
SAS/OR® 9.1.2 User’s Guide:
Mathematical Programming

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/OR 9.1.2 User’s Guide:
Mathematical Programming. Cary, NC: SAS Institute Inc.

SAS/OR 9.1.2 User’s Guide: Mathematical Programming

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-527-5

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, March 2004

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What’s New in SAS/OR 9, 9.1, and 9.1.2 . 1

Using This Book . 7

Chapter 1. Introduction to Optimization . 13

Chapter 2. The ASSIGN Procedure . 47

Chapter 3. The INTPOINT Procedure . 63

Chapter 4. The LP Procedure . 187

Chapter 5. The NETFLOW Procedure . 315

Chapter 6. The NLP Procedure . 509

Chapter 7. The QP Procedure . 653

Chapter 8. The TRANS Procedure . 751

Subject Index . 771

Syntax Index . 781

iv

Acknowledgments

Credits

Documentation

Writing Trevor Kearney, Dmitry V. Golovashkin, Michelle Opp,
Ben-Hao Wang

Editing Virginia Clark, Donna Sawyer

Documentation Support Tim Arnold, Michelle Opp

Technical Review Tao Huang, Edward P. Hughes, John Jasperse, Rob Pratt,
Bengt Pederson, Charles B. Kelly, Donna Fulenwider, Bill
Gjertsen

Software

The procedures in SAS/OR software were implemented by the Operations Research
and Development Department. Substantial support was given to the project by
other members of the Analytical Solutions Division. Core Development Division,
Display Products Division, Graphics Division, and the Host Systems Division also
contributed to this product.

In the following list, the name of the developer currently supporting the procedure is
listed.

ASSIGN Ben-Hao Wang

INTPOINT Trevor Kearney

LP Ben-Hao Wang

NETFLOW Trevor Kearney

NLP Trevor Kearney

QP Dmitry V. Golovashkin

TRANS Trevor Kearney

Support Groups

Software Testing Tao Huang, Edward P. Hughes, John Jasperse, Charles B.
Kelly, Rob Pratt, Bengt Pederson, Marcelo Bartroli

Technical Support Tonya Chapman

Acknowledgments
Many people have been instrumental in the development of SAS/OR software. The
individuals acknowledged here have been especially helpful.

Richard Brockmeier Union Electric Company

Ken Cruthers Goodyear Tire & Rubber Company

Patricia Duffy Auburn University

Richard A. Ehrhardt University of North Carolina at Greensboro

Paul Hardy Babcock & Wilcox

Don Henderson ORI Consulting Group

Dave Jennings Lockheed Martin

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill

Wayne Maruska Basin Electric Power Cooperative

Roger Perala United Sugars Corporation

Bruce Reed Auburn University

Charles Rissmiller Lockheed Martin

David Rubin University of North Carolina at Chapel Hill

John Stone North Carolina State University

Keith R. Weiss ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope
that you will always let us know your opinions about the SAS System and its doc-
umentation. It is through your participation that SAS software is continuously im-
proved.

vi

What’s New in SAS/OR 9, 9.1, and
9.1.2

Contents

OVERVIEW . 3

THE BOM PROCEDURE . 3

THE CLP PROCEDURE (EXPERIMENTAL) 4

THE CPM PROCEDURE . 4

THE GA PROCEDURE (EXPERIMENTAL) 4

THE GANTT PROCEDURE . 5

THE INTPOINT PROCEDURE . 5

THE LP PROCEDURE . 5

THE PM PROCEDURE . 5

THE NETFLOW PROCEDURE . 5

THE QP PROCEDURE (EXPERIMENTAL) 6

BILL OF MATERIAL POST PROCESSING MACROS 6

2 � What’s New in SAS/OR 9, 9.1, and 9.1.2

What’s New in SAS/OR 9, 9.1, and
9.1.2

Overview
SAS/OR software contains several new and enhanced features since SAS 8.2. Brief
descriptions of the new features appear in the following sections. For more informa-
tion, refer to the SAS/OR documentation, which is now available in the following six
volumes:

• SAS/OR User’s Guide: Bills of Material Processing

• SAS/OR User’s Guide: Constraint Programming

• SAS/OR User’s Guide: Local Search Optimization

• SAS/OR User’s Guide: Mathematical Programming

• SAS/OR User’s Guide: Project Management

• SAS/OR User’s Guide: The QSIM Application

The online help can also be found under the corresponding classification.

The BOM Procedure
The BOM procedure in SAS/OR User’s Guide: Bills of Material Processing was in-
troduced in Version 8.2 of the SAS System to perform bill of material processing.
Several new features have been added to the procedure, enabling it to read all product
structure records from a product structure data file and all part “master” records from
a part master file, and compose the combined information into indented bills of mate-
rial. This data structure mirrors the most common method for storing bill-of-material
data in enterprise settings; the part master file contains data on each part while the
product structure file holds data describing the various part-component relationships
represented in bills of material.

The PMDATA= option on the PROC BOM statement enables you to specify the name
of the Part Master data set. If you do not specify this option, PROC BOM uses the
Product Structure data set (as specified in the DATA= option) as the Part Master
data set. The BOM procedure now looks up the Part, LeadTime, Requirement,
QtyOnHand, and ID variables in the Part Master data set. On the other hand, the
Component and Quantity variables remain in the Product Structure data set.

You can use the NRELATIONSHIPS= (or NRELTS=) option to specify the number
of parent-component relationships in the Product Structure data set. You have greater

4 � What’s New in SAS/OR 9, 9.1, and 9.1.2

control over the handling of redundant relationships in the Product Structure data set
using the DUPLICATE= option.

Several options have been added to the STRUCTURE statement enabling you to spec-
ify information related to the parent-component relationships. In particular, the vari-
able specified with the PARENT= option identifies the parent item, while the vari-
ables listed in the LTOFFSET= option specify lead-time offset information. You can
also specify variables identifying scrap factor information for all parent-component
relationships using the SFACTOR= option. The RID= option identifies all variables
in the Product Structure data set that are to be included in the Indented BOM output
data set.

The CLP Procedure (Experimental)
The new CLP procedure in SAS/OR User’s Guide: Constraint Programming is an
experimental finite domain constraint programming solver for solving constraint sat-
isfaction problems (CSPs) with linear, logical, global, and scheduling constraints.
In addition to having an expressive syntax for representing CSPs, the solver fea-
tures powerful built-in consistency routines and constraint propagation algorithms,
a choice of nondeterministic search strategies, and controls for guiding the search
mechanism that enable you to solve a diverse array of combinatorial problems.

The CPM Procedure
The CPM procedure in SAS/OR User’s Guide: Project Management adds more op-
tions for describing resource consumption by activities, enhancing its applicability to
production scheduling models.

A new keyword, RESUSAGE, has been added to the list of values for the OBSTYPE
variable in the Resource data set. This keyword enables you to specify whether a
resource is consumed at the beginning or at the end of a given activity.

The MILESTONERESOURCE option enables you to specify a nonzero usage of
consumable resources for milestone activities. For example, this option is useful if
you wish to designate specific milestones to be the points of payment for a subcon-
tractor. The MILESTONENORESOURCE option is the current default behavior of
the CPM procedure, which indicates that all resource requirements are to be ignored
for milestone activities.

The GA Procedure (Experimental)
The new GA procedure in SAS/OR User’s Guide: Local Search Optimization fa-
cilitates the application of genetic algorithms to general optimization. Genetic al-
gorithms adapt the biological processes of natural selection and evolution to search
for optimal solutions. The procedure can be applied to optimize problems involv-
ing integer, continuous, binary, or combinatorial variables. The GA procedure is
especially useful for finding optima for problems where the objective function may

The NETFLOW Procedure � 5

have discontinuities or may not otherwise be suitable for optimization by traditional
calculus-based methods.

The GANTT Procedure
The GANTT procedure in SAS/OR User’s Guide: Project Management includes a
new option for controlling the width of the Gantt chart. The CHARTWIDTH= option
specifies the width of the axis area as a percentage of the total Gantt chart width.
This option enables you to generate Gantt charts that are consistent in appearance,
independent of the total time spanned by the project.

The INTPOINT Procedure
The INTPOINT procedure in SAS/OR User’s Guide: Mathematical Programming
contains two new options in SAS 9.1.2. The FACT–METHOD= option enables you
to choose the type of algorithm used to factorize and solve the main linear systems
at each iteration of the interior point algorithm. Specifically, you can use a left-
looking method to perform Cholesky optimization, which may be faster and require
less memory than other algorithms.

The OPTIM–TIMER option instructs the INTPOINT procedure to issue a message
to the SAS log giving the CPU time spent doing optimization. This includes the
time spent preprocessing, performing optimization, and postprocessing; it does not
include the time spent reading the data and creating output SAS data sets. The time
spent optimizing can be small compared to the total CPU time used by the procedure,
particularly in cases when the problem is quite small.

The LP Procedure
The performances of primal and dual simplex algorithms in the LP procedure
(SAS/OR User’s Guide: Mathematical Programming) have been significantly im-
proved on large scale linear or mixed integer programming problems.

The PM Procedure
The new options added to the CPM procedure are also available with PROC PM.

The NETFLOW Procedure
The NETFLOW procedure in SAS/OR User’s Guide: Mathematical Programming
contains two new options in SAS 9.1.2. When using the interior point method in the
NETFLOW procedure, the FACT–METHOD= option enables you to choose the type
of algorithm used to factorize and solve the main linear systems at each iteration.
Specifically, you can use a left-looking method to perform Cholesky optimization,
which may be faster and require less memory than other algorithms.

6 � What’s New in SAS/OR 9, 9.1, and 9.1.2

The OPTIM–TIMER option instructs the NETFLOW procedure to issue a message
to the SAS log giving the CPU time spent doing optimization. This includes the
time spent preprocessing, performing optimization, and postprocessing; it does not
include the time spent reading the data and creating output SAS data sets. The time
spent optimizing can be small compared to the total CPU time used by the procedure,
particularly in cases when the problem is quite small.

The QP Procedure (Experimental)
The new QP procedure in SAS/OR User’s Guide: Mathematical Programming im-
plements a primal-dual predictor-corrector interior-point algorithm for large sparse
quadratic programs. Depending on the distribution of the eigenvalues of the Hessian
matrix, H , two main classes of quadratic programs are distinguished (assuming min-
imization):

• convex: H is positive semi-definite

• nonconvex: H has at least one negative eigenvalue

Diagonal and nonseparable Hessian matrices are recognized and handled automati-
cally.

Bill of Material Post Processing Macros
Several macros enable users to generate miscellaneous reports using the Indented
BOM output data set from the BOM procedure in SAS/OR User’s Guide: Bills of
Material Processing. Other transactional macros perform specialized transactions
for maintaining and updating the bills of material for a product, product line, plant,
or company.

Using This Book

Contents

PURPOSE . 9

ORGANIZATION . 9

TYPOGRAPHICAL CONVENTIONS . 10

CONVENTIONS FOR EXAMPLES . 11

ACCESSING THE SAS/OR SAMPLE LIBRARY 11

ONLINE HELP SYSTEM AND UPDATES 11

ADDITIONAL DOCUMENTATION FOR SAS/OR SOFTWARE 12

8 � Using This Book

Using This Book

Purpose
SAS/OR User’s Guide: Mathematical Programming provides a complete reference
for the mathematical programming procedures in SAS/OR software. This book
serves as the primary documentation for the ASSIGN, INTPOINT, LP, NETFLOW,
NLP, and TRANS procedures, in addition to the new QP procedure for solving
quadratic programming problems.

“Using This Book” describes the organization of this book and the conventions used
in the text and example code. To gain full benefit from using this book, you should
familiarize yourself with the information presented in this section and refer to it when
needed. “Additional Documentation” at the end of this section provides references to
other books that contain information on related topics.

Organization
Chapter 1 contains a brief overview of the mathematical programming procedures
in SAS/OR software and provides an introduction to optimization and the use of the
optimization tools in the SAS System. The first chapter also describes the flow of
data between the procedures and how the components of the SAS System fit together.

After the introductory chapter, the next seven chapters describe the ASSIGN,
INTPOINT, LP, NETFLOW, NLP, QP, and TRANS procedures. Each procedure de-
scription is self-contained; you need to be familiar with only the basic features of
the SAS System and SAS terminology to use most procedures. The statements and
syntax necessary to run each procedure are presented in a uniform format throughout
this book.

The following list summarizes the types of information provided for each procedure:

Overview provides a general description of what the procedure does.
It outlines major capabilities of the procedure and lists all
input and output data sets that are used with it.

Getting Started illustrates simple uses of the procedure using a few short
examples. It provides introductory hands-on information
for the procedure.

10 � Using This Book

Syntax constitutes the major reference section for the syntax of
the procedure. First, the statement syntax is summa-
rized. Next, a functional summary table lists all the state-
ments and options in the procedure, classified by function.
In addition, the online version includes a Dictionary of
Options, which provides an alphabetical list of all options.
Following these tables, the PROC statement is described,
and then all other statements are described in alphabetical
order.

Details describes the features of the procedure, including algorith-
mic details and computational methods. It also explains
how the various options interact with each other. This sec-
tion describes input and output data sets in greater detail,
with definitions of the output variables, and explains the
format of printed output, if any.

Examples consists of examples designed to illustrate the use of the
procedure. Each example includes a description of the
problem and lists the options highlighted by the exam-
ple. The example shows the data and the SAS statements
needed, and includes the output produced. You can du-
plicate the examples by copying the statements and data
and running the SAS program. The SAS Sample Library
contains the code used to run the examples shown in this
book; consult your SAS Software representative for spe-
cific information about the Sample Library.

References lists references that are relevant to the chapter.

Typographical Conventions
The printed version of SAS/OR User’s Guide: Mathematical Programming uses var-
ious type styles, as explained by the following list:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS code in
lowercase, uppercase, or a mixture of the two. This style
is also used for identifying arguments and values (in the
Syntax specifications) that are literals (for example, to
denote valid keywords for a specific option).

Online Help System and Updates � 11

UPPERCASE BOLD is used in the “Syntax” section to identify SAS key-
words, such as the names of procedures, statements, and
options.

bold is used in the “Syntax” section to identify options.

helvetica is used for the names of SAS variables and data sets
when they appear in the text.

oblique is used for user-supplied values for options (for example,
VARSELECT= rule).

italic is used for terms that are defined in the text, for empha-
sis, and for references to publications.

monospace is used to show examples of SAS statements. In most
cases, this book uses lowercase type for SAS code. You
can enter your own SAS code in lowercase, uppercase,
or a mixture of the two. This style is also used for values
of character variables when they appear in the text.

Conventions for Examples
Most of the output shown in this book is produced with the following SAS System
options:

options linesize=80 pagesize=60 nonumber nodate;

Accessing the SAS/OR Sample Library
The SAS/OR sample library includes many examples that illustrate the use of
SAS/OR software, including the examples used in this documentation. To access
these sample programs, select Learning to Use SAS->Sample SAS Programs from
the SAS Help and Documentation window, and then select SAS/OR from the list
of available topics.

Online Help System and Updates
You can access online help information about SAS/OR software in two ways, de-
pending on whether you are using the SAS windowing environment in the command
line mode or the pull-down menu mode.

If you are using a command line, you can access the SAS/OR help menus by typing
help or on the command line. If you are using the pull-down menus, you can select
SAS Help and Documentation->SAS Products from the Help pull-down menu, and
then select SAS/OR from the list of available topics.

12 � Using This Book

Additional Documentation for SAS/OR Software
In addition to SAS/OR User’s Guide: Mathematical Programming, you may find
these other documents helpful when using SAS/OR software:

SAS/OR User’s Guide: Bills of Material Processing
provides documentation for the BOM procedure and all bill-of-material post-
processing SAS macros. The BOM procedure and SAS macros provide the ability to
generate different reports and to perform several transactions to maintain and update
bills of material.

SAS/OR User’s Guide: Constraint Programming
provides documentation for the constraint programming procedure in SAS/OR soft-
ware. This book serves as the primary documentation for the CLP procedure, an
experimental procedure new to SAS/OR software.

SAS/OR User’s Guide: Local Search Optimization
provides documentation for the local search optimization procedure in SAS/OR soft-
ware. This book serves as the primary documentation for the GA procedure, an
experimental procedure that uses genetic algorithms to solve optimization problems.

SAS/OR User’s Guide: Project Management
provides documentation for the project management procedures in SAS/OR software.
This book serves as the primary documentation for the CPM, DTREE, GANTT,
NETDRAW, and PM procedures, as well as the PROJMAN Application, a graphi-
cal user interface for project management.

SAS/OR User’s Guide: The QSIM Application
provides documentation for the QSIM Application, which is used to build and analyze
models of queueing systems using discrete event simulation. This book shows you
how to build models using the simple point-and-click graphical user interface, how
to run the models, and how to collect and analyze the sample data to give you insight
into the behavior of the system.

SAS/OR Software: Project Management Examples, Version 6
contains a series of examples that illustrate how to use SAS/OR software to man-
age projects. Each chapter contains a complete project management scenario and
describes how to use PROC GANTT, PROC CPM, and PROC NETDRAW, in addi-
tion to other reporting and graphing procedures in the SAS System, to perform the
necessary project management tasks.

SAS/IRP User’s Guide: Inventory Replenishment Planning
provides documentation for SAS/IRP software. This book serves as the primary doc-
umentation for the IRP procedure for determining replenishment policies, as well as
the %IRPSIM SAS programming macro for simulating replenishment policies.

Chapter 1
Introduction to Optimization

Chapter Contents

OVERVIEW . 15

DATA FLOW . 16
PROC LP . 17
PROC NETFLOW . 17
PROC INTPOINT . 19
PROC NLP . 20
PROC QP (Experimental) . 21
PROC TRANS . 22
PROC ASSIGN . 22
Model Formats: PROC LP and PROC NETFLOW 23
Model Formats: PROC ASSIGN and PROC TRANS 33

MODEL BUILDING . 34

MATRIX GENERATION . 36
Exploiting Model Structure . 38

REPORT WRITING . 41
The DATA Step . 41
Other Reporting Procedures . 43

DECISION SUPPORT SYSTEMS . 44
The Full-Screen Interface . 44
Communicating with the Optimization Procedures 45

REFERENCES . 45

14 � Chapter 1. Introduction to Optimization

Chapter 1
Introduction to Optimization
Overview

This chapter describes how to use SAS/OR software to solve a wide variety of opti-
mization problems. The basic optimization problem is that of minimizing or maxi-
mizing an objective function subject to constraints imposed on the variables of that
function. The objective function and constraints can be linear or nonlinear; the con-
straints can be bound constraints, equality or inequality constraints, or integer con-
straints.

Traditionally, optimization problems are divided into linear programming (LP; all
functions are linear) and nonlinear programming (NLP). Variations of LP prob-
lems are assignment problems, network flow problems, and transportation problems.
Nonlinear regression (fitting a nonlinear model to a set of data and the subsequent sta-
tistical analysis of the results) is a special NLP problem. Since these applications are
so common, SAS/OR software has separate procedures or facilities within procedures
for solving each type of these problems. Model data are supplied in a form suited for
the particular type of problem. Another benefit is that an optimization algorithm can
be specialized for the particular type of problem, reducing solution times. Optimizers
can exploit some structure in problems such as embedded networks, special ordered
sets, least squares, and quadratic objective functions.

SAS/OR software has seven procedures used for optimization:

• PROC ASSIGN for solving assignment problems

• PROC INTPOINT for network programming problems with side constraints,
and linear programming problems solved by an interior point algorithm

• PROC LP for solving linear and mixed integer programming problems

• PROC NETFLOW for solving network programming problems with side con-
straints

• PROC NLP for solving nonlinear programming problems

• PROC QP for solving quadratic programming problems

• PROC TRANS for solving transportation problems

SAS/OR procedures use syntax that is similar to other SAS procedures. In particular,
all SAS retrieval, data management, reporting, and analysis can be used with SAS/OR
software. Each optimizer is designed to integrate with the SAS System to simplify
model building, maintenance, solution, and report writing.

Data for models are supplied to SAS/OR procedures in SAS data sets. These data sets
can be saved and easily changed and the problem can be solved. Because the models

16 � Chapter 1. Introduction to Optimization

are in SAS data sets, problem data that can represent pieces of a larger model can be
concatenated and merged. The SAS/OR procedures output SAS data sets containing
the solutions. These can then be used to produce customized reports. This structure
allows decision support systems to be constructed using SAS/OR procedures and
other tools in the SAS System as building blocks.

The following list suggests application areas where decision support systems have
been used. In practice, models often contain elements of several applications listed
here.

• Product-Mix problems find the mix of products that generates the largest re-
turn when there are several products that compete for limited resources.

• Blending problems find the mix of ingredients to be used in a product so that
it meets minimum standards at minimum cost.

• Time-Staged problems are models whose structure repeats as a function of
time. Production and inventory models are classic examples of time-staged
problems. In each period, production plus inventory minus current demand
equals inventory carried to the next period.

• Scheduling problems assign people to times, places, or tasks so as to optimize
people’s preferences while satisfying the demands of the schedule.

• Multiple objective problems have multiple conflicting objectives. Typically,
the objectives are prioritized and the problems are solved sequentially in a pri-
ority order.

• Capital budgeting and project selection problems ask for the project or set
of projects that will yield the greatest return.

• Location problems seek the set of locations that meets the distribution needs
at minimum cost.

• Cutting stock problems find the partition of raw material that minimizes
waste.

Data Flow
The LP, NETFLOW, INTPOINT, NLP, QP, TRANS, and ASSIGN procedures take
a model that has been saved in one or more SAS data sets, solve it, and save the
solution in other SAS data sets. Most of the procedures define a SAS macro variable
that contains a character string indicating whether or not the procedure terminated
successfully and the status of the optimizer (for example, whether the optimum was
found). This information is useful when the procedure is one of the steps in a larger
program.

PROC NETFLOW � 17

PROC LP

The LP procedure solves linear and mixed integer programs. It can perform several
types of post-optimality analysis, including range analysis, sensitivity analysis, and
parametric programming. The procedure can also be used interactively.

PROC LP requires a problem data set that contains the model. In addition, a primal
and active data set can be used for warm starting a problem that has been partially
solved previously.

Figure 1.1 illustrates all the input and output data sets that are possible with PROC
LP. It also shows the macro variable –ORLP– that PROC LP defines.

Problem data

Primal data

Active data

-

Primal data

Dual data

Active data

Tableau data

-

-

-

-

PROC
LP

–ORLP–
?

Figure 1.1. Data Flow in PROC LP

The problem data describing the model can be in one of two formats: a sparse or a
dense format. The dense format represents the model as a rectangular matrix. The
sparse format represents only the nonzero elements of a rectangular matrix. The
sparse and dense input formats are described in more detail later in this chapter.

PROC NETFLOW

The NETFLOW procedure solves network flow problems with linear side constraints
using either the network simplex algorithm or the interior point algorithm. In addi-
tion, it can solve linear programming (LP) problems using the interior point algo-
rithm.

Networks and the Network Simplex Algorithm

PROC NETFLOW’s network simplex algorithm solves pure network flow problems
and network flow problems with linear side constraints. The procedure accepts the
network specification in a format that is particularly suited to networks. Although
network problems could be solved by PROC LP, the NETFLOW procedure generally
solves network flow problems more efficiently than PROC LP.

Network flow problems, such as finding the minimum cost flow in a network, require
model representation in a format that is simpler than PROC LP. The network is rep-
resented in two data sets: a node data set that names the nodes in the network and
gives supply and demand information at them, and an arc data set that defines the arcs

18 � Chapter 1. Introduction to Optimization

in the network using the node names and gives arc costs and capacities. In addition,
a side-constraint data set is included that gives any side constraints that apply to the
flow through the network. Examples of these are found later in this chapter.

The NETFLOW procedure saves solutions in four data sets. Two of these store so-
lutions for the pure network model, ignoring the restrictions imposed by the side
constraints. The remaining two data sets contain the solutions to the network flow
problem when the side constraints apply.

Figure 1.2 illustrates the input and output data sets that are possible with PROC
NETFLOW when using the network simplex method. It also shows the macro vari-
able –ORNETFL that PROC NETFLOW defines.

Arc data

Node data

Constraint data

-

Unconstrained solution:
Arcs

Unconstrained solution:
Nodes

Constrained solution:
Arcs and Nonarcs

Constrained solution:
Nodes and Rows

-

-

-

-

PROC
NETFLOW

–ORNETFL
?

Figure 1.2. Data Flow in PROC NETFLOW: Simplex Algorithm

The constraint data can be specified in either the sparse or dense input formats. This is
the same format that is used by PROC LP; therefore, any model-building techniques
that apply to models for PROC LP also apply to network flow models having side
constraints.

Linear and Network Programs Solved by the Interior Point Algorithm

The data required by PROC NETFLOW for a linear program resembles the data for
nonarc variables and constraints for constrained network problems. It is similar to
the data required by PROC LP.

The LP representation requires a data set that defines the variables in the LP using
variable names, and gives objective function coefficients and upper and lower bounds.
In addition, a constraint data set can be included that specifies any constraints.

Figure 1.3 illustrates the input and output data sets that are possible with PROC
NETFLOW for solving linear programs using the interior point algorithm. It also
shows the macro variable –ORNETFL that PROC NETFLOW defines.

PROC INTPOINT � 19

Variables data

Constraint data

- LP solution: Variables-PROC
NETFLOW

–ORNETFL
?

Figure 1.3. Data Flow in PROC NETFLOW: LP Problems

When solving a constrained network problem, you can specify the INTPOINT option
to indicate that the interior point algorithm is to be used. The input data is the same
whether the simplex or interior point method is used. The interior point method is
often faster when problems have many side constraints.

Figure 1.4 illustrates the input and output data sets that are possible with PROC
NETFLOW for solving network problems using the interior point algorithm. It also
shows the macro variable –ORNETFL that PROC NETFLOW defines.

Arc data

Node data

Constraint data

- Solution:
Arcs and Nonarcs

-PROC
NETFLOW

–ORNETFL
?

Figure 1.4. Data Flow in PROC NETFLOW: Interior Point Algorithm

The constraint data can be specified in either the sparse or dense input format. This
is the same format that is used by PROC LP; therefore, any model-building tech-
niques that apply to models for PROC LP also apply to LP models solved by PROC
NETFLOW.

PROC INTPOINT

The INTPOINT procedure solves the Network Program with Side Constraints
(NPSC) problem and the more general Linear Programming (LP) problem using the
interior point algorithm.

The data required by PROC INTPOINT is similar to the data required by PROC
NETFLOW when solving network flow models using the interior point algorithm.

20 � Chapter 1. Introduction to Optimization

Figure 1.5 illustrates the input and output data sets that are possible with PROC
INTPOINT.

Arc data

Node data

Constraint data

- Solution-PROC
INTPOINT

Figure 1.5. Data Flow in PROC INTPOINT

The constraint data can be specified in either the sparse or dense input format. This
is the same format that is used by PROC LP and PROC NETFLOW; therefore, any
model-building techniques that apply to models for PROC LP or PROC NETFLOW
also apply to PROC INTPOINT.

PROC NLP

The NLP procedure (NonLinear Programming) offers a set of optimization tech-
niques for minimizing or maximizing a continuous nonlinear function subject to lin-
ear and nonlinear, equality and inequality, and lower and upper bound constraints.
Problems of this type are found in many settings ranging from optimal control to
maximum likelihood estimation.

Nonlinear programs can be input into the procedure in various ways. The objective,
constraint, and derivative functions are specified using the programming statements
of PROC NLP. In addition, information in SAS data sets can be used to define the
structure of objectives and constraints, and to specify constants used in objectives,
constraints, and derivatives.

PROC NLP uses data sets to input various pieces of information:

• The DATA= data set enables you to specify data shared by all functions in-
volved in a least squares problem.

• The INQUAD= data set contains the arrays appearing in a quadratic program-
ming problem.

• The INEST= data set specifies initial values for the decision variables, the val-
ues of constants that are referred to in the program statements, and simple
boundary and general linear constraints.

• The MODEL= data set specifies a model (functions, constraints, derivatives)
saved at a previous execution of the NLP procedure.

PROC NLP uses data sets to output various results:

• The OUTEST= data set saves the values of the decision variables, the deriva-
tives, the solution, and the covariance matrix at the solution.

PROC QP (Experimental) � 21

• The OUT= output data set contains variables generated in the program state-
ments defining the objective function, as well as selected variables of the
DATA= input data set, if available.

• The OUTMODEL= data set saves the programming statements. It can be used
to input a model in the MODEL= input data set.

Figure 1.6 illustrates all the input and output data sets that are possible with PROC
NLP.

DATA

INQUAD

INEST

MODEL

- PROC
NLP

OUT

OUTEST

OUTMODEL

-

-

-

Figure 1.6. Data Flow in PROC NLP

As an alternative to supplying data in SAS data sets, some or all data for the model
can be specified using SAS programming statements. These are similar to those used
in the SAS DATA step.

PROC QP (Experimental)

The experimental QP procedure solves Quadratic Programming (QP) problems and
Quadratic Network Problems with Side Constraints (QNPSC).

The data required by PROC QP is similar to the data required by PROC INTPOINT,
with the addition of a Hessian matrix that must be specified in a data set. Figure 1.7
illustrates the input and output data sets that are possible with PROC QP.

Variables (or Arc) data

Node data

Constraint data

Hessian data

- PROC
QP

Solution-

Figure 1.7. Data Flow in PROC QP

The constraint data can be specified in either the sparse or dense input format. This is
the same format that is used by PROC LP, PROC NETFLOW, and PROC INTPOINT;
therefore, any model-building techniques that apply to these models also apply to
PROC QP.

22 � Chapter 1. Introduction to Optimization

PROC TRANS

Transportation networks are a special type of network, called bipartite networks, that
have only supply and demand nodes and arcs directed from supply nodes to demand
nodes. For these networks, data can be given most efficiently in a rectangular or
matrix form. The TRANS procedure takes cost, capacity, and lower bound data in
this form. The observations in these data sets correspond to supply nodes, and the
variables correspond to demand nodes. The solution is saved in a single output data
set.

Figure 1.8 illustrates the input and output data sets that are possible with PROC
TRANS. It also shows the macro variable –ORTRANS that PROC TRANS defines.

Cost data

Capacity data

Lower bound data

- Solution-PROC
TRANS

–ORTRANS
?

Figure 1.8. Data Flow in PROC TRANS

PROC ASSIGN

The assignment problem is a special type of transportation problem, one having sup-
ply and demand values of one unit. As with the transportation problem, the cost data
for this type of problem are saved in a SAS data set in rectangular form. The ASSIGN
procedure saves the solution in a SAS data set.

Figure 1.9 illustrates the input and output data sets that are possible with PROC
ASSIGN. It also shows the macro variable –ORASSIG that PROC ASSIGN defines.

Cost data - Solution-PROC
ASSIGN

–ORASSIG
?

Figure 1.9. Data Flow in PROC ASSIGN

Model Formats: PROC LP and PROC NETFLOW � 23

Model Formats: PROC LP and PROC NETFLOW

Model generation and maintenance are often difficult and expensive aspects of ap-
plying mathematical programming techniques. The flexible input formats for the
optimization procedures in SAS/OR software simplify this task.

A small product mix problem serves as a starting point for a discussion of different
types of model formats supported in SAS/OR software.

A candy manufacturer makes two products: chocolates and toffee. What combination
of chocolates and toffee should be produced in a day in order to maximize the com-
pany’s profit? Chocolates contribute $0.25 per pound to profit, and toffee contributes
$0.75 per pound. The decision variables are chocolates and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolates and
toffee.

2. Process 2 adds colors and flavors to the toffee, then cools and shapes the con-
fection.

3. Process 3 chops and mixes nuts and raisins, adds them to the chocolates, then
cools and cuts the bars.

4. Process 4 is packaging: chocolates are placed in individual paper shells; toffee
are wrapped in cellophane packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.

Firm time standards have been established for each process. For Process 1, mixing
and cooking take 15 seconds for each pound of chocolate, and 40 seconds for each
pound of toffee. Process 2 takes 56.25 seconds per pound of toffee. For Process 3,
each pound of chocolate requires 18.75 seconds of processing. In packaging, a pound
of chocolates can be wrapped in 12 seconds, whereas 50 seconds are required for a
pound of toffee. These data are summarized below:

Available Required per Pound
Time chocolates toffee

Process (sec) (sec) (sec)
1 Cooking 27,000 15 40
2 Color/Flavor 27,000 56.25
3 Condiments 27,000 18.75
4 Packaging 27,000 12 50

The objective is to

Maximize: 0.25(chocolates) + 0.75(toffee)

which is the company’s total profit.

The production of the candy is limited by the time available for each process. The
limits placed on production by Process 1 are expressed by the following inequality.

24 � Chapter 1. Introduction to Optimization

Process 1: 15(chocolates) + 40(toffee)≤ 27,000

Process 1 can handle any combination of chocolates and toffee that satisfies this in-
equality.

The limits on production by other processes generate constraints described by the
following inequalities.

Process 2: 56.25(toffee) ≤ 27,000

Process 3: 18.75(chocolates) ≤ 27,000

Process 4: 12(chocolates) + 50(toffee) ≤ 27,000

This linear program illustrates the type of problem known as a product mix example.
The mix of products that maximizes the objective without violating the constraints is
the solution. Two formats — dense or sparse — can be used to represent this model.

Dense Format

The following DATA step creates a SAS data set for this product mix problem. Notice
that the values of CHOCO and TOFFEE in the data set are the coefficients of those
variables in the equations corresponding to the objective function and constraints.
The variable –id– contains a character string that names the rows in the data set. The
variable –type– is a character variable that contains keywords that describes the type
of each row in the problem data set. The variable –rhs– contains the right-hand-side
values.

data factory;
input _id_ $ CHOCO TOFFEE _type_ $ _rhs_;
datalines;

object 0.25 0.75 MAX .
process1 15.00 40.00 LE 27000
process2 0.00 56.25 LE 27000
process3 18.75 0.00 LE 27000
process4 12.00 50.00 LE 27000
;

To solve this problem using the interior point algorithm of PROC NETFLOW, specify

proc netflow arcdata=factory condata=factory;

However, this example will be solved by the LP procedure. Because the special
variables –id– , –type– , and –rhs– are used in the problem data set, there is no need
to identify them to the LP procedure. Therefore, the following statement is all that is
needed to solve this problem.

proc lp;

The output from the LP procedure is in four sections.

Model Formats: PROC LP and PROC NETFLOW � 25

Problem Summary

The first section of the output, the Problem Summary, describes the problem by iden-
tifying the objective function (defined by the first observation in the data set used as
input), the right-hand-side variable, the type variable, and the density of the problem.
The problem density describes the relative number of elements in the problem matrix
that are nonzero. The fewer zeros in the matrix, the higher the problem density. The
Problem Summary describes the problem, giving the number and type of variables in
the model and the number and type of constraints. The types of variables in the prob-
lem are also identified. Variables are either structural or logical. Structural variables
are identified in the VAR statement when the dense format is used. They are the un-
knowns in the equations defining the objective function and constraints. By default,
PROC LP assumes that structural variables have the additional constraint that they
must be nonnegative. Upper and lower bounds to structural variables can be defined.

The LP Procedure

Problem Summary

Objective Function Max object
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 41.67

Variables Number

Non-negative 2
Slack 4

Total 6

Constraints Number

LE 4
Objective 1

Total 5

Figure 1.10. Problem Summary

The Problem Summary shows, for example, that there are two nonnegative decision
variables, namely CHOCO and TOFFEE. It also shows that there are four con-
straints of type LE.

After the procedure displays this information, it solves the problem and displays the
Solution Summary.

Solution Summary

The Solution Summary (shown in Figure 1.11) gives information about the solu-
tion that was found, including whether the optimizer terminated successfully, having
found the optimum.

When PROC LP solves a problem, an iterative process is used. First, the procedure
finds a feasible solution that satisfies the constraints. The second phase finds the

26 � Chapter 1. Introduction to Optimization

optimal solution from the set of feasible solutions. The Solution Summary lists the
number of iterations in each of these phases, the number of variables in the initial
feasible solution, the time the procedure used to solve the problem, and the number
of matrix inversions necessary.

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 475

Phase 1 Iterations 0
Phase 2 Iterations 3
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 6
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Figure 1.11. Solution Summary

After performing three Phase 2 iterations, the procedure terminated successfully with
optimal objective value of 475.

Variable Summary

The next section of the output is the Variable Summary, as shown in Figure 1.12. For
each variable, the Variable Summary gives the value, objective function coefficient,
status in the solution, and reduced cost.

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 CHOCO BASIC NON-NEG 0.25 1000 0
2 TOFFEE BASIC NON-NEG 0.75 300 0
3 process1 SLACK 0 0 -0.012963
4 process2 BASIC SLACK 0 10125 0
5 process3 BASIC SLACK 0 8250 0
6 process4 SLACK 0 0 -0.00463

Figure 1.12. Variable Summary

Model Formats: PROC LP and PROC NETFLOW � 27

The Variable Summary contains details about each variable in the solution. The
Activity variable shows that optimum profitability is achieved when 1000 pounds
of chocolate and 300 pounds of toffee are produced. The variables process1,
process2, process3, and process4 correspond to the four slack variables in the
Process 1, Process 2, Process 3, and Process 4 constraints, respectively. Producing
1000 pounds of chocolate and 300 pounds of toffee a day leaves 10,125 seconds of
slack time in Process 2 (where colors and flavors are added to the toffee), and 8,250
seconds of slack time in Process 3 (where nuts and raisins are mixed and added to the
chocolate).

Constraint Summary

The last section of the output is the Constraint Summary, as shown in Figure 1.13.
The Constraint Summary gives the value of the objective function, the value of each
constraint, and the dual activities.

The Activity variable gives the value of the right-hand side of each equation when the
problem is solved using the information given in the Variable Summary.

The Dual Activity variable reveals that each second in Process 1 (mixing-cooking)
is worth approximately $.013, and each second in Process 4 (Packaging) is worth
approximately $.005. These figures (called shadow prices) can be used to decide
whether the total available time for Process 1 and Process 4 should be increased. If a
second can be added to the total production time in Process 1 for less than $.013, it
would be profitable to do so. The dual activities for Process 2 and Process 3 are zero,
since adding time to those processes does not increase profits. Keep in mind that the
dual activity gives the marginal improvement to the objective, and that adding time
to Process 1 changes the original problem and solution.

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 object OBJECTVE . 0 475 .
2 process1 LE 3 27000 27000 0.012963
3 process2 LE 4 27000 16875 0
4 process3 LE 5 27000 18750 0
5 process4 LE 6 27000 27000 0.0046296

Figure 1.13. Constraint Summary

For a complete description of the output from PROC LP, see Chapter 4, “The LP
Procedure.”

Sparse Format

Typically, mathematical programming models are sparse. That is, few of the coef-
ficients in the constraint matrix are nonzero. The dense problem format shown in

28 � Chapter 1. Introduction to Optimization

the previous section is an inefficient way to represent sparse models. The LP proce-
dure also accepts data in a sparse input format. Only the nonzero coefficients must
be specified. It is consistent with the standard MPS sparse format, and much more
flexible; models using the MPS format can be easily converted to the LP format.

Although the factory example of the last section is not sparse, an example of the
sparse input format for that problem is illustrated here. The sparse data set has four
variables: a row type identifying variable (–type–), a row name variable (–row–), a
column name variable (–col–), and a coefficient variable (–coef–).

data factory;
format _type_ $8. _row_ $10. _col_ $10.;
input _type_ $_row_ $ _col_ $ _coef_ ;
datalines;

max object . .
. object chocolate .25
. object toffee .75
le process1 . .
. process1 chocolate 15
. process1 toffee 40
. process1 _RHS_ 27000
le process2 . .
. process2 toffee 56.25
. process2 _RHS_ 27000
le process3 . .
. process3 chocolate 18.75
. process3 _RHS_ 27000
le process4 . .
. process4 chocolate 12
. process4 toffee 50
. process4 _RHS_ 27000
;

To solve this problem using the interior point algorithm of PROC NETFLOW, specify

proc netflow sparsecondata arcdata=factory condata=factory;

However, this example will be solved by the LP procedure.

Notice that the –type– variable contains keywords as for the dense format, the
–row– variable contains the row names in the model, the –col– variable contains
the column names in the model, and the –coef– variable contains the coefficients for
that particular row and column. Since the row and column names are the values of
variables in a SAS data set, they are not limited to eight characters. This feature, as
well as the order independence of the format, simplifies matrix generation.

The SPARSEDATA option in the PROC LP statement tells the LP procedure that the
model in the problem data set is in the sparse format. This example also illustrates
how the solution of the linear program is saved in two output data sets: the primal
data set and the dual data set.

Model Formats: PROC LP and PROC NETFLOW � 29

proc lp
data=factory sparsedata
primalout=primal dualout=dual;
run;

The primal data set (shown in Figure 1.14) contains the information that is displayed
in the Variable Summary, plus additional information about the bounds on the vari-
ables.

Obs _OBJ_ID_ _RHS_ID_ _VAR_ _TYPE_ _STATUS_

1 object _RHS_ chocolate NON-NEG _BASIC_
2 object _RHS_ toffee NON-NEG _BASIC_
3 object _RHS_ process1 SLACK
4 object _RHS_ process2 SLACK _BASIC_
5 object _RHS_ process3 SLACK _BASIC_
6 object _RHS_ process4 SLACK
7 object _RHS_ PHASE_1_OBJECTIV OBJECT _DEGEN_
8 object _RHS_ object OBJECT _BASIC_

Obs _LBOUND_ _VALUE_ _UBOUND_ _PRICE_ _R_COST_

1 0 1000 1.7977E308 0.25 0.000000
2 0 300 1.7977E308 0.75 0.000000
3 0 0 1.7977E308 0.00 -0.012963
4 0 10125 1.7977E308 0.00 0.000000
5 0 8250 1.7977E308 0.00 0.000000
6 0 0 1.7977E308 0.00 -0.004630
7 0 0 0 0.00 0.000000
8 0 475 1.7977E308 0.00 0.000000

Figure 1.14. Primal Data Set

The dual data set (shown in Figure 1.15) contains the information that is displayed
in the Constraint Summary, plus additional information about bounds on the rows.

Obs _OBJ_ID_ _RHS_ID_ _ROW_ID_ _TYPE_ _RHS_ _L_RHS_ _VALUE_ _U_RHS_ _DUAL_

1 object _RHS_ object OBJECT 475 475 475 475 .
2 object _RHS_ process1 LE 27000 -1.7977E308 27000 27000 0.012963
3 object _RHS_ process2 LE 27000 -1.7977E308 16875 27000 0.000000
4 object _RHS_ process3 LE 27000 -1.7977E308 18750 27000 0.000000
5 object _RHS_ process4 LE 27000 -1.7977E308 27000 27000 0.004630

Figure 1.15. Dual Data Set

Network Format

Network flow problems can be described by specifying the nodes in the network and
their supplies and demands, and the arcs in the network and their costs, capacities,
and lower flow bounds. Consider the simple transshipment problem in Figure 1.16 as
an illustration.

30 � Chapter 1. Introduction to Optimization

�

	
�

factory–2

�

	
�

factory–1

�

	
�

warehouse–2

�

	
�

warehouse–1

�

	
�

customer–3

�

	
�

customer–2

�

	
�

customer–1

-

-�
�

�
�

�
�

���@
@

@
@

@
@

@@R

�
���

����*

HH
HHH

HHHj

J
J

J
J

J
J

J
J

J
J
Ĵ

�

���
���

��*

H
HHH

HHHHj

500

500

−50

−200

−100

Figure 1.16. Transshipment Problem

Suppose the candy manufacturing company has two factories, two warehouses, and
three customers for chocolate. The two factories each have a production capacity of
500 pounds per day. The three customers have demands of 100, 200, and 50 pounds
per day, respectively.

The following data set describes the supplies (positive values for the supdem vari-
able) and the demands (negative values for the supdem variable) for each of the
customers and factories.

data nodes;
format node $10. ;
input node $ supdem;
datalines;

customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;

Suppose that there are two warehouses that are used to store the chocolate before
shipment to the customers, and that there are different costs for shipping between each
factory, warehouse, and customer. What is the minimum cost routing for supplying
the customers?

Arcs are described in another data set. Each observation defines a new arc in the
network and gives data about the arc. For example, there is an arc between the
node factory–1 and the node warehouse–1. Each unit of flow on that arc costs 10.

Model Formats: PROC LP and PROC NETFLOW � 31

Although this example does not include it, lower and upper bounds on the flow across
that arc can be listed here.

data network;
format from $12. to $12.;
input from $ to $ cost ;
datalines;

factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;

You can use PROC NETFLOW to find the minimum cost routing. This procedure
takes the model as defined in the network and nodes data sets and finds the minimum
cost flow.

proc netflow arcout=arc_sav
arcdata=network nodedata=nodes;

node node; /* node data set information */
supdem supdem;
tail from; /* arc data set information */
head to;
cost cost;
run;

proc print;
var from to cost _capac_ _lo_ _supply_ _demand_

flow _fcost_ _rcost_;
sum _fcost_;
run;

PROC NETFLOW produces the following messages on the SAS log:

NOTE: Number of nodes= 7 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 3 .
NOTE: Total supply= 1000 , total demand= 350 .
NOTE: Number of arcs= 10 .
NOTE: Number of iterations performed (neglecting

any constraints)= 7 .
NOTE: Of these, 2 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 3050 .
NOTE: The data set WORK.ARC_SAV has 10 observations

and 13 variables.

32 � Chapter 1. Introduction to Optimization

The solution (Figure 1.17) saved in the arc–sav data set shows the optimal amount
of chocolate to send across each arc (the amount to ship from each factory to each
warehouse and from each warehouse to each customer) in the network per day.

_ _
_ S D _ _
C U E _ F R
A P M F C C

f c P _ P A L O O
O r o A L L N O S S
b o t s C O Y D W T T
s m o t _ _ _ _ _ _ _

1 warehouse_1 customer_1 3 99999999 0 . 100 100 300 .
2 warehouse_2 customer_1 5 99999999 0 . 100 0 0 4
3 warehouse_1 customer_2 4 99999999 0 . 200 200 800 .
4 warehouse_2 customer_2 5 99999999 0 . 200 0 0 3
5 warehouse_1 customer_3 4 99999999 0 . 50 50 200 .
6 warehouse_2 customer_3 6 99999999 0 . 50 0 0 4
7 factory_1 warehouse_1 10 99999999 0 500 . 0 0 5
8 factory_2 warehouse_1 5 99999999 0 500 . 350 1750 .
9 factory_1 warehouse_2 7 99999999 0 500 . 0 0 .
10 factory_2 warehouse_2 9 99999999 0 500 . 0 0 2

====
3050

Figure 1.17. ARCOUT Data Set

Notice which arcs have positive flow (–FLOW– is greater than 0). These arcs indi-
cate the amount of chocolate that should be sent from factory–2 to warehouse–1 and
from there on to the three customers. The model indicates no production at factory–1
and no use of warehouse–2.

�

	
�

factory–2

�

	
�

factory–1

�

	
�

warehouse–2

�

	
�

warehouse–1

�

	
�

customer–3

�

	
�

customer–2

�

	
�

customer–1

-

-�
�

�
�

�
�

���@
@

@
@

@
@

@@R

���
���

��*

HHH
HHH

HHj

J
J

J
J

J
J

J
J

J
J
Ĵ

�

�
���

����*

HH
HHH

HHHj

500

500

−50

−200

−100

350 50

100

200

Figure 1.18. Optimal Solution for the Transshipment Problem

Model Formats: PROC ASSIGN and PROC TRANS � 33

Model Formats: PROC ASSIGN and PROC TRANS
The transportation and assignment models are described in rectangular data sets.
Suppose that instead of sending chocolate from factories to warehouses and then to
the customers, chocolate is sent directly from the factories to the customers.

Finding the minimum cost routing could be done using the NETFLOW procedure.
However, since the network represents a transportation problem, the data for the prob-
lem can be represented more simply.

data transprt;
input source $ supply cust_1 cust_2 cust_3 ;
datalines;

demand . 100 200 50
factory1 500 10 9 7
factory2 500 9 10 8
;

This data set shows the source names as the values for the source variable, the supply
at each source node as the values for the supply variable, and the unit shipping cost
for source to sink as the values for the sink variables cust–1 to cust–3. Notice that
the first record contains the demands at each of the sink nodes.

The TRANS procedure finds the minimum cost routing. It solves the problem and
saves the solution in an output data set.

proc trans
nothrunet data=transprt out=transout;
supply supply;
id source;

proc print; run;

The optimum solution total (3050) is reported on the SAS log. The entire solution,
saved in the output data set transout and shown in Figure 1.19, shows the amount of
chocolate to ship from each factory to each customer per day.

The transout data set contains the variables listed in the transprt data set, and a
new variable called –DUAL– . The –DUAL– variable contains the marginal costs of
increasing the supply at each origin point. The last observation in the transout data
set has the marginal costs of increasing the demand at each destination point. These
variables are called dual variables.

Obs source supply cust_1 cust_2 cust_3 _DUAL_

1 _DEMAND_ . 100 200 50 .
2 factory1 500 0 200 50 0
3 factory2 500 100 0 0 0
4 _DUAL_ . 9 9 7 .

Figure 1.19. TRANSOUT Data Set

34 � Chapter 1. Introduction to Optimization

Model Building
It is often desirable to keep the data separate from the structure of the model. This
is useful for large models with numerous identifiable components. The data are best
organized in rectangular tables that can be easily examined and modified. Then,
before the problem is solved, the model is built using the stored data. This process of
model building is known as matrix generation. In conjunction with the sparse format,
the SAS DATA step provides a good matrix generation language.

For example, consider the candy manufacturing example introduced previously.
Suppose that, for the user interface, it is more convenient to organize the data so
that each record describes the information related to each product (namely, the con-
tribution to the objective function and the unit amount needed for each process). A
DATA step for saving the data might look like this:

data manfg;
format product $12.;
input product $ object process1 - process4 ;
datalines;

chocolate .25 15 0.00 18.75 12
toffee .75 40 56.25 0.00 50
licorice 1.00 29 30.00 20.00 20
jelly_beans .85 10 0.00 30.00 10
RHS . 27000 27000 27000 27000
;

Notice that there is a special record at the end having product –RHS–. This record
gives the amounts of time available for each of the processes. This information could
have been stored in another data set. The next example illustrates a model where the
data are stored in separate data sets.

Building the model involves adding the data to the structure. There are as many ways
to do this as there are programmers and problems. The following DATA step shows
one way to use the candy data to build a sparse format model to solve the product
mix problem.

data model;
array process object process1-process4;
format _type_ $8. _row_ $12. _col_ $12. ;
keep _type_ _row_ _col_ _coef_;

set manfg; /* read the manufacturing data */

/* build the object function */

if _n_=1 then do;
type=’max’; _row_=’object’; _col_=’ ’; _coef_=.;
output;

end;

/* build the constraints */

Model Building � 35

do over process;
if _i_>1 then do;

type=’le’; _row_=’process’||put(_i_-1,1.);
end;
else _row_=’object’;
col=product; _coef_=process;
output;

end;
run;

The sparse format data set is shown in Figure 1.20.

Obs _type_ _row_ _col_ _coef_

1 max object .
2 max object chocolate 0.25
3 le process1 chocolate 15.00
4 le process2 chocolate 0.00
5 le process3 chocolate 18.75
6 le process4 chocolate 12.00
7 object toffee 0.75
8 le process1 toffee 40.00
9 le process2 toffee 56.25
10 le process3 toffee 0.00
11 le process4 toffee 50.00
12 object licorice 1.00
13 le process1 licorice 29.00
14 le process2 licorice 30.00
15 le process3 licorice 20.00
16 le process4 licorice 20.00
17 object jelly_beans 0.85
18 le process1 jelly_beans 10.00
19 le process2 jelly_beans 0.00
20 le process3 jelly_beans 30.00
21 le process4 jelly_beans 10.00
22 object _RHS_ .
23 le process1 _RHS_ 27000.00
24 le process2 _RHS_ 27000.00
25 le process3 _RHS_ 27000.00
26 le process4 _RHS_ 27000.00

Figure 1.20. Sparse Data Format

The model data set looks a little different from the sparse representation of the
candy model shown earlier. It not only includes additional products (licorice and
jelly–beans), but it also defines the model in a different order. Since the sparse for-
mat is robust, the model can be generated in ways that are convenient for the DATA
step program.

If the problem had more products, you could increase the size of the manfg data set
to include the new product data. Also, if the problem had more than four processes,
you could add the new process variables to the manfg data set and increase the size
of the process array in the model data set. With these two simple changes and
additional data, a product mix problem having hundreds of processes and products
can be solved.

36 � Chapter 1. Introduction to Optimization

Matrix Generation
It is desirable to keep data in separate tables, then automate model building and
reporting. This example illustrates a problem that has elements of a product mix
problem and a blending problem. Suppose four kinds of ties are made; all silk, all
polyester, a 50-50 polyester-cotton blend, and a 70-30 cotton-polyester blend.

The data includes cost and supplies of raw material, selling price, minimum con-
tract sales, maximum demand of the finished products, and the proportions of raw
materials that go into each product. The product mix that maximizes profit is to be
found.

The data are saved in three SAS data sets. The program that follows demonstrates one
way for these data to be saved. Alternatively, the full-screen editor PROC FSEDIT
can be used to store and edit these data.

data material;
format descpt $20.;
input descpt $ cost supply;
datalines;

silk_material .21 25.8
polyester_material .6 22.0
cotton_material .9 13.6
;

data tie;
format descpt $20.;
input descpt $ price contract demand;
datalines;

all_silk 6.70 6.0 7.00
all_polyester 3.55 10.0 14.00
poly_cotton_blend 4.31 13.0 16.00
cotton_poly_blend 4.81 6.0 8.50
;

data manfg;
format descpt $20.;
input descpt $ silk poly cotton;
datalines;

all_silk 100 0 0
all_polyester 0 100 0
poly_cotton_blend 0 50 50
cotton_poly_blend 0 30 70
;

The following program takes the raw data from the three data sets and builds a linear
program model in the data set called model. Although it is designed for the three-
resource, four-product problem described here, it can be easily extended to include
more resources and products. The model-building DATA step remains essentially the
same; all that changes are the dimensions of loops and arrays. Of course, the data
tables must increase to accommodate the new data.

Matrix Generation � 37

data model;
array raw_mat {3} $ 20 ;
array raw_comp {3} silk poly cotton;
length _type_ $ 8 _col_ $ 20 _row_ $ 20 _coef_ 8 ;
keep _type_ _col_ _row_ _coef_ ;

/* define the objective, lower, and upper bound rows */

row=’profit’; _type_=’max’; output;
row=’lower’; _type_=’lowerbd’; output;
row=’upper’; _type_=’upperbd’; output;
type=’ ’;

/* the object and upper rows for the raw materials */

do i=1 to 3;
set material;
raw_mat[i]=descpt; _col_=descpt;
row=’profit’; _coef_=-cost; output;
row=’upper’; _coef_=supply; output;

end;

/* the object, upper, and lower rows for the products */

do i=1 to 4;
set tie;
col=descpt;
row=’profit’; _coef_=price; output;
row=’lower’; _coef_=contract; output;
row=’upper’; _coef_=demand; output;

end;

/* the coefficient matrix for manufacturing */

type=’eq’;
do i=1 to 4; /* loop for each raw material */

set manfg;
do j=1 to 3; /* loop for each product */

col=descpt; /* % of material in product */
row = raw_mat[j];
coef = raw_comp[j]/100;
output;

col = raw_mat[j]; _coef_ = -1;
output;

/* the right-hand-side */

if i=1 then do;
col=’_RHS_’;
coef=0;
output;

end;

38 � Chapter 1. Introduction to Optimization

end;
type=’ ’;

end;
stop;

run;

The model is solved using PROC LP, which saves the solution in the PRIMALOUT
data set named solution. PROC PRINT displays the solution, shown in Figure 1.21.

proc lp sparsedata primalout=solution;

proc print ;
id _var_;
var _lbound_--_r_cost_;

run;

VAR _LBOUND_ _VALUE_ _UBOUND_ _PRICE_ _R_COST_

all_polyester 10 11.800 14.0 3.55 0.000
all_silk 6 7.000 7.0 6.70 6.490
cotton_material 0 13.600 13.6 -0.90 4.170
cotton_poly_blend 6 8.500 8.5 4.81 0.196
polyester_material 0 22.000 22.0 -0.60 2.950
poly_cotton_blend 13 15.300 16.0 4.31 0.000
silk_material 0 7.000 25.8 -0.21 0.000
PHASE_1_OBJECTIVE 0 0.000 0.0 0.00 0.000
profit 0 168.708 1.7977E308 0.00 0.000

Figure 1.21. Solution Data Set

The solution shows that 11.8 units of polyester ties, 7 units of silk ties, 8.5 units of
the cotton-polyester blend, and 15.3 units of the polyester-cotton blend should be
produced. It also shows the amounts of raw materials that go into this product mix to
generate a total profit of 168.708.

Exploiting Model Structure

Another example helps to illustrate how the model can be simplified by exploiting
the structure in the model when using the NETFLOW procedure.

Recall the chocolate transshipment problem discussed previously. The solution re-
quired no production at factory–1 and no storage at warehouse–2. Suppose this
solution, although optimal, is unacceptable. An additional constraint requiring the
production at the two factories to be balanced is required. Now, the production at the
two factories can differ by, at most, 100 units. Such a constraint might look like

-100 <= (factory_1_warehouse_1 + factory_1_warehouse_2 -
factory_2_warehouse_1 - factory_2_warehouse_2) <= 100

The network and supply and demand information are saved in two data sets.

Exploiting Model Structure � 39

data network;
format from $12. to $12.;
input from $ to $ cost ;
datalines;

factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;

data nodes;
format node $12. ;
input node $ supdem;
datalines;

customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;

The factory-balancing constraint is not a part of the network. It is represented in the
sparse format in a data set for side constraints.

data side_con;
format _type_ $8. _row_ $8. _col_ $21. ;
input _type_ _row_ _col_ _coef_ ;
datalines;

eq balance . .
. balance factory_1_warehouse_1 1
. balance factory_1_warehouse_2 1
. balance factory_2_warehouse_1 -1
. balance factory_2_warehouse_2 -1
. balance diff -1
lo lowerbd diff -100
up upperbd diff 100
;

This data set contains an equality constraint that sets the value of DIFF to be the
amount that factory 1 production exceeds factory 2 production. It also contains im-
plicit bounds on the DIFF variable. Note that the DIFF variable is a nonarc variable.

40 � Chapter 1. Introduction to Optimization

proc netflow
conout=con_sav
arcdata=network nodedata=nodes condata=side_con
sparsecondata ;
node node;
supdem supdem;
tail from;
head to;
cost cost;
run;

proc print;
var from to _name_ cost _capac_ _lo_ _supply_ _demand_

flow _fcost_ _rcost_;
sum _fcost_;
run;

The solution is saved in the con–sav data set (Figure 1.22).

_ _
_ S D _ _

_ C U E _ F R
N A P M F C C

f A c P _ P A L O O
O r M o A L L N O S S
b o t E s C O Y D W T T
s m o _ t _ _ _ _ _ _ _

1 warehouse_1 customer_1 3 99999999 0 . 100 100 300 .
2 warehouse_2 customer_1 5 99999999 0 . 100 0 0 1.0
3 warehouse_1 customer_2 4 99999999 0 . 200 75 300 .
4 warehouse_2 customer_2 5 99999999 0 . 200 125 625 .
5 warehouse_1 customer_3 4 99999999 0 . 50 50 200 .
6 warehouse_2 customer_3 6 99999999 0 . 50 0 0 1.0
7 factory_1 warehouse_1 10 99999999 0 500 . 0 0 2.0
8 factory_2 warehouse_1 5 99999999 0 500 . 225 1125 .
9 factory_1 warehouse_2 7 99999999 0 500 . 125 875 .
10 factory_2 warehouse_2 9 99999999 0 500 . 0 0 5.0
11 diff 0 100 -100 . . -100 0 1.5

====
3425

Figure 1.22. CON–SAV Data Set

Notice that the solution now has production balanced across the factories; the pro-
duction at factory 2 exceeds that at factory 1 by 100 units.

The DATA Step � 41

�

	
�

factory–2

�

	
�

factory–1

�

	
�

warehouse–2

�

	
�

warehouse–1

�

	
�

customer–3

�

	
�

customer–2

�

	
�

customer–1

-

-�
�

�
�

�
�

���@
@

@
@

@
@

@@R

�
���

����*

HH
HHH

HHHj

J
J

J
J

J
J

J
J

J
J
Ĵ

�

���
���

��*

H
HHH

HHHHj

500

500

−50

−200

−100

225

125

50

100

75

125

Figure 1.23. Constrained Optimum for the Transshipment Problem

Report Writing
The reporting of the solution is also an important aspect of modeling. Since the
optimization procedures save the solution in one or more SAS data sets, report writing
can be written using any of the tools in the SAS language.

The DATA Step

Use of the DATA step and PROC PRINT is the most general way to produce reports.
For example, a table showing the revenue generated from the production and a table
of the cost of material can be produced with the following program.

data product(keep= _var_ _value_ _price_ revenue)
material(keep=_var_ _value_ _price_ cost);

set solution;
if _price_>0 then do;

revenue=_price_*_value_; output product;
end;
else if _price_<0 then do;

price=-_price_;
cost = _price_*_value_; output material;

end;
run;

42 � Chapter 1. Introduction to Optimization

/* display the product report */

proc print data=product;
id _var_;
var _value_ _price_ revenue ;
sum revenue;
title ’Revenue Generated from Tie Sales’;

run;

/* display the materials report */

proc print data=material;
id _var_;
var _value_ _price_ cost;
sum cost;
title ’Cost of Raw Materials’;

run;

This DATA step reads the solution data set saved by PROC LP and segregates the
records based on whether they correspond to materials or products, namely whether
the contribution to profit is positive or negative. Each of these is then displayed to
produce Figure 1.24.

Revenue Generated from Tie Sales

VAR _VALUE_ _PRICE_ revenue

all_polyester 11.8 3.55 41.890
all_silk 7.0 6.70 46.900
cotton_poly_blend 8.5 4.81 40.885
poly_cotton_blend 15.3 4.31 65.943

=======
195.618

Cost of Raw Materials

VAR _VALUE_ _PRICE_ cost

cotton_material 13.6 0.90 12.24
polyester_material 22.0 0.60 13.20
silk_material 7.0 0.21 1.47

=====
26.91

Figure 1.24. Tie Problem: Revenues and Costs

Other Reporting Procedures � 43

Other Reporting Procedures

The GCHART procedure can be a useful tool for displaying the solution to mathe-
matical programming models. The con–solv data set that contains the solution to the
balanced transshipment problem can be effectively displayed using PROC GCHART.
In Figure 1.25, the amount that is shipped from each factory and warehouse can be
seen by submitting the following.

title;
proc gchart data=con_sav;

hbar from / sumvar=_flow_;
run;

Figure 1.25. Tie Problem: Throughputs

The horizontal bar chart is just one way of displaying the solution to a mathematical
program. The solution to the Tie Product Mix problem that was solved using PROC
LP can also be illustrated using PROC GCHART. Here, a pie chart shows the relative
contribution of each product to total revenues.

proc gchart data=product;
pie _var_ / sumvar=revenue;

title ’Projected Tie Sales Revenue’;
run;

44 � Chapter 1. Introduction to Optimization

Figure 1.26. Tie Problem: Projected Tie Sales Revenue

The TABULATE procedure is another procedure that can help automate solution re-
porting. Several examples in Chapter 4, “The LP Procedure,” illustrate its use.

Decision Support Systems
The close relationship between a SAS data set and the representation of the mathe-
matical model makes it easy to build decision support systems.

The Full-Screen Interface

The ability to manipulate data using the full-screen tools in the SAS language fur-
ther enhances the decision support capabilities. The several data set pieces that are
components of a decision support model can be edited using the full-screen editing
procedures FSEDIT and FSPRINT. The screen control language SCL directs data
editing, model building, and solution reporting through its menuing capabilities.

The compatibility of each of these pieces in the SAS System makes construction of
a full-screen decision support system based on mathematical programming an easy
task.

References � 45

Communicating with the Optimization Procedures

The optimization procedures communicate with any decision support system through
the various problem and solution data sets. However, there is a need for the system
to have a more intimate knowledge of the status of the optimization procedures. This
is achieved through the use of macro variables defined by each of the optimization
procedures.

References
Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least

Value of a Function,” Computer Journal, 3, 175–184.

46 � Chapter 1. Introduction to Optimization

Chapter 2
The ASSIGN Procedure

Chapter Contents

OVERVIEW . 49

GETTING STARTED . 50
Introductory Example . 50

SYNTAX . 52
Functional Summary . 52
PROC ASSIGN Statement . 52
BY Statement . 53
COST Statement . 53
ID Statement . 54

DETAILS . 54
Missing Values . 54
Output Data Set . 54
The Objective Value . 54
Macro Variable –ORASSIG . 55
Scaling . 55

EXAMPLES . 56
Example 2.1. Assigning Subcontractors to Construction Jobs 56
Example 2.2. Assigning Construction Jobs to Subcontractors 58
Example 2.3. Minimizing Swim Times . 59
Example 2.4. Using PROC ASSIGN with a BY Statement 61

48 � Chapter 2. The ASSIGN Procedure

Chapter 2
The ASSIGN Procedure
Overview

The ASSIGN procedure finds the minimum or maximum cost assignment of m sink
nodes to n source nodes. The procedure can handle problems where m =, <, > n.

When n = m, the number of source nodes equals the number of sink nodes and the
procedure solves

min (max)
∑m

j=1

∑n
i=1 cijxij

subject to
∑m

j=1 xij = 1 for i = 1, . . . , n∑n
i=1 xij = 1 for j = 1, . . . ,m

where x = 0 or 1 for i = 1, . . . , n and j = 1, . . . ,m.

When n < m, the number of source nodes is less than the number of sink nodes and
the procedure solves

min (max)
∑m

j=1

∑n
i=1 cijxij

subject to
∑m

j=1 xij = 1 for i = 1, . . . , n∑n
i=1 xij ≤ 1 for j = 1, . . . ,m

where x = 0 or 1 for i = 1, . . . , n and j = 1, . . . ,m.

When n > m, the number of source nodes is greater than the number of sink nodes
and the procedure solves

min (max)
∑m

j=1

∑n
i=1 cijxij

subject to
∑m

j=1 xij ≤ 1 for i = 1, . . . , n∑n
i=1 xij = 1 for j = 1, . . . ,m

where x = 0 or 1 for i = 1, . . . , n and j = 1, . . . ,m.

50 � Chapter 2. The ASSIGN Procedure

Getting Started
The ASSIGN procedure finds the minimum or maximum cost assignment of sink
nodes to source nodes. Many practical problems can be formulated in a way that is
solvable by PROC ASSIGN.

Introductory Example

Consider assigning five programmers to five programming jobs. Each programmer
prefers specific programming jobs over others. You can use PROC ASSIGN to as-
sign jobs to programmers in such a way that the total preferences of the group are
maximized. Suppose you ask each programmer to rank the jobs according to pref-
erence (using 1 for the most preferred job and 5 for the least preferred job). PROC
ASSIGN maximizes the total preference of the group by minimizing the sum of the
preferences. In the matrix that follows, each row of the matrix represents a program-
mer and each column represents a programming job. Each entry in the matrix is a
preference ranking that each programmer has given to each job.

PRGMER JOB1 JOB2 JOB3 JOB4 JOB5

PRGMER1 4 1 3 5 2
PRGMER2 2 1 3 4 5
PRGMER3 3 2 4 1 5
PRGMER4 2 3 4 5 1
PRGMER5 4 2 3 1 5

To solve this problem using PROC ASSIGN, the data must be in a SAS data set; the
solution is output to a SAS data set and no output is produced. Each observation
corresponds to a programmer and contains the programming job assigned to it. In
this way, the procedure identifies the assignment of the five jobs to the five program-
mers. To solve this assignment problem, place the preference data into a SAS data
set (PREFER). Then, call PROC ASSIGN, identifying the cost variables in the input
data set. The solution is output by PROC ASSIGN to a SAS data set (PREFER1)
and displayed with the PRINT procedure. The following statements produce Figure
2.1:

title ’Assigning Programming Jobs to Programmers’;

data prefer;
input prgmer $ job1-job5;
datalines;

PRGMER1 4 1 3 5 2
PRGMER2 2 1 3 4 5
PRGMER3 3 2 4 1 5
PRGMER4 2 3 4 5 1
PRGMER5 4 2 3 1 5
;

Introductory Example � 51

proc assign data=prefer out=prefer1;
cost job1-job5;
id prgmer;

run;

proc print data=prefer1;
sum _fcost_;

run;

The following note is written to the SAS log:

NOTE: The minimum cost assignment costs 8.

Assigning Programming Jobs to Programmers

Obs prgmer job1 job2 job3 job4 job5 _ASSIGN_ _FCOST_

1 PRGMER1 4 1 3 5 2 job2 1
2 PRGMER2 2 1 3 4 5 job1 2
3 PRGMER3 3 2 4 1 5 job4 1
4 PRGMER4 2 3 4 5 1 job5 1
5 PRGMER5 4 2 3 1 5 job3 3

=======
8

Figure 2.1. Assigning Programming Jobs to Programmers

The solution, given in column –ASSIGN– , shows how each programming job
should be assigned to each worker in order to minimize the assignment cost, which is
equivalent to maximizing the worker preferences. The –FCOST– column expresses
in units of preference the cost of the assignment. The SUM statement in the PRINT
procedure is used to total the assignment cost.

52 � Chapter 2. The ASSIGN Procedure

Syntax
PROC ASSIGN options ;

BY variables ;
COST variables ;
ID variable ;

The statements and options available on PROC ASSIGN are discussed in the order in
which they appear in the preceding list of syntax elements.

Functional Summary

The options available with PROC ASSIGN and its statements are summarized by
purpose in the following table.

Table 2.1. Functional Summary

Description Statement Option

Data Set Options:
input data set PROC ASSIGN DATA=
output data set containing the solution PROC ASSIGN OUT=

Optimization Control Options:
scaling factor for input cost data PROC ASSIGN DEC=
find maximum cost assignment PROC ASSIGN MAXIMUM

Variable Lists:
process data in groups BY
cost variables COST
source node names ID

PROC ASSIGN Statement

PROC ASSIGN options ;

The PROC ASSIGN statement invokes the procedure. The following options can
appear in the PROC ASSIGN statement.

Data Set Options

DATA=SAS-data-set
names the SAS data set that contains the network specification. If the DATA= option
is omitted, the most recently created SAS data set is used.

COST Statement � 53

OUT=SAS-data-set
specifies a name for the output data set. If the OUT= option is omitted, the SAS
System creates a data set and names it according to the DATAn convention. Refer to
base SAS documentation for more information.

Optimization Control Options

DEC=n
specifies a scaling factor for the input cost data. The input data are scaled by 10n.
The default value of n is 3. For more information, see the discussion on scaling in
the “Details” section on page 54.

MAXIMUM
specifies that the objective is to find an assignment that maximizes the sum of the
costs. By default, PROC ASSIGN minimizes the sum of the costs.

BY Statement

BY variables ;

A BY statement can be used with PROC ASSIGN to obtain separate solutions on
problems in groups defined by the BY variables. When you use a BY statement, the
procedure expects the input data to be sorted in ascending order of the BY variables.
If your input data set is not sorted, use the SORT procedure with a similar BY state-
ment to sort the data, or, if appropriate, use the BY statement option NOTSORTED or
DESCENDING. See Example 2.4 in the “Examples” section. For more information,
refer to the discussion of the BY statement in base SAS documentation.

COST Statement

COST variables ;

The COST statement identifies the variables to be interpreted as sink nodes in the
input DATA= data set. The values of a COST variable are the costs (or preferences)
of assigning each source node (named in the ID variable) to the sink node identified
with the COST variable.

If the value of a COST variable is missing, then that particular assignment between
source and sink node is infeasible. If you do not use a COST statement, then all
numeric variables not specified in the ID or BY statement are assumed to be cost
variables.

To find an assignment that maximizes profit instead of minimizing cost, include the
MAXIMUM option in the PROC ASSIGN statement and let the COST variables
represent profit instead of cost. The COST variables must be numeric. See Example
2.1 for an illustration of the COST statement.

54 � Chapter 2. The ASSIGN Procedure

ID Statement

ID variable ;

The ID statement identifies a variable in the input DATA= data set that gives the
names of the source nodes. The ID variable can be character or numeric.

Details

Missing Values

Because the value of a cost variable is interpreted as the cost of an assignment, a miss-
ing value for a cost variable is assumed to mean that the assignment is not allowed.
Refer to Example 2.1 for an illustration of a data set with missing values.

Output Data Set

The output data set contains the m cost variables in the input data set, any vari-
ables identified in the ID statement, and two new variables named –ASSIGN– and
–FCOST– . The variable named –ASSIGN– is a character variable containing the
names of the sink nodes (names of COST variables) assigned to the source nodes
(values of the ID variable). The variable named –FCOST– is a numeric variable
containing the costs of assigning the sink nodes to the source nodes. Note that the
values of the m cost variables in the output data set reflect any effects of scaling
performed by PROC ASSIGN.

The Objective Value

If the problem is infeasible, an error message is written to the SAS log. Otherwise,
the value of the objective function

m∑
j=1

n∑
i=1

cijxij

under the optimal assignment is reported on the SAS log.

Scaling � 55

Macro Variable –ORASSIG

On termination, the ASSIGN procedure defines a macro variable named –ORASSIG.
This variable contains a character string that indicates the status of the procedure on
termination and gives the objective value at termination. The form of the –ORASSIG
character string is

STATUS=charstr OBJECTIVE=objective

where charstr can be any one of the following:

• SUCCESSFUL

• INFEASIBLE

• MEMORY–ERROR

• IO–ERROR

• SYNTAX–ERROR

• SEMANTIC–ERROR

• BADDATA–ERROR

• UNKNOWN–ERROR

This information is useful when PROC ASSIGN comprises one step in a larger pro-
gram that needs to identify just how the ASSIGN procedure terminated. Because
–ORASSIG is a standard SAS macro variable, it can be used in the ways that all
macro variables can be used. See the SAS Guide to Macro Processing for more infor-
mation. Example 2.2 illustrates the method to write the –ORASSIG variable to the
log.

Scaling

PROC ASSIGN uses a variant of the out-of-kilter algorithm. Integral cost data are
important for maintaining a rapid rate of convergence with this algorithm. To assure
integrality, the cost data are automatically scaled by DEC= decimal places on input
to PROC ASSIGN. If this scaling can result in loss of accuracy in the input data, a
warning is written to the log indicating a nonzero fractional component in the data
after scaling. The output data set produced by PROC ASSIGN contains the scaled
input cost data rescaled to its original order of magnitude. Since the input cost data
and the output cost data may differ because of scaling, you can use this difference as
a measure of how poorly the input cost data were scaled.

56 � Chapter 2. The ASSIGN Procedure

Examples
The following examples illustrate some of the capabilities of PROC ASSIGN. These
examples, together with the other SAS/OR examples, can be found in the SAS sample
library.

Example 2.1. Assigning Subcontractors to Construction Jobs

This example shows how PROC ASSIGN can be used to maximize an objective func-
tion. Consider a construction project that consists of nine jobs. Because of the nature
of the project, each job must be performed by a different subcontractor. Each job is
bid upon by twelve subcontractors. The matrix that follows shows the expected profit
to the contractor if each job is given to each subcontractor. Each row in the matrix
represents a different job, and each column represents a different subcontractor.

SUBCONTRACTOR 1 2 3 4 5 6 7 8 9 10 11 12
__

JOB1 | 79 24 13 53 47 66 85 17 92 47 46 13
JOB2 | 43 59 33 95 55 97 34 55 84 94 26 56
JOB3 | 29 52 0 27 13 33 0 11 71 86 6 76
JOB4 | 88 83 64 72 0 67 27 47 83 62 35 38
JOB5 | 65 90 56 62 53 91 48 23 6 89 49 33
JOB6 | 44 79 86 93 71 7 86 59 0 56 45 59
JOB7 | 35 51 -9 91 39 32 3 12 79 25 79 81
JOB8 | 50 12 59 32 23 64 20 94 97 14 11 97
JOB9 | 25 17 39 . 38 63 87 14 4 18 11 45

The negative profit in the third column means that if job 7 is awarded to subcontractor
3, the contractor loses money. The missing value in the fourth column means that
subcontractor 4 did not bid on job 9. PROC ASSIGN treats a missing value differently
from the way it treats a 0. While it is possible that an optimal assignment could
include a 0 (or even a negative) contribution to profit, the missing value is never
included in an assignment. In this case, subcontractor 4 is never awarded job 9,
regardless of the profit structure.

You can use PROC ASSIGN to find how the contractor should award the jobs to the
subcontractors to maximize his profit. First, put the data in a SAS data set. Then, call
PROC ASSIGN using the MAXIMUM option.

The following statements produce Output 2.1.1:

title ’Assigning Subcontractors to Construction Jobs’;

data profit;
input job $ subcon1-subcon12;
datalines;

JOB1 79 24 13 53 47 66 85 17 92 47 46 13
JOB2 43 59 33 95 55 97 34 55 84 94 26 56
JOB3 29 52 0 27 13 33 0 11 71 86 6 76
JOB4 88 83 64 72 0 67 27 47 83 62 35 38

Example 2.1. Assigning Subcontractors to Construction Jobs � 57

JOB5 65 90 56 62 53 91 48 23 6 89 49 33
JOB6 44 79 86 93 71 7 86 59 0 56 45 59
JOB7 35 51 -9 91 39 32 3 12 79 25 79 81
JOB8 50 12 59 32 23 64 20 94 97 14 11 97
JOB9 25 17 39 . 38 63 87 14 4 18 11 45
;

proc assign maximum data=profit;
cost subcon1-subcon12;
id job;

run;

proc print;
sum _fcost_;

run;

The cost of the optimal assignment is written to the SAS log:

NOTE: The maximum return assignment yields 814.

This means that the contractor can expect a profit of $814 if he follows the optimal
assignment.

Output 2.1.1. Assigning Subcontractors to Construction Jobs

Assigning Subcontractors to Construction Jobs

s s s _
s s s s s s s s s u u u A _
u u u u u u u u u b b b S F
b b b b b b b b b c c c S C
c c c c c c c c c o o o I O

O j o o o o o o o o o n n n G S
b o n n n n n n n n n 1 1 1 N T
s b 1 2 3 4 5 6 7 8 9 0 1 2 _ _

1 JOB1 79 24 13 53 47 66 85 17 92 47 46 13 subcon9 92
2 JOB2 43 59 33 95 55 97 34 55 84 94 26 56 subcon6 97
3 JOB3 29 52 0 27 13 33 0 11 71 86 6 76 subcon10 86
4 JOB4 88 83 64 72 0 67 27 47 83 62 35 38 subcon1 88
5 JOB5 65 90 56 62 53 91 48 23 6 89 49 33 subcon2 90
6 JOB6 44 79 86 93 71 7 86 59 0 56 45 59 subcon3 86
7 JOB7 35 51 -9 91 39 32 3 12 79 25 79 81 subcon4 91
8 JOB8 50 12 59 32 23 64 20 94 97 14 11 97 subcon12 97
9 JOB9 25 17 39 . 38 63 87 14 4 18 11 45 subcon7 87

===
814

Note that three subcontractors, SUBCON5, SUBCON8, and SUBCON11, are not
assigned to any jobs.

58 � Chapter 2. The ASSIGN Procedure

Example 2.2. Assigning Construction Jobs to Subcontractors

Suppose that the data from Example 2.1 are transposed so that the variables are jobs.
Then each observation contains the profit from awarding each job to a single subcon-
tractor. The following program finds the maximum profit assignment and produces
Output 2.2.1.

title ’Assigning Construction Jobs to Subcontractors’;

data profit;
input subcont $ job1-job9;
datalines;

SUBCON1 79 43 29 88 65 44 35 50 25
SUBCON2 24 59 52 83 90 79 51 12 17
SUBCON3 13 33 0 64 56 86 -9 59 39
SUBCON4 53 95 27 72 62 93 91 32 .
SUBCON5 47 55 13 0 53 71 39 23 38
SUBCON6 66 97 33 67 91 7 32 64 63
SUBCON7 85 34 0 27 48 86 32 0 87
SUBCON8 17 55 11 47 23 59 12 94 14
SUBCON9 92 84 71 83 6 0 79 97 4
SUBCON10 47 94 86 62 89 56 25 14 18
SUBCON11 46 26 6 35 49 45 79 11 11
SUBCON12 13 56 76 38 33 59 81 97 45
;

proc assign maximum data=profit;
cost job1-job9;
id subcont;

run;

proc print;
sum _fcost_;

run;

The cost of the optimal assignment is written to the SAS log:

NOTE: The maximum return assignment yields 814.

This means that the contractor can expect a profit of $814 if the optimal assignment
is followed.

Example 2.3. Minimizing Swim Times � 59

Output 2.2.1. Assigning Construction Jobs to Subcontractors

Assigning Construction Jobs to Subcontractors

Obs subcont job1 job2 job3 job4 job5 job6 job7 job8 job9 _ASSIGN_ _FCOST_

1 SUBCON1 79 43 29 88 65 44 35 50 25 job4 88
2 SUBCON2 24 59 52 83 90 79 51 12 17 job5 90
3 SUBCON3 13 33 0 64 56 86 -9 59 39 job6 86
4 SUBCON4 53 95 27 72 62 93 91 32 . job7 91
5 SUBCON5 47 55 13 0 53 71 39 23 38 0
6 SUBCON6 66 97 33 67 91 7 32 64 63 job2 97
7 SUBCON7 85 34 0 27 48 86 32 0 87 job9 87
8 SUBCON8 17 55 11 47 23 59 12 94 14 0
9 SUBCON9 92 84 71 83 6 0 79 97 4 job1 92
10 SUBCON10 47 94 86 62 89 56 25 14 18 job3 86
11 SUBCON11 46 26 6 35 49 45 79 11 11 0
12 SUBCON12 13 56 76 38 33 59 81 97 45 job8 97

=======
814

The macro variable –ORASSIG defined by PROC ASSIGN contains information
regarding the termination of the procedure.

This information can be useful when you use PROC ASSIGN as part of a larger SAS
program. For example, information can be written to the SAS log with the statement

%put &_orassig;

On the log the following appears:

STATUS=SUCCESSFUL OBJECTIVE=814.

Example 2.3. Minimizing Swim Times

A swimming coach needs to assign male and female swimmers to each stroke of a
medley relay team. The swimmers’ best times for each stroke are stored in a SAS data
set. The ASSIGN procedure is used to evaluate the times and to match strokes and
swimmers to minimize the total relay swim time. The following statements produce
Output 2.3.1:

title ’Assigning Strokes Using the BY Statement’;

data relay;
input name $ sex $ back breast fly free;
datalines;

SUE F 35.1 36.7 28.3 36.1
KAREN F 34.6 32.6 26.9 26.2
JAN F 31.3 33.9 27.1 31.2
ANDREA F 28.6 34.1 29.1 30.3
CAROL F 32.9 32.2 26.6 24.0
ELLEN F 27.8 32.5 27.8 27.0

60 � Chapter 2. The ASSIGN Procedure

JIM M 26.3 27.6 23.5 22.4
MIKE M 29.0 24.0 27.9 25.4
SAM M 27.2 33.8 25.2 24.1
CLAYTON M 27.0 29.2 23.0 21.9
;

proc assign out=fast;
cost back--free;
id name;
by sex;

proc print;
by sex;
sum _fcost_;

run;

Output 2.3.1. Assigning Strokes Using the BY Statement

Assigning Strokes Using the BY Statement

------------------------------------ sex=F -------------------------------------

Obs name back breast fly free _ASSIGN_ _FCOST_

1 SUE 35.1 36.7 28.3 36.1 0.0
2 KAREN 34.6 32.6 26.9 26.2 breast 32.6
3 JAN 31.3 33.9 27.1 31.2 fly 27.1
4 ANDREA 28.6 34.1 29.1 30.3 0.0
5 CAROL 32.9 32.2 26.6 24.0 free 24.0
6 ELLEN 27.8 32.5 27.8 27.0 back 27.8

--- -------
sex 111.5

------------------------------------ sex=M -------------------------------------

Obs name back breast fly free _ASSIGN_ _FCOST_

7 JIM 26.3 27.6 23.5 22.4 free 22.4
8 MIKE 29.0 24.0 27.9 25.4 breast 24.0
9 SAM 27.2 33.8 25.2 24.1 back 27.2
10 CLAYTON 27.0 29.2 23.0 21.9 fly 23.0
--- -------
sex 96.6

=======
208.1

On the basis of this solution, Jim will swim freestyle, Mike will swim breast stroke,
Sam will swim back stroke, and Clayton will swim butterfly. For the women’s team,
Karen will swim breast stroke, Jan will swim butterfly, Carol will swim freestyle, and
Ellen will swim back stroke.

Example 2.4. Using PROC ASSIGN with a BY Statement � 61

Example 2.4. Using PROC ASSIGN with a BY Statement

A major beverage company wants to assign TV commercials to television commercial
time slot openings in a way that maximizes the overall effectiveness of its television
advertising. The time slots in this example begin at 7:00 on a Saturday morning
and run hourly through 3:00 p.m. A combination of Nielsen TV ratings and market
research testing produces an effectiveness rating for each time slot and commercial
combination. The commercials are of three types: children, lifestyle, and sports. The
company is willing to show up to three commercials in each time slot as long as the
commercials are of different types. Which commercials should be assigned to which
time slots in order to maximize the total effectiveness of its television advertising
campaign? Data are missing for those time slots where certain programs are not
available; for instance, no sports shows are presented during the 7:00 a.m. time slot.

The following statements produce Output 2.4.1:

title ’Assigning Television Commercials Using the BY Statement’;

data beverage;
input commercl $ type $ slot1-slot9;
datalines;

COMM1 KIDS 27.2 32.8 30.4 31.5 20.9 19.8 . . .
COMM2 KIDS 37.4 33.5 38.4 32.4 25.6 27.2 . . .
COMM3 KIDS 32.5 31.9 34.6 34.5 26.7 28.3 . . .
COMM4 LIFEST . 22.6 25.9 25.3 26.4 28.3 29.1 22.2 20.2
COMM5 LIFEST . 25.1 36.6 36.8 38.2 33.5 33.2 33.1 30.1
COMM6 LIFEST . 20.2 31.3 29.3 24.6 25.1 20.0 22.4 23.1
COMM7 SPORTS . . 25.1 26.1 28.3 36.1 29.4 31.7 34.5
COMM8 SPORTS . . 24.7 27.2 36.4 31.2 28.7 33.2 33.1
COMM9 SPORTS . 20.2 20.4 20.2 25.6 37.8 35.6 32.4 34.3
;

proc assign maximum out=newslots;
cost slot1-slot9;
id commercl;
by type;

run;

proc print;
by type;
sum _fcost_;

run;

62 � Chapter 2. The ASSIGN Procedure

Output 2.4.1. Assigning Television Commercials using the BY Statement

Assigning Television Commercials Using the BY Statement

---------------------------------- type=KIDS -----------------------------------

c _
o A _
m S F
m s s s s s s s s s S C
e l l l l l l l l l I O

O r o o o o o o o o o G S
b c t t t t t t t t t N T
s l 1 2 3 4 5 6 7 8 9 _ _

1 COMM1 27.2 32.8 30.4 31.5 20.9 19.8 . . . slot2 32.8
2 COMM2 37.4 33.5 38.4 32.4 25.6 27.2 . . . slot3 38.4
3 COMM3 32.5 31.9 34.6 34.5 26.7 28.3 . . . slot4 34.5

---- -----
type 105.7

--------------------------------- type=LIFEST ----------------------------------

c _
o A _
m S F
m s s s s s s s s s S C
e l l l l l l l l l I O

O r o o o o o o o o o G S
b c t t t t t t t t t N T
s l 1 2 3 4 5 6 7 8 9 _ _

4 COMM4 . 22.6 25.9 25.3 26.4 28.3 29.1 22.2 20.2 slot7 29.1
5 COMM5 . 25.1 36.6 36.8 38.2 33.5 33.2 33.1 30.1 slot5 38.2
6 COMM6 . 20.2 31.3 29.3 24.6 25.1 20.0 22.4 23.1 slot3 31.3

---- ----
type 98.6

--------------------------------- type=SPORTS ----------------------------------

c _
o A _
m S F
m s s s s s s s s s S C
e l l l l l l l l l I O

O r o o o o o o o o o G S
b c t t t t t t t t t N T
s l 1 2 3 4 5 6 7 8 9 _ _

7 COMM7 . . 25.1 26.1 28.3 36.1 29.4 31.7 34.5 slot9 34.5
8 COMM8 . . 24.7 27.2 36.4 31.2 28.7 33.2 33.1 slot5 36.4
9 COMM9 . 20.2 20.4 20.2 25.6 37.8 35.6 32.4 34.3 slot6 37.8

---- -----
type 108.7

=====
313.0

On the basis of this survey, this company has decided to drop commercial advertising
from the 7:00 a.m. (slot1) and 2:00 p.m. (slot8) time slots.

Chapter 3
The INTPOINT Procedure

Chapter Contents

OVERVIEW . 65
Mathematical Description of NPSC . 66
Mathematical Description of LP . 67
The Interior Point Algorithm . 68
Network Models . 76

INTRODUCTION . 84
Getting Started: NPSC Problems . 84
Getting Started: LP Problems . 91
Typical PROC INTPOINT Run . 99

SYNTAX . 100
Functional Summary . 100
PROC INTPOINT Statement . 103
CAPACITY Statement . 123
COEF Statement . 123
COLUMN Statement . 124
COST Statement . 124
DEMAND Statement . 125
HEADNODE Statement . 125
ID Statement . 125
LO Statement . 126
NAME Statement . 126
NODE Statement . 126
QUIT Statement . 126
RHS Statement . 127
ROW Statement . 127
RUN Statement . 127
SUPDEM Statement . 128
SUPPLY Statement . 128
TAILNODE Statement . 128
TYPE Statement . 129
VAR Statement . 130

DETAILS . 131
Input Data Sets . 131
Output Data Set . 141

64 � Chapter 3. The INTPOINT Procedure

Case Sensitivity . 142
Loop Arcs . 143
Multiple Arcs . 143
Flow and Value Bounds . 143
Tightening Bounds and Side Constraints 144
Reasons for Infeasibility . 144
Missing S Supply and Missing D Demand Values 145
Balancing Total Supply and Total Demand 150
How to Make the Data Read of PROC INTPOINT More Efficient 151
Stopping Criteria . 156

EXAMPLES . 160
Example 3.1. Production, Inventory, Distribution Problem 161
Example 3.2. Altering Arc Data . 166
Example 3.3. Adding Side Constraints . 170
Example 3.4. Using Constraints and More Alteration to Arc Data 175
Example 3.5. Nonarc Variables in the Side Constraints 179
Example 3.6. Solving an LP Problem with Data in MPS Format 184

REFERENCES . 185

Chapter 3
The INTPOINT Procedure
Overview

The INTPOINT procedure solves the Network Program with Side Constraints
(NPSC) problem (defined in the “Mathematical Description of NPSC” section on
page 66) and the more general Linear Programming (LP) problem (defined in the
“Mathematical Description of LP” section on page 67). NPSC and LP models can be
used to describe a wide variety of real-world applications ranging from production,
inventory, and distribution problems to financial applications.

Whether your problem is NPSC or LP, PROC INTPOINT uses the same optimization
algorithm, the interior point algorithm. This algorithm is outlined in the “The Interior
Point Algorithm” section on page 68.

While many of your problems may best be formulated as LP problems, there may be
other instances when your problems are better formulated as NPSC problems. The
“Network Models” section on page 76 describes typical models that have a network
component and suggests reasons why NPSC may be preferable to LP. The “Getting
Started: NPSC Problems” section on page 84 outlines how you supply data of any
NPSC problem to PROC INTPOINT and call the procedure. After it reads the NPSC
data, PROC INTPOINT converts the problem into an equivalent LP problem, per-
forms interior point optimization, then converts the solution it finds back into a form
you can use as the optimum to the original NPSC model.

If your model is an LP problem, the way you supply the data to PROC INTPOINT
and run the procedure is described in the “Getting Started: LP Problems” section on
page 91.

The remainder of this chapter is organized as follows:

• The “Typical PROC INTPOINT Run” section on page 99 describes how to use
this procedure.

• The “Syntax” section on page 100 describes all the statements and options of
PROC INTPOINT.

• The “Functional Summary” section on page 100 lists the statements and op-
tions that can be used to control PROC INTPOINT.

• The “Details” section on page 131 contains detailed explanations, descriptions,
and advice on the use and behavior of the procedure.

• PROC INTPOINT is demonstrated by solving several examples in the
“Examples” section on page 160.

66 � Chapter 3. The INTPOINT Procedure

Mathematical Description of NPSC

A network consists of a collection of nodes joined by a collection of arcs. The arcs
connect nodes and convey flow of one or more commodities that are supplied at
supply nodes and demanded at demand nodes in the network. Each arc has a cost
per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow. Conservation of flow
means that the total flow in arcs directed toward a node, plus the supply at the node,
minus the demand at the node, equals the total flow in arcs directed away from the
node.

Often all the details of a problem cannot be specified in a network model alone. In
many of these cases, these details can be represented by the addition of side con-
straints to the model. Side constraints are linear functions of arc variables (variables
containing flow through an arc) and nonarc variables (variables that are not part of the
network). The data for a side constraint consist of coefficients of arcs and coefficients
of nonarc variables, a constraint type (that is, ≤, =, or ≥) and a right-hand-side value
(rhs). A nonarc variable has a name, an objective function coefficient analogous to an
arc cost, an upper bound analogous to an arc capacity, and a lower bound analogous
to an arc lower flow bound.

If a network component of NPSC is removed by merging arcs and nonarc variables
into a single set of variables, and if the flow conservation constraints and side con-
straints are merged into a single set of constraints, the result is an LP problem. PROC
INTPOINT will automatically transform an NPSC problem into an equivalent LP
problem, perform the optimization, then transform the problem back into its original
form. By doing this, PROC INTPOINT finds the flow through the network and the
values of any nonarc variables that minimize the total cost of the solution. Flow con-
servation is met, flow through each arc is on or between the arc’s lower flow bound
and capacity, the value of each nonarc variable is on or between the nonarc’s lower
and upper bounds, and the side constraints are satisfied.

Note that, since many LPs have large embedded networks, PROC INTPOINT is an
attractive alternative to the LP procedure in many cases. Rather than formulating all
problems as LPs, network models remain conceptually easy since they are based on
network diagrams that represent the problem pictorially. PROC INTPOINT accepts
the network specification in a format that is particularly suited to networks. This not
only simplifies problem description but also aids in the interpretation of the solution.
The conversion to and from the equivalent LP is done “behind the scenes” by the
procedure.

If a network programming problem with side constraints has n nodes, a arcs, g nonarc
variables, and k side constraints, then the formal statement of the problem solved by
PROC INTPOINT is

minimize cT x + dT z
subject to Fx = b

Hx + Qz {≥,=,≤} r
l ≤ x ≤ u
m ≤ z ≤ v

Mathematical Description of LP � 67

where

• c is the a× 1 arc variable objective function coefficient vector (the cost vector)

• x is the a× 1 arc variable value vector (the flow vector)

• d is the g × 1 nonarc variable objective function coefficient vector

• z is the g × 1 nonarc variable value vector

• F is the n× a node-arc incidence matrix of the network, where

Fi,j =

−1, if arc j is directed from node i

1, if arc j is directed toward node i
0, otherwise

• b is the n× 1 node supply/demand vector, where

bi =

s, if node i has supply capability of s units of flow

−d, if node i has demand of d units of flow
0, if node i is a transshipment node

• H is the k × a side constraint coefficient matrix for arc variables, where Hi,j

is the coefficient of arc j in the ith side constraint

• Q is the k × g side constraint coefficient matrix for nonarc variables, where
Qi,j is the coefficient of nonarc j in the ith side constraint

• r is the k × 1 side constraint right-hand-side vector

• l is the a× 1 arc lower flow bound vector

• u is the a× 1 arc capacity vector

• m is the g × 1 nonarc variable lower bound vector

• v is the g × 1 nonarc variable upper bound vector

The INTPOINT procedure can also be used to solve an unconstrained network prob-
lem, that is, one in which H , Q, d, r, and z do not exist. It can also be used to solve
a network problem with side constraints but no nonarc variables, in which case Q, d,
and z do not exist.

Mathematical Description of LP
A linear programming (LP) problem has a linear objective function and a collection of
linear constraints. PROC INTPOINT finds the values of variables that minimize the
total cost of the solution. The value of each variable is on or between the variable’s
lower and upper bounds, and the constraints are satisfied.

If an LP has g variables and k constraints, then the formal statement of the problem
solved by PROC INTPOINT is

minimize dT z
subject to Qz {≥,=,≤} r

m ≤ z ≤ v

68 � Chapter 3. The INTPOINT Procedure

where

• d is the g × 1 variable objective function coefficient vector

• z is the g × 1 variable value vector

• Q is the k × g constraint coefficient matrix for the variables, where Qi,j is the
coefficient of variable j in the ith constraint

• r is the k × 1 side constraint right-hand-side vector

• m is the g × 1 variable lower bound vector

• v is the g × 1 variable upper bound vector

The Interior Point Algorithm

The simplex algorithm, developed shortly after World War II, was for many years the
main method used to solve linear programming problems. Over the last fifteen years,
however, the interior point algorithm has been developed. This algorithm also solves
linear programming problems. From the start it showed great theoretical promise, and
considerable research in the area resulted in practical implementations that performed
competitively with the simplex algorithm. More recently, interior point algorithms
have evolved to become superior to the simplex algorithm, in general, especially
when the problems are large.

There are many variations of interior point algorithms. PROC INTPOINT uses the
Primal-Dual with Predictor-Corrector algorithm. More information on this particular
algorithm and related theory can be found in the texts by Roos, Terlaky, and Vial
(1997), Wright (1996), and Ye (1996).

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

minimize cT x
subject to Ax = b

x ≥ 0

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed
c, x, and A, respectively, as these symbols are by convention used more, the problem
to be solved is different from the original because of preprocessing, and there has
been a change of primal variable to transform the LP into one whose variables have
zero lower bounds. To simplify the algebra here, assume that variables have infinite
upper bounds, and constraints are equalities. (Interior point algorithms do efficiently
handle finite upper bounds, and it is easy to introduce primal slack variables to change
inequalities into equalities.) The problem has n variables; i is a variable number; k is
an iteration number, and if used as a subscript or superscript it denotes “of iteration
k”.

The Interior Point Algorithm � 69

There exists an equivalent problem, the dual problem, stated as

maximize bT y
subject to AT y + s = c

s ≥ 0

where y are dual variables, and s are dual constraint slacks.

The interior point algorithm solves the system of equations to satisfy the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

Ax = b

AT y + s = c

XSe = 0

x ≥ 0

s ≥ 0

where

S = diag(s) (that is, Si,j = si if i = j, Si,j = 0 otherwise)

X = diag(x)

ei = 1 ∀i

These are the conditions for feasibility, with the complementarity condition XSe = 0
added. Complementarity forces the optimal objectives of the primal and dual to be
equal, cT xopt = bT yopt, as

0 = xT
optsopt = sT

optxopt = (c−AT yopt)T xopt =

cT xopt − yT
opt(Axopt) = cT xopt − bT yopt

Before the optimum is reached, a solution (x, y, s) may not satisfy the KKT condi-
tions:

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s 6= 0.

• Complementarity may not be satisfied, xT s = cT x − bT y 6= 0. This is called
the duality gap.

The interior point algorithm works by using Newton’s method to find a direction to
move (∆xk,∆yk,∆sk) from the current solution (xk, yk, sk) toward a better solu-
tion:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

70 � Chapter 3. The INTPOINT Procedure

where α is the step length and is assigned a value as large as possible but not so large
that an xk+1

i or sk+1
i is “too close” to zero. The direction in which to move is found

using

A∆xk = infeasc

AT ∆yk + ∆sk = infeasd

Sk∆xk + Xk∆sk = −XkSke

To greatly improve performance, the third equation is changed to

Sk∆xk + Xk∆sk = −XkSke + σkµke

where µk = (xk)T sk/n, the average complementarity, and 0 ≤ σk ≤ 1.

The effect now is to find a direction in which to move to reduce infeasibilities and
to reduce the complementarity toward zero, but if any xk

i s
k
i is too close to zero, it is

“nudged out” to µ, and any xk
i s

k
i that is larger than µ is “nudged into” µ. A σk close

to or equal to 0.0 biases a direction toward the optimum, and a value of σk close
to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xk

i s
k
i = µ. Such points make up the central path in the interior. Although centering

directions make little, if any, progress in reducing µ and moving the solution closer
to the optimum, substantial progress toward the optimum can usually be made in the
next iteration.

The central path is crucial to why the interior point algorithm is so efficient. As µ
is decreased, this path “guides” the algorithm to the optimum through the interior of
feasible space. Without centering, the algorithm would find a series of solutions near
each other close to the boundary of feasible space. Step lengths along the direction
would be small and many more iterations would probably be required to reach the
optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algo-
rithm differ in the way α and σk are chosen and the direction adjusted during each
iteration. A wealth of information can be found in the texts by Roos, Terlaky, and
Vial (1997), Wright (1996), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point
algorithm. Assume the kth iteration is being performed, so the subscript and super-
script k can be dropped from the algebra:

A∆x = infeasc

AT ∆y + ∆s = infeasd

S∆x + X∆s = −XSe + σµe

The Interior Point Algorithm � 71

Rearranging the second equation,

∆s = infeasd −AT ∆y

Rearranging the third equation,

∆s = X−1(−S∆x−XSe + σµe)

∆s = −Θ∆x− Se + X−1σµe

where Θ = SX−1.

Equating these two expressions for ∆s and rearranging,

−Θ∆x− Se + X−1σµe = infeasd −AT ∆y

−Θ∆x = Se−X−1σµe + infeasd −AT ∆y

∆x = Θ−1(−Se + X−1σµe− infeasd + AT ∆y)

∆x = ρ + Θ−1AT ∆y

where ρ = Θ−1(−Se + X−1σµe− infeasd).

Substituting into the first direction equation,

A∆x = infeasc

A(ρ + Θ−1AT ∆y) = infeasc

AΘ−1AT ∆y = infeasc −Aρ

∆y = (AΘ−1AT)−1(infeasc −Aρ)

Θ, ρ, ∆y, ∆x, and ∆s are calculated in that order. The hardest term is the factoriza-
tion of the (AΘ−1AT) matrix to determine ∆y. Fortunately, although the values of
(AΘ−1AT) are different for each iteration, the locations of the nonzeros in this ma-
trix remain fixed; the nonzero locations are the same as those in the matrix (AAT).
This is because Θ−1 = XS−1 is a diagonal matrix that has the effect of merely
scaling the columns of (AAT).

The fact that the nonzeros in AΘ−1AT have a constant pattern is exploited by all in-
terior point algorithms and is a major reason for their excellent performance. Before
iterations begin, AAT is examined and its rows and columns are symmetrically per-
muted so that during Cholesky factorization, the number of fill-ins created is smaller.
A list of arithmetic operations to perform the factorization is saved in concise com-
puter data structures (working with memory locations rather than actual numerical
values). This is called symbolic factorization. During iterations, when memory has
been initialized with numerical values, the operations list is performed sequentially.
Determining how the factorization should be performed again and again is unneces-
sary.

72 � Chapter 3. The INTPOINT Procedure

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC INTPOINT is a
Primal-Dual Predictor-Corrector interior point algorithm. At first, Newton’s method
is used to find a direction (∆xk

aff ,∆yk
aff ,∆sk

aff) to move, but calculated as if µ is
zero, that is, as a step with no centering, known as an affine step:

A∆xk
aff = infeasc

AT ∆yk
aff + ∆sk

aff = infeasd

Sk∆xk
aff + Xk∆sk

aff = −XkSke

(xk
aff , yk

aff , sk
aff) = (xk, yk, sk) + α(∆xk

aff ,∆yk
aff ,∆sk

aff)

where α is the step length as before.

Complementarity xT s is calculated at (xk
aff , yk

aff , sk
aff) and compared with the com-

plementarity at the starting point (xk, yk, sk), and the success of the affine step is
gauged. If the affine step was successful in reducing the complementarity by a sub-
stantial amount, the need for centering is not great, and σk in the following linear
system is assigned a value close to zero. If, however, the affine step was unsuccess-
ful, centering would be beneficial, and σk in the following linear system is assigned a
value closer to 1.0. The value of σk is therefore adaptively altered depending on the
progress made toward the optimum.

A second linear system is solved to determine a centering vector (∆xk
c ,∆yk

c ,∆sk
c)

from (xk
aff , yk

aff , sk
aff):

A∆xk
c = 0

AT ∆yk
c + ∆sk

c = 0

Sk∆xk
c + Xk∆sk

c = −Xk
aff Sk

aff e + σkµke

Then

(∆xk,∆yk,∆sk) = (∆xk
aff ,∆yk

aff ,∆sk
aff) + (∆xk

c ,∆yk
c ,∆sk

c)

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where, as before, α is the step length assigned a value as large as possible but not so
large that an xk+1

i or sk+1
i is “too close” to zero.

Although the Predictor-Corrector variant entails solving two linear systems instead
of one, fewer iterations are usually required to reach the optimum. The additional
overhead of calculating the second linear system is small, as the factorization of the
(AΘ−1AT) matrix has already been performed to solve the first linear system.

The Interior Point Algorithm � 73

Interior Point: Upper Bounds

If the LP had upper bounds (0 ≤ x ≤ u where u is the upper bound vector), then the
primal and dual problems, the duality gap, and the KKT conditions would have to be
expanded.

The primal linear program to be solved is

minimize cT x
subject to Ax = b

0 ≤ x ≤ u

where 0 ≤ x ≤ u is split into x ≥ 0 and x ≤ u. Let z be primal slack so that
x + z = u, and associate dual variables w with these constraints. The interior point
algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT)
conditions for optimality:

Ax = b

x + z = u

AT y + s− w = c

XSe = 0

ZWe = 0

x, s, z, w ≥ 0

These are the conditions for feasibility, with the complementarity conditions XSe =
0 and ZWe = 0 added. Complementarity forces the optimal objectives of the primal
and dual to be equal, cT xopt = bT yopt − uT wopt, as

0 = zT
optwopt = (u− xopt)T wopt = uT wopt − xT

optwopt

0 = xT
optsopt = sT

optxopt = (c−AT yopt + wopt)T xopt =

cT xopt − yT
opt(Axopt) + wT

optxopt = cT xopt − bT yopt + uT wopt

Before the optimum is reached, a solution (x, y, s, z, w) might not satisfy the KKT
conditions:

• Primal bound constraints may be violated, infeasb = u− x− z 6= 0.

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s + w 6= 0.

• Complementarity conditions may not be satisfied, xT s 6= 0 or zT w 6= 0.

The calculations of the interior point algorithm can easily be derived in a fashion
similar to calculations for when an LP has no upper bounds. See the paper by Lustig,
Marsten, and Shanno (1992).

74 � Chapter 3. The INTPOINT Procedure

In some iteration k, the affine step system that must be solved is

∆xaff + ∆zaff = infeasb

A∆xaff = infeasc

AT ∆yaff + ∆saff −∆waff = infeasd

S∆xaff + X∆saff = −XSe

Z∆waff + W∆zaff = −ZWe

Therefore, the computations involved in solving the affine step are

Θ = SX−1 + WZ−1

ρ = Θ−1(infeasd + (S −W)e− Z−1W infeasb)

∆yaff = (AΘ−1AT)−1(infeasc + Aρ)

∆xaff = Θ−1AT ∆yaff − ρ

∆zaff = infeasb −∆xaff

∆waff = −We− Z−1W∆zaff

∆saff = −Se−X−1S∆xaff

(xaff , yaff , saff , zaff , waff) = (x, y, s, z, w)+

α(∆xaff ,∆yaff ,∆saff ,∆zaff ,∆waff)

and α is the step length as before.

A second linear system is solved to determine a centering vector
(∆xc,∆yc,∆sc,∆zc,∆wc) from (xaff , yaff , saff , zaff , waff):

∆xc + ∆zc = 0

A∆xc = 0

AT ∆yc + ∆sc −∆wc = 0

S∆xc + X∆sc = −Xaff Saff e + σµe

Z∆wc + W∆zc = −Zaff Waff e + σµe

where

ζstart = xT s + zT w, complementarity at the start of the iteration

ζaff = xT
aff saff + zT

aff waff , the affine complementarity

µ = ζaff /2n, the average complementarity

σ = (ζaff /ζstart)3

The Interior Point Algorithm � 75

Therefore, the computations involved in solving the centering step are

ρ = Θ−1(σµ(X−1 − Z−1)e−X−1Xaff Saff e + Z−1Zaff Waff e)

∆yc = (AΘ−1AT)−1Aρ

∆xc = Θ−1AT ∆yc − ρ

∆zc = −∆xc

∆wc = σµZ−1e− Z−1Zaff Waff e− Z−1Waff ∆zc

∆sc = σµX−1e−X−1Xaff Saff e−X−1Saff ∆xc

Then

(∆x,∆y, ∆s,∆z, ∆w) =

(∆xaff ,∆yaff ,∆saff ,∆zaff ,∆waff)

+(∆xc,∆yc,∆sc,∆zc,∆wc)

(xk+1, yk+1, sk+1, zk+1, wk+1) =

(xk, yk, sk, zk, wk)

+α(∆x,∆y, ∆s,∆z, ∆w)

where, as before, α is the step length assigned a value as large as possible but not so
large that an xk+1

i , sk+1
i , zk+1

i , or wk+1
i is “too close” to zero.

The algebra in this section has been simplified by assuming that all variables have
finite upper bounds. If the number of variables with finite upper bounds nu < n,
you need to change the algebra to reflect that the Z and W matrices have dimension
nu × 1 or nu × nu. Other computations need slight modification. For example, the
average complementarity is

µ = xT
aff saff /n + zT

aff waff /nu

An important point is that any upper bounds can be handled by specializing the al-
gorithm and not by generating the constraints x ≤ u and adding these to the main
primal constraints Ax = b.

76 � Chapter 3. The INTPOINT Procedure

Network Models

The following are descriptions of some typical NPSC models.

Production, Inventory, and Distribution (Supply Chain) Problems

One common class of network models is the production-inventory-distribution or
supply-chain problem. The diagram in Figure 3.1 illustrates this problem. The sub-
scripts on the Production, Inventory, and Sales nodes indicate the time period. By
replicating sections of the model, the notion of time can be included.

�

	
�

Salesi−1

�

	
�

Salesi

�

	
�

Salesi+1

�

	
�

Inventoryi−1

�

	
�

Inventoryi

�

	
�

Inventoryi+1

�

	
�

Productioni−1

�

	
�

Productioni

�

	
�

Productioni+1

�

	
�

Stock on hand

�

	
�

Stock at end
- - - -

� �

? ? ?

6 6 6

Figure 3.1. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several
examples are suppliers, spot markets, importers, farmers, manufacturers, factories,
parts of a plant, production lines, waste disposal facilities, workstations, warehouses,
coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road
intersections, cities, regions, shops, customers, and consumers. The diversity of this
selection demonstrates how rich the potential applications of this model are.

Depending upon the interpretation of the nodes, the objectives of the modeling exer-
cise can vary widely. Some common types of objectives are

• to reduce collection or purchase costs of raw materials

• to reduce inventory holding or backorder costs. Warehouses and other storage
facilities sometimes have capacities, and there can be limits on the amount of
goods that can be placed on backorder.

• to decide where facilities should be located and what the capacity of these
should be. Network models have been used to help decide where factories,
hospitals, ambulance and fire stations, oil and water wells, and schools should
be sited.

Network Models � 77

• to determine the assignment of resources (machines, production capability,
workforce) to tasks, schedules, classes, or files

• to determine the optimal distribution of goods or services. This usually means
minimizing transportation costs and reducing transit time or distances covered.

• to find the shortest path from one location to another

• to ensure that demands (for example, production requirements, market de-
mands, contractual obligations) are met

• to maximize profits from the sale of products or the charge for services

• to maximize production by identifying bottlenecks

Some specific applications are

• car distribution models. These help determine which models and numbers of
cars should be manufactured in which factories and where to distribute cars
from these factories to zones in the United States in order to meet customer
demand at least cost.

• models in the timber industry. These help determine when to plant and mill
forests, schedule production of pulp, paper, and wood products, and distribute
products for sale or export.

• military applications. The nodes can be theaters, bases, ammunition dumps,
logistical suppliers, or radar installations. Some models are used to find the
best ways to mobilize personnel and supplies and to evacuate the wounded in
the least amount of time.

• communications applications. The nodes can be telephone exchanges, trans-
mission lines, satellite links, and consumers. In a model of an electrical grid,
the nodes can be transformers, powerstations, watersheds, reservoirs, dams,
and consumers. The effect of high loads or outages might be of concern.

Proportionality Constraints

In many models, you have the characteristic that a flow through an arc must be pro-
portional to the flow through another arc. Side constraints are often necessary to
model that situation. Such constraints are called proportionality constraints and are
useful in models where production is subject to refining or modification into different
materials. The amount of each output, or any waste, evaporation, or reduction can be
specified as a proportion of input.

Typically, the arcs near the supply nodes carry raw materials and the arcs near the
demand nodes carry refined products. For example, in a model of the milling industry,
the flow through some arcs may represent quantities of wheat. After the wheat is
processed, the flow through other arcs might be flour. For others it might be bran. The
side constraints model the relationship between the amount of flour or bran produced
as a proportion of the amount of wheat milled. Some of the wheat can end up as
neither flour, bran, nor any useful product, so this waste is drained away via arcs to a
waste node.

78 � Chapter 3. The INTPOINT Procedure

�

	
�

Wheat

�

	
�

Mill

�

	
�

Flour

�

	
�

Bran

�

	
�

Other

- �
�

�
�

�
�

�
�

�
�3

-
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

1.0 0.2

0.3

0.5

Figure 3.2. Proportionality Constraints

In order for arcs to be specified in side constraints, they must be named. By default,
PROC INTPOINT names arcs using the names of the nodes at the head and tail of the
arc. An arc is named with its tail node name followed by an underscore and its head
node name. For example, an arc from node from to node to is called from–to.

Consider the network fragment in Figure 3.2. The arc Wheat–Mill conveys the wheat
milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the
capacity of the mill. The lower flow bound on this arc is the minimum quantity that
must be milled for the mill to operate economically. The constraints

0.3 Wheat–Mill − Mill–Flour = 0.0
0.2 Wheat–Mill − Mill–Bran = 0.0

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of
bran. Note that it is not necessary to specify the constraint

0.5 Wheat–Mill − Mill–Other = 0.0

since flow conservation implies that any flow that does not traverse through
Mill–Flour or Mill–Bran must be conveyed through Mill–Other. And, computation-
ally, it is better if this constraint is not specified, since there is one less side constraint
and fewer problems with numerical precision. Notice that the sum of the proportions
must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of in-
gredients that are mixed. For example, different raw materials can have different
properties. In an application of the oil industry, the amount of products that are ob-
tained could be different for each type of crude oil. Furthermore, fuel might have a
minimum octane requirement or limited sulphur or lead content, so that a blending of
crudes is needed to produce the product.

Network Models � 79

The network fragment in Figure 3.3 shows an example of this.

�

	
�

USA

�

	
�

MidEast

�

	
�

Port

�

	
�

Refinery

�

	
�

Gasoline

�

	
�

Diesel

�

	
�

Other�
�

�
�

��

@
@

@
@

@R

- �
�

�
�

�
�
��

-
@

@
@

@
@

@
@R

5 units/
liter

4 units/
liter

4.75 units/
liter

Figure 3.3. Blending Constraints

The arcs MidEast–Port and USA–Port convey crude oil from the two sources.
The arc Port–Refinery represents refining while the arcs Refinery–Gasoline and
Refinery–Diesel carry the gas and diesel produced. The proportionality constraints

0.4 Port–Refinery − Refinery–Gasoline = 0.0
0.2 Port–Refinery − Refinery–Diesel = 0.0

capture the restrictions for producing gasoline and diesel from crude. Suppose that
only crude from the Middle East is used, then the resulting diesel would contain 5
units of sulphur per liter. If only crude from the U.S.A. is used, the resulting diesel
would contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of
sulphur per liter. Some crude from the U.S.A. must be used if Middle East crude is
used in order to meet the 4.75 sulphur per liter limit. The side constraint to model
this requirement is

5 MidEast–Port +4 USA–Port −4.75 Port–Refinery ≤ 0.0

Since Port–Refinery = MidEast–Port + USA–Port, flow conservation allows this
constraint to be simplified to

1 MidEast–Port −3 USA–Port ≤ 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40
units of crude from the U.S.A. must be used. The preceding constraint is simplified
because you assume that the sulphur concentration of diesel is proportional to the
sulphur concentration of the crude mix. If this is not the case, the relation

0.2 Port–Refinery = Refinery–Diesel

80 � Chapter 3. The INTPOINT Procedure

is used to obtain

5 MidEast–Port +4 USA–Port −4.75 (1.0/0.2 Refinery–Diesel) ≤ 0.0

which equals

5 MidEast–Port +4 USA–Port −23.75 Refinery–Diesel ≤ 0.0

An example similar to this oil industry problem is solved in the “Introductory NPSC
Example” section on page 85.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transporta-
tion or some other shared resource, or there are limits on overall production or de-
mand in multicommodity, multidivisional, or multiperiod problems. Each commod-
ity, division, or period can have a separate network coupled to one main system by the
side constraints. Side constraints are used to combine the outputs of subdivisions of
a problem (either commodities, outputs in distinct time periods, or different process
streams) to meet overall demands or to limit overall production or expenditures. This
method is more desirable than doing separate local optimizations for individual com-
modity, process, or time networks and then trying to establish relationships between
each when determining an overall policy if the global constraint is not satisfied. Of
course, to make models more realistic, side constraints may be necessary in the local
problems.

�

	
�

Factorycom2

�

	
�

Factorycom1

�

	
�

City2com2

�

	
�

City1com2

�

	
�

City2com1

�

	
�

City1com1

XXXXXXXXXXXXXXz

��������������:

XXXXXXXXXXXXXXz

��������������:

Commodity 1

Commodity 2

Figure 3.4. Multicommodity Problem

Network Models � 81

Figure 3.4 shows two network fragments. They represent identical production and
distribution sites of two different commodities. Suffix com1 represents commod-
ity 1 and suffix com2 represents commodity 2. The nodes Factorycom1 and
Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same loca-
tion, city 2. Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occu-
pies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters,
and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of
each commodity can be loaded onto each truck? The side constraints for this case are

2 Factorycom1–City1com1 +3 Factorycom2–City1com2 ≤ 200
2 Factorycom1–City2com1 +3 Factorycom2–City2com2 ≤ 250

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement
of a commodity from place to place or from time period to time period. However,
sometimes an arc is included in the network as a method of capturing some aspect of
the problem that you would not normally think of as part of a network model. There
is no commodity movement associated with that arc. For example, in a multiprocess,
multiproduct model (Figure 3.5), there might be subnetworks for each process and
each product. The subnetworks can be joined together by a set of arcs that have flows
that represent the amount of product j produced by process i. To model an upper-
limit constraint on the total amount of product j that can be produced, direct all arcs
carrying product j to a single node and from there through a single arc. The capacity
of this arc is the upper limit of product j production. It is preferable to model this
structure in the network rather than to include it in the side constraints because the
efficiency of the optimizer may be less affected by a reasonable increase in the size
of the network rather than increasing the number or complicating side constraints.

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 2

Process 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 1

Process 1 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 2 production

Product 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 1 production

Product 1 subnetwork

-

-

�
�

�
�

��>Z
Z

Z
Z

ZZ~

Figure 3.5. Multiprocess, Multiproduct Example

When starting a project, it is often a good strategy to use a small network formulation
and then use that model as a framework upon which to add detail. For example, in
the multiprocess, multiproduct model, you might start with the network depicted in

82 � Chapter 3. The INTPOINT Procedure

Figure 3.5. Then, for example, the process subnetwork can be enhanced to include
the distribution of products. Other phases of the operation could be included by
adding more subnetworks. Initially, these subnetworks can be single nodes, but in
subsequent studies they can be expanded to include greater detail.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such
problems often result when modeling manufacturing processes, transportation or dis-
tribution networks, or resource allocation, or when deciding where to locate facilities.
Often, some commodity is to be moved from place to place, so the more natural for-
mulation in many applications is that of a constrained network rather than a linear
program.

Using a network diagram to visualize a problem makes it possible to capture the
important relationships in an easily understood picture form. The network diagram
aids the communication between model builder and model user, making it easier to
comprehend how the model is structured, how it can be changed, and how results can
be interpreted.

If a network structure is embedded in a linear program, the problem is an NPSC (see
the “Mathematical Description of NPSC” section on page 66). When the network
part of the problem is large compared to the nonnetwork part, especially if the number
of side constraints is small, it is worthwhile to exploit this structure to describe the
model. Rather than generating the data for the flow conservation constraints, generate
instead the data for the nodes and arcs of the network.

Flow Conservation Constraints

The constraints Fx = b in NPSC (see the “Mathematical Description of NPSC” sec-
tion on page 66) are referred to as the nodal flow conservation constraints. These
constraints algebraically state that the sum of the flow through arcs directed toward
a node plus that node’s supply, if any, equals the sum of the flow through arcs di-
rected away from that node plus that node’s demand, if any. The flow conservation
constraints are implicit in the network model and should not be specified explicitly in
side constraint data when using PROC INTPOINT to solve NPSC problems.

Nonarc Variables

Nonarc variables can be used to simplify side constraints. For example, if a sum of
flows appears in many constraints, it may be worthwhile to equate this expression
with a nonarc variable and use this in the other constraints. This keeps the constraint
coefficient matrix sparse. By assigning a nonarc variable a nonzero objective func-
tion, it is then possible to incur a cost for using resources above some lowest feasible
limit. Similarly, a profit (a negative objective function coefficient value) can be made
if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or
supply needed resources. Then, either the excess resource can be used or the needed
resource can be supplied to another component of the model.

Network Models � 83

For example, consider a multicommodity problem of making television sets that have
either 19- or 25-inch screens. In their manufacture, three and four chips, respectively,
are used. Production occurs at two factories during March and April. The supplier
of chips can supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 each
month. The names of arcs are in the form Prodn–s–m, where n is the factory number,
s is the screen size, and m is the month. For example, Prod1–25–Apr is the arc that
conveys the number of 25-inch TVs produced in factory 1 during April. You might
have to determine similar systematic naming schemes for your application.

As described, the constraints are

3 Prod1–19–Mar +4 Prod1–25–Mar ≤ 2600
3 Prod2–19–Mar +4 Prod2–25–Mar ≤ 3750
3 Prod1–19–Apr +4 Prod1–25–Apr ≤ 2600
3 Prod2–19–Apr +4 Prod2–25–Apr ≤ 3750

If there are chips that could be obtained for use in March but not used for production
in March, why not keep these unused chips until April? Furthermore, if the March
excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the
model becomes

3 Prod1–19–Mar +4 Prod1–25–Mar + F1–Unused–Mar = 2600
3 Prod2–19–Mar +4 Prod2–25–Mar + F2–Unused–Mar = 3750

3 Prod1–19–Apr +4 Prod1–25–Apr −F1–Kept–Since–Mar = 2600
3 Prod2–19–Apr +4 Prod2–25–Apr −F2–Kept–Since–Mar = 3750

F1–Unused–Mar + F2–Unused–Mar (continued)
− F1–Kept–Since–Mar − F2–Kept–Since–Mar ≥ 0.0

where F1–Kept–Since–Mar is the number of chips used during April at
factory 1 that were obtained in March at either factory 1 or factory 2, and
F2–Kept–Since–Mar is the number of chips used during April at factory 2 that
were obtained in March. The last constraint ensures that the number of chips used
during April that were obtained in March does not exceed the number of chips
not used in March. There may be a cost to hold chips in inventory. This can be
modeled having a positive objective function coefficient for the nonarc variables
F1–Kept–Since–Mar and F2–Kept–Since–Mar. Moreover, nonarc variable
upper bounds represent an upper limit on the number of chips that can be held in
inventory between March and April.

See Example 3.1 through Example 3.5, which use this TV problem. The use of nonarc
variables as described previously is illustrated.

84 � Chapter 3. The INTPOINT Procedure

Introduction

Getting Started: NPSC Problems

To solve NPSC problems using PROC INTPOINT, you save a representation of the
network and the side constraints in three SAS data sets. These data sets are then
passed to PROC INTPOINT for solution. There are various forms that a problem’s
data can take. You can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in the NPSC problem (see the “Mathematical Description of NPSC” section
on page 66).

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the
ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrix F and the vectors c, l,
and u in the NPSC problem (see the “Mathematical Description of NPSC” section on
page 66).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions. Do not explicitly specify these flow conservation con-
straints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectors d, m, and v in the NPSC
problem (see the “Mathematical Description of NPSC” section on page 66). Data for
an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices H and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that arc. Each arc also has a default name that is the name of the tail and
head node of the arc concatenated together and separated by an underscore character;
tail–head, for example.

Getting Started: NPSC Problems � 85

If you use the dense side constraint input format (described in the “CONDATA= Data
Set” section on page 132), and want to use the default arc names, these arc names are
names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (see the “CONDATA= Data Set”
section on page 132) and want to use the default arc names, these arc names are
values of the COLUMN list variable of the CONDATA= data set.

PROC INTPOINT reads the data from the NODEDATA= data set, the ARCDATA=
data set, and the CONDATA= data set. Error checking is performed, and the model
is converted into an equivalent LP. This LP is preprocessed. Preprocessing is op-
tional but highly recommended. Preprocessing analyzes the model and tries to de-
termine before optimization whether variables can be “fixed” to their optimal values.
Knowing that, the model can be modified and these variables dropped out. It can be
determined that some constraints are redundant. Sometimes, preprocessing succeeds
in reducing the size of the problem, thereby making the subsequent optimization eas-
ier and faster.

The optimal solution to the equivalent LP is then found. This LP is converted back to
the original NPSC problem, and the optimum for this is derived from the optimum of
the equivalent LP. If the problem was preprocessed, the model is now post-processed,
where fixed variables are reintroduced. The solution can be saved in the CONOUT=
data set.

Introductory NPSC Example

Consider the following transshipment problem for an oil company. Crude oil is
shipped to refineries where it is processed into gasoline and diesel fuel. The gaso-
line and diesel fuel are then distributed to service stations. At each stage, there are
shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the
crude from the Middle East cannot exceed the throughput of a refinery plus 15 units.
(The phrase “plus 15 units” that finishes the last sentence is used to enable some side
constraints in this example to have a nonzero rhs.) The second set of constraints are
necessary to model the situation that one unit of crude mix processed at a refinery
yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow
through the network, an NPSC is an appropriate model for this example (see Figure
3.6). The side constraints are used to model the limitations on the amount of Middle
Eastern crude that can be processed by each refinery and the conversion proportions
of crude to gasoline and diesel fuel.

86 � Chapter 3. The INTPOINT Procedure

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 3.6. Oil Industry Example

To solve this problem with PROC INTPOINT, save a representation of the model in
three SAS data sets. In the NODEDATA= data set, you name the supply and demand
nodes and give the associated supplies and demands. To distinguish demand nodes
from supply nodes, specify demands as negative quantities. For the oil example, the
NODEDATA= data set can be saved as follows:

title ’Oil Industry Example’;
title3 ’Setting Up Nodedata = Noded For PROC INTPOINT’;
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The ARCDATA= data set contains the rest of the information about the network.
Each observation in the data set identifies an arc in the network and gives the cost per
flow unit across the arc, the capacities of the arc, the lower bound on flow across the
arc, and the name of the arc.

Getting Started: NPSC Problems � 87

title3 ’Setting Up Arcdata = Arcd1 For PROC INTPOINT’;
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

Finally, the CONDATA= data set contains the side constraints for the model:

title3 ’Setting Up Condata = Cond1 For PROC INTPOINT’;
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

Note that the SAS variable names in the CONDATA= data set are the names of arcs
given in the ARCDATA= data set. These are the arcs that have nonzero constraint
coefficients in side constraints. For example, the proportionality constraint that spec-
ifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline
and one-fourth of a unit of diesel fuel is given for refinery 1 in the third observa-
tion and for refinery 2 in the last observation. The third observation requires that
each unit of flow on the arc thruput1 equals three-fourths of a unit of flow on the
arc r1–gas. Because all crude processed at refinery 1 flows through thruput1 and
all gasoline produced at refinery 1 flows through r1–gas, the constraint models the
situation. It proceeds similarly for refinery 2 in the last observation.

88 � Chapter 3. The INTPOINT Procedure

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC INTPOINT as follows:

proc intpoint
bytes=1000000
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC INTPOINT and note the progress toward a solution.

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: Number of variables= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 5.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 11 constraints from the

problem.
NOTE: The preprocessor eliminated 25 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 13 nonzero elements in A * A transpose.
NOTE: Of the 7 rows and columns, 2 are sparse.
NOTE: There are 6 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 2 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the

Getting Started: NPSC Problems � 89

sparse rows of A * A transpose.
NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective = 50875.01279.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.
NOTE: There were 6 observations read from the data set

WORK.NODED.
NOTE: There were 4 observations read from the data set

WORK.COND1.

The first set of messages shows the size of the problem. The next set of messages
provides statistics on the size of the equivalent LP problem. The number of variables
may not equal the number of arcs if the problem has nonarc variables. This example
has none. To convert a network to the equivalent LP problem, a flow conservation
constraint must be created for each node (including an excess or bypass node, if
required). This explains why the number of equality constraints and the number of
constraint coefficients differ from the number of equality side constraints and the
number of coefficients in all side constraints.

If the preprocessor was successful in decreasing the problem size, some messages
will report how well it did. In this example, the model size was cut approximately in
half!

The next set of messages describes aspects of the interior point algorithm. Of partic-
ular interest are those concerned with the Cholesky factorization of AAT where A is
the coefficient matrix of the final LP. It is crucial to preorder the rows and columns
of this matrix to prevent fill-in and reduce the number of row operations to undertake
the factorization. See the “Interior Point Algorithmic Details” section on page 68 for
a more extensive explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC
INTPOINT saves the optimum in the output SAS data set that you specify. For this
example, the solution is saved in the SOLUTION data set. It can be displayed with
the PRINT procedure as

title3 ’Optimum’;
proc print data=solution;

var _from_ _to_ _cost_ _capac_ _lo_ _name_
supply _demand_ _flow_ _fcost_;

sum _fcost_;
run;

90 � Chapter 3. The INTPOINT Procedure

Oil Industry Example

Optimum

_ _
_ S D _

_ _ c _ U E _ F
f c a n P M F C
r _ o p _ a P A L O

O o t s a l m L N O S
b m o t c o e Y D W T
s _ _ _ _ _ _ _ _ _ _

1 refinery 1 r1 200 175 50 thruput1 . . 145.000 28999.98
2 refinery 2 r2 220 100 35 thruput2 . . 35.000 7700.02
3 r1 ref1 diesel 0 75 0 . . 36.250 0.00
4 r1 ref1 gas 0 140 0 r1_gas . . 108.750 0.00
5 r2 ref2 diesel 0 75 0 . . 8.750 0.00
6 r2 ref2 gas 0 100 0 r2_gas . . 26.250 0.00
7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.000 5039.99
8 u.s.a. refinery 1 55 99999999 0 80 . 65.000 3575.00
9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.000 1620.02
10 u.s.a. refinery 2 49 99999999 0 80 . 15.000 735.00
11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.000 540.00
12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.000 0.01
13 ref1 gas servstn1 gas 15 70 0 . 95 68.750 1031.26
14 ref2 gas servstn1 gas 17 35 5 . 95 26.250 446.24
15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.250 106.25
16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.750 201.24
17 ref1 gas servstn2 gas 22 60 0 . 40 40.000 879.99
18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.000 0.01

========
50875.01

Figure 3.7. CONOUT=SOLUTION

Notice that, in CONOUT=SOLUTION (Figure 3.7), the optimal flow through each
arc in the network is given in the variable named –FLOW– , and the cost of flow
through each arc is given in the variable –FCOST– .

Getting Started: LP Problems � 91

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

80

100

15

80

20

65

35

145

8.75

26.25

36.25

108.75
68.75

8.75

30

40 26.25

6.25

−95

−30

−40

−15

Figure 3.8. Oil Industry Solution

Getting Started: LP Problems

Data for an LP problem resembles the data for side constraints and nonarc variables
supplied to PROC INTPOINT when solving an NPSC problem. It is also very similar
to the data required by the LP procedure.

To solve LP problems using PROC INTPOINT, you save a representation of the LP
variables and the constraints in one or two SAS data sets. These data sets are then
passed to PROC INTPOINT for solution. There are various forms that a problem’s
data can take. You can use any one or a combination of several of these forms.

The ARCDATA= data set contains information about the LP variables of the problem.
Although this data set is called ARCDATA, it contains data for no arcs. Instead, all
data in this data set are related to LP variables. This data set has no SAS variables
containing values that are node names.

The ARCDATA= data set can be used to specify information about LP variables,
including objective function coefficients, lower and upper value bounds, and names.
These data are the elements of the vectors d, m, and v in problem (LP). Data for an
LP variable can be given in more than one observation.

The CONDATA= data set describes the constraints and their right-hand sides. These
data are elements of the matrix Q and the vector r.

92 � Chapter 3. The INTPOINT Procedure

Constraint types are also specified in the CONDATA= data set. You can include in
this data set LP variable data such as upper bound values, lower value bounds, and
objective function coefficients. It is possible to give all information about some or all
LP variables in the CONDATA= data set.

Because PROC INTPOINT evolved from PROC NETFLOW, another procedure in
SAS/OR software that was originally designed to solve models with networks, the
ARCDATA= data set is always expected. If the ARCDATA= data set is not specified,
by default the last data set created before PROC INTPOINT is invoked is assumed to
be the ARCDATA= data set. However, these characteristics of PROC INTPOINT are
not helpful when an LP problem is being solved and all data is provided in a single
data set specified by the CONDATA= data set, and that data set is not the last data
set created before PROC INTPOINT starts. In this case, you must specify that the
ARCDATA= data set and the CONDATA= data set are both equal to the input data
set. PROC INTPOINT then knows that an LP problem is to be solved and that the
data reside in one data set.

An LP variable is identified in this data set by its name. If you specify an LP variable’s
name in the ARCDATA= data set, then this name is used to associate data in the
CONDATA= data set with that LP variable.

If you use the dense constraint input format (described in the “CONDATA= Data
Set” section on page 132), these LP variable names are names of SAS variables in
the VAR list of the CONDATA= data set.

If you use the sparse constraint input format (described in the “CONDATA= Data
Set” section on page 132), these LP variable names are values of the SAS variables
in the COLUMN list of the CONDATA= data set.

PROC INTPOINT reads the data from the ARCDATA= data set (if there is one) and
the CONDATA= data set. Error checking is performed, and the LP is preprocessed.
Preprocessing is optional but highly recommended. The preprocessor analyzes the
model and tries to determine before optimization whether LP variables can be “fixed”
to their optimal values. Knowing that, the model can be modified and these LP vari-
ables dropped out. Some constraints may be found to be redundant. Sometimes,
preprocessing succeeds in reducing the size of the problem, thereby making the sub-
sequent optimization easier and faster.

The optimal solution is then found for the resulting LP. If the problem was prepro-
cessed, the model is now post-processed, where fixed LP variables are reintroduced.
The solution can be saved in the CONOUT= data set.

Introductory LP Example

Consider the linear programming problem in the section “An Introductory Example”
on page 192. The SAS data set in that section is created the same way here:

Getting Started: LP Problems � 93

title ’Linear Programming Example’;
title3 ’Setting Up Condata = dcon1 For PROC INTPOINT’;
data dcon1;

input _id_ $17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

To solve this problem, use

proc intpoint
bytes=1000000
condata=dcon1
conout=solutn1;
run;

Note how it is possible to use an input SAS data set of PROC LP and, without requir-
ing any changes to be made to the data set, to use that as an input data set for PROC
INTPOINT.

The following messages that appear on the SAS log summarize the model as read by
PROC INTPOINT and note the progress toward a solution

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 0.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 5 constraints from the

problem.
NOTE: The preprocessor eliminated 18 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 0.
NOTE: The preprocessor eliminated 8 variables from the

problem.
WARNING: Optimization is unnecessary as the problem no

longer has any variables and rows.
NOTE: Preprocessing could have caused that.
NOTE: Objective = 1544.
NOTE: The data set WORK.SOLUTN1 has 8 observations and 6

variables.

94 � Chapter 3. The INTPOINT Procedure

NOTE: There were 7 observations read from the data set
WORK.DCON1.

Notice that the preprocessor succeeded in fixing all LP variables to their optimal
values, eliminating the need to do any actual optimization.

Unlike PROC LP, which displays the solution and other information as output, PROC
INTPOINT saves the optimum in the output SAS data set you specify. For this exam-
ple, the solution is saved in the SOLUTION data set. It can be displayed with PROC
PRINT as

title3 ’LP Optimum’;
proc print data=solutn1;

var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;
run;

Notice that in the CONOUT=SOLUTION (Figure 3.9) the optimal value through
each variable in the LP is given in the variable named –VALUE– , and that the cost
of value for each variable is given in the variable –FCOST– .

Linear Programming Example

LP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _FCOST_

1 a_heavy -165 165 0 0.00 0
2 a_light -175 110 0 110.00 -19250
3 brega -205 80 0 80.00 -16400
4 heatingo 0 99999999 0 77.30 0
5 jet_1 300 99999999 0 60.65 18195
6 jet_2 300 99999999 0 63.33 18999
7 naphthai 0 99999999 0 21.80 0
8 naphthal 0 99999999 0 7.45 0

=======
1544

Figure 3.9. CONOUT=SOLUTN1

The same model can be specified in the sparse format as in the following scon2 data
set. This format enables you to omit the zero coefficients.

title3 ’Setting Up Condata = scon2 For PROC INTPOINT’;
data scon2;

format _type_ $8. _col_ $8. _row_ $16.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175

Getting Started: LP Problems � 95

. a_light napha_l_conv .035

. a_light napha_i_conv .100

. a_light heating_oil_conv .390

. a_light available 110

. a_heavy profit -165

. a_heavy napha_l_conv .030

. a_heavy napha_i_conv .075

. a_heavy heating_oil_conv .300

. a_heavy available 165

. brega profit -205

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. brega available 80

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 profit 300

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1
;

To find the minimum cost solution, invoke PROC INTPOINT (note the
SPARSECONDATA option which must be specified) as follows:

proc intpoint
bytes=1000000
sparsecondata
condata=scon2
conout=solutn2;
run;

A data set that can be used as the ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

96 � Chapter 3. The INTPOINT Procedure

The following CONDATA= data set is the original dense format CONDATA= dcon1
data set after the LP variable’s nonconstraint information has been removed. (You
could have left some or all of that information in CONDATA as PROC INTPOINT
“merges” data, but doing that and checking for consistency takes time.)

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

Note: You must now specify the MAXIMIZE option; otherwise, PROC INTPOINT
will optimize to the minimum (which, incidentally, has a total objective = -3539.25).
You must indicate that the SAS variable profit in the ARCDATA=vars3 data set has
values that are objective function coefficients, by specifying the OBJFN statement.
The UPPERBD must be specified as the SAS variable available that has as values
upper bounds:

proc intpoint
maximize /* ***** necessary ***** */
bytes=1000000
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model
variables heatingo, naphthai, and naphthal have zero objective function coeffi-
cients (the default) and default upper bounds, so those observations need not be
present:

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

Getting Started: LP Problems � 97

The CONDATA=dcon3 data set can become more concise by noting that all the con-
straints have the same type (eq) and zero (the default) rhs values. This model is a
good candidate for using the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the
same type as is the case here, but also when most constraints have the same type and
you want to change the default type from ≤ to = or ≥. The essential constraint type
data in the CONDATA= data set is that which overrides the DEFCONTYPE= type
you specified.

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc intpoint
maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

Here are several different ways of using the ARCDATA= data set and a sparse for-
mat CONDATA= data set for this LP. The following CONDATA= data set is the
result of removing the profit and available data from the original sparse format
CONDATA=scon2 data set.

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300

98 � Chapter 3. The INTPOINT Procedure

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 recipe_1 -1

. jet_2 recipe_2 -1
;

proc intpoint
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all
the constraints have the same type (eq) and zero (the default) rhs values. Use
the DEFCONTYPE= option again. Once the first five observations of the
CONDATA=scon5 data set are removed, the –type– variable has values that are
missing in all of the remaining observations. Therefore, this variable can be removed.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

Typical PROC INTPOINT Run � 99

proc intpoint
maximize
defcontype=eq
sparsecondata
arcdata=vars4
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Typical PROC INTPOINT Run

You start PROC INTPOINT by giving the PROC INTPOINT statement. You can
specify many options in the PROC INTPOINT statement to control the procedure,
or you can rely on default settings and specify very few options. However, there are
some options you must specify:

• You must specify the BYTES= parameter indicating the size of the working
memory that the procedure is allowed to use. This option has no default.

• In many instances (and certainly when solving NPSC problems), you need to
specify the ARCDATA= data set. This option has a default (which is the SAS
data set that was created last before PROC INTPOINT began running), but that
may need to be overridden.

• The CONDATA= data set must also be specified if the problem is NPSC and
has side constraints, or if it is an LP problem.

• When solving a network problem, you have to specify the NODEDATA= data
set, if some model data is given in such a data set.

Some options, while optional, are frequently required. To have the optimal solution
output to a SAS data set, you have to specify the CONOUT= data set. You may
want to indicate reasons why optimization should stop (for example, you can indicate
the maximum number of iterations that can be performed), or you might want to alter
stopping criteria so that optimization does not stop prematurely. Some options enable
you to control other aspects of the interior point algorithm. Specifying certain values
for these options can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have SAS variables in the input
data sets that have special names (for example, a SAS variable in the ARCDATA=
data set named –TAIL– that has tail nodes of arcs as values), it may not be necessary
to have many or any variable lists. If you do not specify a TAIL variable list, PROC
INTPOINT will search the ARCDATA= data set for a SAS variable named –TAIL–.

What usually follows is a RUN statement, which indicates that all information that
you, the user, need to supply to PROC INTPOINT has been given, and the procedure
is to start running. This also happens if you specify a statement in your SAS program
that PROC INTPOINT does not recognize as one of its own, the next DATA step or
procedure.

100 � Chapter 3. The INTPOINT Procedure

The QUIT statement indicates that PROC INTPOINT must immediately finish.

For example, a PROC INTPOINT run might look something like this:

proc intpoint
bytes= /* working memory size */
arcdata= /* data set */
condata= /* data set */
/* other options */

;
variable list specifications; /* if necessary */
run; /* start running, read data, */

/* and do the optimization. */

Syntax
Below are statements used in PROC INTPOINT, listed in alphabetical order as they
appear in the text that follows.

PROC INTPOINT options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
QUIT;
RHS variable ;
ROW variables ;
RUN;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

Functional Summary

Table 3.1 outlines the options that can be specified in the INTPOINT procedure. All
options are specified in the PROC INTPOINT statement.

Functional Summary � 101

Table 3.1. Functional Summary

Description Statement Option

Input Data Set Options:
arcs input data set PROC INTPOINT ARCDATA=
nodes input data set PROC INTPOINT NODEDATA=
constraint input data set PROC INTPOINT CONDATA=

Output Data Set Option:
constrained solution data set PROC INTPOINT CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC INTPOINT SPARSECONDATA
default constraint type PROC INTPOINT DEFCONTYPE=
special COLUMN variable value PROC INTPOINT TYPEOBS=
special COLUMN variable value PROC INTPOINT RHSOBS=
used to interpret arc and variable names PROC INTPOINT NAMECTRL=
no nonarc data in ARCDATA PROC INTPOINT ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC INTPOINT ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC INTPOINT CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC INTPOINT NON–REPLIC=
data is grouped, exploited during data read PROC INTPOINT GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC INTPOINT NNODES=
approximate number of arcs PROC INTPOINT NARCS=
approximate number of variables PROC INTPOINT NNAS=
approximate number of coefficients PROC INTPOINT NCOEFS=
approximate number of constraints PROC INTPOINT NCONS=

Network Options:
default arc cost, objective function coefficient PROC INTPOINT DEFCOST=
default arc capacity, variable upper bound PROC INTPOINT DEFCAPACITY=
default arc flow and variable lower bound PROC INTPOINT DEFMINFLOW=
network’s only supply node PROC INTPOINT SOURCE=
SOURCE’s supply capability PROC INTPOINT SUPPLY=
network’s only demand node PROC INTPOINT SINK=
SINK’s demand PROC INTPOINT DEMAND=
convey excess supply/demand through network PROC INTPOINT THRUNET
find max flow between SOURCE and SINK PROC INTPOINT MAXFLOW
cost of bypass arc, MAXFLOW problem PROC INTPOINT BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC INTPOINT SHORTPATH

Interior Point Algorithm Options:
factorization method PROC INTPOINT FACT–METHOD=
allowed amount of dual infeasibility PROC INTPOINT TOLDINF=
allowed amount of primal infeasibility PROC INTPOINT TOLPINF=

102 � Chapter 3. The INTPOINT Procedure

Description Statement Option

allowed total amount of dual infeasibility PROC INTPOINT TOLTOTDINF=
allowed total amount of primal infeasibility PROC INTPOINT TOLTOTPINF=
cut-off tolerance for Cholesky factorization PROC INTPOINT CHOLTINYTOL=
density threshold for Cholesky processing PROC INTPOINT DENSETHR=
step-length multiplier PROC INTPOINT PDSTEPMULT=
preprocessing type PROC INTPOINT PRSLTYPE=
print optimization progress on SAS log PROC INTPOINT PRINTLEVEL2=
ratio test zero tolerance PROC INTPOINT RTTOL=

Interior Point Algorithm Stopping Criteria:
maximum number of interior point iterations PROC INTPOINT MAXITERB=
primal-dual (duality) gap tolerance PROC INTPOINT PDGAPTOL=
stop because of complementarity PROC INTPOINT STOP–C=
stop because of duality gap PROC INTPOINT STOP–DG=
stop because of infeasb PROC INTPOINT STOP–IB=
stop because of infeasc PROC INTPOINT STOP–IC=
stop because of infeasd PROC INTPOINT STOP–ID=
stop because of complementarity PROC INTPOINT AND–STOP–C=
stop because of duality gap PROC INTPOINT AND–STOP–DG=
stop because of infeasb PROC INTPOINT AND–STOP–IB=
stop because of infeasc PROC INTPOINT AND–STOP–IC=
stop because of infeasd PROC INTPOINT AND–STOP–ID=
stop because of complementarity PROC INTPOINT KEEPGOING–C=
stop because of duality gap PROC INTPOINT KEEPGOING–DG=
stop because of infeasb PROC INTPOINT KEEPGOING–IB=
stop because of infeasc PROC INTPOINT KEEPGOING–IC=
stop because of infeasd PROC INTPOINT KEEPGOING–ID=
stop because of complementarity PROC INTPOINT AND–KEEPGOING–C=
stop because of duality gap PROC INTPOINT AND–KEEPGOING–DG=
stop because of infeasb PROC INTPOINT AND–KEEPGOING–IB=
stop because of infeasc PROC INTPOINT AND–KEEPGOING–IC=
stop because of infeasd PROC INTPOINT AND–KEEPGOING–ID=

Memory Control Options:
issue memory usage messages to SAS log PROC INTPOINT MEMREP
number of bytes to use for main memory PROC INTPOINT BYTES=

Miscellaneous Options:
infinity value PROC INTPOINT INFINITY=
maximization instead of minimization PROC INTPOINT MAXIMIZE
zero tolerance - optimization PROC INTPOINT ZERO2=
zero tolerance - real number comparisons PROC INTPOINT ZEROTOL=
suppress similar SAS log messages PROC INTPOINT VERBOSE=
scale problem data PROC INTPOINT SCALE=
write optimization time to SAS log PROC INTPOINT OPTIM–TIMER

PROC INTPOINT Statement � 103

PROC INTPOINT Statement

PROC INTPOINT options ;

This statement invokes the procedure. The following options can be specified in the
PROC INTPOINT statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC
INTPOINT. The ARCDATA= data set, the NODEDATA= data set, and the
CONDATA= data set can contain SAS variables that have special names, for instance
–CAPAC– , –COST– , and –HEAD– . PROC INTPOINT looks for such variables
if you do not give explicit variable list specifications. If a SAS variable with a special
name is found and that SAS variable is not in another variable list specification,
PROC INTPOINT determines that values of the SAS variable are to be interpreted
in a special way. By using SAS variables that have special names, you may not need
to have any variable list specifications.

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and
nodal supply/demand data. The ARCDATA= data set must be specified in all PROC
INTPOINT statements when solving NPSC problems.

If your problem is an LP, the ARCDATA= data set is optional. You can specify
LP variable information such as objective function coefficients, and lower and upper
bounds.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also contain
other data such as arc costs, capacities, lower flow bounds, nonarc variable upper
and lower bounds, and objective function coefficients. PROC INTPOINT needs a
CONDATA= data set to solve a constrained problem. See the “CONDATA= Data
Set” section on page 132 for more information.

If your problem is an LP, this data set contains the constraint data, and can also contain
other data such as objective function coefficients, and lower and upper bounds. PROC
INTPOINT needs a CONDATA= data set to solve an LP.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal solution. See the “CONOUT= Data
Set” section on page 141 for more information.

If PROC INTPOINT is outputting observations to the output data set and you want
this to stop, press the keys used to stop SAS procedures.

NODEDATA=SAS-data-set
names the data set that contains the node supply and demand specifications. You
do not need observations in the NODEDATA= data set for transshipment nodes.
(Transshipment nodes neither supply nor demand flow.) All nodes are assumed to

104 � Chapter 3. The INTPOINT Procedure

be transshipment nodes unless supply or demand data indicate otherwise. It is ac-
ceptable for some arcs to be directed toward supply nodes or away from demand
nodes.

This data set is used only when you are solving network problems (not when solv-
ing LP problems), in which case the use of the NODEDATA= data set is optional
provided that, if the NODEDATA= data set is not used, supply and demand de-
tails are specified by other means. Other means include using the MAXFLOW
or SHORTPATH option, SUPPLY or DEMAND variable list (or both) in the
ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= op-
tion in the PROC INTPOINT statement.

General Options

The following is a list of options you can use with PROC INTPOINT. The options
are listed in alphabetical order.

ARCS–ONLY–ARCDATA
indicates that data for arcs only are in the ARCDATA= data set. When PROC
INTPOINT reads the data in the ARCDATA= data set, memory would not be wasted
to receive data for nonarc variables. The read might then be performed faster. See the
section “How to Make the Data Read of PROC INTPOINT More Efficient” on page
151.

ARC–SINGLE–OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is
found in only one observation of the ARCDATA= data set. When reading the data in
the ARCDATA= data set, PROC INTPOINT knows that the data in an observation is
for an arc or a nonarc variable that has not had data previously read and that needs to
be checked for consistency. The read might then be performed faster.

When solving an LP, specifying the ARC–SINGLE–OBS option indicates that for
all LP variables, data for each LP variable is found in only one observation of the
ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC
INTPOINT knows that the data in an observation is for an LP variable that has not
had data previously read and that needs to be checked for consistency. The read might
then be performed faster.

If you specify ARC–SINGLE–OBS, PROC INTPOINT automatically works as if
GROUPED=ARCDATA is also specified.

See the section “How to Make the Data Read of PROC INTPOINT More Efficient”
on page 151.

BYPASSDIVIDE=b
BYPASSDIV=b
BPD=b

should be used only when the MAXFLOW option has been specified; that is, PROC
INTPOINT is solving a maximal flow problem. PROC INTPOINT prepares to solve
maximal flow problems by setting up a bypass arc. This arc is directed from the
SOURCE= to the SINK= and will eventually convey flow equal to INFINITY minus
the maximal flow through the network. The cost of the bypass arc must be great

PROC INTPOINT Statement � 105

enough to drive flow through the network, rather than through the bypass arc. Also,
the cost of the bypass arc must be greater than the eventual total cost of the maxi-
mal flow, which can be nonzero if some network arcs have nonzero costs. The cost
of the bypass is set to the value of the INFINITY= option. Valid values for the
BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the by-
pass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE=
option. The default value for the BYPASSDIVIDE= option (in the presence of
nonzero arc costs) is 100.0.

BYTES=b
indicates the size of the main working memory (in bytes) that PROC INTPOINT
will allocate. Specifying this option is mandatory. The working memory is used
to store all the arrays and buffers used by PROC INTPOINT. If this memory has a
size smaller than what is required to store all arrays and buffers, PROC INTPOINT
uses various schemes that page information between auxiliary memory (often your
machine’s disk) and RAM.

For small problems, specify BYTES=100000. For large problems (those with hun-
dreds of thousands or millions of variables), BYTES=1000000 might do. For solving
problems of that size, if you are running on a machine with an inadequate amount of
RAM, PROC INTPOINT’s performance will suffer since it will be forced to page or
to rely on virtual memory.

If you specify the MEMREP option, PROC INTPOINT will issue messages on the
SAS log informing you of its memory usage; that is, how much memory is required
to prevent paging, and details about the amount of paging that must be performed, if
applicable.

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If the CONDATA= data set has the dense format, specifying CON–SINGLE–OBS
indicates that, for each constraint, data for each can be found in only one observation
of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each arc, nonarc variable,
or LP variable can be found in only one observation of the CONDATA, then specify
the CON–SINGLE–OBS option. If there are n SAS variables in the ROW and COEF
list, then each arc or nonarc can have at most n constraint coefficients in the model.
See the section “How to Make the Data Read of PROC INTPOINT More Efficient”
on page 151.

DEFCAPACITY=c
DC=c

requests that the default arc capacity and the default nonarc variable value upper
bound (or for LP problems, the default LP variable value upper bound) be c. If this
option is not specified, then DEFCAPACITY=INFINITY.

106 � Chapter 3. The INTPOINT Procedure

DEFCONTYPE=c
DEFTYPE=c
DCT=c

specifies the default constraint type. This default constraint type is either less than or
equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option
are

LE, le, or <= for less than or equal to

EQ, eq, or = for equal to

GE, ge, or >= for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function
coefficient (or for an LP, the default LP variable objective function coefficient) be c.
If this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m
DMF=m

requests that the default lower flow bound through arcs and the default lower value
bound of nonarc variables (or for an LP, the default lower value bound of LP vari-
ables) be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The
DEMAND= option should be used only if the SINK= option is given in the PROC
INTPOINT statement and neither the SHORTPATH option nor the MAXFLOW op-
tion is specified. If you are solving a minimum cost network problem and the SINK=
option is used to identify the sink node, and the DEMAND= option is not specified,
then the demand at the sink node is made equal to the network’s total supply.

GROUPED=grouped
PROC INTPOINT can take a much shorter time to read data if the data have been
grouped prior to the PROC INTPOINT call. This enables PROC INTPOINT to con-
clude that, for instance, a new NAME list variable value seen in the ARCDATA=
data set grouped by the values of the NAME list variable before PROC INTPOINT
was called is new. PROC INTPOINT does not need to check that the NAME has
been read in a previous observation. See the section “How to Make the Data Read of
PROC INTPOINT More Efficient” on page 151.

• GROUPED=ARCDATA indicates that the ARCDATA= data set has been
grouped by values of the NAME list variable. If –NAME– is the name of
the NAME list variable, you could use

proc sort data=arcdata; by _name_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the
data, only to ensure that all similar values of the NAME list variable are

PROC INTPOINT Statement � 107

grouped together. If you specify the ARCS–ONLY–ARCDATA option, PROC
INTPOINT automatically works as if GROUPED=ARCDATA is also speci-
fied.

• GROUPED=CONDATA indicates that the CONDATA= data set has been
grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indi-
cates that the CONDATA= data set has been grouped by values of the ROW
list variable. If –ROW– is the name of the ROW list variable, you could use

proc sort data=condata; by _row_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the
data, only to ensure that all similar values of the ROW list variable are
grouped together. If you specify the CON–SINGLE–OBS option, or if
there is no ROW list variable, PROC INTPOINT automatically works as if
GROUPED=CONDATA has been specified.

If the CONDATA= data set has the sparse format, GROUPED=CONDATA
indicates that CONDATA has been grouped by values of the COLUMN list
variable. If –COL– is the name of the COLUMN list variable, you could use

proc sort data=condata; by _col_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the data,
only to ensure that all similar values of the COLUMN list variable are grouped
together.

• GROUPED=BOTH indicates that both GROUPED=ARCDATA and
GROUPED=CONDATA are TRUE.

• GROUPED=NONE indicates that the data sets have not been grouped, that
is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE.
This is the default, but it is much better if GROUPED=ARCDATA, or
GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When
PROC INTPOINT is reading the ith observation, either the value of the –XXXXX–
variable is the same as the (i − 1)st (that is, the previous observation’s) –XXXXX–
value, or it is a new –XXXXX– value not seen in any previous observation. This also
means that if the ith –XXXXX– value is different from the (i−1)st –XXXXX– value,
the value of the (i − 1)st –XXXXX– variable will not be seen in any observations
i, i + 1,

108 � Chapter 3. The INTPOINT Procedure

INFINITY=i
INF=i

is the largest number used by PROC INTPOINT in computations. A number too small
can adversely affect the solution process. You should avoid specifying an enormous
value for the INFINITY= option because numerical roundoff errors can result. If a
value is not specified, then INFINITY=999999. The INFINITY= option cannot be
assigned a value less than 9999.

MAXFLOW
MF

specifies that PROC INTPOINT solve a maximum flow problem. In this case, the
PROC INTPOINT procedure finds the maximum flow from the node specified by the
SOURCE= option to the node specified by the SINK= option. PROC INTPOINT
automatically assigns an INFINITY= option supply to the SOURCE= option node
and the SINK= option is assigned the INFINITY= option demand. In this way, the
MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.

You can use the MAXFLOW option when solving any flow problem (not necessar-
ily a maximum flow problem) when the network has one supply node (with infinite
supply) and one demand node (with infinite demand). The MAXFLOW option can
be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and
DEMAND=) and capabilities of PROC INTPOINT.

MAXIMIZE
MAX

specifies that PROC INTPOINT find the maximum cost flow through the network.
If both the MAXIMIZE and the SHORTPATH options are specified, the solution
obtained is the longest path between the SOURCE= and SINK= nodes. Similarly,
MAXIMIZE and MAXFLOW together cause PROC INTPOINT to find the minimum
flow between these two nodes; this is zero if there are no nonzero lower flow bounds.
If solving an LP, specifying the MAXIMIZE option is necessary if you want the
maximal optimal solution found instead of the minimal optimum.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is
reported by PROC INTPOINT on the SAS log.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set. In the
ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA=
data set, arcs are identified by names. You can give a name to an arc by having a
NAME list specification that indicates a SAS variable in the ARCDATA= data set
that has names of arcs as values.

PROC INTPOINT requires that arcs that have information about them in the
CONDATA= data set have names, but arcs that do not have information about them
in the CONDATA= data set can also have names. Unlike a nonarc variable whose
name uniquely identifies it, an arc can have several different names. An arc has a
default name in the form tail–head, that is, the name of the arc’s tail node followed

PROC INTPOINT Statement � 109

by an underscore and the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used (described in the
“CONDATA= Data Set” section on page 132), a name of an arc or a nonarc vari-
able is the name of a SAS variable listed in the VAR list specification. If the sparse
data format of the CONDATA= data set is used, a name of an arc or a nonarc variable
is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or a nonarc variable in the
CONDATA= data set (either a VAR list variable name or a value of the COLUMN
list variable) is in the form tail–head and there exists an arc with these end nodes. If
tail–head has not already been tagged as belonging to an arc or nonarc variable in
the ARCDATA= data set, PROC INTPOINT needs to know whether tail–head is the
name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set
is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail–head as
the name of the arc with these endnodes, provided no other name is used to associate
data in the CONDATA= data set with this arc. If the arc does have other names that
appear in the CONDATA= data set, tail–head is assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3, tail–head is assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value
of NAMECTRL is 3.

