes. When all artificial variables have zero value, PROC NETFLOW has found a feasible solution, and phase 2 commences. Arcs and nonarc variables have their real costs and objective function coefficients.

Before all artificial variables are driven to have zero value, you can toggle between the big-M and the two-phase approaches by specifying BIGM1 or TWOPHASE1 in
a RESET statement. The option NOTWOPHASE1 is synonymous with BIGM1, and NOBIGM1 is synonymous with TWOPHASE1.

CYCLEMULT1=c
MINBLOCK1 $=m$
NOPERTURB1

PERTURB1

In an effort to reduce the number of iterations performed when the problem is highly degenerate, PROC NETFLOW has in stage 1 optimization adopted an algorithm outlined in Ryan and Osborne (1988).

If the number of consecutive degenerate pivots (those with no progress toward the optimum) performed equals the value of the CYCLEMULT1 = option times the number of nodes, the arcs that were "blocking" (can leave the basis) are added to a list. In subsequent iterations, of the arcs that now can leave the basis, the one chosen to leave is an arc on the list of arcs that could have left in the previous iteration. In other words, perference is given to arcs that "block" many iterations. After several iterations, the list is cleared.

If the number of blocking arcs is less than the value of the MINBLOCK1=option, a list is not kept. Otherwise, if PERTURB1 is specified, the arc flows are perturbed by a random quantity, so that arcs on the list that block subsequent iterations are chosen to leave the basis randomly. Although perturbation often pays off, it is computationally expensive. Periodically, PROC NETFLOW has to clear out the lists and un-perturb the solution. You can specify NOPERTURB1 to prevent perturbation.

Defaults are CYCLEMULT1=0.15, MINBLOCK1=2, and NOPERTURB1.

LRATIO1

specifies the type of ratio test to use in determining which arc leaves the basis in stage 1. In some iterations, more than one arc is eligible to leave the basis. Of those arcs that can leave the basis, the leaving arc is the first encountered by the algorithm if the LRATIO1 option is specified. Specifying the LRATIO1 option can decrease the chance of cycling but can increase solution times. The alternative to the LRATIO1 option is the NOLRATIO1 option, which is the default.

LRATIO2

specifies the type of ratio test to use in determining what leaves the basis in stage 2 . In some iterations, more than one arc, constraint slack, surplus, or nonarc variable is eligible to leave the basis. If the LRATIO2 option is specified, the leaving arc, constraint slack, surplus, or nonarc variable is the one that is eligible to leave the basis first encountered by the algorithm. Specifying the LRATIO2 option can decrease the chance of cycling but can increase solution times. The alternative to the LRATIO2 option is the NOLRATIO2 option, which is the default.

NOLRATIO1

specifies the type of ratio test to use in determining which arc leaves the basis in stage 1. If the NOLRATIO1 option is specified, of those arcs that can leave the basis, the leaving arc has the minimum (maximum) cost if the leaving arc is to be nonbasic with flow capacity equal to its capacity (lower flow bound). If more than one possible leaving arc has the minimum (maximum) cost, the first such arc encountered
is chosen. Specifying the NOLRATIO1 option can decrease solution times, but can increase the chance of cycling. The alternative to the NOLRATIO1 option is the LRATIO1 option. The NOLRATIO1 option is the default.

NOLRATIO2

specifies the type of ratio test to use in determining which arc leaves the basis in stage 2. If the NOLRATIO2 option is specified, the leaving arc, constraint slack, surplus, or nonarc variable is the one eligible to leave the basis with the minimum (maximum) cost or objective function coefficient if the leaving arc, constraint slack or nonarc variable is to be nonbasic with flow or value equal to its capacity or upper value bound (lower flow or value bound), respectively. If several possible leaving arcs, constraint slacks, surpluses, or nonarc variables have the minimum (maximum) cost or objective function coefficient, then the first encountered is chosen. Specifying the NOLRATIO2 option can decrease solution times, but can increase the chance of cycling. The alternative to the NOLRATIO2 option is the LRATIO2 option. The NOLRATIO2 option is the default.

Options Applicable to Constrained Optimization

The INVFREQ= option is relevant only if INVD_2D is specified in the PROC NETFLOW statement; that is, the inverse of the working basis matrix is being stored and processed as a two-dimensional array. The REFACTFREQ=, $\mathrm{U}=$, MAXLUUPDATES=, and MAXL=options are relevant if the INVD_2D option is not specified in the PROC NETFLOW statement; that is, if the working basis matrix is $\mathbf{L U}$ factored.

BIGM2

NOTWOPHASE2

TWOPHASE2

NOBIGM2

are the stage 2 constrained optimization counterparts of the options BIGM1, NOTWOPHASE1, TWOPHASE1, and NOBIGM1.

The TWOPHASE2 option is often better than the BIGM2 option when the problem has many side constraints.

INVFREQ=n

recalculates the working basis matrix inverse whenever n iterations have been performed where n is the value of the INVFREQ= option. Although a relatively expensive task, it is prudent to do as roundoff errors accumulate, especially affecting the elements of this matrix inverse. The default is INVFREQ=50. The INVFREQ= option should be used only if the INVD_2D option is specified in the PROC NETFLOW statement.

INTFIRST

In some iterations, it is found that what must leave the basis is an arc that is part of the spanning tree representation of the network part of the basis (called a key arc). It is necessary to interchange another basic arc not part of the tree (called a nonkey arc) with the tree arc that leaves to permit the basis update to be performed efficiently. Specifying the INTFIRST option indicates that of the nonkey arcs eligible to be swapped with the leaving key arc, the one chosen to do so is the first encountered
by the algorithm. If the INTFIRST option is not specified, all such arcs are examined and the one with the best cost is chosen.

The terms key and nonkey are used because the algorithm used by PROC NETFLOW for network optimization considering side constraints (GUB-based, Primal Partitioning, or Factorization) is a variant of an algorithm originally developed to solve linear programming problems with generalized upper bounding constraints. The terms key and nonkey were coined then. The STATUS SAS variable in the ARCOUT $=$ and CONOUT= data sets and the STATUS column in tables produced when PRINT statements are processed indicate whether basic arcs are key or nonkey. Basic nonarc variables are always nonkey.

MAXL=m

If the working basis matrix is $\mathbf{L} \mathbf{U}$ factored, \mathbf{U} is an upper triangular matrix and \mathbf{L} is a lower triangular matrix corresponding to a sequence of elementary matrix row operations required to change the working basis matrix into $\mathbf{U} . \mathbf{L}$ and \mathbf{U} enable substitution techniques to be used to solve the linear systems of the simplex algorithm. Among other things, the $\mathbf{L} \mathbf{U}$ processing strives to keep the number of \mathbf{L} elementary matrix row operation matrices small. A buildup in the number of these could indicate that fill-in is becoming excessive and the computations involving \mathbf{L} and \mathbf{U} will be hampered. Refactorization should be performed to restore \mathbf{U} sparsity and reduce \mathbf{L} information. When the number of \mathbf{L} matrix row operations exceeds the value of the MAXL= option, a refactorization is done rather than one or more updates. The default value for $\mathrm{MAXL}=$ is 10 times the number of side constraints. The MAXL= option should not be used if INVD_2D is specified in the PROC NETFLOW statement.

MAXLUUPDATES=m

MLUU=m
In some iterations, PROC NETFLOW must either perform a series of single column updates or a complete refactorization of the working basis matrix. More than one column of the working basis matrix must change before the next simplex iteration can begin. The single column updates can often be done faster than a complete refactorization, especially if few updates are necessary, the working basis matrix is sparse, or a refactorization has been performed recently. If the number of columns that must change is less than the value specified in the MAXLUUPDATES = option, the updates are attempted; otherwise, a refactorization is done. Refactorization also occurs if the sum of the number of columns that must be changed and the number of $\mathbf{L} \mathbf{U}$ updates done since the last refactorization exceeds the value of the REFACTFREQ= option. The MAXLUUPDATES= option should not be used if the INVD_2D option is specified in the PROC NETFLOW statement.

In some iterations, a series of single column updates are not able to complete the changes required for a working basis matrix because, ideally, all columns should change at once. If the update cannot be completed, PROC NETFLOW performs a refactorization. The default value is 5 .

NOINTFIRST

indicates that of the arcs eligible to be swapped with the leaving arc, the one chosen to do so has the best cost. See the INTFIRST option.

REFACTFREQ= r
 RFF=r

specifies the maximum number of \mathbf{L} and \mathbf{U} updates between refactorization of the working basis matrix to reinitialize $\mathbf{L U}$ factors. In most iterations, one or several Bartels-Golub updates can be performed. An update is performed more quickly than a complete refactorization. However, after a series of updates, the sparsity of the \mathbf{U} factor is degraded. A refactorization is necessary to regain sparsity and to make subsequent computations and updates more efficient. The default value is 50 . The REFACTFREQ= option should not be used if INVD_2D is specified in the PROC NETFLOW statement.

$\mathrm{U}=u$

controls the choice of pivot during $\mathbf{L U}$ decomposition or Bartels-Golub update. When searching for a pivot, any element less than the value of the $U=$ option times the largest element in its matrix row is excluded, or matrix rows are interchanged to improve numerical stability. The $\mathrm{U}=$ option should have values on or between ZERO2 and 1.0. Decreasing the value of the $\mathrm{U}=$ option biases the algorithm toward maintaining sparsity at the expense of numerical stability and vice-versa. Reid (1975) suggests that the value of 0.01 is acceptable and this is the default for the $\mathrm{U}=$ option. This option should not be used if INVD_2D is specified in the PROC NETFLOW statement.

Pricing Strategy Options

There are three main types of pricing strategies:

- PRICETYPE $x=$ NOQ
- PRICETYPE $x=$ BLAND
- PRICETYPE $x=\mathrm{Q}$

The one that usually performs better than the others is PRICETYPE $x=\mathrm{Q}$, so this is the default.

Because the pricing strategy takes a lot of computational time, you should experiment with the following options to find the optimum specification. These options influence how the pricing step of the simplex iteration is performed. See the "Pricing Strategies" section on page 410 for further information.

PRICETYPE $x=$ BLAND or PTYPE $x=$ BLAND
PRICETYPE $x=$ NOQ or PTYPE $x=$ NOQ

- P x SCAN=BEST
- $\mathrm{P} x$ SCAN=FIRST
- $\mathrm{P} x$ SCAN $=$ PARTIAL and $\mathrm{P} x$ NPARTIAL $=p$

```
PRICETYPE \(x=\mathrm{Q}\) or PTYPE \(x=\mathrm{Q}\)
    QSIZE \(x=q\) or \(\mathrm{Q} x=q\)
REFRESHQ \(x=r\)
REDUCEQSIZE \(x=r\)
REDUCEQ \(x=r\)
- \(\mathrm{P} x \mathrm{SCAN}=\mathrm{BEST}\)
- P \(x\) SCAN=FIRST
- \(\mathrm{P} x \mathrm{SCAN}=\mathrm{PARTIAL}\) and \(\mathrm{P} x\) NPARTIAL \(=p\)
- \(\mathrm{Q} x\) FILLSCAN=BEST
- \(\mathrm{Q} x\) FILLSCAN=FIRST
- \(\mathrm{Q} x\) FILLSCAN=PARTIAL and \(\mathrm{Q} x\) FILLNPARTIAL=q
```

For stage 2 optimization, you can specify P2SCAN=ANY, which is used in conjunction with the DUALFREQ= option.

Miscellaneous Options

FUTURE1

signals that PROC NETFLOW must output extra observations to the NODEOUT= and ARCOUT= data sets. These observations contain information about the solution found by doing optimization neglecting any side constraints. These two data sets then can be used as the NODEDATA= and ARCDATA= data sets, respectively, in subsequent PROC NETFLOW runs with the WARM option specified. See the "Warm Starts" section on page 424.

FUTURE2

signals that PROC NETFLOW must output extra observations to the DUALOUT= and CONOUT= data sets. These observations contain information about the solution found by optimization that considers side constraints. These two data sets can then be used as the NODEDATA= data set (also called the DUALIN= data set) and the ARCDATA = data sets, respectively, in subsequent PROC NETFLOW runs with the WARM option specified. See the "Warm Starts" section on page 424.

MOREOPT

The MOREOPT option turns off all optimality and infeasibility flags that may have been raised. Unless this is done, PROC NETFLOW will not do any optimization when a RUN statement is specified.

If PROC NETFLOW determines that the problem is infeasible, it will not do any more optimization unless you specify MOREOPT in a RESET statement. At the same time, you can try resetting options (particularly zero tolerances) in the hope that the infeasibility was raised incorrectly.

Consider the following example:

```
proc netflow
    nodedata=noded /* supply and demand data */
    arcdata=arcd1 /* the arc descriptions */
    condata=cond1 /* the side constraints */
    conout=solution; /* output the solution */
    run;
/* Netflow states that the problem is infeasible. */
/* You suspect that the zero tolerance is too large */
    reset zero2=1.0e-10 moreopt;
    run;
/* Netflow will attempt more optimization. */
/* After this, if it reports that the problem is */
/* infeasible, the problem really might be infeasible */
```

If PROC NETFLOW finds an optimal solution, you might want to do additional optimization to confirm that an optimum has really been reached. Specify the MOREOPT option in a RESET statement. Reset options, but in this case tighten zero tolerances.

NOFUTURE1

negates the FUTURE1 option.

NOFUTURE2

negates the FUTURE2 option.

NOSCRATCH

negates the SCRATCH option.

NOZTOL1

indicates that the majority of tests for roundoff error should not be done. Specifying the NOZTOL1 option and obtaining the same optimal solution as when the NOZTOL1 option is not specified in the PROC NETFLOW statement (or the ZTOL1 option is specified), verifies that the zero tolerances were not too high. Roundoff error checks that are critical to the successful functioning of PROC NETFLOW and any related readjustments are always done.

NOZTOL2

indicates that the majority of tests for roundoff error are not to be done during an optimization that considers side constraints. The reasons for specifying the NOZTOL2 option are the same as those for specifying the NOZTOL1 option for stage 1 optimization (see the NOZTOL1 option).

OPTIM_TIMER

indicates that the procedure is to issue a message to the SAS \log giving the CPU time spent doing optimization. This includes the time spent preprocessing, performing optimization, and postprocessing. Not counted in that time is the rest of the procedure execution, which includes reading the data and creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the procedure. This is especially true when the problem is quite small (e.g., fewer than 10,000 variables).

SCRATCH

specifies that you do not want PROC NETFLOW to enter or continue stage 1 of the algorithm. Rather than specify RESET SCRATCH, you can use the CONOPT statement.

VERBOSE= v

limits the number of similar messages that are displayed on the SAS log.
For example, when reading the ARCDATA= data set, PROC NETFLOW might have cause to issue the following message many times:

```
ERROR: The HEAD list variable value in obs i in ARCDATA is
    missing and the TAIL list variable value of this obs
    is nonmissing. This is an incomplete arc specification.
```

If there are many observations that have this fault, messages that are similar are issued for only the first VERBOSE= such observations. After the ARCDATA= data set has been read, PROC NETFLOW will issue the message

```
NOTE: More messages similar to the ones immediately above
    could have been issued but were suppressed as
    VERBOSE=v.
```

If observations in the ARCDATA= data set have this error, PROC NETFLOW stops and you have to fix the data. Imagine that this error is only a warning and PROC NETFLOW proceeded to other operations such as reading the CONDATA= data set. If PROC NETFLOW finds there are numerous errors when reading that data set, the number of messages issued to the SAS log are also limited by the VERBOSE= option.

If you have a problem with a large number of side constraints and for some reason you stop stage 2 optimization early, PROC NETFLOW indicates that constraints are violated by the current solution. Specifying VERBOSE $=v$ allows at most v violated constraints to be written to the log. If there are more, these are not displayed.

When PROC NETFLOW finishes and messages have been suppressed, the message

```
NOTE: To see all messages, specify VERBOSE=vmin.
```

is issued. The value of vmin is the smallest value that should be specified for the VERBOSE= option so that all messages are displayed if PROC NETFLOW is run again with the same data and everything else (except the VERBOSE= option) unchanged. No messages are suppressed.

The default value for the VERBOSE= option is 12 .

ZERO1=z

Z1=z
specifies the zero tolerance level in stage 1. If the NOZTOL1 option is not specified, values within z of zero are set to 0.0 , where z is the value of the ZERO1= option. Flows close to the lower flow bound or capacity of arcs are reassigned those exact values. Two values are deemed to be close if one is within z of the other. The default
value for the $\mathrm{ZERO}=$ option is 0.000001 . Any value specified for the $\mathrm{ZERO}=$ option that is <0.0 or >0.0001 is invalid.

ZERO2=z

Z2=z

specifies the zero tolerance level in stage 2. If the NOZTOL2 option is not specified, values within z of zero are set to 0.0 , where z is the value of the ZERO2=option. Flows close to the lower flow bound or capacity of arcs are reassigned those exact values. If there are nonarc variables, values close to the lower or upper value bound of nonarc variables are reassigned those exact values. Two values are deemed to be close if one is within z of the other. The default value for the ZERO2 $=$ option is 0.000001 . Any value specified for the ZERO2 $=$ option that is <0.0 or >0.0001 is invalid.

ZEROTOL=z

specifies the zero tolerance used when PROC NETFLOW must compare any real number with another real number, or zero. For example, if x and y are real numbers, then for x to be considered greater than y, x must be at least $y+z$. The ZEROTOL= option is used throughout any PROC NETFLOW run.

ZEROTOL=z controls the way PROC NETFLOW performs all double precision comparisons; that is, whether a double precision number is equal to, not equal to, greater than (or equal to), or less than (or equal to) zero or some other double precision number. A double precision number is deemed to be the same as another such value if the absolute difference between them is less than or equal to the value of the ZEROTOL= option.

The default value for the ZEROTOL= option is $1.0 \mathrm{E}-14$. You can specify the ZEROTOL= option in the NETFLOW or RESET statement. Valid values for the ZEROTOL= option must be >0.0 and <0.0001. Do not specify a value too close to zero as this defeats the purpose of the ZEROTOL= option. Neither should the value be too large, as comparisons might be incorrectly performed.

The ZEROTOL= option is different from the ZERO1= and ZERO2 $=$ options in that ZERO1 = and ZERO2 = options work when determining whether optimality has been reached, whether an entry in the updated column in the ratio test of the simplex method is zero, whether a flow is the same as the arc's capacity or lower bound, or whether the value of a nonarc variable is at a bound. The ZEROTOL= option is used in all other general double precision number comparisons.

ZTOL1

indicates that all tests for roundoff error are performed during stage 1 optimization. Any alterations are carried out. The opposite of the ZTOL1 option is the NOZTOL1 option.

ZTOL2

indicates that all tests for roundoff error are performed during stage 2 optimization. Any alterations are carried out. The opposite of the ZTOL2 option is the NOZTOL2 option.

Interior Point Algorithm Options

FACT_METHOD= f

enables you to choose the type of algorithm used to factorize and solve the main linear systems at each iteration of the interior point algorithm.

FACT_METHOD=LEFT_LOOKING is new for SAS 9.1.2. It uses algorithms described in George, Liu, and Ng (2001). Left looking is one of the main methods used to perform Cholesky optimization and, along with some recently developed implementation approaches, can be faster and require less memory than other algorithms.

Specify FACT_METHOD=USE_OLD if you want the procedure to use the only factorization available prior to SAS 9.1.2.

TOLDINF= t
RTOLDINF= t
specifies the allowed amount of dual infeasibility. In the "Interior Point Algorithmic Details" section on page 448, the vector infeas $_{d}$ is defined. If all elements of this vector are $\leq t$, the solution is deemed feasible. infeas ${ }_{d}$ is replaced by a zero vector, making computations faster. This option is the dual equivalent to the TOLPINF= option. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

TOLPINF= t

RTOLPINF= t
specifies the allowed amount of primal infeasibility. This option is the primal equivalent to the TOLDINF= option. In the "Interior Point: Upper Bounds" section on page 456, the vector infeas $_{b}$ is defined. In the "Interior Point Algorithmic Details" section on page 448, the vector infeas ${ }_{c}$ is defined. If all elements in these vectors are $\leq t$, the solution is deemed feasible. infeas $_{b}$ and infeas $_{c}$ are replaced by zero vectors, making computations faster. Increasing the value of the TOLPINF= option too much can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration count. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

TOLTOTDINF $=t$

RTOLTOTDINF= t
specifies the allowed total amount of dual infeasibility. In the "Interior Point Algorithmic Details" section on page 448, the vector infeas ${ }_{d}$ is defined. If $\sum_{i=1}^{n}$ infeas $_{d i} \leq t$, the solution is deemed feasible. infeas ${ }_{d}$ is replaced by a zero vector, making computations faster. This option is the dual equivalent to the TOLTOTPINF $=$ option. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

TOLTOTPINF= t

RTOLTOTPINF= t
specifies the allowed total amount of primal infeasibility. This option is the primal equivalent to the TOLTOTDINF= option. In the "Interior Point: Upper Bounds" section on page 456, the vector infeas $_{b}$ is defined. In the "Interior Point Algorithmic Details" section on page 448, the vector infeas ${ }_{c}$ is defined. If $\sum_{i=1}^{n}$ infeas $_{b i} \leq t$ and $\sum_{i=1}^{m}$ infeas $_{c i} \leq t$, the solution is deemed feasible. infeas ${ }_{b}$ and infeas $_{c}$ are replaced by zero vectors, making computations faster. Increasing the value of the

TOLTOTPINF $=$ option too much can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration count. Valid values for t are greater than $1.0 \mathrm{E}-12$. The default is $1.0 \mathrm{E}-7$.

CHOLTINYTOL=C

RCHOLTINYTOL=c

specifies the cut-off tolerance for Cholesky factorization of the $A \Theta A^{-1}$. If a diagonal value drops below c, the row is essentially treated as dependent and is ignored in the factorization. Valid values for c are between $1.0 \mathrm{E}-30$ and $1.0 \mathrm{E}-6$. The default value is $1.0 \mathrm{E}-8$.

DENSETHR=d

RDENSETHR= d

specifies the density threshold for Cholesky processing. When the symbolic factorization encounters a column of L that has DENSETHR= proportion of nonzeros and the remaining part of L is at least 12×12, the remainder of L is treated as dense. In practice, the lower right part of the Cholesky triangular factor L is quite dense and it can be computationally more efficient to treat it as 100% dense. The default value for d is 0.7. A specification of $d \leq 0.0$ causes all dense processing; $d \geq 1.0$ causes all sparse processing.

PDSTEPMULT= p

RPDSTEPMULT= p
specifies the step-length multiplier. The maximum feasible step-length chosen by the Primal-Dual with Predictor-Corrector algorithm is multiplied by the value of the PDSTEPMULT= option. This number must be less than 1 to avoid moving beyond the barrier. An actual step length greater than 1 indicates numerical difficulties. Valid values for p are between 0.01 and 0.999999 . The default value is 0.99995 .

In the "Interior Point Algorithmic Details" section on page 448, the solution of the next iteration is obtained by moving along a direction from the current iteration's solution:

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

where α is the maximum feasible step-length chosen by the interior point algorithm. If $\alpha \leq 1$, then α is reduced slightly by multiplying it by p. α is a value as large as possible but ≤ 1.0 and not so large that an x_{i}^{k+1} or s_{i}^{k+1} of some variable i is "too close" to zero.

PRSLTYPE=p

IPRSLTYPE=p
Preprocessing the linear programming problem often succeeds in allowing some variables and constraints to be temporarily eliminated from the LP that must be solved. This reduces the solution time and possibly also the chance that the optimizer will run into numerical difficulties. The task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE $=p$, where p can be $-1,0,1,2$, or 3 .
-1 Do not perform preprocessing. For most problems, specifying PRSLTYPE=-1 is not recommended.
$0 \quad$ Given upper and lower bounds on each variable, the greatest and least contribution to the row activity of each variable is computed. If these are within the limits set by the upper and lower bounds on the row activity, then the row is redundant and can be discarded. Try to tighten the bounds on any of the variables it can. For example, if all coefficients in a constraint are positive and all variables have zero lower bounds, then the row's smallest contribution is zero. If the rhs value of this constraint is zero, then if the constraint type is $=$ or \leq, all the variables in that constraint can be fixed to zero. These variables and the constraint can be removed. If the constraint type is \geq, the constraint is redundant. If the rhs is negative and the constraint is \leq, the problem is infeasible. If just one variable in a row is not fixed, use the row to impose an implicit upper or lower bound on the variable and then eliminate the row. The preprocessor also tries to tighten the bounds on constraint right-hand sides.
1 When there are exactly two unfixed variables with coefficients in an equality constraint, solve for one in terms of the other. The problem will have one less variable. The new matrix will have at least two fewer coefficients and one less constraint. In other constraints where both variables appear, two coefs are combined into one. PRSLTYPE=0 reductions are also done.
2 It may be possible to determine that an equality constraint is not constraining a variable. That is, if all variables are nonnegative, then $x-\sum_{i} y_{i}=0$ does not constrain x, since it must be nonnegative if all the y_{i} 's are nonnegative. In this case, eliminate x by subtracting this equation from all others containing x. This is useful when the only other entry for x is in the objective function. Perform this reduction if there is at most one other nonobjective coefficient. PRSLTYPE=0 reductions are also done.
3 All possible reductions are performed. PRSLTYPE=3 is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are found to be redundant and they too are eliminated, and as variable bounds and constraint right-hand sides are tightened, the LP to be optimized is modified to reflect these changes. Another iteration of preprocessing of the modified LP may reveal more variables and constraints that can be eliminated.

PRINTLEVEL2=p

is used when you want to see PROC NETFLOW's progress to the optimum. PROC NETFLOW will produce a table on the SAS log. A row of the table is generated during each iteration and may consist of values of

- the affine step complementarity
- the complementarity of the solution for the next iteration
- the total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas b array in the "Interior Point: Upper Bounds" section on page 456)
- the total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas $_{c}$ array in the "Interior Point Algorithmic Details" section on page 448)
- the total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 448)

As optimization progresses, the values in all columns should converge to zero. If you specify PRINTLEVEL2=2, all columns will appear in the table. If PRINTLEVEL2 $=1$ is specified, only the affine step complementarity and the complementarity of the solution for the next iteration will appear. Some time is saved by not calculating the infeasibility values.

Interior Point Algorithm Options: Stopping Criteria

MAXITERB $=m$
 IMAXITERB $=m$

specifies the maximum number of iterations of the interior point algorithm that can be performed. The default value for m is 100 . One of the most remarkable aspects of the interior point algorithm is that for most problems, it usually needs to do a small number of iterations, no matter the size of the problem.

PDGAPTOL=p

RPDGAPTOL=p
specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in the "Interior Point Algorithmic Details" section on page 448. If the relative gap (duality gap $/\left(c^{T} x\right)$) between the primal and dual objectives is smaller than the value of the PDGAPTOL= option and both the primal and dual problems are feasible, then PROC NETFLOW stops optimization with a solution that is deemed optimal. Valid values for p are between $1.0 \mathrm{E}-12$ and $1.0 \mathrm{E}-1$. The default is $1.0 \mathrm{E}-7$.

STOP_C=s

is used to determine whether optimization should stop. At the beginning of each iteration, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $\leq s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

STOP_DG=s

is used to determine whether optimization should stop. At the beginning of each iteration, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $2=1$ or PRINTLEVEL2 $=2$) is $\leq s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

STOP_IB=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas ${ }_{b}$ array in the "Interior Point: Upper Bounds" section on page 456; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $\leq s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

STOP_IC=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas ${ }_{c}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $\leq s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

STOP_ID=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $\leq s$, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

AND_STOP_C=s

is used to determine whether optimization should stop. At the beginning of each iteration, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $\leq s$, and the conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

AND_STOP_DG=s

is used to determine whether optimization should stop. At the beginning of each iteration, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $\leq s$, and the conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

AND_STOP_IB=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 456; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2 $2=1$ or PRINTLEVEL2=2) is $\leq s$, and the conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

AND_STOP_IC=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas ${ }_{c}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $\leq s$, and the conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

AND_STOP_ID=s

is used to determine whether optimization should stop. At the beginning of each iteration, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $\leq s$, and the conditions related to other AND_STOP parameters are also satisfied, optimization will stop. This option is discussed in the "Stopping Criteria" section on page 453.

KEEPGOING_C=s

is used to determine whether optimization should stop. If a stopping condition is met, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

KEEPGOING_DG=s

is used to determine whether optimization should stop. If a stopping condition is met, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2 $=2$) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

KEEPGOING_IB=s

is used to determine whether optimization should stop. If a stopping condition is met, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 456; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

KEEPGOING_IC=s

is used to determine whether optimization should stop. If a stopping condition is met, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas $_{c}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

KEEPGOING_ID=s

is used to determine whether optimization should stop. If a stopping condition is met, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $>s$, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

AND_KEEPGOING_C=s

is used to determine whether optimization should stop. If a stopping condition is met, if complementarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $>s$, and the conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

AND_KEEPGOING_DG=s

is used to determine whether optimization should stop. If a stopping condition is met, if the duality gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2 $=1$ or PRINTLEVEL2=2) is $>s$, and the conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

AND_KEEPGOING_IB=s

is used to determine whether optimization should stop. If a stopping condition is met, if total bound infeasibility $\sum_{i=1}^{n}$ infeas $_{b i}$ (see the infeas $_{b}$ array in the "Interior Point: Upper Bounds" section on page 456; this value appears in the Tot_infeasb column in the table produced when you specify PRINTLEVEL2 $=2$) is $>s$, and the conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

AND_KEEPGOING_IC=s

is used to determine whether optimization should stop. If a stopping condition is met, if total constraint infeasibility $\sum_{i=1}^{m}$ infeas $_{c i}$ (see the infeas $_{c}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasc column in the table produced when you specify PRINTLEVEL2=2) is $>s$, and the conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453.

AND_KEEPGOING_ID=s

is used to determine whether optimization should stop. If a stopping condition is met, if total dual infeasibility $\sum_{i=1}^{n}$ infeas $_{d i}$ (see the infeas $_{d}$ array in the "Interior Point Algorithmic Details" section on page 448; this value appears in the Tot_infeasd column in the table produced when you specify PRINTLEVEL2=2) is $>s$, and the conditions related to other AND_KEEPGOING parameters are also satisfied, optimization will continue. This option is discussed in the "Stopping Criteria" section on page 453 .

RHS Statement

RHS variable;

The RHS variable list is used when the dense format of the CONDATA= data set is used. The values of the SAS variable specified in the RHS list are constraint right-hand-side values. If the RHS list is not specified, the CONDATA= data set is searched and a SAS variable with the name _ RHS_ is used. If there is no RHS list and no SAS variable named _RHS_, all constraints are assumed to have zero right-handside values. The RHS list variable must have numeric values.

ROW Statement

ROW variables;

The ROW list is used when either the sparse or the dense format of side constraints is being used. SAS variables in the ROW list have values that are constraint or special row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In this case, if a ROW list is not specified, the CONDATA= data set is searched and the SAS variable with the name _ROW_ or _CON_ is used.

If the sparse data format is used and the ROW statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _ROW or _CON are used. The number of SAS variables in the ROW list must not be less than the number of SAS variables in the COEF list. The i th ROW list variable is paired with the i th COEF list variable. If the number of ROW list variables is greater than the number of COEF list variables, the last ROW list variables have no COEF partner. These ROW list variables that have no corresponding COEF list variable are used in observations that have a TYPE list variable value. All ROW list variable values are tagged as having the type indicated. If there is no TYPE list variable, all ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement causes optimization to be started or resumed. The RUN statement has no options. If PROC NETFLOW is called and is not terminated because of an error or a QUIT statement, and you have not used a RUN statement, a RUN statement is assumed implicitly as the last statement of PROC NETFLOW. Therefore, PROC NETFLOW always performs optimization and saves the obtained (optimal) solution in the current output data sets.

SAVE Statement

SAVE options;

The options available with the SAVE statement of PROC NETFLOW are summarized by purpose in the following table.

Table 5.4. Functional Summary, SAVE statement

Description Statement Option

Output Data Set Options:

unconstrained primal solution data set unconstrained dual solution data set

SAVE
ARCOUT=
constrained primal solution data set
constrained dual solution data set

SAVE NODEOUT=
SAVE CONOUT=
SAVE

The SAVE statement can be used to specify output data sets and create observations in these data sets. Use the SAVE statement if no optimization is to be performed before these output data sets are created.

The SAVE statement must be used to save solutions in data sets if there is no more optimization to do. If more optimization is to be performed, after which you want to save the solution, then do one of the following:

- Submit a RUN statement followed by a SAVE statement.
- Use the PROC NETFLOW or RESET statement to specify current output data sets. After optimization, output data sets are created and observations are automatically sent to the current output data sets.

Consider the following example:

```
proc netflow options; lists;
    reset maxit1=10 maxit2=25
            arcout=arcout0 nodeout=nodeout0
            conout=conout0 dualout=dualout0;
    run;
    /* Stage 1 optimization stops after iteration 10. */
    /* No output data sets are created yet. */
    save arcout=arcout1 nodeout=nodeout1;
    /* arcout1 and nodeout1 are created. */
    reset arcout=arcout2 maxit1=999999;
    run;
    /* The stage 1 optimum is reached. */
    /* Arcout2 and nodeout0 are created. */
    /* Arcout0 is not created as arcout=arcout2 over- */
    /* rides the arcout=arcout0 specified earlier. */
    /* Stage 2 optimization stops after 25 iterations */
    /* as MAXIT2=25 was specified. */
    save conout=conout1;
    /* Conout1 is created. */
    reset maxit2=999999 dualout=null;
    run;
    /* The stage 2 optimum is reached. */
    /* Conout0 is created. */
    /* No dualout is created as the last NETFLOW or */
    /* reset statements dualout=data set specification*/
    /* was dualout=null. */
```

The data sets specified in the PROC NETFLOW and RESET statements are created when an optimal solution is found. The data sets specified in SAVE statements are created immediately.

The data sets in the preceding example are all distinct, but this need not be the case. The only exception to this is that the ARCOUT= data set and the NODEOUT= data set (or the CONOUT= data set and the DUALOUT= data set) that are being created at the same time must be distinct. Use the SHOW DATASETS statement to examine what data sets are current and when they were created.

The following options can appear in the SAVE statement:
ARCOUT $=$ SAS-data-set \quad (or AOUT $=$ SAS-data-set)
NODEOUT $=$ SAS-data-set (or NOUT= SAS-data-set)
CONOUT= SAS-data-set (or COUT= SAS-data-set)
DUALOUT $=$ SAS-data-set (or DOUT= SAS-data-set)

SHOW Statement

SHOW options / qualifiers;

The options available with the SHOW statement of PROC NETFLOW are summarized by purpose in the following table.

Table 5.5. Functional Summary, SHOW statement

Description	Statement	Option
SHOW Statement Options: show problem, optimization status show network model parameters		
show data sets that have been or will be created	SHOW	STATUS
show options that pause optimization	SHOW	NETSTMT
show simplex algorithm options	SHOW	PAUSE
show pricing strategy options	SHOW	PRICING
show miscellaneous options	SHOW	MISC
SHOW Statement Qualifiers: display information only on relevant options display options for current stage only	SHOW	/ RELEVANT
	SHOW	/ STAGE

The SHOW statement enables you to examine the status of the problem and values of the RESET statement options. All output of the SHOW statement appears on the SAS log. The amount of information displayed when a SHOW statement is processed can be limited if some of the options of the SHOW statement are specified. These options indicate whether the problem status or a specific category of the RESET options is of interest. If no options are specified, the problem status and information on all RESET statement options in every category is displayed. The amount of displayed information can be limited further by following any SHOW statement options with a slash (/) and one or both qualifiers, RELEVANT and STAGE.

STATUS

produces one of the following optimization status reports, whichever is applicable. The warning messages are issued only if the network or entire problem is infeasible.

```
NOTE: Optimization Status.
    Optimization has not started yet.
NOTE: Optimization Status.
    Optimizing network (ignoring any side constraints).
    Number of iterations=17
    Of these, 3 were degenerate
WARNING: This optimization has detected that the network is
        infeasible.
NOTE: Optimization Status.
    Found network optimum (ignoring side constraints)
    Number of iterations=23
    Of these, }8\mathrm{ were degenerate
NOTE: Optimization Status.
    Optimizing side constrained network.
    Number of iterations=27
    Of these, }9\mathrm{ were degenerate
WARNING: This optimization has detected that the problem is
        infeasible.
NOTE: Optimization Status.
    Found side constrained network optimum
    Number of iterations=6
    Of these, O were degenerate
```


DATASETS

produces a report on output data sets.

```
NOTE: Current output SAS data sets
    No output data sets have been specified
NOTE: Current output SAS data sets
    ARCOUT=libname.memname
    NODEOUT=libname. memname
    CONOUT=libname . memname
    DUALOUT=libname.memname
```

```
NOTE: Other SAS data sets specified in previous ARCOUT=, NODEOUT=,
CONOUT=, or DUALOUT=.
libname.memname
NOTE: Current output SAS data sets (SHOW DATASETS)
    libname.memname
NOTE: SAS data sets specified as ARCOUT= NODEOUT= CONOUT= or
    DUALOUT= data sets in previous PROC NETFLOW, SET, RESET
    and SAVE statements.
    The number following the data set specification was the
        iteration number when observations were placed into the
        data set.
        libname.memname iteration_number
```

PAUSE
produces a report on the current settings of options used to make optimization pause.

```
NOTE: Options and parameters that stop optimization for reasons
other than infeasibility or optimality (SHOW PAUSE)
FEASIBLEPAUSE1=FALSE
ENDPAUSE1=FALSE
PAUSE1=999999
MAXIT1=1000
FEASIBLEPAUSE2=FALSE
PAUSE2=999999
MAXIT2=999999
```


SIMPLEX

produces the following:

NOTE: Options and parameters that control the primal simplex network algorithm (excluding those that affect the pricing strategies) (SHOW SIMPLEX)
LRATIO1=FALSE
BIGM1=NOTWOPHASE1=TRUE, TWOPHASE1=NOBIGM1=FALSE
CYCLEMULT1=0.15
PERTURB1=FALSE
MINBLOCK1=2
INTFIRST=TRUE
LRATIO2=FALSE
BIGM2=NOTWOPHASE2=TRUE, TWOPHASE2=NOBIGM2=FALSE
REFACTFREQ=50
$\mathrm{U}=0.1$

```
MAXLUUPDATES=6
MAXL=40
```


PRICING

produces the following:

```
NOTE: Options and parameters that control the primal simplex
network algorithm pricing strategies (SHOW PRICING)
PRICETYPE1=Q
P1SCAN=FIRST
P1NPARTIAL=10
Q1FILLSCAN=FIRST
QSIZE1=24
REFRESHQ1=0.75
REDUCEQSIZE1=1
Q1FILLNPARTIAL=10
PRICETYPE2=Q
P2SCAN=FIRST
P2NPARTIAL=10
DUALFREQ=4
Q2FILLSCAN=FIRST
QSIZE2=24
REFRESHQ2=0.75
REDUCEQSIZE2=1
Q2FILLNPARTIAL=10
```


MISC

produces the following:

```
NOTE: Miscellaneous options and parameters (SHOW MISC)
VERBOSE=12
ZTOL1=TRUE
ZERO1=1E-6
FUTURE1=FALSE
ZTOL2=TRUE
ZERO2=1E-6
FUTURE2=FALSE
```

Following a slash $(/)$, the qualifiers below can appear in any SHOW statement.

RELEVANT

indicates that you want information only on relevant options of the RESET statement. The following will not be displayed if / RELEVANT is specified:

- information on noncurrent data sets
- the options that control the reasons why stage 1 optimization should be halted and the options that control the simplex algorithm during stage 1 optimization, if the unconstrained optimum has been reached or constrained optimization has been performed
- if P1SCAN=BEST or P1SCAN=FIRST, the P1NPARTIAL= option is irrelevant
- if PRICETYPE1=BLAND or PRICETYPE1=NOQ, the options QSIZE1=, Q1FILLSCAN=, REFRESHQ1=, and REDUCEQSIZE1 = are irrelevant
- if Q1FILLSCAN=BEST or Q1FILLSCAN=FIRST, the Q1FILLNPARTIAL= option is irrelevant
- the options that control the reasons stage 2 optimization should be halted, the options that control the simplex algorithm during stage 2 optimization, if the constrained optimum has been reached
- if P2SCAN=BEST or P2SCAN=FIRST, the P2NPARTIAL= option is irrelevant
- if PRICETYPE2=BLAND or PRICETYPE2=NOQ, the options QSIZE2=, Q2FILLSCAN=, REFRESHQ2=, and REDUCEQSIZE2 $=$ are irrelevant
- if Q2FILLSCAN=BEST or Q2FILLSCAN=FIRST, the Q2FILLNPARTIAL= option is irrelevant

STAGE

indicates that you want to examine only the options that affect the optimization that is performed if a RUN statement is executed next. Before any optimization has been done, only stage 2 options are displayed if the problem has side constraints and the SCRATCH option is used, or if the CONOPT statement is specified. Otherwise, stage 1 options are displayed. If still optimizing neglecting constraints, only stage 1 options will be displayed. If the unconstrained optimum has been reached and optimization that considers constraints has not been performed, stage 1 options are displayed. If the problem has constraints, stage 2 options are displayed. If any optimization that considers constraints has been performed, only stage 2 options are displayed.

SUPDEM Statement

SUPDEM variable;

The SAS variable in this list, which must be present in the NODEDATA= data set, contains supply and demand information for the nodes in the NODE list. A positive SUPDEM list variable value $s(s>0)$ denotes that the node named in the NODE list variable can supply s units of flow. A negative SUPDEM list variable value $-d(d>$ 0) means that this node demands d units of flow. If a SAS variable is not explicitly specified, a SAS variable with the name _SUPDEM_ or_SD_ in the NODEDATA= data set is used as the SUPDEM variable. If a node is a transshipment node (neither a supply nor a demand node), an observation associated with this node need not be present in the NODEDATA= data set. If present, the SUPDEM list variable value must be zero or a missing value.

SUPPLY Statement

SUPPLY variable;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that contains the supply at the node named in that observation's TAILNODE list variable. If a tail node does not supply flow, use zero or a missing value for the observation's SUPPLY list variable value. If a tail node has supply capability, a missing value indicates that the supply quantity is given in another observation. It is not necessary to have a SUPPLY statement if the name of this SAS variable is _SUPPLY_.

TAILNODE Statement

TAILNODE variable;

TAIL variable;
FROMNODE variable;
FROM variable;
The TAILNODE statement specifies the SAS variable that must be present in the ARCDATA= data set that has as values the names of tail nodes of arcs. The TAILNODE variable must have character values. It is not necessary to have a TAILNODE statement if the name of the SAS variable is _TAIL_ or _FROM_. If the TAILNODE list variable value is missing, it is assumed that the observation of ARCDATA= data set contains information concerning a nonarc variable.

TYPE Statement

TYPE variable;

CONTYPE variable;

The TYPE list, which is optional, names the variable that has as values keywords that indicate either the constraint type for each constraint or the type of special rows in the CONDATA= data set. The values of the TYPE list variable also indicate, in each observation of the CONDATA= data set, how values of the VAR or COEF list variables are to be interpreted and how the type of each constraint or special row name is determined. If the TYPE list is not specified, the CONDATA= data set is searched and a SAS variable with the name _TYPE_ is used. Valid keywords for the TYPE variable are given below. If there is no TYPE statement and no other method is used to furnish type information (see the DEFCONTYPE= option), all constraints are assumed to be of the type "less than or equal to" and no special rows are used. The TYPE list variable must have character values and can be used when the data in the CONDATA= data set is in either the sparse or the dense format. If the TYPE list variable value has a^{*} as its first character, the observation is ignored because it is a comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the characters that PROC NETFLOW uses to determine what type the value suggests. You need to have at least these characters. In the following list, the minimal TYPE list variable values have additional characters to aid you in remembering these values.

$<$	less than or equal to (\leq)
$=$	equal to ($($)
$>$	greater than or equal to (\geq)
CAPAC	capacity
COST	cost
EQ	equal to
FREE	free row (used only for linear programs solved by interior point)
GE	greater than or equal to
LE	less than or equal to
LOWERBD	lower flow or value bound
LOWblank	lower flow or value bound MAXIMIZE
maximize (opposite of cost)	
MINIMIZE	minimize (same as cost)
OBJECTIVE	objective function (same as cost) RHS
rhs of constraint	
TYPE	type of constraint
UPPCOST	reserved for future use unrestricted variable (used only for linear programs solved by in-
UNREST	terior point)
UPPER	upper value bound or capacity; second letter must not be N

The valid TYPE list variable values in function order are

- LE less than or equal to (\leq)
- EQ equal to (=)
- GE greater than or equal to (\geq)
- COST

MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

- CAPAC

UPPER
capacity or upper value bound

- LOWERBD

LOWblank

lower flow or value bound

- RHS rhs of constraint
- TYPE type of constraint

A TYPE list variable value that has the first character $*$ causes the observation to be treated as a comment. If the first character is a negative sign, then \leq is the type. If the first character is a zero, then $=$ is the type. If the first character is a positive number, then \geq is the type.

VAR Statement

VAR variables;

The VAR variable list is used when the dense data format is used. The names of these SAS variables are also names of the arc and nonarc variables that have data in the CONDATA= data set. If no explicit VAR list is specified, all numeric variables not on other lists are put onto the VAR list. The VAR list variables must have numeric values. The values of the VAR list variables in some observations can be interpreted differently than in other observations. The values can be coefficients in the side constraints, costs and objective function coefficients, or bound data. How these numeric values are interpreted depends on the value of each observation's TYPE or ROW list variable value. If there are no TYPE list variables, the VAR list variable values are all assumed to be side constraint coefficients.

Details

Input Data Sets

PROC NETFLOW is designed so that there are as few rules as possible that you must obey when inputting a problem's data. Raw data are acceptable. This should cut the amount of processing required to groom the data before it is input to PROC NETFLOW. Data formats are so flexible that, due to space restrictions, all possible forms for a problem's data are not shown here. Try any reasonable form for your problem's data; it should be acceptable. PROC NETFLOW will outline its objections.

There are several ways to supply the same piece of data. You do not have to restrict yourself to using any particular one. If you use several ways, PROC NETFLOW checks that the data are consistent each time the data are encountered. After all input data sets have been read, data are merged so that the problem is described completely. The order of the observations is not important in any of the input data sets.

ARCDATA = Data Set

See the "Getting Started" section on page 328 and the "Introductory Example" section on page 329 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one observation. For example, consider an arc directed from node A toward node B that has a cost of 50 , capacity of 100 , and lower flow bound of 10 flow units. Some possible observations in the ARCDATA= data set may be

TAIL	_HEAD_	_COST	_CAPAC_	LO_
A	B	50	.	.
A	B	.	100	.
A	B	.	.	10
A	B	50	100	.
A	B	.	100	10
A	B	50	.	10
A	B	50	100	10

Similarly, for a nonarc variable with upperbd $=100$, lowerbd $=10$, and objective function coefficient=50, the _TAIL and _HEAD_ values are missing.

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense format, you will receive a warning if PROC NETFLOW finds a constraint row that has no coefficients. You will also be warned if any nonarc variable has no constraint coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong to the VAR list and have names of arc and nonarc variables. These names can be values of the NAME list SAS variables in the ARCDATA= data set, or names of nonarc variables, or names in the form tail_head, or any combination of these three forms. Names in the form tail_head are default arc names, and if you use them, you must specify node names in the ARCDATA= data set (values of the TAILNODE and HEADNODE list SAS variables) using no lowercase letters.

There can be three other variables in the CONDATA= data set, belonging, respectively, to the ROW, TYPE, and RHS lists. The CONDATA= data set of the oil industry example in the "Introductory Example" section on page 329 uses the dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data for three constraints. This data set was used in the "Introductory Example" section on page 329 .

```
data cond1;
    input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
        _type_ $ _rhs_;
    datalines;
-2 . 1 . . . >= -15
    . -2 . . 1 . GE -15
    . . -3 4 . . EQ 0
. . . . -3 4 = 0
;
```

You can use nonconstraint type values to furnish data on costs, capacities, lower flow bounds (and, if there are nonarc variables, objective function coefficients and upper and lower bounds). You need not have such (or as much) data in the ARCDATA= data set. The first three observations in the following data set are examples of observations that provide cost, capacity and lower bound data.

```
data cond1b;
    input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
            _type_ $ _rhs_;
    datalines;
63 81 200 . 220 . cost .
95 80 175 140 100 100 capac.
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
    . -2 . . 1 . GE -15
    . . -3 4 . . EQ 0
;
```

If a ROW list variable is used, the data for a constraint can be spread over more than one observation. To illustrate, the data for the first constraint, (which is called con1), and the cost and capacity data (in special rows called costrow and caprow, respectively) are spread over more than one observation in the following data set.

```
data cond1c;
    input _row_ \$
            m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
            _type_ \$ _rhs_;
    datalines;
costrow 63
costrow . 81200 . . . cost
. . . . . 220 . cost .
caprow . . . . . . capac .
caprow 95 . 175 . 100100 .
caprow . 80175140 . . .
lorow 201050 . 35 . lo .
con1 -2 . 1 . . . . .
con1 . . . . . . >= -15
con2 . -2 . . 1 . GE -15
con3 . . \(-3 \quad 4 \quad . \quad . \mathrm{EQ} \quad 0\)
con4 . . . . \(-3 \quad 4=0\)
;
```

Using both ROW and TYPE lists, you can use special row names. Examples of these are "costrow" and "caprow" in the last data set. It should be restated that in any of the input data sets of PROC NETFLOW, the order of the observations does not matter. However, the CONDATA= data set can be read more quickly if PROC NETFLOW knows what type of constraint or special row a ROW list variable value is. For example, when the first observation is read, PROC NETFLOW does not know whether costrow is a constraint or special row and how to interpret the value 63 for the arc with the name m_e_ref1. When PROC NETFLOW reads the second observation, it learns that costrow has type cost and that the values 81 and 200 are costs. When the entire CONDATA= data set has been read, PROC NETFLOW knows the type of all special rows and constraints. Data that PROC NETFLOW had to set aside (such as the first observation 63 value and the costrow ROW list variable value, which at the time had unknown type, but is then known to be a cost special row) is reprocessed. During
this second pass, if a ROW list variable value has unassigned constraint or special row type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default) type. Associated VAR list variable values as coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When the sparse data format of the CONDATA= data set is used, only nonzero constraint coefficients must be specified. Remember to specify the SPARSECONDATA option in the PROC NETFLOW statement. With the sparse method of specifying constraint information, the names of arc and nonarc variables do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the "Introductory Example" section on page 329 is displayed in the following code.

```
title 'Setting Up Condata = Cond2 for PROC NETFLOW';
data cond2;
    input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
    datalines;
m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
_type_ con1 1 con2 1
_type_ con3 0 con4 0
_rhs_ con1 -15 con2 -15
;
```

Recall that the COLUMN list variable values "_type_" and "_rhs_" are the default values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of constraints (con3 and con4) is zero. The third to last observation has the value "-type_" for the COLUMN list variable. The _ROW1 variable value is con1, and the _COEF1_ variable has the value 1 . This indicates that the constraint con 1 is greater than or equal to type (because the value 1 is greater than zero). Similarly, the data in the second to last observation's _ROW2 and _COEF2 variables indicate that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable is as follows:

```
title 'Setting Up Condata = Cond3 for PROC NETFLOW';
data cond3;
    input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $ ;
    datalines;
m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3.
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3.
r2_gas . . con4 4.
```

```
con3 . con4 . eq
con1 -15 con2 -15 ge
```

If the COLUMN list variable is missing in a particular observation (the last two observations in the data set cond3, for instance), the constraints named in the ROW list variables all have the constraint type indicated by the value in the TYPE list variable. It is for this type of observation that you are allowed more ROW list variables than COEF list variables. If corresponding COEF list variables are not missing (for example, the last observation in the data set cond3), these values are the rhs values of those constraints. Therefore, you can specify both constraint type and rhs in the same observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or nonarc variable, the COEF list variable values are coefficient values for that arc or nonarc variable in the constraints indicated in the corresponding ROW list variables. If in this same observation, the TYPE list variable contains a constraint type, all constraints named in the ROW list variables in that observation have this constraint type (for example, the first observation in the data set cond3). Therefore, you can specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from having to include in the data that CON3 and CON4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented in the ARCDATA= data set. Alternatively, you could have used the following input data sets.

```
title3 'Setting Up Arcdata = Arcd2 for PROC NETFLOW';
data arcd2;
    input _from_&$11. _to_&$15. ;
    datalines;
middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;
```

```
title 'Setting Up Condata = Cond4 for PROC NETFLOW';
data cond4;
    input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $ ;
    datalines;
.
middle east_refinery 1
middle east_refinery 2
refinery 1_rl
r1_ref1 gas
refinery 2_r2
r2_ref2 gas
middle east_refinery 1
middle east_refinery 2
u.s.a._refinery 1
u.s.a._refinery 2
refinery 1_r1
refinery 2_r2
r1_ref1 gas
r1_ref1 diesel
r2_ref2 gas
r2_ref2 diesel
ref1 gas_servstn1 gas
ref1 gas_servstn2 gas
ref1 diesel_servstn1 diesel
ref1 diesel_servstn2 diesel
ref2 gas_servstn1 gas
ref2 gas_servstn2 gas
ref2 diesel_servstn1 diesel
ref2 diesel_servstn2 diesel
middle east_refinery 1
middle east_refinery 2
refinery 1_r1
refinery 2_r2
ref2 gas_servstn1 gas
;
```


The first observation in the cond4 data set defines con1 and con2 as greater than or equal to (\geq) constraints that both (by coincidence) have rhs values of -15 . The second observation defines the special row costrow as a cost row. When costrow is a ROW list variable value, the associated COEF list variable value is interpreted as a cost or objective function coefficient. PROC NETFLOW has to do less work if constraint names and special rows are defined in observations near the top of a data set, but this is not a strict requirement. The fourth to ninth observations contain constraint coefficient data. Observations 7 and 9 have TYPE list variable values that indicate that constraints con 3 and con 4 are equality constraints. The last five observations contain lower flow bound data. Observations that have an arc or nonarc variable name in the COLUMN list variable, a nonconstraint type TYPE list variable value, and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.
;

```
```

```
title 'Setting Up Condata = Cond5 for PROC NETFLOW';
```

```
title 'Setting Up Condata = Cond5 for PROC NETFLOW';
data cond5;
data cond5;
    input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $ ;
    input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $ ;
    datalines;
    datalines;
middle east_refinery 1 con1 -2 costrow 6
middle east_refinery 1 con1 -2 costrow 6
middle east_refinery 2 con2 -2 lorow 10
middle east_refinery 2 con2 -2 lorow 10
refinery 1_r1
refinery 1_r1
r1_ref1 gas
r1_ref1 gas
refinery 2_r2
refinery 2_r2
r2_ref2 gas
r2_ref2 gas
ref2 diesel_servstn1 diesel
ref2 diesel_servstn1 diesel
middle east_refinery 1
middle east_refinery 1
middle east_refinery 2
middle east_refinery 2
u.s.a._refinery 1
u.s.a._refinery 1
u.s.a._refinery 2
u.s.a._refinery 2
refinery 1_r1
refinery 1_r1
refinery 1_r1
refinery 1_r1
refinery 2_r2
refinery 2_r2
refinery 2_r2
refinery 2_r2
r1_ref1 diesel
r1_ref1 diesel
r2_ref2 gas
r2_ref2 gas
r2_ref2 diesel
r2_ref2 diesel
ref1 gas_servstn1 gas
ref1 gas_servstn1 gas
ref1 gas_servstn2 gas
ref1 gas_servstn2 gas
ref1 diesel_servstn1 diesel
ref1 diesel_servstn1 diesel
ref1 diesel_servstn2 diesel
ref1 diesel_servstn2 diesel
ref2 gas_servstn1 gas
ref2 gas_servstn1 gas
ref2 gas_servstn1 gas
ref2 gas_servstn1 gas
ref2 gas_servstn2 gas
ref2 gas_servstn2 gas
ref2 gas_servstn2 gas
ref2 gas_servstn2 gas
```

 con2 -2 lorow 10 .
    ```
        con2 -2 lorow 10 .
*
```

*

```

If you have data for a linear programming program that has an embedded network, the steps required to change that data into a form that is acceptable by PROC NETFLOW are
1. Identify the nodal flow conservation constraints. The coefficient matrix of these constraints (a submatrix of the LP's constraint coefficient matrix) has only two nonzero elements in each column, -1 and 1.
2. Assign a node to each nodal flow conservation constraint.
3. The rhs values of conservation constraints are the corresponding node's supplies and demands. Use this information to create a NODEDATA= data set.
4. Assign an arc to each column of the flow conservation constraint coefficient matrix. The arc is directed from the node associated with the row that has the 1 element in it and directed toward to the node associated with the row that has the -1 element in it. Set up an ARCDATA= data set that has two SAS variables. This data set could resemble ARCDATA=arcd2. These will eventually be the TAILNODE and HEADNODE list variables when PROC

NETFLOW is used. Each observation consists of the tail and head node of each arc.
5. Remove from the data of the linear program all data concerning the nodal flow conservation constraints.
6. Put the remaining data into a CONDATA= data set. This data set will probably resemble CONDATA=cond4 or CONDATA=cond5.

\section*{The Sparse Format Summary}

The following list illustrates possible CONDATA= data set observation sparse formats. a1, b1, b2, b3 and c1 have as a _COLUMN_ variable value either the name of an arc (possibly in the form tail_head) or the name of a nonarc variable.
- If there is no TYPE list variable in the CONDATA= data set, the problem must be constrained and there is no nonconstraint data in the CONDATA= data set.
\begin{tabular}{|c|c|c|c|c|}
\hline & _COLUMN_ & _ROWx & _COEFx & \[
\begin{aligned}
& \text { _ROWy_- }_{\text {(no COEFy_) }} \\
& \text { (may not be } \\
& \text { in CONDATA) }
\end{aligned}
\] \\
\hline a1 & variable & constraint & lhs coef & -+ \\
\hline a2 & _TYPE_ or & constraint & -1 01 & 1 \\
\hline & TYPEOBS \(=\) & & & , \\
\hline a3 & _RHS_ or & constraint & rhs value & | constraint \\
\hline & RHSOBS = or & & & 1 or \\
\hline & missing & & & | missing \\
\hline a4 & _TYPE_ or & constraint & missing & 1 \\
\hline & TYPEOBS \(=\) & & & 1 \\
\hline a5 & _RHS_ or & constraint & missing & 1 \\
\hline & \[
\begin{aligned}
& \text { RHSOBS= or } \\
& \text { missing }
\end{aligned}
\] & & & +------------+ \\
\hline
\end{tabular}

Observations of the form a4 and a5 serve no useful purpose but are still allowed to make problem generation easier.
- If there are no ROW list variables in the data set, the problem has no constraints and the information is nonconstraint data. There must be a TYPE list variable and only one COEF list variable in this case. The COLUMN list variable has as values the names of arcs or nonarc variables and must not have missing values or special row names as values.
\begin{tabular}{llll} 
& _COLUMN_ & _TYPE_ & _COEFx_ \\
b1 variable & UPPERBD & capacity \\
b2 variable & LOWERBD & lower flow \\
b3 variable & COST & cost
\end{tabular}
- Using a TYPE list variable for constraint data implies the following:


If the observation is of the form c 4 or c 5 , and the _COEFX_ values are missing, the constraint is assigned the type data specified in the _TYPE_ variable.
- Using a TYPE list variable for arc and nonarc variable data implies the following:


Observations with form d1 to d5 can have ROW list variable values. Observation d 4 must have ROW list variable values. The ROW value is put into the ROW name tree so that when dealing with observation d 4 or d 5 , the COEF list variable value is interpreted according to the type of ROW list variable value. For example, the following three observations define the _ROWx_ variable values up_row, lo_row and co_row as being an upper value bound row, lower value bound row, and cost row, respectively.
\begin{tabular}{clll} 
_COLUMN_ & _TYPE_ & _ROWx_ & _COEFx_ \\
• & UPPERBD & up_row & \\
variable_a & LOWERBD & lo_row & lower flow \\
variable_b & COST & co_row & cost
\end{tabular}

PROC NETFLOW is now able to correctly interpret the following observation:
_COLUMN_ _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_
var_c up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the COLUMN list variable equals the value of the TYPEOBS \(=\) option or the default value _TYPE_, the TYPE list variable value is ignored.

\section*{NODEDATA= Data Set}

See the "Getting Started" section on page 328 and the "Introductory Example" section on page 329 for a description of this input data set.

\section*{Output Data Sets}

The procedure determines the flow that should pass through each arc as well as the value assigned to each nonarc variable. The goal is that the minimum flow bounds, capacities, lower and upper value bounds, and side constraints are not violated. This goal is reached when total cost incurred by such a flow pattern and value assignment is feasible and optimal. The solution found must also conserve flow at each node.

The ARCOUT= data set contains a solution obtained when performing optimization that does not consider any constraints. The NODEOUT= data set contains nodal dual variable information for this type of solution. You can choose to have PROC NETFLOW create the ARCOUT= data set and the NODEOUT= data set and save the optimum of the network or the nodal dual variable values before any optimization that considers the side constraints is performed.

If there are side constraints, the CONOUT= data set can be produced and contains a solution obtained after performing optimization that considers constraints. The DUALOUT= data set contains dual variable information for nodes and side constraints from the solution obtained after optimization that considers the constraints. The CONOUT= data set and DUALOUT= data set can be used to save the constrained optimal solution.

\section*{ARCOUT = and CONOUT= Data Sets}

The ARCOUT= and CONOUT= data sets contain the same variables. Furthermore, the variables in the output data sets depend on whether or not the problem has a network component.

If the problem has a network component, the variables and their possible values in an observation are as follows:
\begin{tabular}{ll} 
_FROM_ & \begin{tabular}{l} 
a tail node of an arc. This is a missing value if an observation has \\
information about a nonarc variable. \\
a head node of an arc. This is a missing value if an observation \\
has information about a nonarc variable. \\
the cost of an arc or the objective function coefficient of a nonarc \\
variable \\
the capacity of an arc or upper value bound of a nonarc variable \\
the lower flow bound of an arc or lower value bound of a nonarc \\
variable
\end{tabular} \\
_TO_
\end{tabular}

If the problem does not have a network component, the variables and their possible values in an observation are as follows:
\begin{tabular}{ll} 
_OBJFN_ & the objective function coefficient of a variable \\
_UPPERBD & the upper value bound of a variable \\
_LOWERBD & the lower value bound of a variable \\
-NAME_ & the name of a variable \\
-VALUE_ & \begin{tabular}{l} 
the value of the variable \\
_FCOST_ \\
\\
\\
_Objective function value for that variable; the product of
\end{tabular} \\
\end{tabular}

The variables present in the ARCDATA= data set are present in an ARCOUT= data set or a CONOUT= data set. For example, if there is a variable called tail in the ARCDATA = data set and you specified the SAS variable list
```

from tail;

```
then tail is a variable in the ARCOUT= and CONOUT= data sets instead of _FROM_. Any ID list variables also appear in the ARCOUT= and CONOUT= data sets.

\section*{NODEOUT= and DUALOUT= Data Sets}

There are two types of observations in the NODEOUT= and DUALOUT= data sets. One type of observation contains information about a node. These are called type \(N\) observations. There is one such observation of this type for each node. The _NODE_ variable has a name of a node, and the _CON_ variable values in these observations are missing values.

The other type of observation contains information about constraints. These are called the type C observations. There is one such observation for each constraint. The _CON_ variable has a name of a constraint, and the _NODE_ variable values in these observations are missing values.

Many of the variables in the NODEOUT= and DUALOUT= data sets contain information used to warm start PROC NETFLOW. The variables _NODE_, _SD_, _DUAL_, _VALUE_, _RHS_, _TYPE_, and _CON_ contain information that might be of interest to you.

The NODEOUT= and DUALOUT= data sets look similar, as the same variables are in both. These variables and their values in an observation of each type are
_NODE_ Type N: the node name
Type C: a missing value
_SD_ Type N : the supply (positive) or demand (negative) of the node
Type C : a missing value
_DUAL_
_NNUMB_ Type N : the number of the node named in _NODE_
Type C: the number of the constraint named in _CON_
_PRED_ Type N : the predecessor in the network basis spanning tree of the node named in _NODE_
Type C: the number of the node toward which the arc with number in _ARCID_ is directed, or the constraint number associated with the slack, surplus, or artificial variable basic in this row
_TRAV_ Type N : the traversal thread label of the node named in _NODE_
Type C: a missing value
_SCESS_ Type N: the number of successors (including itself) in the network basis spanning tree of the node named in _NODE_
Type C: a missing value
_ARCID_ Type N : if _ARCID_ is nonnegative, _ARCID_ is the number of the network basis spanning tree arc directed from the node with number _PRED_ to the node named in _NODE_. If _ARCID_ is negative, minus _ARCID_ is the number of the network basis spanning tree arc directed from the node named in _NODE_ to the node with number _PRED_.
Type C : if _ARCID_ is positive, _ARCID_ is the number of the arc basic in a constraint row. If nonpositive, minus _ARCID_ is the number of the nonarc variable basic in a constraint row.
\begin{tabular}{|c|c|}
\hline _FLOW- & Type N : the flow minus the lower flow bound of the arc _ARCID_ \\
\hline & Type C: the flow minus lower flow bound of the arc _ARCID_ or value lower bound of the nonarc variable value minus _ARCID_ \\
\hline \multirow[t]{2}{*}{_FBQ_} & Type N : If _FBQ_ is positive, then_FBQ_ is the subscript in arc length arrays of the first arc directed toward the node named in _NODE_. PROC NETFLOW's arc length arrays are sorted so that data of arcs directed toward the same head node are together. If _FBQ_ is negative, no arcs are directed toward the node named in _NODE_. Arcs directed toward node \(i\) have subscripts in the arc length arrays between observations \(\operatorname{FBQ}(i)\) and \((\operatorname{FBQ}(i+1))-1\), inclusive. \\
\hline & Type C: a missing value \\
\hline \multirow[t]{2}{*}{_VALUE_} & Type N : a missing value \\
\hline & Type C: the lhs value (the sum of the products of coefficient and flows or values) of the constraint named in _CON_ \\
\hline \multirow[t]{2}{*}{_RHS_} & Type N : a missing value \\
\hline & Type C: the rhs value of the constraint named in _CON_ \\
\hline \multirow[t]{2}{*}{_TYPE_} & Type N : a missing value \\
\hline & Type C: the type of the constraint named in _CON_ \\
\hline \multirow[t]{2}{*}{_CON_} & Type N : a missing value \\
\hline & Type C: the name of the constraint \\
\hline
\end{tabular}

If specified in variable lists, the variables in the input data sets are used instead of some of the previous variables. These variables are specified in the NODE, SUPDEM, RHS, TYPE, and ROW (if there is only one variable in the ROW list) lists and are used instead of _NODE_, _SD_, _RHS_, _TYPE_, and _CON_, respectively.

\section*{Case Sensitivity}

Whenever the NETFLOW procedure has to compare character strings, whether they are node names, arc names, nonarc names, or constraint names, if the two strings have different lengths, or on a character by character basis the character is different or has different cases, PROC NETFLOW judges the character strings to be different.

Not only is this rule enforced when one or both character strings are obtained as values of SAS variables in PROC NETFLOW's input data sets, it also should be obeyed if one or both character strings were originally SAS variable names, or were obtained as the values of options or statements parsed to PROC NETFLOW. For example, if the network has only one node that has supply capability, or if you are solving a MAXFLOW or SHORTPATH problem, you can indicate that node using the SOURCE= option. If you specify
```

proc netflow source=NotableNode

```
then PROC NETFLOW looks for a value of the TAILNODE list variable that is NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase. The name of the node searched for would be NOTABLENODE, even if this was your SAS code:
```

proc netflow source=NotableNode

```

If you want PROC NETFLOW to behave as it did in Version 6, specify
```

options validvarname=v6;

```

If the SPARSECONDATA option is not specified, and you are running SAS software Version 6 or have specified options validvarname= v 6 ; using a later version, all NAME list variable values in the ARCDATA= data set are uppercased. This is because the SAS System has uppercased all SAS variable names, particularly those in the VAR list of the CONDATA= data set.

Entities that contain blanks must be enclosed in single or double quotes.
See the "Cautions" section on page 364 for additional discussion of case sensitivity.

\section*{Loop Arcs}

When using the primal simplex network algorithm, loop arcs (arcs directed toward nodes from which they originate) are prohibited. Rather, introduce a dummy intermediate node in loop arcs. For example, replace arc (A,A) with (A,B) and (B,A). B is the name of a new node, and it must be distinct for each loop arc.

\section*{Multiple Arcs}

Multiple arcs with the same tail and head nodes are prohibited. PROC NETFLOW checks to ensure there are no such arcs before proceeding with the optimization. Introduce a new dummy intermediate node in multiple arcs. This node must be distinct for each multiple arc. For example, if some network has three arcs directed from node A toward node B, then replace one of these three with arcs ( \(\mathrm{A}, \mathrm{C}\) ) and \((\mathrm{C}, \mathrm{B})\) and replace another one with ( \(\mathrm{A}, \mathrm{D}\) ) and ( \(\mathrm{D}, \mathrm{B}\) ). C and D are new nodes added to the network.

\section*{Pricing Strategies}

The pricing strategy is the part of the simplex iteration that selects the nonbasic arc, constraint slack, surplus, or nonarc variable that should have a flow or value change, and perhaps enter the basis so that the total cost incurred is improved.

The pricing mechanism takes a large amount of computational effort, so it is important to use the appropriate pricing strategy for the problem under study. As in other large scale mathematical programming software, network codes can spend more than half of their execution time performing simplex iterations in the pricing step. Some compromise must be made between using a fast strategy and improving the quality of the flow or value change candidate selection, although more simplex iterations may need to be executed.

The configuration of the problem to be optimized has a great effect on the choice of strategy. If a problem is to be run repeatedly, experimentation on that problem to determine which scheme is best may prove worthwhile. The best pricing strategy to use when there is a large amount of work to do (for example, when a cold start is used) may not be appropriate when there is little work required to reach the optimum (such as when a warm start is used). If paging is necessary, then a pricing strategy that reduces the number of simplex iterations performed might have the advantage. The proportion of time spent doing the pricing step during stage 1 optimization is usually less than the same proportion when doing stage 2 optimization. Therefore, it is more important to choose a stage 2 pricing strategy that causes fewer, but not necessarily the fewest, iterations to be executed.

There are many similarities between the pricing strategies for optimizing an unconstrained problem (or when constraints are temporarily ignored) and the pricing mechanisms for optimizing considering constraints. To prevent repetition, options have a suffix or embedded \(x\). Replace \(x\) with 1 for optimization without constraint consideration and 2 for optimization with constraint consideration.

There are three main types of pricing strategies:
- PRICETYPE \(x=\) NOQ
- PRICETYPE \(x=\) BLAND
- PRICETYPE \(x=\mathrm{Q}\)

The pricing strategy that usually performs better than the others is PRICETYPE \(x=\mathrm{Q}\). For this reason, PRICETYPE \(x=\mathrm{Q}\) is the default.

\section*{PRICETYPE \(x=\) NOQ}

PRICETYPE \(x=\) NOQ is the least complex pricing strategy, but it is nevertheless quite efficient. In contrast to the specification of PRICETYPE \(x=Q\), a candidate queue is not set up.

The \(\mathrm{P} x \mathrm{SCAN}=\) option controls the amount of additional candidate selection work done to find a better candidate after an eligible candidate has been found.

If \(\mathrm{P} x \mathrm{SCAN}=\mathrm{FIRST}\) is specified, the search for candidates finishes when the first eligible candidate is found, with this exception: if a node has more than one eligible arc directed toward it, the best such arc is chosen.

If \(\mathrm{P} x \mathrm{SCAN}=\mathrm{BEST}\) is specified, everything that is nonbasic is examined, and the best candidate of all is chosen.

If \(\mathrm{P} x \mathrm{SCAN}=\mathrm{PARTIAL}\) is specified, once an eligible candidate is found, the scan continues for another P \(x\) NPARTIAL= cycles in the hope that during the additional scan, a better candidate is found. Examining all nonbasic arcs directed toward a single node is counted as only one cycle.

If \(\mathrm{P} x \mathrm{SCAN}=\mathrm{FIRST}\) or \(\mathrm{P} x \mathrm{SCAN}=\mathrm{PARTIAL}\) is specified, the scan for entering candidates starts where the last iteration's search left off. For example, if the last iteration's scan terminated after examining arcs that are directed toward the node with internal
number \(i\), the next iteration's scan starts by examining arcs directed toward the node with internal number \(i+1\). If \(i\) is the largest node number, next iterations scan begins by scanning arcs directed toward node 1 (during stage 1 ) or scanning constraint slack or surplus variables, if any, or nonarc variables, if any, (during stage 2). During stage 2 , if the scan terminated after examining the slack or surplus of constraint \(i\), next iterations scan starts by examining the slack or surplus of the constraint with the internal number greater than \(i\) that has such a logical variable. If the scan terminated after examining the nonarc variable \(i\), the next iterations scan starts by examining the nonarc variable with internal number \(i+1\), (or arcs directed to the node with the smallest internal number if the nonarc variable with the greatest number has been examined). This is termed a wraparound search.

\section*{PRICETYPE \(x=Q\)}

If PRICETYPE \(x=Q\), a queue is set up. Candidates currently on the queue are tested at each iteration and either enter the basis or are removed from the queue. The size of the queue can be specified by using the \(\operatorname{QSIZE} x=\) option. The default value for QSIZE1 \(=\) is
```

QSIZE1=number of arcs/200
if (QSIZE1<24) QSIZE1=24
else if (QSIZE1>100) QSIZE1=100

```

The default value for QSIZE2 \(=\) is
```

QSIZE2=(number of arcs+number of nonarc variables)/200
if (QSIZE2<24) QSIZE2=24
else if (QSIZE2>100) QSIZE2=100

```
controls the amount of additional candidate selection work done to find a better candidate after an eligible candidate has been found in the queиe.

If you specify \(\mathrm{P} x \mathrm{SCAN}=\mathrm{BEST}\), the best eligible candidate found is removed from the queue. It can sustain a flow or value change and possibly enter the basis.

If you specify \(\mathrm{P} x\) SCAN=FIRST, the first eligible candidate found is removed from the queue, and possibly sustains a flow or value change and enters the basis.

If you specify \(\mathrm{P} x\) SCAN=PARTIAL, P \(x\) NPARTIAL= can then be specified as well. After an eligible candidate has been found, \(\mathrm{P} x\) NPARTIAL = more queue members are examined and the best of the eligible candidates found is chosen.

When PxSCAN=FIRST or PxSCAN=PARTIAL, the scan of the queue is wraparound. When the member last added to the queue has been examined, the scan continues from the member that was first added to the queue.

When the queue is empty, or after QSIZE \(x=\) times REFRESHQ \(x=\) iterations have been executed since the queue was last refreshed, new candidates are found and put onto the queue. Valid values for the REFRESHQ \(x=\) options are greater than 0.0 and less than or equal to 1.0 . The default for REFRESHQ \(x\) is 0.75 . If the scan cannot find enough candidates to fill the queue, the procedure reduces the value of

QSIZE \(x=\). If \(q\) found is the number of candidates found, the new QSIZE \(x=\) value is qfound \(+((\) old QSIZEx - qfound \() \times\) REDUCEQSIZEx \()\). Valid values of the REDUCEQSIZE \(x=\) option are between 0.0 and 1.0, inclusive. The default for REDUCEQSIZE \(x=\) is 1.0 .

The \(\mathrm{Q} x\) FILLSCAN \(=\) option controls the amount of additional candidate selection work performed to find better candidates to put into the queue after the queue has been filled.

If you specify \(\mathrm{Q} x\) FILLSCAN=FIRST, the nonbasic arcs, and during stage 2 optimization, nonbasic constraint slack and surplus variables, and nonbasic nonarc variables are scanned; the scan stops when the queue is filled. If a node has more than one eligible arc directed toward it, the best such arc is put onto the queue. \(\mathrm{Q} x\) FILLSCAN \(=\) FIRST is the default.

If \(\mathrm{Q} x\) FILLSCAN=BEST is specified, everything that is nonbasic is scanned and the best eligible candidates are used to fill the queue.

If \(\mathrm{Q} x\) FILLSCAN=PARTIAL is specified, after the queue is full, the scan continues for another \(\mathrm{Q} x\) FILLNPARTIAL= cycles in the hope that during the additional scan, better candidates are found to replace other candidates previously put onto the queue. \(\mathrm{Q} x\) FILLNPARTIAL \(=10\) is the default. If \(\mathrm{Q} x\) FILLSCAN=FIRST or \(\mathrm{Q} x\) FILLSCAN=PARTIAL, the scan starts where the previous iteration ended; that is, it is wraparound.

In the following section, dual variables and reduced costs are explained. These help PROC NETFLOW determine whether an arc, constraint slack, surplus, or nonarc variable should have a flow or value change. P2SCAN=ANY and the DUALFREQ= option can be specified to control stage 2 pricing, and how often dual variables and reduced costs are calculated.

What usually happens when PRICETYPE2 \(=\mathrm{Q}\) is specified is that before the first iteration, the queue is filled with nonbasic variables that are eligible to enter the basis. At the start of each iteration, a candidate on the queue is examined and its reduced cost is calculated to ensure that it is still eligible to enter the basis. If it is ineligible to enter the basis, it is removed from the queue and another candidate on the queue is examined, until a candidate on the queue is found that can enter the basis. When this happens, a minor iteration occurs. If there are no candidates left on the queue, or several iterations have been performed since the queue was refreshed, new nonbasic variables that are eligible to enter the basis are found and are placed on the queue. When this occurs, the iteration is termed a major iteration. Dual variables are calculated or maintained every iteration.

During most optimizations, if a variable is put onto the queue during a major iteration, it usually remains eligible to enter the basis in later minor iterations. Specifying P2SCAN=ANY indicates that PROC NETFLOW should choose any candidate on the queue and use that as the entering variable. Reduced costs are not calculated. It is simply hoped that the chosen candidate is eligible. Sometimes, a candidate on the queue is chosen that has become ineligible and the optimization takes "a step backward" rather than "a step forward" toward the optimum. However, the disadvantages of incurring an occasional step backwards and the possible danger of never
converging to the optimum are offset by not having to calculate reduced costs and, more importantly, not having to maintain dual variable values. The calculation of dual variables is one of two large linear equation systems that must be solved each iteration in the simplex iteration.

If P2SCAN=ANY is specified, dual variables are calculated after DUALFREQ= iterations have been performed since they were last calculated. These are used to calculate the reduced costs of all the candidates currently on the queue. Any candidate found to be ineligible to enter the basis is removed from the queue. DUALFREQ=4 is the default.

Once again, the practice of not maintaining correct dual variable values is dangerous because backward steps are allowed, so the optimization is not guaranteed to converge to the optimum. However, if PROC NETFLOW does not run forever, it can find the optimum much more quickly than when the P2SCAN= option is not ANY. Before concluding that any solution is optimal, PROC NETFLOW calculates true dual variable values and reduced costs and uses these to verify that the optimum is really at hand.

Whether P2SCAN=ANY is specified or not, dual variables are always calculated at the start of major iterations.

\section*{PRICETYPE \(x=B L A N D\)}

PRICETYPE \(x=\) BLAND is equivalent to specifying in the PROC NETFLOW or RESET statement all three options PRICETYPE \(x=\) NOQ, P \(x\) SCAN=FIRST, and LRATIO \(x\), and the scans are not wraparound. Bland (1977) proved that this pivot rule prevents the simplex algorithm from cycling. However, because the pivots concentrate on the lower indexed arcs, constraint slack, surplus, and nonarc variables, optimization with PRICETYPE \(x=\) BLAND can make the optimization execute slowly.

\section*{Dual Variables, Reduced Costs, and Status}

During optimization, dual variables and reduced costs are used to determine whether an arc, constraint slack, surplus, or nonarc variable should have a flow or value change. The ARCOUT= and CONOUT= data sets each have a variable called _ RCOST_ that contains reduced cost values. In the CONOUT= data set, this variable also has the reduced costs of nonarc variables. For an arc, the reduced cost is the amount that would be added to the total cost if that arc were made to convey one more unit of flow. For a nonarc variable, the reduced cost is the amount that would be added to the total cost if the value currently assigned to that nonarc variable were increased by one.

During the optimization of a minimization problem, if an arc has a positive reduced cost, PROC NETFLOW takes steps to decrease the flow through it. If an arc has a negative reduced cost, PROC NETFLOW takes steps to increase the flow through it. At optimality, the reduced costs of arcs with flow at their respective lower bounds are nonnegative; otherwise, the optimizer would have tried to increase the flow, thereby decreasing the total cost. The _STATUS_ of each such nonbasic arc is LOWERBD NONBASIC. The reduced costs of arcs with flow at capacity are nonpositive. The
_STATUS_ of each such nonbasic arc is UPPERBD NONBASIC. Even though it would decrease total cost, the optimizer cannot increase the flows through such arcs because of the capacity bound. Similar arguments apply for nonarc variables.

The reduced cost is also the amount that would be subtracted from the total cost if that arc was made to convey one less unit of flow. Similarly, a reduced cost is the amount subtracted from the total cost if the value currently assigned to that nonarc variable is decreased by one.

The dual variables and reduced costs can be used to detect whether multiple optimal solutions exist. A zero reduced cost of a nonbasic arc indicates the existence of multiple optimal solutions. A zero reduced cost indicates, by definition, that the flow through such arcs can be changed with zero change to the total cost. (Basic arcs and basic nonarc variables technically have zero reduced costs. A missing value is used for these so that reduced costs of nonbasic arcs and nonbasic nonarc variables that are zero are highlighted.)

The range over which costs can vary before the present solution becomes nonoptimal can be determined through examination of the reduced costs. For any nonbasic arc with assigned flow equal to its lower bound, the amount by which the cost must be decreased before it becomes profitable for this arc to convey additional flow is the value of its reduced cost. The cost reduction necessary for a nonbasic arc currently assigned capacity flow to undergo a worthwhile flow decrease is the absolute value of its reduced cost. In both cases, this minimum cost reduction changes the reduced cost to zero. Any further reduction promotes a possible basis change.

The reduced cost of an \(\operatorname{arc}(t, h)\) is \(r c_{t, h}=c_{t, h}-\pi_{t}+\pi_{h}\) where \(\pi_{i}\) is the dual value for node \(i\) and \(c_{t, h}\) is the cost of the arc with tail node \(t\) and head node \(h\).

If the problem has side constraints and arc \((t, h)\) has nonzero lhs coefficients, then the following term must be subtracted from \(r c_{t, h}\) :
\[
\sum_{i} \operatorname{condual}_{i} H_{i,(t, h)}
\]
where condual \(_{i}\) is the dual variable of constraint \(i\), and \(H_{i,(t, h)}\) is the coefficient of \(\operatorname{arc}(t, h)\) in constraint \(i\).

If \(d_{n}\) is the objective function coefficient of nonarc variable \(n\), the reduced cost is \(r c_{n}=d_{n}-\sum_{i}\) condual \(_{i} Q_{i, n}\), where \(Q_{i, n}\) is the coefficient of nonarc variable \(n\) in constraint \(i\).

\section*{The Working Basis Matrix}

Let \(\mathbf{T}\) be the basis matrix of NPSC. The following partitioning is done:
\[
\mathbf{T}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]
\]
where
- \(n\) is the number of nodes.
- \(k\) is the number of side constraints.
- A \((n \times n)\) is the network component of the basis. Most of the columns of this matrix are columns of the problem's node-arc incidence matrix. The arcs associated with columns of A, called key basic variables or key arcs, form a spanning tree. The data structures of the spanning tree of this submatrix of the basis \(\mathbf{T}\) enable the computations involving \(\mathbf{T}\) and the manner in which \(\mathbf{T}\) is updated to be very efficient, especially those dealing with \(\mathbf{A}\) (or \(\mathbf{A}^{-1}\) ).
- \(\mathbf{C}(k \times n)\) are the key arcs' side constraint coefficient columns.
- B \((n \times k)\) are the node-arc incidence matrix columns of the nontree arcs. The columns of \(\mathbf{B}\) having nonzero elements are associated with basic nonspanning tree arcs.
- D \((k \times k)\) are the constraint coefficient columns of nonkey basic variables. Nonkey basic variables not only include nontree basic arcs but also basic slack, surplus, artificial, or nonarc variables.

It is more convenient to factor \(\mathbf{T}\) by block triangular matrices \(\mathbf{P}\) and \(\mathbf{M}\), such that \(\mathbf{P}=\mathbf{T M}\). The matrices \(\mathbf{P}\) and \(\mathbf{M}\) are used instead of \(\mathbf{T}\) because they are less burdensome to work with. You can perform block substitution when solving the simplex iteration linear systems of equations
\[
\begin{aligned}
\mathbf{P} & =\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{C} & \mathbf{D}_{\mathbf{w}}
\end{array}\right] \\
\mathbf{M} & =\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]
\end{aligned}
\]
where \(\mathbf{D}_{\mathbf{w}}=\mathbf{D}-\mathbf{C A}^{-\mathbf{1}} \mathbf{B}\) and is called the working basis matrix.
To perform block substitution, you need the tree data structure of the A matrix, and also the \(\mathbf{C}, \mathbf{B}\), and \(\mathbf{D}_{\mathbf{w}}\) matrices. Because the \(\mathbf{C}\) matrix consists of columns of the constraint coefficient matrix, the maintenance of \(\mathbf{C}\) from iteration to iteration simply entails changing information specifying which columns of the constraint coefficient matrix compose \(\mathbf{C}\).
The \(\mathbf{A}^{-\mathbf{1}} \mathbf{B}\) matrix is usually very sparse. Fortunately, the information in \(\mathbf{A}^{-\mathbf{1}} \mathbf{B}\) can be initialized easily using the tree structures. In most iterations, only one column is replaced by a new one. The values of the elements of the new column may already be known from preceding steps of the simplex iteration.

The working basis matrix is the submatrix that presents the most computational complexity. However, PROC NETFLOW usually can use classical simplex pivot techniques. In many iterations, only one column of \(\mathbf{D}_{\mathbf{w}}\) changes. Sometimes it is not necessary to update \(\mathbf{D}_{\mathbf{w}}\) or its inverse at all.

If INVD_2D is specified in the PROC NETFLOW statement, only one row and one column may need to be changed in the \(\mathbf{D}_{\mathbf{w}}^{-1}\) before the next simplex iteration can begin. The new contents of the changed column are already known. The new elements of the row that changes are influenced by the contents of a row of \(\mathbf{A}^{\mathbf{1}} \mathbf{B}\) that is very sparse.

If INVD_2D is not specified in the PROC NETFLOW statement, the Bartels-Golub update can be used to update the \(\mathbf{L} \mathbf{U}\) factors of \(\mathbf{D}_{\mathbf{w}}\). The choice must be made whether to perform a series of updates (how many depends on the number of nonzeros in a row of \(\mathbf{A}^{-\mathbf{1}} \mathbf{B}\) ), or refactorization.

\section*{Flow and Value Bounds}

The capacity and lower flow bound of an arc can be equal. Negative arc capacities and lower flow bounds are permitted. If both arc capacities and lower flow bounds are negative, the lower flow bound must be at least as negative as the capacity. An arc \((A, B)\) that has a negative flow of \(-f\) units can be interpreted as an arc that conveys \(f\) units of flow from node B to node A .

The upper and lower value bounds of a nonarc variable can be equal. Negative upper and lower bounds are permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

\section*{Tightening Bounds and Side Constraints}

If any piece of data is furnished to PROC NETFLOW more than once, PROC NETFLOW checks for consistency so that no conflict exists concerning the data values. For example, if the cost of some arc is seen to be one value and as more data are read, the cost of the same arc is seen to be another value, PROC NETFLOW issues an error message on the SAS log and stops. There are two exceptions:
- The bounds of arcs and nonarc variables are made as tight as possible. If several different values are given for the lower flow bound of an arc, the greatest value is used. If several different values are given for the lower bound of a nonarc variable, the greatest value is used. If several different values are given for the capacity of an arc, the smallest value is used. If several different values are given for the upper bound of a nonarc variable, the smallest value is used.
- Several values can be given for inequality constraint right-hand sides. For a particular constraint, the lowest rhs value is used for the rhs if the constraint is of less than or equal to type. For a particular constraint, the greatest rhs value is used for the rhs if the constraint is of greater than or equal to type.

\section*{Reasons for Infeasibility}

Before optimization commences, PROC NETFLOW tests to ensure that the problem is not infeasible by ensuring that, with respect to supplies, demands, and arc flow bounds, flow conservation can be obeyed at each node.
- Let \(I N\) be the sum of lower flow bounds of arcs directed toward a node plus the node's supply. Let \(O U T\) be the sum of capacities of arcs directed from that node plus the node's demand. If IN exceeds \(O U T\), not enough flow can leave the node.
- Let \(O U T\) be the sum of lower flow bounds of arcs directed from a node plus the node's demand. Let \(I N\) be the total capacity of arcs directed toward the node plus the node's supply. If \(O U T\) exceeds \(I N\), not enough flow can arrive at the node.

Reasons why a network problem can be infeasible are similar to those previously mentioned but apply to a set of nodes rather than for an individual node.

Consider the network illustrated in Figure 5.13.


Figure 5.13. An infeasible network
The demand of NODE_4 is 120 . That can never be satisfied because the maximal flow through arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) is 117. More specifically, the implicit supply of NODE_2 and NODE_6 is only 117, which is insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) are greater than the flow that can reach the tail nodes of these arcs, that, by coincidence, is the total supply of the network. The implicit demand of nodes NODE_1 and NODE_5 is 110, which is greater than the amount of flow that can reach these nodes.

When PROC NETFLOW detects that the problem is infeasible, it indicates why the solution, obtained after optimization stopped, is infeasible. It can report that the solution cannot obey flow conservation constraints and which nodes these conservation constraints are associated with. If applicable, the side constraints that the solution violates are also output.

If stage 1 optimization obtains a feasible solution to the network, stage 2 optimization can determine that the problem is infeasible and note that some flow conservation constraint is broken while all side constraints are satisfied. The infeasibility messages issued by PROC NETFLOW pertain to why the current solution is infeasible, not
quite the same as the reasons why the problem is infeasible. However, the messages highlight areas in the problem where the infeasibility can be tracked down. If the problem is infeasible, make PROC NETFLOW do a stage 1 unconstrained optimization by removing the CONDATA= data set specification in the PROC NETFLOW statement. If a feasible network solution is found, then the side constraints are the source of the infeasibility in the problem.

\section*{Missing S Supply and Missing D Demand Values}

In some models, you may want a node to be either a supply or demand node but you want the node to supply or demand the optimal number of flow units. To indicate that a node is such a supply node, use a missing \(S\) value in the SUPPLY list variable in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data set. To indicate that a node is such a demand node, use a missing D value in the DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data set.

Suppose the oil example in the "Introductory Example" section on page 329 is changed so that crude oil can be obtained from either the Middle East or U.S.A. in any amounts. You should specify that the node "middle east" is a supply node, but you do not want to stipulate that it supplies 100 units, as before. The node "u.s.a." should also remain a supply node, but you do not want to stipulate that it supplies 80 units. You must specify that these nodes have missing \(S\) supply capabilities.
```

title 'Oil Industry Example';
title3 'Crude Oil can come from anywhere';
data miss_s;
missing S;
input _node_\&\$15. _sd_;
datalines;
middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

```

The following PROC NETFLOW run uses the same ARCDATA= and CONDATA= data sets used in the "Introductory Example" section on page 329.
```

proc netflow
nodedata=miss_s /* the supply (missing S) and */
/* demand data */
/* the arc descriptions */
condata=cond1 /* the side constraints */
condata=cond1 /* the side constraints */
conout=solution;
run;
print some_arcs('middle east' 'u.s.a.',_all_)/short;

```
```

proc print;
sum _fcost_;
run;

```

The following messages appear on the SAS log:
```

NOTE: Number of nodes= 14.
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4.
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any
constraints)= 9 .
NOTE: Of these, O were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side
constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with
constraints= 3 .
NOTE: Of these, O were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

```

The PRINT statement reports the arcs directed away from the supply nodes, shown in Figure 5.14. The amount of crude obtained from the Middle East and U.S.A. is 30 and 150 units, respectively.


Figure 5.14. Print statement, Oil example, missing S supplies.

The CONOUT= data set is shown in Figure 5.15.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Obs & _from_ & \multicolumn{2}{|l|}{_to_} & _cost_ & _capac_ & _10- & _name_ _ & \({ }_{-}\)SUPPLY \({ }_{-}\) \\
\hline 1 & refinery 1 & \multicolumn{2}{|l|}{r1} & 200 & 175 & 50 & thruput1 & . \\
\hline 2 & refinery 2 & r2 & & 220 & 100 & 35 & thruput2 & . \\
\hline 3 & r1 & ref1 & diesel & 0 & 75 & 0 & & . \\
\hline 4 & r1 & ref1 & gas & 0 & 140 & 0 & r1_gas & . \\
\hline 5 & r2 & ref2 & diesel & 0 & 75 & 0 & & . \\
\hline 6 & r2 & ref2 & gas & 0 & 100 & 0 & r2_gas & . \\
\hline 7 & middle east & \(t\) refi & nery 1 & 63 & 95 & 20 & m_e_ref1 & S \\
\hline 8 & u.s.a. & refi & nery 1 & 55 & 99999999 & 0 & & S \\
\hline 9 & middle east & \(t\) refi & nery 2 & 81 & 80 & 10 & m_e_ref2 & S \\
\hline 10 & u.s.a. & refi & nery 2 & 49 & 99999999 & 0 & & S \\
\hline 11 & ref1 diesel & 1 serv & stn1 diesel & 18 & 99999999 & 0 & & . \\
\hline 12 & ref2 diesel & 1 serv & stn1 diesel & 36 & 99999999 & 0 & & . \\
\hline 13 & ref1 gas & serv & tn1 gas & 15 & 70 & 0 & & . \\
\hline 14 & & serv & tn1 gas & 17 & 35 & 5 & & . \\
\hline 15 & ref2 gas ref1 diesel & 1 serv & stn2 diesel & 17 & 99999999 & 0 & & . \\
\hline 16 & ref2 diesel & 1 serv & stn2 diesel & 23 & 99999999 & 0 & & . \\
\hline 17 & ref1 gas & serv & tn2 gas & 22 & 60 & 0 & & . \\
\hline 18 & ref2 gas & \multicolumn{2}{|l|}{servstn2 gas} & 31 & 99999999 & 0 & & . \\
\hline Obs & _DEMAND_ & _FLOW_ & _FCOST_ & _RCOST_ & _ANUMB_ & _TNUMB & \multicolumn{2}{|l|}{_Status_} \\
\hline 1 & & 145.00 & 29000.00 & . & 7 & 2 & KEY_ARC & BASIC \\
\hline 2 & . & 35.00 & 7700.00 & 17 & 8 & 3 & LOWERBD NO & NONBASIC \\
\hline 3 & . 36 & 36.25 & 0.00 & . & 10 & 5 & KEY_ARC & BASIC \\
\hline 4 & 1 & 108.75 & 0.00 & . & 9 & 5 & KEY_ARC & BASIC \\
\hline 5 & . & 8.75 & 0.00 & . & 12 & 6 & KEY_ARC & BASIC \\
\hline 6 & - & 26.25 & 0.00 & . & 11 & 6 & KEY_ARC & BASIC \\
\hline 7 & . 20 & 20.00 & 1260.00 & 8 & 2 & 1 & LOWERBD NO & NONBASIC \\
\hline 8 & 1 & 125.00 & 6875.00 & . & 3 & 4 & KEY_ARC & BASIC \\
\hline 9 & . & 10.00 & 810.00 & 32 & 4 & 1 & LOWERBD NO & nonbasic \\
\hline 10 & & 25.00 & 1225.00 & . & 5 & 4 & KEY_ARC & BASIC \\
\hline 11 & 30 & 30.00 & 540.00 & . & 17 & 8 & KEY_ARC & BASIC \\
\hline 12 & 30 & 0.00 & 0.00 & 12 & 18 & 10 & LOWERBD NO & NONBASIC \\
\hline 13 & 95 & 68.75 & 1031.25 & . & 13 & 7 & KEY_ARC & BASIC \\
\hline 14 & 95 & 26.25 & 446.25 & . & 14 & 9 & NONKEY ARC & RC BASIC \\
\hline 15 & 15 & 6.25 & 106.25 & . & 19 & 8 & KEY_ARC & BASIC \\
\hline 16 & 15 & 8.75 & 201.25 & . & 20 & 10 & KEY_ARC & BASIC \\
\hline 17 & 40 & 40.00 & 880.00 & . & 15 & 7 & KEY_ARC & BASIC \\
\hline \multirow[t]{2}{*}{18} & 40 & 0.00 & 0.00 & 7 & 16 & 9 & LOWERBD NO & NONBASIC \\
\hline & & & 50075.00 & & & & & \\
\hline
\end{tabular}

Figure 5.15. Missing S SUPDEM values in NODEDATA
The optimal supplies of nodes "middle east" and "u.s.a." are 30 and 150 units, respectively. For this example, the same optimal solution is obtained if these nodes had supplies less than these values (each supplies 1 unit, for example) and the THRUNET option was specified in the PROC NETFLOW statement. With the THRUNET option active, when total supply exceeds total demand, the specified nonmissing demand values are the lowest number of flow units that must be absorbed by the corresponding node. This is demonstrated in the following PROC NETFLOW run. The missing \(S\) is most useful when nodes are to supply optimal numbers of flow units and it turns out that for some nodes, the optimal supply is 0 .
```

data miss_s_x;
missing S;
input _node_\&\$15. _sd_;
datalines;
middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
proc netflow
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;
print some_arcs('middle east' 'u.s.a.',_all_)/short;
proc print;
sum _fcost_;
run;

```

The following messages appear on the SAS log. Note that the Total supply=2, not 0 as in the last run.
```

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any
constraints)= 13 .
NOTE: Of these, O were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side
constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with
constraints= 3 .
NOTE: Of these, O were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

```

The PRINT statement and the CONDATA= data set are very similar; the supplies of the supply nodes are 1 , not missing S . Otherwise, the solutions are identical.

If total supply exceeds total demand, any missing \(S\) values are ignored. If total demand exceeds total supply, any missing D values are ignored.

\section*{Balancing Total Supply and Total Demand}

\section*{When Total Supply Exceeds Total Demand}

When total supply of a network problem exceeds total demand, PROC NETFLOW can add an extra node (called the excess node) to the problem and set the demand at that node equal to the difference between total supply and total demand. There are three ways that this excess node can be joined to the network. All three ways entail PROC NETFLOW generating a set of arcs (henceforth referred to as the generated arcs) that are directed toward the excess node. The total amount of flow in generated arcs equals the demand of the excess node. The generated arcs originate from one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs originate from are all demand nodes, even those demand nodes with unspecified demand capability. You indicate that a node has unspecified demand capability by using a missing D value instead of an actual value for demand data (discussed in the "Missing S Supply and Missing D Demand Values" section on page 419). The value specified as the demand of a demand node is in effect a lower bound of the number of flow units that node can actually demand. For missing D demand nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network depends on whether there are demand nodes with unspecified demand capability (nodes with missing D demand).

If there are missing \(D\) demand nodes, these nodes are the set of nodes that generated arcs originate from. The value specified as the demand of a demand node, if not missing D , is the number of flow units that node actually demands. For a missing D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate from are the set of supply nodes. The value specified as the supply of a supply node is in effect an upper bound of the number of flow units that node can actually supply. For missing S supply nodes (discussed in the "Missing S Supply and Missing D Demand Values" section on page 419), this upper bound is zero, so missing S nodes when total supply exceeds total demand are transshipment nodes, nodes that neither supply nor demand flow.

\section*{When Total Supply Is Less Than Total Demand}

When total supply of a network problem is less than total demand, PROC NETFLOW can add an extra node (called the excess node) to the problem and set the supply at that node equal to the difference between total demand and total supply. There are three ways that this excess node can be joined to the network. All three ways entail PROC NETFLOW generating a set of arcs (henceforth referred to as the generated arcs) that originate from the excess node. The total amount of flow in generated arcs equals the supply of the excess node. The generated arcs are directed toward one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are directed toward are all supply nodes, even those supply nodes with unspecified supply
capability. You indicate that a node has unspecified supply capability by using a missing \(S\) value instead of an actual value for supply data (discussed in the "Missing S Supply and Missing D Demand Values" section on page 419). The value specified as the supply of a supply node is in effect a lower bound of the number of flow units that node can actually supply. For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network depends on whether there are supply nodes with unspecified supply capability (nodes with missing \(S\) supply).

If there are missing \(S\) supply nodes, these nodes are the set of nodes that generated arcs are directed toward. The value specified as the supply of a supply node, if not missing S , is the number of flow units that node actually supplys. For a missing S supply node, the actual supply of that node may be zero or greater.

If there are no missing \(S\) supply nodes, the set of nodes that generated arcs are directed toward are the set of demand nodes. The value specified as the demand of a demand node is in effect an upper bound of the number of flow units that node can actually demand. For missing D demand nodes, (discussed in the "Missing S Supply and Missing D Demand Values" section on page 419), this upper bound is zero, so missing D nodes when total supply is less than total demand are transshipment nodes, nodes that neither supply nor demand flow.

\section*{Warm Starts}

Using a warm start can increase the overall speed of PROC NETFLOW when it is used repetitively on problems with similar structure. It is most beneficial when a solution of a previous optimization is close to the optimum of the same network with some of its parameters, for example, arc costs, changed. Whether a problem is changed or not, a nonoptimal solution resulting from a previous optimization can be used to restart optimization, thereby saving PROC NETFLOW from having to repeat work to reach the warm start already available.

Time also is saved in the data structure initialization part of the NETFLOW procedure's execution. Information about the previous optimal solution, particularly concerning the size of the problem, a description of the basis spanning tree structure, and what is basic in constraint rows, is known. Information about which nonbasic arcs have capacity flow and which nonbasic nonarc variables are at their respective upper bounds also makes up part of the warm start. The procedure can place arc data into the internal arc length arrays in precisely defined locations, in order of ascending head node internal number. It is not necessary to have multiple passes through the data because literals such as node, nonarc variable, arc, constraint, and special row names are defined and meaning is attached to each. This saves a considerable amount of memory as well. None of the pre-optimization feasibility checks need be repeated.

Warm starts also are useful if you want to determine the effect of arcs being closed to carrying flow. The costs of these arcs are set high enough to ensure that the next optimal solution never has flow through them. Similarly, the effect of opening arcs can be determined by changing the cost of such arcs from an extreme to a reasonable value.

Specify the FUTURE1 or FUTURE2 option to ensure that additional data about a solution to be used as a warm start are output to output data sets. If the FUTURE1 option is specified, extra observations with information on what is to be the warm start are set up for the NODEOUT= and ARCOUT= data sets. The warm start solution in these data sets is a solution obtained after optimization neglecting side constraints. Any cost list variable value in the ARCOUT= data set (and, if there are side constraints, any constraint data in the CONDATA= data set) can be changed before the solution is used as a warm start in a subsequent PROC NETFLOW run. Any nonarc variable data in the CONDATA= data set can be changed at this time as well. New nonarc variables not present in the original problem when the warm start was generated can also be added to the CONDATA= data set before the problem is warm started.

If the FUTURE2 option is specified, extra variables containing information on what will be the warm start solution are set up for the DUALOUT= and CONOUT= data sets. The warm start solution in these data sets is obtained after optimization that considers side constraints has been performed. Part of the warm start is concerned with the constraint part of the basis. Only cost list variable values in the CONOUT= data set can be changed before the solution is used as a warm start in a subsequent PROC NETFLOW run.

If a primal simplex optimization is to use a warm start, the WARM option must be specified in the PROC NETFLOW statement. Otherwise, the primal simplex network algorithm processes the data for a cold start and the extra information is not used.

The ARCDATA= data set is either the ARCOUT= data set from a previous run of PROC NETFLOW with the FUTURE1 option specified (if an unconstrained warm start is used) or the CONOUT= data set from a previous run of PROC NETFLOW with the FUTURE2 option specified (if the warm start was obtained after optimization that considers side constraints was used).

The NODEDATA= data set is the NODEOUT= data set from a previous run of PROC NETFLOW with FUTURE1 specified if an unconstrained warm start is being used. Otherwise, the DUALIN= is the DUALOUT= data sets from a previous run of PROC NETFLOW with FUTURE2 specified, if the warm start was obtained after optimization that considers side constraints was used.

You never need to alter the NODEOUT= data set or the DUALOUT= data set between the time they are generated and when they are used as a warm start. The results would be unpredictable if incorrect changes were made to these data sets, or if a NODEDATA \(=\) or a DUALIN= data set were used with an ARCDATA= data set of a different solution.

It is possible, and often useful, to specify WARM and either FUTURE1 or FUTURE2, or both, in the same PROC NETFLOW statement if a new warm start is to be generated from the present warm start.

The extent of the changes allowed to a primal simplex warm start between the time it is generated and when it is used depends on whether the warm start describes an unconstrained or constrained solution. The following list describes parts of a constrained or an unconstrained warm start that can be altered:
- COST list variable values
- the value of an arc's capacity, as long as the new capacity value is not less than the lower flow bound or the flow through the arc
- any nonarc variable information, in an unconstrained warm start
- for an unconstrained warm start, any side constraint data

The changes that can be made in constraint data for a constrained warm start are more restrictive than those for an unconstrained warm start. The lhs coefficients, type, and rhs value of a constraint can be changed as long as that constraint's slack, surplus, or artificial variable is basic. The constraint name cannot be changed.