If the dense format is used for the CONDATA= data set, there are two circumstances
that affect how this data set is read:

1. if you are running SAS Version 6, or a previous version to that, or if you are
running SAS Version 7 onward and you specify

options validvarname=v6;

in your SAS session. Let’s refer to this as case 1.

2. if you are running SAS Version 7 onward and you do not specify

options validvarname=v6;

in your SAS session. Let’s refer to this as case 2.

For case 1, the SAS System converts SAS variable names in a SAS program to
uppercase. The VAR list variable names are uppercased. Because of this, PROC
INTPOINT automatically uppercases names of arcs and nonarc variables or LP vari-
ables (the values of the NAME list variable) in the ARCDATA= data set. The names
of arcs and nonarc variables or LP variables (the values of the NAME list variable)
appear uppercased in the CONOUT= data set.

Also, if the dense format is used for the CONDATA= data set, be careful with default
arc names (names in the form tailnode–headnode). Node names (values in the
TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not
automatically uppercased by PROC INTPOINT. Consider the following code.

110 � Chapter 3. The INTPOINT Procedure

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;
proc intpoint

arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values within SAS data sets.
PROC INTPOINT never uppercases node names, so the arcs in observations 1, 2, and
3 in the preceding ARCDATA= data set have the default names from–to1, from–to2,
and TAIL–TO3, respectively. When the dense format of the CONDATA= data set is
used, PROC INTPOINT does uppercase values of the NAME list variable, so the
name of the arc in the second observation of the ARCDATA= data set is ARC2.
Thus, the second arc has two names: its default from–to2 and the other that was
specified ARC2.

As the SAS System uppercases program code, you must think of the input statement

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named FROM–TO1 and FROM–TO2 are not associated with
any of the arcs in the preceding ARCDATA= data set. The values FROM–TO1
and FROM–TO2 are different from all of the arc names from–to1, from–to2,
TAIL–TO3, and ARC2. FROM–TO1 and FROM–TO2 could end up being the
names of two nonarc variables.

The SAS variable named ARC2 is the name of the second arc in the ARCDATA=
data set, even though the name specified in the ARCDATA= data set looks like
arc2. The SAS variable named TAIL–TO3 is the default name of the third arc in
the ARCDATA= data set.

For case 2, the SAS System does not convert SAS variable names in a SAS program to
uppercase. The VAR list variable names are not uppercased. PROC INTPOINT does
not automatically uppercase names of arcs and nonarc variables or LP variables (the
values of the NAME list variable) in the ARCDATA= data set. PROC INTPOINT
does not uppercase any SAS variable names, data set values, or indeed anything.
Therefore, PROC INTPOINT respects case, and characters in the data if compared

PROC INTPOINT Statement � 111

must have the right case if you mean them to be the same. Note how the input
statement in the data step that initialized the data set densecon below is specified in
the following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 TAIL_TO3;
datalines;

2 3 3 5
;
proc intpoint

arcdata=arcdata condata=densecon;
run;

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data
Read of PROC INTPOINT More Efficient” on page 151.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to
Make the Data Read of PROC INTPOINT More Efficient” on page 151.

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the
Data Read of PROC INTPOINT More Efficient” on page 151.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make
the Data Read of PROC INTPOINT More Efficient” on page 151.

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data
Read of PROC INTPOINT More Efficient” on page 151.

NON–REPLIC=non–replic
prevents PROC INTPOINT from doing unnecessary checks of data previously read.

• NON–REPLIC=COEFS indicates that each constraint coefficient is specified
once in the CONDATA= data set.

• NON–REPLIC=NONE indicates that constraint coefficients can be specified
more than once in the CONDATA= data set. NON–REPLIC=NONE is the
default.

See the section “How to Make the Data Read of PROC INTPOINT More Efficient”
on page 151.

112 � Chapter 3. The INTPOINT Procedure

OPTIM–TIMER
indicates that the procedure is to issue a message to the SAS log giving the CPU time
spent doing optimization. This includes the time spent preprocessing, performing
optimization, and postprocessing. Not counted in that time is the rest of the procedure
execution, which includes reading the data and creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the
procedure. This is especially true when the problem is quite small (e.g., fewer than
10,000 variables).

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the
sparse format for data in the CONDATA= data set. The keyword is expected as a
value of the SAS variable in the CONDATA= data set named in the COLUMN list
specification. The default value of the RHSOBS= option is –RHS– or –rhs–. If
charstr is not a valid SAS variable name, enclose it in quotes.

SCALE=scale
indicates that the NPSC side constraints or the LP constraints are to be scaled. Scaling
is useful when some coefficients are either much larger or much smaller than other co-
efficients. Scaling might make all coefficients have values that have a smaller range,
and this can make computations more stable numerically. Try the SCALE= option
if PROC INTPOINT is unable to solve a problem because of numerical instability.
Specify

• SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if you want the
largest absolute value of coefficients in each constraint to be about 1.0

• SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if you want NPSC
nonarc variable columns or LP variable columns to be scaled so that the abso-
lute value of the largest constraint coefficient of that variable is near to 1

• SCALE=BOTH if you want the largest absolute value of coefficients in each
constraint, and the absolute value of the largest constraint coefficient of an
NPSC nonarc variable or LP variable to be near to 1. This is the default.

• SCALE=NONE if no scaling should be done

SHORTPATH
SP

specifies that PROC INTPOINT solve a shortest path problem. The INTPOINT pro-
cedure finds the shortest path between the nodes specified in the SOURCE= option
and the SINK= option. The costs of arcs are their lengths. PROC INTPOINT auto-
matically assigns a supply of one flow unit to the SOURCE= node, and the SINK=
node is assigned to have a one flow unit demand. In this way, the SHORTPATH
option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node
(with demand of one unit), you could specify the SHORTPATH option, with the
SOURCE= and SINK= nodes, even if the problem is not a shortest path problem.
You then should not provide any supply or demand data in the NODEDATA= data set
or the ARCDATA= data set.

PROC INTPOINT Statement � 113

SINK=sinkname
SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the
MAXFLOW option or the SHORTPATH option and you need to specify toward
which node the shortest path or maximum flow is directed. The SINK= option also
can be used when a minimum cost problem has only one demand node. Rather than
having this information in the ARCDATA= data set or the NODEDATA= data set,
use the SINK= option with an accompanying DEMAND= specification for this node.
The SINK= option must be the name of a head node of at least one arc; thus, it must
have a character value. If the value of the SINK= option is not a valid SAS character
variable name (if, for example, it contains embedded blanks), it must be enclosed in
quotes.

SOURCE=sourcename
SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the
MAXFLOW or the SHORTPATH option and need to specify from which node the
shortest path or maximum flow originates. The SOURCE= option also can be used
when a minimum cost problem has only one supply node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SOURCE= option with an accompanying SUPPLY= amount of supply at this node.
The SOURCE= option must be the name of a tail node of at least one arc; thus, it
must have a character value. If the value of the SOURCE= option is not a valid SAS
character variable name (if, for example, it contains embedded blanks), it must be
enclosed in quotes.

SPARSECONDATA
SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise,
it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS
software Version 6 or you have specified

options validvarname=v6;

all NAME list variable values in the ARCDATA= data set are uppercased. See the
“Case Sensitivity” section on page 142.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The
SUPPLY= option should be used only if the SOURCE= option is given in the PROC
INTPOINT statement and neither the SHORTPATH option nor the MAXFLOW op-
tion is specified. If you are solving a minimum cost network problem and the
SOURCE= option is used to identify the source node and the SUPPLY= option is
not specified, then by default the supply at the source node is made equal to the net-
work’s total demand.

114 � Chapter 3. The INTPOINT Procedure

THRUNET
tells PROC INTPOINT to force through the network any excess supply (the amount
by which total supply exceeds total demand) or any excess demand (the amount by
which total demand exceeds total supply) as is required. If a network problem has
unequal total supply and total demand and the THRUNET option is not specified,
PROC INTPOINT drains away the excess supply or excess demand in an optimal
manner. The consequences of specifying or not specifying THRUNET are discussed
in the “Balancing Total Supply and Total Demand” section on page 150.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format
for data in the CONDATA= data set. The keyword is expected as a value of the SAS
variable in the CONDATA= data set named in the COLUMN list specification. The
default value of the TYPEOBS= option is –TYPE– or –type–. If charstr is not a
valid SAS variable name, enclose it in quotes.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC INTPOINT might have
cause to issue the following message many times:

ERROR: The HEAD list variable value in obs i in ARCDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued
for only the first VERBOSE= such observations. After the ARCDATA= data set has
been read, PROC INTPOINT will issue the message

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the ARCDATA= data set have this error, PROC INTPOINT stops
and you have to fix the data. Imagine that this error is only a warning and PROC
INTPOINT proceeded to other operations such as reading the CONDATA= data set.
If PROC INTPOINT finds there are numerous errors when reading that data set, the
number of messages issued to the SAS log are also limited by the VERBOSE= option.

When PROC INTPOINT finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.

is issued. The value of vmin is the smallest value that should be specified for the
VERBOSE= option so that all messages are displayed if PROC INTPOINT is run
again with the same data and everything else (except VERBOSE=vmin) unchanged.

The default value for the VERBOSE= option is 12.

PROC INTPOINT Statement � 115

ZERO2=z
Z2=z

specifies the zero tolerance level used when determining whether the final solu-
tion has been reached. ZERO2= is also used when outputting the solution to the
CONOUT= data set. Values within z of zero are set to 0.0, where z is the value of
the ZERO2= option. Flows close to the lower flow bound or capacity of arcs are re-
assigned those exact values. If there are nonarc variables, values close to the lower or
upper value bound of nonarc variables are reassigned those exact values. When solv-
ing an LP problem, values close to the lower or upper value bound of LP variables
are reassigned those exact values.

The ZERO2= option works when determining whether optimality has been reached
or whether an element in the vector (∆xk,∆yk,∆sk) is less than or greater than zero.
It is crucial to know that when determining the maximal value for the step length α
in the formula

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

See the description of the PDSTEPMULT= option for more details on this computa-
tion.

Two values are deemed to be close if one is within z of the other. The default value
for the ZERO2= option is 0.000001. Any value specified for the ZERO2= option that
is < 0.0 or > 0.0001 is not valid.

ZEROTOL=z
specifies the zero tolerance used when PROC INTPOINT must compare any real
number with another real number, or zero. For example, if x and y are real numbers,
then for x to be considered greater than y, x must be at least y + z. The ZEROTOL=
option is used throughout any PROC INTPOINT run.

ZEROTOL=z controls the way PROC INTPOINT performs all double precision com-
parisons; that is, whether a double precision number is equal to, not equal to, greater
than (or equal to), or less than (or equal to) zero or some other double precision num-
ber. A double precision number is deemed to be the same as another such value if the
absolute difference between them is less than or equal to the value of the ZEROTOL=
option.

The default value for the ZEROTOL= option is 1.0E−14. You can specify the
ZEROTOL= option in the INTPOINT statement. Valid values for the ZEROTOL=
option must be > 0.0 and < 0.0001. Do not specify a value too close to zero as this
defeats the purpose of the ZEROTOL= option. Neither should the value be too large,
as comparisons might be incorrectly performed.

116 � Chapter 3. The INTPOINT Procedure

Interior Point Algorithm Options

FACT–METHOD=f
enables you to choose the type of algorithm used to factorize and solve the main
linear systems at each iteration of the interior point algorithm.

FACT–METHOD=LEFT–LOOKING is new for SAS 9.1.2. It uses algorithms de-
scribed in George, Liu, and Ng (2001). Left looking is one of the main methods used
to perform Cholesky optimization and, along with some recently developed imple-
mentation approaches, can be faster and require less memory than other algorithms.

Specify FACT–METHOD=USE–OLD if you want the procedure to use the only
factorization available prior to SAS 9.1.2.

TOLDINF=t
RTOLDINF=t

specifies the allowed amount of dual infeasibility. In the “Interior Point Algorithmic
Details” section on page 68, the vector infeasd is defined. If all elements of this
vector are ≤ t, the solution is considered dual feasible. infeasd is replaced by a
zero vector, making computations faster. This option is the dual equivalent to the
TOLPINF= option. Increasing the value of the TOLDINF= option too much can
lead to instability, but a modest increase can give the algorithm added flexibility and
decrease the iteration count. Valid values for t are greater than 1.0E−12. The default
is 1.0E−7.

TOLPINF=t
RTOLPINF=t

specifies the allowed amount of primal infeasibility. This option is the primal equiv-
alent to the TOLDINF= option. In the “Interior Point: Upper Bounds” section on
page 73, the vector infeasb is defined. In the “Interior Point Algorithmic Details”
section on page 68, the vector infeasc is defined. If all elements in these vectors
are ≤ t, the solution is considered primal feasible. infeasb and infeasc are replaced
by zero vectors, making computations faster. Increasing the value of the TOLPINF=
option too much can lead to instability, but a modest increase can give the algorithm
added flexibility and decrease the iteration count. Valid values for t are greater than
1.0E−12. The default is 1.0E−7.

TOLTOTDINF=t
RTOLTOTDINF=t

specifies the allowed total amount of dual infeasibility. In the “Interior Point
Algorithmic Details” section on page 68, the vector infeasd is defined. If∑n

i=1 infeasdi ≤ t, the solution is considered dual feasible. infeasd is replaced by
a zero vector, making computations faster. This option is the dual equivalent to the
TOLTOTPINF= option. Increasing the value of the TOLTOTDINF= option too much
can lead to instability, but a modest increase can give the algorithm added flexibility
and decrease the iteration count. Valid values for t are greater than 1.0E−12. The
default is 1.0E−7.

PROC INTPOINT Statement � 117

TOLTOTPINF=t
RTOLTOTPINF=t

specifies the allowed total amount of primal infeasibility. This option is the primal
equivalent to the TOLTOTDINF= option. In the “Interior Point: Upper Bounds”
section on page 73, the vector infeasb is defined. In the “Interior Point Algorithmic
Details” section on page 68, the vector infeasc is defined. If

∑n
i=1 infeasbi ≤ t and∑m

i=1 infeasci ≤ t, the solution is considered primal feasible. infeasb and infeasc

are replaced by zero vectors, making computations faster. Increasing the value of the
TOLTOTPINF= option too much can lead to instability, but a modest increase can
give the algorithm added flexibility and decrease the iteration count. Valid values for
t are greater than 1.0E−12. The default is 1.0E−7.

CHOLTINYTOL=c
RCHOLTINYTOL=c

specifies the cut-off tolerance for Cholesky factorization of the AΘA−1. If a diagonal
value drops below c, the row is essentially treated as dependent and is ignored in the
factorization. Valid values for c are between 1.0E−30 and 1.0E−6. The default value
is 1.0E−8.

DENSETHR=d
RDENSETHR=d

specifies the density threshold for Cholesky factorization. When the symbolic factor-
ization encounters a column of L (where L is the remaining unfactorized submatrix)
that has DENSETHR= proportion of nonzeros and the remaining part of L is at least
12 × 12, the remainder of L is treated as dense. In practice, the lower right part of
the Cholesky triangular factor L is quite dense and it can be computationally more
efficient to treat it as 100% dense. The default value for d is 0.7. A specification of
d ≤ 0.0 causes all dense processing; d ≥ 1.0 causes all sparse processing.

PDSTEPMULT=p
RPDSTEPMULT=p

specifies the step-length multiplier. The maximum feasible step-length chosen by the
interior point algorithm is multiplied by the value of the PDSTEPMULT= option.
This number must be less than 1 to avoid moving beyond the barrier. An actual step-
length greater than 1 indicates numerical difficulties. Valid values for p are between
0.01 and 0.999999. The default value is 0.99995.

In the “Interior Point Algorithmic Details” section on page 68, the solution of the next
iteration is obtained by moving along a direction from the current iteration’s solution:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the maximum feasible step-length chosen by the interior point algorithm.
If α ≤ 1, then α is reduced slightly by multiplying it by p. α is a value as large as
possible but ≤ 1.0 and not so large that an xk+1

i or sk+1
i of some variable i is “too

close” to zero.

118 � Chapter 3. The INTPOINT Procedure

PRSLTYPE=p
IPRSLTYPE=p

Preprocessing the linear programming problem often succeeds in allowing some vari-
ables and constraints to be temporarily eliminated from the resulting LP that must be
solved. This reduces the solution time and possibly also the chance that the optimizer
will run into numerical difficulties. The task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE=p, where p
can be -1, 0, 1, 2, or 3:

-1 Do not perform preprocessing. For most problems, specifying
PRSLTYPE=-1 is not recommended.

0 Given upper and lower bounds on each variable, the greatest and least con-
tribution to the row activity of each variable is computed. If these are
within the limits set by the upper and lower bounds on the row activity,
then the row is redundant and can be discarded. Otherwise, whenever pos-
sible, the bounds on any of the variables are tightened. For example, if all
coefficients in a constraint are positive and all variables have zero lower
bounds, then the row’s smallest contribution is zero. If the rhs value of this
constraint is zero, then if the constraint type is = or ≤, all the variables
in that constraint are fixed to zero. These variables and the constraint are
removed. If the constraint type is ≥, the constraint is redundant. If the
rhs is negative and the constraint is ≤, the problem is infeasible. If just
one variable in a row is not fixed, the row to used to impose an implicit
upper or lower bound on the variable and then this row is eliminated. The
preprocessor also tries to tighten the bounds on constraint right-hand sides.

1 When there are exactly two unfixed variables with coefficients in an equal-
ity constraint, one variable is solved in terms of the other. The problem will
have one less variable. The new matrix will have at least two fewer coef-
ficients and one less constraint. In other constraints where both variables
appear, two coefficients are combined into one. PRSLTYPE=0 reductions
are also done.

2 It may be possible to determine that an equality constraint is not constrain-
ing a variable. That is, if all variables are nonnegative, then x−

∑
i yi = 0

does not constrain x, since it must be nonnegative if all the yi’s are non-
negative. In this case, x is eliminated by subtracting this equation from all
others containing x. This is useful when the only other entry for x is in
the objective function. This reduction is performed if there is at most one
other nonobjective coefficient. PRSLTYPE=0 reductions are also done.

3 All possible reductions are performed. PRSLTYPE=3 is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are
found to be redundant and they too are eliminated, and as variable bounds and con-
straint right-hand sides are tightened, the LP to be optimized is modified to reflect
these changes. Another iteration of preprocessing of the modified LP may reveal
more variables and constraints that are eliminated, or tightened.

PROC INTPOINT Statement � 119

PRINTLEVEL2=p
is used when you want to see PROC INTPOINT’s progress to the optimum. PROC
INTPOINT will produce a table on the SAS log. A row of the table is generated
during each iteration and may consist of values of

• the affine step complementarity

• the complementarity of the solution for the next iteration

• the total bound infeasibility
∑n

i=1 infeasbi (see the infeasb array in the
“Interior Point: Upper Bounds” section on page 73)

• the total constraint infeasibility
∑m

i=1 infeasci (see the infeasc array in the
“Interior Point Algorithmic Details” section on page 68)

• the total dual infeasibility
∑n

i=1 infeasdi (see the infeasd array in the “Interior
Point Algorithmic Details” section on page 68)

As optimization progresses, the values in all columns should converge to zero.
If you specify PRINTLEVEL2=2, all columns will appear in the table. If
PRINTLEVEL2=1 is specified, only the affine step complementarity and the com-
plementarity of the solution for the next iteration will appear. Some time is saved by
not calculating the infeasibility values.

PRINTLEVEL2=2 is specified in all PROC INTPOINT runs in the “Examples” sec-
tion on page 160.

RTTOL=r
specifies the zero tolerance used during the ratio test of the interior point algorithm.
The ratio test determines α, the maximum feasible step length.

Valid values for r are greater than 1.0E−14. The default value is 1.0E−10.

In the “Interior Point Algorithmic Details” section on page 68, the solution of the next
iteration is obtained by moving along a direction from the current iteration’s solution:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the maximum feasible step-length chosen by the interior point algo-
rithm. If α ≤ 1, then α is reduced slightly by multiplying it by the value of the
PDSTEPMULT= option. α is a value as large as possible but ≤ 1.0 and not so large
that an xk+1

i or sk+1
i of some variable i is negative. When determining α, only nega-

tive elements of ∆x and ∆s are important.

RTTOL=r indicates a number close to zero so that another number n is considered
truly negative if n ≤ −r. Even though n < 0, if n > −r, n may be too close to zero
and may have the wrong sign due to rounding error.

120 � Chapter 3. The INTPOINT Procedure

Interior Point Algorithm Options: Stopping Criteria

MAXITERB=m
IMAXITERB=m

specifies the maximum number of iterations that the interior point algorithm can per-
form. The default value for m is 100. One of the most remarkable aspects of the
interior point algorithm is that for most problems, it usually needs to do a small num-
ber of iterations, no matter the size of the problem.

PDGAPTOL=p
RPDGAPTOL=p

specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in
the “Interior Point Algorithmic Details” section on page 68. If the relative gap
(duality gap/(cT x)) between the primal and dual objectives is smaller than the value
of the PDGAPTOL= option and both the primal and dual problems are feasible, then
PROC INTPOINT stops optimization with a solution that is deemed optimal. Valid
values for p are between 1.0E−12 and 1.0E−1. The default is 1.0E−7.

STOP–C=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 156.

STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 156.

STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

“Interior Point: Upper Bounds” section on page 73; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is <= s, optimization will stop. This option is discussed in the
“Stopping Criteria” section on page 156.

STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the

“Interior Point Algorithmic Details” section on page 68; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is <= s, optimization will stop. This option is discussed in the “Stopping Criteria”
section on page 156.

STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior

Point Algorithmic Details” section on page 68; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is <= s, opti-

PROC INTPOINT Statement � 121

mization will stop. This option is discussed in the “Stopping Criteria” section on
page 156.

AND–STOP–C=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, and the other
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 156.

AND–STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is <= s, and the other
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 156.

AND–STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

“Interior Point: Upper Bounds” section on page 73; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is <= s, and the other conditions related to other AND–STOP
parameters are also satisfied, optimization will stop. This option is discussed in the
“Stopping Criteria” section on page 156.

AND–STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the

“Interior Point Algorithmic Details” section on page 68; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is <= s, and the other conditions related to other AND–STOP parameters are also
satisfied, optimization will stop. This option is discussed in the “Stopping Criteria”
section on page 156.

AND–STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior

Point Algorithmic Details” section on page 68; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is <= s, and the
other conditions related to other AND–STOP parameters are also satisfied, optimiza-
tion will stop. This option is discussed in the “Stopping Criteria” section on page
156.

KEEPGOING–C=s
is used to determine whether optimization should stop. When a stopping condition is
met, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 156.

122 � Chapter 3. The INTPOINT Procedure

KEEPGOING–DG=s
is used to determine whether optimization should stop. When a stopping condition
is met, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 156.

KEEPGOING–IB=s
is used to determine whether optimization should stop. When a stopping con-
dition is met, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in

the “Interior Point: Upper Bounds” section on page 73; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in
the “Stopping Criteria” section on page 156.

KEEPGOING–IC=s
is used to determine whether optimization should stop. When a stopping condi-
tion is met, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in

the “Interior Point Algorithmic Details” section on page 68; this value appears in
the Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is > s, optimization will continue. This option is discussed in the “Stopping Criteria”
section on page 156.

KEEPGOING–ID=s
is used to determine whether optimization should stop. When a stopping condition
is met, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior

Point Algorithmic Details” section on page 68; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is > s, optimiza-
tion will continue. This option is discussed in the “Stopping Criteria” section on page
156.

AND–KEEPGOING–C=s
is used to determine whether optimization should stop. When a stopping condition is
met, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the other
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the “Stopping Criteria” section on
page 156.

AND–KEEPGOING–DG=s
is used to determine whether optimization should stop. When a stopping condition
is met, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the other
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the “Stopping Criteria” section on
page 156.

AND–KEEPGOING–IB=s
is used to determine whether optimization should stop. When a stopping condition is
met, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the “Interior

Point: Upper Bounds” section on page 73; this value appears in the Tot–infeasb

COEF Statement � 123

column in the table produced when you specify PRINTLEVEL2=2) is > s, and the
other conditions related to other AND–KEEPGOING parameters are also satisfied,
optimization will continue. This option is discussed in the “Stopping Criteria” section
on page 156.

AND–KEEPGOING–IC=s
is used to determine whether optimization should stop. When a stopping condi-
tion is met, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in

the “Interior Point Algorithmic Details” section on page 68; this value appears in
the Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is > s, and the other conditions related to other AND–KEEPGOING parameters are
also satisfied, optimization will continue. This option is discussed in the “Stopping
Criteria” section on page 156.

AND–KEEPGOING–ID=s
is used to determine whether optimization should stop. When a stopping condition
is met, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior

Point Algorithmic Details” section on page 68; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is > s, and the
other conditions related to other AND–KEEPGOING parameters are also satisfied,
optimization will continue. This option is discussed in the “Stopping Criteria” section
on page 156.

CAPACITY Statement

CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set
that contains the maximum feasible flow or capacity of the network arcs. If an ob-
servation contains nonarc variable information, the CAPACITY list variable is the
upper value bound for the nonarc variable named in the NAME list variable in that
observation.

When solving an LP, the CAPACITY statement identifies the SAS variable in the
ARCDATA= data set that contains the maximum feasible value of the LP variables.

The CAPACITY list variable must have numeric values. It is not necessary to have
a CAPACITY statement if the name of the SAS variable is –CAPAC– , –UPPER– ,
–UPPERBD, or –HI– .

COEF Statement

COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The
COEF list can contain more than one SAS variable, each of which must have numeric
values. If the COEF statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with –COE are used. The number of SAS

124 � Chapter 3. The INTPOINT Procedure

variables in the COEF list must be no greater than the number of SAS variables in
the ROW list.

The values of the COEF list variables in an observation can be interpreted differently
than these variables’ values in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, bound data, constraint
type data, or rhs data. If the COLUMN list variable has a value that is a name of an
arc or a nonarc variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

When solving an LP, the values of the COEF list variables in an observation can be
interpreted differently than these variables’ values in other observations. The val-
ues can be coefficients in the constraints, objective function coefficients, bound data,
constraint type data, or rhs data. If the COLUMN list variable has a value that is a
name of an LP variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable ;

The COLUMN list is used with the sparse input format of the CONDATA= data set.

This list consists of one SAS variable in the CONDATA= data set that has as values
the names of arc variables, nonarc variables, or missing values. When solving an LP,
this list consists of one SAS variable in the CONDATA= data set that has as values
the names of LP variables, or missing values. Some, if not all, of these values also
can be values of the NAME list variables of the ARCDATA= data set. The COLUMN
list variable can have other special values (Refer to the TYPEOBS= and RHSOBS=
options). If the COLUMN list is not specified after the PROC INTPOINT statement,
the CONDATA= data set is searched and a SAS variable named –COLUMN– is
used. The COLUMN list variable must have character values.

COST Statement

COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that
contains the per unit flow cost through an arc. If an observation contains nonarc
variable information, the value of the COST list variable is the objective function
coefficient of the nonarc variable named in the NAME list variable in that observation.

If solving an LP, the COST statement identifies the SAS variable in the ARCDATA=
data set that contains the per unit objective function coefficient of an LP variable
named in the NAME list variable in that observation.

The COST list variable must have numeric values. It is not necessary to specify a
COST statement if the name of the SAS variable is –COST– or –LENGTH– .

ID Statement � 125

DEMAND Statement

DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set
that contains the demand at the node named in the corresponding HEADNODE list
variable. The DEMAND list variable must have numeric values. It is not necessary
to have a DEMAND statement if the name of this SAS variable is –DEMAND– . See
the “Missing S Supply and Missing D Demand Values” section on page 145 for cases
when the SUPDEM list variable values can have other values. There should be no
DEMAND statement if you are solving an LP.

HEADNODE Statement

HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that contains the names of nodes toward which arcs are directed.
It is not necessary to have a HEADNODE statement if the name of the SAS variable
is –HEAD– or –TO– . The HEADNODE variable must have character values.

There should be no HEAD statement if you are solving an LP.

ID Statement

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC INTPOINT
but are read by the procedure and written in the CONOUT= data set. For example,
imagine a network used to model a distribution system. The SAS variables listed on
the ID statement can contain information on the type of vehicle, the transportation
mode, the condition of the road, the time to complete the journey, the name of the
driver, or other ancillary information useful for report writing or describing facets of
the operation that do not have bearing on the optimization. The ID variables can be
character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the ARCDATA= data set not in any list are dropped and do not
appear in the CONOUT= data set.

126 � Chapter 3. The INTPOINT Procedure

LO Statement

LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that con-
tains the minimum feasible flow or lower flow bound for arcs in the network. If an
observation contains nonarc variable information, the LO list variable has the value
of the lower bound for the nonarc variable named in the NAME list variable. If solv-
ing an LP, the LO statement identifies the SAS variable in the ARCDATA= data set
that contains the lower value bound for LP variables. The LO list variables must have
numeric values. It is not necessary to have a LO statement if the name of this SAS
variable is –LOWER– , –LO– , –LOWERBD, or –MINFLOW.

NAME Statement

NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable in an NPSC, or each variable in an LP, that has data
in the CONDATA= data set must have a unique name. This name is a value of
the NAME list variable. The NAME list variable must have character values (see
the NAMECTRL= option in the PROC INTPOINT statement for more information).
It is not necessary to have a NAME statement if the name of this SAS variable is
–NAME– .

NODE Statement

NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has
names of nodes as values. These values must also be values of the TAILNODE list
variable, the HEADNODE list variable, or both. If this list is not explicitly specified,
the NODEDATA= data set is searched for a SAS variable with the name –NODE– .
The NODE list variable must have character values.

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC INTPOINT is to stop immediately. The
solution is not saved in the CONOUT= data set. The QUIT statement has no options.

RUN Statement � 127

RHS Statement

RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is
used. The values of the SAS variable specified in the RHS list are constraint right-
hand-side values. If the RHS list is not specified, the CONDATA= data set is searched
and a SAS variable with the name –RHS– is used. The RHS list variable must have
numeric values. If there is no RHS list and no SAS variable named –RHS– , all
constraints are assumed to have zero right-hand-side values.

ROW Statement

ROW variables ;

The ROW list is used when either the sparse or the dense format of the CONDATA=
data set is being used. SAS variables in the ROW list have values that are constraint
or special row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In
this case, if a ROW list is not specified, the CONDATA= data set is searched and the
SAS variable with the name –ROW– or –CON– is used. If that search fails to find
a suitable SAS variable, data for each constraint must reside in only one observation.

If the sparse data format is used and the ROW statement is not specified, the
CONDATA= data set is searched and SAS variables with names beginning with
–ROW or –CON are used. The number of SAS variables in the ROW list must
not be less than the number of SAS variables in the COEF list. The ith ROW list
variable is paired with the ith COEF list variable. If the number of ROW list vari-
ables is greater than the number of COEF list variables, the last ROW list variables
have no COEF partner. These ROW list variables that have no corresponding COEF
list variable are used in observations that have a TYPE list variable value. All ROW
list variable values are tagged as having the type indicated. If there is no TYPE list
variable, all ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement causes optimization to be started. The RUN statement has no
options. If PROC INTPOINT is called and is not terminated because of an error
or a QUIT statement, and you have not used a RUN statement, a RUN statement
is assumed implicitly as the last statement of PROC INTPOINT. Therefore, PROC
INTPOINT reads that data, performs optimization, and saves the optimal solution in
the CONOUT= data set.

128 � Chapter 3. The INTPOINT Procedure

SUPDEM Statement

SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set,
contains supply and demand information for the nodes in the NODE list. A positive
SUPDEM list variable value s (s > 0) denotes that the node named in the NODE list
variable can supply s units of flow. A negative SUPDEM list variable value −d (d >
0) means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name –SUPDEM– or –SD– in the NODEDATA=
data set is used as the SUPDEM variable. If a node is a transshipment node (neither
a supply nor a demand node), an observation associated with this node need not be
present in the NODEDATA= data set. If present, the SUPDEM list variable value
must be zero or a missing value. See the “Missing S Supply and Missing D Demand
Values” section on page 145 for cases when the SUPDEM list variable values can
have other values.

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that
contains the supply at the node named in that observation’s TAILNODE list variable.
If a tail node does not supply flow, use zero or a missing value for the observation’s
SUPPLY list variable value. If a tail node has supply capability, a missing value
indicates that the supply quantity is given in another observation. It is not necessary
to have a SUPPLY statement if the name of this SAS variable is –SUPPLY– . See
the “Missing S Supply and Missing D Demand Values” section on page 145 for cases
when the SUPDEM list variable values can have other values. There should be no
SUPPLY statement if you are solving an LP.

TAILNODE Statement

TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable that must (when solving an
NPSC problem) be present in the ARCDATA= data set that has as values the names
of tail nodes of arcs. The TAILNODE variable must have character values. It is not
necessary to have a TAILNODE statement if the name of the SAS variable is –TAIL–
or –FROM– . If the TAILNODE list variable value is missing, it is assumed that the
observation of the ARCDATA= data set contains information concerning a nonarc
variable. There should be no TAILNODE statement if you are solving an LP.

TYPE Statement � 129

TYPE Statement

TYPE variable ;

CONTYPE variable ;

The TYPE list, which is optional, names the SAS variable that has as values keywords
that indicate either the constraint type for each constraint or the type of special rows
in the CONDATA= data set. The values of the TYPE list variable also indicate, in
each observation of the CONDATA= data set, how values of the VAR or COEF list
variables are to be interpreted and how the type of each constraint or special row
name is determined. If the TYPE list is not specified, the CONDATA= data set is
searched and a SAS variable with the name –TYPE– is used. Valid keywords for the
TYPE variable are given below. If there is no TYPE statement and no other method
is used to furnish type information (see the DEFCONTYPE= option), all constraints
are assumed to be of the type “less than or equal to” and no special rows are used.
The TYPE list variable must have character values and can be used when the data in
the CONDATA= data set is in either the sparse or the dense format. If the TYPE list
variable value has a * as its first character, the observation is ignored because it is a
comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the
characters that PROC INTPOINT uses to determine what type the value suggests.
You need to have at least these characters. In the following list, the minimal TYPE
list variable values have additional characters to aid you in remembering these values.

< less than or equal to (≤)
= equal to (=)
> greater than or equal to (≥)
CAPAC capacity
COST cost
EQ equal to
FREE free row (used only for linear programs solved by interior point)
GE greater than or equal to
LE less than or equal to
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint
UPPCOST reserved for future use
UNREST unrestricted variable (used only for linear programs solved by in-

terior point)
UPPER upper value bound or capacity; second letter must not be N

130 � Chapter 3. The INTPOINT Procedure

The valid TYPE list variable values in function order are

• LE less than or equal to (≤)

• EQ equal to (=)

• GE greater than or equal to (≥)

• COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

• CAPAC
UPPER
capacity or upper value bound

• LOWERBD
LOWblank
lower flow or value bound

• RHS rhs of constraint

• TYPE type of constraint

A TYPE list variable value that has the first character ∗ causes the observation to be
treated as a comment. If the first character is a negative sign, then≤ is the type. If the
first character is a zero, then = is the type. If the first character is a positive number,
then ≥ is the type.

VAR Statement

VAR variables ;

The VAR variable list is used when the dense data format is used for the CONDATA=
data set. The names of these SAS variables are also names of the arc and nonarc
variables that have data in the CONDATA= data set. If solving an LP, the names
of these SAS variables are also names of the LP variables. If no explicit VAR list
is specified, all numeric SAS variables in the CONDATA= data set that are not in
other SAS variable lists are put onto the VAR list. The VAR list variables must have
numeric values. The values of the VAR list variables in some observations can be
interpreted differently than in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, or bound data. When
solving an LP, the values of the SAS variables in the VAR list can be constraint
coefficients, objective function coefficients, or bound data. How these numeric values
are interpreted depends on the value of each observation’s TYPE or ROW list variable
value. If there are no TYPE list variables, the VAR list variable values are all assumed
to be side constraint coefficients.

Input Data Sets � 131

Details
Input Data Sets

PROC INTPOINT is designed so that there are as few rules as possible that you
must obey when inputting a problem’s data. Raw data are acceptable. This should
cut the amount of processing required to groom the data before it is input to PROC
INTPOINT. Data formats are so flexible that, due to space restrictions, all possible
forms for a problem’s data are not shown here. Try any reasonable form for your
problem’s data; it should be acceptable. PROC INTPOINT will outline its objections.

You can supply the same piece of data several ways. You do not have to restrict
yourself to using any particular one. If you use several ways, PROC INTPOINT
checks that the data are consistent each time that the data are encountered. After
all input data sets have been read, data are merged so that the problem is described
completely. The observations can be in any order.

ARCDATA= Data Set

See the “Getting Started: NPSC Problems” section on page 84 and the “Introductory
NPSC Example” section on page 85 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one
observation. For example, consider an arc directed from node A toward node B that
has a cost of 50, capacity of 100, and lower flow bound of 10 flow units. Some
possible observations in the ARCDATA= data set are as follows:

tail _head_ _cost_ _capac_ _lo_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable that has an upper bound of 100, a lower bound of
10, and an objective function coefficient of 50, the –TAIL– and –HEAD– values are
missing.

When solving an LP that has an LP variable named my–var with an upper bound of
100, a lower bound of 10, and an objective function coefficient of 50, some possible
observations in the ARCDATA= data set are

name _cost_ _capac_ _lo_
my_var 50 . .
my_var . 100 .
my_var . . 10
my_var 50 100 .
my_var . 100 10
my_var 50 . 10
my_var 50 100 10

132 � Chapter 3. The INTPOINT Procedure

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense
format, you will receive a warning if PROC INTPOINT finds a constraint row that
has no coefficients. You will also be warned if any nonarc or LP variable has no
constraint coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong
to the VAR list. The names of the SAS variables belonging to this list have names
of arc and nonarc variables or, if solving an LP, names of the LP variables. These
names can be values of the SAS variables in the ARCDATA= data set that belong
to the NAME list, or names of nonarc variables, or names in the form tail–head, or
any combination of these three forms. Names in the form tail–head are default arc
names, and if you use them, you must specify node names in the ARCDATA= data
set (values of the TAILNODE and HEADNODE list variables).

The CONDATA= data set can have three other SAS variables belonging, respectively,
to the ROW, the TYPE, and the RHS lists. The CONDATA= data set of the oil
industry example in the “Introductory NPSC Example” section on page 85 uses the
dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data
for three constraints. This data set was used in the “Introductory NPSC Example”
section on page 85.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

You can use nonconstraint type values to furnish data on costs, capacities, lower
flow bounds (and, if there are nonarc or LP variables, objective function coefficients
and upper and lower bounds). You need not have such (or as much) data in the
ARCDATA= data set. The first three observations in the following data set are exam-
ples of observations that provide cost, capacity, and lower bound data.

Input Data Sets � 133

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

If a ROW list variable is used, the data for a constraint can be spread over more
than one observation. To illustrate, the data for the first constraint (which is called
con1) and the cost and capacity data (in special rows called costrow and caprow,
respectively) are spread over more than one observation in the following data set.

data cond1c;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of these
are costrow and caprow in the last data set. It should be restated that in any of the
input data sets of PROC INTPOINT, the order of the observations does not matter.
However, the CONDATA= data set can be read more quickly if PROC INTPOINT
knows what type of constraint or special row a ROW list variable value is. For ex-
ample, when the first observation is read, PROC INTPOINT does not know whether
costrow is a constraint or special row and how to interpret the value 63 for the arc
with the name m–e–ref1. When PROC INTPOINT reads the second observation,
it learns that costrow has cost type and that the values 81 and 200 are costs. When
the entire CONDATA= data set has been read, PROC INTPOINT knows the type of
all special rows and constraints. Data that PROC INTPOINT had to set aside (such
as the first observation 63 value and the costrow ROW list variable value, which at
the time had unknown type, but is subsequently known to be a cost special row) is
reprocessed. During this second pass, if a ROW list variable value has unassigned

134 � Chapter 3. The INTPOINT Procedure

constraint or special row type, it is treated as a constraint with DEFCONTYPE= (or
DEFCONTYPE= default) type. Associated VAR list variable values are coefficients
of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When
the sparse data format of the CONDATA= data set is used, only nonzero constraint
coefficients must be specified. Remember to specify the SPARSECONDATA option
in the PROC INTPOINT statement. With the sparse method of specifying constraint
information, the names of arc and nonarc variables or, if solving an LP, the names of
LP variables do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the
“Introductory NPSC Example” section on page 85 is displayed below.

title ’Setting Up Condata = Cond2 for PROC INTPOINT’;
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values –type– and –rhs– are the default
values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of
constraints (con3 and con4) is zero. The third to last observation has the value
–type– for the COLUMN list variable. The –ROW1 variable value is con1, and
the –COEF1– variable has the value 1. This indicates that the constraint con1 is
greater than or equal to type (because the value 1 is greater than zero). Similarly,
the data in the second to last observation’s –ROW2 and –COEF2 variables indicate
that con2 is an equality constraint (0 equals zero).

Input Data Sets � 135

An alternative, using a TYPE list variable, is

title ’Setting Up Condata = Cond3 for PROC INTPOINT’;
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last 2 obser-
vations in the data set cond3, for instance), the constraints named in the ROW list
variables all have the constraint type indicated by the value in the TYPE list variable.
It is for this type of observation that you are allowed more ROW list variables than
COEF list variables. If corresponding COEF list variables are not missing (for ex-
ample, the last observation in the data set cond3), these values are the rhs values of
those constraints. Therefore, you can specify both constraint type and rhs in the same
observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or
nonarc variable, the COEF list variable values are coefficient values for that arc or
nonarc variable in the constraints indicated in the corresponding ROW list variables.
If in this same observation the TYPE list variable contains a constraint type, all con-
straints named in the ROW list variables in that observation have this constraint type
(for example, the first observation in the data set cond3). Therefore, you can specify
both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from hav-
ing to include in the data that con3 and con4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented
in the ARCDATA= data set. Alternatively, you could have used the following input
data sets. The arcd2 data set has only two SAS variables. For each arc, there is an
observation in which the arc’s tail and head node are specified.

title3 ’Setting Up Arcdata = Arcd2 for PROC INTPOINT’;
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas

136 � Chapter 3. The INTPOINT Procedure

r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

title ’Setting Up Condata = Cond4 for PROC INTPOINT’;
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

Input Data Sets � 137

The first observation in the cond4 data set defines con1 and con2 as greater than
or equal to (≥) constraints that both (by coincidence) have rhs values of -15. The
second observation defines the special row costrow as a cost row. When costrow
is a ROW list variable value, the associated COEF list variable value is interpreted
as a cost or objective function coefficient. PROC INTPOINT has to do less work
if constraint names and special rows are defined in observations near the top of a
data set, but this is not a strict requirement. The fourth to ninth observations contain
constraint coefficient data. Observations seven and nine have TYPE list variable
values that indicate that constraints con3 and con4 are equality constraints. The last
five observations contain lower flow bound data. Observations that have an arc or
nonarc variable name in the COLUMN list variable, a nonconstraint type TYPE list
variable value, and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.

title ’Setting Up Condata = Cond5 for PROC INTPOINT’;
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

138 � Chapter 3. The INTPOINT Procedure

Converting from an NPSC to an LP Problem

If you have data for a linear programming program that has an embedded network, the
steps required to change that data into a form that is acceptable by PROC INTPOINT
are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these
constraints (a submatrix of the LP’s constraint coefficient matrix) has only two
nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s sup-
plies and demands. Use this information to create the NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient
matrix. The arc is directed from the node associated with the row that has
the 1 element in it and directed toward to the node associated with the row
that has the −1 element in it. Set up the ARCDATA= data set that has two
SAS variables. This data set could resemble ARCDATA=arcd2. These will
eventually be the TAILNODE and HEADNODE list variables when PROC
INTPOINT is used. Each observation consists of the tail and head node of
each arc.

5. Remove from the data of the linear program all data concerning the nodal flow
conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably
resemble CONDATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse for-
mats. a1, b1, b2, b3 and c1 have as a –COLUMN– variable value either the name of
an arc (possibly in the form tail–head) or the name of a nonarc variable (if you are
solving an NPSC), or the name of the LP variable (if you are solving an LP). These
are collectively referred to as variable in the tables that follow.

Input Data Sets � 139

• If there is no TYPE list variable in the CONDATA= data set, the problem must
be constrained and there is no nonconstraint data in the CONDATA= data set:

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed
to make problem generation easier.

• If there are no ROW list variables in the data set, the problem has no constraints
and the information is nonconstraint data. There must be a TYPE list variable
and only one COEF list variable in this case. The COLUMN list variable has as
values the names of arcs or nonarc variables and must not have missing values
or special row names as values:

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

• Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is in form c4 or c5, and the –COEFx– values are missing,
the constraint is assigned the type data specified in the –TYPE– variable.

140 � Chapter 3. The INTPOINT Procedure

• Using a TYPE list variable for arc and nonarc variable data implies the follow-
ing:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

The observations of the form d1 to d5 can have ROW list variable values.
Observation d4 must have ROW list variable values. The ROW value is put
into the ROW name tree so that when dealing with observation d4 or d5, the
COEF list variable value is interpreted according to the type of ROW list vari-
able value. For example, the following three observations define the –ROWx–
variable values up–row, lo–row, and co–row as being an upper value bound
row, lower value bound row, and cost row, respectively:

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC INTPOINT is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the
COLUMN list variable equals the value of the TYPEOBS= option or the de-
fault value –TYPE– , the TYPE list variable value is ignored.

NODEDATA= Data Set

See the “Getting Started: NPSC Problems” section on page 84 and the “Introductory
NPSC Example” section on page 85 for a description of this input data set.

Output Data Set � 141

Output Data Set

For NPSC problems, the procedure determines the flow that should pass through each
arc as well as the value that should be assigned to each nonarc variable. The goal is
that the minimum flow bounds, capacities, lower and upper value bounds, and side
constraints are not violated. This goal is reached when total cost incurred by such a
flow pattern and value assignment is feasible and optimal. The solution found must
also conserve flow at each node.

For LP problems, the procedure determines the value that should be assigned to each
variable. The goal is that the lower and upper value bounds and the constraints are not
violated. This goal is reached when the total cost incurred by such a value assignment
is feasible and optimal.

The CONOUT= data set can be produced and contains a solution obtained after per-
forming optimization.

CONOUT= Data Set

The variables in the CONOUT= data set depend on whether or not the problem has a
network component. If the problem has a network component, the variables and their
possible values in an observation are as follows:

–FROM– a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

–TO– a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

–COST– the cost of an arc or the objective function coefficient of a nonarc
variable

–CAPAC– the capacity of an arc or upper value bound of a nonarc variable
–LO– the lower flow bound of an arc or lower value bound of a nonarc

variable
–NAME– a name of an arc or nonarc variable
–SUPPLY– the supply of the tail node of the arc in the observation. This is

a missing value if an observation has information about a nonarc
variable.

–DEMAND– the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

–FLOW– the flow through the arc or value of the nonarc variable
–FCOST– flow cost, the product of –COST– and –FLOW–
–RCOST– the reduced cost of the arc or nonarc variable
–ANUMB– the number of the arc (positive) or nonarc variable (nonpositive);

used for warm starting PROC NETFLOW
–TNUMB– the number of the tail node in the network basis spanning tree;

used for warm starting PROC NETFLOW
–STATUS– the status of the arc or nonarc variable

142 � Chapter 3. The INTPOINT Procedure

If the problem does not have a network component, the variables and their possible
values in an observation are as follows:

–OBJFN– the objective function coefficient of a variable
–UPPERBD the upper value bound of a variable
–LOWERBD the lower value bound of a variable
–NAME– the name of a variable
–VALUE– the value of the variable
–FCOST– objective function value for that variable; the product of

–OBJFN– and –VALUE–

The variables present in the ARCDATA= data set are present in a CONOUT= data
set. For example, if there is a variable called tail in the ARCDATA= data set and you
specified the SAS variable list

from tail;

then tail is a variable in the CONOUT= data sets instead of –FROM– . Any ID list
variables also appear in the CONOUT= data sets.

Case Sensitivity

Whenever the INTPOINT procedure has to compare character strings, whether they
are node names, arc names, nonarc names, LP variable names, or constraint names,
if the two strings have different lengths, or on a character by character basis the
character is different or has different cases, PROC INTPOINT judges the character
strings to be different.

Not only is this rule enforced when one or both character strings are obtained as
values of SAS variables in PROC INTPOINT’s input data sets, it also should be
obeyed if one or both character strings were originally SAS variable names, or were
obtained as the values of options or statements parsed to PROC INTPOINT. For ex-
ample, if the network has only one node that has supply capability, or if you are
solving a MAXFLOW or SHORTPATH problem, you can indicate that node using
the SOURCE= option. If you specify

proc intpoint source=NotableNode

then PROC INTPOINT looks for a value of the TAILNODE list variable that is
NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase.
The name of the node searched for would be NOTABLENODE, even if this was your
SAS code:

proc intpoint source=NotableNode

Flow and Value Bounds � 143

If you want PROC INTPOINT to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software
Version 6, or you are running SAS software Version 7 onward and have specified

options validvarname=v6;

all values of the SAS variables that belong to the NAME list are uppercased. This is
because the SAS System has uppercased all SAS variable names, particularly those
in the VAR list of the CONDATA= data set.

Entities that contain blanks must be enclosed in quotes.

Loop Arcs

Loop arcs (which are arcs directed toward nodes from which they originate) are pro-
hibited. Rather, introduce a dummy intermediate node in loop arcs. For example,
replace arc (A,A) with (A,B) and (B,A); B is the name of a new node, and it must be
distinct for each loop arc.

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC INTPOINT
checks to ensure there are no such arcs before proceeding with the optimization.
Introduce a new dummy intermediate node in multiple arcs. This node must be dis-
tinct for each multiple arc. For example, if some network has three arcs directed
from node A toward node B, then replace one of these three with arcs (A,C) and
(C,B) and replace another one with (A,D) and (D,B). C and D are new nodes added
to the network.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities
and lower flow bounds are permitted. If both arc capacities and lower flow bounds
are negative, the lower flow bound must be at least as negative as the capacity. An arc
(A,B) that has a negative flow of −f units can be interpreted as an arc that conveys f
units of flow from node B to node A.

The upper and lower value bound of a nonarc variable can be equal. Negative upper
and lower bounds are permitted. If both are negative, the lower bound must be at least
as negative as the upper bound.

When solving an LP, the upper and lower value bounds of an LP variable can be equal.
Negative upper and lower bounds are permitted. If both are negative, the lower bound
must be at least as negative as the upper bound.

In short, for any problem to be feasible, a lower bound must be ≤ the associated
upper bound.

144 � Chapter 3. The INTPOINT Procedure

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC INTPOINT more than once, PROC
INTPOINT checks for consistency so that no conflict exists concerning the data val-
ues. For example, if the cost of some arc is seen to be one value and as more data are
read, the cost of the same arc is seen to be another value, PROC INTPOINT issues
an error message on the SAS log and stops. There are two exceptions to this:

• The bounds of arcs and nonarc variables, or the bounds of LP variables, are
made as tight as possible. If several different values are given for the lower
flow bound of an arc, the greatest value is used. If several different values are
given for the lower bound of a nonarc or LP variable, the greatest value is used.
If several different values are given for the capacity of an arc, the smallest value
is used. If several different values are given for the upper bound of a nonarc or
LP variable, the smallest value is used.

• Several values can be given for inequality constraint right-hand sides. For a
particular constraint, the lowest rhs value is used for the rhs if the constraint is
of less than or equal to type. For a particular constraint, the greatest rhs value
is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility

Before optimization commences, PROC INTPOINT tests to ensure that the problem
is not infeasible by ensuring that, with respect to supplies, demands, and arc flow
bounds, flow conservation can be obeyed at each node:

• Let IN be the sum of lower flow bounds of arcs directed toward a node plus
the node’s supply. Let OUT be the sum of capacities of arcs directed from that
node plus the node’s demand. If IN exceeds OUT, not enough flow can leave
the node.

• Let OUT be the sum of lower flow bounds of arcs directed from a node plus the
node’s demand. Let IN be the total capacity of arcs directed toward the node
plus the node’s supply. If OUT exceeds IN, not enough flow can arrive at the
node.

Reasons why a network problem can be infeasible are similar to those previously
mentioned but apply to a set of nodes rather than for an individual node.

Consider the network illustrated in Figure 3.10.

Missing S Supply and Missing D Demand Values � 145

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \
/ \

/ \
NODE_3 NODE_4

supply=100 \ / demand=120
\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

Figure 3.10. An Infeasible Network

The demand of NODE–4 is 120. That can never be satisfied because the maximal
flow through arcs (NODE–1, NODE–2) and (NODE–5, NODE–6) is 117. More
specifically, the implicit supply of NODE–2 and NODE–6 is only 117, which is
insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE–1, NODE–2) and (NODE–5,
NODE–6) are greater than the flow that can reach the tail nodes of these arcs, that,
by coincidence, is the total supply of the network. The implicit demand of nodes
NODE–1 and NODE–5 is 110, which is greater than the amount of flow that can
reach these nodes.

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node but you
want the node to supply or demand the optimal number of flow units. To indicate
that a node is such a supply node, use a missing S value in the SUPPLY list variable
in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set.

Suppose the oil example in the “Introductory NPSC Example” section on page 85 is
changed so that crude oil can be obtained from either the Middle East or U.S.A. in
any amounts. You should specify that the node middle east is a supply node, but you
do not want to stipulate that it supplies 100 units, as before. The node u.s.a. should
also remain a supply node, but you do not want to stipulate that it supplies 80 units.
You must specify that these nodes have missing S supply capabilities:

title ’Oil Industry Example’;
title3 ’Crude Oil can come from anywhere’;
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S

146 � Chapter 3. The INTPOINT Procedure

servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The following PROC INTPOINT run uses the same ARCDATA= and CONDATA=
data sets used in the “Introductory NPSC Example” section on page 85:

proc intpoint
bytes=100000
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

proc print;
var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 7.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from the

problem.
NOTE: The preprocessor eliminated 23 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 11.

Missing S Supply and Missing D Demand Values � 147

NOTE: The preprocessor eliminated 9 variables from the
problem.

NOTE: 2 columns, 0 rows and 2 coefficients were added to
the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 16 nonzero elements in A * A transpose.
NOTE: Of the 9 rows and columns, 4 are sparse.
NOTE: There are 11 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 5 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective = 50075.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.
NOTE: There were 6 observations read from the data set

WORK.MISS_S.
NOTE: There were 4 observations read from the data set

WORK.COND1.

The CONOUT= data set is shown in Figure 3.11.

Oil Industry Example

Crude Oil can come from anywhere

Obs _from_ _to_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 refinery 1 r1 200 175 50 145.000 29000.00
2 refinery 2 r2 220 100 35 35.000 7700.00
3 r1 ref1 diesel 0 75 0 36.250 0.00
4 r1 ref1 gas 0 140 0 108.750 0.00
5 r2 ref2 diesel 0 75 0 8.750 0.00
6 r2 ref2 gas 0 100 0 26.250 0.00
7 middle east refinery 1 63 95 20 20.000 1260.00
8 u.s.a. refinery 1 55 99999999 0 125.000 6875.00
9 middle east refinery 2 81 80 10 10.000 810.00
10 u.s.a. refinery 2 49 99999999 0 25.000 1225.00
11 ref1 diesel servstn1 diesel 18 99999999 0 30.000 540.00
12 ref2 diesel servstn1 diesel 36 99999999 0 0.000 0.00
13 ref1 gas servstn1 gas 15 70 0 68.750 1031.25
14 ref2 gas servstn1 gas 17 35 5 26.250 446.25
15 ref1 diesel servstn2 diesel 17 99999999 0 6.250 106.25
16 ref2 diesel servstn2 diesel 23 99999999 0 8.750 201.25
17 ref1 gas servstn2 gas 22 60 0 40.000 880.00
18 ref2 gas servstn2 gas 31 99999999 0 0.000 0.00

========
50075.00

Figure 3.11. Missing S SUPDEM values in NODEDATA

148 � Chapter 3. The INTPOINT Procedure

The optimal supplies of nodes middle east and u.s.a. are 30 and 150 units, re-
spectively. For this example, the same optimal solution is obtained if these nodes had
supplies less than these values (each supplies 1 unit, for example) and the THRUNET
option was specified in the PROC INTPOINT statement. With the THRUNET option
active, when total supply exceeds total demand, the specified nonmissing demand
values are the lowest number of flow units that must be absorbed by the correspond-
ing node. This is demonstrated in the following PROC INTPOINT run. The missing
S is most useful when nodes are to supply optimal numbers of flow units and it turns
out that for some nodes, the optimal supply is 0.

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc intpoint
bytes=100000
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

proc print;
var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0
as in the last run:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .

Missing S Supply and Missing D Demand Values � 149

NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 7.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from the

problem.
NOTE: The preprocessor eliminated 23 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 11.
NOTE: The preprocessor eliminated 9 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 16 nonzero elements in A * A transpose.
NOTE: Of the 9 rows and columns, 4 are sparse.
NOTE: There are 11 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 5 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective = 50075.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.
NOTE: There were 6 observations read from the data set

WORK.MISS_S_X.
NOTE: There were 4 observations read from the data set

WORK.COND1.

If total supply exceeds total demand, any missing S values are ignored. If total de-
mand exceeds total supply, any missing D values are ignored.

150 � Chapter 3. The INTPOINT Procedure

Balancing Total Supply and Total Demand
When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC INTPOINT
adds an extra node (called the excess node) to the problem and sets the demand at
that node equal to the difference between total supply and total demand. There are
three ways that this excess node can be joined to the network. All three ways entail
PROC INTPOINT generating a set of arcs (henceforth referred to as the generated
arcs) that are directed toward the excess node. The total amount of flow in generated
arcs equals the demand of the excess node. The generated arcs originate from one of
three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs origi-
nate from are all demand nodes, even those demand nodes with unspecified demand
capability. You indicate that a node has unspecified demand capability by using a
missing D value instead of an actual value for demand data (discussed in the “Missing
S Supply and Missing D Demand Values” section on page 145). The value specified
as the demand of a demand node is in effect a lower bound of the number of flow
units that node can actually demand. For missing D demand nodes, this lower bound
is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are demand nodes with unspecified
demand capability (nodes with missing D demand) or not.

If there are missing D demand nodes, these nodes are the set of nodes that generated
arcs originate from. The value specified as the demand of a demand node, if not
missing D, is the number of flow units that node can actually demand. For a missing
D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate
from are the set of supply nodes. The value specified as the supply of a supply node is
in effect an upper bound of the number of flow units that node can actually supply. For
missing S supply nodes (discussed in the “Missing S Supply and Missing D Demand
Values” section on page 145), this upper bound is zero, so missing S nodes when
total supply exceeds total demand are transshipment nodes, that is, nodes that neither
supply nor demand flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC INTPOINT
adds an extra node (called the excess node) to the problem and sets the supply at that
node equal to the difference between total demand and total supply. There are three
ways that this excess node can be joined to the network. All three ways entail PROC
INTPOINT generating a set of arcs (henceforth referred to as the generated arcs) that
originate from the excess node. The total amount of flow in generated arcs equals the
supply of the excess node. The generated arcs are directed toward one of three sets
of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are
directed toward are all supply nodes, even those supply nodes with unspecified supply

How to Make the Data Read of PROC INTPOINT More Efficient � 151

capability. You indicate that a node has unspecified supply capability by using a
missing S value instead of an actual value for supply data (discussed in the “Missing
S Supply and Missing D Demand Values” section on page 145). The value specified
as the supply of a supply node is in effect a lower bound of the number of flow units
that the node can actually supply. For missing S supply nodes, this lower bound is
zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are supply nodes with unspecified
supply capability (nodes with missing S supply) or not.

If there are missing S supply nodes, these nodes are the set of nodes that generated
arcs are directed toward. The value specified as the supply of a supply node, if not
missing S, is the number of flow units that the node can actually supply. For a missing
S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed
toward are the set of demand nodes. The value specified as the demand of a demand
node is in effect an upper bound of the number of flow units that node can actually
demand. For missing D demand nodes (discussed in the “Missing S Supply and
Missing D Demand Values” section on page 145), this upper bound is zero, so missing
D nodes when total supply is less than total demand are transshipment nodes, that is,
nodes that neither supply nor demand flow.

How to Make the Data Read of PROC INTPOINT More Efficient

This section contains information that is useful when you want to solve large
constrained network problems. However, much of this information is also use-
ful if you have a large linear programming problem. All of the options de-
scribed in this section that are not directly applicable to networks (options such as
ARCS–ONLY–ARCDATA, ARC–SINGLE–OBS, NNODES=, and NARCS=) can
be specified to improve the speed at which LP data is read.

Large Constrained Network Problems

Many of the models presented to PROC INTPOINT are enormous. They can be
considered large by linear programming standards; problems with thousands, even
millions, of variables and constraints. When dealing with side constrained network
programming problems, models can have not only a linear programming component
of that magnitude, but also a larger, possibly much larger, network component.

The majority of network problem’s decision variables are arcs. Like an LP decision
variable, an arc has an objective function coefficient, upper and lower value bounds,
and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite
similar to an LP variable and places the same memory demands on optimization
software as an LP variable. But a typical network model has many more arcs and
nonarc variables than the typical LP model has variables. And arcs have tail and head
nodes. Storing and processing node names require huge amounts of memory. To
make matters worse, node names occupy memory at times when a large amount of
other data should reside in memory as well.

152 � Chapter 3. The INTPOINT Procedure

While memory requirements are lower for a model with embedded network compo-
nent compared with the equivalent LP once optimization starts, the same is usually
not true during the data read. Even though nodal flow conservation constraints in
the LP should not be specified in the constrained network formulation, the memory
requirements to read the latter are greater because each arc (unlike an LP variable)
originates at one node and is directed toward another.

Paging

PROC INTPOINT has facilities to read data when the available memory is insufficient
to store all the data at once. PROC INTPOINT does this by allocating memory for
different purposes; for example, to store an array or receive data read from an input
SAS data set. After that memory has filled, the information is written to disk and
PROC INTPOINT can resume filling that memory with new information. Often,
information must be retrieved from disk so that data previously read can be examined
or checked for consistency. Sometimes, to prevent any data from being lost, or to
retain any changes made to the information in memory, the contents of the memory
must be sent to disk before other information can take its place. This process of
swapping information to and from disk is called paging. Paging can be very time-
consuming, so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC INTPOINT read the data of
network and linear programming models more efficiently, particularly when memory
is scarce and the amount of paging must be reduced. PROC INTPOINT will then be
able to tackle large problems in what can be considered reasonable amounts of time.

The Order of Observations

PROC INTPOINT is quite flexible in the ways data can be supplied to it. Data can
be given by any reasonable means. PROC INTPOINT has convenient defaults that
can save you work when generating the data. There can be several ways to supply
the same piece of data, and some pieces of data can be given more than once. PROC
INTPOINT reads everything, then merges it all together. However, this flexibility and
convenience come at a price; PROC INTPOINT may not assume the data has a char-
acteristic that, if possessed by the data, could save time and memory during the data
read. Several options can indicate that the data has some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA=
data set or the CONDATA= data set, or both. Every time it is given in the ARCDATA=
data set, a check is made to ensure that the new value is the same as any correspond-
ing value read in a previous observation of the ARCDATA= data set. Every time it
is given in the CONDATA= data set, a check is made to ensure that the new value is
the same as the value read in a previous observation of the CONDATA= data set, or
previously in the ARCDATA= data set. PROC INTPOINT would save time if it knew
that arc cost data would be encountered only once while reading the ARCDATA= data
set, so performing the time-consuming check for consistency would not be necessary.
Also, if you indicate that the CONDATA= data set contains data for constraints only,
PROC INTPOINT will not expect any arc information, so memory will not be allo-
cated to receive such data while reading the CONDATA= data set. This memory is
used for other purposes and this might lead to a reduction in paging. If applicable,

How to Make the Data Read of PROC INTPOINT More Efficient � 153

use the ARC–SINGLE–OBS or the CON–SINGLE–OBS option, or both, and the
NON–REPLIC=COEFS specification to improve how the ARCDATA= data set and
the CONDATA= data set are read.

PROC INTPOINT allows the observations in input data sets to be in any order.
However, major time savings can result if you are prepared to order observations
in particular ways. Time spent by the SORT procedure to sort the input data sets,
particularly the CONDATA= data set, may be more than made up for when PROC
INTPOINT reads them, because PROC INTPOINT has in memory information pos-
sibly used when the previous observation was read. PROC INTPOINT can assume a
piece of data is either similar to that of the last observation read or is new. In the first
case, valuable information such as an arc or a nonarc variable number or a constraint
number is retained from the previous observation. In the last case, checking the data
with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain
data for the same arc or nonarc variable or the same row pays off. PROC INTPOINT
establishes whether an observation being read is similar to the observation just read.

In practice, many input data sets for PROC INTPOINT have this characteristic, be-
cause it is natural for data for each constraint to be grouped together (when using
the dense format of the CONDATA= data set) or data for each column to be grouped
together (when using the sparse format of the CONDATA= data set). If data for each
arc or nonarc is spread over more than one observation of the ARCDATA= data set,
it is natural to group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA=
data set, the CONDATA= data set, or both, are grouped in a way that can be exploited
during data read.

You can save time if the type data for each row appears near the top of the
CONDATA= data set, especially if it has the sparse format. Otherwise, when read-
ing an observation, if PROC INTPOINT does not know if a row is a constraint or
special row, the data is set aside. Once the data set has been completely read, PROC
INTPOINT must reprocess the data it set aside. By then, it knows the type of each
constraint or row or, if its type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC INTPOINT to make better utilization of available memory,
you can specify options that indicate the approximate size of the model. PROC
INTPOINT then knows what to expect. For example, if you indicate that the problem
has no nonarc variables, PROC INTPOINT will not allocate memory to store nonarc
data. That memory is better utilized for other purposes. Memory is often allocated
to receive or store data of some type. If you indicate that the model does not have
much data of a particular type, the memory that would otherwise have been allocated
to receive or store that data can be used to receive or store data of another type.

154 � Chapter 3. The INTPOINT Procedure

The problem size options are as follows:

• NNODES= approximate number of nodes

• NARCS= approximate number of arcs

• NNAS= approximate number of nonarc variables or LP variables

• NCONS= approximate number of NPSC side constraints or LP constraints

• NCOEFS= approximate number of NPSC side constraint coefficients or LP
constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do,
the better. If you do not specify some or all of these options, PROC INTPOINT
guesses the size of the problem by using what it already knows about the model.
Sometimes PROC INTPOINT guesses the size of the model by looking at the number
of observations in the ARCDATA= and the CONDATA= data sets. However, PROC
INTPOINT uses rough rules of thumb, that typical models are proportioned in certain
ways (for example, if there are constraints, then arcs, nonarc variables, or LP variables
usually have about five constraint coefficients). If your model has an unusual shape
or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overesti-
mate the values. For example, if you specify NARCS=10000 but the model has 10100
arcs, when dealing with the last 100 arcs, PROC INTPOINT might have to page out
data for 10000 arcs each time one of the last arcs must be dealt with. Memory could
have been allocated for all 10100 arcs without affecting (much) the rest of the data
read, so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC
INTPOINT does not know it. When PROC INTPOINT knows the “real” value, that
value is used instead of Nxxxx= .

ARCS–ONLY–ARCDATA indicates that data for only arcs are in the ARCDATA=
data set. Memory would not be wasted to receive data for nonarc variables.

Use the memory usage options:

• The BYTES= option specifies the size of PROC INTPOINT main working
memory in number of bytes.

• The MEMREP option indicates that memory usage report is to be displayed on
the SAS log.

Specifying an appropriate value for the BYTES= parameter is particularly important.
Specify as large a number as possible, but not so large a number that will cause PROC
INTPOINT (that is, the SAS System running underneath PROC INTPOINT) to run
out of memory.

PROC INTPOINT reports its memory requirements on the SAS log if you specify the
MEMREP option.

How to Make the Data Read of PROC INTPOINT More Efficient � 155

Use Defaults to Reduce the Amount of Data

Use the parameters that specify default values as much as possible. For example,
if there are many arcs with the same cost value c, use DEFCOST=c for arcs that
have that cost. Use missing values in the COST variable in the ARCDATA= data set
instead of c. PROC INTPOINT ignores missing values, but must read, store, and pro-
cess nonmissing values, even if they are equal to a default option or could have been
equal to a default parameter had it been specified. Sometimes, using default parame-
ters makes the need for some SAS variables in the ARCDATA= and the CONDATA=
data sets no longer necessary, or reduces the quantity of data that must be read. The
default options are

• DEFCOST= default cost of arcs, objective function of nonarc variables or LP
variables

• DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc
variables or LP variables

• DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or
LP variables

• DEFCONTYPE= LE or DEFCONTYPE= <=
DEFCONTYPE= EQ or DEFCONTYPE= =
DEFCONTYPE= GE or DEFCONTYPE= >=

DEFCONTYPE=LE is the default.

The default options themselves have defaults. For example, you do not need to spec-
ify DEFCOST=0 in the PROC INTPOINT statement. You should still have missing
values in the COST variable in the ARCDATA= data set for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

• SOURCE= name of single node that has supply capability

• SUPPLY= the amount of supply at SOURCE

• SINK= name of single node that demands flow

• DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default.
The only time it might be practical to specify a zero rhs is in observations of the
CONDATA= data set read early so that PROC INTPOINT can infer that a row is a
constraint. This could prevent coefficient data from being put aside because PROC
INTPOINT did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the
longest node name, the longest arc name, the longest nonarc variable name, the
longest LP variable name, and the longest constraint name to 8 bytes or less. The
longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable
in the ARCDATA= data set. Names for such arcs serve no purpose.

156 � Chapter 3. The INTPOINT Procedure

PROC INTPOINT can have a default name for each arc. If an arc is directed
from node tailname toward node headname, the default name for that arc is
tailname–headname. If you do not want PROC INTPOINT to use these default arc
names, specify NAMECTRL=1. Otherwise, PROC INTPOINT must use memory for
storing node names and these node names must be searched often.

If you want to use the default tailname–headname name, that is, NAMECTRL=2
or NAMECTRL=3, do not use underscores in node names. If the CONDATA has
a dense format and has a variable in the VAR list A–B–C–D, or if the value
A–B–C–D is encountered as a value of the COLUMN list variable when reading
the CONDATA= data set that has the sparse format, PROC INTPOINT first looks
for a node named A. If it finds it, it looks for a node called B–C–D. It then looks
for a node with the name A–B and possibly a node with name C–D. A search is
then conducted for a node named A–B–C and possibly a node named D is done.
Underscores could have caused PROC INTPOINT to look unnecessarily for nonexis-
tent nodes. Searching for node names can be expensive, and the amount of memory to
store node names is often large. It might be better to assign the arc name A–B–C–D
directly to an arc by having that value as a NAME list variable value for that arc in
the ARCDATA= data set and specify NAMECTRL=1.

Other Ways to Speed-up Data Reads

Arcs and nonarc variables, or LP variables, can have associated with them values or
quantities that have no bearing on the optimization. This information is given in the
ARCDATA= data set in the ID list variables. For example, in a distribution problem,
information such as truck number and driver’s name can be associated with each arc.
This is useful when the optimal solution saved in the CONOUT= data set is analyzed.
However, PROC INTPOINT needs to reserve memory to process this information
when data is being read. For large problems when memory is scarce, it might be
better to remove ancillary data from the ARCDATA. After PROC INTPOINT runs,
use SAS software to merge this information into the CONOUT= data set that contains
the optimal solution.

Stopping Criteria
There are several reasons why PROC INTPOINT stops interior point optimization.
Optimization stops when

• the number of iteration equals MAXITERB=m

• the relative gap (duality gap/(cT x)) between the primal and dual objectives
is smaller than the value of the PDGAPTOL= option, and both the primal
and dual problems are feasible. Duality gap is defined in the “Interior Point
Algorithmic Details” section on page 68.

PROC INTPOINT may stop optimization when it detects that the rate at which the
complementarity or duality gap is being reduced is too slow; that is, that there are
consecutive iterations when the complementarity or duality gap has stopped getting
smaller and the infeasibilities, if nonzero, have also stalled. Sometimes this indicates
that the problem is infeasible.

Stopping Criteria � 157

The reasons to stop optimization outlined in the previous paragraph will be termed
the usual stopping conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual
stopping criteria are inappropriate. PROC INTPOINT might stop optimizing prema-
turely. If it were allowed to perform additional optimization, a better solution would
be found. On other occasions, PROC INTPOINT might do too much work. A suf-
ficiently good solution might be reached several iterations before PROC INTPOINT
eventually stops.

You can see PROC INTPOINT’s progress to the optimum by specifying
PRINTLEVEL2=2. PROC INTPOINT will produce a table on the SAS log.
A row of the table is generated during each iteration and consists of values of
the affine step complementarity, the complementarity of the solution for the next
iteration, the total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

“Interior Point: Upper Bounds” section on page 73), the total constraint infeasibility∑m
i=1 infeasci (see the infeasc array in the “Interior Point Algorithmic Details”

section on page 68), and the total dual infeasibility
∑n

i=1 infeasdi (see the infeasd

array in the “Interior Point Algorithmic Details” section on page 68). As optimization
progresses, the values in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parameters: the
STOP–x and the KEEPGOING–x parameters. The STOP–x parameters (STOP–C,
STOP–DG, STOP–IB, STOP–IC, and STOP–ID) are used to test for some con-
dition at the beginning of each iteration and if met, to stop optimizing imme-
diately. The KEEPGOING–x parameters (KEEPGOING–C, KEEPGOING–DG,
KEEPGOING–IB, KEEPGOING–IC, and KEEPGOING–ID) are used when PROC
INTPOINT would ordinarily stop optimizing but does not if some conditions are not
met.

For the sake of conciseness, a set of options might be referred to as the part of the
option name they have in common followed by the suffix x. For example, STOP–C,
STOP–DG, STOP–IB, STOP–IC, and STOP–ID will collectively be referred to as
STOP–x.

At the beginning of each iteration, PROC INTPOINT will test whether complemen-
tarity is <= STOP–C (provided you have specified a STOP–C parameter) and if
it is, PROC INTPOINT will stop optimizing. If the duality gap is <= STOP–DG
(provided you have specified a STOP–DG parameter), PROC INTPOINT will stop
optimizing immediately. This is true as well for the other STOP–x parameters that
are related to infeasibilities, STOP–IB, STOP–IC, and STOP–ID.

For example, if you want PROC INTPOINT to stop optimizing for the usual stopping
conditions, plus the additional condition, complementarity ≤ 100 or duality gap ≤
0.001, then use

proc intpoint stop_c=100 stop_dg=0.001

If you want PROC INTPOINT to stop optimizing for the usual stopping conditions,
plus the additional condition, complementarity ≤ 1000 and duality gap ≤ 0.001 and
constraint infeasibility ≤ 0.0001, then use

158 � Chapter 3. The INTPOINT Procedure

proc intpoint
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Unlike the STOP–x parameters that cause PROC INTPOINT to stop optimiz-
ing when any one of them is satisfied, the corresponding AND–STOP–x param-
eters (AND–STOP–C, AND–STOP–DG, AND–STOP–IB, AND–STOP–IC, and
AND–STOP–ID) cause PROC INTPOINT to stop only if all (more precisely, all that
are specified) options are satisfied. For example, if PROC INTPOINT should stop
optimizing when

• complementarity ≤ 100 or duality gap ≤ 0.001 or

• complementarity ≤ 1000 and duality gap ≤ 0.001 and constraint infeasibility
≤ 0.000

then use

proc intpoint
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Just as the STOP–x parameters have AND–STOP–x partners, the KEEPGOING–x
parameters have AND–KEEPGOING–x partners. The role of the KEEPGOING–x
and AND–KEEPGOING–x parameters is to prevent optimization from stopping too
early, even though a usual stopping criteria is met.

When PROC INTPOINT detects that it should stop optimizing for a usual stopping
condition, it will perform the following tests:

• It will test whether complementarity is > KEEPGOING–C (provided you have
specified a KEEPGOING–C parameter), and if it is, PROC INTPOINT will
perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the primal-dual gap is >
KEEPGOING–DG (provided you have specified a KEEPGOING–DG param-
eter), and if it is, PROC INTPOINT will perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the total bound infea-
sibility

∑n
i=1 infeasbi > KEEPGOING–IB (provided you have specified a

KEEPGOING–IB parameter), and if it is, PROC INTPOINT will perform
more optimization.

• Otherwise, PROC INTPOINT will then test whether the total constraint in-
feasibility

∑m
i=1 infeasci > KEEPGOING–IC (provided you have specified

a KEEPGOING–IC parameter), and if it is, PROC INTPOINT will perform
more optimization.

• Otherwise, PROC INTPOINT will then test whether the total dual infeasi-
bility

∑n
i=1 infeasdi > KEEPGOING–ID (provided you have specified a

KEEPGOING–ID parameter), and if it is, PROC INTPOINT will perform
more optimization.

Stopping Criteria � 159

• Otherwise it will test whether complementarity is > AND–KEEPGOING–C
(provided you have specified an AND–KEEPGOING–C parameter), and the
primal-dual gap is > AND–KEEPGOING–DG (provided you have speci-
fied an AND–KEEPGOING–DG parameter), and the total bound infeasi-
bility

∑n
i=1 infeasbi > AND–KEEPGOING–IB (provided you have speci-

fied an AND–KEEPGOING–IB parameter), and the total constraint infeasi-
bility

∑m
i=1 infeasci > AND–KEEPGOING–IC (provided you have speci-

fied an AND–KEEPGOING–IC parameter), and the total dual infeasibility∑n
i=1 infeasdi > AND–KEEPGOING–ID (provided you have specified an

AND–KEEPGOING–ID parameter), and if it is, PROC INTPOINT will per-
form more optimization.

If all these tests to decide whether more optimization should be performed are false,
optimization is stopped.

The following PROC INTPOINT example is used to illustrate how several stopping
criteria options can be used together:

proc intpoint
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

At the beginning of each iteration, PROC INTPOINT will stop optimizing if

• complementarity ≤ 1000 or

• complementarity ≤ 2000 and duality gap ≤ 0.01 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

When PROC INTPOINT determines it should stop optimizing because a usual stop-
ping condition is met, it will stop optimizing only if

• complementarity ≤ 1500 or

• complementarity ≤ 2500 and duality gap ≤ 0.05 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

160 � Chapter 3. The INTPOINT Procedure

Examples
The following examples illustrate some of the capabilities of PROC INTPOINT.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library.

In order to illustrate variations in the use of the INTPOINT procedure, Example 3.1
through Example 3.5 use data from a company that produces two sizes of televisions.
The company makes televisions with a diagonal screen measurement of either 19
inches or 25 inches. These televisions are made between March and May at both
of the company’s two factories. Each factory has a limit on the total number of
televisions of each screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they
were made, and sold later or shipped to the other factory. Some sets can be used to
fill backorders from the previous months. Each shop demands a number of each type
of TV for the months of March through May. The following network in Figure 3.12
illustrates the model. Arc costs can be interpreted as production costs, storage costs,
backorder penalty costs, inter-factory transportation costs, and sales profits. The arcs
can have capacities and lower flow bounds.

Production

Inventory and
Backorders

Inter-factory

Distribution

fact2

f2–may

f2–apl

f2–mar

fact1

f1–may

f1–apl

f1–mar

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

shop2

shop1
�

�
�

�
�7

-

S
S

S
S
Sw

���������������1

-
PPPPPPPPPPPPPPPq �

�
�

���

�
�

�
��

l
l

l
l

ll
�

�
��

T
T
T
T
T
T
T
T
T

�
�
�
�
�
�
�
�
�
�
�
�
��

%
%

%
%

%
%%

�
�
�
�
�
�
�
�
�
�
���

�
���

��

�
�
�
�
�
�
�
�
�
��

hhhhhh

S
S

S
S

S
S

S
S

S
S

S
Sw

�����������S
S

S
S

S
S

S
S

S
S

S
S

Sw

hhhhhhhhhhh
S

S
S

S
S

S
S

S
S

S
S

S
S

S
Sw

H
HHH

HHH
HHH

Q
Q

Q
Q

Q
Q

Qs

Q
Q

Q
Q

Q
QQs��������������

Q
Q

Q
QQs

"
"

"
"

"
"

"
"

"
"

"
"

"
""

6

?

6

?

6

?

6

?

Figure 3.12. TV Problem

Example 3.1. Production, Inventory, Distribution Problem � 161

There are two similarly structured networks, one for the 19-inch televisions and the
other for the 25-inch screen TVs. The minimum cost production, inventory, and
distribution plan for both TV types can be determined in the same run of PROC
INTPOINT. To ensure that node names are unambiguous, the names of nodes in the
19-inch network have suffix –1, and the node names in the 25-inch network have
suffix –2.

Example 3.1. Production, Inventory, Distribution Problem

The following code shows how to save a specific problem’s data in data sets and solve
the model with PROC INTPOINT.

title ’Production Planning/Inventory/Distribution’;
title2 ’Minimum Cost Flow problem’;
title3;

data node0;
input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may

162 � Chapter 3. The INTPOINT Procedure

f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0
arcdata=arc0
conout=arc1;
run;

proc print data=arc1;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_

diagonal factory key_id mth_made;
sum _fcost_;
run;

Example 3.1. Production, Inventory, Distribution Problem � 163

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 136 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor elimiated 9 constraint coefficients

from the problem.
NOTE: 0 columns, 0 rows and 0 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 48 nonzero elements in A * A transpose.
NOTE: Of the 20 rows and columns, 11 are sparse.
NOTE: There are 40 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 49 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 169009903 0.835362 52835 25664 38005
1 36984291 17566249 0.914108 1649.363089 801.164462 0
2 1982553 866890 0.413012 0 1.461734E-12 0
3 542347 234381 0.153440 0 0 0
4 129900 52560 0.038044 0 0 0
5 25835 18168 0.013343 0 0 0
6 8923.214994 2976.020480 0.002203 0 0 0
7 928.231932 624.792307 0.000463 0 0 0
8 218.771392 74.386900 0.000055131 0 0 0
9 11.639195 2.197862 0.000001629 0 0 0
10 0.089160 0.000399 2.958631E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 10 iterations.
NOTE: Objective = -1281110.35.
NOTE: The data set WORK.ARC1 has 64 observations and 14

variables.
NOTE: There were 64 observations read from the data set

WORK.ARC0.
NOTE: There were 8 observations read from the data set

WORK.NODE0.

164 � Chapter 3. The INTPOINT Procedure

The solution is given in the CONOUT=arc1 data sets. In the CONOUT= data set,
shown in Output 3.1.1, the variables diagonal, factory, key–id, and mth–made
form an implicit ID list. The diagonal variable has one of two values, 19 or 25.
factory also has one of two values, 1 or 2, to denote the factory where either pro-
duction or storage occurs, from where TVs are either sold to shops or used to satisfy
backorders. production, storage, sales, and backorder are values of the key–id
variable.

Other values of this variable, f1–to–2 and f2–to–1, are used when flow through
arcs represents the transportation of TVs between factories. The mth–made variable
has values March, April, and May, the months when TVs that are modeled as flow
through an arc were made (assuming that no televisions are stored for more than one
month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC INTPOINT run to produce reports and
perform analysis on particular parts of the company’s operation. For example, reports
can be generated for production numbers for each factory; optimal sales figures for
each shop; and how many TVs should be stored, used to fill backorders, sent to the
other factory, or any combination of these, for TVs with a particular screen, those
produced in a particular month, or both.

Example 3.1. Production, Inventory, Distribution Problem � 165

Output 3.1.1. CONOUT=ARC1
Production Planning/Inventory/Distribution

Minimum Cost Flow problem

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_ diagonal factory key_id mth_made

1 fact1_1 f1_apr_1 78.60 600 50 600.000 47160.00 19 1 production April
2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00 19 1 storage March
3 f1_may_1 f1_apr_1 28.00 20 0 0.000 0.00 19 1 backorder May
4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00 19 . f2_to_1 April
5 fact1_2 f1_apr_2 174.50 550 50 550.000 95975.00 25 1 production April
6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00 25 1 storage March
7 f1_may_2 f1_apr_2 41.00 15 0 15.000 615.00 25 1 backorder May
8 f2_apr_2 f1_apr_2 21.00 25 0 0.000 0.00 25 . f2_to_1 April
9 fact1_1 f1_mar_1 127.90 500 50 345.000 44125.49 19 1 production March

10 f1_apr_1 f1_mar_1 28.00 20 0 20.000 560.00 19 1 backorder April
11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00 19 . f2_to_1 March
12 fact1_2 f1_mar_2 217.90 400 40 400.000 87160.00 25 1 production March
13 f1_apr_2 f1_mar_2 32.00 30 0 30.000 960.00 25 1 backorder April
14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00 25 . f2_to_1 March
15 fact1_1 f1_may_1 95.10 400 50 50.000 4755.00 19 1 production May
16 f1_apr_1 f1_may_1 12.00 50 0 50.000 600.00 19 1 storage April
17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00 19 . f2_to_1 May
18 fact1_2 f1_may_2 133.30 350 40 40.000 5332.00 25 1 production May
19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00 25 1 storage April
20 f2_may_2 f1_may_2 43.00 25 0 0.000 0.00 25 . f2_to_1 May
21 f1_apr_1 f2_apr_1 11.00 99999999 0 30.000 330.00 19 . f1_to_2 April
22 fact2_1 f2_apr_1 62.40 480 35 480.000 29952.00 19 2 production April
23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00 19 2 storage March
24 f2_may_1 f2_apr_1 25.00 15 0 0.000 0.00 19 2 backorder May
25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00 25 . f1_to_2 April
26 fact2_2 f2_apr_2 196.70 680 35 680.000 133756.00 25 2 production April
27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00 25 2 storage March
28 f2_may_2 f2_apr_2 54.00 15 0 15.000 810.00 25 2 backorder May
29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00 19 . f1_to_2 March
30 fact2_1 f2_mar_1 88.00 450 35 290.000 25520.00 19 2 production March
31 f2_apr_1 f2_mar_1 17.00 15 0 0.000 0.00 19 2 backorder April
32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00 25 . f1_to_2 March
33 fact2_2 f2_mar_2 182.00 650 35 645.000 117390.00 25 2 production March
34 f2_apr_2 f2_mar_2 31.00 15 0 0.000 0.00 25 2 backorder April
35 f1_may_1 f2_may_1 16.00 99999999 0 100.000 1600.00 19 . f1_to_2 May
36 fact2_1 f2_may_1 133.80 250 35 35.000 4683.00 19 2 production May
37 f2_apr_1 f2_may_1 20.00 30 0 15.000 300.00 19 2 storage April
38 f1_may_2 f2_may_2 26.00 99999999 0 0.000 0.00 25 . f1_to_2 May
39 fact2_2 f2_may_2 201.40 550 35 35.000 7049.00 25 2 production May
40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00 25 2 storage April
41 f1_mar_1 shop1_1 -327.65 250 0 155.000 -50785.73 19 1 sales March
42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00 19 1 sales April
43 f1_may_1 shop1_1 -285.00 250 0 0.000 0.00 19 1 sales May
44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00 19 2 sales March
45 f2_apr_1 shop1_1 -290.00 250 0 245.000 -71050.01 19 2 sales April
46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00 19 2 sales May
47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00 25 1 sales March
48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00 25 1 sales April
49 f1_may_2 shop1_2 -475.02 99999999 0 25.000 -11875.50 25 1 sales May
50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00 25 2 sales March
51 f2_apr_2 shop1_2 -542.19 500 0 375.000 -203321.25 25 2 sales April
52 f2_may_2 shop1_2 -461.56 500 0 0.000 0.00 25 2 sales May
53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00 19 1 sales March
54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00 19 1 sales April
55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00 19 1 sales May
56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00 19 2 sales March
57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00 19 2 sales April
58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00 19 2 sales May
59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.95 25 1 sales March
60 f1_apr_2 shop2_2 -549.68 99999999 0 535.000 -294078.80 25 1 sales April
61 f1_may_2 shop2_2 -460.00 99999999 0 0.000 0.00 25 1 sales May
62 f2_mar_2 shop2_2 -542.83 500 0 120.000 -65139.60 25 2 sales March
63 f2_apr_2 shop2_2 -559.19 500 0 320.000 -178940.80 25 2 sales April
64 f2_may_2 shop2_2 -489.06 500 0 20.000 -9781.20 25 2 sales May

===========
-1281110.35

166 � Chapter 3. The INTPOINT Procedure

Example 3.2. Altering Arc Data

This example examines the effect of changing some of the arc costs. The backorder
penalty costs are increased by 20 percent. The sales profit of 25-inch TVs sent to the
shops in May is increased by 30 units. The backorder penalty costs of 25-inch TVs
manufactured in May for April consumption is decreased by 30 units. The produc-
tion cost of 19-inch and 25-inch TVs made in May are decreased by 5 units and 20
units, respectively. How does the optimal solution of the network after these arc cost
alterations compare with the optimum of the original network?

These SAS statements produce the new NODEDATA= and ARCDATA= data sets:

title2 ’Minimum Cost Flow problem- Altered Arc Data’;
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id=’backorder’

then _cost_=_cost_*1.2;
else if _tail_=’f2_may_2’ then _cost_=_cost_-30;

if key_id=’production’ & mth_made=’May’ then
if diagonal=19 then _cost_=_cost_-5;

else _cost_=_cost_-20;
run;

proc intpoint
bytes=100000
printlevel2=2
nodedata=node0
arcdata=arc2
conout=arc3;
run;

proc print data=arc3;
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made;
/* to get this variable order */

sum oldfc _fcost_;
run;

Example 3.2. Altering Arc Data � 167

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: The following messages relate to the equivalent Linear

Programming problem solved by the Interior Point algorithm.
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 136 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

from the problem.
NOTE: 0 columns, 0 rows and 0 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 48 nonzero elements in A * A transpose.
NOTE: Of the 20 rows and columns, 11 are sparse.
NOTE: There are 40 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 49 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 169822194 0.834344 52835 25664 38174
1 37113367 17651592 0.912723 1650.135100 801.539460 0
2 1990318 739344 0.369751 0 1.363097E-12 0
3 358794 186448 0.125234 0 0 0
4 116081 45454 0.033002 0 0 0
5 26298 16467 0.012077 0 0 0
6 8963.676317 3893.499547 0.002875 0 0 0
7 1615.258886 718.590270 0.000532 0 0 0
8 178.225920 47.380105 0.000035062 0 0 0
9 6.698353 0.020987 1.5531175E-8 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 9 iterations.
NOTE: Objective = -1285086.46.
NOTE: The data set WORK.ARC3 has 64 observations and 17

variables.
NOTE: There were 64 observations read from the data set

WORK.ARC2.
NOTE: There were 8 observations read from the data set

WORK.NODE0.

The solution is displayed in Output 3.2.1.

168 � Chapter 3. The INTPOINT Procedure

Output 3.2.1. CONOUT=ARC3
Minimum Cost Flow problem- Altered arc data

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_

1 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540.001
2 f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000
3 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000
4 f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000
5 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000
6 f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000
7 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15.000
8 f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000
9 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340.000

10 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000
11 f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000
12 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000
13 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000
14 f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000
15 fact1_1 f1_may_1 400 50 1000 . 90.10 114.999
16 f1_apr_1 f1_may_1 50 0 . . 12.00 0.001
17 f2_may_1 f1_may_1 40 0 . . 13.00 0.000
18 fact1_2 f1_may_2 350 40 1000 . 113.30 350.000
19 f1_apr_2 f1_may_2 40 0 . . 18.00 0.000
20 f2_may_2 f1_may_2 25 0 . . 13.00 0.000
21 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20.000
22 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000
23 f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000
24 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000
25 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000
26 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680.000
27 f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000
28 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000
29 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000
30 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000
31 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000
32 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000
33 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635.000
34 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000
35 f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000
36 fact2_1 f2_may_1 250 35 850 . 128.80 35.000
37 f2_apr_1 f2_may_1 30 0 . . 20.00 0.000
38 f1_may_2 f2_may_2 99999999 0 . . 26.00 335.000
39 fact2_2 f2_may_2 550 35 1500 . 181.40 35.000
40 f2_apr_2 f2_may_2 50 0 . . 38.00 0.000
41 f1_mar_1 shop1_1 250 0 . 900 -327.65 150.000
42 f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000
43 f1_may_1 shop1_1 250 0 . 900 -285.00 0.000
44 f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000
45 f2_apr_1 shop1_1 250 0 . 900 -290.00 250.000
46 f2_may_1 shop1_1 250 0 . 900 -292.00 0.000
47 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000
48 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000
49 f1_may_2 shop1_2 99999999 0 . 900 -475.02 0.000
50 f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000
51 f2_apr_2 shop1_2 500 0 . 900 -542.19 400.000
52 f2_may_2 shop1_2 500 0 . 900 -491.56 0.000
53 f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000
54 f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000
55 f1_may_1 shop2_1 250 0 . 900 -245.00 0.000
56 f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000
57 f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000
58 f2_may_1 shop2_1 250 0 . 900 -299.00 150.000
59 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000
60 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235.000
61 f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0.000
62 f2_mar_2 shop2_2 500 0 . 1450 -542.83 110.000
63 f2_apr_2 shop2_2 500 0 . 1450 -559.19 280.000
64 f2_may_2 shop2_2 500 0 . 1450 -519.06 370.000

Example 3.2. Altering Arc Data � 169

Obs _FCOST_ oldcost oldflow oldfc diagonal factory key_id mth_made

1 42444.05 78.60 600.000 47160.00 19 1 production April
2 0.00 15.00 0.000 0.00 19 1 storage March
3 0.00 28.00 0.000 0.00 19 1 backorder May
4 0.00 11.00 0.000 0.00 19 . f2_to_1 April
5 43625.01 174.50 550.000 95975.00 25 1 production April
6 0.00 20.00 0.000 0.00 25 1 storage March
7 738.00 41.00 15.000 615.00 25 1 backorder May
8 0.00 21.00 0.000 0.00 25 . f2_to_1 April
9 43486.02 127.90 345.000 44125.49 19 1 production March
10 672.00 28.00 20.000 560.00 19 1 backorder April
11 400.00 10.00 40.000 400.00 19 . f2_to_1 March
12 87160.00 217.90 400.000 87160.00 25 1 production March
13 1152.00 32.00 30.000 960.00 25 1 backorder April
14 500.00 20.00 25.000 500.00 25 . f2_to_1 March
15 10361.42 95.10 50.000 4755.00 19 1 production May
16 0.01 12.00 50.000 600.00 19 1 storage April
17 0.00 13.00 0.000 0.00 19 . f2_to_1 May
18 39655.00 133.30 40.000 5332.00 25 1 production May
19 0.00 18.00 0.000 0.00 25 1 storage April
20 0.00 43.00 0.000 0.00 25 . f2_to_1 May
21 220.00 11.00 30.000 330.00 19 . f1_to_2 April
22 29952.00 62.40 480.000 29952.00 19 2 production April
23 0.00 18.00 0.000 0.00 19 2 storage March
24 0.00 25.00 0.000 0.00 19 2 backorder May
25 0.00 23.00 0.000 0.00 25 . f1_to_2 April
26 133755.98 196.70 680.000 133756.00 25 2 production April
27 0.00 28.00 0.000 0.00 25 2 storage March
28 0.00 54.00 15.000 810.00 25 2 backorder May
29 0.00 11.00 0.000 0.00 19 . f1_to_2 March
30 25520.00 88.00 290.000 25520.00 19 2 production March
31 0.00 17.00 0.000 0.00 19 2 backorder April
32 0.00 23.00 0.000 0.00 25 . f1_to_2 March
33 115570.02 182.00 645.000 117390.00 25 2 production March
34 0.00 31.00 0.000 0.00 25 2 backorder April
35 1840.00 16.00 100.000 1600.00 19 . f1_to_2 May
36 4508.00 133.80 35.000 4683.00 19 2 production May
37 0.00 20.00 15.000 300.00 19 2 storage April
38 8710.00 26.00 0.000 0.00 25 . f1_to_2 May
39 6349.00 201.40 35.000 7049.00 25 2 production May
40 0.00 38.00 0.000 0.00 25 2 storage April
41 -49147.54 -327.65 155.000 -50785.73 19 1 sales March
42 -75000.00 -300.00 250.000 -75000.00 19 1 sales April
43 -0.01 -285.00 0.000 0.00 19 1 sales May
44 -74349.99 -297.40 250.000 -74350.00 19 2 sales March
45 -72499.96 -290.00 245.000 -71050.01 19 2 sales April
46 -0.00 -292.00 0.000 0.00 19 2 sales May
47 0.00 -559.76 0.000 0.00 25 1 sales March
48 -0.01 -524.28 0.000 0.00 25 1 sales April
49 -0.08 -475.02 25.000 -11875.50 25 1 sales May
50 -283915.00 -567.83 500.000 -283915.00 25 2 sales March
51 -216875.89 -542.19 375.000 -203321.25 25 2 sales April
52 -0.01 -461.56 0.000 0.00 25 2 sales May
53 -90685.00 -362.74 250.000 -90685.00 19 1 sales March
54 -75000.00 -300.00 250.000 -75000.00 19 1 sales April
55 0.00 -245.00 0.000 0.00 19 1 sales May
56 -0.01 -272.70 0.000 0.00 19 2 sales March
57 -78000.00 -312.00 250.000 -78000.00 19 2 sales April
58 -44850.00 -299.00 150.000 -44850.00 19 2 sales May
59 -283869.94 -623.89 455.000 -283869.95 25 1 sales March
60 -129174.79 -549.68 535.000 -294078.80 25 1 sales April
61 0.00 -460.00 0.000 0.00 25 1 sales May
62 -59711.36 -542.83 120.000 -65139.60 25 2 sales March
63 -156573.27 -559.19 320.000 -178940.80 25 2 sales April
64 -192052.10 -489.06 20.000 -9781.20 25 2 sales May

=========== ===========
-1285086.45 -1281110.35

170 � Chapter 3. The INTPOINT Procedure

Example 3.3. Adding Side Constraints

The manufacturer of Gizmo chips, which are parts needed to make televisions, can
supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 in time for produc-
tion in each of the months of March and April. However, Gizmo chips will not be in
short supply in May. Three chips are required to make each 19-inch TV while the 25-
inch TVs require four chips each. To limit the production of televisions produced at
factory 1 in March so that the TVs have the correct number of chips, a side constraint
called FACT1 MAR GIZMO is used. The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

prod f1 19 mar is the name of the arc directed from the node fact1–1 toward
node f1–mar–1 and, in the previous constraint, designates the flow assigned to this
arc. The ARCDATA= and CONOUT= data sets have arc names in a variable called
–name– .

The other side constraints (shown below) are called FACT2 MAR GIZMO, FACT1
APL GIZMO, and FACT2 APL GIZMO.

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

To maintain customer goodwill, the total number of backorders is not to exceed 50
sets. The side constraint TOTAL BACKORDER that models this restriction is

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are of less than
or equal type. Because this is the default type value for the DEFCONTYPE= op-
tion, type information is not necessary in the following CONDATA=con3. Also,
DEFCONTYPE= <= does not have to be specified in the PROC INTPOINT state-
ment that follows. Notice that the –column– variable value CHIP/BO LIMIT indi-
cates that an observation of the con3 data set contains rhs information. Therefore,
specify RHSOBS=‘CHIP/BO LIMIT’.

title2 ’Adding Side Constraints’;
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3

Example 3.3. Adding Side Constraints � 171

prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA=
data sets in the following PROC INTPOINT run. The set used depends on which cost
information the arcs are to have.

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node0
ARCDATA=arc2 NODEDATA=node0
ARCDATA=arc3 NODEDATA=node0

arc0, node0, and arc1 were created in Example 3.1. The first two data sets are the
original input data sets.

In the previous example, arc2 was created by modifying arc1 to reflect different arc
costs. arc2 and node0 can also be used as the ARCDATA= and NODEDATA= data
sets in a PROC INTPOINT run.

If you are going to continue optimization using the changed arc costs, it is probably
best to use arc3 and node0 as the ARCDATA= and NODEDATA= data sets.

PROC INTPOINT is used to find the changed cost network solution that obeys the
chip limit and backorder side constraints. An explicit ID list has also been specified
so that the variables oldcost, oldfc, and oldflow do not appear in the subsequent
output data sets:

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0 arcdata=arc3
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
conout=arc4;
id diagonal factory key_id mth_made;
run;

172 � Chapter 3. The INTPOINT Procedure

proc print data=arc4;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_;

/* to get this variable order */
sum _fcost_;
run;

The following messages appear on the SAS log:

NOTE: The following variables in ARCDATA do not belong to any
SAS variable list. These will be ignored.
FLOW
FCOST
oldcost
oldfc
oldflow

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 65 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 176663849 0.834344 52835 39643 49140
1 51289701 21890177 0.912033 2958.813395 2220.091192 2621.647223
2 4297808 1359558 0.517260 0 7.06244E-11 42.614836
3 341918 246210 0.159762 0 0 7.723054
4 124303 68295 0.049237 0 0 1.115512
5 46970 29876 0.021786 0 0 0.482224

Example 3.3. Adding Side Constraints � 173

6 9976.439552 6294.587840 0.004647 0 0 0.094764
7 3266.423958 1984.437170 0.001468 0 0 0.022740
8 472.139836 257.075141 0.000190 0 0 0.003062
9 24.953361 6.458585 0.000004781 0 0 0.000114
10 0.007991 0.000361 2.671196E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 10 iterations.
NOTE: Objective = -1282708.625.
NOTE: The data set WORK.ARC4 has 64 observations and 14

variables.
NOTE: There were 64 observations read from the data set

WORK.ARC3.
NOTE: There were 8 observations read from the data set

WORK.NODE0.
NOTE: There were 21 observations read from the data set

WORK.CON3.

174 � Chapter 3. The INTPOINT Procedure

Output 3.3.1. CONOUT=ARC4
Adding Side Constraints

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 78.60 600 50 533.333 41920.00
2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00
3 f1_may_1 f1_apr_1 33.60 20 0 0.000 0.00
4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00
5 fact1_2 f1_apr_2 174.50 550 50 250.000 43625.00
6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00
7 f1_may_2 f1_apr_2 49.20 15 0 0.000 0.00
8 f2_apr_2 f1_apr_2 21.00 25 0 0.000 0.00
9 fact1_1 f1_mar_1 127.90 500 50 333.333 42633.33
10 f1_apr_1 f1_mar_1 33.60 20 0 20.000 672.00
11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00
12 fact1_2 f1_mar_2 217.90 400 40 400.000 87160.00
13 f1_apr_2 f1_mar_2 38.40 30 0 30.000 1152.00
14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00
15 fact1_1 f1_may_1 90.10 400 50 128.333 11562.83
16 f1_apr_1 f1_may_1 12.00 50 0 0.000 0.00
17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00
18 fact1_2 f1_may_2 113.30 350 40 350.000 39655.00
19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00
20 f2_may_2 f1_may_2 13.00 25 0 0.000 0.00
21 f1_apr_1 f2_apr_1 11.00 99999999 0 13.333 146.67
22 fact2_1 f2_apr_1 62.40 480 35 480.000 29952.00
23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00
24 f2_may_1 f2_apr_1 30.00 15 0 0.000 0.00
25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00
26 fact2_2 f2_apr_2 196.70 680 35 577.500 113594.25
27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00
28 f2_may_2 f2_apr_2 64.80 15 0 0.000 0.00
29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00
30 fact2_1 f2_mar_1 88.00 450 35 290.000 25520.00
31 f2_apr_1 f2_mar_1 20.40 15 0 0.000 0.00
32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00
33 fact2_2 f2_mar_2 182.00 650 35 650.000 118300.00
34 f2_apr_2 f2_mar_2 37.20 15 0 0.000 0.00
35 f1_may_1 f2_may_1 16.00 99999999 0 115.000 1840.00
36 fact2_1 f2_may_1 128.80 250 35 35.000 4508.00
37 f2_apr_1 f2_may_1 20.00 30 0 0.000 0.00
38 f1_may_2 f2_may_2 26.00 99999999 0 350.000 9100.00
39 fact2_2 f2_may_2 181.40 550 35 122.500 22221.50
40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00
41 f1_mar_1 shop1_1 -327.65 250 0 143.333 -46963.17
42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00
43 f1_may_1 shop1_1 -285.00 250 0 13.333 -3800.00
44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00
45 f2_apr_1 shop1_1 -290.00 250 0 243.333 -70566.67
46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00
47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00
48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00
49 f1_may_2 shop1_2 -475.02 99999999 0 0.000 0.00
50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00
51 f2_apr_2 shop1_2 -542.19 500 0 400.000 -216876.00
52 f2_may_2 shop1_2 -491.56 500 0 0.000 0.00
53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00
54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00
55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00
56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00
57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00
58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00
59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.95
60 f1_apr_2 shop2_2 -549.68 99999999 0 220.000 -120929.60
61 f1_may_2 shop2_2 -460.00 99999999 0 0.000 0.00
62 f2_mar_2 shop2_2 -542.83 500 0 125.000 -67853.75
63 f2_apr_2 shop2_2 -559.19 500 0 177.500 -99256.23
64 f2_may_2 shop2_2 -519.06 500 0 472.500 -245255.85

===========
-1282708.62

Example 3.4. Using Constraints and More Alteration to Arc Data � 175

Example 3.4. Using Constraints and More Alteration to Arc
Data

Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either
shop with an increased profit of 40 dollars each. What is the new optimal solution?

title2 ’Using Constraints and Altering arc data’;
data new_arc4;

set arc4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_=’f1_may_2’ & (_head_=’shop1_2’ | _head_=’shop2_2’)

then _cost_=_cost_-40;
run;

proc intpoint
bytes=1000000
printlevel2=2
arcdata=new_arc4 nodedata=node0
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
conout=arc5;
run;

proc print data=arc5;
var _tail_ _head_ _cost_ _capac_ _lo_

supply _demand_ _name_
flow _fcost_ oldflow oldfc;

/* to get this variable order */
sum oldfc _fcost_;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

176 � Chapter 3. The INTPOINT Procedure

from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 65 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 178045680 0.833846 52835 39643 49592
1 51679271 22114244 0.911781 2979.752508 2235.802470 2678.044487
2 4360227 1397064 0.521965 0 2.084022E-11 46.964760
3 337615 239843 0.155358 0 0 8.067907
4 119497 59613 0.042674 0 0 1.263035
5 30689 20758 0.015076 0 0 0.430638
6 9107.182114 7099.343072 0.005192 0 0 0.109413
7 3406.632390 1496.513249 0.001098 0 0 0.003935
8 616.222707 155.883444 0.000114 0 0 0.000480
9 23.880446 1.372116 0.000001007 0 0 0
10 0.000755 0.000068819 -4.28512E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 10 iterations.
NOTE: Objective = -1295661.8.
NOTE: The data set WORK.ARC5 has 64 observations and 17

variables.
NOTE: There were 64 observations read from the data set

WORK.NEW_ARC4.
NOTE: There were 8 observations read from the data set

WORK.NODE0.
NOTE: There were 21 observations read from the data set

WORK.CON3.

Example 3.4. Using Constraints and More Alteration to Arc Data � 177

Output 3.4.1. CONOUT=ARC5
Using Constraints and Altering arc data

Obs _tail_ _head_ _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_

1 fact1_1 f1_apr_1 78.60 600 50 1000 .
2 f1_mar_1 f1_apr_1 15.00 50 0 . .
3 f1_may_1 f1_apr_1 33.60 20 0 . .
4 f2_apr_1 f1_apr_1 11.00 40 0 . .
5 fact1_2 f1_apr_2 174.50 550 50 1000 .
6 f1_mar_2 f1_apr_2 20.00 40 0 . .
7 f1_may_2 f1_apr_2 49.20 15 0 . .
8 f2_apr_2 f1_apr_2 21.00 25 0 . .
9 fact1_1 f1_mar_1 127.90 500 50 1000 .
10 f1_apr_1 f1_mar_1 33.60 20 0 . .
11 f2_mar_1 f1_mar_1 10.00 40 0 . .
12 fact1_2 f1_mar_2 217.90 400 40 1000 .
13 f1_apr_2 f1_mar_2 38.40 30 0 . .
14 f2_mar_2 f1_mar_2 20.00 25 0 . .
15 fact1_1 f1_may_1 90.10 400 50 1000 .
16 f1_apr_1 f1_may_1 12.00 50 0 . .
17 f2_may_1 f1_may_1 13.00 40 0 . .
18 fact1_2 f1_may_2 113.30 350 40 1000 .
19 f1_apr_2 f1_may_2 18.00 40 0 . .
20 f2_may_2 f1_may_2 13.00 25 0 . .
21 f1_apr_1 f2_apr_1 11.00 99999999 0 . .
22 fact2_1 f2_apr_1 62.40 480 35 850 .
23 f2_mar_1 f2_apr_1 18.00 30 0 . .
24 f2_may_1 f2_apr_1 30.00 15 0 . .
25 f1_apr_2 f2_apr_2 23.00 99999999 0 . .
26 fact2_2 f2_apr_2 196.70 680 35 1500 .
27 f2_mar_2 f2_apr_2 28.00 50 0 . .
28 f2_may_2 f2_apr_2 64.80 15 0 . .
29 f1_mar_1 f2_mar_1 11.00 99999999 0 . .
30 fact2_1 f2_mar_1 88.00 450 35 850 .
31 f2_apr_1 f2_mar_1 20.40 15 0 . .
32 f1_mar_2 f2_mar_2 23.00 99999999 0 . .
33 fact2_2 f2_mar_2 182.00 650 35 1500 .
34 f2_apr_2 f2_mar_2 37.20 15 0 . .
35 f1_may_1 f2_may_1 16.00 99999999 0 . .
36 fact2_1 f2_may_1 128.80 250 35 850 .
37 f2_apr_1 f2_may_1 20.00 30 0 . .
38 f1_may_2 f2_may_2 26.00 99999999 0 . .
39 fact2_2 f2_may_2 181.40 550 35 1500 .
40 f2_apr_2 f2_may_2 38.00 50 0 . .
41 f1_mar_1 shop1_1 -327.65 250 0 . 900
42 f1_apr_1 shop1_1 -300.00 250 0 . 900
43 f1_may_1 shop1_1 -285.00 250 0 . 900
44 f2_mar_1 shop1_1 -297.40 250 0 . 900
45 f2_apr_1 shop1_1 -290.00 250 0 . 900
46 f2_may_1 shop1_1 -292.00 250 0 . 900
47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900
48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900
49 f1_may_2 shop1_2 -515.02 99999999 0 . 900
50 f2_mar_2 shop1_2 -567.83 500 0 . 900
51 f2_apr_2 shop1_2 -542.19 500 0 . 900
52 f2_may_2 shop1_2 -491.56 500 0 . 900
53 f1_mar_1 shop2_1 -362.74 250 0 . 900
54 f1_apr_1 shop2_1 -300.00 250 0 . 900
55 f1_may_1 shop2_1 -245.00 250 0 . 900
56 f2_mar_1 shop2_1 -272.70 250 0 . 900
57 f2_apr_1 shop2_1 -312.00 250 0 . 900
58 f2_may_1 shop2_1 -299.00 250 0 . 900
59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450
60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450
61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450
62 f2_mar_2 shop2_2 -542.83 500 0 . 1450
63 f2_apr_2 shop2_2 -559.19 500 0 . 1450
64 f2_may_2 shop2_2 -519.06 500 0 . 1450

178 � Chapter 3. The INTPOINT Procedure

Obs _name_ _FLOW_ _FCOST_ oldflow oldfc

1 prod f1 19 apl 533.333 41920.00 533.333 41920.00
2 0.000 0.00 0.000 0.00
3 back f1 19 may 0.000 0.00 0.000 0.00
4 0.000 0.00 0.000 0.00
5 prod f1 25 apl 250.000 43625.00 250.000 43625.00
6 0.000 0.00 0.000 0.00
7 back f1 25 may 0.000 0.00 0.000 0.00
8 0.000 0.00 0.000 0.00
9 prod f1 19 mar 333.333 42633.33 333.333 42633.33
10 back f1 19 apl 20.000 672.00 20.000 672.00
11 40.000 400.00 40.000 400.00
12 prod f1 25 mar 400.000 87160.00 400.000 87160.00
13 back f1 25 apl 30.000 1152.00 30.000 1152.00
14 25.000 500.00 25.000 500.00
15 128.333 11562.83 128.333 11562.83
16 0.000 0.00 0.000 0.00
17 0.000 0.00 0.000 0.00
18 350.000 39655.00 350.000 39655.00
19 0.000 0.00 0.000 0.00
20 0.000 0.00 0.000 0.00
21 13.333 146.67 13.333 146.67
22 prod f2 19 apl 480.000 29952.00 480.000 29952.00
23 0.000 0.00 0.000 0.00
24 back f2 19 may 0.000 0.00 0.000 0.00
25 0.000 0.00 0.000 0.00
26 prod f2 25 apl 550.000 108185.00 577.500 113594.25
27 0.000 0.00 0.000 0.00
28 back f2 25 may 0.000 0.00 0.000 0.00
29 0.000 0.00 0.000 0.00
30 prod f2 19 mar 290.000 25520.00 290.000 25520.00
31 back f2 19 apl 0.000 0.00 0.000 0.00
32 0.000 0.00 0.000 0.00
33 prod f2 25 mar 650.000 118300.00 650.000 118300.00
34 back f2 25 apl 0.000 0.00 0.000 0.00
35 115.000 1840.00 115.000 1840.00
36 35.000 4508.00 35.000 4508.00
37 0.000 0.00 0.000 0.00
38 0.000 0.00 350.000 9100.00
39 150.000 27210.00 122.500 22221.50
40 0.000 0.00 0.000 0.00
41 143.333 -46963.17 143.333 -46963.17
42 250.000 -75000.00 250.000 -75000.00
43 13.333 -3800.00 13.333 -3800.00
44 250.000 -74350.00 250.000 -74350.00
45 243.333 -70566.67 243.333 -70566.67
46 0.000 0.00 0.000 0.00
47 0.000 0.00 0.000 0.00
48 0.000 0.00 0.000 0.00
49 350.000 -180257.00 0.000 0.00
50 500.000 -283915.00 500.000 -283915.00
51 50.000 -27109.50 400.000 -216876.00
52 0.000 0.00 0.000 0.00
53 250.000 -90685.00 250.000 -90685.00
54 250.000 -75000.00 250.000 -75000.00
55 0.000 0.00 0.000 0.00
56 0.000 0.00 0.000 0.00
57 250.000 -78000.00 250.000 -78000.00
58 150.000 -44850.00 150.000 -44850.00
59 455.000 -283869.95 455.000 -283869.95
60 220.000 -120929.60 220.000 -120929.60
61 0.000 0.00 0.000 0.00
62 125.000 -67853.75 125.000 -67853.75
63 500.000 -279595.00 177.500 -99256.23
64 150.000 -77859.00 472.500 -245255.85

=========== ===========
-1295661.80 -1282708.62

Example 3.5. Nonarc Variables in the Side Constraints � 179

Example 3.5. Nonarc Variables in the Side Constraints

You can verify that the FACT2 MAR GIZMO constraint has a left-hand-side activity
of 3,470, which is not equal to the –RHS– of this constraint. Not all of the 3,750
chips that can be supplied to factory 2 for March production are used. It is suggested
that all the possible chips be obtained in March and those not used be saved for April
production. Because chips must be kept in an air-controlled environment, it costs one
dollar to store each chip purchased in March until April. The maximum number of
chips that can be stored in this environment at each factory is 150. In addition, a
search of the parts inventory at factory 1 turned up 15 chips available for their March
production.

Nonarc variables are used in the side constraints that handle the limitations of supply
of Gizmo chips. A nonarc variable called f1 unused chips has as a value the number
of chips that are not used at factory 1 in March. Another nonarc variable, f2 unused
chips, has as a value the number of chips that are not used at factory 2 in March.
f1 chips from mar has as a value the number of chips left over from March used
for production at factory 1 in April. Similarly, f2 chips from mar has as a value
the number of chips left over from March used for April production at factory 2 in
April. The last two nonarc variables have objective function coefficients of 1 and
upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less
than the number of chips left over from March and used in April. Here, this constraint
is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems
that most of the constraints are now equalities, so you specify DEFCONTYPE=EQ
in the PROC INTPOINT statement from now on and provide constraint type data for
constraints that are not “equal to” type, using the default TYPEOBS value –TYPE–
as the –COLUMN– variable value to indicate observations that contain constraint
type data. Also, from now on, the default RHSOBS value is used.

title2 ’Nonarc Variables in the Side Constraints’;
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750

180 � Chapter 3. The INTPOINT Procedure

prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables f1 chips from mar and f2 chips from mar have objective
function coefficients of 1 and upper bounds of 150. There are various ways in which
this information can be furnished to PROC INTPOINT. If there were a TYPE list
variable in the CONDATA= data set, observations could be in the form

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

It is desirable to assign ID list variable values to all the nonarc variables:

data arc6;
set arc5;
drop oldcost oldfc oldflow _flow_ _fcost_ ;
run;

data arc6_b;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

Example 3.5. Nonarc Variables in the Side Constraints � 181

proc append force
base=arc6 data=arc6_b;
run;

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
conout=arc7;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of nonarc variables= 4 .
NOTE: Number of <= side constraints= 1 .
NOTE: Number of == side constraints= 4 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of side constraint coefficients= 24 .
NOTE: The following messages relate to the equivalent

Linear Programming problem solved by the Interior
Point algorithm.

NOTE: Number of <= constraints= 1 .
NOTE: Number of == constraints= 25 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 160 .
NOTE: Number of variables= 72 .
NOTE: After preprocessing, number of <= constraints= 1.
NOTE: After preprocessing, number of == constraints= 24.
NOTE: After preprocessing, number of >= constraints= 1.
NOTE: The preprocessor eliminated 1 constraints from the

problem.
NOTE: The preprocessor eliminated 9 constraint coefficients

from the problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 78 nonzero elements in A * A transpose.
NOTE: Of the 26 rows and columns, 15 are sparse.
NOTE: There are 87 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 104 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 182185121 0.837584 55030 37757 47382
1 56730833 28510760 0.910015 5004.066395 3433.344938 6917.139928
2 9604878 2589633 0.665677 0 1.309672E-10 226.047223
3 328091 309636 0.191136 0 0 26.943297
4 135892 89815 0.063031 0 0 6.389904
5 62039 31604 0.022877 0 0 0

182 � Chapter 3. The INTPOINT Procedure

6 16881 7606.584128 0.005568 0 0 0
7 3753.426021 1918.980183 0.001408 0 0 0
8 709.549939 330.027670 0.000242 0 0 0
9 155.181759 36.697802 0.000026949 0 0 0
10 3.865957 0.421161 0.000000309 0 0 0
11 0.001557 0.000021177 1.557982E-11 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm

performed 11 iterations.
NOTE: Objective = -1295542.742.
NOTE: The data set WORK.ARC7 has 68 observations and 14

variables.
NOTE: There were 68 observations read from the data set

WORK.ARC6.
NOTE: There were 8 observations read from the data set

WORK.NODE0.
NOTE: There were 31 observations read from the data set

WORK.CON6.

The optimal solution data set, CONOUT=ARC7, is given in Output 3.5.1.

proc print data=arc7;
var _tail_ _head_ _name_ _cost_ _capac_ _lo_

flow _fcost_;
sum _fcost_;
run;

The optimal value of the nonarc variable f2 unused chips is 280. This means that
although there are 3,750 chips that can be used at factory 2 in March, only 3,470
are used. As the optimal value of f1 unused chips is zero, all chips available for
production in March at factory 1 are used. The nonarc variable f2 chips from mar
also has zero optimal value. This means that the April production at factory 2 does
not need any chips that could have been held in inventory since March. However,
the nonarc variable f1 chips from mar has value of 20. Thus, 3,490 chips should be
ordered for factory 2 in March. Twenty of these chips should be held in inventory
until April, then sent to factory 1.

Example 3.5. Nonarc Variables in the Side Constraints � 183

Output 3.5.1. CONOUT=ARC7
Nonarc Variables in the Side Constraints

Obs _tail_ _head_ _name_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 prod f1 19 apl 78.60 600 50 540.000 42444.00
2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00
3 f1_may_1 f1_apr_1 back f1 19 may 33.60 20 0 0.000 0.00
4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00
5 fact1_2 f1_apr_2 prod f1 25 apl 174.50 550 50 250.000 43625.00
6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00
7 f1_may_2 f1_apr_2 back f1 25 may 49.20 15 0 0.000 0.00
8 f2_apr_2 f1_apr_2 21.00 25 0 25.000 525.00
9 fact1_1 f1_mar_1 prod f1 19 mar 127.90 500 50 338.333 43272.83
10 f1_apr_1 f1_mar_1 back f1 19 apl 33.60 20 0 20.000 672.00
11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00
12 fact1_2 f1_mar_2 prod f1 25 mar 217.90 400 40 400.000 87160.00
13 f1_apr_2 f1_mar_2 back f1 25 apl 38.40 30 0 30.000 1152.00
14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00
15 fact1_1 f1_may_1 90.10 400 50 116.667 10511.67
16 f1_apr_1 f1_may_1 12.00 50 0 0.000 0.00
17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00
18 fact1_2 f1_may_2 113.30 350 40 350.000 39655.00
19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00
20 f2_may_2 f1_may_2 13.00 25 0 0.000 0.00
21 f1_apr_1 f2_apr_1 11.00 99999999 0 20.000 220.00
22 fact2_1 f2_apr_1 prod f2 19 apl 62.40 480 35 480.000 29952.00
23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00
24 f2_may_1 f2_apr_1 back f2 19 may 30.00 15 0 0.000 0.00
25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00
26 fact2_2 f2_apr_2 prod f2 25 apl 196.70 680 35 577.500 113594.25
27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00
28 f2_may_2 f2_apr_2 back f2 25 may 64.80 15 0 0.000 0.00
29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00
30 fact2_1 f2_mar_1 prod f2 19 mar 88.00 450 35 290.000 25520.00
31 f2_apr_1 f2_mar_1 back f2 19 apl 20.40 15 0 0.000 0.00
32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00
33 fact2_2 f2_mar_2 prod f2 25 mar 182.00 650 35 650.000 118300.00
34 f2_apr_2 f2_mar_2 back f2 25 apl 37.20 15 0 0.000 0.00
35 f1_may_1 f2_may_1 16.00 99999999 0 115.000 1840.00
36 fact2_1 f2_may_1 128.80 250 35 35.000 4508.00
37 f2_apr_1 f2_may_1 20.00 30 0 0.000 0.00
38 f1_may_2 f2_may_2 26.00 99999999 0 0.000 0.00
39 fact2_2 f2_may_2 181.40 550 35 122.500 22221.50
40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00
41 f1_mar_1 shop1_1 -327.65 250 0 148.333 -48601.42
42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00
43 f1_may_1 shop1_1 -285.00 250 0 1.667 -475.00
44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00
45 f2_apr_1 shop1_1 -290.00 250 0 250.000 -72500.00
46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00
47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00
48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00
49 f1_may_2 shop1_2 -515.02 99999999 0 347.500 -178969.45
50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00
51 f2_apr_2 shop1_2 -542.19 500 0 52.500 -28464.98
52 f2_may_2 shop1_2 -491.56 500 0 0.000 0.00
53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00
54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00
55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00
56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00
57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00
58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00
59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.95
60 f1_apr_2 shop2_2 -549.68 99999999 0 245.000 -134671.60
61 f1_may_2 shop2_2 -500.00 99999999 0 2.500 -1250.00
62 f2_mar_2 shop2_2 -542.83 500 0 125.000 -67853.75
63 f2_apr_2 shop2_2 -559.19 500 0 500.000 -279595.00
64 f2_may_2 shop2_2 -519.06 500 0 122.500 -63584.85
65 f1 chips from mar 1.00 150 0 20.000 20.00
66 f1 unused chips 0.00 99999999 0 0.000 0.00
67 f2 chips from mar 1.00 150 0 0.000 0.00
68 f2 unused chips 0.00 99999999 0 280.000 0.00

===========
-1295542.74

184 � Chapter 3. The INTPOINT Procedure

Example 3.6. Solving an LP Problem with Data in MPS Format

In this example, PROC INTPOINT is ultimately used to solve an LP. But prior to
that, there is SAS code that is used to read a MPS format file and initialize an in-
put SAS data set. MPS was an optimization package developed for IBM computers
many years ago and the format by which data had to be supplied to that system be-
came the industry standard for other optimization software packages, including those
developed recently. The MPS format is described in Murtagh (1981). If you have an
LP which has data in MPS format in a file /your-directory/your-filename.dat, then the
following SAS code should be run:

filename w ’/your-directorys/your-filename.dat’;
data raw;

infile w lrecl=80 pad;
input field1 $ 2-3 field2 $ 5-12 field3 $ 15-22

field4 25-36 field5 $ 40-47 field6 50-61;
run;

%sasmpsxs;

data lp;
set;
if _type_="FREE" then _type_="MIN";
if lag(_type_)="*HS" then _type_="RHS";
run;

proc sort data=lp;
by _col_;
run;

proc intpoint
arcdata=lp
condata=lp sparsecondata rhsobs=rhs grouped=condata
conout=solutn /* SAS data set for the optimal solution */
bytes=20000000
nnas=1700 ncoefs=4000 ncons=700
printlevel2=2 memrep;
run;

proc lp
data=lp sparsedata
endpause time=3600 maxit1=100000 maxit2=100000;
run;
show status;
quit;

You will have to specify the appropriate path and file name in which your MPS format
data resides.

SASMPSXS is a SAS macro provided within SAS/OR software. The MPS format
resembles the sparse format of the CONDATA= data set for PROC INTPOINT. The
SAS macro SASMPSXS examines the MPS data and transfers it into a SAS data set
while automatically taking into account how the MPS format differs slightly from
PROC INTPOINT’s sparse format.

References � 185

The parameters NNAS=1700, NCOEFS=4000, and NCONS=700 indicate the ap-
proximate (overestimated) number of variables, coefficients and constraints this
model has. You must change these to your problems dimensions. Knowing these,
PROC INTPOINT is able to utilize memory better and read the data faster. These
parameters are optional.

The PROC SORT preceding PROC INTPOINT is not necessary, but sorting the SAS
data set can speed up PROC INTPOINT when it reads the data. After the sort, data
for each column is grouped together. GROUPED=condata can be specified.

For small problems, presorting and specifying those additional options is not going to
greatly influence PROC INTPOINT’s run time. However, when problems are large,
presorting and specifying those additional options can be very worthwhile.

If you generate the model yourself, you will be familiar enough with it to know
what to specify for the RHSOBS= parameter. If the value of the SAS variable in the
COLUMN list is equal to the character string specified as the RHSOBS= option, the
data in that observation is interpreted as right-hand-side data as opposed to coefficient
data. If you do not know what to specify for the RHSOBS= option, you should first
run PROC LP and optionally set MAXIT1=1 and MAXIT2=1. PROC LP will output
a Problem Summary that includes the line

Rhs Variable rhs-charstr

BYTES=20000000 is the size of working memory PROC INTPOINT is allowed.

The options PRINTLEVEL2=2 and MEMREP indicate that you want to see an iter-
ation log and messages about memory usage. Specifying these options is optional.

References
George, A., Liu, J., and Ng, E. (2001), “Computer Solution of Positive Definite

Systems,” Unpublished book obtainable from authors.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), “On Implementing
Mehrotra’s Predictor-Corrector Interior-Point Method for Linear Programming,”
SIAM Journal of Optimization, 2, 435–449.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
McGraw-Hill Inc.

Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear
Optimization, Chichester, England: John Wiley & Sons.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John
Wiley & Sons.

186 � Chapter 3. The INTPOINT Procedure

Chapter 4
The LP Procedure

Chapter Contents

OVERVIEW . 189

GETTING STARTED . 191
An Introductory Example . 192
An Integer Programming Example . 196
An MPS Format Conversion Example . 198

SYNTAX . 199
Functional Summary . 200
PROC LP Statement . 204
COEF Statement . 214
COL Statement . 214
ID Statement . 214
IPIVOT Statement . 215
PIVOT Statement . 215
PRINT Statement . 215
QUIT Statement . 217
RANGE Statement . 217
RESET Statement . 218
RHS Statement . 218
RHSSEN Statement . 219
ROW Statement . 219
RUN Statement . 220
SHOW Statement . 220
TYPE Statement . 220
VAR Statement . 222

DETAILS . 223
Missing Values . 223
Dense Data Input Format . 223
Sparse Data Input Format . 224
Converting MPS Format . 226
The Reduced Costs, Dual Activities, and Current Tableau 229
Macro Variable –ORLP– . 229
Pricing . 231
Scaling . 232
Preprocessing . 232

188 � Chapter 4. The LP Procedure

Integer Programming . 233
Sensitivity Analysis . 241
Range Analysis . 244
Parametric Programming . 244
Interactive Facilities . 246
Memory Management . 247
Output Data Sets . 248
Input Data Sets . 250
Displayed Output . 251
ODS Table and Variable Names . 254

EXAMPLES . 256
Example 4.1. An Oil Blending Problem . 256
Example 4.2. A Sparse View of the Oil Blending Problem 261
Example 4.3. Analyzing the Sensitivity of the Solution to Changes in the

Objective Coefficients . 265
Example 4.4. Additional Analysis of the Sensitivity of the Solution to Changes

in the Objective Coefficients . 267
Example 4.5. Price Parametric Programming for the Oil Blending Problem . 269
Example 4.6. Special Ordered Sets and the Oil Blending Problem 271
Example 4.7. Goal-Programming a Product Mix Problem 274
Example 4.8. A Simple Integer Program 280
Example 4.9. An Infeasible Problem . 283
Example 4.10. Restarting an Integer Program 286
Example 4.11. Alternative Search of the Branch-and-Bound Tree 291
Example 4.12. An Assignment Problem 295
Example 4.13. A Scheduling Problem . 302
Example 4.14. A Multicommodity Transshipment Problem with Fixed Charges309

REFERENCES . 312

Chapter 4
The LP Procedure
Overview

The LP procedure solves linear programs, integer programs, and mixed-integer pro-
grams. It also performs parametric programming, range analysis, and reports on
solution sensitivity to changes in the right-hand-side constants and price coefficients.

The LP procedure provides various control options and solution strategies. It also
provides the functionality to produce various kinds of intermediate and final solution
information. The procedure’s interactive features enable you to take control of the
problem solving process. During linear or integer iterations, for example, you can
stop the procedure at intermediate stages and examine current results. If necessary,
you can change options or strategies and resume the execution of the procedure.

The LP procedure is used to optimize a linear function subject to linear and integer
constraints. Specifically, the LP procedure solves the general mixed-integer program
of the form

minimize cT x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u
xi is integer, i ∈ S

where

• A is an m× n matrix of technological coefficients

• b is an m× 1 matrix of right-hand-side (RHS) constants

• c is an n× 1 matrix of objective function coefficients

• x is an n× 1 matrix of structural variables

• l is an n× 1 matrix of lower bounds on x

• u is an n× 1 matrix of upper bounds on x

• S is a subset of the set of indices {1, . . . , n}

Linear programs (when S is empty) are denoted by (LP). For these problems, the
procedure employs the two-phase revised simplex method, which uses the Bartels-
Golub update of the LU decomposed basis matrix to pivot between feasible solutions
(Bartels 1971). In phase 1, PROC LP finds a basic feasible solution to (LP), while in
phase 2, PROC LP finds an optimal solution, xopt. The procedure implicitly handles
unrestricted variables, lower-bounded variables, upper-bounded variables, and ranges
on constraints. When no explicit lower bounds are specified, PROC LP assumes that
all variables are bounded below by zero.

190 � Chapter 4. The LP Procedure

When a variable is specified as an integer variable, S has at least one element. The
procedure then uses the branch-and-bound technique for optimization.

The relaxed problem (the problem with no integer constraints) is solved initially us-
ing the primal algorithm described previously. Constraints are added in defining the
subsequent descendant problems in the branch-and-bound tree. These problems are
then solved using the dual simplex algorithm. Dual pivots are referred to as phase 3
pivots.

The preprocessing option enables the procedure to identify redundant and infeasible
constraints, fix variables, and reduce the feasible region before solving a problem.
For linear programs, the option often can reduce the number of constraints and vari-
ables, leading to a quicker elapsed solution time and improved reliability. For integer
programs, it often reduces the gap between an integer program and its relaxed linear
program, which will likely lead to a reduced branch-and-bound tree and a quicker
CPU time. In general, it provides users an alternative to solving large, complicated
operations research problems.

The LP procedure can also analyze the sensitivity of the solution xopt to changes in
both the objective function and the right-hand-side constants. There are three tech-
niques available for this analysis: sensitivity analysis, parametric programming, and
range analysis. Sensitivity analysis enables you to examine the size of a perturbation
to the right-hand-side or objective vector by an arbitrary change vector for which the
basis of the current optimal solution remains optimal.

Parametric programming, on the other hand, enables you to specify the size of the
perturbation beforehand and examine how the optimal solution changes as the de-
sired perturbation is realized. With this technique, the procedure pivots to maintain
optimality as the right-hand-side or objective vector is perturbed beyond the range for
which the current solution is optimal. Range analysis is used to examine the range of
each right-hand-side value or objective coefficient for which the basis of the current
optimal solution remains optimal.

The LP procedure can also save both primal and dual solutions, the current tableau,
and the branch-and-bound tree in SAS data sets. This enables you to generate solution
reports and perform additional analyses with the SAS System. Although PROC LP
reports solutions, this feature is particularly useful for reporting solutions in formats
tailored to your specific needs. Saving computational results in a data set also enables
you to continue executing a problem not solved because of insufficient time or other
computational problems.

The LP procedure uses the Output Delivery System (ODS), a SAS subsystem that
provides capabilities for displaying and controlling the output from SAS procedures.
ODS enables you to modify the headers, column names, data formats, and layouts of
the output tables in PROC LP.

There are no restrictions on the problem size in the LP procedure. The number of
constraints and variables in a problem that PROC LP can solve depends on the host
platform, the available memory, and the available disk space for utility data sets.

Getting Started � 191

Getting Started
PROC LP expects the definition of one or more linear, integer, or mixed-integer pro-
grams in an input data set. There are two formats, a dense format and a sparse format,
for this data set.

In the dense format, a model is expressed in a similar way as it is formulated. Each
SAS variable corresponds to a model’s column, and each SAS observation corre-
sponds to a model’s row. A SAS variable in the input data set is one of the following:

• a type variable

• an id variable

• a structural variable

• a right-hand-side variable

• a right-hand-side sensitivity analysis variable or

• a range variable

The type variable tells PROC LP how to interpret the observation as a part of the
mathematical programming problem. It identifies and classifies objectives, con-
straints, and the rows that contain information of variables like types, bounds, and
so on. PROC LP recognizes the following keywords as values for the type variable:
MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRCT, LOWERBD, UPPERBD,
FIXED, INTEGER, BINARY, BASIC, PRICESEN, and FREE. The values of the id
variable are the names of the rows in the model. The other variables identify and
classify the columns with numerical values.

The sparse format to PROC LP is designed to enable you to specify only the nonzero
coefficients in the description of linear programs, integer programs, and mixed-
integer programs. The SAS data set that describes the sparse model must contain
at least four SAS variables:

• a type variable

• a column variable

• a row variable and

• a coefficient variable

Each observation in the data set associates a type with a row or a column, or defines
a coefficient or a numerical value in the model, or both. In addition to the keywords
in the dense format, PROC LP also recognizes the keywords RHS, RHSSEN, and
RANGE as values of the type variable. The values of the row and column variables
are the names of the rows and columns in the model. The values of the coefficient
variables give the coefficients or other numerical data. The SAS data set can contain
multiple pairs of row and coefficient variables. In this way, more information about
the model can be specified in each observation in the data set. See the “Sparse Data
Input Format” section on page 224 for further discussion.

192 � Chapter 4. The LP Procedure

With both the dense and sparse formats for model specification, the observation order
is not important. This feature is particularly useful when using the sparse model
input.

An Introductory Example

A simple blending problem illustrates the dense and sparse input formats and the
use of PROC LP. A step in refining crude oil into finished oil products involves a
distillation process that splits crude into various streams. Suppose there are three
types of crude available: Arabian light, Arabian heavy, and Brega. These types of
crude are distilled into light naphtha, intermediate naphtha, and heating oil. These in
turn are blended into jet fuel using one of two recipes. What amounts of the three
crudes maximize the profit from producing jet fuel? A formulation to answer this
question is as follows:

max − 175 a– light− 165 a–heavy − 205 brega + 300 jet–1 + 300 jet–2

subject to .035 a– light + .03 a–heavy + .045 brega = naphthal
.1 a– light + .075 a–heavy + .135 brega = naphthai

.39 a– light + .3 a–heavy + .43 brega = heatingo
.3 naphthai + .7 heatingo = jet–1
.2 naphthal + .8 heatingo = jet–2

a– light ≤ 110
a–heavy ≤ 165

brega ≤ 80
a– light, a–heavy,brega,naphthai,

naphthal,heatingo, jet–1, jet–2 ≥ 0

The following data set gives the representation of this formulation. Notice that the
variable names are the structural variables, the rows are the constraints, and the coef-
ficients are given as the values for the structural variables.

data;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

An Introductory Example � 193

The same model can be specified in the sparse format, as follows. This format enables
you to omit the zero coefficients.

data;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_ ;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 profit 300
. jet_1 recipe_1 -1
. jet_2 profit 300
. jet_2 recipe_2 -1
. _rhs_ recipe_1 0
;

Because the input order of the model into PROC LP is unimportant, this model can
be specified in sparse input in arbitrary row order. Example 4.2 in the “Examples”
section demonstrates this.

The dense and sparse forms of model input give you flexibility to generate models
using the SAS language. The dense form of the model is solved with the statements

proc lp;
run;

194 � Chapter 4. The LP Procedure

The sparse form is solved with the statements

proc lp sparsedata;
run;

Example 4.1 and Example 4.2 in the “Examples” section continue with this problem.

Problem Input

As default, PROC LP uses the most recently created SAS data set as the problem
input data set. However, if you want to input the problem from a specific SAS data
set, use the DATA= option. For example, if the previous dense form data set has the
name DENSE, the PROC LP statements can be written as

proc lp data=dense;
run;

Problem Definition Statements

In the previous dense form data set, the –ID– , –TYPE– , and –RHS– variables
are special variables in PROC LP. They stand for id variable, type variable, and
right-hand-side variable. If you replace those variable names with, for example,
ROWNAME, TYPE, and RHS, you need the problem definition statements (ID,
TYPE and RHS) in PROC LP:

proc lp;
id rowname;
type type;
rhs rhs;

run;

Other special variables for the dense format are –RHSSEN– and –RANGE– , which
identify the vectors for the right-hand-side sensitivity and range analyses. The corre-
sponding statements are the RHSSEN and RANGE statements. (Notice that a vari-
able name can be identical to a statement name.)

In the same way, if you replace the variables –COL– , –ROW– , –TYPE– , and
–COEF– in the previous sparse form data set by COLUMN, ROW, TYPE, and
COEF, you need the problem definition statements (COL, ROW, TYPE, and COEF)
in PROC LP.

proc lp sparsedata;
col column;
row row;
type type;
coef coef;

run;

An Introductory Example � 195

In the sparse form data set, the value ‘–RHS–’ under the variable –COL– is a special
column name, which represents the model’s right-hand-side column. If you replace
it by a value ‘R’, the PROC LP statements would be

proc lp sparsedata;
rhs r;

run;

Other special column names for the sparse format are ‘–RHSSEN–’ and
‘–RANGE–’. The corresponding statements are the RHSSEN and RANGE
statements.

PROC LP is case insensitive to variable names and all character values, including
the row and column names in the sparse format. The order of the problem definition
statements is not important.

For the dense format, a model’s row names appear as character values in a SAS data
set. For the sparse format, both the row and the column names of the model appear as
character values in the data set. Thus, you can put spaces or other special characters
in the names. When referring to these names in the problem definition statement or
other LP statements, you must use single or double quotes around them. For example,
if you replace ‘–RHS–’ by ‘R H S’ in the previous sparse form data set, the PROC
LP statements would become

proc lp sparsedata;
rhs "r h s";

run;

LP Options

The specifications SPARSEDATA and DATA= in the previous examples are PROC
LP options. PROC LP options include

• data set options

• display control options

• interactive control options

• preprocessing options

• branch-and-bound control options

• sensitivity/parametric/ranging control options

• simplex options

Interactive Processing

Interactive control options include READPAUSE, ENDPAUSE, and so forth. You
can run PROC LP interactively using those options. For example, for the blending
problem example in the dense form, you can first pause the procedure before itera-
tions start with the READPAUSE option. The PROC LP statements are

196 � Chapter 4. The LP Procedure

proc lp readpause;
run;

When the procedure pauses, you run the PRINT statement to display the initial tech-
nological matrix and see if the input is correct. Then you run the PIVOT statement to
do one simplex pivot and pause. After that you use the SHOW statement to check the
current solution status. Then you apply the RESET statement to tell the procedure
to stop as soon as it finds a solution. Now you use the RUN statement to continue
the execution. When the procedure stops, you run the PRINT statement again to do a
price range analysis and QUIT the procedure. Use a SAS %PUT statement to display
the contents of PROC LP’s macro variable, –ORLP–, which contains iterations and
solution information. What follows are the complete statements in batch mode:

proc lp readpause;
run;
print matrix(,); /* display all rows and columns. */
pivot;
show status;
reset endpause;
run;
print rangeprice;
quit;
%put &_orlp_;

Note: You can force PROC LP to pause during iterations by using the CTRL-BREAK
key.

An Integer Programming Example

The following is a simple mixed-integer programming problem. Details can be found
in Example 4.8 in the “Examples” section.

data;
format _row_ $10.;
input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

The row with ‘binary’ type indicates that this problem is a mixed-integer program
and all the integer variables are binary. The integer values of the row set an ordering

An Integer Programming Example � 197

for PROC LP to pick the branching variable when VARSELECT=PRIOR is chosen.
Smaller values will have higher priorities. The –ROW– variable here is an alias of
the –ID– variable.

This problem can be solved with the following statements:

proc lp canselect=lifo backtrack=obj varselect=far endpause;
run;
quit;
%put &_orlp_;

The options CANSELECT=, BACKTRACK=, and VARSELECT= specify the rules
for picking the next active problem and the rule to choose the branching variable. In
this example, the values LIFO, OBJ and FAR serve as the default values, so the three
options can be omitted from the PROC LP statement. The following is the output
from the %PUT statement:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=3
INT_FEAS=2 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
PHASE3_ITER=5

Figure 4.1. The Output of –ORLP–

Preprocessing
Using the PREPROCESS= option, you can apply the preprocessing techniques to
pre-solve and then solve the preceding mixed-integer program:

proc lp preprocess=1 endpause;
run;
quit;
%put &_orlp_;

The preprocessing statistics are written to the SAS log file as follows:

NOTE: Preprocessing 1 ...
NOTE: 2 upper bounds decreased.
NOTE: 2 coefficients reduced.
NOTE: Preprocessing 2 ...
NOTE: 2 constraints eliminated.
NOTE: Preprocessing done.

The new output –ORLP– is as follows:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=0
INT_FEAS=1 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
PHASE3_ITER=0

Figure 4.2. The Output of –ORLP– with Preprocessing Option On

In this example, the number of integer iterations (INT–ITER=) is zero, which means
that the preprocessing has reduced the gap between the relaxed linear problem and
the mixed-integer program to zero.

198 � Chapter 4. The LP Procedure

An MPS Format Conversion Example

If your model input is in MPS input format, you can convert it to the sparse input
format of PROC LP using the SAS macro function SASMPSXS. For example, if
your have an MPS file called MODEL.MPS and it is stored in the directory C:\OR on
a PC, the following program can help you to convert the file and solve the problem.

%sasmpsxs(mpsfile="c:\or\model.mps",lpdata=lp);

data;
set lp;
retain i=1;
if _type_="FREE" and i=1 then

do;
type="MIN";
i=0;

end;
run;

proc lp sparsedata;
run;

In the MPS input format, all objective functions, price change rows, and free rows
have the type ‘N’. The SASMPSXS macro marks them as ‘FREE’ rows. After the
conversion, you must run a DATA step to identify the objective rows and price change
rows. In this example, assume that the problem is one of minimization and the first
‘FREE’ row is an objective row.

Syntax � 199

Syntax
Below are statements used in PROC LP, listed in alphabetical order as they appear in
the text that follows.

PROC LP options ;
COEF variables ;
COL variable ;
ID variable(s) ;
IPIVOT;
PIVOT;
PRINT options ;
QUIT options ;
RANGE variable ;
RESET options ;
RHS variables ;
RHSSEN variables ;
ROW variable(s) ;
RUN;
SHOW options ;
TYPE variable ;
VAR variables ;

The TYPE, ID (or ROW), VAR, RHS, RHSSEN, and RANGE statements are used
for identifying variables in the problem data set when the model is in the dense input
format. In the dense input format, a model’s variables appear as variables in the
problem data set. The TYPE, ID (or ROW), and RHS statements can be omitted if
the input data set contains variables –TYPE– , –ID– (or –ROW–), and –RHS– ;
otherwise, they must be used. The VAR statement is optional. When it is omitted,
PROC LP treats all numeric variables that are not explicitly or implicitly included
in RHS, RHSSEN, and RANGE statements as structural variables. The RHSSEN
and RANGE statements are optional statements for sensitivity and range analyses.
They can be omitted if the input data set contains the –RHSSEN– and –RANGE–
variables.

The TYPE, COL, ROW (or ID), COEF, RHS, RHSSEN, and RANGE statements
are used for identifying variables in the problem data set when the model is in the
sparse input format. In the sparse input format, a model’s rows and columns ap-
pear as observations in the problem data set. The TYPE, COL, ROW (or ID), and
COEF statements can be omitted if the input data set contains the –TYPE– and
–COL– variables, as well as variables beginning with the prefixes –ROW (or –ID)
and –COEF. Otherwise, they must be used. The RHS, RHSSEN, and RANGE state-
ments identify the corresponding columns in the model. These statements can be
omitted if there are observations that contain the RHS, RHSSEN, and RANGE types
or the –RHS–, –RHSSEN–, and –RANGE– column values.

The SHOW, RESET, PRINT, QUIT, PIVOT, IPIVOT, and RUN statements are espe-
cially useful when executing PROC LP interactively. However, they can also be used
in batch mode.

200 � Chapter 4. The LP Procedure

Functional Summary

The statements and options available with PROC LP are summarized by purpose in
the following table.

Table 4.1. Functional Summary

Description Statement Option

Interactive Statements:
perform one integer pivot and pause IPIVOT
perform one simplex pivot and pause PIVOT
display information at current iteration PRINT
terminate processing immediately QUIT
reset options specified RESET
start or resume optimization RUN
show settings of options SHOW

Variable Lists:
variables containing coefficients (sparse) COEF
variable containing column names (sparse) COL
alias for the ROW statement ID
variable (column) containing the range constant
for the dense (sparse) format

RANGE

variables (columns) containing RHS constants for
the dense (sparse) format

RHS

variables (columns) defining RHS change vectors
for the dense (sparse) format

RHSSEN

variable containing names of constraints and ob-
jective functions (names of rows) for the dense
(sparse) format

ROW

variable containing the type of each observation TYPE
structural variables (dense) VAR

Data Set Options:
active nodes input data set PROC LP ACTIVEIN=
active nodes output data set PROC LP ACTIVEOUT=
input data set PROC LP DATA=
dual output data set PROC LP DUALOUT=
primal input data set PROC LP PRIMALIN=
primal output data set PROC LP PRIMALOUT=
sparse format data input flag PROC LP SPARSEDATA
tableau output data set PROC LP TABLEAUOUT=

Display Control Options:
display iteration log PROC LP FLOW
nonzero tolerance displaying PROC LP FUZZ=
inverse of FLOW option PROC LP NOFLOW
inverse of PARAPRINT option PROC LP NOPARAPRINT

Functional Summary � 201

Description Statement Option

omit some displaying PROC LP NOPRINT
inverse of TABLEAUPRINT PROC LP NOTABLEAUPRINT
parametric programming displaying PROC LP PARAPRINT
inverse of NOPRINT PROC LP PRINT
iteration frequency of display PROC LP PRINTFREQ=
level of display desired PROC LP PRINTLEVEL=
display the final tableau PROC LP TABLEAUPRINT

Interactive Control Options:
pause before displaying the solution PROC LP ENDPAUSE
pause after first feasible solution PROC LP FEASIBLEPAUSE
pause frequency of integer solutions PROC LP IFEASIBLEPAUSE=
pause frequency of integer iterations PROC LP IPAUSE=
inverse of ENDPAUSE PROC LP NOENDPAUSE
inverse of FEASIBLEPAUSE PROC LP NOFEASIBLEPAUSE
pause frequency of iterations PROC LP PAUSE=
pause if within specified proximity PROC LP PROXIMITYPAUSE=
pause after data is read PROC LP READPAUSE

Preprocessing Options:
do not perform preprocessing PROC LP NOPREPROCESS
preprocessing error tolerance PROC LP PEPSILON=
limit preprocessing iterations PROC LP PMAXIT=
perform preprocessing techniques PROC LP PREPROCESS

Branch-and-Bound (BB) Control Options:
perform automatic node selection technique PROC LP AUTO
backtrack strategy to be used PROC LP BACKTRACK=
branch on binary variables first PROC LP BINFST
active node selection strategy PROC LP CANSELECT=
comprehensive node selection control parameter PROC LP CONTROL=
backtrack related technique PROC LP DELTAIT=
measure for pruning BB tree PROC LP DOBJECTIVE=
integer tolerance PROC LP IEPSILON=
limit integer iterations PROC LP IMAXIT=
measure for pruning BB tree PROC LP IOBJECTIVE=
order of two branched nodes in adding to BB tree PROC LP LIFOTYPE=
inverse of AUTO PROC LP NOAUTO
inverse of BINFST PROC LP NOBINFST
inverse of POSTPROCESS PROC LP NOPOSTPROCESS
limit number of branching variables PROC LP PENALTYDEPTH=
measure for pruning BB tree PROC LP POBJECTIVE=
perform variables fixing technique PROC LP POSTPROCESS
percentage used in updating WOBJECTIVE PROC LP PWOBJECTIVE=
compression algorithm for storing active nodes PROC LP TREETYPE=

202 � Chapter 4. The LP Procedure

Description Statement Option

branching variable selection strategy PROC LP VARSELECT=
delay examination of some active nodes PROC LP WOBJECTIVE=

Sensitivity/Parametric/Ranging Control Options:
inverse of RANGEPRICE PROC LP NORANGEPRICE
inverse of RANGERHS PROC LP NORANGERHS
limit perturbation of the price vector PROC LP PRICEPHI=
range analysis on the price coefficients PROC LP RANGEPRICE
range analysis on the RHS vector PROC LP RANGERHS
limit perturbation of the RHS vector PROC LP RHSPHI=

Simplex Algorithm Control Options:
use devex method PROC LP DEVEX
general error tolerance PROC LP EPSILON=
perform goal programming PROC LP GOALPROGRAM
largest number used in computation PROC LP INFINITY=
reinversion frequency PROC LP INVFREQ=
reinversion tolerance PROC LP INVTOL=
simultaneously set MAXIT1, MAXIT2, MAXIT3
and IMAXIT values

PROC LP MAXIT=

limit phase 1 iterations PROC LP MAXIT1=
limit phase 2 iterations PROC LP MAXIT2=
limit phase 3 iterations PROC LP MAXIT3=
inverse of devex PROC LP NODEVEX
restore basis after parametric programming PROC LP PARARESTORE
weight of the phase 2 objective function in phase 1 PROC LP PHASEMIX=
multiple pricing strategy PROC LP PRICETYPE=
number of columns to subset in multiple pricing PROC LP PRICE=
limit the number of iterations randomly selecting
each entering variable during phase 1

PROC LP RANDOMPRICEMULT=

zero tolerance in ratio test PROC LP REPSILON=
scaling type to be performed PROC LP SCALE=
zero tolerance in LU decomposition PROC LP SMALL=
time pause limit PROC LP TIME=
control pivoting during LU decomposition PROC LP U=

RESET Statement Options:
The RESET statement supports the same options as the PROC LP statement except for
the DATA=, PRIMALIN=, and ACTIVEIN= options, and supports the following additional
options:

new variable lower bound during phase 3 RESET LOWER=
new variable upper bound during phase 3 RESET UPPER=

Functional Summary � 203

Description Statement Option

PRINT Statement Options:
display the best integer solution PRINT BEST
display variable summary for specified columns PRINT COLUMN
display variable summary and price sensitivity
analysis for specified columns

PRINT COLUMN / SENSITIVITY

display variable summary for integer variables PRINT INTEGER
display variable summary for nonzero integer
variables

PRINT INTEGER–NONZEROS

display variable summary for integer variables
with zero activity

PRINT INTEGER–ZEROS

display submatrix for specified rows and columns PRINT MATRIX
display formatted submatrix for specified rows
and columns

PRINT MATRIX / PICTURE

display variable summary for continuous vari-
ables

PRINT NONINTEGER

display variable summary for nonzero continuous
variables

PRINT NONINTEGER–NONZEROS

display variable summary for variables with
nonzero activity

PRINT NONZEROS

display price sensitivity analysis or price paramet-
ric programming

PRINT PRICESEN

display price range analysis PRINT RANGEPRICE
display RHS range analysis PRINT RANGERHS
display RHS sensitivity analysis or RHS paramet-
ric programming

PRINT RHSSEN

display constraint summary for specified rows PRINT ROW
display constraint summary and RHS sensitivity
analysis for specified rows

PRINT ROW / SENSITIVITY

display solution, variable, and constraint sum-
maries

PRINT SOLUTION

display current tableau PRINT TABLEAU
display variables with zero activity PRINT ZEROS

SHOW Statement Options:
display options applied SHOW OPTIONS
display status of the current solution SHOW STATUS

QUIT Statement Option:
save the defined output data sets and then termi-
nate PROC LP

QUIT / SAVE

204 � Chapter 4. The LP Procedure

PROC LP Statement

PROC LP options ;

This statement invokes the procedure. The following options can appear in the PROC
LP statement.

Data Set Options

ACTIVEIN=SAS-data-set
names the SAS data set containing the active nodes in a branch-and-bound tree that
is to be used to restart an integer program.

ACTIVEOUT=SAS-data-set
names the SAS data set in which to save the current branch-and-bound tree of active
nodes.

DATA=SAS-data-set
names the SAS data set containing the problem data. If the DATA= option is not
specified, PROC LP uses the most recently created SAS data set.

DUALOUT=SAS-data-set
names the SAS data set that contains the current dual solution (shadow prices) on ter-
mination of PROC LP. This data set contains the current dual solution only if PROC
LP terminates successfully.

PRIMALIN=SAS-data-set
names the SAS data set that contains a feasible solution to the problem defined by
the DATA= data set. The data set specified in the PRIMALIN= option should have
the same format as a data set saved using the PRIMALOUT= option. Specifying the
PRIMALIN= option is particularly useful for continuing iteration on a problem pre-
viously attempted. It is also useful for performing sensitivity analysis on a previously
solved problem.

PRIMALOUT=SAS-data-set
names the SAS data set that contains the current primal solution when PROC LP
terminates.

SPARSEDATA
tells PROC LP that the data are in the sparse input format. If this option is not
specified, PROC LP assumes that the data are in the dense input format. See the
“Sparse Data Input Format” section on page 224 for information about the sparse
input format.

TABLEAUOUT=SAS-data-set
names the SAS data set in which to save the final tableau.

PROC LP Statement � 205

Display Control Options

FLOW
requests that a journal of pivot information (the Iteration Log) be displayed after
every PRINTFREQ= iterations. This includes the names of the variables entering and
leaving the basis, the reduced cost of the entering variable, and the current objective
value.

FUZZ=e
displays all numbers within e of zero as zeros. The default value is 1.0E−10.

NOFLOW
is the inverse of the FLOW option.

NOPARAPRINT
is the inverse of the PARAPRINT option.

NOPRINT
suppresses the display of the Variable, Constraint, and Sensitivity Analysis sum-
maries. This option is equivalent to the PRINTLEVEL=0 option.

NOTABLEAUPRINT
is the inverse of the TABLEAUPRINT option.

PARAPRINT
indicates that the solution be displayed at each pivot when performing parametric
programming.

PRINT
is the inverse of the NOPRINT option.

PRINTFREQ=m
indicates that after every mth iteration, a line in the (Integer) Iteration Log be dis-
played. The default value is 1.

PRINTLEVEL=i
indicates the amount of displaying that the procedure should perform.

PRINTLEVEL=-2 only messages to the SAS log are displayed

PRINTLEVEL=-1 is equivalent to NOPRINT unless the problem is infeasi-
ble. If it is infeasible, the infeasible rows are displayed
in the Constraint Summary along with the Infeasible
Information Summary.

PRINTLEVEL=0 is identical to NOPRINT

PRINTLEVEL=1 all output is displayed

The default value is 1.

206 � Chapter 4. The LP Procedure

TABLEAUPRINT
indicates that the final tableau be displayed.

Interactive Control Options

ENDPAUSE
requests that PROC LP pause before displaying the solution. When this pause occurs,
you can enter the RESET, SHOW, PRINT, RUN, and QUIT statements.

FEASIBLEPAUSE
requests that PROC LP pause after a feasible (not necessarily integer feasible) solu-
tion has been found. At a pause, you can enter the RESET, SHOW, PRINT, PIVOT,
RUN, and QUIT statements.

IFEASIBLEPAUSE=n
requests that PROC LP pause after every n integer feasible solutions. At a pause, you
can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements.
The default value is 99999999.

IPAUSE=n
requests that PROC LP pause after every n integer iterations. At a pause, you can
enter RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The
default value is 99999999.

NOENDPAUSE
is the inverse of the ENDPAUSE option.

NOFEASIBLEPAUSE
is the inverse of the FEASIBLEPAUSE option.

PAUSE=n
requests that PROC LP pause after every n iterations. At a pause, you can enter the
RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default
value is 99999999.

PROXIMITYPAUSE=r
causes the procedure to pause if at least one integer feasible solution has been found
and the objective value of the current best integer solution can be determined to be
within r units of the optimal integer solution. This distance, called proximity, is also
displayed on the Integer Iteration Log. Note that the proximity is calculated using
the minimum (maximum if the problem is maximization) objective value among the
nodes that remain to be explored in the branch-and-bound tree as a bound on the value
of the optimal integer solution. Following the first PROXIMITYPAUSE= pause, in
order to avoid a pause at every iteration thereafter, it is recommended that you reduce
this measure through the use of a RESET statement. Otherwise, if any other option or
statement that causes the procedure to pause is used while the PROXIMITYPAUSE=
option is in effect, pause interferences may occur. When this pause occurs, you can
enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The
default value is 0.

PROC LP Statement � 207

READPAUSE
requests that PROC LP pause after the data have been read and the initial basis in-
verted. When this pause occurs, you can enter the RESET, SHOW, PRINT, IPIVOT,
PIVOT, RUN, and QUIT statements.

Preprocessing Control Options

NOPREPROCESS
is the inverse of the PREPROCESS option.

PEPSILON=e
specifies a positive number close to zero. This value is an error tolerance in the
preprocessing. If the value is too small, any marginal changes may cause the prepro-
cessing to repeat itself. However, if the value is too large, it may alter the optimal
solution or falsely claim that the problem is infeasible. The default value is 1.0E−8.

PMAXIT=n
performs at most n preprocessings. Preprocessing repeats itself if it improves some
bounds or fixes some variables. However when a problem is large and dense, each
preprocessing may take a significant amount of CPU time. This option limits the
number of preprocessings PROC LP performs. It can also reduce the build-up of
round-off errors. The default value is 100.

PREPROCESS
performs preprocessing techniques. See the “Preprocessing” section on page 232 for
further discussion.

Branch-and-Bound Algorithm Control Options

AUTO, AUTO(m,n)
automatically sets and adjusts the value of the CONTROL= option. Initially, it sets
CONTROL=0.70, concentrating on finding an integer feasible solution or an upper
bound. When an upper bound is found, it sets CONTROL=0.5, concentrating on
efficiency and lower bound improvement. When the number of active problems ex-
ceeds m, it starts to gradually increase the value of the CONTROL= option to keep
the size of active problems under control. When total active problems exceed n,
CONTROL=1 will keep the active problems from growing further. You can alter the
automatic process by resetting the value of the CONTROL= option interactively.

The default values of m and n are 20000 and 250000, respectively. You can change
the two values according to your computer’s space and memory capacities.

BACKTRACK=rule
specifies the rule used to choose the next active problem when backtracking is re-
quired. One of the following can be specified:

• BACKTRACK=LIFO

• BACKTRACK=FIFO

• BACKTRACK=OBJ

• BACKTRACK=PROJECT

208 � Chapter 4. The LP Procedure

• BACKTRACK=PSEUDOC

• BACKTRACK=ERROR

The default value is OBJ. See the “Integer Programming” section on page 233 for
further discussion.

BINFST
requests that PROC LP branch on binary variables first when integer and binary vari-
ables are present. The reasoning behind this is that a subproblem will usually be fath-
omed or found integer feasible after less than 20% of its variables have been fixed.
Considering binary variables first attempts to reduce the size of the branch-and-bound
tree. It is a heuristic technique.

CANSELECT=rule
specifies the rule used to choose the next active problem when backtracking is not
required or used. One of the following can be specified:

• CANSELECT=LIFO

• CANSELECT=FIFO

• CANSELECT=OBJ

• CANSELECT=PROJECT

• CANSELECT=PSEUDOC

• CANSELECT=ERROR

The default value is LIFO. See the “Integer Programming” section on page 233 for
further discussion.

CONTROL=r
specifies a number between 0 and 1. This option combines CANSELECT= and other
rules to choose the next active problem. It takes into consideration three factors:
efficiency, improving lower bounds, and improving upper bounds. When r is close
to 0, PROC LP concentrates on improving lower bounds (upper bounds for maxi-
mization). However, the efficiency per integer iteration is usually the worst. When
r is close to 1, PROC LP concentrates on improving upper bounds (lower bounds
for maximization). In addition, the growth of active problems will be controlled and
stopped at r = 1. When its value is around 0.5, PROC LP will be in the most efficient
state in terms of CPU time and integer number of iterations. The CONTROL= option
will be automatically adjusted when the AUTO option is applied.

DELTAIT=r
is used to modify the exploration of the branch-and-bound tree. If more than r integer
iterations have occurred since the last integer solution was found, then the procedure
uses the backtrack strategy in choosing the next node to be explored. The default
value is 3 times the number of integer variables.

PROC LP Statement � 209

DOBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer
solution with the objective at least as small (or as large for maximizations) as the
objective of the relaxed problem plus (minus) r. The default value is +∞.

IEPSILON=e
requests that PROC LP consider an integer variable as having an integer value if its
value is within e units of an integer. The default value is 1.0E−7.

IMAXIT=n
performs at most n integer iterations. The default value is 100.

IOBJECTIVE=r
specifies that PROC LP should discard active nodes unless the node could lead to an
integer solution with the objective smaller (or larger for maximizations) than r. The
default value is +∞ for minimization (−∞ for maximization).

LIFOTYPE=c
specifies the order in which to add the two newly branched active nodes to the LIFO
list.

LIFOTYPE=0 add the node with minimum penalty first

LIFOTYPE=1 add the node with maximum penalty first

LIFOTYPE=2 add the node resulting from adding xi ≥ dxopt(k)ie first

LIFOTYPE=3 add the node resulting from adding xi ≤ bxopt(k)ic first

The default value is 0.

NOAUTO
is the inverse of the AUTO option.

NOBINFST
is the inverse of the BINFST option.

NOPOSTPROCESS
is the inverse of the POSTPROCESS option.

PENALTYDEPTH=m
requests that PROC LP examine m variables as branching candidates when
VARSELECT=PENALTY. If the PENALTYDEPTH= option is not specified when
VARSELECT=PENALTY, then all of the variables are considered branching
candidates. The default value is the number of integer variables. See the “Integer
Programming” section on page 233 for further discussion.

POBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer
solution with objective at least as small as o+ | o |×r (at least as large as o− | o | × r
for maximizations) where o is the objective of the relaxed noninteger constrained
problem. The default value is +∞.

210 � Chapter 4. The LP Procedure

POSTPROCESS
attempts to fix binary variables globally based on the relationships among the reduced
cost and objective value of the relaxed problem and the objective value of the current
best integer feasible solution.

PWOBJECTIVE=r
specifies a percentage for use in the automatic update of the WOBJECTIVE= option.
If the WOBJECTIVE= option is not specified in PROC LP, then when an integer
feasible solution is found, the value of the option is updated to be b + q× r where
b is the best bound on the value of the optimal integer solution and q is the current
proximity. Note that for maximizations, b - q× r is used. The default value is 0.95.

TREETYPE=i
specifies a data compression algorithm.

TREETYPE=0 no data compression

TREETYPE=1 Huffman coding compression routines

TREETYPE=2 adaptive Huffman coding compression routines

TREETYPE=3 adaptive arithmetic coding compression routines

For IP or MIP problems, the basis and bounds information of each active node is
saved to a utility file. When the number of active nodes increases, the size of the
utility file becomes larger and larger. If PROC LP runs into a disk problem, like “disk
full ...” or “writing failure ...”, you can use this option to compress the utility file.
For more information on the data compression routines, refer to Nelson (1992). The
default value is 0.

VARSELECT=rule
specifies the rule used to choose the branching variable on an integer iteration.

• VARSELECT=CLOSE

• VARSELECT=PRIOR

• VARSELECT=PSEUDOC

• VARSELECT=FAR

• VARSELECT=PRICE

• VARSELECT=PENALTY

The default value is FAR. See the “Integer Programming” section on page 233 for
further discussion.

WOBJECTIVE=r
specifies that PROC LP should delay examination of active nodes that cannot lead
to an integer solution with objective at least as small (as large for maximizations)
as r, until all other active nodes have been explored. The default value is +∞ for
minimization (−∞ for maximization).

PROC LP Statement � 211

Sensitivity/Parametric/Ranging Control Options

NORANGEPRICE
is the inverse of the RANGEPRICE option.

NORANGERHS
is the inverse of the RANGERHS option.

PRICEPHI=Φ
specifies the limit for parametric programming when perturbing the price vector.
See the “Parametric Programming” section on page 244 for further discussion. See
Example 4.5 for an illustration of this option.

RANGEPRICE
indicates that range analysis is to be performed on the price coefficients. See the
“Range Analysis” section on page 244 for further discussion.

RANGERHS
indicates that range analysis is to be performed on the right-hand-side vector. See the
“Range Analysis” section on page 244 for further discussion.

RHSPHI=Φ
specifies the limit for parametric programming when perturbing the right-hand-side
vector. See the “Parametric Programming” section on page 244 for further discussion.

Simplex Algorithm Control Options

DEVEX
indicates that the devex method of weighting the reduced costs be used in pricing
(Harris 1975).

EPSILON=e
specifies a positive number close to zero. It is used in the following instances:

During phase 1, if the sum of the basic artificial variables is within e of zero, the
current solution is considered feasible. If this sum is not exactly zero, then there
are artificial variables within e of zero in the current solution. In this case, a note is
displayed on the SAS log.

During phase 1, if all reduced costs are ≤ e for nonbasic variables at their lower
bounds and ≥ e for nonbasic variables at their upper bounds and the sum of infeasi-
bilities is greater than e, then the problem is considered infeasible. If the maximum
reduced cost is within e of zero, a note is displayed on the SAS log.

During phase 2, if all reduced costs are ≤ e for nonbasic variables at their lower
bounds and≥ e for nonbasic variables at their upper bounds, then the current solution
is considered optimal.

During phases 1, 2, and 3, the EPSILON= option is also used to test if the denomi-
nator is different from zero before performing the ratio test to determine which basic
variable should leave the basis.

The default value is 1.0E−8.

212 � Chapter 4. The LP Procedure

GOALPROGRAM
specifies that multiple objectives in the input data set are to be treated as sequential
objectives in a goal-programming model. The value of the right-hand-side variable
in the objective row gives the priority of the objective. Lower numbers have higher
priority.

INFINITY=r
specifies the largest number PROC LP uses in computation. The INFINITY= option
is used to determine when a problem has an unbounded variable value. The default
value is the largest double precision number. ∗

INVFREQ=m
reinverts the current basis matrix after m major and minor iterations. The default
value is 100.

INVTOL=r
reinverts the current basis matrix if the largest element in absolute value in the de-
composed basis matrix is greater than r. If after reinversion this condition still holds,
then the value of the INVTOL= option is increased by a factor of 10 and a note indi-
cating this modification is displayed on the SAS log. When r is frequently exceeded,
this may be an indication of a numerically unstable problem. The default value is
1000.

MAXIT=n
simultaneously sets the values of the MAXIT1=, MAXIT2=, MAXIT3=, and
IMAXIT= options.

MAXIT1=n
performs at most n ≥ 0 phase 1 iterations. The default value is 100.

MAXIT2=n
performs at most n ≥ 0 phase 2 iterations. If MAXIT2=0, then only phase 1 is
entered so that on successful termination PROC LP will have found a feasible, but
not necessarily optimal, solution. The default value is 100.

MAXIT3=n
performs at most n ≥ 0 phase 3 iterations. All dual pivots are counted as phase 3
pivots. The default value is 99999999.

NODEVEX
is the inverse of the DEVEX option.

PARARESTORE
indicates that following a parametric programming analysis, PROC LP should restore
the basis.

PHASEMIX=r
specifies a number between 0 and 1. When the number is positive, PROC LP tries to
improve the objective function of phase 2 during phase 1. The PHASEMIX= option
is a weight factor of the phase 2 objective function in phase 1. The default value is 0.

∗This value is system dependent.

PROC LP Statement � 213

PRICE=m
specifies the number of columns to subset when multiple pricing is used in selecting
the column to enter the basis (Greenberg 1978). The type of suboptimization used is
determined by the PRICETYPE= option. See the “Pricing” section on page 231 for a
description of this process.

PRICETYPE=pricetype
specifies the type of multiple pricing to be performed. If this option is specified and
the PRICE= option is not specified, then PRICE= is assumed to be 10. Valid values
for the PRICETYPE= option are

• PRICETYPE=COMPLETE

• PRICETYPE=DYNAMIC

• PRICETYPE=NONE

• PRICETYPE=PARTIAL

The default value is PARTIAL. See the “Pricing” section on page 231 for a descrip-
tion of this process.

RANDOMPRICEMULT=r
specifies a number between 0 and 1. This option sets a limit, in phase 1, on the
number of iterations when PROC LP will randomly pick the entering variables. The
limit equals r times the number of nonbasic variables, or the number of basic vari-
ables, whichever is smaller. The default value of the RANDOMPRICEMULT= op-
tion is 0.01.

REPSILON=e
specifies a positive number close to zero. The REPSILON= option is used in the
ratio test to determine which basic variable is to leave the basis. The default value is
1.0E−10.

SCALE=scale
specifies the type of scaling to be used. Valid values for the SCALE= option are

• SCALE=BOTH

• SCALE=COLUMN

• SCALE=NONE

• SCALE=ROW

The default value is BOTH. See the “Scaling” section on page 232 for further discus-
sion.

SMALL=e
specifies a positive number close to zero. Any element in a matrix with a value less
than e is set to zero. The default value is machine dependent.

214 � Chapter 4. The LP Procedure

TIME=t
checks at each iteration to see if t seconds have elapsed since PROC LP began. If more
than t seconds have elapsed, the procedure pauses and displays the current solution.
The default value is 120 seconds.

U=r
enables PROC LP to control the choice of pivots during LU decomposition and up-
dating the basis matrix. The variable r should take values between EPSILON and
1.0 because small values of r bias the algorithm toward maintaining sparsity at the
expense of numerical stability and vice versa. The more sparse the decomposed basis
is, the less time each iteration takes. The default value is 0.1.

COEF Statement

COEF variables ;

For the sparse input format, the COEF statement specifies the numeric variables in
the problem data set that contain the coefficients in the model. The value of the
coefficient variable in a given observation is the value of the coefficient in the column
and row specified in the COLUMN and ROW variables in that observation. For
multiple ROW variables, the LP procedure maps the ROW variables to the COEF
variables on the basis of their order in the COEF and ROW statements. There must
be the same number of COEF variables as ROW variables. If the COEF statement
is omitted, the procedure looks for the default variable names that have the prefix
–COEF.

COL Statement

COL variable ;

For the sparse input format, the COL statement specifies a character variable in the
problem data set that contains the names of the columns in the model. Columns in the
model are either structural variables, right-hand-side vectors, right-hand-side change
vectors, or a range vector. The COL variable must be a character variable. If the COL
statement is omitted, the LP procedure looks for the default variable name –COL– .

ID Statement

ID variable(s) ;

For the dense input format, the ID statement specifies a character variable in the
problem data set that contains a name for each constraint coefficients row, objective
coefficients row, and variable definition row. If the ID statement is omitted, the LP
procedure looks for the default variable name, –ID– . If this variable is not in the
problem data set, the procedure assigns the default name –OBSxx– to each row,
where xx specifies the observation number in the problem data set.

For the sparse input format, the ID statement specifies the character variables in the
problem data set that contain the names of the rows in the model. Rows in the model
are one of the following types: constraints, objective functions, bounding rows, or
variable describing rows. The ID variables must be character variables. There must

PRINT Statement � 215

be the same number of ID variables as variables specified in the COEF statement. If
the ID statement is omitted, the LP procedure looks for the default variable names
having the prefix –ID.

Note: The ID statement is an alias for the ROW statement.

IPIVOT Statement

IPIVOT ;

The IPIVOT statement causes the LP procedure to execute one integer branch-
and-bound pivot and pause. If you use the IPIVOT statement while the
PROXIMITYPAUSE= option is in effect, pause interferences may occur. To
avoid such interferences, you must either reset the PROXIMITYPAUSE value or
submit IPIVOT; RUN; instead of IPIVOT;.

PIVOT Statement

PIVOT ;

The PIVOT statement causes the LP procedure to execute one simplex pivot and
pause.

PRINT Statement

PRINT options ;

The PRINT statement is useful for displaying part of a solution summary, examining
intermediate tableaus, performing sensitivity analysis, and using parametric program-
ming. In the options, the colnames and rownames lists can be empty, in which case
the LP procedure displays tables with all columns or rows, or both. If a column name
or a row name has spaces or other special characters in it, the name must be enclosed
in single or double quotes when it appears in the argument. The options that can be
used with this statement are as follows.

BEST
displays a Solution, Variable, and Constraint Summary for the best integer solution
found.

COLUMN(colnames) / SENSITIVITY
displays a Variable Summary containing the logical and structural variables listed in
the colnames list. If the / SENSITIVITY option is included, then sensitivity analysis
is performed on the price coefficients for the listed colnames structural variables.

INTEGER
displays a Variable Summary containing only the integer variables.

INTEGER–NONZEROS
displays a Variable Summary containing only the integer variables with nonzero ac-
tivity.

216 � Chapter 4. The LP Procedure

INTEGER–ZEROS
displays a Variable Summary containing only the integer variables with zero activity.

MATRIX(rownames,colnames) / PICTURE
displays the submatrix of the matrix of constraint coefficients defined by the row-
names and colnames lists. If the / PICTURE option is included, then the formatted
submatrix is displayed. The format used is summarized in Table 4.2.

Table 4.2. Format Summary
Condition on the Coefficient x Symbols Printed

abs(x) = 0 “ ”
0 < abs(x) < .000001 sgn(x) “Z”

.000001 ≤ abs(x) < .00001 sgn(x) “Y”

.00001 ≤ abs(x) < .0001 sgn(x) “X”

.0001 ≤ abs(x) < .001 sgn(x) “W”

.001 ≤ abs(x) < .01 sgn(x) “V”

.01 ≤ abs(x) < .1 sgn(x) “U”

.1 ≤ abs(x) < 1 sgn(x) “T”
abs(x) = 1 sgn(x) “1”

1 < abs(x) < 10 sgn(x) “A”
10 ≤ abs(x) < 100 sgn(x) “B”

100 ≤ abs(x) < 1000 sgn(x) “C”
1000 ≤ abs(x) < 10000 sgn(x) “D”

10000 ≤ abs(x) < 100000 sgn(x) “E”
100000 ≤ abs(x) < 1.0E06 sgn(x) “F”

NONINTEGER
displays a Variable Summary containing only the continuous variables.

NONINTEGER–NONZEROS
displays a Variable Summary containing only the continuous variables with nonzero
activity.

NONZEROS
displays a Variable Summary containing only the variables with nonzero activity.

PRICESEN
displays the results of parametric programming for the current value of the
PRICEPHI= option, the price coefficients, and all of the price change vectors.

RANGEPRICE
performs range analysis on the price coefficients.

RANGERHS
performs range analysis on the right-hand-side vector.

RHSSEN
displays the results of parametric programming for the current value of the RHSPHI=
option, the right-hand-side coefficients, and all of the right-hand-side change vectors.

RANGE Statement � 217

ROW(rownames) / SENSITIVITY
displays a constraint summary containing the rows listed in the rowname list. If
the / SENSITIVITY option is included, then sensitivity analysis is performed on the
right-hand-side coefficients for the listed rownames.

SOLUTION
displays the Solution Summary, including the Variable Summary and the Constraint
Summary.

TABLEAU
displays the current tableau.

ZEROS
displays a Variable Summary containing only the variables with zero activity. This
may be useful in the analysis of ON/OFF, ZERO/ONE, scheduling, and assignment
applications.

QUIT Statement
QUIT options ;

The QUIT statement causes the LP procedure to terminate processing immediately.
No further displaying is performed and no output data sets are created.

The QUIT/SAVE statement causes the LP procedure to save the output data sets,
defined in the PROC LP statement or in the RESET statement, and then terminate the
procedure.

RANGE Statement
RANGE variable ;

For the dense input format, the RANGE statement identifies the variable in the prob-
lem data set that contains the range coefficients. These coefficients enable you to
specify the feasible range of a row. For example, if the ith row is

aT x ≤ bi

and the range coefficient for this row is ri > 0, then all values of x that satisfy

bi − ri ≤ aT x ≤ bi

are feasible for this row. Table 4.3 shows the bounds on a row as a function of the
row type and the sign on a nonmissing range coefficient r.

Table 4.3. Interpretation of the Range Coefficient

Bounds
r –TYPE– Lower Upper
6= 0 LE b− |r| b
6= 0 GE b b + |r|
> 0 EQ b b + r
< 0 EQ b + r b

218 � Chapter 4. The LP Procedure

If you include a range variable in the model and have a missing value or zero for it
in a constraint row, then that constraint is treated as if no range variable had been
included.

If the RANGE statement is omitted, the LP procedure assumes that the variable
named –RANGE– contains the range coefficients.

For the sparse input format, the RANGE statement gives the name of a column in
the problem data set that contains the range constants. If the RANGE statement
is omitted, then the LP procedure assumes that the column named –RANGE– or
the column with the ‘RANGE’ keyword in the problem data set contains the range
constants.

RESET Statement

RESET options ;

The RESET statement is used to change options after the LP procedure has started
execution. All of the options that can be set in the PROC LP statement can also
be reset with the RESET statement, except for the DATA=, the PRIMALIN=, and
the ACTIVEIN= options. In addition to the options available with the PROC LP
statement, the following two options can be used.

LOWER(colnames)=n;
During phase 3, this sets the lower bound on all of the structural variables listed in
the colnames list to an integer value n. This may contaminate the branch-and-bound
tree. All nodes that descend from the current problem have lower bounds that may be
different from those input in the problem data set.

UPPER(colnames)=n;
During phase 3, this sets the upper bound on all of the structural variables listed in
the colnames list to an integer value n. This may contaminate the branch-and-bound
tree. All nodes that descend from the current problem have upper bounds that may
be different from those input in the problem data set.

Note that the LOWER= and UPPER= options only apply to phase 3 for integer prob-
lems. Therefore, they should only be applied once the integer iterations have started;
if they are applied before then, they will be ignored.

RHS Statement

RHS variables ;

For the dense input format, the RHS statement identifies variables in the problem data
set that contain the right-hand-side constants of the linear program. Only numeric
variables can be specified. If more than one variable is included in the RHS statement,
the LP procedure assumes that problems for several linear programs are defined in the
problem data set. A new linear program is defined for each variable in the RHS list. If
the RHS statement is omitted, the procedure assumes that a variable named –RHS–
contains the right-hand-side constants.

ROW Statement � 219

For the sparse input format, the RHS statement gives the names of one or more
columns in the problem data set that are to be considered as right-hand-side con-
stants. If the RHS statement is omitted, then the LP procedure assumes that the
column named –RHS– or columns with the ‘RHS’ keyword in the problem data set
contain the right-hand-side constants. See the “Sparse Data Input Format” section on
page 224 for further discussion.

As default, the LP procedure assumes that the RHS constant is a zero vector for the
dense and sparse input formats.

RHSSEN Statement

RHSSEN variables ;

For the dense input format, the RHSSEN statement identifies variables in the problem
data set that define change vectors for examining the sensitivity of the optimal solu-
tion to changes in the RHS constants. If the RHSSEN statement is omitted, then the
LP procedure assumes that a variable named –RHSSEN– contains a right-hand-side
change vector.

For the sparse input format, the RHSSEN statement gives the names of one or more
columns in the problem data set that are to be considered as change vectors. If the
RHSSEN statement is omitted, then the LP procedure assumes that the column named
–RHSSEN– or columns with the ‘RHSSEN’ keyword in the problem data set con-
tain the right-hand-side change vectors. For further information, see the “Sparse
Data Input Format”, “Right-Hand-Side Sensitivity Analysis”, and “Right-Hand-Side
Parametric Programming” sections.

ROW Statement

ROW variable(s) ;

For the dense input format, the ROW statement specifies a character variable in the
problem data set that contains a name for each row of constraint coefficients, each
row of objective coefficients and each variable describing row. If the ROW statement
is omitted, the LP procedure looks for the default variable name, –ROW– . If there
is no such variable in the problem data set, the procedure assigns the default name
–OBSxx– to each row, where xx specifies the observation number in the problem
data set.

For the sparse input format, the ROW statement specifies the character variables
in the problem data set that contain the names of the rows in the model. Rows in
the model are one of the following types: constraints, objective functions, bounding
rows, or variable describing rows. The ROW variables must be character variables.
There must be the same number of ROW variables as variables specified in the COEF
statement. If the ROW statement is omitted, the LP procedure looks for the default
variable names having the prefix –ROW.

220 � Chapter 4. The LP Procedure

RUN Statement

RUN ;

The RUN statement causes optimization to be started or resumed. The TITLE or
OPTIONS statement should not appear between PROC LP and RUN statements.

SHOW Statement

SHOW options ;

The SHOW statement specifies that the LP procedure display either the current op-
tions or the current solution status on the SAS log.

OPTIONS
requests that the current options be displayed on the SAS log.

STATUS
requests that the status of the current solution be displayed on the SAS log.

TYPE Statement

TYPE variable ;

The TYPE statement specifies a character variable in the problem data set that con-
tains the type identifier for each observation. This variable has keyword values that
specify how the LP procedure should interpret the observation. If the TYPE state-
ment is omitted, the procedure assumes that a variable named –TYPE– contains the
type keywords.

For the dense input format, the type variable identifies the constraint and objective
rows and rows that contain information about the variables. The type variable should
have nonmissing values in all observations.

For the sparse input format, the type variable identifies a model’s rows and columns.
In an observation, a nonmissing type is associated with either a row or a column. If
there are many columns sharing the same type, you can define a row of that type.
Then, any nonmissing values in that row set the types of the corresponding columns.

The following are valid values for the TYPE variable in an observation:

MIN contains the price coefficients of an objective row, for example,
c in the problem (MIP), to be minimized.

MAX contains the price coefficients of an objective row, for example,
c, to be maximized.

EQ (=) contains coefficients of an equality constrained row.
LE (≤) contains coefficients of an inequality, less than or equal to, con-

strained row.
GE (≥) contains coefficients of an inequality, greater than or equal to,

constrained row.

TYPE Statement � 221

SOSEQ identifies the row as specifying a special ordered set. The vari-
ables flagged in this row are members of a set exactly one of
which must be above its lower bound in the optimal solution.
Note that variables in this type of special ordered set must be
integer.

SOSLE identifies the row as specifying a special ordered set. The vari-
ables flagged in this row are members of a set in which only one
can be above its lower bound in the optimal solution.

UNRSTRCT identifies those structural variables to be considered as unre-
stricted variables. These are variables for which `i = −∞ and
ui = +∞. Any variable that has a 1 in this observation is con-
sidered an unrestricted variable.

LOWERBD identifies lower bounds on the structural variables. If all struc-
tural variables are to be nonnegative, that is, `i = 0, then you do
not need to include an observation with the ‘LOWERBD’ key-
word in a variable specified in the TYPE statement. Missing val-
ues for variables in a lower-bound row indicate that the variable
has lower bound equal to zero.
Note: A variable with lower or upper bounds cannot be identified
as unrestricted.

UPPERBD identifies upper bounds ui on the structural variables. For each
structural variable that is to have an upper bound ui = +∞, the
observation must contain a missing value or the current value
of INFINITY. All other values are interpreted as upper bounds,
including 0.

FIXED identifies variables that have fixed values. A nonmissing value
in a row with ‘FIXED’ type keyword gives the constant value of
that variable.

INTEGER identifies variables that are integer-constrained. In a feasible so-
lution, these variables must have integer values. A missing value
in a row with ‘INTEGER’ type keyword indicates that the vari-
able is not integer-constrained. The value of variables in the
‘INTEGER’ row gives an ordering to the integer-constrained
variables that is used when the VARSELECT= option equals
PRIOR.
Note: Every integer-constrained variable must have an up-
per bound defined in a row with type ‘UPPERBD’. See the
“Controlling the Branch-and-Bound Search” section on page 236
for further discussion.

BINARY identifies variables that are constrained to be either 0 or 1. This
is equivalent to specifying that the variable is an integer vari-
able and has a lower bound of 0 and an upper bound of 1. A
missing value in a row with ‘BINARY’ type keyword indicates
that the variable is not constrained to be 0 or 1. The value of
variables in the ‘BINARY’ row gives an ordering to the integer-
constrained variables that is used when the VARSELECT= op-
tion equals PRIOR. See the “Controlling the Branch-and-Bound
Search” section on page 236 for further discussion.

222 � Chapter 4. The LP Procedure

BASIC identifies variables that form an initial basic feasible solution.
A missing value in a row with ‘BASIC’ type indicates that the
variable is not basic.

PRICESEN identifies a vector that is used to evaluate the sensitivity of the op-
timal solution to changes in the objective function. See the “Price
Sensitivity Analysis” and “Price Parametric Programming” sec-
tions for further discussion.

FREE identifies a nonbinding constraint. Any number of FREE con-
straints can appear in a problem data set.

RHS identifies a right-hand-side column in the sparse input format.
This replaces the RHS statement. It is useful when converting
the MPS format into the sparse format of PROC LP. See the
“Converting MPS Format” section on page 226 for more infor-
mation.

RHSSEN identifies a right-hand-side sensitivity analysis vector in the
sparse input format. This replaces the RHSSEN statement. It
is useful when converting the MPS format into the sparse format
of PROC LP. See the “Converting MPS Format” section on page
226 for more information.

RANGE identifies a range vector in the sparse input format. This replaces
the RANGE statement. It is useful when converting the MPS
format into the sparse format of PROC LP. See the “Converting
MPS Format” section on page 226 for more information.

VAR Statement

VAR variables ;

For the dense input format, the VAR statement identifies variables in the problem data
set that are to be interpreted as structural variables in the linear program. Only nu-
meric variables can be specified. If no VAR statement is specified, the LP procedure
uses all numeric variables not included in an RHS or RHSSEN statement as structural
variables.

Dense Data Input Format � 223

Details

Missing Values

The LP procedure treats missing values as missing in all rows except those that iden-
tify either upper or lower bounds on structural variables. If the row is an upper-bound
row, then the type identifier is ‘UPPERBD’ and the LP procedure treats missing val-
ues as +∞. If the row is a lower-bound row, then the type identifier is ‘LOWERBD’
and the LP procedure treats missing values as 0, except for the variables that are
identified as ‘UNRSTRCT’.

Dense Data Input Format

In the dense format, a model is expressed in a similar way as it is formulated. Each
SAS variable corresponds to a model’s column and each SAS observation corre-
sponds to a model’s row. A SAS variable in the input data set is one of the following:

• a type variable

• an id variable

• a structural variable

• a right-hand-side variable

• a right-hand-side sensitivity analysis variable

• a range variable

The type variable tells PROC LP how to interpret the observation as a part of the
mathematical programming problem. It identifies and classifies objectives, con-
straints, and the rows that contain information of variables like types, bounds, and
so on. PROC LP recognizes the following keywords as values for the type variable:
MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRCT, LOWERBD, UPPERBD,
FIXED, INTEGER, BINARY, BASIC, PRICESEN, and FREE. The values of the id
variable are the names of the rows in the model. The other variables identify and
classify the columns with numerical values.

The TYPE, ID (or ROW), and RHS statements can be omitted if the input data set
contains variables –TYPE– , –ID– (or –ROW–), and –RHS– ; otherwise, they must
be used. The VAR statement is optional. When it is not specified, PROC LP uses
as structural variables all numeric variables not explicitly or implicitly included in
statement lists. The RHSSEN and RANGE statements are optional statements for
sensitivity and range analyses. They can be omitted if the input data set contains the
–RHSSEN– and –RANGE– variables.

224 � Chapter 4. The LP Procedure

Sparse Data Input Format

The sparse format to PROC LP is designed to enable you to specify only the nonzero
coefficients in the description of linear programs, integer programs, and mixed-
integer programs. The SAS data set that describes the sparse model must contain
at least four SAS variables:

• a type variable

• a column variable

• a row variable

• a coefficient variable

Each observation in the data set associates a type with a row or column, and defines
a coefficient or numerical value in the model. The value of the type variable is a
keyword that tells PROC LP how to interpret the observation. In addition to the key-
words in the dense format, PROC LP also recognizes the keywords RHS, RHSSEN,
and RANGE as values of the type variable. Table 4.4 shows the keywords that are
recognized by PROC LP and in which variables can appear in the problem data set.

The values of the row and column variables are the names of the rows and columns
in the model. The values of the coefficient variables define basic coefficients and
lower and upper bounds, and identify model variables with types BASIC, FIXED,
BINARY, and INTEGER. All character values in the sparse data input format are
case insensitive.

The SAS data set can contain multiple pairs of rows and coefficient variables. In this
way, more information about the model can be specified in each observation in the
data set. See Example 4.2 for details.

Sparse Data Input Format � 225

Table 4.4. Variable Keywords Used in the Problem Data Set

TYPE (–TYPE–) COL (–COL–)
MIN
MAX
EQ
LE
GE
SOSEQ
SOSLE
UNRSTRCT
LOWERBD
UPPERBD
FIXED
INTEGER
BINARY
BASIC
PRICESEN
FREE
RHS –RHS–
RHSSEN –RHSSEN–
RANGE –RANGE–
∗xxxxxxx

Follow these rules for sparse data input:

• The order of the observations is unimportant.

• Each unique column name appearing in the COL variable defines a unique
column in the model.

• Each unique row name appearing in the ROW variable defines a unique row in
the model.

• The type of the row is identified when an observation in which the row name ap-
pears (in a ROW variable) has type MIN, MAX, LE, GE, EQ, SOSLE, SOSEQ,
LOWERBD, UPPERBD, UNRSTRCT, FIXED, BINARY, INTEGER, BASIC,
FREE, or PRICESEN.

• The type of each row must be identified at least once. If a row is given a type
more than once, the multiple definitions must be identical.

• When there are multiple rows named in an observation (that is, when there are
multiple ROW variables), the TYPE variable applies to each row named in the
observation.

• The type of a column is identified when an observation in which the col-
umn name but no row name appears has the type LOWERBD, UPPERBD,
UNRSTRCT, FIXED, BINARY, INTEGER, BASIC, RHS, RHSSEN, or
RANGE. A column type can also be identified in an observation in which both

226 � Chapter 4. The LP Procedure

column and row names appear and the row name has one of the preceding
types.

• Each column is assumed to be a structural column in the model unless the col-
umn is identified as a right-hand-side vector, a right-hand-side change vector,
or a range vector. A column can be identified as one of these types using either
the keywords RHS, RHSSEN, or RANGE in the TYPE variable, the special
column names –RHS– , –RHSSEN– , or –RANGE– , or the RHS, RHSSEN,
or RANGE statements following the PROC LP statement.

• A TYPE variable beginning with the character ∗ causes the observation to be
interpreted as a comment.

When the column names appear in the Variable Summary in the PROC LP output,
they are listed in alphabetical order. The row names appear in the order in which they
appear in the problem data set.

Converting MPS Format

MPS input format was introduced by IBM. It has been a way of creating inputs for
linear and integer programs. SASMPSXS is a SAS macro function that converts the
standard MPS format to the sparse format of the LP procedure. The following is an
example of the MPS format:

NAME EXAMPLE
* THIS IS DATA FOR THE PRODUCT MIX PROBLEM.
ROWS
N PROFIT
L STAMP
L ASSEMB
L FINISH
N CHNROW
N PRICE
COLUMNS

DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT 95.00000
DESK PRICE 175.00000
CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT 41.00000
CHAIR PRICE 95.00000
CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT 84.00000
CABINET PRICE 145.00000
BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT 76.00000
BOOKCSE PRICE 130.00000 CHNROW 1.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS

Converting MPS Format � 227

UP CHAIR 75.00000
LO BOOKCSE 50.00000

ENDATA

In this example, the company tries to find an optimal product mix of four items:
a DESK, a CHAIR, a CABINET, and a BOOKCASE. Each item is processed in a
stamping department (STAMP), an assembly department (ASSEMB), and a finishing
department (FINISH). The time each item requires in each department is given in
the input data. Because of resource limitations, each department has an upper limit
on the time available for processing. Furthermore, because of labor constraints, the
assembly department must work at least 300 hours. Finally, marketing tells you not
to make more than 75 chairs, to make at least 50 bookcases, and to find the range over
which the selling price of a bookcase can vary without changing the optimal product
mix.

The SASMPSXS macro function uses MPSFILE=‘FILENAME’ as an argument to
read an MPS input file. It then converts the file and saves the conversion to a default
SAS data set, PROB. The FILENAME should include the path.

Running the following statements on the preceding example

%sasmpsxs(mpsfile=’filename’);

proc print data=prob;
run;

produces the sparse input form of the LP procedure:

OBS _TYPE_ _COL_ _ROW1_ _COEF1_ _ROW2_ _COEF2_

1 *OW . .
2 FREE PROFIT . .
3 LE STAMP . .
4 LE ASSEMB . .
5 LE FINISH . .
6 FREE CHNROW . .
7 FREE PRICE . .
8 *OL MNS . .
9 DESK STAMP 3.0 ASSEMB 10
10 DESK FINISH 10.0 PROFIT 95
11 DESK PRICE 175.0 .
12 CHAIR STAMP 1.5 ASSEMB 6
13 CHAIR FINISH 8.0 PROFIT 41
14 CHAIR PRICE 95.0 .
15 CABINET STAMP 2.0 ASSEMB 8
16 CABINET FINISH 8.0 PROFIT 84
17 CABINET PRICE 145.0 .
18 BOOKCSE STAMP 2 ASSEMB 7
19 BOOKCSE FINISH 7 PROFIT 76
20 BOOKCSE PRICE 130 CHNROW 1
21 *HS . .

228 � Chapter 4. The LP Procedure

22 RHS TIME STAMP 800 ASSEMB 1200
23 RHS TIME FINISH 800 .
24 *AN ES . .
25 RANGE T1 ASSEMB 900 .
26 *OU DS . .
27 UPPERBDD CHAIR UP 75 .
28 LOWERBDD BOOKCSE LO 50 .

SASMPSXS recognizes four MPS row types: E, L, G, and N. It converts them into
types EQ, LE, GE, and FREE. Since objective rows, price change rows and free rows
all share the same type N in the MPS format, you need a DATA step to assign proper
types to the objective rows and price change rows.

data;
set prob;
if _type_=’free’ and _row1_=’profit’ then _type_=’max’;
if _type_=’free’ and _row1_=’chnrow’ then _type_=’pricesen’;

run;

proc lp sparsedata;
run;

In the MPS format, the variable types include LO, UP, FX, FR, MI, and BV.
The SASMPSXS macro converts them into types LOWERBD, UPPERBD, FIXED,
UNRESTRICTED, -INFINITY, and BINARY, respectively. Occasionally, you may
need to define your own variable types, in which case, you must add corresponding
type handling entries in the SASMPSXS.SAS program and use the SAS %INCLUDE
macro to include the file at the beginning of your program. The SASMPSXS macro
function can be found in the SAS sample library. Information on the MPS format can
be obtained from Murtagh (1981).

SASMPSXS can take no arguments, or it can take one or two arguments. If no argu-
ments are present, SASMPSXS assumes that the MPS input file has been saved to a
SAS data set named RAW. The macro then takes information from that data set and
converts it into the sparse form of the LP procedure. The RAW data set should have
the following six variables:

data RAW;
infile ...;
input field1 $ 2-3 field2 $ 5-12

field3 $ 15-22 field4 25-36
field5 $ 40-47 field6 50-61;

...
run;

If the preceding MPS input data set has a name other than RAW, you can use
MPSDATA=SAS-data-set as an argument in the SASMPSXS macro function. If
you want the converted sparse form data set to have a name other than PROB, you
can use LPDATA=SAS-data-set as an argument. The order of the arguments in the
SASMPSXS macro function is not important.

Macro Variable –ORLP– � 229

The Reduced Costs, Dual Activities, and Current Tableau

The evaluation of reduced costs and the dual activities is independent of problem
structure. For a basic solution, let B be the matrix composed of the basic columns of
A and let N be the matrix composed of the nonbasic columns of A. The reduced cost
associated with the ith variable is

(cT − cT
BB−1A)i

and the dual activity of the jth row is

(cT
BB−1)j

The Current Tableau is a section displayed when you specify either the
TABLEAUPRINT option in the PROC LP statement or the TABLEAU option
in the PRINT statement. The output contains a row for each basic variable and a
column for each nonbasic variable. In addition, there is a row for the reduced costs
and a column for the product

B−1b

This column is labeled INV(B)*R. The body of the tableau contains the matrix

B−1N

Macro Variable –ORLP–
The LP procedure defines a macro variable named –ORLP–. This variable con-
tains a character string that indicates the status of the procedure. It is set when-
ever the user gets control, at breakpoints, and at procedure termination. The form
of the –ORLP– character string is STATUS= PHASE= OBJECTIVE= P–FEAS=
D–FEAS= INT–ITER= INT–FEAS= ACTIVE= INT–BEST= PHASE1–ITER=
PHASE2–ITER= PHASE3–ITER=. The terms are interpreted as follows:

STATUS= the status of the current solution

PHASE= the phase the procedure is in (1, 2, or 3)

OBJECTIVE= the current objective value

P–FEAS= whether the current solution is primal feasible

D–FEAS= whether the current solution is dual feasible

INT–ITER= the number of integer iterations performed

INT–FEAS= the number of integer feasible solutions found

ACTIVE= the number of active nodes in the current branch-and-bound
tree

230 � Chapter 4. The LP Procedure

INT–BEST= the best integer objective value found

PHASE1–ITER= the number of iterations performed in phase 1

PHASE2–ITER= the number of iterations performed in phase 2

PHASE3–ITER= the number of iterations performed in phase 3

Table 4.5 shows the possible values for the nonnumeric terms in the string.

Table 4.5. Possible Values for Nonnumeric Terms

STATUS= P–FEAS= D–FEAS=
SUCCESSFUL YES YES
UNBOUNDED NO NO
INFEASIBLE
MAX–TIME
MAX–ITER
PIVOT
BREAK
INT–FEASIBLE
INT–INFEASIBLE
INT–MAX–ITER
PAUSE
FEASIBLEPAUSE
IPAUSE
PROXIMITYPAUSE
ACTIVE
RELAXED
FATHOMED
IPIVOT
UNSTABLE
SINGULAR
MEMORY–ERROR
IO–ERROR
SYNTAX–ERROR
SEMANTIC–ERROR
BADDATA–ERROR
UNKNOWN–ERROR

This information can be used when PROC LP is one step in a larger program that
needs to identify how the LP procedure terminated. Because –ORLP– is a standard
SAS macro variable, it can be used in the ways that all macro variables can be used
(see the SAS Guide to Macro Processing).

Pricing � 231

Pricing

PROC LP performs multiple pricing when determining which variable will enter the
basis at each pivot (Greenberg 1978). This heuristic can shorten execution time in
many problems. The specifics of the multiple pricing algorithm depend on the value
of the PRICETYPE= option. However, in general, when some form of multiple pric-
ing is used, during the first iteration PROC LP places the PRICE= nonbasic columns
yielding the greatest marginal improvement to the objective function in a candidate
list. This list identifies a subproblem of the original. On subsequent iterations, only
the reduced costs for the nonbasic variables in the candidate list are calculated. This
accounts for the potential time savings. When either the candidate list is empty or the
subproblem is optimal, a new candidate list must be identified and the process repeats.
Because identification of the subproblem requires pricing the complete problem, an
iteration in which this occurs is called a major iteration. A minor iteration is an
iteration in which only the subproblem is to be priced.

The value of the PRICETYPE= option determines the type of multiple pricing
that is to be used. The types of multiple pricing include partial suboptimization
(PRICETYPE=PARTIAL), complete suboptimization (PRICETYPE=COMPLETE),
and complete suboptimization with dynamically varying the value of the PRICE=
option (PRICETYPE=DYNAMIC).

When partial suboptimization is used, in each minor iteration the nonbasic column
in the subproblem yielding the greatest marginal improvement to the objective is
brought into the basis and removed from the candidate list. The candidate list now
has one less entry. At each subsequent iteration, another column from the subproblem
is brought into the basis and removed from the candidate list. When there are either
no remaining candidates or the remaining candidates do not improve the objective,
the subproblem is abandoned and a major iteration is performed. If the objective
cannot be improved on a major iteration, the current solution is optimal and PROC
LP terminates.

Complete suboptimization is identical to partial suboptimization with one exception.
When a nonbasic column from the subproblem is brought into the basis, it is replaced
in the candidate list by the basic column that is leaving the basis. As a result, the
candidate list does not diminish at each iteration.

When PRICETYPE=DYNAMIC, complete suboptimization is performed, but the
value of the PRICE= option changes so that the ratio of minor to major iterations
is within two units of the PRICE= option.

These heuristics can shorten execution time for small values of the PRICE= option.
Care should be exercised in choosing a value from the PRICE= option because too
large a value can use more time than if pricing were not used.

232 � Chapter 4. The LP Procedure

Scaling

Based on the SCALE= option specified, the procedure scales the coefficients
of both the constraints and objective rows before iterating. This technique can
improve the numerical stability of an ill-conditioned problem. If you want
to modify the default matrix scaling used, which is SCALE=BOTH, use the
SCALE=COLUMN, SCALE=ROW, or SCALE=NONE option in the PROC LP
statement. If SCALE=BOTH, the matrix coefficients are scaled so that the largest el-
ement in absolute value in each row or column equals 1. They are scaled by columns
first and then by rows. If SCALE=COLUMN (ROW), the matrix coefficients are
scaled so that the largest element in absolute value in each column (row) equals 1. If
SCALE=NONE, no scaling is performed.

Preprocessing

With the preprocessing option, you can identify redundant and infeasible constraints,
improve lower and upper bounds of variables, fix variable values and improve coeffi-
cients and RHS values before solving a problem. Preprocessing can be applied to LP,
IP and MIP problems. For an LP problem, it may significantly reduce the problem
size. For an IP or MIP problem, it can often reduce the gap between the optimal so-
lution and the solution of the relaxed problem, which could lead to a smaller search
tree in the branch-and-bound algorithm. As a result, the CPU time may be reduced
on many problems. Although there is no guarantee that preprocessing will always
yield a faster solution, it does provide a highly effective approach to solving large
and difficult problems.

Preprocessing is especially useful when the original problem causes numerical dif-
ficulties to PROC LP. Since preprocessing could identify redundant constraints and
tighten lower and upper bounds of variables, the reformulated problem may eliminate
the numerical difficulties in practice.

When a constraint is identified as redundant, its type is marked as ‘FREE’ in the
Constraint Summary. If a variable is fixed, its type is marked as ‘FIXED’ in the
Variables Summary. If a constraint is identified as infeasible, PROC LP stops imme-
diately and displays the constraint name in the SAS log file. This capability some-
times gives valuable insight into the model or the formulation and helps establish if
the model is reasonable and the formulation is correct.

For a large and dense problem, preprocessing may take a longer time for each itera-
tion. To limit the number of preprocessings, use the PMAXIT= option. To stop any
further preprocessings during the preprocessing stage, press the CTRL-BREAK key.
PROC LP will enter phase 1 at the end of the current iteration.

Integer Programming � 233

Integer Programming

Formulations of mathematical programs often require that some of the decision vari-
ables take only integer values. Consider the formulation

minimize cT x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u
xi is integer, i ∈ S

The set of indices S identifies those variables that must take only integer values.
When S does not contain all of the integers between 1 and n, inclusive, this problem is
called a mixed-integer program (MIP). Otherwise, it is known as an integer program.
Let xopt(MIP) denote an optimal solution to (MIP). An integer variable with bounds
between 0 and 1 is also called a binary variable.

Specifying the Problem

An integer or mixed-integer problem can be solved with PROC LP. To solve this
problem, you must identify the integer variables. You can do this with a row in the
input data set that has the keyword ‘INTEGER’ for the type variable. Any variable
that has a nonmissing and nonzero value for this row is interpreted as an integer vari-
able. It is important to note that integer variables must have upper bounds explicitly
defined using the ‘UPPERBD’ keyword. The values in the ‘INTEGER’ row not only
identify those variables that must be integral, but they also give an ordering to the
integer variables that can be used in the solution technique.

You can follow the same steps to identify binary variables. For the binary variables,
there is no need to supply any upper bounds.

Following the rules of sparse data input format, you can also identify individual inte-
ger or binary variables.

The Branch-and-Bound Technique

The branch-and-bound approach is used to solve integer and mixed-integer problems.
The following discussion outlines the approach and explains how to use several op-
tions to control the procedure.

The branch-and-bound technique solves an integer program by solving a sequence of
linear programs. The sequence can be represented by a tree, with each node in the
tree being identified with a linear program that is derived from the problems on the
path leading to the root of the tree. The root of the tree is identified with a linear
program that is identical to (MIP), except that S is empty. This relaxed version of
(MIP), called (LP(0)), can be written as

xopt(0) = min cT x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u

234 � Chapter 4. The LP Procedure

The branch-and-bound approach generates linear programs along the nodes of the
tree using the following scheme. Consider xopt(0), the optimal solution to (LP(0)). If
xopt(0)i is integer for all i ∈ S, then xopt(0) is optimal in (MIP). Suppose for some
i ∈ S, xopt(0)i is nonintegral. In that case, define two new problems (LP(1)) and
(LP(2)), descendants of the parent problem (LP(0)). The problem (LP(1)) is identical
to (LP(0)) except for the additional constraint

xi ≤ bxopt(0)ic

and the problem (LP(2)) is identical to (LP(0)) except for the additional constraint

xi ≥ dxopt(0)ie

The notation dye means the smallest integer greater than or equal to y, and the no-
tation byc means the largest integer less than or equal to y. Note that the two new
problems do not have xopt(0) as a feasible solution, but because the solution to (MIP)
must satisfy one of the preceding constraints, xopt

i (MIP) must satisfy one of the new
constraints. The two problems thus defined are called active nodes in the branch-and-
bound tree, and the variable xi is called the branching variable.

Next, the algorithm chooses one of the problems associated with an active node and
attempts to solve it using the dual simplex algorithm. The problem may be infeasible,
in which case the problem is dropped. If it can be solved, and it in turn does not have
an integer solution (that is, a solution for which xi is integer for all i ∈ S), then it
defines two new problems. These new problems each contain all of the constraints of
the parent problems plus the appropriate additional one.

Branching continues in this manner until either there are no active nodes or an integer
solution is found. When an integer solution is found, its objective value provides a
bound for the objective of (MIP). In particular, if z is the objective value of the current
best integer solution, then any active problems whose parent problem has objective
value ≥ z can be discarded (assuming that the problem is a minimization). This can
be done because all problems that descend from this parent will also have objective
value ≥ z. This technique is known as fathoming. When there are no active nodes
remaining to be solved, the current integer solution is optimal in (MIP). If no integer
solution has been found, then (MIP) is (integer) infeasible.

It is important to realize that integer programs are NP-complete. Roughly speaking,
this means that the effort required to solve them grows exponentially with the size
of the problem. For example, a problem with 10 binary variables can, in the worst
case, generate 210 = 1024 nodes in the branch-and-bound tree. A problem with 20
binary variables can, in the worst case, generate 220 = 1048576 nodes in the branch-
and-bound tree. Although the algorithm is unlikely to have to generate every single
possible node, the need to explore even a small fraction of the potential number of
nodes for a large problem can be resource intensive.

Integer Programming � 235

The Integer Iteration Log

To help monitor the growth of the branch-and-bound tree, the LP procedure reports
on the status of each problem that is solved. The report, displayed in the Integer
Iteration Log, can be used to reconstruct the branch-and-bound tree. Each row in the
report describes the results of the attempted solution of the linear program at a node
in the tree. In the following discussion, a problem on a given line in the log is called
the current problem. The following columns are displayed in the report:

Iter identifies the number of the branch-and-bound iteration.

Problem identifies how the current problem fits in the branch-and-
bound tree.

Condition reports the result of the attempted solution of the current
problem. Values for Condition are:

• ACTIVE: The current problem was solved success-
fully.

• INFEASIBLE: The current problem is infeasible.

• FATHOMED: The current problem cannot lead to an
improved integer solution and therefore it is dropped.

• SINGULAR: A singular basis was encountered in at-
tempting to solve the current problem. Solution of this
relaxed problem is suspended and will be attempted
later if necessary.

• SUBOPTIMAL: The current problem has an integer
feasible solution.

Objective reports the objective value of the current problem.

Branched names the variable that is branched in subtrees defined by the
descendants of this problem.

Value gives the current value of the variable named in the column
labeled Branched.

Sinfeas gives the sum of the integer infeasibilities in the optimal so-
lution to the current problem.

Active reports the total number of nodes currently active in the
branch-and-bound tree.

Proximity reports the gap between the best integer solution and the
current lower (upper for maximizations) bound of all active
nodes.

To reconstruct the branch-and-bound tree from this report, consider the interpretation
of iteration j. If Iter=j and Problem=k, then the problem solved on iteration j is
identical to the problem solved on iteration | k | with an additional constraint. If

236 � Chapter 4. The LP Procedure

k > 0, then the constraint is an upper bound on the variable named in the Branched
column on iteration | k |. If k < 0, then the constraint is a lower bound on that
variable. The value of the bound can be obtained from the value of Value in iteration
| k | as described in the previous section.

Example 4.8 in the “Examples” section shows an Integer Iteration Log in its output.

Controlling the Branch-and-Bound Search

There are several options you can use to control branching. This is accomplished
by controlling the program’s choice of the branching variable and of the next active
node. In the discussion that follows, let

fi(k) = xopt(k)i − bxopt(k)ic

where xopt(k) is the optimal solution to the problem solved in iteration k.

The CANSELECT= option directs the choice of the next active node. Valid keywords
for this option include LIFO, FIFO, OBJ, PROJECT, PSEUDOC, and ERROR. The
following list describes the action that each of these causes when the procedure must
choose for solution a problem from the list of active nodes.

LIFO chooses the last problem added to the tree of active nodes. This
search has the effect of a depth-first search of the branch-and-
bound tree.

FIFO chooses the first node added to the tree of active nodes. This search
has the effect of a breadth-first search of the branch-and-bound tree.

OBJ chooses the problem whose parent has the smallest (largest if the
problem is a maximization) objective value.

PROJECT chooses the problem with the largest (smallest if the problem is a
maximization) projected objective value. The projected objective
value is evaluated using the sum of integer infeasibilities, s(k),
associated with an active node (LP(k)), defined by

s(k) =
∑
i∈S

min{fi(k), 1− fi(k)}

An empirical measure of the rate of increase (decrease) in the ob-
jective value is defined as

λ = (z∗ − z(0))/s(0)

where

• z(k) is the optimal objective value for (LP(k))
• z∗ is the objective value of the current best integer solution

Integer Programming � 237

The projected objective value for problems (LP(k + 1)) and
(LP(k + 2)) is defined as

z(k) + λs(k)

PSEUDOC chooses the problem with the largest (least if the problem is a max-
imization) projected pseudocost. The projected pseudocost is eval-
uated using the weighted sum of infeasibilities sw(k) associated
with an active problem (LP(k)), defined by

sw(k) =
∑
i∈S

min{di(k)fi(k), ui(k)(1− fi(k))}

The weights ui and di are initially equal to the absolute value of the
ith objective coefficient and are updated at each integer iteration.
They are modified by examining the empirical marginal change in
the objective as additional constraints are placed on the variables
in S along the path from (LP(0)) to a node associated with an in-
teger feasible solution. In particular, if the definition of problems
(LP(k+1)) and (LP(k+2)) from parent (LP(k)) involve the addition
of constraints xi ≤ bxopt(k)ic and xi ≥ dxopt(k)ie, respectively,
and one of them is on a path to an integer feasible solution, then
only one of the following is true:

di(k) = (z(k + 1)− z(k))/fi(k)

ui(k) = (z(k + 2)− z(k))/(1− fi(k))

Note the similarity between sw(k) and s(k). The weighted quantity
sw(k) accounts to some extent for the influence of the objective
function. The projected pseudocost for problems (LP(k + 1)) and
(LP(k + 2)) is defined as

zw(k) ≡ z(k) + sw(k)

ERROR chooses the problem with the largest error. The error associated
with problems (LP(k + 1)) and (LP(k + 2)) is defined as

(z∗ − zw(k))/(z∗ − z(k))

The BACKTRACK= option controls the search for the next problem. This option
can take the same values as the CANSELECT= option. In addition to the case out-
lined under the DELTAIT= option, backtracking is required as follows based on the
CANSELECT= option in effect:

238 � Chapter 4. The LP Procedure

• If CANSELECT=LIFO and there is no active node in the portion of the ac-
tive tree currently under exploration with a bound better than the value of
WOBJECTIVE=, then the procedure must backtrack.

• If CANSELECT=FIFO, PROJECT, PSEUDOC, or ERROR and the bound
corresponding to the node under consideration is not better than the value of
WOBJECTIVE=, then the procedure must backtrack.

The default value is OBJ.

The VARSELECT= option directs the choice of branching variable. Valid keywords
for this option include CLOSE, FAR, PRIOR, PSEUDOC, PRICE, and PENALTY.
The following list describes the action that each of these causes when xopt(k), an
optimal solution of problem (LP(k)), is used to define active problems (LP(k + 1))
and (LP(k + 2)).

CLOSE chooses as branching variable the variable xi such that i minimizes

{min{fi(k), 1− fi(k)} | i ∈ S and

IEPSILON ≤ fi(k) ≤ 1− IEPSILON}

FAR chooses as branching variable the variable xi such that i maximizes

{min{fi(k), 1− fi(k)} | i ∈ S and

IEPSILON ≤ fi(k) ≤ 1− IEPSILON}

PRIOR chooses as branching variable xi such that i ∈ S, xopt(k)i is non-
integral, and variable xi has the minimum value in the INTEGER
row in the input data set. This choice for the VARSELECT= option
is recommended when you have enough insight into the model to
identify those integer variables that have the most significant effect
on the objective value.

PENALTY chooses as branching variable xi such that i ∈ S and a bound on
the increase in the objective of (LP(k)) (penalty) resulting from
adding the constraint

xi ≤ bxopt(k)ic or xi ≥ dxopt(k)ie

is maximized. The bound is calculated without pivoting using
techniques of sensitivity analysis (Garfinkel and Nemhauser 1972).
Because the cost of calculating the maximum penalty can be large
if S is large, you may want to limit the number of variables in S
for which the penalty is calculated. The penalty is calculated for
PENALTYDEPTH= variables in S.

Integer Programming � 239

PRICE chooses as branching variable xi such that i ∈ S, xopt(k)i is non-
integral, and variable xi has the minimum price coefficient (maxi-
mum for maximization).

PSEUDOC chooses as branching variable the variable xi such that i maximizes

{min{difi(k), ui(1− fi(k))} | i ∈ S and

IEPSILON ≤ fi(k) ≤ 1− IEPSILON}

The weights ui and di are initially equal to the absolute value
of the ith objective coefficient and are updated whenever an in-
teger feasible solution is encountered. See the discussion on the
CANSELECT= option for details on the method of updating the
weights.

Customizing Search Heuristics

Often a good heuristic for searching the branch-and-bound tree of a problem can
be found. You are tempted to continue using this heuristic when the problem data
changes but the problem structure remains constant. The ability to reset procedure
options interactively enables you to experiment with search techniques in an attempt
to identify approaches that perform well. Then you can easily reapply these tech-
niques to subsequent problems.

For example, the PIP branch-and-bound strategy (Crowder, Johnson, and Padberg
1983) describes one such heuristic. The following program uses a similar strategy.
Here, the OBJ rule (choose the active node with least parent objective function in the
case of a minimization problem) is used for selecting the next active node to be solved
until an integer feasible solution is found. Once such a solution is found, the search
procedure is changed to the LIFO rule: choose the problem most recently placed in
the list of active nodes.

proc lp canselect=obj ifeasiblepause=1;
run;

reset canselect=lifo ifeasiblepause=9999999;
run;

Further Discussion on AUTO and CONTROL= options

Consider a minimization problem. At each integer iteration, PROC LP will se-
lect a node to solve from a pool of active nodes. The best bound strategy
(CANSELECT=OBJ) will pick the node with the smallest projected objective value.
This strategy improves the lower bound of the integer program and usually takes
fewer integer iterations. One disadvantage is that PROC LP must recalculate the
inverse of the basis matrix at almost every integer iteration; such recalculation is rel-
atively expensive. Another disadvantage is that this strategy does not pay attention to
improving the upper bound of the integer program. Thus the number of active nodes
tends to grow rapidly if PROC LP cannot quickly find an optimal integer solution.

240 � Chapter 4. The LP Procedure

On the other hand, the LIFO strategy is very efficient and does not need to calculate
the inverse of the basis matrix unless the previous node is fathomed. It is a depth-first
strategy so it tends to find an integer feasible solution quickly. However, this strategy
will pick nodes locally and usually will take longer integer iterations than the best
bound strategy.

There is another strategy that is often overlooked. Here it is called the best upper
bound strategy. With this strategy, each time you select an active node, instead of
picking the node with the smallest projected objective value, you select the one with
the largest projected objective value. This strategy is as efficient as the LIFO strategy.
Moreover, it selects active nodes globally. This strategy tries to improve the upper
bound of the integer program by searching for new integer feasible solutions. It also
fathoms active nodes quickly and keeps the total number of active nodes below the
current level. A disadvantage is that this strategy may evaluate more nodes that do
not have any potential in finding an optimal integer solution.

The best bound strategy has the advantage of improving the lower bound. The LIFO
strategy has the advantages of efficiency and finding a local integer feasible solution.
The best upper bound strategy has the advantages of keeping the size of active nodes
under control and at the same time trying to identify any potential integer feasible
solution globally.

Although the best bound strategy is generally preferred, in some instances other
strategies may be more effective. For example, if you have found an integer opti-
mal solution but you do not know it, you still have to enumerate all possible active
nodes. Then the three strategies will basically take the same number of integer itera-
tions after an optimal solution is found but not yet identified. Since the LIFO and best
upper bound strategies are very efficient per integer iteration, both will outperform
the best bound strategy.

Since no one strategy suits all situations, a hybrid strategy has been developed to
increase applicability. The CONTROL= option combines the above three strategies
naturally and provides a simple control parameter in [0, 1] dealing with different
integer programming problems and different solution situations. The AUTO option
automatically sets and adjusts the CONTROL= parameter so that you do not need to
know any problem structure or decide a node selection strategy in advance.

Since the LIFO strategy is less costly, you should use it as much as possible in the
combinations. The following process is called a diving process. Starting from an
active node, apply the LIFO strategy as much as you can until the current node be-
comes feasible or is fathomed, or exceeds a preset limit. During this process, there
is no inverse matrix calculation involved except for the first node. When the diving
process is over, apply one of the three strategies to select the next starting node. One
set of combinations is called a cycle.

The control parameter r controls the frequency of the three strategies being applied
and the depth of the diving process in a cycle. It starts with a pure best bound strategy
at r = 0, and then gradually increases the frequency of the diving processes and their
depths as r increases. At r = 0.5, one cycle contains a best bound strategy plus a
full diving process. After r = 0.5, the number of the diving processes will gradually

Sensitivity Analysis � 241

increase in a cycle. In addition, the best upper bound strategy will join the cycle. As
r continues to increase, the frequency of the best upper bound strategy will increase.
At r = 1, it becomes a pure best upper bound strategy.

The AUTO option will automatically adjust the value of the CONTROL= option. At
the start, it sets CONTROL=0.7, which emphasizes finding an upper bound. After
an integer feasible solution is found, it sets CONTROL=0.5, which emphasizes effi-
ciency and lower bound improvement. When the number of active nodes grows over
the default or user defined limit m, the number indicates that a better upper bound is
needed. The AUTO option will start to increase the value of CONTROL= from 0.5.
If the size of the active nodes continues to grow, so will the value of the CONTROL=
option. When the size of active nodes reaches to the default or user-defined limit n,
CONTROL= will be set to 1. At this moment, the growth of active nodes is stopped.
When the size of active nodes reduces, AUTO will decrease the value of CONTROL=
option.

You can use other strategies to improve the lower bound by setting CANSELECT=
to other options.

Saving and Restoring the List of Active Nodes

The list of active nodes can be saved in a SAS data set for use at a subsequent in-
vocation of PROC LP. The ACTIVEOUT= option in the PROC LP statement names
the data set into which the current list of active nodes is saved when the procedure
terminates due to an error termination condition. Examples of such conditions are
time limit exceeded, integer iterations exceeded, and phase 3 iterations exceeded.
The ACTIVEIN= option in the PROC LP statement names a data set that can be
used to initialize the list of active nodes. To achieve the greatest benefit when restart-
ing PROC LP, use the PRIMALOUT= and PRIMALIN= options in conjunction with
the ACTIVEOUT= and ACTIVEIN= options. See Example 4.10 in the “Examples”
section for an illustration.

Sensitivity Analysis

Sensitivity analysis is a technique for examining the effects of changes in model
parameters on the optimal solution. The analysis enables you to examine the size of
a perturbation to the right-hand-side or objective vector by an arbitrary change vector
for which the basis of the current optimal solution remains optimal.

Note: When sensitivity analysis is performed on integer-constrained problems, the
integer variables are fixed at the value they obtained in the integer optimal solution.
Therefore, care must be used when interpreting the results of such analyses. Care
must also be taken when preprocessing is enabled, because preprocessing usually
alters the original formulation.

242 � Chapter 4. The LP Procedure

Right-Hand-Side Sensitivity Analysis

Consider the problem (lpr(φ)):

xopt(φ) = min cT x

subject to Ax {≥,=,≤} b + φr
` ≤ x ≤ u

where r is a right-hand-side change vector.

Let xopt(φ) denote an optimal basic feasible solution to (lpr(φ)). PROC LP can
be used to examine the effects of changes in φ on the solution xopt(0) of problem
(lpr(0)) . For the basic solution xopt(0), let B be the matrix composed of the basic
columns of A and let N be the matrix composed of the nonbasic columns of A. For
the basis matrix B, the basic components of xopt(0), written as xopt(0)B , can be
expressed as

xopt(0)B = B−1(b−Nxopt(0)N)

Furthermore, because xopt(0) is feasible,

`B ≤ B−1(b−Nxopt(0)N) ≤ uB

where `B is a column vector of the lower bounds on the structural basic variables,
and uB is a column vector of the upper bounds on the structural basic variables. For
each right-hand-side change vector r identified in the RHSSEN statement, PROC LP
finds an interval [φmin, φmax] such that

`B ≤ B−1(b + φr −Nxopt(0)N) ≤ uB

for φ ∈ [φmin, φmax]. Furthermore, because changes in the right-hand side do not
affect the reduced costs, for φ ∈ [φmin, φmax],

xopt(φ)T = ((B−1(b + φr −Nxopt(0)N))T , xopt(0)T
N)

is optimal in (lpr(φ)).

For φ = φmin and φ = φmax, PROC LP reports the following:

• the names of the leaving variables

• the value of the optimal objective in the modified problems

• the RHS values in the modified problems

• the solution status, reduced costs and activities in the modified problems

The leaving variable identifies the basic variable xi that first reaches either the lower
bound `i or the upper bound ui as φ reaches φmin or φmax. This is the basic variable
that would leave the basis to maintain primal feasibility. Multiple RHSSEN variables
can appear in a problem data set.

Sensitivity Analysis � 243

Price Sensitivity Analysis

Consider the problem (lpp(φ)):

xopt(φ) = min(c + φr)T x

subject to Ax {≥,=,≤} b
` ≤ x ≤ u

where r is a price change vector.

Let xopt(φ) denote an optimal basic feasible solution to (lpp(φ)). PROC LP can
be used to examine the effects of changes in φ on the solution xopt(0) of problem
(lpp(0)). For the basic solution xopt(0), let B be the matrix composed of the basic
columns of A and let N be the matrix composed of the nonbasic columns of A. For
basis matrix B, the reduced cost associated with the ith variable can be written as

rci(φ) = ((c + φr)T
N − (c + φr)T

BB−1N)i

where (c + φr)N and (c + φr)B is a partition of the vector of price coefficients into
nonbasic and basic components. Because xopt(0) is optimal in (lpp(0)), the reduced
costs satisfy

rci(φ) ≥ 0

if the nonbasic variable in column i is at its lower bound, and

rci(φ) ≤ 0

if the nonbasic variable in column i is at its upper bound.

For each price coefficient change vector r identified with the keyword PRICESEN
in the TYPE variable, PROC LP finds an interval [φmin, φmax] such that for
φ ∈ [φmin, φmax],

rci(φ) ≥ 0

if the nonbasic variable in column i is at its lower bound, and

rci(φ) ≤ 0

if the nonbasic variable in column i is at its upper bound. Because changes in the
price coefficients do not affect feasibility, for φ ∈ [φmin, φmax], xopt(φ) is optimal in
(lpp(φ)). For φ = φmin and φ = φmax, PROC LP reports the following:

• the names of entering variables

• the value of the optimal objective in the modified problems

244 � Chapter 4. The LP Procedure

• the price coefficients in the modified problems

• the solution status, reduced costs, and activities in the modified problems

The entering variable identifies the variable whose reduced cost first goes to zero as
φ reaches φmin or φmax. This is the nonbasic variable that would enter the basis to
maintain optimality (dual feasibility). Multiple PRICESEN variables may appear in
a problem data set.

Range Analysis

Range analysis is sensitivity analysis for specific change vectors. As with the sen-
sitivity analysis case, care must be used in interpreting the results of range analysis
when the problem has integers or the preprocessing option is enabled.

Right-Hand-Side Range Analysis

The effects on the optimal solution of changes in each right-hand-side value can be
studied using the RANGERHS option in the PROC LP or RESET statement. This op-
tion results in sensitivity analysis for the m right-hand-side change vectors specified
by the columns of the m×m identity matrix.

Price Range Analysis

The effects on the optimal solution of changes in each price coefficient can be studied
using the RANGEPRICE option in the PROC LP or RESET statement. This option
results in sensitivity analysis for the n price change vectors specified by the rows of
the n× n identity matrix.

Parametric Programming

Sensitivity analysis and range analysis examine how the optimal solution behaves
with respect to perturbations of model parameter values. These approaches assume
that the basis at optimality is not allowed to change. When greater flexibility is de-
sired and a change of basis is acceptable, parametric programming can be used.

As with the sensitivity analysis case, care must be used in interpreting the results of
parametric programming when the problem has integers or the preprocessing option
is enabled.

Right-Hand-Side Parametric Programming

As discussed in the “Right-Hand-Side Sensitivity Analysis” section on page 242, for
each right-hand-side change vector r, PROC LP finds an interval [φmin, φmax] such
that for φ ∈ [φmin, φmax],

xopt(φ)T = ((B−1(b + φr −Nxopt(0)N))T , xopt(0)T
N)

is optimal in (lpr(φ)) for the fixed basis B. Leaving variables that inhibit further
changes in φ without a change in the basis B are associated with the quantities φmin

and φmax. By specifying RHSPHI=Φ in either the PROC LP statement or the RESET

Parametric Programming � 245

statement, you can examine the solution xopt(φ) as φ increases or decreases from 0
to Φ.

When RHSPHI=Φ is specified, the procedure first finds the interval [φmin, φmax] as
described previously. Then, if Φ ∈ [φmin, φmax], no further investigation is needed.
However, if Φ > φmax or Φ < φmin, then the procedure attempts to solve the new
problem (lpr(Φ)). To accomplish this, it pivots the leaving variable out of the basis
while maintaining dual feasibility. If this new solution is primal feasible in (lpr(Φ)),
no further investigation is needed; otherwise, the procedure identifies the new leaving
variable and pivots it out of the basis, again maintaining dual feasibility. Dual piv-
oting continues in this manner until a solution that is primal feasible in (lpr(Φ)) is
identified. Because dual feasibility is maintained at each pivot, the (lpr(Φ)) primal
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the
current range of φ , and the objective value. When xopt(Φ) is found, it is displayed.
If you want the solution xopt(φ) at each pivot, then specify the PARAPRINT option
in either the PROC LP or the RESET statement.

Price Parametric Programming

As discussed in the “Price Sensitivity Analysis” section on page 243, for each
price change vector r, PROC LP finds an interval [φmin, φmax] such that for each
φ ∈ [φmin, φmax],

rci(φ) = ((c + φr)T
N − (c + φr)T

BB−1N)i

satisfies the conditions for optimality in (lpp(φ)) for the fixed basis B. Entering vari-
ables that inhibit further changes in φ without a change in the basis B are associated
with the quantities φmin and φmax. By specifying PRICEPHI=Φ in either the PROC
LP statement or the RESET statement, you can examine the solution xopt(φ) as φ
increases or decreases from 0 to Φ.

When PRICEPHI=Φ is specified, the procedure first finds the interval [φmin, φmax],
as described previously. Then, if Φ ∈ [φmin, φmax], no further investigation is
needed. However, if Φ > φmax or Φ < φmin, the procedure attempts to solve
the new problem (lpp(Φ)). To accomplish this, it pivots the entering variable into
the basis while maintaining primal feasibility. If this new solution is dual feasible in
(lpp(Φ)), no further investigation is needed; otherwise, the procedure identifies the
new entering variable and pivots it into the basis, again maintaining primal feasibility.
Pivoting continues in this manner until a solution that is dual feasible in (lpp(Φ)) is
identified. Because primal feasibility is maintained at each pivot, the (lpp(Φ)) dual
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the
current range of φ , and the objective value. When xopt(Φ) is found, it is displayed.
If you want the solution xopt(φ) at each pivot, then specify the PARAPRINT option
in either the PROC LP or the RESET statement.

246 � Chapter 4. The LP Procedure

Interactive Facilities

The interactive features of the LP procedure enable you to examine intermediate re-
sults, perform sensitivity analysis, parametric programming, and range analysis, and
control the solution process.

Controlling Interactive Features

You can gain control of the LP procedure for interactive processing by setting a break-
point or pressing the CTRL-BREAK key combination, or when certain error condi-
tions are encountered:

• when a feasible solution is found

• at each pivot of the simplex algorithm

• when an integer feasible solution is found

• at each integer pivot of the branch-and-bound algorithm

• after the data are read but before iteration begins

• after at least one integer feasible solution has been found which is within de-
sirable proximity of optimality

• after the problem has been solved but before results are displayed

When the LP procedure pauses, you can enter any of the interactive statements
RESET, PIVOT, IPIVOT, PRINT, SHOW, QUIT, and RUN.

Breakpoints are set using the FEASIBLEPAUSE, PAUSE=, IFEASIBLEPAUSE=,
IPAUSE=, PROXIMITYPAUSE=, READPAUSE, and ENDPAUSE options. The LP
procedure displays a message on the SAS log when it gives you control because of
encountering one of these breakpoints.

During phase 1, 2, or 3, the CTRL-BREAK key pauses the LP procedure and releases
the control at the beginning of the next iteration.

The error conditions, which usually cause the LP procedure to pause, include time
limit exceeded, phase 1 iterations exceeded, phase 2 iterations exceeded, phase 3 it-
erations exceeded, and integer iterations exceeded. You can use the RESET statement
to reset the option that caused the error condition.

The PIVOT and IPIVOT statements result in control being returned to you after a sin-
gle simplex algorithm pivot and an integer pivot. The PRINT and SHOW statements
display current solution information and return control to you. On the other hand, the
QUIT statement requests that you leave the LP procedure immediately. If you want
to quit but save output data sets, then type QUIT/SAVE. The RUN statement requests
the LP procedure to continue its execution immediately.

Memory Management � 247

Displaying Intermediate Results

Once you have control of the procedure, you can examine the current values of the
options and the status of the problem being solved using the SHOW statement. All
displaying done by the SHOW statement goes to the SAS log.

Details about the current status of the solution are obtained using the PRINT state-
ment. The various display options enable you to examine parts of the variable and
constraint summaries, display the current tableau, perform sensitivity analysis on the
current solution, and perform range analysis.

Interactive Facilities in Batch Mode

All of the interactive statements can be used when processing in batch mode. This is
particularly convenient when the interactive facilities are used to combine different
search strategies in solving integer problems.

Sensitivity Analysis

Two features that enhance the ability to perform sensitivity analysis need further
explanation. When you specify /SENSITIVITY in a PRINT COLUMN(colnames)
statement, the LP procedure defines a new change row to use in sensitivity analysis
and parametric programming. This new change row has a +1 entry for each variable
listed in the PRINT statement. This enables you to define new change rows interac-
tively.

When you specify /SENSITIVITY in a PRINT ROW (rownames) statement, the LP
procedure defines a new change column to use in sensitivity analysis and parametric
programming. This new change column has a +1 entry for each right-hand-side coef-
ficient listed in the PRINT statement. This enables you to define new change columns
interactively.

In addition, you can interactively change the RHSPHI= and PRICEPHI= options us-
ing the RESET statement. This enables you to perform parametric programming
interactively.

Memory Management
There are no restrictions on the problem size in the LP procedure. The number of
constraints and variables in a problem that PROC LP can solve depends on the host
platform, the available memory, and the available disk space for utility data sets.

Memory usage is affected by a great many factors including the density of the tech-
nological coefficient matrix, the model structure, and the density of the decomposed
basis matrix. The algorithm requires that the decomposed basis fit completely in
memory. Any additional memory is used for nonbasic columns. The partition be-
tween the decomposed basis and the nonbasic columns is dynamic so that as the
inverse grows, which typically happens as iterations proceed, more memory is avail-
able to it and less is available for the nonbasic columns.

The LP procedure determines the initial size of the decomposed basis matrix. If the
area used is too small, PROC LP must spend time compressing this matrix, which de-
grades performance. If PROC LP must compress the decomposed basis matrix on the

248 � Chapter 4. The LP Procedure

average more than 15 times per iteration, then the size of the memory devoted to the
basis is increased. If the work area cannot be made large enough to invert the basis,
an error return occurs. On the other hand, if PROC LP compresses the decomposed
basis matrix on the average once every other iteration, then memory devoted to the
decomposed basis is decreased, freeing memory for the nonbasic columns.

For many models, memory constraints are not a problem because both the decom-
posed basis and all the nonbasic columns will have no problem fitting. However,
when the models become large relative to the available memory, the algorithm tries
to adjust memory distribution in order to solve the problem. In the worst cases, only
one nonbasic column fits in memory with the decomposed basis matrix.

Problems involving memory use can occur when solving mixed-integer problems.
Data associated with each node in the branch-and-bound tree must be kept in mem-
ory. As the tree grows, competition for memory by the decomposed basis, the non-
basic columns, and the branch-and-bound tree may become critical. If the situation
becomes critical, the procedure automatically switches to branching strategies that
use less memory. However, it is possible to reach a point where no further processing
is possible. In this case, PROC LP terminates on a memory error.

Output Data Sets

The LP procedure can optionally produce four output data sets. These are the
ACTIVEOUT=, PRIMALOUT=, DUALOUT=, and TABLEAUOUT= data sets.
Each contains two variables that identify the particular problem in the input data
set. These variables are

–OBJ–ID– identifies the objective function ID.

–RHS–ID– identifies the right-hand-side variable.

Additionally, each data set contains other variables, which are discussed below.

ACTIVEOUT= Data Set

The ACTIVEOUT= data set contains a representation of the current active branch-
and-bound tree. You can use this data set to initialize the branch-and-bound tree to
continue iterations on an incompletely solved problem. Each active node in the tree
generates two observations in this data set. The first is a ‘LOWERBD’ observation
that is used to reconstruct the lower-bound constraints on the currently described
active node. The second is an ‘UPPERBD’ observation that is used to reconstruct the
upper-bound constraints on the currently described active node. In addition to these,
an observation that describes the current best integer solution is included. The data
set contains the following variables:

–STATUS– contains the keywords LOWERBD, UPPERBD, and INTBEST for
identifying the type of observation.

–PROB– contains the problem number for the current observation.

Output Data Sets � 249

–OBJECT– contains the objective value of the parent problem that generated
the current observation’s problem.

–SINFEA– contains the sum of the integer infeasibilities of the current obser-
vation’s problem.

–PROJEC– contains the data needed for CANSELECT=PROJECT when the
branch-and-bound tree is read using the ACTIVEIN= option.

–PSEUDO– contains the data needed for CANSELECT=PSEUDOC when the
branch-and-bound tree is read using the ACTIVEIN= option.

INTEGER VARIABLES Integer-constrained structural variables are also included
in the ACTIVEOUT= data set. For each observation, these vari-
ables contain values for defining the active node in the branch-and-
bound tree.

PRIMALOUT= Data Set

The PRIMALOUT= data set contains the current primal solution. If the problem
has integer-constrained variables, the PRIMALOUT= data set contains the current
best integer feasible solution. If none have been found, the PRIMALOUT= data set
contains the relaxed solution. In addition to –OBJ–ID– and –RHS–ID– , the data
set contains the following variables:

–VAR– identifies the variable name.

–TYPE– identifies the type of the variable as specified in the input data set.
Artificial variables are labeled as type ‘ARTIFCL’.

–STATUS– identifies whether the variable is basic, nonbasic, or at an upper
bound in the current solution.

–LBOUND– contains the input lower bound on the variable unless the variable
is integer-constrained and an integer solution is given. In this case,
–LBOUND– contains the lower bound on the variable needed to
realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

–VALUE– identifies the value of the variable in the current solution or the
current best integer feasible solution.

–UBOUND– contains the input upper bound on the variable unless the variable
is integer-constrained and an integer solution is given. In this case,
–UBOUND– contains the upper bound on the variable needed to
realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

–PRICE– contains the input price coefficient of the variable.

–R–COST– identifies the value of the reduced cost in the current solu-
tion. Example 4.3 in the “Examples” section shows a typical
PRIMALOUT= data set. Note that it is necessary to include the
information on objective function and right-hand side in order to
distinguish problems in multiple problem data sets.

250 � Chapter 4. The LP Procedure

DUALOUT= Data Set

The DUALOUT= data set contains the dual solution for the current solution. If the
problem has integer-constrained variables, the DUALOUT= data set contains the dual
for the current best integer solution, if any. Otherwise it contains the dual for the re-
laxed solution. In addition to –OBJ–ID– and –RHS–ID– , it contains the following
variables:

–ROW–ID– identifies the row or constraint name.

–TYPE– identifies the type of the row as specified in the input data set.

–RHS– gives the value of the right-hand side on input.

–L–RHS– gives the lower bound for the row evaluated from the input right-
hand-side value, the TYPE of the row, and the value of the RANGE
variable for the row.

–VALUE– gives the value of the row, at optimality, excluding logical vari-
ables.

–U–RHS– gives the upper bound for the row evaluated from the input right-
hand-side value, the TYPE of the row, and the value of the RANGE
variable for the row.

–DUAL– gives the value of the dual variable associated with the row.

TABLEAUOUT= Data Set

The TABLEAUOUT= data set contains the current tableau. Each observation, except
for the first, corresponds to a basic variable in the solution. The observation labeled
R–COSTS contains the reduced costs cT

N − cT
BB−1N . In addition to –OBJ–ID–

and –RHS–ID– , it contains the following variables:

–BASIC– gives the names of the basic variables in the solution.

INVB–R gives the values of B−1r , where r is the right-hand-side
vector.

STRUCTURAL VARIABLES give the values in the tableau, namely B−1A .

Input Data Sets

In addition to the DATA= input data set, PROC LP recognizes the ACTIVEIN= and
the PRIMALIN= data sets.

ACTIVEIN= Data Set

The ACTIVEIN= data set contains a representation of the current active tree. The
format is identical to that of the ACTIVEOUT= data set.

Displayed Output � 251

PRIMALIN= Data Set

The format of the PRIMALIN= data set is identical to the PRIMALOUT= data set.
PROC LP uses the PRIMALIN= data set to identify variables at their upper bounds
in the current solution and variables that are basic in the current solution.

You can add observations to the end of the problem data set if they define cost (right-
hand-side) sensitivity change vectors and have PRICESEN (RHSSEN) types. This
enables you to solve a problem, save the solution in a SAS data set, and perform sen-
sitivity analysis later. You can also use the PRIMALIN= data set to restart problems
that have not been completely solved or to which new variables have been added.

Displayed Output

The output from the LP procedure is discussed in the following six sections:

• Problem Summary

• Solution Summary including a Variable Summary and a Constraint Summary

• Infeasible Information Summary

• RHS Sensitivity Analysis Summary (the RHS Range Analysis Summary is not
discussed)

• Price Sensitivity Analysis Summary (the Price Range Analysis Summary is not
discussed)

• Iteration Log

For integer-constrained problems, the procedure also displays an Integer Iteration
Log. The description of this Log can be found in the “Integer Programming” section
on page 233. When you request that the tableau be displayed, the procedure displays
the Current Tableau. The description of this can be found in the “The Reduced Costs,
Dual Activities, and Current Tableau” section on page 229.

A problem data set can contain a set of constraints with several right-hand sides and
several objective functions. PROC LP considers each combination of right-hand side
and objective function as defining a new linear programming problem and solves
each, performing all specified sensitivity analysis on each problem. For each problem
defined, PROC LP displays a new sequence of output sections. Example 4.1 in the
“Examples” section on page 256 discusses each of these elements.

The LP procedure produces the following displayed output by default.

The Problem Summary

The problem summary includes the

• type of optimization and the name of the objective row (as identified by the ID
or ROW variable)

• name of the SAS variable that contains the right-hand-side constants

• name of the SAS variable that contains the type keywords

252 � Chapter 4. The LP Procedure

• density of the coefficient matrix (the ratio of the number of nonzero elements
to the number of total elements) after the slack and surplus variables have been
appended

• number of each type of variable in the mathematical program

• number of each type of constraint in the mathematical program

The Solution Summary

The solution summary includes the

• termination status of the procedure

• objective value of the current solution

• number of phase 1 iterations that were completed

• number of phase 2 iterations that were completed

• number of phase 3 iterations that were completed

• number of integer iterations that were completed

• number of integer feasible solutions that were found

• number of initial basic feasible variables identified

• time used in solving the problem excluding reading the data and displaying the
solution

• number of inversions of the basis matrix

• current value of several of the options

The Variable Summary

The variable summary includes the

• column number associated with each structural or logical variable in the prob-
lem

• name of each structural or logical variable in the problem. (PROC LP gives the
logical variables the name of the constraint ID. If no ID variable is specified,
the procedure names the logical variable –OBSn– , where n is the observation
that describes the constraint.)

• variable’s status in the current solution. The status can be BASIC, DEGEN,
ALTER, blank, LOWBD, or UPPBD, depending upon whether the variable is
a basic variable, a degenerate variable (that is, a basic variable whose activity
is at its input lower bound), a nonbasic variable that can be brought into the
basis to define an alternate optimal solution, a nonbasic variable at its default
lower bound 0, a nonbasic variable at its lower bound, or a nonbasic variable at
its upper bound.

• type of variable (whether it is logical or structural, and, if structural, its bound
type, or other value restriction). See Example 4.1 for a list of possible types in
the variable summary.

Displayed Output � 253

• value of the objective coefficient associated with each variable

• activity of the variable in the current solution

• variable’s reduced cost in the current solution

The Constraint Summary
The constraint summary includes the

• constraint row number and its ID

• kind of constraint (whether it is an OBJECTIVE, LE, EQ, GE, RANGELE,
RANGEEQ, RANGEGE, or FREE row)

• number of the slack or surplus variable associated with the constraint row

• value of the right-hand-side constant associated with the constraint row

• current activity of the row (excluding logical variables)

• current activity of the dual variable (shadow price) associated with the con-
straint row

The Infeasible Information Summary
The infeasible information summary includes the

• name of the infeasible row or variable

• current activity for the row or variable

• type of the row or variable

• value of right-hand-side constant

• name of each nonzero and nonmissing variable in the row

• activity and upper and lower bounds for the variable

The RHS Sensitivity Analysis Summary
The RHS sensitivity analysis summary includes the

• value of φmin

• leaving variable when φ = φmin

• objective value when φ = φmin

• value of φmax

• leaving variable when φ = φmax

• objective value when φ = φmax

• column number and name of each logical and structural variable

• variable’s status when φ ∈ [φmin, φmax]

• variable’s reduced cost when φ ∈ [φmin, φmax]

• value of right-hand-side constant when φ = φmin

• activity of the variable when φ = φmin

• value of right-hand-side constant when φ = φmax

• activity of the variable when φ = φmax

254 � Chapter 4. The LP Procedure

The Price Sensitivity Analysis Summary

The price sensitivity analysis summary includes the

• value of φmin

• entering variable when φ = φmin

• objective value when φ = φmin

• value of φmax

• entering variable when φ = φmax

• objective value when φ = φmax

• column number and name of each logical and structural variable

• variable’s status when φ ∈ [φmin, φmax]

• activity of the variable when φ ∈ [φmin, φmax]

• price of the variable when φ = φmin

• variable’s reduced cost when φ = φmin

• price of the variable when φ = φmax

• variable’s reduced cost when φ = φmax

The Iteration Log

The iteration log includes the

• phase number

• iteration number in each phase

• name of the leaving variable

• name of the entering variable

• variable’s reduced cost

• objective value

ODS Table and Variable Names

PROC LP assigns a name to each table it creates. You can use these names to select
output tables when using the Output Delivery System (ODS).

Table 4.6. ODS Tables Produced in PROC LP

Table Name Description Statement/Option
ProblemSummary Problem summary default
SolutionSummary Solution summary default
VariableSummary Variable summary default
ConstraintSummary Constraint summary default
IterationLog Iteration log FLOW
IntegerIterationLog Integer iteration log default

ODS Table and Variable Names � 255

Table 4.6. (continued)

Table Name Description Statement/Option
PriceSensitivitySummary Price sensitivity analysis

summary
default, PRINT PRICESEN, or PRINT
COLUMN/SENSITIVITY

PriceActivities Price activities at φmin and
φmax

default, PRINT PRICESEN, or PRINT
COLUMN/SENSITIVITY

PriceActivity Price activity at φmin or φmax PRICEPHI= and PARAPRINT
PriceParametricLog Price parametric program-

ming log
PRICEPHI=

PriceRangeSummary Price range analysis RANGEPRICE or PRINT RANGEPRICE
RhsSensitivitySummary RHS sensitivity analysis sum-

mary
default, PRINT RHSSEN, or PRINT
ROW/SENSITIVITY

RhsActivities RHS activities at φmin and
φmax

default, PRINT RHSSEN, or PRINT
ROW/SENSITIVITY

RhsActivity RHS activity at φmin or φmax RHSPHI= and PARAPRINT
RhsParametricLog RHS parametric program-

ming log
RHSPHI=

RhsRangeSummary RHS range analysis RANGERHS or PRINT RANGERHS
InfeasibilitySummary Infeasible row or variable

summary
default

InfeasibilityActivity Variable activity in an infeasi-
ble row

default

CurrentTableau Current tableau TABLEAUPRINT or PRINT TABLEAU
Matrix Technological matrix PRINT MATRIX
MatrixPicture Technological matrix picture PRINT MATRIX/PICTURE
MatrixPictureLegend Technological matrix picture

legend
PRINT MATRIX/PICTURE

The following table lists the variable names of the preceding tables used in the ODS
template of the LP procedure.

Table 4.7. Variable Names for the ODS Tables Produced in PROC LP

Table Name Variables
VariableSummary VarName, Status, Type, Price, Activity, ReducedCost
ConstraintSummary Row, RowName, Type, SSCol, Rhs, Activity, Dual
IterationLog Phase, Iteration, EnterVar, EnterCol, LeaveVar, LeaveCol, ReducedCost,

ObjValue
IntegerIterationLog Iteration, Problem, Condition, Objective, Branch, Value, SumOfInfeas, Active,

Proximity
PriceActivities Col, VarName, Status, Activity, MinPrice, MinReducedCost, MaxPrice,

MaxReducedCost
PriceActivity Col, VarName, Status, Activity, Price, ReducedCost
PriceParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
PriceRangeSummary Col, VarName, MinPrice, MinEnterVar, MinObj, MaxPrice, MaxEnterVar,

MaxObj
RhsActivities Col, VarName, Status, ReducedCost, MinRhs, MinActivity, MaxRhs,

MaxActivity

256 � Chapter 4. The LP Procedure

Table 4.7. (continued)

Table Name Variables
RhsActivity Col, VarName, Status, ReducedCost, Rhs, Activity,
RhsParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
RhsRangeSummary RowName, MinRhs, MinLeaveVar, MinObj, MaxRhs, MaxLeaveVar, MaxObj
InfeasibilityActivity VarName, Coefficient, Activity, Lower, Upper

Examples
The following fourteen examples illustrate some of the capabilities of PROC LP.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library. A description of the features of PROC LP as shown in the examples
are

Example 4.1 dense input format

Example 4.2 sparse input format

Example 4.3 the RANGEPRICE option to show you the range over which each
objective coefficient can vary without changing the variables in the
basis

Example 4.4 more sensitivity analysis and restarting a problem

Example 4.5 parametric programming

Example 4.6 special ordered sets

Example 4.7 goal programming

Example 4.8 integer programming

Example 4.9 an infeasible problem

Example 4.10 restarting integer programs

Example 4.11 controlling the search of the branch-and-bound tree

Example 4.12 matrix generation and report writing for an assignment problem

Example 4.13 matrix generation and report writing for a scheduling problem

Example 4.14 a multicommodity transshipment problem

Example 4.1. An Oil Blending Problem
The blending problem presented in the introduction is a good example for demon-
strating some of the features of the LP procedure. Recall that a step in refining crude
oil into finished oil products involves a distillation process that splits crude into var-
ious streams. Suppose that there are three types of crude available: Arabian light,
Arabian heavy, and Brega. These are distilled into light naphtha, intermediate naph-
tha, and heating oil. Using one of two recipes, these in turn are blended into jet
fuel.

Assume that you can sell as much fuel as is produced. What production strategy
maximizes the profit from jet fuel sales? The following SAS code demonstrates a

Example 4.1. An Oil Blending Problem � 257

way of answering this question using linear programming. The SAS data set is a
representation of the formulation for this model given in the introductory section.

data;
input _row_ $17.

a_light a_heavy brega naphthal naphthai heatingo jet_1
jet_2 _type_ $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

proc lp;
run;

The –ROW– variable contains the names of the rows in the model; the variables
A–LIGHT to JET–2 are the names of the structural variables in the model; the
–TYPE– variable contains the keywords that tell the LP procedure how to interpret
each row in the model; and the –RHS– variable gives the value of the right-hand-side
constants.

The structural variables are interpreted as the quantity of each type of constituent
or finished product. For example, the value of A–HEAVY in the solution is the
amount of Arabian heavy crude to buy while the value of JET–1 in the solution is
the amount of recipe 1 jet fuel that is produced. As discussed previously, the values
given in the model data set are the technological coefficients whose interpretation
depends on the model. In this example, the coefficient -175 in the PROFIT row for the
variable A–LIGHT gives a cost coefficient (because the row with –ROW–=PROFIT
has –TYPE–=MAX) for the structural variable A–LIGHT. This means that for each
unit of Arabian heavy crude purchased, a cost of 175 units is incurred.

The coefficients 0.035, 0.100, and 0.390 for the A–LIGHT variable give the per-
centages of each unit of Arabian light crude that is distilled into the light naph-
tha, intermediate naphtha, and heating oil components. The 110 value in the row
–ROW–=AVAILABLE gives the quantity of Arabian light that is available.

PROC LP produces the following Problem Summary output. Included in the sum-
mary is an identification of the objective, defined by the first observation of the
problem data set; the right-hand-side variable, defined by the variable –RHS– ;
and the type identifier, defined by the variable –TYPE– . See Output 4.1.1.

258 � Chapter 4. The LP Procedure

Output 4.1.1. Problem Summary for the Oil Blending Problem

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The next section of output (Output 4.1.2) contains the Solution Summary, which in-
dicates whether or not an optimal solution was found. In this example, the procedure
terminates successfully (with an optimal solution), with 1544 as the value of the ob-
jective function. Also included in this section of output is the number of phase 1 and
phase 2 iterations, the number of variables used in the initial basic feasible solution,
and the time used to solve the problem. For several options specified in the PROC LP
statement, the current option values are also displayed.

Output 4.1.2. Solution Summary for the Oil Blending Problem

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0
Phase 2 Iterations 4
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Example 4.1. An Oil Blending Problem � 259

The next section of output (Output 4.1.3) contains the Variable Summary. A line
is displayed for each variable in the mathematical program with the variable name,
the status of the variable in the solution, the type of variable, the variable’s price
coefficient, the activity of the variable in the solution, and the reduced cost for the
variable. The status of a variable can be

BASIC if the variable is a basic variable in the solution.

DEGEN if the variable is a basic variable whose activity is at its input
lower bound.

ALTER if the variable is nonbasic and is basic in an alternate optimal
solution.

LOWBD if the variable is nonbasic and is at its lower bound.

UPPBD if the variable is nonbasic and is at its upper bound.

The TYPE column shows how PROC LP interprets the variable in the problem data
set. Types include the following:

NON-NEG if the variable is a nonnegative variable with lower bound 0
and upper bound +∞.

LOWERBD if the variable has a lower bound specified in a LOWERBD
observation and upper bound +∞.

UPPERBD if the variable has an upper bound that is less than +∞
and lower bound 0. This upper bound is specified in an
UPPERBD observation.

UPLOWBD if the variable has a lower bound specified in a LOWERBD
observation and an upper bound specified in an UPPERBD
observation.

INTEGER if the variable is constrained to take integer values. If this is
the case, then it must also be upper and lower bounded.

BINARY if the variable is constrained to take value 0 or 1.

UNRSTRCT if the variable is an unrestricted variable having bounds of
−∞ and +∞.

SLACK if the variable is a slack variable that PROC LP has appended
to a LE constraint. For variables of this type, the variable
name is the same as the name of the constraint (given in
the ROW variable) for which this variable is the slack. A
nonzero slack variable indicates that the constraint is not
tight. The slack is the amount by which the right-hand side
of the constraint exceeds the left-hand side.

260 � Chapter 4. The LP Procedure

SURPLUS if the variable is a surplus variable that PROC LP has ap-
pended to a GE constraint. For variables of this type, the
variable name is the same as the name of the constraint
(given in the ROW variable) for which this variable is the
surplus. A nonzero surplus variable indicates that the con-
straint is not tight. The surplus is the amount by which the
left-hand side of the constraint exceeds the right-hand side.

The Variable Summary gives the value of the structural variables at optimality. In
this example, it tells you how to produce the jet fuel to maximize your profit. You
should buy 110 units of A–LIGHT and 80 units of BREGA. These are used to make
7.45 units of NAPHTHAL, 21.8 units of NAPHTHAI, and 77.3 units of HEATINGO.
These in turn are used to make 60.65 units of JET–1 using recipe 1 and 63.33 units
of JET–2 using recipe 2.

Output 4.1.3. Variable Summary for the Oil Blending Problem

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 a_light UPPBD UPPERBD -175 110 11.6
2 a_heavy UPPERBD -165 0 -21.45
3 brega UPPBD UPPERBD -205 80 3.35
4 naphthal BASIC NON-NEG 0 7.45 0
5 naphthai BASIC NON-NEG 0 21.8 0
6 heatingo BASIC NON-NEG 0 77.3 0
7 jet_1 BASIC NON-NEG 300 60.65 0
8 jet_2 BASIC NON-NEG 300 63.33 0

The reduced cost associated with each nonbasic variable is the marginal value of
that variable if it is brought into the basis. In other words, the objective function
value would (assuming no constraints were violated) increase by the reduced cost of
a nonbasic variable if that variable’s value increased by one. Similarly, the objective
function value would (assuming no constraints were violated) decrease by the reduced
cost of a nonbasic variable if that variable’s value were decreased by one. Basic
variables always have a zero reduced cost. At optimality, for a maximization problem,
nonbasic variables that are not at an upper bound have nonpositive reduced costs (for
example, A–HEAVY has a reduced cost of -21.45). The objective would decrease
if they were to increase beyond their optimal values. Nonbasic variables at upper
bounds have nonnegative reduced costs, showing that increasing the upper bound (if
the reduced cost is not zero) does not decrease the objective. For a nonbasic variable
at its upper bound, the reduced cost is the marginal value of increasing its upper
bound, often called its shadow price.

For minimization problems, the definition of reduced costs remains the same but the
conditions for optimality change. For example, at optimality the reduced costs of

Example 4.2. A Sparse View of the Oil Blending Problem � 261

all non-upper-bounded variables are nonnegative, and the reduced costs of upper-
bounded variables at their upper bound are nonpositive.

The next section of output (Output 4.1.4) contains the Constraint Summary. For
each constraint row, free row, and objective row, a line is displayed in the Constraint
Summary. Included on the line are the constraint name, the row type, the slack or
surplus variable associated with the row, the right-hand-side constant associated with
the row, the activity of the row (not including the activity of the slack and surplus
variables), and the dual activity (shadow prices).

A dual variable is associated with each constraint row. At optimality, the value of this
variable, the dual activity, tells you the marginal value of the right-hand-side constant.
For each unit increase in the right-hand-side constant, the objective changes by this
amount. This quantity is also known as the shadow price. For example, the marginal
value for the right-hand-side constant of constraint HEATING–O–CONV is -450.

Output 4.1.4. Constraint Summary for the Oil Blending Problem

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1544 .
2 naphtha_l_conv EQ . 0 0 -60
3 naphtha_i_conv EQ . 0 0 -90
4 heating_o_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

Example 4.2. A Sparse View of the Oil Blending Problem

Typically, mathematical programming models are very sparse. This means that only
a small percentage of the coefficients are nonzero. The sparse problem input is ideal
for these models. The oil blending problem in the “An Introductory Example” section
on page 192 has a sparse form. This example shows the same problem in a sparse
form with the data given in a different order. In addition to representing the problem
in a concise form, the sparse format

• allows long column names

• enables easy matrix generation (see Example 4.12, Example 4.13, and Example
4.14)

• is compatible with MPS sparse format

The model in the sparse format is solved by invoking PROC LP with the
SPARSEDATA option as follows.

262 � Chapter 4. The LP Procedure

data oil;
format _type_ $8. _col_ $14. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_ ;
datalines;

max . profit .
. arabian_light profit -175
. arabian_heavy profit -165
. brega profit -205
. jet_1 profit 300
. jet_2 profit 300
eq . napha_l_conv .
. arabian_light napha_l_conv .035
. arabian_heavy napha_l_conv .030
. brega napha_l_conv .045
. naphtha_light napha_l_conv -1
eq . napha_i_conv .
. arabian_light napha_i_conv .100
. arabian_heavy napha_i_conv .075
. brega napha_i_conv .135
. naphtha_inter napha_i_conv -1
eq . heating_oil_conv .
. arabian_light heating_oil_conv .390
. arabian_heavy heating_oil_conv .300
. brega heating_oil_conv .430
. heating_oil heating_oil_conv -1
eq . recipe_1 .
. naphtha_inter recipe_1 .3
. heating_oil recipe_1 .7
eq . recipe_2 .
. jet_1 recipe_1 -1
. naphtha_light recipe_2 .2
. heating_oil recipe_2 .8
. jet_2 recipe_2 -1
upperbd . available .
. arabian_light available 110
. arabian_heavy available 165
. brega available 80
;

proc lp data=oil sparsedata;
run;

The output from PROC LP follows.

Example 4.2. A Sparse View of the Oil Blending Problem � 263

Output 4.2.1. Output for the Sparse Oil Blending Problem

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0
Phase 2 Iterations 5
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

264 � Chapter 4. The LP Procedure

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 arabian_heavy UPPERBD -165 0 -21.45
2 arabian_light UPPBD UPPERBD -175 110 11.6
3 brega UPPBD UPPERBD -205 80 3.35
4 heating_oil BASIC NON-NEG 0 77.3 0
5 jet_1 BASIC NON-NEG 300 60.65 0
6 jet_2 BASIC NON-NEG 300 63.33 0
7 naphtha_inter BASIC NON-NEG 0 21.8 0
8 naphtha_light BASIC NON-NEG 0 7.45 0

The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1544 .
2 napha_l_conv EQ . 0 0 -60
3 napha_i_conv EQ . 0 0 -90
4 heating_oil_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

Example 4.3. Analyzing the Sensitivity of the Solution to Changes in the Objective
Coefficients � 265

Example 4.3. Analyzing the Sensitivity of the Solution to
Changes in the Objective Coefficients

Simple solution of a linear program is often not enough. A manager needs to evaluate
how sensitive the solution is to changing assumptions. The LP procedure provides
several tools that are useful for “what if,” or sensitivity, analysis. One tool studies the
effects of changes in the objective coefficients.

For example, in the oil blending problem, the cost of crude and the selling price
of jet fuel can be highly variable. If you want to know the range over which each
objective coefficient can vary without changing the variables in the basis, you can
use the RANGEPRICE option in the PROC LP statement.

proc lp data=oil sparsedata
rangeprice primalout=solution;

run;

In addition to the Problem and Solution summaries, the LP procedure produces a
Price Range Summary, shown in Output 4.3.1.

For each structural variable, the upper and lower ranges of the price (objective func-
tion coefficient) and the objective value are shown. The blocking variables, those
variables that would enter the basis if the objective coefficient were perturbed further,
are also given. For example, the output shows that if the cost of ARABIAN–LIGHT
crude were to increase from 175 to 186.6 per unit (remember that you are maximiz-
ing profit so the ARABIAN–LIGHT objective coefficient would decrease from -175
to -186.6), then it would become optimal to use less of this crude for any fractional
increase in its cost. Increasing the unit cost to 186.6 would drive its reduced cost
to zero. Any additional increase would drive its reduced cost negative and would
destroy the optimality conditions; thus, you would want to use less of it in your pro-
cessing. The output shows that, at the point where the reduced cost is zero, you would
only be realizing a profit of 268 = 1544 - (110 × 11.6) and that ARABIAN–LIGHT
enters the basis, that is, leaves its upper bound. On the other hand, if the cost of
ARABIAN–HEAVY were to decrease to 143.55, you would want to stop using the
formulation of 110 units of ARABIAN–LIGHT and 80 units of BREGA and switch
to a production scheme that included ARABIAN–HEAVY, in which case the profit
would increase from the 1544 level.

266 � Chapter 4. The LP Procedure

Output 4.3.1. Price Range Summary for the Oil Blending Problem

The LP Procedure

Price Range Analysis

-------------Minimum Phi-------------
Col Variable Name Price Entering Objective

1 arabian_heavy -INFINITY . 1544
2 arabian_light -186.6 arabian_light 268
3 brega -208.35 brega 1276
4 heating_oil -7.790698 brega 941.77907
5 jet_1 290.19034 brega 949.04392
6 jet_2 290.50992 brega 942.99292
7 naphtha_inter -24.81481 brega 1003.037
8 naphtha_light -74.44444 brega 989.38889

Price Range Analysis

-------------Maximum Phi-------------
Col Price Entering Objective

1 -143.55 arabian_heavy 1544
2 INFINITY . INFINITY
3 INFINITY . INFINITY
4 71.5 arabian_heavy 7070.95
5 392.25806 arabian_heavy 7139.4516
6 387.19512 arabian_heavy 7066.0671
7 286 arabian_heavy 7778.8
8 715 arabian_heavy 6870.75

Note that in the PROC LP statement, the PRIMALOUT=SOLUTION option was
given. This caused the procedure to save the optimal solution in a SAS data set
named SOLUTION. This data set can be used to perform further analysis on the
problem without having to restart the solution process. Example 4.4 shows how this
is done. A display of the data follows in Output 4.3.2.

Output 4.3.2. The PRIMALOUT= Data Set for the Oil Blending Problem

_ _ _ _ _ _
O R S L _ U _ R
B H _ T B V B P _
J S _ T A O A O R C
_ _ V Y T U L U I O

O I I A P U N U N C S
b D D R E S D E D E T
s _ _ _ _ _ _ _ _ _ _

1 profit _rhs_ arabian_heavy UPPERBD 0 0.00 165 -165 -21.45
2 profit _rhs_ arabian_light UPPERBD _UPPER_ 0 110.00 110 -175 11.60
3 profit _rhs_ brega UPPERBD _UPPER_ 0 80.00 80 -205 3.35
4 profit _rhs_ heating_oil NON-NEG _BASIC_ 0 77.30 1.7977E308 0 0.00
5 profit _rhs_ jet_1 NON-NEG _BASIC_ 0 60.65 1.7977E308 300 0.00
6 profit _rhs_ jet_2 NON-NEG _BASIC_ 0 63.33 1.7977E308 300 0.00
7 profit _rhs_ naphtha_inter NON-NEG _BASIC_ 0 21.80 1.7977E308 0 -0.00
8 profit _rhs_ naphtha_light NON-NEG _BASIC_ 0 7.45 1.7977E308 0 0.00
9 profit _rhs_ PHASE_1_OBJECTIVE OBJECT _DEGEN_ 0 0.00 0 0 0.00
10 profit _rhs_ profit OBJECT _BASIC_ 0 1544.00 1.7977E308 0 0.00

Example 4.4. Additional Analysis of the Sensitivity of the Solution to Changes in the
Objective Coefficients � 267

Example 4.4. Additional Analysis of the Sensitivity of
the Solution to Changes in the Objective
Coefficients

The objective coefficient ranging analysis, discussed in the last example, is useful for
assessing the effects of changing costs and returns on the optimal solution if each
objective function coefficient is modified in isolation. However, this is often not the
case.

Suppose you anticipate that the cost of crude will be increasing and you want to
examine how that will affect your optimal production plans. Furthermore, you es-
timate that if the price of ARABIAN–LIGHT goes up by 1 unit, then the price of
ARABIAN–HEAVY will rise by 1.2 units and the price of BREGA will increase by
1.5 units. However, you plan on passing some of your increased overhead on to your
jet fuel customers, and you decide to increase the price of jet fuel 1 unit for each unit
of increased cost of ARABIAN–LIGHT.

An examination of the solution sensitivity to changes in the cost of crude is a two-
step process. First, add the information on the proportional rates of change in the
crude costs and the jet fuel price to the problem data set. Then, invoke the LP pro-
cedure. The following program accomplishes this. First, it adds a new row, named
CHANGE, to the model. It gives this row a type of PRICESEN. That tells PROC LP
to perform objective function coefficient sensitivity analysis using the given rates of
change. The program then invokes PROC LP to perform the analysis. Notice that
the PRIMALIN=SOLUTION option is used in the PROC LP statement. This tells
the LP procedure to use the saved solution. Although it is not necessary to do this, it
will eliminate the need for PROC LP to re-solve the problem and can save computing
time.

data sen;
format _type_ $8. _col_ $14. _row_ $6.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

pricesen . change .
. arabian_light change 1
. arabian_heavy change 1.2
. brega change 1.5
. jet_1 change -1
. jet_2 change -1
;

data;
set oil sen;

run;

proc lp sparsedata primalin=solution;
run;

Output 4.4.1 shows the range over which the current basic solution remains opti-
mal so that the current production plan need not change. The objective coefficients
are modified by adding φ times the change vector given in the SEN data set, where

268 � Chapter 4. The LP Procedure

φ ranges from a minimum of -4.15891 to a maximum of 29.72973. At the mini-
mum value of φ, the profit decreases to 1103.073. This value of φ corresponds to
an increase in the cost of ARABIAN–HEAVY to 169.99 (namely, −175 + φ× 1.2),
ARABIAN–LIGHT to 179.16 (= −175 + φ× 1), and BREGA to 211.24 (= −205 +
φ× 1.5), and corresponds to an increase in the price of JET–1 and JET–2 to 304.16
(= 300 + φ× (-1)). These values can be found in the Price column under the section
labeled Minimum Phi.

Output 4.4.1. The Price Sensitivity Analysis Summary for the Oil Blending
Problem

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -4.158907511
Entering Variable brega
Optimal Objective 1103.0726257

Maximum Phi 29.72972973
Entering Variable arabian_heavy
Optimal Objective 4695.9459459

----Minimum Phi---- ----Maximum Phi----
Reduced Reduced

Col Variable Name Status Activity Price Cost Price Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0
2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838
3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297
4 heating_oil BASIC 77.3 0 0 0 0
5 jet_1 BASIC 60.65 304.15891 0 270.27027 0
6 jet_2 BASIC 63.33 304.15891 0 270.27027 0
7 naphtha_inter BASIC 21.8 0 0 0 0
8 naphtha_light BASIC 7.45 0 0 0 0

The Price Sensitivity Analysis Summary also shows the effects of lowering the cost of
crude and lowering the price of jet fuel. In particular, at the maximum φ of 29.72973,
the current optimal production plan yields a profit of 4695.95. Any increase or de-
crease in φ beyond the limits given results in a change in the production plan. More
precisely, the columns that constitute the basis change.

Example 4.5. Price Parametric Programming for the Oil Blending Problem � 269

Example 4.5. Price Parametric Programming for the Oil
Blending Problem

This example continues to examine the effects of a change in the cost of crude and
the selling price of jet fuel. Suppose that you know the cost of ARABIAN–LIGHT
crude is likely to increase 30 units, with the effects on oil and fuel prices as described
in Example 4.4. The analysis in the last example only accounted for an increase of
a little over 4 units (because the minimum φ was -4.15891). Because an increase
in the cost of ARABIAN–LIGHT beyond 4.15891 units requires a change in the
optimal basis, it may require a change in the optimal production strategy as well.
This type of analysis, where you want to find how the solution changes with changes
in the objective function coefficients or right-hand-side vector, is called parametric
programming.

You can answer this question by using the PRICEPHI= option in the PROC LP state-
ment. The following program instructs PROC LP to continually increase the cost of
the crudes and the return from jet fuel using the ratios given previously, until the cost
of ARABIAN–LIGHT increases at least 30 units.

proc lp sparsedata primalin=solution pricephi=-30;
run;

The PRICEPHI= option in the PROC LP statement tells PROC LP to perform para-
metric programming on any price change vectors specified in the problem data set.
The value of the PRICEPHI= option tells PROC LP how far to change the value of φ
and in what direction. A specification of PRICEPHI=-30 tells PROC LP to continue
pivoting until the problem has objective function equal to (original objective function
value) − 30 × (change vector).

Output 4.5.1 shows the result of this analysis. The first page is the Price Sensitivity
Analysis Summary, as discussed in Example 4.4. The next page is an accounting
for the change in basis as a result of decreasing φ beyond -4.1589. It shows that
BREGA left the basis at an upper bound and entered the basis at a lower bound. The
interpretation of these basis changes can be difficult (Hadley 1962; Dantzig 1963).

The last page of output shows the optimal solution at the displayed value of φ, namely
-30.6878. At an increase of 30.6878 units in the cost of ARABIAN–LIGHT and
the related changes to the other crudes and the jet fuel, it is optimal to modify the
production of jet fuel as shown in the activity column. Although this plan is optimal,
it results in a profit of 0. This may suggest that the ratio of a unit increase in the price
of jet fuel per unit increase in the cost of ARABIAN–LIGHT is lower than desirable.

270 � Chapter 4. The LP Procedure

Output 4.5.1. Price Parametric Programming for the Oil Blending Problem

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -4.158907511
Entering Variable brega
Optimal Objective 1103.0726257

Maximum Phi 29.72972973
Entering Variable arabian_heavy
Optimal Objective 4695.9459459

----Minimum Phi---- ----Maximum Phi----
Reduced Reduced

Col Variable Name Status Activity Price Cost Price Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0
2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838
3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297
4 heating_oil BASIC 77.3 0 0 0 0
5 jet_1 BASIC 60.65 304.15891 0 270.27027 0
6 jet_2 BASIC 63.33 304.15891 0 270.27027 0
7 naphtha_inter BASIC 21.8 0 0 0 0
8 naphtha_light BASIC 7.45 0 0 0 0

The LP Procedure

Price Parametric Programming Log
Sensitivity Vector change

Current
Leaving Variable Entering Variable Objective Phi

brega brega 1103.0726 -4.158908

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -30.68783069
Entering Variable arabian_light
Optimal Objective 0

----Minimum Phi----
Reduced

Col Variable Name Status Activity Price Cost

1 arabian_heavy 0 -201.8254 -43.59127
2 arabian_light ALTER 110 -205.6878 0
3 brega 0 -251.0317 -21.36905
4 heating_oil BASIC 42.9 0 0
5 jet_1 BASIC 33.33 330.68783 0
6 jet_2 BASIC 35.09 330.68783 0
7 naphtha_inter BASIC 11 0 0
8 naphtha_light BASIC 3.85 0 0

Example 4.6. Special Ordered Sets and the Oil Blending Problem � 271

What is the optimal return if φ is exactly -30? Because the change in the objective is
linear as a function of φ, you can calculate the objective for any value of φ between
those given by linear interpolation. For example, for any φ between -4.1589 and
-30.6878, the optimal objective value is

φ× (1103.0726− 0)/(−4.1589− 30.6878) + b

where

b = 30.6878× (1103.0726− 0)/(−4.1589− 30.6878)

For φ =-30, this is 28.5988.

Example 4.6. Special Ordered Sets and the Oil Blending
Problem

Often managers want to evaluate the cost of making a choice among alternatives.
In particular, they want to make the most profitable choice. Suppose that only one
oil crude can be used in the production process. This identifies a set of variables
of which only one can be above its lower bound. This additional restriction could
be included in the model by adding a binary integer variable for each of the three
crudes. Constraints would be needed that would drive the appropriate binary variable
to 1 whenever the corresponding crude is used in the production process. Then a
constraint limiting the total of these variables to only one would be added. A similar
formulation for a fixed charge problem is shown in Example 4.8.

The SOSLE type implicitly does this. The following DATA step adds a row to the
model that identifies which variables are in the set. The SOSLE type tells the LP
procedure that only one of the variables in this set can be above its lower bound. If
you use the SOSEQ type, it tells PROC LP that exactly one of the variables in the set
must be above its lower bound. Only integer variables can be in an SOSEQ set.

data special;
format _type_ $6. _col_ $14. _row_ $8. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

SOSLE . special .
. arabian_light special 1
. arabian_heavy special 1
. brega special 1
;

data;
set oil special;

run;

proc lp sparsedata;
run;

272 � Chapter 4. The LP Procedure

Output 4.6.1 includes an Integer Iteration Log. This log shows the progress that
PROC LP is making in solving the problem. This is discussed in some detail in
Example 4.8.

Output 4.6.1. The Oil Blending Problem with a Special Ordered Set

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 1544 arabian_light 110 0 2 .
2 -1 SUBOPTIMAL 1276 . . . 1 268
3 1 FATHOMED 268 . . . 0 .

Example 4.6. Special Ordered Sets and the Oil Blending Problem � 273

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 1276

Phase 1 Iterations 0
Phase 2 Iterations 5
Phase 3 Iterations 0
Integer Iterations 3
Integer Solutions 1
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 arabian_heavy UPPERBD -165 0 -21.45
2 arabian_light UPPBD UPPERBD -175 110 11.6
3 brega UPPERBD -205 0 3.35
4 heating_oil BASIC NON-NEG 0 42.9 0
5 jet_1 BASIC NON-NEG 300 33.33 0
6 jet_2 BASIC NON-NEG 300 35.09 0
7 naphtha_inter BASIC NON-NEG 0 11 0
8 naphtha_light BASIC NON-NEG 0 3.85 0

The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1276 .
2 napha_l_conv EQ . 0 0 -60
3 napha_i_conv EQ . 0 0 -90
4 heating_oil_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

The solution shows that only the ARABIAN–LIGHT crude is purchased. The re-
quirement that only one crude be used in the production is met, and the profit is 1276.
This tells you that the value of purchasing crude from an additional source, namely
BREGA, is worth 1544 − 1276 = 268.

274 � Chapter 4. The LP Procedure

Example 4.7. Goal-Programming a Product Mix Problem

This example shows how to use PROC LP to solve a linear goal-programming prob-
lem. PROC LP has the ability to solve a series of linear programs, each with a new
objective function. These objective functions are ordered by priority. The first step is
to solve a linear program with the highest priority objective function constrained only
by the formal constraints in the model. Then, the problem with the next highest pri-
ority objective function is solved, constrained by the formal constraints in the model
and by the value that the highest priority objective function realized. That is, the
second problem optimizes the second highest priority objective function among the
alternate optimal solutions to the first optimization problem. The process continues
until a linear program is solved for each of the objectives.

This technique is useful for differentiating among alternate optimal solutions to a
linear program. It also fits into the formal paradigm presented in goal programming.
In goal programming, the objective functions typically take on the role of driving a
linear function of the structural variables to meet a target level as closely as possible.
The details of this can be found in many books on the subject, including Ignizio
(1976).

Consider the following problem taken from Ignizio (1976). A small paint company
manufactures two types of paint, latex and enamel. In production, the company uses
10 hours of labor to produce 100 gallons of latex and 15 hours of labor to produce 100
gallons of enamel. Without hiring outside help or requiring overtime, the company
has 40 hours of labor available each week. Furthermore, each paint generates a profit
at the rate of $1.00 per gallon. The company has the following objectives listed in
decreasing priority:

• avoid the use of overtime

• achieve a weekly profit of $1000

• produce at least 700 gallons of enamel paint each week

The program to solve this problem follows.

data object;
input _row_ $ latex enamel n1 n2 n3 p1 p2 p3 _type_ $ _rhs_;
datalines;

overtime 1 . . min 1
profit . . . 1 min 2
enamel 1 . . . min 3
overtime 10 15 1 . . -1 . . eq 40
profit 100 100 . 1 . . -1 . eq 1000
enamel . 1 . . 1 . . -1 eq 7
;

proc lp data=object goalprogram;
run;

Example 4.7. Goal-Programming a Product Mix Problem � 275

The data set called OBJECT contains the model. Its first three observations are the
objective rows, and the next three observations are the constraints. The values in the
right-hand-side variable –RHS– in the objective rows give the priority of the ob-
jectives. The objective in the first observation with –ROW–=‘OVERTIME’ has the
highest priority, the objective named PROFIT has the next highest, and the objective
named ENAMEL has the lowest. Note that the value of the right-hand-side variable
determines the priority, not the order, in the data set.

Because this example is set in the formal goal-programming scheme, the model has
structural variables representing negative (n1, n2, and n3) and positive (p1, p2, and
p3) deviations from target levels. For example, n1+p1 is the deviation from the ob-
jective of avoiding the use of overtime and underusing the normal work time, namely
using exactly 40 work hours. The other objectives are handled similarly.

Notice that the PROC LP statement includes the GOALPROGRAM option. Without
this option, the procedure would solve three separate problems: one for each of the
three objective functions. In that case, however, the procedure would not constrain
the second and third programs using the results of the preceding programs; also, the
values 1, 2, and 3 for –RHS– in the objective rows would have no effect.

Output 4.7.1 shows the solution of the goal program, apparently as three linear pro-
gram outputs. However, examination of the constraint summaries in the second and
third problems shows that the constraints labeled by the objectives OVERTIME and
PROFIT have type FIXEDOBJ. This indicates that these objective rows have become
constraints in the subsequent problems.

Output 4.7.1. Goal Programming

The LP Procedure

Problem Summary

Objective Function Min overtime
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

276 � Chapter 4. The LP Procedure

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 0

Phase 1 Iterations 2
Phase 2 Iterations 0
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 7
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex ALTER NON-NEG 0 0 0
2 enamel ALTER NON-NEG 0 0 0
3 n1 BASIC NON-NEG 0 40 0
4 n2 BASIC NON-NEG 0 1000 0
5 n3 BASIC NON-NEG 0 7 0
6 p1 NON-NEG 1 0 1
7 p2 ALTER NON-NEG 0 0 0
8 p3 ALTER NON-NEG 0 0 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime OBJECTVE . 0 0 .
2 profit FREE_OBJ . 0 1000 .
3 enamel FREE_OBJ . 0 7 .
4 overtime EQ . 40 40 0
5 profit EQ . 1000 1000 0
6 enamel EQ . 7 7 0

Example 4.7. Goal-Programming a Product Mix Problem � 277

The LP Procedure

Problem Summary

Objective Function Min profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 600

Phase 1 Iterations 0
Phase 2 Iterations 3
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 7
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

278 � Chapter 4. The LP Procedure

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex BASIC NON-NEG 0 4 0
2 enamel NON-NEG 0 0 50
3 n1 NON-NEG 0 0 10
4 n2 BASIC NON-NEG 1 600 0
5 n3 BASIC NON-NEG 0 7 0
6 p1 DEGEN NON-NEG 0 0 0
7 p2 NON-NEG 0 0 1
8 p3 ALTER NON-NEG 0 0 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime FIXEDOBJ . 0 0 .
2 profit OBJECTVE . 0 600 .
3 enamel FREE_OBJ . 0 7 .
4 overtime EQ . 40 40 -10
5 profit EQ . 1000 1000 1
6 enamel EQ . 7 7 0

The LP Procedure

Problem Summary

Objective Function Min enamel
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

Example 4.7. Goal-Programming a Product Mix Problem � 279

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 7

Phase 1 Iterations 0
Phase 2 Iterations 1
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 7
Time Used (seconds) 0
Number of Inversions 8

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex BASIC NON-NEG 0 4 0
2 enamel DEGEN NON-NEG 0 0 0
3 n1 NON-NEG 0 0 0.2
4 n2 BASIC NON-NEG 0 600 0
5 n3 BASIC NON-NEG 1 7 0
6 p1 DEGEN NON-NEG 0 0 0
7 p2 NON-NEG 0 0 0.02
8 p3 NON-NEG 0 0 1

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime FIXEDOBJ . 0 0 .
2 profit FIXEDOBJ . 0 600 .
3 enamel OBJECTVE . 0 7 .
4 overtime EQ . 40 40 -0.2
5 profit EQ . 1000 1000 0.02
6 enamel EQ . 7 7 1

280 � Chapter 4. The LP Procedure

The solution to the last linear program shows a value of 4 for the variable LATEX and
a value of 0 for the variable ENAMEL. This tells you that the solution to the linear
goal program is to produce 400 gallons of latex and no enamel paint.

The values of the objective functions in the three linear programs tell you whether you
can achieve the three objectives. The activities of the constraints labeled OVERTIME,
PROFIT, and ENAMEL tell you values of the three linear program objectives.
Because the first linear programming objective OVERTIME is 0, the highest pri-
ority objective, which is to avoid using additional labor, is accomplished. However,
because the second and third objectives are nonzero, the second and third priority
objectives are not satisfied completely. The PROFIT objective is 600. Because the
PROFIT objective is to minimize the negative deviation from the profit constraint, this
means that a profit of only 400 = 1000 − 600 is realized. Similarly, the ENAMEL
objective is 7, indicating that there is a negative deviation from the ENAMEL target
of 7 units.

Example 4.8. A Simple Integer Program

Recall the linear programming problem presented in Chapter 1, “Introduction to
Optimization.” In that problem, a firm produces two products, chocolates and gum-
drops, that are processed by four processes: cooking, color/flavor, condiments, and
packaging. The objective is to determine the product mix that maximizes the profit
to the firm while not exceeding manufacturing capacities. The problem is extended
to demonstrate a use of integer-constrained variables.

Suppose that you must manufacture only one of the two products. In addition, there
is a setup cost of 100 if you make the chocolates and 75 if you make the gum-
drops. To identify which product will maximize profit, you define two zero-one in-
teger variables, ICHOCO and IGUMDR, and you also define two new constraints,
CHOCOLATE and GUM. The constraint labeled CHOCOLATE forces ICHOCO
to equal one when chocolates are manufactured. Similarly, the constraint labeled
GUM forces IGUMDR to equal 1 when gumdrops are manufactured. Also, you
should include a constraint labeled ONLY–ONE that requires the sum of ICHOCO
and IGUMDR to equal 1. (Note that this could be accomplished more simply by
including ICHOCO and IGUMDR in a SOSEQ set.) Since ICHOCO and IGUMDR
are integer variables, this constraint eliminates the possibility of both products being
manufactured. Notice the coefficients -10000, which are used to force ICHOCO or
IGUMDR to 1 whenever CHOCO and GUMDR are nonzero. This technique, which
is often used in integer programming, can cause severe numerical problems. If this
driving coefficient is too large, then arithmetic overflows and underflow may result.
If the driving coefficient is too small, then the integer variable may not be driven to 1
as desired by the modeler.

The objective coefficients of the integer variables ICHOCO and IGUMDR are the
negatives of the setup costs for the two products. The following is the data set that
describes this problem and the call to PROC LP to solve it:

Example 4.8. A Simple Integer Program � 281

data;
format _row_ $10. ;
input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

proc lp;
run;

The solution shows that gumdrops are produced. See Output 4.8.1.

Output 4.8.1. Summaries and an Integer Programming Iteration Log

The LP Procedure

Problem Summary

Objective Function Max object
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 25.71

Variables Number

Non-negative 2
Binary 2
Slack 6

Total 10

Constraints Number

LE 6
EQ 1
Objective 1

Total 8

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 397.5 ichoco 0.1 0.2 2 .
2 -1 SUBOPTIMAL 260 . . . 1 70
3 1 SUBOPTIMAL 285 . . . 0 .

282 � Chapter 4. The LP Procedure

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 285

Phase 1 Iterations 0
Phase 2 Iterations 5
Phase 3 Iterations 5
Integer Iterations 3
Integer Solutions 2
Initial Basic Feasible Variables 9
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 choco DEGEN NON-NEG 0.25 0 0
2 gumdr BASIC NON-NEG 0.75 480 0
3 ichoco BINARY -100 0 2475
4 igumdr BASIC BINARY -75 1 0
5 cooking BASIC SLACK 0 7800 0
6 color SLACK 0 0 -0.013333
7 package BASIC SLACK 0 27000 0
8 condiments BASIC SLACK 0 3000 0
9 chocolate SLACK 0 0 -0.25

10 gum BASIC SLACK 0 9520 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 object OBJECTVE . 0 285 .
2 cooking LE 5 27000 19200 0
3 color LE 6 27000 27000 0.0133333
4 package LE 7 27000 0 0
5 condiments LE 8 27000 24000 0
6 chocolate LE 9 0 0 0.25
7 gum LE 10 0 -9520 0
8 only_one EQ . 1 1 -75

Example 4.9. An Infeasible Problem � 283

The branch-and-bound tree can be reconstructed from the information contained in
the integer iteration log. The column labeled Iter numbers the integer iterations. The
column labeled Problem identifies the Iter number of the parent problem from which
the current problem is defined. For example, Iter=2 has Problem=-1. This means
that problem 2 is a direct descendant of problem 1. Furthermore, because problem
1 branched on ICHOCO, you know that problem 2 is identical to problem 1 with
an additional constraint on variable ICHOCO. The minus sign in the Problem=-1
in Iter=2 tells you that the new constraint on variable ICHOCO is a lower bound.
Moreover, because Value=0.1 in Iter=1, you know that ICHOCO=0.1 in Iter=1 so
that the added constraint in Iter=2 is ICHOCO ≥ d0.1e. In this way, the information
in the log can be used to reconstruct the branch-and-bound tree. In fact, when you
save an ACTIVEOUT= data set, it contains information in this format that is used to
reconstruct the tree when you restart a problem using the ACTIVEIN= data set. See
Example 4.10.

Note that if you defined a SOSEQ special ordered set containing the variables
CHOCO and GUMDR, the integer variables ICHOCO and IGUMDR and the three
associated constraints would not have been needed.

Example 4.9. An Infeasible Problem

This is an example of the Infeasible Information Summary that is displayed when an
infeasible problem is encountered. Consider the following problem:

max x + y + z + w
subject to x + 3y + 2z + 4w ≤ 5

3x + y + 2z + w ≤ 4
5x + 3y + 3z + 3w = 9
x, y, z, w ≥ 0

Examination of this problem reveals that it is unsolvable. Consequently, PROC LP
identifies it as infeasible. The following program attempts to solve it.

data infeas;
format _id_ $6.;
input _id_ $ x1-x4 _type_ $ _rhs_;
datalines;

profit 1 1 1 1 max .
const1 1 3 2 4 le 5
const2 3 1 2 1 le 4
const3 5 3 3 3 eq 9
;

proc lp;
run;

The results are shown in Output 4.9.1.

284 � Chapter 4. The LP Procedure

Output 4.9.1. The Solution of an Infeasible Problem

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 77.78

Variables Number

Non-negative 4
Slack 2

Total 6

Constraints Number

LE 2
EQ 1
Objective 1

Total 4

ERROR: Infeasible problem. Note the constraints in the constraint summary
that are identified as infeasible. If none of the constraints are
flagged then check the implicit bounds on the variables.

The LP Procedure

Solution Summary

Infeasible Problem

Objective Value 2.5

Phase 1 Iterations 2
Phase 2 Iterations 0
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Example 4.9. An Infeasible Problem � 285

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 BASIC NON-NEG 1 0.75 0
2 x2 BASIC NON-NEG 1 1.75 0
3 x3 NON-NEG 1 0 0.5
4 x4 NON-NEG 1 0 0

INF const1 BASIC SLACK 0 -1 0
6 const2 SLACK 0 0 0.5

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 2.5 .
INF const1 LE 5 5 6 0

3 const2 LE 6 4 4 -0.5
4 const3 EQ . 9 9 0.5

The LP Procedure

Infeasible Information Summary

Infeasible Row const1
Constraint Activity 6
Row Type LE
Rhs Data 5

Lower Upper
Variable Coefficient Activity Bound Bound

x1 1 0.75 0 INFINITY
x2 3 1.75 0 INFINITY
x3 2 0 0 INFINITY
x4 4 0 0 INFINITY

Note the information given in the Infeasible Information Summary for the infeasible
row CONST1. It shows that the inequality row CONST1 with right-hand side 5 was
found to be infeasible with activity 6. The summary also shows each variable that has
a nonzero coefficient in that row and its activity level at the infeasibility. Examination
of these model parameters might give you a clue as to the cause of infeasibility, such
as an incorrectly entered coefficient or right-hand-side value.

286 � Chapter 4. The LP Procedure

Example 4.10. Restarting an Integer Program

The following example is attributed to Haldi (Garfinkel and Nemhauser 1972) and
is used in the literature as a test problem. Notice that the ACTIVEOUT= and the
PRIMALOUT= options are used when invoking PROC LP. These cause the LP pro-
cedure to save the primal solution in the data set named P and the active tree in the
data set named A. If the procedure fails to find an optimal integer solution on the
initial call, it can be called later using the A and P data sets as starting information.

data haldi10;
input x1-x12 _type_ $ _rhs_;
datalines;
0 0 0 0 0 0 1 1 1 1 1 1 MAX .
9 7 16 8 24 5 3 7 8 4 6 5 LE 110

12 6 6 2 20 8 4 6 3 1 5 8 LE 95
15 5 12 4 4 5 5 5 6 2 1 5 LE 80
18 4 4 18 28 1 6 4 2 9 7 1 LE 100
-12 0 0 0 0 0 1 0 0 0 0 0 LE 0
0 -15 0 0 0 0 0 1 0 0 0 0 LE 0
0 0 -12 0 0 0 0 0 1 0 0 0 LE 0
0 0 0 -10 0 0 0 0 0 1 0 0 LE 0
0 0 0 0 -11 0 0 0 0 0 1 0 LE 0
0 0 0 0 0 -11 0 0 0 0 0 1 LE 0
1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 UPPERBD .
1 2 3 4 5 6 7 8 9 10 11 12 INTEGER .
;

proc lp data=haldi10 activeout=a primalout=p;
run;

The ACTIVEOUT= data set contains a representation of the current active problems
in the branch-and-bound tree. The PRIMALOUT= data set contains a representation
of the solution to the current problem. These two can be used to restore the procedure
to an equivalent state to the one it was in when it stopped.

The results from the call to PROC LP is shown in Output 4.10.1. Notice that the pro-
cedure performed 100 iterations and then terminated on maximum integer iterations.
This is because, by default, IMAXIT=100. The procedure reports the current best
integer solution.

Example 4.10. Restarting an Integer Program � 287

Output 4.10.1. Output from the HALDI10 Problem

The LP Procedure

Problem Summary

Objective Function Max _OBS1_
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 31.82

Variables Number

Integer 6
Binary 6
Slack 10

Total 22

Constraints Number

LE 10
Objective 1

Total 11

288 � Chapter 4. The LP Procedure

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 x9 1.543 1.11905 2 .
2 1 ACTIVE 18.467723 x12 9.371 0.88948 3 .
3 2 ACTIVE 18.460133 x8 0.539 1.04883 4 .
4 -3 ACTIVE 18.453638 x12 8.683 1.12993 5 .
5 4 ACTIVE 18.439678 x10 7.448 1.20125 6 .
6 5 ACTIVE 18.403728 x6 0.645 1.3643 7 .
7 -6 ACTIVE 18.048289 x4 0.7 1.18395 8 .
8 -7 ACTIVE 17.679087 x8 1.833 0.52644 9 .
9 8 ACTIVE 17.52 x10 6.667 0.70111 10 .

10 9 ACTIVE 17.190085 x12 7.551 1.37615 11 .
11 -10 ACTIVE 17.02 x1 0.085 0.255 12 .
12 11 ACTIVE 16.748 x11 0.748 0.47 13 .
13 -12 ACTIVE 16.509091 x9 0.509 0.69091 14 .
14 13 ACTIVE 16.261333 x11 1.261 0.44267 15 .
15 14 ACTIVE 16 x3 0.297 0.45455 16 .
16 15 ACTIVE 16 x5 0.091 0.15758 16 .
17 -16 INFEASIBLE -0.4 . . . 15 .
18 -15 ACTIVE 11.781818 x10 1.782 0.37576 15 .
19 18 ACTIVE 11 x5 0.091 0.15758 15 .
20 -19 INFEASIBLE -6.4 . . . 14 .
21 -14 ACTIVE 11.963636 x5 0.182 0.28485 14 .
22 -21 INFEASIBLE -4.4 . . . 13 .
23 -13 ACTIVE 15.281818 x10 4.282 0.52273 13 .
24 23 ACTIVE 15.041333 x5 0.095 0.286 14 .
25 -24 INFEASIBLE -2.9 . . . 13 .
26 24 INFEASIBLE 14 . . . 12 .
27 12 ACTIVE 16 x3 0.083 0.15 13 .
28 -27 ACTIVE 15.277778 x9 0.278 0.34444 14 .
29 -28 ACTIVE 13.833333 x10 3.833 0.23333 14 .
30 29 ACTIVE 13 x2 0.4 0.4 15 .
31 30 INFEASIBLE 12 . . . 14 .
32 -30 SUBOPTIMAL 10 . . . 13 8
33 28 ACTIVE 15 x2 0.067 0.06667 13 8
34 -33 SUBOPTIMAL 12 . . . 12 6
35 27 ACTIVE 15 x2 0.067 0.06667 12 6
36 -35 SUBOPTIMAL 15 . . . 11 3
37 -11 FATHOMED 14.275 . . . 10 3
38 10 ACTIVE 16.804848 x1 0.158 0.50313 11 3
39 -38 FATHOMED 14.784 . . . 10 3
40 38 ACTIVE 16.40381 x11 1.404 0.68143 11 3
41 -40 ACTIVE 16.367677 x10 5.368 0.69949 12 3
42 41 ACTIVE 16.113203 x11 2.374 1.00059 12 3
43 42 ACTIVE 16 x5 0.182 0.33182 12 3
44 -43 FATHOMED 13.822222 . . . 11 3
45 -41 FATHOMED 12.642424 . . . 10 3
46 40 ACTIVE 16 x5 0.229 0.37857 10 3
47 46 FATHOMED 15 . . . 9 3
48 -9 ACTIVE 17.453333 x7 0.453 0.64111 10 3
49 48 ACTIVE 17.35619 x11 0.356 0.53857 11 3
50 49 ACTIVE 17 x5 0.121 0.27143 12 3

Example 4.10. Restarting an Integer Program � 289

51 50 ACTIVE 17 x3 0.083 0.15 13 3
52 -51 FATHOMED 15.933333 . . . 12 3
53 51 ACTIVE 16 x2 0.067 0.06667 12 3
54 -53 SUBOPTIMAL 16 . . . 8 2
55 -8 ACTIVE 17.655399 x12 7.721 0.56127 9 2
56 55 ACTIVE 17.519375 x10 6.56 0.76125 10 2
57 56 ACTIVE 17.256874 x2 0.265 0.67388 11 2
58 57 INFEASIBLE 17.167622 . . . 10 2
59 -57 FATHOMED 16.521755 . . . 9 2
60 -56 FATHOMED 17.03125 . . . 8 2
61 -55 ACTIVE 17.342857 x9 0.343 0.50476 8 2
62 61 ACTIVE 17.2225 x7 0.16 0.37333 9 2
63 62 ACTIVE 17.1875 x8 2.188 0.33333 9 2
64 63 ACTIVE 17.153651 x11 0.154 0.30095 10 2
65 -64 FATHOMED 12.381818 . . . 9 2
66 64 ACTIVE 17 x2 0.133 0.18571 9 2
67 -66 FATHOMED 13 . . . 8 2
68 -62 FATHOMED 14.2 . . . 7 2
69 7 FATHOMED 15.428583 . . . 6 2
70 6 FATHOMED 16.75599 . . . 5 2
71 -5 ACTIVE 17.25974 x6 0.727 0.82078 5 2
72 -71 FATHOMED 17.142857 . . . 4 2
73 -4 ACTIVE 18.078095 x4 0.792 0.70511 5 2
74 -73 ACTIVE 17.662338 x10 7.505 0.91299 5 2
75 74 ACTIVE 17.301299 x9 0.301 0.57489 5 2
76 75 ACTIVE 17.210909 x7 0.211 0.47697 5 2
77 76 FATHOMED 17.164773 . . . 4 2
78 73 FATHOMED 12.872727 . . . 3 2
79 3 ACTIVE 18.368316 x10 7.602 1.20052 4 2
80 79 ACTIVE 18.198323 x7 1.506 1.85351 5 2
81 80 ACTIVE 18.069847 x12 8.517 1.67277 6 2
82 -81 ACTIVE 17.910909 x4 0.7 0.73015 7 2
83 -82 ACTIVE 17.790909 x7 0.791 0.54015 8 2
84 -83 ACTIVE 17.701299 x9 0.701 0.62229 8 2
85 84 ACTIVE 17.17619 x6 0.818 0.45736 8 2
86 -85 ACTIVE 17.146667 x11 0.147 0.24333 8 2
87 86 ACTIVE 17 x1 0.167 0.16667 8 2
88 87 INFEASIBLE 16 . . . 7 2
89 83 ACTIVE 17.58 x11 0.58 0.73788 8 2
90 -89 FATHOMED 17.114286 . . . 7 2
91 -80 ACTIVE 18.044048 x12 8.542 1.71158 8 2
92 91 ACTIVE 17.954536 x11 0.477 1.90457 9 2
93 92 ACTIVE 17.875084 x4 0.678 1.16624 10 2
94 93 FATHOMED 13.818182 . . . 9 2
95 -93 ACTIVE 17.231221 x6 0.727 0.76182 9 2
96 -95 FATHOMED 17.085714 . . . 8 2
97 -92 FATHOMED 17.723058 . . . 7 2
98 -91 FATHOMED 16.378788 . . . 6 2
99 89 ACTIVE 17 x6 0.818 0.26515 6 2
100 -99 ACTIVE 17 x3 0.083 0.08333 6 2

WARNING: The maximum number of integer iterations has been exceeded. Increase
this limit with the ’IMAXIT=’ option on the RESET statement.

290 � Chapter 4. The LP Procedure

The LP Procedure

Solution Summary

Terminated on Maximum Integer Iterations
Integer Feasible Solution

Objective Value 16

Phase 1 Iterations 0
Phase 2 Iterations 13
Phase 3 Iterations 161
Integer Iterations 100
Integer Solutions 4
Initial Basic Feasible Variables 12
Time Used (seconds) 0
Number of Inversions 37

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 DEGEN BINARY 0 0 0
2 x2 ALTER BINARY 0 1 0
3 x3 BINARY 0 0 12
4 x4 ALTER BINARY 0 1 0
5 x5 ALTER BINARY 0 0 0
6 x6 ALTER BINARY 0 1 0
7 x7 INTEGER 1 0 1
8 x8 INTEGER 1 1 1
9 x9 DEGEN INTEGER 1 0 0
10 x10 INTEGER 1 7 1
11 x11 INTEGER 1 0 1
12 x12 INTEGER 1 8 1
13 _OBS2_ BASIC SLACK 0 15 0
14 _OBS3_ BASIC SLACK 0 2 0
15 _OBS4_ BASIC SLACK 0 7 0
16 _OBS5_ BASIC SLACK 0 2 0
17 _OBS6_ ALTER SLACK 0 0 0
18 _OBS7_ BASIC SLACK 0 14 0
19 _OBS8_ SLACK 0 0 -1
20 _OBS9_ BASIC SLACK 0 3 0
21 _OBS10_ DEGEN SLACK 0 0 0
22 _OBS11_ BASIC SLACK 0 3 0

Example 4.11. Alternative Search of the Branch-and-Bound Tree � 291

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ OBJECTVE . 0 16 .
2 _OBS2_ LE 13 110 95 0
3 _OBS3_ LE 14 95 93 0
4 _OBS4_ LE 15 80 73 0
5 _OBS5_ LE 16 100 98 0
6 _OBS6_ LE 17 0 0 0
7 _OBS7_ LE 18 0 -14 0
8 _OBS8_ LE 19 0 0 1
9 _OBS9_ LE 20 0 -3 0
10 _OBS10_ LE 21 0 0 0
11 _OBS11_ LE 22 0 -3 0

To continue with the solution of this problem, invoke PROC LP with the ACTIVEIN=
and PRIMALIN= options and reset the IMAXIT= option. This restores the branch-
and-bound tree and simplifies calculating a basic feasible solution from which to start
processing.

proc lp data=haldi10 activein=a primalin=p imaxit=250;
run;

The procedure picks up iterating from a equivalent state to where it left off. The
problem will still not be solved when IMAXIT=250 occurs.

Example 4.11. Alternative Search of the Branch-and-Bound
Tree

In this example, the HALDI10 problem from Example 4.10 is solved. However,
here the default strategy for searching the branch-and-bound tree is modified. By
default, the search strategy has VARSELECT=FAR. This means that when searching
for an integer variable on which to branch, the procedure uses the one that has a value
farthest from an integer value. An alternative strategy has VARSELECT=PENALTY.
This strategy causes PROC LP to look at the cost, in terms of the objective function,
of branching on an integer variable. The procedure looks at PENALTYDEPTH=
integer variables before choosing the one with the largest cost. This is a much more
expensive strategy (in terms of execution time) than the VARSELECT=FAR strategy,
but it can be beneficial if fewer integer iterations must be done to find an optimal
solution.

proc lp data=haldi10 varselect=penalty;
run;

Compare the number of integer iterations needed to solve the problem using this
heuristic with the default strategy used in Example 4.10. In this example, the dif-
ference is profound; in general, solution times can vary significantly with the search
technique. See Output 4.11.1.

292 � Chapter 4. The LP Procedure

Output 4.11.1. Summaries and an Integer Programming Iteration Log: Using
VARSELECT=PENALTY

The LP Procedure

Problem Summary

Objective Function Max _OBS1_
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 31.82

Variables Number

Integer 6
Binary 6
Slack 10

Total 22

Constraints Number

LE 10
Objective 1

Total 11

Example 4.11. Alternative Search of the Branch-and-Bound Tree � 293

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 x4 0.8 1.11905 2 .
2 1 ACTIVE 16.585187 x1 0.447 2.33824 3 .
3 2 ACTIVE 14.86157 x5 0.221 2.09584 4 .
4 3 ACTIVE 14.807195 x2 0.897 1.31729 5 .
5 -4 ACTIVE 14.753205 x8 14.58 0.61538 6 .
6 5 ACTIVE 14.730078 x6 0.043 0.79446 7 .
7 -6 ACTIVE 13.755102 x3 0.051 0.58163 8 .
8 -7 ACTIVE 11.6 x8 11.6 0.4 9 .
9 8 ACTIVE 11.6 x12 0.6 0.4 10 .
10 -9 ACTIVE 11.6 x8 10.6 0.4 11 .
11 10 ACTIVE 11.6 x12 1.6 0.4 12 .
12 -11 ACTIVE 11.6 x8 9.6 0.4 13 .
13 12 ACTIVE 11.6 x12 2.6 0.4 14 .
14 -13 ACTIVE 11.571429 x9 0.143 0.57143 15 .
15 14 ACTIVE 11.5 x8 8.5 0.5 16 .
16 -15 INFEASIBLE 9 . . . 15 .
17 15 ACTIVE 11.375 x12 3.375 0.375 16 .
18 -17 ACTIVE 11.166667 x8 7.167 0.16667 17 .
19 18 ACTIVE 11.125 x12 4.125 0.125 18 .
20 19 SUBOPTIMAL 11 . . . 7 7
21 7 ACTIVE 13.5 x8 13.5 0.5 8 7
22 -21 INFEASIBLE 11 . . . 7 7
23 21 ACTIVE 13.375 x12 0.375 0.375 8 7
24 -23 ACTIVE 13.166667 x8 12.17 0.16667 9 7
25 24 ACTIVE 13.125 x12 1.125 0.125 10 7
26 25 SUBOPTIMAL 13 . . . 4 5
27 6 ACTIVE 14.535714 x3 0.045 0.50893 5 5
28 -27 FATHOMED 12.625 . . . 4 5
29 27 SUBOPTIMAL 14 . . . 1 4
30 -1 ACTIVE 18.309524 x3 0.129 1.31905 2 4
31 30 ACTIVE 17.67723 x6 0.886 0.43662 3 4
32 31 ACTIVE 15.485156 x2 0.777 1.50833 4 4
33 -32 ACTIVE 15.2625 x1 0.121 1.38333 4 4
34 33 ACTIVE 15.085106 x10 3.532 0.91489 4 4
35 34 FATHOMED 14.857143 . . . 3 4
36 32 FATHOMED 11.212121 . . . 2 4
37 -31 ACTIVE 17.56338 x10 7.93 0.43662 3 4
38 37 ACTIVE 17.225962 x8 2.38 0.69231 4 4
39 38 ACTIVE 17.221818 x1 0.016 0.37111 5 4
40 -39 FATHOMED 14.43662 . . . 4 4
41 39 ACTIVE 17.172375 x2 0.133 0.31948 5 4
42 41 ACTIVE 16.890196 x5 0.086 0.19608 6 4
43 42 ACTIVE 16.75 x12 9.75 0.25 7 4
44 -43 SUBOPTIMAL 15 . . . 6 3
45 43 SUBOPTIMAL 16 . . . 3 2
46 -38 FATHOMED 17.138028 . . . 2 2
47 -37 SUBOPTIMAL 17 . . . 1 1
48 -30 FATHOMED 16.566667 . . . 0 .

294 � Chapter 4. The LP Procedure

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 17

Phase 1 Iterations 0
Phase 2 Iterations 13
Phase 3 Iterations 79
Integer Iterations 48
Integer Solutions 6
Initial Basic Feasible Variables 12
Time Used (seconds) 0
Number of Inversions 17

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 DEGEN BINARY 0 0 0
2 x2 BINARY 0 0 -4
3 x3 BINARY 0 0 -4
4 x4 BINARY 0 1 -18
5 x5 DEGEN BINARY 0 0 0
6 x6 BINARY 0 1 -1
7 x7 INTEGER 1 0 -6.5
8 x8 INTEGER 1 0 -3
9 x9 INTEGER 1 0 -1
10 x10 INTEGER 1 8 -8
11 x11 INTEGER 1 0 -8.545455
12 x12 BASIC INTEGER 1 9 0
13 _OBS2_ BASIC SLACK 0 20 0
14 _OBS3_ BASIC SLACK 0 5 0
15 _OBS4_ BASIC SLACK 0 10 0
16 _OBS5_ SLACK 0 0 -1
17 _OBS6_ SLACK 0 0 -1.5
18 _OBS7_ DEGEN SLACK 0 0 0
19 _OBS8_ DEGEN SLACK 0 0 0
20 _OBS9_ BASIC SLACK 0 2 0
21 _OBS10_ SLACK 0 0 -2.545455
22 _OBS11_ BASIC SLACK 0 2 0

Example 4.12. An Assignment Problem � 295

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ OBJECTVE . 0 17 .
2 _OBS2_ LE 13 110 90 0
3 _OBS3_ LE 14 95 90 0
4 _OBS4_ LE 15 80 70 0
5 _OBS5_ LE 16 100 100 1
6 _OBS6_ LE 17 0 0 1.5
7 _OBS7_ LE 18 0 0 0
8 _OBS8_ LE 19 0 0 0
9 _OBS9_ LE 20 0 -2 0
10 _OBS10_ LE 21 0 0 2.5454545
11 _OBS11_ LE 22 0 -2 0

Although the VARSELECT=PENALTY strategy works well in this example, there is
no guarantee that it will work well with your model. Experimentation with various
strategies is necessary to find the one that works well with your model and data,
particularly if a model is solved repeatedly with few changes to either the structure
or the data.

Example 4.12. An Assignment Problem

This example departs somewhat from the emphasis of previous ones. Typically, linear
programming models are large, have considerable structure, and are solved with some
regularity. Some form of automatic model building, or matrix generation as it is
commonly called, is a useful aid. The sparse input format provides a great deal of
flexibility in model specification so that, in many cases, the DATA step can be used
to generate the matrix.

The following assignment problem illustrates some techniques in matrix generation.
In this example, you have four machines that can produce any of six grades of cloth,
and you have five customers that demand various amounts of each grade of cloth. The
return from supplying a customer with a demanded grade depends on the machine on
which the cloth was made. In addition, the machine capacity depends both upon the
specific machine used and the grade of cloth made.

To formulate this problem, let i denote customer, j denote grade, and k denote ma-
chine. Then let xijk denote the amount of cloth of grade j made on machine k for
customer i; let rijk denote the return from selling one unit of grade j cloth made on
machine k to customer i; let dij denote the demand for grade j cloth by customer i;
let cjk denote the number of units of machine k required to produce one unit of grade
j cloth; and let ak denote the number of units of machine k available. Then, you get

max
∑

ijk rijkxijk

subject to
∑

k xijk = dij for all i and j∑
ij cjkxijk ≤ ak for all k

xijk ≥ 0 for all i, j and k

296 � Chapter 4. The LP Procedure

The data are saved in three data sets. The OBJECT data set contains the returns for
satisfying demand, the DEMAND data set contains the amounts demanded, and the
RESOURCE data set contains the conversion factors for each grade and the total
amounts of machine resources available.

title ’An Assignment Problem’;

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

Example 4.12. An Assignment Problem � 297

The linear program is built using the DATA step. The model is saved in a SAS data
set in the sparse input format for PROC LP. Each section of the following DATA step
generates a piece of the linear program. The first section generates the objective func-
tion; the next section generates the demand constraints; and the last section generates
the machine resource availability constraints.

/* build the linear programming model */

data model;
array grade{6} grade1-grade6;
length _type_ $ 8 _row_ $ 8 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

ncust=5;
nmach=4;
ngrade=6;

/* generate the objective function */

type=’MAX’;
row=’OBJ’;
do k=1 to nmach;

do i=1 to ncust;
link readobj; /* read the objective coefficient data */
do j=1 to ngrade;

if grade{j}^=. then do;
col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=grade{j};
output;

end;
end;

end;
end;

/* generate the demand constraints */

do i=1 to ncust;
link readdmd; /* read the demand data */
do j=1 to ngrade;

if grade{j}^=. then do;
type=’EQ’;
row=’DEMAND’||put(i,1.)||put(j,1.);
col=’_RHS_’;
coef=grade{j};
output;
type=’ ’;
do k=1 to nmach;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=1.0;
output;

end;
end;

298 � Chapter 4. The LP Procedure

end;
end;

/* generate the machine constraints */

do k=1 to nmach;
link readres; /* read the machine data */
type=’LE’;
row=’MACHINE’||put(k,1.);
col=’_RHS_’;
coef=avail;
output;
type=’ ’;
do i=1 to ncust;

do j=1 to ngrade;
if grade{j}^=. then do;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=grade{j};
output;
end;

end;
end;

end;

readobj: set object;
return;
readdmd: set demand;
return;
readres: set resource;
return;
run;

With the model built and saved in a data set, it is ready for solution using PROC LP.
The following program solves the model and saves the solution in the data set called
PRIMAL:

/* solve the linear program */

proc lp data=model sparsedata noprint primalout=primal;
run;

The following output is produced by PROC LP.

Example 4.12. An Assignment Problem � 299

Output 4.12.1. An Assignment Problem

An Assignment Problem

The LP Procedure

Problem Summary

Objective Function Max OBJ
Rhs Variable _RHS_
Type Variable _type_
Problem Density (%) 5.31

Variables Number

Non-negative 120
Slack 4

Total 124

Constraints Number

LE 4
EQ 30
Objective 1

Total 35

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 871426.03763

Phase 1 Iterations 0
Phase 2 Iterations 40
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 36
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The solution is prepared for reporting using the DATA step, and a report is written
using PROC TABULATE.

300 � Chapter 4. The LP Procedure

/* report the solution */

data solution;
set primal;
keep customer grade machine amount;
if substr(_var_,1,1)=’X’ then do;
if _value_^=0 then do;
customer = substr(_var_,2,1);
grade = substr(_var_,3,1);
machine = substr(_var_,4,1);
amount = _value_;
output;

end;
end;

run;

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount);

run;

The report shown in Output 4.12.2 gives the assignment of customer, grade of cloth,
and machine that maximizes the return and does not violate the machine resource
availability.

Example 4.12. An Assignment Problem � 301

Output 4.12.2. An Assignment Problem

	grade			

	1	2	3	4
	------------+------------+------------+------------			
	amount	amount	amount	amount
	------------+------------+------------+------------			
	Sum	Sum	Sum	Sum
-------------------+------------+------------+------------+------------				
machine	customer			
---------+---------				
1	1	.	100.00	150.00
	---------+------------+------------+------------+------------			
	2	.	.	300.00
	---------+------------+------------+------------+------------			
	3	.	.	256.72
	---------+------------+------------+------------+------------			
	4	.	.	750.00
	---------+------------+------------+------------+------------			
	5	.	92.27	.
---------+---------+------------+------------+------------+------------				
2	3	.	.	143.28
	---------+------------+------------+------------+------------			
	5	.	.	300.00
---------+---------+------------+------------+------------+------------				
3	2	.	.	.
	---------+------------+------------+------------+------------			
	3	.	.	.
	---------+------------+------------+------------+------------			
	4	.	.	.
	---------+------------+------------+------------+------------			
	5	.	.	.
---------+---------+------------+------------+------------+------------				
4	1	100.00	.	.
	---------+------------+------------+------------+------------			
	2	300.00	125.00	.
	---------+------------+------------+------------+------------			
	3	400.00	.	.
	---------+------------+------------+------------+------------			
	4	250.00	.	.
	---------+------------+------------+------------+------------			
	5	.	507.73	.

(Continued)

302 � Chapter 4. The LP Procedure

	grade	

	5	6
	------------+------------	
	amount	amount
	------------+------------	
	Sum	Sum
-------------------+------------+------------		
machine	customer	
---------+---------		
1	1	175.00
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
2	3	340.00
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
3	2	310.00
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	210.00
---------+---------+------------+------------		
4	1	.
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.

Example 4.13. A Scheduling Problem

Scheduling is an application area where techniques in model generation can be valu-
able. Problems involving scheduling are often solved with integer programming and
are similar to assignment problems. In this example, you have eight one-hour time
slots in each of five days. You have to assign four people to these time slots so that
each slot is covered on every day. You allow the people to specify preference data for
each slot on each day. In addition, there are constraints that must be satisfied:

• Each person has some slots for which they are unavailable.

• Each person must have either slot 4 or 5 off for lunch.

• Each person can work only two time slots in a row.

• Each person can work only a specified number of hours in the week.