\section*{Example of a Warm Start}

The following sample SAS session demonstrates how the warm start facilities are used to obtain optimal solutions to an unconstrained network where some arc cost changes occur or optimization is halted before the optimum is found.
```

 /* data already in data sets node0 and arc0 */
 proc netflow
nodedata=node0 /* if supply_demand information */
/* is in this SAS data set */
arcdata=arc0;
/* variable list specifications go here */
/* assume that they are not necessary here */
/* if they are, they must be included in */
/* all the PROC NETFLOW calls that follow */
reset
future1
nodeout=node2 /* nodeout and arcout are necessary */
/* when FUTURE1 is used */
arcout=arc1;
proc print
data=arc1; /* display the optimal solution */
proc fsedit
data=arc1; /* change some arc costs */
data arc2;
reset arc1;
oldflow=_flow_;
oldfc=_fcost_;
/* make duplicates of the flow and flowcost*/
/* variables. If a id list was explicitly */
/* specified, add oldflow and oldfc to this*/
/* list so that they appear in subsequently*/
/* created arcout= data sets */

```

The following PROC NETFLOW uses the warm start created previously, performs 250 stage 2 iterations and saves that solution, which (as FUTURE1, ARCOUT=, and NODEOUT \(=\) are specified) can be used as a warm start in another PROC NETFLOW run.
```

proc netflow
warm
nodedata=node2
arcdata=arc2;
reset
maxit1=250
future1;
run;
save
nodeout=savelib.node3
arcout=savelib.arc3;
/* optimization halted because 250 iterations */
/* were performed to resume optimization, */
/* possibly in another session (the output */
/* data sets were saved in a SAS library */
/* called savelib) */

```

Using the latest warm start, PROC NETFLOW is re-invoked to find the optimal solution.
```

proc netflow
warm
nodedata=savelib.node3
arcdata=savelib.arc3;
reset
future1
nodeout=node4
arcout=arc4;
run;

```

If this problem has constraints with data in a data set called CON0, then in each of the previous PROC NETFLOW statements, specify CONDATA=CON0. Between PROC NETFLOW runs, you can change constraint data. In each of the RESET statements, you could specify the CONOUT= data set to save the last (possibly optimal) solution reached by the optimizer if it reaches stage 2 . You could specify FUTURE2 and the DUALOUT= data set to generate a constrained warm start.
```

proc netflow
warm
nodedata=node4
arcdata=arc4
condata=con0;
reset
maxit2=125 /* optional, here as a reason why */
/* optimum will not be obtained */
scratch /* optional, but warm start might be good */
/* enough to start stage 2 optimization */
future2
run;
/* optimization halted after 125 stage 2 iterations */
save dualout=dual1 conout=conout1;

```

Stage 2 optimization halted before optimum was reached. Now you can make cost and nonarc variable objective function coefficient changes. Then to restart optimization, use
```

proc netflow
warm
condata=con0
/* NB. NETFLOW reads constraint data only */
dualin=dual1
arcdata=con1;
reset
future2
dualout=dual2
conout=con2;
run;

```

\section*{How to Make the Data Read of PROC NETFLOW More Efficient}

This section contains information useful when you want to solve large constrained network problems. However, much of this information is also useful if you have a large linear programming problem. All of the options described in this section that are not directly applicable to networks (options such as ARCS_ONLY_ARCDATA, ARC_SINGLE_OBS, NNODES=, and NARCS=) can be specified to improve the speed at which LP data is read.

\section*{Large Constrained Network Problems}

Many of the models presented to PROC NETFLOW are enormous. They can be considered large by linear programming standards; problems with thousands of variables and constraints. When dealing with side constrained network programming problems, models can have not only a linear programming component of that magnitude, but also a larger, possibly much larger, network component.

The majority of a network problem's decision variables are arcs. Like an LP decision variable, an arc has an objective function coefficient, upper and lower value bounds, and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite similar to an LP variable and places the same memory demands on optimization software as an LP variable. But a typical network model has many more arcs and nonarc variables than the typical LP model has variables. And arcs have tail and head nodes. Storing and processing node names require huge amounts of memory. To make matters worse, node names occupy memory at times when a large amount of other data should reside in memory as well.

While memory requirements are lower for a model with embedded network component compared with the equivalent LP once optimization starts, the same is usually not true during the data read. Even though nodal flow conservation constraints in the LP should not be specified in the constrained network formulation, the memory requirements to read the latter are greater because each arc (unlike an LP variable) originates at one node, and is directed toward another.

\section*{Paging}

PROC NETFLOW has facilities to read data when the available memory is insufficient to store all the data at once. PROC NETFLOW does this by allocating memory for different purposes, for example, to store an array or receive data read from an input SAS data set. After that memory has filled, the information is sent to disk and PROC NETFLOW can resume filling that memory with new information. Often, information must be retrieved from disk so that data previously read can be examined or checked for consistency. Sometimes, to prevent any data from being lost, or to retain any changes made to the information in memory, the contents of the memory must be sent to disk before other information can take its place. This process of swapping information to and from disk is called paging. Paging can be very time-consuming, so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC NETFLOW read the data of network and linear programming models more efficiently, particularly when memory is scarce and the amount of paging must be reduced. PROC NETFLOW will then be able to tackle large problems in what can be considered reasonable amounts of time.

\section*{The Order of Observations}

PROC NETFLOW is quite flexible in the ways data can be supplied to it. Data can be given by any reasonable means. PROC NETFLOW has convenient defaults that can save you work when generating the data. There can be several ways to supply the same piece of data, and some pieces of data can be given more than once. PROC NETFLOW reads everything, then merges it all together. However, this flexibility and convenience come at a price; PROC NETFLOW may not assume the data has a characteristic that, if possessed by the data, could save time and memory during the data read. There are several options that indicate the data has some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= or CONDATA= data set, or both. Every time it is given in ARCDATA, a check is made to ensure that the new value is the same as any corresponding value read in a previous observation of ARCDATA. Every time it is given in CONDATA, a check is made to ensure that the new value is the same as the value read in a previous observation of CONDATA, or previously in ARCDATA. It would save PROC NETFLOW time if it knew that arc cost data would be encountered only once while reading ARCDATA, so performing the time-consuming check for consistency would not be necessary. Also, if you indicate that CONDATA contains data for constraints only, PROC NETFLOW will not expect any arc information, so memory will not be allocated to receive such data while reading CONDATA. This memory is used for other purposes and this might lead to a reduction in paging. If applicable, use the ARC_SINGLE_OBS or the CON_SINGLE_OBS option, or both, and the NON_REPLIC=COEFS specification to improve how ARCDATA and CONDATA are read.

PROC NETFLOW allows the observations in input data sets to be in any order. However, major time savings can result if you are prepared to order observations in particular ways. Time spent by the SORT procedure to sort the input data sets, particularly the CONDATA= data set, may be more than made up for when PROC

NETFLOW reads them, because PROC NETFLOW has in memory information possibly used when the previous observation was read. PROC NETFLOW can assume a piece of data is either similar to that of the last observation read or is new. In the first case, valuable information such as an arc or a nonarc variable number or a constraint number is retained from the previous observation. In the last case, checking the data with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain data for the same arc or nonarc variable or the same row pays off. PROC NETFLOW establishes whether an observation being read is similar to the observation just read.

Practically, several input data sets for PROC NETFLOW might have this characteristic, because it is natural for data for each constraint to be grouped together (dense format of CONDATA) or data for each column to be grouped together (sparse format of CONDATA). If data for each arc or nonarc is spread over more than one observation of the ARCDATA= data set, it is natural to group these observations together.

Use the GROUPED \(=\) option to indicate whether observations of the ARCDATA= data set, CONDATA= data set, or both are grouped in a way that can be exploited during data read.

Time is saved if the type data for each row appears near the top of the CONDATA= data set, especially if it has the sparse format. Otherwise, when reading an observation, if PROC NETFLOW does not know if a row is a constraint or special row, the data is set aside. Once the data set has been completely read, PROC NETFLOW must reprocess the data it set aside. By then, it knows the type of each constraint or row or, if its type was not provided, it is assumed to have a default type.

\section*{Better Memory Utilization}

In order for PROC NETFLOW to make better utilization of available memory, you can now specify options that indicate the approximate size of the model. PROC NETFLOW then knows what to expect. For example, if you indicate that the problem has no nonarc variables, PROC NETFLOW will not allocate memory to store nonarc data. That memory is utilized better for other purposes. Memory is often allocated to receive or store data of some type. If you indicate that the model does not have much data of a particular type, the memory that would otherwise have been allocated to receive or store that data can be used to receive or store data of another type.
- NNODES= approximate number of nodes
- NARCS= approximate number of arcs
- NNAS = approximate number of nonarc variables or LP variables
- NCONS= approximate number of constraints
- NCOEFS \(=\) approximate number of constraint coefficients

These options will sometimes be referred to as Nxxxx= options.
You do not need to specify all these options for the model, but the more you do, the better. If you do not specify some or all of these options, PROC NETFLOW
guesses the size of the problem by using what it already knows about the model. Sometimes PROC NETFLOW guesses the size of the model by looking at the number of observations in the ARCDATA= and CONDATA= data sets. However, PROC NETFLOW uses rough rules of thumb; that typical models are proportioned in certain ways (for example, if there are constraints, then arcs and nonarcs usually have 5 constraint coefficients). If your model has an unusual shape or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overestimate the values. For example, if you specify NARCS=10000 but the model has 10100 arcs, when dealing with the last 100 arcs, PROC NETFLOW might have to page out data for 10000 arcs each time one of the last arcs must be dealt with. Memory could have been allocated for all 10100 arcs without affecting (much) the rest of the data read, so NARCS \(=10000\) could be more of a hindrance than a help.

The point of these \(\mathrm{Nxxxx}=\) options is to indicate the model size when PROC NETFLOW does not know it. When PROC NETFLOW knows the "real" value, that value is used instead of \(N x x x x=\).

When PROC NETFLOW is given a constrained solution warm start, PROC NETFLOW knows from the warm start information all model size parameters, so Nxxxx= options are not used. When an unconstrained warm start is used and the SAME_NONARC_DATA is specified, PROC NETFLOW knows the number of nonarc variables, so that is used instead of the value of the NNAS \(=\) option.

ARCS_ONLY_ARCDATA indicates that data for only arcs are in the ARCDATA= data set. Memory would not be wasted to receive data for nonarc and LP variables.

Use the memory usage parameters:
- The BYTES = option specifies the size of PROC NETFLOW main working memory in number of bytes.
- The MAXARRAYBYTES= option specifies the maximum number of bytes that an array can occupy.
- The MEMREP option indicates that memory usage report is to be displayed on the SAS log.

Specifying the BYTES= parameter is particularly important. Specify as large a number as possible, but not such a large number of bytes that will cause PROC NETFLOW (rather, the SAS System running underneath PROC NETFLOW) to run out of memory. Use the MAXARRAYBYTES= option if the model is very large or "disproportionate." Try increasing or decreasing the MAXARRAYBYTES= option. Limiting the amount of memory for use by big arrays is good if they would take up too much memory to the detriment of smaller arrays, buffers, and other things that require memory. However, too small a value of the MAXARRAYBYTES=option might cause PROC NETFLOW to page a big array excessively. Never specify a value for the MAXARRAYBYTES= option that is smaller than the main node length array. PROC NETFLOW reports the size of this array on the SAS log if you specify the MEMREP option. The MAXARRAYBYTES = option influences paging not
only in the data read, but also during optimization. It is often better if optimization is performed as fast as possible, even if the read is made slower as a consequence.

\section*{Use Defaults to Reduce the Amount of Data}

Use as much as possible the parameters that specify default values. For example, if there are several arcs with the same cost value \(c\), use \(\operatorname{DEFCOST}=c\) for arcs that have that cost. Use missing values in the COST variable in ARCDATA instead of \(c\). PROC NETFLOW ignores missing values, but must read, store, and process nonmissing values, even if they are equal to a default option or could have been equal to a default parameter had it been specified. Sometimes, using default parameters makes the need for some SAS variables in the ARCDATA= and CONDATA= data sets no longer necessary, or reduces the quantity of data that must be read. The default options are
- DEFCOST= default cost of arcs, objective function of nonarc variables or LP variables
- DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc variables or LP variables
- DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or LP variables
- DEFCONTYPE=LE DEFCONTYPE= <= DEFCONTYPE=EQ DEFCONTYPE== DEFCONTYPE=GE DEFCONTYPE= >= (default constraint type)

The default options themselves have defaults. For example, you do not need to specify DEFCOST=0 in the PROC NETFLOW statement. You should still have missing values in the COST variable in ARCDATA for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use
- SOURCE= name of single node that has supply capability
- SUPPLY= the amount of supply at SOURCE
- \(\mathrm{SINK}=\) name of single node that demands flow
- DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default. The only time it might be practical to specify a zero rhs is in observations of CONDATA read early so that PROC NETFLOW can infer that a row is a constraint. This could prevent coefficient data from being put aside because PROC NETFLOW did not know the row was a constraint.

\section*{Names of Things}

To cut data read time and memory requirements, reduce the number of bytes in the longest node name, longest arc name, and longest constraint name to 8 bytes or less. The longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC NETFLOW can have a default name for each arc. If an arc is directed from node tailname toward node headname, the default name for that arc is tailname_headname. If you do not want PROC NETFLOW to use these default arc names, specify NAMECTRL=1. Otherwise, PROC NETFLOW must use memory for storing node names and these node names must be searched often.

If you want to use the default tailname_headname name, that is, NAMECTRL=2 or NAMECTRL=3, do not use underscores in node names. If a CONDATA has a dense format and has a variable in the VAR list A_B_C_D, or if the value A_B_C_D is encountered as a value of the COLUMN list variable when reading CONDATA that has the sparse format, PROC NETFLOW first looks for a node named A. If it finds it, it looks for a node called B_C_D. It then looks for a node with the name A_B and possibly a node with name C_D. A search for a node named A_B_C and possibly a node named D is done. Underscores could have caused PROC NETFLOW to look unnecessarily for nonexistant nodes. Searching for node names can be expensive, and the amount of memory to store node names large. It might be better to assign the arc name A_B_C_D directly to an arc by having that value as a NAME list variable value for that arc in ARCDATA and specify NAMECTRL=1.

\section*{Other Ways to Speed-up Data Reads}

Use warm starts as much as possible.
- WARM indicates that the input SAS data sets contain a warm start.

The data read of a warm start is much faster than a cold start data read. The model size is known before the read starts. The observations of the NODEDATA= or DUALIN= data sets have observations ordered by node name and constraint name. Information is stored directly in the data structures used by PROC NETFLOW. For a cold start, much of preprocessing must be performed before the information can be stored in the same way. And using a warm start can greatly reduce the time PROC NETFLOW spends doing optimization.
- SAME_NONARC_DATA is an option that excludes data from processing.

This option indicates that the warm start nonarc variable data in ARCDATA is read and any nonarc variable data in CONDATA is to be ignored. Use this option if it is applicable, or when CONDATA has no nonarc variable data, or such data is duplicated in ARCDATA. ARCDATA is always read before CONDATA.

Arcs and nonarc variables can have associated with them values or quantities that have no bearing with the optimization. This information is given in ARCDATA in the ID list variables. For example, in a distribution problem, information such as truck number and driver's name can be associated with each arc. This is useful when a solution is saved in an output SAS data set. However, PROC NETFLOW needs to reserve memory to process this information when data is being read. For large problems
when memory is scarce, it might be better to remove ancillary data from ARCDATA. After PROC NETFLOW runs, use SAS software to merge this information into the output data sets that contain the optimal solution.

\section*{Macro Variable _ORNETFL}

The NETFLOW procedure always creates and initializes a SAS macro called _ORNETFL . After each PROC NETFLOW run, you can examine this macro by specifying \%put _ORNETFL; and see whether PROC NETFLOW ran correctly or what error or difficulty it encountered.

The value of _ORNETFL consists of four parts:
- ERROR_STATUS, indicating the existence or absence of any errors
- OPT_STATUS, the stage of the optimization, or what solution has been found
- OBJECTIVE=objective, the total cost or profit of the current solution. If PROC NETFLOW is solving a maximal flow problem, MAXFLOW=maxflow, the amount of the current solution's maximal flow, will follow. If solving a minimal flow problem (MAXFLOW and MAXIMIZE specified at the same time), MINFLOW=minflow, the amount of the current solution's mimimal flow, will follow instead.
- SOLUTION, describing the nature of the current solution

The value of _ORNETFL is of the form
ERROR_STATUS=charstr OPT_STATUS=charstr OBJECTIVE=objective SOLUTION=charstr

Nontrailing blank characters that are unnecessary are removed. Ideally, at the end a PROC NETFLOW run, _ORNETFL would have the value
```

ERROR_STATUS=OK OPT_STATUS=OPTIMAL OBJECTIVE=x
SOLUTION=OPTIMAL

```

Table 5.6 lists alternate values for the _ORNETFL value parts.

Table 5.6. PROC NETFLOW _ORNETFL macro values
\begin{tabular}{lll}
\hline Keyword & Value & Meaning \\
\hline ERROR_STATUS & OK & no errors \\
& MEMORY & \begin{tabular}{l} 
memory request failed \\
input-output error
\end{tabular} \\
& IO & error in the data \\
& DATA & error with PROC NETFLOW \\
& BUG & semantic error \\
& SEMANTIC & syntax error \\
& SYNTAX & unknown error \\
& UNKNOWN & no optimization has been done \\
OPT_STATUS & START & performing stage 1 optimization \\
& STAGE_1 & reached unconstrained optimum, \\
& UNCON_OPT & but there are side constraints \\
& STAGE_2 & performing stage 2 optimization \\
& OPTIMAL & reached the optimum \\
OBJECTIVE & objective & total cost or profit \\
MINFLOW & minflow & if MAXFLOW MAXIMIZE is specified \\
MAXFLOW & maxflow & if MAXFLOW is specified \\
SOLUTION & NONOPTIMAL & more optimization is required \\
& STAGE_2_REQUIRED & reached unconstrained optimum, \\
& & stage 2 optimization is required
\end{tabular}

\section*{The Interior Point Algorithm}

\section*{Introduction}

The simplex algorithm, developed shortly after World War II, was the main method used to solve linear programming problems. Over the last fifteen years, the interior point algorithm has been developed to also solve linear programming problems. From the start it showed great theoretical promise, and considerable research in the area resulted in practical implementations that performed competitively with the simplex algorithm. More recently, interior point algorithms have evolved to become superior to the simplex algorithm, in general, especially when the problems are large.

The interior point algorithm has been implemented in PROC NETFLOW. This algorithm can be used to solve linear programs as well as network problems. When PROC NETFLOW detects that the problem has no network component, it automatically invokes the interior point algorithm to solve the problem. The data required by PROC NETFLOW for a linear program resembles the data for nonarc variables and constraints for constrained network problems.

If PROC NETFLOW does detect a network component to the problem (the problem has arcs), you must specify the option INTPOINT in the PROC NETFLOW statement if you want to use the interior point algorithm. PROC NETFLOW first converts the constrained network model into an equivalent linear programming formulation, solves that, then converts the LP back to the network model. These models remain conceptually easy since they are based on network diagrams that represent the problem pictorially. This procedure accepts the network specification in a format that is particularly suited to networks. This not only simplifies problem description but also aids in the interpretation of the solution. The conversions to and from the equivalent LP are done "behind the scenes."

There are many variations of interior point algorithms. PROC NETFLOW uses the Primal-Dual with Predictor-Corrector algorithm. This algorithm and related theory can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye (1996).

The remainder of this section is split into two parts. In the first part, how you use PROC NETFLOW's interior point algorithm to solve network problems is described. In the second part, using PROC NETFLOW to solve linear programming problems (its interior point algorithm must be used) is described. Both parts are organized similarly:
- The way data are supplied to PROC NETFLOW is outlined in a "Getting Started" subsection.
- An "Introductory Example" is solved to demonstrate how the data is set up, how PROC NETFLOW is used to compute the solution, and how the optimum is saved.
- More sophisticated ways to use PROC NETFLOW interactively are detailed in an "Interactivity" subsection.
- A "Functional Summary" lists the statements and options that can be used to control PROC NETFLOW. Of particular interest are the options used to control the optimizer, and the way the solution is saved into output data sets or is displayed.

The Linear Programs section has additional subsections:
- "Mathematical Description of LP"
- "Interior Point Algorithmic Details," a brief theory of the algorithm containing information about the options that can be specified to control the interior point algorithm.
- "Syntax" subsection, which is a subset of the syntax when the simplex algorithm is used. Gone are the statements and lists relevant only when the simplex algorithm is used.

\section*{Network Models: Interior Point Algorithm}

The data required by PROC NETFLOW for a network problem is identical whether the simplex algorithm or the interior point algorithm is used as the optimizer. By default, the simplex algorithm is used for problems with a network component. To use the interior point algorithm, all you need to do is specify the INTPOINT option in the PROC NETFLOW statement. You can optionally specify some options that control the interior point algorithm, of which there are only a few. The interior point algorithm is remarkably robust when reasonable choices are made during the design and implementation, so it does not need to be tuned to the same extent as the simplex algorithm.

\section*{When to Use INTPOINT: Network Models: Interior Point Algorithm}

PROC NETFLOW uses the primal simplex network algorithm and the primal partitioning algorithm to solve constrained network problems. These algorithms are fast, since they take advantage of algebraic properties of the network component of the problem.

If the network component of the model is large compared to the side constraint component, PROC NETFLOW's optimizer can store what would otherwise be a large matrix as a spanning tree computer data structure. Computations involving the spanning tree data structure can be performed much faster than those using matrices. Only the nonnetwork part of the problem, hopefully quite small, needs to be manipulated by PROC NETFLOW as matrices.

In contrast, LP optimizers must contend with matrices that can be large for large problems. Arithmetic operations on matrices often accumulate rounding errors that cause difficulties for the algorithm. So in addition to the performance improvements, network optimization is generally more numerically stable than LP optimization.

The nodal flow conservation constraints do not need to be specified in the network model. They are implied by the network structure. However, flow conservation constraints do make up the data for the equivalent LP model. If you have an LP that is
small after the flow conservation constraints are removed, that problem is a definite candidate for solution by PROC NETFLOW's specialized simplex method.

However, some constrained network problems are solved more quickly by the interior point algorithm than the network optimizer in PROC NETFLOW. Usually, they have a large number of side constraints or nonarc variables. These models are more like LPs than network problems. The network component of the problem is so small that PROC NETFLOW's network simplex method cannot recoup the effort to exploit that component rather than treat the whole problem as an LP. If this is the case, it is worthwhile to get PROC NETFLOW to convert a constrained network problem to the equivalent LP and use its interior point algorithm. This conversion must be done before any optimization has been performed (specify the INTPOINT option in the PROC NETFLOW statement).

Even though some network problems are better solved by converting them to an LP, the input data and the output solution are more conveniently maintained as networks. You retain the advantages of casting problems as networks: ease of problem generation and expansion when more detail is required. The model and optimal solutions are easy to understand, as a network can be drawn.

\section*{Getting Started: Network Models: Interior Point Algorithm}

To solve network programming problems with side constraints using PROC NETFLOW, you save a representation of the network and the side constraints in three SAS data sets. These data sets are then passed to PROC NETFLOW for solution. There are various forms that a problem's data can take. You can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand associated with each. These are the elements in the column vector \(b\) in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but there can be data related to nonarc variables in the ARCDATA= data set as well. If there are no arcs, this is a linear programming problem.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed). Each observation can be used to identify an arc in the network and, optionally, the cost per flow unit across the arc, the arc's lower flow bound, capacity, and name. These data are associated with the matrix \(F\) and the vectors \(c, l\), and \(u\) in problem (NPSC).

Note: Although \(F\) is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc definitions. Do not explicitly specify these flow conservation constraints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including objective function coefficients, lower and upper value bounds, and names. These data are the elements of the vectors \(d, m\), and \(v\) in problem (NPSC). Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements of the matrices \(H\) and \(Q\) and the vector \(r\). Constraint types are also specified in the CONDATA= data set. You can include in this data set upper bound values or capacities, lower flow or value bounds, and costs or objective function coefficients. It is possible to give all information about some or all nonarc variables in the CONDATA= data set.

An arc or nonarc variable is identified in this data set by its name. If you specify an arc's name in the ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that arc. Each arc also has a default name that is the name of the tail and head node of the arc concatenated together and separated by an underscore character; tail_head, for example.

If you use the dense side constraint input format and want to use the default arc names, these arc names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (described later as well) and want to use the default arc names, these arc names are values of the COLUMN list SAS variable of the CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two stages. In the preliminary (zeroth) stage, the data are read from the NODEDATA= data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is performed. The model is converted into an equivalent linear program.

In the next stage, the linear program is preprocessed. This is optional but highly recommended. Preprocessing analyzes the model and tries to determine before optimization whether variables can be "fixed" to their optimal values. Knowing that, the model can be modified and these variables dropped out. It can be determined that some constraints are redundant. Sometimes, preprocessing succeeds in reducing the size of the problem, thereby making the subsequent optimization easier and faster.

The optimal solution to the linear program is then found. The linear program is converted back to the original constrained network problem, and the optimum for this is derived from the optimum of the equivalent linear program. If the problem was preprocessed, the model is now post-processed, where fixed variables are reintroduced. The solution can be saved in the CONOUT= data set. This data set is also named in the PROC NETFLOW, RESET, and SAVE statements.

The interior point algorithm cannot efficiently be warm started, so options such as FUTURE1 and FUTURE2 options are irrelevant.

\section*{Introductory Example: Network Models: Interior Point Algorithm}

Consider the following transshipment problem for an oil company in the "Introductory Example" section on page 329. Recall that crude oil is shipped to refineries where it is processed into gasoline and diesel fuel. The gasoline and diesel fuel are then distributed to service stations. At each stage there are shipping,
processing, and distribution costs. Also, there are lower flow bounds and capacities. In addition, there are side constraints to model crude mix stipulations, and model the limitations on the amount of Middle Eastern crude that can be processed by each refinery and the conversion proportions of crude to gasoline and diesel fuel. The network diagram is reproduced in Figure 5.16.


Figure 5.16. Oil Industry Example

To solve this problem with PROC NETFLOW, a representation of the model is saved in three SAS data sets that are identical to the data sets supplied to PROC NETFLOW when the simplex algorithm was used.

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints, invoke PROC NETFLOW as follows:
```

proc netflow
intpoint /* <<<--- Interior Point used */
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

```

The following messages, which appear on the SAS log, summarize the model as read by PROC NETFLOW and note the progress toward a solution:
```

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent Linear
Programming problem solved by the Interior Point
algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: Number of variables= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 5.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 11 constraints from the
problem.
NOTE: The preprocessor eliminated 25 constraint coefficients
from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the
problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to the
problem to handle unrestricted variables, variables that
are split, and constraint slack or surplus variables.
NOTE: There are 13 nonzero elements in A * A transpose.
NOTE: Of the }7\mathrm{ rows and columns, 2 are sparse.
NOTE: There are 6 nonzero superdiagonal elements in the
sparse rows of the factored A * A transpose. This
includes fill-in.
NOTE: There are 2 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.
NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point
algorithm performed 7 iterations.
NOTE: Objective= 50875.01279.
NOTE: The data set WORK.SOLUTION has 18 observations and
10 variables.

```

The first set of messages provide statistics on the size of the equivalent linear programming problem. The number of variables may not equal the number of arcs if the problem has nonarc variables. This example has none. To convert a network to an equivalent LP problem, a flow conservation constraint must be created for each node (including an excess or bypass node, if required). This explains why the number of equality side constraints and the number of constraint coefficients change when the
interior point algorithm is used.
If the preprocessor was successful in decreasing the problem size, some messages will report how well it did. In this example, the model size was cut in half!

The following set of messages describe aspects of the interior point algorithm. Of particular interest are those concerned with the Cholesky factorization of \(A A^{T}\) where \(A\) is the coefficient matrix of the final LP. It is crucial to preorder the rows and columns of this matrix to prevent fill-in and reduce the number of row operations to undertake the factorization. See the "Interior Point Algorithmic Details" section on page 448 for more explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC NETFLOW saves the optimum in output SAS data sets you specify. For this example, the solution is saved in the SOLUTION data set. It can be displayed with PROC PRINT as
```

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_
supply _demand_ _flow_ __fcost_ ;
sum _fcost_;
title3 'Constrained Optimum';
run;

```


Figure 5.17. conout=solution
Notice that, in the solution data set (Figure 5.17), the optimal flow through each arc in the network is given in the variable named _FLOW_, and the cost of flow through each arc is given in the variable _FCOST_. As expected, the miminal total cost of
the solution found by the interior point algorithm is equal to miminal total cost of the solution found by the simplex algorithm. In this example, the solutions are the same (within several significant digits), but sometimes the solutions can be different.


Figure 5.18. Oil Industry Solution

\section*{Interactivity: Network Models: Interior Point Algorithm}

PROC NETFLOW can be used interactively. You begin by giving the PROC NETFLOW statement with INTPOINT specified, and you must specify the ARCDATA= data set. The CONDATA= data set must also be specified if the problem has side constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets that have special names (for example, a variable in the ARCDATA= data set named _TAIL that has tail nodes of arcs as values), it may not be necessary to have many or any variable lists.

So far, this is the same as when the simplex algorithm is used, except the INTPOINT option is specified in the PROC NETFLOW statement. The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be listed in any order. The QUIT statements can be used only once. The others can be used as many times as needed.

The CONOPT and PIVOT statements are not relevant to the interior point algorithm and should not be used.

Use the RESET or SAVE statement to change the name of the output data set. There is only one output data set, the CONOUT= data set. With the RESET statement, you can also indicate the reasons why optimization should stop (for example, you can indicate the maximum number of iterations that can be performed). PROC NETFLOW then has a chance to either execute the next statement, or, if the next statement is one that PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS session), do any allowed optimization and finish. If no new statement has been submitted, you are prompted for one. Some options of the RESET statement enable you to control aspects of the interior point algorithm. Specifying certain values for these options can reduce the time it takes to solve a problem. Note that any of the RESET options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has options that allow you to name the output data set; information about the current solution is put in this output data set. Use the SHOW statement if you want to examine the values of options of other statements. Information about the amount of optimization that has been done and the STATUS of the current solution can also be displayed using the SHOW statement.

The PRINT statement makes PROC NETFLOW display parts of the problem. The way the PRINT statements are specified are identical whether the interior point algorithm or the simplex algorithm is used, however there are minor differences in what is displayed for each arc, nonarc variable or constraint coefficient.

PRINT ARCS produces information on all arcs. PRINT SOME_ARCS limits this output to a subset of arcs. There are similar PRINT statements for nonarc variables and constraints:
```

PRINT NONARCS;
PRINT SOME_NONARCS;
PRINT CONSTRAINTS;
PRINT SOME_CONS;

```

PRINT CON_ARCS enables you to limit constraint information that is obtained to members of a set of arcs and that have nonzero constraint coefficients in a set of constraints. PRINT CON_NONARCS is the corresponding statement for nonarc variables.

For example, an interactive PROC NETFLOW run might look something like this:
```

proc netflow
intpoint /* use the Interior Point algorithm */
arcdata=data set
other options;
variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */
run; /* do the optimization */

```
```

print options; /* look at the optimal solution */
save options; /* keep optimal solution */

```

If you are interested only in finding the optimal solution, have used SAS variables that have special names in the input data sets, and want to use default settings for everything, then the following statement is all you need.
proc netflow intpoint arcdata= data set ;

\section*{Functional Summary: Network Models, Interior Point Algorithm}

The following table outlines the options available for the NETFLOW procedure when the interior point algorithm is being used, classified by function.

Table 5.7. Functional Summary, Network Models
\begin{tabular}{lll}
\hline Description & Statement & Option \\
\hline \begin{tabular}{l} 
Input Data Set Options: \\
arcs input data set \\
nodes input data set \\
constraint input data set
\end{tabular} & & \\
& PROC NETFLOW & ARCDATA= \\
Output Data Set Option: \\
constrained solution data set & PROC NETFLOW & NODEDATA= \\
PROC NETFLOW & CONDATA= \\
Data Set Read Options: & & \\
\begin{tabular}{l} 
CONDATA has sparse data format \\
default constraint type
\end{tabular} & PROC NETFLOW & CONOUT= \\
special COLUMN variable value & & \\
special COLUMN variable value & PROC NETFLOW & SPARSECONDATA \\
used to interpret arc and nonarc variable names & PROC NETFLOW & NAMECTRL= \\
no new nonarc variables & PROC NETFLOW & SAME_NONARC_DATA \\
no nonarc data in ARCDATA & PROC NETFLOW & ARCS_ONLY_ARCDATA \\
data for an arc found once in ARCDATA & PROC NETFLOW & ARC_SINGLE_OBS \\
data for a constraint found once in CONDATA & PROC NETFLOW & CON_SINGLE_OBS \\
data for a coefficient found once in CONDATA & PROC NETFLOW & NON_REPLIC= \\
data is grouped, exploited during data read & PROC NETFLOW & GROUPED= \\
Problem Size Specification Options: & & \\
\begin{tabular}{l} 
approximate number of nodes \\
approximate number of arcs
\end{tabular} & PROC NETFLOW & NNODES= \\
approximate number of nonarc variables & PROC NETFLOW & NARCS= \\
approximate number of coefficients & PROC NETFLOW & NNAS= \\
approximate number of constraints & PROC NETFLOW & NCOEFS=
\end{tabular}

\section*{Network Options:}
default arc cost
default arc capacity
\begin{tabular}{|c|c|c|}
\hline Description & Statement & Option \\
\hline default arc lower flow bound network's only supply node SOURCE's supply capability network's only demand node SINK's demand convey excess supply/demand through network find maximal flow between SOURCE and SINK cost of bypass arc for MAXFLOW problem find shortest path from SOURCE to SINK & PROC NETFLOW & DEFMINFLOW= SOURCE= SUPPLY= SINK= DEMAND= THRUNET MAXFLOW BYPASSDIVIDE= SHORTPATH \\
\hline Memory Control Options: issue memory usage messages to SAS log number of bytes to use for main memory proportion of memory for arrays maximum bytes for a single array & \begin{tabular}{l}
PROC NETFLOW \\
PROC NETFLOW \\
PROC NETFLOW \\
PROC NETFLOW
\end{tabular} & \begin{tabular}{l}
MEMREP \\
BYTES= \\
COREFACTOR= \\
MAXARRAYBYTES=
\end{tabular} \\
\hline \begin{tabular}{l}
Interior Point Algorithm Options: \\
use interior point algorithm \\
factorization method allowed amount of dual infeasibility allowed amount of primal infeasibility allowed total amount of dual infeasibility allowed total amount of primal infeasibility cut-off tolerance for Cholesky factorization density threshold for Cholesky processing step-length multiplier preprocessing type print optimization progress on SAS log write optimization time to SAS \(\log\)
\end{tabular} & PROC NETFLOW
RESET
RESET & \begin{tabular}{l}
INTPOINT \\
FACT_METHOD= \\
TOLDINF= \\
TOLPINF= \\
TOLTOTDINF= \\
TOLTOTPINF= \\
CHOLTINYTOL= \\
DENSETHR= \\
PDSTEPMULT= \\
PRSLTYPE= \\
PRINTLEVEL2= \\
OPTIM_TIMER
\end{tabular} \\
\hline \begin{tabular}{l}
Interior Point Stopping Criteria Options: \\
maximum number of interior point iterations primal-dual (duality) gap tolerance stop because of complementarity stop because of duality gap stop because of infeas \(_{b}\) stop because of infeas \(_{c}\) stop because of infeas \(_{d}\) stop because of complementarity stop because of duality gap stop because of infeas \(_{b}\) stop because of infeas \(_{c}\) stop because of infeas \(_{d}\) stop because of complementarity stop because of duality gap
\end{tabular} & \[
\begin{aligned}
& \text { RESET } \\
& \text { RESET }
\end{aligned}
\] & MAXITERB= PDGAPTOL= STOP_C= STOP_DG= STOP_IB= STOP_IC= STOP_ID= AND_STOP_C= AND_STOP_DG= AND_STOP_IB= AND_STOP_IC= AND_STOP_ID= KEEPGOING_C= KEEPGOING_DG= \\
\hline
\end{tabular}

\section*{Description \\ Statement Option}
stop because of infeas \(_{b}\) stop because of infeas \(_{c}\) stop because of infeas \(_{d}\)
stop because of complementarity
stop because of duality gap
stop because of infeas \(_{b}\)
stop because of infeas \(_{c}\)
stop because of infeas \(_{d}\)

\section*{PRINT Statement Options:}
display everything
display arc information
display nonarc variable information
display variable information
display constraint information
display information for some arcs
display information for some nonarc variables
display information for some variables
display information for some constraints
display information for some constraints associated with some arcs
display information for some constraints associated with some nonarc variables
display information for some constraints associated with some variables

\section*{PRINT Statement Qualifiers:}
produce a short report
produce a long report
display arcs/variables with zero flow/value
display arcs/variables with nonzero flow/value

\section*{SHOW Statement Options:}
show problem, optimization status
show network model parameters
show data sets that have been or will be created

\section*{Miscellaneous Options:}
infinity value
scale constraint row, nonarc variable column coefficients, or both
maximization instead of minimization

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

PRINT

PRINT

PRINT
\begin{tabular}{ll} 
PRINT & / SHORT \\
PRINT & / LONG \\
PRINT & / ZERO \\
PRINT & / NONZERO
\end{tabular}
\begin{tabular}{ll} 
SHOW & STATUS \\
SHOW & NETSTMT \\
SHOW & DATASETS
\end{tabular}

PROC NETFLOW INFINITY= PROC NETFLOW SCALE=

PROC NETFLOW MAXIMIZE

\section*{Linear Programming Models: Interior Point Algorithm}

By default, the interior point algorithm is used for problems without a network component, that is, a linear programming problem. You do not need to specify the INTPOINT option in the PROC NETFLOW statement (although you will do no harm if you do).

Data for a linear programming problem resembles the data for side constraints and nonarc variables supplied to PROC NETFLOW when solving a constrained network problem. It is also very similar to the data required by the LP procedure.

\section*{Mathematical Description of LP}

If the network component of NPSC is removed, the result is the mathematical description of the linear programming problem. If an LP has \(g\) variables, and \(k\) constraints, then the formal statement of the problem solved by PROC NETFLOW is
\[
\begin{array}{ll}
\operatorname{minimize} & d^{T} z \\
\text { subject to } & Q z\{\geq,=, \leq\} r \\
& m \leq z \leq v
\end{array}
\]
where
- \(d\) is the \(g \times 1\) objective function coefficient vector
- \(z\) is the \(g \times 1\) variable value vector
- \(Q\) is the \(k \times g\) constraint coefficient matrix for variables, where \(Q_{i, j}\) is the coefficient of variable \(j\) in the \(i\) th constraint
- \(r\) is the \(k \times 1\) side constraint right-hand-side vector
- \(m\) is the \(g \times 1\) variable value lower bound vector
- \(v\) is the \(g \times 1\) variable value upper bound vector

\section*{Interior Point Algorithmic Details}

After preprocessing, the linear program to be solved is
\[
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
\]

This is the primal problem. The matrices \(d, z\), and \(Q\) of NPSC have been renamed \(c, x\), and \(A\) respectively, as these symbols are by convention used more, the problem to be solved is different from the original because of preprocessing, and there has been a change of primal variable to transform the LP into one whose variables have zero lower bounds. To simplify the algebra here, assume that variables have infinite bounds, and constraints are equalities. (Interior point algorithms do efficiently handle finite bounds, and it is easy to introduce primal slack variables to change inequalities into equalities.) The problem has \(n\) variables; \(i\) is a variable number, \(k\) is an iteration number, and if used as a subscript or superscript it denotes "of iteration \(k\) ".

There exists an equivalent problem, the dual problem, stated as
\[
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & A^{T} y+s=c \\
& s \geq 0
\end{array}
\]
where \(y\) are dual variables, and \(s\) are dual constraint slacks.
The interior point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT) conditions for optimality:
\[
\begin{aligned}
& A x=b \\
& A^{T} y+s=c \\
& x^{T} s=0 \\
& x \geq 0 \\
& s \geq 0
\end{aligned}
\]

These are the conditions for feasibility, with the complementarity condition \(x^{T} s=0\) added. Complementarity forces the optimal objectives of the primal and dual to be equal, \(c^{T} x_{o p t}=b^{T} y_{o p t}\), as
\[
\begin{aligned}
& 0=x_{o p t}^{T} s_{o p t}=s_{o p t}^{T} x_{o p t}=\left(c-A^{T} y_{o p t}\right)^{T} x_{o p t}= \\
& c^{T} x_{o p t}-y_{o p t}^{T}\left(A x_{o p t}\right)=c^{T} x_{o p t}-b^{T} y_{o p t}
\end{aligned}
\]

Before the optimum is reached, a solution \((x, y, s)\) may not satisfy the KKT conditions:
- Primal constraints may be violated, infeas \(_{c}=b-A x \neq 0\).
- Dual constraints may be violated, infeas \(_{d}=c-A^{T} y-s \neq 0\).
- Complementarity may not be satisfied, \(x^{T} s=c^{T} x-b^{T} y \neq 0\). This is called the duality gap.

The interior point algorithm works by using Newton's method to find a direction to move \(\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)\) from the current solution \(\left(x^{k}, y^{k}, s^{k}\right)\) toward a better solution:
\[
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
\]
where \(\alpha\) is the step length and is assigned a value as large as possible but \(\leq 1.0\) and not so large that an \(x_{i}^{k+1}\) or \(s_{i}^{k+1}\) is "too close" to zero. The direction in which to move is found using the following:
\[
\begin{aligned}
& A \Delta x^{k}=- \text { infeas }_{c} \\
& A^{T} \Delta y^{k}+\Delta s^{k}=- \text { infeas }_{d} \\
& S^{k} \Delta x^{k}+X^{k} \Delta s^{k}=-X^{k} S^{k} e
\end{aligned}
\]
where \(S=\operatorname{diag}(s), X=\operatorname{diag}(x)\), and \(e\) is a vector with all elements equal to 1 .
To greatly improve performance, the third equation is changed to
\[
S^{k} \Delta x^{k}+X^{k} \Delta s^{k}=-X^{k} S^{k} e+\sigma_{k} \mu_{k} e
\]
where \(\mu_{k}=1 / n X^{k} S^{k} e\), the average complementarity, and \(0 \leq \sigma_{k} \leq 1\).
The effect now is to find a direction in which to move to reduce infeasibilities and to reduce the complementarity toward zero, but if any \(x_{i}^{k} s_{i}^{k}\) is too close to zero, it is "nudged out" to \(\mu\), and any \(x_{i}^{k} s_{i}^{k}\) that is larger than \(\mu\) is "nudged into" \(\mu\). A \(\sigma_{k}\) close to or equal to 0.0 biases a direction toward the optimum, and a value for \(\sigma_{k}\) close to or equal to 1.0 "centers" the direction toward a point where all pairwise products \(x_{i}^{k} s_{i}^{k}=\mu\). Such points make up the central path in the interior. Although centering directions make little, if any, progress in reducing \(\mu\) and moving the solution closer to the optimum, substantial progress toward the optimum can usually be made in the next iteration.

The central path is crucial to why the interior point algorithm is so efficient. This path "guides" the algorithm to the optimum through the interior of feasible space. Without centering, the algorithm would find a series of solutions near each other close to the boundary of feasible space. Step lengths along the direction would be small and many more iterations would probably be required to reach the optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algorithm differ in the way \(\alpha\) and \(\sigma_{k}\) are chosen and the direction adjusted during each iteration. A wealth of information can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point algorithm. Assume the \(k\) th iteration is being performed, so the subscript and superscript \(k\) can be dropped from the algebra:
\[
\begin{aligned}
& A \Delta x=- \text { infeas }_{c} \\
& A^{T} \Delta y+\Delta s=- \text { infeas }_{d} \\
& S \Delta x+X \Delta s=-X S e+\sigma \mu e
\end{aligned}
\]

Rearranging the second equation,
\[
\Delta s=- \text { infeas }_{d}-A^{T} \Delta y
\]

Rearranging the third equation,
\[
\begin{aligned}
& \Delta s=X^{-1}(-S \Delta x-X S e+\sigma \mu e) \\
& \Delta s=-\Theta \Delta x-S e+X^{-1} \sigma \mu e
\end{aligned}
\]
where \(\Theta=S X^{-1}\).
Equating these two expressions for \(\Delta s\) and rearranging,
\[
\begin{aligned}
& -\Theta \Delta x-S e+X^{-1} \sigma \mu e=- \text { infeas }_{d}-A^{T} \Delta y \\
& -\Theta \Delta x=S e-X^{-1} \sigma \mu e-\text { infeas }_{d}-A^{T} \Delta y \\
& \Delta x=\Theta^{-1}\left(-S e+X^{-1} \sigma \mu e+\text { infeas }_{d}+A^{T} \Delta y\right) \\
& \Delta x=\rho+\Theta^{-1} A^{T} \Delta y
\end{aligned}
\]
where \(\rho=\Theta^{-1}\left(-S e+X^{-1} \sigma \mu e+\right.\) infeas \(\left._{d}\right)\).
Substituting into the first direction equation,
\[
\begin{aligned}
& A \Delta x=- \text { infeas }_{c} \\
& A\left(\rho+\Theta^{-1} A^{T} \Delta y\right)=- \text { infeas }_{c} \\
& A \Theta^{-1} A^{T} \Delta y=- \text { infeas }_{c}-A \rho \\
& \Delta y=\left(A \Theta^{-1} A^{T}\right)^{-1}\left(- \text { infeas }_{c}-A \rho\right)
\end{aligned}
\]
\(\Theta, \rho, \Delta y, \Delta x\) and \(\Delta s\) are calculated in that order. The hardest term is the factorization of the \(\left(A \Theta^{-1} A^{T}\right)\) matrix to determine \(\Delta y\). Fortunately, although the values of \(\left(A \Theta^{-1} A^{T}\right)\) are different for each iteration, the locations of the nonzeros in this matrix remain fixed; the nonzero locations are the same as those in the matrix \(\left(A A^{T}\right)\). This is due to \(\Theta^{-1}=X S^{-1}\) being a diagonal matrix, which has the effect of merely scaling the columns of \(\left(A A^{T}\right)\).
The fact that the nonzeros in \(A \Theta^{-1} A^{T}\) have a constant pattern is exploited by all interior point algorithms, and is a major reason for their excellent performance. Before iterations begin, \(A A^{T}\) is examined and its rows and columns are permuted so that during Cholesky Factorization, the number of fill-ins created is smaller. A list of arithmetic operations to perform the factorization is saved in concise computer data structures (working with memory locations rather than actual numerical values). This is called symbolic factorization. During iterations, when memory has been initialized with numerical values, the operations list is performed sequentially. Determining how the factorization should be performed again and again is unnecessary.

\section*{The Primal-Dual Predictor-Corrector Interior Point Algorithm}

The variant of the interior point algorithm implemented in PROC NETFLOW is a Primal-Dual Predictor-Corrector interior point algorithm. At first, Newton's method is used to find a direction to move ( \(\Delta x_{a f f}^{k}, \Delta y_{a f f}^{k}, \Delta s_{a f f}^{k}\) ), but calculated as if \(\mu\) is zero, that is, a step with no centering, known as an affine step:
\[
\begin{aligned}
& A \Delta x_{a f f}^{k}=- \text { infeas }_{c} \\
& A^{T} \Delta y_{a f f}^{k}+\Delta s_{a f f}^{k}=- \text { infeas }_{d} \\
& S^{k} \Delta x_{a f f}^{k}+X^{k} \Delta s_{a f f}^{k}=-X^{k} S^{k} e \\
& \left(x_{\text {aff }}^{k}, y_{a f f}^{k}, s_{a f f}^{k}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x_{a f f}^{k}, \Delta y_{\text {aff }}^{k}, \Delta s_{a f f}^{k}\right)
\end{aligned}
\]
where \(\alpha\) is the step length as before.
Complementarity \(x^{T} s\) is calculated at \(\left(x_{a f f}^{k}, y_{a f f}^{k}, s_{a f f}^{k}\right)\) and compared with the complementarity at the starting point \(\left(x^{k}, y^{k}, s^{k}\right)\), and the success of the affine step is gauged. If the affine step was successful in reducing the complementarity by a substantial amount, the need for centering is not great, and the value of \(\sigma_{k}\) in the following linear system is assigned a value close to zero. If, however, the affine step was unsuccessful, centering would be beneficial, and the value of \(\sigma_{k}\) in the following linear system is assigned a value closer to 1.0. The value of \(\sigma_{k}\) is therefore adaptively altered depending on the progress made toward the optimum.
A second linear system is solved to determine a centering vector \(\left(\Delta x_{c}^{k}, \Delta y_{c}^{k}, \Delta s_{c}^{k}\right)\) from \(\left(x_{a f f}^{k}, y_{a f f}^{k}, s_{a f f}^{k}\right)\) :
\[
\begin{aligned}
& A \Delta x_{c}^{k}=0 \\
& A^{T} \Delta y_{c}^{k}+\Delta s_{c}^{k}=0 \\
& S^{k} \Delta x_{c}^{k}+X^{k} \Delta s_{c}^{k}=-X^{k} S^{k} e \\
& S^{k} \Delta x^{k}+X^{k} \Delta s^{k}=-X_{a f f}^{k} S_{a f f}^{k} e+\sigma_{k} \mu_{k} e
\end{aligned}
\]

Then
\[
\begin{aligned}
& \left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)=\left(\Delta x_{a f f}^{k}, \Delta y_{a f f}^{k}, \Delta s_{a f f}^{k}\right)+\left(\Delta x_{c}^{k}, \Delta y_{c}^{k}, \Delta s_{c}^{k}\right) \\
& \left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
\end{aligned}
\]
where, as before, \(\alpha\) is the step length assigned a value as large as possible but not so large that an \(x_{i}^{k+1}\) or \(s_{i}^{k+1}\) is "too close" to zero.
Although the Predictor-Corrector variant entails solving two linear system instead of one, fewer iterations are usually required to reach the optimum. The additional overhead of calculating the second linear system is small, as the factorization of the \(\left(A \Theta^{-1} A^{T}\right)\) matrix has already been performed to solve the first linear system.

\section*{Stopping Criteria}

There are several reasons why PROC NETFLOW stops interior point optimization. Optimization stops when
- the number of iteration equals MAXITERB \(=m\)
- the relative gap (duality gap \(/\left(c^{T} x\right)\) ) between the primal and dual objectives is smaller than the value of the PDGAPTOL= option, and both the primal and dual problems are feasible. Duality gap is defined in the "Interior Point Algorithmic Details" section on page 448.

PROC NETFLOW may stop optimization when it detects that the rate at which the complementarity or duality gap is being reduced is too slow, that is, there are consecutive iterations when the complementarity or duality gap has stopped getting smaller and the infeasibilities, if nonzero, have also stalled. Sometimes, this indicates the problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed the usual stopping conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual stopping criteria are inappropriate. PROC NETFLOW might stop prematurely. If it were allowed to perform additional optimization, a better solution would be found. On other occasions, PROC NETFLOW might do too much work. A sufficiently good solution might be reached several iterations before PROC NETFLOW eventually stops.

You can see PROC NETFLOW's progress to the optimum by specifying PRINTLEVEL2=2. PROC NETFLOW will produce a table on the SAS log. A row of the table is generated during each iteration and consists of values of the affine step complementarity, the complementarity of the solution for the next iteration, the total bound infeasibility \(\sum_{i=1}^{n}\) infeas \(_{b i}\) (see the infeas \({ }_{b}\) array in the "Interior Point: Upper Bounds" section on page 456), the total constraint infeasibility \(\sum_{i=1}^{m}\) infeas \(_{c i}\) (see the infeas \(_{c}\) array in the "Interior Point Algorithmic Details" section on page 448), and the total dual infeasibility \(\sum_{i=1}^{n}\) infeas \(_{d i}\) (see the infeas \(_{d}\) array in the "Interior Point Algorithmic Details" section on page 448). As optimization progresses, the values in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parameters: the STOP_x and the KEEPGOING_x parameters. The STOP_x parameters (STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID) are used to test for some condition at the beginning of each iteration and if met, to stop immediately. The KEEPGOING_x parameters (KEEPGOING_C, KEEPGOING_DG, KEEPGOING_IB, KEEPGOING_IC, and KEEPGOING_ID) are used when PROC NETFLOW would ordinarily stop but does not if some conditions are not met.

For the sake of conciseness, a set of options will be referred to as the part of the option name they have in common followed by the suffix x. For example, STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID will collectively be referred to as STOP_x.

At the beginning of each iteration, PROC NETFLOW will test whether complementarity is \(\leq\) STOP_C (provided you have specified a STOP_C parameter) and if it is, PROC NETFLOW will stop. If the duality gap is \(\leq\) STOP_DG (provided you have specified a STOP_DG parameter), PROC NETFLOW will stop immediately. This is true as well for the other STOP_x parameters that are related to infeasibilities, STOP_IB, STOP_IC, and STOP_ID.

For example, if you want PROC NETFLOW to stop optimizing for the usual stopping conditions, plus the additional condition, complementarity \(\leq 100\) or duality gap \(\leq\) 0.001 , then use
```

proc netflow stop_c=100 stop_dg=0.001

```

If you want PROC NETFLOW to stop optimizing for the usual stopping conditions, plus the additional condition, complementarity \(\leq 1000\) and duality gap \(\leq 0.001\) and constraint infeasibility \(\leq 0.0001\), then use
```

proc netflow
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

```

Unlike the STOP_x parameters that cause PROC NETFLOW to stop when any one of them is satisfied, the corresponding AND_STOP_x parameters (AND_STOP_C, AND_STOP_DG, AND_STOP_IB, AND_STOP_IC, and AND_STOP_ID) cause PROC NETFLOW to stop only if all (more precisely, all that are specified) options are satisfied. For example, if PROC NETFLOW should stop when
- complementarity \(\leq 100\) or duality gap \(\leq 0.001\) or
- complementarity \(\leq 1000\) and duality gap \(\leq 0.001\) and constraint infeasibility \(\leq 0.000\)
then use
```

proc netflow
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

```

Just as the STOP_x parameters have AND_STOP_x partners, the KEEPGOING_x parameters have AND_KEEPGOING_x partners. The role of the KEEPGOING_x and AND_KEEPGOING_x parameters is to prevent optimization from stopping too early, even though a usual stopping criterion is met.

When PROC NETFLOW detects that it should stop for a usual stopping condition, it performs the following tests:
- It will test whether complementarity is > KEEPGOING_C (provided you have specified a KEEPGOING_C parameter), and if it is, PROC NETFLOW will perform more optimization.
- Otherwise, PROC NETFLOW will then test whether the primal-dual gap is \(>\) KEEPGOING_DG (provided you have specified a KEEPGOING_DG parameter), and if it is, PROC NETFLOW will perform more optimization.
- Otherwise, PROC NETFLOW will then test whether the total bound infeasibility \(\sum_{i=1}^{n}\) infeas \(_{b i}>\) KEEPGOING_IB (provided you have specified a KEEPGOING_IB parameter), and if it is, PROC NETFLOW will perform more optimization.
- Otherwise, PROC NETFLOW will then test whether the total constraint infeasibility \(\sum_{i=1}^{m}\) infeas \(_{c i}>\) KEEPGOING_IC (provided you have specified \(^{\text {I }}\) a KEEPGOING_IC parameter), and if it is, PROC NETFLOW will perform more optimization.
- Otherwise, PROC NETFLOW will then test whether the total dual infeasibility \(\sum_{i=1}^{n}\) infeas \(_{d i}>\) KEEPGOING_ID (provided you have specified a KEEPGOING_ID parameter), and if it is, PROC NETFLOW will perform more optimization.
- Otherwise it will test whether complementarity is > AND_KEEPGOING_C (provided you have specified an AND_KEEPGOING_C parameter), and the primal-dual gap is > AND_KEEPGOING_DG (provided you have specified an AND_KEEPGOING_DG parameter), and the total bound infeasibility \(\sum_{i=1}^{n}\) infeas \(_{b i}>\) AND_KEEPGOING_IB (provided you have specified an AND_KEEPGOING_IB parameter), and the total constraint infeasibility \(\sum_{i=1}^{m}\) infeas \(_{c i}>\) AND_KEEPGOING_IC (provided you have specified an AND_KEEPGOING_IC parameter) and the total dual infeasibility \(\sum_{i=1}^{n}\) infeas \(_{d i}>\) AND_KEEPGOING_ID (provided you have specified an AND_KEEPGOING_ID parameter), and if it is, PROC NETFLOW will perform more optimization.

If all these tests to decide whether more optimization should be performed are false, optimization is stopped.

For example,
```

proc netflow
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

```

At the beginning of each iteration, PROC NETFLOW will stop if
- complementarity \(\leq 1000\) or
- complementarity \(\leq 2000\) and duality gap \(\leq 0.01\) and the total bound, constraint, and dual infeasibilities are each \(\leq 1\)

When PROC NETFLOW determines it should stop because a usual stopping condition is met, it will stop only if
- complementarity \(\leq 1500\) or
- complementarity \(\leq 2500\) and duality gap \(\leq 0.05\) and the total bound, constraint, and dual infeasibilities are each \(\leq 1\)

\section*{Interior Point: Upper Bounds}

If the LP model had upper bounds ( \(0 \leq x \leq u\) where \(u\) is the upper bound vector), then the primal and dual problems, the duality gap, and the KKT conditions would have to be expanded.

The primal linear program to be solved is
\[
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& 0 \leq x \leq u
\end{array}
\]
where \(0 \leq x \leq u\) is split into \(x \geq 0\) and \(x \leq u\). Let \(z\) be primal slack so that \(x+z=u\), and associate dual variables \(w\) with these constraints. The interior point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT) conditions for optimality:
\[
\begin{aligned}
& A x=b \\
& x+z=u \\
& A^{T} y+s-w=c \\
& x^{T} s=0 \\
& z^{T} w=0 \\
& x, s, z, w \geq 0
\end{aligned}
\]

These are the conditions for feasibility, with the complementarity conditions \(x^{T} s=0\) and \(z^{T} w=0\) added. Complementarity forces the optimal objectives of the primal and dual to be equal, \(c^{T} x_{o p t}=b^{T} y_{o p t}-u^{T} w_{o p t}\), as
\[
\begin{aligned}
& 0=z_{o p t}^{T} w_{o p t}=\left(u-x_{o p t}\right)^{T} w_{o p t}=u^{T} w_{o p t}-x_{o p t}^{T} w_{o p t} \\
& 0=x_{o p t}^{T} s_{o p t}=s_{o p t}^{T} x_{o p t}=\left(c-A^{T} y_{o p t}+w_{o p t}\right)^{T} x_{o p t}= \\
& \left.c^{T} x_{o p t}-y_{o p t}^{T}\left(A x_{o p t}\right)+w_{o p t}\right)^{T} x_{o p t}=c^{T} x_{o p t}-b^{T} y_{o p t}+u^{T} w_{o p t}
\end{aligned}
\]

Before the optimum is reached, a solution \((x, y, s, z, w)\) might not satisfy the KKT conditions:
- Primal bound constraints may be violated, infeas \(_{b}=u-x-z \neq 0\).
- Primal constraints may be violated, infeas \(_{c}=b-A x \neq 0\).
- Dual constraints may be violated, infeas \(_{d}=c-A^{T} y-s+w \neq 0\).
- Complementarity conditions may not be satisfied, \(x^{T} s \neq 0\) and \(z^{T} w \neq 0\).

The calculations of the interior point algorithm can easily be derived in a fashion similar to calculations for when an LP has no upper bounds. See the paper by Lustig, Marsten, and Shanno (1992). An important point is that upper bounds can be handled by specializing the algorithm and not by generating the constraints \(x+z=u\) and adding these to the main primal constraints \(A x=b\).

\section*{Getting Started: Linear Programming Models: Interior Point Algorithm}

To solve linear programming problem using PROC NETFLOW, you save a representation of the variables and the constraints in one or two SAS data sets. These data sets are then passed to PROC NETFLOW for solution. There are various forms that a problem's data can take. You can use any one or a combination of several of these forms.

The ARCDATA= data set contains information about the variables of the problem. Although this data set is called ARCDATA, it contains data for no arcs. Instead, all data in this data set are related to variables.

The ARCDATA= data set can be used to specify information about variables, including objective function coefficients, lower and upper value bounds, and names. These data are the elements of the vectors \(d, m\), and \(v\) in problem (NPSC). Data for a variable can be given in more than one observation.

When the data for a constrained network problem is being provided, the ARCDATA= data set always contains information necessary for arcs, their tail and head nodes, and optionally the supply and demand information of these nodes. When the data for a linear programming problem is being provided, none of this information is present, as the model has no arcs. This is the way PROC NETFLOW decides which type of problem it is to solve.

PROC NETFLOW was originally designed to solve models with networks, so an ARCDATA= data set is always expected. If an ARCDATA= data set is not specified, by default the last data set created before PROC NETFLOW is invoked is assumed to be an ARCDATA= data set. However, these characteristics of PROC NETFLOW are not helpful when a linear programming problem is being solved and all data is provided in a single data set specified by the CONDATA= data set, and that data set is not the last data set created before PROC NETFLOW starts. In this case, you must specify that an ARCDATA= data set and a CONDATA= data set are both equal to the input data set. PROC NETFLOW then knows that a linear programming problem is to be solved, and the data reside in one data set.

The CONDATA= data set describes the constraints and their right-hand sides. These data are elements of the matrix \(Q\) and the vector \(r\).

Constraint types are also specified in the CONDATA= data set. You can include in this data set variable data such as upper bound values, lower value bounds, and objective function coefficients. It is possible to give all information about some or all variables in the CONDATA= data set.

A variable is identified in this data set by its name. If you specify a variable's name in the ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that variable.

If you use the dense constraint input format, these variable names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format, these variable names are values of the COLUMN list SAS variable of CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two stages. In the preliminary (zeroth) stage, the data are read from the ARCDATA= data set (if used) and the CONDATA= data set. Error checking is performed. In the next stage, the linear program is preprocessed, then the optimal optimal solution to the linear program is found. The solution is saved in the CONOUT= data set. This data set is also named in the PROC NETFLOW, RESET, and SAVE statements.

See the "Getting Started: Network Models: Interior Point Algorithm" section on page 438 for a fuller description of the stages of the interior point algorithm.

\section*{Introductory Example: Linear Programming Models: Interior Point Algorithm}

Consider the linear programming problem in the section "An Introductory Example" on page 192 in the chapter on the LP procedure.
```

data dcon1;
input _id_ \$17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type \$ _rhs_;
datalines;
profit
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 0 eq 0
naphtha_i_conv (100 .075 .135 0-1 0-1 0 0
lurating_o_conv rrarin
recipe_1
available 110 165 80 upperbd .
;

```

To find the minimum cost solution and to examine all or parts of the optimum, you use PRINT statements.
- print problem/short; outputs information for all variables and all constraint coefficients. See Figure 5.19 and Figure 5.20.
- print some_variables(j):/short; is information about a set of variables, (in this case, those with names that start with the character string preceding the colon). See Figure 5.21.
- print some_cons(recipe_1)/short; is information about a set of constraints (here, that set only has one member, the constraint called recipe_1). See Figure 5.22.
- print con_variables(_all_,brega)/short; lists the constraint information for a set of variables (here, that set only has one member, the variable called brega). See Figure 5.23.
- print con_variables(recipe:,n: jet_1)/short; coefficient information for those in a set of constraints belonging to a set of variables. See Figure 5.24.
```

proc netflow
condata=dcon1
conout=solutn1;
run;
print problem/short;
print some_variables(j:)/short;
print some_cons(recipe_1)/short;
print con_variables(_all_,brega)/short;
print con_variables(recipe:,n: jet_1)/short;

```

The following messages, which appear on the SAS log, summarize the model as read by PROC NETFLOW and note the progress toward a solution:
```

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 0.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 5 constraints from the
problem.
NOTE: The preprocessor eliminated 18 constraint
coefficients from the problem.
NOTE: After preprocessing, number of variables= 0.
NOTE: The preprocessor eliminated 8 variables from the
problem.
WARNING: Optimization is unnecessary as the problem no
longer has any variables and rows.
NOTE: Preprocessing could have caused that.
NOTE: Objective= 1544.
NOTE: The data set WORK.SOLUTN1 has }8\mathrm{ observations and
variables.

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{The NETFLOW Procedure} \\
\hline _N_ & _NAME_ & _OBJFN_ & _UPPERBD & _LOWERBD & _VALUE_ \\
\hline 1 & a_heavy & -165 & 165 & 0 & 0 \\
\hline 2 & a_light & -175 & 110 & 0 & 110 \\
\hline 3 & brega & -205 & 80 & 0 & 80 \\
\hline 4 & heatingo & 0 & 99999999 & 0 & 77.3 \\
\hline 5 & jet_1 & 300 & 99999999 & 0 & 60.65 \\
\hline 6 & jet_2 & 300 & 99999999 & 0 & 63.33 \\
\hline 7 & naphthai & 0 & 99999999 & 0 & 21.8 \\
\hline 8 & naphthal & 0 & 99999999 & 0 & 7.45 \\
\hline
\end{tabular}

Figure 5.19. print problem/short;
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & The NETFL & Procedure & & & \\
\hline _N_ & _id & _type_ & _rhs_ & _NAME & _OBJFN_ & _UPPERBD \\
\hline 1 & heating_o_conv & EQ & 0 & a_light & -175 & 110 \\
\hline 2 & heating_o_conv & EQ & 0 & a_heavy & -165 & 165 \\
\hline 3 & heating_o_conv & EQ & 0 & brega & -205 & 80 \\
\hline 4 & heating_o_conv & EQ & 0 & heatingo & 0 & 99999999 \\
\hline 5 & naphtha_i_conv & EQ & 0 & a_light & -175 & 110 \\
\hline 6 & naphtha_i_conv & EQ & 0 & a_heavy & -165 & 165 \\
\hline 7 & naphtha_i_conv & EQ & 0 & brega & -205 & 80 \\
\hline 8 & naphtha_i_conv & EQ & 0 & naphthai & 0 & 99999999 \\
\hline 9 & naphtha_l_conv & EQ & 0 & a_light & -175 & 110 \\
\hline 10 & naphtha_1_conv & EQ & 0 & a_heavy & -165 & 165 \\
\hline 11 & naphtha_1_conv & EQ & 0 & brega & -205 & 80 \\
\hline 12 & naphtha_1_conv & EQ & 0 & naphthal & 0 & 99999999 \\
\hline 13 & recipe_1 & EQ & 0 & naphthai & 0 & 99999999 \\
\hline 14 & recipe_1 & EQ & 0 & heatingo & 0 & 99999999 \\
\hline 15 & recipe_1 & EQ & 0 & jet_1 & 300 & 99999999 \\
\hline 16 & recipe_2 & EQ & 0 & naphthal & 0 & 99999999 \\
\hline 17 & recipe_2 & EQ & 0 & heatingo & 0 & 99999999 \\
\hline 18 & recipe_2 & EQ & 0 & jet_2 & 300 & 99999999 \\
\hline & N_ & LOWERBD & _VALUE & -COE & & \\
\hline & 1 & 0 & 110 & & & \\
\hline & 2 & 0 & 0 & & & \\
\hline & 3 & 0 & 80 & & & \\
\hline & 4 & 0 & 77.3 & & & \\
\hline & 5 & 0 & 110 & & & \\
\hline & 6 & 0 & 0 & 0.0 & & \\
\hline & 7 & 0 & 80 & 0.1 & & \\
\hline & 8 & 0 & 21.8 & & & \\
\hline & 9 & 0 & 110 & 0. & & \\
\hline & 10 & 0 & 0 & & & \\
\hline & 11 & 0 & 80 & 0.0 & & \\
\hline & 12 & 0 & 7.45 & & & \\
\hline & 13 & 0 & 21.8 & & & \\
\hline & 14 & 0 & 77.3 & & & \\
\hline & 15 & 0 & 60.65 & & & \\
\hline & 16 & 0 & 7.45 & & & \\
\hline & 17 & 0 & 77.3 & & & \\
\hline & 18 & 0 & 63.33 & & & \\
\hline
\end{tabular}

Figure 5.20. print problem/short; (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{The NETFLOW Procedure} \\
\hline \(\bigcirc \mathrm{N}\) & _NAME & _OBJFN_ & _UPPERBD & _LOWERBD & _VALUE_ \\
\hline 1 & jet_1 & 300 & 99999999 & 0 & 60.65 \\
\hline 2 & jet_2 & 300 & 99999999 & 0 & 63.33 \\
\hline
\end{tabular}

Figure 5.21. print some_variables(jj)/short;
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The NETFLOW Procedure} \\
\hline _N_ & _id & & _type_ & _rhs_ & _NAME_ & _OBJFN_ & _UPPERBD \\
\hline 1 & recipe_1 & & EQ & & naphthai & 0 & 99999999 \\
\hline 2 & recipe_1 & & EQ & & heatingo & 0 & 99999999 \\
\hline 3 & recipe_1 & & EQ & & jet_1 & 300 & 99999999 \\
\hline & & \(\bigcirc \mathrm{N}\) & _LOWERBD & _VALUE_ & -CO & & \\
\hline & & 1 & 0 & 21.8 & & & \\
\hline & & 2 & 0 & 77.3 & & & \\
\hline & & 3 & 0 & 60.65 & & & \\
\hline
\end{tabular}

Figure 5.22. print some_cons(recipe_1)/short;
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{The NETFLOW Procedure} \\
\hline _N_ & _id & _type_ & _rhs_ & _NAME & _OBJFN_ & _UPPERBD \\
\hline 1 & heating_o_conv & EQ & & brega & -205 & 80 \\
\hline 2 & naphtha_i_conv & EQ & & brega & -205 & 80 \\
\hline 3 & naphtha_l_conv & EQ & & brega & -205 & 80 \\
\hline & N & _LOWERBD & _VALUE & & & \\
\hline & 1 & 0 & 80 & & & \\
\hline & 2 & 0 & 80 & & & \\
\hline & 3 & 0 & 80 & & & \\
\hline
\end{tabular}

Figure 5.23. print con_variables(_all_,brega)/short;
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The NETFLOW Procedure} \\
\hline _N_ & _id_ & & _type_ & _rhs_ & _NAME & _OBJFN_ & _UPPERBD \\
\hline 1 & recipe_1 & & EQ & & naphthai & 0 & 99999999 \\
\hline 2 & recipe_1 & & EQ & 0 & jet_1 & 300 & 99999999 \\
\hline 3 & recipe_2 & & EQ & 0 & naphthal & 0 & 99999999 \\
\hline & & _N_ & _LOWERBD & _VALUE_ & _CO & & \\
\hline & & 1 & 0 & 21.8 & & & \\
\hline & & 2 & 0 & 60.65 & & & \\
\hline & & 3 & 0 & 7.45 & & & \\
\hline
\end{tabular}

Figure 5.24. print con_variables(recipe:,n: jet_1)/short;
Unlike PROC LP, which displays the solution and other information as output, PROC NETFLOW saves the optimum in output SAS data sets you specify. For this example, the solution is saved in the SOLUTN1 data set. It can be displayed with PROC PRINT as
```

proc print data=solutn1;
var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;
title3 'LP Optimum';
run;

```

Notice, in the CONOUT=SOLUTN1 (Figure 5.25), the optimal value through each variable in the linear program is given in the variable named _VALUE_, and the cost of value for each variable is given in the variable _FCOST_.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Obs & _NAME_ & _OBJFN_ & LP Optim UPPERBD & _LOWERBD & _VALUE_ & _FCOST_ \\
\hline 1 & a_heavy & -165 & 165 & 0 & 0.00 & 0 \\
\hline 2 & a_light & -175 & 110 & 0 & 110.00 & -19250 \\
\hline 3 & brega & -205 & 80 & 0 & 80.00 & -16400 \\
\hline 4 & heatingo & 0 & 99999999 & 0 & 77.30 & 0 \\
\hline 5 & jet_1 & 300 & 99999999 & 0 & 60.65 & 18195 \\
\hline 6 & jet_2 & 300 & 99999999 & 0 & 63.33 & 18999 \\
\hline 7 & naphthai & 0 & 99999999 & 0 & 21.80 & 0 \\
\hline 8 & naphthal & 0 & 99999999 & 0 & 7.45 & 0 \\
\hline & & & & & & 1544 \\
\hline
\end{tabular}

Figure 5.25. CONOUT=SOLUTN1

The same model can be specified in the sparse format as in the following scon2 dataset. This format enables you to omit the zero coefficients.
```

data scon2;
format _type_ \$8. _col_ \$8. _row_ \$16. ;
input _type_ \$ _col_ \$ _row_ \$ _coef_;
datalines;
max
a_light napha_i_conv . }10
a_light heating_oil_conv . 390
a_light available 110
a_heavy profit -165
a_heavy napha_l_conv . 030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv . }30
a_heavy available 165
brega profit -205
brega napha_l_conv . 045
brega napha_i_conv . }13
brega heating_oil_conv . 430
brega available 80
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 . }
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 . 8
jet_1 profit 300
jet_1 recipe_1 -1
jet_2 profit 300
jet_2 recipe_2 -1

```

To find the minimum cost solution, invoke PROC NETFLOW (note the SPARSECONDATA option which must be specified) as follows:
```

proc netflow
sparsecondata
condata=scon2
conout=solutn2;
run;

```

A data set that is used as an ARCDATA= data set can be initialized as follows:
```

data vars3;
input _name_ \$ profit available;
datalines;
a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

```

The following CONDATA= data set is the original dense format CONDATA= dcon 1 data set with the variable information removed. (You could have left some or all of that information in CONDATA as PROC NETFLOW "merges" data, but doing that and checking for consistency uses time.)
```

data dcon3;
input _id_ \$17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type \$ _rhs_;
datalines;
naphtha_l_conv .035 .030.045 -1 0 0 0 0 0 eq 0
naphtha_i_conv . 100 .075 .135 0-1 0 0 0 eq 0
heating_o_conv . 390 . 300.430 0 0 -1 0 0 0 eq 0
recipe_1 0 0 0 0 0 . 3 .7 7 -1 0
recipe_2 0 0 0 0 .2 0 0 . 8 0

```
;

It is important to note that it is now necessary to specify the MAXIMIZE option; otherwise, PROC NETFLOW will optimize to the minimum (which, incidently, has a total objective \(=-3539.25\) ). You must indicate that the SAS variable profit in the ARCDATA=vars3 data set has values that are objective function coefficients, by specifying the OBJFN statement. The UPPERBD must be specified as the SAS variable available that has as values upper bounds.
```

proc netflow
maximize /* ***** necessary ***** */
arcdata=vars3
condata=dcon3
conout=solutn3;
objfn profit;
upperbd available;
run;

```

The ARCDATA=vars 3 data set can become more concise by noting that the model variables heatingo, naphthai, and naphthal have zero objective function coefficients (the default) and default upper bounds, so those observations need not be present.
```

data vars4;
input _name_ \$ profit available;
datalines;
a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300
jet_2 300 .
;

```

The CONDATA=dcon 3 data set can become more concise by noting that all the constraints have the same type (eq) and zero (the default) rhs values. This model is a good candidate for using the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the same type as is the case here, but also when most constraints have the same type, or if you prefer to change the default type from \(\leq\) to \(=\) or \(\geq\). The essential constraint type data in CONDATA= data set is that which overrides the DEFCONTYPE= type you specified.
```

data dcon4;
input _id_ \$17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;
datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv . 100 .075 .135 0 -1 0 0 0
heating_o_conv . 390 . 300.430 0 0 -1 0 0
recipe_1
recipe_2
;
proc netflow
maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;
objfn profit;
upperbd available;
run;

```

Several different ways of using an ARCDATA= data set and a sparse format CONDATA= data set for this linear program follow. The following CONDATA= data set is the result of removing the profit and available data from the original sparse format CONDATA=scon2 data set.
```

data scon5;
format _type_ \$8. _col_ \$8. _row_ \$16. ;
input _type_ \$ _col_ \$ _row_ \$ _coef_;
datalines;
eq . napha_l_conv
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv . 035
. a_light napha_i_conv . }10
. a_light heating_oil_conv . }39
. a_heavy napha_l_conv . 030
. a_heavy napha_i_conv . 075
. a_heavy heating_oil_conv . }30
. brega napha_l_conv . 045
. brega napha_i_conv . }13
. brega heating_oil_conv . 430
. naphthal napha_l_conv -1
. naphthal recipe_2 . 2
. naphthai napha_i_conv -1
. naphthai recipe_1 . }
. heatingo heating_oil_conv -1
. heatingo recipe_1 . }
. heatingo recipe_2 . 8
. jet_1 recipe_1 -1
. jet_2 recipe_2 -1
;
proc netflow
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;
objfn profit;
upperbd available;
run;

```

The CONDATA=scon5 data set can become more concise by noting that all the constraints have the same type (eq) and zero (the default) rhs values. Use the DEFCONTYPE= option again. Once the first 5 observations of the CONDATA=scon5 data set are removed, the _type_ SAS variable has values that are missing in the remaining observations. Therefore, this SAS variable can be removed.
```

data scon6;
input _col_ \$ _row_\&\$16. _coef_;
datalines;
a_light napha_l_conv . 035
a_light napha_i_conv . }10
a_light heating_oil_conv . }39
a_heavy napha_l_conv . 030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv . }30
brega napha_l_conv .045
brega napha_i_conv . }13
brega heating_oil_conv . }43
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 . }
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 . }
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;
proc netflow
maximize
defcontype=eq
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon6
conout=solutn6;
objfn profit;
upperbd available;
run;

```

\section*{Interactivity: Linear Programming Models: Interior Point algorithm}

PROC NETFLOW can be used interactively. You begin by giving the PROC NETFLOW statement, and you must specify the CONDATA= data set. If necessary, specify the ARCDATA= data set.

The variable lists should be given next. If you have variables in the input data sets that have special names (for example, a variable in the ARCDATA= data set named _COST_ that has objective function coefficients as values), it may not be necessary to have many or any variable lists.

The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be listed in any order. The QUIT statements can be used only once. The others can be used as many times as needed.

The CONOPT and PIVOT are not relevant to the interior point algorithm and should not be used.

Use the RESET or SAVE statement to change the name of the output data set. There is only one output data set, the CONOUT= data set. With the RESET statement, you
can also indicate the reasons why optimization should stop, (for example, you can indicate the maximum number of iterations that can be performed). PROC NETFLOW then has a chance to either execute the next statement or, if the next statement is one that PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS session), do any allowed optimization and finish. If no new statement has been submitted, you are prompted for one. Some options of the RESET statement enable you to control aspects of the interior point algorithm. Specifying certain values for these options can reduce the time it takes to solve a problem. Note that any of the RESET options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has options that enable you to name the output data set; information about the current solution is saved in this output data set. Use the SHOW statement if you want to examine the values of options of other statements. Information about the amount of optimization that has been done and the STATUS of the current solution can also be displayed using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem. The ways the PRINT statements are specified are identical whether the interior point algorithm or the simplex algorithm is used; however, there are minor differences in what is displayed for each variable or constraint coefficient.

PRINT VARIABLES produces information on all arcs. PRINT SOME_VARIABLES limits this output to a subset of variables. There are similar PRINT statements for constraints:
```

PRINT CONSTRAINTS;
PRINT SOME_CONS;

```

PRINT CON_VARIABLES enables you to limit constraint information that is obtained to members of a set of variables that have nonzero constraint coefficients in a set of constraints.

For example, an interactive PROC NETFLOW run might look something like this:
```

proc netflow
condata=data set
other options;
variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */
run; /* do some optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

```

If you are interested only in finding the optimal solution, have used SAS variables that have special names in the input data sets, and want to use default setting for everything, then the following statement is all you need:
proc netflow condata= data set ;

\section*{Functional Summary: Linear Programming Models: Interior Point Algorithm}

The following table outlines the options available for the NETFLOW procedure when the interior point algorithm is being used to solve a linear programming problem, classified by function.

Table 5.8. Functional Summary, Linear Programming Models
\begin{tabular}{|c|c|c|}
\hline Description & Statement & Option \\
\hline Input Data Set Options: arcs input data set constraint input data set & PROC NETFLOW PROC NETFLOW & ARCDATA= CONDATA= \\
\hline Output Data Set Option: solution data set & PROC NETFLOW & CONOUT= \\
\hline \begin{tabular}{l}
Data Set Read Options: \\
CONDATA has sparse data format default constraint type special COLUMN variable value special COLUMN variable value data for a constraint found once in CONDATA data for a coefficient found once in CONDATA data is grouped, exploited during data read
\end{tabular} & PROC NETFLOW & SPARSECONDATA DEFCONTYPE= TYPEOBS= RHSOBS= CON_SINGLE_OBS NON_REPLIC= GROUPED= \\
\hline Problem Size Specification Options: approximate number of variables approximate number of coefficients approximate number of constraints & PROC NETFLOW PROC NETFLOW PROC NETFLOW & \begin{tabular}{l}
NNAS= \\
NCOEFS= \\
NCONS=
\end{tabular} \\
\hline \begin{tabular}{l}
Network Options: \\
default variable objective function coefficient default variable upper bound default variable lower bound
\end{tabular} & PROC NETFLOW PROC NETFLOW PROC NETFLOW & DEFCOST= DEFCAPACITY= DEFMINFLOW= \\
\hline \begin{tabular}{l}
Memory Control Options: \\
issue memory usage messages to SAS \(\log\) number of bytes to use for main memory proportion of memory for arrays maximum bytes for a single array
\end{tabular} & PROC NETFLOW PROC NETFLOW PROC NETFLOW PROC NETFLOW & \begin{tabular}{l}
MEMREP \\
BYTES= \\
COREFACTOR= \\
MAXARRAYBYTES=
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Statement Option

\section*{Interior Point Algorithm Options:}
use interior point algorithm
factorization method
allowed amount of dual infeasibility
allowed amount of primal infeasibility
allowed total amount of dual infeasibility
allowed total amount of primal infeasibility
cut-off tolerance for Cholesky factorization
density threshold for Cholesky processing
step-length multiplier
preprocessing type
print optimization progress on SAS log
write optimization time to SAS \(\log\)

\section*{Interior Point Stopping Criteria Options:}
maximum number of interior point iterations
primal-dual (duality) gap tolerance
stop because of complementarity
stop because of duality gap
stop because of infeas \(_{b}\)
stop because of infeas \({ }_{c}\)
stop because of infeas \(_{d}\)
stop because of complementarity
stop because of duality gap
stop because of infeas \(_{b}\)
stop because of infeas \(_{c}\)
stop because of infeas \(_{d}\)
stop because of complementarity
stop because of duality gap
stop because of infeas \(_{b}\)
stop because of infeas \(_{c}\)
stop because of infeas \(_{d}\)
stop because of complementarity
stop because of duality gap
stop because of infeas \(_{b}\)
stop because of infeas \(_{c}\)
stop because of infeas \(_{d}\)

\section*{PRINT Statement Options:}
display everything
display variable information
display constraint information
display information for some variables
display information for some constraints

PROC NETFLOW
RESET

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET

PRINT
PRINT
PRINT
PRINT
PRINT

INTPOINT
FACT_METHOD=
TOLDINF=
TOLPINF=
TOLTOTDINF=
TOLTOTPINF=
CHOLTINYTOL=
DENSETHR=
PDSTEPMULT= PRSLTYPE=
PRINTLEVEL2=
OPTIM_TIMER

MAXITERB=
PDGAPTOL=
STOP_C=
STOP_DG=
STOP_IB=
STOP_IC=
STOP_ID=
AND_STOP_C=
AND_STOP_DG=
AND_STOP_IB=
AND_STOP_IC=
AND_STOP_ID=
KEEPGOING_C=
KEEPGOING_DG=
KEEPGOING_IB=
KEEPGOING_IC=
KEEPGOING_ID=
AND_KEEPGOING_C=
AND_KEEPGOING_DG=
AND_KEEPGOING_IB=
AND_KEEPGOING_IC=
AND_KEEPGOING_ID=

PROBLEM
VARIABLES
CONSTRAINTS
SOME_VARIABLES
SOME_CONS
\begin{tabular}{lll} 
Description & Statement & Option \\
\hline \begin{tabular}{l} 
display information for some constraints associ- \\
ated with some variables
\end{tabular} & PRINT & CON_VARIABLES \\
PRINT Statement Qualifiers: & & \\
\begin{tabular}{l} 
produce a short report \\
produce a long report \\
display arcs/variables with zero flow/value \\
display arcs/variables with nonzero flow/value
\end{tabular} & PRINT & PRINT
\end{tabular}

\section*{Examples}

The following examples illustrate some of the capabilities of PROC NETFLOW. These examples, together with the other SAS/OR examples, can be found in the SAS sample library.

\section*{Example 5.1. Shortest Path Problem}

Whole pineapples are served in a restaurant in London. To ensure freshness, the pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in London. The network diagram in Figure 5.26 outlines the different routes that the pineapples could take.

The cost to freight a pineapple is known for each arc. You can use PROC NETFLOW to determine what routes should be used to minimize total shipping cost. The shortest path is the least cost path that all pineapples should use. The SHORTPATH option indicates this type of network problem.


Figure 5.26. Pineapple Routes: Shortest Path Problem
The SINK= option value HEATHROW LONDON is not a valid SAS variable name so it must be enclosed in single quotes. The TAILNODE list variable is FFROM. Because the name of this variable is not _TAIL_ or _FROM_, the TAILNODE list must be specified in the PROC NETFLOW statement. The HEADNODE list must also be explicitly specified because the variable that belongs to this list does not have the name _HEAD_ or _TO_, but is TTO.
```

title 'Shortest Path Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
data aircost1;
input ffrom\&\$13. tto\&\$15. _cost_ ;
datalines;
Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
Atlanta Heathrow London }7
;
proc netflow
shortpath
sourcenode=Honolulu
sinknode='Heathrow London' /* Quotes for embedded blank */

```
```

 ARCDATA=aircost1
 arcout=spath;
 tail ffrom;
 head tto;
 run;
 proc print data=spath;
sum _fcost_;
run;

```

The length at optimality is written to the SAS \(\log\) as
```

NOTE: Number of nodes= 8 .
NOTE: Number of arcs= 13.
NOTE: Number of iterations performed (neglecting any
constraints)= 5 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Shortest path= 177 .
NOTE: The data set WORK.SPATH has 13 observations and 13
variables.

```

The output data set ARCOUT=SPATH in Output 5.1.1 shows that the best route for the pineapples is from Honolulu to Los Angeles to New York to Heathrow London.

Output 5.1.1. ARCOUT=SPATH
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multicolumn{7}{|c|}{Shortest Path Problem} \\
\hline & ffrom & tto & _cost_ & _CAPAC_ & _LO_ & _ _SUPPLY & _ _DEMAND_ \\
\hline 1 & San Francisco & Atlanta & 63 & 99999999 & 0 & . & . \\
\hline 2 & Los Angeles & Atlanta & 57 & 99999999 & 0 & . & . \\
\hline 3 & Chicago & Boston & 45 & 99999999 & 0 & . & . \\
\hline 4 & San Francisco & Boston & 71 & 99999999 & 0 & . & - \\
\hline 5 & Honolulu & Chicago & 105 & 99999999 & 0 & 1 & . \\
\hline 6 & Boston & Heathrow London & 88 & 99999999 & 0 & . & 1 \\
\hline 7 & New York & Heathrow London & 65 & 99999999 & 0 & . & 1 \\
\hline 8 & Atlanta & Heathrow London & 76 & 99999999 & 0 & . & 1 \\
\hline 9 & Honolulu & Los Angeles & 68 & 99999999 & 0 & 1 & . \\
\hline 10 & Chicago & New York & 56 & 99999999 & 0 & . & - \\
\hline 11 & San Francisco & New York & 48 & 99999999 & 0 & . & . \\
\hline 12 & Los Angeles & New York & 44 & 99999999 & 0 & - & . \\
\hline 13 & Honolulu & San Francisco & 75 & 99999999 & 0 & 1 & . \\
\hline Obs & _FLOW_ _FCOS & - _RCOST_ & _ANUMB & _TNUMB & \multicolumn{3}{|c|}{_STATUS} \\
\hline 1 & 0 & 013 & 9 & 3 & & LOWERBD NO & NONBASIC \\
\hline 2 & 0 & 0 & 10 & 4 & & KEY_ARC & BASIC \\
\hline 3 & 0 & 0 4 & 4 & 2 & & LOWERBD NO & NONBASIC \\
\hline 4 & 0 & 0 & 5 & 3 & & KEY_ARC & BASIC \\
\hline 5 & 0 & 0 & 1 & 1 & & KEY_ARC & BASIC \\
\hline 6 & 0 & 07 & 11 & 5 & & LOWERBD NO & NONBASIC \\
\hline 7 & 1 & 5 & 12 & 6 & & KEY_ARC & BASIC \\
\hline 8 & 0 & 024 & 13 & 7 & & LOWERBD NO & NONBASIC \\
\hline 9 & 1 & 8 & 3 & 1 & & KEY_ARC & BASIC \\
\hline 10 & 0 & 049 & 6 & 2 & & LOWERBD NO & NONBASIC \\
\hline 11 & 0 & 011 & 7 & 3 & & LOWERBD N & NONBASIC \\
\hline 12 & 1 & 4 & 8 & 4 & & KEY_ARC & BASIC \\
\hline \multirow[t]{2}{*}{13} & 0 & 0 & 2 & 1 & & KEY_ARC & BASIC \\
\hline & \multicolumn{2}{|c|}{177} & & & & & \\
\hline
\end{tabular}

\section*{Example 5.2. Minimum Cost Flow Problem}

You can continue to use the pineapple example in Example 5.1 by supposing that the airlines now stipulate that no more than 350 pineapples per week can be handled in any single leg of the journey. The restaurant uses 500 pineapples each week. How many pineapples should take each route between Hawaii and London?

You will probably have more minimum cost flow problems because they are more general than maximal flow and shortest path problems. A shortest path formulation is no longer valid because the sink node does not demand one flow unit.

All arcs have the same capacity of 350 pineapples. Because of this, the DEFCAPACITY = option can be specified in the PROC NETFLOW statement, rather than having a CAPACITY list variable in ARCDATA=aircost1. You can have a CAPACITY list variable, but the value of this variable would be 350 in all observations, so using the DEFCAPACITY= option is more convenient. You would have to use the CAPACITY list variable if arcs had differing capacities. You can use both the DEFCAPACITY= option and a CAPACITY list variable.

There is only one supply node and one demand node. These can be named in the SOURCE \(=\) and SINK \(=\) options. DEMAND \(=500\) is specified for the restaurant demand. There is no need to specify SUPPLY=500, as this is assumed.
```

title 'Minimum Cost Flow Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
proc netflow
defcapacity=350
sourcenode=' Honolulu'
sinknode='Heathrow London' /* Quotes for embedded blank */
demand=500
arcdata=aircost1
arcout=arcout1
nodeout=nodeout1;
tail ffrom;
head tto;
set future1;
proc print data=arcout1; sum _fcost_;
proc print data=nodeout1;
run;

```

The following notes appear on the SAS log:
```

NOTE: SOURCENODE was assigned supply of the total
network demand= 500 .
NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500, total demand= 500 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any
constraints)= 6 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93750 .
NOTE: The data set WORK.ARCOUT1 has 13 observations and
13 variables.
NOTE: The data set WORK.NODEOUT1 has 9 observations and
10 variables.

```


Figure 5.27. Pineapple Routes: Minimum Cost Flow Solution
The routes and numbers of pineapples in each arc can be seen in the output data set ARCOUT=arcout1 in Output 5.2.1. NODEOUT=NODEOUT1 is shown in Output 5.2.2.

Output 5.2.1. ARCOUT=ARCOUT1


Output 5.2.2. NODEOUT=NODEOUT1
Minimum Cost Flow Problem
How to get Hawaiian Pineapples to a London Restaurant
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \(\bar{S}\) & & - & & & - & - & & \\
\hline & - & U & - & N & - & - & S & A & - & \\
\hline & N & P & D & N & P & T & C & R & F & - \\
\hline & 0 & D & U & U & R & R & E & C & L & F \\
\hline 0 & D & E & A & M & E & A & S & I & 0 & B \\
\hline b & E & M & L & B & D & V & S & D & W & Q \\
\hline s & - & - & - & - & - & - & - & - & - & - \\
\hline 1 & ROOT & 0 & 0 & 9 & 0 & 1 & 0 & -1 & 81 & -14 \\
\hline 2 & Atlanta & . & -136 & 7 & 4 & 8 & 2 & 10 & 150 & 9 \\
\hline 3 & Boston & . & -146 & 5 & 3 & 9 & 1 & 5 & 0 & 4 \\
\hline 4 & Chicago & & -105 & 2 & 1 & 3 & 1 & 1 & 0 & 1 \\
\hline 5 & Heathrow London & -500 & -212 & 8 & 7 & 5 & 1 & 13 & 150 & 11 \\
\hline 6 & Honolulu & 500 & 0 & 1 & 9 & 2 & 8 & -14 & 0 & -1 \\
\hline 7 & Los Angeles & & -79 & 4 & 6 & 7 & 3 & -8 & 200 & 3 \\
\hline 8 & New York & & -123 & 6 & 3 & 4 & 4 & 7 & 150 & 6 \\
\hline 9 & San Francisco & & -75 & 3 & 1 & 6 & 6 & 2 & 150 & 2 \\
\hline
\end{tabular}

\section*{Example 5.3. Using a Warm Start}

Suppose that the airlines state that the freight cost per pineapple in flights that leave Chicago has been reduced by 30 . How many pineapples should take each route between Hawaii and London? This example illustrates how PROC NETFLOW uses a warm start.

In Example 5.2, the RESET statement of PROC NETFLOW is used to specify FUTURE1. A NODEOUT = data set is also specified. The warm start information is saved in the arcout1 and nodeout1 data sets.

In the following DATA step, the costs, reduced costs, and flows in the arcout1 data set are saved in variables called oldcost, oldflow, and oldfc. These variables form an implicit ID list in the following PROC NETFLOW run and will appear in ARCOUT=arcout2. Thus, it is easy to compare the previous optimum and the new optimum.
```

title 'Minimum Cost Flow Problem - Warm Start';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
data aircost2;
set arcout1;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if ffrom='Chicago' then _cost_=_cost_-30;
proc netflow
warm
arcdata=aircost2
nodedata=nodeout1
arcout=arcout2;
tail ffrom;
head tto;
proc print data=arcout2;
var ffrom tto _cost_ oldcost _capac_ _lo_
flow oldflow _fcost_ oldfc;
sum _fcost_ oldfc;
run;

```

The following notes appear on the SAS log:
```

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of iterations performed (neglecting any
constraints)= 3 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93150 .
NOTE: The data set WORK.ARCOUT2 has 13 observations
and 16 variables.

```

ARCOUT=arcout2 is shown in Output 5.3.1.

Output 5.3.1. ARCOUT=ARCOUT2


\section*{Example 5.4. Production, Inventory, Distribution Problem}

Example 5.4 through Example 5.8 use data from a company that produces two sizes of televisions in order to illustrate variations in the use the NETFLOW procedure. The company makes televisions with a diagonal screen measurement of either 19 inches or 25 inches. These televisions are made between March and May at both of the company's two factories. Each factory has a limit on the total number of televisions of each screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they were made and sold later, or shipped to the other factory. Some sets can be used to fill backorders from the previous months. Each shop demands a number of each type of TV for the months of March through May. The following network in Figure 5.28 illustrates the model. Arc costs can be interpreted as production costs, storage costs, backorder penalty costs, inter-factory transportation costs, and sales profits. The arcs can have capacities and lower flow bounds.


Figure 5.28. TV problem
There are two similarly structured networks, one for the 19 -inch televisions and the other for the 25 -inch screen TVs. The minimum cost production, inventory, and distribution plan for both TV types can be determined in the same run of PROC NETFLOW. To ensure that node names are unambiguous, the names of nodes in the 19 -inch network have suffix _ 1 , and the node names in the 25 -inch network have suffix _2.

The FUTURE1 option is specified because further processing could be required. Information concerning an optimal solution is retained so it can be used to warm start later optimizations. Warm start information is mostly in variables named _NNUMB_, _PRED_, _TRAV_, _SCESS_, _ARCID_, and _FBQ_ and in observations for nodes named _EXCESS_ and _ROOT_, that are in the NODEOUT=NODE2 output data set. (PROC NETFLOW uses similar devices to store warm start information in the DUALOUT= data set when the FUTURE2 option is specified.) Variables _ANUMB_ and _TNUMB_ and observations for arcs directed from or toward a node called _EXCESS_ are present in ARCOUT=arc1. (PROC NETFLOW uses similar devices to store warm start information in the CONOUT = data set when the FUTURE2 option is specified.)

The following code shows how to save the problem data in data sets and solve the model with PROC NETFLOW.
```

title 'Minimum Cost Flow problem';
title2 'Production Planning/Inventory/Distribution';
data node0;
input _node_ \$ _supdem_ ;
datalines;
fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;
data arc0;
input _tail_ \$ _head_ \$ _cost_ _capac_ _lo_ diagonal factory
key_id \$10. mth_made \$ _name_\&\$17. ;
datalines;
fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March.
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March.
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .

```


The following notes appear on the SAS log:
```

NOTE: Number of nodes= 20.
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of iterations performed (neglecting any
constraints)= 74 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1281110.35 .
NOTE: The data set WORK.ARC1 has }68\mathrm{ observations and
18 variables.
NOTE: The data set WORK.NODE2 has 22 observations and
10 variables.

```

The solution is given in the NODEOUT=node2 and ARCOUT=arc1 data sets. In the ARCOUT= data set, shown in Output 5.4.1 and Output 5.4.2, the variables diagonal, factory, key_id, and mth_made form an implicit ID list. The diagonal variable has one of two values, 19 or 25 . factory also has one of two values, 1 or 2 , to denote the factory where either production or storage occurs, from where TVs are either sold to shops or satisfy backorders. PRODUCTION, STORAGE, SALES, and BACKORDER are values of the key_id variable.

Other values of this variable, F1_TO_2 and F2_TO_1, are used when flow through arcs represents the transportation of TVs between factories. The mth_made variable has values MARCH, APRIL, and MAY, the months when TVs that are modeled as flow through an arc were made (assuming that no televisions are stored for more than one month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC NETFLOW run to produce reports and perform analysis on particular parts of the company's operation. For example, reports can be generated for production numbers for each factory; optimal sales figures for each shop; and how many TVs should be stored, used to fill backorders, sent to the other factory, or any combination of these, for TVs with a particular screen, those produced in a particular month, or both.

Output 5.4.1. \(\quad\) ARCOUT \(=A R C 1\)
Minimum Cost Flow problem
Production Planning/Inventory/Distribution
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & _tail_ & _head_ & _cost_ & _capac_ & _10_ & _name_ & _SUPPLY & _DEMAND_ & _FLOW_ & _FCOST_ \\
\hline 1 & fact1_1 & EXCESS & 0.00 & 99999999 & 0 & & 1000 & 200 & 5 & 0.00 \\
\hline 2 & fact2_1 & EXCESS_ & 0.00 & 99999999 & 0 & & 850 & 200 & 45 & 0.00 \\
\hline 3 & fact1_2 & _EXCESS_ & 0.00 & 99999999 & 0 & & 1000 & 200 & 10 & 0.00 \\
\hline 4 & fact2_2 & EXCESS_ & 0.00 & 99999999 & 0 & & 1500 & 200 & 140 & 0.00 \\
\hline 5 & fact1_1 & f1_apr_1 & 78.60 & 600 & 50 & prod f1 19 apl & 1000 & . & 600 & 47160.00 \\
\hline 6 & f1_mar_1 & f1_apr_1 & 15.00 & 50 & 0 & & . & . & 0 & 0.00 \\
\hline 7 & f1_may_1 & f1_apr_1 & 28.00 & 20 & 0 & back f1 19 may & . & . & 0 & 0.00 \\
\hline 8 & f2_apr_1 & f1_apr_1 & 11.00 & 40 & 0 & & & . & 0 & 0.00 \\
\hline 9 & fact1_2 & f1_apr_2 & 174.50 & 550 & 50 & prod f1 25 apl & 1000 & . & 550 & 95975.00 \\
\hline 10 & f1_mar_2 & f1_apr_2 & 20.00 & 40 & 0 & & . & . & 0 & 0.00 \\
\hline 11 & f1_may_2 & f1_apr_2 & 41.00 & 15 & 0 & back f1 25 may & . & . & 15 & 615.00 \\
\hline 12 & f2_apr_2 & f1_apr_2 & 21.00 & 25 & 0 & & & & 0 & 0.00 \\
\hline 13 & fact1_1 & f1_mar_1 & 127.90 & 500 & 50 & prod f1 19 mar & 1000 & . & 345 & 44125.50 \\
\hline 14 & f1_apr_1 & f1_mar_1 & 28.00 & 20 & 0 & back f1 19 apl & . & . & 20 & 560.00 \\
\hline 15 & f2_mar_1 & f1_mar_1 & 10.00 & 40 & 0 & & & . & 40 & 400.00 \\
\hline 16 & fact1_2 & f1_mar_2 & 217.90 & 400 & 40 & prod f1 25 mar & 1000 & . & 400 & 87160.00 \\
\hline 17 & f1_apr_2 & f1_mar_2 & 32.00 & 30 & 0 & back f1 25 apl & . & . & 30 & 960.00 \\
\hline 18 & f2_mar_2 & f1_mar_2 & 20.00 & 25 & 0 & & \({ }^{\circ}\) & . & 25 & 500.00 \\
\hline 19 & fact1_1 & f1_may_1 & 95.10 & 400 & 50 & & 1000 & . & 50 & 4755.00 \\
\hline 20 & f1_apr_1 & f1_may_1 & 12.00 & 50 & 0 & & & . & 50 & 600.00 \\
\hline 21 & f2_may_1 & f1_may_1 & 13.00 & 40 & 0 & & . & . & 0 & 0.00 \\
\hline 22 & fact1_2 & f1_may_2 & 133.30 & 350 & 40 & & 1000 & . & 40 & 5332.00 \\
\hline 23 & f1_apr_2 & f1_may_2 & 18.00 & 40 & 0 & & . & . & 0 & 0.00 \\
\hline 24 & f2_may_2 & f1_may_2 & 43.00 & 25 & 0 & & . & . & 0 & 0.00 \\
\hline 25 & f1_apr_1 & f2_apr_1 & 11.00 & 99999999 & 0 & & & . & 30 & 330.00 \\
\hline 26 & fact2_1 & f2_apr_1 & 62.40 & 480 & 35 & prod f2 19 apl & 850 & . & 480 & 29952.00 \\
\hline 27 & f2_mar_1 & f2_apr_1 & 18.00 & 30 & 0 & & & . & 0 & 0.00 \\
\hline 28 & f2_may_1 & f2_apr_1 & 25.00 & 15 & 0 & back f2 19 may & . & . & 0 & 0.00 \\
\hline 29 & f1_apr_2 & f2_apr_2 & 23.00 & 99999999 & 0 & & & . & 0 & 0.00 \\
\hline 30 & fact2_2 & f2_apr_2 & 196.70 & 680 & 35 & prod f2 25 apl & 1500 & . & 680 & 133756.00 \\
\hline 31 & f2_mar_2 & f2_apr_2 & 28.00 & 50 & 0 & & & . & 0 & 0.00 \\
\hline 32 & f2_may_2 & f2_apr_2 & 54.00 & 15 & 0 & back f2 25 may & . & . & 15 & 810.00 \\
\hline 33 & f1_mar_1 & f2_mar_1 & 11.00 & 99999999 & 0 & & & . & 0 & 0.00 \\
\hline 34 & fact2_1 & f2_mar_1 & 88.00 & 450 & 35 & prod f2 19 mar & 850 & . & 290 & 25520.00 \\
\hline 35 & f2_apr_1 & f2_mar_1 & 17.00 & 15 & 0 & back f2 19 apl & . & . & 0 & 0.00 \\
\hline 36 & f1_mar_2 & f2_mar_2 & 23.00 & 99999999 & 0 & & . & . & 0 & 0.00 \\
\hline 37 & fact2_2 & f2_mar_2 & 182.00 & 650 & 35 & prod f2 25 mar & 1500 & . & 645 & 117390.00 \\
\hline 38 & f2_apr_2 & f2_mar_2 & 31.00 & 15 & 0 & back f2 25 apl & . & . & 0 & 0.00 \\
\hline 39 & f1_may_1 & f2_may_1 & 16.00 & 99999999 & 0 & & . & . & 100 & 1600.00 \\
\hline 40 & fact2_1 & f2_may_1 & 133.80 & 250 & 35 & & 850 & . & 35 & 4683.00 \\
\hline 41 & f2_apr_1 & f2_may_1 & 20.00 & 30 & 0 & & . & . & 15 & 300.00 \\
\hline 42 & f1_may_2 & f2_may_2 & 26.00 & 99999999 & 0 & & \({ }^{\circ}\) & . & 0 & 0.00 \\
\hline 43 & fact2_2 & f2_may_2 & 201.40 & 550 & 35 & & 1500 & . & 35 & 7049.00 \\
\hline 44 & f2_apr_2 & f2_may_2 & 38.00 & 50 & 0 & & . & & 0 & 0.00 \\
\hline 45 & f1_mar_1 & shop1_1 & -327.65 & 250 & 0 & & & 900 & 155 & -50785.75 \\
\hline 46 & f1_apr_1 & shop1_1 & -300.00 & 250 & 0 & & . & 900 & 250 & -75000.00 \\
\hline 47 & f1_may_1 & shop1_1 & -285.00 & 250 & 0 & & . & 900 & 0 & 0.00 \\
\hline 48 & f2_mar_1 & shop1_1 & -297.40 & 250 & 0 & & . & 900 & 250 & -74350.00 \\
\hline 49 & f2_apr_1 & shop1_1 & -290.00 & 250 & 0 & & . & 900 & 245 & -71050.00 \\
\hline 50 & f2_may_1 & shop1_1 & -292.00 & 250 & 0 & & & 900 & 0 & 0.00 \\
\hline 51 & f1_mar_2 & shop1_2 & -559.76 & 99999999 & 0 & & . & 900 & 0 & 0.00 \\
\hline 52 & f1_apr_2 & shop1_2 & -524.28 & 99999999 & 0 & & . & 900 & 0 & 0.00 \\
\hline 53 & f1_may_2 & shop1_2 & -475.02 & 99999999 & 0 & & . & 900 & 25 & -11875.50 \\
\hline 54 & f2_mar_2 & shop1_2 & -567.83 & 500 & 0 & & . & 900 & 500 & -283915.00 \\
\hline 55 & f2_apr_2 & shop1_2 & -542.19 & 500 & 0 & & . & 900 & 375 & -203321.25 \\
\hline 56 & f2_may_2 & shop1_2 & -461.56 & 500 & 0 & & . & 900 & 0 & 0.00 \\
\hline 57 & f1_mar_1 & shop2_1 & -362.74 & 250 & 0 & & & 900 & 250 & -90685.00 \\
\hline 58 & f1_apr_1 & shop2_1 & -300.00 & 250 & 0 & & . & 900 & 250 & -75000.00 \\
\hline 59 & f1_may_1 & shop2_1 & -245.00 & 250 & 0 & & . & 900 & 0 & 0.00 \\
\hline 60 & f2_mar_1 & shop2_1 & -272.70 & 250 & 0 & & . & 900 & 0 & 0.00 \\
\hline 61 & f2_apr_1 & shop2_1 & -312.00 & 250 & 0 & & . & 900 & 250 & -78000.00 \\
\hline 62 & f2_may_1 & shop2_1 & -299.00 & 250 & 0 & & . & 900 & 150 & -44850.00 \\
\hline 63 & f1_mar_2 & shop2_2 & -623.89 & 99999999 & 0 & & . & 1450 & 455 & -283869.95 \\
\hline 64 & f1_apr_2 & shop2_2 & -549.68 & 99999999 & 0 & & & 1450 & 535 & -294078.80 \\
\hline 65 & f1_may_2 & shop2_2 & -460.00 & 99999999 & 0 & & . & 1450 & 0 & 0.00 \\
\hline 66 & f2_mar_2 & shop2_2 & -542.83 & 500 & 0 & & . & 1450 & 120 & -65139.60 \\
\hline 67 & f2_apr_2 & shop2_2 & -559.19 & 500 & 0 & & & 1450 & 320 & -178940.80 \\
\hline 68 & f2_may_2 & shop2_2 & -489.06 & 500 & 0 & & . & 1450 & 20 & -9781. 20 \\
\hline & & & & & & & & & & ========-== \\
\hline
\end{tabular}

Output 5.4.2. \(\quad\) ARCOUT=ARC1 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & _RCOST_ & _ANUMB_ & _TNUMB_ & \multicolumn{2}{|r|}{_StATUS_} & diagonal & factory & key_id & mth_made \\
\hline 1 & - & 65 & 1 & KEY_ARC & BASIC & . & . & & \\
\hline 2 & . & 66 & 10 & KEY_ARC & BASIC & . & . & & \\
\hline 3 & . & 67 & 11 & KEY_ARC & BASIC & . & . & & \\
\hline 4 & & 68 & 20 & KEY_ARC & BASIC & . & . & & \\
\hline 5 & -0.650 & 4 & 1 & UPPERBD & NONBASIC & 19 & 1 & production & April \\
\hline 6 & 63.650 & 5 & 2 & LOWERBD & NONBASIC & 19 & 1 & storage & March \\
\hline 7 & 43.000 & 6 & 4 & LOWERBD & NONBASIC & 19 & 1 & backorder & May \\
\hline 8 & 22.000 & 7 & 6 & LOWERBD & NONBASIC & 19 & . & f2_to_1 & April \\
\hline 9 & -14.350 & 36 & 11 & UPPERBD & NONBASIC & 25 & 1 & production & April \\
\hline 10 & 94.210 & 37 & 12 & LOWERBD & NONBASIC & 25 & 1 & storage & March \\
\hline 11 & -16.660 & 38 & 14 & UPPERBD & NONBASIC & 25 & 1 & backorder & May \\
\hline 12 & 30.510 & 39 & 16 & LOWERBD & NONBASIC & 25 & & f2_to_1 & April \\
\hline 13 & & 1 & 1 & KEY_ARC & BASIC & 19 & 1 & production & March \\
\hline 14 & -20.650 & 2 & 3 & UPPERBD & NONBASIC & 19 & 1 & backorder & April \\
\hline 15 & -29.900 & 3 & 5 & UPPERBD & NONBASIC & 19 & . & f2_to_1 & March \\
\hline 16 & -45.160 & 33 & 11 & UPPERBD & NONBASIC & 25 & 1 & production & March \\
\hline 17 & -42.210 & 34 & 13 & UPPERBD & NONBASIC & 25 & 1 & backorder & April \\
\hline 18 & -61.060 & 35 & 15 & UPPERBD & NONBASIC & 25 & . & f2_to_1 & March \\
\hline 19 & 0.850 & 8 & 1 & LOWERBD & NONBASIC & 19 & 1 & production & May \\
\hline 20 & -3.000 & 9 & 3 & UPPERBD & NONBASIC & 19 & 1 & storage & April \\
\hline 21 & 29.000 & 10 & 7 & LOWERBD & NONBASIC & 19 & . & f2_to_1 & May \\
\hline 22 & 2.110 & 40 & 11 & LOWERBD & NONBASIC & 25 & 1 & production & May \\
\hline 23 & 75.660 & 41 & 13 & LOWERBD & NONBASIC & 25 & 1 & storage & April \\
\hline 24 & 40.040 & 42 & 17 & LOWERBD & NONBASIC & 25 & . & f2_to_1 & May \\
\hline 25 & & 14 & 3 & KEY_ARC & BASIC & 19 & - & f1_to_2 & April \\
\hline 26 & -27.850 & 15 & 10 & UPPERBD & NONBASIC & 19 & 2 & production & April \\
\hline 27 & 15.750 & 16 & 5 & LOWERBD & NONBASIC & 19 & 2 & storage & March \\
\hline 28 & 45.000 & 17 & 7 & LOWERBD & NONBASIC & 19 & 2 & backorder & May \\
\hline 29 & 13.490 & 46 & 13 & LOWERBD & NONBASIC & 25 & . & f1_to_2 & April \\
\hline 30 & -1. 660 & 47 & 20 & UPPERBD & NONBASIC & 25 & 2 & production & April \\
\hline 31 & 11.640 & 48 & 15 & LOWERBD & NONBASIC & 25 & 2 & storage & March \\
\hline 32 & -16.130 & 49 & 17 & UPPERBD & NONBASIC & 25 & 2 & backorder & May \\
\hline 33 & 50.900 & 11 & 2 & LOWERBD & NONBASIC & 19 & . & f1_to_2 & March \\
\hline 34 & & 12 & 10 & KEY_ARC & BASIC & 19 & 2 & production & March \\
\hline 35 & 19.250 & 13 & 6 & LOWERBD & NONBASIC & 19 & 2 & backorder & April \\
\hline 36 & 104.060 & 43 & 12 & LOWERBD & NONBASIC & 25 & . & f1_to_2 & March \\
\hline 37 & . & 44 & 20 & KEY_ARC & BASIC & 25 & 2 & production & March \\
\hline 38 & 47.360 & 45 & 16 & LOWERBD & NONBASIC & 25 & 2 & backorder & April \\
\hline 39 & & 18 & 4 & KEY_ARC & BASIC & 19 & . & f1_to_2 & May \\
\hline 40 & 23.550 & 19 & 10 & LOWERBD & NONBASIC & 19 & 2 & production & May \\
\hline 41 & & 20 & 6 & KEY_ARC & BASIC & 19 & 2 & storage & April \\
\hline 42 & 28.960 & 50 & 14 & LOWERBD & NONBASIC & 25 & . & f1_to_2 & May \\
\hline 43 & 73.170 & 51 & 20 & LOWERBD & NONBASIC & 25 & 2 & production & May \\
\hline 44 & 108.130 & 52 & 16 & LOWERBD & NONBASIC & 25 & 2 & storage & April \\
\hline 45 & & 21 & 2 & KEY_ARC & BASIC & 19 & 1 & sales & March \\
\hline 46 & -21.000 & 22 & 3 & UPPERBD & NONBASIC & 19 & 1 & sales & April \\
\hline 47 & 9.000 & 23 & 4 & LOWERBD & NONBASIC & 19 & 1 & sales & May \\
\hline 48 & -9.650 & 24 & 5 & UPPERBD & NONBASIC & 19 & 2 & sales & March \\
\hline 49 & & 25 & 6 & KEY_ARC & BASIC & 19 & 2 & sales & April \\
\hline 50 & 18.000 & 26 & 7 & LOWERBD & NONBASIC & 19 & 2 & sales & May \\
\hline 51 & 47.130 & 53 & 12 & LOWERBD & NONBASIC & 25 & 1 & sales & March \\
\hline 52 & 8.400 & 54 & 13 & LOWERBD & NONBASIC & 25 & 1 & sales & April \\
\hline 53 & & 55 & 14 & KEY_ARC & BASIC & 25 & 1 & sales & May \\
\hline 54 & -42.000 & 56 & 15 & UPPERBD & NONBASIC & 25 & 2 & sales & March \\
\hline 55 & & 57 & 16 & KEY_ARC & BASIC & 25 & 2 & sales & April \\
\hline 56 & 10.500 & 58 & 17 & LOWERBD & NONBASIC & 25 & 2 & sales & May \\
\hline 57 & -46.090 & 27 & 2 & UPPERBD & NONBASIC & 19 & 1 & sales & March \\
\hline 58 & -32.000 & 28 & 3 & UPPERBD & NONBASIC & 19 & 1 & sales & April \\
\hline 59 & 38.000 & 29 & 4 & LOWERBD & NONBASIC & 19 & 1 & sales & May \\
\hline 60 & 4.050 & 30 & 5 & LOWERBD & NONBASIC & 19 & 2 & sales & March \\
\hline 61 & -33.000 & 31 & 6 & UPPERBD & NONBASIC & 19 & 2 & sales & April \\
\hline 62 & . & 32 & 7 & KEY_ARC & BASIC & 19 & 2 & sales & May \\
\hline 63 & . & 59 & 12 & KEY_ARC & BASIC & 25 & 1 & sales & March \\
\hline 64 & & 60 & 13 & KEY_ARC & BASIC & 25 & 1 & sales & April \\
\hline 65 & 32.020 & 61 & 14 & LOWERBD & NONBASIC & 25 & 1 & sales & May \\
\hline 66 & . & 62 & 15 & KEY_ARC & BASIC & 25 & 2 & sales & March \\
\hline 67 & . & 63 & 16 & KEY_ARC & BASIC & 25 & 2 & sales & April \\
\hline 68 & . & 64 & 17 & KEY_ARC & BASIC & 25 & 2 & sales & May \\
\hline
\end{tabular}

Output 5.4.3. NODEOUT=NODE2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Minimum Cost Flow problem Production Planning/Inventory/Distribution} \\
\hline & & \[
\bar{s}
\] & & - & & & - & - & & \\
\hline & - & u & - & N & - & - & S & A & - & \\
\hline & n & p & D & N & P & T & C & R & F & \\
\hline & \(\bigcirc\) & d & U & U & R & R & E & C & L & F \\
\hline 0 & d & e & A & M & E & A & S & I & 0 & B \\
\hline b & e & m & L & B & D & V & S & D & W & Q \\
\hline s & - & - & - & - & - & - & - & - & - & - \\
\hline 1 & _ROOT & 238 & 0.00 & 22 & 0 & 8 & 0 & 3 & 166 & -69 \\
\hline 2 & EXCESS & -200 & -100000198.75 & 21 & 1 & 11 & 13 & 65 & 5 & 65 \\
\hline 3 & f1_apr_1 & . & -100000278.00 & 3 & 6 & 7 & 1 & -14 & 30 & 4 \\
\hline 4 & f1_apr_2 & . & -100000387.60 & 13 & 19 & 17 & 1 & -60 & 535 & 36 \\
\hline 5 & f1_mar_1 & . & -100000326.65 & 2 & 8 & 1 & 15 & -21 & 155 & 1 \\
\hline 6 & f1_mar_2 & & -100000461.81 & 12 & 19 & 13 & 1 & -59 & 455 & 33 \\
\hline 7 & f1_may_1 & . & -100000293.00 & 4 & 7 & 2 & 1 & -18 & 100 & 8 \\
\hline 8 & f1_may_2 & . & -100000329.94 & 14 & 18 & 12 & 1 & -55 & 25 & 40 \\
\hline 9 & f2_apr_1 & . & -100000289.00 & 6 & 8 & 3 & 5 & -25 & 245 & 14 \\
\hline 10 & f2_apr_2 & - & -100000397.11 & 16 & 19 & 18 & 3 & -63 & 320 & 46 \\
\hline 11 & f2_mar_1 & & -100000286.75 & 5 & 10 & 22 & 1 & 12 & 255 & 11 \\
\hline 12 & f2_mar_2 & & -100000380.75 & 15 & 20 & 19 & 8 & 44 & 610 & 43 \\
\hline 13 & f2_may_1 & & -100000309.00 & 7 & 6 & 9 & 3 & 20 & 15 & 18 \\
\hline 14 & f2_may_2 & & -100000326.98 & 17 & 19 & 10 & 1 & -64 & 20 & 50 \\
\hline 15 & fact1_1 & 1000 & -100000198.75 & 1 & 2 & 21 & 14 & -1 & 295 & -1 \\
\hline 16 & fact1_2 & 1000 & -100000198.75 & 11 & 21 & 20 & 1 & -67 & 10 & -33 \\
\hline 17 & fact2_1 & 850 & -100000198.75 & 10 & 21 & 5 & 2 & -66 & 45 & -33 \\
\hline 18 & fact2_2 & 1500 & -100000198.75 & 20 & 21 & 15 & 9 & -68 & 140 & -65 \\
\hline 19 & shop1_1 & -900 & -99999999.00 & 8 & 22 & 6 & 21 & 0 & 0 & 21 \\
\hline 20 & shop1_2 & -900 & -99999854.92 & 18 & 16 & 14 & 2 & 57 & 375 & 53 \\
\hline 21 & shop2_1 & -900 & -100000010.00 & 9 & 7 & 4 & 1 & 32 & 150 & 27 \\
\hline 22 & shop2_2 & -1450 & -99999837.92 & 19 & 15 & 16 & 7 & 62 & 120 & 59 \\
\hline
\end{tabular}

\section*{Example 5.5. Using an Unconstrained Solution Warm Start}

This example examines the effect of changing some of the arc costs. The backorder penalty costs are increased by twenty percent. The sales profit of 25 -inch TVs sent to the shops in May is increased by thirty units. The backorder penalty costs of 25 -inch TVs manufactured in May for April consumption is decreased by thirty units. The production cost of 19 - and 25 -inch TVs made in May are decreased by five units and twenty units, respectively. How does the optimal solution of the network after these arc cost alterations compare with the optimum of the original network? If you want to use the warm start facilities of PROC NETFLOW to solve this undefined problem, specify the WARM option. Notice that the FUTURE1 option was specified in the last PROC NETFLOW run.

The following SAS statements produce the new NODEOUT= and ARCOUT= data sets.
```

title 'Minimum Cost Flow problem- Unconstrained Warm Start';
title2 'Production Planning/Inventory/Distribution';
data arc2;
set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id='backorder'
then _cost_=_cost_*1.2;
else if _tail_=' f2_may_2' then _cost_=_cost_-30;
if key_id='production' \& mth_made='May' then
if diagonal=19 then _cost_=_cost_-5;
else _cost_=_cost_-20;
proc netflow
warm future1
nodedata=node2
arcdata=arc2
nodeout=node3
arcout=arc3;
proc print data=arc3 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_
cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;
/* to get this variable order */
sum oldfc _fcost_;
proc print data=node3;
run;

```

The following notes appear on the SAS log:
```

NOTE: Number of nodes= 21.
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total
demand= 4350 .
NOTE: Number of iterations performed (neglecting any
constraints)= 8 .
NOTE: Of these, O were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: The data set WORK.ARC3 has }68\mathrm{ observations and
21 variables.
NOTE: The data set WORK.NODE3 has 22 observations and
10 variables.

```

The solution is displayed in Output 5.5.1 and Output 5.5.2. The associated NODEOUT data set is in Output 5.5.3.

Output 5.5.1. \(\quad\) ARCOUT=ARC3


Output 5.5.2. ARCOUT=ARC3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & oldcost & oldflow & oldfc & diagonal & factory & key_id & mth_made & _ ANUMB \({ }_{-}\) & _TNUMB_ \\
\hline 1 & 0.00 & 5 & 0.00 & . & . & & & 65 & 1 \\
\hline 2 & 0.00 & 45 & 0.00 & . & . & & & 66 & 10 \\
\hline 3 & 0.00 & 10 & 0.00 & . & . & & & 67 & 11 \\
\hline 4 & 0.00 & 140 & 0.00 & . & . & & & 68 & 20 \\
\hline 5 & 78.60 & 600 & 47160.00 & 19 & 1 & production & April & 4 & 1 \\
\hline 6 & 15.00 & 0 & 0.00 & 19 & 1 & storage & March & 5 & 2 \\
\hline 7 & 28.00 & 0 & 0.00 & 19 & 1 & backorder & May & 6 & 4 \\
\hline 8 & 11.00 & 0 & 0.00 & 19 & . & f2_to_1 & April & 7 & 6 \\
\hline 9 & 174.50 & 550 & 95975.00 & 25 & 1 & production & April & 36 & 11 \\
\hline 10 & 20.00 & 0 & 0.00 & 25 & 1 & storage & March & 37 & 12 \\
\hline 11 & 41.00 & 15 & 615.00 & 25 & 1 & backorder & May & 38 & 14 \\
\hline 12 & 21.00 & 0 & 0.00 & 25 & . & f2_to_1 & April & 39 & 16 \\
\hline 13 & 127.90 & 345 & 44125.50 & 19 & 1 & production & March & 1 & 1 \\
\hline 14 & 28.00 & 20 & 560.00 & 19 & 1 & backorder & April & 2 & 3 \\
\hline 15 & 10.00 & 40 & 400.00 & 19 & . & f2_to_1 & March & 3 & 5 \\
\hline 16 & 217.90 & 400 & 87160.00 & 25 & 1 & production & March & 33 & 11 \\
\hline 17 & 32.00 & 30 & 960.00 & 25 & 1 & backorder & April & 34 & 13 \\
\hline 18 & 20.00 & 25 & 500.00 & 25 & . & f2_to_1 & March & 35 & 15 \\
\hline 19 & 95.10 & 50 & 4755.00 & 19 & 1 & production & May & 8 & 1 \\
\hline 20 & 12.00 & 50 & 600.00 & 19 & 1 & storage & April & 9 & 3 \\
\hline 21 & 13.00 & 0 & 0.00 & 19 & . & f2_to_1 & May & 10 & 7 \\
\hline 22 & 133.30 & 40 & 5332.00 & 25 & 1 & production & May & 40 & 11 \\
\hline 23 & 18.00 & 0 & 0.00 & 25 & 1 & storage & April & 41 & 13 \\
\hline 24 & 43.00 & 0 & 0.00 & 25 & . & f2_to_1 & May & 42 & 17 \\
\hline 25 & 11.00 & 30 & 330.00 & 19 & . & f1_to_2 & April & 14 & 3 \\
\hline 26 & 62.40 & 480 & 29952.00 & 19 & 2 & production & April & 15 & 10 \\
\hline 27 & 18.00 & 0 & 0.00 & 19 & 2 & storage & March & 16 & 5 \\
\hline 28 & 25.00 & 0 & 0.00 & 19 & 2 & backorder & May & 17 & 7 \\
\hline 29 & 23.00 & 0 & 0.00 & 25 & . & f1_to_2 & April & 46 & 13 \\
\hline 30 & 196.70 & 680 & 133756.00 & 25 & 2 & production & April & 47 & 20 \\
\hline 31 & 28.00 & 0 & 0.00 & 25 & 2 & storage & March & 48 & 15 \\
\hline 32 & 54.00 & 15 & 810.00 & 25 & 2 & backorder & May & 49 & 17 \\
\hline 33 & 11.00 & 0 & 0.00 & 19 & . & f1_to_2 & March & 11 & 2 \\
\hline 34 & 88.00 & 290 & 25520.00 & 19 & 2 & production & March & 12 & 10 \\
\hline 35 & 17.00 & 0 & 0.00 & 19 & 2 & backorder & April & 13 & 6 \\
\hline 36 & 23.00 & 0 & 0.00 & 25 & . & f1_to_2 & March & 43 & 12 \\
\hline 37 & 182.00 & 645 & 117390.00 & 25 & 2 & production & March & 44 & 20 \\
\hline 38 & 31.00 & 0 & 0.00 & 25 & 2 & backorder & April & 45 & 16 \\
\hline 39 & 16.00 & 100 & 1600.00 & 19 & . & f1_to_2 & May & 18 & 4 \\
\hline 40 & 133.80 & 35 & 4683.00 & 19 & 2 & production & May & 19 & 10 \\
\hline 41 & 20.00 & 15 & 300.00 & 19 & 2 & storage & April & 20 & 6 \\
\hline 42 & 26.00 & 0 & 0.00 & 25 & . & f1_to_2 & May & 50 & 14 \\
\hline 43 & 201.40 & 35 & 7049.00 & 25 & 2 & production & May & 51 & 20 \\
\hline 44 & 38.00 & 0 & 0.00 & 25 & 2 & storage & April & 52 & 16 \\
\hline 45 & -327.65 & 155 & -50785.75 & 19 & 1 & sales & March & 21 & 2 \\
\hline 46 & -300.00 & 250 & -75000.00 & 19 & 1 & sales & April & 22 & 3 \\
\hline 47 & -285.00 & 0 & 0.00 & 19 & 1 & sales & May & 23 & 4 \\
\hline 48 & -297.40 & 250 & -74350.00 & 19 & 2 & sales & March & 24 & 5 \\
\hline 49 & -290.00 & 245 & -71050.00 & 19 & 2 & sales & April & 25 & 6 \\
\hline 50 & -292.00 & 0 & 0.00 & 19 & 2 & sales & May & 26 & 7 \\
\hline 51 & -559.76 & 0 & 0.00 & 25 & 1 & sales & March & 53 & 12 \\
\hline 52 & -524.28 & 0 & 0.00 & 25 & 1 & sales & April & 54 & 13 \\
\hline 53 & -475.02 & 25 & -11875.50 & 25 & 1 & sales & May & 55 & 14 \\
\hline 54 & -567.83 & 500 & -283915.00 & 25 & 2 & sales & March & 56 & 15 \\
\hline 55 & -542.19 & 375 & -203321.25 & 25 & 2 & sales & April & 57 & 16 \\
\hline 56 & -461.56 & 0 & 0.00 & 25 & 2 & sales & May & 58 & 17 \\
\hline 57 & -362.74 & 250 & -90685.00 & 19 & 1 & sales & March & 27 & 2 \\
\hline 58 & -300.00 & 250 & -75000.00 & 19 & 1 & sales & April & 28 & 3 \\
\hline 59 & -245.00 & 0 & 0.00 & 19 & 1 & sales & May & 29 & 4 \\
\hline 60 & -272.70 & 0 & 0.00 & 19 & 2 & sales & March & 30 & 5 \\
\hline 61 & -312.00 & 250 & -78000.00 & 19 & 2 & sales & April & 31 & 6 \\
\hline 62 & -299.00 & 150 & -44850.00 & 19 & 2 & sales & May & 32 & 7 \\
\hline 63 & -623.89 & 455 & -283869.95 & 25 & 1 & sales & March & 59 & 12 \\
\hline 64 & -549.68 & 535 & -294078.80 & 25 & 1 & sales & April & 60 & 13 \\
\hline 65 & -460.00 & 0 & 0.00 & 25 & 1 & sales & May & 61 & 14 \\
\hline 66 & -542.83 & 120 & -65139.60 & 25 & 2 & sales & March & 62 & 15 \\
\hline 67 & -559.19 & 320 & -178940.80 & 25 & 2 & sales & April & 63 & 16 \\
\hline 68 & -489.06 & 20 & \[
\begin{array}{r}
-9781.20 \\
========== \\
-1281110.35
\end{array}
\] & 25 & 2 & sales & May & 64 & 17 \\
\hline
\end{tabular}

Output 5.5.3. NODEOUT=NODE3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Minimum Cost Flow problem- Unconstrained Warm Start Production Planning/Inventory/Distribution} \\
\hline & & \(\bar{s}\) & & - & & & - & - & & \\
\hline & - & u & - & N & - & - & S & A & - & \\
\hline & n & p & D & N & P & T & C & R & F & \\
\hline & \(\bigcirc\) & d & U & U & R & R & E & C & L & F \\
\hline 0 & d & e & A & M & E & A & S & I & 0 & B \\
\hline b & e & m & L & B & D & V & S & D & W & Q \\
\hline s & - & - & - & - & - & - & - & - & - & - \\
\hline 1 & ROOT & 238 & 0.00 & 22 & 0 & 8 & 0 & 3 & 166 & -69 \\
\hline 2 & EXCESS_ & -200 & -100000198.75 & 21 & 1 & 20 & 13 & 65 & 5 & 65 \\
\hline 3 & f1_apr_1 & & -100000277.35 & 3 & 1 & 6 & 2 & 4 & 490 & 4 \\
\hline 4 & f1_apr_2 & & -100000387.60 & 13 & 19 & 11 & 2 & -60 & 235 & 36 \\
\hline 5 & f1_mar_1 & & -100000326.65 & 2 & 8 & 1 & 20 & -21 & 150 & 1 \\
\hline 6 & f1_mar_2 & & -100000461.81 & 12 & 19 & 13 & 1 & -59 & 455 & 33 \\
\hline 7 & f1_may_1 & & -100000288.85 & 4 & 1 & 7 & 3 & 8 & 65 & 8 \\
\hline 8 & f1_may_2 & & -100000330.98 & 14 & 17 & 10 & 1 & -50 & 335 & 40 \\
\hline 9 & f2_apr_1 & & -100000288.35 & 6 & 3 & 4 & 1 & 14 & 20 & 14 \\
\hline 10 & f2_apr_2 & & -100000397.11 & 16 & 19 & 18 & 2 & -63 & 280 & 46 \\
\hline 11 & f2_mar_1 & & -100000286.75 & 5 & 10 & 22 & 1 & 12 & 255 & 11 \\
\hline 12 & f2_mar_2 & & -100000380.75 & 15 & 20 & 19 & 9 & 44 & 600 & 43 \\
\hline 13 & f2_may_1 & & -100000304.85 & 7 & 4 & 9 & 2 & 18 & 115 & 18 \\
\hline 14 & f2_may_2 & & -100000356.98 & 17 & 19 & 14 & 2 & -64 & 370 & 50 \\
\hline 15 & fact1_1 & 1000 & -100000198.75 & 1 & 2 & 3 & 19 & -1 & 290 & -1 \\
\hline 16 & fact1_2 & 1000 & -100000213.10 & 11 & 13 & 17 & 1 & -36 & 200 & -33 \\
\hline 17 & fact2_1 & 850 & -100000198.75 & 10 & 21 & 5 & 2 & -66 & 45 & -33 \\
\hline 18 & fact2_2 & 1500 & -100000198.75 & 20 & 21 & 15 & 10 & -68 & 150 & -65 \\
\hline 19 & shop1_1 & -900 & -99999999.00 & 8 & 22 & 2 & 21 & 0 & 0 & 21 \\
\hline 20 & shop1_2 & -900 & -99999854.92 & 18 & 16 & 12 & 1 & 57 & 400 & 53 \\
\hline 21 & shop2_1 & -900 & -100000005.85 & 9 & 7 & 21 & 1 & 32 & 150 & 27 \\
\hline 22 & shop2_2 & -1450 & -99999837.92 & 19 & 15 & 16 & 8 & 62 & 110 & 59 \\
\hline
\end{tabular}

\section*{Example 5.6. Adding Side Constraints, Using a Warm Start}

The manufacturer of Gizmo chips, which are parts needed to make televisions, can supply only 2600 chips to factory 1 and 3750 chips to factory 2 in time for production in each of the months of March and April. However, Gizmo chips will not be in short supply in May. Three chips are required to make each 19 -inch TV while the 25 inch TVs require four chips each. To limit the production of televisions produced at factory 1 in March so that the TVs have the correct number of chips, a side constraint called FACT1 MAR GIZMO is used. The form of this constraint is
```

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

```
"prod f1 19 mar" is the name of the arc directed from the node fact1_1 toward node f1_mar_1 and, in the previous constraint, designates the flow assigned to this arc. The ARCDATA = and ARCOUT= data sets have arc names in a variable called _name_.

The other side constraints (shown below) are called FACT2 MAR GIZMO , FACT1 APL GIZMO, and FACT2 APL GIZMO.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & 3 & & d & £2 & 19 & m & mar & + & 4 & & prod & f2 & 25 & mar & \(=\) & 3750 \\
\hline & 3 & & pod & f1 & 19 & - & apl & + & 4 & * & prod & f1 & 25 & apl & <= & 2600 \\
\hline & 3 & & prod & f2 & 19 & & apl & + & 4 & & prod & f2 & 25 & apl & <= & 3750 \\
\hline
\end{tabular}

To maintain customer goodwill, the total number of backorders is not to exceed 50 sets. The side constraint TOTAL BACKORDER that models this restriction is:
```

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

```

The sparse CONDATA= data set format is used. All side constraints are less than or equal type. Because this is the default type value for the DEFCONTYPE= option, type information is not necessary in the following CONDATA=CON3. Also, DEFCONTYPE \(=<=\) does not have to be specified in the PROC NETFLOW statement that follows. Notice that the _column_ variable value CHIP/BO LIMIT indicates that an observation of the CON3 data set contains rhs information. Therefore, specify RHSOBS=‘CHIP/BO LIMIT'.
```

title 'Adding Side Constraints and Using a Warm Start';
title2 'Production Planning/Inventory/Distribution';
data con3;
input _column_ \&\$14. _row_ \&\$15. _coef_ ;
datalines;
prod f1 }19\mathrm{ mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO }375
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

```

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA= data sets in the following PROC NETFLOW run. The set used depends on which cost information the arcs are to have and whether a warm start is to be used.
```

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node2
ARCDATA=arc2 NODEDATA=node2
ARCDATA=arc3 NODEDATA=node3

```
\(\operatorname{arc} 0\), node 0 , arc1, and node2 were created in Example 5.4. The first two data sets are the original input data sets. arc1 and node2 were the ARCOUT= and NODEOUT = data sets of a PROC NETFLOW run with FUTURE1 specified. Now, if you use arc1 and node2 as the ARCDATA= data set and NODEDATA= data set in a PROC NETFLOW run, you can specify WARM, as these data sets contain additional information describing a warm start.

In Example 5.5, arc2 was created by modifying arc1 to reflect different arc costs. arc2 and node2 can also be used as the ARCDATA= and NODEDATA= data sets in a PROC NETFLOW run. Again, specify WARM, as these data sets contain additional information describing a warm start. This start, however, contains the optimal basis using the original costs.

If you are going to continue optimization using the changed arc costs, it is probably best to use arc3 and node3 as the ARCDATA= and NODEDATA= data sets. These data sets, created in Example 5.6 by PROC NETFLOW when the FUTURE1 option was specified, contain an optimal basis that can be used as a warm start.

PROC NETFLOW is used to find the changed cost network solution that obeys the chip limit and backorder side constraints. The FUTURE2 option is specified in case further processing is required. An explicit ID list has also been specified so that the variables oldcost, oldfc and oldflow do not appear in the subsequent output data sets.
```

proc netflow
nodedata=node3 arcdata=arc3 warm
condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
future2 dualout=dual4 conout=con4;
id diagonal factory key_id mth_made;
proc print data=con4;
sum _fcost_;
proc print data=dual4;
run;

```

The following messages appear on the SAS log:
```

NOTE: The following 3 variables in ARCDATA do not belong to
any SAS variable list. These will be ignored.
oldcost
oldfc
oldflow
NOTE: Number of nodes= 21.
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350.
NOTE: Number of iterations performed (neglecting any
constraints)= 1 .
NOTE: Of these, O were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint
coefficients= 16.
NOTE: Number of iterations, optimizing with constraints= 10 .
NOTE: Of these, O were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1282708.625 .
NOTE: The data set WORK.CON4 has }68\mathrm{ observations and 18
variables.
NOTE: The data set WORK.DUAL4 has 27 observations and 14
variables.

```

Output 5.6.1. CONOUT=CON4


Output 5.6.2. \(\quad\) CONOUT \(=C O N 4\) (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Obs & _RCOST_ & _ANUMB_ & _TNUMB_ & _Status_ & diagonal & factory & key_id & mth_made \\
\hline 1 & . & 65 & 1 & KEY_ARC BASIC & . & . & & \\
\hline 2 & & 66 & 10 & KEY_ARC BASIC & . & . & & \\
\hline 3 & 30.187 & 67 & 11 & LOWERBD NONBASIC & . & . & & \\
\hline 4 & . & 68 & 20 & KEY_ARC BASIC & . & . & & \\
\hline 5 & & 4 & 1 & KEY_ARC BASIC & 19 & 1 & production & April \\
\hline 6 & 63.650 & 5 & 2 & LOWERBD NONBASIC & 19 & 1 & storage & March \\
\hline 7 & 47.020 & 6 & 4 & LOWERBD NONBASIC & 19 & 1 & backorder & May \\
\hline 8 & 22.000 & 7 & 6 & LOWERBD NONBASIC & 19 & . & f2_to_1 & April \\
\hline 9 & & 36 & 11 & KEY_ARC BASIC & 25 & 1 & production & April \\
\hline 10 & 94.210 & 37 & 12 & LOWERBD NONBASIC & 25 & 1 & storage & March \\
\hline 11 & & 38 & 14 & NONKEY ARC BASIC & 25 & 1 & backorder & May \\
\hline 12 & 30.510 & 39 & 16 & LOWERBD NONBASIC & 25 & . & f2_to_1 & April \\
\hline 13 & & 1 & 1 & KEY_ARC BASIC & 19 & 1 & production & March \\
\hline 14 & -7.630 & 2 & 3 & UPPERBD NONBASIC & 19 & 1 & backorder & April \\
\hline 15 & -34.750 & 3 & 5 & UPPERBD NONBASIC & 19 & . & f2_to_1 & March \\
\hline 16 & -31.677 & 33 & 11 & UPPERBD NONBASIC & 25 & 1 & production & March \\
\hline 17 & -28.390 & 34 & 13 & UPPERBD NONBASIC & 25 & 1 & backorder & April \\
\hline 18 & -61.060 & 35 & 15 & UPPERBD NONBASIC & 25 & . & f2_to_1 & March \\
\hline 19 & & 8 & 1 & KEY_ARC BASIC & 19 & 1 & production & May \\
\hline 20 & 6.000 & 9 & 3 & LOWERBD NONBASIC & 19 & 1 & storage & April \\
\hline 21 & 29.000 & 10 & 7 & LOWERBD NONBASIC & 19 & . & f2_to_1 & May \\
\hline 22 & -11.913 & 40 & 11 & UPPERBD NONBASIC & 25 & 1 & production & May \\
\hline 23 & 74.620 & 41 & 13 & LOWERBD NONBASIC & 25 & 1 & storage & April \\
\hline 24 & 39.000 & 42 & 17 & LOWERBD NONBASIC & 25 & . & f2_to_1 & May \\
\hline 25 & & 14 & 3 & KEY_ARC BASIC & 19 & . & f1_to_2 & April \\
\hline 26 & -14.077 & 15 & 10 & UPPERBD NONBASIC & 19 & 2 & production & April \\
\hline 27 & 10.900 & 16 & 5 & LOWERBD NONBASIC & 19 & 2 & storage & March \\
\hline 28 & 48.420 & 17 & 7 & LOWERBD NONBASIC & 19 & 2 & backorder & May \\
\hline 29 & 13.490 & 46 & 13 & LOWERBD NONBASIC & 25 & . & f1_to_2 & April \\
\hline 30 & & 47 & 20 & KEY_ARC BASIC & 25 & 2 & production & April \\
\hline 31 & 11.640 & 48 & 15 & LOWERBD NONBASIC & 25 & 2 & storage & March \\
\hline 32 & 32.090 & 49 & 17 & LOWERBD NONBASIC & 25 & 2 & backorder & May \\
\hline 33 & 55.750 & 11 & 2 & LOWERBD NONBASIC & 19 & . & f1_to_2 & March \\
\hline 34 & & 12 & 10 & KEY_ARC BASIC & 19 & 2 & production & March \\
\hline 35 & 34.920 & 13 & 6 & LOWERBD NONBASIC & 19 & 2 & backorder & April \\
\hline 36 & 104.060 & 43 & 12 & LOWERBD NONBASIC & 25 & . & f1_to_2 & March \\
\hline 37 & -23.170 & 44 & 20 & UPPERBD NONBASIC & 25 & 2 & production & March \\
\hline 38 & 60.980 & 45 & 16 & LOWERBD NONBASIC & 25 & 2 & backorder & April \\
\hline 39 & & 18 & 4 & KEY_ARC BASIC & 19 & . & f1_to_2 & May \\
\hline 40 & 22.700 & 19 & 10 & LOWERBD NONBASIC & 19 & 2 & production & May \\
\hline 41 & 9.000 & 20 & 6 & LOWERBD NONBASIC & 19 & 2 & storage & April \\
\hline 42 & . & 50 & 14 & KEY_ARC BASIC & 25 & . & f1_to_2 & May \\
\hline 43 & . & 51 & 20 & NONKEY ARC BASIC & 25 & 2 & production & May \\
\hline 44 & 78.130 & 52 & 16 & LOWERBD NONBASIC & 25 & 2 & storage & April \\
\hline 45 & . & 21 & 2 & KEY_ARC BASIC & 19 & 1 & sales & March \\
\hline 46 & -21.000 & 22 & 3 & UPPERBD NONBASIC & 19 & 1 & sales & April \\
\hline 47 & & 23 & 4 & NONKEY ARC BASIC & 19 & 1 & sales & May \\
\hline 48 & -14.500 & 24 & 5 & UPPERBD NONBASIC & 19 & 2 & sales & March \\
\hline 49 & & 25 & 6 & NONKEY ARC BASIC & 19 & 2 & sales & April \\
\hline 50 & 9.000 & 26 & 7 & LOWERBD NONBASIC & 19 & 2 & sales & May \\
\hline 51 & 47.130 & 53 & 12 & LOWERBD NONBASIC & 25 & 1 & sales & March \\
\hline 52 & 8.400 & 54 & 13 & LOWERBD NONBASIC & 25 & 1 & sales & April \\
\hline 53 & 1.040 & 55 & 14 & LOWERBD NONBASIC & 25 & 1 & sales & May \\
\hline 54 & -42.000 & 56 & 15 & UPPERBD NONBASIC & 25 & 2 & sales & March \\
\hline 55 & & 57 & 16 & KEY_ARC BASIC & 25 & 2 & sales & April \\
\hline 56 & 10.500 & 58 & 17 & LOWERBD NONBASIC & 25 & 2 & sales & May \\
\hline 57 & -37.090 & 27 & 2 & UPPERBD NONBASIC & 19 & 1 & sales & March \\
\hline 58 & -23.000 & 28 & 3 & UPPERBD NONBASIC & 19 & 1 & sales & April \\
\hline 59 & 38.000 & 29 & 4 & LOWERBD NONBASIC & 19 & 1 & sales & May \\
\hline 60 & 8.200 & 30 & 5 & LOWERBD NONBASIC & 19 & 2 & sales & March \\
\hline 61 & -24.000 & 31 & 6 & UPPERBD NONBASIC & 19 & 2 & sales & April \\
\hline 62 & . & 32 & 7 & KEY_ARC BASIC & 19 & 2 & sales & May \\
\hline 63 & . & 59 & 12 & KEY_ARC BASIC & 25 & 1 & sales & March \\
\hline 64 & & 60 & 13 & KEY_ARC BASIC & 25 & 1 & sales & April \\
\hline 65 & 33.060 & 61 & 14 & LOWERBD NONBASIC & 25 & 1 & sales & May \\
\hline 66 & & 62 & 15 & KEY_ARC BASIC & 25 & 2 & sales & March \\
\hline 67 & . & 63 & 16 & KEY_ARC BASIC & 25 & 2 & sales & April \\
\hline 68 & . & 64 & 17 & KEY_ARC BASIC & 25 & 2 & sales & May \\
\hline
\end{tabular}

Output 5.6.3. DUALOUT=DUAL4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multicolumn{7}{|c|}{Adding Side Constraints and Using a Warm Start Production Planning/Inventory/Distribution} \\
\hline & _node_ & _supdem_ & DUAL & _NNUMB & _PRED & _TRAV_ & _SCESS \\
\hline 1 & _ROOT & 238 & 0.00 & 22 & 0 & 8 & 5 \\
\hline 2 & EXCESS & -200 & -100000193.90 & 21 & 1 & 20 & 13 \\
\hline 3 & f1_apr_1 & . & -100000278.00 & 3 & 1 & 6 & 2 \\
\hline 4 & f1_apr_2 & - & -100000405.92 & 13 & 19 & 11 & 2 \\
\hline 5 & f1_mar_1 & - & -100000326.65 & 2 & 8 & 1 & 20 \\
\hline 6 & f1_mar_2 & . & -100000480.13 & 12 & 19 & 13 & 1 \\
\hline 7 & f1_may_1 & - & -100000284.00 & 4 & 1 & 7 & 3 \\
\hline 8 & f1_may_2 & - & -100000349.30 & 14 & 17 & 15 & 1 \\
\hline 9 & f2_apr_1 & - & -100000289.00 & 6 & 3 & 4 & 1 \\
\hline 10 & f2_apr_2 & - & -100000415.43 & 16 & 20 & 18 & 9 \\
\hline 11 & f2_mar_1 & - & -100000281.90 & 5 & 10 & 3 & 1 \\
\hline 12 & f2_mar_2 & - & -100000399.07 & 15 & 19 & 10 & 1 \\
\hline 13 & f2_may_1 & . & -100000300.00 & 7 & 4 & 9 & 2 \\
\hline 14 & f2_may_2 & - & -100000375.30 & 17 & 19 & 14 & 2 \\
\hline 15 & fact1_1 & 1000 & -100000193.90 & 1 & 2 & 21 & 19 \\
\hline 16 & fact1_2 & 1000 & -100000224.09 & 11 & 13 & 17 & 1 \\
\hline 17 & fact2_1 & 850 & -100000193.90 & 10 & 21 & 5 & 2 \\
\hline 18 & fact2_2 & 1500 & -100000193.90 & 20 & 21 & 16 & 10 \\
\hline 19 & shop1_1 & -900 & -99999999.00 & 8 & 22 & 2 & 21 \\
\hline 20 & shop1_2 & -900 & -99999873.24 & 18 & 16 & 19 & 1 \\
\hline 21 & shop2_1 & -900 & -100000001.00 & 9 & 7 & 22 & 1 \\
\hline 22 & shop2_2 & -1450 & -99999856.24 & 19 & 16 & 12 & 7 \\
\hline 23 & & . & -1.83 & 2 & 8 & . & . \\
\hline 24 & & . & -1.62 & 0 & 8 & . & . \\
\hline 25 & & - & -6.21 & 3 & 17 & - & . \\
\hline 26 & & - & 0.00 & 1 & 1 & . & 1 \\
\hline 27 & & . & -7.42 & 4 & 13 & - & . \\
\hline Obs & _ARCID_ & FLOW & _FBQ_ _VALUE & _RHS_ & _TYPE_ & _row & \\
\hline 1 & 3 & 166.000 & -69 0 & 75 & & & \\
\hline 2 & 65 & 5.000 & 65 & . & & & \\
\hline 3 & 4 & 483.333 & 4 & . & & & \\
\hline 4 & -60 & 220.000 & 36 & . & & & \\
\hline 5 & -21 & 143.333 & 1 & . & & & \\
\hline 6 & -59 & 455.000 & 33 & - & & & \\
\hline 7 & 8 & 78.333 & 8 & . & & & \\
\hline 8 & -50 & 350.000 & 40 & - & & & \\
\hline 9 & 14 & 13.333 & 14 & . & & & \\
\hline 10 & 47 & 542.500 & 46 & - & & & \\
\hline 11 & 12 & 255.000 & 11 & . & & & \\
\hline 12 & -62 & 125.000 & 43 & . & & & \\
\hline 13 & 18 & 115.000 & 18 & . & & & \\
\hline 14 & -64 & 472.500 & 50 & . & & & \\
\hline 15 & -1 & 283.333 & -1 & . & & & \\
\hline 16 & -36 & 200.000 & -33 & . & & & \\
\hline 17 & -66 & 45.000 & -33 & . & & & \\
\hline 18 & -68 & 150.000 & -65 & - & & & \\
\hline 19 & 0 & 0.000 & 21 & - & & & \\
\hline 20 & 57 & 400.000 & 53 & . & & & \\
\hline 21 & 32 & 150.000 & 27 & . & & & \\
\hline 22 & 63 & 177.500 & 59 & . & & & \\
\hline 23 & 25 & 243.333 & 2600 & 2600 & LE & FACT1 API & GIZMO \\
\hline 24 & 23 & 13.333 & 2600 & 2600 & LE & FACT1 MAR & GIZMO \\
\hline 25 & 51 & 87.500 & 3750 & 3750 & LE & FACT2 APL & GIZMO \\
\hline 26 & & 280.000 & 3470 & 3750 & LE & FACT2 MAR & GIZMO \\
\hline 27 & 38 & 0.000 & 50 & 50 & LE & TOTAL BAC & ORDER \\
\hline
\end{tabular}

\section*{Example 5.7. Using a Constrained Solution Warm Start}

Suppose the 25 -inch screen TVs produced at factory 1 in May can be sold at either shop with an increased profit of 40 dollars each. What is the new optimal solution? Because only arc costs have been changed, information about the present solution in DUALOUT=dual4 and CONOUT=con4 can be used as a warm start in the following PROC NETFLOW run. It is still necessary to specify CONDATA=con3 SPARSECONDATA RHSOBS=‘CHIP/BO LIMIT’, since the CONDATA= data set is always read.
```

title 'Using a Constrained Solution Warm Start';
title2 'Production Planning/Inventory/Distribution';
data new_con4;
set con4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_=' f1_may_2'
\& (_head_='shop1_2' | _head_='shop2_2')
then _cost_=_cost_-40;
run;
proc netflow
warm
arcdata=new_con4
dualin=dual4
condata=con3
sparsecondata
rhsobs='CHIP/BO LIMIT'
dualout=dual5
conout=con5;
run;
proc print data=con5 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_
cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;
/* to get this variable order */
sum oldfc _fcost_;
run;
proc print data=dual5;
run;

```

The following messages appear on the SAS log:
```

NOTE: The following 1 variables in NODEDATA do not belong to
any SAS variable list. These will be ignored.
VALUE
NOTE: Number of nodes= 21.
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint
coefficients= 16.
NOTE: Number of iterations, optimizing with constraints= 7 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295661.8 .
NOTE: The data set WORK.CON5 has }64\mathrm{ observations and 21
variables.
NOTE: The data set WORK.DUAL5 has 25 observations and 14
variables.

```

Output 5.7.1. \(\quad\) CONOUT \(=C O N 5\)
Using a Constrained Solution Warm Start
Production Planning/Inventory/Distribution
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & _tail_ & _head_ & _capac_ & 10 & _SUPPLY_ & DEMAND_ & & name_ & _cost_ & _FLOW & FCOST \\
\hline 1 & fact1_1 & f1_apr_1 & 600 & 50 & 1000 & . & prod & f1 19 apl & 78.60 & 533.333 & 41920.00 \\
\hline 2 & f1_mar_1 & f1_apr_1 & 50 & 0 & . & . & & & 15.00 & 0.000 & 0.00 \\
\hline 3 & f1_may_1 & f1_apr_1 & 20 & 0 & . & . & back & f1 19 may & 33.60 & 0.000 & 0.00 \\
\hline 4 & f2_apr_1 & f1_apr_1 & 40 & 0 & \({ }^{\circ}\) & . & & & 11.00 & 0.000 & 0.00 \\
\hline 5 & fact1_2 & f1_apr_2 & 550 & 50 & 1000 & . & prod & f1 25 apl & 174.50 & 250.000 & 43625.00 \\
\hline 6 & f1_mar_2 & f1_apr_2 & 40 & 0 & . & . & & & 20.00 & 0.000 & 0.00 \\
\hline 7 & f1_may_2 & f1_apr_2 & 15 & 0 & . & - & back & f1 25 may & 49.20 & 0.000 & 0.00 \\
\hline 8 & f2_apr_2 & f1_apr_2 & 25 & 0 & \(\cdot\) & . & & & 21.00 & 0.000 & 0.00 \\
\hline 9 & fact1_1 & f1_mar_1 & 500 & 50 & 1000 & - & prod & f1 19 mar & 127.90 & 333.333 & 42633.33 \\
\hline 10 & f1_apr_1 & f1_mar_1 & 20 & 0 & . & . & back & f1 19 apl & 33.60 & 20.000 & 672.00 \\
\hline 11 & f2_mar_1 & f1_mar_1 & 40 & 0 & . & . & & & 10.00 & 40.000 & 400.00 \\
\hline 12 & fact1_2 & f1_mar_2 & 400 & 40 & 1000 & . & prod & f1 25 mar & 217.90 & 400.000 & 87160.00 \\
\hline 13 & f1_apr_2 & f1_mar_2 & 30 & 0 & . & . & back & f1 25 apl & 38.40 & 30.000 & 1152.00 \\
\hline 14 & f2_mar_2 & f1_mar_2 & 25 & 0 & \({ }^{\circ}\) & . & & & 20.00 & 25.000 & 500.00 \\
\hline 15 & fact1_1 & f1_may_1 & 400 & 50 & 1000 & & & & 90.10 & 128.333 & 11562.83 \\
\hline 16 & f1_apr_1 & f1_may_1 & 50 & 0 & . & . & & & 12.00 & 0.000 & 0.00 \\
\hline 17 & f2_may_1 & f1_may_1 & 40 & 0 & . & . & & & 13.00 & 0.000 & 0.00 \\
\hline 18 & fact1_2 & f1_may_2 & 350 & 40 & 1000 & - & & & 113.30 & 350.000 & 39655.00 \\
\hline 19 & f1_apr_2 & f1_may_2 & 40 & 0 & . & . & & & 18.00 & 0.000 & 0.00 \\
\hline 20 & f2_may_2 & f1_may_2 & 25 & 0 & . & . & & & 13.00 & 0.000 & 0.00 \\
\hline 21 & f1_apr_1 & f2_apr_1 & 99999999 & 0 & \({ }^{\circ}\) & . & & & 11.00 & 13.333 & 146.67 \\
\hline 22 & fact2_1 & f2_apr_1 & 480 & 35 & 850 & . & prod & f2 19 apl & 62.40 & 480.000 & 29952.00 \\
\hline 23 & f2_mar_1 & f2_apr_1 & 30 & 0 & . & . & & & 18.00 & 0.000 & 0.00 \\
\hline 24 & f2_may_1 & f2_apr_1 & 15 & 0 & . & . & back & f2 19 may & 30.00 & 0.000 & 0.00 \\
\hline 25 & f1_apr_2 & f2_apr_2 & 99999999 & 0 & \({ }^{\circ}\) & & & & 23.00 & 0.000 & 0.00 \\
\hline 26 & fact2_2 & f2_apr_2 & 680 & 35 & 1500 & . & prod & f2 25 apl & 196.70 & 550.000 & 108185.00 \\
\hline 27 & f2_mar_2 & f2_apr_2 & 50 & 0 & . & . & & & 28.00 & 0.000 & 0.00 \\
\hline 28 & f2_may_2 & f2_apr_2 & 15 & 0 & . & . & back & f2 25 may & 64.80 & 0.000 & 0.00 \\
\hline 29 & f1_mar_1 & f2_mar_1 & 99999999 & 0 & . & . & & & 11.00 & 0.000 & 0.00 \\
\hline 30 & fact2_1 & f2_mar_1 & 450 & 35 & 850 & . & prod & f2 19 mar & 88.00 & 290.000 & 25520.00 \\
\hline 31 & f2_apr_1 & f2_mar_1 & 15 & 0 & . & . & back & f2 19 apl & 20.40 & 0.000 & 0.00 \\
\hline 32 & f1_mar_2 & f2_mar_2 & 99999999 & 0 & \({ }^{\circ}\) & & & & 23.00 & 0.000 & 0.00 \\
\hline 33 & fact2_2 & f2_mar_2 & 650 & 35 & 1500 & . & prod & f2 25 mar & 182.00 & 650.000 & 118300.00 \\
\hline 34 & f2_apr_2 & f2_mar_2 & 15 & 0 & . & . & back & f2 25 apl & 37.20 & 0.000 & 0.00 \\
\hline 35 & f1_may_1 & f2_may_1 & 99999999 & 0 & & & & & 16.00 & 115.000 & 1840.00 \\
\hline 36 & fact2_1 & f2_may_1 & 250 & 35 & 850 & . & & & 128.80 & 35.000 & 4508.00 \\
\hline 37 & f2_apr_1 & f2_may_1 & 30 & 0 & . & . & & & 20.00 & 0.000 & 0.00 \\
\hline 38 & f1_may_2 & f2_may_2 & 99999999 & 0 & \({ }^{\circ}\) & . & & & 26.00 & 0.000 & 0.00 \\
\hline 39 & fact2_2 & f2_may_2 & 550 & 35 & 1500 & . & & & 181.40 & 150.000 & 27210.00 \\
\hline 40 & f2_apr_2 & f2_may_2 & 50 & 0 & . & . & & & 38.00 & 0.000 & 0.00 \\
\hline 41 & f1_mar_1 & shop1_1 & 250 & 0 & . & 900 & & & -327.65 & 143.333 & -46963.17 \\
\hline 42 & f1_apr_1 & shop1_1 & 250 & 0 & . & 900 & & & -300.00 & 250.000 & -75000.00 \\
\hline 43 & f1_may_1 & shop1_1 & 250 & 0 & . & 900 & & & -285.00 & 13.333 & -3800.00 \\
\hline 44 & f2_mar_1 & shop1_1 & 250 & 0 & . & 900 & & & -297.40 & 250.000 & -74350.00 \\
\hline 45 & f2_apr_1 & shop1_1 & 250 & 0 & . & 900 & & & -290.00 & 243.333 & -70566.67 \\
\hline 46 & f2_may_1 & shop1_1 & 250 & 0 & . & 900 & & & -292.00 & 0.000 & 0.00 \\
\hline 47 & f1_mar_2 & shop1_2 & 99999999 & 0 & . & 900 & & & -559.76 & 0.000 & 0.00 \\
\hline 48 & f1_apr_2 & shop1_2 & 99999999 & 0 & . & 900 & & & -524.28 & 0.000 & 0.00 \\
\hline 49 & f1_may_2 & shop1_2 & 99999999 & 0 & . & 900 & & & -515.02 & 350.000 & -180257.00 \\
\hline 50 & f2_mar_2 & shop1_2 & 500 & 0 & . & 900 & & & -567.83 & 500.000 & -283915.00 \\
\hline 51 & f2_apr_2 & shop1_2 & 500 & 0 & . & 900 & & & -542.19 & 50.000 & -27109.50 \\
\hline 52 & f2_may_2 & shop1_2 & 500 & 0 & . & 900 & & & -491.56 & 0.000 & 0.00 \\
\hline 53 & f1_mar_1 & shop2_1 & 250 & 0 & . & 900 & & & -362.74 & 250.000 & -90685.00 \\
\hline 54 & f1_apr_1 & shop2_1 & 250 & 0 & . & 900 & & & -300.00 & 250.000 & -75000.00 \\
\hline 55 & f1_may_1 & shop2_1 & 250 & 0 & . & 900 & & & -245.00 & 0.000 & 0.00 \\
\hline 56 & f2_mar_1 & shop2_1 & 250 & 0 & - & 900 & & & -272.70 & 0.000 & 0.00 \\
\hline 57 & f2_apr_1 & shop2_1 & 250 & 0 & . & 900 & & & -312.00 & 250.000 & -78000.00 \\
\hline 58 & f2_may_1 & shop2_1 & 250 & 0 & . & 900 & & & -299.00 & 150.000 & -44850.00 \\
\hline 59 & f1_mar_2 & shop2_2 & 99999999 & 0 & . & 1450 & & & -623.89 & 455.000 & -283869.95 \\
\hline 60 & f1_apr_2 & shop2_2 & 99999999 & 0 & . & 1450 & & & -549.68 & 220.000 & -120929.60 \\
\hline 61 & f1_may_2 & shop2_2 & 99999999 & 0 & . & 1450 & & & -500.00 & 0.000 & 0.00 \\
\hline 62 & f2_mar_2 & shop2_2 & 500 & 0 & . & 1450 & & & -542.83 & 125.000 & -67853.75 \\
\hline 63 & f2_apr_2 & shop2_2 & 500 & 0 & . & 1450 & & & -559.19 & 500.000 & -279595.00 \\
\hline 64 & f2_may_2 & shop2_2 & 500 & 0 & - & 1450 & & & -519.06 & 150.000 & -77859.00 \\
\hline & & & & & & & & & & & \[
\begin{aligned}
& =========== \\
& -1295661.80
\end{aligned}
\] \\
\hline
\end{tabular}

Output 5.7.2. CONOUT=CON5 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & oldcost & oldflow & oldfc & diagonal & factory & key_id & mth_made & _ANUMB_ & _TNUMB_ \\
\hline 1 & 78.60 & 533.333 & 41920.00 & 19 & 1 & production & April & 4 & 1 \\
\hline 2 & 15.00 & 0.000 & 0.00 & 19 & 1 & storage & March & 5 & 2 \\
\hline 3 & 33.60 & 0.000 & 0.00 & 19 & 1 & backorder & May & 6 & 4 \\
\hline 4 & 11.00 & 0.000 & 0.00 & 19 & . & f2_to_1 & April & 7 & 6 \\
\hline 5 & 174.50 & 250.000 & 43625.00 & 25 & 1 & production & April & 36 & 11 \\
\hline 6 & 20.00 & 0.000 & 0.00 & 25 & 1 & storage & March & 37 & 12 \\
\hline 7 & 49.20 & 0.000 & 0.00 & 25 & 1 & backorder & May & 38 & 14 \\
\hline 8 & 21.00 & 0.000 & 0.00 & 25 & & f2_to_1 & April & 39 & 16 \\
\hline 9 & 127.90 & 333.333 & 42633.33 & 19 & 1 & production & March & 1 & 1 \\
\hline 10 & 33.60 & 20.000 & 672.00 & 19 & 1 & backorder & April & 2 & 3 \\
\hline 11 & 10.00 & 40.000 & 400.00 & 19 & . & f2_to_1 & March & 3 & 5 \\
\hline 12 & 217.90 & 400.000 & 87160.00 & 25 & 1 & production & March & 33 & 11 \\
\hline 13 & 38.40 & 30.000 & 1152.00 & 25 & 1 & backorder & April & 34 & 13 \\
\hline 14 & 20.00 & 25.000 & 500.00 & 25 & . & f2_to_1 & March & 35 & 15 \\
\hline 15 & 90.10 & 128.333 & 11562.83 & 19 & 1 & production & May & 8 & 1 \\
\hline 16 & 12.00 & 0.000 & 0.00 & 19 & 1 & storage & April & 9 & 3 \\
\hline 17 & 13.00 & 0.000 & 0.00 & 19 & . & f2_to_1 & May & 10 & 7 \\
\hline 18 & 113.30 & 350.000 & 39655.00 & 25 & 1 & production & May & 40 & 11 \\
\hline 19 & 18.00 & 0.000 & 0.00 & 25 & 1 & storage & April & 41 & 13 \\
\hline 20 & 13.00 & 0.000 & 0.00 & 25 & . & f2_to_1 & May & 42 & 17 \\
\hline 21 & 11.00 & 13.333 & 146.67 & 19 & . & f1_to_2 & April & 14 & 3 \\
\hline 22 & 62.40 & 480.000 & 29952.00 & 19 & 2 & production & April & 15 & 10 \\
\hline 23 & 18.00 & 0.000 & 0.00 & 19 & 2 & storage & March & 16 & 5 \\
\hline 24 & 30.00 & 0.000 & 0.00 & 19 & 2 & backorder & May & 17 & 7 \\
\hline 25 & 23.00 & 0.000 & 0.00 & 25 & & f1_to_2 & April & 46 & 13 \\
\hline 26 & 196.70 & 577.500 & 113594.25 & 25 & 2 & production & April & 47 & 20 \\
\hline 27 & 28.00 & 0.000 & 0.00 & 25 & 2 & storage & March & 48 & 15 \\
\hline 28 & 64.80 & 0.000 & 0.00 & 25 & 2 & backorder & May & 49 & 17 \\
\hline 29 & 11.00 & 0.000 & 0.00 & 19 & . & f1_to_2 & March & 11 & 2 \\
\hline 30 & 88.00 & 290.000 & 25520.00 & 19 & 2 & production & March & 12 & 10 \\
\hline 31 & 20.40 & 0.000 & 0.00 & 19 & 2 & backorder & April & 13 & 6 \\
\hline 32 & 23.00 & 0.000 & 0.00 & 25 & . & f1_to_2 & March & 43 & 12 \\
\hline 33 & 182.00 & 650.000 & 118300.00 & 25 & 2 & production & March & 44 & 20 \\
\hline 34 & 37.20 & 0.000 & 0.00 & 25 & 2 & backorder & April & 45 & 16 \\
\hline 35 & 16.00 & 115.000 & 1840.00 & 19 & & f1_to_2 & May & 18 & 4 \\
\hline 36 & 128.80 & 35.000 & 4508.00 & 19 & 2 & production & May & 19 & 10 \\
\hline 37 & 20.00 & 0.000 & 0.00 & 19 & 2 & storage & April & 20 & 6 \\
\hline 38 & 26.00 & 350.000 & 9100.00 & 25 & & f1_to_2 & May & 50 & 14 \\
\hline 39 & 181.40 & 122.500 & 22221.50 & 25 & 2 & production & May & 51 & 20 \\
\hline 40 & 38.00 & 0.000 & 0.00 & 25 & 2 & storage & April & 52 & 16 \\
\hline 41 & -327.65 & 143.333 & -46963.17 & 19 & 1 & sales & March & 21 & 2 \\
\hline 42 & -300.00 & 250.000 & -75000.00 & 19 & 1 & sales & April & 22 & 3 \\
\hline 43 & -285.00 & 13.333 & -3800.00 & 19 & 1 & sales & May & 23 & 4 \\
\hline 44 & -297.40 & 250.000 & -74350.00 & 19 & 2 & sales & March & 24 & 5 \\
\hline 45 & -290.00 & 243.333 & -70566.67 & 19 & 2 & sales & April & 25 & 6 \\
\hline 46 & -292.00 & 0.000 & 0.00 & 19 & 2 & sales & May & 26 & 7 \\
\hline 47 & -559.76 & 0.000 & 0.00 & 25 & 1 & sales & March & 53 & 12 \\
\hline 48 & -524.28 & 0.000 & 0.00 & 25 & 1 & sales & April & 54 & 13 \\
\hline 49 & -475.02 & 0.000 & 0.00 & 25 & 1 & sales & May & 55 & 14 \\
\hline 50 & -567.83 & 500.000 & -283915.00 & 25 & 2 & sales & March & 56 & 15 \\
\hline 51 & -542.19 & 400.000 & -216876.00 & 25 & 2 & sales & April & 57 & 16 \\
\hline 52 & -491.56 & 0.000 & 0.00 & 25 & 2 & sales & May & 58 & 17 \\
\hline 53 & -362.74 & 250.000 & -90685.00 & 19 & 1 & sales & March & 27 & 2 \\
\hline 54 & -300.00 & 250.000 & -75000.00 & 19 & 1 & sales & April & 28 & 3 \\
\hline 55 & -245.00 & 0.000 & 0.00 & 19 & 1 & sales & May & 29 & 4 \\
\hline 56 & -272.70 & 0.000 & 0.00 & 19 & 2 & sales & March & 30 & 5 \\
\hline 57 & -312.00 & 250.000 & -78000.00 & 19 & 2 & sales & April & 31 & 6 \\
\hline 58 & -299.00 & 150.000 & -44850.00 & 19 & 2 & sales & May & 32 & 7 \\
\hline 59 & -623.89 & 455.000 & -283869.95 & 25 & 1 & sales & March & 59 & 12 \\
\hline 60 & -549.68 & 220.000 & -120929.60 & 25 & 1 & sales & April & 60 & 13 \\
\hline 61 & -460.00 & 0.000 & 0.00 & 25 & 1 & sales & May & 61 & 14 \\
\hline 62 & -542.83 & 125.000 & -67853.75 & 25 & 2 & sales & March & 62 & 15 \\
\hline 63 & -559.19 & 177.500 & -99256.23 & 25 & 2 & sales & April & 63 & 16 \\
\hline 64 & -519.06 & 472.500 & -245255.85 & 25 & 2 & sales & May & 64 & 17 \\
\hline & & & \[
\begin{aligned}
& ========== \\
& -1282708.63
\end{aligned}
\] & & & & & & \\
\hline
\end{tabular}

Output 5.7.3. DUALOUT=DUAL5
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multicolumn{6}{|c|}{Using a Constrained Solution Warm Start Production Planning/Inventory/Distribution} \\
\hline & _node_ & _supdem_ & _DUAL_ & _NNUMB_ & _PRED_ & _TRAV_ _SCESS_ \\
\hline 1 & f1_apr_1 & . & -100000278.00 & 3 & 1 & \(6 \quad 2\) \\
\hline 2 & f1_apr_2 & . & -100000405.92 & 13 & 19 & 11 2 \\
\hline 3 & f1_mar_1 & . & -100000326.65 & 2 & 8 & 120 \\
\hline 4 & f1_mar_2 & - & -100000480.13 & 12 & 19 & 13 1 \\
\hline 5 & f1_may_1 & . & -100000284.00 & 4 & 1 & \(7 \quad 3\) \\
\hline 6 & f1_may_2 & . & -100000363.43 & 14 & 18 & \(10 \quad 1\) \\
\hline 7 & f2_apr_1 & - & -100000289.00 & 6 & 3 & \(4 \quad 1\) \\
\hline 8 & f2_apr_2 & . & -100000390.60 & 16 & 20 & 18 3 \\
\hline 9 & f2_mar_1 & . & -100000281.90 & 5 & 10 & \(3 \quad 1\) \\
\hline 10 & f2_mar_2 & . & -100000399.07 & 15 & 19 & 16 1 \\
\hline 11 & f2_may_1 & . & -100000300.00 & 7 & 4 & 92 \\
\hline 12 & f2_may_2 & . & -100000375.30 & 17 & 20 & 196 \\
\hline 13 & fact1_1 & 1000 & -100000193.90 & 1 & 2 & \(21 \quad 19\) \\
\hline 14 & fact1_2 & 1000 & -100000224.09 & 11 & 13 & 15 1 \\
\hline 15 & fact2_1 & 850 & -100000193.90 & 10 & 21 & \(5 \quad 2\) \\
\hline 16 & fact2_2 & 1500 & -100000193.90 & 20 & 21 & \(17 \quad 10\) \\
\hline 17 & shop1_1 & -900 & -99999999.00 & 8 & 22 & 221 \\
\hline 18 & shop1_2 & -900 & -99999848.41 & 18 & 16 & 14 2 \\
\hline 19 & shop2_1 & -900 & -100000001.00 & 9 & 7 & 22 1 \\
\hline 20 & shop2_2 & -1450 & -99999856.24 & 19 & 17 & 12 5 \\
\hline 21 & & . & -1.83 & 2 & 8 & . . \\
\hline 22 & & - & -1.62 & 0 & 8 & . . \\
\hline 23 & & . & 0.00 & 3 & 3 & 3 \\
\hline 24 & & . & 0.00 & 1 & 1 & 1 \\
\hline 25 & & - & 0.00 & 4 & 4 & 4 \\
\hline Obs & _ ARCID \(^{\text {- }}\) & _FLOW & _FBQ _VALUE & _RHS_ & _TYPE & _row- \\
\hline 1 & 4 & 483.333 & 4 & . & & \\
\hline 2 & -60 & 220.000 & 36 & . & & \\
\hline 3 & -21 & 143.333 & 1 & . & & \\
\hline 4 & -59 & 455.000 & 33 & . & & \\
\hline 5 & 8 & 78.333 & 8 & . & & \\
\hline 6 & -55 & 350.000 & 40 & . & & \\
\hline 7 & 14 & 13.333 & 14 & . & & \\
\hline 8 & 47 & 515.000 & 46 & . & & \\
\hline 9 & 12 & 255.000 & 11 & . & & \\
\hline 10 & -62 & 125.000 & 43 & . & & \\
\hline 11 & 18 & 115.000 & 18 & . & & \\
\hline 12 & 51 & 115.000 & 50 & . & & \\
\hline 13 & -1 & 283.333 & -1 & . & & \\
\hline 14 & -36 & 200.000 & -33 & . & & \\
\hline 15 & -66 & 45.000 & -33 & . & & \\
\hline 16 & -68 & 150.000 & -65 & . & & \\
\hline 17 & 0 & 0.000 & 21 & . & & \\
\hline 18 & 57 & 50.000 & 53 & . & & \\
\hline 19 & 32 & 150.000 & 27 & . & & \\
\hline 20 & 64 & 150.000 & 59 & . & & \\
\hline 21 & 25 & 243.333 & 2600 & 2600 & LE & FACT1 APL GIZMO \\
\hline 22 & 23 & 13.333 & 2600 & 2600 & LE & FACT1 MAR GIzMO \\
\hline 23 & . & 110.000 & 3640 & 3750 & LE & FACT2 APL GIZMO \\
\hline 24 & . & 280.000 & 3470 & 3750 & LE & FACT2 MAR GIZMO \\
\hline 25 & . & 0.000 & 50 & 50 & LE & TOTAL BACKORDER \\
\hline
\end{tabular}

\section*{Example 5.8. Nonarc Variables in the Side Constraints}

Notice in DUALOUT=dual5 from Example 5.7 the FACT2 MAR GIZMO constraint (observation 24) has a _VALUE_ of 3470 , which is not equal to the _RHS_ of this constraint. Not all of the 3750 chips that can be supplied to factory 2 for March production are used. It is suggested that all the possible chips be obtained in March and those not used be saved for April production. Because chips must be kept in an air-controlled environment, it costs 1 dollar to store each chip purchased in March until April. The maximum number of chips that can be stored in this environment at each factory is 150 . In addition, a search of the parts inventory at factory 1 turned up

15 chips available for their March production.
Nonarc variables are used in the side constraints that handle the limitations of supply of Gizmo chips. A nonarc variable called "f1 unused chips" has as a value the number of chips that are not used at factory 1 in March. Another nonarc variable, "f2 unused chips", has as a value the number of chips that are not used at factory 2 in March. " fl 1 chips from mar" has as a value the number of chips left over from March used for production at factory 1 in April. Similarly, "f2 chips from mar" has as a value the number of chips left over from March used for April production at factory 2 in April. The last two nonarc variables have objective function coefficients of 1 and upper bounds of 150 . The Gizmo side constraints are
```

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

```

The last side constraint states that the number of chips not used in March is not less than the number of chips left over from March and used in April. Here, this constraint is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems that most of the constraints are now equalities, so you specify \(\operatorname{DEFCONTYPE}=E Q\) in the PROC NETFLOW statements from now on and provide constraint type data for constraints that are not "equal to" type, using the default TYPEOBS value _TYPE_ as the _COLUMN_ variable value to indicate observations that contain constraint type data. Also, from now on, the default RHSOBS value is used.
```

title 'Nonarc Variables in the Side Constraints';
title2 'Production Planning/Inventory/Distribution';
data con6;
input _column_ \&\$17. _row_ \&\$15. _coef_ ;
datalines;
prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750

```
\begin{tabular}{lll} 
f1 unused chips & CHIP LEFTOVER & 1 \\
f2 unused chips & CHIP LEFTOVER & 1 \\
f1 chips from mar & CHIP LEFTOVER & -1 \\
f2 chips from mar & CHIP LEFTOVER & -1 \\
_TYPE_ & CHIP LEFTOVER & 1 \\
back f1 19 apl & TOTAL BACKORDER & 1 \\
back f1 25 apl & TOTAL BACKORDER & 1 \\
back f2 19 apl & TOTAL BACKORDER & 1 \\
back f2 25 apl & TOTAL BACKORDER & 1 \\
back f1 19 may & TOTAL BACKORDER & 1 \\
back f1 25 may & TOTAL BACKORDER & 1 \\
back f2 19 may & TOTAL BACKORDER & 1 \\
back f2 25 may & TOTAL BACKORDER & 1 \\
_TYPE_ & TOTAL BACKORDER & -1 \\
\hline RHS_ & & \\
; TOTAL BACKORDER & 50
\end{tabular}

The nonarc variables " f 1 chips from mar" and " f 2 chips from mar" have objective function coefficients of 1 and upper bounds of 150 . There are various ways in which this information can be furnished to PROC NETFLOW. If there were a TYPE list variable in the CONDATA= data set, observations could be in the form
\begin{tabular}{lllcr} 
_COLUMN_- & \multicolumn{1}{l}{ TYPE_ } & _ROW_ & COEF_ \\
f1 chips & from mar & objfn &. & 1 \\
f1 chips from mar & upperbd &. & 150 \\
f2 chips from mar & objfn &. & 1 \\
f2 chips from mar & upperbd &. & 150
\end{tabular}

It is desirable to assign ID list variable values to all the nonarc variables:
```

data arc6;
set con5;
drop oldcost oldfc oldflow _flow_ _fcost_ _status_ _rcost_;
data arc6_b;
input _name_ \&\$17. _cost_ _capac_ factory key_id \$;
datalines;
f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;
proc append
base=arc6 data=arc6_b;
proc netflow
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
dualout=dual7 conout=con7;
run;
print nonarcs/short;

```

The following messages appear on the SAS log:
```

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350, total demand= 4150.
NOTE: Number of arcs= 64 .
NOTE: Number of nonarc variables= 4 .
NOTE: Number of iterations performed (neglecting any
constraints)= 70 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1295730.8 .
NOTE: Number of <= side constraints= 1 .
NOTE: Number of == side constraints= 4 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of arc and nonarc variable side constraint
coefficients= 24
NOTE: Number of iterations, optimizing with constraints= 13.
NOTE: Of these, 3 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295542.742 .
NOTE: The data set WORK.CON7 has }68\mathrm{ observations and 18
variables.
NOTE: The data set WORK.DUAL7 has 26 observations and 14
variables.

```

The output in Output 5.8.1 is produced by
print nonarcs/short;
Output 5.8.1. Output of PRINT NONARCS/SHORT;
Nonarc Variables in the Side Constraints Production Planning/Inventory/Distribution

The NETFLOW Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline _N & _name_ & _cost_ & _capac_ & 10 & _VALUE_ \\
\hline 1 & f1 chips from mar & 1 & 150 & 0 & 20 \\
\hline 2 & f1 unused chips & 0 & 99999999 & 0 & 0 \\
\hline 3 & f2 chips from mar & 1 & 150 & 0 & 0 \\
\hline 4 & f2 unused chips & 0 & 99999999 & 0 & 280 \\
\hline
\end{tabular}

The optimal solution data sets, CONOUT=CON7 in Output 5.8.2 and Output 5.8.3 and DUALOUT=DUAL7 in Output 5.8.4 follow.
```

proc print data=con7;
sum _fcost_;
proc print data=dual7;

```

Output 5.8.2. \(\quad\) CONOUT=CON7
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution


Output 5.8.3. \(\quad\) CONOUT=CON7 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Obs & _RCOST_ & _ANUMB_ & _TNUMB_ & _StATUS_ & diagonal & factory & key_id & mth_made \\
\hline 1 & & 1 & 1 & KEY_ARC BASIC & 19 & 1 & production & April \\
\hline 2 & 66.150 & 2 & 3 & LOWERBD NONBASIC & 19 & 1 & storage & March \\
\hline 3 & 42.580 & 3 & 4 & LOWERBD NONBASIC & 19 & 1 & backorder & May \\
\hline 4 & 22.000 & 4 & 5 & LOWERBD NONBASIC & 19 & . & f2_to_1 & April \\
\hline 5 & & 15 & 6 & KEY_ARC BASIC & 25 & 1 & production & April \\
\hline 6 & 94.210 & 16 & 8 & LOWERBD NONBASIC & 25 & 1 & storage & March \\
\hline 7 & & 17 & 9 & NONKEY ARC BASIC & 25 & 1 & backorder & May \\
\hline 8 & -1.510 & 18 & 10 & UPPERBD NONBASIC & 25 & . & f2_to_1 & April \\
\hline 9 & & 5 & 1 & KEY_ARC BASIC & 19 & 1 & production & March \\
\hline 10 & -17.070 & 6 & 2 & UPPERBD NONBASIC & 19 & 1 & backorder & April \\
\hline 11 & -34.750 & 7 & 11 & UPPERBD NONBASIC & 19 & . & f2_to_1 & March \\
\hline 12 & -28.343 & 19 & 6 & UPPERBD NONBASIC & 25 & 1 & production & March \\
\hline 13 & -35.330 & 20 & 7 & UPPERBD NONBASIC & 25 & 1 & backorder & April \\
\hline 14 & -61.060 & 21 & 12 & UPPERBD NONBASIC & 25 & . & f2_to_1 & March \\
\hline 15 & & 8 & 1 & KEY_ARC BASIC & 19 & 1 & production & May \\
\hline 16 & 3.500 & 9 & 2 & LOWERBD NONBASIC & 19 & 1 & storage & April \\
\hline 17 & 29.000 & 10 & 13 & LOWERBD NONBASIC & 19 & . & f2_to_1 & May \\
\hline 18 & -15.520 & 22 & 6 & UPPERBD NONBASIC & 25 & 1 & production & May \\
\hline 19 & 67.680 & 23 & 7 & LOWERBD NONBASIC & 25 & 1 & storage & April \\
\hline 20 & 32.060 & 24 & 14 & LOWERBD NONBASIC & 25 & . & f2_to_1 & May \\
\hline 21 & . & 11 & 2 & KEY_ARC BASIC & 19 & \(\cdot\) & f1_to_2 & April \\
\hline 22 & -35.592 & 12 & 15 & UPPERBD NONBASIC & 19 & 2 & production & April \\
\hline 23 & 13.400 & 13 & 11 & LOWERBD NONBASIC & 19 & 2 & storage & March \\
\hline 24 & 43.980 & 14 & 13 & LOWERBD NONBASIC & 19 & 2 & backorder & May \\
\hline 25 & 45.510 & 25 & 7 & LOWERBD NONBASIC & 25 & . & f1_to_2 & April \\
\hline 26 & & 26 & 16 & KEY_ARC BASIC & 25 & 2 & production & April \\
\hline 27 & 43.660 & 27 & 12 & LOWERBD NONBASIC & 25 & 2 & storage & March \\
\hline 28 & 57.170 & 28 & 14 & LOWERBD NONBASIC & 25 & 2 & backorder & May \\
\hline 29 & 55.750 & 29 & 3 & LOWERBD NONBASIC & 19 & . & f1_to_2 & March \\
\hline 30 & & 30 & 15 & KEY_ARC BASIC & 19 & 2 & production & March \\
\hline 31 & 25.480 & 31 & 5 & LOWERBD NONBASIC & 19 & 2 & backorder & April \\
\hline 32 & 104.060 & 32 & 8 & LOWERBD NONBASIC & 25 & . & f1_to_2 & March \\
\hline 33 & -23.170 & 33 & 16 & UPPERBD NONBASIC & 25 & 2 & production & March \\
\hline 34 & 22.020 & 34 & 10 & LOWERBD NONBASIC & 25 & 2 & backorder & April \\
\hline 35 & & 35 & 4 & KEY_ARC BASIC & 19 & & f1_to_2 & May \\
\hline 36 & 22.700 & 36 & 15 & LOWERBD NONBASIC & 19 & 2 & production & May \\
\hline 37 & 6.500 & 37 & 5 & LOWERBD NONBASIC & 19 & 2 & storage & April \\
\hline 38 & 6.940 & 38 & 9 & LOWERBD NONBASIC & 25 & . & f1_to_2 & May \\
\hline 39 & & 39 & 16 & KEY_ARC BASIC & 25 & 2 & production & May \\
\hline 40 & 46.110 & 40 & 10 & LOWERBD NONBASIC & 25 & 2 & storage & April \\
\hline 41 & & 41 & 3 & KEY_ARC BASIC & 19 & 1 & sales & March \\
\hline 42 & -23.500 & 42 & 2 & UPPERBD NONBASIC & 19 & 1 & sales & April \\
\hline 43 & & 43 & 4 & NONKEY ARC BASIC & 19 & 1 & sales & May \\
\hline 44 & -14.500 & 44 & 11 & UPPERBD NONBASIC & 19 & 2 & sales & March \\
\hline 45 & -2.500 & 45 & 5 & UPPERBD NONBASIC & 19 & 2 & sales & April \\
\hline 46 & 9.000 & 46 & 13 & LOWERBD NONBASIC & 19 & 2 & sales & May \\
\hline 47 & 79.150 & 47 & 8 & LOWERBD NONBASIC & 25 & 1 & sales & March \\
\hline 48 & 40.420 & 48 & 7 & LOWERBD NONBASIC & 25 & 1 & sales & April \\
\hline 49 & . & 49 & 9 & KEY_ARC BASIC & 25 & 1 & sales & May \\
\hline 50 & -9.980 & 50 & 12 & UPPERBD NONBASIC & 25 & 2 & sales & March \\
\hline 51 & . & 51 & 10 & KEY_ARC BASIC & 25 & 2 & sales & April \\
\hline 52 & 42.520 & 52 & 14 & LOWERBD NONBASIC & 25 & 2 & sales & May \\
\hline 53 & -37.090 & 53 & 3 & UPPERBD NONBASIC & 19 & 1 & sales & March \\
\hline 54 & -25.500 & 54 & 2 & UPPERBD NONBASIC & 19 & 1 & sales & April \\
\hline 55 & 38.000 & 55 & 4 & LOWERBD NONBASIC & 19 & 1 & sales & May \\
\hline 56 & 8.200 & 56 & 11 & LOWERBD NONBASIC & 19 & 2 & sales & March \\
\hline 57 & -26.500 & 57 & 5 & UPPERBD NONBASIC & 19 & 2 & sales & April \\
\hline 58 & . & 58 & 13 & KEY_ARC BASIC & 19 & 2 & sales & May \\
\hline 59 & . & 59 & 8 & KEY_ARC BASIC & 25 & 1 & sales & March \\
\hline 60 & . & 60 & 7 & KEY_ARC BASIC & 25 & 1 & sales & April \\
\hline 61 & . & 61 & 9 & NONKEY ARC BASIC & 25 & 1 & sales & May \\
\hline 62 & & 62 & 12 & KEY_ARC BASIC & 25 & 2 & sales & March \\
\hline 63 & -32.020 & 63 & 10 & UPPERBD NONBASIC & 25 & 2 & sales & April \\
\hline 64 & . & 64 & 14 & KEY_ARC BASIC & 25 & 2 & sales & May \\
\hline 65 & & -2 & . & NONKEY BASIC & . & 1 & chips & \\
\hline 66 & 1.617 & 0 & . & LOWERBD NONBASIC & . & 1 & chips & \\
\hline 67 & 2.797 & -3 & & LOWERBD NONBASIC & & 2 & chips & \\
\hline 68 & . & -1 & . & NONKEY BASIC & - & 2 & chips & \\
\hline
\end{tabular}

Output 5.8.4. DUALOUT=DUAL7
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Nonarc Variables in the Side Constraints Production Planning/Inventory/Distribution} \\
\hline Obs & _node_ & _supdem_ & _DUAL_ & _NNUMB & _PRED_ & _TRAV_ _SCESS_ \\
\hline 1 & f1_apr_1 & - & -100000275.50 & 2 & 1 & \(5 \quad 2\) \\
\hline 2 & f1_apr_2 & . & -100000405.92 & 7 & 20 & \(6 \quad 2\) \\
\hline 3 & f1_mar_1 & . & -100000326.65 & 3 & 17 & 120 \\
\hline 4 & f1_mar_2 & . & -100000480.13 & 8 & 20 & \(7 \quad 1\) \\
\hline 5 & f1_may_1 & . & -100000284.00 & 4 & 1 & 13 3 \\
\hline 6 & f1_may_2 & . & -100000356.24 & 9 & 18 & 21 \\
\hline 7 & f2_apr_1 & . & -100000286.50 & 5 & 2 & \(4 \quad 1\) \\
\hline 8 & f2_apr_2 & . & -100000383.41 & 10 & 16 & 18 3 \\
\hline 9 & f2_mar_1 & . & -100000281.90 & 11 & 15 & 16 1 \\
\hline 10 & f2_mar_2 & . & -100000399.07 & 12 & 20 & \(10 \quad 1\) \\
\hline 11 & f2_may_1 & . & -100000300.00 & 13 & 4 & 19 2 \\
\hline 12 & f2_may_2 & . & -100000375.30 & 14 & 16 & 206 \\
\hline 13 & fact1_1 & 1000 & -100000193.90 & 1 & 3 & \(21 \quad 19\) \\
\hline 14 & fact1_2 & 1000 & -100000227.42 & 6 & 7 & 12 1 \\
\hline 15 & fact2_1 & 850 & -100000193.90 & 15 & 21 & 11 2 \\
\hline 16 & fact2_2 & 1500 & -100000193.90 & 16 & 21 & \(14 \quad 10\) \\
\hline 17 & shop1_1 & -900 & -99999999.00 & 17 & 22 & \(3 \quad 21\) \\
\hline 18 & shop1_2 & -900 & -99999841.22 & 18 & 10 & 92 \\
\hline 19 & shop2_1 & -900 & -100000001.00 & 19 & 13 & 22 1 \\
\hline 20 & shop2_2 & -1450 & -99999856.24 & 20 & 14 & 85 \\
\hline 21 & & . & 0.00 & 4 & 4 & 4 \\
\hline 22 & & . & -1.00 & 2 & 2 & . . \\
\hline 23 & & . & -1.62 & 0 & 17 & . . \\
\hline 24 & & . & 1.80 & 3 & 20 & . . \\
\hline 25 & & . & 0.00 & 1 & 1 & . . \\
\hline 26 & & . & -0.48 & 5 & 7 & . . \\
\hline Obs & _ ARCID & _FLOW & _FBQ _ VALUE & _RHS_ & _TYPE & _row- \\
\hline 1 & 1 & 490.000 & 1 & . & & \\
\hline 2 & -60 & 245.000 & 15 & . & & \\
\hline 3 & -41 & 148.333 & 5 & . & & \\
\hline 4 & -59 & 455.000 & 19 & . & & \\
\hline 5 & 8 & 66.667 & 8 & . & & \\
\hline 6 & -49 & 347.500 & 22 & . & & \\
\hline 7 & 11 & 20.000 & 11 & . & & \\
\hline 8 & 26 & 542.500 & 25 & . & & \\
\hline 9 & 30 & 255.000 & 29 & . & & \\
\hline 10 & -62 & 125.000 & 32 & . & & \\
\hline 11 & 35 & 115.000 & 35 & . & & \\
\hline 12 & 39 & 87.500 & 38 & . & & \\
\hline 13 & -5 & 288.333 & -1 & . & & \\
\hline 14 & -15 & 200.000 & -15 & . & & \\
\hline 15 & -67 & 45.000 & -41 & . & & \\
\hline 16 & -68 & 150.000 & -41 & . & & \\
\hline 17 & 0 & 0.000 & 41 & . & & \\
\hline 18 & 51 & 52.500 & 47 & . & & \\
\hline 19 & 58 & 150.000 & 53 & . & & \\
\hline 20 & 64 & 122.500 & 59 & . & & \\
\hline 21 & & 260.000 & 260 & 0 & GE & CHIP LEFTOVER \\
\hline 22 & -2 & 20.000 & 2600 & 2600 & EQ & FACT1 APL GIZMO \\
\hline 23 & 43 & 1.667 & 2615 & 2615 & EQ & FACT1 MAR GIZMO \\
\hline 24 & 61 & 2.500 & 3750 & 3750 & EQ & FACT2 APL GIZMO \\
\hline 25 & -1 & 280.000 & 3750 & 3750 & EQ & FACT2 MAR GIZMO \\
\hline 26 & 17 & 0.000 & 50 & 50 & LE & TOTAL BACKORDER \\
\hline
\end{tabular}

The optimal value of the nonarc variable "f2 unused chips" is 280 . This means that although there are 3750 chips that can be used at factory 2 in March, only 3470 are used. As the optimal value of " f 1 unused chips" is zero, all chips available for production in March at factory 1 are used. The nonarc variable " f 2 chips from mar" also has zero optimal value. This means that the April production at factory 2 does not need any chips that could have been held in inventory since March. However, the nonarc variable "f1 chips from mar" has value of 20. Thus, 3490 chips should be ordered for factory 2 in March. Twenty of these chips should be held in inventory until April, then sent to factory 1.

\section*{References}

Bland, R. G. (1977), "New Finite Pivoting Rules for the Simplex Method," Mathematics of Operations Research, 2, 103-107.

George, A., Liu, J., and Ng, E. (2001), "Computer Solution of Positive Definite Systems," Unpublished book obtainable from authors.

Kearney, T. D. (1990), "A Tutorial on the NETFLOW Procedure in SAS/OR," Proceedings of the Fifteenth Annual SAS Users Group International Conference, 97-108.

Kennington, J. L. and Helgason, R. V. (1980), Algorithms for Networking Programming, New York: Wiley Interscience, John Wiley \& Sons.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), "On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming," SIAM Journal of Optimization, 2, 435-449.

Reid, J. K. (1975), "A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Programming Bases," Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear Optimization, Chichester, England: John Wiley \& Sons.

Ryan, D. M. and Osborne, M. R. (1988), "On the Solution of Highly Degenerate Linear Programmes," Mathematical Programming, 41, 385-392.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.
Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John Wiley \& Sons.

508 - Chapter 5. The NETFLOW Procedure

\section*{Chapter 6 The NLP Procedure}

\section*{Chapter Contents}
OVERVIEW ..... 511
GETTING STARTED ..... 513
Introductory Examples ..... 513
SYNTAX ..... 524
Functional Summary ..... 524
PROC NLP Statement ..... 527
ARRAY Statement ..... 547
BOUNDS Statement ..... 547
BY Statement ..... 548
CRPJAC Statement ..... 548
DECVAR Statement ..... 549
GRADIENT Statement ..... 550
HESSIAN Statement ..... 550
INCLUDE Statement ..... 551
JACNLC Statement ..... 551
JACOBIAN Statement ..... 552
LABEL Statement ..... 553
LINCON Statement ..... 553
MATRIX Statement ..... 554
MIN, MAX, and LSQ Statements ..... 556
MINQUAD and MAXQUAD Statements ..... 556
NLINCON Statement ..... 558
PROFILE Statement ..... 559
Program Statements ..... 560
DETAILS ..... 565
Criteria for Optimality ..... 565
Optimization Algorithms ..... 568
Finite-Difference Approximations of Derivatives ..... 579
Hessian and CRP Jacobian Scaling ..... 582
Testing the Gradient Specification ..... 582
Termination Criteria ..... 583
Active Set Methods ..... 584
Feasible Starting Point ..... 587
Line-Search Methods ..... 587
Restricting the Step Length ..... 588
Computational Problems ..... 589
Covariance Matrix ..... 592
Input and Output Data Sets ..... 596
Displayed Output ..... 604
Missing Values ..... 606
Computational Resources ..... 607
EXAMPLES ..... 611
Example 6.1. Using the DATA= Option ..... 611
Example 6.2. Using the INQUAD= Option ..... 613
Example 6.3. Using the INEST=Option ..... 614
Example 6.4. Restarting an Optimization ..... 616
Example 6.5. Approximate Standard Errors ..... 617
Example 6.6. Maximum Likelihood Weibull Estimation ..... 624
Example 6.7. Simple Pooling Problem ..... 631
Example 6.8. Chemical Equilibrium ..... 639
Example 6.9. Minimize Total Delay in a Network ..... 644
REFERENCES ..... 649

\section*{Chapter 6 The NLP Procedure}

\section*{Overview}

The NLP procedure (NonLinear Programming) offers a set of optimization techniques for minimizing or maximizing a continuous nonlinear function \(f(x)\) of \(n\) decision variables, \(x=\left(x_{1}, \ldots, x_{n}\right)^{T}\) with lower and upper bound, linear and nonlinear, equality and inequality constraints. This can be expressed as solving
\[
\begin{array}{lll}
\min _{x \in \mathcal{R}^{n}} & f(x) & \\
\text { subject to } & c_{i}(x)=0, & i=1, \ldots, m_{e} \\
& c_{i}(x) \geq 0, & i=m_{e}+1, \ldots, m \\
& l_{i} \leq x_{i} \leq u_{i}, & i=1, \ldots, n
\end{array}
\]
where \(f\) is the objective function, the \(c_{i}\) 's are the nonlinear functions, and the \(l_{i}\) 's and \(u_{i}\) 's are the lower and upper bounds. Problems of this type are found in many settings ranging from optimal control to maximum likelihood estimation.

The NLP procedure provides a number of algorithms for solving this problem that take advantage of special structure on the objective function and constraints. One example is the quadratic programming problem:
\[
\begin{array}{ll}
\min (\max ) & f(x)=\frac{1}{2} x^{T} G x+g^{T} x+b \\
\text { subject to } & c_{i}(x)=0, \quad i=1, \ldots, m_{e}
\end{array}
\]
where \(G\) is an \(n \times n\) symmetric matrix, \(g=\left(g_{1}, \ldots, g_{n}\right)^{T}\) is a vector, \(b\) is a scalar, and the \(c_{i}(x)\) 's are linear functions.

Another example is the least-squares problem:
\[
\begin{array}{ll}
\min & f(x)=\frac{1}{2}\left\{f_{1}^{2}(x)+\cdots+f_{l}^{2}(x)\right\} \\
\text { subject to } & c_{i}(x)=0, \quad i=1, \ldots, m_{e}
\end{array}
\]
where the \(c_{i}(x)\) 's are linear functions, and \(f_{1}(x), \ldots, f_{l}(x)\) are nonlinear functions of \(x\).

The following problems are handled by PROC NLP:
- quadratic programming with an option for sparse problems
- unconstrained minimization/maximization
- constrained minimization/maximization
- linear complementarity problem

The following optimization techniques are supported in PROC NLP:
- Quadratic Active Set Technique
- Trust Region Method
- Newton-Raphson Method with Line Search
- Newton-Raphson Method with Ridging
- Quasi-Newton Methods
- Double Dogleg Method
- Conjugate Gradient Methods
- Nelder-Mead Simplex Method
- Levenberg-Marquardt Method
- Hybrid Quasi-Newton Methods

These optimization techniques require a continuous objective function \(f\), and all but one (NMSIMP) require continuous first-order derivatives of the objective function \(f\). Some of the techniques also require continuous second-order derivatives. There are three ways to compute derivatives in PROC NLP:
- analytically (using a special derivative compiler), the default method
- via finite-difference approximations
- via user-supplied exact or approximate numerical functions

Nonlinear programs can be input into the procedure in various ways. The objective, constraint, and derivative functions are specified using the programming statements of PROC NLP. In addition, information in SAS data sets can be used to define the structure of objectives and constraints as well as specify constants used in objectives, constraints and derivatives.

PROC NLP uses data sets to input various pieces of information:
- The DATA= data set enables you to specify data shared by all functions involved in a least-squares problem.
- The INQUAD= data set contains the arrays appearing in a quadratic programming problem.
- The INEST= data set specifies initial values for the decision variables, the values of constants that are referred to in the program statements, and simple boundary and general linear constraints.
- The MODEL= data set specifies a model (functions, constraints, derivatives) saved at a previous execution of the NLP procedure.

PROC NLP uses data sets to output various results:
- The OUTEST = data set saves the values of the decision variables, the derivatives, the solution, and the covariance matrix at the solution.
- The OUT= output data set contains variables generated in the program statements defining the objective function as well as selected variables of the DATA= input data set, if available.
- The OUTMODEL= data set saves the programming statements. It can be used to input a model in the MODEL= input data set.

\section*{Getting Started}

The NLP procedure solves general nonlinear programs. It has several optimizers that are tuned to best perform on a particular class of problems. Guidelines for choosing a particular optimizer for a problem can be found in the the "Optimization Algorithms" section on page 568.

Regardless of the selected optimizer, it is necessary to specify an objective function and constraints that the optimal solution must satisfy. In PROC NLP, the objective function and the constraints are specified using SAS programming statements that are similar to those used in the SAS DATA step. Some of the differences are discussed in the "Program Statements" section on page 560 and in the "ARRAY Statement" section on page 547 . As with any programming language, there are many different ways to specify the same problem. Some are more economical than others.

\section*{Introductory Examples}

The following introductory examples illustrate how to get started using the NLP procedure.

\section*{An Unconstrained Problem}

Consider the simple example of minimizing the Rosenbrock function (Rosenbrock 1960):
\[
\begin{aligned}
f(x) & =\frac{1}{2}\left\{100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}\right\} \\
& =\frac{1}{2}\left\{f_{1}^{2}(x)+f_{2}^{2}(x)\right\}, \quad x=\left(x_{1}, x_{2}\right)
\end{aligned}
\]

The minimum function value is \(f\left(x^{*}\right)=0\) at \(x^{*}=(1,1)\). This problem does not have any constraints.

The following statements can be used to solve this problem:
```

proc nlp;
min f;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
f = .5 * (f1 * f1 + f2 * f2);
run;

```

The MIN statement identifies the symbol \(\mathbf{f}\) that characterizes the objective function in terms of \(\mathbf{f 1}\) and \(\mathbf{f 2}\), and the DECVAR statement names the decision variables \(\mathbf{x 1}\) and \(\mathbf{x 2}\). Because there is no explicit optimizing algorithm option specified (TECH=), PROC NLP uses the Newton-Raphson method with ridging, the default algorithm when there are no constraints.

A better way to solve this problem is to take advantage of the fact that \(f\) is a sum of squares of \(f_{1}\) and \(f_{2}\) and to treat it as a least-squares problem. Using the LSQ statement instead of the MIN statement tells the procedure that this is a least-squares problem, which results in the use of one of the specialized algorithms for solving least-squares problems (for example, Levenberg-Marquardt).
```

proc nlp;
lsq f1 f2;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
run;

```

The LSQ statement results in the minimization of a function that is the sum of squares of functions that appear in the LSQ statement. The least-squares specification is preferred because it enables the procedure to exploit the structure in the problem for numerical stability and performance.

PROC NLP displays the iteration history and the solution to this least-squares problem as shown in Figure 6.1. It shows that the solution has \(x_{1}=1\) and \(x_{2}=1\). As expected in an unconstrained problem, the gradient at the solution is very close to 0 .


Figure 6.1. Least-Squares Minimization

\section*{Boundary Constraints on the Decision Variables}

Bounds on the decision variables can be used. Suppose, for example, that it is necessary to constrain the decision variables in the previous example to be less than 0.5. That can be done by adding a BOUNDS statement.
```

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1-x2 <= .5;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
run;

```

The solution in Figure 6.2 shows that the decision variables meet the constraint bounds.


Figure 6.2. Least-Squares with Bounds Solution

\section*{Linear Constraints on the Decision Variables}

More general linear equality or inequality constraints of the form
\[
\sum_{j=1}^{n} a_{i j} x_{j}\{\leq|=| \geq\} b_{i} \quad \text { for } i=1, \ldots, m
\]
can be specified in a LINCON statement. For example, suppose that in addition to the bounds constraints on the decision variables it is necessary to guarantee that the sum \(x_{1}+x_{2}\) is less than or equal to 0.6 . That can be achieved by adding a LINCON statement:
```

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
run;

```

The output in Figure 6.3 displays the iteration history and the convergence criterion.


Figure 6.3. Least-Squares with Bounds and Linear Constraints Iteration History
Figure 6.4 shows that the solution satisfies the linear constraint. Note that the procedure displays the active constraints (the constraints that are tight) at optimality.


Figure 6.4. Least-Squares with Bounds and Linear Constraints Solution

\section*{Nonlinear Constraints on the Decision Variables}

More general nonlinear equality or inequality constraints can be specified using an NLINCON statement. Consider the least-squares problem with the additional constraint
\[
x_{1}^{2}-2 x_{2} \geq 0
\]

This constraint is specified by a new function c1 constrained to be greater than or equal to 0 in the NLINCON statement. The function c1 is defined in the programming statements.
```

proc nlp tech=QUANEW;
min f;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
nlincon c1 >= 0;
c1 = x1 * x1 - 2 * x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
f = .5 * (f1 * f1 + f2 * f2);
run;

```

Figure 6.5 shows the iteration history, and Figure 6.6 shows the solution to this problem.


Figure 6.5. Least-Squares with Bounds, Linear and Nonlinear Constraints, Iteration History


Figure 6.6. Least-Squares with Bounds, Linear and Nonlinear Constraints, Solution

Not all of the optimization methods support nonlinear constraints. In particular the Levenberg-Marquardt method, the default for LSQ, does not support nonlinear constraints. (For more information about the particular algorithms, see the "Optimization Algorithms" section on page 568.) The Quasi-Newton method is the prime choice for solving nonlinear programs with nonlinear constraints. The option TECH=QUANEW in the PROC NLP statement causes the Quasi-Newton method to be used.

\section*{A Simple Maximum Likelihood Example}

The following is a very simple example of a maximum likelihood estimation problem with the log likelihood function:
\[
l(\mu, \sigma)=-\log (\sigma)-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}
\]

The maximum likelihood estimates of the parameters \(\mu\) and \(\sigma\) form the solution to
\[
\max _{\mu, \sigma>0} \sum_{i} l_{i}(\mu, \sigma)
\]
where
\[
l_{i}(\mu, \sigma)=-\log (\sigma)-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}
\]

In the following DATA step, values for \(x\) are input into SAS data set X; this data set provides the values of \(x_{i}\).
```

data x;
input x @@;
datalines;
1 3 4 5 7
;

```

In the following statements, the DATA=X specification drives the building of the objective function. When each observation in the DATA=X data set is read, a new term \(l_{i}(\mu, \sigma)\) using the value of \(x_{i}\) is added to the objective function LOGLIK specified in the MAX statement.
```

proc nlp data=x vardef=n covariance=h pcov phes;
profile mean sigma / alpha=.5 . 1 .05 .01;
max loglik;
parms mean=0, sigma=1;
bounds sigma > 1e-12;
loglik=-0.5*((x-mean)/sigma)**2-log(sigma);
run;

```

After a few iterations of the default Newton-Raphson optimization algorithm, PROC NLP produces the results shown in Figure 6.7.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PROC NLP: Nonlinear Maximization} \\
\hline \multicolumn{5}{|c|}{Optimization Results
Parameter Estimates} \\
\hline & & Approx & & Approx \\
\hline N Parameter & Estimate & Std Err & t Value & Pr > |t| \\
\hline 1 mean & 4.000000 & 0.894427 & 4.472136 & 0.006566 \\
\hline 2 sigma & 2.000000 & 0.632456 & 3.162278 & 0.025031 \\
\hline \multicolumn{5}{|c|}{Optimization Results} \\
\hline \multicolumn{5}{|c|}{Gradient} \\
\hline \multicolumn{5}{|c|}{Objective} \\
\hline \multicolumn{5}{|c|}{Function} \\
\hline \multicolumn{5}{|c|}{-1.33149E-10} \\
\hline \multicolumn{5}{|c|}{\(5.6064147 \mathrm{E}-9\)} \\
\hline \multicolumn{5}{|c|}{Value of Objective Function \(=-5.965735903\)} \\
\hline
\end{tabular}

Figure 6.7. Maximum Likelihood Estimates

In unconstrained maximization, the gradient (that is, the vector of first derivatives) at the solution must be very close to zero and the Hessian matrix at the solution (that is, the matrix of second derivatives) must have nonpositive eigenvalues. The Hessian matrix is displayed in Figure 6.8.


Figure 6.8. Hessian Matrix
Under reasonable assumptions, the approximate standard errors of the estimates are the square roots of the diagonal elements of the covariance matrix of the parameter estimates, which (because of the \(\mathrm{COV}=\mathrm{H}\) specification) is the same as the inverse of the Hessian matrix. The covariance matrix is shown in Figure 6.9.


Figure 6.9. Covariance Matrix
The PROFILE statement computes the values of the profile likelihood confidence limits on SIGMA and MEAN, as shown in Figure 6.10.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{Parameter} & \multicolumn{4}{|l|}{PROC NLP: Nonlinear Maximization Wald and PL Confidence Limits} \\
\hline & & Estimate & Alpha & \multicolumn{2}{|l|}{Profile Likelihood Confidence Limits} \\
\hline 1 & mean & 4.000000 & 0.500000 & 3.384431 & 4.615569 \\
\hline 1 & mean & . & 0.100000 & 2.305716 & 5.694284 \\
\hline 1 & mean & - & 0.050000 & 1.849538 & 6.150462 \\
\hline 1 & mean & - & 0.010000 & 0.670351 & 7.329649 \\
\hline 2 & sigma & 2.000000 & 0.500000 & 1.638972 & 2.516078 \\
\hline 2 & sigma & . & 0.100000 & 1.283506 & 3.748633 \\
\hline 2 & sigma & - & 0.050000 & 1.195936 & 4.358321 \\
\hline 2 & sigma & - & 0.010000 & 1.052584 & 6.064107 \\
\hline \multicolumn{6}{|c|}{Wald and PL Confidence Limits} \\
\hline \multicolumn{6}{|c|}{Wald Confidence Limits} \\
\hline & & 3.396718 & 4.603 & & \\
\hline & & 2.528798 & 5.471 & & \\
\hline & & 2.246955 & 5.753 & & \\
\hline & & 1.696108 & 6.303 & & \\
\hline & & 1.573415 & 2.426 & & \\
\hline & & 0.959703 & 3.040 & & \\
\hline & & 0.760410 & 3.239 & & \\
\hline & & 0.370903 & 3.629 & & \\
\hline
\end{tabular}

Figure 6.10. Confidence Limits

\section*{Syntax}

Below are statements used in PROC NLP, listed in alphabetical order as they appear in the text that follows.
```