To formulate this problem, let i denote person, j denote time slot, and k denote day.
Then, let xijk = 1 if person i is assigned to time slot j on day k, and 0 otherwise;

Example 4.13. A Scheduling Problem � 303

let pijk denote the preference of person i for slot j on day k; and let hi denote the
number of hours in a week that person i will work. Then, you get

max
∑

ijk pijkxijk

subject to
∑

i xijk = 1 for all j and k
xi4k + xi5k ≤ 1 for all i and k
xi,`,k + xi,`+1,k + xi,`+2,k ≤ 2 for all i and k, and ` = 1, . . . , 6∑

jk xijk ≤ hi for all i

xijk = 0 or 1 for all i and k such that pijk > 0,
otherwise xijk = 0

To solve this problem, create a data set that has the hours and preference data for each
individual, time slot, and day. A 10 represents the most desirable time slot, and a 1
represents the least desirable time slot. In addition, a 0 indicates that the time slot is
not available.

data raw;
input name $ hour slot mon tue wed thu fri;
datalines;

marc 20 1 10 10 10 10 10
marc 20 2 9 9 9 9 9
marc 20 3 8 8 8 8 8
marc 20 4 1 1 1 1 1
marc 20 5 1 1 1 1 1
marc 20 6 1 1 1 1 1
marc 20 7 1 1 1 1 1
marc 20 8 1 1 1 1 1
mike 20 1 10 9 8 7 6
mike 20 2 10 9 8 7 6
mike 20 3 10 9 8 7 6
mike 20 4 10 3 3 3 3
mike 20 5 1 1 1 1 1
mike 20 6 1 2 3 4 5
mike 20 7 1 2 3 4 5
mike 20 8 1 2 3 4 5
bill 20 1 10 10 10 10 10
bill 20 2 9 9 9 9 9
bill 20 3 8 8 8 8 8
bill 20 4 0 0 0 0 0
bill 20 5 1 1 1 1 1
bill 20 6 1 1 1 1 1
bill 20 7 1 1 1 1 1
bill 20 8 1 1 1 1 1
bob 20 1 10 9 8 7 6
bob 20 2 10 9 8 7 6
bob 20 3 10 9 8 7 6
bob 20 4 10 3 3 3 3
bob 20 5 1 1 1 1 1
bob 20 6 1 2 3 4 5
bob 20 7 1 2 3 4 5
bob 20 8 1 2 3 4 5
;

304 � Chapter 4. The LP Procedure

These data are read by the following DATA step, and an integer program is built
to solve the problem. The model is saved in the data set named MODEL. First,
the objective function is built using the data saved in the RAW data set. Then, the
constraints requiring a person to be working in each time slot are built. Next, the
constraints allowing each person time for lunch are added. Then, the constraints
restricting people to only two consecutive hours are added. Next, the constraints lim-
iting the time that any one person works in a week are added. Finally, the constraints
allowing a person to be assigned only to a time slot for which he is available are
added. The code to build each of these constraints follows the formulation closely.

data model;
array workweek{5} mon tue wed thu fri;
array hours{4} hours1 hours2 hours3 hours4;
retain hours1-hours4;

set raw end=eof;

length _row_ $ 8 _col_ $ 8 _type_ $ 8;
keep _type_ _col_ _row_ _coef_;

if name=’marc’ then i=1;
else if name=’mike’ then i=2;
else if name=’bill’ then i=3;
else if name=’bob’ then i=4;

hours{i}=hour;

/* build the objective function */

do k=1 to 5;
col=’x’||put(i,1.)||put(slot,1.)||put(k,1.);

row=’object’;
coef=workweek{k} * 1000;
output;
row=’upper’;
if workweek{k}^=0 then _coef_=1;
output;
row=’integer’;
coef=1;
output;

end;

/* build the rest of the model */

if eof then do;
coef=.;
col=’ ’;
type=’upper’;
row=’upper’;
output;

Example 4.13. A Scheduling Problem � 305

type=’max’;
row=’object’;
output;
type=’int’;
row=’integer’;
output;

/* every hour 1 person working */

do j=1 to 8;
do k=1 to 5;

row=’work’||put(j,1.)||put(k,1.);
type=’eq’;
col=’_RHS_’;
coef=1;
output;
coef=1;
type=’ ’;
do i=1 to 4;

col=’x’||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;

/* each person has a lunch */

do i=1 to 4;
do k=1 to 5;

row=’lunch’||put(i,1.)||put(k,1.);
type=’le’;
col=’_RHS_’;
coef=1;
output;
coef=1;
type=’ ’;
col=’x’||put(i,1.)||’4’||put(k,1.);
output;
col=’x’||put(i,1.)||’5’||put(k,1.);
output;

end;
end;

/* work at most 2 slots in a row */

do i=1 to 4;
do k=1 to 5;

do l=1 to 6;
row=’seq’||put(i,1.)||put(k,1.)||put(l,1.);
type=’le’;
col=’_RHS_’;
coef=2;
output;

306 � Chapter 4. The LP Procedure

coef=1;
type=’ ’;

do j=0 to 2;
col=’x’||put(i,1.)||put(l+j,1.)||put(k,1.);
output;

end;
end;

end;
end;

/* work at most n hours in a week */

do i=1 to 4;
row=’capacit’||put(i,1.);
type=’le’;
col=’_RHS_’;
coef=hours{i};
output;
coef=1;
type=’ ’;
do j=1 to 8;

do k=1 to 5;
col=’x’||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;
end;

run;

The model saved in the data set named MODEL is in the sparse format. The con-
straint that requires one person to work in time slot 1 on day 2 is named WORK12; it
is
∑

i xi12 = 1.

The following model is saved in the MODEL data set (which has 1387 observations).

TYPE _COL_ _ROW_ _COEF_

eq _RHS_ work12 1
x112 work12 1
x212 work12 1
x312 work12 1
x412 work12 1

The model is solved using the LP procedure. The option PRIMALOUT=SOLUTION
causes PROC LP to save the primal solution in the data set named SOLUTION.

/* solve the linear program */

proc lp sparsedata noprint primalout=solution
time=1000 maxit1=1000 maxit2=1000;

run;

Example 4.13. A Scheduling Problem � 307

The following DATA step below takes the solution data set SOLUTION and gener-
ates a report data set named REPORT. It translates the variable names xijk so that
a more meaningful report can be written. Then, the PROC TABULATE procedure is
used to display a schedule showing how the eight time slots are covered for the week.

/* report the solution */
title ’Reported Solution’;

data report;
set solution;
keep name slot mon tue wed thu fri;
if substr(_var_,1,1)=’x’ then do;
if _value_>0 then do;

n=substr(_var_,2,1);
slot=substr(_var_,3,1);
d=substr(_var_,4,1);
if n=’1’ then name=’marc’;
else if n=’2’ then name=’mike’;
else if n=’3’ then name=’bill’;
else name=’bob’;
if d=’1’ then mon=1;
else if d=’2’ then tue=1;
else if d=’3’ then wed=1;
else if d=’4’ then thu=1;
else fri=1;
output;

end;
end;

run;

proc format;
value xfmt 1=’ xxx ’;

run;

proc tabulate data=report;
class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=’ ’*f=xfmt.

/misstext=’ ’;
run;

Output 4.13.1 from PROC TABULATE summarizes the schedule. Notice that the
constraint requiring that a person be assigned to each possible time slot on each day
is satisfied.

308 � Chapter 4. The LP Procedure

Output 4.13.1. A Scheduling Problem

Reported Solution

--
| | mon | tue | wed | thu | fri |
|-------------------+--------+--------+--------+--------+--------|
slot	name					
---------+---------						
1	bill	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
2	bob	xxx				
	---------+--------+--------+--------+--------+--------					
	marc		xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
3	marc			xxx	xxx	xxx
	---------+--------+--------+--------+--------+--------					
	mike	xxx	xxx			
---------+---------+--------+--------+--------+--------+--------						
4	mike	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
5	bob	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
6	bob		xxx			xxx
	---------+--------+--------+--------+--------+--------					
	marc	xxx				
	---------+--------+--------+--------+--------+--------					
	mike			xxx	xxx	
---------+---------+--------+--------+--------+--------+--------						
7	bill	xxx				
	---------+--------+--------+--------+--------+--------					
	bob			xxx	xxx	
	---------+--------+--------+--------+--------+--------					
	mike		xxx			xxx
---------+---------+--------+--------+--------+--------+--------						
8	bill	xxx				
	---------+--------+--------+--------+--------+--------					
	mike		xxx	xxx	xxx	xxx
--

Recall that PROC LP puts a character string in the macro variable –ORLP– that
describes the characteristics of the solution on termination. This string can be parsed
using macro functions and the information obtained can be used in report writing.
The variable can be written to the log with the command

%put &_orlp_;

which produces Output 4.13.2.

Output 4.13.2. –ORLP– Macro Variable

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=211000 P_FEAS=YES D_FEAS=YES
INT_ITER=0 INT_FEAS=1 ACTIVE=0 INT_BEST=211000 PHASE1_ITER=34
PHASE2_ITER=49 PHASE3_ITER=0

From this you learn, for example, that at termination the solution is integer optimal
and has an objective value of 211000.

Example 4.14. A Multicommodity Transshipment Problem with Fixed Charges �

309

Example 4.14. A Multicommodity Transshipment Problem
with Fixed Charges

The following example illustrates a DATA step program for generating a linear pro-
gram to solve a multicommodity network flow model that has fixed charges. Consider
a network consisting of the following nodes: farm-a, farm-b, farm-c, Chicago, St.
Louis, and New York. You can ship four commodities from each farm to Chicago or
St. Louis and from Chicago or St. Louis to New York. The following table shows
the unit shipping cost for each of the four commodities across each of the arcs. The
table also shows the supply (positive numbers) at each of the from nodes and the de-
mand (negative numbers) at each of the to nodes. The fixed charge is a fixed cost for
shipping any nonzero amount across an arc. For example, if any amount of any of the
four commodities is sent from farm-c to St. Louis, then a fixed charge of 75 units is
added to the shipping cost.

Table 4.8. Farms to cities network problem

Unit Shipping Supply and Demand Fixed
From To Cost Charge
Node Node 1 2 3 4 1 2 3 4

farm-a Chicago 20 15 17 22 100 100 40 . 100
farm-b Chicago 15 15 15 30 100 200 50 50 75
farm-c Chicago 30 30 10 10 40 100 75 100 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLouis NY 80 80 80 80 200

The following program is designed to take the data in the form given in the preceding
table. It builds the node arc incidence matrix for a network given in this form and adds
integer variables to capture the fixed charge using the type of constraints discussed
in Example 4.8. The program solves the model using PROC LP, saves the solution
in the PRIMALOUT= data set named SOLUTION, and displays the solution. The
DATA step can be easily modified to handle larger problems with similar structure.

title ’Multi-commodity Transshipment Problem with Fixed Charges’;

data network;
retain M 1.0e6;
length _col_ $ 22 _row_ $ 22;
keep _type_ _col_ _row_ _coef_;
array sd sd1-sd4;
array c c1-c4;
format arc $10.;
input arc $ from $ to $ c1 c2 c3 c4 sd1 sd2 sd3 sd4 fx;

/* for the first observation define some of the rows */

if _n_=1 then do;
type=’upperbd’;

310 � Chapter 4. The LP Procedure

row=’upper’;
output;
type=’lowerbd’;
row=’lower’;
output;
type=’min’;
row=’obj’;
output;
type=’integer’;
row=’int’;
output;
end;

col=’_rhs_’;
type=’le’;

do over sd; /* loop for each commodity */
coef=sd;
if sd>0 then do; /* the node is a supply node */

row=from||’ commodity’||put(_i_,2.);
if from^=’ ’ then output;

end;
else if sd<0 then do; /* the node is a demand node */

row=to||’ commodity’||put(_i_,2.);
if to^=’ ’ then output;

end;
else if from^=’ ’ & to^=’ ’ then do; /* a transshipment node */

coef=0;
row=from||’ commodity’||put(_i_,2.);
output;
row=to ||’ commodity’||put(_i_,2.);
output;

end;
end;

do over c; /* loop for each commodity */
col=arc||’ commodity’||put(_i_,2.);
if from^=’ ’ & to^=’ ’ then do;

/* add node arc incidence matrix*/
type=’le’;
row=from||’ commodity’||put(_i_,2.);
coef=1;
output;
row=to ||’ commodity’||put(_i_,2.);
coef=-1;
output;
type=’ ’;
row=’obj’;
coef=c;
output;

/* add fixed charge variables */
type=’le’;
row=arc;
coef=1;output;

Example 4.14. A Multicommodity Transshipment Problem with Fixed Charges �

311

col=’_rhs_’;
type=’ ’;
coef=0;
output;
col=arc||’fx’;
coef=-M;
output;
row=’int’;
coef=1;
output;
row=’obj’;
coef=fx;
output;
row=’upper’;
coef=1;
output;

end;
end;

datalines;
a-Chicago farm-a Chicago 20 15 17 22 100 100 40 . 100
b-Chicago farm-b Chicago 15 15 15 30 100 200 50 50 75
c-Chicago farm-c Chicago 30 30 10 10 40 100 75 100 100
a-StLouis farm-a StLouis 30 25 27 22 150
c-StLouis farm-c StLouis 10 9 11 10 75
Chicago-NY Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLous-NY StLouis NY 80 80 80 80 200
;

/* solve the model */

proc lp sparsedata pout=solution noprint;
run;

/* print the solution */

data;
set solution;
rename _var_=arc _value_=amount;
if _value_^=0 & _type_=’NON-NEG’;

run;

proc print;
id arc;
var amount;

run;

The results from this example are shown in Output 4.14.1. The NOPRINT option in
the PROC LP statement suppresses the Variable and Constraint Summary sections.
This is useful when solving large models for which a report program is available.
Here, the solution is saved in data set SOLUTION and reported using PROC PRINT.
The solution shows the amount that is shipped over each arc.

312 � Chapter 4. The LP Procedure

Output 4.14.1. Multicommodity Transshipment Problem with Fixed Charges

Multi-commodity Transshipment Problem with Fixed Charges

arc amount

a-Chicago commodity 1 10
b-Chicago commodity 1 100
b-Chicago commodity 2 100
c-Chicago commodity 3 50
c-Chicago commodity 4 75
c-StLouis commodity 1 40
c-StLouis commodity 2 100
Chicago-NY commodity 1 110
Chicago-NY commodity 2 100
Chicago-NY commodity 3 50
Chicago-NY commodity 4 75
StLous-NY commodity 1 40
StLous-NY commodity 2 100

References
Bartels, R. (1971), “A Stabilization of the Simplex Method,” Numerical Mathematics,

16, 414–434.

Bland, R. G. (1977), “New Finite Pivoting Rules for the Simplex Method,”
Mathematics of Operations Research, 2, 103–107.

Breau, R. and Burdet, C. A. (1974), “Branch and Bound Experiments in Zero-One
Programming,” Mathematical Programming Study, 2, 1–50.

Crowder, H., Johnson, E. L., and Padberg, M. W. (1983), “Solving Large-Scale Zero-
One Linear Programming Problems,” Operations Research, 31, 803–834.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton: Princeton
University Press.

Garfinkel, R. S. and Nemhauser, G. L. (1972), Integer Programming, New York: John
Wiley & Sons.

Greenberg, H. J. (1978), “Pivot Selection Tactics,” in H. J. Greenberg, ed., “Design
and Implementation of Optimization Software,” 143–174, Netherlands: Sijthoff &
Noordhoff.

Hadley, G. (1962), Linear Programming, Reading, MA: Addison-Wesley Publishing
Company, Inc.

Harris, P. (1975), “Pivot Selection Methods of the Devex LP Code,” Mathematical
Programming Study, 4, 30–57.

Ignizio, J. P. (1976), Goal Programming and Extensions, Lexington, MA: D.C. Heath
and Company.

References � 313

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
McGraw-Hill Inc.

Nelson, M. (1992), The Data Compression Book, M&T Books.

Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Reid, J. K. (1976), “Fortran Subroutines for Handling Sparse Linear Programming
Bases,” Harwell Report R 8269.

Savelsbergh, M. W. (1996), “Preprocessing and Probing Techniques for Mixed
Integer Programming Problems,” ORSA J. on Computing, 6, 445–454.

Taha, H. A. (1975), Integer Programming, New York: Academic Press.

314 � Chapter 4. The LP Procedure

Chapter 5
The NETFLOW Procedure

Chapter Contents

OVERVIEW . 317
Introduction . 317
Network Models . 317
Side Constraints . 319
Advantages of Network Models over LP Models 324
Mathematical Description of NPSC . 325
Flow Conservation Constraints . 326
Nonarc Variables . 326
Warm Starts . 327

GETTING STARTED . 328
Introductory Example . 329

SYNTAX . 335
Functional Summary . 335
Interactivity . 340
PROC NETFLOW Statement . 342
CAPACITY Statement . 356
COEF Statement . 356
COLUMN Statement . 356
CONOPT Statement . 357
COST Statement . 357
DEMAND Statement . 357
HEADNODE Statement . 357
ID Statement . 358
LO Statement . 358
NAME Statement . 358
NODE Statement . 359
PIVOT Statement . 359
PRINT Statement . 359
QUIT Statement . 366
RESET Statement . 366
RHS Statement . 387
ROW Statement . 388
RUN Statement . 388
SAVE Statement . 388

316 � Chapter 5. The NETFLOW Procedure

SHOW Statement . 390
SUPDEM Statement . 394
SUPPLY Statement . 395
TAILNODE Statement . 395
TYPE Statement . 395
VAR Statement . 397

DETAILS . 397
Input Data Sets . 397
Output Data Sets . 406
Case Sensitivity . 409
Loop Arcs . 410
Multiple Arcs . 410
Pricing Strategies . 410
Dual Variables, Reduced Costs, and Status 414
The Working Basis Matrix . 415
Flow and Value Bounds . 417
Tightening Bounds and Side Constraints 417
Reasons for Infeasibility . 417
Missing S Supply and Missing D Demand Values 419
Balancing Total Supply and Total Demand 423
Warm Starts . 424
How to Make the Data Read of PROC NETFLOW More Efficient 428
Macro Variable –ORNETFL . 434

THE INTERIOR POINT ALGORITHM 436
Introduction . 436
Network Models: Interior Point Algorithm 437
Linear Programming Models: Interior Point Algorithm 448

EXAMPLES . 471
Example 5.1. Shortest Path Problem . 471
Example 5.2. Minimum Cost Flow Problem 474
Example 5.3. Using a Warm Start . 477
Example 5.4. Production, Inventory, Distribution Problem 478
Example 5.5. Using an Unconstrained Solution Warm Start 485
Example 5.6. Adding Side Constraints, Using a Warm Start 489
Example 5.7. Using a Constrained Solution Warm Start 496
Example 5.8. Nonarc Variables in the Side Constraints 500

REFERENCES . 507

Chapter 5
The NETFLOW Procedure
Overview

Introduction

Constrained network models can be used to describe a wide variety of real-world ap-
plications ranging from production, inventory, and distribution problems to financial
applications. These problems can be solved with the NETFLOW procedure.

These models are conceptually easy since they are based on network diagrams that
represent the problem pictorially. PROC NETFLOW accepts the network specifi-
cation in a format that is particularly suited to networks. This not only simplifies
problem description but also aids in the interpretation of the solution.

Certain algebraic features of networks are exploited by a specialized version of the
simplex method so that solution times are reduced. Another optimization algorithm,
the interior point algorithm, has been implemented in PROC NETFLOW and can be
used as an alternative to the simplex algorithm to solve network problems.

Should PROC NETFLOW detect there are no arcs and nodes in the model’s data, (that
is, there is no network component), it assumes it is dealing with a linear programming
(LP) problem. The interior point algorithm is automatically selected to perform the
optimization.

Network Models

A network consists of a collection of nodes joined by a collection of arcs. The arcs
connect nodes and convey flow of one or more commodities that are supplied at
supply nodes and demanded at demand nodes in the network. Each arc has a cost
per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow. Conservation of flow
means that the total flow in arcs directed toward a node, plus the supply at the node,
minus the demand at the node, equals the total flow in arcs directed away from the
node.

A network and its associated data can be described in SAS data sets. PROC
NETFLOW uses this description and finds the flow through each arc in the network
that minimizes the total cost of flow, meets the demand at demand nodes using the
supply at supply nodes so that the flow through each arc is on or between the arc’s
lower flow bound and its capacity, and satisfies the conservation of flow.

One class of network models is the production-inventory-distribution problem. The
diagram in Figure 5.1 illustrates this problem. The subscripts on the Production,
Inventory, and Sales nodes indicate the time period. Notice that if you replicate
sections of the model, the notion of time can be included.

318 � Chapter 5. The NETFLOW Procedure

�

	
�

Salesi−1

�

	
�

Salesi

�

	
�

Salesi+1

�

	
�

Inventoryi−1

�

	
�

Inventoryi

�

	
�

Inventoryi+1

�

	
�

Productioni−1

�

	
�

Productioni

�

	
�

Productioni+1

�

	
�

Stock on hand

�

	
�

Stock at end
- - - -

� �

? ? ?

6 6 6

Figure 5.1. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several
examples are suppliers, spot markets, importers, farmers, manufacturers, factories,
parts of a plant, production lines, waste disposal facilities, workstations, warehouses,
coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road
intersections, cities, regions, shops, customers, and consumers. The diversity of this
selection demonstrates the richness of potential applications of this model.

Depending upon the interpretation of the nodes, the objectives of the modeling exer-
cise can vary widely. Some common types of objectives are

• to reduce collection or purchase costs of raw materials

• to reduce inventory holding or backorder costs. Warehouses and other storage
facilities sometimes have capacities, and there can be limits on the amount of
goods that can be placed on backorder.

• to decide where facilities should be located and what the capacity of these
should be. Network models have been used to help decide where factories,
hospitals, ambulance and fire stations, oil and water wells, and schools should
be sited.

• to determine the assignment of resources (machines, production capability,
workforce) to tasks, schedules, classes, or files

• to determine the optimal distribution of goods or services. This usually means
minimizing transportation costs, and reducing time in transit or distances cov-
ered.

• to find the shortest path from one location to another

• to ensure that demands (for example, production requirements, market de-
mands, contractual obligations) are met

• to maximize profits from the sale of products or the charge for services

• to maximize production by identifying bottlenecks

Side Constraints � 319

Some specific applications are

• car distribution models. These help determine which models and numbers of
cars should be manufactured in which factories and where to distribute cars
from these factories to zones in the United States in order to meet customer
demand at least cost.

• models in the timber industry. These help determine when to plant and mill
forests, schedule production of pulp, paper and wood products, and distribute
products for sale or export.

• military applications. The nodes can be theatres, bases, ammunition dumps,
logistical suppliers, or radar installations. Some models are used to find the
best ways to mobilize personnel and supplies and to evacuate the wounded in
the least amount of time.

• communications applications. The nodes can be telephone exchanges, trans-
mission lines, satellite links, and consumers. In a model of an electrical grid,
the nodes can be transformers, powerstations, watersheds, reservoirs, dams,
and consumers. Of concern might be the effect of high loads or outages.

Side Constraints

Often all the details of a problem cannot be specified in a network model alone. In
many of these cases, these details can be represented by the addition of side con-
straints to the model. Side constraints are a linear function of arc variables (variables
containing flow through an arc) and nonarc variables (variables that are not part of
the network). This enhancement to the basic network model allows for very general
problems. In fact, any linear program can be represented with network models having
these types of side constraints. The examples that follow help to clarify the notion
of side constraints.

PROC NETFLOW enables you to specify side constraints. The data for a side con-
straint consist of coefficients of arcs and coefficients of nonarc variables, a constraint
type (that is, ≤, =, or ≥) and a right-hand-side value (rhs). A nonarc variable has a
name, an objective function coefficient analogous to an arc cost, an upper bound anal-
ogous to an arc capacity, and a lower bound analogous to an arc lower flow bound.
PROC NETFLOW finds the flow through the network and the values of any nonarc
variables that minimize the total cost of the solution. Flow conservation is met, flow
through each arc is on or between the arc’s lower flow bound and capacity, the value
of each nonarc variable is on or between the nonarc’s lower and upper bounds, and the
side constraints are satisfied. Note that, since many linear programs have large em-
bedded networks, PROC NETFLOW is an attractive alternative to the LP procedure
in many cases.

In order for arcs to be specified in side constraints, they must be named. By default,
PROC NETFLOW names arcs using the names of the nodes at the head and tail of
the arc. An arc is named with its tail node name followed by an underscore and its
head node name. For example, an arc from node from to node to is called from–to.

320 � Chapter 5. The NETFLOW Procedure

Proportionality Constraints

Side constraints in network models fall into several categories that have special struc-
ture. They are frequently used when the flow through an arc must be proportional to
the flow through another arc. Such constraints are called proportionality constraints
and are useful in models where production is subject to refining or modification into
different materials. The amount of each output, or any waste, evaporation, or reduc-
tion can be specified as a proportion of input.

Typically the arcs near the supply nodes carry raw materials and the arcs near the
demand nodes carry refined products. For example, in a model of the milling industry,
the flow through some arcs may represent quantities of wheat. After the wheat is
processed, the flow through other arcs might be flour. For others it might be bran. The
side constraints model the relationship between the amount of flour or bran produced
as a proportion of the amount of wheat milled. Some of the wheat can end up as
neither flour, bran, nor any useful product, so this waste is drained away via arcs to a
waste node.

�

	
�

Wheat

�

	
�

Mill

�

	
�

Flour

�

	
�

Bran

�

	
�

Other

- �
�

�
�

�
�

�
�

�
�3

-
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

1.0 0.2

0.3

0.5

Figure 5.2. Proportionality Constraints

Consider the network fragment in Figure 5.2. The arc Wheat–Mill conveys the wheat
milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the
capacity of the mill. The lower flow bound on this arc is the minimum quantity that
must be milled for the mill to operate economically. The constraints

0.3 Wheat–Mill − Mill–Flour = 0.0
0.2 Wheat–Mill − Mill–Bran = 0.0

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of
bran. Note that it is not necessary to specify the constraint

0.5 Wheat–Mill − Mill–Other = 0.0

since flow conservation implies that any flow that does not traverse through
Mill–Flour or Mill–Bran must be conveyed through Mill–Other. And, computation-
ally, it is better if this constraint is not specified, since there is one less side constraint

Side Constraints � 321

and fewer problems with numerical precision. Notice that the sum of the proportions
must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of in-
gredients that are mixed. For example, different raw materials can have different
properties. In an application of the oil industry, the amount of products that are ob-
tained could be different for each type of crude oil. Furthermore, fuel might have a
minimum octane requirement or limited sulphur or lead content, so that a blending of
crudes is needed to produce the product.

The network fragment in Figure 5.3 shows an example of this.

�

	
�

USA

�

	
�

MidEast

�

	
�

Port

�

	
�

Refinery

�

	
�

Gasoline

�

	
�

Diesel

�

	
�

Other�
�

�
�

��

@
@

@
@

@R

- �
�

�
�

�
�
��

-
@

@
@

@
@

@
@R

5 units/
liter

4 units/
liter

4.75 units/
liter

Figure 5.3. Blending Constraints

The arcs MidEast–Port and USA–Port convey crude oil from the two sources.
The arc Port–Refinery represents refining while the arcs Refinery–Gasoline and
Refinery–Diesel carry the gas and diesel produced. The proportionality constraints

0.4 Port–Refinery − Refinery–Gasoline = 0.0
0.2 Port–Refinery − Refinery–Diesel = 0.0

capture the restrictions for producing gasoline and diesel from crude. Suppose that,
if only crude from the Middle East is used, the resulting diesel would contain 5 units
of sulphur per liter. If only crude from the USA is used, the resulting diesel would
contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of sulphur per
liter. Some crude from the USA must be used if Middle East crude is used in order to
meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is

5 MidEast–Port +4 USA–Port −4.75 Port–Refinery ≤ 0.0

322 � Chapter 5. The NETFLOW Procedure

Since Port–Refinery = MidEast–Port + USA–Port, flow conservation allows this
constraint to be simplified to

1 MidEast–Port −3 USA–Port ≤ 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40 units
of crude from the USA must be used. The preceding constraint is simplified because
you assume that the sulphur concentration of diesel is proportional to the sulphur
concentration of the crude mix. If this is not the case, the relation

0.2 Port–Refinery = Refinery–Diesel

is used to obtain

5 MidEast–Port +4 USA–Port −4.75 (1.0/0.2 Refinery–Diesel) ≤ 0.0

which equals

5 MidEast–Port +4 USA–Port −23.75 Refinery–Diesel ≤ 0.0

An example similar to this Oil Industry problem is solved in the “Introductory
Example” section on page 329.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transporta-
tion or some other shared resource, or there are limits on overall production or de-
mand in multicommodity, multidivisional or multiperiod problems. Each commod-
ity, division or period can have a separate network coupled to one main system by the
side constraints. Side constraints are used to combine the outputs of subdivisions of
a problem (either commodities, outputs in distinct time periods, or different process
streams) to meet overall demands or to limit overall production or expenditures. This
method is more desirable than doing separate local optimizations for individual com-
modity, process, or time networks and then trying to establish relationships between
each when determining an overall policy if the global constraint is not satisfied. Of
course, to make models more realistic, side constraints may be necessary in the local
problems.

Side Constraints � 323

�

	
�

Factorycom2

�

	
�

Factorycom1

�

	
�

City2com2

�

	
�

City1com2

�

	
�

City2com1

�

	
�

City1com1

XXXXXXXXXXXXXXz

��������������:

XXXXXXXXXXXXXXz

��������������:

Commodity 1

Commodity 2

Figure 5.4. Multicommodity Problem

Figure 5.4 shows two network fragments. They represent identical production and
distribution sites of two different commodities. Suffix com1 represents commod-
ity 1 and suffix com2 represents commodity 2. The nodes Factorycom1 and
Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same loca-
tion, city 2. Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occu-
pies 3 cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters,
and the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of
each commodity can be loaded onto each truck? The side constraints for this case are

2 Factorycom1–City1com1 +3 Factorycom2–City1com2 ≤ 200
2 Factorycom1–City2com1 +3 Factorycom2–City2com2 ≤ 250

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement
of a commodity from place to place or from time period to time period. However,
sometimes an arc is included in the network as a method of capturing some aspect of
the problem that you would not normally think of as part of a network model. For
example, in a multiprocess, multiproduct model (Figure 5.5), there might be subnet-
works for each process and each product. The subnetworks can be joined together by
a set of arcs that have flows that represent the amount of product j produced by pro-
cess i. To model an upper limit constraint on the total amount of product j that can be
produced, direct all arcs carrying product j to a single node and from there through
a single arc. The capacity of this arc is the upper limit of product j production. It is
preferable to model this structure in the network rather than to include it in the side
constraints because the efficiency of the optimizer is affected less by a reasonable
increase in the size of the network.

324 � Chapter 5. The NETFLOW Procedure

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 2

Process 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 1

Process 1 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 2 production

Product 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 1 production

Product 1 subnetwork

-

-

�
�

�
�

��>Z
Z

Z
Z

ZZ~

Figure 5.5. Multiprocess, Multiproduct Example

It is often a good strategy when starting a project to use a small network formulation
and then use that model as a framework upon which to add detail. For example, in
the multiprocess, multiproduct model, you might start with the network depicted in
Figure 5.5. Then, for example, the process subnetwork can be enhanced to include
the distribution of products. Other phases of the operation could be included by
adding more subnetworks. Initially, these subnetworks can be single nodes, but in
subsequent studies they can be expanded to include greater detail.

The NETFLOW procedure accepts the side constraints in the same dense and sparse
formats that the LP procedure provides. Although PROC LP can solve network prob-
lems, the NETFLOW procedure generally solves network flow problems more effi-
ciently than PROC LP.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such
problems often result when modeling manufacturing processes, transportation or dis-
tribution networks, or resource allocation, or when deciding where to locate facilities.
Often, some commodity is to be moved from place to place, so the more natural for-
mulation in many applications is that of a constrained network rather than a linear
program.

Using a network diagram to visualize a problem makes it possible to capture the
important relationships in an easily understood picture form. The network diagram
aids the communication between model builder and model user, making it easier to
comprehend how the model is structured, how it can be changed, and how results can
be interpreted.

If a network structure is embedded in a linear program, the problem is a network
programming problem with side constraints (NPSC). When the network part of the
problem is large compared to the nonnetwork part, especially if the number of side
constraints is small, it is worthwhile to exploit this structure in the solution process.
This is what PROC NETFLOW does. It uses a variant of the revised primal simplex
algorithm that exploits the network structure to reduce solution time.

Mathematical Description of NPSC � 325

Mathematical Description of NPSC

If a network programming problem with side constraints has n nodes, a arcs, g nonarc
variables, and k side constraints, then the formal statement of the problem solved by
PROC NETFLOW is

minimize cT x + dT z
subject to Fx = b

Hx + Qz ≥,=,≤ r
l ≤ x ≤ u
m ≤ z ≤ v

where

• c is the a× 1 arc variable objective function coefficient vector (the cost vector)

• x is the a× 1 arc variable value vector (the flow vector)

• d is the g × 1 nonarc variable objective function coefficient vector

• z is the g × 1 nonarc variable value vector

• F is the n× a node-arc incidence matrix of the network, where

Fi,j =

−1, if arc j is directed from node i

1, if arc j is directed toward node i
0, otherwise

• b is the n× 1 node supply/demand vector, where

bi =

s, if node i has supply capability of s units of flow

−d, if node i has demand of d units of flow
0, if node i is a transshipment node

• H is the k × a side constraint coefficient matrix for arc variables, where Hi,j

is the coefficient of arc j in the ith side constraint

• Q is the k × g side constraint coefficient matrix for nonarc variables, where
Qi,j is the coefficient of nonarc j in the ith side constraint

• r is the k × 1 side constraint right-hand-side vector

• l is the a× 1 arc lower flow bound vector

• u is the a× 1 arc capacity vector

• m is the g × 1 nonarc variable lower bound vector

• v is the g × 1 nonarc variable upper bound vector

326 � Chapter 5. The NETFLOW Procedure

Flow Conservation Constraints

The constraints Fx = b are referred to as the nodal flow conservation constraints.
These constraints algebraically state that the sum of the flow through arcs directed
toward a node plus that node’s supply, if any, equals the sum of the flow through arcs
directed away from that node plus that node’s demand, if any. The flow conservation
constraints are implicit in the network model and should not be specified explic-
itly in side constraint data when using PROC NETFLOW. The constrained problems
most amenable to being solved by the NETFLOW procedure are those that, after
the removal of the flow conservation constraints, have very few constraints. PROC
NETFLOW is superior to linear programming optimizers when the network part of
the problem is significantly larger than the nonnetwork part.

The NETFLOW procedure can also be used to solve an unconstrained network prob-
lem, that is, one in which H , Q, d, r, and z do not exist.

Nonarc Variables

If the constrained problem to be solved has no nonarc variables, then Q, d, and z do
not exist. However, nonarc variables can be used to simplify side constraints. For
example, if a sum of flows appears in many constraints, it may be worthwhile to
equate this expression with a nonarc variable and use this in the other constraints. By
assigning a nonarc variable a nonzero objective function, it is then possible to incur
a cost for using resources above some lowest feasible limit. Similarly, a profit (a
negative objective function coefficient value) can be made if all available resources
are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or
supply needed resources. Then, either the excess resource can be used or the needed
resource can be supplied to another component of the model.

For example, consider a multicommodity problem of making television sets that have
either 19- or 25-inch screens. In their manufacture, 3 and 4 chips, respectively, are
used. Production occurs at 2 factories during March and April. The supplier of chips
can supply only 2600 chips to factory 1 and 3750 chips to factory 2 each month. The
names of arcs are in the form Prodn–s–m , where n is the factory number, s is the
screen size, and m is the month. For example, Prod1–25–Apr is the arc that conveys
the number of 25-inch TVs produced in factory 1 during April. You might have to
determine similar systematic naming schemes for your application.

As described, the constraints are

3 Prod1–19–Mar +4 Prod1–25–Mar ≤ 2600
3 Prod2–19–Mar +4 Prod2–25–Mar ≤ 3750
3 Prod1–19–Apr +4 Prod1–25–Apr ≤ 2600
3 Prod2–19–Apr +4 Prod2–25–Apr ≤ 3750

If there are chips that could be obtained for use in March but not used for production
in March, why not keep these unused chips until April? Furthermore, if the March

Warm Starts � 327

excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the
model becomes

3 Prod1–19–Mar +4 Prod1–25–Mar + F1–Unused–Mar = 2600
3 Prod2–19–Mar +4 Prod2–25–Mar + F2–Unused–Mar = 3750

3 Prod1–19–Apr +4 Prod1–25–Apr −F1–Kept–Since–Mar = 2600
3 Prod2–19–Apr +4 Prod2–25–Apr −F2–Kept–Since–Mar = 3750

F1–Unused–Mar + F2–Unused–Mar (continued)
− F1–Kept–Since–Mar − F2–Kept–Since–Mar ≥ 0.0

where F1–Kept–Since–Mar is the number of chips used during April at
factory 1 that were obtained in March at either factory 1 or factory 2 and
F2–Kept–Since–Mar is the number of chips used during April at factory 2 that
were obtained in March. The last constraint ensures that the number of chips used
during April that were obtained in March does not exceed the number of chips
not used in March. There may be a cost to hold chips in inventory. This can be
modeled having a positive objective function coefficient for the nonarc variables
F1–Kept–Since–Mar and F2–Kept–Since–Mar. Moreover, nonarc variable
upper bounds represent an upper limit on the number of chips that can be held in
inventory between March and April.

See Example 5.4 through Example 5.8 for a series of examples that use this TV
problem. The use of nonarc variables as described previously is illustrated.

Warm Starts

If you have a problem that has already been partially solved and is to be solved further
to obtain a better, optimal solution, information describing the solution now available
may be used as an initial solution. This is called warm starting the optimization, and
the supplied solution data are called the warm start.

Some data can be changed between the time when a warm start is created and when
it is used as a warm start for a subsequent PROC NETFLOW run. Elements in the
arc variable cost vector, the nonarc variable objective function coefficient vector, and
sometimes capacities, upper value bounds, and side constraint data can be changed
between PROC NETFLOW calls. See the “Warm Starts” section on page 424. Also,
see Example 5.4 through Example 5.8 (the TV problem) for a series of examples that
show the use of warm starts.

328 � Chapter 5. The NETFLOW Procedure

Getting Started
To solve network programming problems with side constraints using PROC
NETFLOW, you save a representation of the network and the side constraints in three
SAS data sets. These data sets are then passed to PROC NETFLOW for solution.
There are various forms that a problem’s data can take. You can use any one or a
combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the
ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrix F and the vectors c, l,
and u in problem (NPSC).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectors d, m, and v in problem (NPSC).
Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices H and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that arc. Each arc also has a default name that is the name of the tail and
head node of the arc concatenated together and separated by an underscore character;
tail–head, for example.

If you use the dense side constraint input format (described in the “CONDATA= Data
Set” section on page 398) and want to use the default arc names, these arc names are
names of SAS variables in the VAR list of the CONDATA= data set.

Introductory Example � 329

If you use the sparse side constraint input format (see the “CONDATA= Data Set”
section on page 398) and want to use the default arc names, these arc names are
values of the COLUMN list SAS variable of the CONDATA= data set.

The execution of PROC NETFLOW has three stages. In the preliminary (zeroth)
stage, the data are read from the NODEDATA= data set, the ARCDATA= data set, and
the CONDATA= data set. Error checking is performed, and an initial basic feasible
solution is found. If an unconstrained solution warm start is being used, then an
initial basic feasible solution is obtained by reading additional data containing that
information in the NODEDATA= data set and the ARCDATA= data set. In this case,
only constraint data and nonarc variable data are read from the CONDATA= data set.

In the first stage, an optimal solution to the network flow problem neglecting any side
constraints is found. The primal and dual solutions for this relaxed problem can be
saved in the ARCOUT= data set and the NODEOUT= data set, respectively. These
data sets are named in the PROC NETFLOW, RESET, and SAVE statements.

In the second stage, an optimal solution to the network flow problem with side con-
straints is found. The primal and dual solutions for this side constrained problem are
saved in the CONOUT= data set and the DUALOUT= data set, respectively. These
data sets are also named in the PROC NETFLOW, RESET, and SAVE statements.

If a constrained solution warm start is being used, PROC NETFLOW does not per-
form the zeroth and first stages. This warm start can be obtained by reading basis
data containing additional information in the NODEDATA= data set (also called the
DUALIN= data set) and the ARCDATA= data set.

If warm starts are to be used in future optimizations, the FUTURE1 and FUTURE2
options must be used in addition to specifying names for the data sets that contain
the primal and dual solutions in stages one and two. Then, most of the information
necessary for restarting problems is available in the output data sets containing the
primal and dual solutions of both the relaxed and side constrained network programs.

Introductory Example

Consider the following transshipment problem for an oil company. Crude oil is
shipped to refineries where it is processed into gasoline and diesel fuel. The gaso-
line and diesel fuel are then distributed to service stations. At each stage, there are
shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the
crude from the Middle East cannot exceed the throughput of a refinery plus 15 units.
(The phrase “plus 15 units” that finishes the last sentence is used to enable some side
constraints in this example to have a nonzero rhs.) The second set of constraints are
necessary to model the situation that one unit of crude mix processed at a refinery
yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

330 � Chapter 5. The NETFLOW Procedure

Because there are two products that are not independent in the way in which they
flow through the network, a network programming problem with side constraints is
an appropriate model for this example (see Figure 5.6). The side constraints are used
to model the limitations on the amount of Middle Eastern crude that can be processed
by each refinery and the conversion proportions of crude to gasoline and diesel fuel.

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 5.6. Oil Industry Example

To solve this problem with PROC NETFLOW, save a representation of the model in
three SAS data sets. In the NODEDATA= data set, you name the supply and demand
nodes and give the associated supplies and demands. To distinguish demand nodes
from supply nodes, specify demands as negative quantities. For the oil example, the
NODEDATA= data set can be saved as follows:

title ’Oil Industry Example’;
title3 ’Setting Up Nodedata = Noded For Proc Netflow’;
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

Introductory Example � 331

The ARCDATA= data set contains the rest of the information about the network.
Each observation in the data set identifies an arc in the network and gives the cost per
flow unit across the arc, the capacities of the arc, the lower bound on flow across the
arc, and the name of the arc.

title3 ’Setting Up Arcdata = Arcd1 For Proc Netflow’;
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

Finally, the CONDATA= data set contains the side constraints for the model.

title3 ’Setting Up Condata = Cond1 For Proc Netflow’;
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

Note that the SAS variable names in the CONDATA= data set are the names of arcs
given in the ARCDATA= data set. These are the arcs that have nonzero constraint
coefficients in side constraints. For example, the proportionality constraint that spec-
ifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline
and one-fourth of a unit of diesel fuel is given for REFINERY 1 in the third obser-
vation and for REFINERY 2 in the last observation. The third observation requires
that each unit of flow on arc THRUPUT1 equals three-fourths of a unit of flow on arc
R1–GAS. Because all crude processed at REFINERY 1 flows through THRUPUT1
and all gasoline produced at REFINERY 1 flows through R1–GAS, the constraint
models the situation. It proceeds similarly for REFINERY 2 in the last observation.

332 � Chapter 5. The NETFLOW Procedure

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC NETFLOW as follows:

proc netflow
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 8 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50600 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 8 .
NOTE: Number of iterations, optimizing with constraints= 4 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50875 .
NOTE: The data set WORK.SOLUTION has 18 observations and 14

variables.

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets that you specify. For this
example, the solution is saved in the SOLUTION data set. It can be displayed with
the PRINT procedure as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ _rcost_;
sum _fcost_;
title3 ’Constrained Optimum’;
run;

Introductory Example � 333

Constrained Optimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2
3 r1 ref1 diesel 0 75 0
4 r1 ref1 gas 0 140 0 r1_gas
5 r2 ref2 diesel 0 75 0
6 r2 ref2 gas 0 100 0 r2_gas
7 middle east refinery 1 63 95 20 m_e_ref1
8 u.s.a. refinery 1 55 99999999 0
9 middle east refinery 2 81 80 10 m_e_ref2
10 u.s.a. refinery 2 49 99999999 0
11 ref1 diesel servstn1 diesel 18 99999999 0
12 ref2 diesel servstn1 diesel 36 99999999 0
13 ref1 gas servstn1 gas 15 70 0
14 ref2 gas servstn1 gas 17 35 5
15 ref1 diesel servstn2 diesel 17 99999999 0
16 ref2 diesel servstn2 diesel 23 99999999 0
17 ref1 gas servstn2 gas 22 60 0
18 ref2 gas servstn2 gas 31 99999999 0

Obs _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_ _RCOST_

1 . . 145.00 29000.00 .
2 . . 35.00 7700.00 29
3 . . 36.25 0.00 .
4 . . 108.75 0.00 .
5 . . 8.75 0.00 .
6 . . 26.25 0.00 .
7 100 . 80.00 5040.00 .
8 80 . 65.00 3575.00 .
9 100 . 20.00 1620.00 .
10 80 . 15.00 735.00 .
11 . 30 30.00 540.00 .
12 . 30 0.00 0.00 12
13 . 95 68.75 1031.25 .
14 . 95 26.25 446.25 .
15 . 15 6.25 106.25 .
16 . 15 8.75 201.25 .
17 . 40 40.00 880.00 .
18 . 40 0.00 0.00 7

========
50875.00

Figure 5.7. CONOUT=SOLUTION

Notice that, in CONOUT=SOLUTION (Figure 5.7), the optimal flow through each
arc in the network is given in the variable named –FLOW– , and the cost of flow
through each arc is given in the variable –FCOST– .

334 � Chapter 5. The NETFLOW Procedure

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

80

100

15

80

20

65

35

145

8.75

26.25

36.25

108.75
68.75

8.75

30

40 26.25

6.25

−95

−30

−40

−15

Figure 5.8. Oil Industry Solution

Functional Summary � 335

Syntax
Below are statements used in PROC NETFLOW, listed in alphabetical order as they
appear in the text that follows.

PROC NETFLOW options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
CONOPT;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
PIVOT;
PRINT options ;
QUIT;
RESET options ;
RHS variables ;
ROW variables ;
RUN;
SAVE options ;
SHOW options ;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

Functional Summary

The following table outlines the options available for the NETFLOW procedure clas-
sified by function.

Table 5.1. Functional Summary

Description Statement Option

Input Data Set Options:
arcs input data set PROC NETFLOW ARCDATA=
nodes input data set PROC NETFLOW NODEDATA=
constraint input data set PROC NETFLOW CONDATA=

Output Data Set Options:
unconstrained primal solution data set PROC NETFLOW ARCOUT=

336 � Chapter 5. The NETFLOW Procedure

Description Statement Option

unconstrained dual solution data set PROC NETFLOW NODEOUT=
constrained primal solution data set PROC NETFLOW CONOUT=
constrained dual solution data set PROC NETFLOW DUALOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
default constraint type PROC NETFLOW DEFCONTYPE=
special COLUMN variable value PROC NETFLOW TYPEOBS=
special COLUMN variable value PROC NETFLOW RHSOBS=
used to interpret arc and nonarc variable names PROC NETFLOW NAMECTRL=
no new nonarc variables PROC NETFLOW SAME–NONARC–DATA
no nonarc data in ARCDATA PROC NETFLOW ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC NETFLOW ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC NETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC NETFLOW NON–REPLIC=
data is grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC NETFLOW NNODES=
approximate number of arcs PROC NETFLOW NARCS=
approximate number of nonarc variables PROC NETFLOW NNAS=
approximate number of coefficients PROC NETFLOW NCOEFS=
approximate number of constraints PROC NETFLOW NCONS=

Network Options:
default arc cost PROC NETFLOW DEFCOST=
default arc capacity PROC NETFLOW DEFCAPACITY=
default arc lower flow bound PROC NETFLOW DEFMINFLOW=
network’s only supply node PROC NETFLOW SOURCE=
SOURCE’s supply capability PROC NETFLOW SUPPLY=
network’s only demand node PROC NETFLOW SINK=
SINK’s demand PROC NETFLOW DEMAND=
convey excess supply/demand through network PROC NETFLOW THRUNET
find maximal flow between SOURCE and SINK PROC NETFLOW MAXFLOW
cost of bypass arc for MAXFLOW problem PROC NETFLOW BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC NETFLOW SHORTPATH

Memory Control Options:
issue memory usage messages to SAS log PROC NETFLOW MEMREP
number of bytes to use for main memory PROC NETFLOW BYTES=
proportion of memory for arrays PROC NETFLOW COREFACTOR=
memory allocated for LU factors PROC NETFLOW DWIA=
linked list for updated column PROC NETFLOW SPARSEP2
use 2-dimensional array for basis matrix PROC NETFLOW INVD–2D
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Functional Summary � 337

Description Statement Option

Simplex Options:
use big-M instead of two-phase method, stage 1 RESET BIGM1
use Big-M instead of two-phase method, stage 2 RESET BIGM2
anti-cycling option RESET CYCLEMULT1=
interchange first nonkey with leaving key arc RESET INTFIRST
controls working basis matrix inversions RESET INVFREQ=
maximum number of L row operations allowed
before refactorization

RESET MAXL=

maximum number of LU factor column updates RESET MAXLUUPDATES=
anti-cycling option RESET MINBLOCK1=
use first eligible leaving variable, stage 1 RESET LRATIO1
use first eligible leaving variable, stage 2 RESET LRATIO2
negates INTFIRST RESET NOINTFIRST
negates LRATIO1 RESET NOLRATIO1
negates LRATIO2 RESET NOLRATIO2
negates PERTURB1 RESET NOPERTURB1
anti-cycling option RESET PERTURB1
controls working basis matrix refactorization RESET REFACTFREQ=
use two-phase instead of big-M method, stage 1 RESET TWOPHASE1
use two-phase instead of big-M method, stage 2 RESET TWOPHASE2
pivot element selection parameter RESET U=
zero tolerance, stage 1 RESET ZERO1=
zero tolerance, stage 2 RESET ZERO2=
zero tolerance, real number comparisons RESET ZEROTOL=

Pricing Options:
frequency of dual value calculation RESET DUALFREQ=
pricing strategy, stage 1 RESET PRICETYPE1=
pricing strategy, stage 2 RESET PRICETYPE2=
used when P1SCAN=PARTIAL RESET P1NPARTIAL=
controls search for entering candidate, stage 1 RESET P1SCAN=
used when P2SCAN=PARTIAL RESET P2NPARTIAL=
controls search for entering candidate, stage 2 RESET P2SCAN=
initial queue size, stage 1 RESET QSIZE1=
initial queue size, stage 2 RESET QSIZE2=
used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
controls scan when filling queue, stage 1 RESET Q1FILLSCAN=
used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
controls scan when filling queue, stage 2 RESET Q2FILLSCAN=
queue size reduction factor, stage 1 RESET REDUCEQSIZE1=
queue size reduction factor, stage 2 RESET REDUCEQSIZE2=
frequency of refreshing queue, stage 1 RESET REFRESHQ1=
frequency of refreshing queue, stage 2 RESET REFRESHQ2=

338 � Chapter 5. The NETFLOW Procedure

Description Statement Option

Optimization Termination Options:
pause after stage 1; don’t start stage 2 RESET ENDPAUSE1
pause when feasible, stage 1 RESET FEASIBLEPAUSE1
pause when feasible, stage 2 RESET FEASIBLEPAUSE2
maximum number of iterations, stage 1 RESET MAXIT1=
maximum number of iterations, stage 2 RESET MAXIT2=
negates ENDPAUSE1 RESET NOENDPAUSE1
negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
pause every PAUSE1 iterations, stage 1 RESET PAUSE1=
pause every PAUSE2 iterations, stage 2 RESET PAUSE2=

Interior Point Algorithm Options:
use interior point algorithm PROC NETFLOW INTPOINT
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=

Functional Summary � 339

Description Statement Option

stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

PRINT Statement Options:
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some arcs

PRINT CON–ARCS

display information for some constraints associ-
ated with some nonarc variables

PRINT CON–NONARCS

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO
display basic arcs/variables PRINT / BASIC
display nonbasic arcs/variables PRINT / NONBASIC

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS
show options that pause optimization SHOW PAUSE
show simplex algorithm options SHOW SIMPLEX
show pricing strategy options SHOW PRICING
show miscellaneous options SHOW MISC

SHOW Statement Qualifiers:
display information only on relevant options SHOW / RELEVANT
display options for current stage only SHOW / STAGE

340 � Chapter 5. The NETFLOW Procedure

Description Statement Option

Miscellaneous Options:
infinity value PROC NETFLOW INFINITY=
scale constraint row, nonarc variable column co-
efficients, or both

PROC NETFLOW SCALE=

maximization instead of minimization PROC NETFLOW MAXIMIZE
use warm start solution PROC NETFLOW WARM
all-artificial starting solution PROC NETFLOW ALLART
output complete basis information to ARCOUT=
and NODEOUT= data sets

RESET FUTURE1

output complete basis information to CONOUT=
and DUALOUT= data sets

RESET FUTURE2

turn off infeasibility or optimality flags RESET MOREOPT
negates FUTURE1 RESET NOFUTURE1
negates FUTURE2 RESET NOFUTURE2
negates SCRATCH RESET NOSCRATCH
negates ZTOL1 RESET NOZTOL1
negates ZTOL2 RESET NOZTOL2
write optimization time to SAS log RESET OPTIM–TIMER
no stage 1 optimization; do stage 2 optimization RESET SCRATCH
suppress similar SAS log messages RESET VERBOSE=
use zero tolerance, stage 1 RESET ZTOL1
use zero tolerance, stage 2 RESET ZTOL2

Interactivity

PROC NETFLOW can be used interactively. You begin by giving the PROC
NETFLOW statement, and you must specify the ARCDATA= data set. The
CONDATA= data set must also be specified if the problem has side constraints. If
necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named
–TAIL– that has tail nodes of arcs as values), it may not be necessary to have many
or any variable lists.

The CONOPT, PIVOT, PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements
follow and can be listed in any order. The CONOPT and QUIT statements can be
used only once. The others can be used as many times as needed.

Use the RESET or SAVE statement to change the names of the output data sets.
With RESET, you can also indicate the reasons why optimization should stop (for
example, you can indicate the maximum number of stage 1 or stage 2 iterations that
can be performed). PROC NETFLOW then has a chance to either execute the next
statement, or, if the next statement is one that PROC NETFLOW does not recognize
(the next PROC or DATA step in the SAS session), do any allowed optimization and

Interactivity � 341

finish. If no new statement has been submitted, you are prompted for one. Some
options of the RESET statement enable you to control aspects of the primal simplex
algorithm. Specifying certain values for these options can reduce the time it takes to
solve a problem. Note that any of the RESET options can be specified in the PROC
NETFLOW statement.

The RUN statement starts or resumes optimization. The PIVOT statement makes
PROC NETFLOW perform one simplex iteration. The QUIT statement immediately
stops PROC NETFLOW. The CONOPT statement forces PROC NETFLOW to con-
sider constraints when it next performs optimization. The SAVE statement has op-
tions that enable you to name output data sets; information about the current solution
is put in these output data sets. Use the SHOW statement if you want to examine the
values of options of other statements. Information about the amount of optimization
that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem.
PRINT ARCS produces information on all arcs. PRINT SOME–ARCS limits this
output to a subset of arcs. There are similar PRINT statements for nonarc variables
and constraints:

print nonarcs;
print some_nonarcs;
print constraints;
print some_cons;

PRINT CON–ARCS enables you to limit constraint information that is obtained to
members of a set of arcs that have nonzero constraint coefficients in a set of con-
straints. PRINT CON–NONARCS is the corresponding statement for nonarc vari-
ables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */
run; /* do some optimization */
/* suppose that optimization stopped for */
/* some reason or you manually stopped it */
print options; /* look at the current solution */
save options; /* keep current solution */
show options; /* look at settings */
reset options; /* change some settings, those that */

/* caused optimization to stop */
run; /* do more optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

342 � Chapter 5. The NETFLOW Procedure

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default settings for
everything, then the following statement is all you need:

PROC NETFLOW ARCDATA= data set ;

PROC NETFLOW Statement

PROC NETFLOW options ;

This statement invokes the procedure. The following options and the options listed
with the RESET statement can appear in the PROC NETFLOW statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC
NETFLOW. The ARCDATA= data set, NODEDATA= data set, and CONDATA=
data set can contain SAS variables that have special names, for instance –CAPAC– ,
–COST– , and –HEAD– . PROC NETFLOW looks for such variables if you do
not give explicit variable list specifications. If a SAS variable with a special name
is found and that SAS variable is not in another variable list specification, PROC
NETFLOW determines that values of the SAS variable are to be interpreted in a spe-
cial way. By using SAS variables that have special names, you may not need to have
any variable list specifications.

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and
nodal supply/demand data. The ARCDATA= data set must be specified in all PROC
NETFLOW statements.

ARCOUT=SAS-data-set
AOUT=SAS-data-set

names the output data set that receives all arc and nonarc variable data, including
flows or values, and other information concerning the unconstrained optimal solu-
tion. The supply and demand information can also be found in the ARCOUT= data
set. Once optimization that considers side constraints starts, you are not able to ob-
tain an ARCOUT= data set. Instead, use the CONOUT= data set to get the current
solution. See the “ARCOUT= and CONOUT= Data Sets” section on page 406 for
more information.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also con-
tain other data such as arc costs, capacities, lower flow bounds, nonarc variable upper
and lower bounds, and objective function coefficients. PROC NETFLOW needs a
CONDATA= data set to solve a constrained problem or a linear programming prob-
lem. See the “CONDATA= Data Set” section on page 398 for more information.

PROC NETFLOW Statement � 343

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal primal solution to the problem
obtained by performing optimization that considers the side constraints. See the
“ARCOUT= and CONOUT= Data Sets” section on page 406 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

names the output data set that receives an optimal dual solution to the problem
obtained by performing optimization that considers the side constraints. See the
“NODEOUT= and DUALOUT= Data Sets” section on page 408 for more informa-
tion.

NODEDATA=SAS-data-set
DUALIN=SAS-data-set

names the data set that contains the node supply and demand specifications. You
do not need observations in the NODEDATA= data set for transshipment nodes.
(Transshipment nodes neither supply nor demand flow.) All nodes are assumed to
be transshipment nodes unless supply or demand data indicate otherwise. It is ac-
ceptable for some arcs to be directed toward supply nodes or away from demand
nodes.

The use of the NODEDATA= data set is optional in the PROC NETFLOW state-
ment provided that, if the NODEDATA= data set is not used, supply and demand
details are specified by other means. Other means include using the MAXFLOW
or SHORTPATH option, SUPPLY or DEMAND list variables (or both) in the
ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= op-
tion in the PROC NETFLOW statement.

NODEOUT=SAS-data-set
names the output data set that receives all information about nodes (supply and de-
mand and nodal dual variable values) and other information concerning the optimal
solution found by the optimizer when neglecting side constraints. Once optimization
that considers side constraints starts, you are not able to obtain a NODEOUT= data
set. Instead, use the DUALOUT= data set to get the current solution dual informa-
tion. See the “NODEOUT= and DUALOUT= Data Sets” section on page 408 for a
more complete description.

General Options

The following is a list of options you can use with PROC NETFLOW. The options
are listed in alphabetical order.

ALLART
indicates that PROC NETFLOW uses an all artificial initial solution (Kennington
and Helgason 1980, p. 68) instead of the default good path method for determining
an initial solution (Kennington and Helgason 1980, p. 245). The ALLART initial
solution is generally not as good; more iterations are usually required before the
optimal solution is obtained. However, because less time is used when setting up an
ALLART start, it can offset the added expenditure of CPU time in later computations.

344 � Chapter 5. The NETFLOW Procedure

ARCS–ONLY–ARCDATA
indicates that data for only arcs are in the ARCDATA= data set. When PROC
NETFLOW reads the data in ARCDATA= data set, memory would not be wasted
to receive data for nonarc variables. The read might then be performed faster. See the
section “How to Make the Data Read of PROC NETFLOW More Efficient” on page
428.

ARC–SINGLE–OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is
found in only one observation of the ARCDATA= data set. When reading the data in
the ARCDATA= data set, PROC NETFLOW knows that the data in an observation is
for an arc or a nonarc variable that has not had data previously read that needs to be
checked for consistency. The read might then be performed faster.

If you specify ARC–SINGLE–OBS, PROC NETFLOW automatically works as if
GROUPED=ARCDATA is also specified.

See the section “How to Make the Data Read of PROC NETFLOW More Efficient”
on page 428.

BYPASSDIVIDE=b
BYPASSDIV=b
BPD=b

should be used only when the MAXFLOW option has been specified; that is, PROC
NETFLOW is solving a maximal flow problem. PROC NETFLOW prepares to solve
maximal flow problems by setting up a bypass arc. This arc is directed from the
SOURCE to the SINK and will eventually convey flow equal to INFINITY minus
the maximal flow through the network. The cost of the bypass arc must be expen-
sive enough to drive flow through the network, rather than through the bypass arc.
However, the cost of the bypass arc must be less than the cost of artificial variables
(otherwise these might have nonzero optimal value and a false infeasibility error will
result). Also, the cost of the bypass arc must be greater than the eventual total cost
of the maximal flow, which can be nonzero if some network arcs have nonzero costs.
The cost of the bypass is set to the value of the INFINITY= option. Valid values for
the BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the by-
pass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE=
option. The reduced costs in the ARCOUT= data set and the CONOUT= data set will
correctly reflect the value that would be added to the maximal flow if the capacity of
the arc is increased by one unit. If there are nonzero costs, or if you specify the
BYPASSDIVIDE= option, the reduced costs may be contaminated by the cost of the
bypass arc and no economic interpretation can be given to reduced cost values. The
default value for the BYPASSDIVIDE= option (in the presence of nonzero arc costs)
is 100.0.

BYTES=b
indicates the size of the main working memory (in bytes) that PROC NETFLOW will
allocate. The default value for the BYTES= option is near to the number of bytes of
the largest contiguous memory that can be allocated for this purpose. The working

PROC NETFLOW Statement � 345

memory is used to store all the arrays and buffers used by PROC NETFLOW. If this
memory has a size smaller than what is required to store all arrays and buffers, PROC
NETFLOW uses various schemes that page information between memory and disk.

PROC NETFLOW uses more memory than the main working memory. The addi-
tional memory requirements cannot be determined at the time when the main work-
ing memory is allocated. For example, every time an output data set is created, some
additional memory is required. Do not specify a value for the BYTES= option equal
to the size of available memory.

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If CONDATA has the dense format, specifying CON–SINGLE–OBS indicates that,
for each constraint, data can be found in only one observation of CONDATA.

If CONDATA has a sparse format, and data for each arc and nonarc variable can be
found in only one observation of CONDATA, then specify the CON–SINGLE–OBS
option. If there are n SAS variables in the ROW and COEF list, then each arc or
nonarc can have at most n constraint coefficients in the model. See the section “How
to Make the Data Read of PROC NETFLOW More Efficient” on page 428.

COREFACTOR=c
CF=c

enables you to specify the maximum proportion of memory to be used by the arrays
frequently accessed by PROC NETFLOW. PROC NETFLOW strives to maintain all
information required during optimization in core. If the amount of available mem-
ory is not great enough to store the arrays completely in core, either initially or as
memory requirements grow, PROC NETFLOW can change the memory manage-
ment scheme it uses. Large problems can still be solved. When necessary, PROC
NETFLOW transfers data from random access memory (RAM) or core that can be
accessed quickly but is of limited size to slower access large capacity disk memory.
This is called paging.

Some of the arrays and buffers used during constrained optimization either vary in
size, are not required as frequently as other arrays, or are not required throughout
the simplex iteration. Let a be the amount of memory in bytes required to store
frequently accessed arrays of nonvarying size. Specify the MEMREP option in the
PROC NETFLOW statement to get the value for a and a report of memory usage. If
the size of the main working memory BYTES=b multiplied by COREFACTOR=c is
greater than a, PROC NETFLOW keeps the frequently accessed arrays of nonvarying
size resident in core throughout the optimization. If the other arrays cannot fit into
core, they are paged in and out of the remaining part of the main working memory.

If b multiplied by c is less than a, PROC NETFLOW uses a different memory scheme.
The working memory is used to store only the arrays needed in the part of the algo-
rithm being executed. If necessary, these arrays are read from disk into the main
working area. Paging, if required, is done for all these arrays, and sometimes infor-
mation is written back to disk at the end of that part of the algorithm. This memory

346 � Chapter 5. The NETFLOW Procedure

scheme is not as fast as the other memory schemes. However, problems can be solved
with memory that is too small to store every array.

PROC NETFLOW is capable of solving very large problems in a modest amount of
available memory. However, as more time is spent doing input/output operations,
the speed of PROC NETFLOW decreases. It is important to choose the value of the
COREFACTOR= option carefully. If the value is too small, the memory scheme that
needs to be used might not be as efficient as another that could have been used had a
larger value been specified. If the value is too large, too much of the main working
memory is occupied by the frequently accessed, nonvarying sized arrays, leaving too
little for the other arrays. The amount of input/output operations for these other arrays
can be so high that another memory scheme might have been used more beneficially.

The valid values of COREFACTOR=c are between 0.0 and 0.95, inclusive. The de-
fault value for c is 0.75 when there are over 200 side constraints, and 0.9 when there
is only one side constraint. When the problem has between 2 and 200 constraints, the
value of c lies between the two points (1, 0.9) and (201, 0.75).

DEFCAPACITY=c
DC=c

requests that the default arc capacity and the default nonarc variable value upper
bound be c. If this option is not specified, then DEFCAPACITY= INFINITY.

DEFCONTYPE=c
DEFTYPE=c
DCT=c

specifies the default constraint type. This default constraint type is either less than or
equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option
are

LE, le, <= for less than or equal to

EQ, eq, = for equal to

GE, ge, >= for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function
coefficient be c. If this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m
DMF=m

requests that the default lower flow bound through arcs and the default lower value
bound of nonarc variables be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The
DEMAND= option should be used only if the SINK= option is given in the PROC
NETFLOW statement and neither the SHORTPATH option nor the MAXFLOW op-
tion is specified. If you are solving a minimum cost network problem and the SINK=

PROC NETFLOW Statement � 347

option is used to identify the sink node, but the DEMAND= option is not specified,
then the demand at the sink node is made equal to the network’s total supply.

DWIA=i
controls the initial amount of memory to be allocated to store the LU factors of the
working basis matrix. DWIA stands for DW initial allocation and i is the number
of nonzeros and matrix row operations in the LU factors that can be stored in this
memory. Due to fill-in in the U factor and the growth in the number of row operations,
it is often necessary to move information about elements of a particular row or column
to another location in the memory allocated for the LU factors. This process leaves
some memory temporarily unoccupied. Therefore, DWIA=i must be greater than the
memory required to store only the LU factors.

Occasionally, it is necessary to compress the U factor so that it again occupies con-
tiguous memory. Specifying too large a value for DWIA means that more memory
is required by PROC NETFLOW. This might cause more expensive memory mecha-
nisms to be used than if a smaller but adequate value had been specified for DWIA=.
Specifying too small a value for the DWIA= option can make time-consuming com-
pressions more numerous. The default value for the DWIA= option is eight times the
number of side constraints.

GROUPED=grouped
PROC NETFLOW can take a much shorter time to read data if the data have been
grouped prior to the PROC NETFLOW call. This enables PROC NETFLOW to
conclude that, for instance, a new NAME list variable value seen in an ARCDATA=
data set grouped by the values of the NAME list variable before PROC NETFLOW
was called is new. PROC NETFLOW does not need to check that the NAME has
been read in a previous observation. See the section “How to Make the Data Read of
PROC NETFLOW More Efficient” on page 428.

• GROUPED=ARCDATA indicates that the ARCDATA= data set has been
grouped by values of the NAME list variable. If –NAME– is the name of
the NAME list variable, you could use PROC SORT DATA=ARCDATA; BY
–NAME–; prior to calling PROC NETFLOW. Technically, you do not have
to sort the data, only ensure that all similar values of the NAME list variable
are grouped together. If you specify the ARCS–ONLY–ARCDATA option,
PROC NETFLOW automatically works as if GROUPED=ARCDATA is also
specified.

• GROUPED=CONDATA indicates that the CONDATA= data set has been
grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indi-
cates that the CONDATA= data set has been grouped by values of the ROW
list variable. If –ROW– is the name of the ROW list variable, you could
use PROC SORT DATA=CONDATA; BY –ROW–; prior to calling PROC
NETFLOW. Technically, you do not have to sort the data, only ensure that
all similar values of the ROW list variable are grouped together. If you specify
the CON–SINGLE–OBS option, or if there is no ROW list variable, PROC
NETFLOW automatically works as if GROUPED=CONDATA has been spec-
ified.

348 � Chapter 5. The NETFLOW Procedure

If the CONDATA= data set has the sparse format, GROUPED=CONDATA
indicates that the CONDATA= data set has been grouped by values of the
COLUMN list variable. If –COL– is the name of the COLUMN list variable,
you could use PROC SORT DATA=CONDATA; BY –COL–; prior to calling
PROC NETFLOW. Technically, you do not have to sort the data, only ensure
that all similar values of the COLUMN list variable are grouped together.

• GROUPED=BOTH indicates that both GROUPED=ARCDATA and
GROUPED=CONDATA are TRUE.

• GROUPED=NONE indicates that the data sets have not been grouped, that
is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE.
This is the default, but it is much better if GROUPED=ARCDATA, or
GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When
PROC NETFLOW is reading the ith observation, either the value of the –XXXXX–
variable is the same as the (i − 1)st (that is, the previous observation’s) –XXXXX–
value, or it is a new –XXXXX– value not seen in any previous observation. This also
means that if the ith –XXXXX– value is different from the (i−1)st –XXXXX– value,
the value of the (i − 1)st –XXXXX– variable will not be seen in any observations
i, i + 1,

INFINITY=i
INF=i

is the largest number used by PROC NETFLOW in computations. A number too
small can adversely affect the solution process. You should avoid specifying an enor-
mous value for the INFINITY= option because numerical roundoff errors can result.
If a value is not specified, then INFINITY=999999. The INFINITY= option cannot
be assigned a value less than 9999.

INTPOINT
indicates that the interior point algorithm is to be used. The INTPOINT option must
be specified if you want the interior point algorithm to be used for solving network
problems, otherwise the simplex algorithm is used instead. For linear programming
problems (problems with no network component), PROC NETFLOW must use the
interior point algorithm, so you need not specify the INTPOINT option.

PROC NETFLOW Statement � 349

INVD–2D
controls the way in which the inverse of the working basis matrix is stored. How this
matrix is stored affects computations as well as how the working basis or its inverse
is updated. The working basis matrix is defined in the “Details” section on page
397. If INVD–2D is specified, the working basis matrix inverse is stored as a matrix.
Typically, this memory scheme is best when there are few side constraints or when
the working basis is dense.

If INVD–2D is not specified, lower (L) and upper (U) factors of the working basis
matrix are used. U is an upper triangular matrix and L is a lower triangular ma-
trix corresponding to a sequence of elementary matrix row operations. The sparsity-
exploiting variant of the Bartels-Golub decomposition is used to update the LU fac-
tors. This scheme works well when the side constraint coefficient matrix is sparse or
when many side constraints are nonbinding.

MAXARRAYBYTES=m
specifies the maximum number of bytes an individual array can occupy. This option
is of most use when solving large problems and the amount of available memory is
insufficient to store all arrays at once. Specifying the MAXARRAYBYTES= option
ensures that arrays that need a large amount of memory do not consume too much
memory at the expense of other arrays.

There is one array that contains information about nodes and the network basis
spanning tree description. This tree description enables computations involving
the network part of the basis to be performed very quickly and is the reason why
PROC NETFLOW is more suited to solving constrained network problems than
PROC LP. It is beneficial that this array be stored in core when possible, other-
wise this array must be paged, slowing down the computations. Try not to specify a
MAXARRAYBYTES=m value smaller than the amount of memory needed to store
the main node array. You are told what this memory amount is on the SAS log if you
specify the MEMREP option in the PROC NETFLOW statement.

MAXFLOW
MF

specifies that PROC NETFLOW solve a maximum flow problem. In this case, the
PROC NETFLOW procedure finds the maximum flow from the node specified by the
SOURCE= option to the node specified by the SINK= option. PROC NETFLOW
automatically assigns an INFINITY= option supply to the SOURCE= option node
and the SINK= option is assigned the INFINITY= option demand. In this way, the
MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.

You can use the MAXFLOW option when solving any flow problem (not necessar-
ily a maximum flow problem) when the network has one supply node (with infinite
supply) and one demand node (with infinite demand). The MAXFLOW option can
be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and
DEMAND=) and capabilities of PROC NETFLOW.

350 � Chapter 5. The NETFLOW Procedure

MAXIMIZE
MAX

specifies that PROC NETFLOW find the maximum cost flow through the network.
If both the MAXIMIZE and the SHORTPATH options are specified, the solution
obtained is the longest path between the SOURCE= and SINK= nodes. Similarly,
MAXIMIZE and MAXFLOW together cause PROC NETFLOW to find the mini-
mum flow between these two nodes; this is zero if there are no nonzero lower flow
bounds.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is
reported by PROC NETFLOW on the SAS log. As optimization proceeds, you are
informed of any changes in the memory requirements and schemes used by PROC
NETFLOW.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set.

In the ARCDATA= data set, an arc is identified by its tail and head node. In the
CONDATA= data set, arcs are identified by names. You can give a name to an arc by
having a NAME list specification that indicates a SAS variable in the ARCDATA=
data set that has names of arcs as values.

PROC NETFLOW requires arcs that have information about them in the CONDATA=
data set to have names, but arcs that do not have information about them in the
CONDATA= data set can also have names. Unlike a nonarc variable whose name
uniquely identifies it, an arc can have several different names. An arc has a default
name in the form tail–head, that is, the name of the arc’s tail node followed by an
underscore and the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used, (described in the
“CONDATA= Data Set” section on page 398) a name of an arc or a nonarc vari-
able is the name of a SAS variable listed in the VAR list specification. If the sparse
data format of the CONDATA= data set is used, a name of an arc or a nonarc variable
is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or nonarc variable in the
CONDATA= data set (either a VAR list SAS variable name or value of the COLUMN
list SAS variable) is in the form tail–head and there exists an arc with these end
nodes. If tail–head has not already been tagged as belonging to an arc or nonarc vari-
able in the ARCDATA= data set, PROC NETFLOW needs to know whether tail–head
is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set
is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail–head as
the name of the arc with these endnodes, provided no other name is used to associate
data in the CONDATA= data set with this arc. If the arc does have other names that
appear in the CONDATA= data set, tail–head is assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3, tail–head is assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value
of NAMECTRL is 3. Note that if you use the dense side constraint input format, the

PROC NETFLOW Statement � 351

default arc name tail–head is not recognized (regardless of the NAMECTRL value)
unless the head node and tail node names contain no lowercase letters.

If the dense format is used for the CONDATA= data set, the SAS System converts
SAS variable names in a SAS program to uppercase. The VAR list variable names are
uppercased. Because of this, PROC NETFLOW automatically uppercases names of
arcs and nonarc variables (the values of the NAME list variable) in the ARCDATA=
data set. The names of arcs and nonarc variables (the values of the NAME list vari-
able) appear uppercased in the ARCOUT= data set and the CONOUT= data set, and
in the PRINT statement output.

Also, if the dense format is used for the CONDATA= data set, be careful with default
arc names (names in the form tailnode–headnode). Node names (values in the
TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not
uppercased by PROC NETFLOW. Consider the following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;

data densecon;
input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;

proc netflow
arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values. PROC NETFLOW
never uppercases node names, so the arcs in observations 1, 2, and 3 in the pre-
ceding ARCDATA= data set have the default names “from–to1”, “from–to2”, and
“TAIL–TO3”, respectively. When the dense format of the CONDATA= data set is
used, PROC NETFLOW does uppercase values of the NAME list variable, so the
name of the arc in the second observation of the ARCDATA= data set is “ARC2”.
Thus, the second arc has two names: its default “from–to2” and the other that was
specified “ARC2”.

As the SAS System does uppercase program code, you must think of the input state-
ment

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

352 � Chapter 5. The NETFLOW Procedure

The SAS variables named “FROM–TO1” and “FROM–TO2” are not associated with
any of the arcs in the preceding ARCDATA= data set. The values “FROM–TO1”
and “FROM–TO2” are different from all of the arc names “from–to1”, “from–to2”,
“TAIL–TO3”, and “ARC2”. “FROM–TO1” and “FROM–TO2” could end up be-
ing the names of two nonarc variables. It is sometimes useful to specify PRINT
NONARCS; before commencing optimization to ensure that the model is correct
(has the right set of nonarc variables).

The SAS variable named “ARC2” is the name of the second arc in the ARCDATA=
data set, even though the name specified in the ARCDATA= data set looks like “arc2”.
The SAS variable named “TAIL–TO3” is the default name of the third arc in the
ARCDATA= data set.

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data
Read of PROC NETFLOW More Efficient” on page 428.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to
Make the Data Read of PROC NETFLOW More Efficient” on page 428.

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the
Data Read of PROC NETFLOW More Efficient” on page 428.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make
the Data Read of PROC NETFLOW More Efficient” on page 428.

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data
Read of PROC NETFLOW More Efficient” on page 428.

NON–REPLIC=non–replic
prevents PROC NETFLOW from doing unnecessary checks of data previously read.

• NON–REPLIC=COEFS indicates that each constraint coefficient is specified
once in the CONDATA= data set.

• NON–REPLIC=NONE indicates that constraint coefficients can be specified
more than once in the CONDATA= data set. NON–REPLIC=NONE is the
default.

See the section “How to Make the Data Read of PROC NETFLOW More Efficient”
on page 428.

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the
sparse format for data in the CONDATA= data set. The keyword is expected as a
value of the SAS variable in the CONDATA= data set named in the COLUMN list
specification. The default value of the RHSOBS= option is –RHS– or –rhs–. If
charstr is not a valid SAS variable name, enclose it in single quotes.

PROC NETFLOW Statement � 353

SAME–NONARC–DATA
SND

If all nonarc variable data are given in the ARCDATA= data set, or if the problem has
no nonarc variables, the unconstrained warm start can be read more quickly if the op-
tion SAME–NONARC–DATA is specified. SAME–NONARC–DATA indicates that
any nonconstraint nonarc variable data in the CONDATA= data set is to be ignored.
Only side constraint data in the CONDATA= data set are read.

If you use an unconstrained warm start and SAME–NONARC–DATA is not speci-
fied, any nonarc variable objective function coefficient, upper bound, or lower bound
can be changed. Any nonarc variable data in the CONDATA= data set overrides
(without warning messages) corresponding data in the ARCDATA= data set. You
can possibly introduce new nonarc variables to the problem, that is, nonarc variables
that were not in the problem when the warm start was generated.

SAME–NONARC–DATA should be specified if nonarc variable data in the
CONDATA= data set are to be deliberately ignored. Consider

proc netflow options arcdata=arc0 nodedata=node0
condata=con0

/* this data set has nonarc variable */
/* objective function coefficient data */

future1 arcout=arc1 nodeout=node1;
run;

data arc2;
reset arc1; /* this data set has nonarc variable obs */
if _cost_<50.0 then _cost_=_cost_*1.25;

/* some objective coefficients of nonarc */
/* variable might be changed */

proc netflow options
warm arcdata=arc2 nodedata=node1
condata=con0 same_nonarc_data

/* This data set has old nonarc variable */
/* obj, fn. coefficients. same_nonarc_data */
/* indicates that the "new" coefs in the */
/* arcdata=arc2 are to be used. */

run;

SCALE=scale
indicates that the side constraints are to be scaled. Scaling is useful when some coef-
ficients of a constraint or nonarc variable are either much larger or much smaller than
other coefficients. Scaling might make all coefficients have values that have a smaller
range, and this can make computations more stable numerically. Try the SCALE=
option if PROC NETFLOW is unable to solve a problem because of numerical insta-
bility. Specify

• SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if the largest abso-
lute value of coefficients in each constraint is about 1.0

354 � Chapter 5. The NETFLOW Procedure

• SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if nonarc variable
columns are scaled so that the absolute value of the largest constraint coefficient
of a nonarc variable is near to 1

• SCALE=BOTH if the largest absolute value of coefficients in each constraint,
and the absolute value of the largest constraint coefficient of a nonarc variable
is near to 1. This is the default.

• SCALE=NONE if no scaling should be done

SHORTPATH
SP

specifies that PROC NETFLOW solve a shortest path problem. The NETFLOW pro-
cedure finds the shortest path between the nodes specified in the SOURCE= option
and the SINK= option. The costs of arcs are their lengths. PROC NETFLOW auto-
matically assigns a supply of one flow unit to the SOURCE= node, and the SINK=
node is assigned to have a one flow unit demand. In this way, the SHORTPATH
option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node
(with demand of one unit), you could specify the SHORTPATH option, with the
SOURCE= and SINK= nodes, even if the problem is not a shortest path problem.
You then should not provide any supply or demand data in the NODEDATA= data set
or the ARCDATA= data set.

SINK=sinkname
SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the
MAXFLOW option or the SHORTPATH option and need to specify toward which
node the shortest path or maximum flow is directed. The SINK= option also can be
used when a minimum cost problem has only one demand node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SINK= option with an accompanying DEMAND= specification for this node. The
SINK= option must be the name of a head node of at least one arc; thus, it must
have a character value. If the value of the SINK= option is not a valid SAS character
variable name, it must be enclosed in single quotes and can contain embedded blanks.

SOURCE=sourcename
SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the
MAXFLOW or the SHORTPATH option and need to specify from which node the
shortest path or maximum flow originates. The SOURCE= option also can be used
when a minimum cost problem has only one supply node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SOURCE= option with an accompanying SUPPLY= amount of supply at this node.
The SOURCE= option must be the name of a tail node of at least one arc; thus, it must
have a character value. If the value of the SOURCE= option is not a valid SAS char-
acter variable name, it must be enclosed in single quotes and can contain embedded
blanks.

PROC NETFLOW Statement � 355

SPARSECONDATA
SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise,
it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS
software Version 6 or you have specified options validvarname=v6;, all NAME list
variable values in the ARCDATA= data set are uppercased. See the “Case Sensitivity”
section on page 409.

SPARSEP2
SP2

indicates that the new column of the working basis matrix that replaces another
column be held in a linked list. If the SPARSEP2 option is not specified, a one-
dimensional array is used to store this column’s information, that can contain ele-
ments that are 0.0 and use more memory than the linked list. The linked list mech-
anism requires more work if the column has numerous nonzero elements in many
iterations. Otherwise, it is superior. Sometimes, specifying SPARSEP2 is beneficial
when the side constrained coefficient matrix is very sparse or when some paging is
necessary.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The
SUPPLY= option should be used only if the SOURCE= option is given in the PROC
NETFLOW statement and neither the SHORTPATH option nor the MAXFLOW
option is specified. If you are solving a minimum cost network problem and the
SOURCE= option is used to identify the source node and the SUPPLY= option is not
specified, then by default the supply at the source node is made equal to the network’s
total demand.

THRUNET
tells PROC NETFLOW to force through the network any excess supply (the amount
by which total supply exceeds total demand) or any excess demand (the amount by
which total demand exceeds total supply) as is required. If a network problem has
unequal total supply and total demand and the THRUNET option is not specified,
PROC NETFLOW drains away the excess supply or excess demand in an optimal
manner. The consequences of specifying or not specifying THRUNET are discussed
in the “Balancing Total Supply and Total Demand” section on page 423.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format
for data in the CONDATA= data set. The keyword is expected as a value of the SAS
variable in the CONDATA= data set named in the COLUMN list specification. The
default value of the TYPEOBS= option is –TYPE– or –type–. If charstr is not a
valid SAS variable name, enclose it in single quotes.

WARM
indicates that the NODEDATA= data set or the DUALIN= data set and the
ARCDATA= data set contain extra information of a warm start to be used by PROC
NETFLOW. See the “Warm Starts” section on page 424.

356 � Chapter 5. The NETFLOW Procedure

CAPACITY Statement

CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set
that contains the maximum feasible flow or capacity of the network arcs. If an ob-
servation contains nonarc variable information, the CAPACITY list variable is the
upper value bound for the nonarc variable named in the NAME list variable in that
observation. The CAPACITY list variable must have numeric values. It is not neces-
sary to have a CAPACITY statement if the name of the SAS variable is –CAPAC– ,
–UPPER– , –UPPERBD, or –HI– .

COEF Statement

COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The
COEF list can contain more than one SAS variable, each of which must have numeric
values. If the COEF statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with –COE are used. The number of SAS
variables in the COEF list must be no greater than the number of SAS variables in
the ROW list.

The values of the COEF list variables in an observation can be interpreted differently
than these variables’ values in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, bound data, constraint
type data, or rhs data. If the COLUMN list variable has a value that is a name of
an arc or nonarc variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable ;

The COLUMN list is used with the sparse input format of side constraints. This
list consists of one SAS variable in the CONDATA= data set that has as values
the names of arc variables, nonarc variables, or missing values. Some, if not all
of these values, also can be values of the NAME list variables of the ARCDATA=
data set. The COLUMN list variable can have other special values (refer to the
TYPEOBS= and RHSOBS= options). If the COLUMN list is not specified after the
PROC NETFLOW statement, the CONDATA= data set is searched and a SAS vari-
able named –COLUMN– is used. The COLUMN list variable must have character
values.

HEADNODE Statement � 357

CONOPT Statement
CONOPT ;

The CONOPT statement has no options. It is equivalent to specifying RESET
SCRATCH;. The CONOPT statement should be used before stage 2 optimization
commences. It indicates that the optimization performed next should consider the
side constraints.

Usually, the optimal unconstrained network solution is used as a starting solution for
constrained optimization. Finding the unconstrained optimum usually reduces the
amount of stage 2 optimization. Furthermore, the unconstrained optimum is almost
always “closer” to the constrained optimum than the initial basic solution determined
before any optimization is performed. However, as the optimum is approached during
stage 1 optimization, the flow change candidates become scarcer and a solution good
enough to start stage 2 optimization may already be at hand. You should then specify
the CONOPT statement.

COST Statement
COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that
contains the per unit flow cost through an arc. If an observation contains nonarc
variable information, the value of the COST list variable is the objective function
coefficient of the nonarc variable named in the NAME list variable in that observation.
The COST list variable must have numeric values. It is not necessary to specify a
COST statement if the name of the SAS variable is –COST– or –LENGTH– .

DEMAND Statement
DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set
that contains the demand at the node named in the corresponding HEADNODE list
variable. The DEMAND list variable must have numeric values. It is not necessary
to have a DEMAND statement if the name of this SAS variable is –DEMAND– .

HEADNODE Statement
HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that contains the names of nodes toward which arcs are directed.
It is not necessary to have a HEADNODE statement if the name of the SAS variable
is –HEAD– or –TO– . The HEADNODE variable must have character values.

358 � Chapter 5. The NETFLOW Procedure

ID Statement

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC NETFLOW but
are read by the procedure and written in the ARCOUT= and CONOUT= data sets
and the output of PRINT statements. For example, imagine a network used to model
a distribution system. The SAS variables listed on the ID statement can contain infor-
mation on type of vehicle, transportation mode, condition of road, time to complete
journey, name of driver, or other ancillary information useful for report writing or
describing facets of the operation that do not have bearing on the optimization. The
ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the ARCDATA= data set not in any list are dropped and do not
appear in the ARCOUT= or CONOUT= data sets, or in the PRINT statement output.

LO Statement

LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that con-
tains the minimum feasible flow or lower flow bound for arcs in the network. If an
observation contains nonarc variable information, the LO list variable has the value of
the lower bound for the nonarc variable named in the NAME list variable. The LO list
variables must have numeric values. It is not necessary to have a LO statement if the
name of this SAS variable is –LOWER– , –LO– , –LOWERBD, or –MINFLOW.

NAME Statement

NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable that has data in the CONDATA= data set must have
a unique name. This name is a value of the NAME list variable. The NAME list
variable must have character values (see the NAMECTRL= option in the PROC
NETFLOW statement for more information). It is not necessary to have a NAME
statement if the name of this SAS variable is –NAME– .

PRINT Statement � 359

NODE Statement

NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has
names of nodes as values. These values must also be values of the TAILNODE list
variable, the HEADNODE list variable, or both. If this list is not explicitly specified,
the NODEDATA= data set is searched for a SAS variable with the name –NODE– .
The NODE list variable must have character values.

PIVOT Statement

PIVOT ;

The PIVOT statement has no options. It indicates that one simplex iteration is to
be performed. The PIVOT statement forces a simplex iteration to be performed in
spite of the continued presence of any reasons or solution conditions that caused
optimization to be halted. For example, if the number of iterations performed exceeds
the value of the MAXIT1= or MAXIT2= option and you issue a PIVOT statement,
the iteration is performed even though the MAXIT1= or MAXIT2= value has not yet
been changed using a RESET statement.

PRINT Statement

PRINT options / qualifiers ;

The options available with the PRINT statement of PROC NETFLOW are summa-
rized by purpose in the following table.

Table 5.2. Functional Summary, PRINT statement

Description Statement Option

PRINT Statement Options:
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some arcs

PRINT CON–ARCS

display information for some constraints associ-
ated with some nonarc variables

PRINT CON–NONARCS

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

360 � Chapter 5. The NETFLOW Procedure

Description Statement Option

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO
display basic arcs/variables PRINT / BASIC
display nonbasic arcs/variables PRINT / NONBASIC

The PRINT statement enables you to examine part or all of the problem. You can
limit the amount of information displayed when a PRINT statement is processed
by specifying PRINT statement options. The name of the PRINT option indicates
what part of the problem is to be examined. If no options are specified, or PRINT
PROBLEM is specified, information about the entire problem is produced.

The amount of displayed information can be limited further by following any PRINT
statement options with a slash (/) and one or more of the qualifiers SHORT or LONG,
ZERO or NONZERO, BASIC or NONBASIC.

Some of the PRINT statement options require you to specify a list of some type of
entity, thereby enabling you to indicate what entities are of interest. The entities of
interest are the ones you want to display. These entities might be tail node names,
head node names, nonarc variable names, or constraint names. The entity list is made
up of one or more of the following constructs. Each construct can add none, one, or
more entities to the set of entities to be displayed.

• –ALL–
Display all entities in the required list.

• entity
Display the named entity that is interesting.

• entity1 - entity2 (one hyphen)
entity1 -- entity2 (two hyphens)
entity1 - CHARACTER - entity2 or
entity1 - CHAR - entity2
Both entity1 and entity2 have names made up of the same character string pre-
fix followed by a numeric suffix. The suffixes of both entity1 and entity2 have
the same number of numerals but can have different values. A specification
of entity1 - entity2 indicates that all entities with the same prefix and suffixes
with values on or between the suffixes of entity1 and entity2 are to be put in the
set of entities to be displayed. The numeric suffix of both entity1 and entity2
can be followed by a character string. For example, –OBS07– - –OBS13– is a
valid construct of the forms entity1 - entity2.

• part–of–entity–name:
Display all entities in the required list that have names beginning with the char-
acter string preceding the colon.

PRINT Statement � 361

The following options can appear in the PRINT statement:

• ARCS
indicates that you want to have displayed information about all arcs.

• SOME–ARCS (taillist, headlist)
is similar to the statement PRINT ARCS except that, instead of displaying
information about all arcs, only arcs directed from nodes in a specified set of
tail nodes to nodes in a specified set of head nodes are included. The nodes or
node constructs belonging to the taillist list are separated by blanks. The nodes
or node constructs belonging to the headlist list are also separated by blanks.
The lists are separated by a comma.

• NONARCS
indicates that information is to be displayed about all nonarc variables.

• SOME–NONARCS (nonarclist)
is similar to the PRINT NONARCS statement except that, instead of displaying
information about all nonarc variables, only those belonging to a specified set
of nonarc variables have information displayed. The nonarc variables or nonarc
variable constructs belonging to the nonarclist list are separated by blanks.

• CONSTRAINTS
indicates that you want to have displayed information about all constraint co-
efficients.

• SOME–CONS (conlist)
displays information for coefficients in a specified set of constraints. The con-
straints or constraint constructs belonging to the conlist list are separated by
blanks.

• CON–ARCS (conlist, taillist, headlist)
is similar to the PRINT SOME–CONS (conlist) statement except that, instead
of displaying information about all coefficients in specified constraints, infor-
mation about only those coefficients that are associated with arcs directed from
a set of specified tail nodes toward a set of specified head nodes is displayed.
The constraints or constraint constructs belonging to the conlist list are sepa-
rated by blanks; so too are the nodes or node constructs belonging to the taillist
list and the nodes or node constructs belonging to the headlist list. The lists are
separated by commas.

• CON–NONARCS (conlist, nonarclist)
is similar to the PRINT SOME–CONS (conlist) statement except that, instead
of displaying information about all coefficients in specified constraints, infor-
mation about only those coefficients that are associated with nonarc variables
in a specified set is displayed. The constraints or constraint constructs belong-
ing to the conlist list are separated by blanks. The nonarc variables or nonarc
variable constructs belonging to the nonarclist list are separated by blanks. The
lists are separated by a comma.

• PROBLEM
is equivalent to the statement PRINT ARCS NONARCS CONSTRAINTS.

362 � Chapter 5. The NETFLOW Procedure

Following a slash (/), the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC
or NONBASIC can appear in any PRINT statement. These qualifiers are described
below.

• BASIC
Only rows that are associated with arcs or nonarc variables that are basic
are displayed. The –STATUS– column values are KEY–ARC BASIC or
NONKEY ARC BASIC for arcs, and NONKEY–BASIC for nonarc variables.

• LONG
All table columns are displayed (the default when no qualifier is used).

• NONBASIC
Only rows that are associated with arcs or nonarc variables that are nonbasic
are displayed. The –STATUS– column values are LOWERBD NONBASIC
or UPPERBD NONBASIC.

• NONZERO
Only rows that have nonzero –FLOW– column values (nonzero arc flows,
nonzero nonarc variable values) are displayed.

• SHORT
The table columns are –N– , –FROM– , –TO– , –COST– , –CAPAC– ,
–LO– , –NAME– , and –FLOW– , or the names of the SAS variables spec-
ified in the corresponding variable lists (TAILNODE, HEADNODE, COST,
CAPACITY, LO, and NAME lists). –COEF– or the name of the SAS vari-
able in the COEF list specification will head a column when the SHORT
qualifier is used in PRINT CONSTRAINTS, SOME–CONS, CON–ARCS, or
CON–NONARCS.

• ZERO
Only rows that have zero –FLOW– column values (zero arc flows, zero nonarc
variable values) are displayed.

The default qualifiers are BASIC, NONBASIC, ZERO, NONZERO, and LONG.

Displaying Information On All Constraints

In the oil refinery problem, if you had entered

print constraints;

after the RUN statement, the output in Figure 5.9 would have been produced.

Displaying Information About Selected Arcs

In the oil refinery problem, if you had entered

print some_arcs(refin:,_all_)/short;

after the RUN statement, the output in Figure 5.10 would have been produced.

PRINT Statement � 363

Oil Industry Example

Setting Up Condata = Cond1 For Proc Netflow

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS1_ GE -15 m_e_ref1 middle east refinery 1
2 _OBS1_ GE -15 thruput1 refinery 1 r1
3 _OBS2_ GE -15 m_e_ref2 middle east refinery 2
4 _OBS2_ GE -15 thruput2 refinery 2 r2
5 _OBS3_ EQ 0 thruput1 refinery 1 r1
6 _OBS3_ EQ 0 r1_gas r1 ref1 gas
7 _OBS4_ EQ 0 thruput2 refinery 2 r2
8 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _FLOW_ _COEF_

1 63 95 20 100 . 80 -2
2 200 175 50 . . 145 1
3 81 80 10 100 . 20 -2
4 220 100 35 . . 35 1
5 200 175 50 . . 145 -3
6 0 140 0 . . 108.75 4
7 220 100 35 . . 35 -3
8 0 100 0 . . 26.25 4

N _FCOST_ _RCOST_ _STATUS_

1 5040 . KEY_ARC BASIC
2 29000 . KEY_ARC BASIC
3 1620 . NONKEY ARC BASIC
4 7700 29 LOWERBD NONBASIC
5 29000 . KEY_ARC BASIC
6 0 . KEY_ARC BASIC
7 7700 29 LOWERBD NONBASIC
8 0 . KEY_ARC BASIC

Figure 5.9. print constraints

The NETFLOW Procedure

N _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2

N _FLOW_

1 145
2 35

Figure 5.10. print some–arcs

364 � Chapter 5. The NETFLOW Procedure

Displaying Information About Selected Constraints

In the oil refinery problem, if you had entered

print some_cons(_obs3_-_obs4_)/nonzero short;

after the RUN statement, the output in Figure 5.11 would have been produced.

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS3_ EQ 0 thruput1 refinery 1 r1
2 _OBS3_ EQ 0 r1_gas r1 ref1 gas
3 _OBS4_ EQ 0 thruput2 refinery 2 r2
4 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 200 175 50 145 -3
2 0 140 0 108.75 4
3 220 100 35 35 -3
4 0 100 0 26.25 4

Figure 5.11. print some–cons

If you had entered

print con_arcs(_all_,r1 r2,_all_)/short;

after the RUN statement, the output in Figure 5.12 would have been produced.
Constraint information about arcs directed from selected tail nodes is displayed.

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS3_ EQ 0 r1_gas r1 ref1 gas
2 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 0 140 0 108.75 4
2 0 100 0 26.25 4

Figure 5.12. print con–arcs

Cautions

This subsection has two parts; the first part is applicable if you are running Version
7 or later of the SAS System, and the second part is applicable if you are running
Version 6. You can get later versions to “act” like Version 6 by specifying

options validvarname=v6;

PRINT Statement � 365

For Version 7 onward, PROC NETFLOW strictly respects case sensitivity. The
PRINT statements of PROC NETFLOW that require lists of entities will work prop-
erly only if the entities have the same case as in the input data sets. Entities that
contain blanks must be enclosed in single or double quotes. For example,

print some_arcs (_all_,"Ref1 Gas");

In this example, a head node of an arc in the model is “Ref1 Gas” (without the quotes).
If you omit the quotes, PROC NETFLOW issues a message on the SAS log:

WARNING: The node Ref1 in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you had specified

print some_arcs (_all_,"ref1 Gas");

(note the small r), you would have been warned

WARNING: The node ref1 Gas in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you are running Version 6, or if you are running a later version and you have
specified

options validvarname=v6;

when information is parsed to procedures, the SAS System converts the text that
makes up statements into uppercase. The PRINT statements of PROC NETFLOW
that require lists of entities will work properly only if the entities are uppercase in the
input data sets. If you do not want this uppercasing to occur, you must enclose the
entity in single or double quotes.

print some_arcs(’lowercase tail’,’lowercase head’);
print some_cons(’factory07’-’factory12’);
print some_cons(’_factory07_’-’_factory12_’);
print some_nonarcs("CO2 content":);

Entities that contain blanks must be enclosed in single or double quotes.

366 � Chapter 5. The NETFLOW Procedure

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC NETFLOW is to be terminated immedi-
ately. The solution is not saved in the current output data sets. The QUIT statement
has no options.

RESET Statement

RESET options ;

SET options ;

The RESET statement is used to change options after PROC NETFLOW has started
execution. Any of the following options can appear in the PROC NETFLOW state-
ment.

Another name for the RESET statement is SET. You can use RESET when you are
resetting options and SET when you are setting options for the first time.

The following options fall roughly into five categories:

• output data set specifications

• options that indicate conditions under which optimization is to be halted tem-
porarily, giving you an opportunity to use PROC NETFLOW interactively

• options that control aspects of the operation of the network primal simplex
optimization

• options that control the pricing strategies of the network simplex optimizer

• miscellaneous options

If you want to examine the setting of any options, use the SHOW statement. If you
are interested in looking at only those options that fall into a particular category, the
SHOW statement has options that enable you to do this.

The execution of PROC NETFLOW has three stages. In stage zero the problem data
are read from the NODEDATA=, ARCDATA=, and CONDATA= data sets. If a warm
start is not available, an initial basic feasible solution is found. Some options of the
PROC NETFLOW statement control what occurs in stage zero. By the time the first
RESET statement is processed, stage zero has already been completed.

In the first stage, an optimal solution to the network flow problem neglecting any side
constraints is found. The primal and dual solutions for this relaxed problem can be
saved in the ARCOUT= data set and the NODEOUT= data set, respectively.

In the second stage, the side constraints are examined and some initializations occur.
Some preliminary work is also needed to commence optimization that considers the
constraints. An optimal solution to the network flow problem with side constraints is
found. The primal and dual solutions for this side-constrained problem are saved in
the CONOUT= data set and the DUALOUT= data set, respectively.

RESET Statement � 367

Many options in the RESET statement have the same name except that they have as
a suffix the numeral 1 or 2. Such options have much the same purpose, but option1
controls what occurs during the first stage when optimizing the network neglecting
any side constraints and option2 controls what occurs in the second stage when PROC
NETFLOW is performing constrained optimization.

Some options can be turned off by the option prefixed by the word NO. For exam-
ple, FEASIBLEPAUSE1 may have been specified in a RESET statement and in a
later RESET statement, you can specify NOFEASIBLEPAUSE1. In a later RESET
statement, you can respecify FEASIBLEPAUSE1 and, in this way, toggle this option.

The options available with the RESET statement are summarized by purpose in the
following table.

Table 5.3. Functional Summary, RESET statement

Description Statement Option

Output Data Set Options:
unconstrained primal solution data set RESET ARCOUT=
unconstrained dual solution data set RESET NODEOUT=
constrained primal solution data set RESET CONOUT=
constrained dual solution data set RESET DUALOUT=

Simplex Options:
use big-M instead of two-phase method, stage 1 RESET BIGM1
use Big-M instead of two-phase method, stage 2 RESET BIGM2
anti-cycling option RESET CYCLEMULT1=
interchange first nonkey with leaving key arc RESET INTFIRST
controls working basis matrix inversions RESET INVFREQ=
maximum number of L row operations allowed
before refactorization

RESET MAXL=

maximum number of LU factor column updates RESET MAXLUUPDATES=
anti-cycling option RESET MINBLOCK1=
use first eligible leaving variable, stage 1 RESET LRATIO1
use first eligible leaving variable, stage 2 RESET LRATIO2
negates INTFIRST RESET NOINTFIRST
negates LRATIO1 RESET NOLRATIO1
negates LRATIO2 RESET NOLRATIO2
negates PERTURB1 RESET NOPERTURB1
anti-cycling option RESET PERTURB1
controls working basis matrix refactorization RESET REFACTFREQ=
use two-phase instead of big-M method, stage 1 RESET TWOPHASE1
use two-phase instead of big-M method, stage 2 RESET TWOPHASE2
pivot element selection parameter RESET U=
zero tolerance, stage 1 RESET ZERO1=
zero tolerance, stage 2 RESET ZERO2=
zero tolerance, real number comparisons RESET ZEROTOL=

368 � Chapter 5. The NETFLOW Procedure

Description Statement Option

Pricing Options:
frequency of dual value calculation RESET DUALFREQ=
pricing strategy, stage 1 RESET PRICETYPE1=
pricing strategy, stage 2 RESET PRICETYPE2=
used when P1SCAN=PARTIAL RESET P1NPARTIAL=
controls search for entering candidate, stage 1 RESET P1SCAN=
used when P2SCAN=PARTIAL RESET P2NPARTIAL=
controls search for entering candidate, stage 2 RESET P2SCAN=
initial queue size, stage 1 RESET QSIZE1=
initial queue size, stage 2 RESET QSIZE2=
used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
controls scan when filling queue, stage 1 RESET Q1FILLSCAN=
used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
controls scan when filling queue, stage 2 RESET Q2FILLSCAN=
queue size reduction factor, stage 1 RESET REDUCEQSIZE1=
queue size reduction factor, stage 2 RESET REDUCEQSIZE2=
frequency of refreshing queue, stage 1 RESET REFRESHQ1=
frequency of refreshing queue, stage 2 RESET REFRESHQ2=

Optimization Termination Options:
pause after stage 1; don’t start stage 2 RESET ENDPAUSE1
pause when feasible, stage 1 RESET FEASIBLEPAUSE1
pause when feasible, stage 2 RESET FEASIBLEPAUSE2
maximum number of iterations, stage 1 RESET MAXIT1=
maximum number of iterations, stage 2 RESET MAXIT2=
negates ENDPAUSE1 RESET NOENDPAUSE1
negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
pause every PAUSE1 iterations, stage 1 RESET PAUSE1=
pause every PAUSE2 iterations, stage 2 RESET PAUSE2=

Interior Point Algorithm Options:
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=

RESET Statement � 369

Description Statement Option

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=
stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

Miscellaneous Options:
output complete basis information to ARCOUT=
and NODEOUT= data sets

RESET FUTURE1

output complete basis information to CONOUT=
and DUALOUT= data sets

RESET FUTURE2

turn off infeasibility or optimality flags RESET MOREOPT
negates FUTURE1 RESET NOFUTURE1
negates FUTURE2 RESET NOFUTURE2
negates SCRATCH RESET NOSCRATCH
negates ZTOL1 RESET NOZTOL1
negates ZTOL2 RESET NOZTOL2
write optimization time to SAS log RESET OPTIM–TIMER
no stage 1 optimization; do stage 2 optimization RESET SCRATCH
suppress similar SAS log messages RESET VERBOSE=
use zero tolerance, stage 1 RESET ZTOL1
use zero tolerance, stage 2 RESET ZTOL2

370 � Chapter 5. The NETFLOW Procedure

Output Data Set Specifications

In a RESET statement, you can specify an ARCOUT= data set, a NODEOUT= data
set, a CONOUT= data set, or a DUALOUT= data set. You are advised to specify
these output data sets early because if you make a syntax error when using PROC
NETFLOW interactively or, for some other reason, PROC NETFLOW encounters
or does something unexpected, these data sets will contain information about the
solution that was reached. If you had specified the FUTURE1 or FUTURE2 option
in a RESET statement, PROC NETFLOW may be able to resume optimization in a
subsequent run.

You can turn off these current output data set specifications by specifying
ARCOUT=NULL, NODEOUT=NULL, CONOUT=NULL, or DUALOUT=NULL.

If PROC NETFLOW is outputting observations to an output data set and you want
this to stop, press the keys used to stop SAS procedures. PROC NETFLOW waits, if
necessary, and then executes the next statement.

ARCOUT=SAS-data-set
AOUT=SAS-data-set

names the output data set that receives all information concerning arc and nonarc
variables, including flows and and other information concerning the current solution
and the supply and demand information. The current solution is the latest solution
found by the optimizer when the optimization neglecting side constraints is halted or
the unconstrained optimum is reached.

You can specify an ARCOUT= data set in any RESET statement before the un-
constrained optimum is found (even at commencement). Once the unconstrained
optimum has been reached, use the SAVE statement to produce observations in an
ARCOUT= data set. Once optimization that considers constraints starts, you will be
unable to obtain an ARCOUT= data set. Instead, use a CONOUT= data set to get the
current solution. See the “ARCOUT= and CONOUT= Data Sets” section on page
406 for more information.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that contains the primal solution obtained after optimiza-
tion considering side constraints reaches the optimal solution. You can specify a
CONOUT= data set in any RESET statement before the constrained optimum is
found (even at commencement or while optimizing neglecting constraints). Once the
constrained optimum has been reached, or during stage 2 optimization, use the SAVE
statement to produce observations in a CONOUT= data set. See the “ARCOUT= and
CONOUT= Data Sets” section on page 406 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

names the output data set that contains the dual solution obtained after doing opti-
mization that considers side constraints reaches the optimal solution. You can specify
a DUALOUT= data set in any RESET statement before the constrained optimum is
found (even at commencement or while optimizing neglecting constraints). Once the
constrained optimum has been reached, or during stage 2 optimization, use the SAVE

RESET Statement � 371

statement to produce observations in a DUALOUT= data set. See the “NODEOUT=
and DUALOUT= Data Sets” section on page 408 for more information.

NODEOUT=SAS-data-set
NOUT=SAS-data-set

names the output data set that receives all information about nodes (supply/demand
and nodal dual variable values) and other information concerning the unconstrained
optimal solution.

You can specify a NODEOUT= data set in any RESET statement before the uncon-
strained optimum is found (even at commencement). Once the unconstrained opti-
mum has been reached, or during stage 1 optimization, use the SAVE statement to
produce observations in a NODEOUT= data set. Once optimization that considers
constraints starts, you will not be able to obtain a NODEOUT= data set. Instead
use a DUALOUT= data set to get the current solution. See the “NODEOUT= and
DUALOUT= Data Sets” section on page 408 for more information.

Options to Halt Optimization

The following options indicate conditions when optimization is to be halted. You then
have a chance to use PROC NETFLOW interactively. If the NETFLOW procedure is
optimizing and you want optimization to halt immediately, press the CTRL-BREAK
key combination used to stop SAS procedures. Doing this is equivalent to PROC
NETFLOW finding that some prespecified condition of the current solution under
which optimization should stop has occurred.

If optimization does halt, you may need to change the conditions for when optimiza-
tion should stop again. For example, if the number of iterations exceeded MAXIT2,
use the RESET statement to specify a larger value for the MAXIT2= option before
the next RUN statement. Otherwise, PROC NETFLOW will immediately find that
the number of iterations still exceeds MAXIT2 and halt without doing any additional
optimization.

ENDPAUSE1
indicates that PROC NETFLOW will pause after the unconstrained optimal solution
has been obtained and information about this solution has been output to the current
ARCOUT= data set, NODEOUT= data set, or both. The procedure then executes the
next statement, or waits if no subsequent statement has been specified.

FEASIBLEPAUSE1
FP1

indicates that unconstrained optimization should stop once a feasible solution is
reached. PROC NETFLOW checks for feasibility every 10 iterations. A solution
is feasible if there are no artificial arcs having nonzero flow assigned to be conveyed
through them. The presence of artificial arcs with nonzero flows means that the cur-
rent solution does not satisfy all the nodal flow conservation constraints implicit in
network problems.

372 � Chapter 5. The NETFLOW Procedure

MAXIT1=m
specifies the maximum number of primal simplex iterations PROC NETFLOW is
to perform in stage 1. The default value for the MAXIT1= option is 1000. If
MAXIT1=m iterations are performed and you want to continue unconstrained op-
timization, reset MAXIT1= to a number larger than the number of iterations already
performed and issue another RUN statement.

NOENDPAUSE1
NOEP1

negates the ENDPAUSE1 option.

NOFEASIBLEPAUSE1
NOFP1

negates the FEASIBLEPAUSE1 option.

PAUSE1=p
indicates that PROC NETFLOW will halt unconstrained optimization and pause
when the remainder of the number of stage 1 iterations divided by the value of the
PAUSE1= option is zero. If present, the next statement is executed; if not, the proce-
dure waits for the next statement to be specified. The default value for PAUSE1= is
999999.

FEASIBLEPAUSE2
FP2
NOFEASIBLEPAUSE2
NOFP2
PAUSE2=p
MAXIT2=m

are the stage 2 constrained optimization counterparts of the options described previ-
ously and having as a suffix the numeral 1.

Options Controlling the Network Simplex Optimization

BIGM1
NOTWOPHASE1
TWOPHASE1
NOBIGM1

BIGM1 indicates that the “big-M” approach to optimization is used. Artificial vari-
ables are treated like real arcs, slacks, surpluses and nonarc variables. Artificials have
very expensive costs. BIGM1 is the default.

TWOPHASE1 indicates that the two-phase approach is used instead of the big-M
approach. At first, artificial variables are the only variables to have nonzero objective
function coefficients. An artificial variable’s objective function coefficient is tem-
porarily set to 1 and PROC NETFLOW minimizes. When all artificial variables have
zero value, PROC NETFLOW has found a feasible solution, and phase 2 commences.
Arcs and nonarc variables have their real costs and objective function coefficients.

Before all artificial variables are driven to have zero value, you can toggle between
the big-M and the two-phase approaches by specifying BIGM1 or TWOPHASE1 in

RESET Statement � 373

a RESET statement. The option NOTWOPHASE1 is synonymous with BIGM1, and
NOBIGM1 is synonymous with TWOPHASE1.

CYCLEMULT1=c
MINBLOCK1=m
NOPERTURB1
PERTURB1

In an effort to reduce the number of iterations performed when the problem is highly
degenerate, PROC NETFLOW has in stage 1 optimization adopted an algorithm out-
lined in Ryan and Osborne (1988).

If the number of consecutive degenerate pivots (those with no progress toward the
optimum) performed equals the value of the CYCLEMULT1= option times the num-
ber of nodes, the arcs that were “blocking” (can leave the basis) are added to a list.
In subsequent iterations, of the arcs that now can leave the basis, the one chosen to
leave is an arc on the list of arcs that could have left in the previous iteration. In
other words, perference is given to arcs that “block” many iterations. After several
iterations, the list is cleared.

If the number of blocking arcs is less than the value of the MINBLOCK1= option, a
list is not kept. Otherwise, if PERTURB1 is specified, the arc flows are perturbed by a
random quantity, so that arcs on the list that block subsequent iterations are chosen to
leave the basis randomly. Although perturbation often pays off, it is computationally
expensive. Periodically, PROC NETFLOW has to clear out the lists and un-perturb
the solution. You can specify NOPERTURB1 to prevent perturbation.

Defaults are CYCLEMULT1=0.15, MINBLOCK1=2, and NOPERTURB1.

LRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in stage
1. In some iterations, more than one arc is eligible to leave the basis. Of those arcs
that can leave the basis, the leaving arc is the first encountered by the algorithm if
the LRATIO1 option is specified. Specifying the LRATIO1 option can decrease the
chance of cycling but can increase solution times. The alternative to the LRATIO1
option is the NOLRATIO1 option, which is the default.

LRATIO2
specifies the type of ratio test to use in determining what leaves the basis in stage 2.
In some iterations, more than one arc, constraint slack, surplus, or nonarc variable
is eligible to leave the basis. If the LRATIO2 option is specified, the leaving arc,
constraint slack, surplus, or nonarc variable is the one that is eligible to leave the basis
first encountered by the algorithm. Specifying the LRATIO2 option can decrease the
chance of cycling but can increase solution times. The alternative to the LRATIO2
option is the NOLRATIO2 option, which is the default.

NOLRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in
stage 1. If the NOLRATIO1 option is specified, of those arcs that can leave the
basis, the leaving arc has the minimum (maximum) cost if the leaving arc is to be
nonbasic with flow capacity equal to its capacity (lower flow bound). If more than one
possible leaving arc has the minimum (maximum) cost, the first such arc encountered

374 � Chapter 5. The NETFLOW Procedure

is chosen. Specifying the NOLRATIO1 option can decrease solution times, but can
increase the chance of cycling. The alternative to the NOLRATIO1 option is the
LRATIO1 option. The NOLRATIO1 option is the default.

NOLRATIO2
specifies the type of ratio test to use in determining which arc leaves the basis in
stage 2. If the NOLRATIO2 option is specified, the leaving arc, constraint slack,
surplus, or nonarc variable is the one eligible to leave the basis with the minimum
(maximum) cost or objective function coefficient if the leaving arc, constraint slack
or nonarc variable is to be nonbasic with flow or value equal to its capacity or upper
value bound (lower flow or value bound), respectively. If several possible leaving
arcs, constraint slacks, surpluses, or nonarc variables have the minimum (maximum)
cost or objective function coefficient, then the first encountered is chosen. Specifying
the NOLRATIO2 option can decrease solution times, but can increase the chance of
cycling. The alternative to the NOLRATIO2 option is the LRATIO2 option. The
NOLRATIO2 option is the default.

Options Applicable to Constrained Optimization

The INVFREQ= option is relevant only if INVD–2D is specified in the PROC
NETFLOW statement; that is, the inverse of the working basis matrix is be-
ing stored and processed as a two-dimensional array. The REFACTFREQ=, U=,
MAXLUUPDATES=, and MAXL= options are relevant if the INVD–2D option is
not specified in the PROC NETFLOW statement; that is, if the working basis matrix
is LU factored.

BIGM2
NOTWOPHASE2
TWOPHASE2
NOBIGM2

are the stage 2 constrained optimization counterparts of the options BIGM1,
NOTWOPHASE1, TWOPHASE1, and NOBIGM1.

The TWOPHASE2 option is often better than the BIGM2 option when the problem
has many side constraints.

INVFREQ=n
recalculates the working basis matrix inverse whenever n iterations have been per-
formed where n is the value of the INVFREQ= option. Although a relatively expen-
sive task, it is prudent to do as roundoff errors accumulate, especially affecting the
elements of this matrix inverse. The default is INVFREQ=50. The INVFREQ= op-
tion should be used only if the INVD–2D option is specified in the PROC NETFLOW
statement.

INTFIRST
In some iterations, it is found that what must leave the basis is an arc that is part
of the spanning tree representation of the network part of the basis (called a key
arc). It is necessary to interchange another basic arc not part of the tree (called a
nonkey arc) with the tree arc that leaves to permit the basis update to be performed
efficiently. Specifying the INTFIRST option indicates that of the nonkey arcs eligible
to be swapped with the leaving key arc, the one chosen to do so is the first encountered

RESET Statement � 375

by the algorithm. If the INTFIRST option is not specified, all such arcs are examined
and the one with the best cost is chosen.

The terms key and nonkey are used because the algorithm used by PROC NETFLOW
for network optimization considering side constraints (GUB-based, Primal
Partitioning, or Factorization) is a variant of an algorithm originally developed to
solve linear programming problems with generalized upper bounding constraints.
The terms key and nonkey were coined then. The STATUS SAS variable in the
ARCOUT= and CONOUT= data sets and the STATUS column in tables produced
when PRINT statements are processed indicate whether basic arcs are key or nonkey.
Basic nonarc variables are always nonkey.

MAXL=m
If the working basis matrix is LU factored, U is an upper triangular matrix and L
is a lower triangular matrix corresponding to a sequence of elementary matrix row
operations required to change the working basis matrix into U. L and U enable sub-
stitution techniques to be used to solve the linear systems of the simplex algorithm.
Among other things, the LU processing strives to keep the number of L elementary
matrix row operation matrices small. A buildup in the number of these could indicate
that fill-in is becoming excessive and the computations involving L and U will be
hampered. Refactorization should be performed to restore U sparsity and reduce L
information. When the number of L matrix row operations exceeds the value of the
MAXL= option, a refactorization is done rather than one or more updates. The default
value for MAXL= is 10 times the number of side constraints. The MAXL= option
should not be used if INVD–2D is specified in the PROC NETFLOW statement.

MAXLUUPDATES=m
MLUU=m

In some iterations, PROC NETFLOW must either perform a series of single column
updates or a complete refactorization of the working basis matrix. More than one
column of the working basis matrix must change before the next simplex iteration
can begin. The single column updates can often be done faster than a complete refac-
torization, especially if few updates are necessary, the working basis matrix is sparse,
or a refactorization has been performed recently. If the number of columns that must
change is less than the value specified in the MAXLUUPDATES= option, the up-
dates are attempted; otherwise, a refactorization is done. Refactorization also occurs
if the sum of the number of columns that must be changed and the number of LU
updates done since the last refactorization exceeds the value of the REFACTFREQ=
option. The MAXLUUPDATES= option should not be used if the INVD–2D option
is specified in the PROC NETFLOW statement.

In some iterations, a series of single column updates are not able to complete the
changes required for a working basis matrix because, ideally, all columns should
change at once. If the update cannot be completed, PROC NETFLOW performs a
refactorization. The default value is 5.

376 � Chapter 5. The NETFLOW Procedure

NOINTFIRST
indicates that of the arcs eligible to be swapped with the leaving arc, the one chosen
to do so has the best cost. See the INTFIRST option.

REFACTFREQ=r
RFF=r

specifies the maximum number of L and U updates between refactorization of the
working basis matrix to reinitialize LU factors. In most iterations, one or several
Bartels-Golub updates can be performed. An update is performed more quickly than
a complete refactorization. However, after a series of updates, the sparsity of the
U factor is degraded. A refactorization is necessary to regain sparsity and to make
subsequent computations and updates more efficient. The default value is 50. The
REFACTFREQ= option should not be used if INVD–2D is specified in the PROC
NETFLOW statement.

U=u
controls the choice of pivot during LU decomposition or Bartels-Golub update. When
searching for a pivot, any element less than the value of the U= option times the
largest element in its matrix row is excluded, or matrix rows are interchanged to im-
prove numerical stability. The U= option should have values on or between ZERO2
and 1.0. Decreasing the value of the U= option biases the algorithm toward main-
taining sparsity at the expense of numerical stability and vice-versa. Reid (1975)
suggests that the value of 0.01 is acceptable and this is the default for the U= option.
This option should not be used if INVD–2D is specified in the PROC NETFLOW
statement.

Pricing Strategy Options

There are three main types of pricing strategies:

• PRICETYPEx=NOQ

• PRICETYPEx=BLAND

• PRICETYPEx=Q

The one that usually performs better than the others is PRICETYPEx=Q, so this is
the default.

Because the pricing strategy takes a lot of computational time, you should experi-
ment with the following options to find the optimum specification. These options
influence how the pricing step of the simplex iteration is performed. See the “Pricing
Strategies” section on page 410 for further information.

PRICETYPEx=BLAND or PTYPEx=BLAND

PRICETYPEx=NOQ or PTYPEx=NOQ

• PxSCAN=BEST
• PxSCAN=FIRST
• PxSCAN=PARTIAL and PxNPARTIAL=p

RESET Statement � 377

PRICETYPEx=Q or PTYPEx=Q
QSIZEx=q or Qx=q
REFRESHQx=r
REDUCEQSIZEx=r
REDUCEQx=r

• PxSCAN=BEST
• PxSCAN=FIRST
• PxSCAN=PARTIAL and PxNPARTIAL=p

• QxFILLSCAN=BEST
• QxFILLSCAN=FIRST
• QxFILLSCAN=PARTIAL and QxFILLNPARTIAL=q

For stage 2 optimization, you can specify P2SCAN=ANY, which is used in conjunc-
tion with the DUALFREQ= option.

Miscellaneous Options

FUTURE1
signals that PROC NETFLOW must output extra observations to the NODEOUT=
and ARCOUT= data sets. These observations contain information about the solution
found by doing optimization neglecting any side constraints. These two data sets
then can be used as the NODEDATA= and ARCDATA= data sets, respectively, in
subsequent PROC NETFLOW runs with the WARM option specified. See the “Warm
Starts” section on page 424.

FUTURE2
signals that PROC NETFLOW must output extra observations to the DUALOUT=
and CONOUT= data sets. These observations contain information about the solution
found by optimization that considers side constraints. These two data sets can then
be used as the NODEDATA= data set (also called the DUALIN= data set) and the
ARCDATA= data sets, respectively, in subsequent PROC NETFLOW runs with the
WARM option specified. See the “Warm Starts” section on page 424.

MOREOPT
The MOREOPT option turns off all optimality and infeasibility flags that may have
been raised. Unless this is done, PROC NETFLOW will not do any optimization
when a RUN statement is specified.

If PROC NETFLOW determines that the problem is infeasible, it will not do any
more optimization unless you specify MOREOPT in a RESET statement. At the
same time, you can try resetting options (particularly zero tolerances) in the hope
that the infeasibility was raised incorrectly.

378 � Chapter 5. The NETFLOW Procedure

Consider the following example:

proc netflow
nodedata=noded /* supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* output the solution */
run;

/* Netflow states that the problem is infeasible. */
/* You suspect that the zero tolerance is too large */

reset zero2=1.0e-10 moreopt;
run;

/* Netflow will attempt more optimization. */
/* After this, if it reports that the problem is */
/* infeasible, the problem really might be infeasible */

If PROC NETFLOW finds an optimal solution, you might want to do additional opti-
mization to confirm that an optimum has really been reached. Specify the MOREOPT
option in a RESET statement. Reset options, but in this case tighten zero tolerances.

NOFUTURE1
negates the FUTURE1 option.

NOFUTURE2
negates the FUTURE2 option.

NOSCRATCH
negates the SCRATCH option.

NOZTOL1
indicates that the majority of tests for roundoff error should not be done. Specifying
the NOZTOL1 option and obtaining the same optimal solution as when the
NOZTOL1 option is not specified in the PROC NETFLOW statement (or the ZTOL1
option is specified), verifies that the zero tolerances were not too high. Roundoff
error checks that are critical to the successful functioning of PROC NETFLOW and
any related readjustments are always done.

NOZTOL2
indicates that the majority of tests for roundoff error are not to be done during an op-
timization that considers side constraints. The reasons for specifying the NOZTOL2
option are the same as those for specifying the NOZTOL1 option for stage 1 opti-
mization (see the NOZTOL1 option).

OPTIM–TIMER
indicates that the procedure is to issue a message to the SAS log giving the CPU time
spent doing optimization. This includes the time spent preprocessing, performing
optimization, and postprocessing. Not counted in that time is the rest of the procedure
execution, which includes reading the data and creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the
procedure. This is especially true when the problem is quite small (e.g., fewer than
10,000 variables).

RESET Statement � 379

SCRATCH
specifies that you do not want PROC NETFLOW to enter or continue stage 1 of
the algorithm. Rather than specify RESET SCRATCH, you can use the CONOPT
statement.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC NETFLOW might have
cause to issue the following message many times:

ERROR: The HEAD list variable value in obs i in ARCDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued
for only the first VERBOSE= such observations. After the ARCDATA= data set has
been read, PROC NETFLOW will issue the message

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the ARCDATA= data set have this error, PROC NETFLOW stops
and you have to fix the data. Imagine that this error is only a warning and PROC
NETFLOW proceeded to other operations such as reading the CONDATA= data set.
If PROC NETFLOW finds there are numerous errors when reading that data set, the
number of messages issued to the SAS log are also limited by the VERBOSE= option.

If you have a problem with a large number of side constraints and for some reason
you stop stage 2 optimization early, PROC NETFLOW indicates that constraints are
violated by the current solution. Specifying VERBOSE=v allows at most v violated
constraints to be written to the log. If there are more, these are not displayed.

When PROC NETFLOW finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.

is issued. The value of vmin is the smallest value that should be specified for the
VERBOSE= option so that all messages are displayed if PROC NETFLOW is run
again with the same data and everything else (except the VERBOSE= option) un-
changed. No messages are suppressed.

The default value for the VERBOSE= option is 12.

ZERO1=z
Z1=z

specifies the zero tolerance level in stage 1. If the NOZTOL1 option is not specified,
values within z of zero are set to 0.0, where z is the value of the ZERO1= option.
Flows close to the lower flow bound or capacity of arcs are reassigned those exact
values. Two values are deemed to be close if one is within z of the other. The default

380 � Chapter 5. The NETFLOW Procedure

value for the ZERO1= option is 0.000001. Any value specified for the ZERO1=
option that is < 0.0 or > 0.0001 is invalid.

ZERO2=z
Z2=z

specifies the zero tolerance level in stage 2. If the NOZTOL2 option is not specified,
values within z of zero are set to 0.0, where z is the value of the ZERO2= option.
Flows close to the lower flow bound or capacity of arcs are reassigned those exact
values. If there are nonarc variables, values close to the lower or upper value bound
of nonarc variables are reassigned those exact values. Two values are deemed to be
close if one is within z of the other. The default value for the ZERO2= option is
0.000001. Any value specified for the ZERO2= option that is < 0.0 or > 0.0001 is
invalid.

ZEROTOL=z
specifies the zero tolerance used when PROC NETFLOW must compare any real
number with another real number, or zero. For example, if x and y are real numbers,
then for x to be considered greater than y, x must be at least y + z. The ZEROTOL=
option is used throughout any PROC NETFLOW run.

ZEROTOL=z controls the way PROC NETFLOW performs all double precision
comparisons; that is, whether a double precision number is equal to, not equal to,
greater than (or equal to), or less than (or equal to) zero or some other double preci-
sion number. A double precision number is deemed to be the same as another such
value if the absolute difference between them is less than or equal to the value of the
ZEROTOL= option.

The default value for the ZEROTOL= option is 1.0E−14. You can specify the
ZEROTOL= option in the NETFLOW or RESET statement. Valid values for the
ZEROTOL= option must be > 0.0 and < 0.0001. Do not specify a value too close to
zero as this defeats the purpose of the ZEROTOL= option. Neither should the value
be too large, as comparisons might be incorrectly performed.

The ZEROTOL= option is different from the ZERO1= and ZERO2= options in that
ZERO1= and ZERO2= options work when determining whether optimality has been
reached, whether an entry in the updated column in the ratio test of the simplex
method is zero, whether a flow is the same as the arc’s capacity or lower bound,
or whether the value of a nonarc variable is at a bound. The ZEROTOL= option is
used in all other general double precision number comparisons.

ZTOL1
indicates that all tests for roundoff error are performed during stage 1 optimization.
Any alterations are carried out. The opposite of the ZTOL1 option is the NOZTOL1
option.

ZTOL2
indicates that all tests for roundoff error are performed during stage 2 optimization.
Any alterations are carried out. The opposite of the ZTOL2 option is the NOZTOL2
option.

RESET Statement � 381

Interior Point Algorithm Options

FACT–METHOD=f
enables you to choose the type of algorithm used to factorize and solve the main
linear systems at each iteration of the interior point algorithm.

FACT–METHOD=LEFT–LOOKING is new for SAS 9.1.2. It uses algorithms de-
scribed in George, Liu, and Ng (2001). Left looking is one of the main methods used
to perform Cholesky optimization and, along with some recently developed imple-
mentation approaches, can be faster and require less memory than other algorithms.

Specify FACT–METHOD=USE–OLD if you want the procedure to use the only
factorization available prior to SAS 9.1.2.

TOLDINF=t
RTOLDINF=t

specifies the allowed amount of dual infeasibility. In the “Interior Point Algorithmic
Details” section on page 448, the vector infeasd is defined. If all elements of this
vector are ≤ t, the solution is deemed feasible. infeasd is replaced by a zero vector,
making computations faster. This option is the dual equivalent to the TOLPINF=
option. Valid values for t are greater than 1.0E−12. The default is 1.0E−7.

TOLPINF=t
RTOLPINF=t

specifies the allowed amount of primal infeasibility. This option is the primal equiva-
lent to the TOLDINF= option. In the “Interior Point: Upper Bounds” section on page
456, the vector infeasb is defined. In the “Interior Point Algorithmic Details” section
on page 448, the vector infeasc is defined. If all elements in these vectors are ≤ t,
the solution is deemed feasible. infeasb and infeasc are replaced by zero vectors,
making computations faster. Increasing the value of the TOLPINF= option too much
can lead to instability, but a modest increase can give the algorithm added flexibility
and decrease the iteration count. Valid values for t are greater than 1.0E−12. The
default is 1.0E−7.

TOLTOTDINF=t
RTOLTOTDINF=t

specifies the allowed total amount of dual infeasibility. In the “Interior Point
Algorithmic Details” section on page 448, the vector infeasd is defined. If∑n

i=1 infeasdi ≤ t, the solution is deemed feasible. infeasd is replaced by a
zero vector, making computations faster. This option is the dual equivalent to the
TOLTOTPINF= option. Valid values for t are greater than 1.0E−12. The default is
1.0E−7.

TOLTOTPINF=t
RTOLTOTPINF=t

specifies the allowed total amount of primal infeasibility. This option is the primal
equivalent to the TOLTOTDINF= option. In the “Interior Point: Upper Bounds”
section on page 456, the vector infeasb is defined. In the “Interior Point Algorithmic
Details” section on page 448, the vector infeasc is defined. If

∑n
i=1 infeasbi ≤ t

and
∑m

i=1 infeasci ≤ t, the solution is deemed feasible. infeasb and infeasc are
replaced by zero vectors, making computations faster. Increasing the value of the

382 � Chapter 5. The NETFLOW Procedure

TOLTOTPINF= option too much can lead to instability, but a modest increase can
give the algorithm added flexibility and decrease the iteration count. Valid values for
t are greater than 1.0E−12. The default is 1.0E−7.

CHOLTINYTOL=c
RCHOLTINYTOL=c

specifies the cut-off tolerance for Cholesky factorization of the AΘA−1. If a diagonal
value drops below c, the row is essentially treated as dependent and is ignored in the
factorization. Valid values for c are between 1.0E−30 and 1.0E−6. The default value
is 1.0E−8.

DENSETHR=d
RDENSETHR=d

specifies the density threshold for Cholesky processing. When the symbolic factor-
ization encounters a column of L that has DENSETHR= proportion of nonzeros and
the remaining part of L is at least 12× 12, the remainder of L is treated as dense. In
practice, the lower right part of the Cholesky triangular factor L is quite dense and it
can be computationally more efficient to treat it as 100% dense. The default value for
d is 0.7. A specification of d ≤ 0.0 causes all dense processing; d ≥ 1.0 causes all
sparse processing.

PDSTEPMULT=p
RPDSTEPMULT=p

specifies the step-length multiplier. The maximum feasible step-length chosen by
the Primal-Dual with Predictor-Corrector algorithm is multiplied by the value of the
PDSTEPMULT= option. This number must be less than 1 to avoid moving beyond
the barrier. An actual step length greater than 1 indicates numerical difficulties. Valid
values for p are between 0.01 and 0.999999. The default value is 0.99995.

In the “Interior Point Algorithmic Details” section on page 448, the solution of the
next iteration is obtained by moving along a direction from the current iteration’s
solution:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the maximum feasible step-length chosen by the interior point algorithm.
If α ≤ 1, then α is reduced slightly by multiplying it by p. α is a value as large as
possible but ≤ 1.0 and not so large that an xk+1

i or sk+1
i of some variable i is “too

close” to zero.

PRSLTYPE=p
IPRSLTYPE=p

Preprocessing the linear programming problem often succeeds in allowing some vari-
ables and constraints to be temporarily eliminated from the LP that must be solved.
This reduces the solution time and possibly also the chance that the optimizer will
run into numerical difficulties. The task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE=p, where p
can be -1, 0, 1, 2, or 3.

RESET Statement � 383

-1 Do not perform preprocessing. For most problems, specifying
PRSLTYPE=-1 is not recommended.

0 Given upper and lower bounds on each variable, the greatest and least con-
tribution to the row activity of each variable is computed. If these are
within the limits set by the upper and lower bounds on the row activity,
then the row is redundant and can be discarded. Try to tighten the bounds
on any of the variables it can. For example, if all coefficients in a con-
straint are positive and all variables have zero lower bounds, then the row’s
smallest contribution is zero. If the rhs value of this constraint is zero, then
if the constraint type is = or ≤, all the variables in that constraint can be
fixed to zero. These variables and the constraint can be removed. If the
constraint type is ≥, the constraint is redundant. If the rhs is negative and
the constraint is ≤, the problem is infeasible. If just one variable in a row
is not fixed, use the row to impose an implicit upper or lower bound on the
variable and then eliminate the row. The preprocessor also tries to tighten
the bounds on constraint right-hand sides.

1 When there are exactly two unfixed variables with coefficients in an equal-
ity constraint, solve for one in terms of the other. The problem will have
one less variable. The new matrix will have at least two fewer coefficients
and one less constraint. In other constraints where both variables appear,
two coefs are combined into one. PRSLTYPE=0 reductions are also done.

2 It may be possible to determine that an equality constraint is not constrain-
ing a variable. That is, if all variables are nonnegative, then x−

∑
i yi = 0

does not constrain x, since it must be nonnegative if all the yi’s are non-
negative. In this case, eliminate x by subtracting this equation from all
others containing x. This is useful when the only other entry for x is in
the objective function. Perform this reduction if there is at most one other
nonobjective coefficient. PRSLTYPE=0 reductions are also done.

3 All possible reductions are performed. PRSLTYPE=3 is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are
found to be redundant and they too are eliminated, and as variable bounds and con-
straint right-hand sides are tightened, the LP to be optimized is modified to reflect
these changes. Another iteration of preprocessing of the modified LP may reveal
more variables and constraints that can be eliminated.

PRINTLEVEL2=p
is used when you want to see PROC NETFLOW’s progress to the optimum. PROC
NETFLOW will produce a table on the SAS log. A row of the table is generated
during each iteration and may consist of values of

• the affine step complementarity

• the complementarity of the solution for the next iteration

• the total bound infeasibility
∑n

i=1 infeasbi (see the infeasb array in the
“Interior Point: Upper Bounds” section on page 456)

• the total constraint infeasibility
∑m

i=1 infeasci (see the infeasc array in the
“Interior Point Algorithmic Details” section on page 448)

384 � Chapter 5. The NETFLOW Procedure

• the total dual infeasibility
∑n

i=1 infeasdi (see the infeasd array in the “Interior
Point Algorithmic Details” section on page 448)

As optimization progresses, the values in all columns should converge to zero.
If you specify PRINTLEVEL2=2, all columns will appear in the table. If
PRINTLEVEL2=1 is specified, only the affine step complementarity and the com-
plementarity of the solution for the next iteration will appear. Some time is saved by
not calculating the infeasibility values.

Interior Point Algorithm Options: Stopping Criteria

MAXITERB=m
IMAXITERB=m

specifies the maximum number of iterations of the interior point algorithm that can
be performed. The default value for m is 100. One of the most remarkable aspects of
the interior point algorithm is that for most problems, it usually needs to do a small
number of iterations, no matter the size of the problem.

PDGAPTOL=p
RPDGAPTOL=p

specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in
the “Interior Point Algorithmic Details” section on page 448. If the relative gap
(duality gap/(cT x)) between the primal and dual objectives is smaller than the value
of the PDGAPTOL= option and both the primal and dual problems are feasible, then
PROC NETFLOW stops optimization with a solution that is deemed optimal. Valid
values for p are between 1.0E−12 and 1.0E−1. The default is 1.0E−7.

STOP–C=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is≤ s, optimization will
stop. This option is discussed in the “Stopping Criteria” section on page 453.

STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is≤ s, optimization will
stop. This option is discussed in the “Stopping Criteria” section on page 453.

STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

“Interior Point: Upper Bounds” section on page 456; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is ≤ s, optimization will stop. This option is discussed in the
“Stopping Criteria” section on page 453.

RESET Statement � 385

STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the

“Interior Point Algorithmic Details” section on page 448; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is ≤ s, optimization will stop. This option is discussed in the “Stopping Criteria”
section on page 453.

STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior

Point Algorithmic Details” section on page 448; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is≤ s, optimiza-
tion will stop. This option is discussed in the “Stopping Criteria” section on page
453.

AND–STOP–C=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if complementarity (the value of the Complem-ity column in the table pro-
duced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is ≤ s, and the
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 453.

AND–STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap (the value of the Duality–gap column in the table pro-
duced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is ≤ s, and the
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 453.

AND–STOP–IB=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the

“Interior Point: Upper Bounds” section on page 456; this value appears in the
Tot–infeasb column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is ≤ s, and the conditions related to other AND–STOP parame-
ters are also satisfied, optimization will stop. This option is discussed in the “Stopping
Criteria” section on page 453.

AND–STOP–IC=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the

“Interior Point Algorithmic Details” section on page 448; this value appears in the
Tot–infeasc column in the table produced when you specify PRINTLEVEL2=2)
is ≤ s, and the conditions related to other AND–STOP parameters are also satisfied,
optimization will stop. This option is discussed in the “Stopping Criteria” section on
page 453.

386 � Chapter 5. The NETFLOW Procedure

AND–STOP–ID=s
is used to determine whether optimization should stop. At the beginning of each iter-
ation, if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior

Point Algorithmic Details” section on page 448; this value appears in the Tot–infeasd
column in the table produced when you specify PRINTLEVEL2=2) is ≤ s, and the
conditions related to other AND–STOP parameters are also satisfied, optimization
will stop. This option is discussed in the “Stopping Criteria” section on page 453.

KEEPGOING–C=s
is used to determine whether optimization should stop. If a stopping condition is
met, if complementarity (the value of the Complem-ity column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 453.

KEEPGOING–DG=s
is used to determine whether optimization should stop. If a stopping condition is
met, if the duality gap (the value of the Duality–gap column in the table produced
when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 453.

KEEPGOING–IB=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the “Interior Point:

Upper Bounds” section on page 456; this value appears in the Tot–infeasb column
in the table produced when you specify PRINTLEVEL2=1 or PRINTLEVEL2=2)
is > s, optimization will continue. This option is discussed in the “Stopping Criteria”
section on page 453.

KEEPGOING–IC=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the “Interior

Point Algorithmic Details” section on page 448; this value appears in the Tot–infeasc
column in the table produced when you specify PRINTLEVEL2=2) is > s, optimiza-
tion will continue. This option is discussed in the “Stopping Criteria” section on page
453.

KEEPGOING–ID=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior Point

Algorithmic Details” section on page 448; this value appears in the Tot–infeasd col-
umn in the table produced when you specify PRINTLEVEL2=2) is > s, optimization
will continue. This option is discussed in the “Stopping Criteria” section on page
453.

AND–KEEPGOING–C=s
is used to determine whether optimization should stop. If a stopping condition is met,
if complementarity (the value of the Complem-ity column in the table produced when
you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the conditions
related to other AND–KEEPGOING parameters are also satisfied, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 453.

RHS Statement � 387

AND–KEEPGOING–DG=s
is used to determine whether optimization should stop. If a stopping condition is met,
if the duality gap (the value of the Duality–gap column in the table produced when
you specify PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, and the conditions
related to other AND–KEEPGOING parameters are also satisfied, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 453.

AND–KEEPGOING–IB=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in the “Interior Point:

Upper Bounds” section on page 456; this value appears in the Tot–infeasb column in
the table produced when you specify PRINTLEVEL2=2) is > s, and the conditions
related to other AND–KEEPGOING parameters are also satisfied, optimization will
continue. This option is discussed in the “Stopping Criteria” section on page 453.

AND–KEEPGOING–IC=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total constraint infeasibility

∑m
i=1 infeasci (see the infeasc array in the “Interior

Point Algorithmic Details” section on page 448; this value appears in the Tot–infeasc
column in the table produced when you specify PRINTLEVEL2=2) is > s, and the
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the “Stopping Criteria” section on
page 453.

AND–KEEPGOING–ID=s
is used to determine whether optimization should stop. If a stopping condition is met,
if total dual infeasibility

∑n
i=1 infeasdi (see the infeasd array in the “Interior Point

Algorithmic Details” section on page 448; this value appears in the Tot–infeasd col-
umn in the table produced when you specify PRINTLEVEL2=2) is > s, and the
conditions related to other AND–KEEPGOING parameters are also satisfied, opti-
mization will continue. This option is discussed in the “Stopping Criteria” section on
page 453.

RHS Statement

RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is
used. The values of the SAS variable specified in the RHS list are constraint right-
hand-side values. If the RHS list is not specified, the CONDATA= data set is searched
and a SAS variable with the name –RHS– is used. If there is no RHS list and no
SAS variable named –RHS– , all constraints are assumed to have zero right-hand-
side values. The RHS list variable must have numeric values.

388 � Chapter 5. The NETFLOW Procedure

ROW Statement

ROW variables ;

The ROW list is used when either the sparse or the dense format of side constraints is
being used. SAS variables in the ROW list have values that are constraint or special
row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In
this case, if a ROW list is not specified, the CONDATA= data set is searched and the
SAS variable with the name –ROW– or –CON– is used.

If the sparse data format is used and the ROW statement is not specified, the
CONDATA= data set is searched and SAS variables with names beginning with
–ROW or –CON are used. The number of SAS variables in the ROW list must
not be less than the number of SAS variables in the COEF list. The ith ROW list
variable is paired with the ith COEF list variable. If the number of ROW list vari-
ables is greater than the number of COEF list variables, the last ROW list variables
have no COEF partner. These ROW list variables that have no corresponding COEF
list variable are used in observations that have a TYPE list variable value. All ROW
list variable values are tagged as having the type indicated. If there is no TYPE list
variable, all ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement causes optimization to be started or resumed. The RUN statement
has no options. If PROC NETFLOW is called and is not terminated because of an
error or a QUIT statement, and you have not used a RUN statement, a RUN statement
is assumed implicitly as the last statement of PROC NETFLOW. Therefore, PROC
NETFLOW always performs optimization and saves the obtained (optimal) solution
in the current output data sets.

SAVE Statement

SAVE options ;

The options available with the SAVE statement of PROC NETFLOW are summarized
by purpose in the following table.

Table 5.4. Functional Summary, SAVE statement

Description Statement Option

Output Data Set Options:
unconstrained primal solution data set SAVE ARCOUT=
unconstrained dual solution data set SAVE NODEOUT=
constrained primal solution data set SAVE CONOUT=
constrained dual solution data set SAVE DUALOUT=

SAVE Statement � 389

The SAVE statement can be used to specify output data sets and create observations
in these data sets. Use the SAVE statement if no optimization is to be performed
before these output data sets are created.

The SAVE statement must be used to save solutions in data sets if there is no more
optimization to do. If more optimization is to be performed, after which you want to
save the solution, then do one of the following:

• Submit a RUN statement followed by a SAVE statement.

• Use the PROC NETFLOW or RESET statement to specify current output data
sets. After optimization, output data sets are created and observations are au-
tomatically sent to the current output data sets.

Consider the following example:

proc netflow options; lists;
reset maxit1=10 maxit2=25

arcout=arcout0 nodeout=nodeout0
conout=conout0 dualout=dualout0;

run;
/* Stage 1 optimization stops after iteration 10. */
/* No output data sets are created yet. */
save arcout=arcout1 nodeout=nodeout1;
/* arcout1 and nodeout1 are created. */
reset arcout=arcout2 maxit1=999999;
run;
/* The stage 1 optimum is reached. */
/* Arcout2 and nodeout0 are created. */
/* Arcout0 is not created as arcout=arcout2 over- */
/* rides the arcout=arcout0 specified earlier. */
/* Stage 2 optimization stops after 25 iterations */
/* as MAXIT2=25 was specified. */
save conout=conout1;
/* Conout1 is created. */
reset maxit2=999999 dualout=null;
run;
/* The stage 2 optimum is reached. */
/* Conout0 is created. */
/* No dualout is created as the last NETFLOW or */
/* reset statements dualout=data set specification*/
/* was dualout=null. */

The data sets specified in the PROC NETFLOW and RESET statements are created
when an optimal solution is found. The data sets specified in SAVE statements are
created immediately.

The data sets in the preceding example are all distinct, but this need not be the case.
The only exception to this is that the ARCOUT= data set and the NODEOUT= data
set (or the CONOUT= data set and the DUALOUT= data set) that are being created
at the same time must be distinct. Use the SHOW DATASETS statement to examine
what data sets are current and when they were created.

390 � Chapter 5. The NETFLOW Procedure

The following options can appear in the SAVE statement:

ARCOUT= SAS-data-set (or AOUT= SAS-data-set)

NODEOUT= SAS-data-set (or NOUT= SAS-data-set)

CONOUT= SAS-data-set (or COUT= SAS-data-set)

DUALOUT= SAS-data-set (or DOUT= SAS-data-set)

SHOW Statement

SHOW options / qualifiers ;

The options available with the SHOW statement of PROC NETFLOW are summa-
rized by purpose in the following table.

Table 5.5. Functional Summary, SHOW statement

Description Statement Option

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS
show options that pause optimization SHOW PAUSE
show simplex algorithm options SHOW SIMPLEX
show pricing strategy options SHOW PRICING
show miscellaneous options SHOW MISC

SHOW Statement Qualifiers:
display information only on relevant options SHOW / RELEVANT
display options for current stage only SHOW / STAGE

The SHOW statement enables you to examine the status of the problem and values of
the RESET statement options. All output of the SHOW statement appears on the SAS
log. The amount of information displayed when a SHOW statement is processed can
be limited if some of the options of the SHOW statement are specified. These options
indicate whether the problem status or a specific category of the RESET options is
of interest. If no options are specified, the problem status and information on all
RESET statement options in every category is displayed. The amount of displayed
information can be limited further by following any SHOW statement options with a
slash (/) and one or both qualifiers, RELEVANT and STAGE.

SHOW Statement � 391

STATUS
produces one of the following optimization status reports, whichever is applicable.
The warning messages are issued only if the network or entire problem is infeasible.

NOTE: Optimization Status.
Optimization has not started yet.

NOTE: Optimization Status.
Optimizing network (ignoring any side constraints).
Number of iterations=17
Of these, 3 were degenerate

WARNING: This optimization has detected that the network is
infeasible.

NOTE: Optimization Status.
Found network optimum (ignoring side constraints)
Number of iterations=23
Of these, 8 were degenerate

NOTE: Optimization Status.
Optimizing side constrained network.
Number of iterations=27
Of these, 9 were degenerate

WARNING: This optimization has detected that the problem is
infeasible.

NOTE: Optimization Status.
Found side constrained network optimum
Number of iterations=6
Of these, 0 were degenerate

DATASETS
produces a report on output data sets.

NOTE: Current output SAS data sets
No output data sets have been specified

NOTE: Current output SAS data sets
ARCOUT=libname.memname
NODEOUT=libname.memname
CONOUT=libname.memname
DUALOUT=libname.memname

392 � Chapter 5. The NETFLOW Procedure

NOTE: Other SAS data sets specified in previous ARCOUT=, NODEOUT=,
CONOUT=, or DUALOUT=.
libname.memname

.

.

.

NOTE: Current output SAS data sets (SHOW DATASETS)
libname.memname

.

.

.
NOTE: SAS data sets specified as ARCOUT= NODEOUT= CONOUT= or

DUALOUT= data sets in previous PROC NETFLOW, SET, RESET
and SAVE statements.
The number following the data set specification was the
iteration number when observations were placed into the
data set.
libname.memname iteration_number

. .

. .

. .

PAUSE
produces a report on the current settings of options used to make optimization pause.

NOTE: Options and parameters that stop optimization for reasons
other than infeasibility or optimality (SHOW PAUSE)
FEASIBLEPAUSE1=FALSE
ENDPAUSE1=FALSE
PAUSE1=999999
MAXIT1=1000
FEASIBLEPAUSE2=FALSE
PAUSE2=999999
MAXIT2=999999

SIMPLEX
produces the following:

NOTE: Options and parameters that control the primal simplex
network algorithm (excluding those that affect the
pricing strategies) (SHOW SIMPLEX)
LRATIO1=FALSE
BIGM1=NOTWOPHASE1=TRUE, TWOPHASE1=NOBIGM1=FALSE
CYCLEMULT1=0.15
PERTURB1=FALSE
MINBLOCK1=2
INTFIRST=TRUE
LRATIO2=FALSE
BIGM2=NOTWOPHASE2=TRUE, TWOPHASE2=NOBIGM2=FALSE
REFACTFREQ=50
U=0.1

SHOW Statement � 393

MAXLUUPDATES=6
MAXL=40

PRICING
produces the following:

NOTE: Options and parameters that control the primal simplex
network algorithm pricing strategies (SHOW PRICING)
PRICETYPE1=Q
P1SCAN=FIRST
P1NPARTIAL=10
Q1FILLSCAN=FIRST
QSIZE1=24
REFRESHQ1=0.75
REDUCEQSIZE1=1
Q1FILLNPARTIAL=10
PRICETYPE2=Q
P2SCAN=FIRST
P2NPARTIAL=10
DUALFREQ=4
Q2FILLSCAN=FIRST
QSIZE2=24
REFRESHQ2=0.75
REDUCEQSIZE2=1
Q2FILLNPARTIAL=10

MISC
produces the following:

NOTE: Miscellaneous options and parameters (SHOW MISC)
VERBOSE=12
ZTOL1=TRUE
ZERO1=1E-6
FUTURE1=FALSE
ZTOL2=TRUE
ZERO2=1E-6
FUTURE2=FALSE

Following a slash (/), the qualifiers below can appear in any SHOW statement.

RELEVANT
indicates that you want information only on relevant options of the RESET statement.
The following will not be displayed if / RELEVANT is specified:

• information on noncurrent data sets

• the options that control the reasons why stage 1 optimization should be halted
and the options that control the simplex algorithm during stage 1 optimization,
if the unconstrained optimum has been reached or constrained optimization has
been performed

• if P1SCAN=BEST or P1SCAN=FIRST, the P1NPARTIAL= option is irrele-
vant

394 � Chapter 5. The NETFLOW Procedure

• if PRICETYPE1=BLAND or PRICETYPE1=NOQ, the options QSIZE1=,
Q1FILLSCAN=, REFRESHQ1=, and REDUCEQSIZE1= are irrelevant

• if Q1FILLSCAN=BEST or Q1FILLSCAN=FIRST, the Q1FILLNPARTIAL=
option is irrelevant

• the options that control the reasons stage 2 optimization should be halted, the
options that control the simplex algorithm during stage 2 optimization, if the
constrained optimum has been reached

• if P2SCAN=BEST or P2SCAN=FIRST, the P2NPARTIAL= option is irrele-
vant

• if PRICETYPE2=BLAND or PRICETYPE2=NOQ, the options QSIZE2=,
Q2FILLSCAN=, REFRESHQ2=, and REDUCEQSIZE2= are irrelevant

• if Q2FILLSCAN=BEST or Q2FILLSCAN=FIRST, the Q2FILLNPARTIAL=
option is irrelevant

STAGE
indicates that you want to examine only the options that affect the optimization that
is performed if a RUN statement is executed next. Before any optimization has been
done, only stage 2 options are displayed if the problem has side constraints and the
SCRATCH option is used, or if the CONOPT statement is specified. Otherwise, stage
1 options are displayed. If still optimizing neglecting constraints, only stage 1 options
will be displayed. If the unconstrained optimum has been reached and optimization
that considers constraints has not been performed, stage 1 options are displayed. If
the problem has constraints, stage 2 options are displayed. If any optimization that
considers constraints has been performed, only stage 2 options are displayed.

SUPDEM Statement

SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set,
contains supply and demand information for the nodes in the NODE list. A positive
SUPDEM list variable value s (s > 0) denotes that the node named in the NODE list
variable can supply s units of flow. A negative SUPDEM list variable value −d (d >
0) means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name –SUPDEM– or –SD– in the NODEDATA=
data set is used as the SUPDEM variable. If a node is a transshipment node (neither
a supply nor a demand node), an observation associated with this node need not be
present in the NODEDATA= data set. If present, the SUPDEM list variable value
must be zero or a missing value.

TYPE Statement � 395

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that
contains the supply at the node named in that observation’s TAILNODE list variable.
If a tail node does not supply flow, use zero or a missing value for the observation’s
SUPPLY list variable value. If a tail node has supply capability, a missing value
indicates that the supply quantity is given in another observation. It is not necessary
to have a SUPPLY statement if the name of this SAS variable is –SUPPLY– .

TAILNODE Statement

TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that has as values the names of tail nodes of arcs. The
TAILNODE variable must have character values. It is not necessary to have a
TAILNODE statement if the name of the SAS variable is –TAIL– or –FROM– .
If the TAILNODE list variable value is missing, it is assumed that the observation of
ARCDATA= data set contains information concerning a nonarc variable.

TYPE Statement

TYPE variable ;

CONTYPE variable ;

The TYPE list, which is optional, names the variable that has as values keywords
that indicate either the constraint type for each constraint or the type of special rows
in the CONDATA= data set. The values of the TYPE list variable also indicate, in
each observation of the CONDATA= data set, how values of the VAR or COEF list
variables are to be interpreted and how the type of each constraint or special row
name is determined. If the TYPE list is not specified, the CONDATA= data set is
searched and a SAS variable with the name –TYPE– is used. Valid keywords for the
TYPE variable are given below. If there is no TYPE statement and no other method
is used to furnish type information (see the DEFCONTYPE= option), all constraints
are assumed to be of the type “less than or equal to” and no special rows are used.
The TYPE list variable must have character values and can be used when the data in
the CONDATA= data set is in either the sparse or the dense format. If the TYPE list
variable value has a * as its first character, the observation is ignored because it is a
comment observation.

396 � Chapter 5. The NETFLOW Procedure

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the
characters that PROC NETFLOW uses to determine what type the value suggests.
You need to have at least these characters. In the following list, the minimal TYPE
list variable values have additional characters to aid you in remembering these values.

< less than or equal to (≤)
= equal to (=)
> greater than or equal to (≥)
CAPAC capacity
COST cost
EQ equal to
FREE free row (used only for linear programs solved by interior point)
GE greater than or equal to
LE less than or equal to
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint
UPPCOST reserved for future use
UNREST unrestricted variable (used only for linear programs solved by in-

terior point)
UPPER upper value bound or capacity; second letter must not be N

The valid TYPE list variable values in function order are

• LE less than or equal to (≤)

• EQ equal to (=)

• GE greater than or equal to (≥)

• COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

• CAPAC
UPPER
capacity or upper value bound

• LOWERBD
LOWblank
lower flow or value bound

• RHS rhs of constraint

Input Data Sets � 397

• TYPE type of constraint

A TYPE list variable value that has the first character ∗ causes the observation to be
treated as a comment. If the first character is a negative sign, then≤ is the type. If the
first character is a zero, then = is the type. If the first character is a positive number,
then ≥ is the type.

VAR Statement

VAR variables ;

The VAR variable list is used when the dense data format is used. The names of these
SAS variables are also names of the arc and nonarc variables that have data in the
CONDATA= data set. If no explicit VAR list is specified, all numeric variables not
on other lists are put onto the VAR list. The VAR list variables must have numeric
values. The values of the VAR list variables in some observations can be interpreted
differently than in other observations. The values can be coefficients in the side con-
straints, costs and objective function coefficients, or bound data. How these numeric
values are interpreted depends on the value of each observation’s TYPE or ROW list
variable value. If there are no TYPE list variables, the VAR list variable values are
all assumed to be side constraint coefficients.

Details

Input Data Sets

PROC NETFLOW is designed so that there are as few rules as possible that you
must obey when inputting a problem’s data. Raw data are acceptable. This should
cut the amount of processing required to groom the data before it is input to PROC
NETFLOW. Data formats are so flexible that, due to space restrictions, all possible
forms for a problem’s data are not shown here. Try any reasonable form for your
problem’s data; it should be acceptable. PROC NETFLOW will outline its objections.

There are several ways to supply the same piece of data. You do not have to restrict
yourself to using any particular one. If you use several ways, PROC NETFLOW
checks that the data are consistent each time the data are encountered. After all input
data sets have been read, data are merged so that the problem is described completely.
The order of the observations is not important in any of the input data sets.

ARCDATA= Data Set

See the “Getting Started” section on page 328 and the “Introductory Example” sec-
tion on page 329 for a description of this input data set.

Note: Information for an arc or nonarc variable can be specified in more than one
observation. For example, consider an arc directed from node A toward node B that
has a cost of 50, capacity of 100, and lower flow bound of 10 flow units. Some
possible observations in the ARCDATA= data set may be

398 � Chapter 5. The NETFLOW Procedure

TAIL _HEAD_ _COST_ _CAPAC_ _LO_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable with upperbd=100, lowerbd=10, and objective func-
tion coefficient=50, the –TAIL– and –HEAD– values are missing.

CONDATA= Data Set
Regardless of whether the data in the CONDATA= data set is in the sparse or dense
format, you will receive a warning if PROC NETFLOW finds a constraint row that
has no coefficients. You will also be warned if any nonarc variable has no constraint
coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong
to the VAR list and have names of arc and nonarc variables. These names can be
values of the NAME list SAS variables in the ARCDATA= data set, or names of
nonarc variables, or names in the form tail–head, or any combination of these three
forms. Names in the form tail–head are default arc names, and if you use them, you
must specify node names in the ARCDATA= data set (values of the TAILNODE and
HEADNODE list SAS variables) using no lowercase letters.

There can be three other variables in the CONDATA= data set, belonging, respec-
tively, to the ROW, TYPE, and RHS lists. The CONDATA= data set of the oil
industry example in the “Introductory Example” section on page 329 uses the dense
data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data
for three constraints. This data set was used in the “Introductory Example” section
on page 329.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

You can use nonconstraint type values to furnish data on costs, capacities, lower flow
bounds (and, if there are nonarc variables, objective function coefficients and upper
and lower bounds). You need not have such (or as much) data in the ARCDATA= data
set. The first three observations in the following data set are examples of observations
that provide cost, capacity and lower bound data.

Input Data Sets � 399

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

If a ROW list variable is used, the data for a constraint can be spread over more
than one observation. To illustrate, the data for the first constraint, (which is called
con1), and the cost and capacity data (in special rows called costrow and caprow,
respectively) are spread over more than one observation in the following data set.

data cond1c;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of
these are “costrow” and “caprow” in the last data set. It should be restated that in
any of the input data sets of PROC NETFLOW, the order of the observations does
not matter. However, the CONDATA= data set can be read more quickly if PROC
NETFLOW knows what type of constraint or special row a ROW list variable value
is. For example, when the first observation is read, PROC NETFLOW does not know
whether costrow is a constraint or special row and how to interpret the value 63 for the
arc with the name m–e–ref1. When PROC NETFLOW reads the second observation,
it learns that costrow has type cost and that the values 81 and 200 are costs. When the
entire CONDATA= data set has been read, PROC NETFLOW knows the type of all
special rows and constraints. Data that PROC NETFLOW had to set aside (such as the
first observation 63 value and the costrow ROW list variable value, which at the time
had unknown type, but is then known to be a cost special row) is reprocessed. During

400 � Chapter 5. The NETFLOW Procedure

this second pass, if a ROW list variable value has unassigned constraint or special row
type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default)
type. Associated VAR list variable values as coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When
the sparse data format of the CONDATA= data set is used, only nonzero constraint
coefficients must be specified. Remember to specify the SPARSECONDATA option
in the PROC NETFLOW statement. With the sparse method of specifying constraint
information, the names of arc and nonarc variables do not have to be valid SAS
variable names.