PROC NLP options;
ARRAY function names;
BOUNDS boundary constraints;
BY variables;
CRPJAC variables;
DECVAR function names;
GRADIENT variables;
HESSIAN variables;
INCLUDE model files;
JACNLC variables;
JACOBIAN function names;
LABEL decision variable labels;
LINCON linear constraints;
MATRIX matrix specification ;
MIN, MAX, or LSQ function names;
MINQUAD or MAXQUAD matrix, vector, or number;
NLINCON nonlinear constraints;
PROFILE profile specification;
Program Statements;

```

\section*{Functional Summary}

The following table outlines the options in PROC NLP classified by function.
Table 6.1. Functional Summary

\section*{Description \\ Statement Option}

\section*{Input Data Set Options:}
input data set
initial values and constraints
quadratic objective function
program statements
skip missing value observations
PROC NLP DATA=
PROC NLP INEST=
PROC NLP INQUAD=
PROC NLP MODEL=
PROC NLP NOMISS

\section*{Output Data Set Options:}
variables and derivatives
result parameter values
program statements
combine various OUT... statements
CRP Jacobian in the OUTEST= data set derivatives in the OUT= data set

PROC NLP OUT=
PROC NLP OUTEST= PROC NLP OUTMODEL=
PROC NLP OUTALL
PROC NLP OUTCRPJAC
PROC NLP OUTDER=

\section*{Description}
grid in the OUTEST= data set
Hessian in the OUTEST= data set iterative output in the OUTEST= data set
Jacobian in the OUTEST= data set
NLC Jacobian in the OUTEST= data set
time in the OUTEST= data set
Optimization Options:
minimization method
update technique
version of optimization technique
line-search method
line-search precision
type of Hessian scaling
start for approximated Hessian
iteration number for update restart

\section*{Initial Value Options:}
produce best grid points infeasible points in grid search pseudorandom initial values constant initial values

\section*{Derivative Options:}
finite-difference derivatives
finite-difference derivatives
compute finite-difference interval
use only diagonal of Hessian
test gradient specification

\section*{Constraint Options:}
range for active constraints
LM tolerance for deactivating
tolerance for dependent constraints sum all observations for continuous functions
evaluate each observation for continuous functions

\section*{Termination Criteria Options:}
maximum number of function calls
maximum number of iterations
minimum number of iterations
upper limit on CPU time
absolute function convergence criterion
absolute function convergence criterion

\section*{Statement Option}
\begin{tabular}{ll} 
PROC NLP & OUTGRID \\
PROC NLP & OUTHESSIAN \\
PROC NLP & OUTITER \\
PROC NLP & OUTJAC \\
PROC NLP & OUTNLCJAC \\
PROC NLP & OUTTIME
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & TECH= \\
PROC NLP & UPDATE= \\
PROC NLP & VERSION= \\
PROC NLP & LINESEARCH= \\
PROC NLP & LSPRECISION= \\
PROC NLP & HESCAL= \\
PROC NLP & INHESSIAN= \\
PROC NLP & RESTART=
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & BEST \(=\) \\
PROC NLP & INFEASIBLE \\
PROC NLP & RANDOM \(=\) \\
PROC NLP & INITIAL=
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & FD= \\
PROC NLP & FDHESSIAN= \\
PROC NLP & FDINT= \\
PROC NLP & DIAHES \\
PROC NLP & GRADCHECK=
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & LCEPSILON= \\
PROC NLP & LCDEACT= \\
PROC NLP & LCSINGULAR= \\
NLINCON & / SUMOBS \\
NLINCON & / EVERYOBS
\end{tabular}

PROC NLP MAXFUNC= PROC NLP MAXITER= PROC NLP MINITER= PROC NLP MAXTIME= PROC NLP ABSCONV= PROC NLP ABSFCONV=
Description Statement Option
absolute gradient convergence criterion absolute parameter convergence criterion relative function convergence criterion relative function convergence criterion relative gradient convergence criterion relative gradient convergence criterion relative parameter convergence criterion used in FCONV, GCONV criterion used in XCONV criterion

\section*{Covariance Matrix Options:}
type of covariance matrix
\(\sigma^{2}\) factor of COV matrix
determine factor of COV matrix absolute singularity for inertia relative M singularity for inertia relative V singularity for inertia threshold for Moore-Penrose inverse tolerance for singular COV matrix profile confidence limits

\section*{Printed Output Options:}
display (almost) all printed output
suppress all printed output
reduce some default output reduce most default output
display initial values and gradients display optimization history
display Jacobian matrix
display crossproduct Jacobian matrix
display Hessian matrix
display Jacobian of nonlinear constraints
display values of grid points
display values of functions in LSQ, MIN, MAX
display approximate standard errors
display covariance matrix
display eigenvalues for covariance matrix
print code evaluation problems
print measures of CPU time
display model program, variables
display compiled model program

\section*{Step Length Options:}
damped steps in line search
maximum trust region radius
\begin{tabular}{ll} 
PROC NLP & ABSGCONV= \(=\) \\
PROC NLP & ABSXCONV= \\
PROC NLP & FCONV= \\
PROC NLP & FCONV2= \\
PROC NLP & GCONV= \\
PROC NLP & GCONV2= \\
PROC NLP & XCONV= \\
PROC NLP & FSIZE= \\
PROC NLP & XSIZE=
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & COV= \\
PROC NLP & SIGSQ= \(=\) \\
PROC NLP & VARDEF= \\
PROC NLP & ASINGULAR= \\
PROC NLP & MSINGULAR= \\
PROC NLP & VSINGULAR= \\
PROC NLP & G4= \\
PROC NLP & COVSING= \\
PROC NLP & CLPARM=
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & PALL \\
PROC NLP & NOPRINT \\
PROC NLP & PSHORT \\
PROC NLP & PSUMMARY \\
PROC NLP & PINIT \\
PROC NLP & PHISTORY \\
PROC NLP & PJACOBI \\
PROC NLP & PCRPJAC \\
PROC NLP & PHESSIAN \\
PROC NLP & PNLCJAC \\
PROC NLP & PGRID \\
PROC NLP & PFUNCTION \\
PROC NLP & PSTDERR \\
PROC NLP & PCOV \\
PROC NLP & PEIGVAL \\
PROC NLP & PERROR \\
PROC NLP & PTIME \\
PROC NLP & LIST \\
PROC NLP & LISTCODE
\end{tabular}
\begin{tabular}{ll} 
PROC NLP & DAMPSTEP= \\
PROC NLP & MAXSTEP \(=\)
\end{tabular}

\section*{Description}
initial trust region radius
Profile Point and Confidence Interval Options: factor relating discrepancy function to \(\chi^{2}\) quantile scale for \(y\) values written to OUTEST= data set upper bound for confidence limit search write all confidence limit parameter estimates to OUTEST= data set

\section*{Miscellaneous Options:}
number of accurate digits in objective function
number of accurate digits in nonlinear constraints
general singularity criterion
do not compute inertia of matrices
check optimality in neighborhood

\section*{Statement Option}

PROC NLP INSTEP=

PROFILE FFACTOR=
PROFILE FORCHI=
PROFILE FEASRATIO=
PROFILE OUTTABLE

PROC NLP FDIGITS=
PROC NLP CDIGITS=
PROC NLP SINGULAR=
PROC NLP NOEIGNUM
PROC NLP OPTCHECK=

\section*{PROC NLP Statement}

\section*{PROC NLP options;}

This statement invokes the NLP procedure. The following options are used with the PROC NLP statement.

\section*{ABSCONV= \(r\)}

ABSTOL= \(r\)
specifies an absolute function convergence criterion. For minimization (maximization), termination requires \(f\left(x^{(k)}\right) \leq(\geq) r\). The default value of ABSCONV is the negative (positive) square root of the largest double precision value.
```

ABSFCONV $=r[n]$
ABSFTOL $=r[n]$

```
specifies an absolute function convergence criterion. For all techniques except NMSIMP, termination requires a small change of the function value in successive iterations:
\[
\left|f\left(x^{(k-1)}\right)-f\left(x^{(k)}\right)\right| \leq r
\]

For the NMSIMP technique the same formula is used, but \(x^{(k)}\) is defined as the vertex with the lowest function value, and \(x^{(k-1)}\) is defined as the vertex with the highest function value in the simplex. The default value is \(r=0\). The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

\section*{ABSGCONV=r[n] \\ ABSGTOL= \(r[n]\)}
specifies the absolute gradient convergence criterion. Termination requires the maximum absolute gradient element to be small:
\[
\max _{j}\left|g_{j}\left(x^{(k)}\right)\right| \leq r
\]

This criterion is not used by the NMSIMP technique. The default value is \(r=1 \mathrm{E}-5\). The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

ABSXCONV \(=r[n]\)
ABSXTOL= \(r[n]\)
specifies the absolute parameter convergence criterion. For all techniques except NMSIMP, termination requires a small Euclidean distance between successive parameter vectors:
\[
\left\|x^{(k)}-x^{(k-1)}\right\|_{2} \leq r
\]

For the NMSIMP technique, termination requires either a small length \(\alpha^{(k)}\) of the vertices of a restart simplex
\[
\alpha^{(k)} \leq r
\]
or a small simplex size
\[
\delta^{(k)} \leq r
\]
where the simplex size \(\delta^{(k)}\) is defined as the \(L_{1}\) distance of the simplex vertex \(y^{(k)}\) with the smallest function value to the other \(n\) simplex points \(x_{l}^{(k)} \neq y^{(k)}\) :
\[
\delta^{(k)}=\sum_{x_{l} \neq y}\left\|x_{l}^{(k)}-y^{(k)}\right\|_{1}
\]

The default value is \(r=1 \mathrm{E}-4\) for the COBYLA NMSIMP technique, \(r=1 \mathrm{E}-8\) for the standard NMSIMP technique, and \(r=0\) otherwise. The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

\section*{ASINGULAR= \(r\)}

ASING=r
specifies an absolute singularity criterion for measuring singularity of Hessian and crossproduct Jacobian and their projected forms, which may have to be converted to compute the covariance matrix. The default is the square root of the smallest positive double precision value. For more information, see the "Covariance Matrix" section on page 592.

\section*{BEST= \(i\)}
produces the \(i\) best grid points only. This option not only restricts the output, it also can significantly reduce the computation time needed for sorting the grid point information.

\section*{CDIGITS= \(r\)}
specifies the number of accurate digits in nonlinear constraint evaluations. Fractional values such as CDIGITS \(=4.7\) are allowed. The default value is \(r=-\log _{10}(\epsilon)\), where \(\epsilon\) is the machine precision. The value of \(r\) is used to compute the interval length \(h\) for the computation of finite-difference approximations of the Jacobian matrix of nonlinear constraints.

\section*{CLPARM= PL | WALD | BOTH}
is similar to but not the same as that used by other SAS procedures. Using CLPARM=BOTH is equivalent to specifying

PROFILE / ALPHA=0.5 0.1 0.05 0.01 OUTTABLE;
The CLPARM=BOTH option specifies that profile confidence limits (PL CLs) for all parameters and for \(\alpha=.5, .1, .05, .01\) are computed and displayed or written to the OUTEST= data set. Computing the profile confidence limits for all parameters can be very expensive and should be avoided when a difficult optimization problem or one with many parameters is solved. The OUTTABLE option is valid only when an OUTEST = data set is specified in the PROC NLP statement. For CLPARM=BOTH, the table of displayed output contains the Wald confidence limits computed from the standard errors as well as the PL CLs. The Wald confidence limits are not computed (displayed or written to the OUTEST= data set) unless the approximate covariance matrix of parameters is computed.

COV=1|2|3|4|5|6|M|H|J|B|E|U
COVARIANCE=1|2|3|4|5|6|M|H|J|B|E|U
specifies one of six formulas for computing the covariance matrix. For more information, see the "Covariance Matrix" section on page 592.

\section*{COVSING=r}
specifies a threshold \(r>0\) that determines whether the eigenvalues of a singular Hessian matrix or crossproduct Jacobian matrix are considered to be zero. For more information, see the "Covariance Matrix" section on page 592.

\section*{DAMPSTEP[ \(=r\) ] \\ DS[=r]}
specifies that the initial step length value \(\alpha^{(0)}\) for each line search (used by the QUANEW, HYQUAN, CONGRA, or NEWRAP technique) cannot be larger than \(r\) times the step length value used in the former iteration. If the DAMPSTEP option is specified but \(r\) is not specified, the default is \(r=2\). The DAMPSTEP \(=r\) option can prevent the line-search algorithm from repeatedly stepping into regions where some objective functions are difficult to compute or where they could lead to floating point overflows during the computation of objective functions and their derivatives. The DAMPSTEP \(=r\) option can save time-costly function calls during the line searches of objective functions that result in very small steps. For more information, see the section "Restricting the Step Length" on page 588.

\section*{DATA=SAS-data-set}
allows variables from the specified data set to be used in the specification of the objective function \(f\). For more information, see the "DATA= Input Data Set" section on page 596 .

\section*{DIAHES}
specifies that only the diagonal of the Hessian or crossproduct Jacobian is used. This saves function evaluations but may slow the convergence process considerably. Note that the DIAHES option refers to both the Hessian and the crossproduct Jacobian when using the LSQ statement. When derivatives are specified using the HESSIAN or CRPJAC statement, these statements must refer only to the \(n\) diagonal derivative elements (otherwise, the \(n(n+1) / 2\) derivatives of the lower triangle must be specified). The DIAHES option is ignored if a quadratic programming with a constant Hessian is specified by TECH=QUADAS or TECH=LICOMP.

FCONV= \(r[n]\)
FTOL= \(r[n]\)
specifies the relative function convergence criterion. For all techniques except NMSIMP, termination requires a small relative change of the function value in successive iterations:
\[
\frac{\left|f\left(x^{(k)}\right)-f\left(x^{(k-1)}\right)\right|}{\max \left(\left|f\left(x^{(k-1)}\right)\right|, F S I Z E\right)} \leq r
\]
where FSIZE is defined by the FSIZE= option. For the NMSIMP technique, the same formula is used, but \(x^{(k)}\) is defined as the vertex with the lowest function value, and \(x^{(k-1)}\) is defined as the vertex with the highest function value in the simplex. The default value is \(r=10^{-F D I G I T S}\) where FDIGITS is the value of the FDIGITS \(=\) option. The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

\section*{FCONV2=r[n] \\ FTOL2 \(=r[n]\)}
specifies another function convergence criterion. For least-squares problems and all techniques except NMSIMP, termination requires a small predicted reduction
\[
d f^{(k)} \approx f\left(x^{(k)}\right)-f\left(x^{(k)}+s^{(k)}\right)
\]
of the objective function. The predicted reduction
\[
\begin{aligned}
d f^{(k)} & =-g^{(k) T} s^{(k)}-\frac{1}{2} s^{(k) T} G^{(k)} s^{(k)} \\
& =-\frac{1}{2} s^{(k) T} g^{(k)} \\
& \leq r
\end{aligned}
\]
is based on approximating the objective function \(f\) by the first two terms of the Taylor series and substituting the Newton step
\[
s^{(k)}=-G^{(k)-1} g^{(k)}
\]

For the NMSIMP technique, termination requires a small standard deviation of the function values of the \(n+1\) simplex vertices \(x_{l}^{(k)}, l=0, \ldots, n\),
\[
\sqrt{\frac{1}{n+1} \sum_{l}\left(f\left(x_{l}^{(k)}\right)-\bar{f}\left(x^{(k)}\right)\right)^{2}} \leq r
\]
where \(\bar{f}\left(x^{(k)}\right)=\frac{1}{n+1} \sum_{l} f\left(x_{l}^{(k)}\right)\). If there are \(n_{\text {act }}\) boundary constraints active at \(x^{(k)}\), the mean and standard deviation are computed only for the \(n+1-n_{\text {act }}\) unconstrained vertices. The default value is \(r=1 \mathrm{E}-6\) for the NMSIMP technique and the QUANEW technique with nonlinear constraints, and \(r=0\) otherwise. The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

\section*{FD[=FORWARD | CENTRAL | number]}
specifies that all derivatives be computed using finite-difference approximations. The following specifications are permitted:
\(\mathrm{FD}=\mathrm{FORWARD}\) uses forward differences.
\(\mathrm{FD}=\mathrm{CENTRAL}\) uses central differences.
\(\mathrm{FD}=\) number \(\quad\) uses central differences for the initial and final evaluations of the gradient, Jacobian, and Hessian. During iteration, start with forward differences and switch to a corresponding central-difference formula during the iteration process when one of the following two criteria is satisfied:
- The absolute maximum gradient element is less than or equal to number times the ABSGCONV threshold.
- The term left of the GCONV criterion is less than or equal to \(\max (1.0 \mathrm{E}-6\), number \(\times\) GCONV threshold). The \(1.0 \mathrm{E}-6\) ensures that the switch is done, even if you set the GCONV threshold to zero.

FD is equivalent to \(\mathrm{FD}=100\).

Note that the FD and FDHESSIAN options cannot apply at the same time. The FDHESSIAN option is ignored when only first-order derivatives are used, for example, when the LSQ statement is used and the HESSIAN is not explicitly needed (displayed or written to a data set). For more information, see the "Finite-Difference Approximations of Derivatives" section on page 579.

\section*{FDHESSIAN[=FORWARD | CENTRAL] FDHES[=FORWARD | CENTRAL] FDH[=FORWARD | CENTRAL]}
specifies that second-order derivatives be computed using finite-difference approximations based on evaluations of the gradients.

\section*{FDHESSIAN=FORWARD FDHESSIAN=CENTRAL FDHESSIAN}
uses forward differences. uses central differences. uses forward differences for the Hessian except for the initial and final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. For more information, see the "Finite-Difference Approximations of Derivatives" section on page 579

\section*{FDIGITS= \(r\)}
specifies the number of accurate digits in evaluations of the objective function. Fractional values such as FDIGITS=4.7 are allowed. The default value is \(r=-\log _{10}(\epsilon)\), where \(\epsilon\) is the machine precision. The value of \(r\) is used to compute the interval length \(h\) for the computation of finite-difference approximations of the derivatives of the objective function and for the default value of the FCONV= option.

\section*{FDINT= OBJ | CON | ALL}
specifies how the finite-difference intervals \(h\) should be computed. For FDINT=OBJ, the interval \(h\) is based on the behavior of the objective function; for FDINT=CON, the interval \(h\) is based on the behavior of the nonlinear constraints functions; and for FDINT=ALL, the interval \(h\) is based on the behavior of the objective function and the nonlinear constraints functions. For more information, see the "Finite-Difference Approximations of Derivatives" section on page 579.

\section*{FSIZE=r}
specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The default value is \(r=0\). For more details, refer to the FCONV \(=\) and GCONV= options.

\section*{G4=n}
is used when the covariance matrix is singular. The value \(n>0\) determines which generalized inverse is computed. The default value of \(n\) is 60 . For more information, see the "Covariance Matrix" section on page 592.

\section*{\(\mathbf{G C O N V}=r[n]\) \\ GTOL= \(r[n]\)}
specifies the relative gradient convergence criterion. For all techniques except the CONGRA and NMSIMP techniques, termination requires that the normalized predicted function reduction is small:
\[
\frac{g\left(x^{(k)}\right)^{T}\left[G^{(k)}\right]^{-1} g\left(x^{(k)}\right)}{\max \left(\left|f\left(x^{(k)}\right)\right|, F S I Z E\right)} \leq r
\]
where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian estimate \(G\) is not available),
\[
\frac{\left\|g\left(x^{(k)}\right)\right\|_{2}^{2} \quad\left\|s\left(x^{(k)}\right)\right\|_{2}}{\left\|g\left(x^{(k)}\right)-g\left(x^{(k-1)}\right)\right\|_{2} \max \left(\left|f\left(x^{(k)}\right)\right|, \text { FSIZE }\right)} \leq r
\]
is used. This criterion is not used by the NMSIMP technique. The default value is \(r\) \(=1 \mathrm{E}-8\). The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

GCONV2= \(r[n]\)
GTOL2= \(r[n]\)
specifies another relative gradient convergence criterion,
\[
\max _{j} \frac{\left|g_{j}\left(x^{(k)}\right)\right|}{\sqrt{f\left(x^{(k)}\right) G_{j, j}^{(k)}}} \leq r
\]

This option is valid only when using the TRUREG, LEVMAR, NRRIDG, and NEWRAP techniques on least-squares problems. The default value is \(r=0\). The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

\section*{GRADCHECK[= NONE | FAST | DETAIL] \\ GC[= NONE | FAST | DETAIL]}

Specifying GRADCHECK=DETAIL computes a test vector and test matrix to check whether the gradient \(g\) specified by a GRADIENT statement (or indirectly by a JACOBIAN statement) is appropriate for the function \(f\) computed by the program statements. If the specification of the first derivatives is correct, the elements of the test vector and test matrix should be relatively small. For very large optimization problems, the algorithm can be too expensive in terms of computer time and memory. If the GRADCHECK option is not specified, a fast derivative test identical to the GRADCHECK=FAST specification is performed by default. It is possible to suppress the default derivative test by specifying GRADCHECK=NONE. For more information, see the "Testing the Gradient Specification" section on page 582.

HESCAL=0|1|2|3
HS=0|1|2|3
specifies the scaling version of the Hessian or crossproduct Jacobian matrix used in NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If the value of the HESCAL= option is not equal to zero, the first iteration and each restart iteration sets the diagonal scaling matrix \(D^{(0)}=\operatorname{diag}\left(d_{i}^{(0)}\right)\) :
\[
d_{i}^{(0)}=\sqrt{\max \left(\left|G_{i, i}^{(0)}\right|, \epsilon\right)}
\]
where \(G_{i, i}^{(0)}\) are the diagonal elements of the Hessian or crossproduct Jacobian matrix. In all other iterations, the diagonal scaling matrix \(D^{(0)}=\operatorname{diag}\left(d_{i}^{(0)}\right)\) is updated depending on the HESCAL= option:
\(\begin{array}{ll}\text { HESCAL=0 } & \text { specifies that no scaling is done } \\ \text { HESCAL=1 } & \text { specifies the Moré (1978) scaling update: }\end{array}\)
\[
d_{i}^{(k+1)}=\max \left(d_{i}^{(k)}, \sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}\right)
\]

HESCAL=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:
\[
d_{i}^{(k+1)}=\max \left(0.6 d_{i}^{(k)}, \sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}\right)
\]

HESCAL=3 specifies that \(d_{i}\) is reset in each iteration:
\[
d_{i}^{(k+1)}=\sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}
\]
where \(\epsilon\) is the relative machine precision. The default value is HESCAL=1 for LEVMAR minimization and HESCAL=0 otherwise. Scaling of the Hessian or crossproduct Jacobian matrix can be time-consuming in the case where general linear constraints are active.

\section*{INEST=SAS-data-set}

INVAR=SAS-data-set
ESTDATA=SAS-data-set
can be used to specify the initial values of the parameters defined in a DECVAR statement as well as simple boundary constraints and general linear constraints. The INEST= data set can contain additional variables with names corresponding to constants used in the program statements. At the beginning of each run of PROC NLP, the values of the constants are read from the PARMS observation, initializing the constants in the program statements. For more information, see the "INEST= Input Data Set" section on page 596.

\section*{INFEASIBLE \\ IFP}
specifies that the function values of both feasible and infeasible grid points are to be computed, displayed, and written to the OUTEST = data set, although only the feasible grid points are candidates for the starting point \(x^{(0)}\). This option enables you to explore the shape of the objective function of points surrounding the feasible region. For the output, the grid points are sorted first with decreasing values of the maximum constraint violation. Points with the same value of the maximum constraint violation are then sorted with increasing (minimization) or decreasing (maximization) value of the objective function. Using the BEST= option restricts only the number of best grid points in the displayed output, not those in the data set. The INFEASIBLE option affects both the displayed output and the output saved to the OUTEST= data set. The OUTGRID option can be used to write the grid points and their function values to an OUTEST= data set. After small modifications (deleting unneeded information), this data set can be used with the G3D procedure of SAS/GRAPH to generate a three-dimensional surface plot of the objective function depending on two selected parameters. For more information on grids, see the "DECVAR Statement" section on page 549.

\section*{INHESSIAN[= \(r\) ]}

INHESS[= \(r\) ]
specifies how the initial estimate of the approximate Hessian is defined for the quasiNewton techniques QUANEW, DBLDOG, and HYQUAN. There are two alternatives:
- The \(=r\) specification is not used: the initial estimate of the approximate Hessian is set to the true Hessian or crossproduct Jacobian at \(x^{(0)}\).
- The \(=r\) specification is used: the initial estimate of the approximate Hessian is set to the multiple of the identity matrix \(r I\).

By default, if INHESSIAN=r is not specified, the initial estimate of the approximate Hessian is set to the multiple of the identity matrix \(r I\), where the scalar \(r\) is computed from the magnitude of the initial gradient. For most applications, this is a sufficiently good first approximation.

\section*{INITIAL=r}
specifies a value \(r\) as the common initial value for all parameters for which no other initial value assignments by the DECVAR statement or an INEST= data set are made.

\section*{INQUAD=SAS-data-set}
can be used to specify (the nonzero elements of) the matrix \(H\), the vector \(g\), and the scalar \(c\) of a quadratic programming problem, \(f(x)=\frac{1}{2} x^{T} H x+g^{T} x+c\). This option cannot be used together with the NLINCON statement. Two forms (dense and sparse) of the INQUAD= data set can be used. For more information, see the "INQUAD = Input Data Set" section on page 597.

\section*{INSTEP=r}

For highly nonlinear objective functions, such as the EXP function, the default initial radius of the trust region algorithms TRUREG, DBLDOG, or LEVMAR or the default step length of the line-search algorithms can result in arithmetic overflows. If this occurs, decreasing values of \(0<r<1\) should be specified, such as INSTEP \(=1 \mathrm{E}-1\), \(\mathrm{INSTEP}=1 \mathrm{E}-2\), \(\mathrm{INSTEP}=1 \mathrm{E}-4\), and so on, until the iteration starts successfully.
- For trust region algorithms (TRUREG, DBLDOG, LEVMAR), the INSTEP= option specifies a factor \(r>0\) for the initial radius \(\Delta^{(0)}\) of the trust region. The default initial trust region radius is the length of the scaled gradient. This step corresponds to the default radius factor of \(r=1\).
- For line-search algorithms (NEWRAP, CONGRA, QUANEW, HYQUAN), the INSTEP= option specifies an upper bound for the initial step length for the line search during the first five iterations. The default initial step length is \(r=1\).
- For the Nelder-Mead simplex algorithm (NMSIMP), the INSTEP=r option defines the size of the initial simplex.

For more details, see the "Computational Problems" section on page 589.
LCDEACT= \(r\)
LCD=r
specifies a threshold \(r\) for the Lagrange multiplier that decides whether an active inequality constraint remains active or can be deactivated. For a maximization (minimization), an active inequality constraint can be deactivated only if its Lagrange multiplier is greater (less) than the threshold value \(r\). For maximization, \(r\) must be greater than zero; for minimization, \(r\) must be smaller than zero. The default value is
\[
r= \pm \min \left(0.01, \max \left(0.1 \times A B S G C O N V, 0.001 \times \operatorname{gmax}^{(k)}\right)\right)
\]
where the + stands for maximization, the - for minimization, \(A B S G C O N V\) is the value of the absolute gradient criterion, and \(\operatorname{gmax}^{(k)}\) is the maximum absolute element of the (projected) gradient \(g^{(k)}\) or \(Z^{T} g^{(k)}\).

\section*{LCEPSILON= \(r\)}

\section*{LCEPS= \(r\)}

LCE=r
specifies the range \(r>0\) for active and violated boundary and linear constraints. During the optimization process, the introduction of rounding errors can force PROC NLP to increase the value of \(r\) by a factor of \(10,100, \ldots\) If this happens it is indicated by a message written to the log. For more information, see the "Linear Complementarity (LICOMP)" section on page 572.

\section*{LCSINGULAR= \(r\)}

LCSING= \(r\)

\section*{LCS= \(r\)}
specifies a criterion \(r>0\) used in the update of the QR decomposition that decides whether an active constraint is linearly dependent on a set of other active constraints. The default value is \(r=1 \mathrm{E}-8\). The larger \(r\) becomes, the more the active constraints are recognized as being linearly dependent. If the value of \(r\) is larger than 0.1 , it is reset to 0.1 .

\section*{LINESEARCH= \(i\)}

LIS= \(i\)
specifies the line-search method for the CONGRA, QUANEW, HYQUAN, and NEWRAP optimization techniques. Refer to Fletcher (1987) for an introduction to line-search techniques. The value of \(i\) can be \(1, \ldots, 8\). For CONGRA, QUANEW, and NEWRAP, the default value is \(i=2\). A special line-search method is the default for the least-squares technique HYQUAN that is based on an algorithm developed by Lindström and Wedin (1984). Although it needs more memory, this default linesearch method sometimes works better with large least-squares problems. However, by specifying LIS \(=i, i=1, \ldots, 8\), it is possible to use one of the standard techniques with HYQUAN.
\begin{tabular}{ll} 
LIS=1 & \begin{tabular}{l} 
specifies a line-search method that needs the same number of func- \\
tion and gradient calls for cubic interpolation and cubic extrapola- \\
tion.
\end{tabular} \\
LIS=2 \\
specifies a line-search method that needs more function than gra- \\
dient calls for quadratic and cubic interpolation and cubic ex- \\
trapolation; this method is implemented as shown in Fletcher \\
(1987) and can be modified to an exact line search by using the \\
& LSPRECISION= option. \\
specifies a line-search method that needs the same number of \\
function and gradient calls for cubic interpolation and cubic ex- \\
trapolation; this method is implemented as shown in Fletcher \\
& (1987) and can be modified to an exact line search by using the \\
LSPRECISION= option. \\
LIS=4 & \begin{tabular}{l} 
specifies a line-search method that needs the same number of func- \\
tion and gradient calls for stepwise extrapolation and cubic inter-
\end{tabular} \\
LIS=5 & \begin{tabular}{l} 
polation. \\
specifies a line-search method that is a modified version of LIS=4.
\end{tabular}
\end{tabular}

LIS=6 specifies golden section line search (Polak 1971), which uses only function values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only function values for linear approximation.
LIS \(=8 \quad\) specifies the Armijo line-search technique (Polak 1971), which uses only function values for linear approximation.

\section*{LIST}
displays the model program and variable lists. The LIST option is a debugging feature and is not normally needed. This output is not included in either the default output or the output specified by the PALL option.

\section*{LISTCODE}
displays the derivative tables and the compiled program code. The LISTCODE option is a debugging feature and is not normally needed. This output is not included in either the default output or the output specified by the PALL option. The option is similar to that used in MODEL procedure in SAS/ETS software.

\section*{LSPRECISION= \(r\) \\ LSP= \(r\)}
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS \(=2\) and LIS \(=3\). Usually an imprecise line search is inexpensive and sufficient for convergence to the optimum. For difficult optimization problems, a more precise and expensive line search may be necessary (Fletcher 1987). The second (default for NEWRAP, QUANEW, and CONGRA) and third line-search methods approach exact line search for small LSPRECISION= values. In the presence of numerical problems, it is advised to decrease the LSPRECISION= value to obtain a more precise line search. The default values are as follows:
\begin{tabular}{|l|l|l|}
\hline TECH \(=\) & UPDATE \(=\) & LSP default \\
\hline QUANEW & DBFGS, BFGS & \(r=0.4\) \\
QUANEW & DDFP, DFP & \(r=0.06\) \\
HYQUAN & DBFGS & \(r=0.1\) \\
HYQUAN & DDFP & \(r=0.06\) \\
CONGRA & all & \(r=0.1\) \\
NEWRAP & no update & \(r=0.9\) \\
\hline
\end{tabular}

For more details, refer to Fletcher (1987).

\section*{MAXFUNC= \(i\)}

MAXFU=i
specifies the maximum number \(i\) of function calls in the optimization process. The default values are
- TRUREG, LEVMAR, NRRIDG, NEWRAP: 125
- QUANEW, HYQUAN, DBLDOG: 500
- CONGRA, QUADAS: 1000
- NMSIMP: 3000

Note that the optimization can be terminated only after completing a full iteration. Therefore, the number of function calls that are actually performed can exceed the number that is specified by the MAXFUNC= option.

\section*{MAXITER \(=i[n]\)}

MAXIT= \(i[n]\)
specifies the maximum number \(i\) of iterations in the optimization process. The default values are:
- TRUREG, LEVMAR, NRRIDG, NEWRAP: 50
- QUANEW, HYQUAN, DBLDOG: 200
- CONGRA, QUADAS: 400
- NMSIMP: 1000

This default value is valid also when \(i\) is specified as a missing value. The optional second value \(n\) is valid only for TECH=QUANEW with nonlinear constraints. It specifies an upper bound \(n\) for the number of iterations of an algorithm used to reduce the violation of nonlinear constraints at a starting point. The default value is \(n=20\).

\section*{MAXSTEP= \(r[n]\)}
specifies an upper bound for the step length of the line-search algorithms during the first \(n\) iterations. By default, \(r\) is the largest double precision value and \(n\) is the largest integer available. Setting this option can increase the speed of convergence for TECH=CONGRA, TECH=QUANEW, TECH=HYQUAN, and TECH=NEWRAP.

\section*{MAXTIME \(=r\)}
specifies an upper limit of \(r\) seconds of CPU time for the optimization process. The default value is the largest floating point double representation of the computer. Note that the time specified by the MAXTIME= option is checked only once at the end of each iteration. Therefore, the actual running time of the PROC NLP job may be longer than that specified by the MAXTIME= option. The actual running time includes the rest of the time needed to finish the iteration, time for the output of the (temporary) results, and (if required) the time for saving the results in an OUTEST= data set. Using the MAXTIME= option with a permanent OUTEST= data set enables you to separate large optimization problems into a series of smaller problems that need smaller amounts of CPU time.

\section*{MINITER= \(i\) \\ MINIT= \(i\)}
specifies the minimum number of iterations. The default value is zero. If more iterations than are actually needed are requested for convergence to a stationary point, the optimization algorithms can behave strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the required number of iterations.

MODEL=model-name, model-list
MOD=model-name, model-list
MODFILE=model-name, model-list
reads the program statements from one or more input model files created by previous PROC NLP steps using the OUTMODEL= option. If it is necessary to include the program code at a special location in newly written code, the INCLUDE statement can be used instead of using the MODEL= option. Using both the MODEL= option and the INCLUDE statement with the same model file will include the same model twice, which can produce different results than including it once. The MODEL= option is similar to the option used in PROC MODEL in SAS/ETS software.

\section*{MSINGULAR= \(r\) MSING=r}
specifies a relative singularity criterion \(r>0\) for measuring singularity of Hessian and crossproduct Jacobian and their projected forms. The default value is \(1 \mathrm{E}-12\) if the SINGULAR \(=\) option is not specified and \(\max (10 \times \epsilon, 1 \mathrm{E}-4 \times \operatorname{SINGULAR})\) otherwise. For more information, see the "Covariance Matrix" section on page 592.

\section*{NOEIGNUM}
suppresses the computation and output of the determinant and the inertia of the Hessian, crossproduct Jacobian, and covariance matrices. The inertia of a symmetric matrix are the numbers of negative, positive, and zero eigenvalues. For large applications, the NOEIGNUM option can save computer time.

\section*{NOMISS}
is valid only for those variables of the DATA= data set that are referred to in program statements. If the NOMISS option is specified, observations with any missing value for those variables are skipped. If the NOMISS option is not specified, the missing value may result in a missing value of the objective function, implying that the corresponding BY group of data is not processed.

\section*{NOPRINT \\ NOP}
suppresses the output.

\section*{OPTCHECK[= \(r\) ]}
computes the function values \(f\left(x_{l}\right)\) of a grid of points \(x_{l}\) in a small neighborhood of \(x^{*}\). The \(x_{l}\) are located in a ball of radius \(r\) about \(x^{*}\). If the OPTCHECK option is specified without \(r\), the default value is \(r=0.1\) at the starting point and \(r=0.01\) at the terminating point. If a point \(x_{l}^{*}\) is found with a better function value than \(f\left(x^{*}\right)\), then optimization is restarted at \(x_{l}^{*}\). For more information on grids, see the "DECVAR Statement" section on page 549.

\section*{OUT=SAS-data-set}
creates an output data set that contains those variables of a DATA= input data set referred to in the program statements plus additional variables computed by performing the program statements of the objective function, derivatives, and nonlinear constraints. The OUT= data set can also contain first- and second-order derivatives of these variables if the OUTDER= option is specified. The variables and derivatives are evaluated at \(x^{*}\); for \(\mathrm{TECH}=\mathrm{NONE}\), they are evaluated at \(x^{0}\).

\section*{OUTALL}

If an OUTEST= data set is specified, this option sets the OUTHESSIAN option if the MIN or MAX statement is used. If the LSQ statement is used, the OUTALL option sets the OUTCRPJAC option. If nonlinear constraints are specified using the NLINCON statement, the OUTALL option sets the OUTNLCJAC option.

\section*{OUTCRPJAC}

If an OUTEST= data set is specified, the crossproduct Jacobian matrix of the \(m\) functions composing the least-squares function is written to the OUTEST= data set.

\section*{OUTDER=0|1|2}
specifies whether or not derivatives are written to the OUT= data set. For OUTDER=2, first- and second-order derivatives are written to the data set; for OUTDER \(=1\), only first-order derivatives are written; for OUTDER=0, no derivatives are written to the data set. The default value is OUTDER \(=0\). Derivatives are evaluated at \(x^{*}\).

\section*{OUTEST=SAS-data-set}

OUTVAR=SAS-data-set
creates an output data set that contains the results of the optimization. This is useful for reporting and for restarting the optimization in a subsequent execution of the procedure. Information in the data set can include parameter estimates, gradient values, constraint information, Lagrangian values, Hessian values, Jacobian values, covariance, standard errors, and confidence intervals.

\section*{OUTGRID}
writes the grid points and their function values to the OUTEST= data set. By default, only the feasible grid points are saved; however, if the INFEASIBLE option is specified, all feasible and infeasible grid points are saved. Note that the BEST= option does not affect the output of grid points to the OUTEST= data set. For more information on grids, see the "DECVAR Statement" section on page 549.

\section*{OUTHESSIAN}

\section*{OUTHES}
writes the Hessian matrix of the objective function to the OUTEST= data set. If the Hessian matrix is computed for some other reason (if, for example, the PHESSIAN option is specified), the OUTHESSIAN option is set by default.

\section*{OUTITER}
writes during each iteration the parameter estimates, the value of the objective function, the gradient (if available), and (if OUTTIME is specified) the time in seconds from the start of the optimization to the OUTEST= data set.

\section*{OUTJAC}
writes the Jacobian matrix of the \(m\) functions composing the least-squares function to the OUTEST= data set. If the PJACOBI option is specified, the OUTJAC option is set by default.

\section*{OUTMODEL=model-name}

\section*{OUTMOD=model-name}

\section*{OUTM=model-name}
specifies the name of an output model file to which the program statements are to be written. The program statements of this file can be included into the program statements of a succeeding PROC NLP run using the MODEL= option or the INCLUDE program statement. The OUTMODEL= option is similar to the option used in PROC MODEL in SAS/ETS software. Note that the following statements are not part of the program code that is written to an OUTMODEL= data set: MIN, MAX, LSQ, MINQUAD, MAXQUAD, DECVAR, BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC, JACOBIAN, LABEL, LINCON, MATRIX, and NLINCON.

\section*{OUTNLCJAC}

If an OUTEST= data set is specified, the Jacobian matrix of the nonlinear constraint functions specified by the NLINCON statement is written to the OUTEST= data set. If the Jacobian matrix of the nonlinear constraint functions is computed for some other reason (if, for example, the PNLCJAC option is specified), the OUTNLCJAC option is set by default.

\section*{OUTTIME}
is used if an OUTEST= data set is specified and if the OUTITER option is specified. If OUTTIME is specified, the time in seconds from the start of the optimization to the start of each iteration is written to the OUTEST= data set.

\section*{PALL}

ALL
displays all optional output except the output generated by the PSTDERR, PCOV, LIST, or LISTCODE option.

\section*{PCOV}
displays the covariance matrix specified by the \(\mathrm{COV}=\) option. The PCOV option is set automatically if the PALL and COV= options are set.

\section*{PCRPJAC}

PJTJ
displays the \(n \times n\) crossproduct Jacobian matrix \(J^{T} J\). If the PALL option is specified and the LSQ statement is used, this option is set automatically. If general linear constraints are active at the solution, the projected crossproduct Jacobian matrix is also displayed.

\section*{PEIGVAL}
displays the distribution of eigenvalues if a G4 inverse is computed for the covariance matrix. The PEIGVAL option is useful for observing which eigenvalues of the matrix are recognized as zero eigenvalues when the generalized inverse is computed, and it is the basis for setting the COVSING= option in a subsequent execution of PROC NLP. For more information, see the "Covariance Matrix" section on page 592.

\section*{PERROR}
specifies additional output for such applications where the program code for objective function or nonlinear constraints cannot be evaluated during the iteration process. The PERROR option is set by default during the evaluations at the starting point but not during the optimization process.

\section*{PFUNCTION}
displays the values of all functions specified in a LSQ, MIN, or MAX statement for each observation read fom the DATA= input data set. The PALL option sets the PFUNCTION option automatically.

\section*{PGRID}
displays the function values from the grid search. For more information on grids, see the "DECVAR Statement" section on page 549.

\section*{PHESSIAN}

\section*{PHES}
displays the \(n \times n\) Hessian matrix \(G\). If the PALL option is specified and the MIN or MAX statement is used, this option is set automatically. If general linear constraints are active at the solution, the projected Hessian matrix is also displayed.

\section*{PHISTORY}

\section*{PHIS}
displays the optimization history. No optimization history is displayed for TECH=LICOMP. This output is included in both the default output and the output specified by the PALL option.

\section*{PINIT}

PIN
displays the initial values and derivatives (if available). This output is included in both the default output and the output specified by the PALL option.

\section*{PJACOBI}

PJAC
displays the \(m \times n\) Jacobian matrix \(J\). Because of the memory requirement for large least-squares problems, this option is not invoked when using the PALL option.

\section*{PNLCJAC}
displays the Jacobian matrix of nonlinear constraints specified by the NLINCON statement. The PNLCJAC option is set automatically if the PALL option is specified.

\section*{PSHORT}

\section*{SHORT}

\section*{PSH}
restricts the amount of default output. If PSHORT is specified, then
- The initial values are not displayed.
- The listing of constraints is not displayed.
- If there is more than one function in the MIN, MAX, or LSQ statement, their values are not displayed.
- If the GRADCHECK[=DETAIL] option is used, only the test vector is displayed.

\section*{PSTDERR}

STDERR
SE
computes standard errors that are defined as square roots of the diagonal elements of the covariance matrix. The \(t\) values and probabilities \(>|t|\) are displayed together with the approximate standard errors. The type of covariance matrix must be specified using the \(\mathrm{COV}=\) option. The \(\mathrm{SIGSQ}=\) option, the \(\mathrm{VARDEF}=\) option, and the special variables _NOBS_ and _DF_ defined in the program statements can be used to define a scalar factor \(\sigma^{2}\) of the covariance matrix and the approximate standard errors. For more information, see the "Covariance Matrix" section on page 592.

\section*{PSUMMARY}

\section*{SUMMARY}

SUM
restricts the amount of default displayed output to a short form of iteration history and notes, warnings, and errors.

\section*{PTIME}
specifies the output of four different but partially overlapping differences of CPU time:
- total running time
- total time for the evaluation of objective function, nonlinear constraints, and derivatives: shows the total time spent executing the programming statements specifying the objective function, derivatives, and nonlinear constraints, and (if necessary) their first- and second-order derivatives. This is the total time needed for code evaluation before, during, and after iterating.
- total time for optimization: shows the total time spent iterating.
- time for some CMP parsing: shows the time needed for parsing the program statements and its derivatives. In most applications this is a negligible number, but for applications that contain ARRAY statements or DO loops or use an optimization technique with analytic second-order derivatives, it can be considerable.

\section*{RANDOM= \(i\)}
specifies a positive integer as a seed value for the pseudorandom number generator. Pseudorandom numbers are used as the initial value \(x^{(0)}\).

\section*{RESTART= \(i\)}

REST=i
specifies that the QUANEW, HYQUAN, or CONGRA algorithm is restarted with a steepest descent/ascent search direction after at most \(i>0\) iterations. Default values are as follows:
- CONGRA with UPDATE=PB: restart is done automatically so specification of \(i\) is not used
- CONGRA with UPDATE \(\neq \mathrm{PB}: i=\min (10 n, 80)\), where \(n\) is the number of parameters
- QUANEW, HYQUAN: \(i\) is the largest integer available

\section*{SIGSQ=sq}
specifies a scalar factor \(s q>0\) for computing the covariance matrix. If the SIGSQ= option is specified, VARDEF \(=\mathrm{N}\) is the default. For more information, see the "Covariance Matrix" section on page 592.

\section*{SINGULAR= \(r\)}

\section*{SING= \(r\)}
specifies the singularity criterion \(r>0\) for the inversion of the Hessian matrix and crossproduct Jacobian. The default value is \(1 \mathrm{E}-8\). For more information, refer to the MSINGULAR \(=\) and VSINGULAR \(=\) options.

\section*{TECH=name}

TECHNIQUE=name
specifies the optimization technique. Valid values for it are as follows:

\section*{- CONGRA}
chooses one of four different conjugate gradient optimization algorithms, which can be more precisely specified with the UPDATE= option and modified with the LINESEARCH= option. When this option is selected, UPDATE=PB by default. For \(n \geq 400\), CONGRA is the default optimization technique.

\section*{- DBLDOG}
performs a version of double dogleg optimization, which can be more precisely specified with the UPDATE= option. When this option is selected, UPDATE=DBFGS by default.

\section*{- HYQUAN}
chooses one of three different hybrid quasi-Newton optimization algorithms which can be more precisely defined with the VERSION= option and modified with the LINESEARCH= option. By default, VERSION=2 and UPDATE=DBFGS.
- LEVMAR
performs the Levenberg-Marquardt minimization. For \(n<40\), this is the default minimization technique for least-squares problems.
- LICOMP
solves a quadratic program as a linear complementarity problem.
- NMSIMP
performs the Nelder-Mead simplex optimization method.
- NONE
does not perform any optimization. This option can be used
- to do grid search without optimization
- to compute and display derivatives and covariance matrices which cannot be obtained efficiently with any of the optimization techniques
- NEWRAP
performs the Newton-Raphson optimization technique. The algorithm combines a line-search algorithm with ridging. The line-search algorithm LINESEARCH=2 is the default.
- NRRIDG
performs the Newton-Raphson optimization technique. For \(n \leq 40\) and nonlinear least-squares, this is the default.
- QUADAS
performs a special quadratic version of the active set strategy.
- QUANEW
chooses one of four quasi-Newton optimization algorithms which can be defined more precisely with the UPDATE= option and modified with the LINESEARCH= option. This is the default for \(40<n<400\) or if there are nonlinear constraints.
- TRUREG
performs the trust region optimization technique.

\section*{UPDATE=method}

\section*{UPD=method}
specifies the update method for the (dual) quasi-Newton, double dogleg, hybrid quasiNewton, or conjugate gradient optimization technique. Not every update method can be used with each optimizer. For more information, see the "Optimization Algorithms" section on page 568. Valid values for method are as follows:

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, \& Shanno) update of the inverse Hessian matrix.
DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, \& Shanno) update of the Cholesky factor of the Hessian matrix.
DDFP performs the dual DFP (Davidon, Fletcher, \& Powell) update of the Cholesky factor of the Hessian matrix.
DFP performs the original DFP (Davidon, Fletcher, \& Powell) update of the inverse Hessian matrix.

PB performs the automatic restart update method of Powell (1977) and Beale (1972).

FR performs the Fletcher-Reeves update (Fletcher 1987).
PR performs the Polak-Ribiere update (Fletcher 1987).
CD performs a conjugate-descent update of Fletcher (1987).

\section*{VARDEF= DF | N}
specifies the divisor \(d\) used in the calculation of the covariance matrix and approximate standard errors. If the SIGSQ= option is not specified, the default value is VARDEF=DF; otherwise, VARDEF=N is the default. For more information, see the "Covariance Matrix" section on page 592.

\section*{VERSION=1|2|3}
\(V S=1|2| 3\)
specifies the version of the hybrid quasi-Newton optimization technique or the version of the quasi-Newton optimization technique with nonlinear constraints.

For the hybrid quasi-Newton optimization technique,
VS=1 specifies version HY1 of Fletcher and Xu (1987).
VS=2 specifies version HY2 of Fletcher and Xu (1987).
VS=3 specifies version HY3 of Fletcher and Xu (1987).
For the quasi-Newton optimization technique with nonlinear constraints,
VS=1 specifies update of the \(\mu\) vector like Powell (1978a, b) (update like VF02AD).
VS \(=2\) specifies update of the \(\mu\) vector like Powell (1982b) (update like VMCWD).
In both cases, the default value is \(\mathrm{VS}=2\).

\section*{VSINGULAR= \(r\)}

\section*{VSING= \(r\)}
specifies a relative singularity criterion \(r>0\) for measuring singularity of Hessian and crossproduct Jacobian and their projected forms, which may have to be converted to compute the covariance matrix. The default value is \(1 \mathrm{E}-8\) if the SINGULAR= option is not specified and the value of SINGULAR otherwise. For more information, see the "Covariance Matrix" section on page 592.
\(\mathbf{X C O N V}=r[n]\)
XTOL=r[n]
specifies the relative parameter convergence criterion. For all techniques except NMSIMP, termination requires a small relative parameter change in subsequent iterations:
\[
\frac{\max _{j}\left|x_{j}^{(k)}-x_{j}^{(k-1)}\right|}{\max \left(\left|x_{j}^{(k)}\right|,\left|x_{j}^{(k-1)}\right|, \text { XSIZE }\right)} \leq r
\]

For the NMSIMP technique, the same formula is used, but \(x_{j}^{(k)}\) is defined as the vertex with the lowest function value and \(x_{j}^{(k-1)}\) is defined as the vertex with the highest function value in the simplex. The default value is \(r=1 \mathrm{E}-8\) for the NMSIMP technique and \(r=0\) otherwise. The optional integer value \(n\) specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

\section*{XSIZE= \(r\)}
specifies the parameter \(r>0\) of the relative parameter termination criterion. The default value is \(r=0\). For more details, see the XCONV= option.

\section*{ARRAY Statement}

\section*{ARRAY arrayname [\{ dimensions \}] [\$] [variables and constants] ;}

The ARRAY statement is similar to, but not the same as, the ARRAY statement in the SAS DATA step. The ARRAY statement is used to associate a name (of no more than eight characters) with a list of variables and constants. The array name is used with subscripts in the program to refer to the array elements. The following code illustrates this:
```

array r[8] r1-r8;
do i = 1 to 8;
r[i] = 0;
end;

```

The ARRAY statement does not support all the features of the DATA step ARRAY statement. It cannot be used to give initial values to array elements. Implicit indexing of variables cannot be used; all array references must have explicit subscript expressions. Only exact array dimensions are allowed; lower-bound specifications are not supported and a maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to be used as array elements. (Constant array elements cannot have values assigned to them.) Both dimension specification and the list of elements are optional, but at least one must be given. When the list of elements is not given or fewer elements than the size of the array are listed, array variables are created by suffixing element numbers to the array name to complete the element list.

\section*{BOUNDS Statement}

BOUNDS b_con [, b_con...];
where \(b\) _con is given in one of the following formats:
- number operator parameter_list operator number
- number operator parameter_list
- parameter_list operator number
and operator is \(\leq,<, \geq,>\), or \(=\).
Boundary constraints are specified with a BOUNDS statement. One- or two-sided boundary constraints are allowed. The list of boundary constraints are separated by commas. For example,
```

bounds 0 <= a1-a9 x <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

```

More than one BOUNDS statement can be used. If more than one lower (upper) bound for the same parameter is specified, the maximum (minimum) of these is taken. If the maximum \(l_{j}\) of all lower bounds is larger than the minimum of all upper bounds \(u_{j}\) for the same variable \(x_{j}\), the boundary constraint is replaced by \(x_{j}=l_{j}=\min \left(u_{j}\right)\) defined by the minimum of all upper bounds specified for \(x_{j}\).

\section*{BY Statement}

\section*{BY variables;}

A BY statement can be used with PROC NLP to obtain separate analyses on DATA= data set observations in groups defined by the BY variables. That means, for values of the TECH = option other than NONE, an optimization problem is solved for each BY group separately. When a BY statement appears, the procedure expects the input DATA= data set to be sorted in order of the BY variables. If the input data set is not sorted in ascending order, it is necessary to use one of the following alternatives:
- Use the SORT procedure with a similar BY statement to sort the data.
- Use the BY statement option NOTSORTED or DESCENDING in the BY statement for the NLP procedure. As a cautionary note, the NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Use the DATASETS procedure (in Base SAS software) to create an index on the BY variables.

For more information on the BY statement, refer to the discussion in SAS Language Reference: Concepts. For more information on the DATASETS procedure, refer to the SAS Procedures Guide.

\section*{CRPJAC Statement}

CRPJAC variables;
The CRPJAC statement defines the crossproduct Jacobian matrix \(J^{T} J\) used in solving least-squares problems. For more information, see the "Derivatives" section on page 566. If the DIAHES option is not specified, the CRPJAC statement lists \(n(n+1) / 2\) variable names, which correspond to the elements \(\left(J^{T} J\right)_{j, k}, j \geq k\) of the lower triangle of the symmetric crossproduct Jacobian matrix listed by rows. For example, the statements
```

1sq f1-f3;
decvar x1-x3;
crpjac jj1-jj6;

```
correspond to the crossproduct Jacobian matrix
\[
J^{T} J=\left[\begin{array}{ccc}
J J 1 & J J 2 & J J 4 \\
J J 2 & J J 3 & J J 5 \\
J J 4 & J J 5 & J J 6
\end{array}\right]
\]

If the DIAHES option is specified, only the \(n\) diagonal elements must be listed in the CRPJAC statement. The \(n\) rows and \(n\) columns of the crossproduct Jacobian matrix must be in the same order as the \(n\) corresponding parameter names listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables specified in the CRPJAC statement have to be defined at the left-hand side of algebraic expressions in programming statements. For example, consider the Rosenbrock function:
```

proc nlp tech=levmar;
lsq f1 f2;
decvar x1 x2;
gradient g1 g2;
crpjac cpj1-cpj3;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);
cpj1 = 400 * x1 * x1 + 1 ;
cpj2 = -200 * x1;
cpj3 = 100;
run;

```

\section*{DECVAR Statement}

DECVAR name_list [=numbers] [, name_list [=numbers] ...];
VAR name_list [=numbers] [, name_list [=numbers] ...] ;
PARMS name_list [=numbers] [, name_list [=numbers] ...] ;
PARAMETERS name_list [=numbers] [, name_list [=numbers] ...] ;
The DECVAR statement lists the names of the \(n>0\) decision variables and specifies grid search and initial values for an iterative optimization process. The decision variables listed in the DECVAR statement cannot also be used in the MIN, MAX, MINQUAD, MAXQUAD, LSQ, GRADIENT, HESSIAN, JACOBIAN, CRPJAC, or NLINCON statement.

The DECVAR statement contains a list of decision variable names (not separated by commas) optionally followed by an equals sign and a list of numbers. If the number list consists of only one number, this number defines the initial value for all the decision variables listed to the left of the equals sign.

If the number list consists of more than one number, these numbers specify the grid locations for each of the decision variables listed left of the equals sign. The TO and BY keywords can be used to specify a number list for a grid search. When a grid of points is specified with a DECVAR statement, PROC NLP computes the objective function value at each grid point and chooses the best (feasible) grid point as a starting point for the optimization process. The use of the BEST \(=\) option is recommended to save computing time and memory for the storing and sorting of all
grid point information. Usually only feasible grid points are included in the grid search. If the specified grid contains points located outside the feasible region and you are interested in the function values at those points, it is possible to use the INFEASIBLE option to compute (and display) their function values as well.

\section*{GRADIENT Statement}

\section*{GRADIENT variables;}

The GRADIENT statement defines the gradient vector which contains the first-order derivatives of the objective function \(f\) with respect to \(x_{1}, \ldots, x_{n}\). For more information, see the "Derivatives" section on page 566. To specify the values of nonzero derivatives, the variables specified in the GRADIENT statement must be defined on the left-hand side of algebraic expressions in programming statements. For example, consider the Rosenbrock function:
```

proc nlp tech=congra;
min y;
decvar x1 x2;
gradient g1 g2;
y1 = 10 * (x2 - x1 * x1);
y2 = 1 - x1;
y = .5 * (y1 * y1 + y2 * y2);
g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);
run;

```

\section*{HESSIAN Statement}

HESSIAN variables;
The HESSIAN statement defines the Hessian matrix \(G\) containing the second-order derivatives of the objective function \(f\) with respect to \(x_{1}, \ldots, x_{n}\). For more information, see the "Derivatives" section on page 566.

If the DIAHES option is not specified, the HESSIAN statement lists \(n(n+1) / 2\) variable names which correspond to the elements \(G_{j, k}, j \geq k\), of the lower triangle of the symmetric Hessian matrix listed by rows. For example, the statements
```

min f;
decvar x1 - x3;
hessian g1-g6;

```
correspond to the Hessian matrix
\[
G=\left[\begin{array}{ccc}
G 1 & G 2 & G 4 \\
G 2 & G 3 & G 5 \\
G 4 & G 5 & G 6
\end{array}\right]=\left[\begin{array}{ccc}
\partial^{2} f / \partial x_{1}^{2} & \partial^{2} f / \partial x_{1} \partial x_{2} & \partial^{2} f / \partial x_{1} \partial x_{3} \\
\partial^{2} f / \partial x_{2} \partial x_{1} & \partial^{2} f / \partial x_{2}^{2} & \partial^{2} f / \partial x_{2} \partial x_{3} \\
\partial^{2} f / \partial x_{3} \partial x_{1} & \partial^{2} f / \partial x_{3} \partial x_{2} & \partial^{2} f / \partial x_{3}^{2}
\end{array}\right]
\]

If the DIAHES option is specified, only the \(n\) diagonal elements must be listed in the HESSIAN statement. The \(n\) rows and \(n\) columns of the Hessian matrix \(G\) must correspond to the order of the \(n\) parameter names listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables specified in the HESSIAN statement must be defined on the left-hand side of algebraic expressions in the programming statements. For example, consider the Rosenbrock function:
```

proc nlp tech=nrridg;
min f;
decvar x1 x2;
gradient g1 g2;
hessian h1-h3;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
f = .5 * (f1 * f1 + f2 * f2);
g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);
h1 = -200 * (x2 - 3 * x1 * x1) + 1;
h2 = -200 * x1;
h3 = 100;
run;

```

\section*{INCLUDE Statement}

\section*{INCLUDE model files;}

The INCLUDE statement can be used to append model code to the current model code. The contents of included model files, created using the OUTMODEL= option, are inserted into the model program at the position in which the INCLUDE statement appears.

\section*{JACNLC Statement}

\section*{JACNLC variables;}

The JACNLC statement defines the Jacobian matrix for the system of constraint functions \(c_{1}(x), \ldots, c_{m c}(x)\). The statements list the \(m c \times n\) variable names which correspond to the elements \(C J_{i, j}, i=1, \ldots, m c ; j=1, \ldots, n\), of the Jacobian matrix by rows.

For example, the statements
```

nlincon c1-c3;
decvar x1-x2;
jacnlc cj1-cj6;

```
correspond to the Jacobian matrix
\[
C J=\left[\begin{array}{ll}
C J 1 & C J 2 \\
C J 3 & C J 4 \\
C J 5 & C J 6
\end{array}\right]=\left[\begin{array}{ll}
\partial c_{1} / \partial x_{1} & \partial c_{1} / \partial x_{2} \\
\partial c_{2} / \partial x_{1} & \partial c_{2} / \partial x_{2} \\
\partial c_{3} / \partial x_{1} & \partial c_{3} / \partial x_{2}
\end{array}\right]
\]

The \(m c\) rows of the Jacobian matrix must be in the same order as the \(m c\) corresponding names of nonlinear constraints listed in the NLINCON statement. The \(n\) columns of the Jacobian matrix must be in the same order as the \(n\) corresponding parameter names listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables specified in the JACNLC statement must be defined on the left-hand side of algebraic expressions in programming statements.

For example,
```

array cd[3,4] cd1-cd12;
nlincon c1-c3 >= 0;
jacnlc cd1-cd12;
c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;
c2 = 10- x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;
c3 = 5 - 2 * x1 * x2 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;
cd[1,1]= -1 - 2 * x1; cd[1,2]= 1 - 2 * x2;
cd[1,3]= -1 - 2 * x3; cd[1,4]= 1 - 2 * x4;
cd[2,1]= 1 - 2 * x1; cd[2,2]= -4 * x2;
cd[2,3]= -2 * x3; cd[2,4]= 1 - 4 * x4;
cd[3,1]= -2 - 4 * x1; cd[3,2]= 1 - 2 * x2;
cd[3,3]= -2 * x3; cd[3,4]= 1;

```

\section*{JACOBIAN Statement}

\section*{JACOBIAN variables;}

The JACOBIAN statement defines the JACOBIAN matrix \(J\) for a system of objective functions. For more information, see the "Derivatives" section on page 566.

The JACOBIAN statement lists \(m \times n\) variable names that correspond to the elements \(J_{i, j}, i=1, \ldots, m ; j=1, \ldots, n\), of the Jacobian matrix listed by rows.
For example, the statements
```

lsq f1-f3;
decvar x1 x2;
jacobian j1-j6;

```
correspond to the Jacobian matrix
\[
J=\left[\begin{array}{ll}
J 1 & J 2 \\
J 3 & J 4 \\
J 5 & J 6
\end{array}\right]=\left[\begin{array}{ll}
\partial f_{1} / \partial x_{1} & \partial f_{1} / \partial x_{2} \\
\partial f_{2} / \partial x_{1} & \partial f_{2} / \partial x_{2} \\
\partial f_{3} / \partial x_{1} & \partial f_{3} / \partial x_{2}
\end{array}\right]
\]

The \(m\) rows of the Jacobian matrix must correspond to the order of the \(m\) function names listed in the MIN, MAX, or LSQ statement. The \(n\) columns of the Jacobian matrix must correspond to the order of the \(n\) decision variables listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables specified in the JACOBIAN statement must be defined on the left-hand side of algebraic expressions in programming statements.

For example, consider the Rosenbrock function:
```

proc nlp tech=levmar;
array j[2,2] j1-j4;
lsq f1 f2;
decvar x1 x2;
jacobian j1-j4;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
j[1,1] = -20 * x1;
j[1,2] = 10;
j[2,1] = -1;
j[2,2] = 0; /* is not needed */
run;

```

The JACOBIAN statement is useful only if more than one objective function is given in the MIN, MAX, or LSQ statement, or if a DATA= input data set specifies more than one function. If the MIN, MAX, or LSQ statement contains only one objective function and no DATA= input data set is used, the JACOBIAN and GRADIENT statements are equivalent. In the case of least-squares minimization, the crossproduct Jacobian is used as an approximate Hessian matrix.

\section*{LABEL Statement}

LABEL variable='label' [ , variable=‘label'... ] ;
The LABEL statement can be used to assign labels (up to 40 chararcters) to the decision variables listed in the DECVAR statement. The INEST= data set can also be used to assign labels. The labels are attached to the output and are used in an OUTEST= data set.

\section*{LINCON Statement}

LINCON I_con [ , I_con ... ];
where \(I_{\text {_con }}\) is given in one of the following formats:
- linear_term operator number
- number operator linear_term
and linear_term is of the following form:
\[
<+\mid-><\text { number } *>\text { variable }<+\mid-<\text { number } *>\text { variable } \ldots>
\]

The value of operator can be one of the following: \(\leq,<, \geq,>\), or \(=\).
The LINCON statement specifies equality or inequality constraints
\[
\sum_{j=1}^{n} a_{i j} x_{j}\{\leq|=| \geq\} b_{i} \quad \text { for } i=1, \ldots, m
\]
separated by commas. For example, the constraint \(4 x_{1}-3 x_{2}=0\) is expressed as
```

decvar x1 x2;
lincon 4 * x1 - 3 * x2 = 0;

```
and the constraints
\[
\begin{gathered}
10 x_{1}-x_{2} \geq 10 \\
x_{1}+5 x_{2} \geq 15
\end{gathered}
\]
are expressed as
```

decvar x1 x2;
lincon 10 <= 10 * x1 - x2,
x1 + 5 * x2 >= 15;

```

\section*{MATRIX Statement}

\section*{MATRIX M_name pattern_definitions ;}

The MATRIX statement defines a matrix \(H\) and the vector \(g\), which can be given in the MINQUAD or MAXQUAD statement. The matrix \(H\) and vector \(g\) are initialized to zero, so that only the nonzero elements are given. The five different forms of the MATRIX statement are illustrated with the following example:
\[
H=\left[\begin{array}{rrrr}
100 & 10 & 1 & 0 \\
10 & 100 & 10 & 1 \\
1 & 10 & 100 & 10 \\
0 & 1 & 10 & 100
\end{array}\right] \quad g=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad c=0
\]

Each MATRIX statement first names the matrix or vector and then lists its elements. If more than one MATRIX statement is given for the same matrix, the later definitions override the earlier ones.

The rows and columns in matrix \(H\) and vector \(g\) correspond to the order of decision variables in the DECVAR statement.
- Full Matrix Definition: The MATRIX statement consists of H_name or g_name followed by an equals sign and all (nonredundant) numerical values of the matrix \(H\) or vector \(g\). Assuming symmetry, only the elements of the lower triangular part of the matrix \(H\) must be listed. This specification should be used mainly for small problems with almost dense \(H\) matrices.
```

MATRIX H= 100
10 100
1 10 100
0 1 10 100;
MATRIX G= 1 2 3 4;

```
- Band-diagonal Matrix Definition: This form of pattern definition is useful if the \(H\) matrix has (almost) constant band-diagonal structure. The MATRIX statement consists of \(H\) _name followed by empty brackets [,], an equals sign, and a list of numbers to be assigned to the diagonal and successive subdiagonals.
```

MATRIX H[,]= 100 10 1;
MATRIX G= 1 2 3 4;

```
- Sparse Matrix Definitions: In each of the following three specification types, the H_name or g_name is followed by a list of pattern definitions separated by commas. Each pattern definition consists of a location specification in brackets on the left side of an equals sign that is followed by a list of numbers.
- (Sub)Diagonalwise: This form of pattern definition is useful if the \(H\) matrix contains nonzero elements along diagonals or subdiagonals. The starting location is specified by an index pair in brackets \([i, j]\). The expression \(k *\) num on the right-hand side specifies that num is assigned to the elements \([i, j], \ldots,[i+k-1, j+k-1]\) in a diagonal direction of the \(H\) matrix. The special case \(k=1\) can be used to assign values to single nonzero element locations in \(H\).
```

MATRIX H [1,1]= 4 * 100,
[2,1]= 3 * 10,
[3,1]= 2 * 1;
MATRIX G [1,1]= 1 2 3 4;

```
- Columnwise Starting in Diagonal: This form of pattern definition is useful if the \(H\) matrix contains nonzero elements columnwise starting in the diagonal. The starting location is specified by only one index \(j\) in brackets \([, j]\). The \(k\) numbers at the right-hand side are assigned to the elements \([j, j], \ldots,[\min (j+k-1, n), j]\).
```

MATRIX H [,1]= 100 10 1,
[,2]= 100 10 1,
[,3]= 100 10,
[,4]= 100;
MATRIX G [,1]= 1 2 3 4;

```
- Rowwise Starting in First Column: This form of pattern definition is useful if the \(H\) matrix contains nonzero elements rowwise ending in the diagonal. The starting location is specified by only one index \(i\) in brackets \([i\),\(] . The k\) numbers at the right-hand side are assigned to the elements \([i, 1], \ldots,[i, \min (k, i)]\).

MATRIX H [1,]= 100, \([2]=\),10 100, \([3]=\),110 100, \([4]=,0 \quad 1 \quad 10\) 100;
MATRIX G \([1]=\),123 4;

\section*{MIN, MAX, and LSQ Statements}

MIN variables;
MAX variables;
LSQ variables;
The MIN, MAX, or LSQ statement specifies the objective functions. Only one of the three statements can be used at a time and at least one must be given. The MIN and LSQ statements are for minimizing the objective function, and the MAX statement is for maximizing the objective function. The MIN, MAX, or LSQ statement lists one or more variables naming the objective functions \(f_{i}, i=1, \ldots, m\) (later defined by SAS program code).
- If the MIN or MAX statement lists \(m\) function names \(f_{1}, \ldots, f_{m}\), the objective function \(f\) is
\[
f(x)=\sum_{i=1}^{m} f_{i}
\]
- If the LSQ statement lists \(m\) function names \(f_{1}, \ldots, f_{m}\), the objective function \(f\) is
\[
f(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}^{2}(x)
\]

Note that the LSQ statement can be used only if TECH=LEVMAR or TECH=HYQUAN.

\section*{MINQUAD and MAXQUAD Statements}

MINQUAD H_name [, g_name [, c_number]];
MAXQUAD H_name [, g_name [, c_number]];
The MINQUAD and MAXQUAD statements specify the matrix \(H\), vector \(g\), and scalar \(c\) that define a quadratic objective function. The MINQUAD statement is for minimizing the objective function and the MAXQUAD statement is for maximizing the objective function.

The rows and columns in \(H\) and \(g\) correspond to the order of decision variables given in the DECVAR statement. Specifying the objective function with a MINQUAD or MAXQUAD statement indirectly defines the analytic derivatives for the objective function. Therefore, statements specifying derivatives are not valid in these cases. Also, only use these statements when TECH=LICOMP or TECH=QUADAS and no nonlinear constraints are imposed.

There are three ways of using the MINQUAD or MAXQUAD statement:

\section*{- Using ARRAY Statements:}

The names \(H_{-}\)name and \(g\) _name specified in the MINQUAD or MAXQUAD statement can be used in ARRAY statements. This specification is mainly for small problems with almost dense \(H\) matrices.
```

proc nlp pall;
array h[2,2] . }4
0 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2<= x1 <= 50,
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
run;

```

\section*{- Using Elementwise Setting:}
 statement can be followed directly by one-dimensional indices specifying the corresponding elements of the matrix \(H\) and vector \(g\). These element names can be used on the left side of numerical assignments. The one-dimensional index value \(l\) following \(H_{\_}\)name, which corresponds to the element \(H_{i j}\), is computed by \(l=(i-1) n+j, i \geq j\). The matrix \(H\) and vector \(g\) are initialized to zero, so that only the nonzero elements must be given. This specification is efficient for small problems with sparse \(H\) matrices.
```

proc nlp pall;
minquad h, -100;
decvar x1 x2;
bounds 2 <= x1 <= 50,
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
h1 = .4; h4 = 4;
run;

```

\section*{- Using MATRIX Statements:}

The names \(H_{-}\)name and \(g_{-}\)name specified in the MINQUAD or MAXQUAD statement can be used in MATRIX statements. There are different ways to specify the nonzero elements of the matrix \(H\) and vector \(g\) by MATRIX statements. The following example illustrates one way to use the MATRIX statement.
```

proc nlp all;
matrix h[1,1] = .4 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50;
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
run;

```

\section*{NLINCON Statement}

NLINCON nlcon [, nlcon ...] [/option];
NLC nlcon [, nlcon ...] [/ option ];
where \(n\) Icon is given in one of the following formats:
- number operator variable_list operator number
- -number operator variable_list
- variable_list operator number
and operator is \(\leq,<, \geq,>\), or \(=\). The value of option can be SUMOBS or EVERYOBS.

General nonlinear equality and inequality constraints are specified with the NLINCON statement. The syntax of the NLINCON statement is similar to that of the BOUNDS statement with two small additions:
- The BOUNDS statement can contain only the names of decision variables. The NLINCON statement can also contain the names of continuous functions of the decision variables. These functions must be computed in the program statements, and since they can depend on the values of some of the variables in the DATA= data set, there are two possibilities:
- If the continuous functions should be summed across all observations read from the DATA= data set, the NLINCON statement must be terminated by the / SUMOBS option.
- If the continuous functions should be evaluated separately for each observation in the data set, the NLINCON statement must be terminated by the / EVERYOBS option. One constraint is generated for each observation in the data set.
- If the continuous function should be evaluated only once for the entire data set, the NLINCON statement has the same form as the BOUNDS statement. If this constraint does depend on the values of variables in the DATA= data set, it is evaluated using the data of the first observation.

One- or two-sided constraints can be specified in the NLINCON statement. However, equality constraints must be one-sided. The pairs of operators ( \(<,<=\) ) and ( \(>,>=\) ) are treated in the same way.

These three statements require the values of the three functions \(v_{1}, v_{2}, v_{3}\) to be between zero and ten, and they are equivalent:
```

nlincon 0 <= v1-v3,
v1-v3 <= 10;
nlincon 0 <= v1-v3 <= 10;
nlincon 10 >= v1-v3 >= 0;

```

Also, consider the Rosen-Suzuki problem. It has three nonlinear inequality constraints:
\[
\begin{gathered}
8-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{1}+x_{2}-x_{3}+x_{4} \geq 0 \\
10-x_{1}^{2}-2 x_{2}^{2}-x_{3}^{2}-2 x_{4}^{2}+x_{1}+x_{4} \geq 0 \\
5-2 x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-2 x_{1}+x_{2}+x_{4} \geq 0
\end{gathered}
\]

These are specified as
```

nlincon c1-c3 >= 0;
c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;
c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;
c3 = 5 - 2 * x1 * x1 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;

```

Note: QUANEW and NMSIMP are the only optimization subroutines that support the NLINCON statement.

\section*{PROFILE Statement}

PROFILE parms [/[ALPHA= values ][options ]];
where parms is given in the format pnam_1 pnam_2 ... pnam_n, and values is the list of \(\alpha\) values in \((0,1)\).

The PROFILE statement
- writes the \((x, y)\) coordinates of profile points for each of the listed parameters to the OUTEST= data set
- displays, or writes to the OUTEST= data set, the profile likelihood confidence limits (PL CLs) for the listed parameters for the specified \(\alpha\) values. If the approximate standard errors are available, the corresponding Wald confidence limits can be computed.

When computing the profile points or likelihood profile confidence intervals, PROC NLP assumes that a maximization of the log likelihood function is desired. Each point of the profile and each endpoint of the confidence interval is computed by solving corresponding nonlinear optimization problems.

The keyword PROFILE must be followed by the names of parameters for which the profile or the PL CLs should be computed. If the parameter name list is empty, the profiles and PL CLs for all parameters are computed. Then, optionally, the \(\alpha\) values follow. The list of \(\alpha\) values may contain TO and BY keywords. Each element must satisfy \(0<\alpha<1\). The following is an example:
```

profile l11-115 u1-u5 c /
alpha= . 9 to .1 by -. 1 . 09 to . 01 by -.01;

```

Duplicate \(\alpha\) values or values outside \((0,1)\) are automatically eliminated from the list.
A number of additional options can be specified.

FFACTOR \(=r \quad\) specifies the factor relating the discrepancy function \(f(\theta)\) to the \(\chi^{2}\) quantile. The default value is \(r=2\).

FORCHI= F I CHI defines the scale for the \(y\) values written to the OUTEST= data set. For FORCHI=F, the \(y\) values are scaled to the values of the log likelihood function \(f=f(\theta)\); for FORCHI=CHI, the \(y\) values are scaled so that \(\hat{y}=\chi^{2}\). The default value is \(\mathrm{FORCHI}=\mathrm{F}\).
FEASRATIO \(=r \quad\) specifies a factor of the Wald confidence limit (or an approximation of it if standard errors are not computed) defining an upper bound for the search for confidence limits. In general, the range of \(x\) values in the profile graph is between \(r=1\) and \(r=2\) times the length of the corresponding Wald interval. For many examples, the \(\chi^{2}\) quantiles corresponding to small \(\alpha\) values define a \(y\) level \(\hat{y}-\frac{1}{2} q_{1}(1-\alpha)\), which is too far away from \(\hat{y}\) to be reached by \(y(x)\) for \(x\) within the range of twice the Wald confidence limit. The search for an intersection with such a \(y\) level at a practically infinite value of \(x\) can be computationally expensive. A smaller value for \(r\) can speed up computation time by restricting the search for confidence limits to a region closer to \(\hat{x}\). The default value of \(r=1000\) practically disables the FEASRATIO \(=\) option.
OUTTABLE specifies that the complete set \(\theta\) of parameter estimates rather than only \(x=\theta_{j}\) for each confidence limit is written to the OUTEST \(=\) data set. This output can be helpful for further analyses on how small changes in \(x=\theta_{j}\) affect the changes in the \(\theta_{i}, i \neq j\).

For some applications, it may be computationally less expensive to compute the PL confidence limits for a few parameters than to compute the approximate covariance matrix of many parameters, which is the basis for the Wald confidence limits. However, the computation of the profile of the discrepancy function and the corresponding CLs in general will be much more time-consuming than that of the Wald CLs.

\section*{Program Statements}

This section lists the program statements used to code the objective function and nonlinear constraints and their derivatives, and it documents the differences between program statements in the NLP procedure and program statements in the DATA step. The syntax of program statements used in PROC NLP is identical to that used in the CALIS, GENMOD, and MODEL procedures (refer to the SAS/ETS User's Guide).

Most of the program statements which can be used in the SAS DATA step can also be used in the NLP procedure. See the SAS Language Guide or base SAS documentation for a description of the SAS program statements.
```

ABORT;
CALL name [(expression [, expression ...])];
DELETE;
DO [variable = expression
[TO expression] [BY expression]
[, expression [TO expression] [BY expression] ...]
]
[WHILE expression] [UNTIL expression];
END;
GOTO statement_label;
IF expression;
IF expression THEN program_statement;
ELSE program_statement;
variable = expression;
variable + expression;
LINK statement_label;
PUT [variable] [=] [...] ;
RETURN;
SELECT [(expression)];
STOP;
SUBSTR(variable, index, length) = expression;
WHEN (expression) program_statement;
OTHERWISE program_statement;

```

For the most part, the SAS program statements work as they do in the SAS DATA step as documented in the SAS Language Guide. However, there are several differences that should be noted.
- The ABORT statement does not allow any arguments.
- The DO statement does not allow a character index variable. Thus
\[
\text { do } i=1,2,3 ;
\]
is supported; however,
```

do i = 'A','B','C';

```
is not.
- The PUT statement, used mostly for program debugging in PROC NLP, supports only some of the features of the DATA step PUT statement, and has some new features that the DATA step PUT statement does not:
- The PROC NLP PUT statement does not support line pointers, factored lists, iteration factors, overprinting, _INFILE_, the colon (:) format modifier, or "\$".
- The PROC NLP PUT statement does support expressions, but the expression must be enclosed inside of parentheses. For example, the following statement displays the square root of x : put (sqrt(x));
- The PROC NLP PUT statement supports the print item _PDV_ to print a formatted listing of all variables in the program. For example, the following statement displays a more readable listing of the variables than the _all_ print item: put _pdv_;
- The WHEN and OTHERWISE statements allow more than one target statement. That is, DO/END groups are not necessary for multiple statement WHENs. For example, the following syntax is valid:
```

SELECT;
WHEN (expl) stmt1;
stmt2;
WHEN (exp2) stmt3;
stmt4;
END;

```

It is recommended to keep some kind of order in the input of NLP, that is, between the statements that define decision variables and constraints and the program code used to specify objective functions and derivatives.

\section*{Use of Special Variables in Program Code}

Except for the quadratic programming techniques (QUADAS and LICOMP) that do not execute program statements during the iteration process, several special variables in the program code can be used to communicate with PROC NLP in special situations:
- _OBS_ If a DATA= input data set is used, it is possible to access a variable _OBS_ which contains the number of the observation processed from the data set. You should not change the content of the _OBS_ variable. This variable enables you to modify the programming statements depending on the observation number processed in the DATA= input data set. For example, to set variable A to 1 when observation 10 is processed, and otherwise to 2 , it is possible to specify
```

IF _OBS_ = 10 THEN A=1; ELSE A=2;

```
- _ITER_ This variable is set by PROC NLP, and it contains the number of the current iteration of the optimization technique as it is displayed in the optimization history. You should not change the content of the _ITER_ variable. It is possible to read the value of this variable in order to modify the programming statements depending on the iteration number processed. For example, to display the content of the variables \(\mathrm{A}, \mathrm{B}\), and C when there are more than 100 iterations processed, it is possible to use
```

IF _ITER_ > 100 THEN PUT A B C;

```
- _DPROC_ This variable is set by PROC NLP to indicate whether the code is called only to obtain the values of the \(m\) objective functions \(f_{i}\) (_DPROC_=0) or whether specified derivatives (defined by the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) also have to be computed (_DPROC_=1). You should not change the content of the _DPROC_ variable. Checking the _DPROC_ variable makes it possible to save computer time by not performing derivative code that is not needed by the current call. In particular, when a DATA= input data set is used, the code is processed many times to compute only the function values. If the programming statements in the program contain the specification of computationally expensive first- and second-order derivatives, you can put the derivative code in an IF statement that is processed only if _DPROC_ is not zero.
- _INDF_ The _INDF_ variable is set by PROC NLP to inform you of the source of calls to the function or derivative programming.
_INDF_=0 indicates the first function call in a grid search. This is also the first call evaluating the programming statements if there is a grid search defined by grid values in the DECVAR statement.
_INDF_=1 indicates further function calls in a grid search.
_INDF_=2 indicates the call for the feasible starting point. This is also the first call evaluating the programming statements if there is no grid search defined.
_INDF_ \(=\mathbf{3}\) indicates calls from a gradient-checking algorithm.
_INDF_=4 indicates calls from the minimization algorithm. The _ITER_ variable contains the iteration number.
_INDF_=5 If the active set algorithm leaves the feasible region (due to rounding errors), an algorithm tries to return it into the feasible region; _INDF_=5 indicates a call that is done when such a step is successful.
_INDF_=6 indicates calls from a factorial test subroutine that tests the neighborhood of a point \(x\) for optimality.
_INDF_=7,8 indicates calls from subroutines needed to compute finitedifference derivatives using only values of the objective function. No nonlinear constraints are evaluated.
_INDF_=9 indicates calls from subroutines needed to compute second-order finite-difference derivatives using analytic (specified) first-order derivatives. No nonlinear constraints are evaluated.
_INDF_=10 indicates calls where only the nonlinear constraints but no objective function are needed. The analytic derivatives of the nonlinear constraints are computed.
_INDF_=11 indicates calls where only the nonlinear constraints but no objective function are needed. The analytic derivatives of the nonlinear constraints are not computed.
_INDF_=-1 indicates the last call at the final solution.
You should not change the content of the _INDF_ variable.
- _LIST_ You can set the _LIST_ variable to control the output during the iteration process:
_LIST_=0 is equivalent to the NOPRINT option. It suppresses all output.
_LIST_=1 is equivalent to the PSUMMARY but not the PHISTORY option. The optimization start and termination messages are displayed. However, the PSUMMARY option suppresses the output of the iteration history.
_LIST_= \(\mathbf{2}\) is equivalent to the PSHORT option or to a combination of the PSUMMARY and PHISTORY options. The optimization start information, the iteration history, and termination message are displayed.
_LIST_=3 is equivalent to not PSUMMARY, not PSHORT, and not PALL. The optimization start information, the iteration history, and the termination message are displayed.
_LIST_=4 is equivalent to the PALL option. The extended optimization start information (also containing settings of termination criteria and other control parameters) is displayed.
_LIST_=5 In addition to the iteration history, the vector \(x^{(k)}\) of parameter estimates is displayed for each iteration \(k\).
_LIST_=6 In addition to the iteration history, the vector \(x^{(k)}\) of parameter estimates and the gradient \(g^{(k)}\) (if available) of the objective function are displayed for each iteration \(k\).

It is possible to set the _LIST_ variable in the program code to obtain more or less output in each iteration of the optimization process. For example,
```

IF_ITER_ = 11 THEN _LIST_=5;
ELSE IF _ITER_ > 11 THEN _LIST_=1;
ELSE _LIST_=3;

```
- _TOOBIG_ The value of _TOOBIG_ is initialized to 0 by PROC NLP, but you can set it to 1 during the iteration, indicating problems evaluating the program statements. The objective function and derivatives must be computable at the starting point. However, during the iteration it is possible to set the _TOOBIG_ variable to 1 , indicating that the programming statements (computing the value of the objective function or the specified derivatives) cannot be performed for the current value of \(x_{k}\). Some of the optimization techniques check the value of _TOOBIG_ and try to modify the parameter estimates so that the objective function (or derivatives) can be computed in a following trial.
- _NOBS_ The value of the _NOBS_ variable is initialized by PROC NLP to the product of the number of functions mfun specified in the MIN, MAX or LSQ statement and the number of valid observations nobs in the current BY group of the DATA= input data set. The value of the _NOBS_ variable is used for computing the scalar factor of the covariance matrix (see the \(\mathrm{COV}=\), VARDEF \(=\), and SIGSQ= options). If you reset the value of the _NOBS_ variable, the value that is available at the end of the iteration is used by PROC NLP to compute the scalar factor of the covariance matrix.
- _DF_ The value of the _DF_ variable is initialized by PROC NLP to the number \(n\) of parameters specified in the DECVAR statement. The value of the _DF_ variable is used for computing the scalar factor \(d\) of the covariance matrix (see the COV=, VARDEF=, and SIGSQ= options). If you reset the value of the _DF_ variable, the value that is available at the end of the iteration is used by PROC NLP to compute the scalar factor of the covariance matrix.
- _LASTF_ In each iteration (except the first one), the value of the _LASTF_ variable is set by PROC NLP to the final value of the objective function that was achieved during the last iteration. This value should agree with the value that is displayed in the iteration history and that is written in the OUTEST= data set when the OUTITER option is specified.

\section*{Details}

\section*{Criteria for Optimality}

\section*{PROC NLP solves}
\[
\begin{array}{ll}
\min _{x \in \mathcal{R}^{n}} & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i=1, \ldots, m_{e} \\
& c_{i}(x) \geq 0, \quad i=m_{e}+1, \ldots, m
\end{array}
\]
where \(f\) is the objective function and the \(c_{i}\) 's are the constraint functions.
A point \(x\) is feasible if it satisfies all the constraints. The feasible region \(\mathcal{G}\) is the set of all the feasible points. A feasible point \(x^{*}\) is a global solution of the preceding problem if no point in \(\mathcal{G}\) has a smaller function value than \(f\left(x^{*}\right)\). A feasible point \(x^{*}\) is a local solution of the problem if there exists some open neighborhood surrounding \(x^{*}\) in that no point has a smaller function value than \(f\left(x^{*}\right)\). Nonlinear programming algorithms cannot consistently find global minima. All the algorithms in PROC NLP find a local minimum for this problem. If you need to check whether the obtained solution is a global minimum, you may have to run PROC NLP with different starting points obtained either at random or by selecting a point on a grid that contains \(\mathcal{G}\).

Every local minimizer \(x^{*}\) of this problem satisfies the following local optimality conditions:
- The gradient (vector of first derivatives) \(g\left(x^{*}\right)=\nabla f\left(x^{*}\right)\) of the objective function \(f\) (projected toward the feasible region if the problem is constrained) at the point \(x^{*}\) is zero.
- The Hessian (matrix of second derivatives) \(G\left(x^{*}\right)=\nabla^{2} f\left(x^{*}\right)\) of the objective function \(f\) (projected toward the feasible region \(\mathcal{G}\) in the constrained case) at the point \(x^{*}\) is positive definite.

Most of the optimization algorithms in PROC NLP use iterative techniques that result in a sequence of points \(x^{0}, \ldots, x^{n}, \ldots\), that converges to a local solution \(x^{*}\). At the solution, PROC NLP performs tests to confirm that the (projected) gradient is close to zero and that the (projected) Hessian matrix is positive definite.

\section*{Karush-Kuhn-Tucker Conditions}

An important tool in the analysis and design of algorithms in constrained optimization is the Lagrangian function, a linear combination of the objective function and the constraints:
\[
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} c_{i}(x)
\]

The coefficients \(\lambda_{i}\) are called Lagrange multipliers. This tool makes it possible to state necessary and sufficient conditions for a local minimum. The various algorithms in PROC NLP create sequences of points, each of which is closer than the previous one to satisfying these conditions.

Assuming that the functions \(f\) and \(c_{i}\) are twice continuously differentiable, the point \(x^{*}\) is a local minimum of the nonlinear programming problem, if there exists a vector \(\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)\) that meets the following conditions.

\section*{1. First-order Karush-Kuhn-Tucker conditions:}
\[
\begin{array}{ll}
c_{i}\left(x^{*}\right)=0, & \\
c_{i}\left(x^{*}\right) \geq 0, \\
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 & \lambda_{i}^{*} \geq 0, \quad \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, \\
i=m_{e}+1, \ldots, m
\end{array}
\]
2. Second-order conditions: Each nonzero vector \(y \in \mathcal{R}^{n}\) that satisfies
\[
y^{T} \nabla_{x} c_{i}\left(x^{*}\right)=0\left\{\begin{array}{l}
i=1, \ldots, m_{e} \\
\forall i \in\left\{m_{e}+1, \ldots, m: \lambda_{i}^{*}>0\right\}
\end{array}\right.
\]
also satisfies
\[
y^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) y>0
\]

Most of the algorithms to solve this problem attempt to find a combination of vectors \(x\) and \(\lambda\) for which the gradient of the Lagrangian function with respect to \(x\) is zero.

\section*{Derivatives}

The first- and second-order conditions of optimality are based on first and second derivatives of the objective function \(f\) and the constraints \(c_{i}\).

The gradient vector contains the first derivatives of the objective function \(f\) with respect to the parameters \(x_{1}, \ldots, x_{n}\), as follows:
\[
g(x)=\nabla f(x)=\left(\frac{\partial f}{\partial x_{j}}\right)
\]

The \(n \times n\) symmetric Hessian matrix contains the second derivatives of the objective function \(f\) with respect to the parameters \(x_{1}, \ldots, x_{n}\), as follows:
\[
G(x)=\nabla^{2} f(x)=\left(\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}\right)
\]

For least-squares problems, the \(m \times n\) Jacobian matrix contains the first-order derivatives of the \(m\) objective functions \(f_{i}(x)\) with respect to the parameters \(x_{1}, \ldots, x_{n}\), as follows:
\[
J(x)=\left(\nabla f_{1}, \ldots, \nabla f_{m}\right)=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)
\]

In the case of least-squares problems, the crossproduct Jacobian
\[
J^{T} J=\left(\sum_{i=1}^{m} \frac{\partial f_{i}}{\partial x_{j}} \frac{\partial f_{i}}{\partial x_{k}}\right)
\]
is used as an approximate Hessian matrix. It is a very good approximation of the Hessian if the residuals at the solution are "small." (If the residuals are not sufficiently small at the solution, this approach may result in slow convergence.) The fact that it is possible to obtain Hessian approximations for this problem that do not require any computation of second derivatives means that least-squares algorithms are more efficient than unconstrained optimization algorithms. Using the vector \(f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)^{T}\) of function values, PROC NLP computes the gradient \(g(x)\) by
\[
g(x)=J^{T}(x) f(x)
\]

The \(m c \times n\) Jacobian matrix contains the first-order derivatives of the \(m c\) nonlinear constraint functions \(c_{i}(x), i=1, \ldots, m c\), with respect to the parameters \(x_{1}, \ldots, x_{n}\), as follows:
\[
C J(x)=\left(\nabla c_{1}, \ldots, \nabla c_{m c}\right)=\left(\frac{\partial c_{i}}{\partial x_{j}}\right)
\]

PROC NLP provides three ways to compute derivatives:
- It computes analytical first- and second-order derivatives of the objective function \(f\) with respect to the \(n\) variables \(x_{j}\).
- It computes first- and second-order finite-difference approximations to the derivatives. For more information, see the section "Finite-Difference Approximations of Derivatives" on page 579.
- The user supplies formulas for analytical or numerical first- and second-order derivatives of the objective function in the GRADIENT, JACOBIAN, CRPJAC, and HESSIAN statements. The JACNLC statement can be used to specify the derivatives for the nonlinear constraints.

\section*{Optimization Algorithms}

There are three groups of optimization techniques available in PROC NLP. A particular optimizer can be selected with the TECH= option in the PROC NLP statement.
\begin{tabular}{|l|l|}
\hline Algorithm & TECH= \\
\hline Linear Complementarity Problem & LICOMP \\
Quadratic Active Set Technique & QUADAS \\
\hline Trust-Region Method & TRUREG \\
Newton-Raphson Method with Line Search & NEWRAP \\
Newton-Raphson Method with Ridging & NRRIDG \\
Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP) & QUANEW \\
Double Dogleg Method (DBFGS, DDFP) & DBLDOG \\
Conjugate Gradient Methods (PB, FR, PR, CD) & CONGRA \\
Nelder-Mead Simplex Method & NMSIMP \\
\hline Levenberg-Marquardt Method & LEVMAR \\
Hybrid Quasi-Newton Methods (DBFGS, DDFP) & HYQUAAN \\
\hline
\end{tabular}

Since no single optimization technique is invariably superior to others, PROC NLP provides a variety of optimization techniques that work well in various circumstances. However, it is possible to devise problems for which none of the techniques in PROC NLP can find the correct solution. Moreover, nonlinear optimization can be computationally expensive in terms of time and memory, so care must be taken when matching an algorithm to a problem.

All optimization techniques in PROC NLP use \(O\left(n^{2}\right)\) memory except the conjugate gradient methods, which use only \(O(n)\) memory and are designed to optimize problems with many variables. Since the techniques are iterative, they require the repeated computation of
- the function value (optimization criterion)
- the gradient vector (first-order partial derivatives)
- for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)
- values of linear and nonlinear constraints
- the first-order partial derivatives (Jacobian) of nonlinear constraints

However, since each of the optimizers requires different derivatives and supports different types of constraints, some computational efficiencies can be gained. The following table shows, for each optimization technique, which derivatives are needed (FOD: first-order derivatives; SOD: second-order derivatives) and what kinds of constraints (BC: boundary constraints; LIC: linear constraints; NLC: nonlinear constraints) are supported.
\begin{tabular}{|c|cc|ccc|}
\hline Algorithm & FOD & SOD & BC & LIC & NLC \\
\hline LICOMP & - & - & x & x & - \\
QUADAS & - & - & x & x & - \\
\hline TRUREG & x & x & x & x & - \\
NEWRAP & x & x & x & x & - \\
NRRIDG & x & x & x & x & - \\
QUANEW & x & - & x & x & x \\
DBLDOG & x & - & x & x & - \\
CONGRA & x & - & x & x & - \\
NMSIMP & - & - & x & x & x \\
\hline LEVMAR & x & - & x & x & - \\
HYQUAN & x & - & x & x & - \\
\hline
\end{tabular}

\section*{Preparation for Using Optimization Algorithms}

It is rare that a problem is submitted to an optimization algorithm "as is." By making a few changes in your problem, you can reduce its complexity, which would increase the chance of convergence and save execution time.
- Whenever possible, use linear functions instead of nonlinear functions. PROC NLP will reward you with faster and more accurate solutions.
- Most optimization algorithms are based on quadratic approximations to nonlinear functions. You should try to avoid the use of functions that cannot be properly approximated by quadratic functions. Try to avoid the use of rational functions.

For example, the constraint
\[
\frac{\sin (x)}{x+1}>0
\]
should be replaced by the equivalent constraint
\[
\sin (x)(x+1)>0
\]
and the constraint
\[
\frac{\sin (x)}{x+1}=1
\]
should be replaced by the equivalent constraint
\[
\sin (x)-(x+1)=0
\]
- Try to avoid the use of exponential functions, if possible.
- If you can reduce the complexity of your function by the addition of a small number of variables, it may help the algorithm avoid stationary points.
- Provide the best starting point you can. A good starting point leads to better quadratic approximations and faster convergence.

\section*{Choosing an Optimization Algorithm}

The factors that go into choosing a particular optimizer for a particular problem are complex and may involve trial and error. Several things must be taken into account. First, the structure of the problem has to be considered: Is it quadratic? least-squares? Does it have linear or nonlinear constraints? Next, it is important to consider the type of derivatives of the objective function and the constraints that are needed and whether these are analytically tractable or not. This section provides some guidelines for making the right choices.

For many optimization problems, computing the gradient takes more computer time than computing the function value, and computing the Hessian sometimes takes much more computer time and memory than computing the gradient, especially when there are many decision variables. Optimization techniques that do not use the Hessian usually require more iterations than techniques that do use Hessian approximations (such as finite differences or BFGS update) and so are often slower. Techniques that do not use Hessians at all tend to be slow and less reliable.

The derivative compiler is not efficient in the computation of second-order derivatives. For large problems, memory and computer time can be saved by programming your own derivatives using the GRADIENT, JACOBIAN, CRPJAC, HESSIAN, and JACNLC statements. If you are not able to specify first- and second-order derivatives of the objective function, you can rely on finite-difference gradients and Hessian update formulas. This combination is frequently used and works very well for small and medium problems. For large problems, you are advised not to use an optimization technique that requires the computation of second derivatives.

The following provides some guidance for matching an algorithm to a particular problem.
- Quadratic Programming
- QUADAS
- LICOMP
- General Nonlinear Optimization
- Nonlinear Constraints

\section*{* Small Problems: NMSIMP}

Not suitable for highly nonlinear problems or for problems with \(n>20\).
* Medium Problems: QUANEW
- Only Linear Constraints
* Small Problems: TRUREG (NEWRAP, NRRIDG)
( \(n \leq 40\) ) where the Hessian matrix is not expensive to compute.

Sometimes NRRIDG can be faster than TRUREG, but TRUREG can be more stable. NRRIDG needs only one matrix with \(n(n+1) / 2\) double words; TRUREG and NEWRAP need two such matrices.
* Medium Problems: QUANEW (DBLDOG)
( \(n \leq 200\) ) where the objective function and the gradient are much faster to evaluate than the Hessian. QUANEW and DBLDOG in general need more iterations than TRUREG, NRRIDG, and NEWRAP, but each iteration can be much faster. QUANEW and DBLDOG need only the gradient to update an approximate Hessian. QUANEW and DBLDOG need slightly less memory than TRUREG or NEWRAP (essentially one matrix with \(n(n+1) / 2\) double words).
* Large Problems: CONGRA
( \(n>200\) ) where the objective function and the gradient can be computed much faster than the Hessian and where too much memory is needed to store the (approximate) Hessian. CONGRA in general needs more iterations than QUANEW or DBLDOG, but each iteration can be much faster. Since CONGRA needs only a factor of \(n\) double-word memory, many large applications of PROC NLP can be solved only by CONGRA.
* No Derivatives: NMSIMP
( \(n \leq 20\) ) where derivatives are not continuous or are very difficult to compute.
- Least-Squares Minimization
- Small Problems: LEVMAR (HYQUAN)
( \(n \leq 60\) ) where the crossproduct Jacobian matrix is inexpensive to compute. In general, LEVMAR is more reliable, but there are problems with high residuals where HYQUAN can be faster than LEVMAR.
- Medium Problems: QUANEW (DBLDOG)
( \(n \leq 200\) ) where the objective function and the gradient are much faster to evaluate than the crossproduct Jacobian. QUANEW and DBLDOG in general need more iterations than LEVMAR or HYQUAN, but each iteration can be much faster.
- Large Problems: CONGRA
- No Derivatives: NMSIMP

\section*{Quadratic Programming Method}

The QUADAS and LICOMP algorithms can be used to minimize or maximize a quadratic objective function,
\[
f(x)=\frac{1}{2} x^{T} G x+g^{T} x+c, \quad \text { with } \quad G^{T}=G
\]
subject to linear or boundary constraints
\[
A x \geq b \quad \text { or } \quad l_{j} \leq x_{j} \leq u_{j}
\]
where \(x=\left(x_{1}, \ldots, x_{n}\right)^{T}, g=\left(g_{1}, \ldots, g_{n}\right)^{T}, G\) is an \(n \times n\) symmetric matrix, \(A\) is an \(m \times n\) matrix of general linear constraints, and \(b=\left(b_{1}, \ldots, b_{m}\right)^{T}\). The value of \(c\) modifies only the value of the objective function, not its derivatives, and the location of the optimizer \(x^{*}\) does not depend on the value of the constant term \(c\). For QUADAS or LICOMP, the objective function must be specified using the MINQUAD or MAXQUAD statement or using an INQUAD= data set. In this case, derivatives do not need to be specified because the gradient vector
\[
\nabla f(x)=G x+g
\]
and the \(n \times n\) Hessian matrix
\[
\nabla^{2} f(x)=G
\]
are easily obtained from the data input.
Simple boundary and general linear constraints can be specified using the BOUNDS or LINCON statement or an INQUAD= or INEST= data set.

\section*{General Quadratic Programming (QUADAS)}

The QUADAS algorithm is an active set method that iteratively updates the \(Q T\) decomposition of the matrix \(A_{k}\) of active linear constraints and the Cholesky factor of the projected Hessian \(Z_{k}^{T} G Z_{k}\) simultaneously. The update of active boundary and linear constraints is done separately; refer to Gill et al. (1984). Here \(Q\) is an \(n_{\text {free }} \times n_{\text {free }}\) orthogonal matrix composed of vectors spanning the null space \(Z\) of \(A_{k}\) in its first \(n_{\text {free }}-n_{\text {alc }}\) columns and range space \(Y\) in its last \(n_{\text {alc }}\) columns; \(T\) is an \(n_{\text {alc }} \times n_{\text {alc }}\) triangular matrix of special form, \(t_{i j}=0\) for \(i<n-j\), where \(n_{\text {free }}\) is the number of free parameters ( \(n\) minus the number of active boundary constraints), and \(n_{\text {alc }}\) is the number of active linear constraints. The Cholesky factor of the projected Hessian matrix \(Z_{k}^{T} G Z_{k}\) and the \(Q T\) decomposition are updated simultaneously when the active set changes.

\section*{Linear Complementarity (LICOMP)}

The LICOMP technique solves a quadratic problem as a linear complementarity problem. It can be used only if \(G\) is positive (negative) semidefinite for minimization (maximization) and if the parameters are restricted to be positive.

This technique finds a point that meets the Karush-Kuhn-Tucker conditions by solving the linear complementary problem
\[
w=M z+q
\]
with constraints
\[
w^{T} z \geq 0, \quad w \geq 0, \quad z \geq 0
\]
where
\[
z=\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \quad M=\left[\begin{array}{cc}
G & -A^{T} \\
A & 0
\end{array}\right] \quad q=\left[\begin{array}{c}
g \\
-b
\end{array}\right]
\]

Only the LCEPSILON= option can be used to specify a tolerance used in computations.

\section*{General Nonlinear Optimization}

\section*{Trust-Region Optimization (TRUREG)}

The trust region method uses the gradient \(g\left(x^{(k)}\right)\) and Hessian matrix \(G\left(x^{(k)}\right)\) and thus requires that the objective function \(f(x)\) have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function within a hyperelliptic trust region with radius \(\Delta\) that constrains the step length corresponding to the quality of the quadratic approximation. The trust region method is implemented using Dennis, Gay, and Welsch (1981), Gay (1983).

The trust region method performs well for small to medium problems and does not require many function, gradient, and Hessian calls. If the computation of the Hessian matrix is computationally expensive, use the UPDATE= option for update formulas (that gradually build the second-order information in the Hessian). For larger problems, the conjugate gradient algorithm may be more appropriate.

\section*{Newton-Raphson Optimization With Line-Search (NEWRAP)}

The NEWRAP technique uses the gradient \(g\left(x^{(k)}\right)\) and Hessian matrix \(G\left(x^{(k)}\right)\) and thus requires that the objective function have continuous first- and second-order derivatives inside the feasible region. If second-order derivatives are computed efficiently and precisely, the NEWRAP method may perform well for medium to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search is done to compute successful steps. If the Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is done along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation (LIS=2).

\section*{Newton-Raphson Ridge Optimization (NRRIDG)}

The NRRIDG technique uses the gradient \(g\left(x^{(k)}\right)\) and Hessian matrix \(G\left(x^{(k)}\right)\) and thus requires that the objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied, a multiple of the identity matrix is added to the Hessian matrix. If this algorithm is used for least-squares problems, it performs a ridged Gauss-Newton minimization.

The NRRIDG method performs well for small to medium problems and does not need many function, gradient, and Hessian calls. However, if the computation of
the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be more efficient.

Since NRRIDG uses an orthogonal decomposition of the approximate Hessian, each iteration of NRRIDG can be slower than that of NEWRAP, which works with Cholesky decomposition. However, usually NRRIDG needs fewer iterations than NEWRAP.

\section*{Quasi-Newton Optimization (QUANEW)}

The (dual) quasi-Newton method uses the gradient \(g\left(x^{(k)}\right)\) and does not need to compute second-order derivatives since they are approximated. It works well for medium to moderately large optimization problems where the objective function and the gradient are much faster to compute than the Hessian, but in general it requires more iterations than the techniques TRUREG, NEWRAP, and NRRIDG, which compute second-order derivatives.

The QUANEW algorithm depends on whether or not there are nonlinear constraints.

\section*{Unconstrained or Linearly Constrained Problems}

If there are no nonlinear constraints, QUANEW is either
- the original quasi-Newton algorithm that updates an approximation of the inverse Hessian, or
- the dual quasi-Newton algorithm that updates the Cholesky factor of an approximate Hessian (default),
depending on the value of the UPDATE= option. For problems with general linear inequality constraints, the dual quasi-Newton methods can be more efficient than the original ones.

Four update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, \& Shanno) update of the Cholesky factor of the Hessian matrix. This is the default.
DDFP performs the dual DFP (Davidon, Fletcher, \& Powell) update of the Cholesky factor of the Hessian matrix.
BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, \& Shanno) update of the inverse Hessian matrix.
DFP performs the original DFP (Davidon, Fletcher, \& Powell) update of the inverse Hessian matrix.

In each iteration, a line search is done along the search direction to find an approximate optimum. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step length \(\alpha\) satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit of the step length. Violating the left-side Goldstein condition can affect the positive
definiteness of the quasi-Newton update. In those cases, either the update is skipped or the iterations are restarted with an identity matrix resulting in the steepest descent or ascent search direction. Line-search algorithms other than the default one can be specified with the LINESEARCH= option.

\section*{Nonlinearly Constrained Problems}

The algorithm used for nonlinearly constrained quasi-Newton optimization is an efficient modification of Powell's (1978a, 1982b) Variable Metric Constrained WatchDog (VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both VMCWD and VF02AD use Fletcher's VE02AD algorithm (part of the Harwell library) for positive-definite quadratic programming. The PROC NLP QUANEW implementation uses a quadratic programming subroutine that updates and downdates the approximation of the Cholesky factor when the active set changes. The nonlinear QUANEW algorithm is not a feasible-point algorithm, and the value of the objective function need not decrease (minimization) or increase (maximization) monotonically. Instead, the algorithm tries to reduce a linear combination of the objective function and constraint violations, called the merit function.

The following are similarities and differences between this algorithm and the VMCWD algorithm:
- A modification of this algorithm can be performed by specifying VERSION \(=1\), which replaces the update of the Lagrange vector \(\mu\) with the original update of Powell (1978a, b) that is used in VF02AD. This can be helpful for some applications with linearly dependent active constraints.
- If the VERSION option is not specified or if VERSION=2 is specified, the evaluation of the Lagrange vector \(\mu\) is performed in the same way as Powell (1982b) describes.
- Instead of updating an approximate Hessian matrix, this algorithm uses the dual BFGS (or DFP) update that updates the Cholesky factor of an approximate Hessian. If the condition of the updated matrix gets too bad, a restart is done with a positive diagonal matrix. At the end of the first iteration after each restart, the Cholesky factor is scaled.
- The Cholesky factor is loaded into the quadratic programming subroutine, automatically ensuring positive definiteness of the problem. During the quadratic programming step, the Cholesky factor of the projected Hessian matrix \(Z_{k}^{T} G Z_{k}\) and the \(Q T\) decomposition are updated simultaneously when the active set changes. Refer to Gill et al. (1984) for more information.
- The line-search strategy is very similar to that of Powell (1982b). However, this algorithm does not call for derivatives during the line search, so the algorithm generally needs fewer derivative calls than function calls. VMCWD always requires the same number of derivative and function calls. Sometimes Powell's line-search method uses steps that are too long. In these cases, use the INSTEP \(=\) option to restrict the step length \(\alpha\).
- The watchdog strategy is similar to that of Powell (1982b); however, it doesn't return automatically after a fixed number of iterations to a former better point.

A return here is further delayed if the observed function reduction is close to the expected function reduction of the quadratic model.
- The Powell termination criterion still is used (as FCONV2) but the QUANEW implementation uses two additional termination criteria (GCONV and ABSGCONV).

The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order derivatives (constraints normals) of the constraints \(C J(x)\).

You can specify two update formulas with the UPDATE= option:
DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default.
DDFP performs the dual DFP update of the Cholesky factor of the Hessian matrix.

This algorithm uses its own line-search technique. No options or parameters (except the INSTEP= option) controlling the line search in the other algorithms apply here. In several applications, large steps in the first iterations were troublesome. You can use the INSTEP= option to impose an upper bound for the step length \(\alpha\) during the first five iterations. You may also use the INHESSIAN= option to specify a different starting approximation for the Hessian. Choosing simply the INHESSIAN option will use the Cholesky factor of a (possibly ridged) finite-difference approximation of the Hessian to initialize the quasi-Newton update process. The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the processing of linear and boundary constraints, are valid only for the quadratic programming subroutine used in each iteration of the nonlinear constraints QUANEW algorithm.

\section*{Double Dogleg Optimization (DBLDOG)}

The double dogleg optimization method combines the ideas of the quasi-Newton and trust region methods. The double dogleg algorithm computes in each iteration the step \(s^{(k)}\) as a linear combination of the steepest descent or ascent search direction \(s_{1}^{(k)}\) and a quasi-Newton search direction \(s_{2}^{(k)}\) :
\[
s^{(k)}=\alpha_{1} s_{1}^{(k)}+\alpha_{2} s_{2}^{(k)}
\]

The step is requested to remain within a prespecified trust region radius; refer to Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. Two update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, \& Shanno) update of the Cholesky factor of the Hessian matrix. This is the default.
DDFP performs the dual DFP (Davidon, Fletcher, \& Powell) update of the Cholesky factor of the Hessian matrix.

The double dogleg optimization technique works well for medium to moderately large optimization problems where the objective function and the gradient are much faster to compute than the Hessian. The implementation is based on Dennis and Mei (1979) and Gay (1983) but is extended for dealing with boundary and linear constraints. DBLDOG generally needs more iterations than the techniques TRUREG, NEWRAP, or NRRIDG that need second-order derivatives, but each of the DBLDOG iterations is computationally cheap. Furthermore, DBLDOG needs only gradient calls for the update of the Cholesky factor of an approximate Hessian.

\section*{Conjugate Gradient Optimization (CONGRA)}

Second-order derivatives are not used by CONGRA. The CONGRA algorithm can be expensive in function and gradient calls but needs only \(O(n)\) memory for unconstrained optimization. In general, many iterations are needed to obtain a precise solution, but each of the CONGRA iterations is computationally cheap. Four different update formulas for generating the conjugate directions can be specified using the UPDATE= option:

PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is the default.

FR performs the Fletcher-Reeves update (Fletcher 1987).
PR performs the Polak-Ribiere update (Fletcher 1987).
CD performs a conjugate-descent update of Fletcher (1987).

The default value is UPDATE=PB, since it behaved best in most test examples. You are advised to avoid the option UPDATE=CD, a it behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with large \(n\). For the unconstrained or boundary constrained case, CONGRA needs only \(O(n)\) bytes of working memory, whereas all other optimization methods require order \(O\left(n^{2}\right)\) bytes of working memory. During \(n\) successive iterations, uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle of \(n\) conjugate search directions. In each iteration, a line search is done along the search direction to find an approximate optimum of the objective function. The default linesearch method uses quadratic interpolation and cubic extrapolation to obtain a step length \(\alpha\) satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit for the step length. Other line-search algorithms can be specified with the LINESEARCH= option.

\section*{Nelder-Mead Simplex Optimization (NMSIMP)}

The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective function has continuous derivatives. The objective function itself needs to be continuous. This technique requires a large number of function evaluations. It is unlikely to give accurate results for \(n \gg 40\).

Depending on the kind of constraints, one of the following Nelder-Mead simplex algorithms is used:
- unconstrained or only boundary constrained problems

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This algorithm does not compute the objective for infeasible points. This algorithm is automatically invoked if the LINCON or NLINCON statement is not specified.
- general linearly constrained or nonlinearly constrained problems

A slightly modified version of Powell's (1992) COBYLA (Constrained Optimization BY Linear Approximations) implementation is used. This algorithm is automatically invoked if either the LINCON or the NLINCON statement is specified.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear constraints but can be faster for the unconstrained or boundary constrained case. The original Nelder-Mead algorithm changes the shape of the simplex adapting the nonlinearities of the objective function which contributes to an increased speed of convergence. The two NMSIMP subroutines use special sets of termination criteria. For more details, refer to the "Termination Criteria" section on page 583.

\section*{Powell's COBYLA Algorithm (COBYLA)}

Powell's COBYLA algorithm is a sequential trust region algorithm (originally with a monotonically decreasing radius \(\rho\) of a spheric trust region) that tries to maintain a regular-shaped simplex over the iterations. A small modification was made to the original algorithm that permits an increase of the trust region radius \(\rho\) in special situations. A sequence of iterations is performed with a constant trust region radius \(\rho\) until the computed objective function reduction is much less than the predicted reduction. Then, the trust region radius \(\rho\) is reduced. The trust region radius is increased only if the computed function reduction is relatively close to the predicted reduction and the simplex is well-shaped. The start radius \(\rho_{\text {beg }}\) and the final radius \(\rho_{\text {end }}\) can be specified using \(\rho_{\text {beg }}=I N S T E P\) and \(\rho_{\text {end }}=A B S X T O L\). The convergence to small values of \(\rho_{\text {end }}\) (high precision) may take many calls of the function and constraint modules and may result in numerical problems. There are two main reasons for the slow convergence of the COBYLA algorithm:
- Only linear approximations of the objective and constraint functions are used locally.
- Maintaining the regular-shaped simplex and not adapting its shape to nonlinearities yields very small simplices for highly nonlinear functions (for example, fourth-order polynomials).

\section*{Nonlinear Least-Squares Optimization}

\section*{Levenberg-Marquardt Least-Squares Method (LEVMAR)}

The Levenberg-Marquardt method is a modification of the trust region method for nonlinear least-squares problems and is implemented as in Moré (1978).

This is the recommended algorithm for small to medium least-squares problems. Large least-squares problems can be transformed into minimization problems, which can be processed with conjugate gradient or (dual) quasi-Newton techniques. In each iteration, LEVMAR solves a quadratically constrained quadratic minimization problem that restricts the step to stay at the surface of or inside an \(n\)-dimensional elliptical (or spherical) trust region. In each iteration, LEVMAR uses the crossproduct Jacobian matrix \(J^{T} J\) as an approximate Hessian matrix.

\section*{Hybrid Quasi-Newton Least-Squares Methods (HYQUAN)}

In each iteration of one of the Fletcher and Xu (1987) (refer also to Al-Baali and Fletcher \((1985,1986)\) ) hybrid quasi-Newton methods, a criterion is used to decide whether a Gauss-Newton or a dual quasi-Newton search direction is appropriate. The VERSION= option can be used to choose one of three criteria (HY1, HY2, HY3) proposed by Fletcher and Xu (1987). The default is VERSION=2; that is, HY2. In each iteration, HYQUAN computes the crossproduct Jacobian (used for the GaussNewton step), updates the Cholesky factor of an approximate Hessian (used for the quasi-Newton step), and does a line search to compute an approximate minimum along the search direction. The default line-search technique used by HYQUAN is especially designed for least-squares problems (refer to Lindström and Wedin (1984) and Al-Baali and Fletcher (1986)). Using the LINESEARCH= option you can choose a different line-search algorithm than the default one.

Two update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, and Shanno) update of the Cholesky factor of the Hessian matrix. This is the default.

DDFP performs the dual DFP (Davidon, Fletcher, and Powell) update of the Cholesky factor of the Hessian matrix.

The HYQUAN subroutine needs about the same amount of working memory as the LEVMAR algorithm. In most applications, LEVMAR seems to be superior to HYQUAN, and using HYQUAN is recommended only when problems are experienced with the performance of LEVMAR.

\section*{Finite-Difference Approximations of Derivatives}

The \(\mathrm{FD}=\) and FDHESSIAN \(=\) options specify the use of finite-difference approximations of the derivatives. The \(\mathrm{FD}=\) option specifies that all derivatives are approximated using function evaluations, and the FDHESSIAN= option specifies that second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite-difference approximations can be very timeconsuming, especially for second-order derivatives based only on values of the objective function ( \(\mathrm{FD}=\) option). If analytical derivatives are difficult to obtain (for example, if a function is computed by an iterative process), you might consider one of the optimization techniques that uses first-order derivatives only (TECH=QUANEW, TECH=DBLDOG, or TECH=CONGRA).

\section*{Forward-Difference Approximations}

The forward-difference derivative approximations consume less computer time but are usually not as precise as those using central-difference formulas.
- First-order derivatives: \(n\) additional function calls are needed:
\[
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+h_{i} e_{i}\right)-f(x)}{h_{i}}
\]
- Second-order derivatives based on function calls only (Dennis and Schnabel 1983, p. 80, 104): for dense Hessian, \(n(n+3) / 2\) additional function calls are needed:
\[
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}\right)-f\left(x+h_{j} e_{j}\right)+f(x)}{h_{j}}
\]
- Second-order derivatives based on gradient calls (Dennis and Schnabel 1983, p. 103): \(n\) additional gradient calls are needed:
\[
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{g_{i}\left(x+h_{j} e_{j}\right)-g_{i}(x)}{2 h_{j}}+\frac{g_{j}\left(x+h_{i} e_{i}\right)-g_{j}(x)}{2 h_{i}}
\]

\section*{Central-Difference Approximations}
- First-order derivatives: \(2 n\) additional function calls are needed:
\[
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+h_{i} e_{i}\right)-f\left(x-h_{i} e_{i}\right)}{2 h_{i}}
\]
- Second-order derivatives based on function calls only (Abramowitz and Stegun 1972, p. 884): for dense Hessian, \(2 n(n+1)\) additional function calls are needed:
\[
\begin{aligned}
\frac{\partial^{2} f}{\partial x_{i}^{2}} & =\frac{-f\left(x+2 h_{i} e_{i}\right)+16 f\left(x+h_{i} e_{i}\right)-30 f(x)+16 f\left(x-h_{i} e_{i}\right)-f\left(x-2 h_{i} e_{i}\right)}{12 h_{i}^{2}} \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} & =\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}-h_{j} e_{j}\right)-f\left(x-h_{i} e_{i}+h_{j} e_{j}\right)+f\left(x-h_{i} e_{i}-h_{j} e_{j}\right)}{4 h_{i} h_{j}}
\end{aligned}
\]
- Second-order derivatives based on gradient: \(2 n\) additional gradient calls are needed:
\[
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{g_{i}\left(x+h_{j} e_{j}\right)-g_{i}\left(x-h_{j} e_{j}\right)}{4 h_{j}}+\frac{g_{j}\left(x+h_{i} e_{i}\right)-g_{j}\left(x-h_{i} e_{i}\right)}{4 h_{i}}
\]

The FDIGITS = and CDIGITS = options can be used for specifying the number of accurate digits in the evaluation of objective function and nonlinear constraints. These specifications are helpful in determining an appropriate interval length \(h\) to be used in the finite-difference formulas.

The FDINT= option specifies whether the finite-difference intervals \(h\) should be computed using an algorithm of Gill, Murray, Saunders, and Wright (1983) or based only on the information of the FDIGITS \(=\) and CDIGITS \(=\) options. For FDINT=OBJ, the interval \(h\) is based on the behavior of the objective function; for FDINT=CON, the interval \(h\) is based on the behavior of the nonlinear constraints functions; and for FDINT=ALL, the interval \(h\) is based on the behaviors of both the objective function and the nonlinear constraints functions. Note that the algorithm of Gill, Murray, Saunders, and Wright (1983) to compute the finite-difference intervals \(h_{j}\) can be very expensive in the number of function calls. If the FDINT= option is specified, it is currently performed twice, the first time before the optimization process starts and the second time after the optimization terminates.

If \(\mathrm{FDINT}=\) is not specified, the step lengths \(h_{j}, j=1, \ldots, n\), are defined as follows:
- for the forward-difference approximation of first-order derivatives using function calls and second-order derivatives using gradient calls: \(h_{j}=\sqrt[2]{\eta_{j}}\left(1+\left|x_{j}\right|\right)\),
- for the forward-difference approximation of second-order derivatives that use only function calls and all central-difference formulas: \(h_{j}=\sqrt[3]{\eta_{j}}\left(1+\left|x_{j}\right|\right)\),
where \(\eta\) is defined using the FDIGITS=option:
- If the number of accurate digits is specified with FDIGITS \(=r, \eta\) is set to \(10^{-r}\).
- If FDIGITS \(=\) is not specified, \(\eta\) is set to the machine precision \(\epsilon\).

For FDINT=OBJ and FDINT=ALL, the FDIGITS = specification is used in comput ing the forward and central finite-difference intervals.

If the problem has nonlinear constraints and the \(\mathrm{FD}=\) option is specified, the firstorder formulas are used to compute finite-difference approximations of the Jacobian matrix \(J C(x)\). You can use the CDIGITS= option to specify the number of accurate digits in the constraint evaluations to define the step lengths \(h_{j}, j=1, \ldots, n\). For FDINT=CON and FDINT=ALL, the CDIGITS = specification is used in computing the forward and central finite-difference intervals.

Note: If you are unable to specify analytic derivatives and the finite-difference approximations provided by PROC NLP are not good enough to solve your problem, you may program better finite-difference approximations using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement and the program statements.

\section*{Hessian and CRP Jacobian Scaling}

The rows and columns of the Hessian and crossproduct Jacobian matrix can be scaled when using the trust region, Newton-Raphson, double dogleg, and LevenbergMarquardt optimization techniques. Each element \(G_{i, j}, i, j=1, \ldots, n\), is divided by the scaling factor \(d_{i} \times d_{j}\), where the scaling vector \(d=\left(d_{1}, \ldots, d_{n}\right)\) is iteratively updated in a way specified by the HESCAL \(=i\) option, as follows:
\(i=0\) No scaling is done (equivalent to \(d_{i}=1\) ).
\(i \neq 0\) First iteration and each restart iteration:
\[
d_{i}^{(0)}=\sqrt{\max \left(\left|G_{i, i}^{(0)}\right|, \epsilon\right)}
\]
\(i=1\) refer to Moré (1978):
\[
d_{i}^{(k+1)}=\max \left(d_{i}^{(k)}, \sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}\right)
\]
\(i=2\) refer to Dennis, Gay, and Welsch (1981):
\[
d_{i}^{(k+1)}=\max \left(0.6 d_{i}^{(k)}, \sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}\right)
\]
\(i=3 d_{i}\) is reset in each iteration:
\[
d_{i}^{(k+1)}=\sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}
\]
where \(\epsilon\) is the relative machine precision or, equivalently, the largest double precision value that when added to 1 results in 1 .

\section*{Testing the Gradient Specification}

There are three main ways to check the correctness of derivative specifications:
- Specify the FD= or FDHESSIAN = option in the PROC NLP statement to compute finite-difference approximations of first- and second-order derivatives. In many applications, the finite-difference approximations are computed with high precision and do not differ too much from the derivatives that are computed by specified formulas.
- Specify the GRADCHECK[=DETAIL] option in the PROC NLP statement to compute and display a test vector and a test matrix of the gradient values at the starting point \(x^{(0)}\) by the method of Wolfe (1982). If you do not specify the GRADCHECK option, a fast derivative test identical to the GRADCHECK=FAST specification is done by default.
- If the default analytical derivative compiler is used or if derivatives are specified using the GRADIENT or JACOBIAN statement, the gradient or Jacobian computed at the initial point \(x^{(0)}\) is tested by default using finite-difference approximations. In some examples, the relative test can show significant differences between the two forms of derivatives, resulting in a warning message indicating that the specified derivatives could be wrong, even if they are correct. This happens especially in cases where the magnitude of the gradient at the starting point \(x^{(0)}\) is small.

The algorithm of Wolfe (1982) is used to check whether the gradient \(g(x)\) specified by a GRADIENT statement (or indirectly by a JACOBIAN statement) is appropriate for the objective function \(f(x)\) specified by the program statements.

Using function and gradient evaluations in the neighborhood of the starting point \(x^{(0)}\), second derivatives are approximated by finite-difference formulas. Forward differences of gradient values are used to approximate the Hessian element \(G_{j k}\),
\[
G_{j k} \approx H_{j k}=\frac{g_{j}\left(x+\delta e_{k}\right)-g_{j}(x)}{\delta}
\]
where \(\delta\) is a small step length and \(e_{k}=(0, \ldots, 0,1,0, \ldots, 0)^{T}\) is the unit vector along the \(k\) th coordinate axis. The test vector \(s\), with
\[
s_{j}=H_{j j}-\frac{2}{\delta}\left\{\frac{f\left(x+\delta e_{j}\right)-f(x)}{\delta}-g_{j}(x)\right\}
\]
contains the differences between two sets of finite-difference approximations for the diagonal elements of the Hessian matrix
\[
G_{j j}=\partial^{2} f\left(x^{(0)}\right) / \partial x_{j}^{2}, \quad j=1, \ldots, n
\]

The test matrix \(\Delta H\) contains the absolute differences of symmetric elements in the approximate Hessian \(\left|H_{j k}-H_{k j}\right|, j, k=1, \ldots, n\), generated by forward differences of the gradient elements.

If the specification of the first derivatives is correct, the elements of the test vector and test matrix should be relatively small. The location of large elements in the test matrix points to erroneous coordinates in the gradient specification. For very large optimization problems, this algorithm can be too expensive in terms of computer time and memory.

\section*{Termination Criteria}

All optimization techniques stop iterating at \(x^{(k)}\) if at least one of a set of termination criteria is satisfied. PROC NLP also terminates if the point \(x^{(k)}\) is fully constrained by \(n\) linearly independent active linear or boundary constraints, and all Lagrange multiplier estimates of active inequality constraints are greater than a small negative tolerance.

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination criterion is available based on the gradient of the objective function. Powell's COBYLA algorithm uses only one more termination criterion. COBYLA is a trust region algorithm that sequentially reduces the radius \(\rho\) of a spherical trust region from a start radius \(\rho_{\text {beg }}=I N S T E P\) to the final radius \(\rho_{\text {end }}=A B S X T O L\). The default value is \(\rho_{\text {end }}=1 \mathrm{e}-4\). The convergence to small values of \(\rho_{\text {end }}\) (high precision) may take many calls of the function and constraint modules and may result in numerical problems.

In some applications, the small default value of the \(\mathrm{ABSGCONV}=\) criterion is too difficult to satisfy for some of the optimization techniques. This occurs most often when finite-difference approximations of derivatives are used.

The default setting for the GCONV= option sometimes leads to early termination far from the location of the optimum. This is especially true for the special form of this criterion used in the CONGRA optimization.

The QUANEW algorithm for nonlinearly constrained optimization does not monotonically reduce the value of either the objective function or some kind of merit function which combines objective and constraint functions. Furthermore, the algorithm uses the watchdog technique with backtracking (Chamberlain et al. 1982). Therefore, no termination criteria were implemented that are based on the values ( \(x\) or \(f\) ) of successive iterations. In addition to the criteria used by all optimization techniques, three more termination criteria are currently available. They are based on satisfying the Karush-Kuhn-Tucker conditions, which require that the gradient of the Lagrange function is zero at the optimal point \(\left(x^{*}, \lambda^{*}\right)\) :
\[
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0
\]

For more information, refer to the "Criteria for Optimality" section on page 565.

\section*{Active Set Methods}

The parameter vector \(x \in \mathcal{R}^{n}\) may be subject to a set of \(m\) linear equality and inequality constraints:
\[
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m_{e} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \quad i=m_{e}+1, \ldots, m
\end{aligned}
\]

The coefficients \(a_{i j}\) and right-hand sides \(b_{i}\) of the equality and inequality constraints are collected in the \(m \times n\) matrix \(A\) and the \(m\)-vector \(b\).

The \(m\) linear constraints define a feasible region \(\mathcal{G}\) in \(\mathcal{R}^{n}\) that must contain the point \(x^{*}\) that minimizes the problem. If the feasible region \(\mathcal{G}\) is empty, no solution to the optimization problem exists.

All optimization techniques in PROC NLP (except those processing nonlinear constraints) are active set methods. The iteration starts with a feasible point \(x^{(0)}\), which
either is provided by the user or can be computed by the Schittkowski and Stoer (1979) algorithm implemented in PROC NLP. The algorithm then moves from one feasible point \(x^{(k-1)}\) to a better feasible point \(x^{(k)}\) along a feasible search direction \(s^{(k)}\) :
\[
x^{(k)}=x^{(k-1)}+\alpha^{(k)} s^{(k)}, \quad \alpha^{(k)}>0
\]

Theoretically, the path of points \(x^{(k)}\) never leaves the feasible region \(\mathcal{G}\) of the optimization problem, but it can hit its boundaries. The active set \(\mathcal{A}^{(k)}\) of point \(x^{(k)}\) is defined as the index set of all linear equality constraints and those inequality constraints that are satisfied at \(x^{(k)}\). If no constraint is active for \(x^{(k)}\), the point is located in the interior of \(\mathcal{G}\), and the active set \(\mathcal{A}^{(k)}\) is empty. If the point \(x^{(k)}\) in iteration \(k\) hits the boundary of inequality constraint \(i\), this constraint \(i\) becomes active and is added to \(\mathcal{A}^{(k)}\). Each equality or active inequality constraint reduces the dimension (degrees of freedom) of the optimization problem.

In practice, the active constraints can be satisfied only with finite precision. The LCEPSILON \(=r\) option specifies the range for active and violated linear constraints. If the point \(x^{(k)}\) satisfies the condition
\[
\left|\sum_{j=1}^{n} a_{i j} x_{j}^{(k)}-b_{i}\right| \leq t
\]
where \(t=r \times\left(\left|b_{i}\right|+1\right)\), the constraint \(i\) is recognized as an active constraint. Otherwise, the constraint \(i\) is either an inactive inequality or a violated inequality or equality constraint. Due to rounding errors in computing the projected search direction, error can be accumulated so that an iterate \(x^{(k)}\) steps out of the feasible region. In those cases, PROC NLP may try to pull the iterate \(x^{(k)}\) into the feasible region. However, in some cases the algorithm needs to increase the feasible region by increasing the LCEPSILON=r value. If this happens it is indicated by a message displayed in the log output.

If you cannot expect an improvement in the value of the objective function by moving from an active constraint back into the interior of the feasible region, you use this inequality constraint as an equality constraint in the next iteration. That means the active set \(\mathcal{A}^{(k+1)}\) still contains the constraint \(i\). Otherwise you release the active inequality constraint and increase the dimension of the optimization problem in the next iteration.

A serious numerical problem can arise when some of the active constraints become (nearly) linearly dependent. Linearly dependent equality constraints are removed before entering the optimization. You can use the LCSINGULAR= option to specify a criterion \(r\) used in the update of the QR decomposition that decides whether an active constraint is linearly dependent relative to a set of other active constraints.

If the final parameter set \(x^{*}\) is subjected to \(n_{\text {act }}\) linear equality or active inequality constraints, the QR decomposition of the \(n \times n_{a c t}\) matrix \(\hat{A}^{T}\) of the linear constraints is computed by \(\hat{A}^{T}=Q R\), where \(Q\) is an \(n \times n\) orthogonal matrix and \(R\) is an \(n \times n_{\text {act }}\) upper triangular matrix. The \(n\) columns of matrix \(Q\) can be separated into two matrices, \(Q=[Y, Z]\), where \(Y\) contains the first \(n_{\text {act }}\) orthogonal columns of
\(Q\) and \(Z\) contains the last \(n-n_{\text {act }}\) orthogonal columns of \(Q\). The \(n \times\left(n-n_{\text {act }}\right)\) column-orthogonal matrix \(Z\) is also called the nullspace matrix of the active linear constraints \(\hat{A}^{T}\). The \(n-n_{\text {act }}\) columns of the \(n \times\left(n-n_{\text {act }}\right)\) matrix \(Z\) form a basis orthogonal to the rows of the \(n_{\text {act }} \times n\) matrix \(\hat{A}\).

At the end of the iteration process, the PROC NLP can display the projected gradient
\[
g_{Z}=Z^{T} g
\]

In the case of boundary constrained optimization, the elements of the projected gradient correspond to the gradient elements of the free parameters. A necessary condition for \(x^{*}\) to be a local minimum of the optimization problem is
\[
g_{Z}\left(x^{*}\right)=Z^{T} g\left(x^{*}\right)=0
\]

The symmetric \(n_{\text {act }} \times n_{\text {act }}\) matrix
\[
G_{Z}=Z^{T} G Z
\]
is called a projected Hessian matrix. A second-order necessary condition for \(x^{*}\) to be a local minimizer requires that the projected Hessian matrix is positive semidefinite. If available, the projected gradient and projected Hessian matrix can be displayed and written in an OUTEST \(=\) data set.

Those elements of the \(n_{\text {act }}\) vector of first-order estimates of Lagrange multipliers
\[
\lambda=\left(\hat{A} \hat{A}^{T}\right)^{-1} \hat{A} Z Z^{T} g
\]
which correspond to active inequality constraints indicate whether an improvement of the objective function can be obtained by releasing this active constraint. For minimization (maximization), a significant negative (positive) Lagrange multiplier indicates that a possible reduction (increase) of the objective function can be obtained by releasing this active linear constraint. The LCDEACT=r option can be used to specify a threshold \(r\) for the Lagrange multiplier that decides whether an active inequality constraint remains active or can be deactivated. The Lagrange multipliers are displayed (and written in an OUTEST= data set) only if linear constraints are active at the solution \(x^{*}\). (In the case of boundary-constrained optimization, the Lagrange multipliers for active lower (upper) constraints are the negative (positive) gradient elements corresponding to the active parameters.)

\section*{Feasible Starting Point}

Two algorithms are used to obtain a feasible starting point.
- When only boundary constraints are specified:
- If the parameter \(x_{j}, 1 \leq j \leq n\), violates a two-sided boundary constraint (or an equality constraint) \(l_{j} \leq x_{j} \leq u_{j}\), the parameter is given a new value inside the feasible interval, as follows:
\[
x_{j}= \begin{cases}l_{j}, & \text { if } u_{j} \leq l_{j} \\ l_{j}+\frac{1}{2}\left(u_{j}-l_{j}\right), & \text { if } u_{j}-l_{j}<4 \\ l_{j}+\frac{1}{10}\left(u_{j}-l_{j}\right), & \text { if } u_{j}-l_{j} \geq 4\end{cases}
\]
- If the parameter \(x_{j}, 1 \leq j \leq n\), violates a one-sided boundary constraint \(l_{j} \leq x_{j}\) or \(x_{j} \leq u_{j}\), the parameter is given a new value near the violated boundary, as follows:
\[
x_{j}= \begin{cases}l_{j}+\max \left(1, \frac{1}{10} l_{j}\right), & \text { if } x_{j}<l_{j} \\ u_{j}-\max \left(1, \frac{1}{10} u_{j}\right), & \text { if } x_{j}>u_{j}\end{cases}
\]
- When general linear constraints are specified, the algorithm of Schittkowski and Stoer (1979) computes a feasible point, which may be quite far from a user-specified infeasible point.

\section*{Line-Search Methods}

In each iteration \(k\), the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gradient, and Newton-Raphson minimization techniques use iterative line-search algorithms that try to optimize a linear, quadratic, or cubic approximation of \(f\) along a feasible descent search direction \(s^{(k)}\)
\[
x^{(k+1)}=x^{(k)}+\alpha^{(k)} s^{(k)}, \quad \alpha^{(k)}>0
\]
by computing an approximately optimal scalar \(\alpha^{(k)}\).
Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear function \(f=f(\alpha)\) of one parameter \((\alpha)\) within each iteration \(k\) of the optimization technique, which itself tries to optimize a linear or quadratic approximation of the nonlinear objective function \(f=f(x)\) of \(n\) parameters \(x\). Since the outside iteration process is based only on the approximation of the objective function, the inside iteration of the line-search algorithm does not have to be perfect. Usually, the choice of \(\alpha\) significantly reduces (in a minimization) the objective function. Criteria often used for termination of line-search algorithms are the Goldstein conditions (refer to Fletcher (1987)).

Various line-search algorithms can be selected using the LINESEARCH= option. The line-search method LINESEARCH=2 seems to be superior when function evaluation consumes significantly less computation time than gradient evaluation. Therefore,

LINESEARCH=2 is the default value for Newton-Raphson, (dual) quasi-Newton, and conjugate gradient optimizations.

A special default line-search algorithm for TECH=HYQUAN is useful only for leastsquares problems and cannot be chosen by the LINESEARCH= option. This method uses three columns of the \(m \times n\) Jacobian matrix, which for large \(m\) can require more memory than using the algorithms designated by LINESEARCH=1 through LINESEARCH=8.

The line-search methods LINESEARCH=2 and LINESEARCH=3 can be modified to exact line search by using the LSPRECISION= option (specifying the \(\sigma\) parameter in Fletcher (1987)). The line-search methods LINESEARCH=1, LINESEARCH=2, and LINESEARCH=3 satisfy the left-hand-side and right-hand-side Goldstein conditions (refer to Fletcher (1987)). When derivatives are available, the line-search methods LINESEARCH=6, LINESEARCH=7, and LINESEARCH=8 try to satisfy the right-hand-side Goldstein condition; if derivatives are not available, these line-search algorithms use only function calls.

\section*{Restricting the Step Length}

Almost all line-search algorithms use iterative extrapolation techniques which can easily lead them to (feasible) points where the objective function \(f\) is no longer defined. (e.g., resulting in indefinite matrices for ML estimation) or difficult to compute (e.g., resulting in floating point overflows). Therefore, PROC NLP provides options restricting the step length \(\alpha\) or trust region radius \(\Delta\), especially during the first main iterations.

The inner product \(g^{T} s\) of the gradient \(g\) and the search direction \(s\) is the slope of \(f(\alpha)=f(x+\alpha s)\) along the search direction \(s\). The default starting value \(\alpha^{(0)}=\alpha^{(k, 0)}\) in each line-search algorithm \(\left(\min _{\alpha>0} f(x+\alpha s)\right)\) during the main iteration \(k\) is computed in three steps:
1. The first step uses either the difference \(d f=\left|f^{(k)}-f^{(k-1)}\right|\) of the function values during the last two consecutive iterations or the final step length value \(\alpha^{-}\)of the last iteration \(k-1\) to compute a first value of \(\alpha_{1}^{(0)}\).
- Not using the DAMPSTEP=r option:
\[
\alpha_{1}^{(0)}= \begin{cases}\text { step }, & \text { if } 0.1 \leq \text { step } \leq 10 \\ 10, & \text { if } \text { step }>10 \\ 0.1, & \text { if } \text { step }<0.1\end{cases}
\]
with
\[
\text { step }= \begin{cases}d f /\left|g^{T} s\right|, & \text { if }\left|g^{T} s\right| \geq \epsilon \max (100 d f, 1) \\ 1, & \text { otherwise }\end{cases}
\]

This value of \(\alpha_{1}^{(0)}\) can be too large and lead to a difficult or impossible function evaluation, especially for highly nonlinear functions such as the EXP function.
- Using the DAMPSTEP=r option:
\[
\alpha_{1}^{(0)}=\min \left(1, r \alpha^{-}\right)
\]

The initial value for the new step length can be no larger than \(r\) times the final step length \(\alpha\) - of the previous iteration. The default value is \(r=2\).
2. During the first five iterations, the second step enables you to reduce \(\alpha_{1}^{(0)}\) to a smaller starting value \(\alpha_{2}^{(0)}\) using the INSTEP \(=r\) option:
\[
\alpha_{2}^{(0)}=\min \left(\alpha_{1}^{(0)}, r\right)
\]

After more than five iterations, \(\alpha_{2}^{(0)}\) is set to \(\alpha_{1}^{(0)}\).
3. The third step can further reduce the step length by
\[
\alpha_{3}^{(0)}=\min \left(\alpha_{2}^{(0)}, \min (10, u)\right)
\]
where \(u\) is the maximum length of a step inside the feasible region.
The INSTEP \(=r\) option lets you specify a smaller or larger radius \(\Delta\) of the trust region used in the first iteration of the trust region, double dogleg, and Levenberg-Marquardt algorithms. The default initial trust region radius \(\Delta^{(0)}\) is the length of the scaled gradient (Moré 1978). This step corresponds to the default radius factor of \(r=1\). In most practical applications of the TRUREG, DBLDOG, and LEVMAR algorithms, this choice is successful. However, for bad initial values and highly nonlinear objective functions (such as the EXP function), the default start radius can result in arithmetic overflows. If this happens, you may try decreasing values of INSTEP \(=r\), \(0<r<1\), until the iteration starts successfully. A small factor \(r\) also affects the trust region radius \(\Delta^{(k+1)}\) of the next steps because the radius is changed in each iteration by a factor \(0<c \leq 4\), depending on the ratio \(\rho\) expressing the goodness of quadratic function approximation. Reducing the radius \(\Delta\) corresponds to increasing the ridge parameter \(\lambda\), producing smaller steps directed more closely toward the (negative) gradient direction.

\section*{Computational Problems}

\section*{First Iteration Overflows}

If you use bad initial values for the parameters, the computation of the value of the objective function (and its derivatives) can lead to arithmetic overflows in the first iteration. The line-search algorithms that work with cubic extrapolation are especially sensitive to arithmetic overflows. If an overflow occurs with an optimization technique that uses line search, you can use the INSTEP= option to reduce the length of the first trial step during the line search of the first five iterations or use the DAMPSTEP or MAXSTEP= option to restrict the step length of the initial \(\alpha\) in subsequent iterations. If an arithmetic overflow occurs in the first iteration of the trust region, double dogleg, or Levenberg-Marquardt algorithm, you can use the INSTEP \(=\) option to reduce the default trust region radius of the first iteration. You can also change the minimization technique or the line-search method. If none of these methods helps, consider the following actions:
- scale the parameters
- provide better initial values
- use boundary constraints to avoid the region where overflows may happen
- change the algorithm (specified in program statements) which computes the objective function

\section*{Problems in Evaluating the Objective Function}

The starting point \(x^{(0)}\) must be a point that can be evaluated by all the functions involved in your problem. However, during optimization the optimizer may iterate to a point \(x^{(k)}\) where the objective function or nonlinear constraint functions and their derivatives cannot be evaluated. If you can identify the problematic region, you can prevent the algorithm from reaching it by adding another constraint to the problem. Another possibility is a modification of the objective function that will produce a large, undesired function value. As a result, the optimization algorithm reduces the step length and stays closer to the point that has been evaluated successfully in the previous iteration. For more information, refer to the section "Missing Values in Program Statements" on page 606.

\section*{Problems with Quasi-Newton Methods for Nonlinear Constraints}

The sequential quadratic programming algorithm in QUANEW, which is used for solving nonlinearly constrained problems, can have problems updating the Lagrange multiplier vector \(\mu\). This usually results in very high values of the Lagrangian function and in watchdog restarts indicated in the iteration history. If this happens, there are three actions you can try:
- By default, the Lagrange vector \(\mu\) is evaluated in the same way as Powell (1982b) describes. This corresponds to VERSION=2. By specifying VERSION \(=1\), a modification of this algorithm replaces the update of the Lagrange vector \(\mu\) with the original update of Powell (1978a, b), which is used in VF02AD.
- You can use the INSTEP= option to impose an upper bound for the step length \(\alpha\) during the first five iterations.
- You can use the INHESSIAN= option to specify a different starting approximation for the Hessian. Choosing only the INHESSIAN option will use the Cholesky factor of a (possibly ridged) finite-difference approximation of the Hessian to initialize the quasi-Newton update process.

\section*{Other Convergence Difficulties}

There are a number of things to try if the optimizer fails to converge.
- Check the derivative specification:

If derivatives are specified by using the GRADIENT, HESSIAN, JACOBIAN, CRPJAC, or JACNLC statement, you can compare the specified derivatives with those computed by finite-difference approximations (specifying the FD
and FDHESSIAN option). Use the GRADCHECK option to check if the gradient \(g\) is correct. For more information, refer to the "Testing the Gradient Specification" section on page 582.
- Forward-difference derivatives specified with the FD= or FDHESSIAN= option may not be precise enough to satisfy strong gradient termination criteria. You may need to specify the more expensive central-difference formulas or use analytical derivatives. The finite-difference intervals may be too small or too big and the finite-difference derivatives may be erroneous. You can specify the FDINT = option to compute better finite-difference intervals.
- Change the optimization technique:

For example, if you use the default TECH=LEVMAR, you can
- change to TECH=QUANEW or to TECH=NRRIDG
- run some iterations with TECH=CONGRA, write the results in an OUTEST = data set, and use them as initial values specified by an INEST= data set in a second run with a different \(\mathrm{TECH}=\) technique
- Change or modify the update technique and the line-search algorithm:

This method applies only to TECH=QUANEW, TECH=HYQUAN, or TECH=CONGRA. For example, if you use the default update formula and the default line-search algorithm, you can
- change the update formula with the UPDATE= option
- change the line-search algorithm with the LINESEARCH= option
- specify a more precise line search with the LSPRECISION= option, if you use LINESEARCH=2 or LINESEARCH=3
- Change the initial values by using a grid search specification to obtain a set of good feasible starting values.

\section*{Convergence to Stationary Point}

The (projected) gradient at a stationary point is zero and that results in a zero step length. The stopping criteria are satisfied.

There are two ways to avoid this situation:
- Use the DECVAR statement to specify a grid of feasible starting points.
- Use the OPTCHECK= option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information regarding a stationary point:
- If all eigenvalues are positive, the Hessian matrix is positive definite and the point is a minimum point.
- If some of the eigenvalues are positive and all remaining eigenvalues are zero, the Hessian matrix is positive semidefinite and the point is a minimum or saddle point.
- If all eigenvalues are negative, the Hessian matrix is negative definite and the point is a maximum point.
- If some of the eigenvalues are negative and all remaining eigenvalues are zero, the Hessian matrix is negative semidefinite and the point is a maximum or saddle point.
- If all eigenvalues are zero, the point can be a minimum, maximum, or saddle point.

\section*{Precision of Solution}

In some applications, PROC NLP may result in parameter estimates that are not precise enough. Usually this means that the procedure terminated too early at a point too far from the optimal point. The termination criteria define the size of the termination region around the optimal point. Any point inside this region can be accepted for terminating the optimization process. The default values of the termination criteria are set to satisfy a reasonable compromise between the computational effort (computer time) and the precision of the computed estimates for the most common applications. However, there are a number of circumstances where the default values of the termination criteria specify a region that is either too large or too small. If the termination region is too large, it can contain points with low precision. In such cases, you should inspect the log or list output to find the message stating which termination criterion terminated the optimization process. In many applications, you can obtain a solution with higher precision by simply using the old parameter estimates as starting values in a subsequent run where you specify a smaller value for the termination criterion that was satisfied at the previous run.
If the termination region is too small, the optimization process may take longer to find a point inside such a region or may not even find such a point due to rounding errors in function values and derivatives. This can easily happen in applications where finitedifference approximations of derivatives are used and the GCONV and ABSGCONV termination criteria are too small to respect rounding errors in the gradient values.

\section*{Covariance Matrix}

The COV= option must be specified to compute an approximate covariance matrix for the parameter estimates under asymptotic theory for least-squares, maximumlikelihood, or Bayesian estimation, with or without corrections for degrees of freedom as specified by the VARDEF= option.

Two groups of six different forms of covariance matrices (and therefore approximate standard errors) can be computed corresponding to the following two situations:
- The LSQ statement is specified, which means that least-squares estimates are being computed:
\[
\min f(x)=\sum_{i=1}^{m} f_{i}^{2}(x)
\]
- The MIN or MAX statement is specified, which means that maximumlikelihood or Bayesian estimates are being computed:
\[
\operatorname{opt} f(x)=\sum_{i=1}^{m} f_{i}(x)
\]
where opt is either min or max.

In either case, the following matrices are used:
\[
\begin{gathered}
G=\nabla^{2} f(x) \\
J(f)=\left(\nabla f_{1}, \ldots, \nabla f_{m}\right)=\left(\frac{\partial f_{i}}{\partial x_{j}}\right) \\
J J(f)=J(f)^{T} J(f) \\
V=J(f)^{T} \operatorname{diag}\left(f_{i}^{2}\right) J(f) \\
W=J(f)^{T} \operatorname{diag}\left(f_{i}^{\dagger}\right) J(f)
\end{gathered}
\]
where
\[
f_{i}^{\dagger}= \begin{cases}0, & \text { if } f_{i}=0 \\ 1 / f_{i}, & \text { otherwise }\end{cases}
\]

For unconstrained minimization, or when none of the final parameter estimates are subjected to linear equality or active inequality constraints, the formulas of the six types of covariance matrices are as follows:
\begin{tabular}{|cc|c|c|}
\hline COV & MIN or MAX Statement & LSQ Statement \\
\hline 1 & \(\mathbf{M}\) & \(\left(\_\right.\)NOBS_/d) \(G^{-1} J J(f) G^{-1}\) & \(\left(\_\right.\)NOBS_/d) \(G^{-1} V G^{-1}\) \\
2 & H & \(\left(\_\mathrm{NOBS}_{-} / d\right) G^{-1}\) & \(\sigma^{2} G^{-1}\) \\
3 & J & \((1 / d) W^{-1}\) & \(\sigma^{2} J J(f)^{-1}\) \\
4 & B & \((1 / d) G^{-1} W G^{-1}\) & \(\sigma^{2} G^{-1} J J(f) G^{-1}\) \\
5 & E & \(\left(\_\mathrm{NOBS}_{-} / d\right) J J(f)^{-1}\) & \((1 / d) V^{-1}\) \\
6 & U & \(\left(\_\right.\)NOBS_/d) \(W^{-1} J J(f) W^{-1}\) & \(\left(\_\right.\)NOBS_/d) \(J J(f)^{-1} V J J(f)^{-1}\) \\
\hline
\end{tabular}

The value of \(d\) depends on the VARDEF= option and on the value of the _NOBS_ variable:
\[
d= \begin{cases}\max \left(1, \_ \text {NOBS }_{-}-{ }_{-} \mathrm{DF}_{-}\right), & \text {for VARDEF=DF } \\ -\mathrm{NOBS}_{-}, & \text {for VARDEF=N }\end{cases}
\]
where _ \(\mathrm{DF}_{\text {_ }}\) is either set in the program statements or set by default to \(n\) (the number of parameters) and _NOBS_ is either set in the program statements or set by default to nobs \(\times m\) fun, where nobs is the number of observations in the data set and \(m f u n\) is the number of functions listed in the LSQ, MIN, or MAX statement.

The value \(\sigma^{2}\) depends on the specification of the SIGSQ= option and on the value of \(d\) :
\[
\sigma^{2}= \begin{cases}s q \times-N O B S_{-} / d, & \text { if SIGSQ }=s q \text { is specified } \\ 2 f\left(x^{*}\right) / d, & \text { if SIGSQ }=\text { is not specified }\end{cases}
\]
where \(f\left(x^{*}\right)\) is the value of the objective function at the optimal parameter estimates \(x^{*}\).

The two groups of formulas distinguish between two situations:
- For least-squares estimates, the error variance can be estimated from the objective function value and is used in three of the six different forms of covariance matrices. If you have an independent estimate of the error variance, you can specify it with the SIGSQ= option.
- For maximum-likelihood or Bayesian estimates, the objective function should be the logarithm of the likelihood or of the posterior density when using the MAX statement.

For minimization, the inversion of the matrices in these formulas is done so that negative eigenvalues are considered zero, resulting always in a positive semidefinite covariance matrix.

In small samples, estimates of the covariance matrix based on asymptotic theory are often too small and should be used with caution.

If the final parameter estimates are subjected to \(n_{\text {act }}>0\) linear equality or active linear inequality constraints, the formulas of the covariance matrices are modified similar to Gallant (1987) and Cramer (1986, p. 38) and additionally generalized for applications with singular matrices. In the constrained case, the value of \(d\) used in the scalar factor \(\sigma^{2}\) is defined by
\[
d= \begin{cases}\max \left(1,,_{-} \mathrm{NOBS}_{-}-{ }_{-} \mathrm{DF}_{-}+n_{a c t}\right), & \text { for VARDEF=DF } \\ -\mathrm{NOBS}_{-}, & \text {for VARDEF=N }\end{cases}
\]
where \(n_{\text {act }}\) is the number of active constraints and _NOBS_ is set as in the unconstrained case.

For minimization, the covariance matrix should be positive definite; for maximization it should be negative definite. There are several options available to check for a rank deficiency of the covariance matrix:
- The ASINGULAR=, MSINGULAR=, and VSINGULAR= options can be used to set three singularity criteria for the inversion of the matrix \(A\) needed to compute the covariance matrix, when \(A\) is either the Hessian or one of the crossproduct Jacobian matrices. The singularity criterion used for the inversion is
\[
\left|d_{j, j}\right| \leq \max \left(A S I N G, V S I N G \times\left|A_{j, j}\right|, \operatorname{MSING} \times \max \left(\left|A_{1,1}\right|, \ldots,\left|A_{n, n}\right|\right)\right)
\]
where \(d_{j, j}\) is the diagonal pivot of the matrix \(A\), and \(\operatorname{ASING}, V \operatorname{SING}\) and \(M S I N G\) are the specified values of the ASINGULAR=, VSINGULAR=, and MSINGULAR= options. The default values are
- ASING: the square root of the smallest positive double precision value
- MSING: 1E-12 if the SINGULAR= option is not specified and \(\max (10 \times \epsilon, 1 \mathrm{E}-4 \times \operatorname{SINGULAR})\) otherwise, where \(\epsilon\) is the machine precision
- VSING: 1E-8 if the SINGULAR= option is not specified and the value of SINGULAR otherwise

Note: In many cases, a normalized matrix \(D^{-1} A D^{-1}\) is decomposed and the singularity criteria are modified correspondingly.
- If the matrix \(A\) is found singular in the first step, a generalized inverse is computed. Depending on the G4= option, a generalized inverse is computed that satisfies either all four or only two Moore-Penrose conditions. If the number of parameters \(n\) of the application is less than or equal to \(\mathrm{G} 4=i\), a G4 inverse is computed; otherwise only a G2 inverse is computed. The G4 inverse is computed by (the computationally very expensive but numerically stable) eigenvalue decomposition; the G2 inverse is computed by Gauss transformation. The G4 inverse is computed using the eigenvalue decomposition \(A=Z \Lambda Z^{T}\), where \(Z\) is the orthogonal matrix of eigenvectors and \(\Lambda\) is the diagonal matrix of eigenvalues, \(\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\). If the PEIGVAL option is specified, the eigenvalues \(\lambda_{i}\) are displayed. The G4 inverse of \(A\) is set to
\[
A^{-}=Z \Lambda^{-} Z^{T}
\]
where the diagonal matrix \(\Lambda^{-}=\operatorname{diag}\left(\lambda_{1}^{-}, \ldots, \lambda_{n}^{-}\right)\)is defined using the COVSING= option:
\[
\lambda_{i}^{-}= \begin{cases}1 / \lambda_{i}, & \text { if }\left|\lambda_{i}\right|>\operatorname{COVSING} \\ 0, & \text { if }\left|\lambda_{i}\right| \leq \operatorname{COVSING}\end{cases}
\]

If the COVSING= option is not specified, the \(n r\) smallest eigenvalues are set to zero, where \(n r\) is the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance matrix is usually computed using finite-difference approximations of the derivatives. By specifying TECH=NONE, any of the covariance matrices can be computed using analytical derivatives. The covariance matrix specified by the COV= option can be displayed (using the PCOV option) and is written to the OUTEST= data set.

\section*{Input and Output Data Sets}

\section*{DATA= Input Data Set}

The DATA \(=\) data set is used only to specify an objective function \(f\) that is a combination of \(m\) other functions \(f_{i}\). For each function \(f_{i}, i=1, \ldots, m\), listed in a MAX, MIN, or LSQ statement, each observation \(l, l=1, \ldots, n o b s\), in the DATA= data set defines a specific function \(f_{i l}\) that is evaluated by substituting the values of the variables of this observation into the program statements. If the MAX or MIN statement is used, the \(m \times\) nobs specific functions \(f_{i l}\) are added to a single objective function \(f\). If the LSQ statement is used, the sum-of-squares \(f\) of the \(m \times n o b s\) specific functions \(f_{i l}\) is minimized. The NOMISS option causes observations with missing values to be skipped.

\section*{INEST= Input Data Set}

The INEST = (or INVAR=, or ESTDATA=) input data set can be used to specify the initial values of the parameters defined in a DECVAR statement as well as boundary constraints and the more general linear constraints which could be imposed on these parameters. This form of input is similar to the dense format input used in PROC LP.

The variables of the INEST= data set are
- a character variable _TYPE_ that indicates the type of the observation
- \(n\) numeric variables with the parameter names used in the DECVAR statement
- the BY variables that are used in a DATA= input data set
- a numeric variable _RHS_ specifying the right-hand-side constants (needed only if linear constraints are used)
- additional variables with names corresponding to constants used in the program statements

The content of the _TYPE_ variable defines the meaning of the observation of the INEST = data set. PROC NLP recognizes the following _TYPE_ values:
- PARMS, which specifies initial values for parameters. Additional variables can contain the values of constants that are referred to in program statements. The values of the constants in the PARMS observation initialize the constants in the program statements.
- UPPERBD I UB, which specifies upper bounds. A missing value indicates that no upper bound is specified for the parameter.
- LOWERBD I LB, which specifies lower bounds. A missing value indicates that no lower bound is specified for the parameter.
- LEI \(<=\mathrm{I}<\), which specifies linear constraint \(\sum_{j} a_{i j} x_{j} \leq b_{i}\). The \(n\) parameter values contain the coefficients \(a_{i j}\), and the _RHS_ variable contains the righthand side \(b_{i}\). Missing values indicate zeros.
- GEI \(>=\mid>\), which specifies linear constraint \(\sum_{j} a_{i j} x_{j} \geq b_{i}\). The \(n\) parameter values contain the coefficients \(a_{i j}\), and the _RHS_ variable contains the righthand side \(b_{i}\). Missing values indicate zeros.
- EQ \(\mid=\), which specifies linear constraint \(\sum_{j} a_{i j} x_{j}=b_{i}\). The \(n\) parameter values contain the coefficients \(a_{i j}\), and the _RHS_ variable contains the righthand side \(b_{i}\). Missing values indicate zeros.

The constraints specified in an INEST= data set are added to the constraints specified in the BOUNDS and LINCON statements. You can use an OUTEST= data set as an INEST = data set in a subsequent run of PROC NLP. However, be aware that the OUTEST= data set also contains the boundary and general linear constraints specified in the previous run of PROC NLP. When you are using this OUTEST= data set without changes as an INEST= data set, PROC NLP adds the constraints from the data set to the constraints specified by a BOUNDS and LINCON statement. Although PROC NLP automatically eliminates multiple identical constraints you should avoid specifying the same constraint twice.

\section*{INQUAD= Input Data Set}

Two types of INQUAD= data sets can be used to specify the objective function of a quadratic programming problem for \(\mathrm{TECH}=\) QUADAS or TECH=LICOMP,
\[
f(x)=\frac{1}{2} x^{T} G x+g^{T} x+c, \quad \text { with } \quad G^{T}=G
\]

The dense INQUAD= data set must contain all numerical values of the symmetric matrix \(G\), the vector \(g\), and the scalar \(c\). Using the sparse \(\mathrm{INQUAD}=\) data set allows you to specify only the nonzero positions in matrix \(G\) and vector \(g\). Those locations that are not set by the sparse INQUAD= data set are assumed to be zero.

\section*{Dense INQUAD= Data Set}

A dense INQUAD= data set must contain two character variables, _TYPE_ and _NAME_, and at least \(n\) numeric variables whose names are the parameter names. The _TYPE_ variable takes the following values:
- QUAD lists the \(n\) values of the row of the \(G\) matrix that is defined by the parameter name used in the _NAME_ variable.
- LINEAR lists the \(n\) values of the \(g\) vector.
- CONST sets the the value of the scalar \(c\) and cannot contain different numerical values; however, it could contain up to \(n-1\) missing values.
- PARMS specifies initial values for parameters.
- UPPERBD I UB specifies upper bounds. A missing value indicates that no upper bound is specified.
- LOWERBD I LB specifies lower bounds. A missing value indicates that no lower bound is specified.
- LEI \(<=\mathrm{I}<\) specifies linear constraint \(\sum_{j} a_{i j} x_{j} \leq b_{i}\). The \(n\) parameter values contain the coefficients \(a_{i j}\), and the _RHS_ variable contains the right-hand side \(b_{i}\). Missing values indicate zeros.
- GEI \(>=I>\) specifies linear constraint \(\sum_{j} a_{i j} x_{j} \geq b_{i}\). The \(n\) parameter values contain the coefficients \(a_{i j}\), and the _RHS_ variable contains the right-hand side \(b_{i}\). Missing values indicate zeros.
- EQ I \(=\) specifies linear constraint \(\sum_{j} a_{i j} x_{j}=b_{i}\). The \(n\) parameter values contain the coefficients \(a_{i j}\), and the _RHS_ variable contains the right-hand side \(b_{i}\). Missing values indicate zeros.

Constraints specified in a dense INQUAD= data set are added to the constraints specified in BOUNDS and LINCON statements.

\section*{Sparse INQUAD= Data Set}

A sparse INQUAD= data set must contain three character variables _TYPE_, _ROW_, and _COL_, and one numeric variable _VALUE_. The _TYPE_ variable can assume two values:
- QUAD specifies that the _ROW_ and _COL_ variables define the row and column locations of the values in the \(G\) matrix.
- LINEAR specifies that the _ROW_ variable defines the row locations of the values in the \(g\) vector. The _COL_ variable is not used.

Using both the MODEL= option and the INCLUDE statement with the same model file will include the file twice (erroneous in most cases).

\section*{OUT= Output Data Set}

The OUT= data set contains those variables of a DATA= input data set that are referred to in the program statements and additional variables computed by the program statements for the objective function. Specifying the NOMISS option enables you to skip observations with missing values in variables used in the program statements. The OUT= data set can also contain first- and second-order derivatives of these variables if the OUTDER \(=\) option is specified. The variables and derivatives are the final parameter estimates \(x^{*}\) or (for TECH=NONE) the initial value \(x^{0}\).

The variables of the OUT= data set are
- the BY variables and all other variables that are used in a DATA= input data set and referred to in the program code
- a variable _OBS_ containing the number of observations read from a DATA= input data set, where the counting is restarted with the start of each BY group. If there is no DATA= input data set, then _OBS_=1.
- a character variable _TYPE_ naming the type of the observation
- the parameter variables listed in the DECVAR statement
- the function variables listed in the the MIN, MAX, or LSQ statement
- all other variables computed in the program statements
- the character variable _WRT_ (if OUTDER=1) containing the with respect to variable for which the first-order derivatives are written in the function variables
- the two character variables _WRT1_ and _WRT2_ (if OUTDER=2) containing the two with respect to variables for which the first- and second-order derivatives are written in the function variables

\section*{OUTEST= Output Data Set}

The OUTEST= or OUTVAR= output data set saves the optimization solution of PROC NLP. You can use the OUTEST= or OUTVAR= data set as follows:
- to save the values of the objective function on grid points to examine, for example, surface plots using PROC G3D (use the OUTGRID option)
- to avoid any costly computation of analytical (first- or second-order) derivatives during optimization when they are needed only upon termination. In this case a two-step approach is recommended:
1. In a first execution, the optimization is done; that is, optimal parameter estimates are computed, and the results are saved in an OUTEST= data set.
2. In a subsequent execution, the optimal parameter estimates in the previous OUTEST= data set are read in an INEST= data set and used with TECH=NONE to compute further results, such as analytical second-order derivatives or some kind of covariance matrix.
- to restart the procedure using parameter estimates as initial values
- to split a time-consuming optimization problem into a series of smaller problems using intermediate results as initial values in subsequent runs. (Refer to the MAXTIME=, MAXIT=, and MAXFUNC= options to trigger stopping.)
- to write the value of the objective function, the parameter estimates, the time in seconds starting at the beginning of the optimization process and (if available) the gradient to the OUTEST= data set during the iterations. After the PROC NLP run is completed, the convergence progress can be inspected by graphically displaying the iterative information. (Refer to the OUTITER option.)

The variables of the OUTEST= data set are
- the BY variables that are used in a DATA= input data set
- a character variable _TECH_ naming the optimization technique used
- a character variable _TYPE_ specifying the type of the observation
- a character variable _NAME_ naming the observation. For a linear constraint, the _NAME_ variable indicates whether the constraint is active at the solution. For the initial observations, the _NAME_ variable indicates if the number in the _RHS_ variable corresponds to the number of positive, negative, or zero eigenvalues.
- \(n\) numeric variables with the parameter names used in the DECVAR statement. These variables contain a point \(x\) of the parameter space, lower or upper bound constraints, or the coefficients of linear constraints.
- a numeric variable _RHS_ (right-hand side) that is used for the right-handside value \(b_{i}\) of a linear constraint or for the value \(f=f(x)\) of the objective function at a point \(x\) of the parameter space
- a numeric variable _ITER_ that is zero for initial values, equal to the iteration number for the OUTITER output, and missing for the result output

The _TYPE_ variable identifies how to interpret the observation. If _TYPE_ is
- PARMS then parameter-named variables contain the coordinates of the resulting point \(x^{*}\). The _RHS_ variable contains \(f\left(x^{*}\right)\).
- INITIAL then parameter-named variables contain the feasible starting point \(x^{(0)}\). The _RHS_ variable contains \(f\left(x^{(0)}\right)\).
- GRIDPNT then (if the OUTGRID option is specified) parameter-named variables contain the coordinates of any point \(x^{(k)}\) used in the grid search. The _RHS_ variable contains \(f\left(x^{(k)}\right)\).
- GRAD then parameter-named variables contain the gradient at the initial or final estimates.
- STDERR then parameter-named variables contain the approximate standard errors (square roots of the diagonal elements of the covariance matrix) if the COV \(=\) option is specified.
- _NOBS_ then (if the COV= option is specified) all parameter variables contain the value of _NOBS_ used in computing the \(\sigma^{2}\) value in the formula of the covariance matrix.
- UPPERBD I UB then (if there are boundary constraints) the parameter variables contain the upper bounds.
- LOWERBD I LB then (if there are boundary constraints) the parameter variables contain the lower bounds.
- NACTBC then all parameter variables contain the number \(n_{a b c}\) of active boundary constraints at the solution \(x^{*}\).
- ACTBC then (if there are active boundary constraints) the observation indicate which parameters are actively constrained, as follows:
_NAME_=GE the active lower bounds
_NAME_=LE the active upper bounds
_NAME_=EQ the active equality constraints
- NACTLC then all parameter variables contain the number \(n_{\text {alc }}\) of active linear constraints that are recognized as linearly independent.
- NLDACTLC then all parameter variables contain the number of active linear constraints that are recognized as linearly dependent.
- LE then (if there are linear constraints) the observation contains the \(i\) th linear constraint \(\sum_{j} a_{i j} x_{j} \leq b_{i}\). The parameter variables contain the coefficients \(a_{i j}\), \(j=1, \ldots, n\), and the _RHS_ variable contains \(b_{i}\). If the constraint \(i\) is active at the solution \(x^{*}\), then _NAME_=ACTLC or _NAME_=LDACTLC.
- GE then (if there are linear constraints) the observation contains the \(i\) th linear constraint \(\sum_{j} a_{i j} x_{j} \geq b_{i}\). The parameter variables contain the coefficients \(a_{i j}\), \(j=1, \ldots, n\), and the _RHS_ variable contains \(b_{i}\). If the constraint \(i\) is active at the solution \(x^{*}\), then _NAME_=ACTLC or _NAME_=LDACTLC.
- EQ then (if there are linear constraints) the observation contains the \(i\) th linear constraint \(\sum_{j} a_{i j} x_{j}=b_{i}\). The parameter variables contain the coefficients \(a_{i j}, j=1, \ldots, n\), the _RHS_ variable contains \(b_{i}\), and _NAME_=ACTLC or _NAME_=LDACTLC.
- LAGRANGE then (if at least one of the linear constraints is an equality constraint or an active inequality constraint) the observation contains the vector of Lagrange multipliers. The Lagrange multipliers of active boundary constraints are listed first followed by those of active linear constraints and those of active nonlinear constraints. Lagrange multipliers are available only for the set of linearly independent active constraints.
- PROJGRAD then (if there are linear constraints) the observation contains the \(n-n_{\text {act }}\) values of the projected gradient \(g_{Z}=Z^{T} g\) in the variables corresponding to the first \(n-n_{\text {act }}\) parameters.
- JACOBIAN then (if the PJACOBI or OUTJAC option is specified) the \(m\) observations contain the \(m\) rows of the \(m \times n\) Jacobian matrix. The _RHS_ variable contains the row number \(l, l=1, \ldots, m\).
- HESSIAN then the first \(n\) observations contain the \(n\) rows of the (symmetric) Hessian matrix. The _RHS_ variable contains the row number \(j, j=1, \ldots, n\), and the _NAME_ variable contains the corresponding parameter name.
- PROJHESS then the first \(n-n_{\text {act }}\) observations contain the \(n-n_{\text {act }}\) rows of the projected Hessian matrix \(Z^{T} G Z\). The _RHS_ variable contains the row number \(j, j=1, \ldots, n-n_{\text {act }}\), and the _NAME_ variable is blank.
- CRPJAC then the first \(n\) observations contain the \(n\) rows of the (symmetric) crossproduct Jacobian matrix at the solution. The _RHS_ variable contains the row number \(j, j=1, \ldots, n\), and the _NAME_ variable contains the corresponding parameter name.
- PROJCRPJ then the first \(n-n_{\text {act }}\) observations contain the \(n-n_{\text {act }}\) rows of the projected crossproduct Jacobian matrix \(Z^{T}\left(J^{T} J\right) Z\). The _RHS_ variable contains the row number \(j, j=1, \ldots, n-n_{a c t}\), and the _NAME_ variable is blank.
- COV1, COV2, COV3, COV4, COV5, or COV6 then (depending on the COV= option) the first \(n\) observations contain the \(n\) rows of the (symmetric) covariance matrix of the parameter estimates. The _RHS_ variable contains the row number \(j, j=1, \ldots, n\), and the _NAME_ variable contains the corresponding parameter name.
- DETERMIN contains the determinant \(d e t=a \times 10^{b}\) of the matrix specified by the value of the _NAME_ variable where \(a\) is the value of the first variable in the DECVAR statement and \(b\) is in _RHS_.
- NEIGPOS, NEIGNEG, or NEIGZER then the _RHS_ variable contains the number of positive, negative, or zero eigenvalues of the matrix specified by the value of the _NAME_ variable.
- COVRANK then the _RHS_ variable contains the rank of the covariance matrix.
- SIGSQ then the _RHS_ variable contains the scalar factor of the covariance matrix.
- _TIME_ then (if the OUTITER option is specified) the _RHS_ variable contains the number of seconds passed since the start of the optimization.
- TERMINAT then if optimization terminated at a point satisfying one of the termination criteria, an abbreviation of the corresponding criteria is given to the _NAME_ variable. Otherwise _NAME_=PROBLEMS.

If for some reason the procedure does not terminate successfully (for example, no feasible initial values can be computed or the function value or derivatives at the starting point cannot be computed), the OUTEST= data set may contain only part of the observations (usually only the PARMS and GRAD observation).

Note: Generally you can use an OUTEST= data set as an INEST= data set in a further run of PROC NLP. However, be aware that the OUTEST= data set also contains the boundary and general linear constraints specified in the previous run of PROC NLP. When you are using this OUTEST= data set without changes as an INEST= data set, PROC NLP adds the constraints from the data set to the constraints specified by a BOUNDS or LINCON statement. Although PROC NLP automatically eliminates multiple identical constraints you should avoid specifying the same constraint twice.

\section*{Output of Profiles}

The following observations are written to the OUTEST= data set only when the PROFILE statement or CLPARM option is specified.
\begin{tabular}{|c|c|c|l|}
\hline _TYPE_- & _NAME_- & _RHS_- & Meaning of Observation \\
\hline PLC_LOW & parname & \(y\) value & coordinates of lower CL for \(\alpha\) \\
PLC_UPP & parname & \(y\) value & \begin{tabular}{l} 
coordinates of upper CL for \(\alpha\)
\end{tabular} \\
\hline WALD_CL & LOWER & \(y\) value & \begin{tabular}{l} 
lower Wald CL for \(\alpha\) in _ALPHA_- \\
upper Wald CL for \(\alpha\) in _ALPHA_
\end{tabular} \\
WALD_CL & UPPER & \(y\) value & und \\
\hline PL_CL & LOWER & \(y\) value & lower PL CL for \(\alpha\) in _ALPHA_ \\
PL_CL & UPPER & \(y\) value & upper PL CL for \(\alpha\) in _ALPHA_- \\
\hline PROFILE & L(THETA) & missing & \begin{tabular}{l}
\(y\) value corresponding to \(x\) \\
in following _NAME_=THETA \\
\(x\) value corresponding to \(y\) \\
in previous _NAME_=L(THETA)
\end{tabular} \\
\hline PROFILE & THETA & missing \\
\hline
\end{tabular}

Assume that the PROFILE statement specifies \(n_{p}\) parameters and \(n_{\alpha}\) confidence levels. For CLPARM, \(n_{p}=n\) and \(n_{\alpha}=4\).
- _TYPE_=PLC_LOW and _TYPE_=PLC_UPP:

If the CLPARM= option or the PROFILE statement with the OUTTABLE option is specified, then the complete set \(\theta\) of parameter estimates (rather than only the confidence limit \(x=\theta_{j}\) ) is written to the OUTEST= data set for each side of the confidence interval. This output may be helpful for further analyses on how small changes in \(x=\theta_{j}\) affect the changes in the other \(\theta_{i}, i \neq j\). The _ALPHA_ variable contains the corresponding value of \(\alpha\). There should be no more than \(2 n_{\alpha} n_{p}\) observations. If the confidence limit cannot be computed, the corresponding observation is not available.
- _TYPE_=WALD_CL:

If CLPARM=WALD, CLPARM=BOTH, or the PROFILE statement with \(\alpha\) values is specified, then the Wald confidence limits are written to the OUTEST \(=\) data set for each of the default or specified values of \(\alpha\). The _ALPHA_ variable contains the corresponding value of \(\alpha\). There should be \(2 n_{\alpha}\) observations.
- _TYPE_=PL_CL:

If CLPARM=PL, CLPARM=BOTH, or the PROFILE statement with \(\alpha\) values is specified, then the PL confidence limits are written to the OUTEST= data set for each of the default or specified values of \(\alpha\). The _ALPHA_ variable contains the corresponding values of \(\alpha\). There should be \(2 n_{\alpha}\) observations; some observations may have missing values.
- _TYPE_=PROFILE:

If CLPARM=PL, CLPARM=BOTH, or the CLPARM= statement with or without \(\alpha\) values is specified, then a set of \((x, y)\) point coordinates in two adjacent observations with _NAME_=L(THETA) ( \(y\) value) and _NAME_=THETA ( \(x\) value) is written to the OUTEST= data set. The _RHS_ and _ALPHA _ variables are not used (are set to missing). The number of observations depends on the difficulty of the optimization problems.

\section*{OUTMODEL= Output Data Set}

The program statements for objective functions, nonlinear constraints, and derivatives can be saved into an OUTMODEL= output data set. This data set can be used in an INCLUDE program statement or as a MODEL= input data set in subsequent calls of PROC NLP. The OUTMODEL= option is similar to the option used in PROC MODEL in SAS/ETS software.

\section*{Storing Programs in Model Files}

Models can be saved to and recalled from SAS catalog files. SAS catalogs are special files which can store many kinds of data structures as separate units in one SAS file. Each separate unit is called an entry, and each entry has an entry type that identifies its structure to the SAS system.

In general, to save a model, use the OUTMODEL=name option in the PROC NLP statement, where name is specified as libref.catalog.entry, libref.entry, or entry. The
libref, catalog, and entry names must be valid SAS names no more than 8 characters long. The catalog name is restricted to 7 characters on the CMS operating system. If not given, the catalog name defaults to MODELS, and the libref defaults to WORK. The entry type is always MODEL. Thus, OUTMODEL=X writes the model to the file WORK.MODELS.X.MODEL.

The MODEL= option is used to read in a model. A list of model files can be specified in the MODEL= option, and a range of names with numeric suffixes can be given, as in MODEL=(MODEL1-MODEL10). When more than one model file is given, the list must be placed in parentheses, as in MODEL=(A B C). If more than one model file is specified, the files are combined in the order listed in the MODEL= option.

When the MODEL= option is specified in the PROC NLP statement and model definition statements are also given later in the PROC NLP step, the model files are read in first, in the order listed, and the model program specified in the PROC NLP step is appended after the model program read from the MODEL= files.

The INCLUDE statement can be used to append model code to the current model code. The contents of the model files are inserted into the current model at the position where the INCLUDE statement appears.

Note that the following statements are not part of the program code that is written to an OUTMODEL= data set: MIN, MAX, LSQ, MINQUAD, MAXQUAD, DECVAR, BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC, JACOBIAN, LABEL, LINCON, MATRIX, and NLINCON.

\section*{Displayed Output}

\section*{Procedure Initialization}

After the procedure has processed the problem, it displays summary information about the problem and the options that you have selected. It may also display a list of linearly dependent constraints and other information about the constraints and parameters.

\section*{Optimization Start}

At the start of optimization the procedure displays
- the number of constraints that are active at the starting point, or more precisely, the number of constraints that are currently members of the working set. If this number is followed by a plus sign, there are more active constraints, of which at least one is temporarily released from the working set due to negative Lagrange multipliers.
- the value of the objective function at the starting point
- if the (projected) gradient is available, the value of the largest absolute (projected) gradient element
- for the TRUREG and LEVMAR subroutines, the initial radius of the trust region around the starting point

\section*{Iteration History}

In general, the iteration history consists of one line of output containing the most important information for each iteration. The iteration-extensive Nelder-Mead simplex method, however, displays only one line for several internal iterations. This technique skips the output for some iterations because
- some of the termination tests (size and standard deviation) are rather timeconsuming compared to the simplex operations and are done once every five simplex operations
- the resulting history output is smaller

The _LIST_ variable (refer to the "Program Statements" section on page 560) also enables you to display the parameter estimates \(x^{(k)}\) and the gradient \(g^{(k)}\) in all or some selected iterations \(k\).
The iteration history always includes the following (the words in parentheses indicate the column header output):
- the iteration number (iter)
- the number of iteration restarts (nrest)
- the number of function calls (nfun)
- the number of active constraints (act)
- the value of the optimization criterion (optcrit)
- the difference between adjacent function values (difcrit)
- the maximum of the absolute (projected) gradient components (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of the active constraints was released from the active set due to a significant Lagrange multiplier.

The optimization history is displayed by default because it is important to check for possible convergence problems.

\section*{Optimization Termination}

The output of the optimization history ends with a short output of information concerning the optimization result:
- the number of constraints that are active at the final point, or more precisely, the number of constraints that are currently members of the working set. When this number is followed by a plus sign, it indicates that there are more active constraints of which at least one is temporarily released from the working set due to negative Lagrange multipliers.
- the value of the objective function at the final point
- if the (projected) gradient is available, the value of the largest absolute (projected) gradient element
- other information that is specific for the optimization technique

The NOPRINT option suppresses all output to the list file and only errors, warnings, and notes are displayed to the log file. The PALL option sets a large group of some of the commonly used specific displaying options, the PSHORT option suppresses some, and the PSUMMARY option suppresses almost all of the default output. The following table summarizes the correspondence between the general and the specific print options.
\begin{tabular}{|l|c|c|c|c|l|}
\hline Output Options & PALL & default & PSHORT & PSUMMARY & \\
\hline & y & y & y & y & summary of optimization \\
\hline & y & y & y & n & parameter estimates \\
& y & y & y & n & gradient of objective func \\
PHISTORY & y & y & y & n & iteration history \\
\hline PINIT & y & y & n & n & setting of initial values \\
& y & y & n & n & listing of constraints \\
\hline PGRID & y & n & n & n & results of grid search \\
PNLCJAC & y & n & n & n & Jacobian nonlin. constr. \\
PFUNCTION & y & n & n & n & values of functions \\
PEIGVAL & y & n & n & n & eigenvalue distribution \\
PCRPJAC & y & n & n & n & crossproduct Jacobian \\
PHESSIAN & y & n & n & n & Hessian matrix \\
\hline PSTDERR & y & n & n & n & approx. standard errors \\
PCOV & y & n & n & n & covariance matrices \\
\hline PJACOBI & n & n & n & n & Jacobian \\
LIST & n & n & n & n & model program, variables \\
LISTCODE & n & n & n & n & compiled model program \\
\hline
\end{tabular}

\section*{Missing Values}

\section*{Missing Values in Program Statements}

There is one very important reason for using missing values in program statements specifying the values of the objective functions and derivatives: it may not be possible to evaluate the program statements for a particular point \(x\). For example, the extrapolation formula of one of the line-search algorithms may generate large \(x\) values for which the EXP function cannot be evaluated without floating point overflow. The compiler of the program statements may check for such situations automatically, but it would be safer if you check the feasibility of your program statements. In some cases, the specification of boundary or linear constraints for parameters can avoid such situations. In many other cases, you can indicate that \(x\) is a bad point simply by returning a missing value for the objective function. In such cases the optimization algorithms in PROC NLP shorten the step length \(\alpha\) or reduce the trust region radius so that the next point will be closer to the point that was already successfully evalu-
ated at the last iteration. Note that the starting point \(x^{(0)}\) must be a point for which the program statements can be evaluated.

\section*{Missing Values in Input Data Sets}

Observations with missing values in the DATA= data set for variables used in the objective function can lead to a missing value of the objective function implying that the corresponding BY group of data is not processed. The NOMISS option can be used to skip those observations of the DATA= data set for which relevant variables have missing values. Relevant variables are those that are referred to in program statements.

There can be different reasons to include observations with missing values in the INEST = data set. The value of the _RHS_ variable is not used in some cases and can be missing. Missing values for the variables corresponding to parameters in the _TYPE_ variable are as follows:
- PARMS observations cause those parameters to have initial values assigned by the DECVAR statement or by the RANDOM= or INITIAL= option.
- UPPERBD or LOWERBD observations cause those parameters to be unconstrained by upper or lower bounds.
- LE, GE, or EQ observations cause those parameters to have zero values in the constraint.

In general, missing values are treated as zeros.

\section*{Computational Resources}

Since nonlinear optimization is an iterative process that depends on many factors, it is difficult to estimate how much computer time is necessary to compute an optimal solution satisfying one of the termination criteria. The MAXTIME=, MAXITER=, and MAXFUNC= options can be used to restrict the amount of CPU time, the number of iterations, and the number of function calls in a single run of PROC NLP.

In each iteration \(k\), the NRRIDG and LEVMAR techniques use symmetric Householder transformations to decompose the \(n \times n\) Hessian (crossproduct Jacobian) matrix \(G\),
\[
G=V^{T} T V, \quad V \text { orthogonal, } \quad T \text { tridiagonal }
\]
to compute the (Newton) search direction \(s\) :
\[
s^{(k)}=-G^{(k-1)} g^{(k)}, \quad k=1,2,3, \ldots
\]

The QUADAS, TRUREG, NEWRAP, and HYQUAN techniques use the Cholesky decomposition to solve the same linear system while computing the search direction. The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques do not need to invert or decompose a Hessian or crossproduct Jacobian matrix and thus require fewer computational resources then the first group of techniques.

The larger the problem, the more time is spent computing function values and derivatives. Therefore, many researchers compare optimization techniques by counting and comparing the respective numbers of function, gradient, and Hessian (crossproduct Jacobian) evaluations. You can save computer time and memory by specifying derivatives (using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) since you will typically produce a more efficient representation than the internal derivative compiler.

Finite-difference approximations of the derivatives are expensive since they require additional function or gradient calls.
- Forward-difference formulas:
- First-order derivatives: \(n\) additional function calls are needed.
- Second-order derivatives based on function calls only: for a dense Hessian, \(n(n+3) / 2\) additional function calls are needed.
- Second-order derivatives based on gradient calls: \(n\) additional gradient calls are needed.
- Central-difference formulas:
- First-order derivatives: \(2 n\) additional function calls are needed.
- Second-order derivatives based on function calls only: for a dense Hessian, \(2 n(n+1)\) additional function calls are needed.
- Second-order derivatives based on gradient: \(2 n\) additional gradient calls are needed.

Many applications need considerably more time for computing second-order derivatives (Hessian matrix) than for first-order derivatives (gradient). In such cases, a (dual) quasi-Newton or conjugate gradient technique is recommended, which does not require second-order derivatives.

The following table shows for each optimization technique which derivatives are needed (FOD: first-order derivatives; SOD: second-order derivatives), what kinds of constraints are supported (BC: boundary constraints; LIC: linear constraints), and the minimal memory (number of double floating point numbers) required. For various reasons, there are additionally about \(7 n+m\) double floating point numbers needed.
\begin{tabular}{|l|cc|cc|l|}
\hline Quadratic Programming & FOD & SOD & BC & LIC & Memory \\
\hline LICOMP & - & - & x & x & \(18 n+3 n n\) \\
QUADAS & - & - & x & x & \(1 n+2 n n / 2\) \\
\hline General Optimization & FOD & SOD & BC & LIC & Memory \\
\hline TRUREG & x & x & x & x & \(4 n+2 n n / 2\) \\
NEWRAP & x & x & x & x & \(2 n+2 n n / 2\) \\
NRRIDG & x & x & x & x & \(6 n+n n / 2\) \\
QUANEW & x & - & x & x & \(1 n+n n / 2\) \\
DBLDOG & x & - & x & x & \(7 n+n n / 2\) \\
CONGRA & x & - & x & x & \(3 n\) \\
NMSIMP & - & - & x & x & \(4 n+n n\) \\
\hline Least-Squares & FOD & SOD & BC & LIC & Memory \\
\hline LEVMAR & x & - & x & x & \(6 n+n n / 2\) \\
HYQUAN & x & - & x & x & \(2 n+n n / 2+3 m\) \\
\hline
\end{tabular}

\section*{Notes:}
- Here, \(n\) denotes the number of parameters, \(n n\) the squared number of parameters, and \(n n / 2:=n(n+1) / 2\).
- The value of \(m\) is the product of the number of functions specified in the MIN, MAX, or LSQ statement and the maximum number of observations in each BY group of a DATA= input data set. The following table also contains the number \(v\) of variables in the DATA= data set that are used in the program statements.
- For a diagonal Hessian matrix, the \(n n / 2\) term in QUADAS, TRUREG, NEWRAP, and NRRIDG is replaced by \(n\).
- If the TRUREG, NRRIDG, or NEWRAP method is used to minimize a leastsquares problem, the second derivatives are replaced by the crossproduct Jacobian matrix.
- The memory needed by the TECH=NONE specification depends on the output specifications (typically, it needs \(3 n+n n / 2\) double floating point numbers and an additional \(m n\) if the Jacobian matrix is required).

The total amount of memory needed to run an optimization technique consists of the technique-specific memory listed in the preceding table, plus additional blocks of memory as shown in the following table.
\begin{tabular}{|l|c|c|c|c|}
\hline & double & int & long & 8byte \\
\hline Basic Requirement & \(7 n+m\) & \(n\) & \(3 n\) & \(n+m\) \\
DATA= data set & \(v\) & - & - & \(v\) \\
JACOBIAN statement & \(m(n+2)\) & - & - & - \\
CRPJAC statement & \(n n / 2\) & - & - & - \\
HESSIAN statement & \(n n / 2\) & - & - & - \\
COV= option & \((2 *) n n / 2+n\) & - & - & - \\
Scaling vector & \(n\) & - & - & - \\
\hline BOUNDS statement & \(2 n\) & \(n\) & - & - \\
Bounds in INEST \(=\) & \(2 n\) & - & - & - \\
\hline LINCON and TRUREG & \(c(n+1)+n n+n n / 2+4 n\) & \(3 c\) & - & - \\
LINCON and other & \(c(n+1)+n n+2 n n / 2+4 n\) & \(3 c\) & - & - \\
\hline
\end{tabular}

\section*{Notes:}
- For TECH=LICOMP, the total amount of memory needed for the linear or boundary constrained case is \(18(n+c)+3(n+c)(n+c)\), where \(c\) is the number of constraints.
- The amount of memory needed to specify derivatives with a GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement (shown in this table) is small compared to that needed for using the internal function compiler to compute the derivatives. This is especially so for second-order derivatives.
- If the CONGRA technique is used, specifying the GRADCHECK=DETAIL option requires an additional \(n n / 2\) double floating point numbers to store the finite-difference Hessian matrix.

\section*{Examples}

\section*{Example 6.1. Using the DATA= Option}

This example illustrates the use of the DATA= option. The Bard function (refer to Moré et al. (1981)) is a least-squares problem with \(n=3\) parameters and \(m=15\) functions \(f_{k}\) :
\[
f(x)=\frac{1}{2} \sum_{k=1}^{15} f_{k}^{2}(x), \quad x=\left(x_{1}, x_{2}, x_{3}\right)
\]
where
\[
f_{k}(x)=y_{k}-\left(x_{1}+\frac{u_{k}}{v_{k} x_{2}+w_{k} x_{3}}\right)
\]
with \(u_{k}=k, v_{k}=16-k, w_{k}=\min \left(u_{k}, v_{k}\right)\), and
\[
y=(.14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96,1.34,2.10,4.39)
\]

The minimum function value \(f\left(x^{*}\right)=4.107 \mathrm{E}-3\) is at the point \((0.08,1.13,2.34)\). The starting point \(x^{0}=(1,1,1)\) is used.

The following is the naive way of specifying the objective function.
```

proc nlp tech=levmar;
lsq y1-y15;
parms x1-x3 = 1;
tmp1 = 15 * x2 + min(1,15) * x3;
y1 = 0.14 - (x1 + 1 / tmp1);
tmp1 = 14 * x2 + min(2,14) * x3;
y2 = 0.18 - (x1 + 2 / tmp1);
tmp1 = 13 * x2 + min(3,13) * x3;
y3 = 0.22 - (x1 + 3 / tmp1);
tmp1 = 12 * x2 + min(4,12) * x3;
y4 = 0.25 - (x1 + 4 / tmp1);
tmp1 = 11 * x2 + min(5,11) * x3;
y5 = 0.29 - (x1 + 5 / tmp1);
tmp1 = 10 * x2 + min(6,10) * x3;
y6 = 0.32 - (x1 + 6 / tmp1);
tmp1 = 9 * x2 + min(7,9) * x3;
y7 = 0.35 - (x1 + 7 / tmp1);
tmp1 = 8 * x2 + min(8,8) * x3;
y8 = 0.39 - (x1 + 8 / tmp1);
tmp1 = 7 * x2 + min(9,7) * x3;
y9 = 0.37 - (x1 + 9 / tmp1);
tmp1 = 6 * x2 + min(10,6) * x3;
y10 = 0.58 - (x1 + 10 / tmp1);
tmp1 = 5 * x2 + min(11,5) * x3;
y11 = 0.73 - (x1 + 11 / tmp1);

```
```

 tmp1 = 4 * x2 + min(12,4) * x3;
 y12 = 0.96 - (x1 + 12 / tmp1);
 tmp1 = 3 * x2 + min(13,3) * x3;
 y13 = 1.34 - (x1 + 13 / tmp1);
 tmp1 = 2 * x2 + min(14,2) * x3;
 y14 = 2.10 - (x1 + 14 / tmp1);
 tmp1 = 1 * x2 + min(15,1) * x3;
 y15 = 4.39 - (x1 + 15 / tmp1);
 run;

```

A more economical way to program this problem uses the DATA= option to input the 15 terms in \(f(x)\).
```

data bard;
input r @@;
w1 = 16. - _n_;
w2 = min(_n_ , 16. - _n_);
datalines;
. }14\quad18 . 22 . 25 . 29 . 32 . 35 . 39
. 37 . 58 . 73 . 96 1.34 2.10 4.39
;
proc nlp data=bard tech=levmar;
lsq y;
parms x1-x3 = 1.;
y = r - (x1 + _obs_ / (w1 * x2 + w2 * x3));
run;

```

Another way you can specify the objective function uses the ARRAY statement and an explicit do loop, as in the following code.
```

proc nlp tech=levmar;
array r[15] . 14 . 18 . 22 . 25 . 29 . 32 . 35 . 39 . 37 . 58
.73 . 96 1.34 2.10 4.39 ;
array y[15] y1-y15;
lsq y1-y15;
parms x1-x3 = 1.;
do i = 1 to 15;
w1 = 16. - i;
w2 = min(i , w1);
w3 = w1 * x2 + w2 * x3;
y[i] = r[i] - (x1 + i / w3);
end;
run;

```

\section*{Example 6.2. Using the INQUAD= Option}

This example illustrates the INQUAD= option for specifying a quadratic programming problem:
\[
\min \quad f(x)=\frac{1}{2} x^{T} G x+g^{T} x+c, \quad \text { with } \quad G^{T}=G
\]

Suppose that \(c=-100, G=\operatorname{diag}(.4,4)\) and \(2 \leq x_{1} \leq 50,-50 \leq x_{2} \leq 50\), and \(10 \leq 10 x_{1}-x_{2}\).

You specify the constant \(c\) and the Hessian \(G\) in the data set QUAD1. Notice that the _TYPE_ variable contains the keywords that identify how the procedure should interpret the observations.
```

data quad1;
input _type_ \$ _name_ \$ x1 x2;
datalines;
const . -100 -100
quad m1 0.4 0
quad x2 0 4
;

```

You specify the QUAD1 data set with the INQUAD= option. Notice that the names of the variables in the QUAD1 data set and the _NAME_ variable match the names of the parameters in the PARMS statement.
```

proc nlp inquad=quad1 all;
min ;
parms x1 x2 = -1;
bounds 2<= x1 <= 50,
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
run;

```

Alternatively, you can use a sparse format for specifying the \(G\) matrix, eliminating the zeros. You use the special variables _ \(\mathrm{ROW}_{-},{ }_{\text {_ }} \mathrm{COL}_{-}\), and _VALUE_ to give the nonzero row and column names and value.
```

data quad2;
input _type_ \$ _row_ \$ _col_ \$ _value_;
datalines;
const . . -100
quad x1 x1 0.4
quad x2 x2 4
;

```

You can also include the constraints in the QUAD data set. Notice how the _TYPE_ variable contains keywords that identify how the procedure is to interpret the values in each observation.
```

data quad3;
input _type_ \$ _name_ \$ x1 x2 _rhs_;
datalines;
const . -100 -100
quad x1 0.02 0 .
quad x2 0.00 2
parms . -1 -1
lowerbd . 2 -50 .
upperbd . 50 50 .
ge . . 10 -1 10
;
proc nlp inquad=quad3;
min ;
parms x1 x2;
run;

```

\section*{Example 6.3. Using the INEST=Option}

This example illustrates the use of the INEST= option for specifying a starting point and linear constraints. You name a data set with the INEST= option. The format of this data set is similar to the format of the QUAD data set described in the previous example.

Consider the Hock and Schittkowski (1981) Problem \# 24:
\[
\min f(x)=\frac{\left(\left(x_{1}-3\right)^{2}-9\right) x_{2}^{3}}{27 \sqrt{3}}
\]
subject to:
\[
\begin{aligned}
0 & \leq x_{1}, x_{2} \\
0 & \leq .57735 x_{1}-x_{2} \\
0 & \leq x_{1}+1.732 x_{2} \\
6 & \geq x_{1}+1.732 x_{2}
\end{aligned}
\]
with minimum function value \(f\left(x^{*}\right)=-1\) at \(x^{*}=(3, \sqrt{3})\). The feasible starting point is \(x^{0}=(1, .5)\).

You can specify this model in PROC NLP as follows:
```

proc nlp tech=trureg outest=res;
min y;
parms x1 = 1,
x2 = . 5;
bounds 0 <= x1-x2;
lincon .57735 * x1 - x2 >= 0,
x1 + 1.732 * x2 >= 0,
-x1 - 1.732 * x2 >= -6;
y = (((x1 - 3)**2 - 9.) * x2**3) / (27 * sqrt (3));
run;

```

Note that none of the data for this model are in a data set. Alternatively, you can save the starting point \((1, .5)\) and the linear constraints in a data set. Notice that the _TYPE_ variable contains keywords that identify how the procedure is to interpret each of the observations and that the parameters in the problems X1 and X2 are variables in the data set. The observation with _TYPE_=LOWERBD gives the lower bounds on the parameters. The observation with _TYPE_=GE gives the coefficients for the first constraint. Similarly, the subsequent observations contain specifications for the other constraints. Also notice that the special variable _RHS_ contains the right-hand-side values.
```

data betts1(type=est);
input _type_ \$ x1 x2 _rhs_;
datalines;
parms 1 . 5 .
lowerbd 0 0
ge .57735 -1 .
ge
le 1 1.732 6
;

```

Now you can solve this problem with the following code. Notice that you specify the objective function and the parameters.
```

proc nlp inest=betts1 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - 3)**2 - 9) * x2**3) / (27 * sqrt(3));
run;

```

You can even include any constants used in the program statements in the INEST= data set. In the following code the variables A, B, C, and D contain some of the constants used in calculating the objective function Y .
```

data betts2(type=est);
input _type_ \$ x1 x2 _rhs_ a b c d;
datalines;
parms 1 . 5 0 0
lowerbd 0
ge . 57735 -1 0
ge
;

```

Notice that in the program statement for calculating Y, the constants are replaced by the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D variables.
```

proc nlp inest=betts2 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - a)**2 - b) * x2**3) / (c * sqrt (d));
run;

```

\section*{Example 6.4. Restarting an Optimization}

This example shows how you can restart an optimization problem using the OUTEST=, \(\operatorname{INEST}=\), OUTMODEL=, and MODEL= options and how to save output into an OUT= data set. The least-squares solution of the Rosenbrock function using the trust region method is used.

The following code solves the problem and saves the model in the MODEL data set and the solution in the EST and OUT1 data sets.
```

proc nlp tech=trureg outmodel=model outest=est out=out1;
lsq y1 y2;
parms x1 = -1.2 ,
x2 = 1.;
y1 = 10. * (x2 - x1 * x1);
y2 = 1. - x1;
run;
proc print data=out1;
run;

```

The final parameter estimates \(x^{*}=(1,1)\) and the values of the functions \(f_{1}=\mathrm{Y} 1\) and \(f_{2}=\mathrm{Y} 2\) are written into an OUT \(=\) data set, shown in Output 6.4.1. Since OUTDER=0 is the default, the OUT= data set does not contain the Jacobian matrix.

Output 6.4.1. Solution in an OUT= Data Set
\begin{tabular}{ccccccc} 
Obs & _OBS_ & OTYPE_ \(_{-}\) & \(\mathrm{y}^{1}\) & \(\mathrm{y}^{2}\) & x 2 & x 1 \\
1 & 1 & & 0 & 0 & 1 & 1
\end{tabular}

Next, the procedure reads the optimal parameter estimates from the EST data set and the model from the MODEL data set. It does not do any optimization (TECH=NONE), but it saves the Jacobian matrix to the OUT=OUT2 data set because of the option OUTDER=1. It also displays the Jacobian matrix because of the option PJAC; the Jacobian matrix is shown in Output 6.4.2. Output 6.4.3 shows the contents of the OUT2 data set, which also contains the Jacobian matrix.
```

proc nlp tech=none model=model inest=est out=out2 outder=1 pjac;
lsq y1 y2;
parms x1 x2;
run;
proc print data=out2;
run;

```

Output 6.4.2. Jacobian Matrix Output
\(\square\)

Output 6.4.3. Jacobian Matrix in an OUT= Data Set
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Obs & _OBS_ & _TYPE & y1 & \(\mathrm{y}^{2}\) & WRT_ & x 2 & x1 \\
\hline 1 & 1 & & 0 & 0 & & 1 & 1 \\
\hline 2 & 1 & ANALYTIC & 10 & 0 & x2 & 1 & 1 \\
\hline 3 & 1 & ANALYTIC & -20 & -1 & x1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Example 6.5. Approximate Standard Errors}

The NLP procedure provides a variety of ways for estimating parameters in nonlinear statistical models and for obtaining approximate standard errors and covariance matrices for the estimators. These methods are illustrated by estimating the mean of a random sample from a normal distribution with mean \(\mu\) and standard deviation \(\sigma\). The simplicity of the example makes it easy to compare the results of different methods in NLP with the usual estimator, the sample mean.

The following data step is used:
```

data x;
input x @@;
datalines;
13457
;

```

The standard error of the mean, computed with \(n-1\) degrees of freedom, is 1 . The usual maximum-likelihood approximation to the standard error of the mean, using a variance divisor of \(n\) rather than \(n-1\), is 0.894427 .

The sample mean is a least-squares estimator, so it can be computed using an LSQ statement. Moreover, since this model is linear, the Hessian matrix and crossproduct Jacobian matrix are identical, and all three versions of the COV= option yield the same variance and standard error of the mean. Note that COV=j means that the crossproduct Jacobian is used. This is chosen because it requires the least computation.
```

proc nlp data=x cov=j pstderr pshort;
lsq resid;
parms mean=0;
resid=x-mean;
run;

```

The results are the same as the usual estimates.
Output 6.5.1. Parameter Estimates


PROC NLP can also compute maximum-likelihood estimates of \(\mu\) and \(\sigma\). In this case it is convenient to minimize the negative log likelihood. To get correct standard errors for maximum-likelihood estimators, the SIGSQ=1 option is required. The following program shows \(\mathrm{COV}=1\) but the output that follows has \(\mathrm{COV}=2\) and \(\mathrm{COV}=3\).
```

proc nlp data=x cov=1 sigsq=1 pstderr phes pcov pshort;
min nloglik;
parms mean=0, sigma=1;
bounds 1e-12 < sigma;
nloglik=.5*((x-mean)/sigma)**2 + log(sigma);
run;

```

The variance divisor is \(n\) instead of \(n-1\), so the standard error of the mean is 0.894427 instead of 1 . The standard error of the mean is the same with all six types of covariance matrix, but the standard error of the standard deviation varies. The sampling distribution of the standard deviation depends on the higher moments of the population distribution, so different methods of estimation can produce markedly different estimates of the standard error of the standard deviation.

Output 6.5 .2 shows the output when \(\mathrm{COV}=1\), Output 6.5 .3 shows the output when \(\mathrm{COV}=2\), and Output 6.5.4 shows the output when \(\mathrm{COV}=3\).

Output 6.5.2. Solution for \(\mathrm{COV}=1\)


Output 6.5.3. Solution for \(\mathrm{COV}=2\)


Output 6.5.4. Solution for \(\mathrm{COV}=3\)


Under normality, the maximum-likelihood estimators of \(\mu\) and \(\sigma\) are independent, as indicated by the diagonal Hessian matrix in the previous example. Hence, the maximum-likelihood estimate of \(\mu\) can be obtained by using any fixed value for \(\sigma\), such as 1 . However, if the fixed value of \(\sigma\) differs from the actual maximumlikelihood estimate (in this case 2), the model is misspecified and the standard errors obtained with \(\mathrm{COV}=2\) or \(\mathrm{COV}=3\) are incorrect. It is therefore necessary to use \(\mathrm{COV}=1\), which yields consistent estimates of the standard errors under a variety of forms of misspecification of the error distribution.
```

proc nlp data=x cov=1 sigsq=1 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean) **2;
run;

```

This formulation produces the same standard error of the mean, 0.894427 (see Output 6.5.5).

Output 6.5.5. Solution for fixed \(\sigma\) and \(\mathrm{COV}=1\)


The maximum-likelihood formulation with fixed \(\sigma\) is actually a least-squares problem. The objective function, parameter estimates, and Hessian matrix are the same as those in the first example in this section using the LSQ statement. However, the Jacobian matrix is different, each row being multiplied by twice the residual. To treat this formulation as a least-squares problem, the SIGSQ=1 option can be omitted. But since the Jacobian is not the same as in the formulation using the LSQ statement, the \(\mathrm{COV}=1 \mid \mathrm{M}\) and \(\mathrm{COV}=3 \mid \mathrm{J}\) options, which use the Jacobian, do not yield correct standard errors. The correct standard error is obtained with \(\mathrm{COV}=2 \mid \mathrm{H}\), which uses only the Hessian matrix:
```

proc nlp data=x cov=2 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean) **2;
run;

```

The results are the same as in the first example.
Output 6.5.6. Solution for Fixed \(\sigma\) and \(\mathrm{COV}=2\)


In summary, to obtain appropriate standard errors for least-squares estimates, you can use the LSQ statement with any of the COV= options, or you can use the MIN statement with COV=2. To obtain appropriate standard errors for maximum-likelihood estimates, you can use the MIN statement with the negative log likelihood or the MAX statement with the log likelihood, and in either case you can use any of the COV= options provided that you specify SIGSQ=1. You can also use a log-likelihood function with a misspecified scale parameter provided that you use \(\mathrm{SIGSQ}=1\) and \(\mathrm{COV}=1\). For nonlinear models, all of these methods yield approximations based on asymptotic theory, and should therefore be interpreted cautiously.

\section*{Example 6.6. Maximum Likelihood Weibull Estimation}

\section*{Two-Parameter Weibull Estimation}

The following data are taken from Lawless (1982, p. 193) and represent the number of days it took rats painted with a carcinogen to develop carcinoma. The last two observations are censored data from a group of 19 rats:
```

data pike;
input days cens @@;
datalines;
143}0
190}000192 0 206 0 209 0,
213 0}2216 0 220 0 227 0,
230}00234 0 246 0 265 0,
304 0
;

```

Suppose that you want to show how to compute the maximum likelihood estimates of the scale parameter \(\sigma\) ( \(\alpha\) in Lawless), the shape parameter \(c\) ( \(\beta\) in Lawless), and the location parameter \(\theta\) ( \(\mu\) in Lawless). The observed likelihood function of the three-parameter Weibull transformation (Lawless 1982, p. 191) is
\[
L(\theta, \sigma, c)=\frac{c^{m}}{\sigma^{m}} \prod_{i \in D}\left(\frac{t_{i}-\theta}{\sigma}\right)^{c-1} \prod_{i=1}^{p} \exp \left(-\left(\frac{t_{i}-\theta}{\sigma}\right)^{c}\right)
\]
and the log likelihood is
\[
l(\theta, \sigma, c)=m \log c-m c \log \sigma+(c-1) \sum_{i \in D} \log \left(t_{i}-\theta\right)-\sum_{i=1}^{p}\left(\frac{t_{i}-\theta}{\sigma}\right)^{c}
\]

The \(\log\) likelihood function can be evaluated only for \(\sigma>0, c>0\), and \(\theta<\min _{i} t_{i}\). In the estimation process, you must enforce these conditions using lower and upper boundary constraints. The three-parameter Weibull estimation can be numerically difficult, and it usually pays off to provide good initial estimates. Therefore, you first estimate \(\sigma\) and \(c\) of the two-parameter Weibull distribution for constant \(\theta=0\). You then use the optimal parameters \(\hat{\sigma}\) and \(\hat{c}\) as starting values for the three-parameter Weibull estimation.

Although the use of an INEST= data set is not really necessary for this simple example, it illustrates how it is used to specify starting values and lower boundary constraints:
```

data par1(type=est);
keep _type_ sig c theta;
type='parms'; sig = .5;
c = .5; theta = 0; output;
type='lb'; sig = 1.0e-6;
c = 1.0e-6; theta = .; output;
run;

```

The following PROC NLP call specifies the maximization of the log likelihood function for the two-parameter Weibull estimation for constant \(\theta=0\) :
```

proc nlp data=pike tech=tr inest=par1 outest=opar1
outmodel=model cov=2 vardef=n pcov phes;
max logf;
parms sig c;
profile sig c / alpha = . 9 to .1 by -.1 . 09 to . 01 by -.01;
x_th = days - theta;
s = - (x_th / sig)**c;
if cens=0 then s + log(c) - c*log(sig) + (c-1)*log(x_th);
logf = s;
run;

```

After a few iterations you obtain the solution given in Output 6.6.1.
Output 6.6.1. Optimization Results
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PROC NLP: Nonlinear Maximization} \\
\hline \multicolumn{5}{|c|}{Optimization Results} \\
\hline & & r Estimat & & \\
\hline N Parameter & Estimate & Std Err & t Value & Pr > |t| \\
\hline 1 sig & 234.318611 & 9.645908 & 24.292021 & \(9.050475 \mathrm{E}-16\) \\
\hline 2 c & 6.083147 & 1.068229 & 5.694611 & 0.000017269 \\
\hline \multicolumn{5}{|c|}{Optimization Results} \\
\hline \multicolumn{5}{|c|}{Gradient} \\
\hline \multicolumn{5}{|c|}{Objective} \\
\hline \multicolumn{5}{|c|}{Function} \\
\hline \multicolumn{5}{|c|}{1.3372183E-9} \\
\hline \multicolumn{5}{|c|}{-7.859311E-9} \\
\hline \multicolumn{5}{|c|}{Value of Objective Function \(=-88.23273515\)} \\
\hline
\end{tabular}

Since the gradient has only small elements and the Hessian (shown in Output 6.6.2) is negative definite (has only negative eigenvalues), the solution defines an isolated maximum point.

Output 6.6.2. Hessian Matrix at \(x^{*}\)
\(\square\)
The square roots of the diagonal elements of the approximate covariance matrix of parameter estimates are the approximate standard errors (ASE's). The covariance matrix is given in Output 6.6.3.
Output 6.6.3. Covariance Matrix


The confidence limits in Output 6.6 .4 correspond to the \(\alpha\) values in the PROFILE statement.

Output 6.6.4. Confidence Limits
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{Parameter} & \multicolumn{4}{|l|}{PROC NLP: Nonlinear Maximization Wald and PL Confidence Limits} \\
\hline & & Estimate & Alpha & \multicolumn{2}{|l|}{Profile Likelihood Confidence Limits} \\
\hline 1 & sig & 234.318611 & 0.900000 & 233.111324 & 235.532695 \\
\hline 1 & sig & . & 0.800000 & 231.886549 & 236.772876 \\
\hline 1 & sig & - & 0.700000 & 230.623280 & 238.063824 \\
\hline 1 & sig & . & 0.600000 & 229.292797 & 239.436639 \\
\hline 1 & sig & . & 0.500000 & 227.855829 & 240.935290 \\
\hline 1 & sig & - & 0.400000 & 226.251597 & 242.629201 \\
\hline 1 & sig & - & 0.300000 & 224.372260 & 244.643392 \\
\hline 1 & sig & - & 0.200000 & 221.984557 & 247.278423 \\
\hline 1 & sig & - & 0.100000 & 218.390824 & 251.394102 \\
\hline 1 & sig & - & 0.090000 & 217.884162 & 251.987489 \\
\hline 1 & sig & - & 0.080000 & 217.326988 & 252.645278 \\
\hline 1 & sig & - & 0.070000 & 216.708814 & 253.383546 \\
\hline 1 & sig & - & 0.060000 & 216.008815 & 254.228034 \\
\hline 1 & sig & - & 0.050000 & 215.199301 & 255.215496 \\
\hline 1 & sig & - & 0.040000 & 214.230116 & 256.411041 \\
\hline 1 & sig & - & 0.030000 & 213.020874 & 257.935686 \\
\hline 1 & sig & - & 0.020000 & 211.369067 & 260.066128 \\
\hline 1 & sig & \({ }^{\text {• }}\) & 0.010000 & 208.671091 & 263.687174 \\
\hline 2 & c & 6.083147 & 0.900000 & 5.950029 & 6.217752 \\
\hline 2 & c & . & 0.800000 & 5.815559 & 6.355576 \\
\hline 2 & c & - & 0.700000 & 5.677909 & 6.499187 \\
\hline 2 & c & . & 0.600000 & 5.534275 & 6.651789 \\
\hline 2 & c & . & 0.500000 & 5.380952 & 6.817880 \\
\hline 2 & c & . & 0.400000 & 5.212344 & 7.004485 \\
\hline 2 & c & - & 0.300000 & 5.018784 & 7.225733 \\
\hline 2 & c & - & 0.200000 & 4.776379 & 7.506166 \\
\hline 2 & c & . & 0.100000 & 4.431310 & 7.931669 \\
\hline 2 & c & - & 0.090000 & 4.382687 & 7.991457 \\
\hline 2 & c & - & 0.080000 & 4.327815 & 8.056628 \\
\hline 2 & c & . & 0.070000 & 4.270773 & 8.129238 \\
\hline 2 & c & - & 0.060000 & 4.207130 & 8.211221 \\
\hline 2 & c & - & 0.050000 & 4.134675 & 8.306218 \\
\hline 2 & c & . & 0.040000 & 4.049531 & 8.418782 \\
\hline 2 & c & - & 0.030000 & 3.945037 & 8.559677 \\
\hline 2 & c & . & 0.020000 & 3.805759 & 8.749130 \\
\hline 2 & c & - & 0.010000 & 3.588814 & 9.056751 \\
\hline
\end{tabular}

\section*{Three-Parameter Weibull Estimation}

You now prepare for the three-parameter Weibull estimation by using PROC UNIVARIATE to obtain the smallest data value for the upper boundary constraint for \(\theta\). For this small problem, you can do this much more simply by just using a value slightly smaller than the minimum data value 143 .
```