A sparse format CONDATA= data set for the oil industry example in the
“Introductory Example” section on page 329 is displayed in the following code.

title ’Setting Up Condata = Cond2 for PROC NETFLOW’;
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values “–type–” and “–rhs–” are the default
values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of
constraints (con3 and con4) is zero. The third to last observation has the value
“–type–” for the COLUMN list variable. The –ROW1 variable value is con1, and
the –COEF1– variable has the value 1. This indicates that the constraint con1 is
greater than or equal to type (because the value 1 is greater than zero). Similarly,
the data in the second to last observation’s –ROW2 and –COEF2 variables indicate
that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable is as follows:

title ’Setting Up Condata = Cond3 for PROC NETFLOW’;
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .

Input Data Sets � 401

. con3 . con4 . eq

. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last two ob-
servations in the data set cond3, for instance), the constraints named in the ROW list
variables all have the constraint type indicated by the value in the TYPE list variable.
It is for this type of observation that you are allowed more ROW list variables than
COEF list variables. If corresponding COEF list variables are not missing (for ex-
ample, the last observation in the data set cond3), these values are the rhs values of
those constraints. Therefore, you can specify both constraint type and rhs in the same
observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or
nonarc variable, the COEF list variable values are coefficient values for that arc or
nonarc variable in the constraints indicated in the corresponding ROW list variables.
If in this same observation, the TYPE list variable contains a constraint type, all
constraints named in the ROW list variables in that observation have this constraint
type (for example, the first observation in the data set cond3). Therefore, you can
specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from hav-
ing to include in the data that CON3 and CON4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented
in the ARCDATA= data set. Alternatively, you could have used the following input
data sets.

title3 ’Setting Up Arcdata = Arcd2 for PROC NETFLOW’;
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

402 � Chapter 5. The NETFLOW Procedure

title ’Setting Up Condata = Cond4 for PROC NETFLOW’;
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

The first observation in the cond4 data set defines con1 and con2 as greater than or
equal to (≥) constraints that both (by coincidence) have rhs values of -15. The second
observation defines the special row costrow as a cost row. When costrow is a ROW
list variable value, the associated COEF list variable value is interpreted as a cost or
objective function coefficient. PROC NETFLOW has to do less work if constraint
names and special rows are defined in observations near the top of a data set, but
this is not a strict requirement. The fourth to ninth observations contain constraint
coefficient data. Observations 7 and 9 have TYPE list variable values that indicate
that constraints con3 and con4 are equality constraints. The last five observations
contain lower flow bound data. Observations that have an arc or nonarc variable
name in the COLUMN list variable, a nonconstraint type TYPE list variable value,
and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.

Input Data Sets � 403

title ’Setting Up Condata = Cond5 for PROC NETFLOW’;
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

If you have data for a linear programming program that has an embedded network, the
steps required to change that data into a form that is acceptable by PROC NETFLOW
are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these
constraints (a submatrix of the LP’s constraint coefficient matrix) has only two
nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s sup-
plies and demands. Use this information to create a NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient
matrix. The arc is directed from the node associated with the row that has
the 1 element in it and directed toward to the node associated with the row
that has the −1 element in it. Set up an ARCDATA= data set that has two
SAS variables. This data set could resemble ARCDATA=arcd2. These will
eventually be the TAILNODE and HEADNODE list variables when PROC

404 � Chapter 5. The NETFLOW Procedure

NETFLOW is used. Each observation consists of the tail and head node of
each arc.

5. Remove from the data of the linear program all data concerning the nodal flow
conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably
resemble CONDATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse for-
mats. a1, b1, b2, b3 and c1 have as a –COLUMN– variable value either the name of
an arc (possibly in the form tail–head) or the name of a nonarc variable.

• If there is no TYPE list variable in the CONDATA= data set, the problem must
be constrained and there is no nonconstraint data in the CONDATA= data set.

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed
to make problem generation easier.

• If there are no ROW list variables in the data set, the problem has no constraints
and the information is nonconstraint data. There must be a TYPE list variable
and only one COEF list variable in this case. The COLUMN list variable has as
values the names of arcs or nonarc variables and must not have missing values
or special row names as values.

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

Input Data Sets � 405

• Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is of the form c4 or c5, and the –COEFx– values are miss-
ing, the constraint is assigned the type data specified in the –TYPE– variable.

• Using a TYPE list variable for arc and nonarc variable data implies the follow-
ing:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

Observations with form d1 to d5 can have ROW list variable values.
Observation d4 must have ROW list variable values. The ROW value is put
into the ROW name tree so that when dealing with observation d4 or d5,
the COEF list variable value is interpreted according to the type of ROW
list variable value. For example, the following three observations define the
–ROWx– variable values up–row, lo–row and co–row as being an upper
value bound row, lower value bound row, and cost row, respectively.

406 � Chapter 5. The NETFLOW Procedure

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC NETFLOW is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the
COLUMN list variable equals the value of the TYPEOBS= option or the de-
fault value –TYPE– , the TYPE list variable value is ignored.

NODEDATA= Data Set

See the “Getting Started” section on page 328 and the “Introductory Example” sec-
tion on page 329 for a description of this input data set.

Output Data Sets

The procedure determines the flow that should pass through each arc as well as the
value assigned to each nonarc variable. The goal is that the minimum flow bounds,
capacities, lower and upper value bounds, and side constraints are not violated. This
goal is reached when total cost incurred by such a flow pattern and value assignment
is feasible and optimal. The solution found must also conserve flow at each node.

The ARCOUT= data set contains a solution obtained when performing optimization
that does not consider any constraints. The NODEOUT= data set contains nodal
dual variable information for this type of solution. You can choose to have PROC
NETFLOW create the ARCOUT= data set and the NODEOUT= data set and save
the optimum of the network or the nodal dual variable values before any optimization
that considers the side constraints is performed.

If there are side constraints, the CONOUT= data set can be produced and contains
a solution obtained after performing optimization that considers constraints. The
DUALOUT= data set contains dual variable information for nodes and side con-
straints from the solution obtained after optimization that considers the constraints.
The CONOUT= data set and DUALOUT= data set can be used to save the constrained
optimal solution.

ARCOUT= and CONOUT= Data Sets

The ARCOUT= and CONOUT= data sets contain the same variables. Furthermore,
the variables in the output data sets depend on whether or not the problem has a
network component.

If the problem has a network component, the variables and their possible values in an
observation are as follows:

Output Data Sets � 407

–FROM– a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

–TO– a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

–COST– the cost of an arc or the objective function coefficient of a nonarc
variable

–CAPAC– the capacity of an arc or upper value bound of a nonarc variable
–LO– the lower flow bound of an arc or lower value bound of a nonarc

variable
–NAME– a name of an arc or nonarc variable
–SUPPLY– the supply of the tail node of the arc in the observation. This is

a missing value if an observation has information about a nonarc
variable.

–DEMAND– the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

–FLOW– the flow through the arc or value of the nonarc variable
–FCOST– flow cost, the product of –COST– and –FLOW–
–RCOST– the reduced cost of the arc or nonarc variable
–ANUMB– the number of the arc (positive) or nonarc variable (nonpositive);

used for warm starting PROC NETFLOW
–TNUMB– the number of the tail node in the network basis spanning tree;

used for warm starting PROC NETFLOW
–STATUS– the status of the arc or nonarc variable

If the problem does not have a network component, the variables and their possible
values in an observation are as follows:

–OBJFN– the objective function coefficient of a variable
–UPPERBD the upper value bound of a variable
–LOWERBD the lower value bound of a variable
–NAME– the name of a variable
–VALUE– the value of the variable
–FCOST– objective function value for that variable; the product of

–OBJFN– and –VALUE–

The variables present in the ARCDATA= data set are present in an ARCOUT= data
set or a CONOUT= data set. For example, if there is a variable called tail in the
ARCDATA= data set and you specified the SAS variable list

from tail;

then tail is a variable in the ARCOUT= and CONOUT= data sets instead of
–FROM– . Any ID list variables also appear in the ARCOUT= and CONOUT=
data sets.

408 � Chapter 5. The NETFLOW Procedure

NODEOUT= and DUALOUT= Data Sets

There are two types of observations in the NODEOUT= and DUALOUT= data sets.
One type of observation contains information about a node. These are called type N
observations. There is one such observation of this type for each node. The –NODE–
variable has a name of a node, and the –CON– variable values in these observations
are missing values.

The other type of observation contains information about constraints. These are
called the type C observations. There is one such observation for each constraint.
The –CON– variable has a name of a constraint, and the –NODE– variable values
in these observations are missing values.

Many of the variables in the NODEOUT= and DUALOUT= data sets contain in-
formation used to warm start PROC NETFLOW. The variables –NODE– , –SD– ,
–DUAL– , –VALUE– , –RHS– , –TYPE– , and –CON– contain information that
might be of interest to you.

The NODEOUT= and DUALOUT= data sets look similar, as the same variables are
in both. These variables and their values in an observation of each type are

–NODE– Type N: the node name
Type C: a missing value

–SD– Type N: the supply (positive) or demand (negative) of the node
Type C: a missing value

–DUAL– Type N: the dual variable value of the node in –NODE–
Type C: the dual variable value of the constraint named in
–CON–

–NNUMB– Type N: the number of the node named in –NODE–
Type C: the number of the constraint named in –CON–

–PRED– Type N: the predecessor in the network basis spanning tree of the
node named in –NODE–
Type C: the number of the node toward which the arc with num-
ber in –ARCID– is directed, or the constraint number associated
with the slack, surplus, or artificial variable basic in this row

–TRAV– Type N: the traversal thread label of the node named in
–NODE–
Type C: a missing value

–SCESS– Type N: the number of successors (including itself) in the net-
work basis spanning tree of the node named in –NODE–
Type C: a missing value

–ARCID– Type N: if –ARCID– is nonnegative, –ARCID– is the number
of the network basis spanning tree arc directed from the node
with number –PRED– to the node named in –NODE– . If
–ARCID– is negative, minus –ARCID– is the number of the
network basis spanning tree arc directed from the node named in
–NODE– to the node with number –PRED– .
Type C: if –ARCID– is positive, –ARCID– is the number of the
arc basic in a constraint row. If nonpositive, minus –ARCID– is
the number of the nonarc variable basic in a constraint row.

Case Sensitivity � 409

–FLOW– Type N: the flow minus the lower flow bound of the arc
–ARCID–
Type C: the flow minus lower flow bound of the arc –ARCID– or
value lower bound of the nonarc variable value minus –ARCID–

–FBQ– Type N: If –FBQ– is positive, then –FBQ– is the subscript in
arc length arrays of the first arc directed toward the node named
in –NODE– . PROC NETFLOW’s arc length arrays are sorted
so that data of arcs directed toward the same head node are to-
gether. If –FBQ– is negative, no arcs are directed toward the
node named in –NODE– . Arcs directed toward node i have
subscripts in the arc length arrays between observations FBQ(i)
and (FBQ(i + 1))−1, inclusive.
Type C: a missing value

–VALUE– Type N: a missing value
Type C: the lhs value (the sum of the products of coefficient and
flows or values) of the constraint named in –CON–

–RHS– Type N: a missing value
Type C: the rhs value of the constraint named in –CON–

–TYPE– Type N: a missing value
Type C: the type of the constraint named in –CON–

–CON– Type N: a missing value
Type C: the name of the constraint

If specified in variable lists, the variables in the input data sets are used instead
of some of the previous variables. These variables are specified in the NODE,
SUPDEM, RHS, TYPE, and ROW (if there is only one variable in the ROW list)
lists and are used instead of –NODE– , –SD– , –RHS– , –TYPE– , and –CON– ,
respectively.

Case Sensitivity

Whenever the NETFLOW procedure has to compare character strings, whether they
are node names, arc names, nonarc names, or constraint names, if the two strings
have different lengths, or on a character by character basis the character is different
or has different cases, PROC NETFLOW judges the character strings to be different.

Not only is this rule enforced when one or both character strings are obtained as
values of SAS variables in PROC NETFLOW’s input data sets, it also should be
obeyed if one or both character strings were originally SAS variable names, or were
obtained as the values of options or statements parsed to PROC NETFLOW. For
example, if the network has only one node that has supply capability, or if you are
solving a MAXFLOW or SHORTPATH problem, you can indicate that node using
the SOURCE= option. If you specify

proc netflow source=NotableNode

then PROC NETFLOW looks for a value of the TAILNODE list variable that is
NotableNode.

410 � Chapter 5. The NETFLOW Procedure

Version 6 of the SAS System converts text that makes up statements into uppercase.
The name of the node searched for would be NOTABLENODE, even if this was your
SAS code:

proc netflow source=NotableNode

If you want PROC NETFLOW to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software
Version 6 or have specified options validvarname=v6; using a later version, all NAME
list variable values in the ARCDATA= data set are uppercased. This is because the
SAS System has uppercased all SAS variable names, particularly those in the VAR
list of the CONDATA= data set.

Entities that contain blanks must be enclosed in single or double quotes.

See the “Cautions” section on page 364 for additional discussion of case sensitivity.

Loop Arcs

When using the primal simplex network algorithm, loop arcs (arcs directed toward
nodes from which they originate) are prohibited. Rather, introduce a dummy inter-
mediate node in loop arcs. For example, replace arc (A,A) with (A,B) and (B,A). B
is the name of a new node, and it must be distinct for each loop arc.

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC NETFLOW
checks to ensure there are no such arcs before proceeding with the optimization.
Introduce a new dummy intermediate node in multiple arcs. This node must be dis-
tinct for each multiple arc. For example, if some network has three arcs directed
from node A toward node B, then replace one of these three with arcs (A,C) and
(C,B) and replace another one with (A,D) and (D,B). C and D are new nodes added
to the network.

Pricing Strategies

The pricing strategy is the part of the simplex iteration that selects the nonbasic arc,
constraint slack, surplus, or nonarc variable that should have a flow or value change,
and perhaps enter the basis so that the total cost incurred is improved.

The pricing mechanism takes a large amount of computational effort, so it is impor-
tant to use the appropriate pricing strategy for the problem under study. As in other
large scale mathematical programming software, network codes can spend more than
half of their execution time performing simplex iterations in the pricing step. Some
compromise must be made between using a fast strategy and improving the quality of
the flow or value change candidate selection, although more simplex iterations may
need to be executed.

Pricing Strategies � 411

The configuration of the problem to be optimized has a great effect on the choice of
strategy. If a problem is to be run repeatedly, experimentation on that problem to
determine which scheme is best may prove worthwhile. The best pricing strategy to
use when there is a large amount of work to do (for example, when a cold start is
used) may not be appropriate when there is little work required to reach the optimum
(such as when a warm start is used). If paging is necessary, then a pricing strategy
that reduces the number of simplex iterations performed might have the advantage.
The proportion of time spent doing the pricing step during stage 1 optimization is
usually less than the same proportion when doing stage 2 optimization. Therefore,
it is more important to choose a stage 2 pricing strategy that causes fewer, but not
necessarily the fewest, iterations to be executed.

There are many similarities between the pricing strategies for optimizing an uncon-
strained problem (or when constraints are temporarily ignored) and the pricing mech-
anisms for optimizing considering constraints. To prevent repetition, options have a
suffix or embedded x . Replace x with 1 for optimization without constraint consid-
eration and 2 for optimization with constraint consideration.

There are three main types of pricing strategies:

• PRICETYPEx=NOQ

• PRICETYPEx=BLAND

• PRICETYPEx=Q

The pricing strategy that usually performs better than the others is PRICETYPEx=Q.
For this reason, PRICETYPEx=Q is the default.

PRICETYPEx=NOQ

PRICETYPEx=NOQ is the least complex pricing strategy, but it is nevertheless quite
efficient. In contrast to the specification of PRICETYPEx=Q, a candidate queue is
not set up.

The PxSCAN= option controls the amount of additional candidate selection work
done to find a better candidate after an eligible candidate has been found.

If PxSCAN=FIRST is specified, the search for candidates finishes when the first
eligible candidate is found, with this exception: if a node has more than one eligible
arc directed toward it, the best such arc is chosen.

If PxSCAN=BEST is specified, everything that is nonbasic is examined, and the best
candidate of all is chosen.

If PxSCAN=PARTIAL is specified, once an eligible candidate is found, the scan
continues for another PxNPARTIAL= cycles in the hope that during the additional
scan, a better candidate is found. Examining all nonbasic arcs directed toward a
single node is counted as only one cycle.

If PxSCAN=FIRST or PxSCAN=PARTIAL is specified, the scan for entering candi-
dates starts where the last iteration’s search left off. For example, if the last iteration’s
scan terminated after examining arcs that are directed toward the node with internal

412 � Chapter 5. The NETFLOW Procedure

number i, the next iteration’s scan starts by examining arcs directed toward the node
with internal number i+1. If i is the largest node number, next iterations scan begins
by scanning arcs directed toward node 1 (during stage 1) or scanning constraint slack
or surplus variables, if any, or nonarc variables, if any, (during stage 2). During stage
2, if the scan terminated after examining the slack or surplus of constraint i, next iter-
ations scan starts by examining the slack or surplus of the constraint with the internal
number greater than i that has such a logical variable. If the scan terminated after ex-
amining the nonarc variable i, the next iterations scan starts by examining the nonarc
variable with internal number i + 1, (or arcs directed to the node with the smallest
internal number if the nonarc variable with the greatest number has been examined).
This is termed a wraparound search.

PRICETYPEx=Q

If PRICETYPEx=Q, a queue is set up. Candidates currently on the queue are tested
at each iteration and either enter the basis or are removed from the queue. The size
of the queue can be specified by using the QSIZEx= option. The default value for
QSIZE1= is

QSIZE1=number of arcs/200
if (QSIZE1<24) QSIZE1=24
else if (QSIZE1>100) QSIZE1=100

The default value for QSIZE2= is

QSIZE2=(number of arcs+number of nonarc variables)/200
if (QSIZE2<24) QSIZE2=24
else if (QSIZE2>100) QSIZE2=100

controls the amount of additional candidate selection work done to find a better can-
didate after an eligible candidate has been found in the queue.

If you specify PxSCAN=BEST, the best eligible candidate found is removed from
the queue. It can sustain a flow or value change and possibly enter the basis.

If you specify PxSCAN=FIRST, the first eligible candidate found is removed from
the queue, and possibly sustains a flow or value change and enters the basis.

If you specify PxSCAN=PARTIAL, PxNPARTIAL= can then be specified as well.
After an eligible candidate has been found, PxNPARTIAL= more queue members are
examined and the best of the eligible candidates found is chosen.

When PxSCAN=FIRST or PxSCAN=PARTIAL, the scan of the queue is
wraparound. When the member last added to the queue has been examined, the scan
continues from the member that was first added to the queue.

When the queue is empty, or after QSIZEx= times REFRESHQx= iterations have
been executed since the queue was last refreshed, new candidates are found and put
onto the queue. Valid values for the REFRESHQx= options are greater than 0.0
and less than or equal to 1.0. The default for REFRESHQx is 0.75. If the scan
cannot find enough candidates to fill the queue, the procedure reduces the value of

Pricing Strategies � 413

QSIZEx=. If qfound is the number of candidates found, the new QSIZEx= value
is qfound + ((old QSIZEx − qfound) × REDUCEQSIZEx). Valid values of
the REDUCEQSIZEx= option are between 0.0 and 1.0, inclusive. The default for
REDUCEQSIZEx= is 1.0.

The QxFILLSCAN= option controls the amount of additional candidate selection
work performed to find better candidates to put into the queue after the queue has
been filled.

If you specify QxFILLSCAN=FIRST, the nonbasic arcs, and during stage 2 opti-
mization, nonbasic constraint slack and surplus variables, and nonbasic nonarc vari-
ables are scanned; the scan stops when the queue is filled. If a node has more
than one eligible arc directed toward it, the best such arc is put onto the queue.
QxFILLSCAN=FIRST is the default.

If QxFILLSCAN=BEST is specified, everything that is nonbasic is scanned and the
best eligible candidates are used to fill the queue.

If QxFILLSCAN=PARTIAL is specified, after the queue is full, the scan contin-
ues for another QxFILLNPARTIAL= cycles in the hope that during the additional
scan, better candidates are found to replace other candidates previously put onto
the queue. QxFILLNPARTIAL=10 is the default. If QxFILLSCAN=FIRST or
QxFILLSCAN=PARTIAL, the scan starts where the previous iteration ended; that
is, it is wraparound.

In the following section, dual variables and reduced costs are explained. These help
PROC NETFLOW determine whether an arc, constraint slack, surplus, or nonarc
variable should have a flow or value change. P2SCAN=ANY and the DUALFREQ=
option can be specified to control stage 2 pricing, and how often dual variables and
reduced costs are calculated.

What usually happens when PRICETYPE2=Q is specified is that before the first it-
eration, the queue is filled with nonbasic variables that are eligible to enter the basis.
At the start of each iteration, a candidate on the queue is examined and its reduced
cost is calculated to ensure that it is still eligible to enter the basis. If it is ineligible
to enter the basis, it is removed from the queue and another candidate on the queue
is examined, until a candidate on the queue is found that can enter the basis. When
this happens, a minor iteration occurs. If there are no candidates left on the queue,
or several iterations have been performed since the queue was refreshed, new non-
basic variables that are eligible to enter the basis are found and are placed on the
queue. When this occurs, the iteration is termed a major iteration. Dual variables are
calculated or maintained every iteration.

During most optimizations, if a variable is put onto the queue during a major itera-
tion, it usually remains eligible to enter the basis in later minor iterations. Specifying
P2SCAN=ANY indicates that PROC NETFLOW should choose any candidate on
the queue and use that as the entering variable. Reduced costs are not calculated.
It is simply hoped that the chosen candidate is eligible. Sometimes, a candidate on
the queue is chosen that has become ineligible and the optimization takes “a step
backward” rather than “a step forward” toward the optimum. However, the disad-
vantages of incurring an occasional step backwards and the possible danger of never

414 � Chapter 5. The NETFLOW Procedure

converging to the optimum are offset by not having to calculate reduced costs and,
more importantly, not having to maintain dual variable values. The calculation of
dual variables is one of two large linear equation systems that must be solved each
iteration in the simplex iteration.

If P2SCAN=ANY is specified, dual variables are calculated after DUALFREQ= it-
erations have been performed since they were last calculated. These are used to cal-
culate the reduced costs of all the candidates currently on the queue. Any candidate
found to be ineligible to enter the basis is removed from the queue. DUALFREQ=4
is the default.

Once again, the practice of not maintaining correct dual variable values is dangerous
because backward steps are allowed, so the optimization is not guaranteed to con-
verge to the optimum. However, if PROC NETFLOW does not run forever, it can
find the optimum much more quickly than when the P2SCAN= option is not ANY.
Before concluding that any solution is optimal, PROC NETFLOW calculates true
dual variable values and reduced costs and uses these to verify that the optimum is
really at hand.

Whether P2SCAN=ANY is specified or not, dual variables are always calculated at
the start of major iterations.

PRICETYPEx=BLAND

PRICETYPEx=BLAND is equivalent to specifying in the PROC NETFLOW or
RESET statement all three options PRICETYPEx=NOQ, PxSCAN=FIRST, and
LRATIOx, and the scans are not wraparound. Bland (1977) proved that this pivot
rule prevents the simplex algorithm from cycling. However, because the pivots con-
centrate on the lower indexed arcs, constraint slack, surplus, and nonarc variables, op-
timization with PRICETYPEx=BLAND can make the optimization execute slowly.

Dual Variables, Reduced Costs, and Status

During optimization, dual variables and reduced costs are used to determine whether
an arc, constraint slack, surplus, or nonarc variable should have a flow or value
change. The ARCOUT= and CONOUT= data sets each have a variable called
–RCOST– that contains reduced cost values. In the CONOUT= data set, this vari-
able also has the reduced costs of nonarc variables. For an arc, the reduced cost is
the amount that would be added to the total cost if that arc were made to convey one
more unit of flow. For a nonarc variable, the reduced cost is the amount that would
be added to the total cost if the value currently assigned to that nonarc variable were
increased by one.

During the optimization of a minimization problem, if an arc has a positive reduced
cost, PROC NETFLOW takes steps to decrease the flow through it. If an arc has a
negative reduced cost, PROC NETFLOW takes steps to increase the flow through it.
At optimality, the reduced costs of arcs with flow at their respective lower bounds are
nonnegative; otherwise, the optimizer would have tried to increase the flow, thereby
decreasing the total cost. The –STATUS– of each such nonbasic arc is LOWERBD
NONBASIC. The reduced costs of arcs with flow at capacity are nonpositive. The

The Working Basis Matrix � 415

–STATUS– of each such nonbasic arc is UPPERBD NONBASIC. Even though it
would decrease total cost, the optimizer cannot increase the flows through such arcs
because of the capacity bound. Similar arguments apply for nonarc variables.

The reduced cost is also the amount that would be subtracted from the total cost if
that arc was made to convey one less unit of flow. Similarly, a reduced cost is the
amount subtracted from the total cost if the value currently assigned to that nonarc
variable is decreased by one.

The dual variables and reduced costs can be used to detect whether multiple optimal
solutions exist. A zero reduced cost of a nonbasic arc indicates the existence of
multiple optimal solutions. A zero reduced cost indicates, by definition, that the flow
through such arcs can be changed with zero change to the total cost. (Basic arcs and
basic nonarc variables technically have zero reduced costs. A missing value is used
for these so that reduced costs of nonbasic arcs and nonbasic nonarc variables that
are zero are highlighted.)

The range over which costs can vary before the present solution becomes nonoptimal
can be determined through examination of the reduced costs. For any nonbasic arc
with assigned flow equal to its lower bound, the amount by which the cost must be
decreased before it becomes profitable for this arc to convey additional flow is the
value of its reduced cost. The cost reduction necessary for a nonbasic arc currently
assigned capacity flow to undergo a worthwhile flow decrease is the absolute value
of its reduced cost. In both cases, this minimum cost reduction changes the reduced
cost to zero. Any further reduction promotes a possible basis change.

The reduced cost of an arc (t, h) is rct,h = ct,h − πt + πh where πi is the dual value
for node i and ct,h is the cost of the arc with tail node t and head node h.

If the problem has side constraints and arc (t, h) has nonzero lhs coefficients, then
the following term must be subtracted from rct,h :

∑
i

condual iHi,(t,h)

where condual i is the dual variable of constraint i, and Hi,(t,h) is the coefficient of
arc (t, h) in constraint i.

If dn is the objective function coefficient of nonarc variable n, the reduced cost is
rcn = dn −

∑
i condual iQi,n, where Qi,n is the coefficient of nonarc variable n in

constraint i.

The Working Basis Matrix

Let T be the basis matrix of NPSC. The following partitioning is done:

T =
[

A B
C D

]

416 � Chapter 5. The NETFLOW Procedure

where

• n is the number of nodes.

• k is the number of side constraints.

• A (n × n) is the network component of the basis. Most of the columns of
this matrix are columns of the problem’s node-arc incidence matrix. The arcs
associated with columns of A, called key basic variables or key arcs, form a
spanning tree. The data structures of the spanning tree of this submatrix of the
basis T enable the computations involving T and the manner in which T is
updated to be very efficient, especially those dealing with A (or A−1).

• C (k × n) are the key arcs’ side constraint coefficient columns.

• B (n× k) are the node-arc incidence matrix columns of the nontree arcs. The
columns of B having nonzero elements are associated with basic nonspanning
tree arcs.

• D (k × k) are the constraint coefficient columns of nonkey basic variables.
Nonkey basic variables not only include nontree basic arcs but also basic slack,
surplus, artificial, or nonarc variables.

It is more convenient to factor T by block triangular matrices P and M , such that
P = TM. The matrices P and M are used instead of T because they are less
burdensome to work with. You can perform block substitution when solving the
simplex iteration linear systems of equations

P =
[

A 0
C Dw

]

M =
[

I −A−1B
0 I

]
where Dw = D−CA−1B and is called the working basis matrix.

To perform block substitution, you need the tree data structure of the A matrix, and
also the C, B, and Dw matrices. Because the C matrix consists of columns of the
constraint coefficient matrix, the maintenance of C from iteration to iteration simply
entails changing information specifying which columns of the constraint coefficient
matrix compose C.

The A−1B matrix is usually very sparse. Fortunately, the information in A−1B can
be initialized easily using the tree structures. In most iterations, only one column is
replaced by a new one. The values of the elements of the new column may already
be known from preceding steps of the simplex iteration.

The working basis matrix is the submatrix that presents the most computational com-
plexity. However, PROC NETFLOW usually can use classical simplex pivot tech-
niques. In many iterations, only one column of Dw changes. Sometimes it is not
necessary to update Dw or its inverse at all.

Reasons for Infeasibility � 417

If INVD–2D is specified in the PROC NETFLOW statement, only one row and one
column may need to be changed in the D−1

w before the next simplex iteration can be-
gin. The new contents of the changed column are already known. The new elements
of the row that changes are influenced by the contents of a row of A−1B that is very
sparse.

If INVD–2D is not specified in the PROC NETFLOW statement, the Bartels-Golub
update can be used to update the LU factors of Dw. The choice must be made
whether to perform a series of updates (how many depends on the number of nonzeros
in a row of A−1B), or refactorization.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities
and lower flow bounds are permitted. If both arc capacities and lower flow bounds
are negative, the lower flow bound must be at least as negative as the capacity. An arc
(A,B) that has a negative flow of −f units can be interpreted as an arc that conveys f
units of flow from node B to node A.

The upper and lower value bounds of a nonarc variable can be equal. Negative upper
and lower bounds are permitted. If both are negative, the lower bound must be at least
as negative as the upper bound.

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC NETFLOW more than once, PROC
NETFLOW checks for consistency so that no conflict exists concerning the data val-
ues. For example, if the cost of some arc is seen to be one value and as more data are
read, the cost of the same arc is seen to be another value, PROC NETFLOW issues
an error message on the SAS log and stops. There are two exceptions:

• The bounds of arcs and nonarc variables are made as tight as possible. If several
different values are given for the lower flow bound of an arc, the greatest value
is used. If several different values are given for the lower bound of a nonarc
variable, the greatest value is used. If several different values are given for the
capacity of an arc, the smallest value is used. If several different values are
given for the upper bound of a nonarc variable, the smallest value is used.

• Several values can be given for inequality constraint right-hand sides. For a
particular constraint, the lowest rhs value is used for the rhs if the constraint is
of less than or equal to type. For a particular constraint, the greatest rhs value
is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility

Before optimization commences, PROC NETFLOW tests to ensure that the problem
is not infeasible by ensuring that, with respect to supplies, demands, and arc flow
bounds, flow conservation can be obeyed at each node.

418 � Chapter 5. The NETFLOW Procedure

• Let IN be the sum of lower flow bounds of arcs directed toward a node plus
the node’s supply. Let OUT be the sum of capacities of arcs directed from that
node plus the node’s demand. If IN exceeds OUT, not enough flow can leave
the node.

• Let OUT be the sum of lower flow bounds of arcs directed from a node plus the
node’s demand. Let IN be the total capacity of arcs directed toward the node
plus the node’s supply. If OUT exceeds IN, not enough flow can arrive at the
node.

Reasons why a network problem can be infeasible are similar to those previously
mentioned but apply to a set of nodes rather than for an individual node.

Consider the network illustrated in Figure 5.13.

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \
/ \

/ \
NODE_3 NODE_4

supply=100 \ / demand=120
\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

Figure 5.13. An infeasible network

The demand of NODE–4 is 120. That can never be satisfied because the maximal
flow through arcs (NODE–1, NODE–2) and (NODE–5, NODE–6) is 117. More
specifically, the implicit supply of NODE–2 and NODE–6 is only 117, which is
insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE–1, NODE–2) and (NODE–5,
NODE–6) are greater than the flow that can reach the tail nodes of these arcs, that,
by coincidence, is the total supply of the network. The implicit demand of nodes
NODE–1 and NODE–5 is 110, which is greater than the amount of flow that can
reach these nodes.

When PROC NETFLOW detects that the problem is infeasible, it indicates why the
solution, obtained after optimization stopped, is infeasible. It can report that the so-
lution cannot obey flow conservation constraints and which nodes these conservation
constraints are associated with. If applicable, the side constraints that the solution
violates are also output.

If stage 1 optimization obtains a feasible solution to the network, stage 2 optimiza-
tion can determine that the problem is infeasible and note that some flow conservation
constraint is broken while all side constraints are satisfied. The infeasibility messages
issued by PROC NETFLOW pertain to why the current solution is infeasible, not

Missing S Supply and Missing D Demand Values � 419

quite the same as the reasons why the problem is infeasible. However, the messages
highlight areas in the problem where the infeasibility can be tracked down. If the
problem is infeasible, make PROC NETFLOW do a stage 1 unconstrained optimiza-
tion by removing the CONDATA= data set specification in the PROC NETFLOW
statement. If a feasible network solution is found, then the side constraints are the
source of the infeasibility in the problem.

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node but you
want the node to supply or demand the optimal number of flow units. To indicate
that a node is such a supply node, use a missing S value in the SUPPLY list variable
in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set.

Suppose the oil example in the “Introductory Example” section on page 329 is
changed so that crude oil can be obtained from either the Middle East or U.S.A.
in any amounts. You should specify that the node “middle east” is a supply node, but
you do not want to stipulate that it supplies 100 units, as before. The node “u.s.a.”
should also remain a supply node, but you do not want to stipulate that it supplies 80
units. You must specify that these nodes have missing S supply capabilities.

title ’Oil Industry Example’;
title3 ’Crude Oil can come from anywhere’;
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The following PROC NETFLOW run uses the same ARCDATA= and CONDATA=
data sets used in the “Introductory Example” section on page 329.

proc netflow
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

print some_arcs(’middle east’ ’u.s.a.’,_all_)/short;

420 � Chapter 5. The NETFLOW Procedure

proc print;
sum _fcost_;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 9 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side

constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with

constraints= 3 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

The PRINT statement reports the arcs directed away from the supply nodes, shown
in Figure 5.14. The amount of crude obtained from the Middle East and U.S.A. is 30
and 150 units, respectively.

Oil Industry Example

Crude Oil can come from anywhere

The NETFLOW Procedure

N _from_ _to_ _cost_ _capac_ _lo_ _name_

1 middle east refinery 1 63 95 20 m_e_ref1
2 u.s.a. refinery 1 55 99999999 0
3 middle east refinery 2 81 80 10 m_e_ref2
4 u.s.a. refinery 2 49 99999999 0

N _FLOW_

1 20
2 125
3 10
4 25

Figure 5.14. Print statement, Oil example, missing S supplies.

Missing S Supply and Missing D Demand Values � 421

The CONOUT= data set is shown in Figure 5.15.

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_

1 refinery 1 r1 200 175 50 thruput1 .
2 refinery 2 r2 220 100 35 thruput2 .
3 r1 ref1 diesel 0 75 0 .
4 r1 ref1 gas 0 140 0 r1_gas .
5 r2 ref2 diesel 0 75 0 .
6 r2 ref2 gas 0 100 0 r2_gas .
7 middle east refinery 1 63 95 20 m_e_ref1 S
8 u.s.a. refinery 1 55 99999999 0 S
9 middle east refinery 2 81 80 10 m_e_ref2 S

10 u.s.a. refinery 2 49 99999999 0 S
11 ref1 diesel servstn1 diesel 18 99999999 0 .
12 ref2 diesel servstn1 diesel 36 99999999 0 .
13 ref1 gas servstn1 gas 15 70 0 .
14 ref2 gas servstn1 gas 17 35 5 .
15 ref1 diesel servstn2 diesel 17 99999999 0 .
16 ref2 diesel servstn2 diesel 23 99999999 0 .
17 ref1 gas servstn2 gas 22 60 0 .
18 ref2 gas servstn2 gas 31 99999999 0 .

Obs _DEMAND_ _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 . 145.00 29000.00 . 7 2 KEY_ARC BASIC
2 . 35.00 7700.00 17 8 3 LOWERBD NONBASIC
3 . 36.25 0.00 . 10 5 KEY_ARC BASIC
4 . 108.75 0.00 . 9 5 KEY_ARC BASIC
5 . 8.75 0.00 . 12 6 KEY_ARC BASIC
6 . 26.25 0.00 . 11 6 KEY_ARC BASIC
7 . 20.00 1260.00 8 2 1 LOWERBD NONBASIC
8 . 125.00 6875.00 . 3 4 KEY_ARC BASIC
9 . 10.00 810.00 32 4 1 LOWERBD NONBASIC
10 . 25.00 1225.00 . 5 4 KEY_ARC BASIC
11 30 30.00 540.00 . 17 8 KEY_ARC BASIC
12 30 0.00 0.00 12 18 10 LOWERBD NONBASIC
13 95 68.75 1031.25 . 13 7 KEY_ARC BASIC
14 95 26.25 446.25 . 14 9 NONKEY ARC BASIC
15 15 6.25 106.25 . 19 8 KEY_ARC BASIC
16 15 8.75 201.25 . 20 10 KEY_ARC BASIC
17 40 40.00 880.00 . 15 7 KEY_ARC BASIC
18 40 0.00 0.00 7 16 9 LOWERBD NONBASIC

========
50075.00

Figure 5.15. Missing S SUPDEM values in NODEDATA

The optimal supplies of nodes “middle east” and “u.s.a.” are 30 and 150 units, re-
spectively. For this example, the same optimal solution is obtained if these nodes had
supplies less than these values (each supplies 1 unit, for example) and the THRUNET
option was specified in the PROC NETFLOW statement. With the THRUNET option
active, when total supply exceeds total demand, the specified nonmissing demand val-
ues are the lowest number of flow units that must be absorbed by the corresponding
node. This is demonstrated in the following PROC NETFLOW run. The missing S is
most useful when nodes are to supply optimal numbers of flow units and it turns out
that for some nodes, the optimal supply is 0.

422 � Chapter 5. The NETFLOW Procedure

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc netflow
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

print some_arcs(’middle east’ ’u.s.a.’,_all_)/short;

proc print;
sum _fcost_;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0
as in the last run.

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 13 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side

constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with

constraints= 3 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

The PRINT statement and the CONDATA= data set are very similar; the supplies of
the supply nodes are 1, not missing S. Otherwise, the solutions are identical.

If total supply exceeds total demand, any missing S values are ignored. If total de-
mand exceeds total supply, any missing D values are ignored.

Balancing Total Supply and Total Demand � 423

Balancing Total Supply and Total Demand
When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC NETFLOW
can add an extra node (called the excess node) to the problem and set the demand at
that node equal to the difference between total supply and total demand. There are
three ways that this excess node can be joined to the network. All three ways entail
PROC NETFLOW generating a set of arcs (henceforth referred to as the generated
arcs) that are directed toward the excess node. The total amount of flow in generated
arcs equals the demand of the excess node. The generated arcs originate from one of
three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs origi-
nate from are all demand nodes, even those demand nodes with unspecified demand
capability. You indicate that a node has unspecified demand capability by using a
missing D value instead of an actual value for demand data (discussed in the “Missing
S Supply and Missing D Demand Values” section on page 419). The value specified
as the demand of a demand node is in effect a lower bound of the number of flow
units that node can actually demand. For missing D demand nodes, this lower bound
is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are demand nodes with unspecified
demand capability (nodes with missing D demand).

If there are missing D demand nodes, these nodes are the set of nodes that generated
arcs originate from. The value specified as the demand of a demand node, if not
missing D, is the number of flow units that node actually demands. For a missing D
demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate
from are the set of supply nodes. The value specified as the supply of a supply node is
in effect an upper bound of the number of flow units that node can actually supply. For
missing S supply nodes (discussed in the “Missing S Supply and Missing D Demand
Values” section on page 419), this upper bound is zero, so missing S nodes when total
supply exceeds total demand are transshipment nodes, nodes that neither supply nor
demand flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC NETFLOW
can add an extra node (called the excess node) to the problem and set the supply at
that node equal to the difference between total demand and total supply. There are
three ways that this excess node can be joined to the network. All three ways entail
PROC NETFLOW generating a set of arcs (henceforth referred to as the generated
arcs) that originate from the excess node. The total amount of flow in generated arcs
equals the supply of the excess node. The generated arcs are directed toward one of
three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are
directed toward are all supply nodes, even those supply nodes with unspecified supply

424 � Chapter 5. The NETFLOW Procedure

capability. You indicate that a node has unspecified supply capability by using a
missing S value instead of an actual value for supply data (discussed in the “Missing
S Supply and Missing D Demand Values” section on page 419). The value specified
as the supply of a supply node is in effect a lower bound of the number of flow units
that node can actually supply. For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether there are supply nodes with unspecified
supply capability (nodes with missing S supply).

If there are missing S supply nodes, these nodes are the set of nodes that generated
arcs are directed toward. The value specified as the supply of a supply node, if not
missing S, is the number of flow units that node actually supplys. For a missing S
supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed
toward are the set of demand nodes. The value specified as the demand of a demand
node is in effect an upper bound of the number of flow units that node can actually
demand. For missing D demand nodes, (discussed in the “Missing S Supply and
Missing D Demand Values” section on page 419), this upper bound is zero, so missing
D nodes when total supply is less than total demand are transshipment nodes, nodes
that neither supply nor demand flow.

Warm Starts

Using a warm start can increase the overall speed of PROC NETFLOW when it is
used repetitively on problems with similar structure. It is most beneficial when a
solution of a previous optimization is close to the optimum of the same network
with some of its parameters, for example, arc costs, changed. Whether a problem is
changed or not, a nonoptimal solution resulting from a previous optimization can be
used to restart optimization, thereby saving PROC NETFLOW from having to repeat
work to reach the warm start already available.

Time also is saved in the data structure initialization part of the NETFLOW proce-
dure’s execution. Information about the previous optimal solution, particularly con-
cerning the size of the problem, a description of the basis spanning tree structure,
and what is basic in constraint rows, is known. Information about which nonbasic
arcs have capacity flow and which nonbasic nonarc variables are at their respective
upper bounds also makes up part of the warm start. The procedure can place arc data
into the internal arc length arrays in precisely defined locations, in order of ascending
head node internal number. It is not necessary to have multiple passes through the
data because literals such as node, nonarc variable, arc, constraint, and special row
names are defined and meaning is attached to each. This saves a considerable amount
of memory as well. None of the pre-optimization feasibility checks need be repeated.

Warm starts also are useful if you want to determine the effect of arcs being closed
to carrying flow. The costs of these arcs are set high enough to ensure that the next
optimal solution never has flow through them. Similarly, the effect of opening arcs
can be determined by changing the cost of such arcs from an extreme to a reasonable
value.

Warm Starts � 425

Specify the FUTURE1 or FUTURE2 option to ensure that additional data about a
solution to be used as a warm start are output to output data sets. If the FUTURE1
option is specified, extra observations with information on what is to be the warm start
are set up for the NODEOUT= and ARCOUT= data sets. The warm start solution
in these data sets is a solution obtained after optimization neglecting side constraints.
Any cost list variable value in the ARCOUT= data set (and, if there are side con-
straints, any constraint data in the CONDATA= data set) can be changed before the
solution is used as a warm start in a subsequent PROC NETFLOW run. Any nonarc
variable data in the CONDATA= data set can be changed at this time as well. New
nonarc variables not present in the original problem when the warm start was gen-
erated can also be added to the CONDATA= data set before the problem is warm
started.

If the FUTURE2 option is specified, extra variables containing information on what
will be the warm start solution are set up for the DUALOUT= and CONOUT= data
sets. The warm start solution in these data sets is obtained after optimization that
considers side constraints has been performed. Part of the warm start is concerned
with the constraint part of the basis. Only cost list variable values in the CONOUT=
data set can be changed before the solution is used as a warm start in a subsequent
PROC NETFLOW run.

If a primal simplex optimization is to use a warm start, the WARM option must be
specified in the PROC NETFLOW statement. Otherwise, the primal simplex network
algorithm processes the data for a cold start and the extra information is not used.

The ARCDATA= data set is either the ARCOUT= data set from a previous run of
PROC NETFLOW with the FUTURE1 option specified (if an unconstrained warm
start is used) or the CONOUT= data set from a previous run of PROC NETFLOW
with the FUTURE2 option specified (if the warm start was obtained after optimization
that considers side constraints was used).

The NODEDATA= data set is the NODEOUT= data set from a previous run of PROC
NETFLOW with FUTURE1 specified if an unconstrained warm start is being used.
Otherwise, the DUALIN= is the DUALOUT= data sets from a previous run of PROC
NETFLOW with FUTURE2 specified, if the warm start was obtained after optimiza-
tion that considers side constraints was used.

You never need to alter the NODEOUT= data set or the DUALOUT= data set between
the time they are generated and when they are used as a warm start. The results
would be unpredictable if incorrect changes were made to these data sets, or if a
NODEDATA= or a DUALIN= data set were used with an ARCDATA= data set of a
different solution.

It is possible, and often useful, to specify WARM and either FUTURE1 or
FUTURE2, or both, in the same PROC NETFLOW statement if a new warm start
is to be generated from the present warm start.

The extent of the changes allowed to a primal simplex warm start between the time
it is generated and when it is used depends on whether the warm start describes an
unconstrained or constrained solution. The following list describes parts of a con-
strained or an unconstrained warm start that can be altered:

426 � Chapter 5. The NETFLOW Procedure

• COST list variable values

• the value of an arc’s capacity, as long as the new capacity value is not less than
the lower flow bound or the flow through the arc

• any nonarc variable information, in an unconstrained warm start

• for an unconstrained warm start, any side constraint data

The changes that can be made in constraint data for a constrained warm start are more
restrictive than those for an unconstrained warm start. The lhs coefficients, type, and
rhs value of a constraint can be changed as long as that constraint’s slack, surplus, or
artificial variable is basic. The constraint name cannot be changed.

Example of a Warm Start

The following sample SAS session demonstrates how the warm start facilities are
used to obtain optimal solutions to an unconstrained network where some arc cost
changes occur or optimization is halted before the optimum is found.

/* data already in data sets node0 and arc0 */
proc netflow

nodedata=node0 /* if supply_demand information */
/* is in this SAS data set */

arcdata=arc0;
/* variable list specifications go here */
/* assume that they are not necessary here */
/* if they are, they must be included in */
/* all the PROC NETFLOW calls that follow */

reset
future1
nodeout=node2 /* nodeout and arcout are necessary */

/* when FUTURE1 is used */
arcout=arc1;

proc print
data=arc1; /* display the optimal solution */

proc fsedit
data=arc1; /* change some arc costs */

data arc2;
reset arc1;

oldflow=_flow_;
oldfc=_fcost_;

/* make duplicates of the flow and flowcost*/
/* variables. If a id list was explicitly */
/* specified, add oldflow and oldfc to this*/
/* list so that they appear in subsequently*/
/* created arcout= data sets */

The following PROC NETFLOW uses the warm start created previously, performs
250 stage 2 iterations and saves that solution, which (as FUTURE1, ARCOUT=, and
NODEOUT= are specified) can be used as a warm start in another PROC NETFLOW
run.

Warm Starts � 427

proc netflow
warm
nodedata=node2
arcdata=arc2;

reset
maxit1=250
future1;

run;
save
nodeout=savelib.node3
arcout=savelib.arc3;

/* optimization halted because 250 iterations */
/* were performed to resume optimization, */
/* possibly in another session (the output */
/* data sets were saved in a SAS library */
/* called savelib) */

Using the latest warm start, PROC NETFLOW is re-invoked to find the optimal so-
lution.

proc netflow
warm
nodedata=savelib.node3
arcdata=savelib.arc3;

reset
future1
nodeout=node4
arcout=arc4;

run;

If this problem has constraints with data in a data set called CON0, then in each of the
previous PROC NETFLOW statements, specify CONDATA=CON0. Between PROC
NETFLOW runs, you can change constraint data. In each of the RESET statements,
you could specify the CONOUT= data set to save the last (possibly optimal) solution
reached by the optimizer if it reaches stage 2. You could specify FUTURE2 and the
DUALOUT= data set to generate a constrained warm start.

proc netflow
warm
nodedata=node4
arcdata=arc4
condata=con0;

reset
maxit2=125 /* optional, here as a reason why */

/* optimum will not be obtained */
scratch /* optional, but warm start might be good */

/* enough to start stage 2 optimization */
future2

run;
/* optimization halted after 125 stage 2 iterations */

save dualout=dual1 conout=conout1;

428 � Chapter 5. The NETFLOW Procedure

Stage 2 optimization halted before optimum was reached. Now you can make cost
and nonarc variable objective function coefficient changes. Then to restart optimiza-
tion, use

proc netflow
warm
condata=con0

/* NB. NETFLOW reads constraint data only */
dualin=dual1
arcdata=con1;

reset
future2
dualout=dual2
conout=con2;

run;

How to Make the Data Read of PROC NETFLOW More
Efficient

This section contains information useful when you want to solve large constrained
network problems. However, much of this information is also useful if you have a
large linear programming problem. All of the options described in this section that
are not directly applicable to networks (options such as ARCS–ONLY–ARCDATA,
ARC–SINGLE–OBS, NNODES=, and NARCS=) can be specified to improve the
speed at which LP data is read.

Large Constrained Network Problems

Many of the models presented to PROC NETFLOW are enormous. They can be con-
sidered large by linear programming standards; problems with thousands of variables
and constraints. When dealing with side constrained network programming prob-
lems, models can have not only a linear programming component of that magnitude,
but also a larger, possibly much larger, network component.

The majority of a network problem’s decision variables are arcs. Like an LP decision
variable, an arc has an objective function coefficient, upper and lower value bounds,
and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite
similar to an LP variable and places the same memory demands on optimization
software as an LP variable. But a typical network model has many more arcs and
nonarc variables than the typical LP model has variables. And arcs have tail and head
nodes. Storing and processing node names require huge amounts of memory. To
make matters worse, node names occupy memory at times when a large amount of
other data should reside in memory as well.

While memory requirements are lower for a model with embedded network compo-
nent compared with the equivalent LP once optimization starts, the same is usually
not true during the data read. Even though nodal flow conservation constraints in
the LP should not be specified in the constrained network formulation, the memory
requirements to read the latter are greater because each arc (unlike an LP variable)
originates at one node, and is directed toward another.

How to Make the Data Read of PROC NETFLOW More Efficient � 429

Paging

PROC NETFLOW has facilities to read data when the available memory is insuffi-
cient to store all the data at once. PROC NETFLOW does this by allocating memory
for different purposes, for example, to store an array or receive data read from an
input SAS data set. After that memory has filled, the information is sent to disk and
PROC NETFLOW can resume filling that memory with new information. Often, in-
formation must be retrieved from disk so that data previously read can be examined or
checked for consistency. Sometimes, to prevent any data from being lost, or to retain
any changes made to the information in memory, the contents of the memory must
be sent to disk before other information can take its place. This process of swapping
information to and from disk is called paging. Paging can be very time-consuming,
so it is crucial to minimize the amount of paging performed.

There are several steps you can take to make PROC NETFLOW read the data of
network and linear programming models more efficiently, particularly when memory
is scarce and the amount of paging must be reduced. PROC NETFLOW will then be
able to tackle large problems in what can be considered reasonable amounts of time.

The Order of Observations

PROC NETFLOW is quite flexible in the ways data can be supplied to it. Data can
be given by any reasonable means. PROC NETFLOW has convenient defaults that
can save you work when generating the data. There can be several ways to supply
the same piece of data, and some pieces of data can be given more than once. PROC
NETFLOW reads everything, then merges it all together. However, this flexibility
and convenience come at a price; PROC NETFLOW may not assume the data has
a characteristic that, if possessed by the data, could save time and memory during
the data read. There are several options that indicate the data has some exploitable
characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= or
CONDATA= data set, or both. Every time it is given in ARCDATA, a check is made
to ensure that the new value is the same as any corresponding value read in a previous
observation of ARCDATA. Every time it is given in CONDATA, a check is made to
ensure that the new value is the same as the value read in a previous observation of
CONDATA, or previously in ARCDATA. It would save PROC NETFLOW time if it
knew that arc cost data would be encountered only once while reading ARCDATA, so
performing the time-consuming check for consistency would not be necessary. Also,
if you indicate that CONDATA contains data for constraints only, PROC NETFLOW
will not expect any arc information, so memory will not be allocated to receive such
data while reading CONDATA. This memory is used for other purposes and this
might lead to a reduction in paging. If applicable, use the ARC–SINGLE–OBS or the
CON–SINGLE–OBS option, or both, and the NON–REPLIC=COEFS specification
to improve how ARCDATA and CONDATA are read.

PROC NETFLOW allows the observations in input data sets to be in any order.
However, major time savings can result if you are prepared to order observations
in particular ways. Time spent by the SORT procedure to sort the input data sets,
particularly the CONDATA= data set, may be more than made up for when PROC

430 � Chapter 5. The NETFLOW Procedure

NETFLOW reads them, because PROC NETFLOW has in memory information pos-
sibly used when the previous observation was read. PROC NETFLOW can assume a
piece of data is either similar to that of the last observation read or is new. In the first
case, valuable information such as an arc or a nonarc variable number or a constraint
number is retained from the previous observation. In the last case, checking the data
with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain
data for the same arc or nonarc variable or the same row pays off. PROC NETFLOW
establishes whether an observation being read is similar to the observation just read.

Practically, several input data sets for PROC NETFLOW might have this character-
istic, because it is natural for data for each constraint to be grouped together (dense
format of CONDATA) or data for each column to be grouped together (sparse format
of CONDATA). If data for each arc or nonarc is spread over more than one observa-
tion of the ARCDATA= data set, it is natural to group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA= data
set, CONDATA= data set, or both are grouped in a way that can be exploited during
data read.

Time is saved if the type data for each row appears near the top of the CONDATA=
data set, especially if it has the sparse format. Otherwise, when reading an observa-
tion, if PROC NETFLOW does not know if a row is a constraint or special row, the
data is set aside. Once the data set has been completely read, PROC NETFLOW must
reprocess the data it set aside. By then, it knows the type of each constraint or row
or, if its type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC NETFLOW to make better utilization of available memory, you
can now specify options that indicate the approximate size of the model. PROC
NETFLOW then knows what to expect. For example, if you indicate that the problem
has no nonarc variables, PROC NETFLOW will not allocate memory to store nonarc
data. That memory is utilized better for other purposes. Memory is often allocated
to receive or store data of some type. If you indicate that the model does not have
much data of a particular type, the memory that would otherwise have been allocated
to receive or store that data can be used to receive or store data of another type.

• NNODES= approximate number of nodes

• NARCS= approximate number of arcs

• NNAS= approximate number of nonarc variables or LP variables

• NCONS= approximate number of constraints

• NCOEFS= approximate number of constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do,
the better. If you do not specify some or all of these options, PROC NETFLOW

How to Make the Data Read of PROC NETFLOW More Efficient � 431

guesses the size of the problem by using what it already knows about the model.
Sometimes PROC NETFLOW guesses the size of the model by looking at the number
of observations in the ARCDATA= and CONDATA= data sets. However, PROC
NETFLOW uses rough rules of thumb; that typical models are proportioned in certain
ways (for example, if there are constraints, then arcs and nonarcs usually have 5
constraint coefficients). If your model has an unusual shape or structure, you are
encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overesti-
mate the values. For example, if you specify NARCS=10000 but the model has 10100
arcs, when dealing with the last 100 arcs, PROC NETFLOW might have to page out
data for 10000 arcs each time one of the last arcs must be dealt with. Memory could
have been allocated for all 10100 arcs without affecting (much) the rest of the data
read, so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC
NETFLOW does not know it. When PROC NETFLOW knows the “real” value,
that value is used instead of Nxxxx= .

When PROC NETFLOW is given a constrained solution warm start, PROC
NETFLOW knows from the warm start information all model size parameters, so
Nxxxx= options are not used. When an unconstrained warm start is used and the
SAME–NONARC–DATA is specified, PROC NETFLOW knows the number of
nonarc variables, so that is used instead of the value of the NNAS= option.

ARCS–ONLY–ARCDATA indicates that data for only arcs are in the ARCDATA=
data set. Memory would not be wasted to receive data for nonarc and LP variables.

Use the memory usage parameters:

• The BYTES= option specifies the size of PROC NETFLOW main working
memory in number of bytes.

• The MAXARRAYBYTES= option specifies the maximum number of bytes
that an array can occupy.

• The MEMREP option indicates that memory usage report is to be displayed on
the SAS log.

Specifying the BYTES= parameter is particularly important. Specify as large a
number as possible, but not such a large number of bytes that will cause PROC
NETFLOW (rather, the SAS System running underneath PROC NETFLOW) to run
out of memory. Use the MAXARRAYBYTES= option if the model is very large or
“disproportionate.” Try increasing or decreasing the MAXARRAYBYTES= option.
Limiting the amount of memory for use by big arrays is good if they would take
up too much memory to the detriment of smaller arrays, buffers, and other things
that require memory. However, too small a value of the MAXARRAYBYTES= op-
tion might cause PROC NETFLOW to page a big array excessively. Never specify a
value for the MAXARRAYBYTES= option that is smaller than the main node length
array. PROC NETFLOW reports the size of this array on the SAS log if you spec-
ify the MEMREP option. The MAXARRAYBYTES= option influences paging not

432 � Chapter 5. The NETFLOW Procedure

only in the data read, but also during optimization. It is often better if optimization is
performed as fast as possible, even if the read is made slower as a consequence.

Use Defaults to Reduce the Amount of Data

Use as much as possible the parameters that specify default values. For example, if
there are several arcs with the same cost value c, use DEFCOST=c for arcs that have
that cost. Use missing values in the COST variable in ARCDATA instead of c. PROC
NETFLOW ignores missing values, but must read, store, and process nonmissing
values, even if they are equal to a default option or could have been equal to a default
parameter had it been specified. Sometimes, using default parameters makes the need
for some SAS variables in the ARCDATA= and CONDATA= data sets no longer
necessary, or reduces the quantity of data that must be read. The default options are

• DEFCOST= default cost of arcs, objective function of nonarc variables or LP
variables

• DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc
variables or LP variables

• DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or
LP variables

• DEFCONTYPE=LE DEFCONTYPE= <=
DEFCONTYPE=EQ DEFCONTYPE= =
DEFCONTYPE=GE DEFCONTYPE= >= (default constraint type)

The default options themselves have defaults. For example, you do not need to spec-
ify DEFCOST=0 in the PROC NETFLOW statement. You should still have missing
values in the COST variable in ARCDATA for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

• SOURCE= name of single node that has supply capability

• SUPPLY= the amount of supply at SOURCE

• SINK= name of single node that demands flow

• DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the de-
fault. The only time it might be practical to specify a zero rhs is in observations of
CONDATA read early so that PROC NETFLOW can infer that a row is a constraint.
This could prevent coefficient data from being put aside because PROC NETFLOW
did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the
longest node name, longest arc name, and longest constraint name to 8 bytes or less.
The longer a name, the more bytes must be stored and compared with other names.

How to Make the Data Read of PROC NETFLOW More Efficient � 433

If an arc has no constraint coefficients, do not give it a name in the NAME list variable
in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC NETFLOW can have a default name for each arc. If an arc is directed
from node tailname toward node headname, the default name for that arc is
tailname–headname. If you do not want PROC NETFLOW to use these default arc
names, specify NAMECTRL=1. Otherwise, PROC NETFLOW must use memory
for storing node names and these node names must be searched often.

If you want to use the default tailname–headname name, that is, NAMECTRL=2 or
NAMECTRL=3, do not use underscores in node names. If a CONDATA has a dense
format and has a variable in the VAR list A–B–C–D, or if the value A–B–C–D is
encountered as a value of the COLUMN list variable when reading CONDATA that
has the sparse format, PROC NETFLOW first looks for a node named A. If it finds it,
it looks for a node called B–C–D. It then looks for a node with the name A–B and
possibly a node with name C–D. A search for a node named A–B–C and possibly
a node named D is done. Underscores could have caused PROC NETFLOW to look
unnecessarily for nonexistant nodes. Searching for node names can be expensive,
and the amount of memory to store node names large. It might be better to assign the
arc name A–B–C–D directly to an arc by having that value as a NAME list variable
value for that arc in ARCDATA and specify NAMECTRL=1.

Other Ways to Speed-up Data Reads

Use warm starts as much as possible.

• WARM indicates that the input SAS data sets contain a warm start.

The data read of a warm start is much faster than a cold start data read. The model size
is known before the read starts. The observations of the NODEDATA= or DUALIN=
data sets have observations ordered by node name and constraint name. Information
is stored directly in the data structures used by PROC NETFLOW. For a cold start,
much of preprocessing must be performed before the information can be stored in the
same way. And using a warm start can greatly reduce the time PROC NETFLOW
spends doing optimization.

• SAME–NONARC–DATA is an option that excludes data from processing.

This option indicates that the warm start nonarc variable data in ARCDATA is read
and any nonarc variable data in CONDATA is to be ignored. Use this option if it is ap-
plicable, or when CONDATA has no nonarc variable data, or such data is duplicated
in ARCDATA. ARCDATA is always read before CONDATA.

Arcs and nonarc variables can have associated with them values or quantities that
have no bearing with the optimization. This information is given in ARCDATA in the
ID list variables. For example, in a distribution problem, information such as truck
number and driver’s name can be associated with each arc. This is useful when a
solution is saved in an output SAS data set. However, PROC NETFLOW needs to re-
serve memory to process this information when data is being read. For large problems

434 � Chapter 5. The NETFLOW Procedure

when memory is scarce, it might be better to remove ancillary data from ARCDATA.
After PROC NETFLOW runs, use SAS software to merge this information into the
output data sets that contain the optimal solution.

Macro Variable –ORNETFL

The NETFLOW procedure always creates and initializes a SAS macro called
–ORNETFL . After each PROC NETFLOW run, you can examine this macro by
specifying %put –ORNETFL; and see whether PROC NETFLOW ran correctly or
what error or difficulty it encountered.

The value of –ORNETFL consists of four parts:

• ERROR–STATUS, indicating the existence or absence of any errors

• OPT–STATUS, the stage of the optimization, or what solution has been found

• OBJECTIVE=objective, the total cost or profit of the current solution. If PROC
NETFLOW is solving a maximal flow problem, MAXFLOW=maxflow, the
amount of the current solution’s maximal flow, will follow. If solving a mini-
mal flow problem (MAXFLOW and MAXIMIZE specified at the same time),
MINFLOW=minflow, the amount of the current solution’s mimimal flow, will
follow instead.

• SOLUTION, describing the nature of the current solution

The value of –ORNETFL is of the form

ERROR–STATUS=charstr OPT–STATUS=charstr OBJECTIVE=objective
SOLUTION=charstr

Nontrailing blank characters that are unnecessary are removed. Ideally, at the end a
PROC NETFLOW run, –ORNETFL would have the value

ERROR_STATUS=OK OPT_STATUS=OPTIMAL OBJECTIVE=x
SOLUTION=OPTIMAL

Table 5.6 lists alternate values for the –ORNETFL value parts.

Macro Variable –ORNETFL � 435

Table 5.6. PROC NETFLOW –ORNETFL macro values

Keyword Value Meaning

ERROR–STATUS OK no errors
MEMORY memory request failed
IO input-output error
DATA error in the data
BUG error with PROC NETFLOW
SEMANTIC semantic error
SYNTAX syntax error
UNKNOWN unknown error

OPT–STATUS START no optimization has been done
STAGE–1 performing stage 1 optimization
UNCON–OPT reached unconstrained optimum,

but there are side constraints
STAGE–2 performing stage 2 optimization
OPTIMAL reached the optimum

OBJECTIVE objective total cost or profit
MINFLOW minflow if MAXFLOW MAXIMIZE is specified
MAXFLOW maxflow if MAXFLOW is specified
SOLUTION NONOPTIMAL more optimization is required

STAGE–2–REQUIRED reached unconstrained optimum,
stage 2 optimization is required

OPTIMAL have determined the optimum
INFEASIBLE infeasible; no solution exists

436 � Chapter 5. The NETFLOW Procedure

The Interior Point Algorithm

Introduction

The simplex algorithm, developed shortly after World War II, was the main method
used to solve linear programming problems. Over the last fifteen years, the interior
point algorithm has been developed to also solve linear programming problems. From
the start it showed great theoretical promise, and considerable research in the area
resulted in practical implementations that performed competitively with the simplex
algorithm. More recently, interior point algorithms have evolved to become superior
to the simplex algorithm, in general, especially when the problems are large.

The interior point algorithm has been implemented in PROC NETFLOW. This al-
gorithm can be used to solve linear programs as well as network problems. When
PROC NETFLOW detects that the problem has no network component, it automati-
cally invokes the interior point algorithm to solve the problem. The data required by
PROC NETFLOW for a linear program resembles the data for nonarc variables and
constraints for constrained network problems.

If PROC NETFLOW does detect a network component to the problem (the problem
has arcs), you must specify the option INTPOINT in the PROC NETFLOW state-
ment if you want to use the interior point algorithm. PROC NETFLOW first converts
the constrained network model into an equivalent linear programming formulation,
solves that, then converts the LP back to the network model. These models remain
conceptually easy since they are based on network diagrams that represent the prob-
lem pictorially. This procedure accepts the network specification in a format that is
particularly suited to networks. This not only simplifies problem description but also
aids in the interpretation of the solution. The conversions to and from the equivalent
LP are done “behind the scenes.”

There are many variations of interior point algorithms. PROC NETFLOW uses the
Primal-Dual with Predictor-Corrector algorithm. This algorithm and related theory
can be found in the texts by Roos, Terlaky, and Vial (1997), Wright (1996), and Ye
(1996).

The remainder of this section is split into two parts. In the first part, how you use
PROC NETFLOW’s interior point algorithm to solve network problems is described.
In the second part, using PROC NETFLOW to solve linear programming problems
(its interior point algorithm must be used) is described. Both parts are organized
similarly:

• The way data are supplied to PROC NETFLOW is outlined in a “Getting
Started” subsection.

• An “Introductory Example” is solved to demonstrate how the data is set up,
how PROC NETFLOW is used to compute the solution, and how the optimum
is saved.

• More sophisticated ways to use PROC NETFLOW interactively are detailed in
an “Interactivity” subsection.

Network Models: Interior Point Algorithm � 437

• A “Functional Summary” lists the statements and options that can be used to
control PROC NETFLOW. Of particular interest are the options used to control
the optimizer, and the way the solution is saved into output data sets or is
displayed.

The Linear Programs section has additional subsections:

• “Mathematical Description of LP”

• “Interior Point Algorithmic Details,” a brief theory of the algorithm containing
information about the options that can be specified to control the interior point
algorithm.

• “Syntax” subsection, which is a subset of the syntax when the simplex algo-
rithm is used. Gone are the statements and lists relevant only when the simplex
algorithm is used.

Network Models: Interior Point Algorithm

The data required by PROC NETFLOW for a network problem is identical whether
the simplex algorithm or the interior point algorithm is used as the optimizer. By
default, the simplex algorithm is used for problems with a network component. To
use the interior point algorithm, all you need to do is specify the INTPOINT option
in the PROC NETFLOW statement. You can optionally specify some options that
control the interior point algorithm, of which there are only a few. The interior point
algorithm is remarkably robust when reasonable choices are made during the design
and implementation, so it does not need to be tuned to the same extent as the simplex
algorithm.

When to Use INTPOINT: Network Models: Interior Point Algorithm

PROC NETFLOW uses the primal simplex network algorithm and the primal parti-
tioning algorithm to solve constrained network problems. These algorithms are fast,
since they take advantage of algebraic properties of the network component of the
problem.

If the network component of the model is large compared to the side constraint com-
ponent, PROC NETFLOW’s optimizer can store what would otherwise be a large
matrix as a spanning tree computer data structure. Computations involving the span-
ning tree data structure can be performed much faster than those using matrices. Only
the nonnetwork part of the problem, hopefully quite small, needs to be manipulated
by PROC NETFLOW as matrices.

In contrast, LP optimizers must contend with matrices that can be large for large
problems. Arithmetic operations on matrices often accumulate rounding errors that
cause difficulties for the algorithm. So in addition to the performance improvements,
network optimization is generally more numerically stable than LP optimization.

The nodal flow conservation constraints do not need to be specified in the network
model. They are implied by the network structure. However, flow conservation con-
straints do make up the data for the equivalent LP model. If you have an LP that is

438 � Chapter 5. The NETFLOW Procedure

small after the flow conservation constraints are removed, that problem is a definite
candidate for solution by PROC NETFLOW’s specialized simplex method.

However, some constrained network problems are solved more quickly by the interior
point algorithm than the network optimizer in PROC NETFLOW. Usually, they have
a large number of side constraints or nonarc variables. These models are more like
LPs than network problems. The network component of the problem is so small
that PROC NETFLOW’s network simplex method cannot recoup the effort to exploit
that component rather than treat the whole problem as an LP. If this is the case, it
is worthwhile to get PROC NETFLOW to convert a constrained network problem to
the equivalent LP and use its interior point algorithm. This conversion must be done
before any optimization has been performed (specify the INTPOINT option in the
PROC NETFLOW statement).

Even though some network problems are better solved by converting them to an LP,
the input data and the output solution are more conveniently maintained as networks.
You retain the advantages of casting problems as networks: ease of problem gener-
ation and expansion when more detail is required. The model and optimal solutions
are easy to understand, as a network can be drawn.

Getting Started: Network Models: Interior Point Algorithm

To solve network programming problems with side constraints using PROC
NETFLOW, you save a representation of the network and the side constraints in three
SAS data sets. These data sets are then passed to PROC NETFLOW for solution.
There are various forms that a problem’s data can take. You can use any one or a
combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the prob-
lem. Usually these are arcs, but there can be data related to nonarc variables in
the ARCDATA= data set as well. If there are no arcs, this is a linear programming
problem.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s lower flow bound,
capacity, and name. These data are associated with the matrix F and the vectors c, l,
and u in problem (NPSC).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions. Do not explicitly specify these flow conservation con-
straints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectors d, m, and v in problem (NPSC).
Data for an arc or nonarc variable can be given in more than one observation.

Network Models: Interior Point Algorithm � 439

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices H and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc or nonarc variable is identified in this data set by its name. If you specify an
arc’s name in the ARCDATA= data set, then this name is used to associate data in
the CONDATA= data set with that arc. Each arc also has a default name that is the
name of the tail and head node of the arc concatenated together and separated by an
underscore character; tail–head, for example.

If you use the dense side constraint input format and want to use the default arc names,
these arc names are names of SAS variables in the VAR list of the CONDATA= data
set.

If you use the sparse side constraint input format (described later as well) and want
to use the default arc names, these arc names are values of the COLUMN list SAS
variable of the CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two
stages. In the preliminary (zeroth) stage, the data are read from the NODEDATA=
data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is
performed. The model is converted into an equivalent linear program.

In the next stage, the linear program is preprocessed. This is optional but highly
recommended. Preprocessing analyzes the model and tries to determine before opti-
mization whether variables can be “fixed” to their optimal values. Knowing that, the
model can be modified and these variables dropped out. It can be determined that
some constraints are redundant. Sometimes, preprocessing succeeds in reducing the
size of the problem, thereby making the subsequent optimization easier and faster.

The optimal solution to the linear program is then found. The linear program is con-
verted back to the original constrained network problem, and the optimum for this is
derived from the optimum of the equivalent linear program. If the problem was pre-
processed, the model is now post-processed, where fixed variables are reintroduced.
The solution can be saved in the CONOUT= data set. This data set is also named in
the PROC NETFLOW, RESET, and SAVE statements.

The interior point algorithm cannot efficiently be warm started, so options such as
FUTURE1 and FUTURE2 options are irrelevant.

Introductory Example: Network Models: Interior Point Algorithm

Consider the following transshipment problem for an oil company in the
“Introductory Example” section on page 329. Recall that crude oil is shipped
to refineries where it is processed into gasoline and diesel fuel. The gasoline and
diesel fuel are then distributed to service stations. At each stage there are shipping,

440 � Chapter 5. The NETFLOW Procedure

processing, and distribution costs. Also, there are lower flow bounds and capacities.
In addition, there are side constraints to model crude mix stipulations, and model the
limitations on the amount of Middle Eastern crude that can be processed by each
refinery and the conversion proportions of crude to gasoline and diesel fuel. The
network diagram is reproduced in Figure 5.16.

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 5.16. Oil Industry Example

To solve this problem with PROC NETFLOW, a representation of the model is saved
in three SAS data sets that are identical to the data sets supplied to PROC NETFLOW
when the simplex algorithm was used.

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC NETFLOW as follows:

proc netflow
intpoint /* <<<--- Interior Point used */
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

Network Models: Interior Point Algorithm � 441

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent Linear

Programming problem solved by the Interior Point
algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: Number of variables= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 5.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 11 constraints from the

problem.
NOTE: The preprocessor eliminated 25 constraint coefficients

from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to the

problem to handle unrestricted variables, variables that
are split, and constraint slack or surplus variables.

NOTE: There are 13 nonzero elements in A * A transpose.
NOTE: Of the 7 rows and columns, 2 are sparse.
NOTE: There are 6 nonzero superdiagonal elements in the

sparse rows of the factored A * A transpose. This
includes fill-in.

NOTE: There are 2 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Bound feasibility attained by iteration 1.
NOTE: Dual feasibility attained by iteration 1.
NOTE: Constraint feasibility attained by iteration 2.
NOTE: The Primal-Dual Predictor-Corrector Interior Point

algorithm performed 7 iterations.
NOTE: Objective= 50875.01279.
NOTE: The data set WORK.SOLUTION has 18 observations and

10 variables.

The first set of messages provide statistics on the size of the equivalent linear pro-
gramming problem. The number of variables may not equal the number of arcs if the
problem has nonarc variables. This example has none. To convert a network to an
equivalent LP problem, a flow conservation constraint must be created for each node
(including an excess or bypass node, if required). This explains why the number of
equality side constraints and the number of constraint coefficients change when the

442 � Chapter 5. The NETFLOW Procedure

interior point algorithm is used.

If the preprocessor was successful in decreasing the problem size, some messages
will report how well it did. In this example, the model size was cut in half!

The following set of messages describe aspects of the interior point algorithm. Of par-
ticular interest are those concerned with the Cholesky factorization of AAT where A
is the coefficient matrix of the final LP. It is crucial to preorder the rows and columns
of this matrix to prevent fill-in and reduce the number of row operations to undertake
the factorization. See the “Interior Point Algorithmic Details” section on page 448
for more explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets you specify. For this example,
the solution is saved in the SOLUTION data set. It can be displayed with PROC
PRINT as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ ;
sum _fcost_;
title3 ’Constrained Optimum’;
run;

Constrained Optimum

_ _
_ S D _

_ _ c _ U E _ F
f c a n P M F C
r _ o p _ a P A L O

O o t s a l m L N O S
b m o t c o e Y D W T
s _ _ _ _ _ _ _ _ _ _

1 refinery 1 r1 200 175 50 thruput1 . . 145.000 28999.98
2 refinery 2 r2 220 100 35 thruput2 . . 35.000 7700.02
3 r1 ref1 diesel 0 75 0 . . 36.250 0.00
4 r1 ref1 gas 0 140 0 r1_gas . . 108.750 0.00
5 r2 ref2 diesel 0 75 0 . . 8.750 0.00
6 r2 ref2 gas 0 100 0 r2_gas . . 26.250 0.00
7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.000 5039.99
8 u.s.a. refinery 1 55 99999999 0 80 . 65.000 3575.00
9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.000 1620.02
10 u.s.a. refinery 2 49 99999999 0 80 . 15.000 735.00
11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.000 540.00
12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.000 0.01
13 ref1 gas servstn1 gas 15 70 0 . 95 68.750 1031.26
14 ref2 gas servstn1 gas 17 35 5 . 95 26.250 446.24
15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.250 106.25
16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.750 201.24
17 ref1 gas servstn2 gas 22 60 0 . 40 40.000 879.99
18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.000 0.01

========
50875.01

Figure 5.17. conout=solution

Notice that, in the solution data set (Figure 5.17), the optimal flow through each arc
in the network is given in the variable named –FLOW– , and the cost of flow through
each arc is given in the variable –FCOST– . As expected, the miminal total cost of

Network Models: Interior Point Algorithm � 443

the solution found by the interior point algorithm is equal to miminal total cost of the
solution found by the simplex algorithm. In this example, the solutions are the same
(within several significant digits), but sometimes the solutions can be different.

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

80

100

15

80

20

65

35

145

8.75

26.25

36.25

108.75
68.75

8.75

30

40 26.25

6.25

−95

−30

−40

−15

Figure 5.18. Oil Industry Solution

Interactivity: Network Models: Interior Point Algorithm

PROC NETFLOW can be used interactively. You begin by giving the PROC
NETFLOW statement with INTPOINT specified, and you must specify the
ARCDATA= data set. The CONDATA= data set must also be specified if the
problem has side constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named
–TAIL– that has tail nodes of arcs as values), it may not be necessary to have many
or any variable lists.

So far, this is the same as when the simplex algorithm is used, except the INTPOINT
option is specified in the PROC NETFLOW statement. The PRINT, QUIT, SAVE,
SHOW, RESET, and RUN statements follow and can be listed in any order. The
QUIT statements can be used only once. The others can be used as many times as
needed.

The CONOPT and PIVOT statements are not relevant to the interior point algorithm
and should not be used.

444 � Chapter 5. The NETFLOW Procedure

Use the RESET or SAVE statement to change the name of the output data set. There is
only one output data set, the CONOUT= data set. With the RESET statement, you can
also indicate the reasons why optimization should stop (for example, you can indicate
the maximum number of iterations that can be performed). PROC NETFLOW then
has a chance to either execute the next statement, or, if the next statement is one
that PROC NETFLOW does not recognize (the next PROC or DATA step in the
SAS session), do any allowed optimization and finish. If no new statement has been
submitted, you are prompted for one. Some options of the RESET statement enable
you to control aspects of the interior point algorithm. Specifying certain values for
these options can reduce the time it takes to solve a problem. Note that any of the
RESET options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs
until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has
options that allow you to name the output data set; information about the current so-
lution is put in this output data set. Use the SHOW statement if you want to examine
the values of options of other statements. Information about the amount of optimiza-
tion that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement makes PROC NETFLOW display parts of the problem. The
way the PRINT statements are specified are identical whether the interior point algo-
rithm or the simplex algorithm is used, however there are minor differences in what
is displayed for each arc, nonarc variable or constraint coefficient.

PRINT ARCS produces information on all arcs. PRINT SOME–ARCS limits this
output to a subset of arcs. There are similar PRINT statements for nonarc variables
and constraints:

PRINT NONARCS;
PRINT SOME_NONARCS;
PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON–ARCS enables you to limit constraint information that is obtained to
members of a set of arcs and that have nonzero constraint coefficients in a set of con-
straints. PRINT CON–NONARCS is the corresponding statement for nonarc vari-
ables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
intpoint /* use the Interior Point algorithm */
arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do the optimization */

Network Models: Interior Point Algorithm � 445

print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default settings for
everything, then the following statement is all you need.

proc netflow intpoint arcdata= data set ;

Functional Summary: Network Models, Interior Point Algorithm

The following table outlines the options available for the NETFLOW procedure when
the interior point algorithm is being used, classified by function.

Table 5.7. Functional Summary, Network Models

Description Statement Option

Input Data Set Options:
arcs input data set PROC NETFLOW ARCDATA=
nodes input data set PROC NETFLOW NODEDATA=
constraint input data set PROC NETFLOW CONDATA=

Output Data Set Option:
constrained solution data set PROC NETFLOW CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
default constraint type PROC NETFLOW DEFCONTYPE=
special COLUMN variable value PROC NETFLOW TYPEOBS=
special COLUMN variable value PROC NETFLOW RHSOBS=
used to interpret arc and nonarc variable names PROC NETFLOW NAMECTRL=
no new nonarc variables PROC NETFLOW SAME–NONARC–DATA
no nonarc data in ARCDATA PROC NETFLOW ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC NETFLOW ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC NETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC NETFLOW NON–REPLIC=
data is grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC NETFLOW NNODES=
approximate number of arcs PROC NETFLOW NARCS=
approximate number of nonarc variables PROC NETFLOW NNAS=
approximate number of coefficients PROC NETFLOW NCOEFS=
approximate number of constraints PROC NETFLOW NCONS=

Network Options:
default arc cost PROC NETFLOW DEFCOST=
default arc capacity PROC NETFLOW DEFCAPACITY=

446 � Chapter 5. The NETFLOW Procedure

Description Statement Option

default arc lower flow bound PROC NETFLOW DEFMINFLOW=
network’s only supply node PROC NETFLOW SOURCE=
SOURCE’s supply capability PROC NETFLOW SUPPLY=
network’s only demand node PROC NETFLOW SINK=
SINK’s demand PROC NETFLOW DEMAND=
convey excess supply/demand through network PROC NETFLOW THRUNET
find maximal flow between SOURCE and SINK PROC NETFLOW MAXFLOW
cost of bypass arc for MAXFLOW problem PROC NETFLOW BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC NETFLOW SHORTPATH

Memory Control Options:
issue memory usage messages to SAS log PROC NETFLOW MEMREP
number of bytes to use for main memory PROC NETFLOW BYTES=
proportion of memory for arrays PROC NETFLOW COREFACTOR=
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Interior Point Algorithm Options:
use interior point algorithm PROC NETFLOW INTPOINT
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=
write optimization time to SAS log RESET OPTIM–TIMER

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=

Network Models: Interior Point Algorithm � 447

Description Statement Option

stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=
stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

PRINT Statement Options:
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints associ-
ated with some arcs

PRINT CON–ARCS

display information for some constraints associ-
ated with some nonarc variables

PRINT CON–NONARCS

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS

Miscellaneous Options:
infinity value PROC NETFLOW INFINITY=
scale constraint row, nonarc variable column co-
efficients, or both

PROC NETFLOW SCALE=

maximization instead of minimization PROC NETFLOW MAXIMIZE

448 � Chapter 5. The NETFLOW Procedure

Linear Programming Models: Interior Point Algorithm

By default, the interior point algorithm is used for problems without a network com-
ponent, that is, a linear programming problem. You do not need to specify the
INTPOINT option in the PROC NETFLOW statement (although you will do no harm
if you do).

Data for a linear programming problem resembles the data for side constraints and
nonarc variables supplied to PROC NETFLOW when solving a constrained network
problem. It is also very similar to the data required by the LP procedure.

Mathematical Description of LP

If the network component of NPSC is removed, the result is the mathematical descrip-
tion of the linear programming problem. If an LP has g variables, and k constraints,
then the formal statement of the problem solved by PROC NETFLOW is

minimize dT z
subject to Qz {≥,=,≤} r

m ≤ z ≤ v

where

• d is the g × 1 objective function coefficient vector

• z is the g × 1 variable value vector

• Q is the k × g constraint coefficient matrix for variables, where Qi,j is the
coefficient of variable j in the ith constraint

• r is the k × 1 side constraint right-hand-side vector

• m is the g × 1 variable value lower bound vector

• v is the g × 1 variable value upper bound vector

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

minimize cT x
subject to Ax = b

x ≥ 0

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed
c, x, and A respectively, as these symbols are by convention used more, the problem
to be solved is different from the original because of preprocessing, and there has
been a change of primal variable to transform the LP into one whose variables have
zero lower bounds. To simplify the algebra here, assume that variables have infinite
bounds, and constraints are equalities. (Interior point algorithms do efficiently handle
finite bounds, and it is easy to introduce primal slack variables to change inequalities
into equalities.) The problem has n variables; i is a variable number, k is an iteration
number, and if used as a subscript or superscript it denotes “of iteration k”.

Linear Programming Models: Interior Point Algorithm � 449

There exists an equivalent problem, the dual problem, stated as

maximize bT y
subject to AT y + s = c

s ≥ 0

where y are dual variables, and s are dual constraint slacks.

The interior point algorithm solves the system of equations to satisfy the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

Ax = b

AT y + s = c

xT s = 0

x ≥ 0

s ≥ 0

These are the conditions for feasibility, with the complementarity condition xT s = 0
added. Complementarity forces the optimal objectives of the primal and dual to be
equal, cT xopt = bT yopt, as

0 = xT
optsopt = sT

optxopt = (c−AT yopt)T xopt =

cT xopt − yT
opt(Axopt) = cT xopt − bT yopt

Before the optimum is reached, a solution (x, y, s) may not satisfy the KKT condi-
tions:

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s 6= 0.

• Complementarity may not be satisfied, xT s = cT x − bT y 6= 0. This is called
the duality gap.

The interior point algorithm works by using Newton’s method to find a direction to
move (∆xk,∆yk,∆sk) from the current solution (xk, yk, sk) toward a better solu-
tion:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where α is the step length and is assigned a value as large as possible but ≤ 1.0 and
not so large that an xk+1

i or sk+1
i is “too close” to zero. The direction in which to

move is found using the following:

450 � Chapter 5. The NETFLOW Procedure

A∆xk = −infeasc

AT ∆yk + ∆sk = −infeasd

Sk∆xk + Xk∆sk = −XkSke

where S = diag(s), X = diag(x), and e is a vector with all elements equal to 1.

To greatly improve performance, the third equation is changed to

Sk∆xk + Xk∆sk = −XkSke + σkµke

where µk = 1/nXkSke, the average complementarity, and 0 ≤ σk ≤ 1.

The effect now is to find a direction in which to move to reduce infeasibilities and
to reduce the complementarity toward zero, but if any xk

i s
k
i is too close to zero, it is

“nudged out” to µ, and any xk
i s

k
i that is larger than µ is “nudged into” µ. A σk close

to or equal to 0.0 biases a direction toward the optimum, and a value for σk close
to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xk

i s
k
i = µ. Such points make up the central path in the interior. Although centering

directions make little, if any, progress in reducing µ and moving the solution closer
to the optimum, substantial progress toward the optimum can usually be made in the
next iteration.

The central path is crucial to why the interior point algorithm is so efficient. This path
“guides” the algorithm to the optimum through the interior of feasible space. Without
centering, the algorithm would find a series of solutions near each other close to the
boundary of feasible space. Step lengths along the direction would be small and many
more iterations would probably be required to reach the optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algo-
rithm differ in the way α and σk are chosen and the direction adjusted during each
iteration. A wealth of information can be found in the texts by Roos, Terlaky, and
Vial (1997), Wright (1996), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point
algorithm. Assume the kth iteration is being performed, so the subscript and super-
script k can be dropped from the algebra:

A∆x = −infeasc

AT ∆y + ∆s = −infeasd

S∆x + X∆s = −XSe + σµe

Rearranging the second equation,

∆s = −infeasd −AT ∆y

Linear Programming Models: Interior Point Algorithm � 451

Rearranging the third equation,

∆s = X−1(−S∆x−XSe + σµe)

∆s = −Θ∆x− Se + X−1σµe

where Θ = SX−1.

Equating these two expressions for ∆s and rearranging,

−Θ∆x− Se + X−1σµe = −infeasd −AT ∆y

−Θ∆x = Se−X−1σµe− infeasd −AT ∆y

∆x = Θ−1(−Se + X−1σµe + infeasd + AT ∆y)

∆x = ρ + Θ−1AT ∆y

where ρ = Θ−1(−Se + X−1σµe + infeasd).

Substituting into the first direction equation,

A∆x = −infeasc

A(ρ + Θ−1AT ∆y) = −infeasc

AΘ−1AT ∆y = −infeasc −Aρ

∆y = (AΘ−1AT)−1(−infeasc −Aρ)

Θ, ρ, ∆y, ∆x and ∆s are calculated in that order. The hardest term is the factoriza-
tion of the (AΘ−1AT) matrix to determine ∆y. Fortunately, although the values of
(AΘ−1AT) are different for each iteration, the locations of the nonzeros in this ma-
trix remain fixed; the nonzero locations are the same as those in the matrix (AAT).
This is due to Θ−1 = XS−1 being a diagonal matrix, which has the effect of merely
scaling the columns of (AAT).

The fact that the nonzeros in AΘ−1AT have a constant pattern is exploited by all in-
terior point algorithms, and is a major reason for their excellent performance. Before
iterations begin, AAT is examined and its rows and columns are permuted so that
during Cholesky Factorization, the number of fill-ins created is smaller. A list of
arithmetic operations to perform the factorization is saved in concise computer data
structures (working with memory locations rather than actual numerical values). This
is called symbolic factorization. During iterations, when memory has been initialized
with numerical values, the operations list is performed sequentially. Determining
how the factorization should be performed again and again is unnecessary.

452 � Chapter 5. The NETFLOW Procedure

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC NETFLOW is a
Primal-Dual Predictor-Corrector interior point algorithm. At first, Newton’s method
is used to find a direction to move (∆xk

aff ,∆yk
aff ,∆sk

aff), but calculated as if µ is
zero, that is, a step with no centering, known as an affine step:

A∆xk
aff = −infeasc

AT ∆yk
aff + ∆sk

aff = −infeasd

Sk∆xk
aff + Xk∆sk

aff = −XkSke

(xk
aff , yk

aff , sk
aff) = (xk, yk, sk) + α(∆xk

aff ,∆yk
aff ,∆sk

aff)

where α is the step length as before.

Complementarity xT s is calculated at (xk
aff , yk

aff , sk
aff) and compared with the com-

plementarity at the starting point (xk, yk, sk), and the success of the affine step is
gauged. If the affine step was successful in reducing the complementarity by a sub-
stantial amount, the need for centering is not great, and the value of σk in the fol-
lowing linear system is assigned a value close to zero. If, however, the affine step
was unsuccessful, centering would be beneficial, and the value of σk in the following
linear system is assigned a value closer to 1.0. The value of σk is therefore adaptively
altered depending on the progress made toward the optimum.

A second linear system is solved to determine a centering vector (∆xk
c ,∆yk

c ,∆sk
c)

from (xk
aff , yk

aff , sk
aff) :

A∆xk
c = 0

AT ∆yk
c + ∆sk

c = 0

Sk∆xk
c + Xk∆sk

c = −XkSke

Sk∆xk + Xk∆sk = −Xk
aff Sk

aff e + σkµke

Then

(∆xk,∆yk,∆sk) = (∆xk
aff ,∆yk

aff ,∆sk
aff) + (∆xk

c ,∆yk
c ,∆sk

c)

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆xk,∆yk,∆sk)

where, as before, α is the step length assigned a value as large as possible but not so
large that an xk+1

i or sk+1
i is “too close” to zero.

Although the Predictor-Corrector variant entails solving two linear system instead
of one, fewer iterations are usually required to reach the optimum. The additional
overhead of calculating the second linear system is small, as the factorization of the
(AΘ−1AT) matrix has already been performed to solve the first linear system.

Linear Programming Models: Interior Point Algorithm � 453

Stopping Criteria

There are several reasons why PROC NETFLOW stops interior point optimization.
Optimization stops when

• the number of iteration equals MAXITERB=m

• the relative gap (duality gap/(cT x)) between the primal and dual objectives
is smaller than the value of the PDGAPTOL= option, and both the primal
and dual problems are feasible. Duality gap is defined in the “Interior Point
Algorithmic Details” section on page 448.

PROC NETFLOW may stop optimization when it detects that the rate at which the
complementarity or duality gap is being reduced is too slow, that is, there are consec-
utive iterations when the complementarity or duality gap has stopped getting smaller
and the infeasibilities, if nonzero, have also stalled. Sometimes, this indicates the
problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed
the usual stopping conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual
stopping criteria are inappropriate. PROC NETFLOW might stop prematurely. If it
were allowed to perform additional optimization, a better solution would be found.
On other occasions, PROC NETFLOW might do too much work. A sufficiently
good solution might be reached several iterations before PROC NETFLOW eventu-
ally stops.

You can see PROC NETFLOW’s progress to the optimum by specifying
PRINTLEVEL2=2. PROC NETFLOW will produce a table on the SAS log.
A row of the table is generated during each iteration and consists of values of
the affine step complementarity, the complementarity of the solution for the next
iteration, the total bound infeasibility

∑n
i=1 infeasbi (see the infeasb array in

the “Interior Point: Upper Bounds” section on page 456), the total constraint
infeasibility

∑m
i=1 infeasci (see the infeasc array in the “Interior Point Algorithmic

Details” section on page 448), and the total dual infeasibility
∑n

i=1 infeasdi (see the
infeasd array in the “Interior Point Algorithmic Details” section on page 448). As
optimization progresses, the values in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parame-
ters: the STOP–x and the KEEPGOING–x parameters. The STOP–x parame-
ters (STOP–C, STOP–DG, STOP–IB, STOP–IC, and STOP–ID) are used to test
for some condition at the beginning of each iteration and if met, to stop imme-
diately. The KEEPGOING–x parameters (KEEPGOING–C, KEEPGOING–DG,
KEEPGOING–IB, KEEPGOING–IC, and KEEPGOING–ID) are used when PROC
NETFLOW would ordinarily stop but does not if some conditions are not met.

For the sake of conciseness, a set of options will be referred to as the part of the
option name they have in common followed by the suffix x. For example, STOP–C,
STOP–DG, STOP–IB, STOP–IC, and STOP–ID will collectively be referred to as
STOP–x.

454 � Chapter 5. The NETFLOW Procedure

At the beginning of each iteration, PROC NETFLOW will test whether complemen-
tarity is ≤ STOP–C (provided you have specified a STOP–C parameter) and if it is,
PROC NETFLOW will stop. If the duality gap is ≤ STOP–DG (provided you have
specified a STOP–DG parameter), PROC NETFLOW will stop immediately. This
is true as well for the other STOP–x parameters that are related to infeasibilities,
STOP–IB, STOP–IC, and STOP–ID.

For example, if you want PROC NETFLOW to stop optimizing for the usual stopping
conditions, plus the additional condition, complementarity ≤ 100 or duality gap ≤
0.001, then use

proc netflow stop_c=100 stop_dg=0.001

If you want PROC NETFLOW to stop optimizing for the usual stopping conditions,
plus the additional condition, complementarity ≤ 1000 and duality gap ≤ 0.001 and
constraint infeasibility ≤ 0.0001, then use

proc netflow
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Unlike the STOP–x parameters that cause PROC NETFLOW to stop when any one
of them is satisfied, the corresponding AND–STOP–x parameters (AND–STOP–C,
AND–STOP–DG, AND–STOP–IB, AND–STOP–IC, and AND–STOP–ID) cause
PROC NETFLOW to stop only if all (more precisely, all that are specified) options
are satisfied. For example, if PROC NETFLOW should stop when

• complementarity ≤ 100 or duality gap ≤ 0.001 or

• complementarity ≤ 1000 and duality gap ≤ 0.001 and constraint infeasibility
≤ 0.000

then use

proc netflow
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Just as the STOP–x parameters have AND–STOP–x partners, the KEEPGOING–x
parameters have AND–KEEPGOING–x partners. The role of the KEEPGOING–x
and AND–KEEPGOING–x parameters is to prevent optimization from stopping too
early, even though a usual stopping criterion is met.

When PROC NETFLOW detects that it should stop for a usual stopping condition, it
performs the following tests:

• It will test whether complementarity is > KEEPGOING–C (provided you have
specified a KEEPGOING–C parameter), and if it is, PROC NETFLOW will
perform more optimization.

Linear Programming Models: Interior Point Algorithm � 455

• Otherwise, PROC NETFLOW will then test whether the primal-dual gap is >
KEEPGOING–DG (provided you have specified a KEEPGOING–DG param-
eter), and if it is, PROC NETFLOW will perform more optimization.

• Otherwise, PROC NETFLOW will then test whether the total bound infea-
sibility

∑n
i=1 infeasbi > KEEPGOING–IB (provided you have specified a

KEEPGOING–IB parameter), and if it is, PROC NETFLOW will perform
more optimization.

• Otherwise, PROC NETFLOW will then test whether the total constraint in-
feasibility

∑m
i=1 infeasci > KEEPGOING–IC (provided you have specified

a KEEPGOING–IC parameter), and if it is, PROC NETFLOW will perform
more optimization.

• Otherwise, PROC NETFLOW will then test whether the total dual infea-
sibility

∑n
i=1 infeasdi > KEEPGOING–ID (provided you have specified a

KEEPGOING–ID parameter), and if it is, PROC NETFLOW will perform
more optimization.

• Otherwise it will test whether complementarity is > AND–KEEPGOING–C
(provided you have specified an AND–KEEPGOING–C parameter), and the
primal-dual gap is > AND–KEEPGOING–DG (provided you have speci-
fied an AND–KEEPGOING–DG parameter), and the total bound infeasi-
bility

∑n
i=1 infeasbi > AND–KEEPGOING–IB (provided you have speci-

fied an AND–KEEPGOING–IB parameter), and the total constraint infea-
sibility

∑m
i=1 infeasci > AND–KEEPGOING–IC (provided you have spec-

ified an AND–KEEPGOING–IC parameter) and the total dual infeasibility∑n
i=1 infeasdi > AND–KEEPGOING–ID (provided you have specified an

AND–KEEPGOING–ID parameter), and if it is, PROC NETFLOW will per-
form more optimization.

If all these tests to decide whether more optimization should be performed are false,
optimization is stopped.

For example,

proc netflow
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

At the beginning of each iteration, PROC NETFLOW will stop if

• complementarity ≤ 1000 or

• complementarity ≤ 2000 and duality gap ≤ 0.01 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

456 � Chapter 5. The NETFLOW Procedure

When PROC NETFLOW determines it should stop because a usual stopping condi-
tion is met, it will stop only if

• complementarity ≤ 1500 or

• complementarity ≤ 2500 and duality gap ≤ 0.05 and the total bound, con-
straint, and dual infeasibilities are each ≤ 1

Interior Point: Upper Bounds

If the LP model had upper bounds (0 ≤ x ≤ u where u is the upper bound vector),
then the primal and dual problems, the duality gap, and the KKT conditions would
have to be expanded.

The primal linear program to be solved is

minimize cT x
subject to Ax = b

0 ≤ x ≤ u

where 0 ≤ x ≤ u is split into x ≥ 0 and x ≤ u. Let z be primal slack so that
x + z = u, and associate dual variables w with these constraints. The interior point
algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT)
conditions for optimality:

Ax = b

x + z = u

AT y + s− w = c

xT s = 0

zT w = 0

x, s, z, w ≥ 0

These are the conditions for feasibility, with the complementarity conditions xT s = 0
and zT w = 0 added. Complementarity forces the optimal objectives of the primal
and dual to be equal, cT xopt = bT yopt − uT wopt, as

0 = zT
optwopt = (u− xopt)T wopt = uT wopt − xT

optwopt

0 = xT
optsopt = sT

optxopt = (c−AT yopt + wopt)T xopt =

cT xopt − yT
opt(Axopt) + wopt)T xopt = cT xopt − bT yopt + uT wopt

Linear Programming Models: Interior Point Algorithm � 457

Before the optimum is reached, a solution (x, y, s, z, w) might not satisfy the KKT
conditions:

• Primal bound constraints may be violated, infeasb = u− x− z 6= 0.

• Primal constraints may be violated, infeasc = b−Ax 6= 0.

• Dual constraints may be violated, infeasd = c−AT y − s + w 6= 0.

• Complementarity conditions may not be satisfied, xT s 6= 0 and zT w 6= 0.

The calculations of the interior point algorithm can easily be derived in a fashion
similar to calculations for when an LP has no upper bounds. See the paper by Lustig,
Marsten, and Shanno (1992). An important point is that upper bounds can be handled
by specializing the algorithm and not by generating the constraints x + z = u and
adding these to the main primal constraints Ax = b.

Getting Started: Linear Programming Models: Interior Point Algorithm

To solve linear programming problem using PROC NETFLOW, you save a represen-
tation of the variables and the constraints in one or two SAS data sets. These data
sets are then passed to PROC NETFLOW for solution. There are various forms that
a problem’s data can take. You can use any one or a combination of several of these
forms.

The ARCDATA= data set contains information about the variables of the problem.
Although this data set is called ARCDATA, it contains data for no arcs. Instead, all
data in this data set are related to variables.

The ARCDATA= data set can be used to specify information about variables, in-
cluding objective function coefficients, lower and upper value bounds, and names.
These data are the elements of the vectors d, m, and v in problem (NPSC). Data for
a variable can be given in more than one observation.

When the data for a constrained network problem is being provided, the ARCDATA=
data set always contains information necessary for arcs, their tail and head nodes, and
optionally the supply and demand information of these nodes. When the data for a
linear programming problem is being provided, none of this information is present,
as the model has no arcs. This is the way PROC NETFLOW decides which type of
problem it is to solve.

PROC NETFLOW was originally designed to solve models with networks, so an
ARCDATA= data set is always expected. If an ARCDATA= data set is not specified,
by default the last data set created before PROC NETFLOW is invoked is assumed
to be an ARCDATA= data set. However, these characteristics of PROC NETFLOW
are not helpful when a linear programming problem is being solved and all data is
provided in a single data set specified by the CONDATA= data set, and that data set
is not the last data set created before PROC NETFLOW starts. In this case, you must
specify that an ARCDATA= data set and a CONDATA= data set are both equal to the
input data set. PROC NETFLOW then knows that a linear programming problem is
to be solved, and the data reside in one data set.

458 � Chapter 5. The NETFLOW Procedure

The CONDATA= data set describes the constraints and their right-hand sides. These
data are elements of the matrix Q and the vector r.

Constraint types are also specified in the CONDATA= data set. You can include
in this data set variable data such as upper bound values, lower value bounds, and
objective function coefficients. It is possible to give all information about some or all
variables in the CONDATA= data set.

A variable is identified in this data set by its name. If you specify a variable’s name in
the ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that variable.

If you use the dense constraint input format, these variable names are names of SAS
variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format, these variable names are values of the
COLUMN list SAS variable of CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two
stages. In the preliminary (zeroth) stage, the data are read from the ARCDATA= data
set (if used) and the CONDATA= data set. Error checking is performed. In the next
stage, the linear program is preprocessed, then the optimal optimal solution to the
linear program is found. The solution is saved in the CONOUT= data set. This data
set is also named in the PROC NETFLOW, RESET, and SAVE statements.

See the “Getting Started: Network Models: Interior Point Algorithm” section on page
438 for a fuller description of the stages of the interior point algorithm.

Introductory Example: Linear Programming Models: Interior Point Algorithm

Consider the linear programming problem in the section “An Introductory Example”
on page 192 in the chapter on the LP procedure.

data dcon1;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

To find the minimum cost solution and to examine all or parts of the optimum, you
use PRINT statements.

Linear Programming Models: Interior Point Algorithm � 459

• print problem/short; outputs information for all variables and all constraint
coefficients. See Figure 5.19 and Figure 5.20.

• print some–variables(j:)/short; is information about a set of variables, (in
this case, those with names that start with the character string preceding the
colon). See Figure 5.21.

• print some–cons(recipe–1)/short; is information about a set of constraints
(here, that set only has one member, the constraint called recipe–1). See Figure
5.22.

• print con–variables(–all–,brega)/short; lists the constraint information for a
set of variables (here, that set only has one member, the variable called brega).
See Figure 5.23.

• print con–variables(recipe:,n: jet–1)/short; coefficient information for
those in a set of constraints belonging to a set of variables. See Figure 5.24.

proc netflow
condata=dcon1
conout=solutn1;

run;
print problem/short;
print some_variables(j:)/short;
print some_cons(recipe_1)/short;
print con_variables(_all_,brega)/short;
print con_variables(recipe:,n: jet_1)/short;

The following messages, which appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 0.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 5 constraints from the

problem.
NOTE: The preprocessor eliminated 18 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 0.
NOTE: The preprocessor eliminated 8 variables from the

problem.
WARNING: Optimization is unnecessary as the problem no

longer has any variables and rows.
NOTE: Preprocessing could have caused that.
NOTE: Objective= 1544.
NOTE: The data set WORK.SOLUTN1 has 8 observations and

6 variables.

460 � Chapter 5. The NETFLOW Procedure

The NETFLOW Procedure

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 a_heavy -165 165 0 0
2 a_light -175 110 0 110
3 brega -205 80 0 80
4 heatingo 0 99999999 0 77.3
5 jet_1 300 99999999 0 60.65
6 jet_2 300 99999999 0 63.33
7 naphthai 0 99999999 0 21.8
8 naphthal 0 99999999 0 7.45

Figure 5.19. print problem/short;

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 heating_o_conv EQ 0 a_light -175 110
2 heating_o_conv EQ 0 a_heavy -165 165
3 heating_o_conv EQ 0 brega -205 80
4 heating_o_conv EQ 0 heatingo 0 99999999
5 naphtha_i_conv EQ 0 a_light -175 110
6 naphtha_i_conv EQ 0 a_heavy -165 165
7 naphtha_i_conv EQ 0 brega -205 80
8 naphtha_i_conv EQ 0 naphthai 0 99999999
9 naphtha_l_conv EQ 0 a_light -175 110

10 naphtha_l_conv EQ 0 a_heavy -165 165
11 naphtha_l_conv EQ 0 brega -205 80
12 naphtha_l_conv EQ 0 naphthal 0 99999999
13 recipe_1 EQ 0 naphthai 0 99999999
14 recipe_1 EQ 0 heatingo 0 99999999
15 recipe_1 EQ 0 jet_1 300 99999999
16 recipe_2 EQ 0 naphthal 0 99999999
17 recipe_2 EQ 0 heatingo 0 99999999
18 recipe_2 EQ 0 jet_2 300 99999999

N _LOWERBD _VALUE_ _COEF_

1 0 110 0.39
2 0 0 0.3
3 0 80 0.43
4 0 77.3 -1
5 0 110 0.1
6 0 0 0.075
7 0 80 0.135
8 0 21.8 -1
9 0 110 0.035
10 0 0 0.03
11 0 80 0.045
12 0 7.45 -1
13 0 21.8 0.3
14 0 77.3 0.7
15 0 60.65 -1
16 0 7.45 0.2
17 0 77.3 0.8
18 0 63.33 -1

Figure 5.20. print problem/short; (continued)

The NETFLOW Procedure

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 jet_1 300 99999999 0 60.65
2 jet_2 300 99999999 0 63.33

Linear Programming Models: Interior Point Algorithm � 461

Figure 5.21. print some–variables(j:)/short;

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 recipe_1 EQ 0 naphthai 0 99999999
2 recipe_1 EQ 0 heatingo 0 99999999
3 recipe_1 EQ 0 jet_1 300 99999999

N _LOWERBD _VALUE_ _COEF_

1 0 21.8 0.3
2 0 77.3 0.7
3 0 60.65 -1

Figure 5.22. print some–cons(recipe–1)/short;

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 heating_o_conv EQ 0 brega -205 80
2 naphtha_i_conv EQ 0 brega -205 80
3 naphtha_l_conv EQ 0 brega -205 80

N _LOWERBD _VALUE_ _COEF_

1 0 80 0.43
2 0 80 0.135
3 0 80 0.045

Figure 5.23. print con–variables(–all–,brega)/short;

462 � Chapter 5. The NETFLOW Procedure

The NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD

1 recipe_1 EQ 0 naphthai 0 99999999
2 recipe_1 EQ 0 jet_1 300 99999999
3 recipe_2 EQ 0 naphthal 0 99999999

N _LOWERBD _VALUE_ _COEF_

1 0 21.8 0.3
2 0 60.65 -1
3 0 7.45 0.2

Figure 5.24. print con–variables(recipe:,n: jet–1)/short;

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets you specify. For this example,
the solution is saved in the SOLUTN1 data set. It can be displayed with PROC PRINT
as

proc print data=solutn1;
var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;
title3 ’LP Optimum’;
run;

Notice, in the CONOUT=SOLUTN1 (Figure 5.25), the optimal value through each
variable in the linear program is given in the variable named –VALUE– , and the cost
of value for each variable is given in the variable –FCOST– .

LP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _FCOST_

1 a_heavy -165 165 0 0.00 0
2 a_light -175 110 0 110.00 -19250
3 brega -205 80 0 80.00 -16400
4 heatingo 0 99999999 0 77.30 0
5 jet_1 300 99999999 0 60.65 18195
6 jet_2 300 99999999 0 63.33 18999
7 naphthai 0 99999999 0 21.80 0
8 naphthal 0 99999999 0 7.45 0

=======
1544

Figure 5.25. CONOUT=SOLUTN1

Linear Programming Models: Interior Point Algorithm � 463

The same model can be specified in the sparse format as in the following scon2
dataset. This format enables you to omit the zero coefficients.

data scon2;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 profit 300
. jet_1 recipe_1 -1
. jet_2 profit 300
. jet_2 recipe_2 -1
;

To find the minimum cost solution, invoke PROC NETFLOW (note the
SPARSECONDATA option which must be specified) as follows:

proc netflow
sparsecondata
condata=scon2
conout=solutn2;
run;

464 � Chapter 5. The NETFLOW Procedure

A data set that is used as an ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

The following CONDATA= data set is the original dense format CONDATA= dcon1
data set with the variable information removed. (You could have left some or all of
that information in CONDATA as PROC NETFLOW “merges” data, but doing that
and checking for consistency uses time.)

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

It is important to note that it is now necessary to specify the MAXIMIZE option;
otherwise, PROC NETFLOW will optimize to the minimum (which, incidently, has
a total objective = -3539.25). You must indicate that the SAS variable profit in the
ARCDATA=vars3 data set has values that are objective function coefficients, by spec-
ifying the OBJFN statement. The UPPERBD must be specified as the SAS variable
available that has as values upper bounds.

proc netflow
maximize /* ***** necessary ***** */
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model
variables heatingo, naphthai, and naphthal have zero objective function coefficients
(the default) and default upper bounds, so those observations need not be present.

Linear Programming Models: Interior Point Algorithm � 465

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

The CONDATA=dcon3 data set can become more concise by noting that all the con-
straints have the same type (eq) and zero (the default) rhs values. This model is a
good candidate for using the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the
same type as is the case here, but also when most constraints have the same type, or
if you prefer to change the default type from ≤ to = or ≥. The essential constraint
type data in CONDATA= data set is that which overrides the DEFCONTYPE= type
you specified.

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc netflow
maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

Several different ways of using an ARCDATA= data set and a sparse format
CONDATA= data set for this linear program follow. The following CONDATA=
data set is the result of removing the profit and available data from the original sparse
format CONDATA=scon2 data set.

466 � Chapter 5. The NETFLOW Procedure

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 recipe_1 -1
. jet_2 recipe_2 -1
;

proc netflow
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all
the constraints have the same type (eq) and zero (the default) rhs values.
Use the DEFCONTYPE= option again. Once the first 5 observations of the
CONDATA=scon5 data set are removed, the –type– SAS variable has values that
are missing in the remaining observations. Therefore, this SAS variable can be
removed.

Linear Programming Models: Interior Point Algorithm � 467

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

proc netflow
maximize
defcontype=eq
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Interactivity: Linear Programming Models: Interior Point algorithm

PROC NETFLOW can be used interactively. You begin by giving the PROC
NETFLOW statement, and you must specify the CONDATA= data set. If necessary,
specify the ARCDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named
–COST– that has objective function coefficients as values), it may not be necessary
to have many or any variable lists.

The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be
listed in any order. The QUIT statements can be used only once. The others can be
used as many times as needed.

The CONOPT and PIVOT are not relevant to the interior point algorithm and should
not be used.

Use the RESET or SAVE statement to change the name of the output data set. There
is only one output data set, the CONOUT= data set. With the RESET statement, you

468 � Chapter 5. The NETFLOW Procedure

can also indicate the reasons why optimization should stop, (for example, you can in-
dicate the maximum number of iterations that can be performed). PROC NETFLOW
then has a chance to either execute the next statement or, if the next statement is one
that PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS
session), do any allowed optimization and finish. If no new statement has been sub-
mitted, you are prompted for one. Some options of the RESET statement enable you
to control aspects of the interior point algorithm. Specifying certain values for these
options can reduce the time it takes to solve a problem. Note that any of the RESET
options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs
until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has
options that enable you to name the output data set; information about the current
solution is saved in this output data set. Use the SHOW statement if you want to
examine the values of options of other statements. Information about the amount of
optimization that has been done and the STATUS of the current solution can also be
displayed using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem.
The ways the PRINT statements are specified are identical whether the interior point
algorithm or the simplex algorithm is used; however, there are minor differences in
what is displayed for each variable or constraint coefficient.

PRINT VARIABLES produces information on all arcs. PRINT
SOME–VARIABLES limits this output to a subset of variables. There are
similar PRINT statements for constraints:

PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON–VARIABLES enables you to limit constraint information that is ob-
tained to members of a set of variables that have nonzero constraint coefficients in a
set of constraints.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
condata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do some optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

Linear Programming Models: Interior Point Algorithm � 469

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default setting for
everything, then the following statement is all you need:

proc netflow condata= data set ;

Functional Summary: Linear Programming Models: Interior Point Algorithm

The following table outlines the options available for the NETFLOW procedure when
the interior point algorithm is being used to solve a linear programming problem,
classified by function.

Table 5.8. Functional Summary, Linear Programming Models

Description Statement Option

Input Data Set Options:
arcs input data set PROC NETFLOW ARCDATA=
constraint input data set PROC NETFLOW CONDATA=

Output Data Set Option:
solution data set PROC NETFLOW CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
default constraint type PROC NETFLOW DEFCONTYPE=
special COLUMN variable value PROC NETFLOW TYPEOBS=
special COLUMN variable value PROC NETFLOW RHSOBS=
data for a constraint found once in CONDATA PROC NETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC NETFLOW NON–REPLIC=
data is grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
approximate number of variables PROC NETFLOW NNAS=
approximate number of coefficients PROC NETFLOW NCOEFS=
approximate number of constraints PROC NETFLOW NCONS=

Network Options:
default variable objective function coefficient PROC NETFLOW DEFCOST=
default variable upper bound PROC NETFLOW DEFCAPACITY=
default variable lower bound PROC NETFLOW DEFMINFLOW=

Memory Control Options:
issue memory usage messages to SAS log PROC NETFLOW MEMREP
number of bytes to use for main memory PROC NETFLOW BYTES=
proportion of memory for arrays PROC NETFLOW COREFACTOR=
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

470 � Chapter 5. The NETFLOW Procedure

Description Statement Option

Interior Point Algorithm Options:
use interior point algorithm PROC NETFLOW INTPOINT
factorization method RESET FACT–METHOD=
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
allowed total amount of dual infeasibility RESET TOLTOTDINF=
allowed total amount of primal infeasibility RESET TOLTOTPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=
print optimization progress on SAS log RESET PRINTLEVEL2=
write optimization time to SAS log RESET OPTIM–TIMER

Interior Point Stopping Criteria Options:
maximum number of interior point iterations RESET MAXITERB=
primal-dual (duality) gap tolerance RESET PDGAPTOL=
stop because of complementarity RESET STOP–C=
stop because of duality gap RESET STOP–DG=
stop because of infeasb RESET STOP–IB=
stop because of infeasc RESET STOP–IC=
stop because of infeasd RESET STOP–ID=
stop because of complementarity RESET AND–STOP–C=
stop because of duality gap RESET AND–STOP–DG=
stop because of infeasb RESET AND–STOP–IB=
stop because of infeasc RESET AND–STOP–IC=
stop because of infeasd RESET AND–STOP–ID=
stop because of complementarity RESET KEEPGOING–C=
stop because of duality gap RESET KEEPGOING–DG=
stop because of infeasb RESET KEEPGOING–IB=
stop because of infeasc RESET KEEPGOING–IC=
stop because of infeasd RESET KEEPGOING–ID=
stop because of complementarity RESET AND–KEEPGOING–C=
stop because of duality gap RESET AND–KEEPGOING–DG=
stop because of infeasb RESET AND–KEEPGOING–IB=
stop because of infeasc RESET AND–KEEPGOING–IC=
stop because of infeasd RESET AND–KEEPGOING–ID=

PRINT Statement Options:
display everything PRINT PROBLEM
display variable information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS

Example 5.1. Shortest Path Problem � 471

Description Statement Option

display information for some constraints associ-
ated with some variables

PRINT CON–VARIABLES

PRINT Statement Qualifiers:
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
display arcs/variables with zero flow/value PRINT / ZERO
display arcs/variables with nonzero flow/value PRINT / NONZERO

SHOW Statement Options:
show problem, optimization status SHOW STATUS
show LP model parameters SHOW NETSTMT
show data sets that have been or will be created SHOW DATASETS

Miscellaneous Options:
infinity value PROC NETFLOW INFINITY=
scale constraint row, variable column coefficients,
or both

PROC NETFLOW SCALE=

maximization instead of minimization PROC NETFLOW MAXIMIZE

Examples
The following examples illustrate some of the capabilities of PROC NETFLOW.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library.

Example 5.1. Shortest Path Problem

Whole pineapples are served in a restaurant in London. To ensure freshness, the
pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in
London. The network diagram in Figure 5.26 outlines the different routes that the
pineapples could take.

The cost to freight a pineapple is known for each arc. You can use PROC NETFLOW
to determine what routes should be used to minimize total shipping cost. The shortest
path is the least cost path that all pineapples should use. The SHORTPATH option
indicates this type of network problem.

472 � Chapter 5. The NETFLOW Procedure

�

	
�

Honolulu

�

	
�

Los Angeles

�

	
�

San Francisco

�

	
�

Chicago

�

	
�

Atlanta

�

	
�

New York

�

	
�

Boston

�

	
�

Heathrow
London

-

�

J
J

J
J

J
J

J
J

J
Ĵ

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ-

�

105

75

65

45

56 71

48

63 44

57

88

65

76

Figure 5.26. Pineapple Routes: Shortest Path Problem

The SINK= option value HEATHROW LONDON is not a valid SAS variable name
so it must be enclosed in single quotes. The TAILNODE list variable is FFROM.
Because the name of this variable is not –TAIL– or –FROM– , the TAILNODE list
must be specified in the PROC NETFLOW statement. The HEADNODE list must
also be explicitly specified because the variable that belongs to this list does not have
the name –HEAD– or –TO– , but is TTO.

title ’Shortest Path Problem’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
data aircost1;

input ffrom&$13. tto&$15. _cost_ ;
datalines;

Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
Atlanta Heathrow London 76
;

proc netflow
shortpath
sourcenode=Honolulu
sinknode=’Heathrow London’ /* Quotes for embedded blank */

Example 5.1. Shortest Path Problem � 473

ARCDATA=aircost1
arcout=spath;
tail ffrom;
head tto;
run;

proc print data=spath;
sum _fcost_;
run;

The length at optimality is written to the SAS log as

NOTE: Number of nodes= 8 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any

constraints)= 5 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Shortest path= 177 .
NOTE: The data set WORK.SPATH has 13 observations and 13

variables.

The output data set ARCOUT=SPATH in Output 5.1.1 shows that the best route for
the pineapples is from Honolulu to Los Angeles to New York to Heathrow London.

Output 5.1.1. ARCOUT=SPATH
Shortest Path Problem

How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 99999999 0 . .
2 Los Angeles Atlanta 57 99999999 0 . .
3 Chicago Boston 45 99999999 0 . .
4 San Francisco Boston 71 99999999 0 . .
5 Honolulu Chicago 105 99999999 0 1 .
6 Boston Heathrow London 88 99999999 0 . 1
7 New York Heathrow London 65 99999999 0 . 1
8 Atlanta Heathrow London 76 99999999 0 . 1
9 Honolulu Los Angeles 68 99999999 0 1 .

10 Chicago New York 56 99999999 0 . .
11 San Francisco New York 48 99999999 0 . .
12 Los Angeles New York 44 99999999 0 . .
13 Honolulu San Francisco 75 99999999 0 1 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 13 9 3 LOWERBD NONBASIC
2 0 0 . 10 4 KEY_ARC BASIC
3 0 0 4 4 2 LOWERBD NONBASIC
4 0 0 . 5 3 KEY_ARC BASIC
5 0 0 . 1 1 KEY_ARC BASIC
6 0 0 57 11 5 LOWERBD NONBASIC
7 1 65 . 12 6 KEY_ARC BASIC
8 0 0 24 13 7 LOWERBD NONBASIC
9 1 68 . 3 1 KEY_ARC BASIC

10 0 0 49 6 2 LOWERBD NONBASIC
11 0 0 11 7 3 LOWERBD NONBASIC
12 1 44 . 8 4 KEY_ARC BASIC
13 0 0 . 2 1 KEY_ARC BASIC

=======
177

474 � Chapter 5. The NETFLOW Procedure

Example 5.2. Minimum Cost Flow Problem

You can continue to use the pineapple example in Example 5.1 by supposing that the
airlines now stipulate that no more than 350 pineapples per week can be handled in
any single leg of the journey. The restaurant uses 500 pineapples each week. How
many pineapples should take each route between Hawaii and London?

You will probably have more minimum cost flow problems because they are more
general than maximal flow and shortest path problems. A shortest path formulation
is no longer valid because the sink node does not demand one flow unit.

All arcs have the same capacity of 350 pineapples. Because of this, the
DEFCAPACITY= option can be specified in the PROC NETFLOW statement,
rather than having a CAPACITY list variable in ARCDATA=aircost1. You can
have a CAPACITY list variable, but the value of this variable would be 350 in all
observations, so using the DEFCAPACITY= option is more convenient. You would
have to use the CAPACITY list variable if arcs had differing capacities. You can use
both the DEFCAPACITY= option and a CAPACITY list variable.

There is only one supply node and one demand node. These can be named in the
SOURCE= and SINK= options. DEMAND=500 is specified for the restaurant de-
mand. There is no need to specify SUPPLY=500, as this is assumed.

title ’Minimum Cost Flow Problem’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
proc netflow

defcapacity=350
sourcenode=’Honolulu’
sinknode=’Heathrow London’ /* Quotes for embedded blank */
demand=500

arcdata=aircost1
arcout=arcout1
nodeout=nodeout1;

tail ffrom;
head tto;

set future1;
proc print data=arcout1; sum _fcost_;
proc print data=nodeout1;
run;

Example 5.2. Minimum Cost Flow Problem � 475

The following notes appear on the SAS log:

NOTE: SOURCENODE was assigned supply of the total
network demand= 500 .

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any

constraints)= 6 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93750 .
NOTE: The data set WORK.ARCOUT1 has 13 observations and

13 variables.
NOTE: The data set WORK.NODEOUT1 has 9 observations and

10 variables.

�

	
�

Honolulu

�

	
�

Los Angeles

�

	
�

San Francisco

�

	
�

Chicago

�

	
�

Atlanta

�

	
�

New York

�

	
�

Boston

�

	
�

Heathrow
London

-

�

J
J

J
J

J
J

J
J

J
Ĵ

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ

�

-

J
J

J
J

J
J

J
J

J
Ĵ-

�

150

350

150

200

150

350

150

Figure 5.27. Pineapple Routes: Minimum Cost Flow Solution

The routes and numbers of pineapples in each arc can be seen in the output data set
ARCOUT=arcout1 in Output 5.2.1. NODEOUT=NODEOUT1 is shown in Output
5.2.2.

476 � Chapter 5. The NETFLOW Procedure

Output 5.2.1. ARCOUT=ARCOUT1
Minimum Cost Flow Problem

How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 350 0 . .
2 Los Angeles Atlanta 57 350 0 . .
3 Chicago Boston 45 350 0 . .
4 San Francisco Boston 71 350 0 . .
5 Honolulu Chicago 105 350 0 500 .
6 Boston Heathrow London 88 350 0 . 500
7 New York Heathrow London 65 350 0 . 500
8 Atlanta Heathrow London 76 350 0 . 500
9 Honolulu Los Angeles 68 350 0 500 .
10 Chicago New York 56 350 0 . .
11 San Francisco New York 48 350 0 . .
12 Los Angeles New York 44 350 0 . .
13 Honolulu San Francisco 75 350 0 500 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 2 9 3 LOWERBD NONBASIC
2 150 8550 . 10 4 KEY_ARC BASIC
3 0 0 4 4 2 LOWERBD NONBASIC
4 0 0 . 5 3 KEY_ARC BASIC
5 0 0 . 1 1 KEY_ARC BASIC
6 0 0 22 11 5 LOWERBD NONBASIC
7 350 22750 -24 12 6 UPPERBD NONBASIC
8 150 11400 . 13 7 KEY_ARC BASIC
9 350 23800 -11 3 1 UPPERBD NONBASIC
10 0 0 38 6 2 LOWERBD NONBASIC
11 150 7200 . 7 3 KEY_ARC BASIC
12 200 8800 . 8 4 KEY_ARC BASIC
13 150 11250 . 2 1 KEY_ARC BASIC

=======
93750

Output 5.2.2. NODEOUT=NODEOUT1
Minimum Cost Flow Problem

How to get Hawaiian Pineapples to a London Restaurant

_
S _ _ _

_ U _ N _ _ S A _
N P D N P T C R F _
O D U U R R E C L F

O D E A M E A S I O B
b E M L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 0 0 9 0 1 0 -1 81 -14
2 Atlanta . -136 7 4 8 2 10 150 9
3 Boston . -146 5 3 9 1 5 0 4
4 Chicago . -105 2 1 3 1 1 0 1
5 Heathrow London -500 -212 8 7 5 1 13 150 11
6 Honolulu 500 0 1 9 2 8 -14 0 -1
7 Los Angeles . -79 4 6 7 3 -8 200 3
8 New York . -123 6 3 4 4 7 150 6
9 San Francisco . -75 3 1 6 6 2 150 2

Example 5.3. Using a Warm Start � 477

Example 5.3. Using a Warm Start
Suppose that the airlines state that the freight cost per pineapple in flights that leave
Chicago has been reduced by 30. How many pineapples should take each route be-
tween Hawaii and London? This example illustrates how PROC NETFLOW uses a
warm start.

In Example 5.2, the RESET statement of PROC NETFLOW is used to specify
FUTURE1. A NODEOUT= data set is also specified. The warm start information is
saved in the arcout1 and nodeout1 data sets.

In the following DATA step, the costs, reduced costs, and flows in the arcout1
data set are saved in variables called oldcost, oldflow, and oldfc. These variables
form an implicit ID list in the following PROC NETFLOW run and will appear in
ARCOUT=arcout2. Thus, it is easy to compare the previous optimum and the new
optimum.

title ’Minimum Cost Flow Problem - Warm Start’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
data aircost2;

set arcout1;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if ffrom=’Chicago’ then _cost_=_cost_-30;

proc netflow
warm

arcdata=aircost2
nodedata=nodeout1
arcout=arcout2;

tail ffrom;
head tto;

proc print data=arcout2;
var ffrom tto _cost_ oldcost _capac_ _lo_

flow oldflow _fcost_ oldfc;
sum _fcost_ oldfc;

run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of iterations performed (neglecting any

constraints)= 3 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93150 .
NOTE: The data set WORK.ARCOUT2 has 13 observations

and 16 variables.

ARCOUT=arcout2 is shown in Output 5.3.1.

478 � Chapter 5. The NETFLOW Procedure

Output 5.3.1. ARCOUT=ARCOUT2
Minimum Cost Flow Problem - Warm Start

How to get Hawaiian Pineapples to a London Restaurant

o _ o _
_ l C _ l F

f c d A F d C o
f o c P _ L f O l

O r t s o A L O l S d
b o t t s C O W o T f
s m o _ t _ _ _ w _ c

1 San Francisco Atlanta 63 63 350 0 0 0 0 0
2 Los Angeles Atlanta 57 57 350 0 0 150 0 8550
3 Chicago Boston 15 45 350 0 150 0 2250 0
4 San Francisco Boston 71 71 350 0 0 0 0 0
5 Honolulu Chicago 105 105 350 0 150 0 15750 0
6 Boston Heathrow London 88 88 350 0 150 0 13200 0
7 New York Heathrow London 65 65 350 0 350 350 22750 22750
8 Atlanta Heathrow London 76 76 350 0 0 150 0 11400
9 Honolulu Los Angeles 68 68 350 0 350 350 23800 23800
10 Chicago New York 26 56 350 0 0 0 0 0
11 San Francisco New York 48 48 350 0 0 150 0 7200
12 Los Angeles New York 44 44 350 0 350 200 15400 8800
13 Honolulu San Francisco 75 75 350 0 0 150 0 11250

===== =====
93150 93750

Example 5.4. Production, Inventory, Distribution Problem

Example 5.4 through Example 5.8 use data from a company that produces two sizes of
televisions in order to illustrate variations in the use the NETFLOW procedure. The
company makes televisions with a diagonal screen measurement of either 19 inches
or 25 inches. These televisions are made between March and May at both of the
company’s two factories. Each factory has a limit on the total number of televisions
of each screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they
were made and sold later, or shipped to the other factory. Some sets can be used to
fill backorders from the previous months. Each shop demands a number of each type
of TV for the months of March through May. The following network in Figure 5.28
illustrates the model. Arc costs can be interpreted as production costs, storage costs,
backorder penalty costs, inter-factory transportation costs, and sales profits. The arcs
can have capacities and lower flow bounds.

Example 5.4. Production, Inventory, Distribution Problem � 479

Production

Inventory and
Backorders

Inter-factory

Distribution

fact2

f2–may

f2–apl

f2–mar

fact1

f1–may

f1–apl

f1–mar

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

A
A
A
A
A
A
A
A
A
A
A
A
A
AAU
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

shop2

shop1
�

�
�

�
�7

-

S
S

S
S
Sw

���������������1

-
PPPPPPPPPPPPPPPq �

�
�

���

�
�

�
��

l
l

l
l

ll
�

�
��

T
T
T
T
T
T
T
T
T

�
�
�
�
�
�
�
�
�
�
�
�
��

%
%

%
%

%
%%

�
�
�
�
�
�
�
�
�
�
���

��
����

�
�
�
�
�
�
�
�
�
��

hhhhhh

S
S

S
S

S
S

S
S

S
S

S
Sw

�����������S
S

S
S

S
S

S
S

S
S

S
S

Sw

hhhhhhhhhhh
S

S
S

S
S

S
S

S
S

S
S

S
S

S
Sw

H
HHH

HHH
HHH

Q
Q

Q
Q

Q
Q

Qs

Q
Q

Q
Q

Q
QQs��������������

Q
Q

Q
QQs

"
"

"
"

"
"

"
"

"
"

"
"

"
""

6

?

6

?

6

?

6

?

Figure 5.28. TV problem

There are two similarly structured networks, one for the 19-inch televisions and the
other for the 25-inch screen TVs. The minimum cost production, inventory, and
distribution plan for both TV types can be determined in the same run of PROC
NETFLOW. To ensure that node names are unambiguous, the names of nodes in the
19-inch network have suffix –1, and the node names in the 25-inch network have
suffix –2.

The FUTURE1 option is specified because further processing could be required.
Information concerning an optimal solution is retained so it can be used to
warm start later optimizations. Warm start information is mostly in variables
named –NNUMB– , –PRED– , –TRAV– , –SCESS– , –ARCID– , and –FBQ–
and in observations for nodes named –EXCESS– and –ROOT–, that are in the
NODEOUT=NODE2 output data set. (PROC NETFLOW uses similar devices to
store warm start information in the DUALOUT= data set when the FUTURE2 op-
tion is specified.) Variables –ANUMB– and –TNUMB– and observations for arcs
directed from or toward a node called –EXCESS– are present in ARCOUT=arc1.
(PROC NETFLOW uses similar devices to store warm start information in the
CONOUT= data set when the FUTURE2 option is specified.)

480 � Chapter 5. The NETFLOW Procedure

The following code shows how to save the problem data in data sets and solve the
model with PROC NETFLOW.

title ’Minimum Cost Flow problem’;
title2 ’Production Planning/Inventory/Distribution’;
data node0;

input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .

Example 5.4. Production, Inventory, Distribution Problem � 481

f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

proc netflow
nodedata=node0
arcdata=arc0;

set future1
nodeout=node2
arcout=arc1;

proc print data=arc1; sum _fcost_;
proc print data=node2;
run;

482 � Chapter 5. The NETFLOW Procedure

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of iterations performed (neglecting any

constraints)= 74 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1281110.35 .
NOTE: The data set WORK.ARC1 has 68 observations and

18 variables.
NOTE: The data set WORK.NODE2 has 22 observations and

10 variables.

The solution is given in the NODEOUT=node2 and ARCOUT=arc1 data sets. In the
ARCOUT= data set, shown in Output 5.4.1 and Output 5.4.2, the variables diagonal,
factory, key–id, and mth–made form an implicit ID list. The diagonal variable
has one of two values, 19 or 25. factory also has one of two values, 1 or 2, to
denote the factory where either production or storage occurs, from where TVs are
either sold to shops or satisfy backorders. PRODUCTION, STORAGE, SALES, and
BACKORDER are values of the key–id variable.

Other values of this variable, F1–TO–2 and F2–TO–1, are used when flow through
arcs represents the transportation of TVs between factories. The mth–made variable
has values MARCH, APRIL, and MAY, the months when TVs that are modeled as
flow through an arc were made (assuming that no televisions are stored for more than
one month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC NETFLOW run to produce reports and
perform analysis on particular parts of the company’s operation. For example, reports
can be generated for production numbers for each factory; optimal sales figures for
each shop; and how many TVs should be stored, used to fill backorders, sent to the
other factory, or any combination of these, for TVs with a particular screen, those
produced in a particular month, or both.

Example 5.4. Production, Inventory, Distribution Problem � 483

Output 5.4.1. ARCOUT=ARC1
Minimum Cost Flow problem

Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5 0.00
2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45 0.00
3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 10 0.00
4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 140 0.00
5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 600 47160.00
6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0 0.00
7 f1_may_1 f1_apr_1 28.00 20 0 back f1 19 may . . 0 0.00
8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0 0.00
9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 550 95975.00
10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0 0.00
11 f1_may_2 f1_apr_2 41.00 15 0 back f1 25 may . . 15 615.00
12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0 0.00
13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 345 44125.50
14 f1_apr_1 f1_mar_1 28.00 20 0 back f1 19 apl . . 20 560.00
15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40 400.00
16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400 87160.00
17 f1_apr_2 f1_mar_2 32.00 30 0 back f1 25 apl . . 30 960.00
18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25 500.00
19 fact1_1 f1_may_1 95.10 400 50 1000 . 50 4755.00
20 f1_apr_1 f1_may_1 12.00 50 0 . . 50 600.00
21 f2_may_1 f1_may_1 13.00 40 0 . . 0 0.00
22 fact1_2 f1_may_2 133.30 350 40 1000 . 40 5332.00
23 f1_apr_2 f1_may_2 18.00 40 0 . . 0 0.00
24 f2_may_2 f1_may_2 43.00 25 0 . . 0 0.00
25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 30 330.00
26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480 29952.00
27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0 0.00
28 f2_may_1 f2_apr_1 25.00 15 0 back f2 19 may . . 0 0.00
29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0 0.00
30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 680 133756.00
31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0 0.00
32 f2_may_2 f2_apr_2 54.00 15 0 back f2 25 may . . 15 810.00
33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0 0.00
34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290 25520.00
35 f2_apr_1 f2_mar_1 17.00 15 0 back f2 19 apl . . 0 0.00
36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0 0.00
37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 645 117390.00
38 f2_apr_2 f2_mar_2 31.00 15 0 back f2 25 apl . . 0 0.00
39 f1_may_1 f2_may_1 16.00 99999999 0 . . 100 1600.00
40 fact2_1 f2_may_1 133.80 250 35 850 . 35 4683.00
41 f2_apr_1 f2_may_1 20.00 30 0 . . 15 300.00
42 f1_may_2 f2_may_2 26.00 99999999 0 . . 0 0.00
43 fact2_2 f2_may_2 201.40 550 35 1500 . 35 7049.00
44 f2_apr_2 f2_may_2 38.00 50 0 . . 0 0.00
45 f1_mar_1 shop1_1 -327.65 250 0 . 900 155 -50785.75
46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250 -75000.00
47 f1_may_1 shop1_1 -285.00 250 0 . 900 0 0.00
48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250 -74350.00
49 f2_apr_1 shop1_1 -290.00 250 0 . 900 245 -71050.00
50 f2_may_1 shop1_1 -292.00 250 0 . 900 0 0.00
51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0 0.00
52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0 0.00
53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 25 -11875.50
54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500 -283915.00
55 f2_apr_2 shop1_2 -542.19 500 0 . 900 375 -203321.25
56 f2_may_2 shop1_2 -461.56 500 0 . 900 0 0.00
57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250 -90685.00
58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250 -75000.00
59 f1_may_1 shop2_1 -245.00 250 0 . 900 0 0.00
60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0 0.00
61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250 -78000.00
62 f2_may_1 shop2_1 -299.00 250 0 . 900 150 -44850.00
63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455 -283869.95
64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 535 -294078.80
65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0 0.00
66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 120 -65139.60
67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 320 -178940.80
68 f2_may_2 shop2_2 -489.06 500 0 . 1450 20 -9781.20

===========
-1281110.35

484 � Chapter 5. The NETFLOW Procedure

Output 5.4.2. ARCOUT=ARC1 (continued)
Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 65 1 KEY_ARC BASIC . .
2 . 66 10 KEY_ARC BASIC . .
3 . 67 11 KEY_ARC BASIC . .
4 . 68 20 KEY_ARC BASIC . .
5 -0.650 4 1 UPPERBD NONBASIC 19 1 production April
6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March
7 43.000 6 4 LOWERBD NONBASIC 19 1 backorder May
8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April
9 -14.350 36 11 UPPERBD NONBASIC 25 1 production April
10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March
11 -16.660 38 14 UPPERBD NONBASIC 25 1 backorder May
12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April
13 . 1 1 KEY_ARC BASIC 19 1 production March
14 -20.650 2 3 UPPERBD NONBASIC 19 1 backorder April
15 -29.900 3 5 UPPERBD NONBASIC 19 . f2_to_1 March
16 -45.160 33 11 UPPERBD NONBASIC 25 1 production March
17 -42.210 34 13 UPPERBD NONBASIC 25 1 backorder April
18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March
19 0.850 8 1 LOWERBD NONBASIC 19 1 production May
20 -3.000 9 3 UPPERBD NONBASIC 19 1 storage April
21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May
22 2.110 40 11 LOWERBD NONBASIC 25 1 production May
23 75.660 41 13 LOWERBD NONBASIC 25 1 storage April
24 40.040 42 17 LOWERBD NONBASIC 25 . f2_to_1 May
25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April
26 -27.850 15 10 UPPERBD NONBASIC 19 2 production April
27 15.750 16 5 LOWERBD NONBASIC 19 2 storage March
28 45.000 17 7 LOWERBD NONBASIC 19 2 backorder May
29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April
30 -1.660 47 20 UPPERBD NONBASIC 25 2 production April
31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March
32 -16.130 49 17 UPPERBD NONBASIC 25 2 backorder May
33 50.900 11 2 LOWERBD NONBASIC 19 . f1_to_2 March
34 . 12 10 KEY_ARC BASIC 19 2 production March
35 19.250 13 6 LOWERBD NONBASIC 19 2 backorder April
36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March
37 . 44 20 KEY_ARC BASIC 25 2 production March
38 47.360 45 16 LOWERBD NONBASIC 25 2 backorder April
39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May
40 23.550 19 10 LOWERBD NONBASIC 19 2 production May
41 . 20 6 KEY_ARC BASIC 19 2 storage April
42 28.960 50 14 LOWERBD NONBASIC 25 . f1_to_2 May
43 73.170 51 20 LOWERBD NONBASIC 25 2 production May
44 108.130 52 16 LOWERBD NONBASIC 25 2 storage April
45 . 21 2 KEY_ARC BASIC 19 1 sales March
46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April
47 9.000 23 4 LOWERBD NONBASIC 19 1 sales May
48 -9.650 24 5 UPPERBD NONBASIC 19 2 sales March
49 . 25 6 KEY_ARC BASIC 19 2 sales April
50 18.000 26 7 LOWERBD NONBASIC 19 2 sales May
51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March
52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April
53 . 55 14 KEY_ARC BASIC 25 1 sales May
54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March
55 . 57 16 KEY_ARC BASIC 25 2 sales April
56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May
57 -46.090 27 2 UPPERBD NONBASIC 19 1 sales March
58 -32.000 28 3 UPPERBD NONBASIC 19 1 sales April
59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May
60 4.050 30 5 LOWERBD NONBASIC 19 2 sales March
61 -33.000 31 6 UPPERBD NONBASIC 19 2 sales April
62 . 32 7 KEY_ARC BASIC 19 2 sales May
63 . 59 12 KEY_ARC BASIC 25 1 sales March
64 . 60 13 KEY_ARC BASIC 25 1 sales April
65 32.020 61 14 LOWERBD NONBASIC 25 1 sales May
66 . 62 15 KEY_ARC BASIC 25 2 sales March
67 . 63 16 KEY_ARC BASIC 25 2 sales April
68 . 64 17 KEY_ARC BASIC 25 2 sales May

Example 5.5. Using an Unconstrained Solution Warm Start � 485

Output 5.4.3. NODEOUT=NODE2
Minimum Cost Flow problem

Production Planning/Inventory/Distribution

_
s _ _ _

_ u _ N _ _ S A _
n p D N P T C R F _
o d U U R R E C L F

O d e A M E A S I O B
b e m L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69
2 _EXCESS_ -200 -100000198.75 21 1 11 13 65 5 65
3 f1_apr_1 . -100000278.00 3 6 7 1 -14 30 4
4 f1_apr_2 . -100000387.60 13 19 17 1 -60 535 36
5 f1_mar_1 . -100000326.65 2 8 1 15 -21 155 1
6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33
7 f1_may_1 . -100000293.00 4 7 2 1 -18 100 8
8 f1_may_2 . -100000329.94 14 18 12 1 -55 25 40
9 f2_apr_1 . -100000289.00 6 8 3 5 -25 245 14
10 f2_apr_2 . -100000397.11 16 19 18 3 -63 320 46
11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11
12 f2_mar_2 . -100000380.75 15 20 19 8 44 610 43
13 f2_may_1 . -100000309.00 7 6 9 3 20 15 18
14 f2_may_2 . -100000326.98 17 19 10 1 -64 20 50
15 fact1_1 1000 -100000198.75 1 2 21 14 -1 295 -1
16 fact1_2 1000 -100000198.75 11 21 20 1 -67 10 -33
17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33
18 fact2_2 1500 -100000198.75 20 21 15 9 -68 140 -65
19 shop1_1 -900 -99999999.00 8 22 6 21 0 0 21
20 shop1_2 -900 -99999854.92 18 16 14 2 57 375 53
21 shop2_1 -900 -100000010.00 9 7 4 1 32 150 27
22 shop2_2 -1450 -99999837.92 19 15 16 7 62 120 59

Example 5.5. Using an Unconstrained Solution Warm Start

This example examines the effect of changing some of the arc costs. The backorder
penalty costs are increased by twenty percent. The sales profit of 25-inch TVs sent to
the shops in May is increased by thirty units. The backorder penalty costs of 25-inch
TVs manufactured in May for April consumption is decreased by thirty units. The
production cost of 19- and 25-inch TVs made in May are decreased by five units and
twenty units, respectively. How does the optimal solution of the network after these
arc cost alterations compare with the optimum of the original network? If you want
to use the warm start facilities of PROC NETFLOW to solve this undefined problem,
specify the WARM option. Notice that the FUTURE1 option was specified in the last
PROC NETFLOW run.

486 � Chapter 5. The NETFLOW Procedure

The following SAS statements produce the new NODEOUT= and ARCOUT= data
sets.

title ’Minimum Cost Flow problem- Unconstrained Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id=’backorder’

then _cost_=_cost_*1.2;
else if _tail_=’f2_may_2’ then _cost_=_cost_-30;

if key_id=’production’ & mth_made=’May’ then
if diagonal=19 then _cost_=_cost_-5;

else _cost_=_cost_-20;

proc netflow
warm future1
nodedata=node2
arcdata=arc2
nodeout=node3
arcout=arc3;

proc print data=arc3 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;
/* to get this variable order */

sum oldfc _fcost_;
proc print data=node3;

run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total

demand= 4350 .
NOTE: Number of iterations performed (neglecting any

constraints)= 8 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: The data set WORK.ARC3 has 68 observations and

21 variables.
NOTE: The data set WORK.NODE3 has 22 observations and

10 variables.

The solution is displayed in Output 5.5.1 and Output 5.5.2. The associated
NODEOUT data set is in Output 5.5.3.

Example 5.5. Using an Unconstrained Solution Warm Start � 487

Output 5.5.1. ARCOUT=ARC3
Minimum Cost Flow problem- Unconstrained Warm Start

Production Planning/Inventory/Distribution

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 99999999 0 1000 200 0.00 5 0.00
2 fact2_1 _EXCESS_ 99999999 0 850 200 0.00 45 0.00
3 fact1_2 _EXCESS_ 99999999 0 1000 200 0.00 0 0.00
4 fact2_2 _EXCESS_ 99999999 0 1500 200 0.00 150 0.00
5 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540 42444.00
6 f1_mar_1 f1_apr_1 50 0 . . 15.00 0 0.00
7 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0 0.00
8 f2_apr_1 f1_apr_1 40 0 . . 11.00 0 0.00
9 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250 43625.00
10 f1_mar_2 f1_apr_2 40 0 . . 20.00 0 0.00
11 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15 738.00
12 f2_apr_2 f1_apr_2 25 0 . . 21.00 0 0.00
13 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340 43486.00
14 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20 672.00
15 f2_mar_1 f1_mar_1 40 0 . . 10.00 40 400.00
16 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400 87160.00
17 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30 1152.00
18 f2_mar_2 f1_mar_2 25 0 . . 20.00 25 500.00
19 fact1_1 f1_may_1 400 50 1000 . 90.10 115 10361.50
20 f1_apr_1 f1_may_1 50 0 . . 12.00 0 0.00
21 f2_may_1 f1_may_1 40 0 . . 13.00 0 0.00
22 fact1_2 f1_may_2 350 40 1000 . 113.30 350 39655.00
23 f1_apr_2 f1_may_2 40 0 . . 18.00 0 0.00
24 f2_may_2 f1_may_2 25 0 . . 13.00 0 0.00
25 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20 220.00
26 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480 29952.00
27 f2_mar_1 f2_apr_1 30 0 . . 18.00 0 0.00
28 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0 0.00
29 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0 0.00
30 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680 133756.00
31 f2_mar_2 f2_apr_2 50 0 . . 28.00 0 0.00
32 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0 0.00
33 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0 0.00
34 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290 25520.00
35 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0 0.00
36 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0 0.00
37 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635 115570.00
38 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0 0.00
39 f1_may_1 f2_may_1 99999999 0 . . 16.00 115 1840.00
40 fact2_1 f2_may_1 250 35 850 . 128.80 35 4508.00
41 f2_apr_1 f2_may_1 30 0 . . 20.00 0 0.00
42 f1_may_2 f2_may_2 99999999 0 . . 26.00 335 8710.00
43 fact2_2 f2_may_2 550 35 1500 . 181.40 35 6349.00
44 f2_apr_2 f2_may_2 50 0 . . 38.00 0 0.00
45 f1_mar_1 shop1_1 250 0 . 900 -327.65 150 -49147.50
46 f1_apr_1 shop1_1 250 0 . 900 -300.00 250 -75000.00
47 f1_may_1 shop1_1 250 0 . 900 -285.00 0 0.00
48 f2_mar_1 shop1_1 250 0 . 900 -297.40 250 -74350.00
49 f2_apr_1 shop1_1 250 0 . 900 -290.00 250 -72500.00
50 f2_may_1 shop1_1 250 0 . 900 -292.00 0 0.00
51 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0 0.00
52 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0 0.00
53 f1_may_2 shop1_2 99999999 0 . 900 -475.02 0 0.00
54 f2_mar_2 shop1_2 500 0 . 900 -567.83 500 -283915.00
55 f2_apr_2 shop1_2 500 0 . 900 -542.19 400 -216876.00
56 f2_may_2 shop1_2 500 0 . 900 -491.56 0 0.00
57 f1_mar_1 shop2_1 250 0 . 900 -362.74 250 -90685.00
58 f1_apr_1 shop2_1 250 0 . 900 -300.00 250 -75000.00
59 f1_may_1 shop2_1 250 0 . 900 -245.00 0 0.00
60 f2_mar_1 shop2_1 250 0 . 900 -272.70 0 0.00
61 f2_apr_1 shop2_1 250 0 . 900 -312.00 250 -78000.00
62 f2_may_1 shop2_1 250 0 . 900 -299.00 150 -44850.00
63 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455 -283869.95
64 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235 -129174.80
65 f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0 0.00
66 f2_mar_2 shop2_2 500 0 . 1450 -542.83 110 -59711.30
67 f2_apr_2 shop2_2 500 0 . 1450 -559.19 280 -156573.20
68 f2_may_2 shop2_2 500 0 . 1450 -519.06 370 -192052.20

===========
-1285086.45

488 � Chapter 5. The NETFLOW Procedure

Output 5.5.2. ARCOUT=ARC3 (continued)
Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

1 0.00 5 0.00 . . 65 1
2 0.00 45 0.00 . . 66 10
3 0.00 10 0.00 . . 67 11
4 0.00 140 0.00 . . 68 20
5 78.60 600 47160.00 19 1 production April 4 1
6 15.00 0 0.00 19 1 storage March 5 2
7 28.00 0 0.00 19 1 backorder May 6 4
8 11.00 0 0.00 19 . f2_to_1 April 7 6
9 174.50 550 95975.00 25 1 production April 36 11

10 20.00 0 0.00 25 1 storage March 37 12
11 41.00 15 615.00 25 1 backorder May 38 14
12 21.00 0 0.00 25 . f2_to_1 April 39 16
13 127.90 345 44125.50 19 1 production March 1 1
14 28.00 20 560.00 19 1 backorder April 2 3
15 10.00 40 400.00 19 . f2_to_1 March 3 5
16 217.90 400 87160.00 25 1 production March 33 11
17 32.00 30 960.00 25 1 backorder April 34 13
18 20.00 25 500.00 25 . f2_to_1 March 35 15
19 95.10 50 4755.00 19 1 production May 8 1
20 12.00 50 600.00 19 1 storage April 9 3
21 13.00 0 0.00 19 . f2_to_1 May 10 7
22 133.30 40 5332.00 25 1 production May 40 11
23 18.00 0 0.00 25 1 storage April 41 13
24 43.00 0 0.00 25 . f2_to_1 May 42 17
25 11.00 30 330.00 19 . f1_to_2 April 14 3
26 62.40 480 29952.00 19 2 production April 15 10
27 18.00 0 0.00 19 2 storage March 16 5
28 25.00 0 0.00 19 2 backorder May 17 7
29 23.00 0 0.00 25 . f1_to_2 April 46 13
30 196.70 680 133756.00 25 2 production April 47 20
31 28.00 0 0.00 25 2 storage March 48 15
32 54.00 15 810.00 25 2 backorder May 49 17
33 11.00 0 0.00 19 . f1_to_2 March 11 2
34 88.00 290 25520.00 19 2 production March 12 10
35 17.00 0 0.00 19 2 backorder April 13 6
36 23.00 0 0.00 25 . f1_to_2 March 43 12
37 182.00 645 117390.00 25 2 production March 44 20
38 31.00 0 0.00 25 2 backorder April 45 16
39 16.00 100 1600.00 19 . f1_to_2 May 18 4
40 133.80 35 4683.00 19 2 production May 19 10
41 20.00 15 300.00 19 2 storage April 20 6
42 26.00 0 0.00 25 . f1_to_2 May 50 14
43 201.40 35 7049.00 25 2 production May 51 20
44 38.00 0 0.00 25 2 storage April 52 16
45 -327.65 155 -50785.75 19 1 sales March 21 2
46 -300.00 250 -75000.00 19 1 sales April 22 3
47 -285.00 0 0.00 19 1 sales May 23 4
48 -297.40 250 -74350.00 19 2 sales March 24 5
49 -290.00 245 -71050.00 19 2 sales April 25 6
50 -292.00 0 0.00 19 2 sales May 26 7
51 -559.76 0 0.00 25 1 sales March 53 12
52 -524.28 0 0.00 25 1 sales April 54 13
53 -475.02 25 -11875.50 25 1 sales May 55 14
54 -567.83 500 -283915.00 25 2 sales March 56 15
55 -542.19 375 -203321.25 25 2 sales April 57 16
56 -461.56 0 0.00 25 2 sales May 58 17
57 -362.74 250 -90685.00 19 1 sales March 27 2
58 -300.00 250 -75000.00 19 1 sales April 28 3
59 -245.00 0 0.00 19 1 sales May 29 4
60 -272.70 0 0.00 19 2 sales March 30 5
61 -312.00 250 -78000.00 19 2 sales April 31 6
62 -299.00 150 -44850.00 19 2 sales May 32 7
63 -623.89 455 -283869.95 25 1 sales March 59 12
64 -549.68 535 -294078.80 25 1 sales April 60 13
65 -460.00 0 0.00 25 1 sales May 61 14
66 -542.83 120 -65139.60 25 2 sales March 62 15
67 -559.19 320 -178940.80 25 2 sales April 63 16
68 -489.06 20 -9781.20 25 2 sales May 64 17

===========
-1281110.35

Example 5.6. Adding Side Constraints, Using a Warm Start � 489

Output 5.5.3. NODEOUT=NODE3
Minimum Cost Flow problem- Unconstrained Warm Start

Production Planning/Inventory/Distribution

_
s _ _ _

_ u _ N _ _ S A _
n p D N P T C R F _
o d U U R R E C L F

O d e A M E A S I O B
b e m L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69
2 _EXCESS_ -200 -100000198.75 21 1 20 13 65 5 65
3 f1_apr_1 . -100000277.35 3 1 6 2 4 490 4
4 f1_apr_2 . -100000387.60 13 19 11 2 -60 235 36
5 f1_mar_1 . -100000326.65 2 8 1 20 -21 150 1
6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33
7 f1_may_1 . -100000288.85 4 1 7 3 8 65 8
8 f1_may_2 . -100000330.98 14 17 10 1 -50 335 40
9 f2_apr_1 . -100000288.35 6 3 4 1 14 20 14
10 f2_apr_2 . -100000397.11 16 19 18 2 -63 280 46
11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11
12 f2_mar_2 . -100000380.75 15 20 19 9 44 600 43
13 f2_may_1 . -100000304.85 7 4 9 2 18 115 18
14 f2_may_2 . -100000356.98 17 19 14 2 -64 370 50
15 fact1_1 1000 -100000198.75 1 2 3 19 -1 290 -1
16 fact1_2 1000 -100000213.10 11 13 17 1 -36 200 -33
17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33
18 fact2_2 1500 -100000198.75 20 21 15 10 -68 150 -65
19 shop1_1 -900 -99999999.00 8 22 2 21 0 0 21
20 shop1_2 -900 -99999854.92 18 16 12 1 57 400 53
21 shop2_1 -900 -100000005.85 9 7 21 1 32 150 27
22 shop2_2 -1450 -99999837.92 19 15 16 8 62 110 59

Example 5.6. Adding Side Constraints, Using a Warm Start
The manufacturer of Gizmo chips, which are parts needed to make televisions, can
supply only 2600 chips to factory 1 and 3750 chips to factory 2 in time for production
in each of the months of March and April. However, Gizmo chips will not be in short
supply in May. Three chips are required to make each 19-inch TV while the 25-
inch TVs require four chips each. To limit the production of televisions produced at
factory 1 in March so that the TVs have the correct number of chips, a side constraint
called FACT1 MAR GIZMO is used. The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

“prod f1 19 mar” is the name of the arc directed from the node fact1–1 toward node
f1–mar–1 and, in the previous constraint, designates the flow assigned to this arc. The
ARCDATA= and ARCOUT= data sets have arc names in a variable called –name– .

The other side constraints (shown below) are called FACT2 MAR GIZMO , FACT1
APL GIZMO, and FACT2 APL GIZMO.

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

490 � Chapter 5. The NETFLOW Procedure

To maintain customer goodwill, the total number of backorders is not to exceed 50
sets. The side constraint TOTAL BACKORDER that models this restriction is:

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are less than
or equal type. Because this is the default type value for the DEFCONTYPE= op-
tion, type information is not necessary in the following CONDATA=CON3. Also,
DEFCONTYPE= <= does not have to be specified in the PROC NETFLOW state-
ment that follows. Notice that the –column– variable value CHIP/BO LIMIT indi-
cates that an observation of the CON3 data set contains rhs information. Therefore,
specify RHSOBS=‘CHIP/BO LIMIT’.

title ’Adding Side Constraints and Using a Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA=
data sets in the following PROC NETFLOW run. The set used depends on which
cost information the arcs are to have and whether a warm start is to be used.

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node2
ARCDATA=arc2 NODEDATA=node2
ARCDATA=arc3 NODEDATA=node3

Example 5.6. Adding Side Constraints, Using a Warm Start � 491

arc0, node0, arc1, and node2 were created in Example 5.4. The first two data
sets are the original input data sets. arc1 and node2 were the ARCOUT= and
NODEOUT= data sets of a PROC NETFLOW run with FUTURE1 specified. Now, if
you use arc1 and node2 as the ARCDATA= data set and NODEDATA= data set in a
PROC NETFLOW run, you can specify WARM, as these data sets contain additional
information describing a warm start.

In Example 5.5, arc2 was created by modifying arc1 to reflect different arc costs.
arc2 and node2 can also be used as the ARCDATA= and NODEDATA= data sets in
a PROC NETFLOW run. Again, specify WARM, as these data sets contain additional
information describing a warm start. This start, however, contains the optimal basis
using the original costs.

If you are going to continue optimization using the changed arc costs, it is probably
best to use arc3 and node3 as the ARCDATA= and NODEDATA= data sets. These
data sets, created in Example 5.6 by PROC NETFLOW when the FUTURE1 option
was specified, contain an optimal basis that can be used as a warm start.

PROC NETFLOW is used to find the changed cost network solution that obeys the
chip limit and backorder side constraints. The FUTURE2 option is specified in case
further processing is required. An explicit ID list has also been specified so that the
variables oldcost, oldfc and oldflow do not appear in the subsequent output data sets.

proc netflow
nodedata=node3 arcdata=arc3 warm
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
future2 dualout=dual4 conout=con4;

id diagonal factory key_id mth_made;
proc print data=con4;

sum _fcost_;
proc print data=dual4;

run;

492 � Chapter 5. The NETFLOW Procedure

The following messages appear on the SAS log:

NOTE: The following 3 variables in ARCDATA do not belong to
any SAS variable list. These will be ignored.
oldcost
oldfc
oldflow

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of iterations performed (neglecting any

constraints)= 1 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 10 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1282708.625 .
NOTE: The data set WORK.CON4 has 68 observations and 18

variables.
NOTE: The data set WORK.DUAL4 has 27 observations and 14

variables.

Example 5.6. Adding Side Constraints, Using a Warm Start � 493

Output 5.6.1. CONOUT=CON4
Adding Side Constraints and Using a Warm Start
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5.000 0.00
2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45.000 0.00
3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 0.000 0.00
4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 150.000 0.00
5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 533.333 41920.00
6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00
7 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00
8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00
9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00
10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00
11 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00
12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0.000 0.00
13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 333.333 42633.33
14 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00
15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00
16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00
17 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00
18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00
19 fact1_1 f1_may_1 90.10 400 50 1000 . 128.333 11562.83
20 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00
21 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00
22 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00
23 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00
24 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00
25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 13.333 146.67
26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00
27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00
28 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00
29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00
30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25
31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00
32 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00
33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00
34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00
35 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00
36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00
37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00
38 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00
39 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00
40 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00
41 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00
42 f1_may_2 f2_may_2 26.00 99999999 0 . . 350.000 9100.00
43 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50
44 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00
45 f1_mar_1 shop1_1 -327.65 250 0 . 900 143.333 -46963.17
46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00
47 f1_may_1 shop1_1 -285.00 250 0 . 900 13.333 -3800.00
48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00
49 f2_apr_1 shop1_1 -290.00 250 0 . 900 243.333 -70566.67
50 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00
51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00
52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00
53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 0.000 0.00
54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00
55 f2_apr_2 shop1_2 -542.19 500 0 . 900 400.000 -216876.00
56 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00
57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00
58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00
59 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00
60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00
61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00
62 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00
63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95
64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 220.000 -120929.60
65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0.000 0.00
66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75
67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 177.500 -99256.23
68 f2_may_2 shop2_2 -519.06 500 0 . 1450 472.500 -245255.85

===========
-1282708.63

494 � Chapter 5. The NETFLOW Procedure

Output 5.6.2. CONOUT=CON4 (continued)
Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 65 1 KEY_ARC BASIC . .
2 . 66 10 KEY_ARC BASIC . .
3 30.187 67 11 LOWERBD NONBASIC . .
4 . 68 20 KEY_ARC BASIC . .
5 . 4 1 KEY_ARC BASIC 19 1 production April
6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March
7 47.020 6 4 LOWERBD NONBASIC 19 1 backorder May
8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April
9 . 36 11 KEY_ARC BASIC 25 1 production April
10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March
11 . 38 14 NONKEY ARC BASIC 25 1 backorder May
12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April
13 . 1 1 KEY_ARC BASIC 19 1 production March
14 -7.630 2 3 UPPERBD NONBASIC 19 1 backorder April
15 -34.750 3 5 UPPERBD NONBASIC 19 . f2_to_1 March
16 -31.677 33 11 UPPERBD NONBASIC 25 1 production March
17 -28.390 34 13 UPPERBD NONBASIC 25 1 backorder April
18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March
19 . 8 1 KEY_ARC BASIC 19 1 production May
20 6.000 9 3 LOWERBD NONBASIC 19 1 storage April
21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May
22 -11.913 40 11 UPPERBD NONBASIC 25 1 production May
23 74.620 41 13 LOWERBD NONBASIC 25 1 storage April
24 39.000 42 17 LOWERBD NONBASIC 25 . f2_to_1 May
25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April
26 -14.077 15 10 UPPERBD NONBASIC 19 2 production April
27 10.900 16 5 LOWERBD NONBASIC 19 2 storage March
28 48.420 17 7 LOWERBD NONBASIC 19 2 backorder May
29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April
30 . 47 20 KEY_ARC BASIC 25 2 production April
31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March
32 32.090 49 17 LOWERBD NONBASIC 25 2 backorder May
33 55.750 11 2 LOWERBD NONBASIC 19 . f1_to_2 March
34 . 12 10 KEY_ARC BASIC 19 2 production March
35 34.920 13 6 LOWERBD NONBASIC 19 2 backorder April
36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March
37 -23.170 44 20 UPPERBD NONBASIC 25 2 production March
38 60.980 45 16 LOWERBD NONBASIC 25 2 backorder April
39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May
40 22.700 19 10 LOWERBD NONBASIC 19 2 production May
41 9.000 20 6 LOWERBD NONBASIC 19 2 storage April
42 . 50 14 KEY_ARC BASIC 25 . f1_to_2 May
43 . 51 20 NONKEY ARC BASIC 25 2 production May
44 78.130 52 16 LOWERBD NONBASIC 25 2 storage April
45 . 21 2 KEY_ARC BASIC 19 1 sales March
46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April
47 . 23 4 NONKEY ARC BASIC 19 1 sales May
48 -14.500 24 5 UPPERBD NONBASIC 19 2 sales March
49 . 25 6 NONKEY ARC BASIC 19 2 sales April
50 9.000 26 7 LOWERBD NONBASIC 19 2 sales May
51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March
52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April
53 1.040 55 14 LOWERBD NONBASIC 25 1 sales May
54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March
55 . 57 16 KEY_ARC BASIC 25 2 sales April
56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May
57 -37.090 27 2 UPPERBD NONBASIC 19 1 sales March
58 -23.000 28 3 UPPERBD NONBASIC 19 1 sales April
59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May
60 8.200 30 5 LOWERBD NONBASIC 19 2 sales March
61 -24.000 31 6 UPPERBD NONBASIC 19 2 sales April
62 . 32 7 KEY_ARC BASIC 19 2 sales May
63 . 59 12 KEY_ARC BASIC 25 1 sales March
64 . 60 13 KEY_ARC BASIC 25 1 sales April
65 33.060 61 14 LOWERBD NONBASIC 25 1 sales May
66 . 62 15 KEY_ARC BASIC 25 2 sales March
67 . 63 16 KEY_ARC BASIC 25 2 sales April
68 . 64 17 KEY_ARC BASIC 25 2 sales May

Example 5.6. Adding Side Constraints, Using a Warm Start � 495

Output 5.6.3. DUALOUT=DUAL4
Adding Side Constraints and Using a Warm Start

Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 _ROOT_ 238 0.00 22 0 8 5
2 _EXCESS_ -200 -100000193.90 21 1 20 13
3 f1_apr_1 . -100000278.00 3 1 6 2
4 f1_apr_2 . -100000405.92 13 19 11 2
5 f1_mar_1 . -100000326.65 2 8 1 20
6 f1_mar_2 . -100000480.13 12 19 13 1
7 f1_may_1 . -100000284.00 4 1 7 3
8 f1_may_2 . -100000349.30 14 17 15 1
9 f2_apr_1 . -100000289.00 6 3 4 1

10 f2_apr_2 . -100000415.43 16 20 18 9
11 f2_mar_1 . -100000281.90 5 10 3 1
12 f2_mar_2 . -100000399.07 15 19 10 1
13 f2_may_1 . -100000300.00 7 4 9 2
14 f2_may_2 . -100000375.30 17 19 14 2
15 fact1_1 1000 -100000193.90 1 2 21 19
16 fact1_2 1000 -100000224.09 11 13 17 1
17 fact2_1 850 -100000193.90 10 21 5 2
18 fact2_2 1500 -100000193.90 20 21 16 10
19 shop1_1 -900 -99999999.00 8 22 2 21
20 shop1_2 -900 -99999873.24 18 16 19 1
21 shop2_1 -900 -100000001.00 9 7 22 1
22 shop2_2 -1450 -99999856.24 19 16 12 7
23 . -1.83 2 8 . .
24 . -1.62 0 8 . .
25 . -6.21 3 17 . .
26 . 0.00 1 1 . 1
27 . -7.42 4 13 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 3 166.000 -69 0 75
2 65 5.000 65 . .
3 4 483.333 4 . .
4 -60 220.000 36 . .
5 -21 143.333 1 . .
6 -59 455.000 33 . .
7 8 78.333 8 . .
8 -50 350.000 40 . .
9 14 13.333 14 . .

10 47 542.500 46 . .
11 12 255.000 11 . .
12 -62 125.000 43 . .
13 18 115.000 18 . .
14 -64 472.500 50 . .
15 -1 283.333 -1 . .
16 -36 200.000 -33 . .
17 -66 45.000 -33 . .
18 -68 150.000 -65 . .
19 0 0.000 21 . .
20 57 400.000 53 . .
21 32 150.000 27 . .
22 63 177.500 59 . .
23 25 243.333 . 2600 2600 LE FACT1 APL GIZMO
24 23 13.333 . 2600 2600 LE FACT1 MAR GIZMO
25 51 87.500 . 3750 3750 LE FACT2 APL GIZMO
26 . 280.000 . 3470 3750 LE FACT2 MAR GIZMO
27 38 0.000 . 50 50 LE TOTAL BACKORDER

496 � Chapter 5. The NETFLOW Procedure

Example 5.7. Using a Constrained Solution Warm Start

Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either
shop with an increased profit of 40 dollars each. What is the new optimal solu-
tion? Because only arc costs have been changed, information about the present so-
lution in DUALOUT=dual4 and CONOUT=con4 can be used as a warm start in the
following PROC NETFLOW run. It is still necessary to specify CONDATA=con3
SPARSECONDATA RHSOBS=‘CHIP/BO LIMIT’, since the CONDATA= data set
is always read.

title ’Using a Constrained Solution Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data new_con4;

set con4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_=’f1_may_2’

& (_head_=’shop1_2’ | _head_=’shop2_2’)
then _cost_=_cost_-40;

run;

proc netflow
warm
arcdata=new_con4
dualin=dual4
condata=con3
sparsecondata
rhsobs=’CHIP/BO LIMIT’
dualout=dual5
conout=con5;
run;

proc print data=con5 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;

/* to get this variable order */
sum oldfc _fcost_;

run;

proc print data=dual5;
run;

Example 5.7. Using a Constrained Solution Warm Start � 497

The following messages appear on the SAS log:

NOTE: The following 1 variables in NODEDATA do not belong to
any SAS variable list. These will be ignored.
VALUE

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 7 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295661.8 .
NOTE: The data set WORK.CON5 has 64 observations and 21

variables.
NOTE: The data set WORK.DUAL5 has 25 observations and 14

variables.

498 � Chapter 5. The NETFLOW Procedure

Output 5.7.1. CONOUT=CON5
Using a Constrained Solution Warm Start
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 533.333 41920.00
2 f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000 0.00
3 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000 0.00
4 f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000 0.00
5 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000 43625.00
6 f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000 0.00
7 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 0.000 0.00
8 f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000 0.00
9 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 333.333 42633.33
10 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000 672.00
11 f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000 400.00
12 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000 87160.00
13 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000 1152.00
14 f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000 500.00
15 fact1_1 f1_may_1 400 50 1000 . 90.10 128.333 11562.83
16 f1_apr_1 f1_may_1 50 0 . . 12.00 0.000 0.00
17 f2_may_1 f1_may_1 40 0 . . 13.00 0.000 0.00
18 fact1_2 f1_may_2 350 40 1000 . 113.30 350.000 39655.00
19 f1_apr_2 f1_may_2 40 0 . . 18.00 0.000 0.00
20 f2_may_2 f1_may_2 25 0 . . 13.00 0.000 0.00
21 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 13.333 146.67
22 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000 29952.00
23 f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000 0.00
24 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000 0.00
25 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000 0.00
26 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 550.000 108185.00
27 f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000 0.00
28 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000 0.00
29 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000 0.00
30 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000 25520.00
31 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000 0.00
32 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000 0.00
33 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 650.000 118300.00
34 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000 0.00
35 f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000 1840.00
36 fact2_1 f2_may_1 250 35 850 . 128.80 35.000 4508.00
37 f2_apr_1 f2_may_1 30 0 . . 20.00 0.000 0.00
38 f1_may_2 f2_may_2 99999999 0 . . 26.00 0.000 0.00
39 fact2_2 f2_may_2 550 35 1500 . 181.40 150.000 27210.00
40 f2_apr_2 f2_may_2 50 0 . . 38.00 0.000 0.00
41 f1_mar_1 shop1_1 250 0 . 900 -327.65 143.333 -46963.17
42 f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000 -75000.00
43 f1_may_1 shop1_1 250 0 . 900 -285.00 13.333 -3800.00
44 f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000 -74350.00
45 f2_apr_1 shop1_1 250 0 . 900 -290.00 243.333 -70566.67
46 f2_may_1 shop1_1 250 0 . 900 -292.00 0.000 0.00
47 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000 0.00
48 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000 0.00
49 f1_may_2 shop1_2 99999999 0 . 900 -515.02 350.000 -180257.00
50 f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000 -283915.00
51 f2_apr_2 shop1_2 500 0 . 900 -542.19 50.000 -27109.50
52 f2_may_2 shop1_2 500 0 . 900 -491.56 0.000 0.00
53 f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000 -90685.00
54 f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000 -75000.00
55 f1_may_1 shop2_1 250 0 . 900 -245.00 0.000 0.00
56 f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000 0.00
57 f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000 -78000.00
58 f2_may_1 shop2_1 250 0 . 900 -299.00 150.000 -44850.00
59 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000 -283869.95
60 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 220.000 -120929.60
61 f1_may_2 shop2_2 99999999 0 . 1450 -500.00 0.000 0.00
62 f2_mar_2 shop2_2 500 0 . 1450 -542.83 125.000 -67853.75
63 f2_apr_2 shop2_2 500 0 . 1450 -559.19 500.000 -279595.00
64 f2_may_2 shop2_2 500 0 . 1450 -519.06 150.000 -77859.00

===========
-1295661.80

Example 5.7. Using a Constrained Solution Warm Start � 499

Output 5.7.2. CONOUT=CON5 (continued)
Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

1 78.60 533.333 41920.00 19 1 production April 4 1
2 15.00 0.000 0.00 19 1 storage March 5 2
3 33.60 0.000 0.00 19 1 backorder May 6 4
4 11.00 0.000 0.00 19 . f2_to_1 April 7 6
5 174.50 250.000 43625.00 25 1 production April 36 11
6 20.00 0.000 0.00 25 1 storage March 37 12
7 49.20 0.000 0.00 25 1 backorder May 38 14
8 21.00 0.000 0.00 25 . f2_to_1 April 39 16
9 127.90 333.333 42633.33 19 1 production March 1 1

10 33.60 20.000 672.00 19 1 backorder April 2 3
11 10.00 40.000 400.00 19 . f2_to_1 March 3 5
12 217.90 400.000 87160.00 25 1 production March 33 11
13 38.40 30.000 1152.00 25 1 backorder April 34 13
14 20.00 25.000 500.00 25 . f2_to_1 March 35 15
15 90.10 128.333 11562.83 19 1 production May 8 1
16 12.00 0.000 0.00 19 1 storage April 9 3
17 13.00 0.000 0.00 19 . f2_to_1 May 10 7
18 113.30 350.000 39655.00 25 1 production May 40 11
19 18.00 0.000 0.00 25 1 storage April 41 13
20 13.00 0.000 0.00 25 . f2_to_1 May 42 17
21 11.00 13.333 146.67 19 . f1_to_2 April 14 3
22 62.40 480.000 29952.00 19 2 production April 15 10
23 18.00 0.000 0.00 19 2 storage March 16 5
24 30.00 0.000 0.00 19 2 backorder May 17 7
25 23.00 0.000 0.00 25 . f1_to_2 April 46 13
26 196.70 577.500 113594.25 25 2 production April 47 20
27 28.00 0.000 0.00 25 2 storage March 48 15
28 64.80 0.000 0.00 25 2 backorder May 49 17
29 11.00 0.000 0.00 19 . f1_to_2 March 11 2
30 88.00 290.000 25520.00 19 2 production March 12 10
31 20.40 0.000 0.00 19 2 backorder April 13 6
32 23.00 0.000 0.00 25 . f1_to_2 March 43 12
33 182.00 650.000 118300.00 25 2 production March 44 20
34 37.20 0.000 0.00 25 2 backorder April 45 16
35 16.00 115.000 1840.00 19 . f1_to_2 May 18 4
36 128.80 35.000 4508.00 19 2 production May 19 10
37 20.00 0.000 0.00 19 2 storage April 20 6
38 26.00 350.000 9100.00 25 . f1_to_2 May 50 14
39 181.40 122.500 22221.50 25 2 production May 51 20
40 38.00 0.000 0.00 25 2 storage April 52 16
41 -327.65 143.333 -46963.17 19 1 sales March 21 2
42 -300.00 250.000 -75000.00 19 1 sales April 22 3
43 -285.00 13.333 -3800.00 19 1 sales May 23 4
44 -297.40 250.000 -74350.00 19 2 sales March 24 5
45 -290.00 243.333 -70566.67 19 2 sales April 25 6
46 -292.00 0.000 0.00 19 2 sales May 26 7
47 -559.76 0.000 0.00 25 1 sales March 53 12
48 -524.28 0.000 0.00 25 1 sales April 54 13
49 -475.02 0.000 0.00 25 1 sales May 55 14
50 -567.83 500.000 -283915.00 25 2 sales March 56 15
51 -542.19 400.000 -216876.00 25 2 sales April 57 16
52 -491.56 0.000 0.00 25 2 sales May 58 17
53 -362.74 250.000 -90685.00 19 1 sales March 27 2
54 -300.00 250.000 -75000.00 19 1 sales April 28 3
55 -245.00 0.000 0.00 19 1 sales May 29 4
56 -272.70 0.000 0.00 19 2 sales March 30 5
57 -312.00 250.000 -78000.00 19 2 sales April 31 6
58 -299.00 150.000 -44850.00 19 2 sales May 32 7
59 -623.89 455.000 -283869.95 25 1 sales March 59 12
60 -549.68 220.000 -120929.60 25 1 sales April 60 13
61 -460.00 0.000 0.00 25 1 sales May 61 14
62 -542.83 125.000 -67853.75 25 2 sales March 62 15
63 -559.19 177.500 -99256.23 25 2 sales April 63 16
64 -519.06 472.500 -245255.85 25 2 sales May 64 17

===========
-1282708.63

500 � Chapter 5. The NETFLOW Procedure

Output 5.7.3. DUALOUT=DUAL5
Using a Constrained Solution Warm Start
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 f1_apr_1 . -100000278.00 3 1 6 2
2 f1_apr_2 . -100000405.92 13 19 11 2
3 f1_mar_1 . -100000326.65 2 8 1 20
4 f1_mar_2 . -100000480.13 12 19 13 1
5 f1_may_1 . -100000284.00 4 1 7 3
6 f1_may_2 . -100000363.43 14 18 10 1
7 f2_apr_1 . -100000289.00 6 3 4 1
8 f2_apr_2 . -100000390.60 16 20 18 3
9 f2_mar_1 . -100000281.90 5 10 3 1

10 f2_mar_2 . -100000399.07 15 19 16 1
11 f2_may_1 . -100000300.00 7 4 9 2
12 f2_may_2 . -100000375.30 17 20 19 6
13 fact1_1 1000 -100000193.90 1 2 21 19
14 fact1_2 1000 -100000224.09 11 13 15 1
15 fact2_1 850 -100000193.90 10 21 5 2
16 fact2_2 1500 -100000193.90 20 21 17 10
17 shop1_1 -900 -99999999.00 8 22 2 21
18 shop1_2 -900 -99999848.41 18 16 14 2
19 shop2_1 -900 -100000001.00 9 7 22 1
20 shop2_2 -1450 -99999856.24 19 17 12 5
21 . -1.83 2 8 . .
22 . -1.62 0 8 . .
23 . 0.00 3 3 . 3
24 . 0.00 1 1 . 1
25 . 0.00 4 4 . 4

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 4 483.333 4 . .
2 -60 220.000 36 . .
3 -21 143.333 1 . .
4 -59 455.000 33 . .
5 8 78.333 8 . .
6 -55 350.000 40 . .
7 14 13.333 14 . .
8 47 515.000 46 . .
9 12 255.000 11 . .

10 -62 125.000 43 . .
11 18 115.000 18 . .
12 51 115.000 50 . .
13 -1 283.333 -1 . .
14 -36 200.000 -33 . .
15 -66 45.000 -33 . .
16 -68 150.000 -65 . .
17 0 0.000 21 . .
18 57 50.000 53 . .
19 32 150.000 27 . .
20 64 150.000 59 . .
21 25 243.333 . 2600 2600 LE FACT1 APL GIZMO
22 23 13.333 . 2600 2600 LE FACT1 MAR GIZMO
23 . 110.000 . 3640 3750 LE FACT2 APL GIZMO
24 . 280.000 . 3470 3750 LE FACT2 MAR GIZMO
25 . 0.000 . 50 50 LE TOTAL BACKORDER

Example 5.8. Nonarc Variables in the Side Constraints

Notice in DUALOUT=dual5 from Example 5.7 the FACT2 MAR GIZMO constraint
(observation 24) has a –VALUE– of 3470, which is not equal to the –RHS– of this
constraint. Not all of the 3750 chips that can be supplied to factory 2 for March
production are used. It is suggested that all the possible chips be obtained in March
and those not used be saved for April production. Because chips must be kept in an
air-controlled environment, it costs 1 dollar to store each chip purchased in March
until April. The maximum number of chips that can be stored in this environment at
each factory is 150. In addition, a search of the parts inventory at factory 1 turned up

Example 5.8. Nonarc Variables in the Side Constraints � 501

15 chips available for their March production.

Nonarc variables are used in the side constraints that handle the limitations of supply
of Gizmo chips. A nonarc variable called “f1 unused chips” has as a value the number
of chips that are not used at factory 1 in March. Another nonarc variable, “f2 unused
chips”, has as a value the number of chips that are not used at factory 2 in March.
“f1 chips from mar” has as a value the number of chips left over from March used
for production at factory 1 in April. Similarly, “f2 chips from mar” has as a value
the number of chips left over from March used for April production at factory 2 in
April. The last two nonarc variables have objective function coefficients of 1 and
upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less
than the number of chips left over from March and used in April. Here, this constraint
is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems
that most of the constraints are now equalities, so you specify DEFCONTYPE=EQ in
the PROC NETFLOW statements from now on and provide constraint type data for
constraints that are not “equal to” type, using the default TYPEOBS value –TYPE–
as the –COLUMN– variable value to indicate observations that contain constraint
type data. Also, from now on, the default RHSOBS value is used.

title ’Nonarc Variables in the Side Constraints’;
title2 ’Production Planning/Inventory/Distribution’;
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750

502 � Chapter 5. The NETFLOW Procedure

f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables “f1 chips from mar” and “f2 chips from mar” have objective
function coefficients of 1 and upper bounds of 150. There are various ways in which
this information can be furnished to PROC NETFLOW. If there were a TYPE list
variable in the CONDATA= data set, observations could be in the form

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

It is desirable to assign ID list variable values to all the nonarc variables:

data arc6;
set con5;
drop oldcost oldfc oldflow _flow_ _fcost_ _status_ _rcost_;

data arc6_b;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

proc append
base=arc6 data=arc6_b;

proc netflow
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
dualout=dual7 conout=con7;
run;

print nonarcs/short;

Example 5.8. Nonarc Variables in the Side Constraints � 503

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of nonarc variables= 4 .
NOTE: Number of iterations performed (neglecting any

constraints)= 70 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1295730.8 .
NOTE: Number of <= side constraints= 1 .
NOTE: Number of == side constraints= 4 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 24 .
NOTE: Number of iterations, optimizing with constraints= 13 .
NOTE: Of these, 3 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295542.742 .
NOTE: The data set WORK.CON7 has 68 observations and 18

variables.
NOTE: The data set WORK.DUAL7 has 26 observations and 14

variables.

The output in Output 5.8.1 is produced by

print nonarcs/short;

Output 5.8.1. Output of PRINT NONARCS/SHORT;
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

The NETFLOW Procedure

N _name_ _cost_ _capac_ _lo_ _VALUE_

1 f1 chips from mar 1 150 0 20
2 f1 unused chips 0 99999999 0 0
3 f2 chips from mar 1 150 0 0
4 f2 unused chips 0 99999999 0 280

The optimal solution data sets, CONOUT=CON7 in Output 5.8.2 and Output 5.8.3
and DUALOUT=DUAL7 in Output 5.8.4 follow.

proc print data=con7;
sum _fcost_;

proc print data=dual7;

504 � Chapter 5. The NETFLOW Procedure

Output 5.8.2. CONOUT=CON7
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 540.000 42444.00
2 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00
3 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00
4 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00
5 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00
6 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00
7 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00
8 f2_apr_2 f1_apr_2 21.00 25 0 . . 25.000 525.00
9 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 338.333 43272.83

10 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00
11 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00
12 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00
13 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00
14 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00
15 fact1_1 f1_may_1 90.10 400 50 1000 . 116.667 10511.67
16 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00
17 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00
18 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00
19 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00
20 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00
21 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 20.000 220.00
22 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00
23 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00
24 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00
25 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00
26 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25
27 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00
28 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00
29 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00
30 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00
31 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00
32 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00
33 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00
34 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00
35 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00
36 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00
37 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00
38 f1_may_2 f2_may_2 26.00 99999999 0 . . 0.000 0.00
39 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50
40 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00
41 f1_mar_1 shop1_1 -327.65 250 0 . 900 148.333 -48601.42
42 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00
43 f1_may_1 shop1_1 -285.00 250 0 . 900 1.667 -475.00
44 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00
45 f2_apr_1 shop1_1 -290.00 250 0 . 900 250.000 -72500.00
46 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00
47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00
48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00
49 f1_may_2 shop1_2 -515.02 99999999 0 . 900 347.500 -178969.45
50 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00
51 f2_apr_2 shop1_2 -542.19 500 0 . 900 52.500 -28464.98
52 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00
53 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00
54 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00
55 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00
56 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00
57 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00
58 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00
59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95
60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 245.000 -134671.60
61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450 2.500 -1250.00
62 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75
63 f2_apr_2 shop2_2 -559.19 500 0 . 1450 500.000 -279595.00
64 f2_may_2 shop2_2 -519.06 500 0 . 1450 122.500 -63584.85
65 1.00 150 0 f1 chips from mar . . 20.000 20.00
66 0.00 99999999 0 f1 unused chips . . 0.000 0.00
67 1.00 150 0 f2 chips from mar . . 0.000 0.00
68 0.00 99999999 0 f2 unused chips . . 280.000 0.00

===========
-1295542.74

Example 5.8. Nonarc Variables in the Side Constraints � 505

Output 5.8.3. CONOUT=CON7 (continued)
Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 1 1 KEY_ARC BASIC 19 1 production April
2 66.150 2 3 LOWERBD NONBASIC 19 1 storage March
3 42.580 3 4 LOWERBD NONBASIC 19 1 backorder May
4 22.000 4 5 LOWERBD NONBASIC 19 . f2_to_1 April
5 . 15 6 KEY_ARC BASIC 25 1 production April
6 94.210 16 8 LOWERBD NONBASIC 25 1 storage March
7 . 17 9 NONKEY ARC BASIC 25 1 backorder May
8 -1.510 18 10 UPPERBD NONBASIC 25 . f2_to_1 April
9 . 5 1 KEY_ARC BASIC 19 1 production March
10 -17.070 6 2 UPPERBD NONBASIC 19 1 backorder April
11 -34.750 7 11 UPPERBD NONBASIC 19 . f2_to_1 March
12 -28.343 19 6 UPPERBD NONBASIC 25 1 production March
13 -35.330 20 7 UPPERBD NONBASIC 25 1 backorder April
14 -61.060 21 12 UPPERBD NONBASIC 25 . f2_to_1 March
15 . 8 1 KEY_ARC BASIC 19 1 production May
16 3.500 9 2 LOWERBD NONBASIC 19 1 storage April
17 29.000 10 13 LOWERBD NONBASIC 19 . f2_to_1 May
18 -15.520 22 6 UPPERBD NONBASIC 25 1 production May
19 67.680 23 7 LOWERBD NONBASIC 25 1 storage April
20 32.060 24 14 LOWERBD NONBASIC 25 . f2_to_1 May
21 . 11 2 KEY_ARC BASIC 19 . f1_to_2 April
22 -35.592 12 15 UPPERBD NONBASIC 19 2 production April
23 13.400 13 11 LOWERBD NONBASIC 19 2 storage March
24 43.980 14 13 LOWERBD NONBASIC 19 2 backorder May
25 45.510 25 7 LOWERBD NONBASIC 25 . f1_to_2 April
26 . 26 16 KEY_ARC BASIC 25 2 production April
27 43.660 27 12 LOWERBD NONBASIC 25 2 storage March
28 57.170 28 14 LOWERBD NONBASIC 25 2 backorder May
29 55.750 29 3 LOWERBD NONBASIC 19 . f1_to_2 March
30 . 30 15 KEY_ARC BASIC 19 2 production March
31 25.480 31 5 LOWERBD NONBASIC 19 2 backorder April
32 104.060 32 8 LOWERBD NONBASIC 25 . f1_to_2 March
33 -23.170 33 16 UPPERBD NONBASIC 25 2 production March
34 22.020 34 10 LOWERBD NONBASIC 25 2 backorder April
35 . 35 4 KEY_ARC BASIC 19 . f1_to_2 May
36 22.700 36 15 LOWERBD NONBASIC 19 2 production May
37 6.500 37 5 LOWERBD NONBASIC 19 2 storage April
38 6.940 38 9 LOWERBD NONBASIC 25 . f1_to_2 May
39 . 39 16 KEY_ARC BASIC 25 2 production May
40 46.110 40 10 LOWERBD NONBASIC 25 2 storage April
41 . 41 3 KEY_ARC BASIC 19 1 sales March
42 -23.500 42 2 UPPERBD NONBASIC 19 1 sales April
43 . 43 4 NONKEY ARC BASIC 19 1 sales May
44 -14.500 44 11 UPPERBD NONBASIC 19 2 sales March
45 -2.500 45 5 UPPERBD NONBASIC 19 2 sales April
46 9.000 46 13 LOWERBD NONBASIC 19 2 sales May
47 79.150 47 8 LOWERBD NONBASIC 25 1 sales March
48 40.420 48 7 LOWERBD NONBASIC 25 1 sales April
49 . 49 9 KEY_ARC BASIC 25 1 sales May
50 -9.980 50 12 UPPERBD NONBASIC 25 2 sales March
51 . 51 10 KEY_ARC BASIC 25 2 sales April
52 42.520 52 14 LOWERBD NONBASIC 25 2 sales May
53 -37.090 53 3 UPPERBD NONBASIC 19 1 sales March
54 -25.500 54 2 UPPERBD NONBASIC 19 1 sales April
55 38.000 55 4 LOWERBD NONBASIC 19 1 sales May
56 8.200 56 11 LOWERBD NONBASIC 19 2 sales March
57 -26.500 57 5 UPPERBD NONBASIC 19 2 sales April
58 . 58 13 KEY_ARC BASIC 19 2 sales May
59 . 59 8 KEY_ARC BASIC 25 1 sales March
60 . 60 7 KEY_ARC BASIC 25 1 sales April
61 . 61 9 NONKEY ARC BASIC 25 1 sales May
62 . 62 12 KEY_ARC BASIC 25 2 sales March
63 -32.020 63 10 UPPERBD NONBASIC 25 2 sales April
64 . 64 14 KEY_ARC BASIC 25 2 sales May
65 . -2 . NONKEY BASIC . 1 chips
66 1.617 0 . LOWERBD NONBASIC . 1 chips
67 2.797 -3 . LOWERBD NONBASIC . 2 chips
68 . -1 . NONKEY BASIC . 2 chips

506 � Chapter 5. The NETFLOW Procedure

Output 5.8.4. DUALOUT=DUAL7
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 f1_apr_1 . -100000275.50 2 1 5 2
2 f1_apr_2 . -100000405.92 7 20 6 2
3 f1_mar_1 . -100000326.65 3 17 1 20
4 f1_mar_2 . -100000480.13 8 20 7 1
5 f1_may_1 . -100000284.00 4 1 13 3
6 f1_may_2 . -100000356.24 9 18 2 1
7 f2_apr_1 . -100000286.50 5 2 4 1
8 f2_apr_2 . -100000383.41 10 16 18 3
9 f2_mar_1 . -100000281.90 11 15 16 1

10 f2_mar_2 . -100000399.07 12 20 10 1
11 f2_may_1 . -100000300.00 13 4 19 2
12 f2_may_2 . -100000375.30 14 16 20 6
13 fact1_1 1000 -100000193.90 1 3 21 19
14 fact1_2 1000 -100000227.42 6 7 12 1
15 fact2_1 850 -100000193.90 15 21 11 2
16 fact2_2 1500 -100000193.90 16 21 14 10
17 shop1_1 -900 -99999999.00 17 22 3 21
18 shop1_2 -900 -99999841.22 18 10 9 2
19 shop2_1 -900 -100000001.00 19 13 22 1
20 shop2_2 -1450 -99999856.24 20 14 8 5
21 . 0.00 4 4 . 4
22 . -1.00 2 2 . .
23 . -1.62 0 17 . .
24 . 1.80 3 20 . .
25 . 0.00 1 1 . .
26 . -0.48 5 7 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 1 490.000 1 . .
2 -60 245.000 15 . .
3 -41 148.333 5 . .
4 -59 455.000 19 . .
5 8 66.667 8 . .
6 -49 347.500 22 . .
7 11 20.000 11 . .
8 26 542.500 25 . .
9 30 255.000 29 . .

10 -62 125.000 32 . .
11 35 115.000 35 . .
12 39 87.500 38 . .
13 -5 288.333 -1 . .
14 -15 200.000 -15 . .
15 -67 45.000 -41 . .
16 -68 150.000 -41 . .
17 0 0.000 41 . .
18 51 52.500 47 . .
19 58 150.000 53 . .
20 64 122.500 59 . .
21 . 260.000 . 260 0 GE CHIP LEFTOVER
22 -2 20.000 . 2600 2600 EQ FACT1 APL GIZMO
23 43 1.667 . 2615 2615 EQ FACT1 MAR GIZMO
24 61 2.500 . 3750 3750 EQ FACT2 APL GIZMO
25 -1 280.000 . 3750 3750 EQ FACT2 MAR GIZMO
26 17 0.000 . 50 50 LE TOTAL BACKORDER

The optimal value of the nonarc variable “f2 unused chips” is 280. This means that
although there are 3750 chips that can be used at factory 2 in March, only 3470
are used. As the optimal value of “f1 unused chips” is zero, all chips available for
production in March at factory 1 are used. The nonarc variable “f2 chips from mar”
also has zero optimal value. This means that the April production at factory 2 does
not need any chips that could have been held in inventory since March. However,
the nonarc variable “f1 chips from mar” has value of 20. Thus, 3490 chips should
be ordered for factory 2 in March. Twenty of these chips should be held in inventory
until April, then sent to factory 1.

References � 507

References
Bland, R. G. (1977), “New Finite Pivoting Rules for the Simplex Method,”

Mathematics of Operations Research, 2, 103–107.

George, A., Liu, J., and Ng, E. (2001), “Computer Solution of Positive Definite
Systems,” Unpublished book obtainable from authors.

Kearney, T. D. (1990), “A Tutorial on the NETFLOW Procedure in SAS/OR,”
Proceedings of the Fifteenth Annual SAS Users Group International Conference,
97–108.

Kennington, J. L. and Helgason, R. V. (1980), Algorithms for Networking
Programming, New York: Wiley Interscience, John Wiley & Sons.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), “On Implementing
Mehrotra’s Predictor-Corrector Interior-Point Method for Linear Programming,”
SIAM Journal of Optimization, 2, 435–449.

Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear
Optimization, Chichester, England: John Wiley & Sons.

Ryan, D. M. and Osborne, M. R. (1988), “On the Solution of Highly Degenerate
Linear Programmes,” Mathematical Programming, 41, 385–392.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John
Wiley & Sons.

508 � Chapter 5. The NETFLOW Procedure

Chapter 6
The NLP Procedure

Chapter Contents

OVERVIEW . 511

GETTING STARTED . 513
Introductory Examples . 513

SYNTAX . 524
Functional Summary . 524
PROC NLP Statement . 527
ARRAY Statement . 547
BOUNDS Statement . 547
BY Statement . 548
CRPJAC Statement . 548
DECVAR Statement . 549
GRADIENT Statement . 550
HESSIAN Statement . 550
INCLUDE Statement . 551
JACNLC Statement . 551
JACOBIAN Statement . 552
LABEL Statement . 553
LINCON Statement . 553
MATRIX Statement . 554
MIN, MAX, and LSQ Statements . 556
MINQUAD and MAXQUAD Statements 556
NLINCON Statement . 558
PROFILE Statement . 559
Program Statements . 560

DETAILS . 565
Criteria for Optimality . 565
Optimization Algorithms . 568
Finite-Difference Approximations of Derivatives 579
Hessian and CRP Jacobian Scaling . 582
Testing the Gradient Specification . 582
Termination Criteria . 583
Active Set Methods . 584
Feasible Starting Point . 587
Line-Search Methods . 587

510 � Chapter 6. The NLP Procedure

Restricting the Step Length . 588
Computational Problems . 589
Covariance Matrix . 592
Input and Output Data Sets . 596
Displayed Output . 604
Missing Values . 606
Computational Resources . 607

EXAMPLES . 611
Example 6.1. Using the DATA= Option . 611
Example 6.2. Using the INQUAD= Option 613
Example 6.3. Using the INEST=Option . 614
Example 6.4. Restarting an Optimization 616
Example 6.5. Approximate Standard Errors 617
Example 6.6. Maximum Likelihood Weibull Estimation 624
Example 6.7. Simple Pooling Problem . 631
Example 6.8. Chemical Equilibrium . 639
Example 6.9. Minimize Total Delay in a Network 644

REFERENCES . 649

Chapter 6
The NLP Procedure
Overview

The NLP procedure (NonLinear Programming) offers a set of optimization tech-
niques for minimizing or maximizing a continuous nonlinear function f(x) of n deci-
sion variables, x = (x1, . . . , xn)T with lower and upper bound, linear and nonlinear,
equality and inequality constraints. This can be expressed as solving

minx∈Rn f(x)
subject to ci(x) = 0, i = 1, . . . ,me

ci(x) ≥ 0, i = me + 1, . . . ,m
li ≤ xi ≤ ui, i = 1, . . . , n

where f is the objective function, the ci’s are the nonlinear functions, and the li’s and
ui’s are the lower and upper bounds. Problems of this type are found in many settings
ranging from optimal control to maximum likelihood estimation.

The NLP procedure provides a number of algorithms for solving this problem that
take advantage of special structure on the objective function and constraints. One
example is the quadratic programming problem:

min (max) f(x) = 1
2xT Gx + gT x + b

subject to ci(x) = 0, i = 1, . . . ,me

where G is an n × n symmetric matrix, g = (g1, . . . , gn)T is a vector, b is a scalar,
and the ci(x)’s are linear functions.

Another example is the least-squares problem:

min f(x) = 1
2{f

2
1 (x) + · · ·+ f2

l (x)}
subject to ci(x) = 0, i = 1, . . . ,me

where the ci(x)’s are linear functions, and f1(x), ..., fl(x) are nonlinear functions of
x.

The following problems are handled by PROC NLP:

• quadratic programming with an option for sparse problems

• unconstrained minimization/maximization

• constrained minimization/maximization

• linear complementarity problem

512 � Chapter 6. The NLP Procedure

The following optimization techniques are supported in PROC NLP:

• Quadratic Active Set Technique

• Trust Region Method

• Newton-Raphson Method with Line Search

• Newton-Raphson Method with Ridging

• Quasi-Newton Methods

• Double Dogleg Method

• Conjugate Gradient Methods

• Nelder-Mead Simplex Method

• Levenberg-Marquardt Method

• Hybrid Quasi-Newton Methods

These optimization techniques require a continuous objective function f , and all but
one (NMSIMP) require continuous first-order derivatives of the objective function f .
Some of the techniques also require continuous second-order derivatives. There are
three ways to compute derivatives in PROC NLP:

• analytically (using a special derivative compiler), the default method

• via finite-difference approximations

• via user-supplied exact or approximate numerical functions

Nonlinear programs can be input into the procedure in various ways. The objective,
constraint, and derivative functions are specified using the programming statements
of PROC NLP. In addition, information in SAS data sets can be used to define the
structure of objectives and constraints as well as specify constants used in objectives,
constraints and derivatives.

PROC NLP uses data sets to input various pieces of information:

• The DATA= data set enables you to specify data shared by all functions in-
volved in a least-squares problem.

• The INQUAD= data set contains the arrays appearing in a quadratic program-
ming problem.

• The INEST= data set specifies initial values for the decision variables, the val-
ues of constants that are referred to in the program statements, and simple
boundary and general linear constraints.

• The MODEL= data set specifies a model (functions, constraints, derivatives)
saved at a previous execution of the NLP procedure.

PROC NLP uses data sets to output various results:

• The OUTEST= data set saves the values of the decision variables, the deriva-
tives, the solution, and the covariance matrix at the solution.

Introductory Examples � 513

• The OUT= output data set contains variables generated in the program state-
ments defining the objective function as well as selected variables of the
DATA= input data set, if available.

• The OUTMODEL= data set saves the programming statements. It can be used
to input a model in the MODEL= input data set.

Getting Started
The NLP procedure solves general nonlinear programs. It has several optimizers that
are tuned to best perform on a particular class of problems. Guidelines for choosing a
particular optimizer for a problem can be found in the the “Optimization Algorithms”
section on page 568.

Regardless of the selected optimizer, it is necessary to specify an objective function
and constraints that the optimal solution must satisfy. In PROC NLP, the objective
function and the constraints are specified using SAS programming statements that are
similar to those used in the SAS DATA step. Some of the differences are discussed
in the “Program Statements” section on page 560 and in the “ARRAY Statement”
section on page 547. As with any programming language, there are many different
ways to specify the same problem. Some are more economical than others.

Introductory Examples

The following introductory examples illustrate how to get started using the NLP pro-
cedure.

An Unconstrained Problem

Consider the simple example of minimizing the Rosenbrock function (Rosenbrock
1960):

f(x) =
1
2
{100(x2 − x2

1)
2 + (1− x1)2}

=
1
2
{f2

1 (x) + f2
2 (x)}, x = (x1, x2)

The minimum function value is f(x∗) = 0 at x∗ = (1, 1). This problem does not
have any constraints.

The following statements can be used to solve this problem:

proc nlp;
min f;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
f = .5 * (f1 * f1 + f2 * f2);

run;

514 � Chapter 6. The NLP Procedure

The MIN statement identifies the symbol f that characterizes the objective function
in terms of f1 and f2, and the DECVAR statement names the decision variables x1
and x2. Because there is no explicit optimizing algorithm option specified (TECH=),
PROC NLP uses the Newton-Raphson method with ridging, the default algorithm
when there are no constraints.

A better way to solve this problem is to take advantage of the fact that f is a sum
of squares of f1 and f2 and to treat it as a least-squares problem. Using the LSQ
statement instead of the MIN statement tells the procedure that this is a least-squares
problem, which results in the use of one of the specialized algorithms for solving
least-squares problems (for example, Levenberg-Marquardt).

proc nlp;
lsq f1 f2;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The LSQ statement results in the minimization of a function that is the sum of squares
of functions that appear in the LSQ statement. The least-squares specification is
preferred because it enables the procedure to exploit the structure in the problem for
numerical stability and performance.

PROC NLP displays the iteration history and the solution to this least-squares prob-
lem as shown in Figure 6.1. It shows that the solution has x1 = 1 and x2 = 1. As
expected in an unconstrained problem, the gradient at the solution is very close to 0.

Introductory Examples � 515

PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 47.40627029
Max Abs Gradient Element 96.895634353 Radius 969.01382828

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Lambda Change

1 0 2 0 42.77209 4.6342 185.0 0 0.0978
2 0 3 0 1.7971E-29 42.7721 6E-15 0 1.000

Optimization Results

Iterations 2 Function Calls 4
Jacobian Calls 3 Active Constraints 0
Objective Function 1.797124E-29 Max Abs Gradient Element 5.995204E-15
Lambda 0 Actual Over Pred Change 1
Radius 18.49802027

ABSGCONV convergence criterion satisfied.

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 1.000000 5.995204E-15
2 x2 1.000000 0

Value of Objective Function = 1.797124E-29

Figure 6.1. Least-Squares Minimization

Boundary Constraints on the Decision Variables

Bounds on the decision variables can be used. Suppose, for example, that it is nec-
essary to constrain the decision variables in the previous example to be less than 0.5.
That can be done by adding a BOUNDS statement.

516 � Chapter 6. The NLP Procedure

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1-x2 <= .5;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The solution in Figure 6.2 shows that the decision variables meet the constraint
bounds.

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x1 0.500000 -0.500000 Upper BC
2 x2 0.250000 0

Value of Objective Function = 0.125

Figure 6.2. Least-Squares with Bounds Solution

Linear Constraints on the Decision Variables

More general linear equality or inequality constraints of the form

n∑
j=1

aijxj {≤ | = | ≥} bi for i = 1, . . . ,m

can be specified in a LINCON statement. For example, suppose that in addition to
the bounds constraints on the decision variables it is necessary to guarantee that the
sum x1 + x2 is less than or equal to 0.6. That can be achieved by adding a LINCON
statement:

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The output in Figure 6.3 displays the iteration history and the convergence criterion.

Introductory Examples � 517

PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Lambda Change

1 0 3 0 8.19877 21.0512 39.5420 0.0170 0.729
2 0 4 0 1.05752 7.1412 13.6170 0.0105 0.885
3 0 5 1 1.04396 0.0136 18.6337 0 0.0128
4 0 6 1 0.16747 0.8765 0.5552 0 0.997
5 0 7 1 0.16658 0.000895 0.000324 0 0.998
6 0 8 1 0.16658 3.06E-10 5.911E-7 0 0.998

Optimization Results

Iterations 6 Function Calls 9
Jacobian Calls 7 Active Constraints 1
Objective Function 0.1665792899 Max Abs Gradient Element 5.9108825E-7
Lambda 0 Actual Over Pred Change 0.9981769215
Radius 0.0000532357

GCONV convergence criterion satisfied.

Figure 6.3. Least-Squares with Bounds and Linear Constraints Iteration History

Figure 6.4 shows that the solution satisfies the linear constraint. Note that the proce-
dure displays the active constraints (the constraints that are tight) at optimality.

518 � Chapter 6. The NLP Procedure

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 0.423645 -0.312000
2 x2 0.176355 -0.312001

Value of Objective Function = 0.1665792899

Linear Constraints Evaluated at Solution

1 ACT 0 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Figure 6.4. Least-Squares with Bounds and Linear Constraints Solution

Nonlinear Constraints on the Decision Variables

More general nonlinear equality or inequality constraints can be specified using an
NLINCON statement. Consider the least-squares problem with the additional con-
straint

x2
1 − 2x2 ≥ 0

This constraint is specified by a new function c1 constrained to be greater than or
equal to 0 in the NLINCON statement. The function c1 is defined in the programming
statements.

proc nlp tech=QUANEW;
min f;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
nlincon c1 >= 0;

c1 = x1 * x1 - 2 * x2;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

f = .5 * (f1 * f1 + f2 * f2);
run;

Figure 6.5 shows the iteration history, and Figure 6.6 shows the solution to this prob-
lem.

Introductory Examples � 519

PROC NLP: Nonlinear Minimization

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Parameter Estimates 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1
Nonlinear Constraints 1

Optimization Start

Objective Function 29.25 Maximum Constraint 0
Violation

Maximum Gradient of the 76.5
Lagran Func

Maximum
Gradient
Element

Maximum Predicted of the
Function Objective Constraint Function Step Lagrange

Iter Restarts Calls Function Violation Reduction Size Function

1 0 4 2.88501 0 2.9362 1.000 20.961
2 0 5 0.91110 0 0.5601 1.000 6.777
3 0 6 0.61803 0 0.00743 1.000 1.148
4’ 0 7 0.61090 0 0.0709 1.000 1.194
5’ 0 8 0.54427 0 0.6015 1.000 0.988
6 0 10 0.49223 0 0.3369 0.100 0.970
7 0 12 0.45729 0 0.1848 0.114 1.332
8 0 14 0.40786 0 0.0749 0.355 2.390
9 0 15 0.36176 0 0.0556 1.000 1.129
10 0 16 0.33086 0 0.00178 1.000 0.139
11 0 17 0.33017 0 0.000290 1.000 0.0521
12 0 18 0.33004 0 0.000012 1.000 0.00222
13 0 19 0.33003 0 2.963E-8 1.000 0.00004

Optimization Results

Iterations 13 Function Calls 20
Gradient Calls 16 Active Constraints 1
Objective Function 0.3300307304 Maximum Constraint 0

Violation
Maximum Projected Gradient 0.0000142688 Value Lagrange Function 0.3300307155
Maximum Gradient of the 0.0000138527 Slope of Search Direction -2.962973E-8
Lagran Func

Figure 6.5. Least-Squares with Bounds, Linear and Nonlinear Constraints,
Iteration History

520 � Chapter 6. The NLP Procedure

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 x1 0.246953 0.753018 -0.000013853
2 x2 0.030493 -3.049292 -0.000003421

Value of Objective Function = 0.3300307304

Value of Lagrange Function = 0.3300307155

Linear Constraints Evaluated at Solution

1 0.32255 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[2] c1_G 9.71E-9 9.71E-9 1.5246 Active NLIC

Figure 6.6. Least-Squares with Bounds, Linear and Nonlinear Constraints,
Solution

Not all of the optimization methods support nonlinear constraints. In particular
the Levenberg-Marquardt method, the default for LSQ, does not support nonlin-
ear constraints. (For more information about the particular algorithms, see the
“Optimization Algorithms” section on page 568.) The Quasi-Newton method is the
prime choice for solving nonlinear programs with nonlinear constraints. The option
TECH=QUANEW in the PROC NLP statement causes the Quasi-Newton method to
be used.

A Simple Maximum Likelihood Example

The following is a very simple example of a maximum likelihood estimation problem
with the log likelihood function:

l(µ, σ) = − log(σ)− 1
2

(
x− µ

σ

)2

The maximum likelihood estimates of the parameters µ and σ form the solution to

max
µ,σ>0

∑
i

li(µ, σ)

Introductory Examples � 521

where

li(µ, σ) = − log(σ)− 1
2

(
xi − µ

σ

)2

In the following DATA step, values for x are input into SAS data set X; this data set
provides the values of xi.

data x;
input x @@;

datalines;
1 3 4 5 7
;

In the following statements, the DATA=X specification drives the building of the ob-
jective function. When each observation in the DATA=X data set is read, a new term
li(µ, σ) using the value of xi is added to the objective function LOGLIK specified in
the MAX statement.

proc nlp data=x vardef=n covariance=h pcov phes;
profile mean sigma / alpha=.5 .1 .05 .01;
max loglik;
parms mean=0, sigma=1;
bounds sigma > 1e-12;
loglik=-0.5*((x-mean)/sigma)**2-log(sigma);

run;

After a few iterations of the default Newton-Raphson optimization algorithm, PROC
NLP produces the results shown in Figure 6.7.

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.632456 3.162278 0.025031

Optimization Results
Parameter Estimates

Gradient
Objective
Function

-1.33149E-10
5.6064147E-9

Value of Objective Function = -5.965735903

Figure 6.7. Maximum Likelihood Estimates

522 � Chapter 6. The NLP Procedure

In unconstrained maximization, the gradient (that is, the vector of first derivatives) at
the solution must be very close to zero and the Hessian matrix at the solution (that
is, the matrix of second derivatives) must have nonpositive eigenvalues. The Hessian
matrix is displayed in Figure 6.8.

Hessian Matrix

mean sigma

mean -1.250000003 1.331489E-10
sigma 1.331489E-10 -2.500000014

Determinant = 3.1250000245

Matrix has Only Negative Eigenvalues

Figure 6.8. Hessian Matrix

Under reasonable assumptions, the approximate standard errors of the estimates are
the square roots of the diagonal elements of the covariance matrix of the parameter
estimates, which (because of the COV=H specification) is the same as the inverse of
the Hessian matrix. The covariance matrix is shown in Figure 6.9.

Covariance Matrix 2: H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260766E-11
sigma 4.260766E-11 0.3999999978

Factor sigm = 1

Determinant = 0.3199999975

Matrix has 2 Positive Eigenvalue(s)

Figure 6.9. Covariance Matrix

The PROFILE statement computes the values of the profile likelihood confidence
limits on SIGMA and MEAN, as shown in Figure 6.10.

Introductory Examples � 523

PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 mean 4.000000 0.500000 3.384431 4.615569
1 mean . 0.100000 2.305716 5.694284
1 mean . 0.050000 1.849538 6.150462
1 mean . 0.010000 0.670351 7.329649
2 sigma 2.000000 0.500000 1.638972 2.516078
2 sigma . 0.100000 1.283506 3.748633
2 sigma . 0.050000 1.195936 4.358321
2 sigma . 0.010000 1.052584 6.064107

Wald and PL Confidence Limits

Wald Confidence Limits

3.396718 4.603282
2.528798 5.471202
2.246955 5.753045
1.696108 6.303892
1.573415 2.426585
0.959703 3.040297
0.760410 3.239590
0.370903 3.629097

Figure 6.10. Confidence Limits

524 � Chapter 6. The NLP Procedure

Syntax
Below are statements used in PROC NLP, listed in alphabetical order as they appear
in the text that follows.

PROC NLP options ;
ARRAY function names ;
BOUNDS boundary constraints ;
BY variables ;
CRPJAC variables ;
DECVAR function names ;
GRADIENT variables ;
HESSIAN variables ;
INCLUDE model files ;
JACNLC variables ;
JACOBIAN function names ;
LABEL decision variable labels ;
LINCON linear constraints ;
MATRIX matrix specification ;
MIN, MAX, or LSQ function names ;
MINQUAD or MAXQUAD matrix, vector, or number ;
NLINCON nonlinear constraints ;
PROFILE profile specification ;
Program Statements ;

Functional Summary

The following table outlines the options in PROC NLP classified by function.

Table 6.1. Functional Summary

Description Statement Option

Input Data Set Options:
input data set PROC NLP DATA=
initial values and constraints PROC NLP INEST=
quadratic objective function PROC NLP INQUAD=
program statements PROC NLP MODEL=
skip missing value observations PROC NLP NOMISS

Output Data Set Options:
variables and derivatives PROC NLP OUT=
result parameter values PROC NLP OUTEST=
program statements PROC NLP OUTMODEL=
combine various OUT... statements PROC NLP OUTALL
CRP Jacobian in the OUTEST= data set PROC NLP OUTCRPJAC
derivatives in the OUT= data set PROC NLP OUTDER=

Functional Summary � 525

Description Statement Option

grid in the OUTEST= data set PROC NLP OUTGRID
Hessian in the OUTEST= data set PROC NLP OUTHESSIAN
iterative output in the OUTEST= data set PROC NLP OUTITER
Jacobian in the OUTEST= data set PROC NLP OUTJAC
NLC Jacobian in the OUTEST= data set PROC NLP OUTNLCJAC
time in the OUTEST= data set PROC NLP OUTTIME

Optimization Options:
minimization method PROC NLP TECH=
update technique PROC NLP UPDATE=
version of optimization technique PROC NLP VERSION=
line-search method PROC NLP LINESEARCH=
line-search precision PROC NLP LSPRECISION=
type of Hessian scaling PROC NLP HESCAL=
start for approximated Hessian PROC NLP INHESSIAN=
iteration number for update restart PROC NLP RESTART=

Initial Value Options:
produce best grid points PROC NLP BEST=
infeasible points in grid search PROC NLP INFEASIBLE
pseudorandom initial values PROC NLP RANDOM=
constant initial values PROC NLP INITIAL=

Derivative Options:
finite-difference derivatives PROC NLP FD=
finite-difference derivatives PROC NLP FDHESSIAN=
compute finite-difference interval PROC NLP FDINT=
use only diagonal of Hessian PROC NLP DIAHES
test gradient specification PROC NLP GRADCHECK=

Constraint Options:
range for active constraints PROC NLP LCEPSILON=
LM tolerance for deactivating PROC NLP LCDEACT=
tolerance for dependent constraints PROC NLP LCSINGULAR=
sum all observations for continuous functions NLINCON / SUMOBS
evaluate each observation for continuous func-
tions

NLINCON / EVERYOBS

Termination Criteria Options:
maximum number of function calls PROC NLP MAXFUNC=
maximum number of iterations PROC NLP MAXITER=
minimum number of iterations PROC NLP MINITER=
upper limit on CPU time PROC NLP MAXTIME=
absolute function convergence criterion PROC NLP ABSCONV=
absolute function convergence criterion PROC NLP ABSFCONV=

526 � Chapter 6. The NLP Procedure

Description Statement Option

absolute gradient convergence criterion PROC NLP ABSGCONV=
absolute parameter convergence criterion PROC NLP ABSXCONV=
relative function convergence criterion PROC NLP FCONV=
relative function convergence criterion PROC NLP FCONV2=
relative gradient convergence criterion PROC NLP GCONV=
relative gradient convergence criterion PROC NLP GCONV2=
relative parameter convergence criterion PROC NLP XCONV=
used in FCONV, GCONV criterion PROC NLP FSIZE=
used in XCONV criterion PROC NLP XSIZE=

Covariance Matrix Options:
type of covariance matrix PROC NLP COV=
σ2 factor of COV matrix PROC NLP SIGSQ=
determine factor of COV matrix PROC NLP VARDEF=
absolute singularity for inertia PROC NLP ASINGULAR=
relative M singularity for inertia PROC NLP MSINGULAR=
relative V singularity for inertia PROC NLP VSINGULAR=
threshold for Moore-Penrose inverse PROC NLP G4=
tolerance for singular COV matrix PROC NLP COVSING=
profile confidence limits PROC NLP CLPARM=

Printed Output Options:
display (almost) all printed output PROC NLP PALL
suppress all printed output PROC NLP NOPRINT
reduce some default output PROC NLP PSHORT
reduce most default output PROC NLP PSUMMARY
display initial values and gradients PROC NLP PINIT
display optimization history PROC NLP PHISTORY
display Jacobian matrix PROC NLP PJACOBI
display crossproduct Jacobian matrix PROC NLP PCRPJAC
display Hessian matrix PROC NLP PHESSIAN
display Jacobian of nonlinear constraints PROC NLP PNLCJAC
display values of grid points PROC NLP PGRID
display values of functions in LSQ, MIN, MAX PROC NLP PFUNCTION
display approximate standard errors PROC NLP PSTDERR
display covariance matrix PROC NLP PCOV
display eigenvalues for covariance matrix PROC NLP PEIGVAL
print code evaluation problems PROC NLP PERROR
print measures of CPU time PROC NLP PTIME
display model program, variables PROC NLP LIST
display compiled model program PROC NLP LISTCODE

Step Length Options:
damped steps in line search PROC NLP DAMPSTEP=
maximum trust region radius PROC NLP MAXSTEP=

PROC NLP Statement � 527

Description Statement Option

initial trust region radius PROC NLP INSTEP=

Profile Point and Confidence Interval Options:
factor relating discrepancy function to χ2 quantile PROFILE FFACTOR=
scale for y values written to OUTEST= data set PROFILE FORCHI=
upper bound for confidence limit search PROFILE FEASRATIO=
write all confidence limit parameter estimates to
OUTEST= data set

PROFILE OUTTABLE

Miscellaneous Options:
number of accurate digits in objective function PROC NLP FDIGITS=
number of accurate digits in nonlinear constraints PROC NLP CDIGITS=
general singularity criterion PROC NLP SINGULAR=
do not compute inertia of matrices PROC NLP NOEIGNUM
check optimality in neighborhood PROC NLP OPTCHECK=

PROC NLP Statement

PROC NLP options ;

This statement invokes the NLP procedure. The following options are used with the
PROC NLP statement.

ABSCONV=r
ABSTOL=r

specifies an absolute function convergence criterion. For minimization (maximiza-
tion), termination requires f(x(k)) ≤ (≥) r. The default value of ABSCONV is the
negative (positive) square root of the largest double precision value.

ABSFCONV=r[n]
ABSFTOL=r[n]

specifies an absolute function convergence criterion. For all techniques except
NMSIMP, termination requires a small change of the function value in successive
iterations:

|f(x(k−1))− f(x(k))| ≤ r

For the NMSIMP technique the same formula is used, but x(k) is defined as the vertex
with the lowest function value, and x(k−1) is defined as the vertex with the highest
function value in the simplex. The default value is r = 0. The optional integer
value n specifies the number of successive iterations for which the criterion must be
satisfied before the process can be terminated.

528 � Chapter 6. The NLP Procedure

ABSGCONV=r[n]
ABSGTOL=r[n]

specifies the absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small:

max
j
|gj(x(k))| ≤ r

This criterion is not used by the NMSIMP technique. The default value is r = 1E−5.
The optional integer value n specifies the number of successive iterations for which
the criterion must be satisfied before the process can be terminated.

ABSXCONV=r[n]
ABSXTOL=r[n]

specifies the absolute parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small Euclidean distance between successive pa-
rameter vectors:

‖ x(k) − x(k−1) ‖2≤ r

For the NMSIMP technique, termination requires either a small length α(k) of the
vertices of a restart simplex

α(k) ≤ r

or a small simplex size
δ(k) ≤ r

where the simplex size δ(k) is defined as the L1 distance of the simplex vertex y(k)

with the smallest function value to the other n simplex points x
(k)
l 6= y(k):

δ(k) =
∑
xl 6=y

‖ x
(k)
l − y(k) ‖1

The default value is r = 1E−4 for the COBYLA NMSIMP technique, r = 1E−8 for
the standard NMSIMP technique, and r = 0 otherwise. The optional integer value n
specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated.

ASINGULAR=r
ASING=r

specifies an absolute singularity criterion for measuring singularity of Hessian and
crossproduct Jacobian and their projected forms, which may have to be converted to
compute the covariance matrix. The default is the square root of the smallest positive
double precision value. For more information, see the “Covariance Matrix” section
on page 592.

BEST=i
produces the i best grid points only. This option not only restricts the output, it
also can significantly reduce the computation time needed for sorting the grid point
information.

PROC NLP Statement � 529

CDIGITS=r
specifies the number of accurate digits in nonlinear constraint evaluations. Fractional
values such as CDIGITS=4.7 are allowed. The default value is r = − log10(ε), where
ε is the machine precision. The value of r is used to compute the interval length h
for the computation of finite-difference approximations of the Jacobian matrix of
nonlinear constraints.

CLPARM= PL | WALD | BOTH
is similar to but not the same as that used by other SAS procedures. Using
CLPARM=BOTH is equivalent to specifying

PROFILE / ALPHA=0.5 0.1 0.05 0.01 OUTTABLE;

The CLPARM=BOTH option specifies that profile confidence limits (PL CLs) for all
parameters and for α = .5, .1, .05, .01 are computed and displayed or written to the
OUTEST= data set. Computing the profile confidence limits for all parameters can
be very expensive and should be avoided when a difficult optimization problem or
one with many parameters is solved. The OUTTABLE option is valid only when an
OUTEST= data set is specified in the PROC NLP statement. For CLPARM=BOTH,
the table of displayed output contains the Wald confidence limits computed from the
standard errors as well as the PL CLs. The Wald confidence limits are not computed
(displayed or written to the OUTEST= data set) unless the approximate covariance
matrix of parameters is computed.

COV= 1 | 2 | 3 | 4 | 5 | 6 | M | H | J | B | E | U
COVARIANCE= 1 | 2 | 3 | 4 | 5 | 6 | M | H | J | B | E | U

specifies one of six formulas for computing the covariance matrix. For more infor-
mation, see the “Covariance Matrix” section on page 592.

COVSING=r
specifies a threshold r > 0 that determines whether the eigenvalues of a singular
Hessian matrix or crossproduct Jacobian matrix are considered to be zero. For more
information, see the “Covariance Matrix” section on page 592.

DAMPSTEP[=r]
DS[=r]

specifies that the initial step length value α(0) for each line search (used by the
QUANEW, HYQUAN, CONGRA, or NEWRAP technique) cannot be larger than
r times the step length value used in the former iteration. If the DAMPSTEP option
is specified but r is not specified, the default is r = 2. The DAMPSTEP=r option can
prevent the line-search algorithm from repeatedly stepping into regions where some
objective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The
DAMPSTEP=r option can save time-costly function calls during the line searches
of objective functions that result in very small steps. For more information, see the
section “Restricting the Step Length” on page 588.

530 � Chapter 6. The NLP Procedure

DATA=SAS-data-set
allows variables from the specified data set to be used in the specification of the
objective function f . For more information, see the “DATA= Input Data Set” section
on page 596.

DIAHES
specifies that only the diagonal of the Hessian or crossproduct Jacobian is used. This
saves function evaluations but may slow the convergence process considerably. Note
that the DIAHES option refers to both the Hessian and the crossproduct Jacobian
when using the LSQ statement. When derivatives are specified using the HESSIAN
or CRPJAC statement, these statements must refer only to the n diagonal derivative
elements (otherwise, the n(n + 1)/2 derivatives of the lower triangle must be spec-
ified). The DIAHES option is ignored if a quadratic programming with a constant
Hessian is specified by TECH=QUADAS or TECH=LICOMP.

FCONV=r[n]
FTOL=r[n]

specifies the relative function convergence criterion. For all techniques except
NMSIMP, termination requires a small relative change of the function value in suc-
cessive iterations:

|f(x(k))− f(x(k−1))|
max(|f(x(k−1))|,FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. For the NMSIMP technique, the same
formula is used, but x(k) is defined as the vertex with the lowest function value, and
x(k−1) is defined as the vertex with the highest function value in the simplex. The
default value is r = 10−FDIGITS where FDIGITS is the value of the FDIGITS=
option. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

FCONV2=r[n]
FTOL2=r[n]

specifies another function convergence criterion. For least-squares problems and all
techniques except NMSIMP, termination requires a small predicted reduction

df (k) ≈ f(x(k))− f(x(k) + s(k))

of the objective function. The predicted reduction

df (k) = −g(k)T s(k) − 1
2
s(k)T G(k)s(k)

= −1
2
s(k)T g(k)

≤ r

is based on approximating the objective function f by the first two terms of the Taylor
series and substituting the Newton step

s(k) = −G(k)−1g(k)

PROC NLP Statement � 531

For the NMSIMP technique, termination requires a small standard deviation of the
function values of the n + 1 simplex vertices x

(k)
l , l = 0, . . . , n,√

1
n + 1

∑
l

(f(x(k)
l)− f(x(k)))2 ≤ r

where f(x(k)) = 1
n+1

∑
l f(x(k)

l). If there are nact boundary constraints active at
x(k), the mean and standard deviation are computed only for the n + 1−nact uncon-
strained vertices. The default value is r = 1E−6 for the NMSIMP technique and the
QUANEW technique with nonlinear constraints, and r = 0 otherwise. The optional
integer value n specifies the number of successive iterations for which the criterion
must be satisfied before the process can be terminated.

FD[=FORWARD | CENTRAL | number]
specifies that all derivatives be computed using finite-difference approximations. The
following specifications are permitted:

FD=FORWARD uses forward differences.

FD=CENTRAL uses central differences.

FD=number uses central differences for the initial and final evaluations of the
gradient, Jacobian, and Hessian. During iteration, start with for-
ward differences and switch to a corresponding central-difference
formula during the iteration process when one of the following two
criteria is satisfied:

• The absolute maximum gradient element is less than or equal
to number times the ABSGCONV threshold.

• The term left of the GCONV criterion is less than or equal to
max(1.0E − 6,number× GCONV threshold). The 1.0E−6
ensures that the switch is done, even if you set the GCONV
threshold to zero.

FD is equivalent to FD=100.

Note that the FD and FDHESSIAN options cannot apply at the same time. The
FDHESSIAN option is ignored when only first-order derivatives are used, for ex-
ample, when the LSQ statement is used and the HESSIAN is not explicitly needed
(displayed or written to a data set). For more information, see the “Finite-Difference
Approximations of Derivatives” section on page 579.

FDHESSIAN[=FORWARD | CENTRAL]
FDHES[=FORWARD | CENTRAL]
FDH[=FORWARD | CENTRAL]

specifies that second-order derivatives be computed using finite-difference approxi-
mations based on evaluations of the gradients.

532 � Chapter 6. The NLP Procedure

FDHESSIAN=FORWARD uses forward differences.
FDHESSIAN=CENTRAL uses central differences.
FDHESSIAN uses forward differences for the Hessian except

for the initial and final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. For more
information, see the “Finite-Difference Approximations of Derivatives” section on
page 579

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective func-
tion. Fractional values such as FDIGITS=4.7 are allowed. The default value is
r = − log10(ε), where ε is the machine precision. The value of r is used to compute
the interval length h for the computation of finite-difference approximations of the
derivatives of the objective function and for the default value of the FCONV= option.

FDINT= OBJ | CON | ALL
specifies how the finite-difference intervals h should be computed. For FDINT=OBJ,
the interval h is based on the behavior of the objective function; for FDINT=CON,
the interval h is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the interval h is based on the behavior of the objective function and
the nonlinear constraints functions. For more information, see the “Finite-Difference
Approximations of Derivatives” section on page 579.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termina-
tion criteria. The default value is r = 0. For more details, refer to the FCONV= and
GCONV= options.

G4=n
is used when the covariance matrix is singular. The value n > 0 determines which
generalized inverse is computed. The default value of n is 60. For more information,
see the “Covariance Matrix” section on page 592.

GCONV=r[n]
GTOL=r[n]

specifies the relative gradient convergence criterion. For all techniques except the
CONGRA and NMSIMP techniques, termination requires that the normalized pre-
dicted function reduction is small:

g(x(k))T [G(k)]−1g(x(k))
max(|f(x(k))|,FSIZE)

≤ r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimate G is not available),

‖ g(x(k)) ‖2
2 ‖ s(x(k)) ‖2

‖ g(x(k))− g(x(k−1)) ‖2 max(|f(x(k))|, FSIZE)
≤ r

is used. This criterion is not used by the NMSIMP technique. The default value is r
= 1E−8. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can be terminated.

PROC NLP Statement � 533

GCONV2=r[n]
GTOL2=r[n]

specifies another relative gradient convergence criterion,

max
j

|gj(x(k))|√
f(x(k))G(k)

j,j

≤ r

This option is valid only when using the TRUREG, LEVMAR, NRRIDG, and
NEWRAP techniques on least-squares problems. The default value is r = 0. The
optional integer value n specifies the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.

GRADCHECK[= NONE | FAST | DETAIL]
GC[= NONE | FAST | DETAIL]

Specifying GRADCHECK=DETAIL computes a test vector and test matrix to check
whether the gradient g specified by a GRADIENT statement (or indirectly by a
JACOBIAN statement) is appropriate for the function f computed by the program
statements. If the specification of the first derivatives is correct, the elements of the
test vector and test matrix should be relatively small. For very large optimization
problems, the algorithm can be too expensive in terms of computer time and mem-
ory. If the GRADCHECK option is not specified, a fast derivative test identical to
the GRADCHECK=FAST specification is performed by default. It is possible to
suppress the default derivative test by specifying GRADCHECK=NONE. For more
information, see the “Testing the Gradient Specification” section on page 582.

HESCAL= 0 | 1 | 2 | 3
HS= 0 | 1 | 2 | 3

specifies the scaling version of the Hessian or crossproduct Jacobian matrix used
in NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If the
value of the HESCAL= option is not equal to zero, the first iteration and each restart
iteration sets the diagonal scaling matrix D(0) = diag(d(0)

i):

d
(0)
i =

√
max(|G(0)

i,i |, ε)

where G
(0)
i,i are the diagonal elements of the Hessian or crossproduct Jacobian ma-

trix. In all other iterations, the diagonal scaling matrix D(0) = diag(d(0)
i) is updated

depending on the HESCAL= option:

HESCAL=0 specifies that no scaling is done

HESCAL=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max

(
d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

HESCAL=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max

(
0.6d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

534 � Chapter 6. The NLP Procedure

HESCAL=3 specifies that di is reset in each iteration:

d
(k+1)
i =

√
max(|G(k)

i,i |, ε)

where ε is the relative machine precision. The default value is HESCAL=1 for
LEVMAR minimization and HESCAL=0 otherwise. Scaling of the Hessian or
crossproduct Jacobian matrix can be time-consuming in the case where general linear
constraints are active.

INEST=SAS-data-set
INVAR=SAS-data-set
ESTDATA=SAS-data-set

can be used to specify the initial values of the parameters defined in a DECVAR
statement as well as simple boundary constraints and general linear constraints. The
INEST= data set can contain additional variables with names corresponding to con-
stants used in the program statements. At the beginning of each run of PROC NLP,
the values of the constants are read from the PARMS observation, initializing the
constants in the program statements. For more information, see the “INEST= Input
Data Set” section on page 596.

INFEASIBLE
IFP

specifies that the function values of both feasible and infeasible grid points are to be
computed, displayed, and written to the OUTEST= data set, although only the feasi-
ble grid points are candidates for the starting point x(0). This option enables you to
explore the shape of the objective function of points surrounding the feasible region.
For the output, the grid points are sorted first with decreasing values of the maximum
constraint violation. Points with the same value of the maximum constraint violation
are then sorted with increasing (minimization) or decreasing (maximization) value
of the objective function. Using the BEST= option restricts only the number of best
grid points in the displayed output, not those in the data set. The INFEASIBLE op-
tion affects both the displayed output and the output saved to the OUTEST= data set.
The OUTGRID option can be used to write the grid points and their function values
to an OUTEST= data set. After small modifications (deleting unneeded informa-
tion), this data set can be used with the G3D procedure of SAS/GRAPH to generate
a three-dimensional surface plot of the objective function depending on two selected
parameters. For more information on grids, see the “DECVAR Statement” section on
page 549.

INHESSIAN[=r]
INHESS[=r]

specifies how the initial estimate of the approximate Hessian is defined for the quasi-
Newton techniques QUANEW, DBLDOG, and HYQUAN. There are two alterna-
tives:

• The = r specification is not used: the initial estimate of the approximate
Hessian is set to the true Hessian or crossproduct Jacobian at x(0).

• The = r specification is used: the initial estimate of the approximate Hessian
is set to the multiple of the identity matrix rI .

PROC NLP Statement � 535

By default, if INHESSIAN=r is not specified, the initial estimate of the approximate
Hessian is set to the multiple of the identity matrix rI , where the scalar r is computed
from the magnitude of the initial gradient. For most applications, this is a sufficiently
good first approximation.

INITIAL=r
specifies a value r as the common initial value for all parameters for which no other
initial value assignments by the DECVAR statement or an INEST= data set are made.

INQUAD=SAS-data-set
can be used to specify (the nonzero elements of) the matrix H , the vector g, and the
scalar c of a quadratic programming problem, f(x) = 1

2xT Hx + gT x + c. This
option cannot be used together with the NLINCON statement. Two forms (dense
and sparse) of the INQUAD= data set can be used. For more information, see the
“INQUAD= Input Data Set” section on page 597.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default ini-
tial radius of the trust region algorithms TRUREG, DBLDOG, or LEVMAR or
the default step length of the line-search algorithms can result in arithmetic over-
flows. If this occurs, decreasing values of 0 < r < 1 should be specified, such as
INSTEP=1E−1, INSTEP=1E−2, INSTEP=1E−4, and so on, until the iteration starts
successfully.

• For trust region algorithms (TRUREG, DBLDOG, LEVMAR), the INSTEP=
option specifies a factor r > 0 for the initial radius ∆(0) of the trust region.
The default initial trust region radius is the length of the scaled gradient. This
step corresponds to the default radius factor of r = 1.

• For line-search algorithms (NEWRAP, CONGRA, QUANEW, HYQUAN), the
INSTEP= option specifies an upper bound for the initial step length for the line
search during the first five iterations. The default initial step length is r = 1.

• For the Nelder-Mead simplex algorithm (NMSIMP), the INSTEP=r option de-
fines the size of the initial simplex.

For more details, see the “Computational Problems” section on page 589.

LCDEACT=r
LCD=r

specifies a threshold r for the Lagrange multiplier that decides whether an active
inequality constraint remains active or can be deactivated. For a maximization (min-
imization), an active inequality constraint can be deactivated only if its Lagrange
multiplier is greater (less) than the threshold value r. For maximization, r must be
greater than zero; for minimization, r must be smaller than zero. The default value is

r = ±min(0.01,max(0.1×ABSGCONV , 0.001× gmax(k)))

where the + stands for maximization, the − for minimization, ABSGCONV is the
value of the absolute gradient criterion, and gmax(k) is the maximum absolute ele-
ment of the (projected) gradient g(k) or ZT g(k).

536 � Chapter 6. The NLP Procedure

LCEPSILON=r
LCEPS=r
LCE=r

specifies the range r > 0 for active and violated boundary and linear constraints.
During the optimization process, the introduction of rounding errors can force PROC
NLP to increase the value of r by a factor of 10, 100, If this happens it is in-
dicated by a message written to the log. For more information, see the “Linear
Complementarity (LICOMP)” section on page 572.

LCSINGULAR=r
LCSING=r
LCS=r

specifies a criterion r > 0 used in the update of the QR decomposition that decides
whether an active constraint is linearly dependent on a set of other active constraints.
The default value is r = 1E−8. The larger r becomes, the more the active constraints
are recognized as being linearly dependent. If the value of r is larger than 0.1, it is
reset to 0.1.

LINESEARCH=i
LIS=i

specifies the line-search method for the CONGRA, QUANEW, HYQUAN, and
NEWRAP optimization techniques. Refer to Fletcher (1987) for an introduction to
line-search techniques. The value of i can be 1, . . . , 8. For CONGRA, QUANEW,
and NEWRAP, the default value is i = 2. A special line-search method is the default
for the least-squares technique HYQUAN that is based on an algorithm developed
by Lindström and Wedin (1984). Although it needs more memory, this default line-
search method sometimes works better with large least-squares problems. However,
by specifying LIS=i, i = 1, . . . , 8, it is possible to use one of the standard techniques
with HYQUAN.

LIS=1 specifies a line-search method that needs the same number of func-
tion and gradient calls for cubic interpolation and cubic extrapola-
tion.

LIS=2 specifies a line-search method that needs more function than gra-
dient calls for quadratic and cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of
function and gradient calls for cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of func-
tion and gradient calls for stepwise extrapolation and cubic inter-
polation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

PROC NLP Statement � 537

LIS=6 specifies golden section line search (Polak 1971), which uses only
function values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only func-
tion values for linear approximation.

LIS=8 specifies the Armijo line-search technique (Polak 1971), which
uses only function values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature
and is not normally needed. This output is not included in either the default output or
the output specified by the PALL option.

LISTCODE
displays the derivative tables and the compiled program code. The LISTCODE option
is a debugging feature and is not normally needed. This output is not included in
either the default output or the output specified by the PALL option. The option is
similar to that used in MODEL procedure in SAS/ETS software.

LSPRECISION=r
LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and sufficient for
convergence to the optimum. For difficult optimization problems, a more precise
and expensive line search may be necessary (Fletcher 1987). The second (default for
NEWRAP, QUANEW, and CONGRA) and third line-search methods approach exact
line search for small LSPRECISION= values. In the presence of numerical problems,
it is advised to decrease the LSPRECISION= value to obtain a more precise line
search. The default values are as follows:

TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
HYQUAN DBFGS r = 0.1
HYQUAN DDFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1987).

MAXFUNC=i
MAXFU=i

specifies the maximum number i of function calls in the optimization process. The
default values are

• TRUREG, LEVMAR, NRRIDG, NEWRAP: 125

• QUANEW, HYQUAN, DBLDOG: 500

538 � Chapter 6. The NLP Procedure

• CONGRA, QUADAS: 1000

• NMSIMP: 3000

Note that the optimization can be terminated only after completing a full iteration.
Therefore, the number of function calls that are actually performed can exceed the
number that is specified by the MAXFUNC= option.

MAXITER=i[n]
MAXIT=i[n]

specifies the maximum number i of iterations in the optimization process. The default
values are:

• TRUREG, LEVMAR, NRRIDG, NEWRAP: 50

• QUANEW, HYQUAN, DBLDOG: 200

• CONGRA, QUADAS: 400

• NMSIMP: 1000

This default value is valid also when i is specified as a missing value. The optional
second value n is valid only for TECH=QUANEW with nonlinear constraints. It
specifies an upper bound n for the number of iterations of an algorithm used to reduce
the violation of nonlinear constraints at a starting point. The default value is n = 20.

MAXSTEP=r[n]
specifies an upper bound for the step length of the line-search algorithms during the
first n iterations. By default, r is the largest double precision value and n is the
largest integer available. Setting this option can increase the speed of convergence for
TECH=CONGRA, TECH=QUANEW, TECH=HYQUAN, and TECH=NEWRAP.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The
default value is the largest floating point double representation of the computer. Note
that the time specified by the MAXTIME= option is checked only once at the end
of each iteration. Therefore, the actual running time of the PROC NLP job may
be longer than that specified by the MAXTIME= option. The actual running time
includes the rest of the time needed to finish the iteration, time for the output of the
(temporary) results, and (if required) the time for saving the results in an OUTEST=
data set. Using the MAXTIME= option with a permanent OUTEST= data set enables
you to separate large optimization problems into a series of smaller problems that
need smaller amounts of CPU time.

MINITER=i
MINIT=i

specifies the minimum number of iterations. The default value is zero. If more itera-
tions than are actually needed are requested for convergence to a stationary point, the
optimization algorithms can behave strangely. For example, the effect of rounding er-
rors can prevent the algorithm from continuing for the required number of iterations.

PROC NLP Statement � 539

MODEL=model-name, model-list
MOD=model-name, model-list
MODFILE=model-name, model-list

reads the program statements from one or more input model files created by previous
PROC NLP steps using the OUTMODEL= option. If it is necessary to include the
program code at a special location in newly written code, the INCLUDE statement
can be used instead of using the MODEL= option. Using both the MODEL= option
and the INCLUDE statement with the same model file will include the same model
twice, which can produce different results than including it once. The MODEL=
option is similar to the option used in PROC MODEL in SAS/ETS software.

MSINGULAR=r
MSING=r

specifies a relative singularity criterion r > 0 for measuring singularity of Hessian
and crossproduct Jacobian and their projected forms. The default value is 1E−12 if
the SINGULAR= option is not specified and max(10 × ε, 1E − 4 × SINGULAR)
otherwise. For more information, see the “Covariance Matrix” section on page 592.

NOEIGNUM
suppresses the computation and output of the determinant and the inertia of the
Hessian, crossproduct Jacobian, and covariance matrices. The inertia of a symmetric
matrix are the numbers of negative, positive, and zero eigenvalues. For large applica-
tions, the NOEIGNUM option can save computer time.

NOMISS
is valid only for those variables of the DATA= data set that are referred to in program
statements. If the NOMISS option is specified, observations with any missing value
for those variables are skipped. If the NOMISS option is not specified, the miss-
ing value may result in a missing value of the objective function, implying that the
corresponding BY group of data is not processed.

NOPRINT
NOP

suppresses the output.

OPTCHECK[=r]
computes the function values f(xl) of a grid of points xl in a small neighborhood of
x∗. The xl are located in a ball of radius r about x∗. If the OPTCHECK option is
specified without r, the default value is r = 0.1 at the starting point and r = 0.01
at the terminating point. If a point x∗l is found with a better function value than
f(x∗), then optimization is restarted at x∗l . For more information on grids, see the
“DECVAR Statement” section on page 549.

OUT=SAS-data-set
creates an output data set that contains those variables of a DATA= input data set
referred to in the program statements plus additional variables computed by perform-
ing the program statements of the objective function, derivatives, and nonlinear con-
straints. The OUT= data set can also contain first- and second-order derivatives of
these variables if the OUTDER= option is specified. The variables and derivatives
are evaluated at x∗; for TECH=NONE, they are evaluated at x0.

540 � Chapter 6. The NLP Procedure

OUTALL
If an OUTEST= data set is specified, this option sets the OUTHESSIAN option if
the MIN or MAX statement is used. If the LSQ statement is used, the OUTALL
option sets the OUTCRPJAC option. If nonlinear constraints are specified using the
NLINCON statement, the OUTALL option sets the OUTNLCJAC option.

OUTCRPJAC
If an OUTEST= data set is specified, the crossproduct Jacobian matrix of the m
functions composing the least-squares function is written to the OUTEST= data set.

OUTDER= 0 | 1 | 2
specifies whether or not derivatives are written to the OUT= data set. For
OUTDER=2, first- and second-order derivatives are written to the data set; for
OUTDER=1, only first-order derivatives are written; for OUTDER=0, no deriva-
tives are written to the data set. The default value is OUTDER=0. Derivatives are
evaluated at x∗.

OUTEST=SAS-data-set
OUTVAR=SAS-data-set

creates an output data set that contains the results of the optimization. This is useful
for reporting and for restarting the optimization in a subsequent execution of the pro-
cedure. Information in the data set can include parameter estimates, gradient values,
constraint information, Lagrangian values, Hessian values, Jacobian values, covari-
ance, standard errors, and confidence intervals.

OUTGRID
writes the grid points and their function values to the OUTEST= data set. By de-
fault, only the feasible grid points are saved; however, if the INFEASIBLE option
is specified, all feasible and infeasible grid points are saved. Note that the BEST=
option does not affect the output of grid points to the OUTEST= data set. For more
information on grids, see the “DECVAR Statement” section on page 549.

OUTHESSIAN
OUTHES

writes the Hessian matrix of the objective function to the OUTEST= data set. If the
Hessian matrix is computed for some other reason (if, for example, the PHESSIAN
option is specified), the OUTHESSIAN option is set by default.

OUTITER
writes during each iteration the parameter estimates, the value of the objective func-
tion, the gradient (if available), and (if OUTTIME is specified) the time in seconds
from the start of the optimization to the OUTEST= data set.

OUTJAC
writes the Jacobian matrix of the m functions composing the least-squares function
to the OUTEST= data set. If the PJACOBI option is specified, the OUTJAC option is
set by default.

PROC NLP Statement � 541

OUTMODEL=model-name
OUTMOD=model-name
OUTM=model-name

specifies the name of an output model file to which the program statements are to be
written. The program statements of this file can be included into the program state-
ments of a succeeding PROC NLP run using the MODEL= option or the INCLUDE
program statement. The OUTMODEL= option is similar to the option used in PROC
MODEL in SAS/ETS software. Note that the following statements are not part
of the program code that is written to an OUTMODEL= data set: MIN, MAX,
LSQ, MINQUAD, MAXQUAD, DECVAR, BOUNDS, BY, CRPJAC, GRADIENT,
HESSIAN, JACNLC, JACOBIAN, LABEL, LINCON, MATRIX, and NLINCON.

OUTNLCJAC
If an OUTEST= data set is specified, the Jacobian matrix of the nonlinear constraint
functions specified by the NLINCON statement is written to the OUTEST= data set.
If the Jacobian matrix of the nonlinear constraint functions is computed for some
other reason (if, for example, the PNLCJAC option is specified), the OUTNLCJAC
option is set by default.

OUTTIME
is used if an OUTEST= data set is specified and if the OUTITER option is specified.
If OUTTIME is specified, the time in seconds from the start of the optimization to
the start of each iteration is written to the OUTEST= data set.

PALL
ALL

displays all optional output except the output generated by the PSTDERR, PCOV,
LIST, or LISTCODE option.

PCOV
displays the covariance matrix specified by the COV= option. The PCOV option is
set automatically if the PALL and COV= options are set.

PCRPJAC
PJTJ

displays the n×n crossproduct Jacobian matrix JT J . If the PALL option is specified
and the LSQ statement is used, this option is set automatically. If general linear
constraints are active at the solution, the projected crossproduct Jacobian matrix is
also displayed.

PEIGVAL
displays the distribution of eigenvalues if a G4 inverse is computed for the covariance
matrix. The PEIGVAL option is useful for observing which eigenvalues of the matrix
are recognized as zero eigenvalues when the generalized inverse is computed, and it
is the basis for setting the COVSING= option in a subsequent execution of PROC
NLP. For more information, see the “Covariance Matrix” section on page 592.

542 � Chapter 6. The NLP Procedure

PERROR
specifies additional output for such applications where the program code for objective
function or nonlinear constraints cannot be evaluated during the iteration process.
The PERROR option is set by default during the evaluations at the starting point but
not during the optimization process.

PFUNCTION
displays the values of all functions specified in a LSQ, MIN, or MAX statement for
each observation read fom the DATA= input data set. The PALL option sets the
PFUNCTION option automatically.

PGRID
displays the function values from the grid search. For more information on grids, see
the “DECVAR Statement” section on page 549.

PHESSIAN
PHES

displays the n× n Hessian matrix G. If the PALL option is specified and the MIN or
MAX statement is used, this option is set automatically. If general linear constraints
are active at the solution, the projected Hessian matrix is also displayed.

PHISTORY
PHIS

displays the optimization history. No optimization history is displayed for
TECH=LICOMP. This output is included in both the default output and the output
specified by the PALL option.

PINIT
PIN

displays the initial values and derivatives (if available). This output is included in
both the default output and the output specified by the PALL option.

PJACOBI
PJAC

displays the m× n Jacobian matrix J . Because of the memory requirement for large
least-squares problems, this option is not invoked when using the PALL option.

PNLCJAC
displays the Jacobian matrix of nonlinear constraints specified by the NLINCON
statement. The PNLCJAC option is set automatically if the PALL option is specified.

PSHORT
SHORT
PSH

restricts the amount of default output. If PSHORT is specified, then

• The initial values are not displayed.

• The listing of constraints is not displayed.

• If there is more than one function in the MIN, MAX, or LSQ statement, their
values are not displayed.

PROC NLP Statement � 543

• If the GRADCHECK[=DETAIL] option is used, only the test vector is dis-
played.

PSTDERR
STDERR
SE

computes standard errors that are defined as square roots of the diagonal elements
of the covariance matrix. The t values and probabilities > |t| are displayed together
with the approximate standard errors. The type of covariance matrix must be specified
using the COV= option. The SIGSQ= option, the VARDEF= option, and the special
variables –NOBS– and –DF– defined in the program statements can be used to define
a scalar factor σ2 of the covariance matrix and the approximate standard errors. For
more information, see the “Covariance Matrix” section on page 592.

PSUMMARY
SUMMARY
SUM

restricts the amount of default displayed output to a short form of iteration history
and notes, warnings, and errors.

PTIME
specifies the output of four different but partially overlapping differences of CPU
time:

• total running time

• total time for the evaluation of objective function, nonlinear constraints, and
derivatives: shows the total time spent executing the programming statements
specifying the objective function, derivatives, and nonlinear constraints, and
(if necessary) their first- and second-order derivatives. This is the total time
needed for code evaluation before, during, and after iterating.

• total time for optimization: shows the total time spent iterating.

• time for some CMP parsing: shows the time needed for parsing the program
statements and its derivatives. In most applications this is a negligible num-
ber, but for applications that contain ARRAY statements or DO loops or use an
optimization technique with analytic second-order derivatives, it can be con-
siderable.

RANDOM=i
specifies a positive integer as a seed value for the pseudorandom number generator.
Pseudorandom numbers are used as the initial value x(0).

RESTART=i
REST=i

specifies that the QUANEW, HYQUAN, or CONGRA algorithm is restarted with a
steepest descent/ascent search direction after at most i > 0 iterations. Default values
are as follows:

• CONGRA with UPDATE=PB: restart is done automatically so specification of
i is not used

544 � Chapter 6. The NLP Procedure

• CONGRA with UPDATE 6=PB: i = min(10n, 80), where n is the number of
parameters

• QUANEW, HYQUAN: i is the largest integer available

SIGSQ=sq
specifies a scalar factor sq > 0 for computing the covariance matrix. If the SIGSQ=
option is specified, VARDEF=N is the default. For more information, see the
“Covariance Matrix” section on page 592.

SINGULAR=r
SING=r

specifies the singularity criterion r > 0 for the inversion of the Hessian matrix and
crossproduct Jacobian. The default value is 1E−8. For more information, refer to the
MSINGULAR= and VSINGULAR= options.

TECH=name
TECHNIQUE=name

specifies the optimization technique. Valid values for it are as follows:

• CONGRA
chooses one of four different conjugate gradient optimization algorithms,
which can be more precisely specified with the UPDATE= option and modified
with the LINESEARCH= option. When this option is selected, UPDATE=PB
by default. For n ≥ 400, CONGRA is the default optimization technique.

• DBLDOG
performs a version of double dogleg optimization, which can be more pre-
cisely specified with the UPDATE= option. When this option is selected,
UPDATE=DBFGS by default.

• HYQUAN
chooses one of three different hybrid quasi-Newton optimization algorithms
which can be more precisely defined with the VERSION= option and
modified with the LINESEARCH= option. By default, VERSION=2 and
UPDATE=DBFGS.

• LEVMAR
performs the Levenberg-Marquardt minimization. For n < 40, this is the de-
fault minimization technique for least-squares problems.

• LICOMP
solves a quadratic program as a linear complementarity problem.

• NMSIMP
performs the Nelder-Mead simplex optimization method.

• NONE
does not perform any optimization. This option can be used

– to do grid search without optimization
– to compute and display derivatives and covariance matrices which cannot

be obtained efficiently with any of the optimization techniques

PROC NLP Statement � 545

• NEWRAP
performs the Newton-Raphson optimization technique. The algorithm
combines a line-search algorithm with ridging. The line-search algorithm
LINESEARCH=2 is the default.

• NRRIDG
performs the Newton-Raphson optimization technique. For n ≤ 40 and non-
linear least-squares, this is the default.

• QUADAS
performs a special quadratic version of the active set strategy.

• QUANEW
chooses one of four quasi-Newton optimization algorithms which can be
defined more precisely with the UPDATE= option and modified with the
LINESEARCH= option. This is the default for 40 < n < 400 or if there
are nonlinear constraints.

• TRUREG
performs the trust region optimization technique.

UPDATE=method
UPD=method

specifies the update method for the (dual) quasi-Newton, double dogleg, hybrid quasi-
Newton, or conjugate gradient optimization technique. Not every update method
can be used with each optimizer. For more information, see the “Optimization
Algorithms” section on page 568. Valid values for method are as follows:

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the inverse Hessian matrix.

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update
of the Cholesky factor of the Hessian matrix.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update of the
inverse Hessian matrix.

PB performs the automatic restart update method of Powell (1977) and Beale
(1972).

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

VARDEF= DF | N
specifies the divisor d used in the calculation of the covariance matrix and approx-
imate standard errors. If the SIGSQ= option is not specified, the default value is
VARDEF=DF; otherwise, VARDEF=N is the default. For more information, see the
“Covariance Matrix” section on page 592.

546 � Chapter 6. The NLP Procedure

VERSION= 1 | 2 | 3
VS= 1 | 2 | 3

specifies the version of the hybrid quasi-Newton optimization technique or the ver-
sion of the quasi-Newton optimization technique with nonlinear constraints.

For the hybrid quasi-Newton optimization technique,

VS=1 specifies version HY1 of Fletcher and Xu (1987).

VS=2 specifies version HY2 of Fletcher and Xu (1987).

VS=3 specifies version HY3 of Fletcher and Xu (1987).

For the quasi-Newton optimization technique with nonlinear constraints,

VS=1 specifies update of the µ vector like Powell (1978a, b) (update like VF02AD).

VS=2 specifies update of the µ vector like Powell (1982b) (update like VMCWD).

In both cases, the default value is VS=2.

VSINGULAR=r
VSING=r

specifies a relative singularity criterion r > 0 for measuring singularity of Hessian
and crossproduct Jacobian and their projected forms, which may have to be converted
to compute the covariance matrix. The default value is 1E−8 if the SINGULAR=
option is not specified and the value of SINGULAR otherwise. For more information,
see the “Covariance Matrix” section on page 592.

XCONV=r[n]
XTOL=r[n]

specifies the relative parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small relative parameter change in subsequent it-
erations:

maxj |x(k)
j − x

(k−1)
j |

max(|x(k)
j |, |x(k−1)

j |, XSIZE)
≤ r

For the NMSIMP technique, the same formula is used, but x(k)
j is defined as the vertex

with the lowest function value and x
(k−1)
j is defined as the vertex with the highest

function value in the simplex. The default value is r = 1E−8 for the NMSIMP
technique and r = 0 otherwise. The optional integer value n specifies the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

XSIZE=r
specifies the parameter r > 0 of the relative parameter termination criterion. The
default value is r = 0. For more details, see the XCONV= option.

BOUNDS Statement � 547

ARRAY Statement

ARRAY arrayname [{ dimensions }] [$] [variables and constants] ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the SAS DATA step. The ARRAY statement is used to associate a name (of no more
than eight characters) with a list of variables and constants. The array name is used
with subscripts in the program to refer to the array elements. The following code
illustrates this:

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;
end;

The ARRAY statement does not support all the features of the DATA step ARRAY
statement. It cannot be used to give initial values to array elements. Implicit indexing
of variables cannot be used; all array references must have explicit subscript expres-
sions. Only exact array dimensions are allowed; lower-bound specifications are not
supported and a maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to
be used as array elements. (Constant array elements cannot have values assigned to
them.) Both dimension specification and the list of elements are optional, but at least
one must be given. When the list of elements is not given or fewer elements than the
size of the array are listed, array variables are created by suffixing element numbers
to the array name to complete the element list.

BOUNDS Statement

BOUNDS b–con [, b–con...] ;

where b–con is given in one of the following formats:

• number operator parameter–list operator number

• number operator parameter–list

• parameter–list operator number

and operator is ≤, <,≥, >, or =.

Boundary constraints are specified with a BOUNDS statement. One- or two-sided
boundary constraints are allowed. The list of boundary constraints are separated by
commas. For example,

bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

548 � Chapter 6. The NLP Procedure

More than one BOUNDS statement can be used. If more than one lower (upper)
bound for the same parameter is specified, the maximum (minimum) of these is
taken. If the maximum lj of all lower bounds is larger than the minimum of all
upper bounds uj for the same variable xj , the boundary constraint is replaced by
xj = lj = min(uj) defined by the minimum of all upper bounds specified for xj .

BY Statement
BY variables ;

A BY statement can be used with PROC NLP to obtain separate analyses on DATA=
data set observations in groups defined by the BY variables. That means, for values
of the TECH= option other than NONE, an optimization problem is solved for each
BY group separately. When a BY statement appears, the procedure expects the input
DATA= data set to be sorted in order of the BY variables. If the input data set is not
sorted in ascending order, it is necessary to use one of the following alternatives:

• Use the SORT procedure with a similar BY statement to sort the data.

• Use the BY statement option NOTSORTED or DESCENDING in the BY state-
ment for the NLP procedure. As a cautionary note, the NOTSORTED option
does not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Use the DATASETS procedure (in Base SAS software) to create an index on
the BY variables.

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the SAS Procedures Guide.

CRPJAC Statement
CRPJAC variables ;

The CRPJAC statement defines the crossproduct Jacobian matrix JT J used in solving
least-squares problems. For more information, see the “Derivatives” section on page
566. If the DIAHES option is not specified, the CRPJAC statement lists n(n + 1)/2
variable names, which correspond to the elements (JT J)j,k, j ≥ k of the lower
triangle of the symmetric crossproduct Jacobian matrix listed by rows. For example,
the statements

lsq f1-f3;
decvar x1-x3;
crpjac jj1-jj6;

correspond to the crossproduct Jacobian matrix

JT J =

 JJ1 JJ2 JJ4
JJ2 JJ3 JJ5
JJ4 JJ5 JJ6

DECVAR Statement � 549

If the DIAHES option is specified, only the n diagonal elements must be listed in
the CRPJAC statement. The n rows and n columns of the crossproduct Jacobian
matrix must be in the same order as the n corresponding parameter names listed in
the DECVAR statement. To specify the values of nonzero derivatives, the variables
specified in the CRPJAC statement have to be defined at the left-hand side of alge-
braic expressions in programming statements. For example, consider the Rosenbrock
function:

proc nlp tech=levmar;
lsq f1 f2;
decvar x1 x2;
gradient g1 g2;
crpjac cpj1-cpj3;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

cpj1 = 400 * x1 * x1 + 1 ;
cpj2 = -200 * x1;
cpj3 = 100;

run;

DECVAR Statement

DECVAR name–list [=numbers] [, name–list [=numbers] ...] ;

VAR name–list [=numbers] [, name–list [=numbers] ...] ;

PARMS name–list [=numbers] [, name–list [=numbers] ...] ;

PARAMETERS name–list [=numbers] [, name–list [=numbers] ...] ;

The DECVAR statement lists the names of the n > 0 decision variables and speci-
fies grid search and initial values for an iterative optimization process. The decision
variables listed in the DECVAR statement cannot also be used in the MIN, MAX,
MINQUAD, MAXQUAD, LSQ, GRADIENT, HESSIAN, JACOBIAN, CRPJAC, or
NLINCON statement.

The DECVAR statement contains a list of decision variable names (not separated
by commas) optionally followed by an equals sign and a list of numbers. If the
number list consists of only one number, this number defines the initial value for all
the decision variables listed to the left of the equals sign.

If the number list consists of more than one number, these numbers specify the grid
locations for each of the decision variables listed left of the equals sign. The TO
and BY keywords can be used to specify a number list for a grid search. When
a grid of points is specified with a DECVAR statement, PROC NLP computes the
objective function value at each grid point and chooses the best (feasible) grid point
as a starting point for the optimization process. The use of the BEST= option is
recommended to save computing time and memory for the storing and sorting of all

550 � Chapter 6. The NLP Procedure

grid point information. Usually only feasible grid points are included in the grid
search. If the specified grid contains points located outside the feasible region and
you are interested in the function values at those points, it is possible to use the
INFEASIBLE option to compute (and display) their function values as well.

GRADIENT Statement

GRADIENT variables ;

The GRADIENT statement defines the gradient vector which contains the first-order
derivatives of the objective function f with respect to x1, . . . , xn. For more infor-
mation, see the “Derivatives” section on page 566. To specify the values of nonzero
derivatives, the variables specified in the GRADIENT statement must be defined on
the left-hand side of algebraic expressions in programming statements. For example,
consider the Rosenbrock function:

proc nlp tech=congra;
min y;
decvar x1 x2;
gradient g1 g2;

y1 = 10 * (x2 - x1 * x1);
y2 = 1 - x1;

y = .5 * (y1 * y1 + y2 * y2);

g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

run;

HESSIAN Statement

HESSIAN variables ;

The HESSIAN statement defines the Hessian matrix G containing the second-order
derivatives of the objective function f with respect to x1, . . . , xn. For more informa-
tion, see the “Derivatives” section on page 566.

If the DIAHES option is not specified, the HESSIAN statement lists n(n + 1)/2
variable names which correspond to the elements Gj,k, j ≥ k, of the lower triangle
of the symmetric Hessian matrix listed by rows. For example, the statements

min f;
decvar x1 - x3;
hessian g1-g6;

correspond to the Hessian matrix

G =

 G1 G2 G4
G2 G3 G5
G4 G5 G6

 =

 ∂2f/∂x2
1 ∂2f/∂x1∂x2 ∂2f/∂x1∂x3

∂2f/∂x2∂x1 ∂2f/∂x2
2 ∂2f/∂x2∂x3

∂2f/∂x3∂x1 ∂2f/∂x3∂x2 ∂2f/∂x2
3

JACNLC Statement � 551

If the DIAHES option is specified, only the n diagonal elements must be listed in
the HESSIAN statement. The n rows and n columns of the Hessian matrix G must
correspond to the order of the n parameter names listed in the DECVAR statement.
To specify the values of nonzero derivatives, the variables specified in the HESSIAN
statement must be defined on the left-hand side of algebraic expressions in the pro-
gramming statements. For example, consider the Rosenbrock function:

proc nlp tech=nrridg;
min f;
decvar x1 x2;
gradient g1 g2;
hessian h1-h3;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

f = .5 * (f1 * f1 + f2 * f2);

g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

h1 = -200 * (x2 - 3 * x1 * x1) + 1;
h2 = -200 * x1;
h3 = 100;

run;

INCLUDE Statement

INCLUDE model files ;

The INCLUDE statement can be used to append model code to the current model
code. The contents of included model files, created using the OUTMODEL= option,
are inserted into the model program at the position in which the INCLUDE statement
appears.

JACNLC Statement

JACNLC variables ;

The JACNLC statement defines the Jacobian matrix for the system of constraint func-
tions c1(x), . . . , cmc(x). The statements list the mc ×n variable names which corre-
spond to the elements CJi,j , i = 1, . . . ,mc; j = 1, . . . , n, of the Jacobian matrix by
rows.

For example, the statements

nlincon c1-c3;
decvar x1-x2;
jacnlc cj1-cj6;

552 � Chapter 6. The NLP Procedure

correspond to the Jacobian matrix

CJ =

 CJ1 CJ2
CJ3 CJ4
CJ5 CJ6

 =

 ∂c1/∂x1 ∂c1/∂x2

∂c2/∂x1 ∂c2/∂x2

∂c3/∂x1 ∂c3/∂x2

The mc rows of the Jacobian matrix must be in the same order as the mc correspond-
ing names of nonlinear constraints listed in the NLINCON statement. The n columns
of the Jacobian matrix must be in the same order as the n corresponding parameter
names listed in the DECVAR statement. To specify the values of nonzero derivatives,
the variables specified in the JACNLC statement must be defined on the left-hand
side of algebraic expressions in programming statements.

For example,

array cd[3,4] cd1-cd12;
nlincon c1-c3 >= 0;
jacnlc cd1-cd12;

c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;

c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;

c3 = 5 - 2 * x1 * x2 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;

cd[1,1]= -1 - 2 * x1; cd[1,2]= 1 - 2 * x2;
cd[1,3]= -1 - 2 * x3; cd[1,4]= 1 - 2 * x4;
cd[2,1]= 1 - 2 * x1; cd[2,2]= -4 * x2;
cd[2,3]= -2 * x3; cd[2,4]= 1 - 4 * x4;
cd[3,1]= -2 - 4 * x1; cd[3,2]= 1 - 2 * x2;
cd[3,3]= -2 * x3; cd[3,4]= 1;

JACOBIAN Statement
JACOBIAN variables ;

The JACOBIAN statement defines the JACOBIAN matrix J for a system of objective
functions. For more information, see the “Derivatives” section on page 566.

The JACOBIAN statement lists m×n variable names that correspond to the elements
Ji,j , i = 1, . . . ,m; j = 1, . . . , n, of the Jacobian matrix listed by rows.

For example, the statements

lsq f1-f3;
decvar x1 x2;
jacobian j1-j6;

correspond to the Jacobian matrix

J =

 J1 J2
J3 J4
J5 J6

 =

 ∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

∂f3/∂x1 ∂f3/∂x2

LINCON Statement � 553

The m rows of the Jacobian matrix must correspond to the order of the m function
names listed in the MIN, MAX, or LSQ statement. The n columns of the Jacobian
matrix must correspond to the order of the n decision variables listed in the DECVAR
statement. To specify the values of nonzero derivatives, the variables specified in the
JACOBIAN statement must be defined on the left-hand side of algebraic expressions
in programming statements.

For example, consider the Rosenbrock function:

proc nlp tech=levmar;
array j[2,2] j1-j4;
lsq f1 f2;
decvar x1 x2;
jacobian j1-j4;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

j[1,1] = -20 * x1;
j[1,2] = 10;
j[2,1] = -1;
j[2,2] = 0; /* is not needed */

run;

The JACOBIAN statement is useful only if more than one objective function is given
in the MIN, MAX, or LSQ statement, or if a DATA= input data set specifies more
than one function. If the MIN, MAX, or LSQ statement contains only one objective
function and no DATA= input data set is used, the JACOBIAN and GRADIENT
statements are equivalent. In the case of least-squares minimization, the crossproduct
Jacobian is used as an approximate Hessian matrix.

LABEL Statement
LABEL variable=‘label’ [,variable=‘label’...] ;

The LABEL statement can be used to assign labels (up to 40 chararcters) to the deci-
sion variables listed in the DECVAR statement. The INEST= data set can also be used
to assign labels. The labels are attached to the output and are used in an OUTEST=
data set.

LINCON Statement
LINCON l–con [, l–con ...] ;

where l–con is given in one of the following formats:

• linear–term operator number

• number operator linear–term

and linear–term is of the following form:

< +|− >< number∗ > variable < +|− < number∗ > variable . . . >

554 � Chapter 6. The NLP Procedure

The value of operator can be one of the following: ≤, <,≥, >, or =.

The LINCON statement specifies equality or inequality constraints

n∑
j=1

aijxj {≤ | = | ≥} bi for i = 1, . . . ,m

separated by commas. For example, the constraint 4x1 − 3x2 = 0 is expressed as

decvar x1 x2;
lincon 4 * x1 - 3 * x2 = 0;

and the constraints
10x1 − x2 ≥ 10

x1 + 5x2 ≥ 15

are expressed as

decvar x1 x2;
lincon 10 <= 10 * x1 - x2,

x1 + 5 * x2 >= 15;

MATRIX Statement

MATRIX M–name pattern–definitions ;

The MATRIX statement defines a matrix H and the vector g, which can be given in
the MINQUAD or MAXQUAD statement. The matrix H and vector g are initialized
to zero, so that only the nonzero elements are given. The five different forms of the
MATRIX statement are illustrated with the following example:

H =

100 10 1 0
10 100 10 1
1 10 100 10
0 1 10 100

 g =

1
2
3
4

 c = 0

Each MATRIX statement first names the matrix or vector and then lists its elements.
If more than one MATRIX statement is given for the same matrix, the later definitions
override the earlier ones.

The rows and columns in matrix H and vector g correspond to the order of decision
variables in the DECVAR statement.

• Full Matrix Definition: The MATRIX statement consists of H–name or
g–name followed by an equals sign and all (nonredundant) numerical values
of the matrix H or vector g. Assuming symmetry, only the elements of the
lower triangular part of the matrix H must be listed. This specification should
be used mainly for small problems with almost dense H matrices.

MATRIX Statement � 555

MATRIX H= 100
10 100
1 10 100
0 1 10 100;

MATRIX G= 1 2 3 4;

• Band-diagonal Matrix Definition: This form of pattern definition is useful
if the H matrix has (almost) constant band-diagonal structure. The MATRIX
statement consists of H–name followed by empty brackets [,], an equals sign,
and a list of numbers to be assigned to the diagonal and successive subdiago-
nals.

MATRIX H[,]= 100 10 1;
MATRIX G= 1 2 3 4;

• Sparse Matrix Definitions: In each of the following three specification types,
the H–name or g–name is followed by a list of pattern definitions separated by
commas. Each pattern definition consists of a location specification in brackets
on the left side of an equals sign that is followed by a list of numbers.

– (Sub)Diagonalwise: This form of pattern definition is useful if the H
matrix contains nonzero elements along diagonals or subdiagonals. The
starting location is specified by an index pair in brackets [i, j]. The ex-
pression k ∗num on the right-hand side specifies that num is assigned to
the elements [i, j], . . . , [i+k−1, j +k−1] in a diagonal direction of the
H matrix. The special case k = 1 can be used to assign values to single
nonzero element locations in H .

MATRIX H [1,1]= 4 * 100,
[2,1]= 3 * 10,
[3,1]= 2 * 1;

MATRIX G [1,1]= 1 2 3 4;

– Columnwise Starting in Diagonal: This form of pattern definition is
useful if the H matrix contains nonzero elements columnwise starting in
the diagonal. The starting location is specified by only one index j in
brackets [, j]. The k numbers at the right-hand side are assigned to the
elements [j, j], . . . , [min(j + k − 1, n), j].

MATRIX H [,1]= 100 10 1,
[,2]= 100 10 1,
[,3]= 100 10,
[,4]= 100;

MATRIX G [,1]= 1 2 3 4;

– Rowwise Starting in First Column: This form of pattern definition is
useful if the H matrix contains nonzero elements rowwise ending in the
diagonal. The starting location is specified by only one index i in brackets
[i,]. The k numbers at the right-hand side are assigned to the elements
[i, 1], . . . , [i,min(k, i)].

MATRIX H [1,]= 100,
[2,]= 10 100,
[3,]= 1 10 100,
[4,]= 0 1 10 100;

MATRIX G [1,]= 1 2 3 4;

556 � Chapter 6. The NLP Procedure

MIN, MAX, and LSQ Statements
MIN variables ;

MAX variables ;

LSQ variables ;

The MIN, MAX, or LSQ statement specifies the objective functions. Only one of the
three statements can be used at a time and at least one must be given. The MIN and
LSQ statements are for minimizing the objective function, and the MAX statement is
for maximizing the objective function. The MIN, MAX, or LSQ statement lists one
or more variables naming the objective functions fi, i = 1, . . . ,m (later defined by
SAS program code).

• If the MIN or MAX statement lists m function names f1, . . . , fm, the objective
function f is

f(x) =
m∑

i=1

fi

• If the LSQ statement lists m function names f1, . . . , fm, the objective function
f is

f(x) =
1
2

m∑
i=1

f2
i (x)

Note that the LSQ statement can be used only if TECH=LEVMAR or
TECH=HYQUAN.

MINQUAD and MAXQUAD Statements
MINQUAD H–name [, g–name [, c–number]] ;

MAXQUAD H–name [, g–name [, c–number]] ;

The MINQUAD and MAXQUAD statements specify the matrix H , vector g, and
scalar c that define a quadratic objective function. The MINQUAD statement is for
minimizing the objective function and the MAXQUAD statement is for maximizing
the objective function.

The rows and columns in H and g correspond to the order of decision variables given
in the DECVAR statement. Specifying the objective function with a MINQUAD or
MAXQUAD statement indirectly defines the analytic derivatives for the objective
function. Therefore, statements specifying derivatives are not valid in these cases.
Also, only use these statements when TECH=LICOMP or TECH=QUADAS and no
nonlinear constraints are imposed.

There are three ways of using the MINQUAD or MAXQUAD statement:

• Using ARRAY Statements:
The names H–name and g–name specified in the MINQUAD or MAXQUAD
statement can be used in ARRAY statements. This specification is mainly for
small problems with almost dense H matrices.

MINQUAD and MAXQUAD Statements � 557

proc nlp pall;
array h[2,2] .4 0

0 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

• Using Elementwise Setting:
The names H–name and g–name specified in the MINQUAD or MAXQUAD
statement can be followed directly by one-dimensional indices specifying the
corresponding elements of the matrix H and vector g. These element names
can be used on the left side of numerical assignments. The one-dimensional
index value l following H–name, which corresponds to the element Hij , is
computed by l = (i−1)n+ j, i ≥ j. The matrix H and vector g are initialized
to zero, so that only the nonzero elements must be given. This specification is
efficient for small problems with sparse H matrices.

proc nlp pall;
minquad h, -100;
decvar x1 x2;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
h1 = .4; h4 = 4;

run;

• Using MATRIX Statements:
The names H–name and g–name specified in the MINQUAD or MAXQUAD
statement can be used in MATRIX statements. There are different ways to
specify the nonzero elements of the matrix H and vector g by MATRIX state-
ments. The following example illustrates one way to use the MATRIX state-
ment.

proc nlp all;
matrix h[1,1] = .4 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50;

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

558 � Chapter 6. The NLP Procedure

NLINCON Statement
NLINCON nlcon [, nlcon ...] [/ option] ;

NLC nlcon [, nlcon ...] [/ option] ;

where nlcon is given in one of the following formats:

• number operator variable–list operator number

• -number operator variable–list

• variable–list operator number

and operator is ≤, <,≥, >, or =. The value of option can be SUMOBS or
EVERYOBS.

General nonlinear equality and inequality constraints are specified with the
NLINCON statement. The syntax of the NLINCON statement is similar to that of
the BOUNDS statement with two small additions:

• The BOUNDS statement can contain only the names of decision variables.
The NLINCON statement can also contain the names of continuous functions
of the decision variables. These functions must be computed in the program
statements, and since they can depend on the values of some of the variables in
the DATA= data set, there are two possibilities:

– If the continuous functions should be summed across all observations
read from the DATA= data set, the NLINCON statement must be termi-
nated by the / SUMOBS option.

– If the continuous functions should be evaluated separately for each obser-
vation in the data set, the NLINCON statement must be terminated by the
/ EVERYOBS option. One constraint is generated for each observation
in the data set.

• If the continuous function should be evaluated only once for the entire data set,
the NLINCON statement has the same form as the BOUNDS statement. If this
constraint does depend on the values of variables in the DATA= data set, it is
evaluated using the data of the first observation.

One- or two-sided constraints can be specified in the NLINCON statement. However,
equality constraints must be one-sided. The pairs of operators (<,<=) and (>,>=)
are treated in the same way.

These three statements require the values of the three functions v1, v2, v3 to be be-
tween zero and ten, and they are equivalent:

nlincon 0 <= v1-v3,
v1-v3 <= 10;

nlincon 0 <= v1-v3 <= 10;

nlincon 10 >= v1-v3 >= 0;

PROFILE Statement � 559

Also, consider the Rosen-Suzuki problem. It has three nonlinear inequality con-
straints:

8− x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 ≥ 0

10− x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 ≥ 0

5− 2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 ≥ 0

These are specified as

nlincon c1-c3 >= 0;

c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;

c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;

c3 = 5 - 2 * x1 * x1 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;

Note: QUANEW and NMSIMP are the only optimization subroutines that support
the NLINCON statement.

PROFILE Statement

PROFILE parms [/ [ALPHA= values] [options]] ;

where parms is given in the format pnam–1 pnam–2 ... pnam–n, and values is the
list of α values in (0,1).

The PROFILE statement

• writes the (x, y) coordinates of profile points for each of the listed parameters
to the OUTEST= data set

• displays, or writes to the OUTEST= data set, the profile likelihood confidence
limits (PL CLs) for the listed parameters for the specified α values. If the
approximate standard errors are available, the corresponding Wald confidence
limits can be computed.

When computing the profile points or likelihood profile confidence intervals, PROC
NLP assumes that a maximization of the log likelihood function is desired. Each point
of the profile and each endpoint of the confidence interval is computed by solving
corresponding nonlinear optimization problems.

The keyword PROFILE must be followed by the names of parameters for which the
profile or the PL CLs should be computed. If the parameter name list is empty, the
profiles and PL CLs for all parameters are computed. Then, optionally, the α values
follow. The list of α values may contain TO and BY keywords. Each element must
satisfy 0 < α < 1. The following is an example:

profile l11-l15 u1-u5 c /
alpha= .9 to .1 by -.1 .09 to .01 by -.01;

560 � Chapter 6. The NLP Procedure

Duplicate α values or values outside (0, 1) are automatically eliminated from the list.

A number of additional options can be specified.

FFACTOR=r specifies the factor relating the discrepancy function f(θ) to the
χ2 quantile. The default value is r = 2.

FORCHI= F | CHI defines the scale for the y values written to the OUTEST= data
set. For FORCHI=F, the y values are scaled to the values of the
log likelihood function f = f(θ); for FORCHI=CHI, the y val-
ues are scaled so that ŷ = χ2. The default value is FORCHI=F.

FEASRATIO=r specifies a factor of the Wald confidence limit (or an approx-
imation of it if standard errors are not computed) defining an
upper bound for the search for confidence limits. In general,
the range of x values in the profile graph is between r = 1 and
r = 2 times the length of the corresponding Wald interval. For
many examples, the χ2 quantiles corresponding to small α val-
ues define a y level ŷ− 1

2q1(1−α), which is too far away from
ŷ to be reached by y(x) for x within the range of twice the Wald
confidence limit. The search for an intersection with such a y
level at a practically infinite value of x can be computationally
expensive. A smaller value for r can speed up computation time
by restricting the search for confidence limits to a region closer
to x̂. The default value of r = 1000 practically disables the
FEASRATIO= option.

OUTTABLE specifies that the complete set θ of parameter estimates rather
than only x = θj for each confidence limit is written to the
OUTEST= data set. This output can be helpful for further anal-
yses on how small changes in x = θj affect the changes in the
θi, i 6= j.

For some applications, it may be computationally less expensive to compute the
PL confidence limits for a few parameters than to compute the approximate covari-
ance matrix of many parameters, which is the basis for the Wald confidence limits.
However, the computation of the profile of the discrepancy function and the corre-
sponding CLs in general will be much more time-consuming than that of the Wald
CLs.

Program Statements

This section lists the program statements used to code the objective function and
nonlinear constraints and their derivatives, and it documents the differences between
program statements in the NLP procedure and program statements in the DATA step.
The syntax of program statements used in PROC NLP is identical to that used in the
CALIS, GENMOD, and MODEL procedures (refer to the SAS/ETS User’s Guide).

Most of the program statements which can be used in the SAS DATA step can also be
used in the NLP procedure. See the SAS Language Guide or base SAS documentation
for a description of the SAS program statements.

Program Statements � 561

ABORT;
CALL name [(expression [, expression ...])];
DELETE;
DO [variable = expression

[TO expression] [BY expression]
[, expression [TO expression] [BY expression] ...]

]
[WHILE expression] [UNTIL expression];

END;
GOTO statement–label;
IF expression;
IF expression THEN program–statement;

ELSE program–statement;
variable = expression;
variable + expression;
LINK statement–label;
PUT [variable] [=] [...] ;
RETURN;
SELECT [(expression)];
STOP;
SUBSTR(variable, index, length) = expression;
WHEN (expression) program–statement;

OTHERWISE program–statement;

For the most part, the SAS program statements work as they do in the SAS DATA step
as documented in the SAS Language Guide. However, there are several differences
that should be noted.

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however,

do i = ’A’,’B’,’C’;

is not.

• The PUT statement, used mostly for program debugging in PROC NLP, sup-
ports only some of the features of the DATA step PUT statement, and has some
new features that the DATA step PUT statement does not:

– The PROC NLP PUT statement does not support line pointers, factored
lists, iteration factors, overprinting, –INFILE–, the colon (:) format mod-
ifier, or “$”.

– The PROC NLP PUT statement does support expressions, but the expres-
sion must be enclosed inside of parentheses. For example, the following
statement displays the square root of x: put (sqrt(x));

562 � Chapter 6. The NLP Procedure

– The PROC NLP PUT statement supports the print item –PDV– to print a
formatted listing of all variables in the program. For example, the follow-
ing statement displays a more readable listing of the variables than the
–all– print item: put -pdv-;

• The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple statement
WHENs. For example, the following syntax is valid:

SELECT;
WHEN (exp1) stmt1;

stmt2;
WHEN (exp2) stmt3;

stmt4;
END;

It is recommended to keep some kind of order in the input of NLP, that is, between
the statements that define decision variables and constraints and the program code
used to specify objective functions and derivatives.

Use of Special Variables in Program Code

Except for the quadratic programming techniques (QUADAS and LICOMP) that do
not execute program statements during the iteration process, several special variables
in the program code can be used to communicate with PROC NLP in special situa-
tions:

• –OBS– If a DATA= input data set is used, it is possible to access a variable
–OBS– which contains the number of the observation processed from the
data set. You should not change the content of the –OBS– variable. This
variable enables you to modify the programming statements depending on the
observation number processed in the DATA= input data set. For example, to
set variable A to 1 when observation 10 is processed, and otherwise to 2, it is
possible to specify

IF _OBS_ = 10 THEN A=1; ELSE A=2;

• –ITER– This variable is set by PROC NLP, and it contains the number of
the current iteration of the optimization technique as it is displayed in the
optimization history. You should not change the content of the –ITER–
variable. It is possible to read the value of this variable in order to modify the
programming statements depending on the iteration number processed. For
example, to display the content of the variables A, B, and C when there are
more than 100 iterations processed, it is possible to use

IF _ITER_ > 100 THEN PUT A B C;

Program Statements � 563

• –DPROC– This variable is set by PROC NLP to indicate whether the code is
called only to obtain the values of the m objective functions fi (–DPROC–=0)
or whether specified derivatives (defined by the GRADIENT, JACOBIAN,
CRPJAC, or HESSIAN statement) also have to be computed (–DPROC–=1).
You should not change the content of the –DPROC– variable. Checking the
–DPROC– variable makes it possible to save computer time by not perform-
ing derivative code that is not needed by the current call. In particular, when
a DATA= input data set is used, the code is processed many times to compute
only the function values. If the programming statements in the program contain
the specification of computationally expensive first- and second-order deriva-
tives, you can put the derivative code in an IF statement that is processed only
if –DPROC– is not zero.

• –INDF– The –INDF– variable is set by PROC NLP to inform you of the
source of calls to the function or derivative programming.

–INDF–=0 indicates the first function call in a grid search. This is also the
first call evaluating the programming statements if there is a grid search
defined by grid values in the DECVAR statement.

–INDF–=1 indicates further function calls in a grid search.

–INDF–=2 indicates the call for the feasible starting point. This is also the
first call evaluating the programming statements if there is no grid search
defined.

–INDF–=3 indicates calls from a gradient-checking algorithm.

–INDF–=4 indicates calls from the minimization algorithm. The –ITER–
variable contains the iteration number.

–INDF–=5 If the active set algorithm leaves the feasible region (due to
rounding errors), an algorithm tries to return it into the feasible region;
–INDF–=5 indicates a call that is done when such a step is successful.

–INDF–=6 indicates calls from a factorial test subroutine that tests the neigh-
borhood of a point x for optimality.

–INDF–=7, 8 indicates calls from subroutines needed to compute finite-
difference derivatives using only values of the objective function. No
nonlinear constraints are evaluated.

–INDF–=9 indicates calls from subroutines needed to compute second-order
finite-difference derivatives using analytic (specified) first-order deriva-
tives. No nonlinear constraints are evaluated.

–INDF–=10 indicates calls where only the nonlinear constraints but no objec-
tive function are needed. The analytic derivatives of the nonlinear con-
straints are computed.

–INDF–=11 indicates calls where only the nonlinear constraints but no objec-
tive function are needed. The analytic derivatives of the nonlinear con-
straints are not computed.

–INDF–=-1 indicates the last call at the final solution.

You should not change the content of the –INDF– variable.

564 � Chapter 6. The NLP Procedure

• –LIST– You can set the –LIST– variable to control the output during the iter-
ation process:

–LIST–=0 is equivalent to the NOPRINT option. It suppresses all output.

–LIST–=1 is equivalent to the PSUMMARY but not the PHISTORY option.
The optimization start and termination messages are displayed. However,
the PSUMMARY option suppresses the output of the iteration history.

–LIST–=2 is equivalent to the PSHORT option or to a combination of the
PSUMMARY and PHISTORY options. The optimization start informa-
tion, the iteration history, and termination message are displayed.

–LIST–=3 is equivalent to not PSUMMARY, not PSHORT, and not PALL.
The optimization start information, the iteration history, and the termina-
tion message are displayed.

–LIST–=4 is equivalent to the PALL option. The extended optimization start
information (also containing settings of termination criteria and other
control parameters) is displayed.

–LIST–=5 In addition to the iteration history, the vector x(k) of parameter
estimates is displayed for each iteration k.

–LIST–=6 In addition to the iteration history, the vector x(k) of parameter
estimates and the gradient g(k) (if available) of the objective function are
displayed for each iteration k.

It is possible to set the –LIST– variable in the program code to obtain more or
less output in each iteration of the optimization process. For example,

IF _ITER_ = 11 THEN _LIST_=5;
ELSE IF _ITER_ > 11 THEN _LIST_=1;

ELSE _LIST_=3;

• –TOOBIG– The value of –TOOBIG– is initialized to 0 by PROC NLP, but
you can set it to 1 during the iteration, indicating problems evaluating the pro-
gram statements. The objective function and derivatives must be computable
at the starting point. However, during the iteration it is possible to set the
–TOOBIG– variable to 1, indicating that the programming statements (com-
puting the value of the objective function or the specified derivatives) cannot
be performed for the current value of xk. Some of the optimization techniques
check the value of –TOOBIG– and try to modify the parameter estimates so
that the objective function (or derivatives) can be computed in a following trial.

• –NOBS– The value of the –NOBS– variable is initialized by PROC NLP to
the product of the number of functions mfun specified in the MIN, MAX or
LSQ statement and the number of valid observations nobs in the current BY
group of the DATA= input data set. The value of the –NOBS– variable is
used for computing the scalar factor of the covariance matrix (see the COV=,
VARDEF=, and SIGSQ= options). If you reset the value of the –NOBS– vari-
able, the value that is available at the end of the iteration is used by PROC NLP
to compute the scalar factor of the covariance matrix.

Criteria for Optimality � 565

• –DF– The value of the –DF– variable is initialized by PROC NLP to the num-
ber n of parameters specified in the DECVAR statement. The value of the
–DF– variable is used for computing the scalar factor d of the covariance ma-
trix (see the COV=, VARDEF=, and SIGSQ= options). If you reset the value
of the –DF– variable, the value that is available at the end of the iteration is
used by PROC NLP to compute the scalar factor of the covariance matrix.

• –LASTF– In each iteration (except the first one), the value of the –LASTF–
variable is set by PROC NLP to the final value of the objective function that
was achieved during the last iteration. This value should agree with the value
that is displayed in the iteration history and that is written in the OUTEST=
data set when the OUTITER option is specified.

Details

Criteria for Optimality
PROC NLP solves

minx∈Rn f(x)
subject to ci(x) = 0, i = 1, . . . ,me

ci(x) ≥ 0, i = me + 1, . . . ,m

where f is the objective function and the ci’s are the constraint functions.

A point x is feasible if it satisfies all the constraints. The feasible region G is the set
of all the feasible points. A feasible point x∗ is a global solution of the preceding
problem if no point in G has a smaller function value than f(x∗). A feasible point x∗

is a local solution of the problem if there exists some open neighborhood surrounding
x∗ in that no point has a smaller function value than f(x∗). Nonlinear programming
algorithms cannot consistently find global minima. All the algorithms in PROC NLP
find a local minimum for this problem. If you need to check whether the obtained
solution is a global minimum, you may have to run PROC NLP with different starting
points obtained either at random or by selecting a point on a grid that contains G.

Every local minimizer x∗ of this problem satisfies the following local optimality con-
ditions:

• The gradient (vector of first derivatives) g(x∗) = ∇f(x∗) of the objective
function f (projected toward the feasible region if the problem is constrained)
at the point x∗ is zero.

• The Hessian (matrix of second derivatives) G(x∗) = ∇2f(x∗) of the objective
function f (projected toward the feasible region G in the constrained case) at
the point x∗ is positive definite.

Most of the optimization algorithms in PROC NLP use iterative techniques that result
in a sequence of points x0, ..., xn, ..., that converges to a local solution x∗. At the
solution, PROC NLP performs tests to confirm that the (projected) gradient is close
to zero and that the (projected) Hessian matrix is positive definite.

566 � Chapter 6. The NLP Procedure

Karush-Kuhn-Tucker Conditions

An important tool in the analysis and design of algorithms in constrained optimization
is the Lagrangian function, a linear combination of the objective function and the
constraints:

L(x, λ) = f(x)−
m∑

i=1

λici(x)

The coefficients λi are called Lagrange multipliers. This tool makes it possible to
state necessary and sufficient conditions for a local minimum. The various algorithms
in PROC NLP create sequences of points, each of which is closer than the previous
one to satisfying these conditions.

Assuming that the functions f and ci are twice continuously differentiable, the point
x∗ is a local minimum of the nonlinear programming problem, if there exists a vector
λ∗ = (λ∗1, . . . , λ

∗
m) that meets the following conditions.

1. First-order Karush-Kuhn-Tucker conditions:

ci(x∗) = 0, i = 1, . . . ,me

ci(x∗) ≥ 0, λ∗i ≥ 0, λ∗i ci(x∗) = 0, i = me + 1, . . . ,m
∇xL(x∗, λ∗) = 0

2. Second-order conditions: Each nonzero vector y ∈ Rn that satisfies

yT∇xci(x∗) = 0
{

i = 1, . . . ,me

∀i ∈ {me + 1, . . . ,m : λ∗i > 0}

also satisfies

yT∇2
xL(x∗, λ∗)y > 0

Most of the algorithms to solve this problem attempt to find a combination of vectors
x and λ for which the gradient of the Lagrangian function with respect to x is zero.

Derivatives

The first- and second-order conditions of optimality are based on first and second
derivatives of the objective function f and the constraints ci.

The gradient vector contains the first derivatives of the objective function f with
respect to the parameters x1, . . . , xn, as follows:

g(x) = ∇f(x) =
(

∂f

∂xj

)

Criteria for Optimality � 567

The n×n symmetric Hessian matrix contains the second derivatives of the objective
function f with respect to the parameters x1, . . . , xn, as follows:

G(x) = ∇2f(x) =
(

∂2f

∂xj∂xk

)
For least-squares problems, the m×n Jacobian matrix contains the first-order deriva-
tives of the m objective functions fi(x) with respect to the parameters x1, . . . , xn, as
follows:

J(x) = (∇f1, . . . ,∇fm) =
(

∂fi

∂xj

)
In the case of least-squares problems, the crossproduct Jacobian

JT J =

(
m∑

i=1

∂fi

∂xj

∂fi

∂xk

)

is used as an approximate Hessian matrix. It is a very good approximation of the
Hessian if the residuals at the solution are “small.” (If the residuals are not suffi-
ciently small at the solution, this approach may result in slow convergence.) The
fact that it is possible to obtain Hessian approximations for this problem that do not
require any computation of second derivatives means that least-squares algorithms
are more efficient than unconstrained optimization algorithms. Using the vector
f(x) = (f1(x), . . . , fm(x))T of function values, PROC NLP computes the gradi-
ent g(x) by

g(x) = JT (x)f(x)

The mc × n Jacobian matrix contains the first-order derivatives of the mc nonlinear
constraint functions ci(x), i = 1, . . . ,mc, with respect to the parameters x1, . . . , xn,
as follows:

CJ(x) = (∇c1, . . . ,∇cmc) =
(

∂ci

∂xj

)
PROC NLP provides three ways to compute derivatives:

• It computes analytical first- and second-order derivatives of the objective func-
tion f with respect to the n variables xj .

• It computes first- and second-order finite-difference approximations to
the derivatives. For more information, see the section “Finite-Difference
Approximations of Derivatives” on page 579.

• The user supplies formulas for analytical or numerical first- and second-order
derivatives of the objective function in the GRADIENT, JACOBIAN, CRPJAC,
and HESSIAN statements. The JACNLC statement can be used to specify the
derivatives for the nonlinear constraints.

568 � Chapter 6. The NLP Procedure

Optimization Algorithms

There are three groups of optimization techniques available in PROC NLP. A partic-
ular optimizer can be selected with the TECH= option in the PROC NLP statement.

Algorithm TECH=
Linear Complementarity Problem LICOMP
Quadratic Active Set Technique QUADAS
Trust-Region Method TRUREG
Newton-Raphson Method with Line Search NEWRAP
Newton-Raphson Method with Ridging NRRIDG
Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP) QUANEW
Double Dogleg Method (DBFGS, DDFP) DBLDOG
Conjugate Gradient Methods (PB, FR, PR, CD) CONGRA
Nelder-Mead Simplex Method NMSIMP
Levenberg-Marquardt Method LEVMAR
Hybrid Quasi-Newton Methods (DBFGS, DDFP) HYQUAN

Since no single optimization technique is invariably superior to others, PROC NLP
provides a variety of optimization techniques that work well in various circumstances.
However, it is possible to devise problems for which none of the techniques in PROC
NLP can find the correct solution. Moreover, nonlinear optimization can be com-
putationally expensive in terms of time and memory, so care must be taken when
matching an algorithm to a problem.

All optimization techniques in PROC NLP use O(n2) memory except the conjugate
gradient methods, which use only O(n) memory and are designed to optimize prob-
lems with many variables. Since the techniques are iterative, they require the repeated
computation of

• the function value (optimization criterion)

• the gradient vector (first-order partial derivatives)

• for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

• values of linear and nonlinear constraints

• the first-order partial derivatives (Jacobian) of nonlinear constraints

However, since each of the optimizers requires different derivatives and supports dif-
ferent types of constraints, some computational efficiencies can be gained. The fol-
lowing table shows, for each optimization technique, which derivatives are needed
(FOD: first-order derivatives; SOD: second-order derivatives) and what kinds of con-
straints (BC: boundary constraints; LIC: linear constraints; NLC: nonlinear con-
straints) are supported.

Optimization Algorithms � 569

Algorithm FOD SOD BC LIC NLC
LICOMP - - x x -
QUADAS - - x x -
TRUREG x x x x -
NEWRAP x x x x -
NRRIDG x x x x -

QUANEW x - x x x
DBLDOG x - x x -
CONGRA x - x x -
NMSIMP - - x x x
LEVMAR x - x x -
HYQUAN x - x x -

Preparation for Using Optimization Algorithms

It is rare that a problem is submitted to an optimization algorithm “as is.” By making
a few changes in your problem, you can reduce its complexity, which would increase
the chance of convergence and save execution time.

• Whenever possible, use linear functions instead of nonlinear functions. PROC
NLP will reward you with faster and more accurate solutions.

• Most optimization algorithms are based on quadratic approximations to non-
linear functions. You should try to avoid the use of functions that cannot be
properly approximated by quadratic functions. Try to avoid the use of rational
functions.

For example, the constraint

sin(x)
x + 1

> 0

should be replaced by the equivalent constraint

sin(x)(x + 1) > 0

and the constraint

sin(x)
x + 1

= 1

should be replaced by the equivalent constraint

sin(x)− (x + 1) = 0

• Try to avoid the use of exponential functions, if possible.

• If you can reduce the complexity of your function by the addition of a small
number of variables, it may help the algorithm avoid stationary points.

570 � Chapter 6. The NLP Procedure

• Provide the best starting point you can. A good starting point leads to better
quadratic approximations and faster convergence.

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimizer for a particular problem are
complex and may involve trial and error. Several things must be taken into account.
First, the structure of the problem has to be considered: Is it quadratic? least-squares?
Does it have linear or nonlinear constraints? Next, it is important to consider the
type of derivatives of the objective function and the constraints that are needed and
whether these are analytically tractable or not. This section provides some guidelines
for making the right choices.

For many optimization problems, computing the gradient takes more computer time
than computing the function value, and computing the Hessian sometimes takes much
more computer time and memory than computing the gradient, especially when there
are many decision variables. Optimization techniques that do not use the Hessian
usually require more iterations than techniques that do use Hessian approximations
(such as finite differences or BFGS update) and so are often slower. Techniques that
do not use Hessians at all tend to be slow and less reliable.

The derivative compiler is not efficient in the computation of second-order deriva-
tives. For large problems, memory and computer time can be saved by programming
your own derivatives using the GRADIENT, JACOBIAN, CRPJAC, HESSIAN, and
JACNLC statements. If you are not able to specify first- and second-order derivatives
of the objective function, you can rely on finite-difference gradients and Hessian up-
date formulas. This combination is frequently used and works very well for small and
medium problems. For large problems, you are advised not to use an optimization
technique that requires the computation of second derivatives.

The following provides some guidance for matching an algorithm to a particular prob-
lem.

• Quadratic Programming

– QUADAS
– LICOMP

• General Nonlinear Optimization

– Nonlinear Constraints

∗ Small Problems: NMSIMP
Not suitable for highly nonlinear problems or for problems with
n > 20.

∗ Medium Problems: QUANEW

– Only Linear Constraints

∗ Small Problems: TRUREG (NEWRAP, NRRIDG)
(n ≤ 40) where the Hessian matrix is not expensive to compute.

Optimization Algorithms � 571

Sometimes NRRIDG can be faster than TRUREG, but TRUREG can
be more stable. NRRIDG needs only one matrix with n(n + 1)/2
double words; TRUREG and NEWRAP need two such matrices.

∗ Medium Problems: QUANEW (DBLDOG)
(n ≤ 200) where the objective function and the gradient are much
faster to evaluate than the Hessian. QUANEW and DBLDOG
in general need more iterations than TRUREG, NRRIDG, and
NEWRAP, but each iteration can be much faster. QUANEW and
DBLDOG need only the gradient to update an approximate Hessian.
QUANEW and DBLDOG need slightly less memory than TRUREG
or NEWRAP (essentially one matrix with n(n+1)/2 double words).

∗ Large Problems: CONGRA
(n > 200) where the objective function and the gradient can be com-
puted much faster than the Hessian and where too much memory
is needed to store the (approximate) Hessian. CONGRA in general
needs more iterations than QUANEW or DBLDOG, but each itera-
tion can be much faster. Since CONGRA needs only a factor of n
double-word memory, many large applications of PROC NLP can be
solved only by CONGRA.

∗ No Derivatives: NMSIMP
(n ≤ 20) where derivatives are not continuous or are very difficult to
compute.

• Least-Squares Minimization

– Small Problems: LEVMAR (HYQUAN)
(n ≤ 60) where the crossproduct Jacobian matrix is inexpensive to com-
pute. In general, LEVMAR is more reliable, but there are problems with
high residuals where HYQUAN can be faster than LEVMAR.

– Medium Problems: QUANEW (DBLDOG)
(n ≤ 200) where the objective function and the gradient are much faster
to evaluate than the crossproduct Jacobian. QUANEW and DBLDOG
in general need more iterations than LEVMAR or HYQUAN, but each
iteration can be much faster.

– Large Problems: CONGRA
– No Derivatives: NMSIMP

Quadratic Programming Method

The QUADAS and LICOMP algorithms can be used to minimize or maximize a
quadratic objective function,

f(x) =
1
2
xT Gx + gT x + c, with GT = G

subject to linear or boundary constraints

Ax ≥ b or lj ≤ xj ≤ uj

572 � Chapter 6. The NLP Procedure

where x = (x1, . . . , xn)T , g = (g1, . . . , gn)T , G is an n × n symmetric matrix, A
is an m × n matrix of general linear constraints, and b = (b1, . . . , bm)T . The value
of c modifies only the value of the objective function, not its derivatives, and the
location of the optimizer x∗ does not depend on the value of the constant term c. For
QUADAS or LICOMP, the objective function must be specified using the MINQUAD
or MAXQUAD statement or using an INQUAD= data set. In this case, derivatives do
not need to be specified because the gradient vector

∇f(x) = Gx + g

and the n× n Hessian matrix

∇2f(x) = G

are easily obtained from the data input.

Simple boundary and general linear constraints can be specified using the BOUNDS
or LINCON statement or an INQUAD= or INEST= data set.

General Quadratic Programming (QUADAS)

The QUADAS algorithm is an active set method that iteratively updates the QT de-
composition of the matrix Ak of active linear constraints and the Cholesky factor
of the projected Hessian ZT

k GZk simultaneously. The update of active boundary
and linear constraints is done separately; refer to Gill et al. (1984). Here Q is an
nfree ×nfree orthogonal matrix composed of vectors spanning the null space Z of Ak

in its first nfree − nalc columns and range space Y in its last nalc columns; T is an
nalc ×nalc triangular matrix of special form, tij = 0 for i < n− j, where nfree is the
number of free parameters (n minus the number of active boundary constraints), and
nalc is the number of active linear constraints. The Cholesky factor of the projected
Hessian matrix ZT

k GZk and the QT decomposition are updated simultaneously when
the active set changes.

Linear Complementarity (LICOMP)

The LICOMP technique solves a quadratic problem as a linear complementarity prob-
lem. It can be used only if G is positive (negative) semidefinite for minimization
(maximization) and if the parameters are restricted to be positive.

This technique finds a point that meets the Karush-Kuhn-Tucker conditions by solv-
ing the linear complementary problem

w = Mz + q

with constraints

wT z ≥ 0, w ≥ 0, z ≥ 0,

where

z =
[

x
λ

]
M =

[
G −AT

A 0

]
q =

[
g
−b

]

Optimization Algorithms � 573

Only the LCEPSILON= option can be used to specify a tolerance used in computa-
tions.

General Nonlinear Optimization

Trust-Region Optimization (TRUREG)

The trust region method uses the gradient g(x(k)) and Hessian matrix G(x(k)) and
thus requires that the objective function f(x) have continuous first- and second-order
derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlin-
ear objective function within a hyperelliptic trust region with radius ∆ that constrains
the step length corresponding to the quality of the quadratic approximation. The trust
region method is implemented using Dennis, Gay, and Welsch (1981), Gay (1983).

The trust region method performs well for small to medium problems and does not
require many function, gradient, and Hessian calls. If the computation of the Hessian
matrix is computationally expensive, use the UPDATE= option for update formulas
(that gradually build the second-order information in the Hessian). For larger prob-
lems, the conjugate gradient algorithm may be more appropriate.

Newton-Raphson Optimization With Line-Search (NEWRAP)

The NEWRAP technique uses the gradient g(x(k)) and Hessian matrix G(x(k)) and
thus requires that the objective function have continuous first- and second-order
derivatives inside the feasible region. If second-order derivatives are computed ef-
ficiently and precisely, the NEWRAP method may perform well for medium to large
problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully.
Otherwise, a combination of ridging and line search is done to compute success-
ful steps. If the Hessian is not positive definite, a multiple of the identity matrix is
added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is done along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)

The NRRIDG technique uses the gradient g(x(k)) and Hessian matrix G(x(k)) and
thus requires that the objective function have continuous first- and second-order
derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. If at
least one of these two conditions is not satisfied, a multiple of the identity matrix is
added to the Hessian matrix. If this algorithm is used for least-squares problems, it
performs a ridged Gauss-Newton minimization.

The NRRIDG method performs well for small to medium problems and does not
need many function, gradient, and Hessian calls. However, if the computation of

574 � Chapter 6. The NLP Procedure

the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or
conjugate gradient algorithms may be more efficient.

Since NRRIDG uses an orthogonal decomposition of the approximate Hessian, each
iteration of NRRIDG can be slower than that of NEWRAP, which works with
Cholesky decomposition. However, usually NRRIDG needs fewer iterations than
NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradient g(x(k)) and does not need to com-
pute second-order derivatives since they are approximated. It works well for medium
to moderately large optimization problems where the objective function and the gra-
dient are much faster to compute than the Hessian, but in general it requires more
iterations than the techniques TRUREG, NEWRAP, and NRRIDG, which compute
second-order derivatives.

The QUANEW algorithm depends on whether or not there are nonlinear constraints.

Unconstrained or Linearly Constrained Problems

If there are no nonlinear constraints, QUANEW is either

• the original quasi-Newton algorithm that updates an approximation of the in-
verse Hessian, or

• the dual quasi-Newton algorithm that updates the Cholesky factor of an ap-
proximate Hessian (default),

depending on the value of the UPDATE= option. For problems with general linear
inequality constraints, the dual quasi-Newton methods can be more efficient than the
original ones.

Four update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, &
Shanno) update of the inverse Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update
of the inverse Hessian matrix.

In each iteration, a line search is done along the search direction to find an approxi-
mate optimum. The default line-search method uses quadratic interpolation and cubic
extrapolation to obtain a step length α satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper limit of
the step length. Violating the left-side Goldstein condition can affect the positive

Optimization Algorithms � 575

definiteness of the quasi-Newton update. In those cases, either the update is skipped
or the iterations are restarted with an identity matrix resulting in the steepest descent
or ascent search direction. Line-search algorithms other than the default one can be
specified with the LINESEARCH= option.

Nonlinearly Constrained Problems

The algorithm used for nonlinearly constrained quasi-Newton optimization is an
efficient modification of Powell’s (1978a, 1982b) Variable Metric Constrained
WatchDog (VMCWD) algorithm. A similar but older algorithm (VF02AD) is part
of the Harwell library. Both VMCWD and VF02AD use Fletcher’s VE02AD algo-
rithm (part of the Harwell library) for positive-definite quadratic programming. The
PROC NLP QUANEW implementation uses a quadratic programming subroutine
that updates and downdates the approximation of the Cholesky factor when the active
set changes. The nonlinear QUANEW algorithm is not a feasible-point algorithm,
and the value of the objective function need not decrease (minimization) or increase
(maximization) monotonically. Instead, the algorithm tries to reduce a linear combi-
nation of the objective function and constraint violations, called the merit function.

The following are similarities and differences between this algorithm and the
VMCWD algorithm:

• A modification of this algorithm can be performed by specifying VERSION=1,
which replaces the update of the Lagrange vector µ with the original update
of Powell (1978a, b) that is used in VF02AD. This can be helpful for some
applications with linearly dependent active constraints.

• If the VERSION option is not specified or if VERSION=2 is specified, the
evaluation of the Lagrange vector µ is performed in the same way as Powell
(1982b) describes.

• Instead of updating an approximate Hessian matrix, this algorithm uses the
dual BFGS (or DFP) update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

• The Cholesky factor is loaded into the quadratic programming subroutine,
automatically ensuring positive definiteness of the problem. During the
quadratic programming step, the Cholesky factor of the projected Hessian ma-
trix ZT

k GZk and the QT decomposition are updated simultaneously when the
active set changes. Refer to Gill et al. (1984) for more information.

• The line-search strategy is very similar to that of Powell (1982b). However,
this algorithm does not call for derivatives during the line search, so the al-
gorithm generally needs fewer derivative calls than function calls. VMCWD
always requires the same number of derivative and function calls. Sometimes
Powell’s line-search method uses steps that are too long. In these cases, use the
INSTEP= option to restrict the step length α.

• The watchdog strategy is similar to that of Powell (1982b); however, it doesn’t
return automatically after a fixed number of iterations to a former better point.

576 � Chapter 6. The NLP Procedure

A return here is further delayed if the observed function reduction is close to
the expected function reduction of the quadratic model.

• The Powell termination criterion still is used (as FCONV2) but the QUANEW
implementation uses two additional termination criteria (GCONV and
ABSGCONV).

The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order
derivatives (constraints normals) of the constraints CJ(x).

You can specify two update formulas with the UPDATE= option:

DBFGS performs the dual BFGS update of the Cholesky factor of the
Hessian matrix. This is the default.

DDFP performs the dual DFP update of the Cholesky factor of the Hessian
matrix.

This algorithm uses its own line-search technique. No options or parameters (ex-
cept the INSTEP= option) controlling the line search in the other algorithms apply
here. In several applications, large steps in the first iterations were troublesome. You
can use the INSTEP= option to impose an upper bound for the step length α dur-
ing the first five iterations. You may also use the INHESSIAN= option to specify a
different starting approximation for the Hessian. Choosing simply the INHESSIAN
option will use the Cholesky factor of a (possibly ridged) finite-difference approxi-
mation of the Hessian to initialize the quasi-Newton update process. The values of
the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the
processing of linear and boundary constraints, are valid only for the quadratic pro-
gramming subroutine used in each iteration of the nonlinear constraints QUANEW
algorithm.

Double Dogleg Optimization (DBLDOG)

The double dogleg optimization method combines the ideas of the quasi-Newton and
trust region methods. The double dogleg algorithm computes in each iteration the
step s(k) as a linear combination of the steepest descent or ascent search direction
s
(k)
1 and a quasi-Newton search direction s

(k)
2 :

s(k) = α1s
(k)
1 + α2s

(k)
2

The step is requested to remain within a prespecified trust region radius; refer to
Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton
update but does not perform a line search. Two update formulas can be specified with
the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

Optimization Algorithms � 577

The double dogleg optimization technique works well for medium to moderately
large optimization problems where the objective function and the gradient are much
faster to compute than the Hessian. The implementation is based on Dennis and Mei
(1979) and Gay (1983) but is extended for dealing with boundary and linear con-
straints. DBLDOG generally needs more iterations than the techniques TRUREG,
NEWRAP, or NRRIDG that need second-order derivatives, but each of the DBLDOG
iterations is computationally cheap. Furthermore, DBLDOG needs only gradient
calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not used by CONGRA. The CONGRA algorithm can
be expensive in function and gradient calls but needs only O(n) memory for un-
constrained optimization. In general, many iterations are needed to obtain a precise
solution, but each of the CONGRA iterations is computationally cheap. Four differ-
ent update formulas for generating the conjugate directions can be specified using the
UPDATE= option:

PB performs the automatic restart update method of Powell (1977) and
Beale (1972). This is the default.

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

The default value is UPDATE=PB, since it behaved best in most test examples. You
are advised to avoid the option UPDATE=CD, a it behaved worst in most test exam-
ples.

The CONGRA subroutine should be used for optimization problems with large n. For
the unconstrained or boundary constrained case, CONGRA needs only O(n) bytes
of working memory, whereas all other optimization methods require order O(n2)
bytes of working memory. During n successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line search is done along the search
direction to find an approximate optimum of the objective function. The default line-
search method uses quadratic interpolation and cubic extrapolation to obtain a step
length α satisfying the Goldstein conditions. One of the Goldstein conditions can
be violated if the feasible region defines an upper limit for the step length. Other
line-search algorithms can be specified with the LINESEARCH= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume
that the objective function has continuous derivatives. The objective function itself
needs to be continuous. This technique requires a large number of function evalua-
tions. It is unlikely to give accurate results for n � 40.

578 � Chapter 6. The NLP Procedure

Depending on the kind of constraints, one of the following Nelder-Mead simplex
algorithms is used:

• unconstrained or only boundary constrained problems

The original Nelder-Mead simplex algorithm is implemented and extended to
boundary constraints. This algorithm does not compute the objective for in-
feasible points. This algorithm is automatically invoked if the LINCON or
NLINCON statement is not specified.

• general linearly constrained or nonlinearly constrained problems

A slightly modified version of Powell’s (1992) COBYLA (Constrained
Optimization BY Linear Approximations) implementation is used. This
algorithm is automatically invoked if either the LINCON or the NLINCON
statement is specified.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear
constraints but can be faster for the unconstrained or boundary constrained case. The
original Nelder-Mead algorithm changes the shape of the simplex adapting the non-
linearities of the objective function which contributes to an increased speed of con-
vergence. The two NMSIMP subroutines use special sets of termination criteria. For
more details, refer to the “Termination Criteria” section on page 583.

Powell’s COBYLA Algorithm (COBYLA)

Powell’s COBYLA algorithm is a sequential trust region algorithm (originally with
a monotonically decreasing radius ρ of a spheric trust region) that tries to maintain
a regular-shaped simplex over the iterations. A small modification was made to the
original algorithm that permits an increase of the trust region radius ρ in special situa-
tions. A sequence of iterations is performed with a constant trust region radius ρ until
the computed objective function reduction is much less than the predicted reduction.
Then, the trust region radius ρ is reduced. The trust region radius is increased only if
the computed function reduction is relatively close to the predicted reduction and the
simplex is well-shaped. The start radius ρbeg and the final radius ρend can be specified
using ρbeg=INSTEP and ρend=ABSXTOL. The convergence to small values of ρend

(high precision) may take many calls of the function and constraint modules and may
result in numerical problems. There are two main reasons for the slow convergence
of the COBYLA algorithm:

• Only linear approximations of the objective and constraint functions are used
locally.

• Maintaining the regular-shaped simplex and not adapting its shape to nonlin-
earities yields very small simplices for highly nonlinear functions (for example,
fourth-order polynomials).

Nonlinear Least-Squares Optimization

Levenberg-Marquardt Least-Squares Method (LEVMAR)

The Levenberg-Marquardt method is a modification of the trust region method for
nonlinear least-squares problems and is implemented as in Moré (1978).

Finite-Difference Approximations of Derivatives � 579

This is the recommended algorithm for small to medium least-squares problems.
Large least-squares problems can be transformed into minimization problems, which
can be processed with conjugate gradient or (dual) quasi-Newton techniques. In each
iteration, LEVMAR solves a quadratically constrained quadratic minimization prob-
lem that restricts the step to stay at the surface of or inside an n- dimensional ellip-
tical (or spherical) trust region. In each iteration, LEVMAR uses the crossproduct
Jacobian matrix JT J as an approximate Hessian matrix.

Hybrid Quasi-Newton Least-Squares Methods (HYQUAN)

In each iteration of one of the Fletcher and Xu (1987) (refer also to Al-Baali and
Fletcher (1985,1986)) hybrid quasi-Newton methods, a criterion is used to decide
whether a Gauss-Newton or a dual quasi-Newton search direction is appropriate. The
VERSION= option can be used to choose one of three criteria (HY1, HY2, HY3)
proposed by Fletcher and Xu (1987). The default is VERSION=2; that is, HY2. In
each iteration, HYQUAN computes the crossproduct Jacobian (used for the Gauss-
Newton step), updates the Cholesky factor of an approximate Hessian (used for the
quasi-Newton step), and does a line search to compute an approximate minimum
along the search direction. The default line-search technique used by HYQUAN is
especially designed for least-squares problems (refer to Lindström and Wedin (1984)
and Al-Baali and Fletcher (1986)). Using the LINESEARCH= option you can choose
a different line-search algorithm than the default one.

Two update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, and
Shanno) update of the Cholesky factor of the Hessian matrix. This
is the default.

DDFP performs the dual DFP (Davidon, Fletcher, and Powell) update of
the Cholesky factor of the Hessian matrix.

The HYQUAN subroutine needs about the same amount of working memory as
the LEVMAR algorithm. In most applications, LEVMAR seems to be superior to
HYQUAN, and using HYQUAN is recommended only when problems are experi-
enced with the performance of LEVMAR.

Finite-Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite-difference approxi-
mations of the derivatives. The FD= option specifies that all derivatives are ap-
proximated using function evaluations, and the FDHESSIAN= option specifies that
second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite-difference approximations can be very time-
consuming, especially for second-order derivatives based only on values of the
objective function (FD= option). If analytical derivatives are difficult to obtain (for
example, if a function is computed by an iterative process), you might consider one of
the optimization techniques that uses first-order derivatives only (TECH=QUANEW,
TECH=DBLDOG, or TECH=CONGRA).

580 � Chapter 6. The NLP Procedure

Forward-Difference Approximations

The forward-difference derivative approximations consume less computer time but
are usually not as precise as those using central-difference formulas.

• First-order derivatives: n additional function calls are needed:

gi =
∂f

∂xi
=

f(x + hiei)− f(x)
hi

• Second-order derivatives based on function calls only (Dennis and Schnabel
1983, p. 80, 104): for dense Hessian, n(n + 3)/2 additional function calls are
needed:

∂2f

∂xi∂xj
=

f(x + hiei + hjej)− f(x + hiei)− f(x + hjej) + f(x)
hj

• Second-order derivatives based on gradient calls (Dennis and Schnabel 1983,
p. 103): n additional gradient calls are needed:

∂2f

∂xi∂xj
=

gi(x + hjej)− gi(x)
2hj

+
gj(x + hiei)− gj(x)

2hi

Central-Difference Approximations

• First-order derivatives: 2n additional function calls are needed:

gi =
∂f

∂xi
=

f(x + hiei)− f(x− hiei)
2hi

• Second-order derivatives based on function calls only (Abramowitz and Stegun
1972, p. 884): for dense Hessian, 2n(n + 1) additional function calls are
needed:

∂2f

∂x2
i

=
−f(x + 2hiei) + 16f(x + hiei)− 30f(x) + 16f(x− hiei)− f(x− 2hiei)

12h2
i

∂2f

∂xi∂xj
=

f(x + hiei + hjej)− f(x + hiei − hjej)− f(x− hiei + hjej) + f(x− hiei − hjej)
4hihj

• Second-order derivatives based on gradient: 2n additional gradient calls are
needed:

∂2f

∂xi∂xj
=

gi(x + hjej)− gi(x− hjej)
4hj

+
gj(x + hiei)− gj(x− hiei)

4hi

Finite-Difference Approximations of Derivatives � 581

The FDIGITS= and CDIGITS= options can be used for specifying the number of ac-
curate digits in the evaluation of objective function and nonlinear constraints. These
specifications are helpful in determining an appropriate interval length h to be used
in the finite-difference formulas.

The FDINT= option specifies whether the finite-difference intervals h should be com-
puted using an algorithm of Gill, Murray, Saunders, and Wright (1983) or based only
on the information of the FDIGITS= and CDIGITS= options. For FDINT=OBJ, the
interval h is based on the behavior of the objective function; for FDINT=CON, the
interval h is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the interval h is based on the behaviors of both the objective func-
tion and the nonlinear constraints functions. Note that the algorithm of Gill, Murray,
Saunders, and Wright (1983) to compute the finite-difference intervals hj can be very
expensive in the number of function calls. If the FDINT= option is specified, it is cur-
rently performed twice, the first time before the optimization process starts and the
second time after the optimization terminates.

If FDINT= is not specified, the step lengths hj , j = 1, . . . , n, are defined as follows:

• for the forward-difference approximation of first-order derivatives us-
ing function calls and second-order derivatives using gradient calls:
hj = 2

√
ηj(1 + |xj |),

• for the forward-difference approximation of second-order derivatives that use
only function calls and all central-difference formulas: hj = 3

√
ηj(1 + |xj |),

where η is defined using the FDIGITS= option:

• If the number of accurate digits is specified with FDIGITS=r, η is set to 10−r.

• If FDIGITS= is not specified, η is set to the machine precision ε.

For FDINT=OBJ and FDINT=ALL, the FDIGITS= specification is used in comput-
ing the forward and central finite-difference intervals.

If the problem has nonlinear constraints and the FD= option is specified, the first-
order formulas are used to compute finite-difference approximations of the Jacobian
matrix JC(x). You can use the CDIGITS= option to specify the number of accurate
digits in the constraint evaluations to define the step lengths hj , j = 1, . . . , n. For
FDINT=CON and FDINT=ALL, the CDIGITS= specification is used in computing
the forward and central finite-difference intervals.

Note: If you are unable to specify analytic derivatives and the finite-difference ap-
proximations provided by PROC NLP are not good enough to solve your problem,
you may program better finite-difference approximations using the GRADIENT,
JACOBIAN, CRPJAC, or HESSIAN statement and the program statements.

582 � Chapter 6. The NLP Procedure

Hessian and CRP Jacobian Scaling

The rows and columns of the Hessian and crossproduct Jacobian matrix can be
scaled when using the trust region, Newton-Raphson, double dogleg, and Levenberg-
Marquardt optimization techniques. Each element Gi,j , i, j = 1, . . . , n, is divided
by the scaling factor di × dj , where the scaling vector d = (d1, . . . , dn) is iteratively
updated in a way specified by the HESCAL=i option, as follows:

i = 0 No scaling is done (equivalent to di = 1).

i 6= 0 First iteration and each restart iteration:

d
(0)
i =

√
max(|G(0)

i,i |, ε)

i = 1 refer to Moré (1978):

d
(k+1)
i = max

(
d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

i = 2 refer to Dennis, Gay, and Welsch (1981):

d
(k+1)
i = max

(
0.6d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

i = 3 di is reset in each iteration:

d
(k+1)
i =

√
max(|G(k)

i,i |, ε)

where ε is the relative machine precision or, equivalently, the largest double precision
value that when added to 1 results in 1.