/* Calculate upper bound for theta parameter */
proc univariate data=pike noprint;
var days;
output out=stats n=nobs min=minx range=range;
run;

```
```

data stats;
set stats;
keep _type_ theta;
/* 1. write parms observation */
theta = minx - . 1 * range;
if theta < 0 then theta = 0;
type = 'parms';
output;
/* 2. write ub observation */
theta = minx * (1 - 1e-4);
type = 'ub';
output;
run;

```

The data set PAR2 specifies the starting values and the lower and upper bounds for the three-parameter Weibull problem:
```

proc sort data=opar1;
by _type_;
run;
data par2(type=est);
merge opar1(drop=theta) stats;
by _type_;
keep _type_ sig c theta;
if _type_ in ('parms' 'lowerbd' 'ub');
run;

```

The following PROC NLP call uses the MODEL= input data set containing the log likelihood function that was saved during the two-parameter Weibull estimation:
```

proc nlp data=pike tech=tr inest=par2 outest=opar2
model=model cov=2 vardef=n pcov phes;
max logf;
parms sig c theta;
profile sig c theta / alpha = . 5 . 1 . 05 .01;
run;

```

After a few iterations, you obtain the solution given in Output 6.6.5.

Output 6.6.5. Optimization Results
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PROC NLP: Nonlinear Maximization} \\
\hline \multicolumn{5}{|c|}{Optimization Results} \\
\hline & & Approx & & Approx \\
\hline N Parameter & Estimate & Std Err & t Value & Pr > |t| \\
\hline 1 sig & 108.382732 & 32.573396 & 3.327339 & 0.003540 \\
\hline 2 c & 2.711477 & 1.058759 & 2.560995 & 0.019108 \\
\hline 3 theta & 122.025942 & 28.692439 & 4.252895 & 0.000430 \\
\hline \multicolumn{5}{|c|}{Optimization Results} \\
\hline \multicolumn{5}{|c|}{Parameter Estimates} \\
\hline \multicolumn{5}{|c|}{Gradient} \\
\hline \multicolumn{5}{|c|}{Objective} \\
\hline \multicolumn{5}{|c|}{Function} \\
\hline \multicolumn{5}{|c|}{-8.91765E-12} \\
\hline \multicolumn{5}{|c|}{-1.406349E-9} \\
\hline \multicolumn{5}{|c|}{-1.93916E-10} \\
\hline \multicolumn{5}{|c|}{Value of Objective Function \(=-87.32424712\)} \\
\hline
\end{tabular}

From inspecting the first- and second-order derivatives at the optimal solution, you can verify that you have obtained an isolated maximum point. The Hessian matrix is shown in Output 6.6.6.

Output 6.6.6. Hessian Matrix
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Hessian Matrix} \\
\hline & sig & c & theta \\
\hline sig & -0.010639974 & 0.0453887849 & -0.010033749 \\
\hline c & 0.0453887849 & -4.078687939 & -0.083026333 \\
\hline theta & -0.010033749 & -0.083026333 & -0.014752091 \\
\hline \multicolumn{4}{|c|}{Determinant \(=0.0000502116\)} \\
\hline \multicolumn{4}{|c|}{Matrix has Only Negative Eigenvalues} \\
\hline
\end{tabular}

The square roots of the diagonal elements of the approximate covariance matrix of parameter estimates are the approximate standard errors. The covariance matrix is given in Output 6.6.7.

Output 6.6.7. Covariance Matrix


The difference between the Wald and profile CLs for parameter PHI2 are remarkable, especially for the upper \(95 \%\) and \(99 \%\) limits, as shown in Output 6.6.8.
Output 6.6.8. Confidence Limits
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{Parameter} & \multicolumn{4}{|l|}{Wald and PL Confidence Limits} \\
\hline & & Estimate & Alpha & \multicolumn{2}{|l|}{Profile Likelihood Confidence Limits} \\
\hline 1 & sig & 108.382732 & 0.500000 & 91.811562 & 141.564605 \\
\hline 1 & sig & . & 0.100000 & 76.502373 & \\
\hline 1 & sig & - & 0.050000 & 72.215845 & \\
\hline 1 & sig & - & 0.010000 & 64.262384 & \\
\hline 2 & c & 2.711477 & 0.500000 & 2.139297 & 3.704052 \\
\hline 2 & c & . & 0.100000 & 1.574162 & 9.250072 \\
\hline 2 & c & . & 0.050000 & 1.424853 & 19.516166 \\
\hline 2 & c & . & 0.010000 & 1.163096 & 19.540681 \\
\hline 3 & theta & 122.025942 & 0.500000 & 91.027144 & 135.095454 \\
\hline 3 & theta & . & 0.100000 & . & 141.833769 \\
\hline 3 & theta & . & 0.050000 & - & 142.512603 \\
\hline \multirow[t]{15}{*}{3} & theta & - & 0.010000 & . & 142.967407 \\
\hline & \multicolumn{5}{|c|}{Wald and PL Confidence Limits} \\
\hline & \multicolumn{5}{|c|}{Wald Confidence Limits} \\
\hline & & 86.412310 & 130.3531 & & \\
\hline & & 54.804263 & 161.961 & & \\
\hline & & 44.540049 & 172.225 & & \\
\hline & & 24.479224 & 192.286 & & \\
\hline & & 1.997355 & 3.425 & & \\
\hline & & 0.969973 & 4.452 & & \\
\hline & & 0.636347 & 4.786 & & \\
\hline & & -0.015706 & 5.438 & & \\
\hline & & 102.673186 & 141.378 & & \\
\hline & & 74.831079 & 142.985 & & \\
\hline & & 65.789794 & 142.985 & & \\
\hline & & 48.119116 & 142.985 & & \\
\hline
\end{tabular}

\section*{Example 6.7. Simple Pooling Problem}

The following optimization problem is discussed in Haverly (1978) and in Liebman et al. (1986, pp. 127-128). Two liquid chemicals, \(X\) and \(Y\), are produced by the pooling and blending of three input liquid chemicals, \(A, B\), and \(C\). You know the sulfur impurity amounts of the input chemicals, and you have to respect upper limits of the sulfur impurity amounts of the output chemicals. The sulfur concentrations and the prices of the input and output chemicals are:
- Chemical \(A\) : Concentration \(=3 \%\), Price \(=\$ 6\)
- Chemical \(B\) : Concentration \(=1 \%\), Price \(=\$ 16\)
- Chemical \(C\) : Concentration \(=2 \%\), Price \(=\$ 10\)
- Chemical \(X\) : Concentration \(\leq 2.5 \%\), Price \(=\$ 9\)
- Chemical \(Y\) : Concentration \(\leq 1.5 \%\), Price \(=\$ 15\)

The problem is complicated by the fact that the two input chemicals \(A\) and \(B\) are available only as a mixture (they are either shipped together or stored together). Because the amounts of \(A\) and \(B\) are unknown, the sulfur concentration of the mixture is also unknown.


You know customers will buy no more than 100 units of X and 200 units of Y . The problem is determining how to operate the pooling and blending of the chemicals to maximize the profit. The objective function for the profit is
\[
\begin{aligned}
\text { profit } & =\operatorname{cost}(x) \times \operatorname{amount}(x)+\operatorname{cost}(y) \times \operatorname{amount}(y) \\
& -\operatorname{cost}(a) \times \operatorname{amount}(a)-\operatorname{cost}(b) \times \operatorname{amount}(b)-\operatorname{cost}(c) \times \operatorname{amount}(c)
\end{aligned}
\]

There are three groups of constraints:
1. The first group of constraint functions is the mass balance restrictions illustrated by the graph. These are four linear equality constraints:
- \(\operatorname{amount}(a)+\operatorname{amount}(b)=\) pool_to_x + pool_to_y
- pool_to_x \(+c_{-}\)to_ \(x=\operatorname{amount}(x)\)
- pool_to_y \(+c_{-} t o_{-} y=\operatorname{amount}(y)\)
- amount \((c)=c_{-} t o \_x+c_{-} t o_{-} y\)
2. You introduce a new variable, pool_s, that represents the sulfur concentration of the pool. Using pool_s and the sulfur concentration of \(C(2 \%)\), you obtain two nonlinear inequality constraints for the sulfur concentrations of \(X\) and \(Y\), one linear equality constraint for the sulfur balance, and lower and upper boundary restrictions for pool_s:
- pool_s \(\times\) pool_to_ \(x+2 c_{-} t o \_x \leq 2.5 \operatorname{amount}(x)\)
- pool_s \(\times\) pool_to_ \(y+2 c_{-} t o \_y \leq 1.5 \operatorname{amount}(y)\)
- \(3 \operatorname{amount}(a)+1 \operatorname{amount}(b)=\) pool_s \(\times(\operatorname{amount}(a)+\operatorname{amount}(b))\)
- \(1 \leq\) pool_s \(\leq 3\)
3. The last group assembles the remaining boundary constraints. First, you do not want to produce more than you can sell; and finally, all variables must be nonnegative:
- \(\operatorname{amount}(x) \leq 100, \quad \operatorname{amount}(y) \leq 200\)
- \(\operatorname{amount}(a), \operatorname{amount}(b), \operatorname{amount}(c), \operatorname{amount}(x), \operatorname{amount}(y) \geq 0\)
- pool_to_x, pool_to_y, c_to_x, c_to_y \(\geq 0\)

There exist several local optima to this problem that can be found by specifying different starting points. Using the starting point with all variables equal to 1 (specified with a PARMS statement), PROC NLP finds a solution with profit \(=400\) :
```

proc nlp all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;
nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;
max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;

```
```

 f = costx * amountx + costy * amounty
 - costa * amounta - costb * amountb - costc * amountc;
 nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
 nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
 nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);
 run;

```

The specified starting point was not feasible with respect to the linear equality constraints; therefore, a starting point is generated that satisfies linear and boundary constraints. Output 6.7.1 gives the starting parameter estimates.

Output 6.7.1. Starting Estimates
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{PROC NLP: Nonlinear Maximization} \\
\hline \multicolumn{5}{|c|}{Optimization Start Parameter Estimates} \\
\hline & & Gradient & Gradient & Lower \\
\hline & & Objective & Lagrange & Bound \\
\hline N Parameter & Estimate & Function & Function & Constraint \\
\hline 1 amountx & 1. 363636 & 9.000000 & -0.843698 & 0 \\
\hline 2 amounty & 1.363636 & 15.000000 & -0.111882 & 0 \\
\hline 3 amounta & 0.818182 & -6.000000 & -0.430733 & 0 \\
\hline 4 amountb & 0.818182 & -16.000000 & -0.542615 & 0 \\
\hline 5 amountc & 1.090909 & -10.000000 & 0.017768 & 0 \\
\hline 6 pooltox & 0.818182 & 0 & -0.669628 & 0 \\
\hline 7 pooltoy & 0.818182 & 0 & -0.303720 & 0 \\
\hline 8 ctox & 0.545455 & 0 & -0.174070 & 0 \\
\hline 9 ctoy & 0.545455 & 0 & 0.191838 & 0 \\
\hline 10 pools & 2.000000 & 0 & 0.068372 & 1.000000 \\
\hline \multicolumn{5}{|c|}{Optimization Start} \\
\hline \multicolumn{5}{|c|}{Parameter Estimates} \\
\hline \multicolumn{5}{|c|}{Upper} \\
\hline \multicolumn{5}{|c|}{Bound} \\
\hline \multicolumn{5}{|c|}{Constraint} \\
\hline \multicolumn{5}{|c|}{100.000000} \\
\hline \multicolumn{5}{|c|}{200.000000} \\
\hline \multicolumn{5}{|c|}{.} \\
\hline \multicolumn{5}{|c|}{-} \\
\hline \multicolumn{5}{|c|}{-} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|c|}{-} \\
\hline \multicolumn{5}{|c|}{\multirow[t]{2}{*}{3.000000}} \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{Value of Objective Function \(=3.8181818182\)} \\
\hline \multicolumn{5}{|c|}{Value of Lagrange Function \(=-2.866739915\)} \\
\hline
\end{tabular}

The starting point satisfies the four equality constraints, as shown in Output 6.7.2. The nonlinear constraints are given in Output 6.7.3.

Output 6.7.2. Linear Constraints


Output 6.7.3. Nonlinear Constraints
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Values of Nonlinear Constraints} \\
\hline \multicolumn{3}{|c|}{Constraint} & \multicolumn{5}{|c|}{Residual Multiplier} \\
\hline [ & 5 ] & nlc3 & 0 & 0 & 4.9441 & Active & NLEC \\
\hline [ & 6 ] & nlc1_G & 0.6818 & 0.6818 & & & \\
\hline [ & 7 ] & nlc2_G & -0.6818 & -0.6818 & -9.8046 & Violat & NLIC \\
\hline
\end{tabular}

Output 6.7.4 shows the settings of some important PROC NLP options.
Output 6.7.4. Options

> PROC NLP: Nonlinear Maximization
\begin{tabular}{lr} 
Minimum Iterations & 0 \\
Maximum Iterations & 200 \\
Maximum Function Calls & 500 \\
Iterations Reducing Constraint Violation & 20 \\
ABSGCONV Gradient Criterion & 0.00001 \\
GCONV Gradient Criterion & \(1 \mathrm{E}-8\) \\
ABSFCONV Function Criterion & 0 \\
FCONV Function Criterion & \(2.220446 \mathrm{E}-16\) \\
FCONV2 Function Criterion & \(1 \mathrm{E}-6\) \\
FSIZE Parameter & 0 \\
ABSXCONV Parameter Change Criterion & 0 \\
XCONV Parameter Change Criterion & 0 \\
XSIZE Parameter & 0 \\
ABSCONV Function Criterion & 1.340781 E 154 \\
Line Search Method & 2 \\
Starting Alpha for Line Search & 1 \\
Line Search Precision LSPRECISION & 0.4 \\
DAMPSTEP Parameter for Line Search &. \\
FD Derivatives: Accurate Digits in Obj.F & 15.653559775 \\
FD Derivatives: Accurate Digits in NLCon & 15.653559775 \\
Singularity Tolerance (SINGULAR) & \(1 \mathrm{E}-8\) \\
Constraint Precision (LCEPS) & \(1 \mathrm{E}-8\) \\
Linearly Dependent Constraints (LCSING) & \(1 \mathrm{E}-8\) \\
Releasing Active Constraints (LCDEACT) &.
\end{tabular}

The iteration history, given in Output 6.7.5, does not show any problems.

Output 6.7.5. Iteration History
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{```
    PROC NLP: Nonlinear Maximization
    Dual Quasi-Newton Optimization
fied VMCWD Algorithm of Powell (1978, 1982)
den - Fletcher - Goldfarb - Shanno Update (DBFGS)
grange Multiplier Update of Powell(1982)
```} \\
\hline Iter & Restarts & ction Calls & Objective Function & \begin{tabular}{l}
Maximum \\
Constraint Violation
\end{tabular} & Predicted Function Reduction & \begin{tabular}{l}
Step \\
Size
\end{tabular} & \begin{tabular}{l}
Maximum Gradient Element of the \\
Lagrange \\
Function
\end{tabular} \\
\hline 1 & 0 & 19 & -1.42400 & 0.00962 & 6.9131 & 1.000 & 0.783 \\
\hline 2' & 0 & 20 & 2.77026 & 0.0166 & 5.3770 & 1.000 & 0.629 \\
\hline 3 & 0 & 21 & 7.08706 & 0.1409 & 7.1965 & 1.000 & 0.452 \\
\hline \(4^{\prime}\) & 0 & 22 & 11.41264 & 0.0583 & 15.5771 & 1.000 & O 23.390 \\
\hline 5' & 0 & 23 & 24.84630 & 1.78E-15 & 496.1 & 1.000 & - 147.6 \\
\hline 6 & 0 & 24 & 378.22995 & 147.4 & 3316.6 & 1.000 & 0 840.4 \\
\hline 7' & 0 & 25 & 307.56908 & 50.9348 & 607.9 & 1.000 & O 27.143 \\
\hline \(8{ }^{\prime}\) & 0 & 26 & 347.24557 & 1.8330 & 21.9896 & 1.000 & O 28.483 \\
\hline \(9{ }^{\prime}\) & 0 & 27 & 349.49342 & 0.00915 & 7.1838 & 1.000 & - 28.291 \\
\hline \(10^{\prime}\) & 0 & 28 & 356.58483 & 0.1084 & 50.2539 & 1.000 & - 27.480 \\
\hline 11' & 0 & 29 & 388.70516 & 2.4275 & 24.7951 & 1.000 & 021.114 \\
\hline 12' & 0 & 30 & 389.29922 & 0.0157 & 10.0489 & 1.000 & 18.648 \\
\hline 13' & 0 & 31 & 399.19185 & 0.7999 & 11.1897 & 1.000 & 0.416 \\
\hline \(14^{\prime}\) & 0 & 32 & 400.00000 & 0.0128 & 0.1535 & 1.000 & 0.00087 \\
\hline 15' & 0 & 33 & 400.00000 & 7.38E-11 & \(2.43 \mathrm{E}-10\) & 1.000 & - 366E-12 \\
\hline \multicolumn{8}{|c|}{Optimization Results} \\
\hline \multicolumn{3}{|l|}{} & 15 & \multicolumn{2}{|l|}{Function Calls} & & 34 \\
\hline \multicolumn{3}{|l|}{Gradient Calls} & 18 & \multicolumn{2}{|l|}{Active Constraints} & & 10 \\
\hline \multicolumn{3}{|l|}{Objective Function} & 400 & \multicolumn{2}{|l|}{Maximum Constraint Violation} & & 7.381118E-11 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Maximum Projected Gradient Maximum Gradient of the Lagran Func}} & 0 & \multicolumn{3}{|l|}{Value Lagrange Function} & -400 \\
\hline & & & . \(552714 \mathrm{E}-14\) & \multicolumn{3}{|l|}{Slope of Search Direction} & -2.43495E-10 \\
\hline \multicolumn{8}{|l|}{FCONV2 convergence criterion satisfied.} \\
\hline
\end{tabular}

The optimal solution in Output 6.7.6 shows that to obtain the maximum profit of \(\$ 400\), you need only to produce the maximum 200 units of blending \(Y\) and no units of blending \(X\).

Output 6.7.6. Optimization Solution
\begin{tabular}{|c|c|c|c|c|c|}
\hline N Parameter & Estimate & \begin{tabular}{l}
Optimization \\
Parameter Es Gradient Objective Function
\end{tabular} & \begin{tabular}{l}
Results \\
timates \\
Gradient \\
Lagrange \\
Function
\end{tabular} & \begin{tabular}{l}
Active \\
Bound \\
Constraint
\end{tabular} & \\
\hline 1 amountx & -1.40483E-11 & 9.000000 & 0 & Lower BC & \\
\hline 2 amounty & 200.000000 & 15.000000 & 8.881784E-16 & Upper BC & \\
\hline 3 amounta & \(5.484612 \mathrm{E}-16\) & -6.000000 & 0 & Lower BC & \\
\hline 4 amountb & 100.000000 & -16.000000 & -5.32907E-15 & & \\
\hline 5 amountc & 100.000000 & -10.000000 & -1.77636E-15 & & \\
\hline 6 pooltox & \(7.024625 \mathrm{E}-12\) & 0 & 0 & Lower BC & \\
\hline 7 pooltoy & 100.000000 & 0 & -1.42109E-14 & & \\
\hline 8 ctox & -2.10729E-11 & 0 & 0 & Lower BC & LinDep \\
\hline 9 ctoy & 100.000000 & 0 & -1.77636E-15 & & \\
\hline 10 pools & 1.000000 & 0 & 3.552714E-14 & Lower BC & LinDep \\
\hline \multicolumn{6}{|c|}{Value of Objective Function \(=400\)} \\
\hline \multicolumn{6}{|c|}{Value of Lagrange Function \(=400\)} \\
\hline
\end{tabular}

The constraints are satisfied at the solution, as shown in Output 6.7.7
Output 6.7.7. Linear and Nonlinear Constraints at the Solution

The same problem can be specified in many different ways. For example, the following specification uses an INEST= data set containing the values of the starting point and of the constants COST, COSTB, COSTC, COSTX, COSTY, CA, CB, CC, and CD:
```

data init1(type=est);
input _type_ \$ amountx amounty amounta amountb
amountc pooltox pooltoy ctox ctoy pools
_rhs_ costa costb costc costx costy
ca cb cc cd;
datalines;
parms 11 1 1 1 1 1 1 1 1 1 1
. 6 16 10 9 15 2.5 1.5 2. 3.
;
proc nlp inest=init1 all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;
nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;
max f;
f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;
nlc1 = ca * amountx - pools * pooltox - cc * ctox;
nlc2 = cb * amounty - pools * pooltoy - cc * ctoy;
nlc3 = cd * amounta + amountb - pools * (amounta + amountb);
run;

```

The third specification uses an INEST= data set containing the boundary and linear constraints in addition to the values of the starting point and of the constants. This specification also writes the model specification into an OUTMOD= data set:
data init2 (type=est);
 input _type_ \$ amountx amounty amounta amountb amountc
 pooltox pooltoy ctox ctoy pools
 rhs costa costb costc costx costy;
 datalines;
\begin{tabular}{lrrrrrrrrrr}
parms & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
&. & 6 & 16 & 10 & 9 & 15 & 2.5 & 1.5 & 2 & 3 \\
lowerbd & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
&. &. &. &. &. &. &. &. &. &. \\
upperbd & 100 & 200 &. &. &. &. &. &. &. & 3
\end{tabular}
```

eq	.	.	1	1	.	-1	-1	.	.	.
	0	.	.	.	.	.	.	.	.	.
eq	1	.	.	.	.	-1	.	-1	.	.
	0	.	.	.	.	.	.	.	.	.
eq	.	1	.	.	.	.	-1	.	-1	.
	0	.	.	.	.	.	.	.	.	.
eq	0	.	.	.	1	.	.	-1	-1	.
$;$	0	.	.	.	.	.	.	.	.	.

proc nlp inest=init2 outmod=model all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;
max $\mathbf{f}$;
$\mathrm{f}=$ costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 $=1.5$ * amounty - pools * pooltoy - 2. * ctoy;
nlc3 $=3$ * amounta + amountb - pools * (amounta + amountb);
run;

```

The fourth specification not only reads the INEST=INIT2 data set, it also uses the model specification from the MODEL data set that was generated in the last specification. The PROC NLP call now contains only the defining variable statements:
```

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;
max f;
run;

```

All four specifications start with the same starting point of all variables equal to 1 and generate the same results. However, there exist several local optima to this problem, as is pointed out in Liebman et al. (1986, p. 130).
```

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy = 0,
pools = 2;
nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;
max f;
run;

```

This starting point with all variables equal to 0 is accepted as a local solution with profit \(=0\), which minimizes rather than maximizes the profit.

\section*{Example 6.8. Chemical Equilibrium}

The following example is used in many test libraries for nonlinear programming and was taken originally from Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals satisfying its chemical equilibrium state. The second law of thermodynamics implies that a mixture of chemicals satisfies its chemical equilibrium state (at a constant temperature and pressure) when the free energy of the mixture is reduced to a minimum. Therefore the composition of the chemicals satisfying its chemical equilibrium state can be found by minimizing the function of the free energy of the mixture.

\section*{Notation:}
```

$m \quad$ number of chemical elements in the mixture
$n$ number of compounds in the mixture
$x_{j} \quad$ number of moles for compound $j, j=1, \ldots, n$
$s \quad$ total number of moles in the mixture $\left(s=\sum_{i=1}^{n} x_{j}\right)$
$a_{i j} \quad$ number of atoms of element $i$ in a molecule of compound $j$
$b_{i} \quad$ atomic weight of element $i$ in the mixture

```

\section*{Constraints for the Mixture:}
- The number of moles must be positive:
\[
x_{j}>0, \quad j=1, \ldots, n
\]
- There are \(m\) mass balance relationships,
\[
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m
\]

\section*{Objective Function: Total Free Energy of Mixture}
\[
f(x)=\sum_{j=1}^{n} x_{j}\left[c_{j}+\ln \left(\frac{x_{j}}{s}\right)\right]
\]
with
\[
c_{j}=\left(\frac{F^{\circ}}{R T}\right)_{j}+\ln P
\]
where \(F^{\circ} / R T\) is the model standard free energy function for the \(j\) th compound (found in tables) and \(P\) is the total pressure in atmospheres.

\section*{Minimization Problem:}

Determine the parameters \(x_{j}\) that minimize the objective function \(f(x)\) subject to the nonnegativity and linear balance constraints.

\section*{Numeric Example:}

Determine the equilibrium composition of compound \(\frac{1}{2} N_{2} H_{4}+\frac{1}{2} O_{2}\) at temperature \(T=3500^{\circ} \mathrm{K}\) and pressure \(P=750\) psi.
\begin{tabular}{|cc|r|r|c|c|c|}
\hline \hline \multicolumn{4}{|c|}{} & \multicolumn{3}{|c|}{\(a_{i j}\)} \\
\cline { 4 - 7 } & \multicolumn{2}{l|}{} & \(i=1\) & \(i=2\) & \(i=3\) \\
\hline\(j\) & Compound & \(\left(F^{\circ} / R T\right)_{j}\) & \multicolumn{1}{c|}{\(c_{j}\)} & \(H\) & \(N\) & \(O\) \\
\hline 1 & \(H\) & -10.021 & -6.089 & 1 & & \\
2 & \(H_{2}\) & -21.096 & -17.164 & 2 & & \\
3 & \(H_{2} O\) & -37.986 & -34.054 & 2 & & 1 \\
4 & \(N\) & -9.846 & -5.914 & & 1 & \\
5 & \(N_{2}\) & -28.653 & -24.721 & & 2 & \\
6 & \(N H\) & -18.918 & -14.986 & 1 & 1 & \\
7 & \(N O\) & -28.032 & -24.100 & & 1 & 1 \\
8 & \(O\) & -14.640 & -10.708 & & & 1 \\
9 & \(O_{2}\) & -30.594 & -26.662 & & & 2 \\
10 & \(O H\) & -26.111 & -22.179 & 1 & & 1 \\
\hline \hline
\end{tabular}

\section*{Example Specification:}
```

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,
1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;
s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;
y = y + x[j] * (c[j] + log(x[j] / s));
end;
run;

```

\section*{Displayed Output:}

The iteration history given in Output 6.8.1 does not show any problems.

Output 6.8.1. Iteration History

Output 6.8.2 lists the optimal parameters with the gradient.
Output 6.8.2. Optimization Results
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
PROC NLP: Nonlinear Minimization \\
Optimization Results \\
Parameter Estimates
\end{tabular}} \\
\hline N Parameter & Estimate & Gradient Objective Function \\
\hline \(1 \times 1\) & 0.040668 & -9.785055 \\
\hline \(2 \times 2\) & 0.147730 & -19.570110 \\
\hline \(3 \times 3\) & 0.783153 & -34.792170 \\
\hline \(4 \times 4\) & 0.001414 & -12.968921 \\
\hline \(5 \times 5\) & 0.485247 & -25.937841 \\
\hline \(6 \times 6\) & 0.000693 & -22.753976 \\
\hline \(7 \times 7\) & 0.027399 & -28.190984 \\
\hline \(8 \times 8\) & 0.017947 & -15.222060 \\
\hline \(9 \times 9\) & 0.037314 & -30.444120 \\
\hline \(10 \times 10\) & 0.096871 & -25.007115 \\
\hline \multicolumn{3}{|l|}{Value of Objective Function \(=-47.76109086\)} \\
\hline
\end{tabular}

The three equality constraints are satisfied at the solution, as shown in Output 6.8.3.

Output 6.8.3. Linear Constraints at Solution

PROC NLP: Nonlinear Minimization
Linear Constraints Evaluated at Solution
```

1 ACT 6.9389E-17 = 2.0000 - 1.0000* x1 - 2.0000 * x2 -
2.0000 * x3 - 1.0000 * x6 - 1.0000 * x10
2 ACT -4.337E-16 = 1.0000 - 1.0000 * x4 - 2.0000 * x5 -
1.0000* x6 - 1.0000 * x7
3 ACT -4.163E-17 = 1.0000 - 1.0000* *3 - 1.0000* *7 -
1.0000* *8 - 2.0000* x9 - 1.0000 * x10

```

The Lagrange multipliers are given in Output 6.8.4.
Output 6.8.4. Lagrange Multipliers
\(\square\)

The elements of the projected gradient must be small to satisfy a necessary first-order optimality condition. The projected gradient is given in Output 6.8.5

\section*{Output 6.8.5. Projected Gradient}

PROC NLP: Nonlinear Minimization
Projected Gradient
\begin{tabular}{rr}
Free & Projected \\
Dimension & Gradient
\end{tabular}
\(14.577009 \mathrm{E}-9\)
2 6.86833E-10
3-7.283021E-9
\(4-0.000001864\)
\(5-0.000001434\)
\(6-0.000001361\)
\(7-0.000000294\)

The projected Hessian matrix shown in Output 6.8.6 is positive definite, satisfying the second-order optimality condition.

Output 6.8.6. Projected Hessian Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Projected Hessian Matrix} \\
\hline \multicolumn{3}{|r|}{X1} & & X2 & & x3 & \multicolumn{2}{|r|}{X4} \\
\hline X1 & 20.9 & 6985 & -0.1 & 7474 & 2.6 & 3467 & 3.34 & \\
\hline X 2 & -0.1 & 7474 & 565. & 9938 & 106 & 1863 & -83 & \\
\hline X3 & 2.64 & 3467 & 106. & 1863 & 1052 & 7179 & -11 & \\
\hline X4 & 3.34 & 6526 & -83 & 4843 & -11 & 0587 & 37.5 & \\
\hline X5 & -1. & 9641 & -37. & 1036 & 182 & 8895 & -4. 6 & \\
\hline X6 & -1. 4 & 8185 & -36. & 3737 & 175 & 9593 & -4. 5 & \\
\hline X 7 & 1.14 & 3516 & & 5529 & -57 & 8208 & 10.3 & \\
\hline \multicolumn{9}{|c|}{Projected Hessian Matrix} \\
\hline \multicolumn{4}{|r|}{X5} & & X6 & \multicolumn{3}{|c|}{X7} \\
\hline & x1 & \multicolumn{2}{|l|}{-1.373829641} & \multicolumn{2}{|l|}{-1.491808185} & \multicolumn{3}{|l|}{1.1462413516} \\
\hline & X2 & \multicolumn{2}{|l|}{-37.43971036} & \multicolumn{2}{|l|}{-36.20703737} & \multicolumn{3}{|c|}{-16.635529} \\
\hline & X3 & \multicolumn{2}{|l|}{182.89278895} & \multicolumn{2}{|l|}{175.97949593} & \multicolumn{3}{|l|}{-57.04158208} \\
\hline & X4 & \multicolumn{2}{|l|}{-4.621642366} & \multicolumn{2}{|l|}{-4.574152161} & \multicolumn{3}{|l|}{10.306551561} \\
\hline & X5 & \multicolumn{2}{|l|}{79.326057844} & \multicolumn{2}{|l|}{22.960487404} & \multicolumn{3}{|l|}{-12.69831637} \\
\hline & X6 & \multicolumn{2}{|l|}{22.960487404} & \multicolumn{2}{|l|}{66.669897023} & \multicolumn{3}{|l|}{-8.121228758} \\
\hline & X7 & \multicolumn{2}{|l|}{-12.69831637} & \multicolumn{2}{|l|}{-8.121228758} & \multicolumn{3}{|l|}{14.690478023} \\
\hline
\end{tabular}

The following PROC NLP call uses a specified analytical gradient and the Hessian matrix is computed by finite-difference approximations based on the analytic gradient:
```

proc nlp tech=tr fdhessian all;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
array g[10] g1-g10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,
1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;
s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;
y = y + x[j] * (c[j] + log(x[j] / s));
g[j] = c[j] + log(x[j] / s);
end;
run;

```

The results are almost identical to those of the previous run.

\section*{Example 6.9. Minimize Total Delay in a Network}

The following example is taken from the user's guide of GINO (Liebman et al. 1986). A simple network of five roads (arcs) can be illustrated by the path diagram:

Figure 6.11. Simple Road Network
The five roads connect four intersections illustrated by numbered nodes. Each minute \(F\) vehicles enter and leave the network. Arc \((i, j)\) refers to the road from intersection \(i\) to intersection \(j\), and the parameter \(x_{i j}\) refers to the flow from \(i\) to \(j\). The law that traffic flowing into each intersection \(j\) must also flow out is described by the linear equality constraint
\[
\sum_{i} x_{i j}=\sum_{i} x_{j i}, \quad j=1, \ldots, n
\]

In general, roads also have an upper capacity, which is the number of vehicles which can be handled per minute. The upper limits \(c_{i j}\) can be enforced by boundary constraints
\[
0 \leq x_{i j} \leq c_{i j}, \quad i, j=1, \ldots, n
\]

Finding the maximum flow through a network is equivalent to solving a simple linear optimization problem, and for large problems, PROC LP or PROC NETFLOW can be used. The objective function is
\[
\max \quad f=x_{24}+x_{34}
\]
and the constraints are
\[
\begin{gathered}
0 \leq x_{12}, x_{32}, x_{34} \leq 10 \\
0 \leq x_{13}, x_{24} \leq 30 \\
x_{13}=x_{32}+x_{34} \\
x_{12}+x_{32}=x_{24} \\
x_{12}+x_{13}=x_{24}+x_{34}
\end{gathered}
\]

The three linear equality constraints are linearly dependent. One of them is deleted automatically by the PROC NLP subroutines. Even though the default technique is used for this small example, any optimization subroutine can be used.
```

proc nlp all initial=.5;
max y;
parms x12 x13 x32 x24 x34;
bounds x12 <= 10,
x13<= 30,
x32 <= 10,
x24 <= 30,
x34<= 10;
/* what flows into an intersection must flow out */
lincon x13 = x32 + x34,
x12 + x32 = x24,
x24 + x34 = x12 + x13;
y = x24 + x34 + 0*x12 + 0*x13 + 0*x32;
run;

```

The iteration history is given in Output 6.9.1, and the optimal solution is given in Output 6.9.2.
Output 6.9.1. Iteration History

Output 6.9.2. Optimization Results
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{PROC NLP: Nonlinear Maximization} \\
\hline \multicolumn{4}{|c|}{Parameter Estimates} \\
\hline & & Gradient & Active \\
\hline & & Objective & Bound \\
\hline N Parameter & Estimate & Function & Constraint \\
\hline \(1 \times 12\) & 10.000000 & 0 & Upper BC \\
\hline \(2 \times 13\) & 20.000000 & 0 & \\
\hline \(3 \times 32\) & 10.000000 & 0 & Upper BC \\
\hline \(4 \times 24\) & 20.000000 & 1.000000 & \\
\hline \(5 \times 34\) & 10.000000 & 1.000000 & Upper BC \\
\hline \multicolumn{4}{|c|}{Value of Objective Function \(=30\)} \\
\hline
\end{tabular}

Finding a traffic pattern that minimizes the total delay to move \(F\) vehicles per minute from node 1 to node 4 introduces nonlinearities that, in turn, demand nonlinear optimization techniques. As traffic volume increases, speed decreases. Let \(t_{i j}\) be the travel time on arc \((i, j)\) and assume that the following formulas describe the travel time as decreasing functions of the amount of traffic:
\[
\begin{gathered}
t_{12}=5+0.1 x_{12} /\left(1-x_{12} / 10\right) \\
t_{13}=x_{13} /\left(1-x_{13} / 30\right) \\
t_{32}=1+x_{32} /\left(1-x_{32} / 10\right) \\
t_{24}=x_{24} /\left(1-x_{24} / 30\right) \\
t_{34}=5+.1 x_{34} /\left(1-x_{34} / 10\right)
\end{gathered}
\]

These formulas use the road capacities (upper bounds), assuming \(F=5\) vehicles per minute have to be moved through the network. The objective function is now
\[
\min \quad f=t_{12} x_{12}+t_{13} x_{13}+t_{32} x_{32}+t_{24} x_{24}+t_{34} x_{34}
\]
and the constraints are
\[
\begin{gathered}
0 \leq x_{12}, x_{32}, x_{34} \leq 10 \\
0 \leq x_{13}, x_{24} \leq 30 \\
x_{13}=x_{32}+x_{34} \\
x_{12}+x_{32}=x_{24} \\
x_{24}+x_{34}=F=5
\end{gathered}
\]

Again, the default algorithm is used:
```

proc nlp all initial=.5;
min y;
parms x12 x13 x32 x24 x34;
bounds x12 x13 x32 x24 x34 >= 0;

```
```

    lincon x13 = x32 + x34, /* flow in = flow out */
    x12 + x32 = x24,
    x24 + x34 = 5; /* = f = desired flow */
    t12 = 5 + .1 * x12 / (1 - x12 / 10);
    t13 = x13 / (1 - x13 / 30);
    t32 = 1 + x32 / (1 - x32 / 10);
    t24 = x24 / (1 - x24 / 30);
    t34 = 5 + .1 * x34 / (1 - x34 / 10);
    y = t12*x12 + t13*x13 + t 32*x32 + t24*x24 + t 34*x34;
    run;

```

The iteration history is given in Output 6.9.3, and the optimal solution is given in Output 6.9.4.

\section*{Output 6.9.3. Iteration History}
\begin{tabular}{|lllll}
\hline & & & & \\
\hline
\end{tabular}

\section*{Output 6.9.4. Opimization Results}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
PROC NLP: Nonlinear Minimization \\
Optimization Results \\
Parameter Estimates
\end{tabular}} \\
\hline \(1 \times 12\) & 2.500000 & 5.777778 & \\
\hline \(2 \times 13\) & 2.500000 & 5.702479 & \\
\hline \(3 \times 32\) & \(2.036945 \mathrm{E}-17\) & 1.000000 & Lower BC \\
\hline \(4 \times 24\) & 2.500000 & 5.702479 & \\
\hline \(5 \times 34\) & 2.500000 & 5.777778 & \\
\hline \multicolumn{4}{|c|}{Value of Objective Function \(=40.303030303\)} \\
\hline
\end{tabular}

The active constraints and corresponding Lagrange multiplier estimates (costs) are given in Output 6.9.5 and Output 6.9.6, respectively.

Output 6.9.5. Linear Constraints at Solution

PROC NLP: Nonlinear Minimization
Linear Constraints Evaluated at Solution

Output 6.9.6. Lagrange Multipliers at Solution
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Active Constraint}} & Lagrange \\
\hline & & Multiplier \\
\hline Lower BC & \(\times 32\) & 0.924702 \\
\hline Linear EC & [1] & 5.702479 \\
\hline Linear EC & [2] & 5.777778 \\
\hline Linear EC & [3] & 11.480257 \\
\hline
\end{tabular}

Output 6.9.7 shows that the projected gradient is very small, satisfying the first-order optimality criterion.

Output 6.9.7. Projected Gradient at Solution
\[
\begin{array}{rr}
\text { Projected } & \text { Gradient } \\
\text { Free } & \begin{array}{r}
\text { Projected } \\
\text { Gradient }
\end{array} \\
\text { Dimension }
\end{array}
\]

The projected Hessian matrix (shown in Output 6.9.8) is positive definite, satisfying the second-order optimality criterion.

Output 6.9.8. Projected Hessian at Solution

Projected Hessian
Matrix

X1
x1
1.535309013

\section*{References}

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, New York: Dover Publications, Inc.

Al-Baali, M. and Fletcher, R. (1985), "Variational Methods for Nonlinear Least Squares," Journal of the Operations Research Society, 36, 405-421.

Al-Baali, M. and Fletcher, R. (1986), "An Efficient Line Search for Nonlinear Least Squares," Journal of Optimization Theory and Applications, 48, 359-377.

Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press, Inc.
Beale, E. M. L. (1972), "A Derivation of Conjugate Gradients," in F. A. Lootsma, ed., "Numerical Methods for Nonlinear Optimization," London: Academic Press.

Betts, J. T. (1977), "An Accelerated Multiplier Method for Nonlinear Programming," Journal of Optimization Theory and Applications, 21, 137-174.

Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear Programming, New York: John Wiley \& Sons, Inc.

Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., and Pedersen, H. C. (1982), "The Watchdog Technique for Forcing Convergence in Algorithms for Constrained Optimization," Mathematical Programming, 16, 1-17.

Cramer, J. S. (1986), Econometric Applications of Maximum Likelihood Methods, Cambridge, England: Cambridge University Press.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), "An Adaptive Nonlinear LeastSquares Algorithm," ACM Transactions on Mathematical Software, 7, 348-368.

Dennis, J. E. and Mei, H. H. W. (1979), "Two New Unconstrained Optimization Algorithms which Use Function and Gradient Values," Journal of Optimization Theory Applications, 28, 453-482.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood, New Jersey: Prentice-Hall.

Eskow, E. and Schnabel, R. B. (1991), "Algorithm 695: Software for a New Modified Cholesky Factorization," ACM Transactions on Mathematical Software, 17, 306-312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester: John Wiley \& Sons, Inc.

Fletcher, R. and Powell, M. J. D. (1963), "A Rapidly Convergent Descent Method for Minimization," Computer Journal, 6, 163-168.

Fletcher, R. and Xu, C. (1987), "Hybrid Methods for Nonlinear Least Squares," Journal of Numerical Analysis, 7, 371-389.

Gallant, A. R. (1987), Nonlinear Statistical Models, New York: John Wiley and Sons, Inc.

Gay, D. M. (1983), "Subroutines for Unconstrained Minimization," ACM Transactions on Mathematical Software, 9, 503-524.

George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1983), "Computing Forward-Difference Intervals for Numerical Optimization," SIAM J. Sci. Stat. Comput., 4, 310-321.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), "Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints," ACM Transactions on Mathematical Software, 10, 282-298.

Gill, E. P., Murray, W., and Wright, M. H. (1981), Practical Optimization, New York: Academic Press Inc.

Goldfeld, S. M., Quandt, R. E., and Trotter, H. F. (1966), "Maximisation by Quadratic Hill-Climbing," Econometrica, 34, 541-551.

Hambleton, R. K., Swaminathan, H., and Rogers, H. J. (1991), Fundamentals of Item Response Theory, Newbury Park, CA: Sage Publications.

Hartmann, W. (1992a), Applications of Nonlinear Optimization with PROC NLP and SAS/IML Software, Technical report, SAS Institute Inc, Cary, N.C.

Hartmann, W. (1992b), Nonlinear Optimization in IML, Releases 6.08, 6.09, 6.10, Technical report, SAS Institute Inc, Cary, N.C.

Haverly, C. A. (1978), "Studies of the Behavior of Recursion for the Pooling Problem," SIGMAP Bulletin, Association for Computing Machinery.

Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems 187, Berlin-Heidelberg-New York: Springer-Verlag.

Jennrich, R. I. and Sampson, P. F. (1968), "Application of Stepwise Regression to Nonlinear Estimation," Technometrics, 10, 63-72.

Lawless, J. F. (1982), Statistical Methods and Methods for Lifetime Data, New York: John Wiley \& Sons, Inc.

Liebman, J., Lasdon, L., Schrage, L., and Waren, A. (1986), Modeling and Optimization with GINO, California: The Scientific Press.

Lindström, P. and Wedin, P. A. (1984), "A New Line-Search Algorithm for Nonlinear Least-Squares Problems," Mathematical Programming, 29, 268-296.

Moré, J. J. (1978), "The Levenberg-Marquardt Algorithm: Implementation and Theory," in G. A. Watson, ed., "Lecture Notes in Mathematics," Vol. 30, 105-116, Berlin-Heidelberg-New York: Springer-Verlag.

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981), "Testing Unconstrained Optimization Software," ACM Trans. Math. Software, 7, 17-41.

Moré, J. J. and Sorensen, D. C. (1983), "Computing a Trust-Region Step," SIAM J. Sci. Stat. Comput., 4, 553-572.

Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia: SIAM.

Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User's Guide, Technical Report SOL 83-20, Stanford University.

Nelder, J. A. and Mead, R. (1965), "A Simplex Method for Function Minimization," Computer Journal, 7, 308-313.

Polak, E. (1971), Computational Methods in Optimization, New York - San Francisco - London: Academic Press.

Powell, M. J. D. (1977), "Restart Procedures for the Conjugate Gradient Method," Mathematical Programming, 12, 241-254.

Powell, M. J. D. (1978a), "Algorithms for Nonlinear Constraints that use Lagrangian Functions," Mathematical Programming, 14, 224-248.

Powell, M. J. D. (1978b), "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," in G. A. Watson, ed., "Lecture Notes in Mathematics," Vol. 630, 144-175, Berlin-Heidelberg-New York: Springer-Verlag.

Powell, M. J. D. (1982a), "Extensions to Subroutine VF02AD," in R. F. Drenick and F. Kozin, eds., "Systems Modeling and Optimization, Lecture Notes in Control and Information Sciences," Vol. 38, 529-538, Berlin-Heidelberg-New York: SpringerVerlag.

Powell, M. J. D. (1982b), "VMCWD: A Fortran Subroutine for Constrained Optimization," DAMTP 1982/NA4, Cambridge, England.

Powell, M. J. D. (1992), "A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation," DAMTP/NA5, Cambridge, England.

Rosenbrock, H. H. (1960), "An Automatic Method for Finding the Greatest or Least Value of a Function," Computer Journal, 3, 175-184.

Schittkowski, K. (1980), "Nonlinear Programming Codes - Information, Tests, Performance," Lecture Notes in Economics and Mathematical Systems, 183, Berlin-Heidelberg-New York: Springer Verlag.

Schittkowski, K. (1987), "More Test Examples for Nonlinear Programming Codes," Lecture Notes in Economics and Mathematical Systems, 282, Berlin-HeidelbergNew York: Springer Verlag.

Schittkowski, K. and Stoer, J. (1979), "A Factorization Method for the Solution of Constrained Linear Least Squares Problems Allowing Subsequent Data Changes," Numer. Math., 31, 431-463.

Stewart, G. W. (1967), "A Modification of Davidon's Minimization Method to Accept Difference Approximations of Derivatives," J. Assoc. Comput. Mach., 14, 72-83.

Wedin, P. A. and Lindström, P. (1987), Methods and Software for Nonlinear Least Squares Problems, University of Umea, Report No. UMINF 133.87.

Whitaker, D., Triggs, C. M., and John, J. A. (1990), "Construction of Block Designs using Mathematical Programming," J. R. Statist. Soc. B, 52, 497-503.

Wolfe, P. (1982), "Checking the Calculation of Gradients," ACM Transactions on Mathematical Software, 8, 337-343.

\title{
Chapter 7 \\ The QP Procedure (Experimental)
}

\section*{Chapter Contents}
OVERVIEW 655
QUADRATIC PROGRAMMING PROBLEMS 656
The Interior Point Algorithm 657
Getting Started: QP Problems 658
Introductory QP Example 659
Typical PROC QP Run: QP Problems 666
Syntax: QP Problems 667
Functional Summary: QP Problems 668
PROC QP Statement: QP Problems 669
COEF Statement: QP Problems 675
COLUMN Statement: QP Problems 675
HESSIANCOEF Statement 676
HESSIANCOLUMN Statement 676
HESSIANROW Statement 676
ID Statement: QP Problems 677
LO Statement: QP Problems 677
NAME Statement: QP Problems 677
OBJFN Statement 678
QUIT Statement 678
RHS Statement 678
ROW Statement 678
RUN Statement 679
TYPE Statement 679
UPPERBD Statement 680
VAR Statement 681
QUADRATIC NETWORK PROBLEMS WITH SIDE CONSTRAINTS 681
Network Models 683
Getting Started: QNPSC Problems 690
Introductory QNPSC Example 692
Typical PROC QP Run: QNPSC Problems 697
Syntax: QNPSC Problems 699
Functional Summary: QNPSC Problems 700
PROC QP Statement: QNPSC Problems 701
CAPACITY Statement 709
COEF Statement: QNPSC Problems 709
COLUMN Statement: QNPSC Problems 709
COST Statement 710
DEMAND Statement 710
HEADNODE Statement 710
ID Statement: QNPSC Problems 711
LO Statement: QNPSC Problems 711
NAME Statement: QNPSC Problems 711
NODE Statement 712
SUPDEM Statement 712
SUPPLY Statement 712
TAILNODE Statement 713
DETAILS 713
Input Data Sets 713
Output Data Set 723
Case Sensitivity 724
Loop Arcs 725
Multiple Arcs 725
Flow and Value Bounds 725
Tightening Bounds and Side Constraints 726
Reasons for Infeasibility 726
Missing S Supply and Missing D Demand Values 727
Balancing Total Supply and Total Demand 731
How to Make the Data Read of PROC QP More Efficient 732
EXAMPLES 738
Example 7.1. Dense Format in CONDATA 738
Example 7.2. Dense Format in CONDATA and a VARDATA Is Used 740
Example 7.3. Sparse Format in CONDATA 741
Example 7.4. Another Sparse Format in CONDATA and a VARDATA Is Used 742
Example 7.5. A QP Problem with a Network Component 743
Example 7.6. Equivalent Nonnetwork QP Problem 745
Example 7.7. An Unnamed Arc Has Data in the Hessian 747
Example 7.8. A Named Arc Has Data in the Hessian 748
REFERENCES 749

\section*{Chapter 7 \\ The QP Procedure (Experimental)}

\section*{Overview}

The QP procedure solves the Quadratic Programming (QP) problem, defined in the "Quadratic Programming Problems" section on page 656, and the Quadratic Network Problem with Side Constraints (QNPSC), defined in the "Quadratic Network Problems with Side Constraints" section on page 681. This chapter is therefore divided into two parts:
1. Using the QP procedure to solve QP problems.
2. Using the QP procedure to solve QNPSC problems. While many of your problems may be best formulated as QP problems, there may be other instances when your problems are better formulated as QNPSC problems. After it reads the QNPSC data, PROC QP converts the problem into an equivalent QP problem, performs interior point optimization, and converts the solution back into a form you can use as the optimum to the original QNPSC model.

QP and QNPSC models can be used to describe a wide variety of real-world problems, ranging from production, inventory, and distribution problems to financial applications.

If you are already familiar with using PROC INTPOINT to solve linear NPSC and LP problems, using PROC QP to solve QNPSC and QP problems is similar; the only difference in the required data is that data for a Hessian matrix is supplied in an additional input SAS data set.

Whether your problem is QP or QNPSC, PROC QP uses the same optimization algorithm, the interior point algorithm. This algorithm is outlined in the section "The Interior Point Algorithm" beginning on page 657.

The remainder of this chapter is organized as follows:
- When using PROC QP to solve QP problems:
- The "Quadratic Programming Problems" section on page 656 defines a QP problem. The section "The Interior Point Algorithm" on page 657 gives brief details about the interior point algorithm used in PROC QP.
- The "Getting Started: QP Problems" section on page 658 describes the data required by PROC QP to specify a QP problem. The "Introductory QP Example" section on page 659 illustrates the SAS code to set up the data and solve a sample QP problem.
- The "Typical PROC QP Run: QP Problems" section on page 666 describes more generally how to use the QP procedure to solve QP problems.
- The "Syntax: QP Problems" section beginning on page 667 describes all the statements and options of PROC QP when solving QP problems.
- When using PROC QP to solve QNPSC problems:
- The "Quadratic Network Problems with Side Constraints" section on page 681 defines a QNPSC problem.
- The "Network Models" section on page 683 describes several network models, such as Production, Inventory, and Distribution (Supply Chain) Problems, network models with flows through arcs that must be in some proportion to flow through other arcs, network models with blending constraints, and multicommodity problems. The "Large Modeling Strategies" section on page 688 gives hints about how large models should be constructed. Advantages of QNPSC problems are described in the "Advantages of Network Models over QP Models" section on page 689, and flow conservation constraints and nonarc variables are also described.
- The "Getting Started: QNPSC Problems" section on page 690 describes the data required by PROC QP to specify a QNPSC problem. The "Introductory QNPSC Example" section on page 692 illustrates the SAS code to set up the data and solve a sample QNPSC problem.
- The "Typical PROC QP Run: QNPSC Problems" section on page 697 describes more generally how to use the QP procedure to solve QNPSC problems.
- The "Syntax: QNPSC Problems" section beginning on page 699 describes all the statements and options of PROC QP when solving QNPSC problems.
- The "Details" section on page 713 contains detailed explanations, descriptions, and advice on the use and behavior of the procedure.
- PROC QP is demonstrated by solving several examples in the "Examples" section beginning on page 738 .

For the most recent updates to the documentation for this experimental procedure, see the Statistics and Operations Research Documentation page at http://support.sas.com/rnd/app/doc.html.

\section*{Quadratic Programming Problems}

A quadratic programming (QP) problem has a quadratic objective function and a collection of linear constraints. PROC QP finds the values of variables that minimize the total cost of the solution. The value of each variable is at or between the variable's lower and upper bounds, and the constraints are satisfied.

If a QP has \(g\) variables and \(k\) constraints, then the formal statement of the problem solved by PROC QP is
\[
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x^{T} H x+c^{T} x \\
\text { subject to } & Q x\{\geq,=, \leq\} r \tag{QP}\\
& l \leq x \leq u
\end{array}
\]
where
- \(H\) is the \(g \times g\) Hessian matrix (positive semi-definite)
- \(c\) is the \(g \times 1\) variable objective function coefficient vector
- \(x\) is the \(g \times 1\) variable value vector
- \(Q\) is the \(k \times g\) constraint coefficient matrix for the variables, where \(Q_{i, j}\) is the coefficient of variable \(j\) in the \(i\) th constraint
- \(r\) is the \(k \times 1\) constraint right-hand-side vector
- \(l\) is the \(g \times 1\) variable lower bound vector
- \(u\) is the \(g \times 1\) variable upper bound vector

\section*{The Interior Point Algorithm}

There are many variations of interior point algorithms. PROC QP uses the PrimalDual with Predictor-Corrector algorithm. More information on this particular algorithm and related theory can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye (1996).

The quadratic program to be solved is
\[
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x^{T} H x+c^{T} x \\
\text { subject to } & A_{1} x \geq b_{1} \\
& A_{2} x=b_{2} \\
& 0 \leq x \leq u
\end{array}
\]

This is the primal problem. The matrix \(Q\) has been separated into two matrices, \(A_{1}\) and \(A_{2}\), and the vector \(r\) has been separated into the corresponding vectors \(b_{1}\) and \(b_{2}\). There has been a change of primal variable to transform the QP into one whose variables have zero lower bounds.

There exists an equivalent problem, the dual problem, stated as
\[
\begin{array}{ll}
\text { maximize } & -\frac{1}{2} x^{T} H x+y_{1}^{T} b_{1}+y_{2}^{T} b_{2}-z_{2}^{T} u \\
\text { subject to } & H x+c-A_{1}^{T} y_{1}-A_{2}^{T} y_{2}-z_{1}+z_{2}=0 \\
& y_{1}, z_{1}, z_{2} \geq 0
\end{array}
\]
where \(y_{1}\) and \(y_{2}\) are dual variables, and \(z_{1}\) and \(z_{2}\) handle dual constraint slack.

The interior point algorithm used by PROC QP utilizes Newton's method, an iterative process based on successive linearization of the quadratic system. At each iteration, an indefinite system
\[
\left[\begin{array}{cc}
H+D_{1} & -A^{T} \\
-A^{T} & D_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
\]
or a positive-definite system of linear equations is solved.
The stopping criterion for the interior point method can be either an elimination of the duality gap, or the following infeasibility measures:
- Primal infeasibility:
\[
\frac{\|A x-b\|}{1+\|b\|}
\]
- Dual infeasibility:
\[
\frac{\left\|H x+c-A^{T} y-z_{1}+z_{2}\right\|}{1+\|H x+c\|}
\]

\section*{Getting Started: QP Problems}

To solve QP problems using PROC QP, you save a representation of the QP variables and the constraints in either two or three SAS data sets. These data sets are then passed to PROC QP for solution. A problem's data can take various forms. You can use any one or a combination of several of these forms.

The VARDATA= data set can be used to specify information about QP variables, including names, objective function coefficients, and lower and upper value bounds. These data are the elements of the vectors \(c, l\), and \(u\) in problem (QP). Data for a QP variable can be given in more than one observation.

The CONDATA= data set describes the constraints and their right-hand sides. These data are elements of the matrix \(Q\) and the vector \(r\).

Constraint types are also specified in the CONDATA= data set. This data set can include QP variable data such as upper bound values, lower value bounds, and objective function coefficients. It is possible to give all information about some or all QP variables in the CONDATA= data set.

A QP variable is identified in this data set by its name. If you specify a QP variable's name in the VARDATA= data set, then this name is used to associate data in the CONDATA= data set with that QP variable.

If you use the dense constraint input format (described in the "CONDATA= Data Set" section on page 714), these QP variable names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format (described in the "CONDATA= Data Set" section on page 714), these QP variable names are values of the SAS variables in the COLUMN list of the CONDATA= data set.

The HESSIAN= data set describes the Hessian matrix. These data are elements of the \(H\) matrix. Each observation of the HESSIAN= data set provides data for an element of the Hessian matrix. If there is a term \(6 x_{\operatorname{var} 7} x_{\mathrm{var} 5}\) in the objective function, then \(H_{\text {var7, var5 }}=6\), and there will be an observation in the HESSIAN= data set that has the value 'var7' for the HESSIANROW variable, the value 'var5' for the HESSIANCOLUMN variable, and the value 6 for the HESSIANCOEF variable. The Hessian matrix is symmetric so \(H_{\text {var } 5, \mathrm{var} 7}=6\) also, and another observation of the HESSIAN = data set could have values 'var5', 'var7', and 6 for the HESSIANROW, HESSIANCOLUMN, and HESSIANCOEF variables, respectively. However, you need only one of these observations; PROC QP will assume the existence of the element's symmetric pair.

Note that while data for a nondiagonal element of the \(H\) matrix corresponds exactly to the term in the objective function, data for diagonal elements of \(H\) are doubled. For the term \(6 x_{\mathrm{var} 7} x_{\mathrm{var} 5}\) in the objective function, the nondiagonal element \(H_{\mathrm{var} 7, \mathrm{var} 5}=H_{\mathrm{var5}, \mathrm{var} 7}=6\), and the value 6 is used in the corresponding observation of the HESSIAN= data set. If there is a term \(5 x_{\mathrm{var} 4}^{2}\) in the objective function, the diagonal element \(H_{\text {var4,var4 }}=10\), and the value 10 is used in the corresponding observation of the HESSIAN = data set. In that observation, both the HESSIANROW and the HESSIANCOLUMN variables would have the value 'var4'.

PROC QP reads the data from the VARDATA= data set (if there is one), the CONDATA= data set, and the HESSIAN= data set, and error checking is performed. The optimal solution is then found for the resulting QP. The solution can be saved in the CONOUT= data set.

Data for a QP problem resembles the data for side constraints and nonarc variables supplied to PROC QP when solving a QNPSC problem (see the "Quadratic Network Problems with Side Constraints" section on page 681). It is also very similar to the data required by the NETFLOW, INTPOINT, and LP procedures.

\section*{Introductory QP Example}

Consider the linear programming problem in the section "An Introductory Example" on page 192 of Chapter 4, "The LP Procedure." The SAS data set in that section is created the same way here:
```

title3 'Setting Up Condata = dcon1 For PROC QP';
data dcon1;
input _id_ \$17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
_type_ \$ _rhs_;
datalines;
profit
naphtha_i_conv
heating_o_conv . 390 . 300.430 0 0 -1 0 0 0 eq 0

```
```

recipe_1
recipe_2
available

```
;

Suppose the objective function is extended to contain the quadratic terms \(4 x_{\text {naphthal }}^{2}+\) \(3 x_{\text {naphthai }}^{2}+x_{\text {naphthal }} x_{\text {naphthai }}\). Data for these terms are created with the following data set:
```

data hessian;
format _hessrow \$8. _hesscol \$8.;
input _hessrow \& _hesscol \& _hescoef;
datalines;
naphthal naphthal -8.0
naphthai naphthai -6.0
naphthal naphthai -1.0
;

```

To solve this problem, use the following call to PROC QP.
```

proc qP
bytes=1000000
stop_dg=1e-6
condata=dcon1
hessian=hessian
conout=solutn1;
run;

```

Note how it is possible to use an input SAS data set of PROC LP along with a HESSIAN= data set as input data sets for PROC QP.

The following messages that appear on the SAS log summarize the model as read by PROC QP and note the progress toward a solution.
```

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18.
NOTE: There are 3 diagonal and superdiagonal
elements in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.00584E-14
NOTE: Dual infeasibility 1.42730E-09
NOTE: Duality gap 3.96806E-07
NOTE: Objective= 811.35988031.
NOTE: The data set WORK.SOLUTN1 has }8\mathrm{ observations
and 5 variables.
NOTE: There were 3 observations read from the data
set WORK.HESSIAN.
NOTE: There were 7 observations read from the data
set WORK.DCON1.

```

Unlike PROC LP, which displays the solution and other information as output, PROC QP saves the optimum in the output data set you specify. For this example, the solution is saved in the SOLUTN1 data set. It can be displayed with PROC PRINT as follows:
```

title3 'QP Optimum';
proc print data=solutn1;
run;

```

Notice that in the CONOUT=SOLUTN1 data set (Figure 7.1), the optimal value of each variable in the QP is given in the variable named _VALUE_.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{QP Optimum} \\
\hline Obs & _NAME & _OBJFN & _UPPERBD & _LOWERBD & _VALUE_ \\
\hline 1 & a_heavy & 165 & 165 & 0 & 0.000 \\
\hline 2 & a_light & 175 & 110 & 0 & 110.000 \\
\hline 3 & brega & 205 & 80 & 0 & 0.000 \\
\hline 4 & heatingo & 0 & 99999999 & 0 & 42.900 \\
\hline 5 & jet_1 & -300 & 99999999 & 0 & 33.330 \\
\hline 6 & jet_2 & -300 & 99999999 & 0 & 35.090 \\
\hline 7 & naphthai & 0 & 99999999 & 0 & 11.000 \\
\hline 8 & naphthal & 0 & 99999999 & 0 & 3.850 \\
\hline
\end{tabular}

Figure 7.1. \(\operatorname{CONOUT=SOLUTN1~}\)
The same model can be specified in the sparse format as in the following scon2 data set. This format enables you to omit the zero coefficients.
```

title3 'Setting Up Condata = scon2 For PROC QP';
data scon2;
format _type_ \$8. _col_ \$8. _row_ \$16.;
input _type_ \$ _col_ \$ _row_ \$ _coef_;
datalines;
max . profit
eq . napha_l_conv
eq . napha_i_conv
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd
available
profit -175
. a_light
napha_l_conv
. a_light
napha i conv
. }03
a light
napha_i_conv . }10
heating_oil_conv . }39
available }11
profit -165
napha_l_conv . 030
napha_i_conv .075
heating_oil_conv . }30
available 165

```
\begin{tabular}{lllr}
. & brega & profit & -205 \\
. & brega & napha_l_conv & .045 \\
. & brega & napha_i_conv & .135 \\
. & brega & heating_oil_conv & .430 \\
. & brega & available & 80 \\
. & naphthal & napha_1_conv & -1 \\
. & naphthal & recipe_2 & .2 \\
. & naphthai & napha_i_conv & -1 \\
. & naphthai & recipe_1 & .3 \\
. & heatingo & heating_oil_conv & -1 \\
. & heatingo & recipe_1 & .7 \\
. & heatingo & recipe_2 & .8 \\
. & jet_1 & profit & 300 \\
. & jet_1 & recipe_1 & -1 \\
. & jet_2 & profit & 300 \\
. & jet_2 & recipe_2 & -1
\end{tabular}

To find the maximum profit solution, invoke PROC QP with the following code. Note that the SPARSECONDATA option must be specified.
```

proc qp
bytes=1000000
stop_dg=1e-6
sparsecondata
condata=scon2
hessian=hessian
conout=solutn2;
run;

```

You can also use PROC QP with a VARDATA= data set; for this example, the VARDATA= is initialized as follows:
```

data vars3;
input _name_ \$ profit available;
datalines;
a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

```

The following CONDATA= data set is similar to the original dense format CONDATA=dcon1 data set, but the QP variables' nonconstraint information has been removed, since this information is now present in the VARDATA=vars3 data set. Note that you could have left some or all of this information in the CONDATA=dcon3 data set, as PROC QP merges data, but doing that and checking for consistency takes time.
```

data dcon3;
input _id_ \$17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
_type_ \$ _rhs_;
datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 0 eq 0
naphtha_i_conv . 100 .075 .135 0-1 0 0 0 0 eq 0

```

```

recipe_1
;

```

Note: Because the objective function information has been removed from the CONDATA=dcon3 data set, you must specify the MAXIMIZE option; otherwise, PROC QP will optimize to the minimum. You must also specify the OBJFN statement to indicate that the objective function coefficients are stored in the variable profit in the VARDATA=vars3 data set. The UPPERBD statement is used to specify that the upper bounds are stored in the variable available.
```

proc qP
maximize /****** necessary ******/
bytes=1000000
stop_dg=1e-6
arcdata=vars3
condata=dcon3
hessian=hessian
conout=solutn3;
objfn profit;
upperbd available;
run;

```

The VARDATA=vars3 data set can be specified more concisely, because the model variables heatingo, naphthai, and naphthal have zero objective function coefficients (the default), and default upper bounds; therefore, these observations can be removed.
```

data vars4;
input _name_ \$ profit available;
datalines;
a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300
jet_2 300 .
;

```

The CONDATA=dcon3 data can be specified more concisely, because all the constraints have the same type (eq) and zero (the default) right-hand-side values. This model is a good candidate for the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the same type, as is the case here, but also when most constraints have the same type and
you want to change the default type from \(\leq\) to \(=\) or \(\geq\). Any constraint type specified in the CONDATA= data set overrides the DEFCONTYPE= type you have specified.
```

data dcon4;
input _id_ \$17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;
datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv . 100 .075 .135 0 -1 0 0 0
heating_o_conv . 390.300.430 0 0 -1 0 0
recipe_1 0 0 0 0 . 3 .7 7 -1 0
recipe_2 0 0 0 .2 0 . 8 0 0
;
proc qP
maximize
bytes=1000000
stop_dg=1e-6
defcontype=eq
arcdata=vars3
condata=dcon3
hessian=hessian
conout=solutn3;
objfn profit;
upperbd available;
run;

```

There are several different ways of using the VARDATA= data set and a sparse format CONDATA= data set for this QP. The following CONDATA= data set is the result of removing the profit and availability (upper bound) data from the original sparse format CONDATA=scon2 data set.
```

data scon5;
format _type_ \$8. _col_ \$8. _row_ \$16. ;
input _type_ \$ _col_ \$ _row_ \$ _coef_;
datalines;
eq
napha_l_conv
eq . napha_i_conv
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv . 035
. a_light napha_i_conv . }10
. a_light heating_oil_conv . }39
. a_heavy napha_l_conv . 030
. a_heavy napha_i_conv . 075
. a_heavy heating_oil_conv . 300
. brega napha_l_conv . 045
. brega napha_i_conv . }13
. brega heating_oil_conv . 430

```
```

naphthal napha_l_conv -1
naphthal recipe_2 . }
naphthai napha_i_conv -1
naphthai recipe_1 . }
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 . 8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
proc qp
maximize
bytes=1000000
stop_dg=1e-6
sparsecondata
vardata=vars3 /* or vardata=vars4 */
condata=scon5
hessian=hessian
conout=solutn5;
objfn profit;
upperbd available;
run;

```

The CONDATA=scon5 data set can be specified more concisely, because all the constraints have the same type (eq) and zero (the default) right-hand-side values. Once again, the DEFCONTYPE= option is used. After the first five observations of the CONDATA=scon5 data set are removed, the _type_ variable has values that are missing in all of the remaining observations. Therefore, this variable can be removed, resulting in the data set CONDATA=scon6.
```

data scon6;
input _col_ \$ _row_\&\$16. _coef_;
datalines;
a_light napha_l_conv .035
a_light napha_i_conv . }10
a_light heating_oil_conv . }39
a_heavy napha_l_conv . 030
a_heavy napha_i_conv . 075
a_heavy heating_oil_conv . }30
brega napha_l_conv . 045
brega napha_i_conv . }13
brega heating_oil_conv . }43
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 . }
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 . }
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

```
```

proc qp
maximize
bytes=1000000
stop_dg=1e-6
defcontype=eq
sparsecondata
vardata=vars4
condata=scon6
hessian=hessian
conout=solutn6;
objfn profit;
upperbd available;
run;

```

\section*{Typical PROC QP Run: QP Problems}

You start PROC QP by giving the PROC QP statement. You can specify many options in the PROC QP statement to control the procedure, or you can rely on default settings and specify very few options. However, there are some options you must specify:
- You must specify the BYTES= parameter to indicate the size of the working memory that the procedure is allowed to use. This option has no default.
- You must specify the VARDATA= data set if you are providing data in this data set. This option has a default (the SAS data set that was created last before PROC QP began running), but that may need to be overridden. If there is no VARDATA= data set, and if the CONDATA= data set is not the data set created last before calling PROC QP, then you must specify the VARDATA= data set as the same data set that you specify with the CONDATA= option.
- The CONDATA= data set must be specified.
- The HESSIAN= data set must be specified. Note that the Hessian must be positive semi-definite for minimization problems, and negative semi-definite for maximization problems.

Some options are frequently required. To output the optimal solution to a SAS data set, you must specify the CONOUT= option. You may want to indicate reasons why optimization should stop (for example, you can indicate the maximum number of iterations that can be performed), or you may want to alter stopping criteria so that optimization does not stop prematurely. Some options enable you to control other aspects of the interior point algorithm. Specifying certain values for these options can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have variables in the input data sets that have special names (for example, a variable in the VARDATA= data set named _OBJFN_ that has the linear component objective function coefficients as values), it may not be necessary to have many or any variable lists. If you do not specify an OBJFN variable list, PROC QP will search the VARDATA= data set for a variable named _OBJFN_.

What usually follows is a RUN statement, which indicates that all information needed by PROC QP has been given, and the procedure is to start running. This also happens if you specify a statement in your SAS program that PROC QP does not recognize as one of its own, or the next DATA step or procedure.

The QUIT statement indicates that PROC QP must immediately finish.
For example, a PROC QP run might look something like this:
```

proc qp
bytes= /* working memory size */
vardata= /* data set */
condata= /* data set */
hessian= /* data set */
/* other options */
;
variable list specifications; /* if necessary */
run; /* start running, read data, */
/* and do the optimization */

```

\section*{Syntax: QP Problems}

The following statements are used in PROC QP when solving a QP problem, listed in alphabetical order as they appear in the text that follows.
```

PROC QP options;
COEF variables;
COLUMN variable;
HESSIANCOEF variable;
HESSIANCOLUMN variable;
HESSIANROW variable;
ID variables;
LO variable;
NAME variable ;
OBJFN variable;
QUIT;
RHS variable;
ROW variables;
RUN;
TYPE variable;
UPPERBD variable;
VAR variables;

```

\section*{Functional Summary: QP Problems}

Table 7.1 outlines the options that can be specified in the QP procedure when solving a QP problem. All options are specified in the PROC QP statement.

Table 7.1. Functional Summary
Description Statement Option

\section*{Input Data Set Options:}
variables input data set
constraint input data set
Hessian input data set

Output Data Set Option:
solution data set

\section*{Data Set Read Options:}

CONDATA has sparse data format default constraint type special COLUMN variable value special COLUMN variable value data for a constraint found once in CONDATA data for a coefficient found once in CONDATA data for a variable found once in VARDATA data is grouped, exploited during data read

\section*{Problem Size Specification Options:}
approximate number of variables
approximate number of coefficients
approximate number of constraints

\section*{Network Options:}
default objective function coefficient
default QP variable upper bound
default QP variable lower bound

\section*{Memory Control Options:}
issue memory usage messages to SAS log
number of bytes to use for main memory

Miscellaneous Options:
infinity value
maximization instead of minimization
zero tolerance, real number comparisons
suppress similar SAS log messages
duality gap stopping criterion
\begin{tabular}{ll}
PROC QP & VARDATA= \\
PROC QP & CONDATA \(=\) \\
PROC QP & HESSIAN \(=\)
\end{tabular}

PROC QP CONOUT=
\begin{tabular}{ll}
PROC QP & SPARSECONDATA \\
PROC QP & DEFCONTYPE= \\
PROC QP & TYPEOBS \(=\) \\
PROC QP & RHSOBS= \\
PROC QP & CON_SINGLE_OBS \\
PROC QP & NON_REPLIC= \\
PROC QP & ARC_SINGLE_OBS \\
PROC QP & GROUPED \(=\)
\end{tabular}
\begin{tabular}{ll}
PROC QP & NNAS \(=\) \\
PROC QP & NCOEFS \(=\) \\
PROC QP & NCONS=
\end{tabular}
\begin{tabular}{ll}
PROC QP & DEFCOST \(=\) \\
PROC QP & DEFCAPACITY= \\
PROC QP & DEFMINFLOW=
\end{tabular}
PROC QP MEMREP

PROC QP BYTES=
\begin{tabular}{ll}
PROC QP & INFINITY= \\
PROC QP & MAXIMIZE \\
PROC QP & ZEROTOL= \\
PROC QP & VERBOSE= \\
PROC QP & STOP_DG=
\end{tabular}

\section*{PROC QP Statement: QP Problems}

\section*{PROC QP options ;}

This statement invokes the procedure. The following options can be specified in the PROC QP statement. Details about the PROC QP statement for solving a QNPSC problem are found in the "PROC QP Statement: QNPSC Problems" section on page 701.

\section*{Data Set Options: QP Problems}

This section briefly describes all the input and output data sets used by PROC QP when solving QP problems without a network component. The VARDATA= data set, the CONDATA= data set, and the HESSIAN = data set can contain SAS variables that have special names, for instance _UPPERBD, _OBJFN_, and _COLUMN_. PROC QP looks for such variables if you do not give explicit variable list specifications. If a SAS variable with a special name is found, and that SAS variable is not in another variable list specification, PROC QP determines that values of the SAS variable are to be interpreted in a special way. By using SAS variables that have special names, you may not need to have any variable list specifications.

\section*{VARDATA=SAS-data-set}
names the data set that contains QP variable information. When solving QP problems, the VARDATA= data set is optional. You can specify QP variable information such as objective function coefficients, and lower and upper bounds.

\section*{CONDATA=SAS-data-set}
names the required data set that contains the constraint data. The data set can also contain other data, such as QP variable upper and lower bounds and objective function coefficients. See the "CONDATA= Data Set" section on page 714 for more information. Specific details about this option for QNPSC problems are given in the "Data Set Options: QNPSC Problems" section on page 701.

\section*{CONOUT=SAS-data-set}

COUT=SAS-data-set
names the output data set that receives an optimal solution. See the "CONOUT= Data Set" section on page 723 for more information.

\section*{HESSIAN=SAS-data-set}
names the data set that describes the Hessian matrix. These data are elements of the \(H\) matrix. See the "HESSIAN= Data Set" section on page 722 for more information.

\section*{General Options: QP Problems}

The following is a list of options you can use with PROC QP when solving QP problems. The options are listed in alphabetical order.

\section*{ARC_SINGLE_OBS}
indicates that for all QP variables, data for each QP variable is found in only one observation of the VARDATA= data set. When reading the data in the VARDATA= data set, PROC QP knows that the data in an observation is for a QP variable that has not had data previously read and that needs to be checked for consistency. The
read might then be performed faster. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

If you specify ARC_SINGLE_OBS, PROC QP automatically works as if GROUPED=VARDATA is also specified.

Specific details about this option for QNPSC problems are given in the "General Options: QNPSC Problems" section beginning on page 702.

\section*{BYTES=b}
indicates the size of the main working memory (in bytes) that PROC QP will allocate. This option is required; there is no default value. The working memory is used to store all the arrays and buffers used by PROC QP. If this memory has a size smaller than what is required to store all arrays and buffers, PROC QP uses various schemes that page information between auxiliary memory (often your machine's disk) and RAM.

For small problems, specify BYTES \(=100000\). For large problems (those with hundreds of thousands or millions of variables), BYTES=1000000 might do. For solving problems of that size, if you are running on a machine with an inadequate amount of RAM, PROC QP's performance will suffer since it will be forced to page or to rely on virtual memory.

If you specify the MEMREP option, PROC QP will issue messages on the SAS \(\log\) informing you of its memory usage; that is, how much memory is required to prevent paging, and details about the amount of paging that must be performed, if applicable.

\section*{CON_SINGLE_OBS}
improves how the CONDATA= data set is read. How it works depends on whether the CONDATA has a dense or sparse format.

If the CONDATA= data set has a dense format, specifying CON_SINGLE_OBS indicates that, for each constraint, data for the constraint is found in only one observation of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each QP variable can be found in only one observation of the CONDATA= data set, then specify the CON_SINGLE_OBS option. If there are \(n\) SAS variables in the ROW and COEF variable lists, then each QP variable can have at most \(n\) constraint coefficients in the model. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

Specific details about this option for QNPSC problems are given in the "General Options: QNPSC Problems" section beginning on page 702.

\section*{DEFCAPACITY=c}

DC=c
requests that the default QP variable value upper bound be \(c\). If this option is not specified, then DEFCAPACITY=INFINITY.

Specific details about this option for QNPSC problems are given in the "General Options: QNPSC Problems" section beginning on page 702.

\section*{DEFCONTYPE=c}

DEFTYPE=c
DCT=c
specifies the default constraint type. This default constraint type is either less than or equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option are as follows:

LE, le, or \(<=\quad\) for less than or equal to
\(\mathrm{EQ}, \mathrm{eq}\), or \(=\) for equal to
GE, ge, or \(>=\) for greater than or equal to
The values do not need to be enclosed in quotes.

\section*{DEFCOST=c}
requests that the default QP variable objective function coefficient be \(c\). If this option is not specified, then DEFCOST=0.0. Specific details about this option for QNPSC problems are given in the "General Options: QNPSC Problems" section beginning on page 702.

\section*{DEFMINFLOW=m}

DMF \(=m\)
requests that the default lower bound value of QP variables be \(m\). If this option is not specified, then DEFMINFLOW=0.0. Specific details about this option for QNPSC problems are given in the "General Options: QNPSC Problems" section beginning on page 702.

\section*{GROUPED=grouped}

PROC QP can take a much shorter time to read data if the data have been grouped prior to the PROC QP call. This enables PROC QP to conclude that, for instance, a new NAME list variable value seen in the VARDATA= data set is new. PROC QP does not need to check that the NAME has been read in a previous observation. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.
- GROUPED=VARDATA indicates that the VARDATA= data set has been grouped by values of the NAME list variable. If _name_ is the name of the NAME list variable, you could use
```

proc sort data=vardata; by _name_;

```
prior to calling PROC QP. Technically, you do not have to sort the data, only to ensure that all similar values of the NAME list variable are grouped together. If you specify the ARC_SINGLE_OBS option, PROC QP automatically works as if GROUPED=VARDATA is also specified.
- GROUPED=CONDATA indicates that the CONDATA= data set has been grouped.
If the CONDATA= data set has a dense format, GROUPED=CONDATA indicates that the CONDATA= data set has been grouped by values of the ROW list variable. If _row_ is the name of the ROW list variable, you could use
```

proc sort data=condata; by _row_;

```
prior to calling PROC QP. Technically, you do not have to sort the data, only to ensure that all similar values of the ROW list variable are grouped together. If you specify the CON_SINGLE_OBS option, or if there is no ROW list variable, PROC QP automatically works as if GROUPED=CONDATA has been specified.

If the CONDATA= data set has a sparse format, GROUPED=CONDATA indicates that CONDATA has been grouped by values of the COLUMN list variable. If _col_ is the name of the COLUMN list variable, you could use
```

proc sort data=condata; by _col_;

```
prior to calling PROC QP. Technically, you do not have to sort the data, only to ensure that all similar values of the COLUMN list variable are grouped together.
- GROUPED=BOTH indicates that both GROUPED=VARDATA and GROUPED=CONDATA are TRUE.
- GROUPED=NONE indicates that the data sets have not been grouped, that is, neither GROUPED=VARDATA nor GROUPED=CONDATA is TRUE. This is the default, but it is much better if GROUPED=VARDATA, GROUPED=CONDATA, or GROUPED=BOTH.

A data set like
```

... _XXXXX_ ....
bbb
bbb
aaa
ccc
ccc

```
is a candidate for the GROUPED= option. Similar values are grouped together. When PROC QP is reading the \(i\) th observation, either the value of the _ \(X X X X X _\)variable is the same as the \((i-1)\) st (that is, the previous observation's) _XXXXX_ value, or it is a new _XXXXX_ value not seen in any previous observation. This also means that if the \(i\) th _ XXXXX_ value is different from the \((i-1)\) st _ XXXXX_ value, the value of the \((i-1)\) st _XXXXX variable will not be seen in any observations \(i, i+1, \ldots\).

\section*{INFINITY=i}

INF=i
specifies the largest number used by PROC QP in computations. A number too small can adversely affect the solution process. You should avoid specifying an enormous value for the INFINITY= option because numerical roundoff errors can result. If a value is not specified, then INFINITY=999999. The INFINITY= option cannot be assigned a value less than 9999.

\section*{MAXIMIZE}

\section*{MAX}
specifies that PROC QP find the maximum optimal solution. For a maximization problem, the Hessian must be negative semi-definite.

\section*{MEMREP}
indicates that information on the memory usage and paging schemes (if necessary) is reported by PROC QP on the SAS log.

\section*{NCOEFS=n}
specifies the approximate number of constraint coefficients. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

NCONS= \(n\)
specifies the approximate number of constraints. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{NNAS= \(n\)}
specifies the approximate number of nonarc variables. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{NON_REPLIC=non_replic}
prevents PROC QP from doing unnecessary checks of data previously read.
- NON_REPLIC=COEFS indicates that each constraint coefficient is specified once in the CONDATA= data set.
- NON_REPLIC=NONE indicates that constraint coefficients can be specified more than once in the CONDATA= data set. NON_REPLIC=NONE is the default.

See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{RHSOBS=charstr}
specifies the keyword that identifies a right-hand-side observation when using the sparse format for data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data set named in the COLUMN list specification. The default value of the RHSOBS = option is _RHS_ or _rhs_. If charstr is not a valid SAS variable name, it must be enclosed in quotes.

\section*{SPARSECONDATA}

SCDATA
indicates that the CONDATA= data set has data in the sparse data format. Otherwise, it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you have specified
```

options validvarname=v6;

```
all NAME list variable values in the VARDATA= data set are uppercased. See the "Case Sensitivity" section on page 724 .

\section*{STOP_DG=s}
is used to determine whether optimization should stop. At the beginning of each iteration, if the duality gap is \(\leq s\), optimization stops. The default value of \(s\) is \(1.0 \mathrm{E}-5\).

\section*{TYPEOBS=charstr}
specifies the keyword that identifies a type observation when using the sparse format for data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data set named in the COLUMN list specification. The default value of the TYPEOBS = option is _TYPE_ or _type_. If charstr is not a valid SAS variable name, it must be enclosed in quotes.

\section*{VERBOSE= \(v\)}
limits the number of similar messages that are displayed on the SAS log.
For example, when reading the VARDATA= data set, PROC QP might have cause to issue the following message many times:
```

ERROR: The HEAD list variable value in obs i in VARDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

```

If there are many observations that have this fault, messages that are similar are issued for only the first VERBOSE= such observations. After the VARDATA= data set has been read, PROC QP will issue the message
```

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

```

If observations in the VARDATA= data set have this error, PROC QP stops and you will need to fix the data. However, if the VARDATA= data set has no errors, and only warning messages are issued to the SAS log, PROC QP proceeds to other operations such as reading the CONDATA= data set. If PROC QP finds there are numerous warnings and errors when reading that data set, the number of messages issued to the SAS \(\log\) is also limited by the VERBOSE= option.

When PROC QP finishes and messages have been suppressed, the following message is issued:
```

NOTE: To see all messages, specify VERBOSE=vmin.

```

The value of vmin is the smallest value that should be specified for the VERBOSE \(=\) option so that all messages are displayed if PROC QP is run again with the same data and everything else (except VERBOSE=vmin) unchanged.

The default value for the VERBOSE= option is 12 .

\section*{ZEROTOL=z}
specifies the zero tolerance used when PROC QP must compare any real number with another real number, or zero. For example, if \(x\) and \(y\) are real numbers, then for \(x\) to be considered greater than \(y, x\) must be at least \(y+z\). The ZEROTOL= option is used throughout any PROC QP run.

ZEROTOL=z controls the way PROC QP performs all double precision comparisons; that is, whether a double precision number is equal to, not equal to, greater than (or equal to), or less than (or equal to) zero or some other double precision number. A double precision number is deemed to be the same as another such value if the absolute difference between them is less than or equal to the value of the ZEROTOL= option.

The default value for the ZEROTOL= option is \(1.0 \mathrm{E}-14\). You can specify the ZEROTOL= option in the QP statement. Valid values for the ZEROTOL= option must be \(>0.0\) and \(<0.0001\). Do not specify a value too close to zero, as this defeats the purpose of the ZEROTOL= option. Neither should the value be too large, as comparisons might be incorrectly evaluated.

\section*{COEF Statement: QP Problems}

\section*{COEF variables;}

The COEF variable list is used with the sparse input format of the CONDATA= data set. The COEF list can contain more than one SAS variable, each of which must have numeric values. If the COEF statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _COE are used. The number of SAS variables in the COEF list must be no greater than the number of SAS variables in the ROW variable list.

The values of the COEF list variables in an observation can be interpreted differently from these variables' values in other observations. The values can be coefficients in the constraints, objective function coefficients, bound data, constraint type data, or right-hand-side data. If the COLUMN list variable has a value that is a name of a QP variable, the \(i\) th COEF list variable is associated with the constraint or special row name given in the \(i\) th ROW list variable. Otherwise, the COEF list variables indicate type values, right-hand-side (rhs) values, or missing values.

Specific details about this statement for QNPSC problems are given in the "COEF Statement: QNPSC Problems" section on page 709.

\section*{COLUMN Statement: QP Problems}

\section*{COLUMN variable;}

The COLUMN variable list is used with the sparse input format of the CONDATA= data set. This list consists of one SAS variable in the CONDATA= data set that has as values the names of QP variables, or missing values. Some, if not all, of these values can also be values of the NAME list variables of the VARDATA= data set. The COLUMN list variable can have other special values (see the TYPEOBS= and

RHSOBS= options). If the COLUMN list is not specified after the PROC QP statement, the CONDATA = data set is searched and a SAS variable named _COLUMN_ is used. The COLUMN list variable must have character values.

Specific details about this statement for QNPSC problems are given in the "COLUMN Statement: QNPSC Problems" section on page 709.

\section*{HESSIANCOEF Statement}

HESSIANCOEF variable;
HESSCOEF variable;
The HESSIANCOEF statement identifies the SAS variable in the HESSIAN= data set that contains the values of the elements of the Hessian matrix. The HESSIANCOEF variable must have numeric values. The HESSIANCOEF statement is not required if the name of the SAS variable is _COEF_ or _HESCOEF.

\section*{HESSIANCOLUMN Statement}

\section*{HESSIANCOLUMN variable;}

HESSIANCOL variable;
HESSCOLUMN variable;
HESSCOL variable;
The HESSIANCOLUMN statement identifies the SAS variable in the HESSIAN= data set that contains the QP variable name associated with the column of the associated Hessian matrix element. The HESSIANCOLUMN variable must have character values. The HESSIANCOLUMN statement is not required if the name of the SAS variable is _COL_, _HESSCOL, or _COLUMN_.

\section*{HESSIANROW Statement}

HESSIANROW variable;
HESSROW variable;
The HESSIANROW statement identifies the SAS variable in the HESSIAN= data set that contains the QP variable name associated with the row of the associated Hessian matrix element. The HESSIANROW variable must have character values. The HESSIANROW statement is not required if the name of the SAS variable is _ROW_ or _HESSROW.

\section*{ID Statement: QP Problems}

\section*{ID variables;}

The ID statement specifies SAS variables containing values for pre- and post-optimal processing and analysis. These variables are not processed by PROC QP, but are read by the procedure and written to the CONOUT= data set. For example, imagine a model of a distribution system. The SAS variables listed on the ID statement can contain information on the type of vehicle, the transportation mode, the condition of the road, the time to complete the journey, the name of the driver, or other ancillary information useful for writing reports or describing facets of the operation that do not affect the optimization. The ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not included in any other implicit or explicit list specification. If the ID list is specified, any SAS variables in the VARDATA= data set not in any list are dropped and do not appear in the CONOUT= data set.

\section*{LO Statement: QP Problems}

\section*{LO variable;}

LOWERBD variable;
The LO statement identifies the SAS variable in the VARDATA= data set that contains the lower bound for the QP variable named in the NAME list variable. The LO list variable must have numeric values. It is not necessary to have a LO statement if the name of this SAS variable is _LOWER_, _LO_, or _LOWERBD.

Specific details about this statement for QNPSC problems are given in the "LO Statement: QNPSC Problems" section on page 711.

\section*{NAME Statement: QP Problems}

\section*{NAME variable;}

VARNAME variable;
Each QP variable that has data in the CONDATA= data set must have a unique name. This name is a value of the NAME list variable. The NAME list variable must have character values. It is not necessary to have a NAME statement if the name of this SAS variable is _NAME_.

Specific details about this statement for QNPSC problems are given in the "NAME Statement: QNPSC Problems" section on page 711.

\section*{OBJFN Statement}

\section*{OBJFN variable;}

The OBJFN statement identifies the SAS variable in the VARDATA= data set that contains the per unit objective function coefficient of a QP variable named in the NAME list variable in that observation. The OBJFN list variable must have numeric values. It is not necessary to specify an OBJFN statement if the name of the SAS variable is _OBJFN_.

When solving a QNPSC problem, the corresponding statement is the COST statement; see the "COST Statement" section on page 710 for details about this statement.

\section*{QUIT Statement}

\section*{QUIT ;}

The QUIT statement indicates that PROC QP is to stop immediately. The solution is not saved in the CONOUT= data set. The QUIT statement has no options.

\section*{RHS Statement}

RHS variable;
The RHS variable list is used when the dense format of the CONDATA= data set is used. The values of the SAS variable specified in the RHS list are constraint right-hand-side values. If the RHS list is not specified, the CONDATA= data set is searched and a SAS variable with the name _RHS_ is used. The RHS list variable must have numeric values. If there is no RHS list and no SAS variable named _RHS_, all constraints are assumed to have zero right-hand-side values.

\section*{ROW Statement}

\section*{ROW variables;}

The ROW list is used when either the sparse or the dense format of the CONDATA= data set is being used. SAS variables in the ROW list have values that are constraint or special row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In this case, if a ROW list is not specified, the CONDATA= data set is searched and the SAS variable with the name _ROW_ or _CON_ is used. If that search fails to find a suitable SAS variable, data for each constraint must reside in only one observation.

If the sparse data format is used and the ROW statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _ROW or _CON are used. The number of SAS variables in the ROW list must not be less than the number of SAS variables in the COEF list. The \(i\) th ROW list variable is paired with the \(i\) th COEF list variable. If the number of ROW list variables is greater than the number of COEF list variables, the last ROW list variables have no COEF partner. These ROW list variables that have no corresponding COEF list variable are used in observations that have a TYPE list variable value. All ROW list variable
values are tagged as having the type indicated. If there is no TYPE list variable, all ROW list variable values are constraint names.

\section*{RUN Statement}

\section*{RUN ;}

The RUN statement starts the optimization; this statement has no options. If PROC QP is called and is not terminated because of an error or a QUIT statement, and you have not used a RUN statement, a RUN statement is assumed implicitly as the last statement of PROC QP. Therefore, PROC QP reads the data, performs optimization, and saves the optimal solution in the CONOUT= data set.

\section*{TYPE Statement}

\section*{TYPE variable; \\ CONTYPE variable;}

The TYPE list, which is optional, names the SAS variable that has as values keywords that indicate either the constraint type for each constraint, or the type of special rows in the CONDATA= data set. The values of the TYPE list variable also indicate, in each observation of the CONDATA = data set, how values of the VAR or COEF list variables are to be interpreted and how the type of each constraint or special row name is determined. If the TYPE list is not specified, the CONDATA= data set is searched and a SAS variable with the name _TYPE_ is used. Valid keywords for the TYPE variable are given below. If there is no TYPE statement and no other method is used to furnish type information (see the DEFCONTYPE= option), all constraints are assumed to be of the type "less than or equal to," and no special rows are used. The TYPE list variable must have character values and can be used when the data in the CONDATA= data set is in either the sparse or the dense format. If the TYPE list variable value has a * as its first character, the observation is ignored because it is a comment observation.

\section*{TYPE List Variable Values}

The following are valid TYPE list variable values. The letters in boldface denote the characters that PROC QP uses to determine what type the value suggests. You need to have at least these characters. Below, the minimal TYPE list variable values have additional characters to aid you in remembering these values.

The valid TYPE list variable values are as follows:
\begin{tabular}{ll}
\(<\) & less than or equal to \((\leq)\) \\
\(=\) & equal to \((=)\) \\
\(>\) & greater than or equal to \((\geq)\) \\
CAPAC & capacity \\
COST & cost \\
EQ & equal to \\
FREE & free row \\
GE & greater than or equal to
\end{tabular}
\begin{tabular}{ll}
LE & less than or equal to \\
LOWERBD & lower flow or value bound \\
LOWblank & lower flow or value bound \\
MAXIMIZE & maximize (opposite of cost) \\
MINIMIZE & minimize (same as cost) \\
OBJECTIVE & objective function (same as cost) \\
RHS & rhs of constraint \\
TYPE & type of constraint \\
UPPCOST & reserved for future use \\
UNREST & unrestricted variable \\
UPPER & upper value bound or capacity; second letter must not be N
\end{tabular}

The valid TYPE list variable values in function order are
- LE less than or equal to (\(\leq\))
- EQ equal to (=)
- GE greater than or equal to \((\geq)\)
- COST

MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient
- CAPAC

UPPER
capacity or upper value bound

\section*{- LOWERBD}

LOWblank
lower flow or value bound
- RHS rhs of constraint
- TYPE type of constraint

A TYPE list variable value that has the first character \(*\) causes the observation to be treated as a comment. If the first character is a negative sign, then \(\leq\) is the type. If the first character is a zero, then \(=\) is the type. If the first character is a positive number, then \(\geq\) is the type.

\section*{UPPERBD Statement}

\section*{UPPERBD variable;}

The UPPERBD statement identifies the SAS variable in the VARDATA= data set that contains the maximum feasible value of the QP variables. The UPPERBD list variable must have numeric values. It is not necessary to have a UPPERBD statement if the name of the SAS variable is _CAPAC_, _UPPER_, _UPPERBD, or _HI_.

\section*{VAR Statement}

\section*{VAR variables;}

The VAR variable list is used when the dense data format is used for the CONDATA= data set. When solving a QP, the names of these SAS variables are also names of the QP variables. If no explicit VAR list is specified, all numeric SAS variables in the CONDATA= data set that are not in other SAS variable lists are put onto the VAR list. The VAR list variables must have numeric values. The values of the VAR list variables in some observations can be interpreted differently than in other observations. When solving a QP, the values of the SAS variables in the VAR list can be constraint coefficients, objective function coefficients, or bound data. How these numeric values are interpreted depends on the value of each observation's TYPE or ROW list variable value. If there are no TYPE list variables, the VAR list variable values are all assumed to be side constraint coefficients.

\section*{Quadratic Network Problems with Side Constraints}

A network consists of a collection of nodes joined by a collection of arcs. The arcs connect nodes and convey flow of one or more commodities that are supplied at supply nodes and demanded at demand nodes in the network. Each arc has a cost per unit of flow, a flow capacity, and a lower flow bound associated with it. An important concept in network modeling is conservation of flow: the total flow in arcs directed toward a node, plus the supply at the node, minus the demand at the node, equals the total flow in arcs directed away from the node.

Often all the details of a problem cannot be specified in a network model alone. In many of these cases, these details can be represented by the addition of side constraints to the model. Side constraints are linear functions of arc variables (variables containing flow through an arc) and nonarc variables (variables that are not part of the network). The data for a side constraint consist of coefficients of arcs and coefficients of nonarc variables, a constraint type (that is, \(\leq,=\), or \(\geq\)), and a right-hand-side value (rhs). A nonarc variable has a name, an objective function coefficient analogous to an arc cost, an upper bound analogous to an arc capacity, and a lower bound analogous to an arc lower flow bound.

If a network component of QNPSC is removed by merging arcs and nonarc variables into a single set of variables, and if the flow conservation constraints and side constraints are merged into a single set of constraints, the result is a QP problem. PROC QP automatically transforms a QNPSC problem into an equivalent QP problem, performs the optimization, and transforms the problem back into its original form. By doing this, PROC QP finds the flow through the network and the values of any nonarc variables that minimize the total cost of the solution. Flow conservation is met, flow through each arc is on or between the arc's lower flow bound and capacity, the value of each nonarc variable is on or between its lower and upper bounds, and the side constraints are satisfied.

Note that, since many QPs have large embedded networks, using PROC QP to solve a QNPSC is an attractive option in many cases. Network models remain conceptually
easy since they are based on network diagrams that represent the problem pictorially. PROC QP accepts the network specification in a format that is particularly suited to networks. This not only simplifies the problem description but also aids in the interpretation of the solution. The conversion to and from the equivalent QP is done "behind the scenes" by the procedure.

If a network programming problem with side constraints has \(n\) nodes, \(a\) arcs, \(g\) nonarc variables, and \(k\) side constraints, then the formal statement of the problem solved by PROC QP is
\[
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\left[\begin{array}{ll}
x^{T} & z^{T}
\end{array}\right] H\left[\begin{array}{l}
x \\
z
\end{array}\right]+c^{T} x+d^{T} z \\
\text { subject to } & F x=b \\
& G x+Q z\{\geq,=, \leq\} r \\
& l \leq x \leq u \\
& m \leq z \leq v
\end{array}
\]
where
- \(H\) is the \((a+g) \times(a+g)\) Hessian matrix (symmetric and positive semi-definite)
- \(c\) is the \(a \times 1\) arc variable objective function coefficient vector (the cost vector)
- \(x\) is the \(a \times 1\) arc variable value vector (the flow vector)
- \(d\) is the \(g \times 1\) nonarc variable objective function coefficient vector
- \(z\) is the \(g \times 1\) nonarc variable value vector
- \(F\) is the \(n \times a\) node-arc incidence matrix of the network, where
\[
F_{i, j}=\left\{\begin{aligned}
-1, & \text { if arc } j \text { is directed from node } i \\
1, & \text { if arc } j \text { is directed toward node } i \\
0, & \text { otherwise }
\end{aligned}\right.
\]
- \(b\) is the \(n \times 1\) node supply/demand vector, where
\[
b_{i}=\left\{\begin{aligned}
s, & \text { if node } i \text { has supply capability of } s \text { units of flow } \\
-d, & \text { if node } i \text { has demand of } d \text { units of flow } \\
0, & \text { if node } i \text { is a transshipment node }
\end{aligned}\right.
\]
- \(G\) is the \(k \times a\) side constraint coefficient matrix for arc variables, where \(G_{i, j}\) is the coefficient of arc \(j\) in the \(i\) th side constraint
- \(Q\) is the \(k \times g\) side constraint coefficient matrix for nonarc variables, where \(Q_{i, j}\) is the coefficient of nonarc variable \(j\) in the \(i\) th side constraint
- \(r\) is the \(k \times 1\) side constraint right-hand-side vector
- \(l\) is the \(a \times 1\) arc lower flow bound vector
- \(u\) is the \(a \times 1\) arc capacity vector
- \(m\) is the \(g \times 1\) nonarc variable lower bound vector
- \(v\) is the \(g \times 1\) nonarc variable upper bound vector

The QP procedure can also be used to solve an unconstrained network problem, that is, one in which \(G, Q, d, r\), and \(z\) do not exist. It can also be used to solve a network problem with side constraints but no nonarc variables, in which case \(Q, d\), and \(z\) do not exist.

\section*{Network Models}

The following are descriptions of some typical QNPSC models.

\section*{Production, Inventory, and Distribution (Supply Chain) Problems}

One common class of network models is the production-inventory-distribution, or supply-chain, problem. The diagram in Figure 7.2 illustrates this problem. The subscripts on the Production, Inventory, and Sales nodes indicate the time period. By replicating sections of the model, the notion of time can be included.

Figure 7.2. Production-Inventory-Distribution Problem
In this type of model, the nodes can represent a wide variety of facilities. Several examples are suppliers, spot markets, importers, farmers, manufacturers, factories, parts of a plant, production lines, waste disposal facilities, workstations, warehouses, depots, wholesalers, export markets, ports, rail junctions, airports, road intersections, cities, regions, shops, customers, and consumers. The diversity of this selection demonstrates how rich the potential applications of this model are.

Depending upon the interpretation of the nodes, the objectives of the modeling exercise can vary widely. Some common types of objectives are
- to reduce collection or purchase costs of raw materials
- to reduce inventory holding or backorder costs. Warehouses and other storage facilities sometimes have capacities, and there can be limits on the amount of goods that can be placed on backorder.
- to decide where facilities should be located and what the capacity of these should be. Network models have been used to help decide where factories, hospitals, ambulance and fire stations, oil and water wells, and schools should be located.
- to determine the assignment of resources (machines, production capability, workforce) to tasks, schedules, classes, or files
- to determine the optimal distribution of goods or services. This usually means minimizing transportation costs and reducing transit time or distance covered.
- to find the shortest path from one location to another
- to ensure that demands (for example, production requirements, market demands, contractual obligations) are met
- to maximize profits from the sale of products or the charge for services
- to maximize production by identifying bottlenecks

Some specific applications are
- car distribution models. These help determine which models and numbers of cars should be manufactured in which factories, and where to distribute cars from these factories to zones in the United States in order to meet customer demand at least cost.
- models in the timber industry. These help determine when to plant and mill forests, schedule production of pulp, paper, and wood products, and distribute products for sale or export.
- military applications. The nodes can be theaters, bases, ammunition dumps, logistical suppliers, or radar installations. Some models are used to find the best ways to mobilize personnel and supplies and to evacuate the wounded in the least amount of time.
- communications applications. The nodes can be telephone exchanges, transmission lines, satellite links, and consumers. In a model of an electrical grid, the nodes can be transformers, power stations, watersheds, reservoirs, dams, and consumers. The effect of high loads or outages might be of concern.

\section*{Proportionality Constraints}

In many models, you have the characteristic that a flow through an arc must be proportional to the flow through another arc. Side constraints are often necessary to model this situation. Such constraints are called proportionality constraints and are useful in models where production is subject to refining or modification into different materials. The amount of each output, or any waste, evaporation, or reduction can be specified as a proportion of input.

Typically, the arcs near the supply nodes carry raw materials and the arcs near the demand nodes carry refined products. For example, in a model of the milling industry, the flow through some arcs may represent quantities of wheat. After the wheat is processed, the flow through other arcs might be flour. For others it might be bran. The side constraints model the relationship between the amount of flour or bran produced as a proportion of the amount of wheat milled. Some of the wheat can end up as neither flour, bran, nor any useful product, so this waste is drained away through arcs to a waste node.

Figure 7.3. Proportionality Constraints
In order for arcs to be specified in side constraints, they must be named. By default, PROC QP names arcs using the names of the nodes at the head and tail of the arc. An arc is named with its tail node name followed by an underscore and its head node name. For example, an arc from node from to node to is called from_to.

Consider the network fragment in Figure 7.3. The arc Wheat_Mill conveys the wheat milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the capacity of the mill. The lower flow bound on this arc is the minimum quantity that must be milled for the mill to operate economically. The constraints
\[
\begin{aligned}
0.3 \text { Wheat_Mill }- \text { Mill_Flour } & =0.0 \\
0.2 \text { Wheat_Mill }- \text { Mill_Bran } & =0.0
\end{aligned}
\]
force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of bran. Note that it is not necessary to specify the constraint
\[
\text { 0.5 Wheat_Mill - Mill_Other }=0.0
\]
since flow conservation implies that any flow that does not traverse through Mill_Flour or Mill_Bran must be conveyed through Mill_Other. Computationally, it is better if this constraint is not specified, since there is one less side constraint and fewer problems with numerical precision. Notice that the sum of the proportions must equal 1.0 exactly; otherwise, flow conservation is violated.

\section*{Blending Constraints}

Blending or quality constraints can also influence the recipes or proportions of ingredients that are mixed. For example, different raw materials can have different properties. In an application of the oil industry, the amount of products that are obtained could be different for each type of crude oil. Furthermore, fuel might have a minimum octane requirement or limited sulphur or lead content, so that a blending of crude oils is needed to produce the product.

The network fragment in Figure 7.4 shows an example of this.

Figure 7.4. Blending Constraints
The arcs MidEast_Port and USA_Port convey crude oil from the two sources. The arc Port_Refinery represents refining, while the arcs Refinery_Gasoline and Refinery_Diesel carry the gas and diesel produced. The proportionality constraints
\[
\begin{gathered}
\text { 0.4 Port_Refinery - Refinery_Gasoline }=0.0 \\
0.2 \text { Port_Refinery - Refinery_Diesel }=0.0
\end{gathered}
\]
capture the restrictions for producing gasoline and diesel from crude oil. Suppose that only crude oil from the Middle East is used, then the resulting diesel would contain 5 units of sulphur per liter. If only crude oil from the U.S.A. is used, the resulting diesel would contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of sulphur per liter. Some crude oil from the U.S.A. must be used if Middle East crude oil is used in order to meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is
\[
5 \text { MidEast_Port + 4 USA_Port }-4.75 \text { Port_Refinery } \leq 0.0
\]

Since Port_Refinery \(=\) MidEast_Port + USA_Port, flow conservation allows this constraint to be simplified to
\[
1 \text { MidEast_Port }-3 \text { USA_Port } \leq 0.0
\]

If, for example, 120 units of crude oil from the Middle East are used, then at least 40 units of crude oil from the U.S.A. must be used. The preceding constraint is simplified because you assume that the sulphur concentration of diesel is proportional to the sulphur concentration of the crude oil mix. If this is not the case, the relation
0.2 Port_Refinery = Refinery_Diesel
is used to obtain
\[
5 \text { MidEast_Port }+4 \text { USA_Port }-4.75(1.0 / 0.2 \text { Refinery_Diesel }) \leq 0.0
\]
which equals
\[
5 \text { MidEast_Port }+4 \text { USA_Port }-23.75 \text { Refinery_Diesel } \leq 0.0
\]

An example similar to this oil industry problem is solved in the "Introductory QNPSC Example" section on page 692.

\section*{Multicommodity Problems}

Side constraints are also used in models in which there are capacities on transportation or some other shared resource, or there are limits on overall production or demand in multicommodity, multidivisional, or multiperiod problems. Each commodity, division, or period can have a separate network coupled to one main system by the side constraints. Side constraints are used to combine the outputs of subdivisions of a problem (either commodities, outputs in distinct time periods, or different process streams) to meet overall demands or to limit overall production or expenditures. This method is more desirable than doing separate local optimizations for individual commodity, process, or time networks and then trying to establish relationships between each when determining an overall policy if the global constraint is not satisfied. Of course, to make models more realistic, side constraints may be necessary in the local problems.

Figure 7.5. Multicommodity Problem

Figure 7.5 shows two network fragments. They represent identical production and distribution sites of two different commodities. The suffix coml represents commodity 1 and the suffix com2 represents commodity 2. The nodes Factorycom1 and Factorycom2 model the same factory, and nodes City1com1 and City1com2 model the same location, city 1. Similarly, City2com1 and City2com2 are the same location, city 2 . Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occupies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters, and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of each commodity can be loaded onto each truck? The side constraints for this case are
\[
\begin{aligned}
& 2 \text { Factorycom1_City1com1 + }+3 \text { Factorycom2_City1com2 } \leq 200 \\
& 2 \text { Factorycom1_City2com1 + Factorycom2_City2com2 } \leq 250
\end{aligned}
\]

\section*{Large Modeling Strategies}

In many cases, the flow through an arc might actually represent the flow or movement of a commodity from place to place or from time period to time period. However, sometimes an arc is included in the network as a method of capturing some aspect of the problem that you would not normally think of as part of a network model. There is no commodity movement associated with that arc. For example, in a multiprocess, multiproduct model (Figure 7.6), there might be subnetworks for each process and each product. The subnetworks can be joined together by a set of arcs that have flows that represent the amount of product \(j\) produced by process \(i\). To model an upperlimit constraint on the total amount of product \(j\) that can be produced, direct all arcs carrying product \(j\) to a single node, and from there through a single arc. The capacity of this arc is the upper limit of product \(j\) production. It is preferable to model this structure in the network rather than to include it in the side constraints because the efficiency of the optimizer may be less affected by a reasonable increase in the size of the network rather than increasing the number of complicating side constraints.