Testing the Gradient Specification

There are three main ways to check the correctness of derivative specifications:

• Specify the FD= or FDHESSIAN= option in the PROC NLP statement to com-
pute finite-difference approximations of first- and second-order derivatives.
In many applications, the finite-difference approximations are computed with
high precision and do not differ too much from the derivatives that are com-
puted by specified formulas.

• Specify the GRADCHECK[=DETAIL] option in the PROC NLP statement
to compute and display a test vector and a test matrix of the gradient val-
ues at the starting point x(0) by the method of Wolfe (1982). If you do
not specify the GRADCHECK option, a fast derivative test identical to the
GRADCHECK=FAST specification is done by default.

Termination Criteria � 583

• If the default analytical derivative compiler is used or if derivatives are speci-
fied using the GRADIENT or JACOBIAN statement, the gradient or Jacobian
computed at the initial point x(0) is tested by default using finite-difference
approximations. In some examples, the relative test can show significant dif-
ferences between the two forms of derivatives, resulting in a warning message
indicating that the specified derivatives could be wrong, even if they are cor-
rect. This happens especially in cases where the magnitude of the gradient at
the starting point x(0) is small.

The algorithm of Wolfe (1982) is used to check whether the gradient g(x) specified
by a GRADIENT statement (or indirectly by a JACOBIAN statement) is appropriate
for the objective function f(x) specified by the program statements.

Using function and gradient evaluations in the neighborhood of the starting point
x(0), second derivatives are approximated by finite-difference formulas. Forward
differences of gradient values are used to approximate the Hessian element Gjk,

Gjk ≈ Hjk =
gj(x + δek)− gj(x)

δ

where δ is a small step length and ek = (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector
along the kth coordinate axis. The test vector s, with

sj = Hjj −
2
δ

{
f(x + δej)− f(x)

δ
− gj(x)

}
contains the differences between two sets of finite-difference approximations for the
diagonal elements of the Hessian matrix

Gjj = ∂2f(x(0))/∂x2
j , j = 1, . . . , n

The test matrix ∆H contains the absolute differences of symmetric elements in the
approximate Hessian |Hjk −Hkj |, j, k = 1, . . . , n, generated by forward differences
of the gradient elements.

If the specification of the first derivatives is correct, the elements of the test vector
and test matrix should be relatively small. The location of large elements in the test
matrix points to erroneous coordinates in the gradient specification. For very large
optimization problems, this algorithm can be too expensive in terms of computer time
and memory.

Termination Criteria

All optimization techniques stop iterating at x(k) if at least one of a set of termination
criteria is satisfied. PROC NLP also terminates if the point x(k) is fully constrained
by n linearly independent active linear or boundary constraints, and all Lagrange
multiplier estimates of active inequality constraints are greater than a small negative
tolerance.

584 � Chapter 6. The NLP Procedure

Since the Nelder-Mead simplex algorithm does not use derivatives, no termina-
tion criterion is available based on the gradient of the objective function. Powell’s
COBYLA algorithm uses only one more termination criterion. COBYLA is a trust
region algorithm that sequentially reduces the radius ρ of a spherical trust region
from a start radius ρbeg = INSTEP to the final radius ρend = ABSXTOL. The default
value is ρend = 1e−4. The convergence to small values of ρend (high precision) may
take many calls of the function and constraint modules and may result in numerical
problems.

In some applications, the small default value of the ABSGCONV= criterion is too
difficult to satisfy for some of the optimization techniques. This occurs most often
when finite-difference approximations of derivatives are used.

The default setting for the GCONV= option sometimes leads to early termination far
from the location of the optimum. This is especially true for the special form of this
criterion used in the CONGRA optimization.

The QUANEW algorithm for nonlinearly constrained optimization does not mono-
tonically reduce the value of either the objective function or some kind of merit func-
tion which combines objective and constraint functions. Furthermore, the algorithm
uses the watchdog technique with backtracking (Chamberlain et al. 1982). Therefore,
no termination criteria were implemented that are based on the values (x or f) of suc-
cessive iterations. In addition to the criteria used by all optimization techniques,
three more termination criteria are currently available. They are based on satisfying
the Karush-Kuhn-Tucker conditions, which require that the gradient of the Lagrange
function is zero at the optimal point (x∗, λ∗):

∇xL(x∗, λ∗) = 0

For more information, refer to the “Criteria for Optimality” section on page 565.

Active Set Methods

The parameter vector x ∈ Rn may be subject to a set of m linear equality and
inequality constraints:

n∑
j=1

aijxj = bi, i = 1, . . . ,me

n∑
j=1

aijxj ≥ bi, i = me + 1, . . . ,m

The coefficients aij and right-hand sides bi of the equality and inequality constraints
are collected in the m× n matrix A and the m−vector b.

The m linear constraints define a feasible region G in Rn that must contain the point
x∗ that minimizes the problem. If the feasible region G is empty, no solution to the
optimization problem exists.

All optimization techniques in PROC NLP (except those processing nonlinear con-
straints) are active set methods. The iteration starts with a feasible point x(0), which

Active Set Methods � 585

either is provided by the user or can be computed by the Schittkowski and Stoer
(1979) algorithm implemented in PROC NLP. The algorithm then moves from one
feasible point x(k−1) to a better feasible point x(k) along a feasible search direction
s(k):

x(k) = x(k−1) + α(k)s(k) , α(k) > 0

Theoretically, the path of points x(k) never leaves the feasible region G of the opti-
mization problem, but it can hit its boundaries. The active set A(k) of point x(k) is
defined as the index set of all linear equality constraints and those inequality con-
straints that are satisfied at x(k). If no constraint is active for x(k), the point is located
in the interior of G, and the active set A(k) is empty. If the point x(k) in iteration k
hits the boundary of inequality constraint i, this constraint i becomes active and is
added to A(k). Each equality or active inequality constraint reduces the dimension
(degrees of freedom) of the optimization problem.

In practice, the active constraints can be satisfied only with finite precision. The
LCEPSILON=r option specifies the range for active and violated linear constraints.
If the point x(k) satisfies the condition∣∣∣∣∣∣

n∑
j=1

aijx
(k)
j − bi

∣∣∣∣∣∣ ≤ t

where t = r × (|bi| + 1), the constraint i is recognized as an active constraint.
Otherwise, the constraint i is either an inactive inequality or a violated inequality
or equality constraint. Due to rounding errors in computing the projected search
direction, error can be accumulated so that an iterate x(k) steps out of the feasible
region. In those cases, PROC NLP may try to pull the iterate x(k) into the feasible
region. However, in some cases the algorithm needs to increase the feasible region
by increasing the LCEPSILON=r value. If this happens it is indicated by a message
displayed in the log output.

If you cannot expect an improvement in the value of the objective function by moving
from an active constraint back into the interior of the feasible region, you use this
inequality constraint as an equality constraint in the next iteration. That means the
active set A(k+1) still contains the constraint i. Otherwise you release the active
inequality constraint and increase the dimension of the optimization problem in the
next iteration.

A serious numerical problem can arise when some of the active constraints become
(nearly) linearly dependent. Linearly dependent equality constraints are removed
before entering the optimization. You can use the LCSINGULAR= option to specify
a criterion r used in the update of the QR decomposition that decides whether an
active constraint is linearly dependent relative to a set of other active constraints.

If the final parameter set x∗ is subjected to nact linear equality or active inequality
constraints, the QR decomposition of the n×nact matrix ÂT of the linear constraints
is computed by ÂT = QR, where Q is an n × n orthogonal matrix and R is an
n × nact upper triangular matrix. The n columns of matrix Q can be separated into
two matrices, Q = [Y, Z], where Y contains the first nact orthogonal columns of

586 � Chapter 6. The NLP Procedure

Q and Z contains the last n − nact orthogonal columns of Q. The n × (n − nact)
column-orthogonal matrix Z is also called the nullspace matrix of the active linear
constraints ÂT . The n − nact columns of the n × (n − nact) matrix Z form a basis
orthogonal to the rows of the nact × n matrix Â.

At the end of the iteration process, the PROC NLP can display the projected gradient

gZ = ZT g

In the case of boundary constrained optimization, the elements of the projected gradi-
ent correspond to the gradient elements of the free parameters. A necessary condition
for x∗ to be a local minimum of the optimization problem is

gZ(x∗) = ZT g(x∗) = 0

The symmetric nact × nact matrix

GZ = ZT GZ

is called a projected Hessian matrix. A second-order necessary condition for x∗ to be
a local minimizer requires that the projected Hessian matrix is positive semidefinite.
If available, the projected gradient and projected Hessian matrix can be displayed and
written in an OUTEST= data set.

Those elements of the nact vector of first-order estimates of Lagrange multipliers

λ = (ÂÂT)−1ÂZZT g

which correspond to active inequality constraints indicate whether an improvement
of the objective function can be obtained by releasing this active constraint. For min-
imization (maximization), a significant negative (positive) Lagrange multiplier indi-
cates that a possible reduction (increase) of the objective function can be obtained
by releasing this active linear constraint. The LCDEACT=r option can be used to
specify a threshold r for the Lagrange multiplier that decides whether an active in-
equality constraint remains active or can be deactivated. The Lagrange multipliers are
displayed (and written in an OUTEST= data set) only if linear constraints are active
at the solution x∗. (In the case of boundary-constrained optimization, the Lagrange
multipliers for active lower (upper) constraints are the negative (positive) gradient
elements corresponding to the active parameters.)

Line-Search Methods � 587

Feasible Starting Point

Two algorithms are used to obtain a feasible starting point.

• When only boundary constraints are specified:

– If the parameter xj , 1 ≤ j ≤ n, violates a two-sided boundary constraint
(or an equality constraint) lj ≤ xj ≤ uj , the parameter is given a new
value inside the feasible interval, as follows:

xj =

lj , if uj ≤ lj

lj + 1
2(uj − lj), if uj − lj < 4

lj + 1
10(uj − lj), if uj − lj ≥ 4

– If the parameter xj , 1 ≤ j ≤ n, violates a one-sided boundary constraint
lj ≤ xj or xj ≤ uj , the parameter is given a new value near the violated
boundary, as follows:

xj =

{
lj + max(1, 1

10 lj), if xj < lj

uj −max(1, 1
10uj), if xj > uj

• When general linear constraints are specified, the algorithm of Schittkowski
and Stoer (1979) computes a feasible point, which may be quite far from a
user-specified infeasible point.

Line-Search Methods

In each iteration k, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gra-
dient, and Newton-Raphson minimization techniques use iterative line-search algo-
rithms that try to optimize a linear, quadratic, or cubic approximation of f along a
feasible descent search direction s(k)

x(k+1) = x(k) + α(k)s(k), α(k) > 0

by computing an approximately optimal scalar α(k).

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear
function f = f(α) of one parameter (α) within each iteration k of the optimization
technique, which itself tries to optimize a linear or quadratic approximation of the
nonlinear objective function f = f(x) of n parameters x. Since the outside iteration
process is based only on the approximation of the objective function, the inside it-
eration of the line-search algorithm does not have to be perfect. Usually, the choice
of α significantly reduces (in a minimization) the objective function. Criteria often
used for termination of line-search algorithms are the Goldstein conditions (refer to
Fletcher (1987)).

Various line-search algorithms can be selected using the LINESEARCH= option. The
line-search method LINESEARCH=2 seems to be superior when function evaluation
consumes significantly less computation time than gradient evaluation. Therefore,

588 � Chapter 6. The NLP Procedure

LINESEARCH=2 is the default value for Newton-Raphson, (dual) quasi-Newton,
and conjugate gradient optimizations.

A special default line-search algorithm for TECH=HYQUAN is useful only for least-
squares problems and cannot be chosen by the LINESEARCH= option. This method
uses three columns of the m × n Jacobian matrix, which for large m can require
more memory than using the algorithms designated by LINESEARCH=1 through
LINESEARCH=8.

The line-search methods LINESEARCH=2 and LINESEARCH=3 can be modified
to exact line search by using the LSPRECISION= option (specifying the σ parameter
in Fletcher (1987)). The line-search methods LINESEARCH=1, LINESEARCH=2,
and LINESEARCH=3 satisfy the left-hand-side and right-hand-side Goldstein condi-
tions (refer to Fletcher (1987)). When derivatives are available, the line-search meth-
ods LINESEARCH=6, LINESEARCH=7, and LINESEARCH=8 try to satisfy the
right-hand-side Goldstein condition; if derivatives are not available, these line-search
algorithms use only function calls.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques which can
easily lead them to (feasible) points where the objective function f is no longer de-
fined. (e.g., resulting in indefinite matrices for ML estimation) or difficult to compute
(e.g., resulting in floating point overflows). Therefore, PROC NLP provides options
restricting the step length α or trust region radius ∆, especially during the first main
iterations.

The inner product gT s of the gradient g and the search direction s is the slope
of f(α) = f(x + αs) along the search direction s. The default starting value
α(0) = α(k,0) in each line-search algorithm (minα>0 f(x + αs)) during the main
iteration k is computed in three steps:

1. The first step uses either the difference df = |f (k) − f (k−1)| of the function
values during the last two consecutive iterations or the final step length value
α– of the last iteration k − 1 to compute a first value of α

(0)
1 .

• Not using the DAMPSTEP=r option:

α
(0)
1 =

step, if 0.1 ≤ step ≤ 10

10, if step > 10

0.1, if step < 0.1

with

step =

{
df/|gT s|, if |gT s| ≥ ε max(100df , 1)

1, otherwise

This value of α
(0)
1 can be too large and lead to a difficult or impossible

function evaluation, especially for highly nonlinear functions such as the
EXP function.

Computational Problems � 589

• Using the DAMPSTEP=r option:

α
(0)
1 = min(1, rα–)

The initial value for the new step length can be no larger than r times the
final step length α– of the previous iteration. The default value is r = 2.

2. During the first five iterations, the second step enables you to reduce α
(0)
1 to a

smaller starting value α
(0)
2 using the INSTEP=r option:

α
(0)
2 = min(α(0)

1 , r)

After more than five iterations, α
(0)
2 is set to α

(0)
1 .

3. The third step can further reduce the step length by

α
(0)
3 = min(α(0)

2 ,min(10, u))

where u is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius ∆ of the trust region
used in the first iteration of the trust region, double dogleg, and Levenberg-Marquardt
algorithms. The default initial trust region radius ∆(0) is the length of the scaled gra-
dient (Moré 1978). This step corresponds to the default radius factor of r = 1. In
most practical applications of the TRUREG, DBLDOG, and LEVMAR algorithms,
this choice is successful. However, for bad initial values and highly nonlinear ob-
jective functions (such as the EXP function), the default start radius can result in
arithmetic overflows. If this happens, you may try decreasing values of INSTEP=r,
0 < r < 1, until the iteration starts successfully. A small factor r also affects the
trust region radius ∆(k+1) of the next steps because the radius is changed in each
iteration by a factor 0 < c ≤ 4, depending on the ratio ρ expressing the goodness
of quadratic function approximation. Reducing the radius ∆ corresponds to increas-
ing the ridge parameter λ, producing smaller steps directed more closely toward the
(negative) gradient direction.

Computational Problems
First Iteration Overflows

If you use bad initial values for the parameters, the computation of the value of the
objective function (and its derivatives) can lead to arithmetic overflows in the first
iteration. The line-search algorithms that work with cubic extrapolation are espe-
cially sensitive to arithmetic overflows. If an overflow occurs with an optimiza-
tion technique that uses line search, you can use the INSTEP= option to reduce
the length of the first trial step during the line search of the first five iterations or
use the DAMPSTEP or MAXSTEP= option to restrict the step length of the initial
α in subsequent iterations. If an arithmetic overflow occurs in the first iteration of
the trust region, double dogleg, or Levenberg-Marquardt algorithm, you can use the
INSTEP= option to reduce the default trust region radius of the first iteration. You
can also change the minimization technique or the line-search method. If none of
these methods helps, consider the following actions:

590 � Chapter 6. The NLP Procedure

• scale the parameters

• provide better initial values

• use boundary constraints to avoid the region where overflows may happen

• change the algorithm (specified in program statements) which computes the
objective function

Problems in Evaluating the Objective Function

The starting point x(0) must be a point that can be evaluated by all the functions
involved in your problem. However, during optimization the optimizer may iterate to
a point x(k) where the objective function or nonlinear constraint functions and their
derivatives cannot be evaluated. If you can identify the problematic region, you can
prevent the algorithm from reaching it by adding another constraint to the problem.
Another possibility is a modification of the objective function that will produce a
large, undesired function value. As a result, the optimization algorithm reduces the
step length and stays closer to the point that has been evaluated successfully in the
previous iteration. For more information, refer to the section “Missing Values in
Program Statements” on page 606.

Problems with Quasi-Newton Methods for Nonlinear Constraints

The sequential quadratic programming algorithm in QUANEW, which is used for
solving nonlinearly constrained problems, can have problems updating the Lagrange
multiplier vector µ. This usually results in very high values of the Lagrangian func-
tion and in watchdog restarts indicated in the iteration history. If this happens, there
are three actions you can try:

• By default, the Lagrange vector µ is evaluated in the same way as Powell
(1982b) describes. This corresponds to VERSION=2. By specifying
VERSION=1, a modification of this algorithm replaces the update of the
Lagrange vector µ with the original update of Powell (1978a, b), which is used
in VF02AD.

• You can use the INSTEP= option to impose an upper bound for the step length
α during the first five iterations.

• You can use the INHESSIAN= option to specify a different starting approxi-
mation for the Hessian. Choosing only the INHESSIAN option will use the
Cholesky factor of a (possibly ridged) finite-difference approximation of the
Hessian to initialize the quasi-Newton update process.

Other Convergence Difficulties

There are a number of things to try if the optimizer fails to converge.

• Check the derivative specification:
If derivatives are specified by using the GRADIENT, HESSIAN, JACOBIAN,
CRPJAC, or JACNLC statement, you can compare the specified derivatives
with those computed by finite-difference approximations (specifying the FD

Computational Problems � 591

and FDHESSIAN option). Use the GRADCHECK option to check if the gra-
dient g is correct. For more information, refer to the “Testing the Gradient
Specification” section on page 582.

• Forward-difference derivatives specified with the FD= or FDHESSIAN= op-
tion may not be precise enough to satisfy strong gradient termination criteria.
You may need to specify the more expensive central-difference formulas or use
analytical derivatives. The finite-difference intervals may be too small or too
big and the finite-difference derivatives may be erroneous. You can specify the
FDINT= option to compute better finite-difference intervals.

• Change the optimization technique:
For example, if you use the default TECH=LEVMAR, you can

– change to TECH=QUANEW or to TECH=NRRIDG
– run some iterations with TECH=CONGRA, write the results in an

OUTEST= data set, and use them as initial values specified by an INEST=
data set in a second run with a different TECH= technique

• Change or modify the update technique and the line-search algorithm:
This method applies only to TECH=QUANEW, TECH=HYQUAN, or
TECH=CONGRA. For example, if you use the default update formula and the
default line-search algorithm, you can

– change the update formula with the UPDATE= option
– change the line-search algorithm with the LINESEARCH= option
– specify a more precise line search with the LSPRECISION= option, if

you use LINESEARCH=2 or LINESEARCH=3

• Change the initial values by using a grid search specification to obtain a set of
good feasible starting values.

Convergence to Stationary Point

The (projected) gradient at a stationary point is zero and that results in a zero step
length. The stopping criteria are satisfied.

There are two ways to avoid this situation:

• Use the DECVAR statement to specify a grid of feasible starting points.

• Use the OPTCHECK= option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information
regarding a stationary point:

• If all eigenvalues are positive, the Hessian matrix is positive definite and the
point is a minimum point.

• If some of the eigenvalues are positive and all remaining eigenvalues are zero,
the Hessian matrix is positive semidefinite and the point is a minimum or saddle
point.

592 � Chapter 6. The NLP Procedure

• If all eigenvalues are negative, the Hessian matrix is negative definite and the
point is a maximum point.

• If some of the eigenvalues are negative and all remaining eigenvalues are zero,
the Hessian matrix is negative semidefinite and the point is a maximum or
saddle point.

• If all eigenvalues are zero, the point can be a minimum, maximum, or saddle
point.

Precision of Solution

In some applications, PROC NLP may result in parameter estimates that are not pre-
cise enough. Usually this means that the procedure terminated too early at a point too
far from the optimal point. The termination criteria define the size of the termination
region around the optimal point. Any point inside this region can be accepted for ter-
minating the optimization process. The default values of the termination criteria are
set to satisfy a reasonable compromise between the computational effort (computer
time) and the precision of the computed estimates for the most common applications.
However, there are a number of circumstances where the default values of the termi-
nation criteria specify a region that is either too large or too small. If the termination
region is too large, it can contain points with low precision. In such cases, you should
inspect the log or list output to find the message stating which termination criterion
terminated the optimization process. In many applications, you can obtain a solution
with higher precision by simply using the old parameter estimates as starting values
in a subsequent run where you specify a smaller value for the termination criterion
that was satisfied at the previous run.

If the termination region is too small, the optimization process may take longer to find
a point inside such a region or may not even find such a point due to rounding errors in
function values and derivatives. This can easily happen in applications where finite-
difference approximations of derivatives are used and the GCONV and ABSGCONV
termination criteria are too small to respect rounding errors in the gradient values.

Covariance Matrix

The COV= option must be specified to compute an approximate covariance matrix
for the parameter estimates under asymptotic theory for least-squares, maximum-
likelihood, or Bayesian estimation, with or without corrections for degrees of freedom
as specified by the VARDEF= option.

Two groups of six different forms of covariance matrices (and therefore approximate
standard errors) can be computed corresponding to the following two situations:

• The LSQ statement is specified, which means that least-squares estimates are
being computed:

min f(x) =
m∑

i=1

f2
i (x)

Covariance Matrix � 593

• The MIN or MAX statement is specified, which means that maximum-
likelihood or Bayesian estimates are being computed:

opt f(x) =
m∑

i=1

fi(x)

where opt is either min or max.

In either case, the following matrices are used:

G = ∇2f(x)

J(f) = (∇f1, . . . ,∇fm) =
(

∂fi

∂xj

)
JJ(f) = J(f)T J(f)

V = J(f)T diag(f2
i)J(f)

W = J(f)T diag(f †i)J(f)

where

f †i =
{

0, if fi = 0
1/fi, otherwise

For unconstrained minimization, or when none of the final parameter estimates are
subjected to linear equality or active inequality constraints, the formulas of the six
types of covariance matrices are as follows:

COV MIN or MAX Statement LSQ Statement

1 M (–NOBS–/d)G−1JJ(f)G−1 (–NOBS–/d)G−1V G−1

2 H (–NOBS–/d)G−1 σ2G−1

3 J (1/d)W−1 σ2JJ(f)−1

4 B (1/d)G−1WG−1 σ2G−1JJ(f)G−1

5 E (–NOBS–/d)JJ(f)−1 (1/d)V −1

6 U (–NOBS–/d)W−1JJ(f)W−1 (–NOBS–/d)JJ(f)−1V JJ(f)−1

The value of d depends on the VARDEF= option and on the value of the –NOBS–
variable:

d =
{

max(1, –NOBS– − –DF–), for VARDEF=DF
–NOBS– , for VARDEF=N

where –DF– is either set in the program statements or set by default to n (the number
of parameters) and –NOBS– is either set in the program statements or set by default
to nobs × mfun, where nobs is the number of observations in the data set and mfun is
the number of functions listed in the LSQ, MIN, or MAX statement.

594 � Chapter 6. The NLP Procedure

The value σ2 depends on the specification of the SIGSQ= option and on the value of
d:

σ2 =
{

sq × –NOBS–/d, if SIGSQ=sq is specified
2f(x∗)/d, if SIGSQ= is not specified

where f(x∗) is the value of the objective function at the optimal parameter estimates
x∗.

The two groups of formulas distinguish between two situations:

• For least-squares estimates, the error variance can be estimated from the objec-
tive function value and is used in three of the six different forms of covariance
matrices. If you have an independent estimate of the error variance, you can
specify it with the SIGSQ= option.

• For maximum-likelihood or Bayesian estimates, the objective function should
be the logarithm of the likelihood or of the posterior density when using the
MAX statement.

For minimization, the inversion of the matrices in these formulas is done so that
negative eigenvalues are considered zero, resulting always in a positive semidefinite
covariance matrix.

In small samples, estimates of the covariance matrix based on asymptotic theory are
often too small and should be used with caution.

If the final parameter estimates are subjected to nact > 0 linear equality or active
linear inequality constraints, the formulas of the covariance matrices are modified
similar to Gallant (1987) and Cramer (1986, p. 38) and additionally generalized for
applications with singular matrices. In the constrained case, the value of d used in
the scalar factor σ2 is defined by

d =
{

max(1, –NOBS– − –DF– + nact), for VARDEF=DF
–NOBS– , for VARDEF=N

where nact is the number of active constraints and –NOBS– is set as in the uncon-
strained case.

For minimization, the covariance matrix should be positive definite; for maximization
it should be negative definite. There are several options available to check for a rank
deficiency of the covariance matrix:

• The ASINGULAR=, MSINGULAR=, and VSINGULAR= options can be
used to set three singularity criteria for the inversion of the matrix A needed
to compute the covariance matrix, when A is either the Hessian or one of the
crossproduct Jacobian matrices. The singularity criterion used for the inversion
is

|dj,j | ≤ max(ASING ,VSING × |Aj,j |,MSING ×max(|A1,1|, . . . , |An,n|))

Covariance Matrix � 595

where dj,j is the diagonal pivot of the matrix A, and ASING, VSING and
MSING are the specified values of the ASINGULAR=, VSINGULAR=, and
MSINGULAR= options. The default values are

– ASING: the square root of the smallest positive double precision value
– MSING: 1E−12 if the SINGULAR= option is not specified and

max(10× ε, 1E− 4× SINGULAR) otherwise, where ε is the machine
precision

– VSING: 1E−8 if the SINGULAR= option is not specified and the value
of SINGULAR otherwise

Note: In many cases, a normalized matrix D−1AD−1 is decomposed and the
singularity criteria are modified correspondingly.

• If the matrix A is found singular in the first step, a generalized inverse is com-
puted. Depending on the G4= option, a generalized inverse is computed that
satisfies either all four or only two Moore-Penrose conditions. If the number
of parameters n of the application is less than or equal to G4=i, a G4 inverse is
computed; otherwise only a G2 inverse is computed. The G4 inverse is com-
puted by (the computationally very expensive but numerically stable) eigen-
value decomposition; the G2 inverse is computed by Gauss transformation.
The G4 inverse is computed using the eigenvalue decomposition A = ZΛZT ,
where Z is the orthogonal matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues, Λ = diag(λ1, ..., λn). If the PEIGVAL option is specified, the
eigenvalues λi are displayed. The G4 inverse of A is set to

A− = ZΛ−ZT

where the diagonal matrix Λ− = diag(λ−1 , ..., λ−n) is defined using the
COVSING= option:

λ−i =
{

1/λi, if |λi| > COVSING
0, if |λi| ≤ COVSING

If the COVSING= option is not specified, the nr smallest eigenvalues are set
to zero, where nr is the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance
matrix is usually computed using finite-difference approximations of the derivatives.
By specifying TECH=NONE, any of the covariance matrices can be computed using
analytical derivatives. The covariance matrix specified by the COV= option can be
displayed (using the PCOV option) and is written to the OUTEST= data set.

596 � Chapter 6. The NLP Procedure

Input and Output Data Sets

DATA= Input Data Set

The DATA= data set is used only to specify an objective function f that is a combi-
nation of m other functions fi. For each function fi, i = 1, . . . ,m, listed in a MAX,
MIN, or LSQ statement, each observation l, l = 1, . . . ,nobs , in the DATA= data set
defines a specific function fil that is evaluated by substituting the values of the vari-
ables of this observation into the program statements. If the MAX or MIN statement
is used, the m×nobs specific functions fil are added to a single objective function f .
If the LSQ statement is used, the sum-of-squares f of the m×nobs specific functions
fil is minimized. The NOMISS option causes observations with missing values to be
skipped.

INEST= Input Data Set

The INEST= (or INVAR=, or ESTDATA=) input data set can be used to specify the
initial values of the parameters defined in a DECVAR statement as well as boundary
constraints and the more general linear constraints which could be imposed on these
parameters. This form of input is similar to the dense format input used in PROC LP.

The variables of the INEST= data set are

• a character variable –TYPE– that indicates the type of the observation

• n numeric variables with the parameter names used in the DECVAR statement

• the BY variables that are used in a DATA= input data set

• a numeric variable –RHS– specifying the right-hand-side constants (needed
only if linear constraints are used)

• additional variables with names corresponding to constants used in the program
statements

The content of the –TYPE– variable defines the meaning of the observation of the
INEST= data set. PROC NLP recognizes the following –TYPE– values:

• PARMS, which specifies initial values for parameters. Additional variables can
contain the values of constants that are referred to in program statements. The
values of the constants in the PARMS observation initialize the constants in the
program statements.

• UPPERBD | UB, which specifies upper bounds. A missing value indicates that
no upper bound is specified for the parameter.

• LOWERBD | LB, which specifies lower bounds. A missing value indicates that
no lower bound is specified for the parameter.

• LE | <= | <, which specifies linear constraint
∑

j aijxj ≤ bi. The n parameter
values contain the coefficients aij , and the –RHS– variable contains the right-
hand side bi. Missing values indicate zeros.

Input and Output Data Sets � 597

• GE | >= | >, which specifies linear constraint
∑

j aijxj ≥ bi. The n parameter
values contain the coefficients aij , and the –RHS– variable contains the right-
hand side bi. Missing values indicate zeros.

• EQ | =, which specifies linear constraint
∑

j aijxj = bi. The n parameter
values contain the coefficients aij , and the –RHS– variable contains the right-
hand side bi. Missing values indicate zeros.

The constraints specified in an INEST= data set are added to the constraints specified
in the BOUNDS and LINCON statements. You can use an OUTEST= data set as
an INEST= data set in a subsequent run of PROC NLP. However, be aware that the
OUTEST= data set also contains the boundary and general linear constraints spec-
ified in the previous run of PROC NLP. When you are using this OUTEST= data
set without changes as an INEST= data set, PROC NLP adds the constraints from the
data set to the constraints specified by a BOUNDS and LINCON statement. Although
PROC NLP automatically eliminates multiple identical constraints you should avoid
specifying the same constraint twice.

INQUAD= Input Data Set

Two types of INQUAD= data sets can be used to specify the objective function of a
quadratic programming problem for TECH=QUADAS or TECH=LICOMP,

f(x) =
1
2
xT Gx + gT x + c, with GT = G

The dense INQUAD= data set must contain all numerical values of the symmetric
matrix G, the vector g, and the scalar c. Using the sparse INQUAD= data set allows
you to specify only the nonzero positions in matrix G and vector g. Those locations
that are not set by the sparse INQUAD= data set are assumed to be zero.

Dense INQUAD= Data Set

A dense INQUAD= data set must contain two character variables, –TYPE– and
–NAME–, and at least n numeric variables whose names are the parameter names.
The –TYPE– variable takes the following values:

• QUAD lists the n values of the row of the G matrix that is defined by the
parameter name used in the –NAME– variable.

• LINEAR lists the n values of the g vector.

• CONST sets the the value of the scalar c and cannot contain different numerical
values; however, it could contain up to n− 1 missing values.

• PARMS specifies initial values for parameters.

• UPPERBD | UB specifies upper bounds. A missing value indicates that no
upper bound is specified.

• LOWERBD | LB specifies lower bounds. A missing value indicates that no
lower bound is specified.

598 � Chapter 6. The NLP Procedure

• LE | <= | < specifies linear constraint
∑

j aijxj ≤ bi. The n parameter values
contain the coefficients aij , and the –RHS– variable contains the right-hand
side bi. Missing values indicate zeros.

• GE | >= | > specifies linear constraint
∑

j aijxj ≥ bi. The n parameter values
contain the coefficients aij , and the –RHS– variable contains the right-hand
side bi. Missing values indicate zeros.

• EQ | = specifies linear constraint
∑

j aijxj = bi. The n parameter values
contain the coefficients aij , and the –RHS– variable contains the right-hand
side bi. Missing values indicate zeros.

Constraints specified in a dense INQUAD= data set are added to the constraints spec-
ified in BOUNDS and LINCON statements.

Sparse INQUAD= Data Set

A sparse INQUAD= data set must contain three character variables –TYPE–,
–ROW–, and –COL–, and one numeric variable –VALUE–. The –TYPE– variable
can assume two values:

• QUAD specifies that the –ROW– and –COL– variables define the row and
column locations of the values in the G matrix.

• LINEAR specifies that the –ROW– variable defines the row locations of the
values in the g vector. The –COL– variable is not used.

Using both the MODEL= option and the INCLUDE statement with the same model
file will include the file twice (erroneous in most cases).

OUT= Output Data Set

The OUT= data set contains those variables of a DATA= input data set that are re-
ferred to in the program statements and additional variables computed by the program
statements for the objective function. Specifying the NOMISS option enables you to
skip observations with missing values in variables used in the program statements.
The OUT= data set can also contain first- and second-order derivatives of these vari-
ables if the OUTDER= option is specified. The variables and derivatives are the final
parameter estimates x∗ or (for TECH=NONE) the initial value x0.

The variables of the OUT= data set are

• the BY variables and all other variables that are used in a DATA= input data set
and referred to in the program code

• a variable –OBS– containing the number of observations read from a DATA=
input data set, where the counting is restarted with the start of each BY group.
If there is no DATA= input data set, then –OBS–=1.

• a character variable –TYPE– naming the type of the observation

• the parameter variables listed in the DECVAR statement

• the function variables listed in the the MIN, MAX, or LSQ statement

Input and Output Data Sets � 599

• all other variables computed in the program statements

• the character variable –WRT– (if OUTDER=1) containing the with respect to
variable for which the first-order derivatives are written in the function vari-
ables

• the two character variables –WRT1– and –WRT2– (if OUTDER=2) contain-
ing the two with respect to variables for which the first- and second-order
derivatives are written in the function variables

OUTEST= Output Data Set

The OUTEST= or OUTVAR= output data set saves the optimization solution of
PROC NLP. You can use the OUTEST= or OUTVAR= data set as follows:

• to save the values of the objective function on grid points to examine, for ex-
ample, surface plots using PROC G3D (use the OUTGRID option)

• to avoid any costly computation of analytical (first- or second-order) derivatives
during optimization when they are needed only upon termination. In this case
a two-step approach is recommended:

1. In a first execution, the optimization is done; that is, optimal parameter
estimates are computed, and the results are saved in an OUTEST= data
set.

2. In a subsequent execution, the optimal parameter estimates in the pre-
vious OUTEST= data set are read in an INEST= data set and used with
TECH=NONE to compute further results, such as analytical second-order
derivatives or some kind of covariance matrix.

• to restart the procedure using parameter estimates as initial values

• to split a time-consuming optimization problem into a series of smaller prob-
lems using intermediate results as initial values in subsequent runs. (Refer to
the MAXTIME=, MAXIT=, and MAXFUNC= options to trigger stopping.)

• to write the value of the objective function, the parameter estimates, the time in
seconds starting at the beginning of the optimization process and (if available)
the gradient to the OUTEST= data set during the iterations. After the PROC
NLP run is completed, the convergence progress can be inspected by graphi-
cally displaying the iterative information. (Refer to the OUTITER option.)

The variables of the OUTEST= data set are

• the BY variables that are used in a DATA= input data set

• a character variable –TECH– naming the optimization technique used

• a character variable –TYPE– specifying the type of the observation

• a character variable –NAME– naming the observation. For a linear constraint,
the –NAME– variable indicates whether the constraint is active at the solution.
For the initial observations, the –NAME– variable indicates if the number in
the –RHS– variable corresponds to the number of positive, negative, or zero
eigenvalues.

600 � Chapter 6. The NLP Procedure

• n numeric variables with the parameter names used in the DECVAR statement.
These variables contain a point x of the parameter space, lower or upper bound
constraints, or the coefficients of linear constraints.

• a numeric variable –RHS– (right-hand side) that is used for the right-hand-
side value bi of a linear constraint or for the value f = f(x) of the objective
function at a point x of the parameter space

• a numeric variable –ITER– that is zero for initial values, equal to the iteration
number for the OUTITER output, and missing for the result output

The –TYPE– variable identifies how to interpret the observation. If –TYPE– is

• PARMS then parameter-named variables contain the coordinates of the result-
ing point x∗. The –RHS– variable contains f(x∗).

• INITIAL then parameter-named variables contain the feasible starting point
x(0). The –RHS– variable contains f(x(0)).

• GRIDPNT then (if the OUTGRID option is specified) parameter-named vari-
ables contain the coordinates of any point x(k) used in the grid search. The
–RHS– variable contains f(x(k)).

• GRAD then parameter-named variables contain the gradient at the initial or
final estimates.

• STDERR then parameter-named variables contain the approximate standard
errors (square roots of the diagonal elements of the covariance matrix) if the
COV= option is specified.

• –NOBS– then (if the COV= option is specified) all parameter variables contain
the value of –NOBS– used in computing the σ2 value in the formula of the
covariance matrix.

• UPPERBD | UB then (if there are boundary constraints) the parameter variables
contain the upper bounds.

• LOWERBD | LB then (if there are boundary constraints) the parameter vari-
ables contain the lower bounds.

• NACTBC then all parameter variables contain the number nabc of active
boundary constraints at the solution x∗.

• ACTBC then (if there are active boundary constraints) the observation indicate
which parameters are actively constrained, as follows:

–NAME–=GE the active lower bounds

–NAME–=LE the active upper bounds

–NAME–=EQ the active equality constraints

• NACTLC then all parameter variables contain the number nalc of active linear
constraints that are recognized as linearly independent.

• NLDACTLC then all parameter variables contain the number of active linear
constraints that are recognized as linearly dependent.

Input and Output Data Sets � 601

• LE then (if there are linear constraints) the observation contains the ith linear
constraint

∑
j aijxj ≤ bi. The parameter variables contain the coefficients aij ,

j = 1, . . . , n, and the –RHS– variable contains bi. If the constraint i is active
at the solution x∗, then –NAME–=ACTLC or –NAME–=LDACTLC.

• GE then (if there are linear constraints) the observation contains the ith linear
constraint

∑
j aijxj ≥ bi. The parameter variables contain the coefficients aij ,

j = 1, . . . , n, and the –RHS– variable contains bi. If the constraint i is active
at the solution x∗, then –NAME–=ACTLC or –NAME–=LDACTLC.

• EQ then (if there are linear constraints) the observation contains the ith linear
constraint

∑
j aijxj = bi. The parameter variables contain the coefficients

aij , j = 1, . . . , n, the –RHS– variable contains bi, and –NAME–=ACTLC or
–NAME–=LDACTLC.

• LAGRANGE then (if at least one of the linear constraints is an equality con-
straint or an active inequality constraint) the observation contains the vector of
Lagrange multipliers. The Lagrange multipliers of active boundary constraints
are listed first followed by those of active linear constraints and those of active
nonlinear constraints. Lagrange multipliers are available only for the set of
linearly independent active constraints.

• PROJGRAD then (if there are linear constraints) the observation contains the
n − nact values of the projected gradient gZ = ZT g in the variables corre-
sponding to the first n− nact parameters.

• JACOBIAN then (if the PJACOBI or OUTJAC option is specified) the m ob-
servations contain the m rows of the m × n Jacobian matrix. The –RHS–
variable contains the row number l, l = 1, . . . ,m.

• HESSIAN then the first n observations contain the n rows of the (symmetric)
Hessian matrix. The –RHS– variable contains the row number j, j = 1, . . . , n,
and the –NAME– variable contains the corresponding parameter name.

• PROJHESS then the first n − nact observations contain the n − nact rows of
the projected Hessian matrix ZT GZ. The –RHS– variable contains the row
number j, j = 1, . . . , n− nact , and the –NAME– variable is blank.

• CRPJAC then the first n observations contain the n rows of the (symmetric)
crossproduct Jacobian matrix at the solution. The –RHS– variable contains
the row number j, j = 1, . . . , n, and the –NAME– variable contains the cor-
responding parameter name.

• PROJCRPJ then the first n − nact observations contain the n − nact rows of
the projected crossproduct Jacobian matrix ZT (JT J)Z. The –RHS– variable
contains the row number j, j = 1, . . . , n− nact, and the –NAME– variable is
blank.

• COV1, COV2, COV3, COV4, COV5, or COV6 then (depending on the COV=
option) the first n observations contain the n rows of the (symmetric) covari-
ance matrix of the parameter estimates. The –RHS– variable contains the row
number j, j = 1, . . . , n, and the –NAME– variable contains the corresponding
parameter name.

602 � Chapter 6. The NLP Procedure

• DETERMIN contains the determinant det = a × 10b of the matrix specified
by the value of the –NAME– variable where a is the value of the first variable
in the DECVAR statement and b is in –RHS–.

• NEIGPOS, NEIGNEG, or NEIGZER then the –RHS– variable contains the
number of positive, negative, or zero eigenvalues of the matrix specified by the
value of the –NAME– variable.

• COVRANK then the –RHS– variable contains the rank of the covariance ma-
trix.

• SIGSQ then the –RHS– variable contains the scalar factor of the covariance
matrix.

• –TIME– then (if the OUTITER option is specified) the –RHS– variable con-
tains the number of seconds passed since the start of the optimization.

• TERMINAT then if optimization terminated at a point satisfying one of the
termination criteria, an abbreviation of the corresponding criteria is given to
the –NAME– variable. Otherwise –NAME–=PROBLEMS.

If for some reason the procedure does not terminate successfully (for example, no
feasible initial values can be computed or the function value or derivatives at the
starting point cannot be computed), the OUTEST= data set may contain only part of
the observations (usually only the PARMS and GRAD observation).

Note: Generally you can use an OUTEST= data set as an INEST= data set in a further
run of PROC NLP. However, be aware that the OUTEST= data set also contains the
boundary and general linear constraints specified in the previous run of PROC NLP.
When you are using this OUTEST= data set without changes as an INEST= data
set, PROC NLP adds the constraints from the data set to the constraints specified by
a BOUNDS or LINCON statement. Although PROC NLP automatically eliminates
multiple identical constraints you should avoid specifying the same constraint twice.

Output of Profiles

The following observations are written to the OUTEST= data set only when the
PROFILE statement or CLPARM option is specified.

–TYPE– –NAME– –RHS– Meaning of Observation
PLC–LOW parname y value coordinates of lower CL for α
PLC–UPP parname y value coordinates of upper CL for α

WALD–CL LOWER y value lower Wald CL for α in –ALPHA–
WALD–CL UPPER y value upper Wald CL for α in –ALPHA–

PL–CL LOWER y value lower PL CL for α in –ALPHA–
PL–CL UPPER y value upper PL CL for α in –ALPHA–

PROFILE L(THETA) missing y value corresponding to x
in following –NAME–=THETA

PROFILE THETA missing x value corresponding to y
in previous –NAME–=L(THETA)

Input and Output Data Sets � 603

Assume that the PROFILE statement specifies np parameters and nα confidence lev-
els. For CLPARM, np = n and nα = 4.

• –TYPE–=PLC–LOW and –TYPE–=PLC–UPP:
If the CLPARM= option or the PROFILE statement with the OUTTABLE op-
tion is specified, then the complete set θ of parameter estimates (rather than
only the confidence limit x = θj) is written to the OUTEST= data set for each
side of the confidence interval. This output may be helpful for further analyses
on how small changes in x = θj affect the changes in the other θi, i 6= j. The
–ALPHA– variable contains the corresponding value of α. There should be
no more than 2nαnp observations. If the confidence limit cannot be computed,
the corresponding observation is not available.

• –TYPE–=WALD–CL:
If CLPARM=WALD, CLPARM=BOTH, or the PROFILE statement with
α values is specified, then the Wald confidence limits are written to the
OUTEST= data set for each of the default or specified values of α. The
–ALPHA– variable contains the corresponding value of α. There should be
2nα observations.

• –TYPE–=PL–CL:
If CLPARM=PL, CLPARM=BOTH, or the PROFILE statement with α values
is specified, then the PL confidence limits are written to the OUTEST= data
set for each of the default or specified values of α. The –ALPHA– variable
contains the corresponding values of α. There should be 2nα observations;
some observations may have missing values.

• –TYPE–=PROFILE:
If CLPARM=PL, CLPARM=BOTH, or the CLPARM= statement with or with-
out α values is specified, then a set of (x, y) point coordinates in two adjacent
observations with –NAME–=L(THETA) (y value) and –NAME–=THETA (x
value) is written to the OUTEST= data set. The –RHS– and –ALPHA– vari-
ables are not used (are set to missing). The number of observations depends on
the difficulty of the optimization problems.

OUTMODEL= Output Data Set

The program statements for objective functions, nonlinear constraints, and derivatives
can be saved into an OUTMODEL= output data set. This data set can be used in an
INCLUDE program statement or as a MODEL= input data set in subsequent calls
of PROC NLP. The OUTMODEL= option is similar to the option used in PROC
MODEL in SAS/ETS software.

Storing Programs in Model Files

Models can be saved to and recalled from SAS catalog files. SAS catalogs are special
files which can store many kinds of data structures as separate units in one SAS file.
Each separate unit is called an entry, and each entry has an entry type that identifies
its structure to the SAS system.

In general, to save a model, use the OUTMODEL=name option in the PROC NLP
statement, where name is specified as libref.catalog.entry, libref.entry, or entry. The

604 � Chapter 6. The NLP Procedure

libref, catalog, and entry names must be valid SAS names no more than 8 characters
long. The catalog name is restricted to 7 characters on the CMS operating system. If
not given, the catalog name defaults to MODELS, and the libref defaults to WORK.
The entry type is always MODEL. Thus, OUTMODEL=X writes the model to the
file WORK.MODELS.X.MODEL.

The MODEL= option is used to read in a model. A list of model files can be specified
in the MODEL= option, and a range of names with numeric suffixes can be given, as
in MODEL=(MODEL1-MODEL10). When more than one model file is given, the
list must be placed in parentheses, as in MODEL=(A B C). If more than one model
file is specified, the files are combined in the order listed in the MODEL= option.

When the MODEL= option is specified in the PROC NLP statement and model defi-
nition statements are also given later in the PROC NLP step, the model files are read
in first, in the order listed, and the model program specified in the PROC NLP step is
appended after the model program read from the MODEL= files.

The INCLUDE statement can be used to append model code to the current model
code. The contents of the model files are inserted into the current model at the posi-
tion where the INCLUDE statement appears.

Note that the following statements are not part of the program code that is written to
an OUTMODEL= data set: MIN, MAX, LSQ, MINQUAD, MAXQUAD, DECVAR,
BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC, JACOBIAN, LABEL,
LINCON, MATRIX, and NLINCON.

Displayed Output

Procedure Initialization

After the procedure has processed the problem, it displays summary information
about the problem and the options that you have selected. It may also display a
list of linearly dependent constraints and other information about the constraints and
parameters.

Optimization Start

At the start of optimization the procedure displays

• the number of constraints that are active at the starting point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

• the value of the objective function at the starting point

• if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

• for the TRUREG and LEVMAR subroutines, the initial radius of the trust re-
gion around the starting point

Displayed Output � 605

Iteration History

In general, the iteration history consists of one line of output containing the most im-
portant information for each iteration. The iteration-extensive Nelder-Mead simplex
method, however, displays only one line for several internal iterations. This technique
skips the output for some iterations because

• some of the termination tests (size and standard deviation) are rather time-
consuming compared to the simplex operations and are done once every five
simplex operations

• the resulting history output is smaller

The –LIST– variable (refer to the “Program Statements” section on page 560) also
enables you to display the parameter estimates x(k) and the gradient g(k) in all or
some selected iterations k.

The iteration history always includes the following (the words in parentheses indicate
the column header output):

• the iteration number (iter)

• the number of iteration restarts (nrest)

• the number of function calls (nfun)

• the number of active constraints (act)

• the value of the optimization criterion (optcrit)

• the difference between adjacent function values (difcrit)

• the maximum of the absolute (projected) gradient components (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of
the active constraints was released from the active set due to a significant Lagrange
multiplier.

The optimization history is displayed by default because it is important to check for
possible convergence problems.

Optimization Termination

The output of the optimization history ends with a short output of information con-
cerning the optimization result:

• the number of constraints that are active at the final point, or more precisely,
the number of constraints that are currently members of the working set. When
this number is followed by a plus sign, it indicates that there are more active
constraints of which at least one is temporarily released from the working set
due to negative Lagrange multipliers.

• the value of the objective function at the final point

606 � Chapter 6. The NLP Procedure

• if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

• other information that is specific for the optimization technique

The NOPRINT option suppresses all output to the list file and only errors, warnings,
and notes are displayed to the log file. The PALL option sets a large group of some
of the commonly used specific displaying options, the PSHORT option suppresses
some, and the PSUMMARY option suppresses almost all of the default output. The
following table summarizes the correspondence between the general and the specific
print options.

Output Options PALL default PSHORT PSUMMARY
y y y y summary of optimization
y y y n parameter estimates
y y y n gradient of objective func

PHISTORY y y y n iteration history
PINIT y y n n setting of initial values

y y n n listing of constraints
PGRID y n n n results of grid search
PNLCJAC y n n n Jacobian nonlin. constr.
PFUNCTION y n n n values of functions
PEIGVAL y n n n eigenvalue distribution
PCRPJAC y n n n crossproduct Jacobian
PHESSIAN y n n n Hessian matrix
PSTDERR y n n n approx. standard errors
PCOV y n n n covariance matrices
PJACOBI n n n n Jacobian
LIST n n n n model program, variables
LISTCODE n n n n compiled model program

Missing Values

Missing Values in Program Statements

There is one very important reason for using missing values in program statements
specifying the values of the objective functions and derivatives: it may not be pos-
sible to evaluate the program statements for a particular point x. For example, the
extrapolation formula of one of the line-search algorithms may generate large x val-
ues for which the EXP function cannot be evaluated without floating point overflow.
The compiler of the program statements may check for such situations automatically,
but it would be safer if you check the feasibility of your program statements. In some
cases, the specification of boundary or linear constraints for parameters can avoid
such situations. In many other cases, you can indicate that x is a bad point simply by
returning a missing value for the objective function. In such cases the optimization
algorithms in PROC NLP shorten the step length α or reduce the trust region radius
so that the next point will be closer to the point that was already successfully evalu-

Computational Resources � 607

ated at the last iteration. Note that the starting point x(0) must be a point for which
the program statements can be evaluated.

Missing Values in Input Data Sets

Observations with missing values in the DATA= data set for variables used in the
objective function can lead to a missing value of the objective function implying that
the corresponding BY group of data is not processed. The NOMISS option can be
used to skip those observations of the DATA= data set for which relevant variables
have missing values. Relevant variables are those that are referred to in program
statements.

There can be different reasons to include observations with missing values in the
INEST= data set. The value of the –RHS– variable is not used in some cases and
can be missing. Missing values for the variables corresponding to parameters in the
–TYPE– variable are as follows:

• PARMS observations cause those parameters to have initial values assigned by
the DECVAR statement or by the RANDOM= or INITIAL= option.

• UPPERBD or LOWERBD observations cause those parameters to be uncon-
strained by upper or lower bounds.

• LE, GE, or EQ observations cause those parameters to have zero values in the
constraint.

In general, missing values are treated as zeros.

Computational Resources
Since nonlinear optimization is an iterative process that depends on many factors, it
is difficult to estimate how much computer time is necessary to compute an optimal
solution satisfying one of the termination criteria. The MAXTIME=, MAXITER=,
and MAXFUNC= options can be used to restrict the amount of CPU time, the number
of iterations, and the number of function calls in a single run of PROC NLP.

In each iteration k, the NRRIDG and LEVMAR techniques use symmetric
Householder transformations to decompose the n × n Hessian (crossproduct
Jacobian) matrix G,

G = V T TV , V orthogonal, T tridiagonal

to compute the (Newton) search direction s:

s(k) = −G(k−1)g(k) , k = 1, 2, 3, . . .

The QUADAS, TRUREG, NEWRAP, and HYQUAN techniques use the Cholesky
decomposition to solve the same linear system while computing the search direction.
The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques do not need to in-
vert or decompose a Hessian or crossproduct Jacobian matrix and thus require fewer
computational resources then the first group of techniques.

608 � Chapter 6. The NLP Procedure

The larger the problem, the more time is spent computing function values and deriva-
tives. Therefore, many researchers compare optimization techniques by counting and
comparing the respective numbers of function, gradient, and Hessian (crossproduct
Jacobian) evaluations. You can save computer time and memory by specifying deriva-
tives (using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) since
you will typically produce a more efficient representation than the internal derivative
compiler.

Finite-difference approximations of the derivatives are expensive since they require
additional function or gradient calls.

• Forward-difference formulas:

– First-order derivatives: n additional function calls are needed.
– Second-order derivatives based on function calls only: for a dense

Hessian, n(n + 3)/2 additional function calls are needed.
– Second-order derivatives based on gradient calls: n additional gradient

calls are needed.

• Central-difference formulas:

– First-order derivatives: 2n additional function calls are needed.
– Second-order derivatives based on function calls only: for a dense

Hessian, 2n(n + 1) additional function calls are needed.
– Second-order derivatives based on gradient: 2n additional gradient calls

are needed.

Many applications need considerably more time for computing second-order deriva-
tives (Hessian matrix) than for first-order derivatives (gradient). In such cases, a
(dual) quasi-Newton or conjugate gradient technique is recommended, which does
not require second-order derivatives.

The following table shows for each optimization technique which derivatives are
needed (FOD: first-order derivatives; SOD: second-order derivatives), what kinds of
constraints are supported (BC: boundary constraints; LIC: linear constraints), and the
minimal memory (number of double floating point numbers) required. For various
reasons, there are additionally about 7n + m double floating point numbers needed.

Computational Resources � 609

Quadratic Programming FOD SOD BC LIC Memory
LICOMP - - x x 18n + 3nn
QUADAS - - x x 1n + 2nn/2
General Optimization FOD SOD BC LIC Memory
TRUREG x x x x 4n + 2nn/2
NEWRAP x x x x 2n + 2nn/2
NRRIDG x x x x 6n + nn/2
QUANEW x - x x 1n + nn/2
DBLDOG x - x x 7n + nn/2
CONGRA x - x x 3n
NMSIMP - - x x 4n + nn

Least-Squares FOD SOD BC LIC Memory
LEVMAR x - x x 6n + nn/2
HYQUAN x - x x 2n + nn/2 + 3m

Notes:

• Here, n denotes the number of parameters, nn the squared number of parame-
ters, and nn/2 := n(n + 1)/2.

• The value of m is the product of the number of functions specified in the MIN,
MAX, or LSQ statement and the maximum number of observations in each BY
group of a DATA= input data set. The following table also contains the number
v of variables in the DATA= data set that are used in the program statements.

• For a diagonal Hessian matrix, the nn/2 term in QUADAS, TRUREG,
NEWRAP, and NRRIDG is replaced by n.

• If the TRUREG, NRRIDG, or NEWRAP method is used to minimize a least-
squares problem, the second derivatives are replaced by the crossproduct
Jacobian matrix.

• The memory needed by the TECH=NONE specification depends on the output
specifications (typically, it needs 3n+nn/2 double floating point numbers and
an additional mn if the Jacobian matrix is required).

The total amount of memory needed to run an optimization technique consists of
the technique-specific memory listed in the preceding table, plus additional blocks of
memory as shown in the following table.

610 � Chapter 6. The NLP Procedure

double int long 8byte
Basic Requirement 7n + m n 3n n + m
DATA= data set v - - v
JACOBIAN statement m(n + 2) - - -
CRPJAC statement nn/2 - - -
HESSIAN statement nn/2 - - -
COV= option (2∗)nn/2 + n - - -
Scaling vector n - - -
BOUNDS statement 2n n - -
Bounds in INEST= 2n - - -
LINCON and TRUREG c(n + 1) + nn + nn/2 + 4n 3c - -
LINCON and other c(n + 1) + nn + 2nn/2 + 4n 3c - -

Notes:

• For TECH=LICOMP, the total amount of memory needed for the linear or
boundary constrained case is 18(n + c) + 3(n + c)(n + c), where c is the
number of constraints.

• The amount of memory needed to specify derivatives with a GRADIENT,
JACOBIAN, CRPJAC, or HESSIAN statement (shown in this table) is small
compared to that needed for using the internal function compiler to compute
the derivatives. This is especially so for second-order derivatives.

• If the CONGRA technique is used, specifying the GRADCHECK=DETAIL
option requires an additional nn/2 double floating point numbers to store the
finite-difference Hessian matrix.

Example 6.1. Using the DATA= Option � 611

Examples

Example 6.1. Using the DATA= Option

This example illustrates the use of the DATA= option. The Bard function (refer to
Moré et al. (1981)) is a least-squares problem with n = 3 parameters and m = 15
functions fk:

f(x) =
1
2

15∑
k=1

f2
k (x), x = (x1, x2, x3)

where

fk(x) = yk −
(

x1 +
uk

vkx2 + wkx3

)
with uk = k, vk = 16− k, wk = min(uk, vk), and

y = (.14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96, 1.34, 2.10, 4.39)

The minimum function value f(x∗) = 4.107E−3 is at the point (0.08, 1.13, 2.34).
The starting point x0 = (1, 1, 1) is used.

The following is the naive way of specifying the objective function.

proc nlp tech=levmar;
lsq y1-y15;
parms x1-x3 = 1;
tmp1 = 15 * x2 + min(1,15) * x3;
y1 = 0.14 - (x1 + 1 / tmp1);
tmp1 = 14 * x2 + min(2,14) * x3;
y2 = 0.18 - (x1 + 2 / tmp1);
tmp1 = 13 * x2 + min(3,13) * x3;
y3 = 0.22 - (x1 + 3 / tmp1);
tmp1 = 12 * x2 + min(4,12) * x3;
y4 = 0.25 - (x1 + 4 / tmp1);
tmp1 = 11 * x2 + min(5,11) * x3;
y5 = 0.29 - (x1 + 5 / tmp1);
tmp1 = 10 * x2 + min(6,10) * x3;
y6 = 0.32 - (x1 + 6 / tmp1);
tmp1 = 9 * x2 + min(7,9) * x3;
y7 = 0.35 - (x1 + 7 / tmp1);
tmp1 = 8 * x2 + min(8,8) * x3;
y8 = 0.39 - (x1 + 8 / tmp1);
tmp1 = 7 * x2 + min(9,7) * x3;
y9 = 0.37 - (x1 + 9 / tmp1);
tmp1 = 6 * x2 + min(10,6) * x3;
y10 = 0.58 - (x1 + 10 / tmp1);
tmp1 = 5 * x2 + min(11,5) * x3;
y11 = 0.73 - (x1 + 11 / tmp1);

612 � Chapter 6. The NLP Procedure

tmp1 = 4 * x2 + min(12,4) * x3;
y12 = 0.96 - (x1 + 12 / tmp1);
tmp1 = 3 * x2 + min(13,3) * x3;
y13 = 1.34 - (x1 + 13 / tmp1);
tmp1 = 2 * x2 + min(14,2) * x3;
y14 = 2.10 - (x1 + 14 / tmp1);
tmp1 = 1 * x2 + min(15,1) * x3;
y15 = 4.39 - (x1 + 15 / tmp1);

run;

A more economical way to program this problem uses the DATA= option to input the
15 terms in f(x).

data bard;
input r @@;

w1 = 16. - _n_;
w2 = min(_n_ , 16. - _n_);
datalines;

.14 .18 .22 .25 .29 .32 .35 .39

.37 .58 .73 .96 1.34 2.10 4.39
;

proc nlp data=bard tech=levmar;
lsq y;
parms x1-x3 = 1.;
y = r - (x1 + _obs_ / (w1 * x2 + w2 * x3));

run;

Another way you can specify the objective function uses the ARRAY statement and
an explicit do loop, as in the following code.

proc nlp tech=levmar;
array r[15] .14 .18 .22 .25 .29 .32 .35 .39 .37 .58

.73 .96 1.34 2.10 4.39 ;
array y[15] y1-y15;
lsq y1-y15;
parms x1-x3 = 1.;
do i = 1 to 15;

w1 = 16. - i;
w2 = min(i , w1);
w3 = w1 * x2 + w2 * x3;
y[i] = r[i] - (x1 + i / w3);

end;
run;

Example 6.2. Using the INQUAD= Option � 613

Example 6.2. Using the INQUAD= Option
This example illustrates the INQUAD= option for specifying a quadratic program-
ming problem:

min f(x) =
1
2
xT Gx + gT x + c, with GT = G

Suppose that c = −100, G = diag(.4, 4) and 2 ≤ x1 ≤ 50, −50 ≤ x2 ≤ 50, and
10 ≤ 10x1 − x2.

You specify the constant c and the Hessian G in the data set QUAD1. Notice that
the –TYPE– variable contains the keywords that identify how the procedure should
interpret the observations.

data quad1;
input _type_ $ _name_ $ x1 x2;
datalines;

const . -100 -100
quad x1 0.4 0
quad x2 0 4
;

You specify the QUAD1 data set with the INQUAD= option. Notice that the names
of the variables in the QUAD1 data set and the –NAME– variable match the names
of the parameters in the PARMS statement.

proc nlp inquad=quad1 all;
min ;
parms x1 x2 = -1;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

Alternatively, you can use a sparse format for specifying the G matrix, eliminating
the zeros. You use the special variables –ROW–, –COL–, and –VALUE– to give the
nonzero row and column names and value.

data quad2;
input _type_ $ _row_ $ _col_ $ _value_;
datalines;

const . . -100
quad x1 x1 0.4
quad x2 x2 4
;

You can also include the constraints in the QUAD data set. Notice how the –TYPE–
variable contains keywords that identify how the procedure is to interpret the values
in each observation.

614 � Chapter 6. The NLP Procedure

data quad3;
input _type_ $ _name_ $ x1 x2 _rhs_;
datalines;

const . -100 -100 .
quad x1 0.02 0 .
quad x2 0.00 2 .
parms . -1 -1 .
lowerbd . 2 -50 .
upperbd . 50 50 .
ge . 10 -1 10
;

proc nlp inquad=quad3;
min ;
parms x1 x2;

run;

Example 6.3. Using the INEST=Option
This example illustrates the use of the INEST= option for specifying a starting point
and linear constraints. You name a data set with the INEST= option. The format of
this data set is similar to the format of the QUAD data set described in the previous
example.

Consider the Hock and Schittkowski (1981) Problem # 24:

min f(x) =
((x1 − 3)2 − 9)x3

2

27
√

3

subject to:

0 ≤ x1, x2

0 ≤ .57735x1 − x2

0 ≤ x1 + 1.732x2

6 ≥ x1 + 1.732x2

with minimum function value f(x∗) = −1 at x∗ = (3,
√

3). The feasible starting
point is x0 = (1, .5).

You can specify this model in PROC NLP as follows:

proc nlp tech=trureg outest=res;
min y;
parms x1 = 1,

x2 = .5;
bounds 0 <= x1-x2;
lincon .57735 * x1 - x2 >= 0,

x1 + 1.732 * x2 >= 0,
-x1 - 1.732 * x2 >= -6;

y = (((x1 - 3)**2 - 9.) * x2**3) / (27 * sqrt(3));
run;

Example 6.3. Using the INEST=Option � 615

Note that none of the data for this model are in a data set. Alternatively, you can
save the starting point (1, .5) and the linear constraints in a data set. Notice that the
–TYPE– variable contains keywords that identify how the procedure is to interpret
each of the observations and that the parameters in the problems X1 and X2 are
variables in the data set. The observation with –TYPE–=LOWERBD gives the lower
bounds on the parameters. The observation with –TYPE–=GE gives the coefficients
for the first constraint. Similarly, the subsequent observations contain specifications
for the other constraints. Also notice that the special variable –RHS– contains the
right-hand-side values.

data betts1(type=est);
input _type_ $ x1 x2 _rhs_;
datalines;

parms 1 .5 .
lowerbd 0 0 .
ge .57735 -1 .
ge 1 1.732 .
le 1 1.732 6
;

Now you can solve this problem with the following code. Notice that you specify the
objective function and the parameters.

proc nlp inest=betts1 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - 3)**2 - 9) * x2**3) / (27 * sqrt(3));

run;

You can even include any constants used in the program statements in the INEST=
data set. In the following code the variables A, B, C, and D contain some of the
constants used in calculating the objective function Y.

data betts2(type=est);
input _type_ $ x1 x2 _rhs_ a b c d;
datalines;

parms 1 .5 . 3 9 27 3
lowerbd 0 0
ge .57735 -1 0
ge 1 1.732 0
le 1 1.732 6
;

Notice that in the program statement for calculating Y, the constants are replaced by
the A, B, C, and D variables.

proc nlp inest=betts2 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - a)**2 - b) * x2**3) / (c * sqrt(d));

run;

616 � Chapter 6. The NLP Procedure

Example 6.4. Restarting an Optimization

This example shows how you can restart an optimization problem using the
OUTEST=, INEST=, OUTMODEL=, and MODEL= options and how to save out-
put into an OUT= data set. The least-squares solution of the Rosenbrock function
using the trust region method is used.

The following code solves the problem and saves the model in the MODEL data set
and the solution in the EST and OUT1 data sets.

proc nlp tech=trureg outmodel=model outest=est out=out1;
lsq y1 y2;
parms x1 = -1.2 ,

x2 = 1.;
y1 = 10. * (x2 - x1 * x1);
y2 = 1. - x1;

run;

proc print data=out1;
run;

The final parameter estimates x∗ = (1, 1) and the values of the functions f1 =Y1 and
f2 =Y2 are written into an OUT= data set, shown in Output 6.4.1. Since OUTDER=0
is the default, the OUT= data set does not contain the Jacobian matrix.

Output 6.4.1. Solution in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 x2 x1

1 1 0 0 1 1

Next, the procedure reads the optimal parameter estimates from the EST data
set and the model from the MODEL data set. It does not do any optimization
(TECH=NONE), but it saves the Jacobian matrix to the OUT=OUT2 data set be-
cause of the option OUTDER=1. It also displays the Jacobian matrix because of the
option PJAC; the Jacobian matrix is shown in Output 6.4.2. Output 6.4.3 shows the
contents of the OUT2 data set, which also contains the Jacobian matrix.

proc nlp tech=none model=model inest=est out=out2 outder=1 pjac;
lsq y1 y2;
parms x1 x2;

run;

proc print data=out2;
run;

Example 6.5. Approximate Standard Errors � 617

Output 6.4.2. Jacobian Matrix Output

PROC NLP: Least Squares Minimization

Jacobian Matrix

x1 x2

-20 10
-1 0

Output 6.4.3. Jacobian Matrix in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 _WRT_ x2 x1

1 1 0 0 1 1
2 1 ANALYTIC 10 0 x2 1 1
3 1 ANALYTIC -20 -1 x1 1 1

Example 6.5. Approximate Standard Errors

The NLP procedure provides a variety of ways for estimating parameters in nonlin-
ear statistical models and for obtaining approximate standard errors and covariance
matrices for the estimators. These methods are illustrated by estimating the mean
of a random sample from a normal distribution with mean µ and standard deviation
σ. The simplicity of the example makes it easy to compare the results of different
methods in NLP with the usual estimator, the sample mean.

The following data step is used:

data x;
input x @@;

datalines;
1 3 4 5 7
;

The standard error of the mean, computed with n − 1 degrees of freedom, is 1. The
usual maximum-likelihood approximation to the standard error of the mean, using a
variance divisor of n rather than n− 1, is 0.894427.

The sample mean is a least-squares estimator, so it can be computed using an LSQ
statement. Moreover, since this model is linear, the Hessian matrix and crossprod-
uct Jacobian matrix are identical, and all three versions of the COV= option yield
the same variance and standard error of the mean. Note that COV=j means that the
crossproduct Jacobian is used. This is chosen because it requires the least computa-
tion.

618 � Chapter 6. The NLP Procedure

proc nlp data=x cov=j pstderr pshort;
lsq resid;
parms mean=0;
resid=x-mean;

run;

The results are the same as the usual estimates.
Output 6.5.1. Parameter Estimates

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 1.000000 4.000000 0.016130

Optimization Results
Parameter Estimates

Gradient
Objective
Function

0

Value of Objective Function = 10

PROC NLP can also compute maximum-likelihood estimates of µ and σ. In this case
it is convenient to minimize the negative log likelihood. To get correct standard errors
for maximum-likelihood estimators, the SIGSQ=1 option is required. The following
program shows COV=1 but the output that follows has COV=2 and COV=3.

proc nlp data=x cov=1 sigsq=1 pstderr phes pcov pshort;
min nloglik;
parms mean=0, sigma=1;
bounds 1e-12 < sigma;
nloglik=.5*((x-mean)/sigma)**2 + log(sigma);

run;

The variance divisor is n instead of n − 1, so the standard error of the mean is
0.894427 instead of 1. The standard error of the mean is the same with all six types
of covariance matrix, but the standard error of the standard deviation varies. The
sampling distribution of the standard deviation depends on the higher moments of
the population distribution, so different methods of estimation can produce markedly
different estimates of the standard error of the standard deviation.

Output 6.5.2 shows the output when COV=1, Output 6.5.3 shows the output when
COV=2, and Output 6.5.4 shows the output when COV=3.

Example 6.5. Approximate Standard Errors � 619

Output 6.5.2. Solution for COV=1

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.458258 4.364358 0.007260

Optimization Results
Parameter Estimates

Gradient
Objective
Function

1.33149E-10
-5.606415E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 1: M = (NOBS/d)
inv(G) JJ(f) inv(G)

mean sigma

mean 0.8 1.980107E-11
sigma 1.980107E-11 0.2099999991

Factor sigm = 1

Determinant = 0.1679999993

Matrix has Only Positive Eigenvalues

620 � Chapter 6. The NLP Procedure

Output 6.5.3. Solution for COV=2

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.632456 3.162278 0.025031

Optimization Results
Parameter Estimates

Gradient
Objective
Function

1.33149E-10
-5.606415E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 2: H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260766E-11
sigma 4.260766E-11 0.3999999978

Factor sigm = 1

Determinant = 0.3199999975

Matrix has Only Positive Eigenvalues

Example 6.5. Approximate Standard Errors � 621

Output 6.5.4. Solution for COV=3

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.509136 7.856442 0.000537
2 sigma 2.000000 0.419936 4.762634 0.005048

Optimization Results
Parameter Estimates

Gradient
Objective
Function

1.301733E-10
-5.940302E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 3: J = (1/d) inv(W)

mean sigma

mean 0.2592197879 1.062283E-11
sigma 1.062283E-11 0.1763460041

Factor sigm = 0.2

Determinant = 0.0457123738

Matrix has Only Positive Eigenvalues

Under normality, the maximum-likelihood estimators of µ and σ are independent,
as indicated by the diagonal Hessian matrix in the previous example. Hence, the
maximum-likelihood estimate of µ can be obtained by using any fixed value for
σ, such as 1. However, if the fixed value of σ differs from the actual maximum-
likelihood estimate (in this case 2), the model is misspecified and the standard er-
rors obtained with COV=2 or COV=3 are incorrect. It is therefore necessary to use
COV=1, which yields consistent estimates of the standard errors under a variety of
forms of misspecification of the error distribution.

622 � Chapter 6. The NLP Procedure

proc nlp data=x cov=1 sigsq=1 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean)**2;

run;

This formulation produces the same standard error of the mean, 0.894427 (see Output
6.5.5).

Output 6.5.5. Solution for fixed σ and COV=1

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566

Optimization Results
Parameter Estimates

Gradient
Objective
Function

0

Value of Objective Function = 10

Covariance Matrix
1: M = (NOBS/d) inv(G)

JJ(f) inv(G)

mean

mean 0.8

Factor sigm = 1

The maximum-likelihood formulation with fixed σ is actually a least-squares prob-
lem. The objective function, parameter estimates, and Hessian matrix are the same
as those in the first example in this section using the LSQ statement. However, the
Jacobian matrix is different, each row being multiplied by twice the residual. To treat
this formulation as a least-squares problem, the SIGSQ=1 option can be omitted. But
since the Jacobian is not the same as in the formulation using the LSQ statement,
the COV=1 | M and COV=3 | J options, which use the Jacobian, do not yield correct
standard errors. The correct standard error is obtained with COV=2 | H, which uses
only the Hessian matrix:

proc nlp data=x cov=2 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean)**2;

run;

Example 6.5. Approximate Standard Errors � 623

The results are the same as in the first example.

Output 6.5.6. Solution for Fixed σ and COV=2

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.500000 8.000000 0.001324

Optimization Results
Parameter Estimates

Gradient
Objective
Function

0

Value of Objective Function = 10

Covariance Matrix 2:
H = (NOBS/d) inv(G)

mean

mean 0.25

Factor sigm = 1.25

In summary, to obtain appropriate standard errors for least-squares estimates, you can
use the LSQ statement with any of the COV= options, or you can use the MIN state-
ment with COV=2. To obtain appropriate standard errors for maximum-likelihood es-
timates, you can use the MIN statement with the negative log likelihood or the MAX
statement with the log likelihood, and in either case you can use any of the COV=
options provided that you specify SIGSQ=1. You can also use a log-likelihood func-
tion with a misspecified scale parameter provided that you use SIGSQ=1 and COV=1.
For nonlinear models, all of these methods yield approximations based on asymptotic
theory, and should therefore be interpreted cautiously.

624 � Chapter 6. The NLP Procedure

Example 6.6. Maximum Likelihood Weibull Estimation

Two-Parameter Weibull Estimation

The following data are taken from Lawless (1982, p. 193) and represent the number
of days it took rats painted with a carcinogen to develop carcinoma. The last two
observations are censored data from a group of 19 rats:

data pike;
input days cens @@;
datalines;

143 0 164 0 188 0 188 0
190 0 192 0 206 0 209 0
213 0 216 0 220 0 227 0
230 0 234 0 246 0 265 0
304 0 216 1 244 1
;

Suppose that you want to show how to compute the maximum likelihood estimates
of the scale parameter σ (α in Lawless), the shape parameter c (β in Lawless), and
the location parameter θ (µ in Lawless). The observed likelihood function of the
three-parameter Weibull transformation (Lawless 1982, p. 191) is

L(θ, σ, c) =
cm

σm

∏
i∈D

(
ti − θ

σ

)c−1 p∏
i=1

exp
(
−
(

ti − θ

σ

)c)

and the log likelihood is

l(θ, σ, c) = m log c−mc log σ + (c− 1)
∑
i∈D

log(ti − θ)−
p∑

i=1

(
ti − θ

σ

)c

The log likelihood function can be evaluated only for σ > 0, c > 0, and θ < mini ti.
In the estimation process, you must enforce these conditions using lower and upper
boundary constraints. The three-parameter Weibull estimation can be numerically
difficult, and it usually pays off to provide good initial estimates. Therefore, you first
estimate σ and c of the two-parameter Weibull distribution for constant θ = 0. You
then use the optimal parameters σ̂ and ĉ as starting values for the three-parameter
Weibull estimation.

Although the use of an INEST= data set is not really necessary for this simple ex-
ample, it illustrates how it is used to specify starting values and lower boundary con-
straints:

Example 6.6. Maximum Likelihood Weibull Estimation � 625

data par1(type=est);
keep _type_ sig c theta;
type=’parms’; sig = .5;

c = .5; theta = 0; output;
type=’lb’; sig = 1.0e-6;

c = 1.0e-6; theta = .; output;
run;

The following PROC NLP call specifies the maximization of the log likelihood func-
tion for the two-parameter Weibull estimation for constant θ = 0:

proc nlp data=pike tech=tr inest=par1 outest=opar1
outmodel=model cov=2 vardef=n pcov phes;

max logf;
parms sig c;
profile sig c / alpha = .9 to .1 by -.1 .09 to .01 by -.01;

x_th = days - theta;
s = - (x_th / sig)**c;
if cens=0 then s + log(c) - c*log(sig) + (c-1)*log(x_th);
logf = s;

run;

After a few iterations you obtain the solution given in Output 6.6.1.

Output 6.6.1. Optimization Results

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 sig 234.318611 9.645908 24.292021 9.050475E-16
2 c 6.083147 1.068229 5.694611 0.000017269

Optimization Results
Parameter Estimates

Gradient
Objective
Function

1.3372183E-9
-7.859311E-9

Value of Objective Function = -88.23273515

Since the gradient has only small elements and the Hessian (shown in Output 6.6.2)
is negative definite (has only negative eigenvalues), the solution defines an isolated
maximum point.

626 � Chapter 6. The NLP Procedure

Output 6.6.2. Hessian Matrix at x∗

Hessian Matrix

sig c

sig -0.011457556 0.0257527577
c 0.0257527577 -0.934221388

Determinant = 0.0100406894

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of
parameter estimates are the approximate standard errors (ASE’s). The covariance
matrix is given in Output 6.6.3.

Output 6.6.3. Covariance Matrix

Covariance Matrix 2:
H = (NOBS/d) inv(G)

sig c

sig 93.043549863 2.5648395794
c 2.5648395794 1.141112488

Factor sigm = 1

Determinant = 99.594754608

Matrix has 2 Positive Eigenvalue(s)

The confidence limits in Output 6.6.4 correspond to the α values in the PROFILE
statement.

Example 6.6. Maximum Likelihood Weibull Estimation � 627

Output 6.6.4. Confidence Limits

PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 sig 234.318611 0.900000 233.111324 235.532695
1 sig . 0.800000 231.886549 236.772876
1 sig . 0.700000 230.623280 238.063824
1 sig . 0.600000 229.292797 239.436639
1 sig . 0.500000 227.855829 240.935290
1 sig . 0.400000 226.251597 242.629201
1 sig . 0.300000 224.372260 244.643392
1 sig . 0.200000 221.984557 247.278423
1 sig . 0.100000 218.390824 251.394102
1 sig . 0.090000 217.884162 251.987489
1 sig . 0.080000 217.326988 252.645278
1 sig . 0.070000 216.708814 253.383546
1 sig . 0.060000 216.008815 254.228034
1 sig . 0.050000 215.199301 255.215496
1 sig . 0.040000 214.230116 256.411041
1 sig . 0.030000 213.020874 257.935686
1 sig . 0.020000 211.369067 260.066128
1 sig . 0.010000 208.671091 263.687174
2 c 6.083147 0.900000 5.950029 6.217752
2 c . 0.800000 5.815559 6.355576
2 c . 0.700000 5.677909 6.499187
2 c . 0.600000 5.534275 6.651789
2 c . 0.500000 5.380952 6.817880
2 c . 0.400000 5.212344 7.004485
2 c . 0.300000 5.018784 7.225733
2 c . 0.200000 4.776379 7.506166
2 c . 0.100000 4.431310 7.931669
2 c . 0.090000 4.382687 7.991457
2 c . 0.080000 4.327815 8.056628
2 c . 0.070000 4.270773 8.129238
2 c . 0.060000 4.207130 8.211221
2 c . 0.050000 4.134675 8.306218
2 c . 0.040000 4.049531 8.418782
2 c . 0.030000 3.945037 8.559677
2 c . 0.020000 3.805759 8.749130
2 c . 0.010000 3.588814 9.056751

Three-Parameter Weibull Estimation

You now prepare for the three-parameter Weibull estimation by using PROC
UNIVARIATE to obtain the smallest data value for the upper boundary constraint
for θ. For this small problem, you can do this much more simply by just using a
value slightly smaller than the minimum data value 143.

/* Calculate upper bound for theta parameter */
proc univariate data=pike noprint;

var days;
output out=stats n=nobs min=minx range=range;

run;

628 � Chapter 6. The NLP Procedure

data stats;
set stats;
keep _type_ theta;

/* 1. write parms observation */
theta = minx - .1 * range;
if theta < 0 then theta = 0;
type = ’parms’;
output;

/* 2. write ub observation */
theta = minx * (1 - 1e-4);
type = ’ub’;
output;

run;

The data set PAR2 specifies the starting values and the lower and upper bounds for
the three-parameter Weibull problem:

proc sort data=opar1;
by _type_;

run;

data par2(type=est);
merge opar1(drop=theta) stats;
by _type_;
keep _type_ sig c theta;
if _type_ in (’parms’ ’lowerbd’ ’ub’);

run;

The following PROC NLP call uses the MODEL= input data set containing the log
likelihood function that was saved during the two-parameter Weibull estimation:

proc nlp data=pike tech=tr inest=par2 outest=opar2
model=model cov=2 vardef=n pcov phes;

max logf;
parms sig c theta;
profile sig c theta / alpha = .5 .1 .05 .01;

run;

After a few iterations, you obtain the solution given in Output 6.6.5.

Example 6.6. Maximum Likelihood Weibull Estimation � 629

Output 6.6.5. Optimization Results

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 sig 108.382732 32.573396 3.327339 0.003540
2 c 2.711477 1.058759 2.560995 0.019108
3 theta 122.025942 28.692439 4.252895 0.000430

Optimization Results
Parameter Estimates

Gradient
Objective
Function

-8.91765E-12
-1.406349E-9
-1.93916E-10

Value of Objective Function = -87.32424712

From inspecting the first- and second-order derivatives at the optimal solution, you
can verify that you have obtained an isolated maximum point. The Hessian matrix is
shown in Output 6.6.6.

Output 6.6.6. Hessian Matrix

Hessian Matrix

sig c theta

sig -0.010639974 0.0453887849 -0.010033749
c 0.0453887849 -4.078687939 -0.083026333
theta -0.010033749 -0.083026333 -0.014752091

Determinant = 0.0000502116

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of
parameter estimates are the approximate standard errors. The covariance matrix is
given in Output 6.6.7.

630 � Chapter 6. The NLP Procedure

Output 6.6.7. Covariance Matrix

Covariance Matrix 2: H = (NOBS/d) inv(G)

sig c theta

sig 1061.02613 29.926259613 -890.093361
c 29.926259613 1.1209710432 -26.66352284
theta -890.093361 -26.66352284 823.2560786

Factor sigm = 1

Determinant = 19915.723162

Matrix has 3 Positive Eigenvalue(s)

The difference between the Wald and profile CLs for parameter PHI2 are remarkable,
especially for the upper 95% and 99% limits, as shown in Output 6.6.8.

Output 6.6.8. Confidence Limits

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 sig 108.382732 0.500000 91.811562 141.564605
1 sig . 0.100000 76.502373 .
1 sig . 0.050000 72.215845 .
1 sig . 0.010000 64.262384 .
2 c 2.711477 0.500000 2.139297 3.704052
2 c . 0.100000 1.574162 9.250072
2 c . 0.050000 1.424853 19.516166
2 c . 0.010000 1.163096 19.540681
3 theta 122.025942 0.500000 91.027144 135.095454
3 theta . 0.100000 . 141.833769
3 theta . 0.050000 . 142.512603
3 theta . 0.010000 . 142.967407

Wald and PL Confidence Limits

Wald Confidence Limits

86.412310 130.353154
54.804263 161.961201
44.540049 172.225415
24.479224 192.286240
1.997355 3.425599
0.969973 4.452981
0.636347 4.786607
-0.015706 5.438660
102.673186 141.378698
74.831079 142.985700
65.789794 142.985700
48.119116 142.985700

Example 6.7. Simple Pooling Problem � 631

Example 6.7. Simple Pooling Problem

The following optimization problem is discussed in Haverly (1978) and in Liebman
et al. (1986, pp. 127–128). Two liquid chemicals, X and Y , are produced by the
pooling and blending of three input liquid chemicals, A, B, and C. You know the
sulfur impurity amounts of the input chemicals, and you have to respect upper limits
of the sulfur impurity amounts of the output chemicals. The sulfur concentrations
and the prices of the input and output chemicals are:

• Chemical A: Concentration = 3%, Price= $6

• Chemical B: Concentration = 1%, Price= $16

• Chemical C: Concentration = 2%, Price= $10

• Chemical X: Concentration ≤ 2.5%, Price= $9

• Chemical Y : Concentration ≤ 1.5%, Price= $15

The problem is complicated by the fact that the two input chemicals A and B are
available only as a mixture (they are either shipped together or stored together).
Because the amounts of A and B are unknown, the sulfur concentration of the mix-
ture is also unknown.

C

B

A -3% S
for $ 6

-1% S
for $ 16

Pool Blend X -≤ 2.5 % S
for $ 9
X ≤ 100

-Pool to X

Pool to Y

-

Blend Y -≤ 1.5 % S
for $ 15
Y ≤ 200-2% S

for $ 10
-C to Y

-
C to X

You know customers will buy no more than 100 units of X and 200 units of Y. The
problem is determining how to operate the pooling and blending of the chemicals to
maximize the profit. The objective function for the profit is

profit = cost(x)× amount(x) + cost(y)× amount(y)
− cost(a)× amount(a)− cost(b)× amount(b)− cost(c)× amount(c)

632 � Chapter 6. The NLP Procedure

There are three groups of constraints:

1. The first group of constraint functions is the mass balance restrictions illus-
trated by the graph. These are four linear equality constraints:

• amount(a) + amount(b) = pool–to–x + pool–to–y
• pool–to–x + c–to–x = amount(x)
• pool–to–y + c–to–y = amount(y)
• amount(c) = c–to–x + c–to–y

2. You introduce a new variable, pool–s, that represents the sulfur concentration
of the pool. Using pool–s and the sulfur concentration of C (2%), you obtain
two nonlinear inequality constraints for the sulfur concentrations of X and
Y , one linear equality constraint for the sulfur balance, and lower and upper
boundary restrictions for pool–s:

• pool–s × pool–to–x + 2 c–to–x ≤ 2.5 amount(x)
• pool–s × pool–to–y + 2 c–to–y ≤ 1.5 amount(y)
• 3 amount(a) + 1 amount(b) = pool–s × (amount(a) + amount(b))
• 1 ≤ pool–s ≤ 3

3. The last group assembles the remaining boundary constraints. First, you do
not want to produce more than you can sell; and finally, all variables must be
nonnegative:

• amount(x) ≤ 100, amount(y) ≤ 200
• amount(a), amount(b), amount(c), amount(x), amount(y) ≥ 0
• pool–to–x , pool–to–y , c–to–x , c–to–y ≥ 0

There exist several local optima to this problem that can be found by specifying dif-
ferent starting points. Using the starting point with all variables equal to 1 (specified
with a PARMS statement), PROC NLP finds a solution with profit = 400:

proc nlp all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;

Example 6.7. Simple Pooling Problem � 633

f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;

nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

The specified starting point was not feasible with respect to the linear equality con-
straints; therefore, a starting point is generated that satisfies linear and boundary con-
straints. Output 6.7.1 gives the starting parameter estimates.

Output 6.7.1. Starting Estimates

PROC NLP: Nonlinear Maximization

Optimization Start
Parameter Estimates

Gradient Gradient Lower
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx 1.363636 9.000000 -0.843698 0
2 amounty 1.363636 15.000000 -0.111882 0
3 amounta 0.818182 -6.000000 -0.430733 0
4 amountb 0.818182 -16.000000 -0.542615 0
5 amountc 1.090909 -10.000000 0.017768 0
6 pooltox 0.818182 0 -0.669628 0
7 pooltoy 0.818182 0 -0.303720 0
8 ctox 0.545455 0 -0.174070 0
9 ctoy 0.545455 0 0.191838 0
10 pools 2.000000 0 0.068372 1.000000

Optimization Start
Parameter Estimates

Upper
Bound

Constraint

100.000000
200.000000

.

.

.

.

.

.

.
3.000000

Value of Objective Function = 3.8181818182

Value of Lagrange Function = -2.866739915

The starting point satisfies the four equality constraints, as shown in Output 6.7.2.
The nonlinear constraints are given in Output 6.7.3.

634 � Chapter 6. The NLP Procedure

Output 6.7.2. Linear Constraints

Linear Constraints

1 -5.551E-16 : ACT 0 == + 1.0000 * amounta + 1.0000 * amountb
- 1.0000 * pooltox - 1.0000 * pooltoy

2 -2.22E-16 : ACT 0 == - 1.0000 * amountx + 1.0000 * pooltox
+ 1.0000 * ctox

3 1.1102E-16 : ACT 0 == - 1.0000 * amounty + 1.0000 * pooltoy
+ 1.0000 * ctoy

4 0 : ACT 0 == - 1.0000 * amountc + 1.0000 * ctox
+ 1.0000 * ctoy

Output 6.7.3. Nonlinear Constraints

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[5] nlc3 0 0 4.9441 Active NLEC
[6] nlc1_G 0.6818 0.6818 .
[7] nlc2_G -0.6818 -0.6818 -9.8046 Violat. NLIC

Output 6.7.4 shows the settings of some important PROC NLP options.

Output 6.7.4. Options

PROC NLP: Nonlinear Maximization

Minimum Iterations 0
Maximum Iterations 200
Maximum Function Calls 500
Iterations Reducing Constraint Violation 20
ABSGCONV Gradient Criterion 0.00001
GCONV Gradient Criterion 1E-8
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion 1.340781E154
Line Search Method 2
Starting Alpha for Line Search 1
Line Search Precision LSPRECISION 0.4
DAMPSTEP Parameter for Line Search .
FD Derivatives: Accurate Digits in Obj.F 15.653559775
FD Derivatives: Accurate Digits in NLCon 15.653559775
Singularity Tolerance (SINGULAR) 1E-8
Constraint Precision (LCEPS) 1E-8
Linearly Dependent Constraints (LCSING) 1E-8
Releasing Active Constraints (LCDEACT) .

The iteration history, given in Output 6.7.5, does not show any problems.

Example 6.7. Simple Pooling Problem � 635

Output 6.7.5. Iteration History

PROC NLP: Nonlinear Maximization

Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Maximum
Gradient
Element

Maximum Predicted of the
Function Objective Constraint Function Step Lagrange

Iter Restarts Calls Function Violation Reduction Size Function

1 0 19 -1.42400 0.00962 6.9131 1.000 0.783
2’ 0 20 2.77026 0.0166 5.3770 1.000 2.629
3 0 21 7.08706 0.1409 7.1965 1.000 9.452
4’ 0 22 11.41264 0.0583 15.5771 1.000 23.390
5’ 0 23 24.84630 1.78E-15 496.1 1.000 147.6
6 0 24 378.22995 147.4 3316.6 1.000 840.4
7’ 0 25 307.56908 50.9348 607.9 1.000 27.143
8’ 0 26 347.24557 1.8330 21.9896 1.000 28.483
9’ 0 27 349.49342 0.00915 7.1838 1.000 28.291

10’ 0 28 356.58483 0.1084 50.2539 1.000 27.480
11’ 0 29 388.70516 2.4275 24.7951 1.000 21.114
12’ 0 30 389.29922 0.0157 10.0489 1.000 18.648
13’ 0 31 399.19185 0.7999 11.1897 1.000 0.416
14’ 0 32 400.00000 0.0128 0.1535 1.000 0.00087
15’ 0 33 400.00000 7.38E-11 2.43E-10 1.000 366E-12

Optimization Results

Iterations 15 Function Calls 34
Gradient Calls 18 Active Constraints 10
Objective Function 400 Maximum Constraint 7.381118E-11

Violation
Maximum Projected Gradient 0 Value Lagrange Function -400
Maximum Gradient of the 3.552714E-14 Slope of Search Direction -2.43495E-10
Lagran Func

FCONV2 convergence criterion satisfied.

The optimal solution in Output 6.7.6 shows that to obtain the maximum profit of
$400, you need only to produce the maximum 200 units of blending Y and no units
of blending X .

636 � Chapter 6. The NLP Procedure

Output 6.7.6. Optimization Solution

Optimization Results
Parameter Estimates

Gradient Gradient Active
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx -1.40483E-11 9.000000 0 Lower BC
2 amounty 200.000000 15.000000 8.881784E-16 Upper BC
3 amounta 5.484612E-16 -6.000000 0 Lower BC
4 amountb 100.000000 -16.000000 -5.32907E-15
5 amountc 100.000000 -10.000000 -1.77636E-15
6 pooltox 7.024625E-12 0 0 Lower BC
7 pooltoy 100.000000 0 -1.42109E-14
8 ctox -2.10729E-11 0 0 Lower BC LinDep
9 ctoy 100.000000 0 -1.77636E-15
10 pools 1.000000 0 3.552714E-14 Lower BC LinDep

Value of Objective Function = 400

Value of Lagrange Function = 400

The constraints are satisfied at the solution, as shown in Output 6.7.7

Output 6.7.7. Linear and Nonlinear Constraints at the Solution

Linear Constraints Evaluated at Solution

1 ACT 0 = 0 + 1.0000 * amounta + 1.0000 * amountb
- 1.0000 * pooltox - 1.0000 * pooltoy

2 ACT 2.6603E-17 = 0 - 1.0000 * amountx + 1.0000 * pooltox
+ 1.0000 * ctox

3 ACT 0 = 0 - 1.0000 * amounty + 1.0000 * pooltoy
+ 1.0000 * ctoy

4 ACT 0 = 0 - 1.0000 * amountc + 1.0000 * ctox
+ 1.0000 * ctoy

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[5] nlc3 1.1E-15 1.1E-15 6.0000 Active NLEC
[6] nlc1_G 4.18E-16 4.18E-16 . Active NLIC LinDep
[7] nlc2_G 0 0 -6.0000 Active NLIC

Linearly Dependent Active Boundary Constraints

Parameter N Kind

ctox 8 Lower BC
pools 10 Lower BC

Linearly Dependent Gradients of Active Nonlinear Constraints

Parameter N

nlc3 6

Example 6.7. Simple Pooling Problem � 637

The same problem can be specified in many different ways. For example, the follow-
ing specification uses an INEST= data set containing the values of the starting point
and of the constants COST, COSTB, COSTC, COSTX, COSTY, CA, CB, CC, and
CD:

data init1(type=est);
input _type_ $ amountx amounty amounta amountb

amountc pooltox pooltoy ctox ctoy pools
rhs costa costb costc costx costy
ca cb cc cd;

datalines;
parms 1 1 1 1 1 1 1 1 1 1

. 6 16 10 9 15 2.5 1.5 2. 3.
;

proc nlp inest=init1 all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = ca * amountx - pools * pooltox - cc * ctox;
nlc2 = cb * amounty - pools * pooltoy - cc * ctoy;
nlc3 = cd * amounta + amountb - pools * (amounta + amountb);

run;

The third specification uses an INEST= data set containing the boundary and linear
constraints in addition to the values of the starting point and of the constants. This
specification also writes the model specification into an OUTMOD= data set:

data init2(type=est);
input _type_ $ amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools
rhs costa costb costc costx costy;

datalines;
parms 1 1 1 1 1 1 1 1 1 1

. 6 16 10 9 15 2.5 1.5 2 3
lowerbd 0 0 0 0 0 0 0 0 0 1

.
upperbd 100 200 3

.

638 � Chapter 6. The NLP Procedure

eq . . 1 1 . -1 -1 . . .
0

eq 1 -1 . -1 . .
0

eq . 1 -1 . -1 .
0

eq 1 . . -1 -1 .
0

;

proc nlp inest=init2 outmod=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,

nlc3 = 0.;
max f;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

The fourth specification not only reads the INEST=INIT2 data set, it also uses the
model specification from the MODEL data set that was generated in the last specifi-
cation. The PROC NLP call now contains only the defining variable statements:

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,

nlc3 = 0.;
max f;

run;

All four specifications start with the same starting point of all variables equal to 1 and
generate the same results. However, there exist several local optima to this problem,
as is pointed out in Liebman et al. (1986, p. 130).

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy = 0,
pools = 2;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
run;

This starting point with all variables equal to 0 is accepted as a local solution with
profit = 0, which minimizes rather than maximizes the profit.

Example 6.8. Chemical Equilibrium � 639

Example 6.8. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming and
was taken originally from Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals sat-
isfying its chemical equilibrium state. The second law of thermodynamics implies
that a mixture of chemicals satisfies its chemical equilibrium state (at a constant tem-
perature and pressure) when the free energy of the mixture is reduced to a minimum.
Therefore the composition of the chemicals satisfying its chemical equilibrium state
can be found by minimizing the function of the free energy of the mixture.

Notation:

m number of chemical elements in the mixture
n number of compounds in the mixture
xj number of moles for compound j, j = 1, . . . , n
s total number of moles in the mixture (s =

∑n
i=1 xj)

aij number of atoms of element i in a molecule of compound j
bi atomic weight of element i in the mixture

Constraints for the Mixture:

• The number of moles must be positive:

xj > 0, j = 1, . . . , n

• There are m mass balance relationships,

n∑
j=1

aijxj = bi, i = 1, . . . ,m

Objective Function: Total Free Energy of Mixture

f(x) =
n∑

j=1

xj

[
cj + ln

(xj

s

)]
with

cj =
(

F ◦

RT

)
j

+ lnP

where F ◦/RT is the model standard free energy function for the jth compound
(found in tables) and P is the total pressure in atmospheres.

640 � Chapter 6. The NLP Procedure

Minimization Problem:

Determine the parameters xj that minimize the objective function f(x) subject to the
nonnegativity and linear balance constraints.

Numeric Example:

Determine the equilibrium composition of compound 1
2N2H4 + 1

2O2 at temperature
T = 3500◦K and pressure P = 750psi.

aij

i = 1 i = 2 i = 3
j Compound (F ◦/RT)j cj H N O

1 H -10.021 -6.089 1
2 H2 -21.096 -17.164 2
3 H2O -37.986 -34.054 2 1
4 N -9.846 -5.914 1
5 N2 -28.653 -24.721 2
6 NH -18.918 -14.986 1 1
7 NO -28.032 -24.100 1 1
8 O -14.640 -10.708 1
9 O2 -30.594 -26.662 2

10 OH -26.111 -22.179 1 1

Example Specification:

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
end;

run;

Displayed Output:

The iteration history given in Output 6.8.1 does not show any problems.

Example 6.8. Chemical Equilibrium � 641

Output 6.8.1. Iteration History

Trust Region Optimization

Without Parameter Scaling

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 3’ -47.33412 2.2790 6.0765 2.456 1.000
2 0 3 3’ -47.70043 0.3663 8.5592 0.908 0.418
3 0 4 3 -47.73074 0.0303 6.4942 0 0.359
4 0 5 3 -47.73275 0.00201 4.7606 0 0.118
5 0 6 3 -47.73554 0.00279 3.2125 0 0.0168
6 0 7 3 -47.74223 0.00669 1.9552 110.6 0.00271
7 0 8 3 -47.75048 0.00825 1.1157 102.9 0.00563
8 0 9 3 -47.75876 0.00828 0.4165 3.787 0.0116
9 0 10 3 -47.76101 0.00224 0.0716 0 0.0121
10 0 11 3 -47.76109 0.000083 0.00238 0 0.0111
11 0 12 3 -47.76109 9.609E-8 2.733E-6 0 0.00248

Optimization Results

Iterations 11 Function Calls 13
Hessian Calls 12 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient Element 1.8637498E-6
Lambda 0 Actual Over Pred Change 0
Radius 0.0024776027

GCONV convergence criterion satisfied.

Output 6.8.2 lists the optimal parameters with the gradient.

Output 6.8.2. Optimization Results

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 0.040668 -9.785055
2 x2 0.147730 -19.570110
3 x3 0.783153 -34.792170
4 x4 0.001414 -12.968921
5 x5 0.485247 -25.937841
6 x6 0.000693 -22.753976
7 x7 0.027399 -28.190984
8 x8 0.017947 -15.222060
9 x9 0.037314 -30.444120
10 x10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution, as shown in Output 6.8.3.

642 � Chapter 6. The NLP Procedure

Output 6.8.3. Linear Constraints at Solution

PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution

1 ACT 6.9389E-17 = 2.0000 - 1.0000 * x1 - 2.0000 * x2 -
2.0000 * x3 - 1.0000 * x6 - 1.0000 * x10

2 ACT -4.337E-16 = 1.0000 - 1.0000 * x4 - 2.0000 * x5 -
1.0000 * x6 - 1.0000 * x7

3 ACT -4.163E-17 = 1.0000 - 1.0000 * x3 - 1.0000 * x7 -
1.0000 * x8 - 2.0000 * x9 - 1.0000 * x10

The Lagrange multipliers are given in Output 6.8.4.

Output 6.8.4. Lagrange Multipliers

PROC NLP: Nonlinear Minimization

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Linear EC [1] 9.785055
Linear EC [2] 12.968921
Linear EC [3] 15.222060

The elements of the projected gradient must be small to satisfy a necessary first-order
optimality condition. The projected gradient is given in Output 6.8.5

Output 6.8.5. Projected Gradient

PROC NLP: Nonlinear Minimization

Projected Gradient

Free Projected
Dimension Gradient

1 4.577009E-9
2 6.86833E-10
3 -7.283021E-9
4 -0.000001864
5 -0.000001434
6 -0.000001361
7 -0.000000294

The projected Hessian matrix shown in Output 6.8.6 is positive definite, satisfying
the second-order optimality condition.

Example 6.8. Chemical Equilibrium � 643

Output 6.8.6. Projected Hessian Matrix

Projected Hessian Matrix

X1 X2 X3 X4

X1 20.903196985 -0.122067474 2.6480263467 3.3439156526
X2 -0.122067474 565.97299938 106.54631863 -83.7084843
X3 2.6480263467 106.54631863 1052.3567179 -115.230587
X4 3.3439156526 -83.7084843 -115.230587 37.529977667
X5 -1.373829641 -37.43971036 182.89278895 -4.621642366
X6 -1.491808185 -36.20703737 175.97949593 -4.574152161
X7 1.1462413516 -16.635529 -57.04158208 10.306551561

Projected Hessian Matrix

X5 X6 X7

X1 -1.373829641 -1.491808185 1.1462413516
X2 -37.43971036 -36.20703737 -16.635529
X3 182.89278895 175.97949593 -57.04158208
X4 -4.621642366 -4.574152161 10.306551561
X5 79.326057844 22.960487404 -12.69831637
X6 22.960487404 66.669897023 -8.121228758
X7 -12.69831637 -8.121228758 14.690478023

The following PROC NLP call uses a specified analytical gradient and the Hessian
matrix is computed by finite-difference approximations based on the analytic gradi-
ent:

proc nlp tech=tr fdhessian all;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
array g[10] g1-g10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
g[j] = c[j] + log(x[j] / s);

end;
run;

The results are almost identical to those of the previous run.

644 � Chapter 6. The NLP Procedure

Example 6.9. Minimize Total Delay in a Network

The following example is taken from the user’s guide of GINO (Liebman et al. 1986).
A simple network of five roads (arcs) can be illustrated by the path diagram:

i1
i2

i3
i4F - �

�
���

@
@

@@R

6

�
�

���

@
@

@@R - F

Figure 6.11. Simple Road Network

The five roads connect four intersections illustrated by numbered nodes. Each minute
F vehicles enter and leave the network. Arc (i, j) refers to the road from intersection
i to intersection j, and the parameter xij refers to the flow from i to j. The law that
traffic flowing into each intersection j must also flow out is described by the linear
equality constraint ∑

i

xij =
∑

i

xji , j = 1, . . . , n

In general, roads also have an upper capacity, which is the number of vehicles which
can be handled per minute. The upper limits cij can be enforced by boundary con-
straints

0 ≤ xij ≤ cij , i, j = 1, . . . , n

Finding the maximum flow through a network is equivalent to solving a simple linear
optimization problem, and for large problems, PROC LP or PROC NETFLOW can
be used. The objective function is

max f = x24 + x34

and the constraints are
0 ≤ x12, x32, x34 ≤ 10

0 ≤ x13, x24 ≤ 30

x13 = x32 + x34

x12 + x32 = x24

x12 + x13 = x24 + x34

Example 6.9. Minimize Total Delay in a Network � 645

The three linear equality constraints are linearly dependent. One of them is deleted
automatically by the PROC NLP subroutines. Even though the default technique is
used for this small example, any optimization subroutine can be used.

proc nlp all initial=.5;
max y;
parms x12 x13 x32 x24 x34;
bounds x12 <= 10,

x13 <= 30,
x32 <= 10,
x24 <= 30,
x34 <= 10;

/* what flows into an intersection must flow out */
lincon x13 = x32 + x34,

x12 + x32 = x24,
x24 + x34 = x12 + x13;

y = x24 + x34 + 0*x12 + 0*x13 + 0*x32;
run;

The iteration history is given in Output 6.9.1, and the optimal solution is given in
Output 6.9.2.

Output 6.9.1. Iteration History

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Ridge Change

1* 0 2 4 20.25000 19.2500 0.5774 0.0313 0.860
2* 0 3 5 30.00000 9.7500 0 0.0313 1.683

Optimization Results

Iterations 2 Function Calls 4
Hessian Calls 3 Active Constraints 5
Objective Function 30 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.6834532374

All parameters are actively constrained. Optimization cannot proceed.

646 � Chapter 6. The NLP Procedure

Output 6.9.2. Optimization Results

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x12 10.000000 0 Upper BC
2 x13 20.000000 0
3 x32 10.000000 0 Upper BC
4 x24 20.000000 1.000000
5 x34 10.000000 1.000000 Upper BC

Value of Objective Function = 30

Finding a traffic pattern that minimizes the total delay to move F vehicles per minute
from node 1 to node 4 introduces nonlinearities that, in turn, demand nonlinear op-
timization techniques. As traffic volume increases, speed decreases. Let tij be the
travel time on arc (i, j) and assume that the following formulas describe the travel
time as decreasing functions of the amount of traffic:

t12 = 5 + 0.1x12/(1− x12/10)

t13 = x13/(1− x13/30)

t32 = 1 + x32/(1− x32/10)

t24 = x24/(1− x24/30)

t34 = 5 + .1x34/(1− x34/10)

These formulas use the road capacities (upper bounds), assuming F = 5 vehicles per
minute have to be moved through the network. The objective function is now

min f = t12x12 + t13x13 + t32x32 + t24x24 + t34x34

and the constraints are
0 ≤ x12, x32, x34 ≤ 10

0 ≤ x13, x24 ≤ 30

x13 = x32 + x34

x12 + x32 = x24

x24 + x34 = F = 5

Again, the default algorithm is used:

proc nlp all initial=.5;
min y;
parms x12 x13 x32 x24 x34;
bounds x12 x13 x32 x24 x34 >= 0;

Example 6.9. Minimize Total Delay in a Network � 647

lincon x13 = x32 + x34, /* flow in = flow out */
x12 + x32 = x24,
x24 + x34 = 5; /* = f = desired flow */

t12 = 5 + .1 * x12 / (1 - x12 / 10);
t13 = x13 / (1 - x13 / 30);
t32 = 1 + x32 / (1 - x32 / 10);
t24 = x24 / (1 - x24 / 30);
t34 = 5 + .1 * x34 / (1 - x34 / 10);
y = t12*x12 + t13*x13 + t32*x32 + t24*x24 + t34*x34;

run;

The iteration history is given in Output 6.9.3, and the optimal solution is given in
Output 6.9.4.

Output 6.9.3. Iteration History

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Ridge Change

1 0 2 4 40.30303 0.3433 1.23E-16 0 0.508

Optimization Results

Iterations 1 Function Calls 3
Hessian Calls 2 Active Constraints 4
Objective Function 40.303030303 Max Abs Gradient Element 1.233822E-16
Ridge 0 Actual Over Pred Change 0.5083585587

ABSGCONV convergence criterion satisfied.

Output 6.9.4. Opimization Results

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x12 2.500000 5.777778
2 x13 2.500000 5.702479
3 x32 2.036945E-17 1.000000 Lower BC
4 x24 2.500000 5.702479
5 x34 2.500000 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are
given in Output 6.9.5 and Output 6.9.6, respectively.

648 � Chapter 6. The NLP Procedure

Output 6.9.5. Linear Constraints at Solution

PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution

1 ACT -8.882E-16 = 0 + 1.0000 * x13 - 1.0000 * x32 -
1.0000 * x34

2 ACT 0 = 0 + 1.0000 * x12 + 1.0000 * x32 -
1.0000 * x24

3 ACT 1.7764E-15 = -5.0000 + 1.0000 * x24 + 1.0000 * x34

Output 6.9.6. Lagrange Multipliers at Solution

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Lower BC x32 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777778
Linear EC [3] 11.480257

Output 6.9.7 shows that the projected gradient is very small, satisfying the first-order
optimality criterion.

Output 6.9.7. Projected Gradient at Solution

Projected Gradient

Free Projected
Dimension Gradient

1 1.233822E-16

The projected Hessian matrix (shown in Output 6.9.8) is positive definite, satisfying
the second-order optimality criterion.

Output 6.9.8. Projected Hessian at Solution

Projected Hessian
Matrix

X1

X1 1.535309013

References � 649

References
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions,

New York: Dover Publications, Inc.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least
Squares,” Journal of the Operations Research Society, 36, 405–421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least
Squares,” Journal of Optimization Theory and Applications, 48, 359–377.

Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press, Inc.

Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in F. A. Lootsma, ed.,
“Numerical Methods for Nonlinear Optimization,” London: Academic Press.

Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming,”
Journal of Optimization Theory and Applications, 21, 137–174.

Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear
Programming, New York: John Wiley & Sons, Inc.

Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., and Pedersen, H. C. (1982),
“The Watchdog Technique for Forcing Convergence in Algorithms for Constrained
Optimization,” Mathematical Programming, 16, 1–17.

Cramer, J. S. (1986), Econometric Applications of Maximum Likelihood Methods,
Cambridge, England: Cambridge University Press.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-
Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.

Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization
Algorithms which Use Function and Gradient Values,” Journal of Optimization
Theory Applications, 28, 453–482.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood, New Jersey: Prentice-Hall.

Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New
Modified Cholesky Factorization,” ACM Transactions on Mathematical Software,
17, 306–312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester:
John Wiley & Sons, Inc.

Fletcher, R. and Powell, M. J. D. (1963), “A Rapidly Convergent Descent Method for
Minimization,” Computer Journal, 6, 163–168.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,”
Journal of Numerical Analysis, 7, 371–389.

650 � Chapter 6. The NLP Procedure

Gallant, A. R. (1987), Nonlinear Statistical Models, New York: John Wiley and Sons,
Inc.

Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM
Transactions on Mathematical Software, 9, 503–524.

George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive
Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1983), “Computing
Forward-Difference Intervals for Numerical Optimization,” SIAM J. Sci. Stat.
Comput., 4, 310–321.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), “Procedures for
Optimization Problems with a Mixture of Bounds and General Linear Constraints,”
ACM Transactions on Mathematical Software, 10, 282–298.

Gill, E. P., Murray, W., and Wright, M. H. (1981), Practical Optimization, New York:
Academic Press Inc.

Goldfeld, S. M., Quandt, R. E., and Trotter, H. F. (1966), “Maximisation by Quadratic
Hill-Climbing,” Econometrica, 34, 541–551.

Hambleton, R. K., Swaminathan, H., and Rogers, H. J. (1991), Fundamentals of Item
Response Theory, Newbury Park, CA: Sage Publications.

Hartmann, W. (1992a), Applications of Nonlinear Optimization with PROC NLP and
SAS/IML Software, Technical report, SAS Institute Inc, Cary, N.C.

Hartmann, W. (1992b), Nonlinear Optimization in IML, Releases 6.08, 6.09, 6.10,
Technical report, SAS Institute Inc, Cary, N.C.

Haverly, C. A. (1978), “Studies of the Behavior of Recursion for the Pooling
Problem,” SIGMAP Bulletin, Association for Computing Machinery.

Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems 187, Berlin-
Heidelberg-New York: Springer-Verlag.

Jennrich, R. I. and Sampson, P. F. (1968), “Application of Stepwise Regression to
Nonlinear Estimation,” Technometrics, 10, 63–72.

Lawless, J. F. (1982), Statistical Methods and Methods for Lifetime Data, New York:
John Wiley & Sons, Inc.

Liebman, J., Lasdon, L., Schrage, L., and Waren, A. (1986), Modeling and
Optimization with GINO, California: The Scientific Press.

Lindström, P. and Wedin, P. A. (1984), “A New Line-Search Algorithm for Nonlinear
Least-Squares Problems,” Mathematical Programming, 29, 268–296.

Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” in G. A. Watson, ed., “Lecture Notes in Mathematics,” Vol. 30, 105–116,
Berlin-Heidelberg-New York: Springer-Verlag.

References � 651

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981), “Testing Unconstrained
Optimization Software,” ACM Trans. Math. Software, 7, 17–41.

Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM J.
Sci. Stat. Comput., 4, 553–572.

Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia:
SIAM.

Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User’s Guide, Technical
Report SOL 83-20, Stanford University.

Nelder, J. A. and Mead, R. (1965), “A Simplex Method for Function Minimization,”
Computer Journal, 7, 308–313.

Polak, E. (1971), Computational Methods in Optimization, New York - San Francisco
- London: Academic Press.

Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

Powell, M. J. D. (1978a), “Algorithms for Nonlinear Constraints that use Lagrangian
Functions,” Mathematical Programming, 14, 224–248.

Powell, M. J. D. (1978b), “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” in G. A. Watson, ed., “Lecture Notes in Mathematics,”
Vol. 630, 144–175, Berlin-Heidelberg-New York: Springer-Verlag.

Powell, M. J. D. (1982a), “Extensions to Subroutine VF02AD,” in R. F. Drenick and
F. Kozin, eds., “Systems Modeling and Optimization, Lecture Notes in Control and
Information Sciences,” Vol. 38, 529–538, Berlin-Heidelberg-New York: Springer-
Verlag.

Powell, M. J. D. (1982b), “VMCWD: A Fortran Subroutine for Constrained
Optimization,” DAMTP 1982/NA4, Cambridge, England.

Powell, M. J. D. (1992), “A Direct Search Optimization Method that Models
the Objective and Constraint Functions by Linear Interpolation,” DAMTP/NA5,
Cambridge, England.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,” Computer Journal, 3, 175–184.

Schittkowski, K. (1980), “Nonlinear Programming Codes - Information, Tests,
Performance,” Lecture Notes in Economics and Mathematical Systems, 183,
Berlin–Heidelberg–New York: Springer Verlag.

Schittkowski, K. (1987), “More Test Examples for Nonlinear Programming Codes,”
Lecture Notes in Economics and Mathematical Systems, 282, Berlin–Heidelberg–
New York: Springer Verlag.

Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solution of
Constrained Linear Least Squares Problems Allowing Subsequent Data Changes,”
Numer. Math., 31, 431–463.

652 � Chapter 6. The NLP Procedure

Stewart, G. W. (1967), “A Modification of Davidon’s Minimization Method to Accept
Difference Approximations of Derivatives,” J. Assoc. Comput. Mach., 14, 72–83.

Wedin, P. A. and Lindström, P. (1987), Methods and Software for Nonlinear Least
Squares Problems, University of Umea, Report No. UMINF 133.87.

Whitaker, D., Triggs, C. M., and John, J. A. (1990), “Construction of Block Designs
using Mathematical Programming,” J. R. Statist. Soc. B, 52, 497–503.

Wolfe, P. (1982), “Checking the Calculation of Gradients,” ACM Transactions on
Mathematical Software, 8, 337–343.

Chapter 7
The QP Procedure (Experimental)

Chapter Contents

OVERVIEW . 655

QUADRATIC PROGRAMMING PROBLEMS 656
The Interior Point Algorithm . 657
Getting Started: QP Problems . 658
Introductory QP Example . 659
Typical PROC QP Run: QP Problems . 666
Syntax: QP Problems . 667
Functional Summary: QP Problems . 668
PROC QP Statement: QP Problems . 669
COEF Statement: QP Problems . 675
COLUMN Statement: QP Problems . 675
HESSIANCOEF Statement . 676
HESSIANCOLUMN Statement . 676
HESSIANROW Statement . 676
ID Statement: QP Problems . 677
LO Statement: QP Problems . 677
NAME Statement: QP Problems . 677
OBJFN Statement . 678
QUIT Statement . 678
RHS Statement . 678
ROW Statement . 678
RUN Statement . 679
TYPE Statement . 679
UPPERBD Statement . 680
VAR Statement . 681

QUADRATIC NETWORK PROBLEMS WITH SIDE CONSTRAINTS . . 681
Network Models . 683
Getting Started: QNPSC Problems . 690
Introductory QNPSC Example . 692
Typical PROC QP Run: QNPSC Problems 697
Syntax: QNPSC Problems . 699
Functional Summary: QNPSC Problems 700
PROC QP Statement: QNPSC Problems 701
CAPACITY Statement . 709

654 � Chapter 7. The QP Procedure (Experimental)

COEF Statement: QNPSC Problems . 709
COLUMN Statement: QNPSC Problems 709
COST Statement . 710
DEMAND Statement . 710
HEADNODE Statement . 710
ID Statement: QNPSC Problems . 711
LO Statement: QNPSC Problems . 711
NAME Statement: QNPSC Problems . 711
NODE Statement . 712
SUPDEM Statement . 712
SUPPLY Statement . 712
TAILNODE Statement . 713

DETAILS . 713
Input Data Sets . 713
Output Data Set . 723
Case Sensitivity . 724
Loop Arcs . 725
Multiple Arcs . 725
Flow and Value Bounds . 725
Tightening Bounds and Side Constraints 726
Reasons for Infeasibility . 726
Missing S Supply and Missing D Demand Values 727
Balancing Total Supply and Total Demand 731
How to Make the Data Read of PROC QP More Efficient 732

EXAMPLES . 738
Example 7.1. Dense Format in CONDATA 738
Example 7.2. Dense Format in CONDATA and a VARDATA Is Used 740
Example 7.3. Sparse Format in CONDATA 741
Example 7.4. Another Sparse Format in CONDATA and a VARDATA Is Used742
Example 7.5. A QP Problem with a Network Component 743
Example 7.6. Equivalent Nonnetwork QP Problem 745
Example 7.7. An Unnamed Arc Has Data in the Hessian 747
Example 7.8. A Named Arc Has Data in the Hessian 748

REFERENCES . 749

Chapter 7
The QP Procedure (Experimental)
Overview

The QP procedure solves the Quadratic Programming (QP) problem, defined in the
“Quadratic Programming Problems” section on page 656, and the Quadratic Network
Problem with Side Constraints (QNPSC), defined in the “Quadratic Network
Problems with Side Constraints” section on page 681. This chapter is therefore di-
vided into two parts:

1. Using the QP procedure to solve QP problems.

2. Using the QP procedure to solve QNPSC problems. While many of your prob-
lems may be best formulated as QP problems, there may be other instances
when your problems are better formulated as QNPSC problems. After it reads
the QNPSC data, PROC QP converts the problem into an equivalent QP prob-
lem, performs interior point optimization, and converts the solution back into a
form you can use as the optimum to the original QNPSC model.

QP and QNPSC models can be used to describe a wide variety of real-world prob-
lems, ranging from production, inventory, and distribution problems to financial ap-
plications.

If you are already familiar with using PROC INTPOINT to solve linear NPSC and
LP problems, using PROC QP to solve QNPSC and QP problems is similar; the only
difference in the required data is that data for a Hessian matrix is supplied in an
additional input SAS data set.

Whether your problem is QP or QNPSC, PROC QP uses the same optimization al-
gorithm, the interior point algorithm. This algorithm is outlined in the section “The
Interior Point Algorithm” beginning on page 657.

The remainder of this chapter is organized as follows:

• When using PROC QP to solve QP problems:

– The “Quadratic Programming Problems” section on page 656 defines a
QP problem. The section “The Interior Point Algorithm” on page 657
gives brief details about the interior point algorithm used in PROC QP.

– The “Getting Started: QP Problems” section on page 658 describes the
data required by PROC QP to specify a QP problem. The “Introductory
QP Example” section on page 659 illustrates the SAS code to set up the
data and solve a sample QP problem.

– The “Typical PROC QP Run: QP Problems” section on page 666 de-
scribes more generally how to use the QP procedure to solve QP prob-
lems.

656 � Chapter 7. The QP Procedure (Experimental)

– The “Syntax: QP Problems” section beginning on page 667 describes all
the statements and options of PROC QP when solving QP problems.

• When using PROC QP to solve QNPSC problems:

– The “Quadratic Network Problems with Side Constraints” section on
page 681 defines a QNPSC problem.

– The “Network Models” section on page 683 describes several network
models, such as Production, Inventory, and Distribution (Supply Chain)
Problems, network models with flows through arcs that must be in
some proportion to flow through other arcs, network models with blend-
ing constraints, and multicommodity problems. The “Large Modeling
Strategies” section on page 688 gives hints about how large models
should be constructed. Advantages of QNPSC problems are described
in the “Advantages of Network Models over QP Models” section on page
689, and flow conservation constraints and nonarc variables are also de-
scribed.

– The “Getting Started: QNPSC Problems” section on page 690 describes
the data required by PROC QP to specify a QNPSC problem. The
“Introductory QNPSC Example” section on page 692 illustrates the SAS
code to set up the data and solve a sample QNPSC problem.

– The “Typical PROC QP Run: QNPSC Problems” section on page 697
describes more generally how to use the QP procedure to solve QNPSC
problems.

– The “Syntax: QNPSC Problems” section beginning on page 699 de-
scribes all the statements and options of PROC QP when solving QNPSC
problems.

• The “Details” section on page 713 contains detailed explanations, descriptions,
and advice on the use and behavior of the procedure.

• PROC QP is demonstrated by solving several examples in the “Examples” sec-
tion beginning on page 738.

For the most recent updates to the documentation for this experimental pro-
cedure, see the Statistics and Operations Research Documentation page at
http://support.sas.com/rnd/app/doc.html.

Quadratic Programming Problems
A quadratic programming (QP) problem has a quadratic objective function and a
collection of linear constraints. PROC QP finds the values of variables that minimize
the total cost of the solution. The value of each variable is at or between the variable’s
lower and upper bounds, and the constraints are satisfied.

The Interior Point Algorithm � 657

If a QP has g variables and k constraints, then the formal statement of the problem
solved by PROC QP is

minimize 1
2xT Hx + cT x

subject to Qx {≥,=,≤} r (QP)
l ≤ x ≤ u

where

• H is the g × g Hessian matrix (positive semi-definite)

• c is the g × 1 variable objective function coefficient vector

• x is the g × 1 variable value vector

• Q is the k × g constraint coefficient matrix for the variables, where Qi,j is the
coefficient of variable j in the ith constraint

• r is the k × 1 constraint right-hand-side vector

• l is the g × 1 variable lower bound vector

• u is the g × 1 variable upper bound vector

The Interior Point Algorithm

There are many variations of interior point algorithms. PROC QP uses the Primal-
Dual with Predictor-Corrector algorithm. More information on this particular algo-
rithm and related theory can be found in the texts by Roos, Terlaky, and Vial (1997),
Wright (1996), and Ye (1996).

The quadratic program to be solved is

minimize 1
2xT Hx + cT x

subject to A1x ≥ b1

A2x = b2

0 ≤ x ≤ u

This is the primal problem. The matrix Q has been separated into two matrices, A1

and A2, and the vector r has been separated into the corresponding vectors b1 and
b2. There has been a change of primal variable to transform the QP into one whose
variables have zero lower bounds.

There exists an equivalent problem, the dual problem, stated as

maximize −1
2xT Hx + yT

1 b1 + yT
2 b2 − zT

2 u

subject to Hx + c−AT
1 y1 −AT

2 y2 − z1 + z2 = 0
y1, z1, z2 ≥ 0

where y1 and y2 are dual variables, and z1 and z2 handle dual constraint slack.

658 � Chapter 7. The QP Procedure (Experimental)

The interior point algorithm used by PROC QP utilizes Newton’s method, an iterative
process based on successive linearization of the quadratic system. At each iteration,
an indefinite system

[
H + D1 −AT

−AT D2

] [
x
y

]
=
[

α
β

]
or a positive-definite system of linear equations is solved.

The stopping criterion for the interior point method can be either an elimination of
the duality gap, or the following infeasibility measures:

• Primal infeasibility:

‖Ax− b‖
1 + ‖b‖

• Dual infeasibility:

‖Hx + c−AT y − z1 + z2‖
1 + ‖Hx + c‖

Getting Started: QP Problems

To solve QP problems using PROC QP, you save a representation of the QP variables
and the constraints in either two or three SAS data sets. These data sets are then
passed to PROC QP for solution. A problem’s data can take various forms. You can
use any one or a combination of several of these forms.

The VARDATA= data set can be used to specify information about QP variables,
including names, objective function coefficients, and lower and upper value bounds.
These data are the elements of the vectors c, l, and u in problem (QP). Data for a QP
variable can be given in more than one observation.

The CONDATA= data set describes the constraints and their right-hand sides. These
data are elements of the matrix Q and the vector r.

Constraint types are also specified in the CONDATA= data set. This data set can
include QP variable data such as upper bound values, lower value bounds, and objec-
tive function coefficients. It is possible to give all information about some or all QP
variables in the CONDATA= data set.

A QP variable is identified in this data set by its name. If you specify a QP variable’s
name in the VARDATA= data set, then this name is used to associate data in the
CONDATA= data set with that QP variable.

If you use the dense constraint input format (described in the “CONDATA= Data
Set” section on page 714), these QP variable names are names of SAS variables in
the VAR list of the CONDATA= data set.

Introductory QP Example � 659

If you use the sparse constraint input format (described in the “CONDATA= Data
Set” section on page 714), these QP variable names are values of the SAS variables
in the COLUMN list of the CONDATA= data set.

The HESSIAN= data set describes the Hessian matrix. These data are elements of
the H matrix. Each observation of the HESSIAN= data set provides data for an
element of the Hessian matrix. If there is a term 6xvar7xvar5 in the objective function,
then Hvar7,var5 = 6, and there will be an observation in the HESSIAN= data set
that has the value ‘var7’ for the HESSIANROW variable, the value ‘var5’ for the
HESSIANCOLUMN variable, and the value 6 for the HESSIANCOEF variable. The
Hessian matrix is symmetric so Hvar5,var7 = 6 also, and another observation of the
HESSIAN= data set could have values ‘var5’, ‘var7’, and 6 for the HESSIANROW,
HESSIANCOLUMN, and HESSIANCOEF variables, respectively. However, you
need only one of these observations; PROC QP will assume the existence of the
element’s symmetric pair.

Note that while data for a nondiagonal element of the H matrix corresponds ex-
actly to the term in the objective function, data for diagonal elements of H are dou-
bled. For the term 6xvar7xvar5 in the objective function, the nondiagonal element
Hvar7,var5 = Hvar5,var7 = 6, and the value 6 is used in the corresponding observa-
tion of the HESSIAN= data set. If there is a term 5x2

var4 in the objective function,
the diagonal element Hvar4,var4 = 10, and the value 10 is used in the corresponding
observation of the HESSIAN= data set. In that observation, both the HESSIANROW
and the HESSIANCOLUMN variables would have the value ‘var4’.

PROC QP reads the data from the VARDATA= data set (if there is one), the
CONDATA= data set, and the HESSIAN= data set, and error checking is performed.
The optimal solution is then found for the resulting QP. The solution can be saved in
the CONOUT= data set.

Data for a QP problem resembles the data for side constraints and nonarc variables
supplied to PROC QP when solving a QNPSC problem (see the “Quadratic Network
Problems with Side Constraints” section on page 681). It is also very similar to the
data required by the NETFLOW, INTPOINT, and LP procedures.

Introductory QP Example

Consider the linear programming problem in the section “An Introductory Example”
on page 192 of Chapter 4, “The LP Procedure.” The SAS data set in that section is
created the same way here:

title3 ’Setting Up Condata = dcon1 For PROC QP’;
data dcon1;

input _id_ $17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0

660 � Chapter 7. The QP Procedure (Experimental)

recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

Suppose the objective function is extended to contain the quadratic terms 4x2
naphthal+

3x2
naphthai + xnaphthalxnaphthai. Data for these terms are created with the following

data set:

data hessian;
format _hessrow $8. _hesscol $8.;
input _hessrow & _hesscol & _hescoef;
datalines;

naphthal naphthal -8.0
naphthai naphthai -6.0
naphthal naphthai -1.0
;

To solve this problem, use the following call to PROC QP.

proc qp
bytes=1000000
stop_dg=1e-6
condata=dcon1
hessian=hessian
conout=solutn1;
run;

Note how it is possible to use an input SAS data set of PROC LP along with a
HESSIAN= data set as input data sets for PROC QP.

The following messages that appear on the SAS log summarize the model as read by
PROC QP and note the progress toward a solution.

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: There are 3 diagonal and superdiagonal

elements in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.00584E-14
NOTE: Dual infeasibility 1.42730E-09
NOTE: Duality gap 3.96806E-07
NOTE: Objective= 811.35988031.
NOTE: The data set WORK.SOLUTN1 has 8 observations

and 5 variables.
NOTE: There were 3 observations read from the data

set WORK.HESSIAN.
NOTE: There were 7 observations read from the data

set WORK.DCON1.

Introductory QP Example � 661

Unlike PROC LP, which displays the solution and other information as output, PROC
QP saves the optimum in the output data set you specify. For this example, the so-
lution is saved in the SOLUTN1 data set. It can be displayed with PROC PRINT as
follows:

title3 ’QP Optimum’;
proc print data=solutn1;

run;

Notice that in the CONOUT=SOLUTN1 data set (Figure 7.1), the optimal value of
each variable in the QP is given in the variable named –VALUE– .

QP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 a_heavy 165 165 0 0.000
2 a_light 175 110 0 110.000
3 brega 205 80 0 0.000
4 heatingo 0 99999999 0 42.900
5 jet_1 -300 99999999 0 33.330
6 jet_2 -300 99999999 0 35.090
7 naphthai 0 99999999 0 11.000
8 naphthal 0 99999999 0 3.850

Figure 7.1. CONOUT=SOLUTN1

The same model can be specified in the sparse format as in the following scon2 data
set. This format enables you to omit the zero coefficients.

title3 ’Setting Up Condata = scon2 For PROC QP’;
data scon2;

format _type_ $8. _col_ $8. _row_ $16.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165

662 � Chapter 7. The QP Procedure (Experimental)

. brega profit -205

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. brega available 80

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 profit 300

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1
;

To find the maximum profit solution, invoke PROC QP with the following code. Note
that the SPARSECONDATA option must be specified.

proc qp
bytes=1000000
stop_dg=1e-6
sparsecondata
condata=scon2
hessian=hessian
conout=solutn2;
run;

You can also use PROC QP with a VARDATA= data set; for this example, the
VARDATA= is initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

The following CONDATA= data set is similar to the original dense format
CONDATA=dcon1 data set, but the QP variables’ nonconstraint information has
been removed, since this information is now present in the VARDATA=vars3
data set. Note that you could have left some or all of this information in the
CONDATA=dcon3 data set, as PROC QP merges data, but doing that and checking
for consistency takes time.

Introductory QP Example � 663

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

Note: Because the objective function information has been removed from the
CONDATA=dcon3 data set, you must specify the MAXIMIZE option; otherwise,
PROC QP will optimize to the minimum. You must also specify the OBJFN state-
ment to indicate that the objective function coefficients are stored in the variable profit
in the VARDATA=vars3 data set. The UPPERBD statement is used to specify that
the upper bounds are stored in the variable available.

proc qp
maximize /****** necessary ******/
bytes=1000000
stop_dg=1e-6
arcdata=vars3
condata=dcon3
hessian=hessian
conout=solutn3;

objfn profit;
upperbd available;
run;

The VARDATA=vars3 data set can be specified more concisely, because the model
variables heatingo, naphthai, and naphthal have zero objective function coefficients
(the default), and default upper bounds; therefore, these observations can be removed.

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

The CONDATA=dcon3 data can be specified more concisely, because all the con-
straints have the same type (eq) and zero (the default) right-hand-side values. This
model is a good candidate for the DEFCONTYPE= option.

The DEFCONTYPE= option can be useful not only when all constraints have the
same type, as is the case here, but also when most constraints have the same type and

664 � Chapter 7. The QP Procedure (Experimental)

you want to change the default type from ≤ to = or ≥. Any constraint type specified
in the CONDATA= data set overrides the DEFCONTYPE= type you have specified.

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc qp
maximize
bytes=1000000
stop_dg=1e-6
defcontype=eq
arcdata=vars3
condata=dcon3
hessian=hessian
conout=solutn3;

objfn profit;
upperbd available;
run;

There are several different ways of using the VARDATA= data set and a sparse format
CONDATA= data set for this QP. The following CONDATA= data set is the result
of removing the profit and availability (upper bound) data from the original sparse
format CONDATA=scon2 data set.

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430

Introductory QP Example � 665

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 recipe_1 -1

. jet_2 recipe_2 -1
;

proc qp
maximize
bytes=1000000
stop_dg=1e-6
sparsecondata
vardata=vars3 /* or vardata=vars4 */
condata=scon5
hessian=hessian
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can be specified more concisely, because all the con-
straints have the same type (eq) and zero (the default) right-hand-side values. Once
again, the DEFCONTYPE= option is used. After the first five observations of the
CONDATA=scon5 data set are removed, the –type– variable has values that are
missing in all of the remaining observations. Therefore, this variable can be removed,
resulting in the data set CONDATA=scon6.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

666 � Chapter 7. The QP Procedure (Experimental)

proc qp
maximize
bytes=1000000
stop_dg=1e-6
defcontype=eq
sparsecondata
vardata=vars4
condata=scon6
hessian=hessian
conout=solutn6;

objfn profit;
upperbd available;
run;

Typical PROC QP Run: QP Problems

You start PROC QP by giving the PROC QP statement. You can specify many options
in the PROC QP statement to control the procedure, or you can rely on default settings
and specify very few options. However, there are some options you must specify:

• You must specify the BYTES= parameter to indicate the size of the working
memory that the procedure is allowed to use. This option has no default.

• You must specify the VARDATA= data set if you are providing data in this
data set. This option has a default (the SAS data set that was created last before
PROC QP began running), but that may need to be overridden. If there is no
VARDATA= data set, and if the CONDATA= data set is not the data set created
last before calling PROC QP, then you must specify the VARDATA= data set
as the same data set that you specify with the CONDATA= option.

• The CONDATA= data set must be specified.

• The HESSIAN= data set must be specified. Note that the Hessian must be
positive semi-definite for minimization problems, and negative semi-definite
for maximization problems.

Some options are frequently required. To output the optimal solution to a SAS data
set, you must specify the CONOUT= option. You may want to indicate reasons why
optimization should stop (for example, you can indicate the maximum number of
iterations that can be performed), or you may want to alter stopping criteria so that
optimization does not stop prematurely. Some options enable you to control other
aspects of the interior point algorithm. Specifying certain values for these options
can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have variables in the input data
sets that have special names (for example, a variable in the VARDATA= data set
named –OBJFN– that has the linear component objective function coefficients as
values), it may not be necessary to have many or any variable lists. If you do not
specify an OBJFN variable list, PROC QP will search the VARDATA= data set for a
variable named –OBJFN– .

Syntax: QP Problems � 667

What usually follows is a RUN statement, which indicates that all information needed
by PROC QP has been given, and the procedure is to start running. This also happens
if you specify a statement in your SAS program that PROC QP does not recognize as
one of its own, or the next DATA step or procedure.

The QUIT statement indicates that PROC QP must immediately finish.

For example, a PROC QP run might look something like this:

proc qp
bytes= /* working memory size */
vardata= /* data set */
condata= /* data set */
hessian= /* data set */
/* other options */

;
variable list specifications; /* if necessary */
run; /* start running, read data, */

/* and do the optimization */

Syntax: QP Problems

The following statements are used in PROC QP when solving a QP problem, listed
in alphabetical order as they appear in the text that follows.

PROC QP options ;
COEF variables ;
COLUMN variable ;
HESSIANCOEF variable ;
HESSIANCOLUMN variable ;
HESSIANROW variable ;
ID variables ;
LO variable ;
NAME variable ;
OBJFN variable ;
QUIT;
RHS variable ;
ROW variables ;
RUN;
TYPE variable ;
UPPERBD variable ;
VAR variables ;

668 � Chapter 7. The QP Procedure (Experimental)

Functional Summary: QP Problems

Table 7.1 outlines the options that can be specified in the QP procedure when solving
a QP problem. All options are specified in the PROC QP statement.

Table 7.1. Functional Summary

Description Statement Option

Input Data Set Options:
variables input data set PROC QP VARDATA=
constraint input data set PROC QP CONDATA=
Hessian input data set PROC QP HESSIAN=

Output Data Set Option:
solution data set PROC QP CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC QP SPARSECONDATA
default constraint type PROC QP DEFCONTYPE=
special COLUMN variable value PROC QP TYPEOBS=
special COLUMN variable value PROC QP RHSOBS=
data for a constraint found once in CONDATA PROC QP CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC QP NON–REPLIC=
data for a variable found once in VARDATA PROC QP ARC–SINGLE–OBS
data is grouped, exploited during data read PROC QP GROUPED=

Problem Size Specification Options:
approximate number of variables PROC QP NNAS=
approximate number of coefficients PROC QP NCOEFS=
approximate number of constraints PROC QP NCONS=

Network Options:
default objective function coefficient PROC QP DEFCOST=
default QP variable upper bound PROC QP DEFCAPACITY=
default QP variable lower bound PROC QP DEFMINFLOW=

Memory Control Options:
issue memory usage messages to SAS log PROC QP MEMREP
number of bytes to use for main memory PROC QP BYTES=

Miscellaneous Options:
infinity value PROC QP INFINITY=
maximization instead of minimization PROC QP MAXIMIZE
zero tolerance, real number comparisons PROC QP ZEROTOL=
suppress similar SAS log messages PROC QP VERBOSE=
duality gap stopping criterion PROC QP STOP–DG=

PROC QP Statement: QP Problems � 669

PROC QP Statement: QP Problems

PROC QP options ;

This statement invokes the procedure. The following options can be specified in the
PROC QP statement. Details about the PROC QP statement for solving a QNPSC
problem are found in the “PROC QP Statement: QNPSC Problems” section on page
701.

Data Set Options: QP Problems

This section briefly describes all the input and output data sets used by PROC QP
when solving QP problems without a network component. The VARDATA= data set,
the CONDATA= data set, and the HESSIAN= data set can contain SAS variables that
have special names, for instance –UPPERBD, –OBJFN– , and –COLUMN– . PROC
QP looks for such variables if you do not give explicit variable list specifications. If
a SAS variable with a special name is found, and that SAS variable is not in another
variable list specification, PROC QP determines that values of the SAS variable are
to be interpreted in a special way. By using SAS variables that have special names,
you may not need to have any variable list specifications.

VARDATA=SAS-data-set
names the data set that contains QP variable information. When solving QP problems,
the VARDATA= data set is optional. You can specify QP variable information such
as objective function coefficients, and lower and upper bounds.

CONDATA=SAS-data-set
names the required data set that contains the constraint data. The data set can also
contain other data, such as QP variable upper and lower bounds and objective func-
tion coefficients. See the “CONDATA= Data Set” section on page 714 for more
information. Specific details about this option for QNPSC problems are given in the
“Data Set Options: QNPSC Problems” section on page 701.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal solution. See the “CONOUT= Data
Set” section on page 723 for more information.

HESSIAN=SAS-data-set
names the data set that describes the Hessian matrix. These data are elements of the
H matrix. See the “HESSIAN= Data Set” section on page 722 for more information.

General Options: QP Problems

The following is a list of options you can use with PROC QP when solving QP prob-
lems. The options are listed in alphabetical order.

ARC–SINGLE–OBS
indicates that for all QP variables, data for each QP variable is found in only one
observation of the VARDATA= data set. When reading the data in the VARDATA=
data set, PROC QP knows that the data in an observation is for a QP variable that
has not had data previously read and that needs to be checked for consistency. The

670 � Chapter 7. The QP Procedure (Experimental)

read might then be performed faster. See the section “How to Make the Data Read of
PROC QP More Efficient” on page 732 for details.

If you specify ARC–SINGLE–OBS, PROC QP automatically works as if
GROUPED=VARDATA is also specified.

Specific details about this option for QNPSC problems are given in the “General
Options: QNPSC Problems” section beginning on page 702.

BYTES=b
indicates the size of the main working memory (in bytes) that PROC QP will allocate.
This option is required; there is no default value. The working memory is used to
store all the arrays and buffers used by PROC QP. If this memory has a size smaller
than what is required to store all arrays and buffers, PROC QP uses various schemes
that page information between auxiliary memory (often your machine’s disk) and
RAM.

For small problems, specify BYTES=100000. For large problems (those with hun-
dreds of thousands or millions of variables), BYTES=1000000 might do. For solving
problems of that size, if you are running on a machine with an inadequate amount of
RAM, PROC QP’s performance will suffer since it will be forced to page or to rely
on virtual memory.

If you specify the MEMREP option, PROC QP will issue messages on the SAS log
informing you of its memory usage; that is, how much memory is required to prevent
paging, and details about the amount of paging that must be performed, if applicable.

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If the CONDATA= data set has a dense format, specifying CON–SINGLE–OBS indi-
cates that, for each constraint, data for the constraint is found in only one observation
of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each QP variable
can be found in only one observation of the CONDATA= data set, then specify the
CON–SINGLE–OBS option. If there are n SAS variables in the ROW and COEF
variable lists, then each QP variable can have at most n constraint coefficients in the
model. See the section “How to Make the Data Read of PROC QP More Efficient”
on page 732 for details.

Specific details about this option for QNPSC problems are given in the “General
Options: QNPSC Problems” section beginning on page 702.

DEFCAPACITY=c
DC=c

requests that the default QP variable value upper bound be c. If this option is not
specified, then DEFCAPACITY=INFINITY.

Specific details about this option for QNPSC problems are given in the “General
Options: QNPSC Problems” section beginning on page 702.

PROC QP Statement: QP Problems � 671

DEFCONTYPE=c
DEFTYPE=c
DCT=c

specifies the default constraint type. This default constraint type is either less than or
equal to or is the type indicated by DEFCONTYPE=c. Valid values for this option
are as follows:

LE, le, or <= for less than or equal to

EQ, eq, or = for equal to

GE, ge, or >= for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default QP variable objective function coefficient be c. If this option
is not specified, then DEFCOST=0.0. Specific details about this option for QNPSC
problems are given in the “General Options: QNPSC Problems” section beginning
on page 702.

DEFMINFLOW=m
DMF=m

requests that the default lower bound value of QP variables be m. If this option is not
specified, then DEFMINFLOW=0.0. Specific details about this option for QNPSC
problems are given in the “General Options: QNPSC Problems” section beginning
on page 702.

GROUPED=grouped
PROC QP can take a much shorter time to read data if the data have been grouped
prior to the PROC QP call. This enables PROC QP to conclude that, for instance, a
new NAME list variable value seen in the VARDATA= data set is new. PROC QP
does not need to check that the NAME has been read in a previous observation. See
the section “How to Make the Data Read of PROC QP More Efficient” on page 732
for details.

• GROUPED=VARDATA indicates that the VARDATA= data set has been
grouped by values of the NAME list variable. If –name– is the name of the
NAME list variable, you could use

proc sort data=vardata; by _name_;

prior to calling PROC QP. Technically, you do not have to sort the data, only to
ensure that all similar values of the NAME list variable are grouped together. If
you specify the ARC–SINGLE–OBS option, PROC QP automatically works
as if GROUPED=VARDATA is also specified.

• GROUPED=CONDATA indicates that the CONDATA= data set has been
grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indi-
cates that the CONDATA= data set has been grouped by values of the ROW
list variable. If –row– is the name of the ROW list variable, you could use

672 � Chapter 7. The QP Procedure (Experimental)

proc sort data=condata; by _row_;

prior to calling PROC QP. Technically, you do not have to sort the data, only
to ensure that all similar values of the ROW list variable are grouped together.
If you specify the CON–SINGLE–OBS option, or if there is no ROW list vari-
able, PROC QP automatically works as if GROUPED=CONDATA has been
specified.

If the CONDATA= data set has a sparse format, GROUPED=CONDATA indi-
cates that CONDATA has been grouped by values of the COLUMN list vari-
able. If –col– is the name of the COLUMN list variable, you could use

proc sort data=condata; by _col_;

prior to calling PROC QP. Technically, you do not have to sort the data, only
to ensure that all similar values of the COLUMN list variable are grouped to-
gether.

• GROUPED=BOTH indicates that both GROUPED=VARDATA and
GROUPED=CONDATA are TRUE.

• GROUPED=NONE indicates that the data sets have not been grouped,
that is, neither GROUPED=VARDATA nor GROUPED=CONDATA is
TRUE. This is the default, but it is much better if GROUPED=VARDATA,
GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When
PROC QP is reading the ith observation, either the value of the –XXXXX– variable is
the same as the (i− 1)st (that is, the previous observation’s) –XXXXX– value, or it is
a new –XXXXX– value not seen in any previous observation. This also means that if
the ith –XXXXX– value is different from the (i − 1)st –XXXXX– value, the value of
the (i− 1)st –XXXXX– variable will not be seen in any observations i, i + 1,

INFINITY=i
INF=i

specifies the largest number used by PROC QP in computations. A number too small
can adversely affect the solution process. You should avoid specifying an enormous
value for the INFINITY= option because numerical roundoff errors can result. If a
value is not specified, then INFINITY=999999. The INFINITY= option cannot be
assigned a value less than 9999.

PROC QP Statement: QP Problems � 673

MAXIMIZE
MAX

specifies that PROC QP find the maximum optimal solution. For a maximization
problem, the Hessian must be negative semi-definite.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is
reported by PROC QP on the SAS log.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to
Make the Data Read of PROC QP More Efficient” on page 732 for details.

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the
Data Read of PROC QP More Efficient” on page 732 for details.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make
the Data Read of PROC QP More Efficient” on page 732 for details.

NON–REPLIC=non–replic
prevents PROC QP from doing unnecessary checks of data previously read.

• NON–REPLIC=COEFS indicates that each constraint coefficient is specified
once in the CONDATA= data set.

• NON–REPLIC=NONE indicates that constraint coefficients can be specified
more than once in the CONDATA= data set. NON–REPLIC=NONE is the
default.

See the section “How to Make the Data Read of PROC QP More Efficient” on page
732 for details.

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the
sparse format for data in the CONDATA= data set. The keyword is expected as a
value of the SAS variable in the CONDATA= data set named in the COLUMN list
specification. The default value of the RHSOBS= option is –RHS– or –rhs–. If
charstr is not a valid SAS variable name, it must be enclosed in quotes.

SPARSECONDATA
SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise,
it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you have specified

options validvarname=v6;

all NAME list variable values in the VARDATA= data set are uppercased. See the
“Case Sensitivity” section on page 724.

674 � Chapter 7. The QP Procedure (Experimental)

STOP–DG=s
is used to determine whether optimization should stop. At the beginning of each
iteration, if the duality gap is ≤ s, optimization stops. The default value of s is
1.0E−5.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format
for data in the CONDATA= data set. The keyword is expected as a value of the SAS
variable in the CONDATA= data set named in the COLUMN list specification. The
default value of the TYPEOBS= option is –TYPE– or –type–. If charstr is not a
valid SAS variable name, it must be enclosed in quotes.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the VARDATA= data set, PROC QP might have cause to
issue the following message many times:

ERROR: The HEAD list variable value in obs i in VARDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued
for only the first VERBOSE= such observations. After the VARDATA= data set has
been read, PROC QP will issue the message

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the VARDATA= data set have this error, PROC QP stops and you
will need to fix the data. However, if the VARDATA= data set has no errors, and only
warning messages are issued to the SAS log, PROC QP proceeds to other operations
such as reading the CONDATA= data set. If PROC QP finds there are numerous
warnings and errors when reading that data set, the number of messages issued to the
SAS log is also limited by the VERBOSE= option.

When PROC QP finishes and messages have been suppressed, the following message
is issued:

NOTE: To see all messages, specify VERBOSE=vmin.

The value of vmin is the smallest value that should be specified for the VERBOSE=
option so that all messages are displayed if PROC QP is run again with the same data
and everything else (except VERBOSE=vmin) unchanged.

The default value for the VERBOSE= option is 12.

COLUMN Statement: QP Problems � 675

ZEROTOL=z
specifies the zero tolerance used when PROC QP must compare any real number with
another real number, or zero. For example, if x and y are real numbers, then for x
to be considered greater than y, x must be at least y + z. The ZEROTOL= option is
used throughout any PROC QP run.

ZEROTOL=z controls the way PROC QP performs all double precision comparisons;
that is, whether a double precision number is equal to, not equal to, greater than (or
equal to), or less than (or equal to) zero or some other double precision number.
A double precision number is deemed to be the same as another such value if the
absolute difference between them is less than or equal to the value of the ZEROTOL=
option.

The default value for the ZEROTOL= option is 1.0E−14. You can specify the
ZEROTOL= option in the QP statement. Valid values for the ZEROTOL= option
must be > 0.0 and < 0.0001. Do not specify a value too close to zero, as this de-
feats the purpose of the ZEROTOL= option. Neither should the value be too large, as
comparisons might be incorrectly evaluated.

COEF Statement: QP Problems

COEF variables ;

The COEF variable list is used with the sparse input format of the CONDATA= data
set. The COEF list can contain more than one SAS variable, each of which must
have numeric values. If the COEF statement is not specified, the CONDATA= data
set is searched and SAS variables with names beginning with –COE are used. The
number of SAS variables in the COEF list must be no greater than the number of SAS
variables in the ROW variable list.

The values of the COEF list variables in an observation can be interpreted differently
from these variables’ values in other observations. The values can be coefficients in
the constraints, objective function coefficients, bound data, constraint type data, or
right-hand-side data. If the COLUMN list variable has a value that is a name of a QP
variable, the ith COEF list variable is associated with the constraint or special row
name given in the ith ROW list variable. Otherwise, the COEF list variables indicate
type values, right-hand-side (rhs) values, or missing values.

Specific details about this statement for QNPSC problems are given in the “COEF
Statement: QNPSC Problems” section on page 709.

COLUMN Statement: QP Problems

COLUMN variable ;

The COLUMN variable list is used with the sparse input format of the CONDATA=
data set. This list consists of one SAS variable in the CONDATA= data set that has
as values the names of QP variables, or missing values. Some, if not all, of these
values can also be values of the NAME list variables of the VARDATA= data set.
The COLUMN list variable can have other special values (see the TYPEOBS= and

676 � Chapter 7. The QP Procedure (Experimental)

RHSOBS= options). If the COLUMN list is not specified after the PROC QP state-
ment, the CONDATA= data set is searched and a SAS variable named –COLUMN–
is used. The COLUMN list variable must have character values.

Specific details about this statement for QNPSC problems are given in the
“COLUMN Statement: QNPSC Problems” section on page 709.

HESSIANCOEF Statement

HESSIANCOEF variable ;

HESSCOEF variable ;

The HESSIANCOEF statement identifies the SAS variable in the HESSIAN= data set
that contains the values of the elements of the Hessian matrix. The HESSIANCOEF
variable must have numeric values. The HESSIANCOEF statement is not required if
the name of the SAS variable is –COEF– or –HESCOEF.

HESSIANCOLUMN Statement

HESSIANCOLUMN variable ;

HESSIANCOL variable ;

HESSCOLUMN variable ;

HESSCOL variable ;

The HESSIANCOLUMN statement identifies the SAS variable in the HESSIAN=
data set that contains the QP variable name associated with the column of the associ-
ated Hessian matrix element. The HESSIANCOLUMN variable must have character
values. The HESSIANCOLUMN statement is not required if the name of the SAS
variable is –COL– , –HESSCOL, or –COLUMN– .

HESSIANROW Statement

HESSIANROW variable ;

HESSROW variable ;

The HESSIANROW statement identifies the SAS variable in the HESSIAN= data
set that contains the QP variable name associated with the row of the associated
Hessian matrix element. The HESSIANROW variable must have character values.
The HESSIANROW statement is not required if the name of the SAS variable is
–ROW– or –HESSROW.

NAME Statement: QP Problems � 677

ID Statement: QP Problems

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC QP, but are read
by the procedure and written to the CONOUT= data set. For example, imagine a
model of a distribution system. The SAS variables listed on the ID statement can
contain information on the type of vehicle, the transportation mode, the condition of
the road, the time to complete the journey, the name of the driver, or other ancillary
information useful for writing reports or describing facets of the operation that do not
affect the optimization. The ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the VARDATA= data set not in any list are dropped and do not
appear in the CONOUT= data set.

LO Statement: QP Problems

LO variable ;

LOWERBD variable ;

The LO statement identifies the SAS variable in the VARDATA= data set that contains
the lower bound for the QP variable named in the NAME list variable. The LO list
variable must have numeric values. It is not necessary to have a LO statement if the
name of this SAS variable is –LOWER– , –LO– , or –LOWERBD.

Specific details about this statement for QNPSC problems are given in the “LO
Statement: QNPSC Problems” section on page 711.

NAME Statement: QP Problems

NAME variable ;

VARNAME variable ;

Each QP variable that has data in the CONDATA= data set must have a unique name.
This name is a value of the NAME list variable. The NAME list variable must have
character values. It is not necessary to have a NAME statement if the name of this
SAS variable is –NAME– .

Specific details about this statement for QNPSC problems are given in the “NAME
Statement: QNPSC Problems” section on page 711.

678 � Chapter 7. The QP Procedure (Experimental)

OBJFN Statement

OBJFN variable ;

The OBJFN statement identifies the SAS variable in the VARDATA= data set that
contains the per unit objective function coefficient of a QP variable named in the
NAME list variable in that observation. The OBJFN list variable must have numeric
values. It is not necessary to specify an OBJFN statement if the name of the SAS
variable is –OBJFN– .

When solving a QNPSC problem, the corresponding statement is the COST state-
ment; see the “COST Statement” section on page 710 for details about this statement.

QUIT Statement

QUIT ;

The QUIT statement indicates that PROC QP is to stop immediately. The solution is
not saved in the CONOUT= data set. The QUIT statement has no options.

RHS Statement

RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is
used. The values of the SAS variable specified in the RHS list are constraint right-
hand-side values. If the RHS list is not specified, the CONDATA= data set is searched
and a SAS variable with the name –RHS– is used. The RHS list variable must have
numeric values. If there is no RHS list and no SAS variable named –RHS– , all
constraints are assumed to have zero right-hand-side values.

ROW Statement

ROW variables ;

The ROW list is used when either the sparse or the dense format of the CONDATA=
data set is being used. SAS variables in the ROW list have values that are constraint
or special row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In
this case, if a ROW list is not specified, the CONDATA= data set is searched and the
SAS variable with the name –ROW– or –CON– is used. If that search fails to find a
suitable SAS variable, data for each constraint must reside in only one observation.

If the sparse data format is used and the ROW statement is not specified, the
CONDATA= data set is searched and SAS variables with names beginning with
–ROW or –CON are used. The number of SAS variables in the ROW list must not be
less than the number of SAS variables in the COEF list. The ith ROW list variable is
paired with the ith COEF list variable. If the number of ROW list variables is greater
than the number of COEF list variables, the last ROW list variables have no COEF
partner. These ROW list variables that have no corresponding COEF list variable
are used in observations that have a TYPE list variable value. All ROW list variable

TYPE Statement � 679

values are tagged as having the type indicated. If there is no TYPE list variable, all
ROW list variable values are constraint names.

RUN Statement

RUN ;

The RUN statement starts the optimization; this statement has no options. If PROC
QP is called and is not terminated because of an error or a QUIT statement, and you
have not used a RUN statement, a RUN statement is assumed implicitly as the last
statement of PROC QP. Therefore, PROC QP reads the data, performs optimization,
and saves the optimal solution in the CONOUT= data set.

TYPE Statement

TYPE variable ;

CONTYPE variable ;

The TYPE list, which is optional, names the SAS variable that has as values keywords
that indicate either the constraint type for each constraint, or the type of special rows
in the CONDATA= data set. The values of the TYPE list variable also indicate, in
each observation of the CONDATA= data set, how values of the VAR or COEF list
variables are to be interpreted and how the type of each constraint or special row
name is determined. If the TYPE list is not specified, the CONDATA= data set is
searched and a SAS variable with the name –TYPE– is used. Valid keywords for the
TYPE variable are given below. If there is no TYPE statement and no other method
is used to furnish type information (see the DEFCONTYPE= option), all constraints
are assumed to be of the type “less than or equal to,” and no special rows are used.
The TYPE list variable must have character values and can be used when the data in
the CONDATA= data set is in either the sparse or the dense format. If the TYPE list
variable value has a * as its first character, the observation is ignored because it is a
comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the
characters that PROC QP uses to determine what type the value suggests. You need
to have at least these characters. Below, the minimal TYPE list variable values have
additional characters to aid you in remembering these values.

The valid TYPE list variable values are as follows:

< less than or equal to (≤)
= equal to (=)
> greater than or equal to (≥)
CAPAC capacity
COST cost
EQ equal to
FREE free row
GE greater than or equal to

680 � Chapter 7. The QP Procedure (Experimental)

LE less than or equal to
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint
UPPCOST reserved for future use
UNREST unrestricted variable
UPPER upper value bound or capacity; second letter must not be N

The valid TYPE list variable values in function order are

• LE less than or equal to (≤)

• EQ equal to (=)

• GE greater than or equal to (≥)

• COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

• CAPAC
UPPER
capacity or upper value bound

• LOWERBD
LOWblank
lower flow or value bound

• RHS rhs of constraint

• TYPE type of constraint

A TYPE list variable value that has the first character ∗ causes the observation to be
treated as a comment. If the first character is a negative sign, then≤ is the type. If the
first character is a zero, then = is the type. If the first character is a positive number,
then ≥ is the type.

UPPERBD Statement

UPPERBD variable ;

The UPPERBD statement identifies the SAS variable in the VARDATA= data set
that contains the maximum feasible value of the QP variables. The UPPERBD list
variable must have numeric values. It is not necessary to have a UPPERBD statement
if the name of the SAS variable is –CAPAC– , –UPPER– , –UPPERBD, or –HI– .

Quadratic Network Problems with Side Constraints � 681

VAR Statement
VAR variables ;

The VAR variable list is used when the dense data format is used for the CONDATA=
data set. When solving a QP, the names of these SAS variables are also names of the
QP variables. If no explicit VAR list is specified, all numeric SAS variables in the
CONDATA= data set that are not in other SAS variable lists are put onto the VAR list.
The VAR list variables must have numeric values. The values of the VAR list vari-
ables in some observations can be interpreted differently than in other observations.
When solving a QP, the values of the SAS variables in the VAR list can be constraint
coefficients, objective function coefficients, or bound data. How these numeric val-
ues are interpreted depends on the value of each observation’s TYPE or ROW list
variable value. If there are no TYPE list variables, the VAR list variable values are
all assumed to be side constraint coefficients.

Quadratic Network Problems with Side
Constraints
A network consists of a collection of nodes joined by a collection of arcs. The arcs
connect nodes and convey flow of one or more commodities that are supplied at
supply nodes and demanded at demand nodes in the network. Each arc has a cost
per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow: the total flow in arcs
directed toward a node, plus the supply at the node, minus the demand at the node,
equals the total flow in arcs directed away from the node.

Often all the details of a problem cannot be specified in a network model alone. In
many of these cases, these details can be represented by the addition of side con-
straints to the model. Side constraints are linear functions of arc variables (variables
containing flow through an arc) and nonarc variables (variables that are not part of the
network). The data for a side constraint consist of coefficients of arcs and coefficients
of nonarc variables, a constraint type (that is,≤, =, or≥), and a right-hand-side value
(rhs). A nonarc variable has a name, an objective function coefficient analogous to an
arc cost, an upper bound analogous to an arc capacity, and a lower bound analogous
to an arc lower flow bound.

If a network component of QNPSC is removed by merging arcs and nonarc variables
into a single set of variables, and if the flow conservation constraints and side con-
straints are merged into a single set of constraints, the result is a QP problem. PROC
QP automatically transforms a QNPSC problem into an equivalent QP problem, per-
forms the optimization, and transforms the problem back into its original form. By
doing this, PROC QP finds the flow through the network and the values of any nonarc
variables that minimize the total cost of the solution. Flow conservation is met, flow
through each arc is on or between the arc’s lower flow bound and capacity, the value
of each nonarc variable is on or between its lower and upper bounds, and the side
constraints are satisfied.