Figure 7.6. Multiprocess, Multiproduct Example
When starting a project, it is often a good strategy to use a small network formulation and then use that model as a framework upon which to add detail. For example, in the multiprocess, multiproduct model, you might start with the network depicted in

Figure 7.6. Then, for example, the process subnetwork can be enhanced to include the distribution of products. Other phases of the operation could be included by adding more subnetworks. Initially, these subnetworks can be single nodes, but in subsequent studies they can be expanded to include greater detail.

\section*{Advantages of Network Models over QP Models}

Many quadratic programming problems have large embedded network structures. Such problems often result when modeling manufacturing processes, transportation or distribution networks, or resource allocation, or when deciding where to locate facilities. Often, some commodity is to be moved from place to place, so the more natural formulation in many applications is that of a constrained network rather than a quadratic program.

Using a network diagram to visualize a problem makes it possible to capture the important relationships in an easily understood picture form. The network diagram aids the communication between model builder and model user, making it easier to comprehend how the model is structured, how it can be changed, and how results can be interpreted.

If a network structure is embedded in a quadratic program, the problem is a QNPSC (see the "Quadratic Network Problems with Side Constraints" section on page 681). When the network part of the problem is large compared to the nonnetwork part, especially if the number of side constraints is small, it is worthwhile to exploit this structure to describe the model. Rather than generating the data for the flow conservation constraints, generate instead the data for the nodes and arcs of the network.

\section*{Flow Conservation Constraints}

The constraints \(F x=b\) in QNPSC (see the "Quadratic Network Problems with Side Constraints" section on page 681) are referred to as the nodal flow conservation constraints. These constraints algebraically state that the sum of the flow through arcs directed toward a node plus that node's supply, if any, equals the sum of the flow through arcs directed away from that node plus that node's demand, if any. The flow conservation constraints are implicit in the network model and should not be specified explicitly in side constraint data when using PROC QP to solve QNPSC problems.

\section*{Nonarc Variables}

Nonarc variables can be used to simplify side constraints. For example, if a sum of flows appears in many constraints, it may be worthwhile to equate this expression with a nonarc variable and use this in the other constraints. This keeps the constraint coefficient matrix sparse. By assigning a nonarc variable a nonzero objective function coefficient, it is then possible to incur a cost for using resources above some lowest feasible limit. Similarly, a profit (a negative objective function coefficient value) can be made if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or supply needed resources. Then, either the excess resource can be used or the needed resource can be supplied to another component of the model.

For example, consider a multicommodity problem of making television sets that have either 19 - or 25 -inch screens. In their manufacture, three and four chips, respectively, are used. Production occurs at two factories during March and April. The supplier of chips can supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 each month. The names of arcs are in the form Prod \(n_{-} s_{-} m\), where \(n\) is the factory number, \(s\) is the screen size, and \(m\) is the month. For example, Prod1_25_Apr is the arc that conveys the number of 25 -inch TVs produced in factory 1 during April.

As described, the constraints are
\[
\begin{aligned}
& 3 \text { Prod1_19_Mar }+4 \text { Prod1_25_Mar } \leq 2600 \\
& 3 \text { Prod2_19_Mar }+4 \text { Prod2_25_Mar } \leq 3750 \\
& 3 \text { Prod1_19_Apr }+4 \text { Prod1_25_Apr } \leq 2600 \\
& 3 \text { Prod2_19_Apr }+4 \text { Prod2_25_Apr } \leq 3750
\end{aligned}
\]

If there are chips that could be obtained for use in March but not used for production in March, why not keep these unused chips until April? Furthermore, if the March excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the model becomes
\[
\begin{gathered}
\text { 3Prod1_19_Mar + 4 Prod1_25_Mar + F1_Unused_Mar = }=2600 \\
\text { 3Prod2_19_Mar +4Prod2_25_Mar + F2_Unused_Mar }=3750 \\
\text { 3Prod1_19_Apr +4Prod1_25_Apr }- \text { F1_Kept_Since_Mar }=2600 \\
\text { 3Prod2_19_Apr +4 Prod2_25_Apr }- \text { F2_Kept_Since_Mar }=3750 \\
\text { F1_Unused_Mar + F2_Unused_Mar (continued) } \\
\text { - F1_Kept_Since_Mar - F2_Kept_Since_Mar } \geq \text { 2.0 }
\end{gathered}
\]
where F1_Kept_Since_Mar is the number of chips used during April at factory 1 that were obtained in March at either factory 1 or factory 2, and F2_Kept_Since_Mar is the number of chips used during April at factory 2 that were obtained in March. The last constraint ensures that the number of chips used during April that were obtained in March does not exceed the number of chips not used in March. There may be a cost to hold chips in inventory. This can be modeled by a positive objective function coefficient for the nonarc variables F1_Kept_Since_Mar and F2_Kept_Since_Mar. Moreover, nonarc variable upper bounds represent an upper limit on the number of chips that can be held in inventory between March and April.

\section*{Getting Started: QNPSC Problems}

To solve QNPSC problems using PROC QP, you save a representation of the network and the side constraints in four SAS data sets. These data sets are then passed to PROC QP for solution. There are various forms that a problem's data can take. You can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand associated with each. These are the elements in the column vector \(b\) in the QNPSC problem (see the "Quadratic Network Problems with Side Constraints" section on page 681).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but there can be data related to nonarc variables in the ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed). Each observation can be used to identify an arc in the network and, optionally, the cost per unit flow across the arc, the arc's capacity, lower flow bound, and name. These data are associated with the matrix \(F\) and the vectors \(c\), \(l\), and \(u\) in the QNPSC problem (see the "Quadratic Network Problems with Side Constraints" section on page 681).

Note: Although \(F\) is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc definitions. Do not explicitly specify these flow conservation constraints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including linear objective function coefficients, lower and upper value bounds, and names. These data are the elements of the vectors \(d, m\), and \(v\) in the QNPSC problem (see the "Quadratic Network Problems with Side Constraints" section on page 681). Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data can also be specified in the ARCDATA= data set. In such a case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements of the matrices \(G\) and \(Q\) and the vector \(r\). Constraint types are also specified in the CONDATA= data set. This data set can include upper bound values or capacities, lower flow or value bounds, and costs or objective function coefficients. It is possible to give all information about some or all nonarc variables in the CONDATA \(=\) data set.

An arc is identified in this data set by its name. If you specify an arc's name in the ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that arc. Each arc also has a default name that is the name of the tail and head node of the arc concatenated together and separated by an underscore character; tail_head, for example.

If you use the dense side constraint input format (described in the "CONDATA= Data Set" section on page 714), and want to use the default arc names, these arc names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (see the "CONDATA= Data Set" section on page 714) and want to use the default arc names, these arc names are values of the COLUMN list variable of the CONDATA= data set.

The HESSIAN= data set describes the Hessian matrix. These data are elements of the \(H\) matrix in the QNPSC problem (see the "Quadratic Network Problems with Side Constraints" section on page 681). Each observation of the HESSIAN= data set provides data for an element of the Hessian matrix. If there is a term \(6 x_{\operatorname{arc} 3} x_{\text {nonarc5 }}\) in the objective function, then \(H_{\text {arc3,nonarc5 }}=6\), and there will be an observation in the HESSIAN= data set that has the value 'arc3' for the HESSIANROW variable,
the value 'nonarc5' for the HESSIANCOLUMN variable, and the value 6 for the HESSIANCOEF variable. The Hessian matrix is symmetric so \(H_{\text {nonarc5, arc3 }}=6\) also, and another observation of the HESSIAN= data set could have values 'nonarc5', 'arc3', and 6 for the HESSIANROW, HESSIANCOLUMN, and HESSIANCOEF variables, respectively. However, you need only one of these observations; PROC QP will assume the existence of the element's symmetric pair.

Note that while data for a nondiagonal element of the \(H\) matrix corresponds exactly to the term in the objective function, data for diagonal elements of \(H\) are doubled. For the term \(6 x_{\operatorname{arc} 3} x_{\text {nonarc }}\) in the objective function, the nondiagonal element \(H_{\text {arc3,nonarc5 }}=H_{\text {nonarc5,arc3 }}=6\) and the value 6 is used in the corresponding observation of the HESSIAN= data set. If there is a term \(5 x_{\text {arc4 }}^{2}\) in the objective function, the diagonal element \(H_{\operatorname{arc4}, \operatorname{arc} 4}=10\) and the value 10 is used in the corresponding observation of the HESSIAN= data set. In that observation, both the HESSIANROW and the HESSIANCOLUMN variables would have the value 'arc4'.

PROC QP reads the data from the NODEDATA= data set, the ARCDATA= data set, the CONDATA= data set, and the HESSIAN= data set. Error checking is performed, and the model is converted into an equivalent QP . The optimal solution to the equivalent QP is then found. This QP is converted back to the original QNPSC problem, and the optimum for this is derived from the optimum of the equivalent QP. If the problem was preprocessed, the model is now post-processed, where fixed variables are reintroduced. The solution can be saved in the CONOUT= data set.

\section*{Introductory QNPSC Example}

Consider the following transshipment problem for an oil company. Crude oil is shipped to refineries where it is processed into gasoline and diesel fuel. The gasoline and diesel fuel are then distributed to service stations. At each stage, there are shipping, processing, and distribution costs. Also, there are lower flow bounds and capacities.

In addition, there are two sets of side constraints. The first set is that two times the crude oil from the Middle East cannot exceed the throughput of a refinery plus 15 units. (The phrase "plus 15 units" that finishes the last sentence is used to enable some side constraints in this example to have a nonzero right-hand side.) The second set of constraints is necessary to model the situation that one unit of crude oil mix processed at a refinery yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow through the network, a QNPSC is an appropriate model for this example (see Figure 7.7). The side constraints are used to model the limitations on the amount of Middle Eastern crude oil that can be processed by each refinery, and the conversion proportions of crude oil to gasoline and diesel fuel.

Figure 7.7. Oil Industry Example
To solve this problem with PROC QP, you first save a representation of the model in four SAS data sets. In the NODEDATA= data set, you name the supply and demand nodes and give the associated supplies and demands. To distinguish demand nodes from supply nodes, specify demands as negative quantities. For the oil example, the NODEDATA= data set can be saved as follows:
```

title 'Oil Industry Example';
title3 'Setting Up Nodedata = Noded For PROC QP';
data noded;
input _node_\&\$15. _sd_;
datalines;
middle east 100
u.s.a. }8
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

```

The ARCDATA= data set contains the rest of the information about the network. Each observation in the data set identifies an arc in the network and gives the cost per flow unit across the arc, the capacity of the arc, the lower bound on flow across the arc, and the name of the arc.
```

title3 'Setting Up Arcdata = Arcd1 For PROC QP';
data arcd1;
input _from_\&\$11. _to_\&\$15. _cost_ _capac_ _lo_ _name_ \$;
datalines;
middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas
ref1 diesel servstn1 diesel 18 . . . .

```

```

ref2 gas servstn2 gas 31
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .

```

The CONDATA= data set contains the side constraints for the model:
```

title3 'Setting Up Condata = Cond1 For PROC QP';
data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
_type_ \$ _rhs_;
datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

```

Note that the SAS variable names in the CONDATA= data set are the names of arcs given in the ARCDATA= data set. These are the arcs that have nonzero constraint coefficients in side constraints. For example, the proportionality constraint that specifies that one unit of crude oil at each refinery yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel is given for 'refinery 1 ' in the third observation and for 'refinery 2 ' in the last observation. The third observation requires that each unit of flow on the arc 'thruput1' equals three-fourths of a unit of flow on the arc 'r1_gas'. Because all crude oil processed at 'refinery 1 ' flows through 'thruput 1 ' and all gasoline produced at 'refinery 1 ' flows through ' \(r\) 1_gas', the constraint models the situation. It proceeds similarly for 'refinery 2 ' in the last observation.

Finally, the HESSIAN= data set for this example can be generated using the following code. Note that the names of arcs also appear in this data set.
```

title3 'Setting Up Hessian For PROC QP';
data hessian1;
input _row_\&\$27. _col_\&\$27. _coef_;
datalines;
middle east_refinery 1 ref1 gas_servstn1 gas . 0010
u.s.a._refinery 1 ref1 diesel_servstn1 diesel .00021
u.s.a._refinery 2 ref1 diesel_servstn2 diesel . 00002
ref1 diesel_servstn2 diesel ref1 diesel_servstn2 diesel 358.2
ref1 diesel_servstn1 diesel ref1 diesel_servstn1 diesel 100
middle east_refinery 1 middle east_refinery 1 100
ref1 gas_servstn1 gas ref1 gas_servstn1 gas 100
u.s.a._refinery 1 u.s.a._refinery 1 10.4
u.s.a._refinery 2 u.s.a._refinery 2 50.4
r1_ref1 gas r1_ref1 gas 200
r2_ref2 gas r2_ref2 gas 10
;

```

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints, invoke PROC QP as follows:
```

proc qP
bytes=1000000
stop_dg=1e-6
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
hessian=hessian1 /* the hessian matrix */
conout=solution; /* the solution data set */
run;

```

The following messages, which appear on the SAS log, summarize the model as read by PROC QP and note the progress toward a solution.
```

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4.
NOTE: Total supply= 180, total demand= 180.
NOTE: Number of arcs= 18.
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent
Quadratic Programming problem solved by the
Interior Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44.

```
```

NOTE: Number of variables= 18 .
NOTE: There are 11 diagonal and superdiagonal elements
in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 4.66967E-08
NOTE: Dual infeasibility 1.01470E-01
NOTE: Duality gap 8.37821E-07
NOTE: Objective= 780237.4926.
NOTE: The data set WORK.SOLUTION has 18 observations
and 9 variables.
NOTE: There were 18 observations read from the data
set WORK.ARCD1.
NOTE: There were 6 observations read from the data
set WORK.NODED.
NOTE: There were 11 observations read from the data
set WORK.HESSIAN1.
NOTE: There were 4 observations read from the data
set WORK.COND1.

```

The first set of messages shows the size of the problem. The next set of messages provides statistics on the size of the equivalent QP problem. The number of variables may not equal the number of arcs if the problem has nonarc variables. This example has none. To convert a network to the equivalent QP problem, a flow conservation constraint must be created for each node (including an excess or bypass node, if required). This explains why the number of equality constraints and the number of constraint coefficients differ from the number of equality side constraints and the number of coefficients in all side constraints.

Unlike PROC LP, which displays the solution and other information as output, PROC QP saves the optimum in the output SAS data set that you specify. For this example, the solution is saved in the SOLUTION data set. It can be displayed with the PRINT procedure as follows:
```

title3 'Optimum';
proc print data=solution;
format _name_ \$12.;
run;

```


Figure 7.8. \(C O N O U T=S O L U T I O N\)
Notice that, in CONOUT=SOLUTION (Figure 7.8), the optimal flow through each arc in the network is given in the variable named _FLOW_.

\section*{Typical PROC QP Run: QNPSC Problems}

You start PROC QP by giving the PROC QP statement. You can specify many options in the PROC QP statement to control the procedure, or you can rely on default settings and specify very few options. However, there are some options you must specify:
- You must specify the BYTES= parameter to indicate the size of the working memory that the procedure is allowed to use. This option has no default.
- When solving QNPSC problems, you must specify the ARCDATA= data set. This option has a default (the SAS data set that was created last before PROC QP began running), but that may need to be overridden.
- The CONDATA= data set must also be specified if the problem is QNPSC and has side constraints, or if it is a QP problem.
- The HESSIAN= data set must be specified. Note that the Hessian must be positive semi-definite for minimization problems, and negative semi-definite for maximization problems.
- When solving a network problem, you must specify the NODEDATA= data set if the model data is given in such a data set.

Some options are frequently required. To output the optimal solution to a SAS data set, you must specify the CONOUT= option. You may want to indicate reasons why optimization should stop (for example, you can indicate the maximum number of iterations that can be performed), or you may want to alter stopping criteria so that optimization does not stop prematurely. Some options enable you to control other aspects of the interior point algorithm. Specifying certain values for these options can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have variables in the input data sets that have special names (for example, a variable in the ARCDATA= data set named _TAIL_ that has tail nodes of arcs as values), it may not be necessary to have many or any variable lists. If you do not specify a TAIL variable list, PROC QP will search the ARCDATA= data set for a variable named _TAIL_.

What usually follows is a RUN statement, which indicates that all information needed by PROC QP has been given, and the procedure is to start running. This also happens if you specify a statement in your SAS program that PROC QP does not recognize as one of its own, or the next DATA step or procedure.

The QUIT statement indicates that PROC QP must immediately finish.
For example, a PROC QP run might look something like this:
```

proc qp
bytes= /* working memory size */
arcdata= /* data set */
condata= /* data set */
hessian= /* data set */
/* other options */
;
variable list specifications; /* if necessary */
run; /* start running, read data, */
/* and do the optimization */

```

\section*{Syntax: QNPSC Problems}

Below are statements used in PROC QP when solving a QNPSC problem, listed in alphabetical order as they appear in the text that follows.
```

PROC QP options;
CAPACITY variable ;
COEF variables;
COLUMN variable;
COST variable ;
DEMAND variable;
HEADNODE variable;
HESSIANCOEF variable ;
HESSIANCOLUMN variable;
HESSIANROW variable;
ID variables;
LO variable ;
NAME variable ;
NODE variable ;
QUIT;
RHS variable;
ROW variables;
RUN;
SUPDEM variable;
SUPPLY variable;
TAILNODE variable;
TYPE variable;
VAR variables;

```

The information related to most of the statements and variable lists are the same whether you are solving a QP problem or a QNPSC problem. However, there are some exceptions, as listed in the following table.
\begin{tabular}{|l|l|}
\hline Solving QP Problems & Solving QNPSC Problems \\
\hline PROC QP & PROC QP \\
UPPERBD & CAPACITY \\
COEF & COEF \\
COLUMN & COLUMN \\
OBJFN & COST \\
ID & ID \\
LO & LO \\
NAME & NAME \\
\hline
\end{tabular}

The following statements and variable lists are relevant only when solving a QNPSC problem: DEMAND, HEADNODE, NODE, SUPDEM, SUPPLY, TAILNODE.

\section*{Functional Summary: QNPSC Problems}

Table 7.2 outlines the options that can be specified in the QP procedure when solving a QNPSC problem. All options are specified in the PROC QP statement.

Table 7.2. Functional Summary
Description Statement Option

Input Data Set Options:
arcs input data set
nodes input data set
constraint input data set
Hessian input data set

\section*{Output Data Set Option:}
solution data set

\section*{Data Set Read Options:}

CONDATA has sparse data format default constraint type special COLUMN variable value special COLUMN variable value used to interpret arc and variable names no nonarc data in ARCDATA data for an arc found once in ARCDATA data for a constraint found once in CONDATA data for a coefficient found once in CONDATA data is grouped, exploited during data read

\section*{Problem Size Specification Options:}
approximate number of nodes approximate number of arcs approximate number of variables approximate number of coefficients approximate number of constraints

\section*{Network Options:}
default arc cost, objective function coefficient
default arc capacity, variable upper bound default arc flow, variable lower bound network's only supply node SOURCE's supply capability network's only demand node SINK's demand convey excess supply/demand through network find max flow between SOURCE and SINK cost of bypass arc, MAXFLOW problem find shortest path from SOURCE to SINK

PROC QP
PROC QP NODEDATA=
PROC QP CONDATA= PROC QP HESSIAN=

PROC QP CONOUT=
\begin{tabular}{ll}
PROC QP & SPARSECONDATA \\
PROC QP & DEFCONTYPE= \\
PROC QP & TYPEOBS= \\
PROC QP & RHSOBS= \\
PROC QP & NAMECTRL= \\
PROC QP & ARCS_ONLY_ARCDATA \\
PROC QP & ARC_SINGLE_OBS \\
PROC QP & CON_SINGLE_OBS \\
PROC QP & NON_REPLIC= \\
PROC QP & GROUPED \(=\)
\end{tabular}
\begin{tabular}{ll}
PROC QP & NNODES \(=\) \\
PROC QP & NARCS \(=\) \\
PROC QP & NNAS \(=\) \\
PROC QP & NCOEFS= \\
PROC QP & NCONS \(=\)
\end{tabular}
\begin{tabular}{ll}
PROC QP & DEFCOST= \\
PROC QP & DEFCAPACITY= \\
PROC QP & DEFMINFLOW= \(=\) \\
PROC QP & SOURCE= \\
PROC QP & SUPPLY= \\
PROC QP & SINK= \\
PROC QP & DEMAND= \\
PROC QP & THRUNET \\
PROC QP & MAXFLOW \\
PROC QP & BYPASSDIVIDE= \\
PROC QP & SHORTPATH
\end{tabular}

\section*{Description}

\section*{Memory Control Options:}
issue memory usage messages to SAS log number of bytes to use for main memory

\section*{Miscellaneous Options:}
infinity value
maximization instead of minimization
zero tolerance, real number comparisons
suppress similar SAS log messages
duality gap stopping criterion
\begin{tabular}{ll}
PROC QP & MEMREP \\
PROC QP & BYTES \(=\)
\end{tabular}

PROC QP INFINITY= PROC QP MAXIMIZE PROC QP ZEROTOL= PROC QP VERBOSE= PROC QP STOP_DG=

\section*{PROC QP Statement: QNPSC Problems}

\section*{PROC QP options;}

This statement invokes the procedure. The following options can be specified in the PROC QP statement. Details about the PROC QP statement for solving a QP problem without a network component are found in the "PROC QP Statement: QP Problems" section on page 669.

\section*{Data Set Options: QNPSC Problems}

This section briefly describes all the input and output data sets used by PROC QP when solving QNPSC problems. The ARCDATA= data set, the NODEDATA= data set, the CONDATA = data set, and the HESSIAN= data set can contain SAS variables that have special names, for instance _UPPERBD,_OBJFN_, and _HEAD_. PROC QP looks for such variables if you do not give explicit variable list specifications. If a SAS variable with a special name is found, and that SAS variable is not in another variable list specification, PROC QP determines that values of the SAS variable are to be interpreted in a special way. By using SAS variables that have special names, you may not need to have any variable list specifications.

\section*{ARCDATA=SAS-data-set}
names the data set that contains arc and, optionally, nonarc variable information and nodal supply/demand data. The ARCDATA= data set must be specified in all PROC QP statements when solving QNPSC problems.

If your problem is a QP without a network component, the ARCDATA= data set is optional. You can specify QP variable information such as objective function coefficients, and lower and upper bounds.

\section*{CONDATA=SAS-data-set}
names the data set that contains the side constraint data. The data set can also contain other data such as arc costs, capacities, lower flow bounds, nonarc variable upper and lower bounds, and objective function coefficients. The CONDATA= data set is
required in order for PROC QP to solve a constrained problem. See the "CONDATA= Data Set" section on page 714 for more information.

Specific details about this option for QP problems are given in the "Data Set Options: QP Problems" section beginning on page 669.

\section*{CONOUT=SAS-data-set}

COUT=SAS-data-set
names the output data set that receives an optimal solution. See the "CONOUT= Data Set" section on page 723 for more information.

\section*{HESSIAN=SAS-data-set}
names the data set that describes the Hessian matrix. These data are elements of the \(H\) matrix. See the "HESSIAN= Data Set" section on page 722 for more information.

\section*{NODEDATA=SAS-data-set}
names the data set that contains the node supply and demand specifications. You do not need observations in the NODEDATA= data set for transshipment nodes. (Transshipment nodes neither supply nor demand flow.) All nodes are assumed to be transshipment nodes unless supply or demand data indicate otherwise. It is acceptable for some arcs to be directed toward supply nodes or away from demand nodes.

This data set is used only when you are solving network problems, in which case the use of the NODEDATA= data set is optional provided that, if the NODEDATA= data set is not used, supply and demand details are specified by other means. Other means include using the MAXFLOW or SHORTPATH option, SUPPLY or DEMAND variable list (or both) in the ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND \(=\) option in the PROC QP statement.

\section*{General Options: QNPSC Problems}

The following is a list of options you can use with PROC QP when solving QNPSC problems. The options are listed in alphabetical order.

\section*{ARCS_ONLY_ARCDATA}
indicates that the data in the ARCDATA= data set are for arcs only. When PROC QP reads the data in the ARCDATA= data set, memory will not be wasted to receive data for nonarc variables. The read might then be performed faster. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{ARC_SINGLE_OBS}
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is found in only one observation of the ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC QP knows that the data in an observation is for an arc or a nonarc variable that has not had data previously read and that needs to be checked for consistency. The read might then be performed faster. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

If you specify ARC_SINGLE_OBS, PROC QP automatically works as if GROUPED=ARCDATA is also specified.

Specific details about this option for QP problems are given in the "General Options: QP Problems" section beginning on page 669.

\section*{BYPASSDIVIDE=b}

BYPASSDIV=b
BPD=b
should be used only when the MAXFLOW option has been specified; that is, PROC QP is solving a maximal flow problem. PROC QP prepares to solve maximal flow problems by setting up a bypass arc. This arc is directed from the SOURCE node to the SINK node and will eventually convey flow equal to INFINITY minus the maximal flow through the network. The cost of the bypass arc must be great enough to drive flow through the network, rather than through the bypass arc. Also, the cost of the bypass arc must be greater than the eventual total cost of the maximal flow, which can be nonzero if some network arcs have nonzero costs. The cost of the bypass is set to the value of the INFINITY= option. Valid values for the BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the bypass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE= option. In the presence of nonzero arc costs, the default value for the BYPASSDIVIDE= option is 100.0.

\section*{CON_SINGLE_OBS}
improves how the CONDATA= data set is read. How it works depends on whether the CONDATA has a dense or sparse format.

If the CONDATA= data set has a dense format, specifying CON_SINGLE_OBS indicates that, for each constraint, data for the constraint can be found in only one observation of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each arc, nonarc variable, or QP variable can be found in only one observation of the CONDATA= data set, then specify the CON_SINGLE_OBS option. If there are \(n\) SAS variables in the ROW and COEF variable lists, then each arc or nonarc can have at most \(n\) constraint coefficients in the model. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

Specific details about this option for QP problems are given in the "General Options: QP Problems" section beginning on page 669.

\section*{DEFCAPACITY=c}
\(D C=c\)
requests that the default arc capacity and the default nonarc variable value upper bound be \(c\). If this option is not specified, then DEFCAPACITY=INFINITY. Specific details about this option for QP problems are given in the "General Options: QP Problems" section beginning on page 669.

\section*{DEFCOST=c}
requests that the default arc cost and the default nonarc variable objective function coefficient be \(c\). If this option is not specified, then DEFCOST=0.0. Specific details
about this option for QP problems are given in the "General Options: QP Problems" section beginning on page 669.

\section*{DEFMINFLOW=m}

\section*{DMF=m}
requests that the default lower flow bound through arcs and the default lower value bound of nonarc variables be \(m\). If this option is not specified, then DEFMINFLOW=0.0. Specific details about this option for QP problems are given in the "General Options: QP Problems" section beginning on page 669.

\section*{DEMAND \(=d\)}
specifies the demand at the sink node given by the \(\mathrm{SINK}=\) option. The DEMAND= option should be used only if the SINK= option is given in the PROC QP statement and neither the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost network problem and the SINK= option is used to identify the sink node, and the DEMAND= option is not specified, then the demand at the sink node is made equal to the network's total supply.

\section*{MAXFLOW}

\section*{MF}
specifies that PROC QP solve a maximum flow problem. In this case, PROC QP finds the maximum flow from the node specified by the SOURCE= option to the node specified by the SINK= option. PROC QP automatically assigns an INFINITY supply to the SOURCE node, and the SINK node is assigned INFINITY demand. In this way, the MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost problem.

You can use the MAXFLOW option when solving any flow problem (not necessarily a maximum flow problem) when the network has one supply node (with infinite supply) and one demand node (with infinite demand). The MAXFLOW option can be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and DEMAND=) and capabilities of PROC QP.

\section*{NAMECTRL=i}
is used to interpret arc and nonarc variable names in the CONDATA= data set. In the ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA= data set, arcs are identified by names. You can give a name to an arc by having a NAME list specification that indicates a SAS variable in the ARCDATA= data set that has names of arcs as values.

PROC QP requires that arcs that have information about them in the CONDATA= data set have names, but arcs that do not have information about them in the CONDATA= data set can also have names. Unlike a nonarc variable whose name uniquely identifies it, an arc can have several different names. An arc has a default name in the form tail_head, that is, the name of the arc's tail node followed by an underscore and the name of the arc's head node.
In the CONDATA= data set, if the dense data format is used (described in the "CONDATA= Data Set" section on page 714), a name of an arc or a nonarc variable is the name of a SAS variable listed in the VAR list specification. If the sparse
data format of the CONDATA= data set is used, a name of an arc or a nonarc variable is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or a nonarc variable in the CONDATA = data set (either a VAR list variable name or a value of the COLUMN list variable) is in the form tail_head and there exists an arc with these end nodes. If tail_head has not already been tagged as belonging to an arc or nonarc variable in the ARCDATA= data set, PROC QP needs to know whether tail_head is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail_head as the name of the arc with these end nodes, provided no other name is used to associate data in the CONDATA= data set with this arc. If the arc does have other names that appear in the CONDATA= data set, tail_head is assumed to be the name of a nonarc variable. If you specify NAMECTRL=3, tail_head is assumed to be a name of the arc with these end nodes, whether the arc has other names or not. The default value is NAMECTRL=3.

If the dense format is used for the CONDATA= data set, there are two circumstances that affect how this data set is read:
- Case 1: You specify
```

options validvarname=v6;

```
in your SAS session.
- Case 2: You do not specify
options validvarname=v6;
in your SAS session.

For case 1, the SAS System converts SAS variable names in a SAS program to uppercase. The VAR list variable names are uppercased. Because of this, PROC QP automatically uppercases names of arcs and nonarc variables or QP variables (the values of the NAME list variable) in the ARCDATA= data set. The names of arcs and nonarc variables or QP variables (the values of the NAME list variable) appear uppercased in the CONOUT= data set.

Also, if the dense format is used for the CONDATA= data set, be careful with default arc names (names in the form tailnode_headnode). Node names (values in the TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not automatically uppercased by PROC QP. Consider the following code.
```

data arcdata;
input _from_ \$ _to_ \$ _name_ \$ ;
datalines;
from tol.
from to2 arc2
TAIL TO3.
;
data densecon;
input from_to1 from_to2 arc2 tail_to3;
datalines;
2 3 3 5
;
proc qp
arcdata=arcdata condata=densecon;
run;

```

The SAS System does not uppercase character string values within SAS data sets. PROC QP never uppercases node names, so the arcs in observations 1, 2, and 3 in the arcdata data set have the default names from_to1, from_to2, and TAIL_TO3, respectively. When the dense format of the CONDATA= data set is used, PROC QP does uppercase values of the NAME list variable (in this case, the default variable _name_), so the name of the arc in the second observation of the ARCDATA= data set is ARC2. Thus, the second arc has two names: its default from_to2 and the other that was specified ARC2.

Since the SAS System uppercases program code, you must think of the input statement
input from_to1 from_to2 arc2 tail_to3;
as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;
The SAS variables named FROM_TO1 and FROM_TO2 are not associated with any of the arcs in the arcdata data set. The values FROM_TO1 and FROM_TO2 are different from all of the arc names from_to1, from_to2, TAIL_TO3, and ARC2. FROM_TO1 and FROM_TO2 could end up being the names of two nonarc variables.

The SAS variable named ARC2 is the name of the second arc in the arcdata data set, even though the name specified in the arcdata data set looks like arc2. The SAS variable named TAIL_TO3 is the default name of the third arc in the arcdata data set.

For case 2, the SAS System does not convert SAS variable names in a SAS program to uppercase. The VAR list variable names are not uppercased. PROC QP does not automatically uppercase names of arcs and nonarc variables or QP variables (the values of the NAME list variable) in the arcdata data set. PROC QP does not uppercase any SAS variable names or data set values. Therefore, PROC QP respects case, and
characters in the data must have the same case if you mean them to be the same. Note how the input statement in the DATA step that initialized the data set densecon below is specified in the following code:
```

data arcdata;
input _from_ \$ _to_ \$ _name_ \$ ;
datalines;
from to1.
from to2 arc2
TAIL TO3.
;
data densecon;
input from_to1 from_to2 arc2 TAIL_TO3;
datalines;
2 3 3 5
;
proc qp
arcdata=arcdata condata=densecon;
run;

```

\section*{NARCS= \(n\)}
specifies the approximate number of arcs. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{NNAS=n}
specifies the approximate number of nonarc variables. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{NNODES=n}
specifies the approximate number of nodes. See the section "How to Make the Data Read of PROC QP More Efficient" on page 732 for details.

\section*{SHORTPATH}

SP
specifies that PROC QP solve a shortest path problem. The QP procedure finds the shortest path between the nodes specified in the SOURCE \(=\) option and the SINK= option. The costs of arcs are their lengths. PROC QP automatically assigns a supply of one flow unit to the SOURCE node and a demand of one flow unit to the SINK node. In this way, the SHORTPATH option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node (with demand of one unit), you could specify the SHORTPATH option, with the SOURCE \(=\) and SINK= nodes, even if the problem is not a shortest path problem. You then should not provide any supply or demand data in the NODEDATA= data set or the ARCDATA= data set.

\section*{SINK=sinkname \\ SINKNODE=sinkname}
identifies the demand node. The SINK= option is useful when you specify the MAXFLOW option or the SHORTPATH option and you need to specify toward which node the maximum flow or shortest path is directed. The SINK= option also can be used when a minimum cost problem has only one demand node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set, you can use the SINK= option with an accompanying DEMAND= specification for this node. The SINK= option must be the name of a head node of at least one arc; thus, it must have a character value. If the value of the SINK= option is not a valid SAS character variable name (if, for example, it contains embedded blanks), it must be enclosed in quotes.

\section*{SOURCE=sourcename}

\section*{SOURCENODE=sourcename}
identifies a supply node. The SOURCE= option is useful when you specify the MAXFLOW or the SHORTPATH option and need to specify from which node the maximum flow or shortest path originates. The SOURCE= option also can be used when a minimum cost problem has only one supply node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set, you can use the SOURCE= option with an accompanying SUPPLY= amount of supply at this node. The SOURCE= option must be the name of a tail node of at least one arc; thus, it must have a character value. If the value of the SOURCE \(=\) option is not a valid SAS character variable name (if, for example, it contains embedded blanks), it must be enclosed in quotes.

\section*{SUPPLY=s}
specifies the supply at the source node specified by the SOURCE= option. The SUPPLY= option should be used only if the SOURCE \(=\) option is given in the PROC QP statement and neither the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost network problem and the SOURCE= option is used to identify the source node, and the SUPPLY= option is not specified, then by default the supply at the source node is made equal to the network's total demand.

\section*{THRUNET}
tells PROC QP to force through the network any excess supply (the amount by which total supply exceeds total demand) or any excess demand (the amount by which total demand exceeds total supply) as is required. If a network problem has unequal total supply and total demand and the THRUNET option is not specified, PROC QP drains away the excess supply or excess demand in an optimal manner. The consequences of specifying or not specifying THRUNET are discussed in the "Balancing Total Supply and Total Demand" section on page 731.

\section*{CAPACITY Statement}

CAPACITY variable;
CAPAC variable;
UPPERBD variable;
The CAPACITY statement identifies the SAS variable in the ARCDATA= data set that contains the capacity of the network arcs and the maximum feasible flow of nonarc variables. If an observation contains nonarc variable information, the CAPACITY list variable is the upper value bound for the nonarc variable named in the NAME list variable in that observation.

The CAPACITY list variable must have numeric values. It is not necessary to have a CAPACITY statement if the name of the SAS variable is _CAPAC_, _UPPER_, _UPPERBD, or _HI_.

\section*{COEF Statement: QNPSC Problems}

\section*{COEF variables;}

The COEF variable list is used with the sparse input format of the CONDATA= data set. The COEF list can contain more than one SAS variable, each of which must have numeric values. If the COEF statement is not specified, the CONDATA= data set is searched and SAS variables with names beginning with _COE are used. The number of SAS variables in the COEF list must be no greater than the number of SAS variables in the ROW variable list.

The values of the COEF list variables in an observation can be interpreted differently than these variables' values in other observations. The values can be coefficients in the side constraints, costs and objective function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value that is a name of an arc or a nonarc variable, the \(i\) th COEF list variable is associated with the constraint or special row name named in the \(i\) th ROW list variable. Otherwise, the COEF list variables indicate type values, rhs values, or missing values.

Specific details about this statement for QP problems are given in the "COEF Statement: QP Problems" section on page 675.

\section*{COLUMN Statement: QNPSC Problems}

\section*{COLUMN variable;}

The COLUMN list is used with the sparse input format of the CONDATA= data set. This list consists of one SAS variable in the CONDATA= data set that has as values the names of arc variables, nonarc variables, or missing values. Some, if not all, of these values can also be values of the NAME list variables of the ARCDATA= data set. The COLUMN list variable can have other special values (see the TYPEOBS= and RHSOBS= options). If the COLUMN list is not specified after the PROC QP statement, the CONDATA= data set is searched and a SAS variable named _COLUMN_ is used. The COLUMN list variable must have character values.

Specific details about this statement for QP problems are given in the "COLUMN Statement: QP Problems" section on page 675.

\section*{COST Statement}

\section*{COST variable;}

OBJFN variable;
The COST statement identifies the SAS variable in the ARCDATA= data set that contains the per unit flow cost through an arc. If an observation contains nonarc variable information, the value of the COST list variable is the objective function coefficient of the nonarc variable named in the NAME list variable in that observation. The COST list variable must have numeric values. It is not necessary to specify a COST statement if the name of the SAS variable is _COST_ or _LENGTH_.

When solving a QP problem, the corresponding statement is the OBJFN statement; see the "OBJFN Statement" section on page 678 for details about this statement.

\section*{DEMAND Statement}

DEMAND variable;
The DEMAND statement identifies the SAS variable in the ARCDATA= data set that contains the demand at the node named in the corresponding HEADNODE list variable. The DEMAND list variable must have numeric values. It is not necessary to have a DEMAND statement if the name of this SAS variable is _DEMAND_. See the "Missing S Supply and Missing D Demand Values" section on page 727 for cases when the SUPDEM list variable values can have other values. There should be no DEMAND statement if you are solving a QP without a network component.

\section*{HEADNODE Statement}

\section*{HEADNODE variable;}

HEAD variable;
TONODE variable;
TO variable;
The HEADNODE statement specifies the SAS variable that must be present in the ARCDATA= data set that contains the names of nodes toward which arcs are directed. It is not necessary to have a HEADNODE statement if the name of the SAS variable is _HEAD_ or _TO_. The HEADNODE variable must have character values. There should be no HEAD statement if you are solving a QP without a network component.

\section*{ID Statement: QNPSC Problems}

\section*{ID variables;}

The ID statement specifies SAS variables containing values for pre- and post-optimal processing and analysis. These variables are not processed by PROC QP, but are read by the procedure and written in the CONOUT= data set. For example, imagine a network used to model a distribution system. The SAS variables listed on the ID statement can contain information on the type of vehicle, the transportation mode, the condition of the road, the time to complete the journey, the name of the driver, or other ancillary information useful for writing reports or describing facets of the operation that do not affect the optimization. The ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not included in any other implicit or explicit list specification. If the ID list is specified, any SAS variables in the ARCDATA= data set not in any list are dropped and do not appear in the CONOUT= data set.

\section*{LO Statement: QNPSC Problems}

LO variable;
LOWERBD variable;
MINFLOW variable;
The LO statement identifies the SAS variable in the ARCDATA= data set that contains the minimum feasible flow or lower flow bound for arcs in the network. If an observation contains nonarc variable information, the LO list variable has the value of the lower bound for the nonarc variable named in the NAME list variable. The LO list variable must have numeric values. It is not necessary to have a LO statement if the name of this SAS variable is _LOWER_, _LO_, _LOWERBD, or _MINFLOW.

Specific details about this statement for QP problems are given in the "LO Statement: QP Problems" section on page 677.

\section*{NAME Statement: QNPSC Problems}

\section*{NAME variable;}

ARCNAME variable;
VARNAME variable;
Each arc and nonarc variable in a QNPSC that has data in the CONDATA= data set must have a unique name. This name is a value of the NAME list variable. The NAME list variable must have character values (see the NAMECTRL= option in the PROC QP statement for more information). It is not necessary to have a NAME statement if the name of this SAS variable is _NAME_.

Specific details about this statement for QP problems are given in the "NAME Statement: QP Problems" section on page 677.

\section*{NODE Statement}

\section*{NODE variable;}

The NODE list variable, which must be present in the NODEDATA= data set, has names of nodes as values. These values must also be values of the TAILNODE list variable, the HEADNODE list variable, or both. If this list is not explicitly specified, the NODEDATA= data set is searched for a SAS variable with the name _NODE_. The NODE list variable must have character values.

\section*{SUPDEM Statement}

SUPDEM variable;
The SAS variable in this list, which must be present in the NODEDATA= data set, contains supply and demand information for the nodes in the NODE list. A positive SUPDEM list variable value \(s(s>0)\) denotes that the node named in the NODE list variable can supply \(s\) units of flow. A negative SUPDEM list variable value \(-d(d>\) 0) means that this node demands \(d\) units of flow. If a SAS variable is not explicitly specified, a SAS variable with the name _SUPDEM_ or _SD_ in the NODEDATA= data set is used as the SUPDEM variable. If a node is a transshipment node (neither a supply nor a demand node), an observation associated with this node need not be present in the NODEDATA= data set. If present, the SUPDEM list variable value must be zero or a missing value. See the "Missing S Supply and Missing D Demand Values" section on page 727 for cases when the SUPDEM list variable values can have other values.

\section*{SUPPLY Statement}

\section*{SUPPLY variable;}

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that contains the supply at the node named in that observation's TAILNODE list variable. If a tail node does not supply flow, use zero or a missing value for the observation's SUPPLY list variable value. If a tail node has supply capability, a missing value indicates that the supply quantity is given in another observation. It is not necessary to have a SUPPLY statement if the name of this SAS variable is _SUPPLY_. See the "Missing S Supply and Missing D Demand Values" section on page 727 for cases when the SUPDEM list variable values can have other values. There should be no SUPPLY statement if you are solving a QP without a network component.

\section*{TAILNODE Statement}

TAILNODE variable;
TAIL variable;
FROMNODE variable;
FROM variable;
The TAILNODE statement specifies the SAS variable in the ARCDATA= data set that has as its values the names of tail nodes of arcs. The TAILNODE variable must have character values. It is not necessary to have a TAILNODE statement if the name of the SAS variable is _TAIL_ or _FROM_. If the value of the TAILNODE list variable value is missing, it is assumed that the observation of the ARCDATA= data set contains information concerning a nonarc variable. There should be no TAILNODE statement if you are solving a QP without a network component.

\section*{Details}

\section*{Input Data Sets}

PROC QP is designed so that there are as few rules as possible that you must obey when inputting a problem's data. Raw data are acceptable. This reduces the amount of processing required to groom the data before it is input to PROC QP. Data formats are so flexible that, due to space restrictions, all possible forms for a problem's data are not described here. Try any reasonable form for your problem's data; it should be acceptable. PROC QP will outline its objections.

You can supply the same piece of data in several ways; you do not have to restrict yourself to using any particular one. If you use several ways, PROC QP checks that the data are consistent each time that the data are encountered. After all input data sets have been read, data are merged so that the problem is described completely. The observations can be in any order.

\section*{ARCDATA = Data Set}

See the "Getting Started: QNPSC Problems" section on page 690 and the "Introductory QNPSC Example" section on page 692 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one observation. For example, consider an arc directed from node A toward node B that has a cost of 50 , capacity of 100 , and lower flow bound of 10 flow units. Some possible observations in the ARCDATA= data set are as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline _tail_ & _head_ & _cost_ & _capac_ & 10 \\
\hline A & B & 50 & . & . \\
\hline A & B & . & 100 & . \\
\hline A & B & . & . & 10 \\
\hline A & B & 50 & 100 & . \\
\hline A & B & . & 100 & 10 \\
\hline A & B & 50 & . & 10 \\
\hline A & B & 50 & 100 & 10 \\
\hline
\end{tabular}

Similarly, for a nonarc variable that has an upper bound of 100, a lower bound of 10 , and an objective function coefficient of 50, the _TAIL_ and _HEAD_ values are missing values.

When solving a QP that has a QP variable named my_var with an upper bound of 100 , a lower bound of 10 , and an objective function coefficient of 50 , some possible observations in the ARCDATA= data set are
\begin{tabular}{lccr}
name & _cost_ & _capac_ & lo_ \\
my_var & 50 & \(\dot{0}\) &. \\
my_var & \(\cdot\) & 100 & \(\dot{.}\) \\
my_var & \(\cdot\) &. & 10 \\
my_var & 50 & 100 & \(\dot{0}\) \\
my_var & \(\cdot\) & 100 & 10 \\
my_var & 50 &. & 10 \\
my_var & 50 & 100 & 10
\end{tabular}

\section*{CONDATA = Data Set}

Regardless of whether the data in the CONDATA= data set is in the sparse or dense format, you will receive a warning if PROC QP finds a constraint row that has no coefficients. You will also be warned if any nonarc or QP variable has no constraint coefficients.

\section*{Dense Input Format}

If the dense format is used, most SAS variables in the CONDATA= data set belong to the VAR list. The names of the SAS variables belonging to this list have names of arc and nonarc variables or, if solving a QP , names of the QP variables. These names can be values of the SAS variables in the ARCDATA= data set that belong to the NAME list, names of nonarc variables, names in the form tail_head, or any combination of these three forms. Names in the form tail_head are default arc names, and if you use them, you must specify node names in the ARCDATA= data set (values of the TAILNODE and HEADNODE list variables).

The CONDATA= data set can have three other SAS variables belonging to the ROW list, the TYPE list, and the RHS list, respectively. The CONDATA= data set of the oil industry example in the "Introductory QNPSC Example" section on page 692 uses the dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data for three constraints. This data set was used in the "Introductory QNPSC Example" section on page 692.
```

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
_type_ \$ _rhs_;
datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

```

You can use nonconstraint type values to furnish data on costs, capacities, lower flow bounds (and, if there are nonarc or QP variables, objective function coefficients and upper and lower bounds). You need not have such (or as much) data in the ARCDATA= data set. The first three observations in the following data set are examples of observations that provide cost, capacity, and lower bound data.
```

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
_type_ \$ _rhs_;
datalines;
63 81 200 . 220 . cost .
95 80 175 140 100 100 capac.
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 rrrer . . EQ 0
;

```

If a ROW list variable is used, the data for a constraint can be spread over more than one observation. To illustrate, the data for the first constraint (which is called con1) and the cost and capacity data (in special rows called costrow and caprow, respectively) are spread over more than one observation in the following data set.
```

data cond1c;
input _row_ \$
m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
_type_ \$_rhs_;
datalines;
costrow 63
costrow . }81200\mathrm{ . . . . cost .
. . . . . 220 . cost .
caprow . . . . . . capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140 . . . .
lorow 20 10 50 . 35 . lo .
con1 -2 . 1 . . . . .
con1 . . . . . . >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 . . . . -3 4 = 0
;

```

Using both ROW and TYPE lists, you can use special row names. Examples of these are costrow and caprow in the last data set. Note that in any of the input data sets of PROC QP, the order of the observations does not matter. However, the CONDATA= data set can be read more quickly if PROC QP knows what type of constraint or special row a ROW list variable value is. For example, when the first observation is read, PROC QP does not know whether costrow is a constraint or special row, and it does not know how to interpret the value 63 for the arc with the name m_e_ref1. When PROC QP reads the second observation, it learns that costrow has cost type and that the values 81 and 200 are costs. When the entire CONDATA= data set has been read, PROC QP knows the type of all special rows and constraints. Data that PROC QP had to set aside (such as the value 63 in the first observation and the costrow ROW list variable value, which at the time had unknown type, but was subsequently known to be a cost special row) is reprocessed. During this second pass, if a ROW list variable value has unassigned constraint or special row type, it is treated as a constraint with DEFCONTYPE= type. Associated VAR list variable values are coefficients of that constraint.

\section*{Sparse Input Format}

The side constraints usually become sparse as the problem size increases. When the sparse data format of the CONDATA= data set is used, only nonzero constraint coefficients must be specified. Remember to specify the SPARSECONDATA option in the PROC QP statement. With the sparse method of specifying constraint information, the names of arc and nonarc variables or, if solving a QP , the names of QP variables, do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the "Introductory QNPSC Example" section on page 692 is displayed below.
```

title 'Setting Up Condata = Cond2 for PROC QP';
data cond2;
input _column_ \$ _row1 \$ _coef1 _row2 \$ _coef2 ;
datalines;
m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
_type_ con1 1 con2 1
_type_ con3 0 con4 0
_rhs_ con1 -15 con2 -15
;

```

Recall that the COLUMN list variable values _type_ and _rhs_ are the default values of the TYPEOBS \(=\) and RHSOBS \(=\) options. Also, the default rhs value of constraints (con3 and con4) is zero. The seventh observation has the value _type_ for the COLUMN list variable. The _ROW1 variable value is con1, and the _COEF1_ variable has the value 1. This indicates that the constraint con1 has type greater than or equal to (because the value 1 is greater than zero). Similarly, the data in the
eighth observation's _ROW2 and _COEF2 variables indicate that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable, is as follows:
```

title 'Setting Up Condata = Cond3 for PROC QP';
data cond3;
input _column_ \$ _row1 \$ _coef1 _row2 \$ _coef2 _type_ \$ ;
datalines;
m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3.
r1_gas . . con3 4.
thruput2 con2 1 con4 -3.
r2_gas . . con4 4.
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

```

If the COLUMN list variable is missing in a particular observation (the last two observations in the data set cond3, for instance), the constraints named in the ROW list variables all have the constraint type indicated by the value in the TYPE list variable. It is for this type of observation that you are allowed more ROW list variables than COEF list variables. If corresponding COEF list variables are not missing (for example, the last observation in the data set cond3), these values are the rhs values of those constraints. Therefore, you can specify both constraint type and rhs in the same observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or nonarc variable, the COEF list variable values are coefficient values for that arc or nonarc variable in the constraints indicated in the corresponding ROW list variables. If, in this same observation, the TYPE list variable contains a constraint type, all constraints named in the ROW list variables in that observation have this constraint type (for example, the first observation in the data set cond3). Therefore, you can specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from having to include in the data that con3 and con4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are given in the ARCDATA= data set. Alternatively, you could have used the following input data sets. The arcd2 data set has only two SAS variables. For each arc, there is an observation in which the arc's tail and head node are specified.
```

title3 'Setting Up Arcdata = Arcd2 for PROC QP';
data arcd2;
input _from_\&\$11. _to_\&\$15. ;
datalines;
middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2

```
```

refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

```
title 'Setting Up Condata = Cond4 for \(P R O C Q P^{\prime} ;\)
data cond4;
 input _column_\&\$27. _row1 \$ _coef1 _row2 \$ _coef2 _type_ \$;
 datalines;
\begin{tabular}{|c|c|c|c|c|c|}
\hline - & con1 & -15 & con2 & -15 & ge \\
\hline - & costrow & . & & & cost \\
\hline & & & caprow & & capac \\
\hline middle east_refinery 1 & con1 & -2 & & & \\
\hline middle east_refinery 2 & con2 & -2 & & & \\
\hline refinery 1_r1 & con1 & 1 & con3 & -3 & \\
\hline r1_ref1 gas & & & con3 & 4 & = \\
\hline refinery 2_r2 & con2 & 1 & con4 & -3 & \\
\hline r2_ref2 gas & . & & con4 & 4 & eq \\
\hline middle east_refinery 1 & costrow & 63 & caprow & 95 & \\
\hline middle east_refinery 2 & costrow & 81 & caprow & 80 & \\
\hline u.s.a._refinery 1 & costrow & 55 & & & \\
\hline u.s.a._refinery 2 & costrow & 49 & & & \\
\hline refinery 1_rl & costrow & 200 & caprow & 175 & \\
\hline refinery 2_r2 & costrow & 220 & caprow & 100 & \\
\hline r1_ref1 gas & . & . & caprow & 140 & \\
\hline r1_ref1 diesel & . & . & caprow & 75 & \\
\hline r2_ref2 gas & - & . & caprow & 100 & \\
\hline r2_ref2 diesel & . & . & caprow & 75 & \\
\hline ref1 gas_servstn1 gas & costrow & 15 & caprow & 70 & \\
\hline ref1 gas_servstn2 gas & costrow & 22 & caprow & 60 & \\
\hline ref1 diesel_servstn1 diesel & costrow & 18 & & & \\
\hline ref1 diesel_servstn2 diesel & costrow & 17 & . & & \\
\hline ref2 gas_servstn1 gas & costrow & 17 & caprow & 35 & \\
\hline ref2 gas_servstn2 gas & costrow & 31 & . & & \\
\hline ref2 diesel_servstn1 diesel & costrow & 36 & . & & \\
\hline ref2 diesel_servstn2 diesel & costrow & 23 & - & & \\
\hline middle east_refinery 1 & & 20 & . & & 10 \\
\hline middle east_refinery 2 & & 10 & . & & 10 \\
\hline refinery 1_r1 & & 50 & & & 10 \\
\hline refinery 2_r2 & & 35 & & & 10 \\
\hline ref2 gas_servstn1 gas & & 5 & & & 10 \\
\hline
\end{tabular}
ref2 gas_servstn1 gas
 10
;

The first observation in the cond4 data set defines con1 and con2 as greater than or equal to \((\geq)\) constraints that both (by coincidence) have rhs values of -15 . The second observation defines the special row costrow as a cost row. When costrow is a ROW list variable value, the associated COEF list variable value is interpreted as a cost or objective function coefficient. PROC QP has to do less work if constraint names and special rows are defined in observations near the top of a data set, but this is not a strict requirement. The fourth to ninth observations contain constraint coefficient data. Observations seven and nine have TYPE list variable values that indicate that constraints con3 and con4 are equality constraints. The last five observations contain lower flow bound data. Observations that have an arc or nonarc variable name in the COLUMN list variable, a nonconstraint type TYPE list variable value, and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.
```

title 'Setting Up Condata = Cond5 for PROC QP';
data cond5;
input _column_\&\$27. _row1 \$ _coef1 _row2 \$ _coef2 _type_ \$ ;
datalines;
middle east_refinery 1
middle east_refinery 2
refinery 1_r1
r1_ref1 gas
refinery 2_r2
r2_ref2 gas
ref2 diesel_servstn1 diesel
.
middle east_refinery 1
middle east_refinery 2
u.s.a._refinery 1
u.s.a._refinery 2
refinery 1_r1
refinery 1_r1
refinery 2_r2
refinery 2_r2
r1_ref1 diesel
r2_ref2 gas
r2_ref2 diesel
ref1 gas_servstn1 gas
ref1 gas_servstn2 gas
ref1 diesel_servstn1 diesel
ref1 diesel_servstn2 diesel
ref2 gas_servstn1 gas
ref2 gas_servstn1 gas
ref2 gas_servstn2 gas
ref2 diesel_servstn2 diesel
;

```

\section*{Converting from a QNPSC to a QP Problem}

If you have data for a quadratic programming problem that has an embedded network, the steps required to change that data into a form that is acceptable by PROC QP are as follows:
1. Identify the nodal flow conservation constraints. The coefficient matrix of these constraints (a submatrix of the QP's constraint coefficient matrix) has only two nonzero elements in each column, -1 and 1.
2. Assign a node to each nodal flow conservation constraint.
3. The rhs values of conservation constraints are the corresponding node's supplies and demands. Use this information to create the NODEDATA= data set.
4. Assign an arc to each column of the flow conservation constraint coefficient matrix. The arc is directed from the node associated with the row that has the 1 element in it, and directed toward to the node associated with the row that has the -1 element in it. Set up the ARCDATA= data set that has two SAS variables. This data set could resemble ARCDATA=arcd2. These will eventually be the TAILNODE and HEADNODE list variables when PROC QP is used. Each observation consists of the tail and head node of each arc.
5. Remove from the data of the quadratic program all data concerning the nodal flow conservation constraints.
6. Put the remaining data into a CONDATA= data set. This data set will probably resemble CONDATA=cond4 or CONDATA=cond5.

\section*{The Sparse Format Summary}

The following list illustrates possible CONDATA= data set sparse formats. Observations a1, b1, b2, b3, and c1 have as a _COLUMN_ variable value either the name of an arc (possibly in the form tail_head), the name of a nonarc variable (if you are solving a QNPSC), or the name of a QP variable (if you are solving a QP). These are collectively referred to as variable in the tables that follow.
- If there is no TYPE list variable in the CONDATA= data set, the problem must be constrained, and there is no nonconstraint data in the CONDATA= data set:
\begin{tabular}{|c|c|c|c|c|}
\hline & _COLUMN_ & _ROWx & _COEFx & \[
\begin{aligned}
& \text { _ROWy_-_COEFy_) } \\
& \text { (mo nay not be } \\
& \text { in CONDATA) }
\end{aligned}
\] \\
\hline a1 & variable & constraint & lhs coef & \(+\) \\
\hline a2 & _TYPE_ or & constraint & -1 01 & I \\
\hline & TYPEOBS \(=\) & & & I \\
\hline a3 & _RHS_ or & constraint & rhs value & | constraint \\
\hline & RHSOBS \(=\) or & & & 1 or \\
\hline & missing & & & missing \\
\hline a4 & _TYPE_ or & constraint & missing & I \\
\hline & TYPEOBS \(=\) & & & 1 \\
\hline a5 & _RHS_ or & constraint & missing & 1 \\
\hline & \begin{tabular}{l}
\[
\text { RHSOBS }=\text { or }
\] \\
missing
\end{tabular} & & & +------------+ \\
\hline
\end{tabular}

Observations of the form a 4 and a5 serve no useful purpose but are still allowed to make problem generation easier.
- If there are no ROW list variables in the data set, the problem has no constraints and the information is nonconstraint data. There must be a TYPE list variable and only one COEF list variable in this case. The COLUMN list variable has as values the names of arcs or nonarc variables, and must not have missing values or special row names as values:
\begin{tabular}{llll}
& _COLUMN_ & _TYPE_ & _COEFx_ \\
b1 variable & UPPERBD & capacity \\
b2 variable & LOWERBD & lower flow \\
b3 variable & COST & cost
\end{tabular}
- Using a TYPE list variable for constraint data implies the following:

If the observation is in form c4 or c5, and the _COEFx_ values are missing, the constraint is assigned the type data specified in the _TYPE_ variable.
- Using a TYPE list variable for arc and nonarc variable data implies the following:

The observations of the form d1 to d5 can have ROW list variable values. Observation d4 must have ROW list variable values. The ROW value is put into the ROW name tree so that when dealing with observation d 4 or d 5 , the COEF list variable value is interpreted according to the type of ROW list variable value. For example, the following three observations define the _ROWx_ variable values 'up_row', 'lo_row', and 'co_row' as being an upper value bound row, lower value bound row, and cost row, respectively:
\begin{tabular}{clll}
COLUMN & _TYPE_ & _ROWx_ & _COEFx_ \\
variable_a & UPPERBD & LOWERBD & up_row \\
variable_b & COST & lo_row & lower flow \\
& & co_row & cost
\end{tabular}

PROC QP is now able to correctly interpret the following observation:
```

_COLUMN_ _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2__ _ROW3_ _COEF3_
var_c . up_row upval lo_row loval co_row cost

```

If the TYPE list variable value is a constraint type and the value of the COLUMN list variable equals the value of the TYPEOBS= option or the default value _TYPE_, the TYPE list variable value is ignored.

\section*{HESSIAN = Data Set}

Each observation of the HESSIAN= data set provides data for an element of the Hessian matrix. If there is a term \(6 x_{\operatorname{arc} 3} x_{\text {nonarc } 5}\) in the objective function, then \(H_{\text {arc3,nonarc5 }}=6\), and there will be an observation in the HESSIAN= data set that has the value 'arc3' for the HESSIANROW variable, the value 'nonarc5' for the HESSIANCOLUMN variable, and the value 6 for the HESSIANCOEF variable.

The Hessian matrix is symmetric, so \(H_{\text {nonarc5,arc3 }}=6\) also, and another observation of the HESSIAN= data set could have values 'nonarc5', 'arc3', and 6 for the HESSIANROW, HESSIANCOLUMN, and HESSIANCOEF variables, respectively. However, you need only one of these observations; PROC QP will assume the existence of the element's symmetric pair.

Note that while data for a nondiagonal element of the \(H\) matrix corresponds exactly to the term in the objective function, data for diagonal elements of \(H\) are doubled. For the term \(6 x_{\operatorname{arc} 3} x_{\text {nonarc } 5}\) in the objective function, the nondiagonal element \(H_{\text {arc3,nonarc5 }}=H_{\text {nonarc5,arc3 }}=6\), and the value 6 is used in the corresponding observation of the HESSIAN= data set. If there is a term \(5 x_{\operatorname{arc} 4}^{2}\) in the objective function, then the diagonal element \(H_{\operatorname{arc} 4, \operatorname{arc} 4}=10\) and the value 10 is used in the corresponding observation of the HESSIAN= data set. In that observation, both the HESSIANROW and the HESSIANCOLUMN variables would have the value 'arc4'.

For minimization problems, the Hessian matrix must be positive semi-definite; for maximization problems, it must be negative semi-definite.

\section*{NODEDATA= Data Set}

See the "Getting Started: QNPSC Problems" section on page 690 and the "Introductory QNPSC Example" section on page 692 for a description of this input data set.

\section*{Output Data Set}

For QNPSC problems, the procedure determines the flow that should pass through each arc, as well as the value that should be assigned to each nonarc variable. The goal is that the minimum flow bounds, capacities, lower and upper value bounds, and side constraints are not violated. This goal is reached when total cost incurred by such a flow pattern and value assignment is feasible and optimal. The solution found must also conserve flow at each node.

For QP problems, the procedure determines the value that should be assigned to each variable. The goal is that the lower and upper value bounds and the constraints are not violated. This goal is reached when the total cost incurred by such a value assignment is feasible and optimal.

The CONOUT= data set can be produced and contains a solution obtained after performing optimization.

\section*{CONOUT= Data Set}

The variables in the CONOUT= data set depend on whether PROC QP solved a QP problem or a QNPSC problem. When solving a QP problem (see the "Quadratic Programming Problems" section beginning on page 656), the CONOUT= data set contains the following variables:
\begin{tabular}{ll}
NAME & the name of a QP variable \\
OBJFN & the objective function coefficient of a QP variable \\
_UPPERBD & the upper value bound of a QP variable \\
_LOWERBD & the lower value bound of a QP variable \\
VALUE & the value of a QP variable in the optimal solution
\end{tabular}

When solving a QNPSC problem (see the "Quadratic Network Problems with Side Constraints" section beginning on page 681), the CONOUT= data set contains the following variables:
\begin{tabular}{ll}
FROM & \begin{tabular}{l}
a tail node of an arc. This is a missing value if an observation has \\
information about a nonarc variable. \\
a head node of an arc. This is a missing value if an observation \\
has information about a nonarc variable.
\end{tabular} \\
the cost of an arc or the objective function coefficient of a nonarc \\
variable \\
the capacity of an arc or upper value bound of a nonarc variable \\
the lower flow bound of an arc or lower value bound of a nonarc \\
variable \\
the name of an arc or nonarc variable \\
the supply of the tail node of the arc in the observation. This is \\
a missing value if an observation has information about a nonarc \\
variable.
\end{tabular}

The variables present in the ARCDATA= data set are present in a CONOUT= data set. For example, if there is a variable called tail in the ARCDATA= data set and you specified the SAS variable list
```

from tail;

```
then tail replaces the variable _FROM_ in the CONOUT= data set. Any ID list variables also appear in the CONOUT= data sets.

\section*{Case Sensitivity}

Whenever the QP procedure has to compare character strings, whether they are node names, arc names, nonarc names, QP variable names, or constraint names, PROC QP judges the character strings to be different if the two strings have different lengths, or if on a character-by-character basis, the characters are different or have different cases.

Not only is this rule enforced when one or both character strings are obtained as values of SAS variables in PROC QP's input data sets, it should also be obeyed if one or both character strings were originally SAS variable names, or were obtained as the values of options or statements parsed to PROC QP. For example, if the network has only one node with supply capability, or if you are solving a MAXFLOW or SHORTPATH problem, you can indicate that node using the SOURCE= option. If you specify
```

proc qp source=NotableNode

```
then PROC QP looks for a value of the TAILNODE list variable that is NotableNode.
Version 6 of the SAS System converts text that makes up statements into uppercase. The name of the node searched for would be NOTABLENODE, even if this was your SAS code:
```

proc qp source=NotableNode

```

If you want PROC QP to behave as it did in Version 6, specify
```

options validvarname=v6;

```

If the SPARSECONDATA option is not specified and you have specified
```

options validvarname=v6;

```
all values of the SAS variables that belong to the NAME list are uppercased. This is because the SAS System has uppercased all SAS variable names, particularly those in the VAR list of the CONDATA= data set. Variable names that contain blanks must be enclosed in quotes.

\section*{Loop Arcs}

Loop arcs (arcs directed toward nodes from which they originate) are prohibited. Rather, introduce a dummy intermediate node in loop arcs. For example, replace arc \((A, A)\) with \((A, B)\) and \((B, A)\). \(B\) is the name of a new node, and it must be distinct for each loop arc.

\section*{Multiple Arcs}

Multiple arcs with the same tail and head nodes are prohibited. PROC QP checks to ensure that there are no such arcs before proceeding with the optimization. You can include multiple arcs in your model by introducing a new dummy intermediate node. This node must be distinct for each multiple arc. For example, if some network has three arcs directed from node \(A\) toward node \(B\), then replace one of these three with arcs \((A, C)\) and \((C, B)\), and replace another one with \((A, D)\) and \((D, B)\). The nodes \(C\) and \(D\) are new nodes added to the network.

\section*{Flow and Value Bounds}

The capacity and lower flow bound of an arc can be equal. Negative arc capacities and lower flow bounds are permitted. If both the arc capacity and the lower flow bound are negative, the lower flow bound must be at least as negative as the capacity. An arc \((A, B)\) that has a negative flow of \(-f\) units can be interpreted as an arc that conveys \(f\) units of flow from node \(B\) to node \(A\).

The upper and lower value bound of a nonarc variable can be equal. Negative upper and lower bounds are permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

When solving a QP, the upper and lower value bounds of a QP variable can be equal. Negative upper and lower bounds are permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

In short, for any problem to be feasible, a lower bound must be less than or equal to the associated upper bound.

\section*{Tightening Bounds and Side Constraints}

If any piece of data is furnished to PROC QP more than once, PROC QP checks for consistency so that no conflict exists concerning the data values. For example, if the cost of some arc is seen to be one value, and as more data are read, the cost of the same arc is seen to be another value, PROC QP issues an error message on the SAS \(\log\) and stops. There are two exceptions to this:
- The bounds of arcs and nonarc variables, or the bounds of QP variables, are made as tight as possible. If several different values are given for the lower flow bound of an arc, the greatest value is used. If several different values are given for the lower bound of a nonarc or QP variable, the greatest value is used. If several different values are given for the capacity of an arc, the smallest value is used. If several different values are given for the upper bound of a nonarc or QP variable, the smallest value is used.
- Several values can be given for inequality constraint right-hand sides. For a particular constraint, the lowest rhs value is used for the rhs if the constraint is of less than or equal to type. For a particular constraint, the greatest rhs value is used for the rhs if the constraint is of greater than or equal to type.

\section*{Reasons for Infeasibility}

Before optimization begins, PROC QP tests to ensure that the problem is not infeasible by ensuring that, with respect to supplies, demands, and arc flow bounds, flow conservation can be obeyed at each node:
- Let \(I N\) be the sum of lower flow bounds of arcs directed toward a node, plus the node's supply. Let OUT be the sum of capacities of arcs directed from that node, plus the node's demand. If \(I N\) exceeds \(O U T\), not enough flow can leave the node.
- Let \(O U T\) be the sum of lower flow bounds of arcs directed from a node, plus the node's demand. Let \(I N\) be the total capacity of arcs directed toward the node, plus the node's supply. If \(O U T\) exceeds \(I N\), not enough flow can arrive at the node.

Reasons why a network problem can be infeasible are similar to those previously mentioned, but apply to a set of nodes rather than to an individual node.

Consider the network illustrated in Figure 7.9.

Figure 7.9. An Infeasible Network
The demand of NODE_4 is 120. That can never be satisfied because the maximal flow through arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) is 117. More specifically, the implicit supply of NODE_2 and NODE_6 is only 117, which is insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) are greater than the flow that can reach the tail nodes of these arcs, that, by coincidence, is the total supply of the network. The implicit demand of nodes NODE_1 and NODE_5 is 110, which is greater than the amount of flow that can reach these nodes.

\section*{Missing S Supply and Missing D Demand Values}

In some models, you may want a node to be either a supply or demand node, but you want the node to supply or demand the optimal number of flow units. To indicate that a node is such a supply node, use a missing S value in the SUPPLY list variable in the ARCDATA= data set, or the SUPDEM list variable in the NODEDATA= data set. To indicate that a node is such a demand node, use a missing D value in the DEMAND list variable in the ARCDATA= data set, or the SUPDEM list variable in the NODEDATA= data set.

Suppose the oil example in the "Introductory QNPSC Example" section on page 692 is changed so that crude oil can be obtained from either the Middle East or U.S.A. in any amounts. You should specify that the node middle east is a supply node, but you do not want to stipulate that it supplies 100 units, as before. The node u.s.a. should also remain a supply node, but you do not want to stipulate that it supplies 80 units. You must specify that these nodes have missing \(S\) supply capabilities:
```

title 'Oil Industry Example';
title3 'Crude Oil can come from anywhere';
data miss_s;
missing S;
input _node_\&\$15. _sd_;
datalines;
middle east S
u.s.a.
S

```
```

servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

```

The following PROC QP run uses the same ARCDATA=, CONDATA=, and HESSIAN= data sets used in the "Introductory QNPSC Example" section on page 692:
```

proc qP
bytes=100000
stop_dg=1e-6
nodedata=miss_s /* the supply (missing S) and */
/* demand data */
/* the arc descriptions */
/* the side constraints */
/* the hessian matrix */
/* the solution data set */
arcdata=arcd1
condata=cond1
hessian=hessian1
conout=solution;
run;
proc print data=solution;
format _name_ \$12.;
run;

```

The following messages appear on the SAS log:
```

NOTE: Number of nodes= 14.
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18.
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent
Quadratic Programming Problem solved by the
Interior Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: There are 11 diagonal and superdiagonal elements of
the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.64883E-09
NOTE: Dual infeasibility 5.03318E-07
NOTE: Duality gap 5.51288E-07
NOTE: Objective= 721151.2166.

```
```

NOTE: The data set WORK.SOLUTION has }18\mathrm{ observations and
9 variables.
NOTE: There were 18 observations read from the data set
WORK.ARCD1.
NOTE: There were 6 observations read from the data set
WORK.MISS_S.
NOTE: There were 11 observations read from the data set
WORK.HESSIAN1.
NOTE: There were 4 observations read from the data set
WORK. COND1 .

```

The CONOUT= data set is shown in Figure 7.10.

Figure 7.10. Missing S SUPDEM Values in NODEDATA
The optimal supplies of nodes middle east and u.s.a. are 77.5 and 102.5 units, respectively. For this example, the same optimal solution is obtained if these nodes had supplies less than these values (each supplies 1 unit, for example) and the THRUNET option was specified in the PROC QP statement. With the THRUNET option active, when total supply exceeds total demand, the specified nonmissing demand values are the lowest number of flow units that must be absorbed by the corresponding node. This is demonstrated in the following PROC QP run. The missing S is most useful when nodes are to supply optimal numbers of flow units, and it turns out that for some nodes, the optimal supply is 0 .
```

data miss_s_x;
missing S;
input _node_\&\$15. _sd_;
datalines;
middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
proc qp
bytes=100000
stop_dg=1e-6
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
hessian=hessian1 /* the hessian matrix */
conout=solution; /* the solution data set */
run;
proc print;
run;

```

The following messages appear on the SAS log. Note that the Total supply=2, not 0 as in the last run:
```

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180.
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent
Quadratic Programming problem solved by the
Interior Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20.
NOTE: There are 11 diagonal and superdiagonal elements
in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 3.38684E-10
NOTE: Dual infeasibility 1.96488E-07
NOTE: Duality gap 2.69230E-07

```
```

NOTE: Objective= 721151.2166.
NOTE: The data set WORK.SOLUTION has }18\mathrm{ observations
and 9 variables.
NOTE: There were 18 observations read from the data set
WORK. ARCD1 .
NOTE: There were 6 observations read from the data set
WORK.MISS_S_X.
NOTE: There were 11 observations read from the data set
WORK. HESSIAN1.
NOTE: There were 4 observations read from the data set
WORK. COND1.

```

If total supply exceeds total demand, any missing S values are ignored. If total demand exceeds total supply, any missing D values are ignored.

\section*{Balancing Total Supply and Total Demand}

\section*{When Total Supply Exceeds Total Demand}

When total supply of a network problem exceeds total demand, PROC QP adds an extra node (called the excess node) to the problem and sets the demand at that node equal to the difference between total supply and total demand. There are three ways that this excess node can be joined to the network. All three ways entail PROC QP generating a set of arcs (henceforth referred to as the generated arcs) that are directed toward the excess node. The total amount of flow in generated arcs equals the demand of the excess node. The generated arcs originate from one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs originate from are all demand nodes, including those demand nodes with unspecified demand capability. You indicate that a node has unspecified demand capability by using a missing D value instead of an actual value for demand data (discussed in the "Missing S Supply and Missing D Demand Values" section on page 727). The value specified as the demand of a demand node is in effect a lower bound of the number of flow units that node can actually demand. For missing D demand nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network depends on whether or not there are demand nodes with unspecified demand capability (nodes with missing D demand).

If there are missing D demand nodes, these nodes are the set of nodes from which the generated arcs originate. The value specified as the demand of a demand node, if not missing \(D\), is the number of flow units that node can actually demand. For a missing D demand node, the actual demand of that node may be zero or greater.

If there are no missing \(D\) demand nodes, the set of nodes from which the generated arcs originate is the set of supply nodes. The value specified as the supply of a supply node is, in effect, an upper bound of the number of flow units that node can actually supply. For missing S supply nodes (discussed in the "Missing S Supply and Missing D Demand Values" section on page 727), this upper bound is zero, so missing \(S\) nodes when total supply exceeds total demand are transshipment nodes (that is, nodes that neither supply nor demand flow).

\section*{When Total Supply Is Less Than Total Demand}

When total supply of a network problem is less than total demand, PROC QP adds an extra node (called the excess node) to the problem and sets the supply at that node equal to the difference between total demand and total supply. There are three ways that this excess node can be joined to the network. All three ways entail PROC QP generating a set of arcs (henceforth referred to as the generated arcs) that originate from the excess node. The total amount of flow in generated arcs equals the supply of the excess node. The generated arcs are directed toward one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are directed toward are all supply nodes, including those supply nodes with unspecified supply capability. You indicate that a node has unspecified supply capability by using a missing \(S\) value instead of an actual value for supply data (discussed in the "Missing S Supply and Missing D Demand Values" section on page 727). The value specified as the supply of a supply node is, in effect, a lower bound of the number of flow units that the node can actually supply. For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network depends on whether or not there are supply nodes with unspecified supply capability (nodes with missing S supply).

If there are missing \(S\) supply nodes, these nodes are the set of nodes that generated arcs are directed toward. The value specified as the supply of a supply node, if not missing \(S\), is the number of flow units that the node can actually supply. For a missing S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed toward is the set of demand nodes. The value specified as the demand of a demand node is, in effect, an upper bound of the number of flow units that node can actually demand. For missing D demand nodes (discussed in the "Missing S Supply and Missing D Demand Values" section on page 727), this upper bound is zero, so missing D nodes when total supply is less than total demand are transshipment nodes (that is, nodes that neither supply nor demand flow).

\section*{How to Make the Data Read of PROC QP More Efficient}

This section contains information that is useful when you want to solve large constrained network problems. However, much of this information is also useful if you have a large quadratic programming problem. All of the options described in this section that are not directly applicable to networks (options such as ARCS_ONLY_ARCDATA, ARC_SINGLE_OBS, NNODES=, and NARCS=) can be specified to improve the speed at which QP data is read.

\section*{Large Constrained Network Problems}

Many of the models presented to PROC QP are enormous. They can be considered large by quadratic programming standards; problems with thousands, even millions, of variables and constraints. When dealing with side-constrained network programming problems, models can have not only a quadratic programming component of that magnitude, but also a larger (possibly much larger) network component.

The majority of a network problem's decision variables are arcs. Like a QP decision variable, an arc has an objective function coefficient, upper and lower value bounds, and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite similar to a QP variable, and places the same memory demands on optimization as a QP variable. But a typical network model has many more arcs and nonarc variables than the typical QP model has variables. In addition, arcs have tail and head nodes. Storing and processing node names require huge amounts of memory. To make matters even more complicated, node names occupy memory at times when a large amount of other data should reside in memory as well.

While memory requirements are lower for a model with an embedded network component compared with the equivalent QP once optimization starts, the same is usually not true during the data read. Even though nodal flow conservation constraints in the QP should not be specified in the constrained network formulation, the memory requirements to read the latter are greater because each arc (unlike a QP variable) originates at one node and is directed toward another.

\section*{Paging}

PROC QP has facilities to read data when the available memory is insufficient to store all the data at once. PROC QP does this by allocating memory for different purposes; for example, to store an array or receive data read from an input SAS data set. After that memory has filled, the information is written to disk and PROC QP can resume filling that memory with new information. Often, information must be retrieved from disk so that data previously read can be examined or checked for consistency. Sometimes, to prevent any data from being lost, or to retain any changes made to the information in memory, the contents of the memory must be sent to disk before other information can take its place. This process of swapping information to and from disk is called paging. Paging can be very time-consuming, so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC QP read the data of network and quadratic programming models more efficiently, particularly when memory is scarce and the amount of paging must be reduced. PROC QP will then be able to tackle large problems in what can be considered reasonable amounts of time.

\section*{The Order of Observations}

PROC QP is quite flexible in the ways data can be supplied to it. Data can be given by any reasonable means. PROC QP has convenient defaults that can save you work when generating the data. There can be several ways to supply the same piece of data, and some pieces of data can be given more than once. PROC QP reads everything, then merges it all together. However, this flexibility and convenience come at a price; PROC QP may not assume the data has a characteristic that, if possessed by the data, could save time and memory during the data read. Several options can indicate that the data has some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= data set or the CONDATA= data set, or both. Every time it is given in the ARCDATA= data set, a check is made to ensure that the new value is the same as any corresponding value read in a previous observation of the ARCDATA= data set. Every time it
is given in the CONDATA= data set, a check is made to ensure that the new value is the same as the value read in a previous observation of the CONDATA= data set, or previously in the ARCDATA= data set. PROC QP would save time if it knew that arc cost data would be encountered only once while reading the ARCDATA= data set, so performing the time-consuming check for consistency would not be necessary. Also, if you indicate that the CONDATA= data set contains data for constraints only, PROC QP will not expect any arc information, so memory will not be allocated to receive such data while reading the CONDATA= data set. This memory is used for other purposes, and this might lead to a reduction in paging. If applicable, use the ARC_SINGLE_OBS or the CON_SINGLE_OBS option, or both, and the NON_REPLIC=COEFS specification to improve how the ARCDATA= data set and the CONDATA= data set are read.

PROC QP allows the observations in input data sets to be in any order. However, major time savings can result if the observations are ordered in particular ways. Time spent by the SORT procedure to sort the input data sets, particularly the CONDATA= data set, may be more than made up for when PROC QP reads them, because PROC QP has in memory information possibly used when the previous observation was read. PROC QP can assume a piece of data is either similar to that of the last observation read or is new. In the first case, valuable information, such as an arc or a nonarc variable number or a constraint number, is retained from the previous observation. In the last case, checking the data with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain data for the same arc or nonarc variable or the same row pays off. PROC QP establishes whether an observation being read is similar to the observation just read.

In practice, many input data sets for PROC QP have this characteristic, because it is natural for data for each constraint to be grouped together (when using the dense format of the CONDATA= data set) or data for each column to be grouped together (when using the sparse format of the CONDATA= data set). If data for each arc or nonarc is spread over more than one observation of the ARCDATA= data set, it is natural to group these observations together.

You can use the GROUPED= option to indicate whether observations of the ARCDATA= data set, the CONDATA= data set, or both, are grouped in a way that can be exploited during data read.

You can save time if the type data for each row appears near the top of the CONDATA = data set, especially if it has the sparse format. Otherwise, when reading an observation, if PROC QP does not know if a row is a constraint or special row, the data is set aside. Once the data set has been completely read, PROC QP must reprocess the data it set aside. By then, it knows the type of each constraint or row or, if its type was not provided, it is assumed to have a default type.

\section*{Better Memory Utilization}

In order for PROC QP to make better utilization of available memory, you can specify options that indicate the approximate size of the model. PROC QP then knows what to expect. For example, if you indicate that the problem has no nonarc variables,

PROC QP will not allocate memory to store nonarc data. That memory is better utilized for other purposes. Memory is often allocated to receive or store data of some type. If you indicate that the model does not have much data of a particular type, the memory that would otherwise have been allocated to receive or store that data can be used to receive or store data of another type.

The problem size options are as follows:
- NNODES= approximate number of nodes
- NARCS= approximate number of arcs
- NNAS = approximate number of nonarc variables or QP variables
- NCONS= approximate number of QNPSC side constraints or QP constraints
- NCOEFS= approximate number of QNPSC side constraint coefficients or QP constraint coefficients

These options will sometimes be referred to as Nxxxx= options.
You do not need to specify all these options for the model, but the more you do, the better. If you do not specify some or all of these options, PROC QP guesses the size of the problem by using what it already knows about the model. Sometimes PROC QP guesses the size of the model by looking at the number of observations in the ARCDATA = and the CONDATA= data sets. However, PROC QP uses rough rules of thumb, that typical models are proportioned in certain ways (for example, if there are constraints, then arcs, nonarc variables, or QP variables usually have about five constraint coefficients). If your model has an unusual shape or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, it is best to overestimate the values. For example, if you specify NARCS=10000 but the model has 10100 arcs, when dealing with the last 100 arcs, PROC QP might have to page out data for 10000 arcs each time one of the last arcs must be dealt with. Memory could have been allocated for all 10100 arcs without affecting (much) the rest of the data read, so NARCS \(=10000\) could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC QP does not know it. When PROC QP knows the real value, that value is used instead of Nxxxx= .

ARCS_ONLY_ARCDATA indicates that the data in the ARCDATA= data set are for arcs only. Memory will not be wasted to receive data for nonarc variables.

You can use the memory usage options to make the data read more efficient:
- The BYTES= option specifies the size of PROC QP main working memory in number of bytes.
- The MEMREP option indicates that memory usage report is to be displayed on the SAS log.

Specifying an appropriate value for the BYTES= parameter is particularly important. Specify as large a number as possible, but not so large a number that will cause PROC QP (that is, the SAS System running underneath PROC QP) to run out of memory.

PROC QP reports its memory requirements on the SAS \(\log\) if you specify the MEMREP option.

\section*{Use Defaults to Reduce the Amount of Data}

You should use the parameters that specify default values as much as possible. For example, if there are many arcs with the same cost value \(c\), use DEFCOST \(=c\) for arcs that have that cost. Use missing values in the COST variable in the ARCDATA= data set instead of \(c\). PROC QP ignores missing values, but must read, store, and process nonmissing values, even if they are equal to a default option or could have been equal to a default parameter had it been specified. Using default parameters sometimesmakes the need for some SAS variables in the ARCDATA= and the CONDATA= data sets no longer necessary, or reduces the quantity of data that must be read. The default options are
- DEFCOST= default cost of arcs, objective function of nonarc variables or QP variables
- DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc variables or QP variables
- DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or QP variables
- DEFCONTYPE \(=\) LE or DEFCONTYPE \(=<=\) DEFCONTYPE \(=\mathrm{EQ}\) or DEFCONTYPE \(==\) DEFCONTYPE \(=\) GE or DEFCONTYPE \(=>=\)

DEFCONTYPE=LE is the default.
The default options themselves have defaults. For example, you do not need to specify DEFCOST=0 in the PROC QP statement. You should still have missing values in the COST variable in the ARCDATA= data set for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use
- SOURCE= name of single node that has supply capability
- SUPPLY= the amount of supply at SOURCE
- \(\mathrm{SINK}=\) name of single node that demands flow
- DEMAND= the amount of flow that SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default. The only time it might be practical to specify a zero rhs is in observations of the CONDATA= data set read early so that PROC QP can infer that a row is a constraint. This could prevent coefficient data from being put aside because PROC QP did not know the row was a constraint.

\section*{Names of Things}

To cut data read time and memory requirements, you should reduce the number of bytes in the longest node name, the longest arc name, the longest nonarc variable name, the longest QP variable name, and the longest constraint name to 8 bytes or less. The longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC QP has a default name for each arc. If an arc is directed from node tailname toward node headname, the default name for that arc is tailname_headname. If you do not want PROC QP to use these default arc names, specify NAMECTRL=1. Otherwise, PROC QP must use memory for storing node names and these node names must be searched often.

If you want to use the default tailname_headname name, that is, NAMECTRL=2 or NAMECTRL=3, do not use underscores in node names. If the CONDATA= data set has a dense format and has a variable in the VAR list named A_B_C_D, or if the value A_B_C_D is encountered as a value of the COLUMN list variable when reading the CONDATA= data set that has the sparse format, PROC QP first looks for a node named A. If it finds it, it looks for a node called B_C_D. It then looks for a node with the name \(A _B\) and possibly a node with name C_D. A search is then conducted for a node named A_B_C and possibly a node named D. Underscores could have caused PROC QP to look unnecessarily for nonexistent nodes. Searching for node names can be expensive, and the amount of memory to store node names is often large. It might be better to assign the arc name A_B_C_D directly to an arc by having that value as a NAME list variable value for that arc in the ARCDATA= data set and specifying NAMECTRL=1.

\section*{Other Ways to Speed-up Data Reads}

Arcs and nonarc variables, or QP variables, can have associated with them values or quantities that have no bearing on the optimization. This information is given in the ARCDATA= data set in the ID list variables. For example, in a distribution problem, information such as truck number and driver's name can be associated with each arc. This is useful when the optimal solution saved in the CONOUT= data set is analyzed. However, PROC QP needs to reserve memory to process this information when data is being read. For large problems when memory is scarce, it might be better to remove ancillary data from the ARCDATA= data set. After PROC QP runs, you can use SAS software to merge this information into the CONOUT= data set that contains the optimal solution.

\section*{Examples}

The following examples illustrate some of the capabilities of PROC QP. These examples, together with the other SAS/OR examples, can be found in the SAS sample library.

In order to illustrate variations in the use of the QP procedure, Example 7.1 through Example 7.8 use data for the following QP problem:
\[
\begin{array}{ll}
\operatorname{minimize} & 10 x_{1}^{2}+10 x_{2}^{2}+10 x_{3}^{2}+2 x_{1} x_{2}+4 x_{1} x_{3}+10 x_{2}+10 x_{3} \\
\text { subject to } & x_{1}+x_{2}=44 \\
& x_{1}+x_{2}+x_{3} \geq 5 \\
& x_{1}-3 x_{3}=4 \\
& 0 \leq x_{1} \leq 100 \\
& 10 \leq x_{2} \leq 100 \\
& 10 \leq x_{3} \leq 100
\end{array}
\]

The QP procedure can solve problems that have an embedded network. To demonstrate this, a simple two-node, one-arc network is added to the QP instance above. For such problems, an optimal solution is comprised of the optimal flows through arcs, and the optimal values of the nonarc variables. Example 7.5 demonstrates how the QP procedure is used, and Example 7.6 confirms that the solution is correct by solving the equivalent QP problem when the network specification is included with the data for the remainder of the problem. Example 7.7 and Example 7.8 show how arc Hessian data is specified.

\section*{Example 7.1. Dense Format in CONDATA}

The HESSIAN=HESS data set is initialized with the quadratic part of the objective function. Remember that the term \(10 x_{1}^{2}\) in the objective function is really \(\frac{1}{2}\left(20 x_{1}^{2}\right)\) when matrix multiplication is performed in the term \(\frac{1}{2} x^{T} H x\); therefore, diagonal elements in \(H\) must be doubled. The term \(4 x_{1} x_{3}\) is really \(\frac{1}{2}\left(4 x_{1} x_{3}+4 x_{3} x_{1}\right)\), so the off-diagonal elements of the Hessian should not be doubled. The HESSIAN=HESS data set is initialized with SAS variables row, col, and val, which are not the default names of SAS variables used for the HESSIANCOEF, HESSIANROW, and HESSIANCOLUMN SAS variable lists, so these variable lists must be specified after the QP statement.
```

/*-- Dense format in condata --*/
data HESS;
input row \$ col \$ val;
datalines;
X1 X1 20
x2 x2 20
x3 x3 20
X2 X1 2
x3 X1 4
;

```
```

data DENDATA;
input X1-X3 _type_ \$ _rhs_;
datalines;
1 1 . eq 44
1 1 1 ge 5
. -3 eq 4
10 10 min .
10 10 lo .
100 100 100 up .
;
proc qp
condata=DENDATA hessian=HESS
bytes=100000
stop_dg=1e-6
conout=soln1;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

```

The following messages are written to the SAS log.
```

NOTE: Number of variables= 3 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 2 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 7 .
NOTE: There are 5 diagonal and superdiagonal
elements in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.16458E-07
NOTE: Dual infeasibility 2.19915E-08
NOTE: Duality gap 8.06165E-07
NOTE: Objective= 15799.976398.
NOTE: The data set WORK.SOLN has 3 observations
and 5 variables.
NOTE: There were 5 observations read from the
data set WORK.HESS.
NOTE: There were 6 observations read from the
data set WORK.DENDATA.

```

The optimal solution data set, CONOUT=SOLN1, is given in Output 7.1.1.
Output 7.1.1. CONOUT=SOLN1
\begin{tabular}{|cccccc|}
\hline Obs & _NAME_ & _OBJFN_ & _UPPERBD & _LOWERBD & _VALUE_ \\
1 & X1 & 0 & & & \\
2 & X2 & 10 & 100 & 0 & 34.0000 \\
3 & X3 & 10 & 100 & 10 & 10.0000 \\
\hline
\end{tabular}

\section*{Example 7.2. Dense Format in CONDATA and a VARDATA Is Used}

You can provide data for the same problem in other ways. In this example, another HESSIAN= data set is created using SAS variable names suitable to be automatically used in the HESSIANCOEF, HESSIANROW, and HESSIANCOLUMN variable lists. This saves you from having to specify these lists. Also, the nonconstraint data (that is, the data corresponding to each variable's linear component of the objective function, and upper and lower bounds) are provided in a VARDATA= data set. The CONDATA= data set is reduced to providing only constraint data.

These data sets are used to solve the QP problem. The QP procedure issues messages to the SAS log that are the same as for Example 7.1. The data set SOLN2 differs from SOLN1 in that the names of variables in VARDATA1 assumed to be in the NAME, OBJFN, LO, and UPPERBD variable lists are used.
```

/*-- Dense format in condata and a vardata is used --*/
data HESS2;
input _row_ \$ _col_ \$ _coef_;
datalines;
X1 X1 20
x2 x2 20
x3 x3 20
X2 X1 2
x3 X1 4
;
data DENDATA2;
input x1-x3 _type_ \$ _rhs_;
datalines;
1 1 . eq 44
1 1 1 ge 5
1 . -3 eq 4
;
data VARDATA1;
input _name_ \$ _objfn_ _lo_ _upper_;
datalines;
x1 0 0 100
X2 10 10 100
x3 10 10 100
;

```
```

proc qp
condata=DENDATA2 hessian=HESS2
vardata=VARDATA1
bytes=100000
stop_dg=1e-6
conout=soln2;
run;

```

The optimal solution data set, CONOUT=SOLN2, is given in Output 7.2.1.
Output 7.2.1. \(\quad\) CONOUT=SOLN2
\begin{tabular}{|c|c|c|c|c|c|}
\hline Obs & _name_ & _objfn_ & _upper_ & 10 & _VALUE_ \\
\hline 1 & x1 & 0 & 100 & 0 & 34.0000 \\
\hline 2 & X2 & 10 & 100 & 10 & 10.0000 \\
\hline 3 & x3 & 10 & 100 & 10 & 10.0000 \\
\hline
\end{tabular}

\section*{Example 7.3. Sparse Format in CONDATA}

The same QP problem is now solved by providing a sparse format CONDATA= data set to the QP procedure. The output data set SOLN3 is identical to SOLN1 of Example 7.1.
```

/*-- Sparse format in condata --*/
data SPDATA;
input _column_ \$ _type_ \$ _row_ \$ _coef_;
datalines;
. eq row1 44
x1 . row1 1
X2 . row1 1
. ge row2 5
X1 . row2 1
X2 . row2 1
X3 . row2 1
. eg row3 4
x3 . row3 -3
. min obj .
x2 . obj 10
x3 . obj 10
. lo lovect
X2 . lovect 10
x3 . lovect 10
X1 upp . }10
X2 upp . }10
X3 upp . 100
;

```
```

proc qp
condata=SPDATA sparsecondata
hessian=HESS
bytes=100000
stop_dg=1e-6
conout=soln3;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

```

\section*{Example 7.4. Another Sparse Format in CONDATA and a VARDATA Is Used}

This example demonstrates another way to use the sparse format of CONDATA= to provide the same data. Two SAS variables are assumed to be in the ROW Statement and COEF Statement SAS variable lists. The variable _row1_ is paired with _coef1_, and _row2_ is paired with _coef2_.
```

/*-- Another sparse format in condata --*/
data SPDATA2;
input _column_ \$ _type_ \$ _row1_ \$ _coef1_
_row2_ \$ _coef2_;
datalines;
. eq row1 44 row3 4
. ge row2 5 . .
. min obj . . .
. lo lovect . . .
. up upvect . . .
X1 . row1 1 row2 1
x1 . row3 1 upvect 100
x2 . row1 1 row2 1
X2 . obj 10 lovect 10
X2 . upvect 100 . .
x3 . row2 1 row3 -3
x3 . obj 10 lovect 10
x3 . upvect 100 .
;
proc qp
condata=SPDATA2 sparsecondata
hessian=HESS2
bytes=100000
stop_dg=1e-6
conout=soln4;
run;

```

The output SAS data set SOLN4 is the same as SOLN1 of Example 7.1.
You could also remove the nonconstraint data from SPDATA2 and use the resulting SPDATA3, along with VARDATA1 and either HESS1 or HESS2 to solve this problem.
```

data SPDATA3;
input _column_ \$ _type_ \$ _row1_ \$ _coef1_
_row2_ \$ _coef2_;
datalines;
eq row1 44 row3 4
. ge row2 5 .
X1 . row1 1 row2 1
x1 . row3 1 . .
X2 . row1 1 row2 1
x3 . row2 1 row3 -3

```

\section*{Example 7.5. A QP Problem with a Network Component}

The QP procedure solves not only ordinary QP problems, but also problems that have embedded network structures. The remaining examples demonstrate how this is done. The design of QP allows data for problems to be conveniently specified.

Suppose that the QP problem has a network added to it. This network is simply one arc directed from a node n 1 toward another node n 2 . The arc does not appear at all in the objective function, and has default capacity and lower flow bound. Node n1 supplies one unit of flow, and node n2 demands one unit of flow. The data is provided in the ARCDATA= and NODEDATA= data sets.

Obviously, the optimal flow through this arc is 1 flow unit, which is what is determined by the following optimization.
```

data NODEDATA;
input _node_ \$ _supdem_;
datalines;
n1 1
n2 -1
;
data ARCDATA;
input _from_ \$ _to_ \$ ;
datalines;
n1 n2
;

```
```

proc qp

```
proc qp
 condata=DENDATA hessian=HESS
 condata=DENDATA hessian=HESS
 arcdata=ARCDATA nodedata=NODEDATA
 arcdata=ARCDATA nodedata=NODEDATA
 bytes=100000
 bytes=100000
 stop_dg=1e-6
 stop_dg=1e-6
 conout=soln5;
 conout=soln5;
 hessiancoef val;
 hessiancoef val;
 hessianrow row;
 hessianrow row;
 hessiancolumn col;
 hessiancolumn col;
 run;
```

    run;
    ```

The following messages are written to the SAS log.
```

NOTE: Number of nodes= 2 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 1 , total demand= 1 .
NOTE: Number of arcs= 1.
NOTE: There are 3 variables in CONDATA which are
not the names of arcs or nonarc variables in
ARCDATA or in the form tailnode_headnode. Was
NAMECTRL=1 specified. If not specified, should
SPARSECONDATA have been specified.
NOTE: It is assumed that these are nonarc variables
which have all information relating to them in
CONDATA.
NOTE: Number of nonarc variables= 3 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of side constraint coefficients= 7 .
NOTE: The following messages relate to the equivalent
Quadratic Programming problem solved by the
Interior Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 4 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 9 .
NOTE: Number of variables= 4 .
NOTE: There are 5 diagonal and superdiagonal elements
in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.18302E-07
NOTE: Dual infeasibility 2.62590E-08
NOTE: Duality gap 4.88784E-07
NOTE: Objective= 15799.976017.
NOTE: The data set WORK.SOLN5 has 4 observations and
variables.
NOTE: There were 1 observations read from the data
set WORK.ARCDATA.
NOTE: There were 2 observations read from the data
set WORK.NODEDATA.
NOTE: There were 5 observations read from the data
set WORK.HESS.
NOTE: There were 6 observations read from the data
set WORK.DENDATA.

```

The optimal solution data set, CONOUT=SOLN5, is given in Output 7.5.1.

Output 7.5.1. \(\quad\) CONOUT=SOLN5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & _from & _to_ & _COST_ & _CAPAC_ & _LO_ & _NAME & _SUPPLY_ & _DEMAND_ & FLOW \\
\hline 1 & n1 & n2 & 0 & 99999999 & 0 & & 1 & 1 & 1.0000 \\
\hline 2 & & & 0 & 100 & 0 & x1 & . & . & 34.0000 \\
\hline 3 & & & 10 & 100 & 10 & x 2 & - & - & 10.0000 \\
\hline 4 & & & 10 & 100 & 10 & X3 & - & - & 10.0000 \\
\hline
\end{tabular}

Notice that observation 1 contains the arc information. As this problem has a network component (and as it is more typical to have many more arcs than nonarc variables), coefficients of problem variables for the linear part of the objective function are given in the variable _COST_, upper bounds are given in the variable _CAPAC_, and lower bounds are given in the variable _LO_.

\section*{Example 7.6. Equivalent Nonnetwork QP Problem}

You can verify that PROC QP has indeed found the correct solution by adding the flow conservation constraints for each node to the constraint data and solving the equivalent QP problem as if it had no embedded network. This example demonstrates this verification technique.
```

data DENDATA9;
input ARC1 X1-X3 _type_ \$ _rhs_;
datalines;
1 . . . eq 1
-1 . . . eq -1
. 1 1 . eq 44
. 1 1 1 ge 5
. 1 . -3 eq 4
. 0 10 10 min .
. 0 10 10 lo .
100 100 100 up .
;

```
```

proc qP

```
proc qP
 condata=DENDATA9 hessian=HESS
 condata=DENDATA9 hessian=HESS
 bytes=100000
 bytes=100000
 stop_dg=1e-6
 stop_dg=1e-6
 conout=soln6;
 conout=soln6;
 hessiancoef val;
 hessiancoef val;
 hessianrow row;
 hessianrow row;
 hessiancolumn col;
 hessiancolumn col;
 run;
```

    run;
    ```

The following messages are written to the SAS log.
```

NOTE: Number of variables= 4 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 4 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 9 .
NOTE: There are 5 diagonal and superdiagonal
elements in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.18302E-07
NOTE: Dual infeasibility 2.62589E-08
NOTE: Duality gap 4.88784E-07
NOTE: Objective= 15799.976017.
NOTE: The data set WORK.SOLN6 has 4 observations
and 5 variables.
NOTE: There were 5 observations read from the
data set WORK.HESS.
NOTE: There were 8 observations read from the
data set WORK.DENDATA9.

```

The optimal solution data set, CONOUT=SOLN6, is given in Output 7.6.1. Note that the solution is the same as that given in Output 7.5.1. However, providing network data in the specialized manner as is done in Example 7.5 saves you from having to manually generate the equivalent QP problem, and to interpret the solution for general problem variables as flows through arcs and values of nonarc variables. For instance, in the SOLN6 data set shown in Output 7.6.1, there is no information regarding the _from_ node or _to_ node of arcs; in fact, there is nothing to distinguish each observation as an arc or a nonarc variable.

Output 7.6.1. \(\quad\) CONOUT=SOLN6
\begin{tabular}{|c|c|c|c|c|c|}
\hline Obs & _NAME_ & _OBJFN_ & _UPPERBD & _LOWERBD & _VALUE_ \\
\hline 1 & ARC1 & 0 & 99999999 & 0 & 1.0000 \\
\hline 2 & x 1 & 0 & 100 & 0 & 34.0000 \\
\hline 3 & x2 & 10 & 100 & 10 & 10.0000 \\
\hline 4 & x3 & 10 & 100 & 10 & 10.0000 \\
\hline
\end{tabular}

\section*{Example 7.7. An Unnamed Arc Has Data in the Hessian}

What if the arc has data in the Hessian? Suppose the term \(6 x_{1} x_{\text {arc }}\) is added to the objective function. When reading data for the Hessian, the QP procedure uses a similar mechanism as when the CONDATA= data set is read. An arc may have a default name comprised of the arc's _from_ node and _to_ node, separated by an underscore character (the case in this example), or may be given a name of your choosing by having a NAME list variable in the ARCDATA= data set (see Example 7.8).
```

data HESSARC;
input row \$ col \$ val;
datalines;
X1 X1 20
X2 X2 20
x3 x3 20
X2 X1 2
x3 x1 4
x1 n1_n2 6
n1_n2 n1_n2 20
;

```
```

proc qp

```
proc qp
 condata=DENDATA hessian=HESSARC
 condata=DENDATA hessian=HESSARC
 arcdata=ARCDATA nodedata=NODEDATA
 arcdata=ARCDATA nodedata=NODEDATA
 bytes=100000
 bytes=100000
 stop_dg=1e-6
 stop_dg=1e-6
 conout=soln7;
 conout=soln7;
 hessiancoef val;
 hessiancoef val;
 hessianrow row;
 hessianrow row;
 hessiancolumn col;
 hessiancolumn col;
 run;
```

    run;
    ```

The output SAS data set SOLN7 is the same as SOLN6 of Example 7.6.

\section*{Example 7.8. A Named Arc Has Data in the Hessian}

This example is similar to Example 7.7, except that the arc is specified by a name ('the_arc'), rather than by its _from_ node and _to_ node.
```

data ARCDATA2;
input _name_ \$ _from_ \$ _to_ \$ _cost_ _capac_ _lo_ ;
datalines;
the_arc n1 n2
X1 . . 0 100 0
X2 . . 10 100 10
x3 . . 10 100 10
;
data HESSARC2;
input _row_ \$ _col_ \$ _coef_;
datalines;
X1 X1 20
X2 X2 20
X3 X3 20
X2 X1 2
X3 X1 4
X1 the_arc 6
the_arc the_arc 20
;

```
proc qp
 condata=DENDATA2 hessian=HESSARC2
 arcdata=ARCDATA2 nodedata=NODEDATA
 bytes=100000
 stop_dg=1e-6
 conout=soln8;
 run;

The optimal solution data set, CONOUT=SOLN8, is given in Output 7.8.1. Note the presence of the NAME list variable, _name_.

Output 7.8.1. CONOUT=SOLN8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & _from & _to_ & _cost_ & _capac_ & _10_ & _name_ & _SUPPLY_ & _DEMAND_ & _FLOW \\
\hline 1 & n1 & n2 & 0 & 99999999 & 0 & the_arc & 1 & 1 & 1.0000 \\
\hline 2 & & & 0 & 100 & 0 & X1 & . & . & 34.0000 \\
\hline 3 & & & 10 & 100 & 10 & X2 & . & - & 10.0000 \\
\hline 4 & & & 10 & 100 & 10 & X3 & . & - & 10.0000 \\
\hline
\end{tabular}

\section*{References}

Reid, J. K. (1975), "A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Programming Bases," Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear Optimization, Chichester, England: John Wiley \& Sons.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.
Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John Wiley \& Sons.

750 - Chapter 7. The QP Procedure (Experimental)

\section*{Chapter 8 \\ The TRANS Procedure}

\section*{Chapter Contents}
OVERVIEW 753
GETTING STARTED 754
Introductory Example 754
SYNTAX 755
Functional Summary 755
PROC TRANS Statement 756
HEADNODE Statement 757
SUPPLY Statement 757
TAILNODE Statement 758
DETAILS 758
Missing Values 758
Output Data Set 758
Objective Value 758
Demand 759
Dual Variables 759
Macro Variable _ORTRANS 759
Reasons for Infeasibility 760
Balancing Total Supply and Total Demand 760
EXAMPLES 763
Example 8.1. Uncapacitated Transportation Network 763
Example 8.2. Capacitated Transportation Network 765
Example 8.3. Capacitated Transportation Network with MINFLOW 766
Example 8.4. An Infeasible Problem 768

752 - Chapter 8. The TRANS Procedure

\section*{Chapter 8 \\ The TRANS Procedure}

\section*{Overview}

The TRANS procedure is used to solve the transportation problem, which is a type of network flow problem. A node of a transportation problem is either a source node or a destination node. Each source node is able to supply a specified number of flow units; each destination node has a demand for a specified number of flow units. Each arc of a transportation problem originates at a source node and terminates at a destination node. Some arcs can have capacities (the maximum amount of flow that they can convey) and lower flow bounds (the minimum amount of flow that the arc can convey). Arcs also have per unit traversal costs, simply referred to as costs (for example, the cost incurred when one unit of flow is conveyed through an arc). Figure 8.1 shows a transportation problem network having three source nodes and two destination nodes.

Figure 8.1. A Transportation Problem

\section*{Getting Started}

The TRANS procedure accepts information about the transportation problem as data and produces a SAS data set that contains the flows that should be conveyed by each arc (the flow between each source and destination node) that minimizes the total cost of flow.

\section*{Introductory Example}

Consider the SAS data set in Figure 8.2. The SAS code used to create the data set can be found in Example 8.1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{12}{|c|}{Uncapacitated Transportation Network} \\
\hline & & & & & L & & N & S & & W & & \\
\hline & A & C & & H & \(\bigcirc\) & & e & a & S & a & & \\
\hline & t & h & D & \(\bigcirc\) & s & & w & n & e & \(s\) & \(s\) & \\
\hline & 1 & i & e & u & - & M & - & - & a & h & u & \\
\hline & a & c & n & s & A & i & Y & F & t & i & p & c \\
\hline 0 & n & a & v & t & n & a & \(\bigcirc\) & r & t & n & p & i \\
\hline b & t & g & e & \(\bigcirc\) & g & m & \(r\) & a & 1 & g & 1 & t \\
\hline s & a & - & r & n & e & i & k & n & e & t & y & y \\
\hline 1 & 50 & 75 & 89 & 8 & 27 & 39 & 64 & 100 & 50 & 8 & . & \\
\hline 2 & 20 & 58 & 121 & 70 & 193 & 60 & 74 & 213 & 218 & 54 & 10 & Atlanta \\
\hline 3 & 58 & 20 & 92 & 94 & 174 & 118 & 71 & 185 & 173 & 57 & 150 & Chicago \\
\hline 4 & 121 & 92 & 20 & 87 & 83 & 172 & 163 & 94 & 102 & 149 & 90 & Denver \\
\hline 5 & 70 & 94 & 87 & 20 & 137 & 96 & 142 & 154 & 189 & 122 & 27 & Houston \\
\hline 6 & 193 & 174 & 83 & 137 & 20 & 223 & 245 & 34 & 95 & 230 & 80 & Los_Ange \\
\hline 7 & 60 & 118 & 172 & 96 & 233 & 20 & 109 & 259 & 273 & 92 & 26 & Miami \\
\hline 8 & 74 & 71 & 163 & 142 & 245 & 109 & 20 & 257 & 240 & 20 & 80 & New_York \\
\hline 9 & 213 & 185 & 94 & 164 & 34 & 259 & 257 & 20 & 67 & 244 & 25 & San_Fran \\
\hline 10 & 218 & 173 & 102 & 189 & 95 & 273 & 240 & 67 & 20 & 232 & 7 & Seattle \\
\hline 11 & 54 & 59 & 149 & 122 & 230 & 92 & 20 & 244 & 232 & 20 & 15 & Washingt \\
\hline
\end{tabular}

Figure 8.2. Introductory Example Input Data Set
The first observation provides the number of units demanded at each destination node. The supply variable provides the number of units supplied at each source node. If you exclude the first observation and the supply variable, the remaining values are the cost of shipping one unit between nodes. For example, the per unit transportation cost between Miami and Houston is 96 . The transportation problem is solved when the minimum total cost flow between supply points and destination points that satisfies the demand is found. PROC TRANS solves this problem and produces a SAS data set containing the number of units to ship between each supply point and demand point. It does not produce any output but does report the minimum cost on the log. See Example 8.1 for the results.

\section*{Syntax}

> PROC TRANS options ; HEADNODE variables;
> SUPPLY variable ;
> TAILNODE variable ;

The PROC TRANS statement invokes the procedure. The TAILNODE and SUPPLY statements are required.

\section*{Functional Summary}

The following table outlines the options available for the TRANS procedure classified by function.

Table 8.1. Functional Summary
\begin{tabular}{lll}
\hline Description & Statement & Option \\
\hline \begin{tabular}{l}
Input Data Set Options: \\
data set containing arc capacities \\
data set containing cost, supply, and demand data \\
data set containing arc minimum flows
\end{tabular} & \begin{tabular}{l}
PROC TRANS \\
PROC TRANS
\end{tabular} & CAPACITY= \\
PROC TRANS & MINFLOW= \\
Output Data Set Options: \\
data set containing the solution & & \\
\begin{tabular}{l}
General Options: \\
default arc capacities \\
default arc lower flow bounds \\
observation number containing demands \\
find maximum transportation cost \\
discard any excess supply or demand \\
force excess supply or demand through the network
\end{tabular} & PROC TRANS & OUT= \\
& & \\
& & PROC TRANS
\end{tabular}

The statements and options available in PROC TRANS are discussed in the order in which they appear in the preceding list of syntax elements.

\section*{PROC TRANS Statement}

PROC TRANS options;

\section*{Input Data Set Options}

CAPACITY=SAS-data-set
names the SAS data set that contains the capacity on each arc in the transportation network. These data specify the maximum allowable flow on each network arc. If the CAPACITY \(=\) option is omitted, then the value of the DEFCAPACITY \(=\) option is used for each arc in the network.

COST=SAS-data-set
names the SAS data set that contains the cost, supply, and demand data for the transportation network. If the COST= option is omitted, the most recently created SAS data set is used.

MINFLOW=SAS-data-set
names the SAS data set that contains the minimum flow data for the transportation network. These data specify the minimum required flow on each arc in the network. If the MINFLOW= option is omitted, then the value of the DEFMINFLOW= option is used for each arc in the network.

\section*{Output Data Set Options}

OUT=SAS-data-set
specifies a name for the output data set. If the OUT= option is omitted, the SAS System creates a data set and names it according to the DATA \(n\) convention. Refer to base SAS documentation for more information.

\section*{General Options}

\section*{DEFCAPACITY=c}
specifies the default capacity for the arcs in the network. The default value of \(c\) is \(+\infty\).

\section*{DEFMINFLOW=s}
specifies the default minimum flow for the arcs in the network. The default value of \(s\) is 0 .

DEMAND= \(d\)
gives the number of the observation that contains the number of units demanded at each destination node. The default value of \(d\) is 1.0 . See the "Demand" section on page 759 .

\section*{MAXIMUM}
tells the procedure to maximize rather than minimize the objective function.

\section*{NOTHRUNET}
tells PROC TRANS to drain away any excess supply (the amount that total supply exceeds total demand) or excess demand (the amount that total demand exceeds total supply). If total supply exceeds total demand and if a destination node demands \(d\) units of flow, then at least \(d\) units and maybe more will flow to that node. Similarly,
if total demand exceeds total supply and if a source node supplies \(s\) units of flow, then at least \(s\) units and possibly more will flow from that node. If a transportation problem has unequal total supply and total demand, and you do not specify either the THRUNET or NOTHRUNET option, then PROC TRANS assumes that the problem is infeasible and does not proceed with the optimization. See the "Balancing Total Supply and Total Demand" section on page 760 for more information.

\section*{THRUNET \\ ADDSUPPLY}
tells the procedure to force through the network any excess supply (the amount that total supply exceeds total demand) or any excess demand (the amount that total demand exceeds total supply), as is required. If a transportation problem has unequal total supply and total demand, and you do not specify either THRUNET or NOTHRUNET, then PROC TRANS assumes that the problem is infeasible and does not proceed with the optimization. See the "Balancing Total Supply and Total Demand" section on page 760 for more information.

\section*{HEADNODE Statement}

\section*{HEADNODE variables;}

The HEADNODE statement is a list of SAS variables in the COST= data set. Some or all of these variables are in the CAPACITY= data set and the MINFLOW= data set. The names of these SAS variables are also the names of the destination nodes in the transportation problem.

In the COST= data set, the value of a HEADNODE list variable in an observation that does not contain demand data is the cost of transporting a unit of flow from the source node named in that observation's TAILNODE list to the destination node associated with the name of the HEADNODE list variable. HEADNODE variables in the MINFLOW= data set and CAPACITY= data set are similarly associated with destination nodes. In these data sets, the HEADNODE list variables have as values the upper and lower bounds on arc flows.

If the HEADNODE statement is not specified, PROC TRANS forms a HEADNODE list of all numeric variables in the COST= data set not included in the explicit or implicit list specifications.

\section*{SUPPLY Statement}

\section*{SUPPLY variable;}

The SUPPLY statement identifies the variable in the COST= data set that contains the number of units of supply at each supply node. The SUPPLY statement is required. Values of the SUPPLY variable must be numeric.

\section*{TAILNODE Statement}

\section*{TAILNODE variable;}

The TAILNODE statement identifies the variable in all input data sets that names each of the source nodes. This variable is included in the output data set. The TAILNODE statement is required, and the values of the TAILNODE variable must be character.

\section*{Details}

\section*{Missing Values}

A missing value in a HEADNODE list variable in the COST= data set indicates that the arc from that observation's TAILNODE list source node to the corresponding destination node does not exist. A missing supply or demand value is interpreted as zero.

A missing value in the MINFLOW= data set and CAPACITY= data set causes the procedure to assign the default capacity or default minimum flow to the corresponding arc, if it exists.

A missing value in the OUT= data set is used when the arc does not exist.

\section*{Output Data Set}

The output data set contains the variables listed in the HEADNODE, TAILNODE, and SUPPLY statements, and an additional variable named _DUAL_. See the "Dual Variables" section on page 759. For each observation in the COST= data set that is associated with a source node, the output data set tells you
- the optimal flow between the source and destination nodes
- the name of the source node as given in the TAILNODE variable
- the value of the dual variable associated with that source node

The demand data specified in the \(\operatorname{COST}=\) data set are also included in the same observation as they are in the COST= data set. The TAILNODE variable has the value _DEMAND_ in this observation. An observation labeled with the TAILNODE variable taking the value _DUAL_ contains the dual variables at the destination nodes.

\section*{Objective Value}

If the problem is infeasible (see the "Reasons for Infeasibility" section on page 760), a note to that effect is written to the SAS log. Otherwise, the value of the objective function, the total cost (the multiple of flow and cost, summed for all arcs) at optimality, is reported on the SAS log.

\section*{Demand}

The demand at each destination node must be specified. Because there are the same number of destination nodes as there are HEADNODE statement variables, PROC TRANS assumes that the values of the first observation contain the number of units demanded at each destination node. If \(\operatorname{DEMAND}=d\) is specified in the PROC TRANS statement, then observation \(d\) is assumed to contain the number of units demanded at each destination node.

\section*{Dual Variables}

Let \(\pi_{i}, i=1, \ldots, n\) be the dual variable values of the source nodes, \(\pi_{j}, j=1, \ldots, m\) be the dual variable values of the destination nodes, and \(c_{i j}\) be the cost of unit flow on the arc between source \(i\) and destination \(j\). Then
\[
r_{i j}=\pi_{i}-\pi_{j}-c_{i j}
\]
is the reduced cost of the arc between nodes \(i\) and \(j\). This is the amount by which the total cost increases if flow through arc \((i, j)\) is increased by one unit. The total cost decreases by \(r_{i j}\) if the flow through arc \((i, j)\) is decreased by one unit. Dual variables are saved in the OUT= data set.

\section*{Macro Variable _ORTRANS}

On termination, the TRANS procedure defines a macro variable named _ORTRANS. This variable contains a character string that indicates the status of the procedure on termination and gives the objective value at termination. The form of the _ORTRANS character string is

\section*{STATUS=xxx OBJECTIVE=total-cost-of-the-solution}
where \(x x x\) can be one of the following:
- SUCCESSFUL
- INFEASIBLE
- INFEASIBLE_SUPPLY > DEMAND
- INFEASIBLE_SUPPLY \(<\) DEMAND
- MEMORY_ERROR
- IO_ERROR
- SYNTAX_ERROR
- SEMANTIC_ERROR
- BADDATA_ERROR
- UNKNOWN_ERROR

This information can be used when PROC TRANS is one step in a larger program that needs to identify how the TRANS procedure terminated. Because _ORTRANS is a standard SAS macro variable, it can be used in the ways that all macro variables can be used (refer to the SAS Guide to Macro Processing). One way to write the _ORTRANS variable to the \(\log\) is illustrated in Example 8.1.

\section*{Reasons for Infeasibility}

By default, PROC TRANS assumes that all transportation problems have total supply equal to total demand. The THRUNET and NOTHRUNET options enable you to relax this assumption.

A transportation problem is infeasible if nodal flow conservation constraints cannot be met so that the flow into a node plus its supply does not equal the flow out of the node plus its demand. Instances of this type of infeasibility occur when
- the supply of a source node exceeds the total capacities of arcs leading out of it
- the supply of a source node does not meet the total lower flow bounds of arcs leading out of it
- the demand of a destination node exceeds the total capacities of arcs leading into it
- the demand of a destination node does not meet the total lower flow bounds of arcs leading into it

If a solution does not exist where all arcs have flow on or between their lower flow bounds or capacities, the problem is infeasible.

\section*{Balancing Total Supply and Total Demand}

\section*{When Total Supply Exceeds Total Demand}

When total supply of a transportation problem exceeds total demand, PROC TRANS can add an extra destination node (called the excess node) to the problem and set the demand at that node equal to the difference between total supply and total demand. There are two ways that this extra destination node can be added to the transportation network.

Figure 8.3 shows a network in which the NOTHRUNET option is specified. The sum of flows that reach the destination nodes equals the total demand of the transportation problem. For some source nodes, supply can be conveyed through real arcs but can also be drained away to the excess node. The supply of each source node is really an upper bound of the number of flow units such a node can actually supply.

Figure 8.3. Using the NOTHRUNET Option when Total Supply Exceeds Total Demand

Figure 8.4 illustrates a network in which the THRUNET option is used. The sum of flows that reach the destination nodes equals the total supply of the transportation problem.

Figure 8.4. Using the THRUNET Option when Total Supply Exceeds Total Demand

For some destination nodes, the amount of flow can exceed that node's demand. The demand of destination nodes is a lower bound of the number of flow units a destination node can demand.

\section*{When Total Demand Exceeds Total Supply}

When total demand exceeds total supply, PROC TRANS can add an extra source node (the excess node) to the problem. This node is able to supply to the network the difference between total demand and total supply. There are two ways this extra source node can be added to the transportation network.

Figure 8.5 shows a network in which the NOTHRUNET option is specified. The sum of flows that leave the source nodes equals the total supply of the transportation problem. For some destination nodes, demand will be satisfied by flow through real arcs and can be satisfied by flows through arcs directed from the excess node. The demand of each destination node is really an upper bound of the number of flow units such a node can actually receive.

Figure 8.5. Using the NOTHRUNET Option when Total Demand Exceeds Total Supply

Figure 8.6 illustrates a network in which the THRUNET option is specified. The sum of flows that leave the source nodes equals the total demand of the transportation problem. For some source nodes, the sum of flow that is conveyed through arcs originating at that node can exceed the node's supply capability. The supply of source nodes is a lower bound of the number of flow units a source node is able to supply to the network.

Figure 8.6. Using the THRUNET Option when Total Demand Exceeds Total Supply

If total supply does not equal total demand and either the THRUNET or NOTHRUNET option is specified, PROC TRANS automatically creates the excess node and the arcs incident to it. When the optimization is complete, these ancillary parts of the network are erased. Information about these parts will not be found in the OUT= data set.

\section*{Examples}

\section*{Example 8.1. Uncapacitated Transportation Network}

The transportation problem described in the "Getting Started" section on page 754 is solved next. The cost data are stored in the following SAS data set. The solution is stored in a SAS data set as shown in Output 8.1.1 and displayed with PROC PRINT.
```

title 'Uncapacitated Transportation Network';
data cst;
input Atlanta Chicago Denver Houston Los_Ange Miami
New_York San_Fran Seattle Washingt supply city\$;
datalines;

```
```

proc trans cost=cst;
TAILNODE city;
HEADNODE Atlanta--Washingt;
SUPPLY supply;
run;
proc print;
run;

```

After this program executes, the following message is written to the SAS log:

NOTE: Optimal Solution total \(=22928\).
Output 8.1.1. Uncapacitated Transportation Network Solution

Because the first observation is associated with the demands, the TAILNODE value is _DEMAND_. If you had specified DEMAND \(=d\), the \(d\) th observation would have contained demand information. The last observation has a TAILNODE value of _DUAL_, , and the values of the HEADNODE variables are the dual variables at the destination nodes, or the marginal costs of increasing demand at a destination node.

The other observations in the OUT= data set contain the optimal flows. For example, the third observation contains information associated with the Chicago source node. The values of the HEADNODE variables in this observation give the optimal flow between Chicago and each destination node. To achieve the minimum cost, the Chicago supply must be sent to four destinations: 30 units to Atlanta, 75 units to Chicago, 2 units to Denver, and 43 units to Seattle. The SUPPLY variable has the supply capability of this source node (150 units).

The _DUAL_ variable value (-13) for Chicago is the amount the total solution cost would increase (because of the negative sign, in this case, the total cost would decrease by \$13) if Chicago supplies an extra unit of flow. (If you were to increase the
supply of Chicago to 151 and rerun PROC TRANS, specifying the NOTHRUNET option, the total cost would change from 22928 to 22915.)

The macro variable _ORTRANS, defined by PROC TRANS, contains information regarding the termination of the procedure. This information can be useful when PROC TRANS is part of a larger SAS program. This information can be written to the log using the macro language with the statement
```

%put \&_ORTRANS;

```

The following message is written to the SAS log:
```

STATUS=SUCCESSFUL OBJECTIVE=22928

```

\section*{Example 8.2. Capacitated Transportation Network}

In this example, the optimal flow is found on a capacitated transportation network. Suppose that there are upper bounds on the amount that can be shipped within each city. The following SAS program and output show how this capacity constraint is included in the model:
```

title 'Capacitated Transportation Network';
data capcty;
input Atlanta Chicago Denver Houston Los_Ange Miami
New_York San_Fran Seattle Washingt city\$;
datalines;
10 . . . . . . . . . Atlanta
60 . . . . . . . . Chicago
100 . . . . . . . Denver
. . 10 . . . . . . Houston
30 . . . . . Los_Ange
20 . . . . Miami
. 75 . . . New_York
25 . . San_Fran
10 . Seattle
10 Washingt
;
proc trans cost=cst capacity=capcty;
HEADNODE Atlanta--Washingt;
TAILNODE city;
supply supply;
run;
proc print;
run;

```

After this program executes, the following message is written to the SAS log:

NOTE: Optimal Solution Total \(=24036\).

The preceding statements produce the SAS data set in Output 8.2.1.
Output 8.2.1. Capacitated Transportation Network Solution
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{Capacitated} & \multicolumn{3}{|l|}{Transportation N} & \multicolumn{3}{|l|}{Network with MINFLOW} & & & \\
\hline & & & & & & & L & & N & S & & W & \\
\hline & & & A & C & & H & \(\bigcirc\) & & e & a & S & a & \\
\hline & & s & t & h & D & \(\bigcirc\) & s & & w & n & e & s & - \\
\hline & & u & 1 & i & e & u & - & M & - & - & a & h & D \\
\hline & c & p & a & c & n & \(s\) & A & i & Y & F & t & i & U \\
\hline 0 & i & p & n & a & v & t & n & a & \(\bigcirc\) & r & t & n & A \\
\hline b & t & 1 & t & g & e & \(\bigcirc\) & g & m & r & a & 1 & \(g\) & L \\
\hline \(s\) & Y & Y & a & \(\bigcirc\) & r & n & e & i & k & n & e & t & - \\
\hline 1 & DEMAND & . & 50 & 75 & 89 & 8 & 27 & 39 & 64 & 100 & 50 & 8 & . \\
\hline 2 & Atlanta & 10 & 0 & 0 & 0 & 0 & 0 & 10 & 0 & 0 & 0 & 0 & -53 \\
\hline 3 & Chicago & 150 & 44 & 60 & 3 & 0 & 0 & 0 & 0 & 0 & 43 & 0 & -2 \\
\hline 4 & Denver & 90 & 0 & 0 & 86 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & -74 \\
\hline 5 & Houston & 27 & 0 & 0 & 0 & 8 & 18 & 1 & 0 & 0 & 0 & 0 & -17 \\
\hline 6 & Los_Ange & 80 & 0 & 0 & 0 & 0 & 9 & 0 & 0 & 71 & 0 & 0 & -134 \\
\hline 7 & Miami & 26 & 6 & 0 & 0 & 0 & 0 & 20 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & New_York & 80 & 0 & 8 & 0 & 0 & 0 & 0 & 64 & 0 & 0 & 8 & -9 \\
\hline 9 & San_Fran & 25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 & 0 & 0 & -148 \\
\hline 10 & Seattle & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & -155 \\
\hline 11 & Washingt & 15 & 0 & 7 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & -21 \\
\hline 12 & _DUAL_ & . & 60 & 80 & 94 & 37 & 154 & 113 & 29 & 168 & 175 & 29 & . \\
\hline
\end{tabular}

Note that the optimal objective value is greater in the capacitated network (24036) than in the uncapacitated network (22928). Additional constraints can never decrease the objective value of a minimization problem at optimality. Also observe that the flow within Chicago, Miami, and San_Fran are at their limits. The rerouting of flow within these cities accounts for the increase in cost.

\section*{Example 8.3. Capacitated Transportation Network with MINFLOW}

Suppose you place a minimum on the flow within each city. Just as capacity restrictions can be interpreted as limits on available transportation, minimum flow restrictions can be interpreted as requirements to ship minimum quantities on certain routes, perhaps as a result of contractual agreements. The following program adds minimum flow requirements on four routes. Because the MINFLOW= data set contains many missing values, named input mode is used to input the data. The solution is displayed following the program in Output 8.3.1.
```

title 'Capacitated Transportation Network with MINFLOW';
data minflw;
input Chicago= Denver= San_Fran= Seattle= city= \$;
datalines;
City=Chicago Chicago=30 San_Fran=40 Seattle=50
city=Denver Denver=40
;
proc trans cost=cst capacity=capcty minflow=minflw;
HEADNODE Atlanta--Washingt;
TAILNODE city;
supply supply;
run;
proc print;
run;

```

The SAS log contains the following message:
```

NOTE: Optimal Solution Total = 31458.

```

Output 8.3.1. Capacitated Transportation Network Solution with MINFLOW
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & L & & N & S & & W & \\
\hline & & & A & C & & H & \(\bigcirc\) & & e & a & S & a & \\
\hline & & s & t & h & D & \(\bigcirc\) & S & & w & n & e & \(s\) & \\
\hline & & u & 1 & i & e & u & - & M & - & - & a & h & D \\
\hline & c & p & a & c & n & s & A & i & Y & F & t & i & U \\
\hline 0 & i & p & n & a & v & t & n & a & \(\bigcirc\) & \(r\) & t & n & A \\
\hline b & t & 1 & t & g & e & - & g & m & \(r\) & a & 1 & g & L \\
\hline s & y & y & a & \(\bigcirc\) & r & n & e & i & k & n & e & t & - \\
\hline 1 & _DEMAND & . & 50 & 75 & 89 & 8 & 27 & 39 & 64 & 100 & 50 & 8 & . \\
\hline 2 & Atlanta & 10 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -138 \\
\hline 3 & Chicago & 150 & 0 & 60 & 0 & 0 & 0 & 0 & 0 & 40 & 50 & 0 & -100 \\
\hline 4 & Denver & 90 & 11 & 8 & 71 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -37 \\
\hline 5 & Houston & 27 & 0 & 0 & 0 & 8 & 0 & 19 & 0 & 0 & 0 & 0 & -91 \\
\hline 6 & Los_Ange & 80 & 0 & 0 & 18 & 0 & 27 & 0 & 0 & 35 & 0 & 0 & 26 \\
\hline 7 & Miami & 26 & 6 & 0 & 0 & 0 & 0 & 20 & 0 & 0 & 0 & 0 & -98 \\
\hline 8 & New_York & 80 & 8 & 0 & 0 & 0 & 0 & 0 & 64 & 0 & 0 & 8 & -84 \\
\hline 9 & San_Fran & 25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 & 0 & 0 & 12 \\
\hline 10 & Seattle & 7 & 0 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 44 \\
\hline 11 & Washingt & 15 & 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -104 \\
\hline 12 & _DUAL_ & - & 158 & 129 & 57 & 111 & -6 & 187 & 104 & 8 & -24 & 104 & . \\
\hline
\end{tabular}

Note that the optimal objective value is greater in the minimum flow capacitated network than in the capacitated network. Additional constraints can never decrease the objective value of a minimization problem at optimality.

\section*{Example 8.4. An Infeasible Problem}

This example shows what happens when the total demand exceeds the total supply. The data from Example 8.1 are used with the demand at Atlanta increased to 100 units. Consequently, the demand exceeds the supply by 50 units. When the statements
```

proc trans cost=cst;
TAILNODE city;
HEADNODE Atlanta--Washingt;
supply supply;
run;

```
are executed, the following message is written to the SAS log:
```

ERROR: Infeasible network. Total supply 510 does not equal
total demand 560.
Use either the THRUNET or the NOTHRUNET option
on the PROC TRANS statement.

```

However, if the THRUNET option is specified in the PROC TRANS statement, the procedure distributes the supply optimally among the source nodes. In that case, the statements
```

title 'Using the THRUNET Option';
proc trans data=cst THRUNET;
TAILNODE city;
HEADNODE Atlanta--Washingt;
supply supply;
run;
proc print;
run;

```
produce the following message on the SAS log and display the solution in Output 8.4.1.

NOTE: Optimal Solution Total \(=18302\).

\section*{Output 8.4.1. Using the THRUNET Option}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Using the THRUNET Option} \\
\hline & & & & & & & L & & N & S & & W & \\
\hline & & & A & C & & H & \(\bigcirc\) & & e & a & S & a & \\
\hline & & \(s\) & t & h & D & \(\bigcirc\) & S & & w & n & e & s & \\
\hline & & u & 1 & i & e & u & & M & - & - & a & h & D \\
\hline & c & \(p\) & a & c & n & S & A & i & Y & F & t & i & U \\
\hline 0 & i & p & n & a & v & t & n & a & \(\bigcirc\) & \(r\) & t & n & A \\
\hline b & t & 1 & t & g & e & \(\bigcirc\) & g & m & r & a & 1 & \(g\) & L \\
\hline \(s\) & y & y & a & - & r & n & e & i & k & n & e & t & - \\
\hline 1 & DEMAND & . & 100 & 75 & 89 & 8 & 27 & 39 & 64 & 100 & 50 & 8 & . \\
\hline 2 & Atlanta & 10 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 90 \\
\hline 3 & Chicago & 150 & 75 & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 128 \\
\hline 4 & Denver & 90 & 0 & 0 & 89 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 74 \\
\hline 5 & Houston & 27 & 0 & 0 & 0 & 8 & 14 & 5 & 0 & 0 & 0 & 0 & 131 \\
\hline 6 & Los_Ange & 80 & 0 & 0 & 0 & 0 & 13 & 0 & 0 & 67 & 0 & 0 & 14 \\
\hline 7 & Miami & 26 & 0 & 0 & 0 & 0 & 0 & 26 & 0 & 0 & 0 & 0 & 55 \\
\hline 8 & New_York & 80 & 0 & 0 & 0 & 0 & 0 & 8 & 64 & 0 & 0 & 8 & 144 \\
\hline 9 & San_Fran & 25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 32 & 0 & 0 & 0 \\
\hline 10 & Seattle & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 50 & 0 & 0 \\
\hline 11 & Washingt & 15 & 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 124 \\
\hline 12 & _DUAL & . & -70 & -108 & -54 & -111 & 6 & -35 & -124 & 20 & 20 & -124 & . \\
\hline
\end{tabular}

770 - Chapter 8. The TRANS Procedure

\section*{Subject Index}

\section*{A}
active set methods, 584
quadratic programming, 545, 572
affine step, 72, 74
arc capacity
INTPOINT procedure, 123
NETFLOW procedure, 356
QP procedure, 709
arc names
INTPOINT procedure, \(84,108,155\)
NETFLOW procedure, 350, 358
QP procedure, 691, 704, 737
ASSIGN examples, 56
BY statement, 61
maximizing profit, 56,58
minimizing total time, 59
ASSIGN procedure
costs, 53
data flow, 22
data set options, 52, 53
details, 54
functional summary, 52
input data set, 52
introductory example, 50
macro variable _ORASSIG, 55
missing values, 54
network specification, 52
objective function, 54
optimization control options, 53
options classified by function, 52
out-of-kilter algorithm, 55
output data set, 53, 54
overview, 49
profit, 53
scaling input data, 53,55
separate solutions on grouped problems, 53
syntax skeleton, 52
table of syntax elements, 52
assignment problem, 50
data format, 33
definition of, 49

\section*{B}
backtracking rules
LP procedure, 207, 237
balancing network problems
INTPOINT procedure, 114
NETFLOW procedure, 355
QP procedure, 708

Bard function, 611
Bartels-Golub decomposition, 349, 376, 417
BFGS update method, 545
big-M method, 372
bipartite network, 22
blending constraints
INTPOINT procedure, 78
NETFLOW procedure, 321
QP procedure, 685
boundary constraints
NLP procedure, 547
branch-and-bound, 233
branching variable, 238, 239
breadth-first search, 236
control options, 207, 236
depth-first search, 236
bypass arc
INTPOINT procedure, 104
NETFLOW procedure, 344
QP procedure, 703

\section*{C}
case sensitivity
INTPOINT procedure, 109, 110, 142
NETFLOW procedure, 351, 364, 409
QP procedure, 705, 706, 724
centering step, 72, 74
central path
INTPOINT procedure, 70
NETFLOW procedure, 450
Cholesky factor, 575
COBYLA algorithm, 578, 584
coefficients
INTPOINT procedure, 123
LP procedure, 214
NETFLOW procedure, 356
QP procedure, 675, 709
columns
INTPOINT procedure, 124
LP procedure, 214
NETFLOW procedure, 356
QP procedure, 675, 709
complementarity
INTPOINT procedure, 69, 73, 157
NETFLOW procedure, 449
complete pricing
LP procedure, 213
computational problems

NLP procedure, 589-591
computational resources,
See also memory requirements
NLP procedure, 607-609
confidence intervals, 559
output options, 602, 603
profile confidence limits, 529
conjugate-descent update method, 545
conjugate gradient methods, 544,577
constraint summary
LP procedure, 27, 253, 261
converting NPSC to LP
INTPOINT procedure, 138
converting QNPSC to QP
QP procedure, 720
costs
ASSIGN procedure, 53
INTPOINT procedure, 124
NETFLOW procedure, 357
QP procedure, 678, 710
covariance matrix, 529, 592, 601
displaying, 541
crossproduct Jacobian matrix, 548, 601
definition, 567
displaying, 541
saving, 540
current tableau
LP procedure, 229
cycling
NETFLOW procedure, 373, 374, 414

\section*{D}
data compression
LP procedure, 210
data flow
ASSIGN procedure, 22
INTPOINT procedure, 20
LP procedure, 17
NETFLOW procedure, 18, 19
NLP procedure, 20, 21
QP procedure, 21
TRANS procedure, 22
data sets,
See also input data sets
See also output data sets
demands
INTPOINT procedure, 125
NETFLOW procedure, 357
QP procedure, 710
TRANS procedure, 759
dense input format
INTPOINT procedure, 85, 92, 127, 130, 132
LP procedure, 191
NETFLOW procedure, 328, 397, 398, 430, 433
QP procedure, 658, 678, 681, 691, 714
derivatives, 566
computing, 512, 567
finite differences, 579
devex method, 211

DFP update method, 545
displayed output
LP procedure, 205, 215, 251-254
NETFLOW procedure, 359
NLP procedure, 604, 605
distribution problem, 76, 683
double dogleg method, 544, 576
dual activities
LP procedure, 229
dual BFGS update method, 545
dual DFP update method, 545
dual problem
INTPOINT procedure, 69
NETFLOW procedure, 449
QP procedure, 657
dual variables
INTPOINT procedure, 69
NETFLOW procedure, 414, 449
QP procedure, 657
TRANS procedure, 759
duality gap
INTPOINT procedure, 69, 157
NETFLOW procedure, 449
dynamic pricing
LP procedure, 213

\section*{E}
efficiency
INTPOINT procedure, 151-156
NETFLOW procedure, 428-433
QP procedure, 732-737
embedded networks
INTPOINT procedure, 138
NETFLOW procedure, 403
QP procedure, 720
examples,
See also ASSIGN examples
See also INTPOINT examples
See also LP examples
See also NETFLOW examples
See also NLP examples
See also QP examples
See also TRANS examples
See also ASSIGN examples, 56
excess node
INTPOINT procedure, 150
NETFLOW procedure, 423
QP procedure, 731, 732

\section*{F}
feasible region, 565
feasible solution, 565
finite-difference approximations
central differences, 580
computation of, 532
forward differences, 580
NLP procedure, 531
second-order derivatives, 531
first-order conditions
local minimum, 566
Fletcher-Reeves update method, 545
flow conservation constraints
INTPOINT procedure, 66, 79, 82
NETFLOW procedure, 317, 326, 437
QP procedure, 681, 686, 689
full-screen interface, 44
function convergence
NLP procedure, 527
functional summary
ASSIGN procedure, 52
INTPOINT procedure, 100
LP procedure, 200
NETFLOW procedure, 335
NLP procedure, 524
QP procedure, 668, 700
TRANS procedure, 755

\section*{G}
global solution, 565
goal-programming model, 212
Goldstein conditions, 574, 577, 587
gradient vector
checking correctness, 582
convergence, 528
definition, 566
local optimality conditions, 565
projected gradient, 586
specifying, 550
grid points, 528, 539, 540

\section*{H}

Hessian matrix, 601
definition, 567
displaying, 542
finite-difference approximations, 531, 579
initial estimate, 534
local optimality conditions, 565
projected, 586
saving, 540
scaling, 533, 582
specifying, 550
update method, 545
hybrid quasi-Newton methods, 544, 546, 579

\section*{I}
infeasibility
INTPOINT procedure, 69, 73, 144
LP procedure, 205, 232, 253
NETFLOW procedure, 417
QP procedure, 726
TRANS procedure, 760
infeasible information summary
LP procedure, 253
infinity
INTPOINT procedure, 108
LP procedure, 212
NETFLOW procedure, 348
QP procedure, 672
initial basic feasible solution
NETFLOW procedure, 343
input data sets
ASSIGN procedure, 52
INTPOINT procedure, 103, 131
LP procedure, 204, 250, 251
NETFLOW procedure, 342, 397
NLP procedure, 512, 596, 597
QP procedure, 669, 701, 713
TRANS procedure, 756
integer iteration log, 235
integer programs, 189, 233
interactive processing
LP procedure, 195, 206, 246, 247
NETFLOW procedure, 340
interior point algorithm, 18, 19, 21
INTPOINT procedure, 68
network problems, 437
options (NETFLOW), 381
QP procedure, 657
INTPOINT examples, 160
altering arc data, 166, 175
linear program, 184
MPS format, 184
nonarc variables, 179
production, inventory, distribution problem, 161
side constraints, \(170,175,179\)
INTPOINT procedure
affine step, 72, 74
arc names, 108, 155
balancing supply and demand, 114,150
blending constraints, 78
bypass arc, 104
case sensitivity, 109, 110, 113, 142
centering step, 72, 74
central path, 70
coefficients, 123
columns, 124
complementarity, 69, 73, 157
converting NPSC to LP, 138
costs, 124
data flow, 20
data set options, 103
default arc capacity, 105
default arc cost, 106
default constraint type, 106
default lower bound, 106
default objective function, 106
default options, 155
default upper bounds, 105
demands, 125
dense format, \(85,92,127,130,132\)
details, 131
distribution problem, 76
dual problem, 69
dual variables, 69
duality gap, 69, 157
efficiency, 151-156
embedded networks, 82, 138
excess node, 150
flow conservation constraints, 66, 79, 82
functional summary, 100
general options, 104
infeasibility, 69, 73, 144
input data sets, 103, 131
interior point algorithm, 68
introductory LP example, 92
introductory NPSC example, 85
inventory problem, 76
Karush-Kuhn-Tucker conditions, 69, 73
linear programming problems, 67, 91
loop arcs, 143
maximum cost flow, 108
maximum flow problem, 108
memory requirements, \(99,105,108,151-156\)
missing supply and missing demand, 145
missing values, 145
MPS file conversion, 184
multicommodity problems, 80
multiple arcs, 143
multiprocess, multiproduct example, 81
network problems, 76
nonarc variables, 82
NPSC, 66
options classified by function, 100
output data sets, 103, 141
overview, 65
preprocessing, 68, 85, 92, 118
Primal-Dual with Predictor-Corrector algorithm, 68, 72
primal problem, 68
production-inventory-distribution problem, 76
proportionality constraints, 77
scaling input data, 112
shortest path problem, 112
side constraints, 66,82
sparse format, \(85,92,124,134,138\)
step length, 70
stopping criteria, 120, 156
supply-chain problem, 76
symbolic factorization, 71
syntax skeleton, 100
table of syntax elements, 100
termination criteria, 120, 156
TYPE variable, 129
upper bounds, 73
inventory problem, 76, 683
iteration log
integer iteration log (LP), 235
LP procedure, 205, 254

Jacobian matrix, 601
constraint functions, 551
definition, 567
displaying, 542
objective functions, 552
saving, 540, 541
scaling, 582

\section*{K}

Karush-Kuhn-Tucker conditions, 566, 584
INTPOINT procedure, 69, 73
NETFLOW procedure, 456
Kuhn-Tucker conditions,
See Karush-Kuhn-Tucker conditions

\section*{L}
labels
assigning to decision variables, 553
Lagrange multipliers, 566, 586, 601
Lagrangian function, 566
least-squares problems
definition of, 511
optimization algorithms, 571
Levenberg-Marquardt minimization, 544
least-squares method, 578
line-search methods, 536, 587
step length, 529,538
linear complementarity problem, 544
quadratic programming, 572
linear constraints
NLP procedure, 553
linear programming problems, 189
Bartels-Golub update, 189
INTPOINT procedure, 67, 91
NETFLOW procedure, 324
linearly constrained optimization, 574
local minimum
first-order conditions, 566
second-order conditions, 566
local solution, 565
loop arcs
INTPOINT procedure, 143
NETFLOW procedure, 410
QP procedure, 725
lower bounds
NETFLOW procedure, 358
LP examples, 256
assignment problem, 295
blending problem, 192, 256
branch-and-bound search, 291
fixed charges, 309
goal programming, 274
infeasibilities, 283
integer program, 280
introductory example, 192
mixed-integer program, 196
MPS file conversion, 198
multicommodity transshipment problem, 309
preprocessing, 197
price parametric programming, 269
price sensitivity analysis, 265
product mix problem, 274
range analysis, 267
restarting a problem, 267
restarting an integer program, 286
scheduling problem, 302
sparse data format, 261
special ordered sets, 271
LP procedure
backtracking rules, 207, 237
branch-and-bound, 207, 233, 236
coefficients, 214
columns, 214
complete pricing, 213
constraint summary, 27, 253, 261
current tableau, 229
customizing search heuristics, 239
data compression, 210
data flow, 17
data set options, 204
dense format, 191
details, 223
devex method, 211
displayed output, 205, 215, 251-254
dual activities, 229
dynamic pricing, 213
functional summary, 200
infeasible information summary, 253
input data sets, 204, 250, 251
integer iteration log, 235
integer programs, 233
interactive processing, 195, 206, 246, 247
introductory example, 192
iteration log, 205, 254
memory requirements, 247
missing values, 223
mixed-integer programs, 233
MPS file conversion, 198, 226
multiple pricing, 213, 231
ODS table names, 254
ODS variable names, 254,255
options classified by function, 200
ORLP macro variable, 229
output data sets, 204, 248-250
Output Delivery System (ODS), 254
overview, 189
parametric programming, 211, 244, 247
partial pricing, 213
pause processing, 206, 207
preprocessing, 197, 207, 232
price parametric programming, 245
price sensitivity analysis, 243, 254
pricing strategies, 231
problem definition statements, 194
problem input, 194
problem summary, 25, 251, 257
projected objective value, 236
projected pseudocost, 237
range analysis, 211, 244
range coefficient, 217
reduced costs, 229
reset options, 218
right-hand-side constants, 218
right-hand-side parametric programming, 244
right-hand-side sensitivity analysis, 242, 253
rows, 214, 219
scaling input data, 213, 232
sensitivity analysis, 211, 241, 247
simplex algorithm control options, 211
solution summary, \(25,252,258\)
sparse format, 191, 204, 224
suppress printing, 205
syntax skeleton, 199
table of syntax elements, 200
terminate processing, 217
tolerance, 205, 207, 209, 211-213
TYPE variable, 220, 225, 259
variable summary, 26
variables, 191, 222, 248-250, 252, 259

\section*{M}
macro variable
_ORASSIG, 55
ORLP, 229
_ORNETFL, 434
_ORTRANS, 759
matrix
definition (NLP), 554, 555
generation, 36
maximum flow problem
INTPOINT procedure, 108
NETFLOW procedure, 349
QP procedure, 704
memory requirements
INTPOINT procedure, 99, 105, 108, 151-156
LP procedure, 247
NETFLOW procedure, 344, 345, 347, 349, 350, 428-433
QP procedure, 666, 670, 673, 697, 732-737
merit function, 575
missing values
ASSIGN procedure, 54
INTPOINT procedure, 145
LP procedure, 223
NETFLOW procedure, 419
NLP procedure, 539, 606, 607
QP procedure, 727
TRANS procedure, 758
mixed-integer programs, 189
form of, 189
LP procedure, 233
model building, 34
Moore-Penrose conditions, 595
MPS file conversion
INTPOINT procedure, 184
LP procedure, 198, 226
multicommodity problems
INTPOINT procedure, 80
NETFLOW procedure, 322
QP procedure, 687
multiple arcs
INTPOINT procedure, 143
NETFLOW procedure, 410

QP procedure, 725
multiple pricing
LP procedure, 213, 231

\section*{N}

Nelder-Mead simplex method, 544, 577
NETFLOW examples, 471
constrained solution, 496
distribution problem, 478
inventory problem, 478
minimum cost flow, 474
nonarc variables, 500
production problem, 478
shortest path problem, 471
side constraints, 489,500
unconstrained solution, 485
warm start, 477, 485, 489, 496
NETFLOW procedure
arc capacity, 356
arc names, \(328,331,350,358\)
balancing supply and demand, 355,423
Bartels-Golub decomposition, 349, 376, 417
big-M method, 372
blending constraints, 321
bypass arc, 344
case sensitivity, 351, 364, 409
central path, 450
coefficients, 356
columns, 356
complementarity, 449
costs, 357
cycling, \(373,374,414\)
data flow, 18, 19
data set options, 342
default arc capacity, 346
default arc cost, 346
default constraint type, 346
default lower flow bound, 346
default options, 432
demands, 346,357
dense format, \(324,328,397,398,430,433\)
details, 397
dual variables, 414, 449
duality gap, 449
efficiency, 428-433
embedded networks, 403
excess node, 423
flow conservation constraints, 317, 326, 437
functional summary, 335
infeasibility, 417
infinity, 348
initial basic feasible solution, 343
input data sets, 342,397
interactive processing, 340
interior point algorithm, 436
interior point options, 381
introductory example, 329
Karush-Kuhn-Tucker conditions, 456
key arc, 374
linear programming, 324
loop arcs, 410
lower bounds, 358
macro variable _ORNETFL, 434
major iteration, 413
maximum cost flow, 350
maximum flow problem, 349
memory requirements, \(344,345,347,349,350\), 428-433
minor iteration, 413
missing supply and missing demand, 419
multicommodity problems, 322
multiple arcs, 410
network models, 317
network problems, 437
nonarc variables, 326
nonkey arc, 374
NPSC, 325
options classified by function, 335
output data sets, \(342,370,406\)
overview, 317
pivot, 359
preprocessing, 382
pricing strategies, 376,410
printing cautions, 364
printing options, 359
production-inventory-distribution problem, 317
proportionality constraints, 320
ratio test, 373,374
reduced costs, 414
scaling input data, 353
shortest path problem, 354
side constraints, \(319,325,417\)
sink nodes, 354
source nodes, 354
sparse format, \(324,329,355,400,404,430,433\)
stages, 366
status, 414
stopping criteria, 453
supplies, 355
syntax skeleton, 335
table of syntax elements, 335
termination criteria, 384, 453
tightening bounds, 417
TYPE variable, 395
warm starts, 327, 355, 424, 426, 433
working basis matrix, \(347,349,355,374,415\)
wraparound search, 412
network models, 317
network problems, 17
format, 29
interior point algorithm, 437
INTPOINT procedure, 76
QP procedure, 683
specification (ASSIGN), 52
Newton-Raphson method, 545
with line search, 573
with ridging, 573
NLP examples, 611
approximate standard errors, 617
Bard function, 611
blending problem, 631
boundary constraints, 515
chemical equilibrium, 639
covariance matrix, 617
Hock and Schittkowski problem, 614
introductory examples, 513-516, 518, 520
least-squares problem, 514, 611
linear constraints, 516, 614
maximum likelihood Weibull estimation, 624
maximum-likelihood estimates, 520, 618
nonlinear constraints, 518
nonlinear network problem, 644
quadratic programming problem, 613
restarting an optimization, 616
Rosenbrock function, 616
starting point, 614
statistical analysis, 617
trust region method, 616
unconstrained optimization, 513
NLP procedure
active set methods, 572, 584
boundary constraints, 547
choosing an optimization algorithm, 570
computational problems, 589-591
computational resources, 607-609
conjugate gradient methods, 577
convergence difficulties, 590, 591
covariance matrix, 529, 541, 592, 594, 601
crossproduct Jacobian, 567, 601
data flow, 20, 21
debugging options, 537, 561
derivatives, 566
display function values, 542
displayed output, 541, 604, 605
double dogleg method, 576
eigenvalue tolerance, 529
feasible region, 565
feasible solution, 565
feasible starting point, 587
finite-difference approximations, 531, 579
first-order conditions, 566
function convergence, 527, 530
functional summary, 524
global solution, 565
Goldstein conditions, 574, 577, 587
gradient, 533, 566
gradient convergence, 528, 532, 533
grid points, 528
Hessian, 534, 567, 579, 601
Hessian scaling, 533, 582
Hessian update method, 545
initial values, 535, 542, 596
input data sets, 512, 596, 597
iteration history, 605
Jacobian, 567, 601
Karush-Kuhn-Tucker conditions, 566
Lagrange multipliers, 566, 601

Lagrangian function, 566
least-squares problems, 571
Levenberg-Marquardt method, 578
limiting function calls, 537
limiting number of iterations, 538
line-search methods, 536, 587
linear complementarity, 572
linear constraints, 553, 574
local optimality conditions, 565
local solution, 565
memory requirements, 568
missing values, \(539,606,607\)
Nelder-Mead simplex method, 577
Newton-Raphson method, 573
nonlinear constraints, 549, 575
optimality criteria, 565
optimization algorithms, 544, 568
optimization history, 542
options classified by function, 524
output data sets, \(512,539-541,598,599,603\)
overview, 511
parameter convergence, 528,546
precision, 529, 532, 581, 592
predicted reduction convergence, 530
profile confidence limits, 529
program statements, 560
projected gradient, 601
projected Hessian matrix, 601
quadratic programming, 570, 571, 575
quasi-Newton methods, 574,579
rank of covariance matrix, 602
restricting output, 542, 543
restricting step length, 588
second-order conditions, 566
singularity criterion, 528, 539, 546
stationary point, 591
step length, 529
storing model files, 603
suppress printing, 539
table of syntax elements, 524
termination criteria, 583
time limit, 538
trust region method, 573
TYPE variable, 596-598, 600, 602, 603
unconstrained optimization, 574
variables, 596
nonarc variables
INTPOINT procedure, 82
NETFLOW procedure, 326
QP procedure, 689
nonlinear optimization, 511,
See also NLP procedure
algorithms, 568
computational problems, 589
conjugate gradient methods, 577
feasible starting point, 587
hybrid quasi-Newton methods, 579
Levenberg-Marquardt method, 578
Nelder-Mead simplex method, 577

Newton-Raphson method with line search, 573
Newton-Raphson method with ridging, 573
nonlinear constraints, 549, 558, 575
optimization algorithms, 570
quasi-Newton method, 574
trust region method, 573
NPSC
INTPOINT procedure, 66
NETFLOW procedure, 325

\section*{0}
objective function
ASSIGN procedure, 54
INTPOINT procedure, 67, 68, 124
LP procedure, 189
NETFLOW procedure, 325, 448
NLP procedure, 511, 521, 556
QP procedure, 657, 678, 682, 710
TRANS procedure, 758
ODS variable names
LP procedure, 255
optimality criteria, 565
optimization
double dogleg method, 576
introduction, 15
linear constraints, 574
nonlinear constraints, 575
unconstrained, 574
optimization algorithms
least-squares problems, 571
NLP procedure, 544, 568
nonlinear optimization, 570
quadratic programming, 570, 571
optimization control options
ASSIGN procedure, 53
options classified by function,
See functional summary
_ORASSIG macro variable, 55
ORLP macro variable, 229
_ORNETFL macro variable, 434
_ORTRANS macro variable, 759
out-of-kilter algorithm, 55
output data sets
ASSIGN procedure, 53, 54
INTPOINT procedure, 103, 141
LP procedure, 204, 248-250
NETFLOW procedure, 342, 370, 406
NLP procedure, 512, 539-541, 598, 599, 603
QP procedure, 669, 701, 723
TRANS procedure, 756, 758
Output Delivery System (ODS)
LP procedure, 254
overview
ASSIGN procedure, 49
INTPOINT procedure, 65
LP procedure, 189
NETFLOW procedure, 317
NLP procedure, 511
optimization, 15

QP procedure, 655
TRANS procedure, 753

\section*{P}
parametric control options
LP procedure, 211
parametric programming, 211, 244, 247
partial pricing
LP procedure, 213
pause processing
LP procedure, 206, 207
Polak-Ribiere update method, 545
Powell-Beale update method, 545
precision
nonlinear constraints, 529, 581
objective function, 532, 581
preprocessing
INTPOINT procedure, 68, 85, 92, 118
LP procedure, 197, 207, 232
NETFLOW procedure, 382
price parametric programming, 245
price sensitivity analysis, 243, 254
pricing strategies
LP procedure, 231
NETFLOW procedure, 376, 410
Primal-Dual with Predictor-Corrector algorithm
INTPOINT procedure, 68, 72
QP procedure, 657
problem definition statements
LP procedure, 194
problem specification
assignment format, 33
dense format, 24
network format, 29
sparse format, 27
transportation format, 33
problem summary
LP procedure, 25, 251, 257
production-inventory-distribution problem, 317
INTPOINT procedure, 76
QP procedure, 683
profile confidence limits, 559
parameters for, 529
profit
ASSIGN procedure, 53
program statements
NLP procedure, 560
projected gradient, 586, 601
projected Hessian matrix, 586, 601
projected objective value
LP procedure, 236
projected pseudocost
LP procedure, 237
proportionality constraints
INTPOINT procedure, 77
NETFLOW procedure, 320
QP procedure, 684

\section*{Q}

QNPSC
QP procedure, 681
QP examples, 738
QP procedure
arc names, 704, 737
balancing supply and demand, 708, 731, 732
blending constraints, 685
bypass arc, 703
case sensitivity, 673, 705, 706, 724
coefficients, 675, 709
columns, 675, 709
converting QNPSC to QP, 720
costs, 678, 710
data flow, 21
data set options, 669, 701
default arc capacity, 703
default arc cost, 703
default constraint type, 671
default lower bound, 671, 704
default objective function, 671, 703
default options, 736
default upper bounds, 670, 703
demands, 710
dense format, \(658,678,681,691,714\)
details, 713
distribution problem, 683
dual problem, 657
dual variables, 657
efficiency, 732-737
embedded networks, 689, 720
excess node, 731, 732
flow conservation constraints, 681, 686, 689
functional summary, 668, 700
general options, 669, 702
infeasibility, 726
input data sets, 669, 701, 713
interior point algorithm, 657
introductory QNPSC example, 692
introductory QP example, 659
inventory problem, 683
loop arcs, 725
maximum flow problem, 704
memory requirements, \(666,670,673,697,732\) 737
missing supply and missing demand, 727
missing values, 727
multicommodity problems, 687
multiple arcs, 725
multiprocess, multiproduct example, 688
network problems, 683
nonarc variables, 689
options classified by function, 668, 700
output data sets, \(669,701,723\)
overview, 655
Primal-Dual with Predictor-Corrector algorithm, 657
primal problem, 657
production-inventory-distribution problem, 683
proportionality constraints, 684
QNPSC, 681
quadratic programming problems, 656,658
shortest path problem, 707
side constraints, 681, 689
sparse format, \(659,675,691,709,716,720\)
supply-chain problem, 683
syntax skeleton, 667, 699
table of syntax elements, 668, 700
TYPE variable, 679
quadratic programming, 535, 575
active set methods, 572
definition, 511
linear complementarity problem, 572
optimization algorithms, 570, 571
specifying the objective function, 556
quadratic programming problems
QP procedure, 656, 658
quasi-Newton methods, 545, 546, 574

\section*{R}
random numbers
seed, 543
range analysis, 211,244
range coefficient
LP procedure, 217
ranging control options
LP procedure, 211
ratio test
NETFLOW procedure, 373, 374
reduced costs
LP procedure, 229
NETFLOW procedure, 414
report writing, 41, 43
right-hand-side constants
LP procedure, 218
right-hand-side parametric programming, 244
right-hand-side sensitivity analysis, 242, 253
Rosenbrock function, 513, 549-551, 553
Rosen-Suzuki problem, 559
rows
LP procedure, 214, 219

\section*{S}
scaling input data
ASSIGN procedure, 53, 55
INTPOINT procedure, 112
LP procedure, 213, 232
NETFLOW procedure, 353
second-order conditions
local minimum, 566
second-order derivatives
finite-difference approximations, 531
sensitivity analysis, 241,247
sensitivity control options
LP procedure, 211
shortest path problem
INTPOINT procedure, 112
NETFLOW procedure, 354

QP procedure, 707
side constraints
INTPOINT procedure, 66,82
NETFLOW procedure, 319,325
QP procedure, 681, 689
simplex algorithm control options
LP procedure, 211
singularity, 544, 594
absolute singularity criterion, 528
relative singularity criterion, 539,546
sink nodes
NETFLOW procedure, 354
solution summary
LP procedure, 25, 252, 258
source nodes
NETFLOW procedure, 354
sparse input format
INTPOINT procedure, 85, 92, 124, 134
LP procedure, 191, 204, 224
NETFLOW procedure, 329, 355, 400, 430, 433
QP procedure, 659, 675, 691, 709, 716
summary (INTPOINT), 138
summary (NETFLOW), 404
summary (QP), 720
special ordered set, 221
standard errors
computing, 543
step length, 588
INTPOINT procedure, 70
supplies
NETFLOW procedure, 355
supply-chain problem, 76, 683
symbolic factorization
INTPOINT procedure, 71
syntax skeleton
ASSIGN procedure, 52
INTPOINT procedure, 100
LP procedure, 199
NETFLOW procedure, 335
NLP procedure, 524
QP procedure, 667, 699
TRANS procedure, 755

\section*{T}
table of syntax elements,
See functional summary
tableau
display current, 229
termination criteria, 583
absolute function convergence, 527
absolute gradient convergence, 528
absolute parameter convergence, 528
INTPOINT procedure, 120, 156
NETFLOW procedure, 384, 453
number of function calls, 537
number of iterations, 538
predicted reduction convergence, 530
relative function convergence, 530
relative gradient convergence, 532, 533
relative parameter convergence, 546
time limit, 538
tolerance
LP procedure, 205, 207, 209, 211-213
TRANS examples, 763
capacitated transportation network, 765, 766
infeasibilities, 768
introductory example, 754
minimum flow restrictions, 766
uncapacitated transportation network, 763
TRANS procedure
data flow, 22
demands, 759
details, 758
dual variables, 759
functional summary, 755
infeasibility, 760
input data sets, 756
missing values, 758
objective function, 758
options classified by function, 755
_ORTRANS macro variable, 759
output data set, 756,758
overview, 753
syntax skeleton, 755
table of syntax elements, 755
transportation problem, 22, 753
balancing, 760-762
data format, 33
trust region methods, 545
TYPE variable
INTPOINT procedure, 129
LP procedure, 220, 225, 259
NETFLOW procedure, 395
NLP procedure, 596-598, 600, 602, 603
QP procedure, 679

\section*{U}
unconstrained optimization, 574
upper bounds
INTPOINT procedure, 73
QP procedure, 680

\section*{V}
variable summary
LP procedure, 26
variables
LP procedure, 222, 248-250, 252, 259
VF02AD algorithm, 575
VMCWD algorithm, 575
W
Wald confidence limits, 559, 560
warm starts
NETFLOW procedure, 327, 355, 424, 426, 433
working basis matrix
NETFLOW procedure, 347, 349, 355, 374, 415
wraparound search
NETFLOW procedure, 412

\section*{Syntax Index}

\section*{A}

ABORT statement
NLP program statements, 561
ABSCONV = option
PROC NLP statement, 527
ABSFCONV = option
PROC NLP statement, 527
ABSFTOL= option,
See ABSFCONV= option
ABSGCONV \(=\) option
PROC NLP statement, 528, 576, 584, 592
ABSGTOL= option,
See ABSGCONV= option
ABSTOL= option,
See ABSCONV= option
ABSXCONV = option
PROC NLP statement, 528
ABSXTOL= option,
See ABSXCONV= option
ACTBC keyword
TYPE variable (NLP), 600
ACTIVEIN = option
PROC LP statement, 204, 241, 250
ACTIVEOUT= option
PROC LP statement, 204, 241, 248
ADDSUPPLY option
PROC TRANS statement, 757
ALL keyword
FDINT= option (NLP), 532
ALL option,
See PALL option
ALLART option
PROC NETFLOW statement, 343
AND_KEEPGOING_C= option
PROC INTPOINT statement, 122, 159
RESET statement (NETFLOW), 386
AND_KEEPGOING_DG= option
PROC INTPOINT statement, 122, 159
RESET statement (NETFLOW), 387
AND_KEEPGOING_IB = option
PROC INTPOINT statement, 122, 159
RESET statement (NETFLOW), 387
AND_KEEPGOING_IC \(=\) option
PROC INTPOINT statement, 123, 159
RESET statement (NETFLOW), 387
AND_KEEPGOING_ID= option
PROC INTPOINT statement, 123, 159
RESET statement (NETFLOW), 387

AND_STOP_C= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385
AND_STOP_DG= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385
AND_STOP_IB= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385
AND_STOP_IC= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385
AND_STOP_ID= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 386
ANY keyword
P \(x\) SCAN \(=\) option (NETFLOW), 413
AOUT= option,
See ARCOUT= option
ARCDATA keyword
GROUPED \(=\) option (INTPOINT), 106
GROUPED \(=\) option (NETFLOW), 347
ARCDATA = option
PROC INTPOINT statement, 84, 85, 91, 92, 99, 103, 131
PROC NETFLOW statement, 328, 329, 342, 397
PROC QP statement, 690, 692, 697, 701, 713
ARCNAME statement,
See NAME statement
ARCOUT= option
PROC NETFLOW statement, 329, 342, 406
RESET statement (NETFLOW), 370
ARCS option
PRINT statement (NETFLOW), 361
ARC_SINGLE_OBS option
PROC INTPOINT statement, 104
PROC NETFLOW statement, 344
PROC QP statement, 669, 702
ARCS_ONLY_ARCDATA option
PROC INTPOINT statement, 104, 154
PROC NETFLOW statement, 344, 431
PROC QP statement, 702, 735
ARRAY statement
NLP procedure, 547
ASING= option,
See ASINGULAR= option
ASINGULAR= option
PROC NLP statement, 528, 594

ASSIGN procedure, 52
PROC QP statement, 666, 670, 697, 735
BY statement, 53
COST statement, 53
ID statement, 54
PROC ASSIGN statement, 52
AUTO option
PROC LP statement, 207, 239-241

\section*{B}

BACKTRACK= option
PROC LP statement, 207, 237
BASIC keyword
TYPE variable (LP), 222
BASIC option
PRINT statement (NETFLOW), 362
BEST keyword
P \(x\) SCAN = option (NETFLOW), 376, 411, 412
Q \(x\) FILLSCAN \(=\) option (NETFLOW), 377, 413
BEST option
PRINT statement (LP), 215
BEST= option
PROC NLP statement, 528, 549
BFGS keyword
UPDATE= option (NLP), 545, 574, 575
BIGM1 option
RESET statement (NETFLOW), 372
BIGM2 option
RESET statement (NETFLOW), 374
BINARY keyword
TYPE variable (LP), 221
BINFST option
PROC LP statement, 208
BLAND keyword
PRICETYPE \(x=\) option (NETFLOW), 376, 411, 414
BOTH keyword
CLPARM = option (NLP), 529
GROUPED \(=\) option (INTPOINT), 107
GROUPED \(=\) option (NETFLOW), 348
GROUPED \(=\) option (QP), 672
SCALE \(=\) option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE \(=\) option (NETFLOW), 354
BOUNDS statement
NLP procedure, 547, 558, 572
\(\mathrm{BPD}=\) option,
See BYPASSDIVIDE= option
BY statement
ASSIGN procedure, 53
NLP procedure, 548
BYPASSDIV= option,
See BYPASSDIVIDE= option
BYPASSDIVIDE= option
PROC INTPOINT statement, 104
PROC NETFLOW statement, 344
PROC QP statement, 703
BYTES = option
PROC INTPOINT statement, 99, 105, 154
PROC NETFLOW statement, 344, 431

\section*{C}

CANSELECT= option
PROC LP statement, 208, 236, 239, 241
CAPAC keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 679
CAPAC statement,
See CAPACITY statement
CAPACITY statement
INTPOINT procedure, 123
NETFLOW procedure, 356
QP procedure, 709
CAPACITY= option
PROC TRANS statement, 756
CD keyword
UPDATE= option (NLP), 545, 577
CDIGITS \(=\) option
PROC NLP statement, 529, 581
CENTRAL keyword
FD= option (NLP), 531
FDHESSIAN = option (NLP), 531
CF= option,
See COREFACTOR= option
CHI keyword
FORCHI= option (NLP), 560
CHOLTINYTOL= option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 382
CLOSE keyword
VARSELECT= option (LP), 210, 238
CLPARM= option
PROC NLP statement, 529, 602, 603
COEF statement
INTPOINT procedure, 123
LP procedure, 214
NETFLOW procedure, 356
QP procedure, 675, 709
COEFS keyword
NON_REPLIC= option (INTPOINT), 111
NON_REPLIC= option (NETFLOW), 352
NON_REPLIC= option (QP), 673
COL keyword
SCALE \(=\) option (INTPOINT), 112
SCALE= option (NETFLOW), 354
COL statement
LP procedure, 214
COLUMN keyword
SCALE \(=\) option (INTPOINT), 112
SCALE = option (LP), 213, 232
SCALE= option (NETFLOW), 354
COLUMN option
PRINT statement (LP), 215
COLUMN statement
INTPOINT procedure, 124
NETFLOW procedure, 356
QP procedure, 675, 709

COMPLETE keyword
PRICETYPE= option (LP), 213, 231
CON keyword
FDINT= option (NLP), 532
SCALE \(=\) option (INTPOINT), 112
SCALE= option (NETFLOW), 353
CON_ARCS option
PRINT statement (NETFLOW), 361
CONDATA keyword
GROUPED= option (INTPOINT), 107
GROUPED \(=\) option (NETFLOW), 347
GROUPED= option (QP), 671
CONDATA \(=\) option
PROC INTPOINT statement, 84, 85, 91, 92, 99, 103, 132
PROC NETFLOW statement, 328, 329, 342, 398
PROC QP statement, 658, 659, 666, 669, 691, 692, 697, 701, 714
CONGRA keyword
TECH= option (NLP), 544, 571, 577, 584
CON_NONARCS option
PRINT statement (NETFLOW), 361
CONOPT statement
NETFLOW procedure, 357
CONOUT= option
PROC INTPOINT statement, 85, 92, 99, 103, 141
PROC NETFLOW statement, 329, 343, 406
PROC QP statement, 659, 666, 669, 692, 698, 702, 723
RESET statement (NETFLOW), 370
CON_SINGLE_OBS option
PROC INTPOINT statement, 105
PROC NETFLOW statement, 345
PROC QP statement, 670, 703
CONST keyword
TYPE variable (NLP), 597
CONSTRAINT keyword
SCALE \(=\) option (INTPOINT), 112
SCALE= option (NETFLOW), 353
CONSTRAINTS option
PRINT statement (NETFLOW), 361
CONTROL= option
PROC LP statement, 207, 208, 240, 241
CONTYPE statement,
See TYPE statement
COREFACTOR= option
PROC NETFLOW statement, 345
COST keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 679
COST statement
ASSIGN procedure, 53
INTPOINT procedure, 124
NETFLOW procedure, 357
QP procedure, 710
COST \(=\) option
PROC TRANS statement, 756

COUT= option,
See CONOUT= option
\(\operatorname{COV} x\) keyword
TYPE variable (NLP), 601
COV \(=\) option
PROC NLP statement, 529, 592
COVARIANCE \(=\) option, See \(\mathrm{COV}=\) option
COVRANK keyword TYPE variable (NLP), 602
COVSING= option
PROC NLP statement, 529, 595
CRPJAC keyword
TYPE variable (NLP), 601
CRPJAC statement
NLP procedure, 548, 570, 581
CYCLEMULT1 \(=\) option
RESET statement (NETFLOW), 373

\section*{D}

DAMPSTEP \(=\) option
PROC NLP statement, 529, 588, 589
DATA= option
PROC ASSIGN statement, 52
PROC LP statement, 204
PROC NLP statement, 530, 596
DATASETS option SHOW statement (NETFLOW), 391
DBFGS keyword UPDATE= option (NLP), 545, 574, 576, 579
DBLDOG keyword TECH= option (NLP), 544, 571, 576, 589
DC= option, See DEFCAPACITY= option
DCT \(=\) option, See DEFCONTYPE= option
DDFP keyword UPDATE= option (NLP), 545, 574, 576, 579
DEC= option
PROC ASSIGN statement, 53, 55
DECVAR statement NLP procedure, 549, 591
DEFCAPACITY= option PROC INTPOINT statement, 105, 155 PROC NETFLOW statement, 346, 432 PROC QP statement, 670, 703, 736 PROC TRANS statement, 756
DEFCONTYPE= option PROC INTPOINT statement, 106, 155 PROC NETFLOW statement, 346, 432 PROC QP statement, 671, 736
DEFCOST = option PROC INTPOINT statement, 106, 155 PROC NETFLOW statement, 346, 432 PROC QP statement, 671, 703, 736
DEFMINFLOW = option PROC INTPOINT statement, 106, 155 PROC NETFLOW statement, 346, 432 PROC QP statement, 671, 704, 736

PROC TRANS statement, 756
DEFTYPE= option,
See DEFCONTYPE= option
DELTAIT \(=\) option
PROC LP statement, 208
DEMAND statement
INTPOINT procedure, 125
NETFLOW procedure, 357
QP procedure, 710
DEMAND \(=\) option
PROC INTPOINT statement, 106, 155
PROC NETFLOW statement, 346, 432
PROC QP statement, 704, 736
PROC TRANS statement, 756, 759
DENSETHR = option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 382
DESCENDING option
BY statement (ASSIGN), 53
BY statement (NLP), 548
DETAIL keyword
GRADCHECK= option (NLP), 533, 582
DETERMIN keyword
TYPE variable (NLP), 602
DEVEX option
PROC LP statement, 211
DF keyword
VARDEF= option (NLP), 545
DFP keyword
UPDATE= option (NLP), 545, 574, 575
DIAHES option
PROC NLP statement, 530, 548, 550
\(\mathrm{DMF}=\) option,
See DEFMINFLOW= option
DO statement
NLP program statements, 561
DOBJECTIVE= option
PROC LP statement, 209
DOUT= option,
See DUALOUT= option
DS=option,
See DAMPSTEP= option
DUALFREQ= option
RESET statement (NETFLOW), 413
DUALIN= option,
See NODEDATA= option
DUALOUT= option
PROC LP statement, 204, 250
PROC NETFLOW statement, 329, 343, 408
RESET statement (NETFLOW), 370
DWIA= option
PROC NETFLOW statement, 347
DYNAMIC keyword
PRICETYPE= option (LP), 213, 231

\section*{E}

ENDPAUSE option
PROC LP statement, 206, 246
ENDPAUSE1 option

RESET statement (NETFLOW), 371
EPSILON= option
PROC LP statement, 211
EQ keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 220
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 597, 598, 601
TYPE variable (QP), 679
ERROR keyword
BACKTRACK \(=\) option (LP), 208
CANSELECT= option (LP), 208, 237
ESTDATA= option,
See INEST= option
EVERYOBS option
NLINCON statement (NLP), 558

\section*{F}

F keyword
FORCHI= option (NLP), 560
FACT_METHOD= option
PROC INTPOINT statement, 116
RESET statement (NETFLOW), 381
FAR keyword
VARSELECT = option (LP), 210, 238
FAST keyword
GRADCHECK= option (NLP), 533, 582
FCONV = option
PROC NLP statement, 530
FCONV2= option
PROC NLP statement, 530, 576
\(\mathrm{FD}=\) option
PROC NLP statement, 531, 579, 582
FDH= option,
See FDHESSIAN= option
FDHES = option,
See FDHESSIAN= option
FDHESSIAN= option
PROC NLP statement, 531, 579, 582
FDIGITS \(=\) option
PROC NLP statement, 532, 581
FDINT= option
PROC NLP statement, 532, 581, 591
FEASIBLEPAUSE option
PROC LP statement, 206, 246
FEASIBLEPAUSE1 option
RESET statement (NETFLOW), 371
FEASIBLEPAUSE2 option
RESET statement (NETFLOW), 372
FEASRATIO= option
PROFILE statement (NLP), 560
FFACTOR= option
PROFILE statement (NLP), 560
FIFO keyword
BACKTRACK= option (LP), 207
CANSELECT = option (LP), 208, 236
FIRST keyword
P \(x\) SCAN = option (NETFLOW), 376, 411, 412
Q \(x\) FILLSCAN \(=\) option (NETFLOW), 377, 413

FIXED keyword
TYPE variable (LP), 221, 232
FLOW option
PROC LP statement, 205
FORCHI= option
PROFILE statement (NLP), 560
FORWARD keyword
FD= option (NLP), 531
FDHESSIAN= option (NLP), 531
FP1 option,
See FEASIBLEPAUSE1 option
FP2 option,
See FEASIBLEPAUSE2 option
FR keyword
UPDATE \(=\) option (NLP), 545, 577
FREE keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 222, 232
TYPE variable (NETFLOW), 396
TYPE variable (QP), 679
FROM statement,
See TAILNODE statement
FROMNODE statement,
See TAILNODE statement
FSIZE= option
PROC NLP statement, 532
FTOL= option,
See FCONV= option
FTOL2 \(=\) option, See FCONV2= option
FUTURE1 option
PROC NETFLOW statement, 425
RESET statement (NETFLOW), 377
FUTURE2 option
PROC NETFLOW statement, 425
RESET statement (NETFLOW), 377
FUZZ= option
PROC LP statement, 205

\section*{G}

G4= option
PROC NLP statement, 532, 595
\(\mathrm{GC}=\) option,
See GRADCHECK= option
GCONV \(=\) option
PROC NLP statement, 532, 576, 584, 592
GCONV2= option
PROC NLP statement, 533
GE keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 220
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 597, 598, 601
TYPE variable (QP), 680
GOALPROGRAM option
PROC LP statement, 212
GRAD keyword
TYPE variable (NLP), 600
GRADCHECK= option

PROC NLP statement, 533, 582
GRADIENT statement
NLP procedure, 550, 553, 570, 581, 583
GRIDPNT keyword
TYPE variable (NLP), 600
GROUPED= option
PROC INTPOINT statement, 106, 153
PROC NETFLOW statement, 347, 430
PROC QP statement, 671, 734
GTOL= option,
See GCONV= option
GTOL2 \(=\) option,
See GCONV2= option
H
HEAD statement,
See HEADNODE statement
HEADNODE statement
INTPOINT procedure, 125
NETFLOW procedure, 357
QP procedure, 710
TRANS procedure, 757
HESCAL= option
PROC NLP statement, 533, 582
HESSCOEF statement,
See HESSIANCOEF statement
HESSCOL statement, See HESSIANCOLUMN statement
HESSCOLUMN statement, See HESSIANCOLUMN statement
HESSIAN keyword
TYPE variable (NLP), 601
HESSIAN statement
NLP procedure, 550, 570, 581
HESSIAN = option PROC INTPOINT statement, 691 PROC QP statement, 659, 669, 692, 702
HESSIANCOEF statement QP procedure, 676
HESSIANCOL statement, See HESSIANCOLUMN statement
HESSIANCOLUMN statement
QP procedure, 676
HESSIANROW statement
QP procedure, 676
HESSROW statement,
See HESSIANROW statement
HS = option,
See HESCAL= option
HYQUAN keyword
TECH= option (NLP), 544, 571, 579, 588
I
ID statement
ASSIGN procedure, 54
INTPOINT procedure, 125
LP procedure, 214
NETFLOW procedure, 358
QP procedure, 677, 711

IEPSILON= option
PROC LP statement, 209
IFEASIBLEPAUSE \(=\) option
PROC LP statement, 206, 246
IFP option,
See INFEASIBLE option
IMAXIT= option
PROC LP statement, 209
IMAXITERB \(=\) option,
See MAXITERB= option
INCLUDE statement
NLP procedure, 539, 551, 604
INEST= option
PROC NLP statement, 534, 553, 572, 596, 597, 602
INF \(=\) option,
See INFINITY= option
INFEASIBLE option
PROC NLP statement, 534, 550
INFINITY= option
PROC INTPOINT statement, 108
PROC LP statement, 212
PROC NETFLOW statement, 348
PROC QP statement, 672
INHESS= option,
See INHESSIAN= option
INHESSIAN= option
PROC NLP statement, 534, 576, 590
INITIAL keyword
TYPE variable (NLP), 600
INITIAL= option
PROC NLP statement, 535
INQUAD= option
PROC NLP statement, 535, 572, 597, 598
INSTEP= option
PROC NLP statement, 535, 575, 589, 590
INTEGER keyword
TYPE variable (LP), 221, 233
INTEGER_NONZEROS option
PRINT statement (LP), 215
INTEGER option
PRINT statement (LP), 215
INTEGER_ZEROS option
PRINT statement (LP), 216
INTFIRST option
RESET statement (NETFLOW), 374
INTPOINT option
PROC NETFLOW statement, 437, 438
RESET statement (NETFLOW), 348
INTPOINT procedure, 100
CAPACITY statement, 123
COEF statement, 123
COLUMN statement, 124
COST statement, 124
DEMAND statement, 125
HEADNODE statement, 125
ID statement, 125
LO statement, 126
NAME statement, 126

NODE statement, 126
PROC INTPOINT statement, 103
QUIT statement, 126
RHS statement, 127
ROW statement, 127
RUN statement, 127
SUPDEM statement, 128
SUPPLY statement, 128
TAILNODE statement, 128
TYPE statement, 129
VAR statement, 130
INVAR= option,
See INEST= option
INVD_2D option
PROC NETFLOW statement, 349, 417
INVFREQ= option
PROC LP statement, 212
RESET statement (NETFLOW), 374
INVTOL= option
PROC LP statement, 212
IOBJECTIVE= option
PROC LP statement, 209
IPAUSE= option
PROC LP statement, 206, 246
IPIVOT statement
LP procedure, 215, 246
IPRSLTYPE= option,
See PRSLTYPE= option

\section*{J}

JACNLC statement
NLP procedure, 551, 570
JACOBIAN keyword
TYPE variable (NLP), 601
JACOBIAN statement
NLP procedure, 552, 570, 581, 583

\section*{K}

KEEPGOING_C= option
PROC INTPOINT statement, 121, 157
RESET statement (NETFLOW), 386
KEEPGOING_DG= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386
KEEPGOING_IB= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386
KEEPGOING_IC= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386
KEEPGOING_ID= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386

\section*{L}

LABEL statement
NLP procedure, 553
LAGRANGE keyword
TYPE variable (NLP), 601

LB keyword
TYPE variable (NLP), 596, 597, 600
\(\mathrm{LCD}=\) option,
See LCDEACT= option
LCDEACT = option
PROC NLP statement, 535, 576, 586
LCE= option,
See LCEPSILON= option
LCEPS = option,
See LCEPSILON= option
LCEPSILON = option
PROC NLP statement, 536, 573, 576, 585
LCS \(=\) option,
See LCSINGULAR= option
LCSING= option, See LCSINGULAR= option
LCSINGULAR \(=\) option
PROC NLP statement, 536, 576, 585
LE keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 220
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 596, 598, 601
TYPE variable (QP), 680
LEVMAR keyword
TECH = option (NLP), 544, 571, 578, 589
LICOMP keyword
TECH = option (NLP), 544, 570, 572, 597
LIFO keyword
BACKTRACK= option (LP), 207
CANSELECT = option (LP), 208, 236, 240
LIFOTYPE= option
PROC LP statement, 209
LINCON statement
NLP procedure, 572, 578
LINEAR keyword
TYPE variable (NLP), 597, 598
LINESEARCH= option
PROC NLP statement, 536, 577, 579, 587
LIS \(=\) option,
See LINESEARCH= option
LIST option
PROC NLP statement, 537, 606
LISTCODE option PROC NLP statement, 537, 606
LO statement
INTPOINT procedure, 126
NETFLOW procedure, 358
QP procedure, 677, 711
LONG option
PRINT statement (NETFLOW), 362
LOW keyword TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
LOWER= option
RESET statement (LP), 218
LOWERBD keyword TYPE variable (INTPOINT), 129

TYPE variable (LP), 221
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 596, 597, 600
TYPE variable (QP), 680
LOWERBD statement,
See LO statement
LP procedure, 199
COEF statement, 214
COL statement, 214
ID statement, 214
IPIVOT statement, 215
PIVOT statement, 215
PRINT statement, 215
PROC LP statement, 204
QUIT statement, 217
RANGE statement, 217
RESET statement, 218
RHS statement, 218
RHSSEN statement, 219
ROW statement, 219
RUN statement, 220
SHOW statement, 220
TYPE statement, 220
VAR statement, 222
LRATIO1 option
RESET statement (NETFLOW), 373
LRATIO2 option
RESET statement (NETFLOW), 373
LSP= option,
See LSPRECISION= option
LSPRECISION = option
PROC NLP statement, 537, 588
LSQ statement
NLP procedure, 556
M
MATRIX option
PRINT statement (LP), 216
MATRIX statement
NLP procedure, 554
MAX keyword
TYPE variable (LP), 220
MAX option,
See MAXIMIZE option
MAX statement
NLP procedure, 556
MAXARRAYBYTES = option
PROC NETFLOW statement, 349, 431
MAXFLOW option
PROC INTPOINT statement, 108
PROC NETFLOW statement, 349
PROC QP statement, 704
MAXFU= option,
See MAXFUNC= option
MAXFUNC= option
PROC NLP statement, 537, 607
MAXIMIZE keyword
TYPE variable (NETFLOW), 396
MAXIMIZE option

PROC INTPOINT statement, 108
PROC NETFLOW statement, 350
PROC QP statement, 673
MAXIMUM option
PROC ASSIGN statement, 53
PROC TRANS statement, 756
MAXIT1 \(=\) option
PROC LP statement, 212
RESET statement (NETFLOW), 372
MAXIT2= option
PROC LP statement, 212
RESET statement (NETFLOW), 372
MAXIT3= option
PROC LP statement, 212
MAXIT= option,
NLP procedure, See MAXITER= option
PROC LP statement, 212
MAXITER= option
PROC NLP statement, 538, 607
MAXITERB \(=\) option
PROC INTPOINT statement, 120, 156
PROC NETFLOW statement, 453
RESET statement (NETFLOW), 384
MAXL= option
RESET statement (NETFLOW), 375
MAXLUUPDATES \(=\) option
RESET statement (NETFLOW), 375
MAXQUAD statement
NLP procedure, 556, 572
MAXSTEP= option
PROC NLP statement, 538, 589
MAXTIME \(=\) option
PROC NLP statement, 538, 607
MAZIMIZE keyword
TYPE variable (INTPOINT), 129
TYPE variable (QP), 680
MEMREP option
PROC INTPOINT statement, 108, 154
PROC NETFLOW statement, 350, 431
PROC QP statement, 673, 735
MF option,
See MAXFLOW option
MIN keyword
TYPE variable (LP), 220
MIN statement
NLP procedure, 556
MINBLOCK1 = option
RESET statement (NETFLOW), 373
MINFLOW statement,
See LO statement
MINFLOW= option
PROC TRANS statement, 756
MINIMIZE keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
MINIT= option,
See MINITER= option
MINITER \(=\) option

PROC NLP statement, 538
MINQUAD statement
NLP procedure, 556, 572
MISC option
SHOW statement (NETFLOW), 393
MLUU= option,
See MAXLUUPDATES \(=\) option
MOD= option,
See MODEL= option
MODEL= option
PROC NLP statement, 539, 604
MODFILE= option,
See MODEL= option
MOREOPT option
RESET statement (NETFLOW), 377
MSING= option,
See MSINGULAR= option
MSINGULAR= option
PROC NLP statement, 539, 594

\section*{N}

N keyword
VARDEF= option (NLP), 545
NACTBC keyword TYPE variable (NLP), 600
NACTLC keyword TYPE variable (NLP), 600
NAME statement
INTPOINT procedure, 126
NETFLOW procedure, 358
QP procedure, 677, 711
NAMECTRL = option
PROC INTPOINT statement, 108
PROC NETFLOW statement, 350
PROC QP statement, 704
NARCS \(=\) option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 707, 735
NCOEFS \(=\) option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 673, 735
NCONS= option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 673, 735
NEIGNEG keyword
TYPE variable (NLP), 602
NEIGPOS keyword
TYPE variable (NLP), 602
NEIGZER keyword
TYPE variable (NLP), 602
NETFLOW procedure, 335
CAPACITY statement, 356
COEF statement, 356
PROC NETFLOW statement, 342
RESET statement, 366
RHS statement, 387

ROW statement, 388
RUN statement, 388
SAVE statement, 388
SHOW statement, 390
SUPDEM statement, 394
SUPPLY statement, 395
TAILNODE statement, 395
TYPE statement, 395
VAR statement, 397
NEWRAP keyword
TECH= option (NLP), 545, 570, 573
NLC statement,
See NLINCON statement
NLDACTLC keyword
TYPE variable (NLP), 600
NLINCON statement
NLP procedure, 558, 578
NLP procedure
ARRAY statement, 547
BOUNDS statement, 547, 558, 572
BY statement, 548
CRPJAC statement, 548, 570, 581
DECVAR statement, 549
GRADIENT statement, 550, 553, 570, 581, 583
HESSIAN statement, 550, 570, 581
INCLUDE statement, 539, 551, 604
JACNLC statement, 551, 570
JACOBIAN statement, 552, 570, 581, 583
LABEL statement, 553
LINCON statement, 553, 572, 578
LSQ statement, 556
MATRIX statement, 554
MAX statement, 556
MAXQUAD statement, 556, 572
MIN statement, 556
MINQUAD statement, 556, 572
NLINCON statement, 558, 578
PROC NLP statement, 527
PROFILE statement, 559, 602, 603
NMSIMP keyword
TECH= option, 577
TECH= option (NLP), 544, 570, 571
NNAS \(=\) option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 673, 707, 735
NNODES = option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 707, 735
NOAUTO option
PROC LP statement, 209
NOBIGM1 option,
See TWOPHASE1 option
NOBIGM2 option,
See TWOPHASE2 option
NOBINFST option
PROC LP statement, 209
NOBS keyword

TYPE variable (NLP), 600
NODE statement
INTPOINT procedure, 126
NETFLOW procedure, 359
QP procedure, 712
NODEDATA \(=\) option
PROC INTPOINT statement, 84, 85, 99, 103
PROC NETFLOW statement, 328, 329, 343
PROC QP statement, 690, 692, 697, 702
NODEOUT \(=\) option
PROC NETFLOW statement, 329, 343, 408
RESET statement (NETFLOW), 371
NODEVEX option
PROC LP statement, 212
NOEIGNUM option
PROC NLP statement, 539
NOENDPAUSE option
PROC LP statement, 206
NOENDPAUSE1 option
RESET statement (NETFLOW), 372
NOEP1 option,
See NOENDPAUSE1 option
NOFEASIBLEPAUSE option
PROC LP statement, 206
NOFEASIBLEPAUSE1 option
RESET statement (NETFLOW), 372
NOFEASIBLEPAUSE2 option
RESET statement (NETFLOW), 372
NOFLOW option
PROC LP statement, 205
NOFP1 option,
See NOFEASIBLEPAUSE1 option
NOFP2 option,
See NOFEASIBLEPAUSE2 option
NOFUTURE1 option
RESET statement (NETFLOW), 378
NOFUTURE2 option
RESET statement (NETFLOW), 378
NOINTFIRST option
RESET statement (NETFLOW), 376
NOLRATIO1 option
RESET statement (NETFLOW), 373
NOLRATIO2 option
RESET statement (NETFLOW), 374
NOMISS option
PROC NLP statement, 539, 596, 607
NONARC keyword
SCALE \(=\) option (INTPOINT), 112
SCALE \(=\) option (NETFLOW), 354
NONARCS option
PRINT statement (NETFLOW), 361
NONBASIC option
PRINT statement (NETFLOW), 362
NONE keyword
GRADCHECK= option (NLP), 533
GROUPED \(=\) option (INTPOINT), 107
GROUPED \(=\) option (NETFLOW), 348
GROUPED \(=\) option (QP), 672
NON_REPLIC= option (INTPOINT), 111

NON_REPLIC= option (NETFLOW), 352
NON_REPLIC= option (QP), 673
PRICETYPE= option (LP), 213
SCALE \(=\) option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE= option (NETFLOW), 354
TECH= option (NLP), 544
NONINTEGER_NONZEROS option
PRINT statement (LP), 216
NONINTEGER option
PRINT statement (LP), 216
NON_REPLIC= option
PROC INTPOINT statement, 111
PROC NETFLOW statement, 352
PROC QP statement, 673
NONZERO option
PRINT statement (NETFLOW), 362
NONZEROS option
PRINT statement (LP), 216
NOP option,
See NOPRINT option
NOPARAPRINT option
PROC LP statement, 205
NOPERTURB1 option
RESET statement (NETFLOW), 373
NOPOSTPROCESS option
PROC LP statement, 209
NOPREPROCESS option
PROC LP statement, 207
NOPRINT option
PROC LP statement, 205
PROC NLP statement, 539, 606
NOQ keyword
PRICETYPE \(x=\) option (NETFLOW), 376, 411
NORANGEPRICE option
PROC LP statement, 211
NORANGERHS option
PROC LP statement, 211
NOSCRATCH option
RESET statement (NETFLOW), 378
NOTABLEAUPRINT option
PROC LP statement, 205
NOTHRUNET option
PROC TRANS statement, 756, 760, 762, 763
NOTSORTED option
BY statement (ASSIGN), 53
BY statement (NLP), 548
NOTWOPHASE1 option,
See BIGM1 option
NOTWOPHASE2 option,
See BIGM2 option
NOUT = option,
See NODEOUT= option
NOZTOL1 option
RESET statement (NETFLOW), 378
NOZTOL2 option
RESET statement (NETFLOW), 378
NRRIDG keyword
TECH= option (NLP), 545, 570, 573

\section*{0}

OBJ keyword
BACKTRACK = option (LP), 207
CANSELECT = option (LP), 208, 236, 239
FDINT = option (NLP), 532
OBJECTIVE keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
OBJFN statement,
See COST statement
QP procedure, 678
OPTCHECK= option
PROC NLP statement, 539, 591
OPTIM_TIMER option
PROC INTPOINT statement, 112
RESET statement (NETFLOW), 378
OPTIONS option
SHOW statement (LP), 220
ORMP, 1
OTHERWISE statement
NLP program statements, 562
OUT= option
PROC ASSIGN statement, 53
PROC NLP statement, 539, 598
PROC TRANS statement, 756
OUTALL option
PROC NLP statement, 540
OUTCRPJAC option
PROC NLP statement, 540
OUTDER \(=\) option
PROC NLP statement, 540, 598
OUTEST = option
PROC NLP statement, 540, 553, 599, 602
OUTGRID option
PROC NLP statement, 540
OUTHES option,
See OUTHESSIAN option
OUTHESSIAN option
PROC NLP statement, 540
OUTITER option
PROC NLP statement, 540
OUTJAC option
PROC NLP statement, 540
OUTM= option,
See OUTMODEL= option
OUTMOD= option,
See OUTMODEL= option
OUTMODEL= option
PROC NLP statement, 541, 551, 603
OUTNCJAC option
PROC NLP statement, 541
OUTTABLE option
PROFILE statement (NLP), 560
OUTTIME option
PROC NLP statement, 541
OUTVAR= option,
See OUTEST= option

\section*{P}

PxNPARTIAL= option
RESET statement (NETFLOW), 376, 393, 411, 412
P \(x\) SCAN \(=\) option
PROC NETFLOW statement, 411
RESET statement (NETFLOW), 376, 393, 412, 413
PALL option
PROC NLP statement, 541, 606
PARAMETERS statement,
See DECVAR statement
PARAPRINT option
PROC LP statement, 205, 245
PARARESTORE option
PROC LP statement, 212
PARMS keyword
TYPE variable (NLP), 596, 597, 600
PARMS statement,
See DECVAR statement
PARTIAL keyword
P \(x\) SCAN \(=\) option (NETFLOW), 376, 411, 412
PRICETYPE= option (LP), 213, 231
Q \(x\) FILLSCAN \(=\) option (NETFLOW), 377, 413
PAUSE option
SHOW statement (NETFLOW), 392
PAUSE1 = option
RESET statement (NETFLOW), 372
PAUSE2= option
RESET statement (NETFLOW), 372
PAUSE \(=\) option
PROC LP statement, 206, 246
PB keyword
UPDATE= option (NLP), 545, 577
PCOV option
PROC NLP statement, 541, 606
PCRPJAC option
PROC NLP statement, 541, 606
PDGAPTOL= option
PROC INTPOINT statement, 120, 156
PROC NETFLOW statement, 453
RESET statement (NETFLOW), 384
PDSTEPMULT \(=\) option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 382
PEIGVAL option
PROC NLP statement, 541, 595, 606
PENALTY keyword
VARSELECT= option (LP), 209, 210, 238
PENALTYDEPTH= option
PROC LP statement, 209, 238
PEPSILON= option
PROC LP statement, 207
PERROR option
PROC NLP statement, 542
PERTURB1 option
RESET statement (NETFLOW), 373
PFUNCTION option
PROC NLP statement, 542, 606

PGRID option
PROC NLP statement, 542, 606
PHASEMIX = option
PROC LP statement, 212
PHES option,
See PHESSIAN option
PHESSIAN option
PROC NLP statement, 542, 606
PHIS option,
See PHISTORY option
PHISTORY option
PROC NLP statement, 542, 606
PICTURE option
PRINT statement (LP), 216
PIN option,
See PINIT option
PINIT option
PROC NLP statement, 542, 606
PIVOT statement
LP procedure, 215, 246
NETFLOW procedure, 359
PJAC option,
See PJACOBI option
PJACOBI option
PROC NLP statement, 542, 606
PJTJ option,
See PCRPJAC option
PL keyword
CLPARM= option (NLP), 529
PL_CL keyword
TYPE variable (NLP), 603
PLC_LOW keyword TYPE variable (NLP), 603
PLC_UPP keyword
TYPE variable (NLP), 603
PMAXIT \(=\) option
PROC LP statement, 207, 232
PNLCJAC option
PROC NLP statement, 542, 606
POBJECTIVE= option
PROC LP statement, 209
POSTPROCESS option
PROC LP statement, 210
PR keyword
UPDATE= option (NLP), 545, 577
PREPROCESS option
PROC LP statement, 207
PRICE keyword
VARSELECT= option (LP), 210, 239
PRICE \(=\) option
PROC LP statement, 213, 231
PRICEPHI = option
PROC LP statement, 211, 216, 245, 247
PRICESEN keyword
TYPE variable (LP), 222, 243
PRICESEN option
PRINT statement (LP), 216
PRICETYPE \(x=\) option

RESET statement (NETFLOW), 376, 394, 411, 412, 414
PRICETYPE \(=\) option
PROC LP statement, 213, 231
PRICING option
SHOW statement (NETFLOW), 393
PRIMALIN= option
PROC LP statement, 204, 241, 251
PRIMALOUT= option
PROC LP statement, 204, 241, 249
PRINT option
PROC LP statement, 205
PRINT statement
LP procedure, 215, 246
NETFLOW procedure, 359
PRINTFREQ= option
PROC LP statement, 205
PRINTLEVEL= option
PROC LP statement, 205
PRINTLEVEL2 \(=\) option
PROC INTPOINT statement, 119, 157
PROC NETFLOW statement, 453
RESET statement (NETFLOW), 383
PRIOR keyword
VARSELECT= option (LP), 210, 238
PROBLEM option
PRINT statement (NETFLOW), 361
PROC ASSIGN statement
See also ASSIGN procedure, 52
statement options, 52
PROC INTPOINT statement,
See also INTPOINT procedure
data set options, 103
general options, 104
PROC LP statement,
See also LP procedure
branch-and-bound control options, 207
data set options, 204
display control options, 205
interactive control options, 206
parametric control options, 211
preprocessing control options, 207
ranging control options, 211
sensitivity control options, 211
simplex algorithm control options, 211
PROC NETFLOW statement,
See also NETFLOW procedure
data set options, 342
general options, 343
PROC NLP statement,
See also NLP procedure
statement options, 527
PROC QP statement,
See also QP procedure
data set options, 669, 701
general options, 669, 702
PROC TRANS statement,
See also TRANS procedure
input data set options, 756
output data set options, 756
statement options, 756
PROFILE keyword
TYPE variable (NLP), 603
PROFILE statement
NLP procedure, 559, 602, 603
PROJCRPJ keyword
TYPE variable (NLP), 601
PROJECT keyword
BACKTRACK= option (LP), 207
CANSELECT= option (LP), 208, 236
PROJGRAD keyword
TYPE variable (NLP), 601
PROJHESS keyword
TYPE variable (NLP), 601
PROXIMITYPAUSE= option
PROC LP statement, 206, 215, 246
PRSLTYPE= option
INTPOINT procedure, 118
RESET statement (NETFLOW), 382
PSEUDOC keyword
BACKTRACK= option (LP), 208
CANSELECT = option (LP), 208, 237
VARSELECT = option (LP), 210, 239
PSH option,
See PSHORT option
PSHORT option
PROC NLP statement, 542, 606
PSTDERR option
PROC NLP statement, 543, 606
PSUMMARY option
PROC NLP statement, 543, 606
PTIME option
PROC NLP statement, 543
PTYPE \(x=\) option,
See PRICETYPE \(x=\) option
PUT statement
NLP program statements, 561
PWOBJECTIVE \(=\) option
PROC LP statement, 210

\section*{Q}

Q keyword
PRICETYPE \(x=\) option (NETFLOW), 376, 411, 412
\(\mathrm{Q} x=\) option,
See QSIZE \(x=\) option
Q \(x\) FILLNPARTIAL \(=\) option
RESET statement (NETFLOW), 377, 394, 413
Q \(x\) FILLSCAN \(=\) option
RESET statement (NETFLOW), 377, 394, 413
QP procedure, 667, 699
CAPACITY statement, 709
COEF statement, 675, 709
COLUMN statement, 675, 709
COST statement, 710
DEMAND statement, 710
HEADNODE statement, 710
HESSIANCOEF statement, 676

HESSIANCOLUMN statement, 676
HESSIANROW statement, 676
ID statement, 677, 711
LO statement, 677, 711
NAME statement, 677, 711
NODE statement, 712
OBJFN statement, 678
PROC QP statement, 669, 701
QUIT statement, 678
RHS statement, 678
ROW statement, 678
RUN statement, 679
SUPDEM statement, 712
SUPPLY statement, 712
TAILNODE statement, 713
TYPE statement, 679
UPPERBD statement, 680
VAR statement, 681
QSIZE \(x=\) option
RESET statement (NETFLOW), 377, 394, 412
QUAD keyword
TYPE variable (NLP), 597, 598
QUADAS keyword
TECH= option (NLP), 545, 570, 572, 597
QUANEW keyword
TECH = option (NLP), 545, 570, 571, 574-576, 584, 590
QUIT statement
INTPOINT procedure, 126
LP procedure, 217, 246
NETFLOW procedure, 366
QP procedure, 678

\section*{R}

RANDOM = option
PROC NLP statement, 543
RANDOMPRICEMULT= option
PROC LP statement, 213
RANGE keyword
TYPE variable (LP), 222
RANGE statement
LP procedure, 217
RANGEPRICE option
PRINT statement (LP), 216
PROC LP statement, 211, 244
RANGERHS option
PRINT statement (LP), 216
PROC LP statement, 211, 244
RCHOLTINYTOL= option,
See CHOLTINYTOL= option
RDENSETHR= option,
See DENSETHR= option
READPAUSE option
PROC LP statement, 207, 246
REDUCEQ \(x=\) option
RESET statement (NETFLOW), 377
REDUCEQSIZE \(x=\) option
RESET statement (NETFLOW), 377, 394, 413
REFACTFREQ \(=\) option

RESET statement (NETFLOW), 376
REFRESHQ \(x=\) option
RESET statement (NETFLOW), 377, 394, 412
RELEVANT option
SHOW statement (NETFLOW), 393
REPSILON= option
PROC LP statement, 213
RESET statement
LP procedure, 218, 246
NETFLOW procedure, 366
REST= option,
See RESTART= option
RESTART= option
PROC NLP statement, 543
RFF= option,
See REFACTFREQ= option
RHS keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 222
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
RHS statement
INTPOINT procedure, 127
LP procedure, 218
NETFLOW procedure, 387
QP procedure, 678
RHSOBS \(=\) option
PROC INTPOINT statement, 112
PROC NETFLOW statement, 352
PROC QP statement, 673
RHSPHI= option
PROC LP statement, 211, 216, 244, 247
RHSSEN keyword
TYPE variable (LP), 222
RHSSEN option
PRINT statement (LP), 216
RHSSEN statement
LP procedure, 219, 242
ROW keyword
SCALE \(=\) option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE \(=\) option (NETFLOW), 353
ROW option
PRINT statement (LP), 217
ROW statement
INTPOINT procedure, 127
LP procedure, 219
NETFLOW procedure, 388
QP procedure, 678
RPDGAPTOL= option,
See PDGAPTOL= option
RPDSTEPMULT= option,
See PDSTEPMULT= option
RTOLDINF= option,
See TOLDINF= option
RTOLPINF= option,
See TOLPINF= option
RTOLTOTDINF= option,
See TOLTOTDINF= option

RTOLTOTPINF= option,
See TOLTOTPINF= option
RTTOL= option
PROC INTPOINT statement, 119
RUN statement
INTPOINT procedure, 127
LP procedure, 220, 246
NETFLOW procedure, 388
QP procedure, 679

\section*{S}

SAME_NONARC_DATA option
PROC NETFLOW statement, 353, 431, 433
SAS/ORMP,
SASMPSXS macro function, 198, 226
SAVE option
QUIT statement (LP), 217
SAVE statement
NETFLOW procedure, 388
SCALE= option
PROC INTPOINT statement, 112
PROC LP statement, 213, 232
PROC NETFLOW statement, 353
SCDATA option,
See SPARSECONDATA option
SCRATCH option
RESET statement (NETFLOW), 379
SE option,
See PSTDERR option
SELECT statement
NLP program statements, 562
SENSITIVITY option
PRINT statement (LP), 215, 217, 247
SET statement,
See RESET statement
SHORT option,
NLP procedure, See PSHORT option
PRINT statement (NETFLOW), 362
SHORTPATH option
PROC INTPOINT statement, 112
PROC NETFLOW statement, 354
PROC QP statement, 707
SHOW statement
LP procedure, 220, 246
NETFLOW procedure, 390
SIGSQ keyword
TYPE variable (NLP), 602
SIGSQ= option
PROC NLP statement, 544, 594
SIMPLEX option
SHOW statement (NETFLOW), 392
SING= option,
See SINGULAR= option
SINGULAR= option
PROC NLP statement, 544
SINK= option
PROC INTPOINT statement, 113, 155
PROC NETFLOW statement, 354, 432
PROC QP statement, 708, 736

SINKNODE= option,
See SINK= option
SMALL= option
PROC LP statement, 213
SND option,
See SAME_NONARC_DATA option
SOLUTION option
PRINT statement (LP), 217
SOME_ARCS option
PRINT statement (NETFLOW), 361
SOME_CONS option
PRINT statement (NETFLOW), 361
SOME_NONARCS option PRINT statement (NETFLOW), 361
SOSEQ keyword TYPE variable (LP), 221
SOSLE keyword
TYPE variable (LP), 221
SOURCE= option
PROC INTPOINT statement, 113, 155
PROC NETFLOW statement, 354, 432
PROC QP statement, 708, 736
SOURCENODE= option, See SOURCE = option
SP option,
See SHORTPATH option
SP2 option,
See SPARSEP2 option
SPARSECONDATA option
PROC INTPOINT statement, 113, 134
PROC NETFLOW statement, 355, 400
PROC QP statement, 673, 716
SPARSEDATA option
PROC LP statement, 204
SPARSEP2 option
PROC NETFLOW statement, 355
STAGE option
SHOW statement (NETFLOW), 394
STATUS option
SHOW statement (LP), 220
SHOW statement (NETFLOW), 391
STDERR keyword
TYPE variable (NLP), 600
STDERR option,
See PSTDERR option
STOP_DG= option
PROC QP statement, 674
STOP_C= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 384
STOP_DG= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 384
STOP_IB= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 384
STOP_IC= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 385

STOP_ID= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 385
SUM option
See PSUMMARY option, 543
SUMMARY option,
See PSUMMARY option
SUMOBS option
NLINCON statement (NLP), 558
SUPDEM statement
INTPOINT procedure, 128
NETFLOW procedure, 394
QP procedure, 712
SUPPLY statement
INTPOINT procedure, 128
NETFLOW procedure, 395
QP procedure, 712
TRANS procedure, 757
SUPPLY= option
PROC INTPOINT statement, 113, 155
PROC NETFLOW statement, 355, 432
PROC QP statement, 708, 736

\section*{T}

TABLEAU option
PRINT statement (LP), 217, 229
TABLEAUOUT= option
PROC LP statement, 204, 250
TABLEAUPRINT option PROC LP statement, 206, 229
TAIL statement,
See TAILNODE statement
TAILNODE statement
INTPOINT procedure, 128
NETFLOW procedure, 395
QP procedure, 713
TRANS procedure, 758
TECH = option
PROC NLP statement, 544, 591
TECHNIQUE= option,
See TECH= option
TERMINAT keyword
TYPE variable (NLP), 602
THRUNET option
PROC INTPOINT statement, 114, 150
PROC NETFLOW statement, 355, 423
PROC QP statement, 708, 731, 732
PROC TRANS statement, 757, 760-763
TIME keyword
TYPE variable (NLP), 602
TIME= option
PROC LP statement, 214
TO statement,
See HEADNODE statement
TOLDINF= option
PROC INTPOINT statement, 116
RESET statement (NETFLOW), 381
TOLPINF= option
PROC INTPOINT statement, 116

RESET statement (NETFLOW), 381
TOLTOTDINF \(=\) option
PROC INTPOINT statement, 116
RESET statement (NETFLOW), 381
TOLTOTPINF \(=\) option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 381
TONODE statement,
See HEADNODE statement
TRANS procedure, 755
HEADNODE statement, 757
PROC TRANS statement, 755
SUPPLY statement, 757
TAILNODE statement, 758
TREETYPE= option
PROC LP statement, 210
TRUREG keyword
TECH = option (NLP), 545, 570, 573, 589
TWOPHASE1 option
RESET statement (NETFLOW), 372
TWOPHASE2 option
RESET statement (NETFLOW), 374
TYPE keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
TYPE statement
INTPOINT procedure, 129
LP procedure, 220
NETFLOW procedure, 395
QP procedure, 679
TYPEOBS \(=\) option
PROC INTPOINT statement, 114
PROC NETFLOW statement, 355
PROC QP statement, 674

\section*{U}
\(\mathrm{U}=\) option
PROC LP statement, 214
RESET statement (NETFLOW), 376
UB keyword
TYPE variable (NLP), 596, 597, 600
UNREST keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
UNRSTRCT keyword
TYPE variable (LP), 221
\(\mathrm{UPD}=\) option,
See UPDATE= option
UPDATE= option
PROC NLP statement, 545, 573, 574
UPPCOST keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680
UPPER keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396

TYPE variable (QP), 680
UPPER= option
RESET statement (LP), 218
UPPERBD keyword
TYPE variable (LP), 221, 233
TYPE variable (NLP), 596, 597, 600
UPPERBD statement,
See CAPACITY statement
QP procedure, 680

\section*{v}

VAR statement,
NLP procedure, See DECVAR statement
INTPOINT procedure, 130
LP procedure, 222
NETFLOW procedure, 397
QP procedure, 681
VARDATA keyword
GROUPED \(=\) option (QP), 671
VARDATA= option
PROC QP statement, 658, 659, 666, 669
VARDEF= option
PROC NLP statement, 545, 592
VARNAME statement,
See NAME statement
VARSELECT= option
PROC LP statement, 209, 210, 238
VERBOSE \(=\) option
PROC INTPOINT statement, 114
PROC QP statement, 674
RESET statement (NETFLOW), 379
VERSION= option
PROC NLP statement, 546, 575, 579, 590
\(\mathrm{VS}=\) option,
See VERSION = option
VSING= option,
See VSINGULAR= option
VSINGULAR= option
PROC NLP statement, 546, 594

\section*{W}

WALD keyword
CLPARM = option (NLP), 529
WALD_CL keyword
TYPE variable (NLP), 603
WARM option
PROC NETFLOW statement, 355, 425, 433
WHEN statement
NLP program statements, 562
WOBJECTIVE \(=\) option
PROC LP statement, 210

\section*{X}

XCONV \(=\) option
PROC NLP statement, 546
XSIZE \(=\) option
PROC NLP statement, 546
XTOL= option,
See XCONV = option

\section*{Z}

Z1 \(=\) option, See ZERO1 = option
\(\mathrm{Z} 2=\) option, See ZERO2= option
ZERO option
PRINT statement (NETFLOW), 362
ZERO1= option RESET statement (NETFLOW), 379
ZERO2= option
PROC INTPOINT statement, 115
RESET statement (NETFLOW), 380
ZEROS option
PRINT statement (LP), 217
ZEROTOL= option
PROC INTPOINT statement, 115
PROC QP statement, 675
RESET statement (NETFLOW), 380
ZTOL1 option
RESET statement (NETFLOW), 380
ZTOL2 option
RESET statement (NETFLOW), 380

\section*{Your Turn}

If you have comments or suggestions about SAS/OR \({ }^{\circledR}\) 9.1.2 User's Guide:
Mathematical Programming, please send them to us on a photocopy of this page or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com
For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com```