Note that, since many QPs have large embedded networks, using PROC QP to solve
a QNPSC is an attractive option in many cases. Network models remain conceptually

682 � Chapter 7. The QP Procedure (Experimental)

easy since they are based on network diagrams that represent the problem pictorially.
PROC QP accepts the network specification in a format that is particularly suited
to networks. This not only simplifies the problem description but also aids in the
interpretation of the solution. The conversion to and from the equivalent QP is done
“behind the scenes” by the procedure.

If a network programming problem with side constraints has n nodes, a arcs, g nonarc
variables, and k side constraints, then the formal statement of the problem solved by
PROC QP is

minimize
1
2
[
xT zT

]
H
[x
z

]
+ cT x + dT z

subject to Fx = b
Gx + Qz {≥,=,≤} r
l ≤ x ≤ u
m ≤ z ≤ v

where

• H is the (a+g)×(a+g) Hessian matrix (symmetric and positive semi-definite)

• c is the a× 1 arc variable objective function coefficient vector (the cost vector)

• x is the a× 1 arc variable value vector (the flow vector)

• d is the g × 1 nonarc variable objective function coefficient vector

• z is the g × 1 nonarc variable value vector

• F is the n× a node-arc incidence matrix of the network, where

Fi,j =

−1, if arc j is directed from node i

1, if arc j is directed toward node i
0, otherwise

• b is the n× 1 node supply/demand vector, where

bi =

s, if node i has supply capability of s units of flow

−d, if node i has demand of d units of flow
0, if node i is a transshipment node

• G is the k× a side constraint coefficient matrix for arc variables, where Gi,j is
the coefficient of arc j in the ith side constraint

• Q is the k × g side constraint coefficient matrix for nonarc variables, where
Qi,j is the coefficient of nonarc variable j in the ith side constraint

• r is the k × 1 side constraint right-hand-side vector

• l is the a× 1 arc lower flow bound vector

• u is the a× 1 arc capacity vector

• m is the g × 1 nonarc variable lower bound vector

• v is the g × 1 nonarc variable upper bound vector

Network Models � 683

The QP procedure can also be used to solve an unconstrained network problem, that
is, one in which G, Q, d, r, and z do not exist. It can also be used to solve a network
problem with side constraints but no nonarc variables, in which case Q, d, and z do
not exist.

Network Models
The following are descriptions of some typical QNPSC models.

Production, Inventory, and Distribution (Supply Chain) Problems
One common class of network models is the production-inventory-distribution, or
supply-chain, problem. The diagram in Figure 7.2 illustrates this problem. The sub-
scripts on the Production, Inventory, and Sales nodes indicate the time period. By
replicating sections of the model, the notion of time can be included.

�

	
�

Salesi−1

�

	
�

Salesi

�

	
�

Salesi+1

�

	
�

Inventoryi−1

�

	
�

Inventoryi

�

	
�

Inventoryi+1

�

	
�

Productioni−1

�

	
�

Productioni

�

	
�

Productioni+1

�

	
�

Stock on hand

�

	
�

Stock at end
- - - -

� �

? ? ?

6 6 6

Figure 7.2. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several ex-
amples are suppliers, spot markets, importers, farmers, manufacturers, factories, parts
of a plant, production lines, waste disposal facilities, workstations, warehouses, de-
pots, wholesalers, export markets, ports, rail junctions, airports, road intersections,
cities, regions, shops, customers, and consumers. The diversity of this selection
demonstrates how rich the potential applications of this model are.

Depending upon the interpretation of the nodes, the objectives of the modeling exer-
cise can vary widely. Some common types of objectives are

• to reduce collection or purchase costs of raw materials

• to reduce inventory holding or backorder costs. Warehouses and other storage
facilities sometimes have capacities, and there can be limits on the amount of
goods that can be placed on backorder.

• to decide where facilities should be located and what the capacity of these
should be. Network models have been used to help decide where factories,
hospitals, ambulance and fire stations, oil and water wells, and schools should
be located.

684 � Chapter 7. The QP Procedure (Experimental)

• to determine the assignment of resources (machines, production capability,
workforce) to tasks, schedules, classes, or files

• to determine the optimal distribution of goods or services. This usually means
minimizing transportation costs and reducing transit time or distance covered.

• to find the shortest path from one location to another

• to ensure that demands (for example, production requirements, market de-
mands, contractual obligations) are met

• to maximize profits from the sale of products or the charge for services

• to maximize production by identifying bottlenecks

Some specific applications are

• car distribution models. These help determine which models and numbers of
cars should be manufactured in which factories, and where to distribute cars
from these factories to zones in the United States in order to meet customer
demand at least cost.

• models in the timber industry. These help determine when to plant and mill
forests, schedule production of pulp, paper, and wood products, and distribute
products for sale or export.

• military applications. The nodes can be theaters, bases, ammunition dumps,
logistical suppliers, or radar installations. Some models are used to find the
best ways to mobilize personnel and supplies and to evacuate the wounded in
the least amount of time.

• communications applications. The nodes can be telephone exchanges, trans-
mission lines, satellite links, and consumers. In a model of an electrical grid,
the nodes can be transformers, power stations, watersheds, reservoirs, dams,
and consumers. The effect of high loads or outages might be of concern.

Proportionality Constraints

In many models, you have the characteristic that a flow through an arc must be pro-
portional to the flow through another arc. Side constraints are often necessary to
model this situation. Such constraints are called proportionality constraints and are
useful in models where production is subject to refining or modification into different
materials. The amount of each output, or any waste, evaporation, or reduction can be
specified as a proportion of input.

Typically, the arcs near the supply nodes carry raw materials and the arcs near the
demand nodes carry refined products. For example, in a model of the milling industry,
the flow through some arcs may represent quantities of wheat. After the wheat is
processed, the flow through other arcs might be flour. For others it might be bran. The
side constraints model the relationship between the amount of flour or bran produced
as a proportion of the amount of wheat milled. Some of the wheat can end up as
neither flour, bran, nor any useful product, so this waste is drained away through arcs
to a waste node.

Network Models � 685

�

	
�

Wheat

�

	
�

Mill

�

	
�

Flour

�

	
�

Bran

�

	
�

Other

- �
�

�
�

�
�

�
�

�
�3

-
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

1.0 0.2

0.3

0.5

Figure 7.3. Proportionality Constraints

In order for arcs to be specified in side constraints, they must be named. By default,
PROC QP names arcs using the names of the nodes at the head and tail of the arc.
An arc is named with its tail node name followed by an underscore and its head node
name. For example, an arc from node from to node to is called from–to.

Consider the network fragment in Figure 7.3. The arc Wheat–Mill conveys the wheat
milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the
capacity of the mill. The lower flow bound on this arc is the minimum quantity that
must be milled for the mill to operate economically. The constraints

0.3 Wheat–Mill − Mill–Flour = 0.0
0.2 Wheat–Mill − Mill–Bran = 0.0

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of
bran. Note that it is not necessary to specify the constraint

0.5 Wheat–Mill − Mill–Other = 0.0

since flow conservation implies that any flow that does not traverse through Mill–Flour
or Mill–Bran must be conveyed through Mill–Other. Computationally, it is better if
this constraint is not specified, since there is one less side constraint and fewer prob-
lems with numerical precision. Notice that the sum of the proportions must equal 1.0
exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of in-
gredients that are mixed. For example, different raw materials can have different
properties. In an application of the oil industry, the amount of products that are ob-
tained could be different for each type of crude oil. Furthermore, fuel might have a
minimum octane requirement or limited sulphur or lead content, so that a blending of
crude oils is needed to produce the product.

686 � Chapter 7. The QP Procedure (Experimental)

The network fragment in Figure 7.4 shows an example of this.

�

	
�

USA

�

	
�

MidEast

�

	
�

Port

�

	
�

Refinery

�

	
�

Gasoline

�

	
�

Diesel

�

	
�

Other�
�

�
�

��

@
@

@
@

@R

- �
�

�
�

�
�
��

-
@

@
@

@
@

@
@R

5 units/
liter

4 units/
liter

4.75 units/
liter

Figure 7.4. Blending Constraints

The arcs MidEast–Port and USA–Port convey crude oil from the two sources.
The arc Port–Refinery represents refining, while the arcs Refinery–Gasoline and
Refinery–Diesel carry the gas and diesel produced. The proportionality constraints

0.4 Port–Refinery − Refinery–Gasoline = 0.0
0.2 Port–Refinery − Refinery–Diesel = 0.0

capture the restrictions for producing gasoline and diesel from crude oil. Suppose that
only crude oil from the Middle East is used, then the resulting diesel would contain
5 units of sulphur per liter. If only crude oil from the U.S.A. is used, the resulting
diesel would contain 4 units of sulphur per liter. Diesel can have at most 4.75 units of
sulphur per liter. Some crude oil from the U.S.A. must be used if Middle East crude
oil is used in order to meet the 4.75 sulphur per liter limit. The side constraint to
model this requirement is

5 MidEast–Port +4 USA–Port −4.75 Port–Refinery ≤ 0.0

Since Port–Refinery = MidEast–Port + USA–Port, flow conservation allows this
constraint to be simplified to

1 MidEast–Port −3 USA–Port ≤ 0.0

If, for example, 120 units of crude oil from the Middle East are used, then at least
40 units of crude oil from the U.S.A. must be used. The preceding constraint is
simplified because you assume that the sulphur concentration of diesel is proportional
to the sulphur concentration of the crude oil mix. If this is not the case, the relation

0.2 Port–Refinery = Refinery–Diesel

Network Models � 687

is used to obtain

5 MidEast–Port +4 USA–Port −4.75 (1.0/0.2 Refinery–Diesel) ≤ 0.0

which equals

5 MidEast–Port +4 USA–Port −23.75 Refinery–Diesel ≤ 0.0

An example similar to this oil industry problem is solved in the “Introductory QNPSC
Example” section on page 692.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transporta-
tion or some other shared resource, or there are limits on overall production or de-
mand in multicommodity, multidivisional, or multiperiod problems. Each commod-
ity, division, or period can have a separate network coupled to one main system by the
side constraints. Side constraints are used to combine the outputs of subdivisions of
a problem (either commodities, outputs in distinct time periods, or different process
streams) to meet overall demands or to limit overall production or expenditures. This
method is more desirable than doing separate local optimizations for individual com-
modity, process, or time networks and then trying to establish relationships between
each when determining an overall policy if the global constraint is not satisfied. Of
course, to make models more realistic, side constraints may be necessary in the local
problems.

�

	
�

Factorycom2

�

	
�

Factorycom1

�

	
�

City2com2

�

	
�

City1com2

�

	
�

City2com1

�

	
�

City1com1

XXXXXXXXXXXXXXz

��������������:

XXXXXXXXXXXXXXz

��������������:

Commodity 1

Commodity 2

Figure 7.5. Multicommodity Problem

688 � Chapter 7. The QP Procedure (Experimental)

Figure 7.5 shows two network fragments. They represent identical production and
distribution sites of two different commodities. The suffix com1 represents com-
modity 1 and the suffix com2 represents commodity 2. The nodes Factorycom1 and
Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same location,
city 2. Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occupies 3
cubic meters, the truck dispatched to city 1 has a capacity of 200 cubic meters, and
the truck dispatched to city 2 has a capacity of 250 cubic meters. How much of each
commodity can be loaded onto each truck? The side constraints for this case are

2 Factorycom1–City1com1 +3 Factorycom2–City1com2 ≤ 200
2 Factorycom1–City2com1 +3 Factorycom2–City2com2 ≤ 250

Large Modeling Strategies

In many cases, the flow through an arc might actually represent the flow or movement
of a commodity from place to place or from time period to time period. However,
sometimes an arc is included in the network as a method of capturing some aspect of
the problem that you would not normally think of as part of a network model. There
is no commodity movement associated with that arc. For example, in a multiprocess,
multiproduct model (Figure 7.6), there might be subnetworks for each process and
each product. The subnetworks can be joined together by a set of arcs that have flows
that represent the amount of product j produced by process i. To model an upper-
limit constraint on the total amount of product j that can be produced, direct all arcs
carrying product j to a single node, and from there through a single arc. The capacity
of this arc is the upper limit of product j production. It is preferable to model this
structure in the network rather than to include it in the side constraints because the
efficiency of the optimizer may be less affected by a reasonable increase in the size
of the network rather than increasing the number of complicating side constraints.

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 2

Process 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity of
Process 1

Process 1 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 2 production

Product 2 subnetwork

�

�

�

�
���� ����

-
@@R

���

���

@@R

Capacity is upper limit of
Product 1 production

Product 1 subnetwork

-

-

�
�

�
�

��>Z
Z

Z
Z

ZZ~

Figure 7.6. Multiprocess, Multiproduct Example

When starting a project, it is often a good strategy to use a small network formulation
and then use that model as a framework upon which to add detail. For example, in
the multiprocess, multiproduct model, you might start with the network depicted in

Network Models � 689

Figure 7.6. Then, for example, the process subnetwork can be enhanced to include
the distribution of products. Other phases of the operation could be included by
adding more subnetworks. Initially, these subnetworks can be single nodes, but in
subsequent studies they can be expanded to include greater detail.

Advantages of Network Models over QP Models

Many quadratic programming problems have large embedded network structures.
Such problems often result when modeling manufacturing processes, transportation
or distribution networks, or resource allocation, or when deciding where to locate
facilities. Often, some commodity is to be moved from place to place, so the more
natural formulation in many applications is that of a constrained network rather than
a quadratic program.

Using a network diagram to visualize a problem makes it possible to capture the
important relationships in an easily understood picture form. The network diagram
aids the communication between model builder and model user, making it easier to
comprehend how the model is structured, how it can be changed, and how results can
be interpreted.

If a network structure is embedded in a quadratic program, the problem is a QNPSC
(see the “Quadratic Network Problems with Side Constraints” section on page 681).
When the network part of the problem is large compared to the nonnetwork part,
especially if the number of side constraints is small, it is worthwhile to exploit this
structure to describe the model. Rather than generating the data for the flow conser-
vation constraints, generate instead the data for the nodes and arcs of the network.

Flow Conservation Constraints

The constraints Fx = b in QNPSC (see the “Quadratic Network Problems with
Side Constraints” section on page 681) are referred to as the nodal flow conservation
constraints. These constraints algebraically state that the sum of the flow through
arcs directed toward a node plus that node’s supply, if any, equals the sum of the flow
through arcs directed away from that node plus that node’s demand, if any. The flow
conservation constraints are implicit in the network model and should not be specified
explicitly in side constraint data when using PROC QP to solve QNPSC problems.

Nonarc Variables

Nonarc variables can be used to simplify side constraints. For example, if a sum of
flows appears in many constraints, it may be worthwhile to equate this expression
with a nonarc variable and use this in the other constraints. This keeps the constraint
coefficient matrix sparse. By assigning a nonarc variable a nonzero objective function
coefficient, it is then possible to incur a cost for using resources above some lowest
feasible limit. Similarly, a profit (a negative objective function coefficient value) can
be made if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or
supply needed resources. Then, either the excess resource can be used or the needed
resource can be supplied to another component of the model.

690 � Chapter 7. The QP Procedure (Experimental)

For example, consider a multicommodity problem of making television sets that have
either 19- or 25-inch screens. In their manufacture, three and four chips, respectively,
are used. Production occurs at two factories during March and April. The supplier
of chips can supply only 2,600 chips to factory 1 and 3,750 chips to factory 2 each
month. The names of arcs are in the form Prodn–s–m, where n is the factory number,
s is the screen size, and m is the month. For example, Prod1–25–Apr is the arc that
conveys the number of 25-inch TVs produced in factory 1 during April.

As described, the constraints are

3 Prod1–19–Mar +4 Prod1–25–Mar ≤ 2600
3 Prod2–19–Mar +4 Prod2–25–Mar ≤ 3750
3 Prod1–19–Apr +4 Prod1–25–Apr ≤ 2600
3 Prod2–19–Apr +4 Prod2–25–Apr ≤ 3750

If there are chips that could be obtained for use in March but not used for production
in March, why not keep these unused chips until April? Furthermore, if the March
excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the
model becomes

3 Prod1–19–Mar +4 Prod1–25–Mar + F1–Unused–Mar = 2600
3 Prod2–19–Mar +4 Prod2–25–Mar + F2–Unused–Mar = 3750

3 Prod1–19–Apr +4 Prod1–25–Apr −F1–Kept–Since–Mar = 2600
3 Prod2–19–Apr +4 Prod2–25–Apr −F2–Kept–Since–Mar = 3750

F1–Unused–Mar + F2–Unused–Mar (continued)
− F1–Kept–Since–Mar − F2–Kept–Since–Mar ≥ 0.0

where F1–Kept–Since–Mar is the number of chips used during April at factory 1 that
were obtained in March at either factory 1 or factory 2, and F2–Kept–Since–Mar is
the number of chips used during April at factory 2 that were obtained in March. The
last constraint ensures that the number of chips used during April that were obtained
in March does not exceed the number of chips not used in March. There may be a
cost to hold chips in inventory. This can be modeled by a positive objective function
coefficient for the nonarc variables F1–Kept–Since–Mar and F2–Kept–Since–Mar.
Moreover, nonarc variable upper bounds represent an upper limit on the number of
chips that can be held in inventory between March and April.

Getting Started: QNPSC Problems

To solve QNPSC problems using PROC QP, you save a representation of the network
and the side constraints in four SAS data sets. These data sets are then passed to
PROC QP for solution. There are various forms that a problem’s data can take. You
can use any one or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vector b in the QNPSC problem (see the “Quadratic Network Problems with Side
Constraints” section on page 681).

Getting Started: QNPSC Problems � 691

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the
ARCDATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per unit flow across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrix F and the vectors c,
l, and u in the QNPSC problem (see the “Quadratic Network Problems with Side
Constraints” section on page 681).

Note: Although F is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions. Do not explicitly specify these flow conservation con-
straints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including linear objective function coefficients, lower and upper value
bounds, and names. These data are the elements of the vectors d, m, and v in the
QNPSC problem (see the “Quadratic Network Problems with Side Constraints” sec-
tion on page 681). Data for an arc or nonarc variable can be given in more than one
observation.

Supply and demand data can also be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides.
These data are elements of the matrices G and Q and the vector r. Constraint types
are also specified in the CONDATA= data set. This data set can include upper bound
values or capacities, lower flow or value bounds, and costs or objective function co-
efficients. It is possible to give all information about some or all nonarc variables in
the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that arc. Each arc also has a default name that is the name of the tail and
head node of the arc concatenated together and separated by an underscore character;
tail–head, for example.

If you use the dense side constraint input format (described in the “CONDATA= Data
Set” section on page 714), and want to use the default arc names, these arc names are
names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (see the “CONDATA= Data Set”
section on page 714) and want to use the default arc names, these arc names are
values of the COLUMN list variable of the CONDATA= data set.

The HESSIAN= data set describes the Hessian matrix. These data are elements of
the H matrix in the QNPSC problem (see the “Quadratic Network Problems with
Side Constraints” section on page 681). Each observation of the HESSIAN= data set
provides data for an element of the Hessian matrix. If there is a term 6xarc3xnonarc5

in the objective function, then Harc3,nonarc5 = 6, and there will be an observation
in the HESSIAN= data set that has the value ‘arc3’ for the HESSIANROW variable,

692 � Chapter 7. The QP Procedure (Experimental)

the value ‘nonarc5’ for the HESSIANCOLUMN variable, and the value 6 for the
HESSIANCOEF variable. The Hessian matrix is symmetric so Hnonarc5,arc3 = 6
also, and another observation of the HESSIAN= data set could have values ‘nonarc5’,
‘arc3’, and 6 for the HESSIANROW, HESSIANCOLUMN, and HESSIANCOEF
variables, respectively. However, you need only one of these observations; PROC QP
will assume the existence of the element’s symmetric pair.

Note that while data for a nondiagonal element of the H matrix corresponds ex-
actly to the term in the objective function, data for diagonal elements of H are dou-
bled. For the term 6xarc3xnonarc5 in the objective function, the nondiagonal element
Harc3,nonarc5 = Hnonarc5,arc3 = 6 and the value 6 is used in the corresponding obser-
vation of the HESSIAN= data set. If there is a term 5x2

arc4 in the objective function,
the diagonal element Harc4,arc4 = 10 and the value 10 is used in the corresponding
observation of the HESSIAN= data set. In that observation, both the HESSIANROW
and the HESSIANCOLUMN variables would have the value ‘arc4’.

PROC QP reads the data from the NODEDATA= data set, the ARCDATA= data set,
the CONDATA= data set, and the HESSIAN= data set. Error checking is performed,
and the model is converted into an equivalent QP. The optimal solution to the equiv-
alent QP is then found. This QP is converted back to the original QNPSC problem,
and the optimum for this is derived from the optimum of the equivalent QP. If the
problem was preprocessed, the model is now post-processed, where fixed variables
are reintroduced. The solution can be saved in the CONOUT= data set.

Introductory QNPSC Example

Consider the following transshipment problem for an oil company. Crude oil is
shipped to refineries where it is processed into gasoline and diesel fuel. The gaso-
line and diesel fuel are then distributed to service stations. At each stage, there are
shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the
crude oil from the Middle East cannot exceed the throughput of a refinery plus 15
units. (The phrase “plus 15 units” that finishes the last sentence is used to enable
some side constraints in this example to have a nonzero right-hand side.) The second
set of constraints is necessary to model the situation that one unit of crude oil mix
processed at a refinery yields three-fourths of a unit of gasoline and one-fourth of a
unit of diesel fuel.

Because there are two products that are not independent in the way in which they
flow through the network, a QNPSC is an appropriate model for this example (see
Figure 7.7). The side constraints are used to model the limitations on the amount of
Middle Eastern crude oil that can be processed by each refinery, and the conversion
proportions of crude oil to gasoline and diesel fuel.

Introductory QNPSC Example � 693

�
�

�
�

u.s.a. �
�

�
�

refinery2

�
�

�
�

middle east �
�

�
�

refinery1

�
�

�
�

r2

�
�

�
�

r1

�
�

�
�

ref2 diesel

�
�

�
�

ref2 gas

�
�

�
�

ref1 diesel

�
�

�
�

ref1 gas

�
�

�
�

servstn2

diesel

�
�

�
�

servstn2
gas

�
�

�
�

servstn1

diesel

�
�

�
�

servstn1
gas

-

-

-

-

-

-

-

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�>

Z
Z

Z
Z

Z
Z~

Z
Z

Z
Z

Z
Z~

�
�

�
�

�
�>

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 7.7. Oil Industry Example

To solve this problem with PROC QP, you first save a representation of the model in
four SAS data sets. In the NODEDATA= data set, you name the supply and demand
nodes and give the associated supplies and demands. To distinguish demand nodes
from supply nodes, specify demands as negative quantities. For the oil example, the
NODEDATA= data set can be saved as follows:

title ’Oil Industry Example’;
title3 ’Setting Up Nodedata = Noded For PROC QP’;
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The ARCDATA= data set contains the rest of the information about the network.
Each observation in the data set identifies an arc in the network and gives the cost per
flow unit across the arc, the capacity of the arc, the lower bound on flow across the
arc, and the name of the arc.

694 � Chapter 7. The QP Procedure (Experimental)

title3 ’Setting Up Arcdata = Arcd1 For PROC QP’;
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

The CONDATA= data set contains the side constraints for the model:

title3 ’Setting Up Condata = Cond1 For PROC QP’;
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

Note that the SAS variable names in the CONDATA= data set are the names of arcs
given in the ARCDATA= data set. These are the arcs that have nonzero constraint
coefficients in side constraints. For example, the proportionality constraint that spec-
ifies that one unit of crude oil at each refinery yields three-fourths of a unit of gasoline
and one-fourth of a unit of diesel fuel is given for ‘refinery 1’ in the third observation
and for ‘refinery 2’ in the last observation. The third observation requires that each
unit of flow on the arc ‘thruput1’ equals three-fourths of a unit of flow on the arc
‘r1–gas’. Because all crude oil processed at ‘refinery 1’ flows through ‘thruput1’ and
all gasoline produced at ‘refinery 1’ flows through ‘r1–gas’, the constraint models the
situation. It proceeds similarly for ‘refinery 2’ in the last observation.

Introductory QNPSC Example � 695

Finally, the HESSIAN= data set for this example can be generated using the following
code. Note that the names of arcs also appear in this data set.

title3 ’Setting Up Hessian For PROC QP’;
data hessian1;

input _row_&$27. _col_&$27. _coef_;
datalines;

middle east_refinery 1 ref1 gas_servstn1 gas .0010
u.s.a._refinery 1 ref1 diesel_servstn1 diesel .00021
u.s.a._refinery 2 ref1 diesel_servstn2 diesel .00002
ref1 diesel_servstn2 diesel ref1 diesel_servstn2 diesel 358.2
ref1 diesel_servstn1 diesel ref1 diesel_servstn1 diesel 100
middle east_refinery 1 middle east_refinery 1 100
ref1 gas_servstn1 gas ref1 gas_servstn1 gas 100
u.s.a._refinery 1 u.s.a._refinery 1 10.4
u.s.a._refinery 2 u.s.a._refinery 2 50.4
r1_ref1 gas r1_ref1 gas 200
r2_ref2 gas r2_ref2 gas 10
;

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC QP as follows:

proc qp
bytes=1000000
stop_dg=1e-6
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
hessian=hessian1 /* the hessian matrix */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read
by PROC QP and note the progress toward a solution.

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Quadratic Programming problem solved by the
Interior Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .

696 � Chapter 7. The QP Procedure (Experimental)

NOTE: Number of variables= 18 .
NOTE: There are 11 diagonal and superdiagonal elements

in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 4.66967E-08
NOTE: Dual infeasibility 1.01470E-01
NOTE: Duality gap 8.37821E-07
NOTE: Objective= 780237.4926.
NOTE: The data set WORK.SOLUTION has 18 observations

and 9 variables.
NOTE: There were 18 observations read from the data

set WORK.ARCD1.
NOTE: There were 6 observations read from the data

set WORK.NODED.
NOTE: There were 11 observations read from the data

set WORK.HESSIAN1.
NOTE: There were 4 observations read from the data

set WORK.COND1.

The first set of messages shows the size of the problem. The next set of messages
provides statistics on the size of the equivalent QP problem. The number of variables
may not equal the number of arcs if the problem has nonarc variables. This example
has none. To convert a network to the equivalent QP problem, a flow conservation
constraint must be created for each node (including an excess or bypass node, if
required). This explains why the number of equality constraints and the number of
constraint coefficients differ from the number of equality side constraints and the
number of coefficients in all side constraints.

Unlike PROC LP, which displays the solution and other information as output, PROC
QP saves the optimum in the output SAS data set that you specify. For this example,
the solution is saved in the SOLUTION data set. It can be displayed with the PRINT
procedure as follows:

title3 ’Optimum’;
proc print data=solution;

format _name_ $12.;
run;

Typical PROC QP Run: QNPSC Problems � 697

Optimum

_ _
_ S D

_ _ c _ U E _
f c a n P M F
r _ o p _ a P A L

O o t s a l m L N O
b m o t c o e Y D W
s _ _ _ _ _ _ _ _ _

1 refinery 1 r1 200 175 50 thruput1 . . 80.000
2 refinery 2 r2 220 100 35 thruput2 . . 100.000
3 r1 ref1 diesel 0 75 0 . . 20.000
4 r1 ref1 gas 0 140 0 r1_gas . . 60.000
5 r2 ref2 diesel 0 75 0 . . 25.000
6 r2 ref2 gas 0 100 0 r2_gas . . 75.000
7 middle east refinery 1 63 95 20 m_e_ref1 100 . 42.500
8 u.s.a. refinery 1 55 99999999 0 u.s.a._refin 80 . 37.500
9 middle east refinery 2 81 80 10 m_e_ref2 100 . 57.500
10 u.s.a. refinery 2 49 99999999 0 u.s.a._refin 80 . 42.500
11 ref1 diesel servstn1 diesel 18 99999999 0 ref1 diesel_ . 30 15.661
12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 14.339
13 ref1 gas servstn1 gas 15 70 0 ref1 gas_ser . 95 60.000
14 ref2 gas servstn1 gas 17 35 5 . 95 35.000
15 ref1 diesel servstn2 diesel 17 99999999 0 ref1 diesel_ . 15 4.339
16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 10.661
17 ref1 gas servstn2 gas 22 60 0 . 40 0.000
18 ref2 gas servstn2 gas 31 99999999 0 . 40 40.000

Figure 7.8. CONOUT=SOLUTION

Notice that, in CONOUT=SOLUTION (Figure 7.8), the optimal flow through each
arc in the network is given in the variable named –FLOW– .

Typical PROC QP Run: QNPSC Problems

You start PROC QP by giving the PROC QP statement. You can specify many options
in the PROC QP statement to control the procedure, or you can rely on default settings
and specify very few options. However, there are some options you must specify:

• You must specify the BYTES= parameter to indicate the size of the working
memory that the procedure is allowed to use. This option has no default.

• When solving QNPSC problems, you must specify the ARCDATA= data set.
This option has a default (the SAS data set that was created last before PROC
QP began running), but that may need to be overridden.

• The CONDATA= data set must also be specified if the problem is QNPSC and
has side constraints, or if it is a QP problem.

• The HESSIAN= data set must be specified. Note that the Hessian must be
positive semi-definite for minimization problems, and negative semi-definite
for maximization problems.

• When solving a network problem, you must specify the NODEDATA= data set
if the model data is given in such a data set.

698 � Chapter 7. The QP Procedure (Experimental)

Some options are frequently required. To output the optimal solution to a SAS data
set, you must specify the CONOUT= option. You may want to indicate reasons why
optimization should stop (for example, you can indicate the maximum number of
iterations that can be performed), or you may want to alter stopping criteria so that
optimization does not stop prematurely. Some options enable you to control other
aspects of the interior point algorithm. Specifying certain values for these options
can reduce the time it takes to solve a problem.

The SAS variable lists should be given next. If you have variables in the input data
sets that have special names (for example, a variable in the ARCDATA= data set
named –TAIL– that has tail nodes of arcs as values), it may not be necessary to have
many or any variable lists. If you do not specify a TAIL variable list, PROC QP will
search the ARCDATA= data set for a variable named –TAIL– .

What usually follows is a RUN statement, which indicates that all information needed
by PROC QP has been given, and the procedure is to start running. This also happens
if you specify a statement in your SAS program that PROC QP does not recognize as
one of its own, or the next DATA step or procedure.

The QUIT statement indicates that PROC QP must immediately finish.

For example, a PROC QP run might look something like this:

proc qp
bytes= /* working memory size */
arcdata= /* data set */
condata= /* data set */
hessian= /* data set */
/* other options */

;
variable list specifications; /* if necessary */
run; /* start running, read data, */

/* and do the optimization */

Syntax: QNPSC Problems � 699

Syntax: QNPSC Problems

Below are statements used in PROC QP when solving a QNPSC problem, listed in
alphabetical order as they appear in the text that follows.

PROC QP options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
HESSIANCOEF variable ;
HESSIANCOLUMN variable ;
HESSIANROW variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
QUIT;
RHS variable ;
ROW variables ;
RUN;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

The information related to most of the statements and variable lists are the same
whether you are solving a QP problem or a QNPSC problem. However, there are
some exceptions, as listed in the following table.

Solving QP Problems Solving QNPSC Problems
PROC QP PROC QP
UPPERBD CAPACITY
COEF COEF
COLUMN COLUMN
OBJFN COST
ID ID
LO LO
NAME NAME

The following statements and variable lists are relevant only when solving a QNPSC
problem: DEMAND, HEADNODE, NODE, SUPDEM, SUPPLY, TAILNODE.

700 � Chapter 7. The QP Procedure (Experimental)

Functional Summary: QNPSC Problems

Table 7.2 outlines the options that can be specified in the QP procedure when solving
a QNPSC problem. All options are specified in the PROC QP statement.

Table 7.2. Functional Summary

Description Statement Option

Input Data Set Options:
arcs input data set PROC QP ARCDATA=
nodes input data set PROC QP NODEDATA=
constraint input data set PROC QP CONDATA=
Hessian input data set PROC QP HESSIAN=

Output Data Set Option:
solution data set PROC QP CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC QP SPARSECONDATA
default constraint type PROC QP DEFCONTYPE=
special COLUMN variable value PROC QP TYPEOBS=
special COLUMN variable value PROC QP RHSOBS=
used to interpret arc and variable names PROC QP NAMECTRL=
no nonarc data in ARCDATA PROC QP ARCS–ONLY–ARCDATA
data for an arc found once in ARCDATA PROC QP ARC–SINGLE–OBS
data for a constraint found once in CONDATA PROC QP CON–SINGLE–OBS
data for a coefficient found once in CONDATA PROC QP NON–REPLIC=
data is grouped, exploited during data read PROC QP GROUPED=

Problem Size Specification Options:
approximate number of nodes PROC QP NNODES=
approximate number of arcs PROC QP NARCS=
approximate number of variables PROC QP NNAS=
approximate number of coefficients PROC QP NCOEFS=
approximate number of constraints PROC QP NCONS=

Network Options:
default arc cost, objective function coefficient PROC QP DEFCOST=
default arc capacity, variable upper bound PROC QP DEFCAPACITY=
default arc flow, variable lower bound PROC QP DEFMINFLOW=
network’s only supply node PROC QP SOURCE=
SOURCE’s supply capability PROC QP SUPPLY=
network’s only demand node PROC QP SINK=
SINK’s demand PROC QP DEMAND=
convey excess supply/demand through network PROC QP THRUNET
find max flow between SOURCE and SINK PROC QP MAXFLOW
cost of bypass arc, MAXFLOW problem PROC QP BYPASSDIVIDE=
find shortest path from SOURCE to SINK PROC QP SHORTPATH

PROC QP Statement: QNPSC Problems � 701

Description Statement Option

Memory Control Options:
issue memory usage messages to SAS log PROC QP MEMREP
number of bytes to use for main memory PROC QP BYTES=

Miscellaneous Options:
infinity value PROC QP INFINITY=
maximization instead of minimization PROC QP MAXIMIZE
zero tolerance, real number comparisons PROC QP ZEROTOL=
suppress similar SAS log messages PROC QP VERBOSE=
duality gap stopping criterion PROC QP STOP–DG=

PROC QP Statement: QNPSC Problems

PROC QP options ;

This statement invokes the procedure. The following options can be specified in the
PROC QP statement. Details about the PROC QP statement for solving a QP problem
without a network component are found in the “PROC QP Statement: QP Problems”
section on page 669.

Data Set Options: QNPSC Problems

This section briefly describes all the input and output data sets used by PROC QP
when solving QNPSC problems. The ARCDATA= data set, the NODEDATA= data
set, the CONDATA= data set, and the HESSIAN= data set can contain SAS variables
that have special names, for instance –UPPERBD, –OBJFN– , and –HEAD– . PROC
QP looks for such variables if you do not give explicit variable list specifications. If
a SAS variable with a special name is found, and that SAS variable is not in another
variable list specification, PROC QP determines that values of the SAS variable are
to be interpreted in a special way. By using SAS variables that have special names,
you may not need to have any variable list specifications.

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and
nodal supply/demand data. The ARCDATA= data set must be specified in all PROC
QP statements when solving QNPSC problems.

If your problem is a QP without a network component, the ARCDATA= data set is
optional. You can specify QP variable information such as objective function coeffi-
cients, and lower and upper bounds.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also contain
other data such as arc costs, capacities, lower flow bounds, nonarc variable upper
and lower bounds, and objective function coefficients. The CONDATA= data set is

702 � Chapter 7. The QP Procedure (Experimental)

required in order for PROC QP to solve a constrained problem. See the “CONDATA=
Data Set” section on page 714 for more information.

Specific details about this option for QP problems are given in the “Data Set Options:
QP Problems” section beginning on page 669.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal solution. See the “CONOUT= Data
Set” section on page 723 for more information.

HESSIAN=SAS-data-set
names the data set that describes the Hessian matrix. These data are elements of the
H matrix. See the “HESSIAN= Data Set” section on page 722 for more information.

NODEDATA=SAS-data-set
names the data set that contains the node supply and demand specifications. You
do not need observations in the NODEDATA= data set for transshipment nodes.
(Transshipment nodes neither supply nor demand flow.) All nodes are assumed to
be transshipment nodes unless supply or demand data indicate otherwise. It is ac-
ceptable for some arcs to be directed toward supply nodes or away from demand
nodes.

This data set is used only when you are solving network problems, in which case the
use of the NODEDATA= data set is optional provided that, if the NODEDATA= data
set is not used, supply and demand details are specified by other means. Other means
include using the MAXFLOW or SHORTPATH option, SUPPLY or DEMAND vari-
able list (or both) in the ARCDATA= data set, and the SOURCE=, SUPPLY=,
SINK=, or DEMAND= option in the PROC QP statement.

General Options: QNPSC Problems

The following is a list of options you can use with PROC QP when solving QNPSC
problems. The options are listed in alphabetical order.

ARCS–ONLY–ARCDATA
indicates that the data in the ARCDATA= data set are for arcs only. When PROC QP
reads the data in the ARCDATA= data set, memory will not be wasted to receive data
for nonarc variables. The read might then be performed faster. See the section “How
to Make the Data Read of PROC QP More Efficient” on page 732 for details.

ARC–SINGLE–OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable
is found in only one observation of the ARCDATA= data set. When reading the data
in the ARCDATA= data set, PROC QP knows that the data in an observation is for
an arc or a nonarc variable that has not had data previously read and that needs to be
checked for consistency. The read might then be performed faster. See the section
“How to Make the Data Read of PROC QP More Efficient” on page 732 for details.

If you specify ARC–SINGLE–OBS, PROC QP automatically works as if
GROUPED=ARCDATA is also specified.

PROC QP Statement: QNPSC Problems � 703

Specific details about this option for QP problems are given in the “General Options:
QP Problems” section beginning on page 669.

BYPASSDIVIDE=b
BYPASSDIV=b
BPD=b

should be used only when the MAXFLOW option has been specified; that is, PROC
QP is solving a maximal flow problem. PROC QP prepares to solve maximal flow
problems by setting up a bypass arc. This arc is directed from the SOURCE node
to the SINK node and will eventually convey flow equal to INFINITY minus the
maximal flow through the network. The cost of the bypass arc must be great enough
to drive flow through the network, rather than through the bypass arc. Also, the cost of
the bypass arc must be greater than the eventual total cost of the maximal flow, which
can be nonzero if some network arcs have nonzero costs. The cost of the bypass is
set to the value of the INFINITY= option. Valid values for the BYPASSDIVIDE=
option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of
the bypass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the
BYPASSDIVIDE= option. In the presence of nonzero arc costs, the default value
for the BYPASSDIVIDE= option is 100.0.

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If the CONDATA= data set has a dense format, specifying CON–SINGLE–OBS
indicates that, for each constraint, data for the constraint can be found in only one
observation of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each arc, nonarc variable,
or QP variable can be found in only one observation of the CONDATA= data set,
then specify the CON–SINGLE–OBS option. If there are n SAS variables in the
ROW and COEF variable lists, then each arc or nonarc can have at most n constraint
coefficients in the model. See the section “How to Make the Data Read of PROC QP
More Efficient” on page 732 for details.

Specific details about this option for QP problems are given in the “General Options:
QP Problems” section beginning on page 669.

DEFCAPACITY=c
DC=c

requests that the default arc capacity and the default nonarc variable value upper
bound be c. If this option is not specified, then DEFCAPACITY=INFINITY. Specific
details about this option for QP problems are given in the “General Options: QP
Problems” section beginning on page 669.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function
coefficient be c. If this option is not specified, then DEFCOST=0.0. Specific details

704 � Chapter 7. The QP Procedure (Experimental)

about this option for QP problems are given in the “General Options: QP Problems”
section beginning on page 669.

DEFMINFLOW=m
DMF=m

requests that the default lower flow bound through arcs and the default lower
value bound of nonarc variables be m. If this option is not specified, then
DEFMINFLOW=0.0. Specific details about this option for QP problems are given
in the “General Options: QP Problems” section beginning on page 669.

DEMAND=d
specifies the demand at the sink node given by the SINK= option. The DEMAND=
option should be used only if the SINK= option is given in the PROC QP statement
and neither the SHORTPATH option nor the MAXFLOW option is specified. If you
are solving a minimum cost network problem and the SINK= option is used to iden-
tify the sink node, and the DEMAND= option is not specified, then the demand at the
sink node is made equal to the network’s total supply.

MAXFLOW
MF

specifies that PROC QP solve a maximum flow problem. In this case, PROC QP
finds the maximum flow from the node specified by the SOURCE= option to the
node specified by the SINK= option. PROC QP automatically assigns an INFINITY
supply to the SOURCE node, and the SINK node is assigned INFINITY demand. In
this way, the MAXFLOW option sets up a maximum flow problem as an equivalent
minimum cost problem.

You can use the MAXFLOW option when solving any flow problem (not necessar-
ily a maximum flow problem) when the network has one supply node (with infinite
supply) and one demand node (with infinite demand). The MAXFLOW option can
be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and
DEMAND=) and capabilities of PROC QP.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set. In the
ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA=
data set, arcs are identified by names. You can give a name to an arc by having a
NAME list specification that indicates a SAS variable in the ARCDATA= data set
that has names of arcs as values.

PROC QP requires that arcs that have information about them in the CONDATA= data
set have names, but arcs that do not have information about them in the CONDATA=
data set can also have names. Unlike a nonarc variable whose name uniquely identi-
fies it, an arc can have several different names. An arc has a default name in the form
tail–head, that is, the name of the arc’s tail node followed by an underscore and the
name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used (described in the
“CONDATA= Data Set” section on page 714), a name of an arc or a nonarc vari-
able is the name of a SAS variable listed in the VAR list specification. If the sparse

PROC QP Statement: QNPSC Problems � 705

data format of the CONDATA= data set is used, a name of an arc or a nonarc variable
is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or a nonarc variable in the
CONDATA= data set (either a VAR list variable name or a value of the COLUMN
list variable) is in the form tail–head and there exists an arc with these end nodes. If
tail–head has not already been tagged as belonging to an arc or nonarc variable in the
ARCDATA= data set, PROC QP needs to know whether tail–head is the name of the
arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set
is assumed to be the name of a nonarc variable. NAMECTRL=2 treats tail–head as
the name of the arc with these end nodes, provided no other name is used to associate
data in the CONDATA= data set with this arc. If the arc does have other names that
appear in the CONDATA= data set, tail–head is assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3, tail–head is assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value
is NAMECTRL=3.

If the dense format is used for the CONDATA= data set, there are two circumstances
that affect how this data set is read:

• Case 1: You specify

options validvarname=v6;

in your SAS session.

• Case 2: You do not specify

options validvarname=v6;

in your SAS session.

For case 1, the SAS System converts SAS variable names in a SAS program to up-
percase. The VAR list variable names are uppercased. Because of this, PROC QP
automatically uppercases names of arcs and nonarc variables or QP variables (the
values of the NAME list variable) in the ARCDATA= data set. The names of arcs
and nonarc variables or QP variables (the values of the NAME list variable) appear
uppercased in the CONOUT= data set.

Also, if the dense format is used for the CONDATA= data set, be careful with de-
fault arc names (names in the form tailnode–headnode). Node names (values in
the TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not
automatically uppercased by PROC QP. Consider the following code.

706 � Chapter 7. The QP Procedure (Experimental)

data arcdata;
input _from_ $ _to_ $ _name_ $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;

data densecon;
input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;

proc qp
arcdata=arcdata condata=densecon;

run;

The SAS System does not uppercase character string values within SAS data sets.
PROC QP never uppercases node names, so the arcs in observations 1, 2, and 3
in the arcdata data set have the default names from–to1, from–to2, and TAIL–TO3,
respectively. When the dense format of the CONDATA= data set is used, PROC QP
does uppercase values of the NAME list variable (in this case, the default variable
–name–), so the name of the arc in the second observation of the ARCDATA= data
set is ARC2. Thus, the second arc has two names: its default from–to2 and the other
that was specified ARC2.

Since the SAS System uppercases program code, you must think of the input state-
ment

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named FROM–TO1 and FROM–TO2 are not associated with
any of the arcs in the arcdata data set. The values FROM–TO1 and FROM–TO2
are different from all of the arc names from–to1, from–to2, TAIL–TO3, and ARC2.
FROM–TO1 and FROM–TO2 could end up being the names of two nonarc variables.

The SAS variable named ARC2 is the name of the second arc in the arcdata data
set, even though the name specified in the arcdata data set looks like arc2. The SAS
variable named TAIL–TO3 is the default name of the third arc in the arcdata data set.

For case 2, the SAS System does not convert SAS variable names in a SAS program
to uppercase. The VAR list variable names are not uppercased. PROC QP does not
automatically uppercase names of arcs and nonarc variables or QP variables (the val-
ues of the NAME list variable) in the arcdata data set. PROC QP does not uppercase
any SAS variable names or data set values. Therefore, PROC QP respects case, and

PROC QP Statement: QNPSC Problems � 707

characters in the data must have the same case if you mean them to be the same. Note
how the input statement in the DATA step that initialized the data set densecon below
is specified in the following code:

data arcdata;
input _from_ $ _to_ $ _name_ $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;

data densecon;
input from_to1 from_to2 arc2 TAIL_TO3;
datalines;

2 3 3 5
;

proc qp
arcdata=arcdata condata=densecon;

run;

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data
Read of PROC QP More Efficient” on page 732 for details.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make
the Data Read of PROC QP More Efficient” on page 732 for details.

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data
Read of PROC QP More Efficient” on page 732 for details.

SHORTPATH
SP

specifies that PROC QP solve a shortest path problem. The QP procedure finds the
shortest path between the nodes specified in the SOURCE= option and the SINK=
option. The costs of arcs are their lengths. PROC QP automatically assigns a supply
of one flow unit to the SOURCE node and a demand of one flow unit to the SINK
node. In this way, the SHORTPATH option sets up a shortest path problem as an
equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node
(with demand of one unit), you could specify the SHORTPATH option, with the
SOURCE= and SINK= nodes, even if the problem is not a shortest path problem.
You then should not provide any supply or demand data in the NODEDATA= data set
or the ARCDATA= data set.

708 � Chapter 7. The QP Procedure (Experimental)

SINK=sinkname
SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the
MAXFLOW option or the SHORTPATH option and you need to specify toward
which node the maximum flow or shortest path is directed. The SINK= option also
can be used when a minimum cost problem has only one demand node. Rather than
having this information in the ARCDATA= data set or the NODEDATA= data set,
you can use the SINK= option with an accompanying DEMAND= specification for
this node. The SINK= option must be the name of a head node of at least one arc;
thus, it must have a character value. If the value of the SINK= option is not a valid
SAS character variable name (if, for example, it contains embedded blanks), it must
be enclosed in quotes.

SOURCE=sourcename
SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the
MAXFLOW or the SHORTPATH option and need to specify from which node the
maximum flow or shortest path originates. The SOURCE= option also can be used
when a minimum cost problem has only one supply node. Rather than having this in-
formation in the ARCDATA= data set or the NODEDATA= data set, you can use the
SOURCE= option with an accompanying SUPPLY= amount of supply at this node.
The SOURCE= option must be the name of a tail node of at least one arc; thus, it
must have a character value. If the value of the SOURCE= option is not a valid SAS
character variable name (if, for example, it contains embedded blanks), it must be
enclosed in quotes.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The
SUPPLY= option should be used only if the SOURCE= option is given in the PROC
QP statement and neither the SHORTPATH option nor the MAXFLOW option is
specified. If you are solving a minimum cost network problem and the SOURCE=
option is used to identify the source node, and the SUPPLY= option is not specified,
then by default the supply at the source node is made equal to the network’s total
demand.

THRUNET
tells PROC QP to force through the network any excess supply (the amount by which
total supply exceeds total demand) or any excess demand (the amount by which total
demand exceeds total supply) as is required. If a network problem has unequal total
supply and total demand and the THRUNET option is not specified, PROC QP drains
away the excess supply or excess demand in an optimal manner. The consequences
of specifying or not specifying THRUNET are discussed in the “Balancing Total
Supply and Total Demand” section on page 731.

COLUMN Statement: QNPSC Problems � 709

CAPACITY Statement

CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data
set that contains the capacity of the network arcs and the maximum feasible flow
of nonarc variables. If an observation contains nonarc variable information, the
CAPACITY list variable is the upper value bound for the nonarc variable named in
the NAME list variable in that observation.

The CAPACITY list variable must have numeric values. It is not necessary to have
a CAPACITY statement if the name of the SAS variable is –CAPAC– , –UPPER– ,
–UPPERBD, or –HI– .

COEF Statement: QNPSC Problems

COEF variables ;

The COEF variable list is used with the sparse input format of the CONDATA= data
set. The COEF list can contain more than one SAS variable, each of which must
have numeric values. If the COEF statement is not specified, the CONDATA= data
set is searched and SAS variables with names beginning with –COE are used. The
number of SAS variables in the COEF list must be no greater than the number of SAS
variables in the ROW variable list.

The values of the COEF list variables in an observation can be interpreted differently
than these variables’ values in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, bound data, constraint
type data, or rhs data. If the COLUMN list variable has a value that is a name of an
arc or a nonarc variable, the ith COEF list variable is associated with the constraint
or special row name named in the ith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

Specific details about this statement for QP problems are given in the “COEF
Statement: QP Problems” section on page 675.

COLUMN Statement: QNPSC Problems

COLUMN variable ;

The COLUMN list is used with the sparse input format of the CONDATA= data
set. This list consists of one SAS variable in the CONDATA= data set that has
as values the names of arc variables, nonarc variables, or missing values. Some,
if not all, of these values can also be values of the NAME list variables of the
ARCDATA= data set. The COLUMN list variable can have other special values (see
the TYPEOBS= and RHSOBS= options). If the COLUMN list is not specified after
the PROC QP statement, the CONDATA= data set is searched and a SAS variable
named –COLUMN– is used. The COLUMN list variable must have character values.

710 � Chapter 7. The QP Procedure (Experimental)

Specific details about this statement for QP problems are given in the “COLUMN
Statement: QP Problems” section on page 675.

COST Statement

COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that
contains the per unit flow cost through an arc. If an observation contains nonarc
variable information, the value of the COST list variable is the objective function
coefficient of the nonarc variable named in the NAME list variable in that observation.
The COST list variable must have numeric values. It is not necessary to specify a
COST statement if the name of the SAS variable is –COST– or –LENGTH– .

When solving a QP problem, the corresponding statement is the OBJFN statement;
see the “OBJFN Statement” section on page 678 for details about this statement.

DEMAND Statement

DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set
that contains the demand at the node named in the corresponding HEADNODE list
variable. The DEMAND list variable must have numeric values. It is not necessary
to have a DEMAND statement if the name of this SAS variable is –DEMAND– . See
the “Missing S Supply and Missing D Demand Values” section on page 727 for cases
when the SUPDEM list variable values can have other values. There should be no
DEMAND statement if you are solving a QP without a network component.

HEADNODE Statement

HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that contains the names of nodes toward which arcs are directed.
It is not necessary to have a HEADNODE statement if the name of the SAS variable
is –HEAD– or –TO– . The HEADNODE variable must have character values. There
should be no HEAD statement if you are solving a QP without a network component.

NAME Statement: QNPSC Problems � 711

ID Statement: QNPSC Problems

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC QP, but are
read by the procedure and written in the CONOUT= data set. For example, imagine
a network used to model a distribution system. The SAS variables listed on the ID
statement can contain information on the type of vehicle, the transportation mode, the
condition of the road, the time to complete the journey, the name of the driver, or other
ancillary information useful for writing reports or describing facets of the operation
that do not affect the optimization. The ID variables can be character, numeric, or
both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the ARCDATA= data set not in any list are dropped and do not
appear in the CONOUT= data set.

LO Statement: QNPSC Problems

LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that con-
tains the minimum feasible flow or lower flow bound for arcs in the network. If an
observation contains nonarc variable information, the LO list variable has the value
of the lower bound for the nonarc variable named in the NAME list variable. The LO
list variable must have numeric values. It is not necessary to have a LO statement if
the name of this SAS variable is –LOWER– , –LO– , –LOWERBD, or –MINFLOW.

Specific details about this statement for QP problems are given in the “LO Statement:
QP Problems” section on page 677.

NAME Statement: QNPSC Problems

NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable in a QNPSC that has data in the CONDATA= data set
must have a unique name. This name is a value of the NAME list variable. The
NAME list variable must have character values (see the NAMECTRL= option in the
PROC QP statement for more information). It is not necessary to have a NAME
statement if the name of this SAS variable is –NAME– .

Specific details about this statement for QP problems are given in the “NAME
Statement: QP Problems” section on page 677.

712 � Chapter 7. The QP Procedure (Experimental)

NODE Statement

NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has
names of nodes as values. These values must also be values of the TAILNODE list
variable, the HEADNODE list variable, or both. If this list is not explicitly specified,
the NODEDATA= data set is searched for a SAS variable with the name –NODE– .
The NODE list variable must have character values.

SUPDEM Statement

SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set,
contains supply and demand information for the nodes in the NODE list. A positive
SUPDEM list variable value s (s > 0) denotes that the node named in the NODE list
variable can supply s units of flow. A negative SUPDEM list variable value −d (d >
0) means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name –SUPDEM– or –SD– in the NODEDATA=
data set is used as the SUPDEM variable. If a node is a transshipment node (neither
a supply nor a demand node), an observation associated with this node need not be
present in the NODEDATA= data set. If present, the SUPDEM list variable value
must be zero or a missing value. See the “Missing S Supply and Missing D Demand
Values” section on page 727 for cases when the SUPDEM list variable values can
have other values.

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that
contains the supply at the node named in that observation’s TAILNODE list variable.
If a tail node does not supply flow, use zero or a missing value for the observation’s
SUPPLY list variable value. If a tail node has supply capability, a missing value
indicates that the supply quantity is given in another observation. It is not necessary
to have a SUPPLY statement if the name of this SAS variable is –SUPPLY– . See the
“Missing S Supply and Missing D Demand Values” section on page 727 for cases
when the SUPDEM list variable values can have other values. There should be no
SUPPLY statement if you are solving a QP without a network component.

Input Data Sets � 713

TAILNODE Statement

TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable in the ARCDATA= data set
that has as its values the names of tail nodes of arcs. The TAILNODE variable must
have character values. It is not necessary to have a TAILNODE statement if the name
of the SAS variable is –TAIL– or –FROM– . If the value of the TAILNODE list vari-
able value is missing, it is assumed that the observation of the ARCDATA= data set
contains information concerning a nonarc variable. There should be no TAILNODE
statement if you are solving a QP without a network component.

Details

Input Data Sets

PROC QP is designed so that there are as few rules as possible that you must obey
when inputting a problem’s data. Raw data are acceptable. This reduces the amount
of processing required to groom the data before it is input to PROC QP. Data formats
are so flexible that, due to space restrictions, all possible forms for a problem’s data
are not described here. Try any reasonable form for your problem’s data; it should be
acceptable. PROC QP will outline its objections.

You can supply the same piece of data in several ways; you do not have to restrict
yourself to using any particular one. If you use several ways, PROC QP checks that
the data are consistent each time that the data are encountered. After all input data
sets have been read, data are merged so that the problem is described completely. The
observations can be in any order.

ARCDATA= Data Set

See the “Getting Started: QNPSC Problems” section on page 690 and the
“Introductory QNPSC Example” section on page 692 for a description of this input
data set.

Note: Information for an arc or nonarc variable can be specified in more than one
observation. For example, consider an arc directed from node A toward node B that
has a cost of 50, capacity of 100, and lower flow bound of 10 flow units. Some
possible observations in the ARCDATA= data set are as follows:

714 � Chapter 7. The QP Procedure (Experimental)

tail _head_ _cost_ _capac_ _lo_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable that has an upper bound of 100, a lower bound of
10, and an objective function coefficient of 50, the –TAIL– and –HEAD– values are
missing values.

When solving a QP that has a QP variable named my–var with an upper bound of
100, a lower bound of 10, and an objective function coefficient of 50, some possible
observations in the ARCDATA= data set are

name _cost_ _capac_ _lo_
my_var 50 . .
my_var . 100 .
my_var . . 10
my_var 50 100 .
my_var . 100 10
my_var 50 . 10
my_var 50 100 10

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense
format, you will receive a warning if PROC QP finds a constraint row that has no
coefficients. You will also be warned if any nonarc or QP variable has no constraint
coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong to
the VAR list. The names of the SAS variables belonging to this list have names of arc
and nonarc variables or, if solving a QP, names of the QP variables. These names can
be values of the SAS variables in the ARCDATA= data set that belong to the NAME
list, names of nonarc variables, names in the form tail–head, or any combination of
these three forms. Names in the form tail–head are default arc names, and if you
use them, you must specify node names in the ARCDATA= data set (values of the
TAILNODE and HEADNODE list variables).

The CONDATA= data set can have three other SAS variables belonging to the ROW
list, the TYPE list, and the RHS list, respectively. The CONDATA= data set of the
oil industry example in the “Introductory QNPSC Example” section on page 692 uses
the dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data
for three constraints. This data set was used in the “Introductory QNPSC Example”
section on page 692.

Input Data Sets � 715

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

You can use nonconstraint type values to furnish data on costs, capacities, lower
flow bounds (and, if there are nonarc or QP variables, objective function coefficients
and upper and lower bounds). You need not have such (or as much) data in the
ARCDATA= data set. The first three observations in the following data set are exam-
ples of observations that provide cost, capacity, and lower bound data.

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

If a ROW list variable is used, the data for a constraint can be spread over more
than one observation. To illustrate, the data for the first constraint (which is called
con1) and the cost and capacity data (in special rows called costrow and caprow,
respectively) are spread over more than one observation in the following data set.

data cond1c;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

716 � Chapter 7. The QP Procedure (Experimental)

Using both ROW and TYPE lists, you can use special row names. Examples of these
are costrow and caprow in the last data set. Note that in any of the input data sets of
PROC QP, the order of the observations does not matter. However, the CONDATA=
data set can be read more quickly if PROC QP knows what type of constraint or
special row a ROW list variable value is. For example, when the first observation is
read, PROC QP does not know whether costrow is a constraint or special row, and
it does not know how to interpret the value 63 for the arc with the name m–e–ref1.
When PROC QP reads the second observation, it learns that costrow has cost type
and that the values 81 and 200 are costs. When the entire CONDATA= data set
has been read, PROC QP knows the type of all special rows and constraints. Data
that PROC QP had to set aside (such as the value 63 in the first observation and
the costrow ROW list variable value, which at the time had unknown type, but was
subsequently known to be a cost special row) is reprocessed. During this second pass,
if a ROW list variable value has unassigned constraint or special row type, it is treated
as a constraint with DEFCONTYPE= type. Associated VAR list variable values are
coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When the
sparse data format of the CONDATA= data set is used, only nonzero constraint coeffi-
cients must be specified. Remember to specify the SPARSECONDATA option in the
PROC QP statement. With the sparse method of specifying constraint information,
the names of arc and nonarc variables or, if solving a QP, the names of QP variables,
do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the
“Introductory QNPSC Example” section on page 692 is displayed below.

title ’Setting Up Condata = Cond2 for PROC QP’;
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values –type– and –rhs– are the default val-
ues of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of con-
straints (con3 and con4) is zero. The seventh observation has the value –type– for
the COLUMN list variable. The –ROW1 variable value is con1, and the –COEF1–
variable has the value 1. This indicates that the constraint con1 has type greater
than or equal to (because the value 1 is greater than zero). Similarly, the data in the

Input Data Sets � 717

eighth observation’s –ROW2 and –COEF2 variables indicate that con2 is an equality
constraint (0 equals zero).

An alternative, using a TYPE list variable, is as follows:

title ’Setting Up Condata = Cond3 for PROC QP’;
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last two ob-
servations in the data set cond3, for instance), the constraints named in the ROW list
variables all have the constraint type indicated by the value in the TYPE list variable.
It is for this type of observation that you are allowed more ROW list variables than
COEF list variables. If corresponding COEF list variables are not missing (for ex-
ample, the last observation in the data set cond3), these values are the rhs values of
those constraints. Therefore, you can specify both constraint type and rhs in the same
observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or
nonarc variable, the COEF list variable values are coefficient values for that arc or
nonarc variable in the constraints indicated in the corresponding ROW list variables.
If, in this same observation, the TYPE list variable contains a constraint type, all
constraints named in the ROW list variables in that observation have this constraint
type (for example, the first observation in the data set cond3). Therefore, you can
specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from hav-
ing to include in the data that con3 and con4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are given
in the ARCDATA= data set. Alternatively, you could have used the following input
data sets. The arcd2 data set has only two SAS variables. For each arc, there is an
observation in which the arc’s tail and head node are specified.

title3 ’Setting Up Arcdata = Arcd2 for PROC QP’;
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2

718 � Chapter 7. The QP Procedure (Experimental)

refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

title ’Setting Up Condata = Cond4 for PROC QP’;
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

Input Data Sets � 719

The first observation in the cond4 data set defines con1 and con2 as greater than or
equal to (≥) constraints that both (by coincidence) have rhs values of -15. The second
observation defines the special row costrow as a cost row. When costrow is a ROW
list variable value, the associated COEF list variable value is interpreted as a cost
or objective function coefficient. PROC QP has to do less work if constraint names
and special rows are defined in observations near the top of a data set, but this is not
a strict requirement. The fourth to ninth observations contain constraint coefficient
data. Observations seven and nine have TYPE list variable values that indicate that
constraints con3 and con4 are equality constraints. The last five observations contain
lower flow bound data. Observations that have an arc or nonarc variable name in the
COLUMN list variable, a nonconstraint type TYPE list variable value, and a value in
(one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.

title ’Setting Up Condata = Cond5 for PROC QP’;
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

720 � Chapter 7. The QP Procedure (Experimental)

Converting from a QNPSC to a QP Problem

If you have data for a quadratic programming problem that has an embedded network,
the steps required to change that data into a form that is acceptable by PROC QP are
as follows:

1. Identify the nodal flow conservation constraints. The coefficient matrix of these
constraints (a submatrix of the QP’s constraint coefficient matrix) has only two
nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s sup-
plies and demands. Use this information to create the NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient
matrix. The arc is directed from the node associated with the row that has
the 1 element in it, and directed toward to the node associated with the row
that has the −1 element in it. Set up the ARCDATA= data set that has two
SAS variables. This data set could resemble ARCDATA=arcd2. These will
eventually be the TAILNODE and HEADNODE list variables when PROC QP
is used. Each observation consists of the tail and head node of each arc.

5. Remove from the data of the quadratic program all data concerning the nodal
flow conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably
resemble CONDATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set sparse formats.
Observations a1, b1, b2, b3, and c1 have as a –COLUMN– variable value either the
name of an arc (possibly in the form tail–head), the name of a nonarc variable (if
you are solving a QNPSC), or the name of a QP variable (if you are solving a QP).
These are collectively referred to as variable in the tables that follow.

Input Data Sets � 721

• If there is no TYPE list variable in the CONDATA= data set, the problem must
be constrained, and there is no nonconstraint data in the CONDATA= data set:

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed
to make problem generation easier.

• If there are no ROW list variables in the data set, the problem has no constraints
and the information is nonconstraint data. There must be a TYPE list variable
and only one COEF list variable in this case. The COLUMN list variable has as
values the names of arcs or nonarc variables, and must not have missing values
or special row names as values:

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

• Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is in form c4 or c5, and the –COEFx– values are missing,
the constraint is assigned the type data specified in the –TYPE– variable.

722 � Chapter 7. The QP Procedure (Experimental)

• Using a TYPE list variable for arc and nonarc variable data implies the follow-
ing:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

The observations of the form d1 to d5 can have ROW list variable values.
Observation d4 must have ROW list variable values. The ROW value is put into
the ROW name tree so that when dealing with observation d4 or d5, the COEF
list variable value is interpreted according to the type of ROW list variable
value. For example, the following three observations define the –ROWx– vari-
able values ‘up–row’, ‘lo–row’, and ‘co–row’ as being an upper value bound
row, lower value bound row, and cost row, respectively:

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC QP is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the
COLUMN list variable equals the value of the TYPEOBS= option or the de-
fault value –TYPE– , the TYPE list variable value is ignored.

HESSIAN= Data Set

Each observation of the HESSIAN= data set provides data for an element of the
Hessian matrix. If there is a term 6xarc3xnonarc5 in the objective function, then
Harc3,nonarc5 = 6, and there will be an observation in the HESSIAN= data set
that has the value ‘arc3’ for the HESSIANROW variable, the value ‘nonarc5’ for
the HESSIANCOLUMN variable, and the value 6 for the HESSIANCOEF variable.

Output Data Set � 723

The Hessian matrix is symmetric, so Hnonarc5,arc3 = 6 also, and another observa-
tion of the HESSIAN= data set could have values ‘nonarc5’, ‘arc3’, and 6 for the
HESSIANROW, HESSIANCOLUMN, and HESSIANCOEF variables, respectively.
However, you need only one of these observations; PROC QP will assume the exis-
tence of the element’s symmetric pair.

Note that while data for a nondiagonal element of the H matrix corresponds ex-
actly to the term in the objective function, data for diagonal elements of H are dou-
bled. For the term 6xarc3xnonarc5 in the objective function, the nondiagonal element
Harc3,nonarc5 = Hnonarc5,arc3 = 6, and the value 6 is used in the corresponding
observation of the HESSIAN= data set. If there is a term 5x2

arc4 in the objective
function, then the diagonal element Harc4,arc4 = 10 and the value 10 is used in the
corresponding observation of the HESSIAN= data set. In that observation, both the
HESSIANROW and the HESSIANCOLUMN variables would have the value ‘arc4’.

For minimization problems, the Hessian matrix must be positive semi-definite; for
maximization problems, it must be negative semi-definite.

NODEDATA= Data Set

See the “Getting Started: QNPSC Problems” section on page 690 and the
“Introductory QNPSC Example” section on page 692 for a description of this input
data set.

Output Data Set

For QNPSC problems, the procedure determines the flow that should pass through
each arc, as well as the value that should be assigned to each nonarc variable. The
goal is that the minimum flow bounds, capacities, lower and upper value bounds, and
side constraints are not violated. This goal is reached when total cost incurred by
such a flow pattern and value assignment is feasible and optimal. The solution found
must also conserve flow at each node.

For QP problems, the procedure determines the value that should be assigned to each
variable. The goal is that the lower and upper value bounds and the constraints are not
violated. This goal is reached when the total cost incurred by such a value assignment
is feasible and optimal.

The CONOUT= data set can be produced and contains a solution obtained after per-
forming optimization.

CONOUT= Data Set

The variables in the CONOUT= data set depend on whether PROC QP solved a QP
problem or a QNPSC problem. When solving a QP problem (see the “Quadratic
Programming Problems” section beginning on page 656), the CONOUT= data set
contains the following variables:

–NAME– the name of a QP variable
–OBJFN– the objective function coefficient of a QP variable
–UPPERBD the upper value bound of a QP variable
–LOWERBD the lower value bound of a QP variable
–VALUE– the value of a QP variable in the optimal solution

724 � Chapter 7. The QP Procedure (Experimental)

When solving a QNPSC problem (see the “Quadratic Network Problems with Side
Constraints” section beginning on page 681), the CONOUT= data set contains the
following variables:

–FROM– a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

–TO– a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

–COST– the cost of an arc or the objective function coefficient of a nonarc
variable

–CAPAC– the capacity of an arc or upper value bound of a nonarc variable
–LO– the lower flow bound of an arc or lower value bound of a nonarc

variable
–NAME– the name of an arc or nonarc variable
–SUPPLY– the supply of the tail node of the arc in the observation. This is

a missing value if an observation has information about a nonarc
variable.

–DEMAND– the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

–FLOW– the optimal flow through the arc or the optimal value of a nonarc
variable

The variables present in the ARCDATA= data set are present in a CONOUT= data
set. For example, if there is a variable called tail in the ARCDATA= data set and you
specified the SAS variable list

from tail;

then tail replaces the variable –FROM– in the CONOUT= data set. Any ID list vari-
ables also appear in the CONOUT= data sets.

Case Sensitivity
Whenever the QP procedure has to compare character strings, whether they are node
names, arc names, nonarc names, QP variable names, or constraint names, PROC QP
judges the character strings to be different if the two strings have different lengths,
or if on a character-by-character basis, the characters are different or have different
cases.

Not only is this rule enforced when one or both character strings are obtained as
values of SAS variables in PROC QP’s input data sets, it should also be obeyed if one
or both character strings were originally SAS variable names, or were obtained as
the values of options or statements parsed to PROC QP. For example, if the network
has only one node with supply capability, or if you are solving a MAXFLOW or
SHORTPATH problem, you can indicate that node using the SOURCE= option. If
you specify

proc qp source=NotableNode

Flow and Value Bounds � 725

then PROC QP looks for a value of the TAILNODE list variable that is NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase.
The name of the node searched for would be NOTABLENODE, even if this was your
SAS code:

proc qp source=NotableNode

If you want PROC QP to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified and you have specified

options validvarname=v6;

all values of the SAS variables that belong to the NAME list are uppercased. This is
because the SAS System has uppercased all SAS variable names, particularly those
in the VAR list of the CONDATA= data set. Variable names that contain blanks must
be enclosed in quotes.

Loop Arcs

Loop arcs (arcs directed toward nodes from which they originate) are prohibited.
Rather, introduce a dummy intermediate node in loop arcs. For example, replace arc
(A,A) with (A,B) and (B,A). B is the name of a new node, and it must be distinct for
each loop arc.

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC QP checks to
ensure that there are no such arcs before proceeding with the optimization. You can
include multiple arcs in your model by introducing a new dummy intermediate node.
This node must be distinct for each multiple arc. For example, if some network has
three arcs directed from node A toward node B, then replace one of these three with
arcs (A,C) and (C,B), and replace another one with (A,D) and (D,B). The nodes C and
D are new nodes added to the network.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities
and lower flow bounds are permitted. If both the arc capacity and the lower flow
bound are negative, the lower flow bound must be at least as negative as the capacity.
An arc (A,B) that has a negative flow of −f units can be interpreted as an arc that
conveys f units of flow from node B to node A.

The upper and lower value bound of a nonarc variable can be equal. Negative upper
and lower bounds are permitted. If both are negative, the lower bound must be at least
as negative as the upper bound.

726 � Chapter 7. The QP Procedure (Experimental)

When solving a QP, the upper and lower value bounds of a QP variable can be equal.
Negative upper and lower bounds are permitted. If both are negative, the lower bound
must be at least as negative as the upper bound.

In short, for any problem to be feasible, a lower bound must be less than or equal to
the associated upper bound.

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC QP more than once, PROC QP checks for
consistency so that no conflict exists concerning the data values. For example, if the
cost of some arc is seen to be one value, and as more data are read, the cost of the
same arc is seen to be another value, PROC QP issues an error message on the SAS
log and stops. There are two exceptions to this:

• The bounds of arcs and nonarc variables, or the bounds of QP variables, are
made as tight as possible. If several different values are given for the lower
flow bound of an arc, the greatest value is used. If several different values are
given for the lower bound of a nonarc or QP variable, the greatest value is used.
If several different values are given for the capacity of an arc, the smallest value
is used. If several different values are given for the upper bound of a nonarc or
QP variable, the smallest value is used.

• Several values can be given for inequality constraint right-hand sides. For a
particular constraint, the lowest rhs value is used for the rhs if the constraint is
of less than or equal to type. For a particular constraint, the greatest rhs value
is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility

Before optimization begins, PROC QP tests to ensure that the problem is not infea-
sible by ensuring that, with respect to supplies, demands, and arc flow bounds, flow
conservation can be obeyed at each node:

• Let IN be the sum of lower flow bounds of arcs directed toward a node, plus
the node’s supply. Let OUT be the sum of capacities of arcs directed from that
node, plus the node’s demand. If IN exceeds OUT, not enough flow can leave
the node.

• Let OUT be the sum of lower flow bounds of arcs directed from a node, plus
the node’s demand. Let IN be the total capacity of arcs directed toward the
node, plus the node’s supply. If OUT exceeds IN, not enough flow can arrive at
the node.

Reasons why a network problem can be infeasible are similar to those previously
mentioned, but apply to a set of nodes rather than to an individual node.

Consider the network illustrated in Figure 7.9.

Missing S Supply and Missing D Demand Values � 727

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \
/ \

/ \
NODE_3 NODE_4

supply=100 \ / demand=120
\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

Figure 7.9. An Infeasible Network

The demand of NODE–4 is 120. That can never be satisfied because the maximal
flow through arcs (NODE–1, NODE–2) and (NODE–5, NODE–6) is 117. More
specifically, the implicit supply of NODE–2 and NODE–6 is only 117, which is
insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE–1, NODE–2) and (NODE–5,
NODE–6) are greater than the flow that can reach the tail nodes of these arcs, that,
by coincidence, is the total supply of the network. The implicit demand of nodes
NODE–1 and NODE–5 is 110, which is greater than the amount of flow that can
reach these nodes.

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node, but you
want the node to supply or demand the optimal number of flow units. To indicate
that a node is such a supply node, use a missing S value in the SUPPLY list variable
in the ARCDATA= data set, or the SUPDEM list variable in the NODEDATA= data
set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set, or the SUPDEM list variable in
the NODEDATA= data set.

Suppose the oil example in the “Introductory QNPSC Example” section on page 692
is changed so that crude oil can be obtained from either the Middle East or U.S.A. in
any amounts. You should specify that the node middle east is a supply node, but you
do not want to stipulate that it supplies 100 units, as before. The node u.s.a. should
also remain a supply node, but you do not want to stipulate that it supplies 80 units.
You must specify that these nodes have missing S supply capabilities:

title ’Oil Industry Example’;
title3 ’Crude Oil can come from anywhere’;
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S

728 � Chapter 7. The QP Procedure (Experimental)

servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The following PROC QP run uses the same ARCDATA=, CONDATA=, and
HESSIAN= data sets used in the “Introductory QNPSC Example” section on page
692:

proc qp
bytes=100000
stop_dg=1e-6
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
hessian=hessian1 /* the hessian matrix */
conout=solution; /* the solution data set */
run;

proc print data=solution;
format _name_ $12.;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Of these, 2 have unspecified (.S) supply capability.
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Quadratic Programming Problem solved by the
Interior Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: There are 11 diagonal and superdiagonal elements of

the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.64883E-09
NOTE: Dual infeasibility 5.03318E-07
NOTE: Duality gap 5.51288E-07
NOTE: Objective= 721151.2166.

Missing S Supply and Missing D Demand Values � 729

NOTE: The data set WORK.SOLUTION has 18 observations and
9 variables.

NOTE: There were 18 observations read from the data set
WORK.ARCD1.

NOTE: There were 6 observations read from the data set
WORK.MISS_S.

NOTE: There were 11 observations read from the data set
WORK.HESSIAN1.

NOTE: There were 4 observations read from the data set
WORK.COND1.

The CONOUT= data set is shown in Figure 7.10.

Oil Industry Example

Crude Oil can come from anywhere

_ _
_ S D

_ _ c _ U E _
f c a n P M F
r _ o p _ a P A L

O o t s a l m L N O
b m o t c o e Y D W
s _ _ _ _ _ _ _ _ _

1 refinery 1 r1 200 175 50 thruput1 . . 80.000
2 refinery 2 r2 220 100 35 thruput2 . . 100.000
3 r1 ref1 diesel 0 75 0 . . 20.000
4 r1 ref1 gas 0 140 0 r1_gas . . 60.000
5 r2 ref2 diesel 0 75 0 . . 25.000
6 r2 ref2 gas 0 100 0 r2_gas . . 75.000
7 middle east refinery 1 63 95 20 m_e_ref1 S . 20.000
8 u.s.a. refinery 1 55 99999999 0 u.s.a._refin S . 60.000
9 middle east refinery 2 81 80 10 m_e_ref2 S . 57.500
10 u.s.a. refinery 2 49 99999999 0 u.s.a._refin S . 42.500
11 ref1 diesel servstn1 diesel 18 99999999 0 ref1 diesel_ . 30 15.661
12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 14.339
13 ref1 gas servstn1 gas 15 70 0 ref1 gas_ser . 95 60.000
14 ref2 gas servstn1 gas 17 35 5 . 95 35.000
15 ref1 diesel servstn2 diesel 17 99999999 0 ref1 diesel_ . 15 4.339
16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 10.661
17 ref1 gas servstn2 gas 22 60 0 . 40 0.000
18 ref2 gas servstn2 gas 31 99999999 0 . 40 40.000

Figure 7.10. Missing S SUPDEM Values in NODEDATA

The optimal supplies of nodes middle east and u.s.a. are 77.5 and 102.5 units, re-
spectively. For this example, the same optimal solution is obtained if these nodes had
supplies less than these values (each supplies 1 unit, for example) and the THRUNET
option was specified in the PROC QP statement. With the THRUNET option active,
when total supply exceeds total demand, the specified nonmissing demand values are
the lowest number of flow units that must be absorbed by the corresponding node.
This is demonstrated in the following PROC QP run. The missing S is most useful
when nodes are to supply optimal numbers of flow units, and it turns out that for some
nodes, the optimal supply is 0.

730 � Chapter 7. The QP Procedure (Experimental)

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc qp
bytes=100000
stop_dg=1e-6
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
hessian=hessian1 /* the hessian matrix */
conout=solution; /* the solution data set */
run;

proc print;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0
as in the last run:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of side constraint coefficients= 8 .
NOTE: The following messages relate to the equivalent

Quadratic Programming problem solved by the
Interior Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 17 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 48 .
NOTE: Number of variables= 20 .
NOTE: There are 11 diagonal and superdiagonal elements

in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 3.38684E-10
NOTE: Dual infeasibility 1.96488E-07
NOTE: Duality gap 2.69230E-07

Balancing Total Supply and Total Demand � 731

NOTE: Objective= 721151.2166.
NOTE: The data set WORK.SOLUTION has 18 observations

and 9 variables.
NOTE: There were 18 observations read from the data set

WORK.ARCD1.
NOTE: There were 6 observations read from the data set

WORK.MISS_S_X.
NOTE: There were 11 observations read from the data set

WORK.HESSIAN1.
NOTE: There were 4 observations read from the data set

WORK.COND1.

If total supply exceeds total demand, any missing S values are ignored. If total de-
mand exceeds total supply, any missing D values are ignored.

Balancing Total Supply and Total Demand
When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC QP adds an
extra node (called the excess node) to the problem and sets the demand at that node
equal to the difference between total supply and total demand. There are three ways
that this excess node can be joined to the network. All three ways entail PROC QP
generating a set of arcs (henceforth referred to as the generated arcs) that are directed
toward the excess node. The total amount of flow in generated arcs equals the demand
of the excess node. The generated arcs originate from one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs orig-
inate from are all demand nodes, including those demand nodes with unspecified
demand capability. You indicate that a node has unspecified demand capability by
using a missing D value instead of an actual value for demand data (discussed in the
“Missing S Supply and Missing D Demand Values” section on page 727). The value
specified as the demand of a demand node is in effect a lower bound of the number
of flow units that node can actually demand. For missing D demand nodes, this lower
bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether or not there are demand nodes with un-
specified demand capability (nodes with missing D demand).

If there are missing D demand nodes, these nodes are the set of nodes from which the
generated arcs originate. The value specified as the demand of a demand node, if not
missing D, is the number of flow units that node can actually demand. For a missing
D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes from which the generated
arcs originate is the set of supply nodes. The value specified as the supply of a supply
node is, in effect, an upper bound of the number of flow units that node can actually
supply. For missing S supply nodes (discussed in the “Missing S Supply and Missing
D Demand Values” section on page 727), this upper bound is zero, so missing S nodes
when total supply exceeds total demand are transshipment nodes (that is, nodes that
neither supply nor demand flow).

732 � Chapter 7. The QP Procedure (Experimental)

When Total Supply Is Less Than Total Demand
When total supply of a network problem is less than total demand, PROC QP adds
an extra node (called the excess node) to the problem and sets the supply at that node
equal to the difference between total demand and total supply. There are three ways
that this excess node can be joined to the network. All three ways entail PROC QP
generating a set of arcs (henceforth referred to as the generated arcs) that originate
from the excess node. The total amount of flow in generated arcs equals the supply
of the excess node. The generated arcs are directed toward one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are
directed toward are all supply nodes, including those supply nodes with unspecified
supply capability. You indicate that a node has unspecified supply capability by using
a missing S value instead of an actual value for supply data (discussed in the “Missing
S Supply and Missing D Demand Values” section on page 727). The value specified
as the supply of a supply node is, in effect, a lower bound of the number of flow units
that the node can actually supply. For missing S supply nodes, this lower bound is
zero.

If you do not specify the THRUNET option, the way in which the excess node is
joined to the network depends on whether or not there are supply nodes with unspec-
ified supply capability (nodes with missing S supply).

If there are missing S supply nodes, these nodes are the set of nodes that generated
arcs are directed toward. The value specified as the supply of a supply node, if not
missing S, is the number of flow units that the node can actually supply. For a missing
S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed
toward is the set of demand nodes. The value specified as the demand of a demand
node is, in effect, an upper bound of the number of flow units that node can actually
demand. For missing D demand nodes (discussed in the “Missing S Supply and
Missing D Demand Values” section on page 727), this upper bound is zero, so missing
D nodes when total supply is less than total demand are transshipment nodes (that is,
nodes that neither supply nor demand flow).

How to Make the Data Read of PROC QP More Efficient
This section contains information that is useful when you want to solve large
constrained network problems. However, much of this information is also use-
ful if you have a large quadratic programming problem. All of the options de-
scribed in this section that are not directly applicable to networks (options such as
ARCS–ONLY–ARCDATA, ARC–SINGLE–OBS, NNODES=, and NARCS=) can
be specified to improve the speed at which QP data is read.

Large Constrained Network Problems
Many of the models presented to PROC QP are enormous. They can be considered
large by quadratic programming standards; problems with thousands, even millions,
of variables and constraints. When dealing with side-constrained network program-
ming problems, models can have not only a quadratic programming component of
that magnitude, but also a larger (possibly much larger) network component.

How to Make the Data Read of PROC QP More Efficient � 733

The majority of a network problem’s decision variables are arcs. Like a QP decision
variable, an arc has an objective function coefficient, upper and lower value bounds,
and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite
similar to a QP variable, and places the same memory demands on optimization as
a QP variable. But a typical network model has many more arcs and nonarc vari-
ables than the typical QP model has variables. In addition, arcs have tail and head
nodes. Storing and processing node names require huge amounts of memory. To
make matters even more complicated, node names occupy memory at times when a
large amount of other data should reside in memory as well.

While memory requirements are lower for a model with an embedded network com-
ponent compared with the equivalent QP once optimization starts, the same is usually
not true during the data read. Even though nodal flow conservation constraints in
the QP should not be specified in the constrained network formulation, the memory
requirements to read the latter are greater because each arc (unlike a QP variable)
originates at one node and is directed toward another.

Paging

PROC QP has facilities to read data when the available memory is insufficient to
store all the data at once. PROC QP does this by allocating memory for different
purposes; for example, to store an array or receive data read from an input SAS
data set. After that memory has filled, the information is written to disk and PROC
QP can resume filling that memory with new information. Often, information must
be retrieved from disk so that data previously read can be examined or checked for
consistency. Sometimes, to prevent any data from being lost, or to retain any changes
made to the information in memory, the contents of the memory must be sent to disk
before other information can take its place. This process of swapping information to
and from disk is called paging. Paging can be very time-consuming, so it is crucial
to minimize the amount of paging performed.

There are several steps you can take to make PROC QP read the data of network and
quadratic programming models more efficiently, particularly when memory is scarce
and the amount of paging must be reduced. PROC QP will then be able to tackle
large problems in what can be considered reasonable amounts of time.

The Order of Observations

PROC QP is quite flexible in the ways data can be supplied to it. Data can be given
by any reasonable means. PROC QP has convenient defaults that can save you work
when generating the data. There can be several ways to supply the same piece of data,
and some pieces of data can be given more than once. PROC QP reads everything,
then merges it all together. However, this flexibility and convenience come at a price;
PROC QP may not assume the data has a characteristic that, if possessed by the data,
could save time and memory during the data read. Several options can indicate that
the data has some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA=
data set or the CONDATA= data set, or both. Every time it is given in the ARCDATA=
data set, a check is made to ensure that the new value is the same as any correspond-
ing value read in a previous observation of the ARCDATA= data set. Every time it

734 � Chapter 7. The QP Procedure (Experimental)

is given in the CONDATA= data set, a check is made to ensure that the new value is
the same as the value read in a previous observation of the CONDATA= data set, or
previously in the ARCDATA= data set. PROC QP would save time if it knew that
arc cost data would be encountered only once while reading the ARCDATA= data
set, so performing the time-consuming check for consistency would not be neces-
sary. Also, if you indicate that the CONDATA= data set contains data for constraints
only, PROC QP will not expect any arc information, so memory will not be allo-
cated to receive such data while reading the CONDATA= data set. This memory is
used for other purposes, and this might lead to a reduction in paging. If applicable,
use the ARC–SINGLE–OBS or the CON–SINGLE–OBS option, or both, and the
NON–REPLIC=COEFS specification to improve how the ARCDATA= data set and
the CONDATA= data set are read.

PROC QP allows the observations in input data sets to be in any order. However,
major time savings can result if the observations are ordered in particular ways. Time
spent by the SORT procedure to sort the input data sets, particularly the CONDATA=
data set, may be more than made up for when PROC QP reads them, because PROC
QP has in memory information possibly used when the previous observation was
read. PROC QP can assume a piece of data is either similar to that of the last ob-
servation read or is new. In the first case, valuable information, such as an arc or a
nonarc variable number or a constraint number, is retained from the previous obser-
vation. In the last case, checking the data with what has been read previously is not
necessary.

Even if you do not sort the CONDATA= data set, grouping observations that con-
tain data for the same arc or nonarc variable or the same row pays off. PROC QP
establishes whether an observation being read is similar to the observation just read.

In practice, many input data sets for PROC QP have this characteristic, because it
is natural for data for each constraint to be grouped together (when using the dense
format of the CONDATA= data set) or data for each column to be grouped together
(when using the sparse format of the CONDATA= data set). If data for each arc or
nonarc is spread over more than one observation of the ARCDATA= data set, it is
natural to group these observations together.

You can use the GROUPED= option to indicate whether observations of the
ARCDATA= data set, the CONDATA= data set, or both, are grouped in a way that
can be exploited during data read.

You can save time if the type data for each row appears near the top of the
CONDATA= data set, especially if it has the sparse format. Otherwise, when reading
an observation, if PROC QP does not know if a row is a constraint or special row,
the data is set aside. Once the data set has been completely read, PROC QP must
reprocess the data it set aside. By then, it knows the type of each constraint or row
or, if its type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC QP to make better utilization of available memory, you can specify
options that indicate the approximate size of the model. PROC QP then knows what
to expect. For example, if you indicate that the problem has no nonarc variables,

How to Make the Data Read of PROC QP More Efficient � 735

PROC QP will not allocate memory to store nonarc data. That memory is better
utilized for other purposes. Memory is often allocated to receive or store data of
some type. If you indicate that the model does not have much data of a particular
type, the memory that would otherwise have been allocated to receive or store that
data can be used to receive or store data of another type.

The problem size options are as follows:

• NNODES= approximate number of nodes

• NARCS= approximate number of arcs

• NNAS= approximate number of nonarc variables or QP variables

• NCONS= approximate number of QNPSC side constraints or QP constraints

• NCOEFS= approximate number of QNPSC side constraint coefficients or QP
constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do, the
better. If you do not specify some or all of these options, PROC QP guesses the size
of the problem by using what it already knows about the model. Sometimes PROC
QP guesses the size of the model by looking at the number of observations in the
ARCDATA= and the CONDATA= data sets. However, PROC QP uses rough rules
of thumb, that typical models are proportioned in certain ways (for example, if there
are constraints, then arcs, nonarc variables, or QP variables usually have about five
constraint coefficients). If your model has an unusual shape or structure, you are
encouraged to use these options.

If you do use the options and you do not know the exact values to specify, it is best to
overestimate the values. For example, if you specify NARCS=10000 but the model
has 10100 arcs, when dealing with the last 100 arcs, PROC QP might have to page
out data for 10000 arcs each time one of the last arcs must be dealt with. Memory
could have been allocated for all 10100 arcs without affecting (much) the rest of the
data read, so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC QP does
not know it. When PROC QP knows the real value, that value is used instead of
Nxxxx= .

ARCS–ONLY–ARCDATA indicates that the data in the ARCDATA= data set are for
arcs only. Memory will not be wasted to receive data for nonarc variables.

You can use the memory usage options to make the data read more efficient:

• The BYTES= option specifies the size of PROC QP main working memory in
number of bytes.

• The MEMREP option indicates that memory usage report is to be displayed on
the SAS log.

736 � Chapter 7. The QP Procedure (Experimental)

Specifying an appropriate value for the BYTES= parameter is particularly important.
Specify as large a number as possible, but not so large a number that will cause PROC
QP (that is, the SAS System running underneath PROC QP) to run out of memory.

PROC QP reports its memory requirements on the SAS log if you specify the
MEMREP option.

Use Defaults to Reduce the Amount of Data

You should use the parameters that specify default values as much as possible. For
example, if there are many arcs with the same cost value c, use DEFCOST=c for arcs
that have that cost. Use missing values in the COST variable in the ARCDATA= data
set instead of c. PROC QP ignores missing values, but must read, store, and process
nonmissing values, even if they are equal to a default option or could have been equal
to a default parameter had it been specified. Using default parameters sometimes-
makes the need for some SAS variables in the ARCDATA= and the CONDATA=
data sets no longer necessary, or reduces the quantity of data that must be read. The
default options are

• DEFCOST= default cost of arcs, objective function of nonarc variables or QP
variables

• DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc
variables or QP variables

• DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or
QP variables

• DEFCONTYPE= LE or DEFCONTYPE= <=
DEFCONTYPE= EQ or DEFCONTYPE= =
DEFCONTYPE= GE or DEFCONTYPE= >=

DEFCONTYPE=LE is the default.

The default options themselves have defaults. For example, you do not need to spec-
ify DEFCOST=0 in the PROC QP statement. You should still have missing values in
the COST variable in the ARCDATA= data set for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

• SOURCE= name of single node that has supply capability

• SUPPLY= the amount of supply at SOURCE

• SINK= name of single node that demands flow

• DEMAND= the amount of flow that SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default.
The only time it might be practical to specify a zero rhs is in observations of the
CONDATA= data set read early so that PROC QP can infer that a row is a constraint.
This could prevent coefficient data from being put aside because PROC QP did not
know the row was a constraint.

How to Make the Data Read of PROC QP More Efficient � 737

Names of Things

To cut data read time and memory requirements, you should reduce the number of
bytes in the longest node name, the longest arc name, the longest nonarc variable
name, the longest QP variable name, and the longest constraint name to 8 bytes or
less. The longer a name, the more bytes must be stored and compared with other
names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable
in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC QP has a default name for each arc. If an arc is directed from node tail-
name toward node headname, the default name for that arc is tailname–headname. If
you do not want PROC QP to use these default arc names, specify NAMECTRL=1.
Otherwise, PROC QP must use memory for storing node names and these node names
must be searched often.

If you want to use the default tailname–headname name, that is, NAMECTRL=2 or
NAMECTRL=3, do not use underscores in node names. If the CONDATA= data set
has a dense format and has a variable in the VAR list named A–B–C–D, or if the value
A–B–C–D is encountered as a value of the COLUMN list variable when reading the
CONDATA= data set that has the sparse format, PROC QP first looks for a node
named A. If it finds it, it looks for a node called B–C–D. It then looks for a node with
the name A–B and possibly a node with name C–D. A search is then conducted for
a node named A–B–C and possibly a node named D. Underscores could have caused
PROC QP to look unnecessarily for nonexistent nodes. Searching for node names can
be expensive, and the amount of memory to store node names is often large. It might
be better to assign the arc name A–B–C–D directly to an arc by having that value as
a NAME list variable value for that arc in the ARCDATA= data set and specifying
NAMECTRL=1.

Other Ways to Speed-up Data Reads

Arcs and nonarc variables, or QP variables, can have associated with them values
or quantities that have no bearing on the optimization. This information is given
in the ARCDATA= data set in the ID list variables. For example, in a distribution
problem, information such as truck number and driver’s name can be associated with
each arc. This is useful when the optimal solution saved in the CONOUT= data set is
analyzed. However, PROC QP needs to reserve memory to process this information
when data is being read. For large problems when memory is scarce, it might be
better to remove ancillary data from the ARCDATA= data set. After PROC QP runs,
you can use SAS software to merge this information into the CONOUT= data set that
contains the optimal solution.

738 � Chapter 7. The QP Procedure (Experimental)

Examples
The following examples illustrate some of the capabilities of PROC QP. These ex-
amples, together with the other SAS/OR examples, can be found in the SAS sample
library.

In order to illustrate variations in the use of the QP procedure, Example 7.1 through
Example 7.8 use data for the following QP problem:

minimize 10x2
1 + 10x2

2 + 10x2
3 + 2x1x2 + 4x1x3 + 10x2 + 10x3

subject to x1 + x2 = 44
x1 + x2 + x3 ≥ 5
x1 − 3x3 = 4
0 ≤ x1 ≤ 100
10 ≤ x2 ≤ 100
10 ≤ x3 ≤ 100

The QP procedure can solve problems that have an embedded network. To demon-
strate this, a simple two-node, one-arc network is added to the QP instance above.
For such problems, an optimal solution is comprised of the optimal flows through
arcs, and the optimal values of the nonarc variables. Example 7.5 demonstrates how
the QP procedure is used, and Example 7.6 confirms that the solution is correct by
solving the equivalent QP problem when the network specification is included with
the data for the remainder of the problem. Example 7.7 and Example 7.8 show how
arc Hessian data is specified.

Example 7.1. Dense Format in CONDATA
The HESSIAN=HESS data set is initialized with the quadratic part of the objective
function. Remember that the term 10x2

1 in the objective function is really 1
2(20x2

1)
when matrix multiplication is performed in the term 1

2xT Hx; therefore, diagonal el-
ements in H must be doubled. The term 4x1x3 is really 1

2(4x1x3 + 4x3x1), so the
off-diagonal elements of the Hessian should not be doubled. The HESSIAN=HESS
data set is initialized with SAS variables row, col, and val, which are not the de-
fault names of SAS variables used for the HESSIANCOEF, HESSIANROW, and
HESSIANCOLUMN SAS variable lists, so these variable lists must be specified af-
ter the QP statement.

/*-- Dense format in condata --*/
data HESS;

input row $ col $ val;
datalines;

X1 X1 20
X2 X2 20
X3 X3 20
X2 X1 2
X3 X1 4
;

Example 7.1. Dense Format in CONDATA � 739

data DENDATA;
input X1-X3 _type_ $ _rhs_;
datalines;

1 1 . eq 44
1 1 1 ge 5
1 . -3 eq 4
0 10 10 min .
0 10 10 lo .
100 100 100 up .
;

proc qp
condata=DENDATA hessian=HESS
bytes=100000
stop_dg=1e-6
conout=soln1;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

The following messages are written to the SAS log.

NOTE: Number of variables= 3 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 2 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 7 .
NOTE: There are 5 diagonal and superdiagonal

elements in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.16458E-07
NOTE: Dual infeasibility 2.19915E-08
NOTE: Duality gap 8.06165E-07
NOTE: Objective= 15799.976398.
NOTE: The data set WORK.SOLN has 3 observations

and 5 variables.
NOTE: There were 5 observations read from the

data set WORK.HESS.
NOTE: There were 6 observations read from the

data set WORK.DENDATA.

740 � Chapter 7. The QP Procedure (Experimental)

The optimal solution data set, CONOUT=SOLN1, is given in Output 7.1.1.

Output 7.1.1. CONOUT=SOLN1

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 X1 0 100 0 34.0000
2 X2 10 100 10 10.0000
3 X3 10 100 10 10.0000

Example 7.2. Dense Format in CONDATA and a VARDATA Is
Used

You can provide data for the same problem in other ways. In this example, another
HESSIAN= data set is created using SAS variable names suitable to be automati-
cally used in the HESSIANCOEF, HESSIANROW, and HESSIANCOLUMN vari-
able lists. This saves you from having to specify these lists. Also, the nonconstraint
data (that is, the data corresponding to each variable’s linear component of the objec-
tive function, and upper and lower bounds) are provided in a VARDATA= data set.
The CONDATA= data set is reduced to providing only constraint data.

These data sets are used to solve the QP problem. The QP procedure issues messages
to the SAS log that are the same as for Example 7.1. The data set SOLN2 differs from
SOLN1 in that the names of variables in VARDATA1 assumed to be in the NAME,
OBJFN, LO, and UPPERBD variable lists are used.

/*-- Dense format in condata and a vardata is used --*/
data HESS2;

input _row_ $ _col_ $ _coef_;
datalines;

X1 X1 20
X2 X2 20
X3 X3 20
X2 X1 2
X3 X1 4
;

data DENDATA2;
input X1-X3 _type_ $ _rhs_;
datalines;

1 1 . eq 44
1 1 1 ge 5
1 . -3 eq 4
;

data VARDATA1;
input _name_ $ _objfn_ _lo_ _upper_;
datalines;

X1 0 0 100
X2 10 10 100
X3 10 10 100
;

Example 7.3. Sparse Format in CONDATA � 741

proc qp
condata=DENDATA2 hessian=HESS2
vardata=VARDATA1
bytes=100000
stop_dg=1e-6
conout=soln2;
run;

The optimal solution data set, CONOUT=SOLN2, is given in Output 7.2.1.

Output 7.2.1. CONOUT=SOLN2

Obs _name_ _objfn_ _upper_ _lo_ _VALUE_

1 X1 0 100 0 34.0000
2 X2 10 100 10 10.0000
3 X3 10 100 10 10.0000

Example 7.3. Sparse Format in CONDATA

The same QP problem is now solved by providing a sparse format CONDATA= data
set to the QP procedure. The output data set SOLN3 is identical to SOLN1 of Example
7.1.

/*-- Sparse format in condata --*/
data SPDATA;

input _column_ $ _type_ $ _row_ $ _coef_;
datalines;

. eq row1 44
X1 . row1 1
X2 . row1 1
. ge row2 5
X1 . row2 1
X2 . row2 1
X3 . row2 1
. eg row3 4
X1 . row3 1
X3 . row3 -3
. min obj .
X2 . obj 10
X3 . obj 10
. lo lovect .
X2 . lovect 10
X3 . lovect 10
X1 upp . 100
X2 upp . 100
X3 upp . 100
;

742 � Chapter 7. The QP Procedure (Experimental)

proc qp
condata=SPDATA sparsecondata
hessian=HESS
bytes=100000
stop_dg=1e-6
conout=soln3;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

Example 7.4. Another Sparse Format in CONDATA and a
VARDATA Is Used

This example demonstrates another way to use the sparse format of CONDATA= to
provide the same data. Two SAS variables are assumed to be in the ROW Statement
and COEF Statement SAS variable lists. The variable –row1– is paired with –coef1– ,
and –row2– is paired with –coef2– .

/*-- Another sparse format in condata --*/
data SPDATA2;

input _column_ $ _type_ $ _row1_ $ _coef1_
row2 $ _coef2_;

datalines;
. eq row1 44 row3 4
. ge row2 5 . .
. min obj . . .
. lo lovect . . .
. up upvect . . .
X1 . row1 1 row2 1
X1 . row3 1 upvect 100
X2 . row1 1 row2 1
X2 . obj 10 lovect 10
X2 . upvect 100 . .
X3 . row2 1 row3 -3
X3 . obj 10 lovect 10
X3 . upvect 100 . .
;

proc qp
condata=SPDATA2 sparsecondata
hessian=HESS2
bytes=100000
stop_dg=1e-6
conout=soln4;
run;

The output SAS data set SOLN4 is the same as SOLN1 of Example 7.1.

You could also remove the nonconstraint data from SPDATA2 and use the resulting
SPDATA3, along with VARDATA1 and either HESS1 or HESS2 to solve this problem.

Example 7.5. A QP Problem with a Network Component � 743

data SPDATA3;
input _column_ $ _type_ $ _row1_ $ _coef1_

row2 $ _coef2_;
datalines;

. eq row1 44 row3 4

. ge row2 5 . .
X1 . row1 1 row2 1
X1 . row3 1 . .
X2 . row1 1 row2 1
X3 . row2 1 row3 -3
;

Example 7.5. A QP Problem with a Network Component

The QP procedure solves not only ordinary QP problems, but also problems that have
embedded network structures. The remaining examples demonstrate how this is done.
The design of QP allows data for problems to be conveniently specified.

Suppose that the QP problem has a network added to it. This network is simply one
arc directed from a node n1 toward another node n2. The arc does not appear at all
in the objective function, and has default capacity and lower flow bound. Node n1
supplies one unit of flow, and node n2 demands one unit of flow. The data is provided
in the ARCDATA= and NODEDATA= data sets.

Obviously, the optimal flow through this arc is 1 flow unit, which is what is deter-
mined by the following optimization.

data NODEDATA;
input _node_ $ _supdem_;
datalines;

n1 1
n2 -1
;

data ARCDATA;
input _from_ $ _to_ $;
datalines;

n1 n2
;

proc qp
condata=DENDATA hessian=HESS
arcdata=ARCDATA nodedata=NODEDATA
bytes=100000
stop_dg=1e-6
conout=soln5;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

744 � Chapter 7. The QP Procedure (Experimental)

The following messages are written to the SAS log.

NOTE: Number of nodes= 2 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 1 , total demand= 1 .
NOTE: Number of arcs= 1 .
NOTE: There are 3 variables in CONDATA which are

not the names of arcs or nonarc variables in
ARCDATA or in the form tailnode_headnode. Was
NAMECTRL=1 specified. If not specified, should
SPARSECONDATA have been specified.

NOTE: It is assumed that these are nonarc variables
which have all information relating to them in
CONDATA.

NOTE: Number of nonarc variables= 3 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of side constraint coefficients= 7 .
NOTE: The following messages relate to the equivalent

Quadratic Programming problem solved by the
Interior Point algorithm.

NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 4 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 9 .
NOTE: Number of variables= 4 .
NOTE: There are 5 diagonal and superdiagonal elements

in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.18302E-07
NOTE: Dual infeasibility 2.62590E-08
NOTE: Duality gap 4.88784E-07
NOTE: Objective= 15799.976017.
NOTE: The data set WORK.SOLN5 has 4 observations and

9 variables.
NOTE: There were 1 observations read from the data

set WORK.ARCDATA.
NOTE: There were 2 observations read from the data

set WORK.NODEDATA.
NOTE: There were 5 observations read from the data

set WORK.HESS.
NOTE: There were 6 observations read from the data

set WORK.DENDATA.

The optimal solution data set, CONOUT=SOLN5, is given in Output 7.5.1.

Example 7.6. Equivalent Nonnetwork QP Problem � 745

Output 7.5.1. CONOUT=SOLN5

Obs _from_ _to_ _COST_ _CAPAC_ _LO_ _NAME_ _SUPPLY_ _DEMAND_ _FLOW_

1 n1 n2 0 99999999 0 1 1 1.0000
2 0 100 0 X1 . . 34.0000
3 10 100 10 X2 . . 10.0000
4 10 100 10 X3 . . 10.0000

Notice that observation 1 contains the arc information. As this problem has a network
component (and as it is more typical to have many more arcs than nonarc variables),
coefficients of problem variables for the linear part of the objective function are given
in the variable –COST– , upper bounds are given in the variable –CAPAC– , and lower
bounds are given in the variable –LO– .

Example 7.6. Equivalent Nonnetwork QP Problem

You can verify that PROC QP has indeed found the correct solution by adding the
flow conservation constraints for each node to the constraint data and solving the
equivalent QP problem as if it had no embedded network. This example demonstrates
this verification technique.

data DENDATA9;
input ARC1 X1-X3 _type_ $ _rhs_;
datalines;

1 . . . eq 1
-1 . . . eq -1
. 1 1 . eq 44
. 1 1 1 ge 5
. 1 . -3 eq 4
. 0 10 10 min .
. 0 10 10 lo .
. 100 100 100 up .
;

proc qp
condata=DENDATA9 hessian=HESS
bytes=100000
stop_dg=1e-6
conout=soln6;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

746 � Chapter 7. The QP Procedure (Experimental)

The following messages are written to the SAS log.

NOTE: Number of variables= 4 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 4 .
NOTE: Number of >= constraints= 1 .
NOTE: Number of constraint coefficients= 9 .
NOTE: There are 5 diagonal and superdiagonal

elements in the Hessian matrix.
NOTE: Solution:
NOTE: Primal infeasibility 1.18302E-07
NOTE: Dual infeasibility 2.62589E-08
NOTE: Duality gap 4.88784E-07
NOTE: Objective= 15799.976017.
NOTE: The data set WORK.SOLN6 has 4 observations

and 5 variables.
NOTE: There were 5 observations read from the

data set WORK.HESS.
NOTE: There were 8 observations read from the

data set WORK.DENDATA9.

The optimal solution data set, CONOUT=SOLN6, is given in Output 7.6.1. Note
that the solution is the same as that given in Output 7.5.1. However, providing net-
work data in the specialized manner as is done in Example 7.5 saves you from having
to manually generate the equivalent QP problem, and to interpret the solution for
general problem variables as flows through arcs and values of nonarc variables. For
instance, in the SOLN6 data set shown in Output 7.6.1, there is no information re-
garding the –from– node or –to– node of arcs; in fact, there is nothing to distinguish
each observation as an arc or a nonarc variable.

Output 7.6.1. CONOUT=SOLN6

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 ARC1 0 99999999 0 1.0000
2 X1 0 100 0 34.0000
3 X2 10 100 10 10.0000
4 X3 10 100 10 10.0000

Example 7.7. An Unnamed Arc Has Data in the Hessian � 747

Example 7.7. An Unnamed Arc Has Data in the Hessian

What if the arc has data in the Hessian? Suppose the term 6x1xarc is added to the
objective function. When reading data for the Hessian, the QP procedure uses a
similar mechanism as when the CONDATA= data set is read. An arc may have a
default name comprised of the arc’s –from– node and –to– node, separated by an
underscore character (the case in this example), or may be given a name of your
choosing by having a NAME list variable in the ARCDATA= data set (see Example
7.8).

data HESSARC;
input row $ col $ val;
datalines;

X1 X1 20
X2 X2 20
X3 X3 20
X2 X1 2
X3 X1 4
X1 n1_n2 6
n1_n2 n1_n2 20
;

proc qp
condata=DENDATA hessian=HESSARC
arcdata=ARCDATA nodedata=NODEDATA
bytes=100000
stop_dg=1e-6
conout=soln7;
hessiancoef val;
hessianrow row;
hessiancolumn col;
run;

The output SAS data set SOLN7 is the same as SOLN6 of Example 7.6.

748 � Chapter 7. The QP Procedure (Experimental)

Example 7.8. A Named Arc Has Data in the Hessian

This example is similar to Example 7.7, except that the arc is specified by a name
(‘the–arc’), rather than by its –from– node and –to– node.

data ARCDATA2;
input _name_ $ _from_ $ _to_ $ _cost_ _capac_ _lo_ ;
datalines;

the_arc n1 n2 . . .
X1 . . 0 100 0
X2 . . 10 100 10
X3 . . 10 100 10
;

data HESSARC2;
input _row_ $ _col_ $ _coef_;
datalines;

X1 X1 20
X2 X2 20
X3 X3 20
X2 X1 2
X3 X1 4
X1 the_arc 6
the_arc the_arc 20
;

proc qp
condata=DENDATA2 hessian=HESSARC2
arcdata=ARCDATA2 nodedata=NODEDATA
bytes=100000
stop_dg=1e-6
conout=soln8;
run;

The optimal solution data set, CONOUT=SOLN8, is given in Output 7.8.1. Note the
presence of the NAME list variable, –name– .

Output 7.8.1. CONOUT=SOLN8

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_

1 n1 n2 0 99999999 0 the_arc 1 1 1.0000
2 0 100 0 X1 . . 34.0000
3 10 100 10 X2 . . 10.0000
4 10 100 10 X3 . . 10.0000

References � 749

References
Reid, J. K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub

Decomposition for Linear Programming Bases,” Harwell Report CSS 20.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear
Optimization, Chichester, England: John Wiley & Sons.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John
Wiley & Sons.

750 � Chapter 7. The QP Procedure (Experimental)

Chapter 8
The TRANS Procedure

Chapter Contents

OVERVIEW . 753

GETTING STARTED . 754
Introductory Example . 754

SYNTAX . 755
Functional Summary . 755
PROC TRANS Statement . 756
HEADNODE Statement . 757
SUPPLY Statement . 757
TAILNODE Statement . 758

DETAILS . 758
Missing Values . 758
Output Data Set . 758
Objective Value . 758
Demand . 759
Dual Variables . 759
Macro Variable –ORTRANS . 759
Reasons for Infeasibility . 760
Balancing Total Supply and Total Demand 760

EXAMPLES . 763
Example 8.1. Uncapacitated Transportation Network 763
Example 8.2. Capacitated Transportation Network 765
Example 8.3. Capacitated Transportation Network with MINFLOW 766
Example 8.4. An Infeasible Problem . 768

752 � Chapter 8. The TRANS Procedure

Chapter 8
The TRANS Procedure
Overview

The TRANS procedure is used to solve the transportation problem, which is a type
of network flow problem. A node of a transportation problem is either a source node
or a destination node. Each source node is able to supply a specified number of
flow units; each destination node has a demand for a specified number of flow units.
Each arc of a transportation problem originates at a source node and terminates at
a destination node. Some arcs can have capacities (the maximum amount of flow
that they can convey) and lower flow bounds (the minimum amount of flow that the
arc can convey). Arcs also have per unit traversal costs, simply referred to as costs
(for example, the cost incurred when one unit of flow is conveyed through an arc).
Figure 8.1 shows a transportation problem network having three source nodes and
two destination nodes.

��
��
source
nodes

���������1

�
�

�
�

�
�

�
�

��

��
��

���������1

��
��

PPPPPPPPPq

@
@

@
@

@
@

@
@

@R

��
��

destination
nodes

��
��

Figure 8.1. A Transportation Problem

754 � Chapter 8. The TRANS Procedure

Getting Started
The TRANS procedure accepts information about the transportation problem as data
and produces a SAS data set that contains the flows that should be conveyed by each
arc (the flow between each source and destination node) that minimizes the total cost
of flow.

Introductory Example

Consider the SAS data set in Figure 8.2. The SAS code used to create the data set
can be found in Example 8.1.

Uncapacitated Transportation Network

L N S W
A C H o e a S a
t h D o s w n e s s
l i e u _ M _ _ a h u
a c n s A i Y F t i p c

O n a v t n a o r t n p i
b t g e o g m r a l g l t
s a o r n e i k n e t y y

1 50 75 89 8 27 39 64 100 50 8 .
2 20 58 121 70 193 60 74 213 218 54 10 Atlanta
3 58 20 92 94 174 118 71 185 173 57 150 Chicago
4 121 92 20 87 83 172 163 94 102 149 90 Denver
5 70 94 87 20 137 96 142 154 189 122 27 Houston
6 193 174 83 137 20 223 245 34 95 230 80 Los_Ange
7 60 118 172 96 233 20 109 259 273 92 26 Miami
8 74 71 163 142 245 109 20 257 240 20 80 New_York
9 213 185 94 164 34 259 257 20 67 244 25 San_Fran
10 218 173 102 189 95 273 240 67 20 232 7 Seattle
11 54 59 149 122 230 92 20 244 232 20 15 Washingt

Figure 8.2. Introductory Example Input Data Set

The first observation provides the number of units demanded at each destination node.
The supply variable provides the number of units supplied at each source node. If
you exclude the first observation and the supply variable, the remaining values are the
cost of shipping one unit between nodes. For example, the per unit transportation cost
between Miami and Houston is 96. The transportation problem is solved when the
minimum total cost flow between supply points and destination points that satisfies
the demand is found. PROC TRANS solves this problem and produces a SAS data
set containing the number of units to ship between each supply point and demand
point. It does not produce any output but does report the minimum cost on the log.
See Example 8.1 for the results.

Functional Summary � 755

Syntax
PROC TRANS options ;

HEADNODE variables ;
SUPPLY variable ;
TAILNODE variable ;

The PROC TRANS statement invokes the procedure. The TAILNODE and SUPPLY
statements are required.

Functional Summary

The following table outlines the options available for the TRANS procedure classified
by function.

Table 8.1. Functional Summary

Description Statement Option

Input Data Set Options:
data set containing arc capacities PROC TRANS CAPACITY=
data set containing cost, supply, and demand data PROC TRANS COST=
data set containing arc minimum flows PROC TRANS MINFLOW=

Output Data Set Options:
data set containing the solution PROC TRANS OUT=

General Options:
default arc capacities PROC TRANS DEFCAPACITY=
default arc lower flow bounds PROC TRANS DEFMINFLOW=
observation number containing demands PROC TRANS DEMAND=
find maximum transportation cost PROC TRANS MAXIMUM
discard any excess supply or demand PROC TRANS NOTHRUNET
force excess supply or demand through the network PROC TRANS THRUNET

The statements and options available in PROC TRANS are discussed in the order in
which they appear in the preceding list of syntax elements.

756 � Chapter 8. The TRANS Procedure

PROC TRANS Statement

PROC TRANS options ;

Input Data Set Options

CAPACITY=SAS-data-set
names the SAS data set that contains the capacity on each arc in the transportation
network. These data specify the maximum allowable flow on each network arc. If
the CAPACITY= option is omitted, then the value of the DEFCAPACITY= option is
used for each arc in the network.

COST=SAS-data-set
names the SAS data set that contains the cost, supply, and demand data for the trans-
portation network. If the COST= option is omitted, the most recently created SAS
data set is used.

MINFLOW=SAS-data-set
names the SAS data set that contains the minimum flow data for the transportation
network. These data specify the minimum required flow on each arc in the network.
If the MINFLOW= option is omitted, then the value of the DEFMINFLOW= option
is used for each arc in the network.

Output Data Set Options

OUT=SAS-data-set
specifies a name for the output data set. If the OUT= option is omitted, the SAS
System creates a data set and names it according to the DATAn convention. Refer to
base SAS documentation for more information.

General Options

DEFCAPACITY=c
specifies the default capacity for the arcs in the network. The default value of c is
+∞.

DEFMINFLOW=s
specifies the default minimum flow for the arcs in the network. The default value of
s is 0.

DEMAND=d
gives the number of the observation that contains the number of units demanded at
each destination node. The default value of d is 1.0. See the “Demand” section on
page 759.

MAXIMUM
tells the procedure to maximize rather than minimize the objective function.

NOTHRUNET
tells PROC TRANS to drain away any excess supply (the amount that total supply
exceeds total demand) or excess demand (the amount that total demand exceeds total
supply). If total supply exceeds total demand and if a destination node demands d
units of flow, then at least d units and maybe more will flow to that node. Similarly,

SUPPLY Statement � 757

if total demand exceeds total supply and if a source node supplies s units of flow,
then at least s units and possibly more will flow from that node. If a transportation
problem has unequal total supply and total demand, and you do not specify either the
THRUNET or NOTHRUNET option, then PROC TRANS assumes that the problem
is infeasible and does not proceed with the optimization. See the “Balancing Total
Supply and Total Demand” section on page 760 for more information.

THRUNET
ADDSUPPLY

tells the procedure to force through the network any excess supply (the amount
that total supply exceeds total demand) or any excess demand (the amount that to-
tal demand exceeds total supply), as is required. If a transportation problem has
unequal total supply and total demand, and you do not specify either THRUNET
or NOTHRUNET, then PROC TRANS assumes that the problem is infeasible and
does not proceed with the optimization. See the “Balancing Total Supply and Total
Demand” section on page 760 for more information.

HEADNODE Statement

HEADNODE variables ;

The HEADNODE statement is a list of SAS variables in the COST= data set. Some
or all of these variables are in the CAPACITY= data set and the MINFLOW= data
set. The names of these SAS variables are also the names of the destination nodes in
the transportation problem.

In the COST= data set, the value of a HEADNODE list variable in an observation
that does not contain demand data is the cost of transporting a unit of flow from
the source node named in that observation’s TAILNODE list to the destination node
associated with the name of the HEADNODE list variable. HEADNODE variables
in the MINFLOW= data set and CAPACITY= data set are similarly associated with
destination nodes. In these data sets, the HEADNODE list variables have as values
the upper and lower bounds on arc flows.

If the HEADNODE statement is not specified, PROC TRANS forms a HEADNODE
list of all numeric variables in the COST= data set not included in the explicit or
implicit list specifications.

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the variable in the COST= data set that contains the
number of units of supply at each supply node. The SUPPLY statement is required.
Values of the SUPPLY variable must be numeric.

758 � Chapter 8. The TRANS Procedure

TAILNODE Statement

TAILNODE variable ;

The TAILNODE statement identifies the variable in all input data sets that names each
of the source nodes. This variable is included in the output data set. The TAILNODE
statement is required, and the values of the TAILNODE variable must be character.

Details

Missing Values

A missing value in a HEADNODE list variable in the COST= data set indicates that
the arc from that observation’s TAILNODE list source node to the corresponding
destination node does not exist. A missing supply or demand value is interpreted as
zero.

A missing value in the MINFLOW= data set and CAPACITY= data set causes the
procedure to assign the default capacity or default minimum flow to the correspond-
ing arc, if it exists.

A missing value in the OUT= data set is used when the arc does not exist.

Output Data Set

The output data set contains the variables listed in the HEADNODE, TAILNODE,
and SUPPLY statements, and an additional variable named –DUAL–. See the “Dual
Variables” section on page 759. For each observation in the COST= data set that is
associated with a source node, the output data set tells you

• the optimal flow between the source and destination nodes

• the name of the source node as given in the TAILNODE variable

• the value of the dual variable associated with that source node

The demand data specified in the COST= data set are also included in the same ob-
servation as they are in the COST= data set. The TAILNODE variable has the value
–DEMAND– in this observation. An observation labeled with the TAILNODE vari-
able taking the value –DUAL– contains the dual variables at the destination nodes.

Objective Value

If the problem is infeasible (see the “Reasons for Infeasibility” section on page 760),
a note to that effect is written to the SAS log. Otherwise, the value of the objec-
tive function, the total cost (the multiple of flow and cost, summed for all arcs) at
optimality, is reported on the SAS log.

Macro Variable –ORTRANS � 759

Demand

The demand at each destination node must be specified. Because there are the same
number of destination nodes as there are HEADNODE statement variables, PROC
TRANS assumes that the values of the first observation contain the number of units
demanded at each destination node. If DEMAND=d is specified in the PROC TRANS
statement, then observation d is assumed to contain the number of units demanded at
each destination node.

Dual Variables

Let πi, i = 1, . . . , n be the dual variable values of the source nodes, πj , j = 1, . . . ,m
be the dual variable values of the destination nodes, and cij be the cost of unit flow
on the arc between source i and destination j. Then

rij = πi − πj − cij

is the reduced cost of the arc between nodes i and j. This is the amount by which the
total cost increases if flow through arc (i, j) is increased by one unit. The total cost
decreases by rij if the flow through arc (i, j) is decreased by one unit. Dual variables
are saved in the OUT= data set.

Macro Variable –ORTRANS

On termination, the TRANS procedure defines a macro variable named –ORTRANS.
This variable contains a character string that indicates the status of the proce-
dure on termination and gives the objective value at termination. The form of the
–ORTRANS character string is

STATUS=xxx OBJECTIVE=total-cost-of-the-solution

where xxx can be one of the following:

• SUCCESSFUL

• INFEASIBLE

• INFEASIBLE–SUPPLY>DEMAND

• INFEASIBLE–SUPPLY<DEMAND

• MEMORY–ERROR

• IO–ERROR

• SYNTAX–ERROR

• SEMANTIC–ERROR

• BADDATA–ERROR

• UNKNOWN–ERROR

760 � Chapter 8. The TRANS Procedure

This information can be used when PROC TRANS is one step in a larger program
that needs to identify how the TRANS procedure terminated. Because –ORTRANS
is a standard SAS macro variable, it can be used in the ways that all macro variables
can be used (refer to the SAS Guide to Macro Processing). One way to write the
–ORTRANS variable to the log is illustrated in Example 8.1.

Reasons for Infeasibility

By default, PROC TRANS assumes that all transportation problems have total supply
equal to total demand. The THRUNET and NOTHRUNET options enable you to
relax this assumption.

A transportation problem is infeasible if nodal flow conservation constraints cannot
be met so that the flow into a node plus its supply does not equal the flow out of the
node plus its demand. Instances of this type of infeasibility occur when

• the supply of a source node exceeds the total capacities of arcs leading out of it

• the supply of a source node does not meet the total lower flow bounds of arcs
leading out of it

• the demand of a destination node exceeds the total capacities of arcs leading
into it

• the demand of a destination node does not meet the total lower flow bounds of
arcs leading into it

If a solution does not exist where all arcs have flow on or between their lower flow
bounds or capacities, the problem is infeasible.

Balancing Total Supply and Total Demand

When Total Supply Exceeds Total Demand

When total supply of a transportation problem exceeds total demand, PROC TRANS
can add an extra destination node (called the excess node) to the problem and set the
demand at that node equal to the difference between total supply and total demand.
There are two ways that this extra destination node can be added to the transportation
network.

Figure 8.3 shows a network in which the NOTHRUNET option is specified. The sum
of flows that reach the destination nodes equals the total demand of the transportation
problem. For some source nodes, supply can be conveyed through real arcs but can
also be drained away to the excess node. The supply of each source node is really an
upper bound of the number of flow units such a node can actually supply.

Balancing Total Supply and Total Demand � 761

��
��
source
nodes

Q
Q

Q
Q

Q
Q

Q
QQk

���������1

�
�

�
�

�
�

�
�

��

��
��

� ���������1

��
��

�
�

�
�

�
�

�
��+

PPPPPPPPPq

@
@

@
@

@
@

@
@

@R
��
��
excess

��
��

destination
nodes

��
��

Figure 8.3. Using the NOTHRUNET Option when Total Supply Exceeds Total
Demand

Figure 8.4 illustrates a network in which the THRUNET option is used. The sum
of flows that reach the destination nodes equals the total supply of the transportation
problem.

��
��
source
nodes

���������1

�
�

�
�

�
�

�
�

��

��
��

���������1

��
��

PPPPPPPPPq

@
@

@
@

@
@

@
@

@R

��
��

���������1

destination
nodes

��
��

PPPPPPPPPq��
��
excess

Figure 8.4. Using the THRUNET Option when Total Supply Exceeds Total
Demand

For some destination nodes, the amount of flow can exceed that node’s demand. The
demand of destination nodes is a lower bound of the number of flow units a destina-
tion node can demand.

762 � Chapter 8. The TRANS Procedure

When Total Demand Exceeds Total Supply

When total demand exceeds total supply, PROC TRANS can add an extra source
node (the excess node) to the problem. This node is able to supply to the network
the difference between total demand and total supply. There are two ways this extra
source node can be added to the transportation network.

Figure 8.5 shows a network in which the NOTHRUNET option is specified. The
sum of flows that leave the source nodes equals the total supply of the transportation
problem. For some destination nodes, demand will be satisfied by flow through real
arcs and can be satisfied by flows through arcs directed from the excess node. The
demand of each destination node is really an upper bound of the number of flow units
such a node can actually receive.

��
��
source
nodes

���������1

�
�

�
�

�
�

�
�

��

��
��

���������1

��
��

PPPPPPPPPq

@
@

@
@

@
@

@
@

@R

��
��

destination
nodes

��
��

��
��
excess

���������)

PPPPPPPPPi

Figure 8.5. Using the NOTHRUNET Option when Total Demand Exceeds Total
Supply

Figure 8.6 illustrates a network in which the THRUNET option is specified. The sum
of flows that leave the source nodes equals the total demand of the transportation
problem. For some source nodes, the sum of flow that is conveyed through arcs
originating at that node can exceed the node’s supply capability. The supply of source
nodes is a lower bound of the number of flow units a source node is able to supply to
the network.

Example 8.1. Uncapacitated Transportation Network � 763

��
��
source
nodes

���������1

�
�

�
�

�
�

�
�

��

��
��

���������1

��
��

PPPPPPPPPq

@
@

@
@

@
@

@
@

@R
��
��
excess

Q
Q

Q
Q

Q
Q

Q
Q

Qs

-�
�

�
�

�
�

�
�

�3

��
��

destination
nodes

��
��

Figure 8.6. Using the THRUNET Option when Total Demand Exceeds Total
Supply

If total supply does not equal total demand and either the THRUNET or
NOTHRUNET option is specified, PROC TRANS automatically creates the
excess node and the arcs incident to it. When the optimization is complete, these
ancillary parts of the network are erased. Information about these parts will not be
found in the OUT= data set.

Examples

Example 8.1. Uncapacitated Transportation Network

The transportation problem described in the “Getting Started” section on page 754 is
solved next. The cost data are stored in the following SAS data set. The solution is
stored in a SAS data set as shown in Output 8.1.1 and displayed with PROC PRINT.

title ’Uncapacitated Transportation Network’;

data cst;
input Atlanta Chicago Denver Houston Los_Ange Miami

New_York San_Fran Seattle Washingt supply city$;
datalines;

50 75 89 8 27 39 64 100 50 8 . .
20 58 121 70 193 60 74 213 218 54 10 Atlanta
58 20 92 94 174 118 71 185 173 57 150 Chicago
121 92 20 87 83 172 163 94 102 149 90 Denver
70 94 87 20 137 96 142 154 189 122 27 Houston
193 174 83 137 20 223 245 34 95 230 80 Los_Ange
60 118 172 96 233 20 109 259 273 92 26 Miami
74 71 163 142 245 109 20 257 240 20 80 New_York
213 185 94 164 34 259 257 20 67 244 25 San_Fran
218 173 102 189 95 273 240 67 20 232 7 Seattle
54 59 149 122 230 92 20 244 232 20 15 Washingt
;

764 � Chapter 8. The TRANS Procedure

proc trans cost=cst;
TAILNODE city;
HEADNODE Atlanta--Washingt;
SUPPLY supply;

run;

proc print;
run;

After this program executes, the following message is written to the SAS log:

NOTE: Optimal Solution total = 22928.

Output 8.1.1. Uncapacitated Transportation Network Solution

L N S W
A C H o e a S a

s t h D o s w n e s _
u l i e u _ M _ _ a h D

c p a c n s A i Y F t i U
O i p n a v t n a o r t n A
b t l t g e o g m r a l g L
s y y a o r n e i k n e t _

1 _DEMAND_ . 50 75 89 8 27 39 64 100 50 8 .
2 Atlanta 10 10 0 0 0 0 0 0 0 0 0 -51
3 Chicago 150 30 75 2 0 0 0 0 0 43 0 -13
4 Denver 90 0 0 87 0 0 0 0 3 0 0 -85
5 Houston 27 0 0 0 8 19 0 0 0 0 0 -28
6 Los_Ange 80 0 0 0 0 8 0 0 72 0 0 -145
7 Miami 26 0 0 0 0 0 26 0 0 0 0 -89
8 New_York 80 0 0 0 0 0 8 64 0 0 8 0
9 San_Fran 25 0 0 0 0 0 0 0 25 0 0 -159
10 Seattle 7 0 0 0 0 0 0 0 0 7 0 -166
11 Washingt 15 10 0 0 0 0 5 0 0 0 0 -17
12 _DUAL_ . 71 33 105 48 165 109 20 179 186 20 .

Because the first observation is associated with the demands, the TAILNODE value
is –DEMAND–. If you had specified DEMAND=d, the dth observation would have
contained demand information. The last observation has a TAILNODE value of
–DUAL–, and the values of the HEADNODE variables are the dual variables at the
destination nodes, or the marginal costs of increasing demand at a destination node.

The other observations in the OUT= data set contain the optimal flows. For exam-
ple, the third observation contains information associated with the Chicago source
node. The values of the HEADNODE variables in this observation give the optimal
flow between Chicago and each destination node. To achieve the minimum cost, the
Chicago supply must be sent to four destinations: 30 units to Atlanta, 75 units to
Chicago, 2 units to Denver, and 43 units to Seattle. The SUPPLY variable has the
supply capability of this source node (150 units).

The –DUAL– variable value (-13) for Chicago is the amount the total solution cost
would increase (because of the negative sign, in this case, the total cost would de-
crease by $13) if Chicago supplies an extra unit of flow. (If you were to increase the

Example 8.2. Capacitated Transportation Network � 765

supply of Chicago to 151 and rerun PROC TRANS, specifying the NOTHRUNET
option, the total cost would change from 22928 to 22915.)

The macro variable –ORTRANS, defined by PROC TRANS, contains information
regarding the termination of the procedure. This information can be useful when
PROC TRANS is part of a larger SAS program. This information can be written to
the log using the macro language with the statement

%put &_ORTRANS;

The following message is written to the SAS log:

STATUS=SUCCESSFUL OBJECTIVE=22928

Example 8.2. Capacitated Transportation Network

In this example, the optimal flow is found on a capacitated transportation network.
Suppose that there are upper bounds on the amount that can be shipped within each
city. The following SAS program and output show how this capacity constraint is
included in the model:

title ’Capacitated Transportation Network’;

data capcty;
input Atlanta Chicago Denver Houston Los_Ange Miami

New_York San_Fran Seattle Washingt city$;
datalines;

10 Atlanta
. 60 Chicago
. . 100 Denver
. . . 10 Houston
. . . . 30 Los_Ange
. 20 Miami
. 75 . . . New_York
. 25 . . San_Fran
. 10 . Seattle
. 10 Washingt
;

proc trans cost=cst capacity=capcty;
HEADNODE Atlanta--Washingt;
TAILNODE city;
supply supply;

run;

proc print;
run;

766 � Chapter 8. The TRANS Procedure

After this program executes, the following message is written to the SAS log:

NOTE: Optimal Solution Total = 24036.

The preceding statements produce the SAS data set in Output 8.2.1.

Output 8.2.1. Capacitated Transportation Network Solution

Capacitated Transportation Network with MINFLOW

L N S W
A C H o e a S a

s t h D o s w n e s _
u l i e u _ M _ _ a h D

c p a c n s A i Y F t i U
O i p n a v t n a o r t n A
b t l t g e o g m r a l g L
s y y a o r n e i k n e t _

1 _DEMAND_ . 50 75 89 8 27 39 64 100 50 8 .
2 Atlanta 10 0 0 0 0 0 10 0 0 0 0 -53
3 Chicago 150 44 60 3 0 0 0 0 0 43 0 -2
4 Denver 90 0 0 86 0 0 0 0 4 0 0 -74
5 Houston 27 0 0 0 8 18 1 0 0 0 0 -17
6 Los_Ange 80 0 0 0 0 9 0 0 71 0 0 -134
7 Miami 26 6 0 0 0 0 20 0 0 0 0 0
8 New_York 80 0 8 0 0 0 0 64 0 0 8 -9
9 San_Fran 25 0 0 0 0 0 0 0 25 0 0 -148
10 Seattle 7 0 0 0 0 0 0 0 0 7 0 -155
11 Washingt 15 0 7 0 0 0 8 0 0 0 0 -21
12 _DUAL_ . 60 80 94 37 154 113 29 168 175 29 .

Note that the optimal objective value is greater in the capacitated network (24036)
than in the uncapacitated network (22928). Additional constraints can never decrease
the objective value of a minimization problem at optimality. Also observe that the
flow within Chicago, Miami, and San–Fran are at their limits. The rerouting of flow
within these cities accounts for the increase in cost.

Example 8.3. Capacitated Transportation Network with
MINFLOW

Suppose you place a minimum on the flow within each city. Just as capacity restric-
tions can be interpreted as limits on available transportation, minimum flow restric-
tions can be interpreted as requirements to ship minimum quantities on certain routes,
perhaps as a result of contractual agreements. The following program adds minimum
flow requirements on four routes. Because the MINFLOW= data set contains many
missing values, named input mode is used to input the data. The solution is displayed
following the program in Output 8.3.1.

Example 8.3. Capacitated Transportation Network with MINFLOW � 767

title ’Capacitated Transportation Network with MINFLOW’;

data minflw;
input Chicago= Denver= San_Fran= Seattle= city= $;
datalines;

city=Chicago Chicago=30 San_Fran=40 Seattle=50
city=Denver Denver=40
;

proc trans cost=cst capacity=capcty minflow=minflw;
HEADNODE Atlanta--Washingt;
TAILNODE city;
supply supply;

run;

proc print;
run;

The SAS log contains the following message:

NOTE: Optimal Solution Total = 31458.

Output 8.3.1. Capacitated Transportation Network Solution with MINFLOW

L N S W
A C H o e a S a

s t h D o s w n e s _
u l i e u _ M _ _ a h D

c p a c n s A i Y F t i U
O i p n a v t n a o r t n A
b t l t g e o g m r a l g L
s y y a o r n e i k n e t _

1 _DEMAND_ . 50 75 89 8 27 39 64 100 50 8 .
2 Atlanta 10 10 0 0 0 0 0 0 0 0 0 -138
3 Chicago 150 0 60 0 0 0 0 0 40 50 0 -100
4 Denver 90 11 8 71 0 0 0 0 0 0 0 -37
5 Houston 27 0 0 0 8 0 19 0 0 0 0 -91
6 Los_Ange 80 0 0 18 0 27 0 0 35 0 0 26
7 Miami 26 6 0 0 0 0 20 0 0 0 0 -98
8 New_York 80 8 0 0 0 0 0 64 0 0 8 -84
9 San_Fran 25 0 0 0 0 0 0 0 25 0 0 12
10 Seattle 7 0 7 0 0 0 0 0 0 0 0 44
11 Washingt 15 15 0 0 0 0 0 0 0 0 0 -104
12 _DUAL_ . 158 129 57 111 -6 187 104 8 -24 104 .

Note that the optimal objective value is greater in the minimum flow capacitated
network than in the capacitated network. Additional constraints can never decrease
the objective value of a minimization problem at optimality.

768 � Chapter 8. The TRANS Procedure

Example 8.4. An Infeasible Problem

This example shows what happens when the total demand exceeds the total supply.
The data from Example 8.1 are used with the demand at Atlanta increased to 100
units. Consequently, the demand exceeds the supply by 50 units. When the state-
ments

proc trans cost=cst;
TAILNODE city;
HEADNODE Atlanta--Washingt;
supply supply;

run;

are executed, the following message is written to the SAS log:

ERROR: Infeasible network. Total supply 510 does not equal
total demand 560.
Use either the THRUNET or the NOTHRUNET option
on the PROC TRANS statement.

However, if the THRUNET option is specified in the PROC TRANS statement, the
procedure distributes the supply optimally among the source nodes. In that case, the
statements

title ’Using the THRUNET Option’;

proc trans data=cst THRUNET;
TAILNODE city;
HEADNODE Atlanta--Washingt;
supply supply;

run;

proc print;
run;

produce the following message on the SAS log and display the solution in Output
8.4.1.

NOTE: Optimal Solution Total = 18302.

Example 8.4. An Infeasible Problem � 769

Output 8.4.1. Using the THRUNET Option

Using the THRUNET Option

L N S W
A C H o e a S a

s t h D o s w n e s _
u l i e u _ M _ _ a h D

c p a c n s A i Y F t i U
O i p n a v t n a o r t n A
b t l t g e o g m r a l g L
s y y a o r n e i k n e t _

1 _DEMAND_ . 100 75 89 8 27 39 64 100 50 8 .
2 Atlanta 10 10 0 0 0 0 0 0 0 0 0 90
3 Chicago 150 75 75 0 0 0 0 0 0 0 0 128
4 Denver 90 0 0 89 0 0 0 0 1 0 0 74
5 Houston 27 0 0 0 8 14 5 0 0 0 0 131
6 Los_Ange 80 0 0 0 0 13 0 0 67 0 0 14
7 Miami 26 0 0 0 0 0 26 0 0 0 0 55
8 New_York 80 0 0 0 0 0 8 64 0 0 8 144
9 San_Fran 25 0 0 0 0 0 0 0 32 0 0 0
10 Seattle 7 0 0 0 0 0 0 0 0 50 0 0
11 Washingt 15 15 0 0 0 0 0 0 0 0 0 124
12 _DUAL_ . -70 -108 -54 -111 6 -35 -124 20 20 -124 .

770 � Chapter 8. The TRANS Procedure

Subject Index

A
active set methods, 584

quadratic programming, 545, 572
affine step, 72, 74
arc capacity

INTPOINT procedure, 123
NETFLOW procedure, 356
QP procedure, 709

arc names
INTPOINT procedure, 84, 108, 155
NETFLOW procedure, 350, 358
QP procedure, 691, 704, 737

ASSIGN examples, 56
BY statement, 61
maximizing profit, 56, 58
minimizing total time, 59

ASSIGN procedure
costs, 53
data flow, 22
data set options, 52, 53
details, 54
functional summary, 52
input data set, 52
introductory example, 50
macro variable –ORASSIG, 55
missing values, 54
network specification, 52
objective function, 54
optimization control options, 53
options classified by function, 52
out-of-kilter algorithm, 55
output data set, 53, 54
overview, 49
profit, 53
scaling input data, 53, 55
separate solutions on grouped problems, 53
syntax skeleton, 52
table of syntax elements, 52

assignment problem, 50
data format, 33
definition of, 49

B
backtracking rules

LP procedure, 207, 237
balancing network problems

INTPOINT procedure, 114
NETFLOW procedure, 355
QP procedure, 708

Bard function, 611
Bartels-Golub decomposition, 349, 376, 417
BFGS update method, 545
big-M method, 372
bipartite network, 22
blending constraints

INTPOINT procedure, 78
NETFLOW procedure, 321
QP procedure, 685

boundary constraints
NLP procedure, 547

branch-and-bound, 233
branching variable, 238, 239
breadth-first search, 236
control options, 207, 236
depth-first search, 236

bypass arc
INTPOINT procedure, 104
NETFLOW procedure, 344
QP procedure, 703

C
case sensitivity

INTPOINT procedure, 109, 110, 142
NETFLOW procedure, 351, 364, 409
QP procedure, 705, 706, 724

centering step, 72, 74
central path

INTPOINT procedure, 70
NETFLOW procedure, 450

Cholesky factor, 575
COBYLA algorithm, 578, 584
coefficients

INTPOINT procedure, 123
LP procedure, 214
NETFLOW procedure, 356
QP procedure, 675, 709

columns
INTPOINT procedure, 124
LP procedure, 214
NETFLOW procedure, 356
QP procedure, 675, 709

complementarity
INTPOINT procedure, 69, 73, 157
NETFLOW procedure, 449

complete pricing
LP procedure, 213

computational problems

772 � Subject Index

NLP procedure, 589–591
computational resources,

See also memory requirements
NLP procedure, 607–609

confidence intervals, 559
output options, 602, 603
profile confidence limits, 529

conjugate-descent update method, 545
conjugate gradient methods, 544, 577
constraint summary

LP procedure, 27, 253, 261
converting NPSC to LP

INTPOINT procedure, 138
converting QNPSC to QP

QP procedure, 720
costs

ASSIGN procedure, 53
INTPOINT procedure, 124
NETFLOW procedure, 357
QP procedure, 678, 710

covariance matrix, 529, 592, 601
displaying, 541

crossproduct Jacobian matrix, 548, 601
definition, 567
displaying, 541
saving, 540

current tableau
LP procedure, 229

cycling
NETFLOW procedure, 373, 374, 414

D
data compression

LP procedure, 210
data flow

ASSIGN procedure, 22
INTPOINT procedure, 20
LP procedure, 17
NETFLOW procedure, 18, 19
NLP procedure, 20, 21
QP procedure, 21
TRANS procedure, 22

data sets,
See also input data sets
See also output data sets

demands
INTPOINT procedure, 125
NETFLOW procedure, 357
QP procedure, 710
TRANS procedure, 759

dense input format
INTPOINT procedure, 85, 92, 127, 130, 132
LP procedure, 191
NETFLOW procedure, 328, 397, 398, 430, 433
QP procedure, 658, 678, 681, 691, 714

derivatives, 566
computing, 512, 567
finite differences, 579

devex method, 211

DFP update method, 545
displayed output

LP procedure, 205, 215, 251–254
NETFLOW procedure, 359
NLP procedure, 604, 605

distribution problem, 76, 683
double dogleg method, 544, 576
dual activities

LP procedure, 229
dual BFGS update method, 545
dual DFP update method, 545
dual problem

INTPOINT procedure, 69
NETFLOW procedure, 449
QP procedure, 657

dual variables
INTPOINT procedure, 69
NETFLOW procedure, 414, 449
QP procedure, 657
TRANS procedure, 759

duality gap
INTPOINT procedure, 69, 157
NETFLOW procedure, 449

dynamic pricing
LP procedure, 213

E
efficiency

INTPOINT procedure, 151–156
NETFLOW procedure, 428–433
QP procedure, 732–737

embedded networks
INTPOINT procedure, 138
NETFLOW procedure, 403
QP procedure, 720

examples,
See also ASSIGN examples
See also INTPOINT examples
See also LP examples
See also NETFLOW examples
See also NLP examples
See also QP examples
See also TRANS examples
See also ASSIGN examples, 56

excess node
INTPOINT procedure, 150
NETFLOW procedure, 423
QP procedure, 731, 732

F
feasible region, 565
feasible solution, 565
finite-difference approximations

central differences, 580
computation of, 532
forward differences, 580
NLP procedure, 531
second-order derivatives, 531

first-order conditions

Subject Index � 773

local minimum, 566
Fletcher-Reeves update method, 545
flow conservation constraints

INTPOINT procedure, 66, 79, 82
NETFLOW procedure, 317, 326, 437
QP procedure, 681, 686, 689

full-screen interface, 44
function convergence

NLP procedure, 527
functional summary

ASSIGN procedure, 52
INTPOINT procedure, 100
LP procedure, 200
NETFLOW procedure, 335
NLP procedure, 524
QP procedure, 668, 700
TRANS procedure, 755

G
global solution, 565
goal-programming model, 212
Goldstein conditions, 574, 577, 587
gradient vector

checking correctness, 582
convergence, 528
definition, 566
local optimality conditions, 565
projected gradient, 586
specifying, 550

grid points, 528, 539, 540

H
Hessian matrix, 601

definition, 567
displaying, 542
finite-difference approximations, 531, 579
initial estimate, 534
local optimality conditions, 565
projected, 586
saving, 540
scaling, 533, 582
specifying, 550
update method, 545

hybrid quasi-Newton methods, 544, 546, 579

I
infeasibility

INTPOINT procedure, 69, 73, 144
LP procedure, 205, 232, 253
NETFLOW procedure, 417
QP procedure, 726
TRANS procedure, 760

infeasible information summary
LP procedure, 253

infinity
INTPOINT procedure, 108
LP procedure, 212
NETFLOW procedure, 348
QP procedure, 672

initial basic feasible solution
NETFLOW procedure, 343

input data sets
ASSIGN procedure, 52
INTPOINT procedure, 103, 131
LP procedure, 204, 250, 251
NETFLOW procedure, 342, 397
NLP procedure, 512, 596, 597
QP procedure, 669, 701, 713
TRANS procedure, 756

integer iteration log, 235
integer programs, 189, 233
interactive processing

LP procedure, 195, 206, 246, 247
NETFLOW procedure, 340

interior point algorithm, 18, 19, 21
INTPOINT procedure, 68
network problems, 437
options (NETFLOW), 381
QP procedure, 657

INTPOINT examples, 160
altering arc data, 166, 175
linear program, 184
MPS format, 184
nonarc variables, 179
production, inventory, distribution problem, 161
side constraints, 170, 175, 179

INTPOINT procedure
affine step, 72, 74
arc names, 108, 155
balancing supply and demand, 114, 150
blending constraints, 78
bypass arc, 104
case sensitivity, 109, 110, 113, 142
centering step, 72, 74
central path, 70
coefficients, 123
columns, 124
complementarity, 69, 73, 157
converting NPSC to LP, 138
costs, 124
data flow, 20
data set options, 103
default arc capacity, 105
default arc cost, 106
default constraint type, 106
default lower bound, 106
default objective function, 106
default options, 155
default upper bounds, 105
demands, 125
dense format, 85, 92, 127, 130, 132
details, 131
distribution problem, 76
dual problem, 69
dual variables, 69
duality gap, 69, 157
efficiency, 151–156
embedded networks, 82, 138

774 � Subject Index

excess node, 150
flow conservation constraints, 66, 79, 82
functional summary, 100
general options, 104
infeasibility, 69, 73, 144
input data sets, 103, 131
interior point algorithm, 68
introductory LP example, 92
introductory NPSC example, 85
inventory problem, 76
Karush-Kuhn-Tucker conditions, 69, 73
linear programming problems, 67, 91
loop arcs, 143
maximum cost flow, 108
maximum flow problem, 108
memory requirements, 99, 105, 108, 151–156
missing supply and missing demand, 145
missing values, 145
MPS file conversion, 184
multicommodity problems, 80
multiple arcs, 143
multiprocess, multiproduct example, 81
network problems, 76
nonarc variables, 82
NPSC, 66
options classified by function, 100
output data sets, 103, 141
overview, 65
preprocessing, 68, 85, 92, 118
Primal-Dual with Predictor-Corrector algorithm,

68, 72
primal problem, 68
production-inventory-distribution problem, 76
proportionality constraints, 77
scaling input data, 112
shortest path problem, 112
side constraints, 66, 82
sparse format, 85, 92, 124, 134, 138
step length, 70
stopping criteria, 120, 156
supply-chain problem, 76
symbolic factorization, 71
syntax skeleton, 100
table of syntax elements, 100
termination criteria, 120, 156
TYPE variable, 129
upper bounds, 73

inventory problem, 76, 683
iteration log

integer iteration log (LP), 235
LP procedure, 205, 254

J
Jacobian matrix, 601

constraint functions, 551
definition, 567
displaying, 542
objective functions, 552
saving, 540, 541

scaling, 582

K
Karush-Kuhn-Tucker conditions, 566, 584

INTPOINT procedure, 69, 73
NETFLOW procedure, 456

Kuhn-Tucker conditions,
See Karush-Kuhn-Tucker conditions

L
labels

assigning to decision variables, 553
Lagrange multipliers, 566, 586, 601
Lagrangian function, 566
least-squares problems

definition of, 511
optimization algorithms, 571

Levenberg-Marquardt minimization, 544
least-squares method, 578

line-search methods, 536, 587
step length, 529, 538

linear complementarity problem, 544
quadratic programming, 572

linear constraints
NLP procedure, 553

linear programming problems, 189
Bartels-Golub update, 189
INTPOINT procedure, 67, 91
NETFLOW procedure, 324

linearly constrained optimization, 574
local minimum

first-order conditions, 566
second-order conditions, 566

local solution, 565
loop arcs

INTPOINT procedure, 143
NETFLOW procedure, 410
QP procedure, 725

lower bounds
NETFLOW procedure, 358

LP examples, 256
assignment problem, 295
blending problem, 192, 256
branch-and-bound search, 291
fixed charges, 309
goal programming, 274
infeasibilities, 283
integer program, 280
introductory example, 192
mixed-integer program, 196
MPS file conversion, 198
multicommodity transshipment problem, 309
preprocessing, 197
price parametric programming, 269
price sensitivity analysis, 265
product mix problem, 274
range analysis, 267
restarting a problem, 267
restarting an integer program, 286

Subject Index � 775

scheduling problem, 302
sparse data format, 261
special ordered sets, 271

LP procedure
backtracking rules, 207, 237
branch-and-bound, 207, 233, 236
coefficients, 214
columns, 214
complete pricing, 213
constraint summary, 27, 253, 261
current tableau, 229
customizing search heuristics, 239
data compression, 210
data flow, 17
data set options, 204
dense format, 191
details, 223
devex method, 211
displayed output, 205, 215, 251–254
dual activities, 229
dynamic pricing, 213
functional summary, 200
infeasible information summary, 253
input data sets, 204, 250, 251
integer iteration log, 235
integer programs, 233
interactive processing, 195, 206, 246, 247
introductory example, 192
iteration log, 205, 254
memory requirements, 247
missing values, 223
mixed-integer programs, 233
MPS file conversion, 198, 226
multiple pricing, 213, 231
ODS table names, 254
ODS variable names, 254, 255
options classified by function, 200
–ORLP– macro variable, 229
output data sets, 204, 248–250
Output Delivery System (ODS), 254
overview, 189
parametric programming, 211, 244, 247
partial pricing, 213
pause processing, 206, 207
preprocessing, 197, 207, 232
price parametric programming, 245
price sensitivity analysis, 243, 254
pricing strategies, 231
problem definition statements, 194
problem input, 194
problem summary, 25, 251, 257
projected objective value, 236
projected pseudocost, 237
range analysis, 211, 244
range coefficient, 217
reduced costs, 229
reset options, 218
right-hand-side constants, 218
right-hand-side parametric programming, 244

right-hand-side sensitivity analysis, 242, 253
rows, 214, 219
scaling input data, 213, 232
sensitivity analysis, 211, 241, 247
simplex algorithm control options, 211
solution summary, 25, 252, 258
sparse format, 191, 204, 224
suppress printing, 205
syntax skeleton, 199
table of syntax elements, 200
terminate processing, 217
tolerance, 205, 207, 209, 211–213
TYPE variable, 220, 225, 259
variable summary, 26
variables, 191, 222, 248–250, 252, 259

M
macro variable

–ORASSIG, 55
–ORLP–, 229
–ORNETFL, 434
–ORTRANS, 759

matrix
definition (NLP), 554, 555
generation, 36

maximum flow problem
INTPOINT procedure, 108
NETFLOW procedure, 349
QP procedure, 704

memory requirements
INTPOINT procedure, 99, 105, 108, 151–156
LP procedure, 247
NETFLOW procedure, 344, 345, 347, 349, 350,

428–433
QP procedure, 666, 670, 673, 697, 732–737

merit function, 575
missing values

ASSIGN procedure, 54
INTPOINT procedure, 145
LP procedure, 223
NETFLOW procedure, 419
NLP procedure, 539, 606, 607
QP procedure, 727
TRANS procedure, 758

mixed-integer programs, 189
form of, 189
LP procedure, 233

model building, 34
Moore-Penrose conditions, 595
MPS file conversion

INTPOINT procedure, 184
LP procedure, 198, 226

multicommodity problems
INTPOINT procedure, 80
NETFLOW procedure, 322
QP procedure, 687

multiple arcs
INTPOINT procedure, 143
NETFLOW procedure, 410

776 � Subject Index

QP procedure, 725
multiple pricing

LP procedure, 213, 231

N
Nelder-Mead simplex method, 544, 577
NETFLOW examples, 471

constrained solution, 496
distribution problem, 478
inventory problem, 478
minimum cost flow, 474
nonarc variables, 500
production problem, 478
shortest path problem, 471
side constraints, 489, 500
unconstrained solution, 485
warm start, 477, 485, 489, 496

NETFLOW procedure
arc capacity, 356
arc names, 328, 331, 350, 358
balancing supply and demand, 355, 423
Bartels-Golub decomposition, 349, 376, 417
big-M method, 372
blending constraints, 321
bypass arc, 344
case sensitivity, 351, 364, 409
central path, 450
coefficients, 356
columns, 356
complementarity, 449
costs, 357
cycling, 373, 374, 414
data flow, 18, 19
data set options, 342
default arc capacity, 346
default arc cost, 346
default constraint type, 346
default lower flow bound, 346
default options, 432
demands, 346, 357
dense format, 324, 328, 397, 398, 430, 433
details, 397
dual variables, 414, 449
duality gap, 449
efficiency, 428–433
embedded networks, 403
excess node, 423
flow conservation constraints, 317, 326, 437
functional summary, 335
infeasibility, 417
infinity, 348
initial basic feasible solution, 343
input data sets, 342, 397
interactive processing, 340
interior point algorithm, 436
interior point options, 381
introductory example, 329
Karush-Kuhn-Tucker conditions, 456
key arc, 374

linear programming, 324
loop arcs, 410
lower bounds, 358
macro variable –ORNETFL, 434
major iteration, 413
maximum cost flow, 350
maximum flow problem, 349
memory requirements, 344, 345, 347, 349, 350,

428–433
minor iteration, 413
missing supply and missing demand, 419
multicommodity problems, 322
multiple arcs, 410
network models, 317
network problems, 437
nonarc variables, 326
nonkey arc, 374
NPSC, 325
options classified by function, 335
output data sets, 342, 370, 406
overview, 317
pivot, 359
preprocessing, 382
pricing strategies, 376, 410
printing cautions, 364
printing options, 359
production-inventory-distribution problem, 317
proportionality constraints, 320
ratio test, 373, 374
reduced costs, 414
scaling input data, 353
shortest path problem, 354
side constraints, 319, 325, 417
sink nodes, 354
source nodes, 354
sparse format, 324, 329, 355, 400, 404, 430, 433
stages, 366
status, 414
stopping criteria, 453
supplies, 355
syntax skeleton, 335
table of syntax elements, 335
termination criteria, 384, 453
tightening bounds, 417
TYPE variable, 395
warm starts, 327, 355, 424, 426, 433
working basis matrix, 347, 349, 355, 374, 415
wraparound search, 412

network models, 317
network problems, 17

format, 29
interior point algorithm, 437
INTPOINT procedure, 76
QP procedure, 683
specification (ASSIGN), 52

Newton-Raphson method, 545
with line search, 573
with ridging, 573

NLP examples, 611

Subject Index � 777

approximate standard errors, 617
Bard function, 611
blending problem, 631
boundary constraints, 515
chemical equilibrium, 639
covariance matrix, 617
Hock and Schittkowski problem, 614
introductory examples, 513–516, 518, 520
least-squares problem, 514, 611
linear constraints, 516, 614
maximum likelihood Weibull estimation, 624
maximum-likelihood estimates, 520, 618
nonlinear constraints, 518
nonlinear network problem, 644
quadratic programming problem, 613
restarting an optimization, 616
Rosenbrock function, 616
starting point, 614
statistical analysis, 617
trust region method, 616
unconstrained optimization, 513

NLP procedure
active set methods, 572, 584
boundary constraints, 547
choosing an optimization algorithm, 570
computational problems, 589–591
computational resources, 607–609
conjugate gradient methods, 577
convergence difficulties, 590, 591
covariance matrix, 529, 541, 592, 594, 601
crossproduct Jacobian, 567, 601
data flow, 20, 21
debugging options, 537, 561
derivatives, 566
display function values, 542
displayed output, 541, 604, 605
double dogleg method, 576
eigenvalue tolerance, 529
feasible region, 565
feasible solution, 565
feasible starting point, 587
finite-difference approximations, 531, 579
first-order conditions, 566
function convergence, 527, 530
functional summary, 524
global solution, 565
Goldstein conditions, 574, 577, 587
gradient, 533, 566
gradient convergence, 528, 532, 533
grid points, 528
Hessian, 534, 567, 579, 601
Hessian scaling, 533, 582
Hessian update method, 545
initial values, 535, 542, 596
input data sets, 512, 596, 597
iteration history, 605
Jacobian, 567, 601
Karush-Kuhn-Tucker conditions, 566
Lagrange multipliers, 566, 601

Lagrangian function, 566
least-squares problems, 571
Levenberg-Marquardt method, 578
limiting function calls, 537
limiting number of iterations, 538
line-search methods, 536, 587
linear complementarity, 572
linear constraints, 553, 574
local optimality conditions, 565
local solution, 565
memory requirements, 568
missing values, 539, 606, 607
Nelder-Mead simplex method, 577
Newton-Raphson method, 573
nonlinear constraints, 549, 575
optimality criteria, 565
optimization algorithms, 544, 568
optimization history, 542
options classified by function, 524
output data sets, 512, 539–541, 598, 599, 603
overview, 511
parameter convergence, 528, 546
precision, 529, 532, 581, 592
predicted reduction convergence, 530
profile confidence limits, 529
program statements, 560
projected gradient, 601
projected Hessian matrix, 601
quadratic programming, 570, 571, 575
quasi-Newton methods, 574, 579
rank of covariance matrix, 602
restricting output, 542, 543
restricting step length, 588
second-order conditions, 566
singularity criterion, 528, 539, 546
stationary point, 591
step length, 529
storing model files, 603
suppress printing, 539
table of syntax elements, 524
termination criteria, 583
time limit, 538
trust region method, 573
TYPE variable, 596–598, 600, 602, 603
unconstrained optimization, 574
variables, 596

nonarc variables
INTPOINT procedure, 82
NETFLOW procedure, 326
QP procedure, 689

nonlinear optimization, 511,
See also NLP procedure
algorithms, 568
computational problems, 589
conjugate gradient methods, 577
feasible starting point, 587
hybrid quasi-Newton methods, 579
Levenberg-Marquardt method, 578
Nelder-Mead simplex method, 577

778 � Subject Index

Newton-Raphson method with line search, 573
Newton-Raphson method with ridging, 573
nonlinear constraints, 549, 558, 575
optimization algorithms, 570
quasi-Newton method, 574
trust region method, 573

NPSC
INTPOINT procedure, 66
NETFLOW procedure, 325

O
objective function

ASSIGN procedure, 54
INTPOINT procedure, 67, 68, 124
LP procedure, 189
NETFLOW procedure, 325, 448
NLP procedure, 511, 521, 556
QP procedure, 657, 678, 682, 710
TRANS procedure, 758

ODS variable names
LP procedure, 255

optimality criteria, 565
optimization

double dogleg method, 576
introduction, 15
linear constraints, 574
nonlinear constraints, 575
unconstrained, 574

optimization algorithms
least-squares problems, 571
NLP procedure, 544, 568
nonlinear optimization, 570
quadratic programming, 570, 571

optimization control options
ASSIGN procedure, 53

options classified by function,
See functional summary

–ORASSIG macro variable, 55
–ORLP– macro variable, 229
–ORNETFL macro variable, 434
–ORTRANS macro variable, 759
out-of-kilter algorithm, 55
output data sets

ASSIGN procedure, 53, 54
INTPOINT procedure, 103, 141
LP procedure, 204, 248–250
NETFLOW procedure, 342, 370, 406
NLP procedure, 512, 539–541, 598, 599, 603
QP procedure, 669, 701, 723
TRANS procedure, 756, 758

Output Delivery System (ODS)
LP procedure, 254

overview
ASSIGN procedure, 49
INTPOINT procedure, 65
LP procedure, 189
NETFLOW procedure, 317
NLP procedure, 511
optimization, 15

QP procedure, 655
TRANS procedure, 753

P
parametric control options

LP procedure, 211
parametric programming, 211, 244, 247
partial pricing

LP procedure, 213
pause processing

LP procedure, 206, 207
Polak-Ribiere update method, 545
Powell-Beale update method, 545
precision

nonlinear constraints, 529, 581
objective function, 532, 581

preprocessing
INTPOINT procedure, 68, 85, 92, 118
LP procedure, 197, 207, 232
NETFLOW procedure, 382

price parametric programming, 245
price sensitivity analysis, 243, 254
pricing strategies

LP procedure, 231
NETFLOW procedure, 376, 410

Primal-Dual with Predictor-Corrector algorithm
INTPOINT procedure, 68, 72
QP procedure, 657

problem definition statements
LP procedure, 194

problem specification
assignment format, 33
dense format, 24
network format, 29
sparse format, 27
transportation format, 33

problem summary
LP procedure, 25, 251, 257

production-inventory-distribution problem, 317
INTPOINT procedure, 76
QP procedure, 683

profile confidence limits, 559
parameters for, 529

profit
ASSIGN procedure, 53

program statements
NLP procedure, 560

projected gradient, 586, 601
projected Hessian matrix, 586, 601
projected objective value

LP procedure, 236
projected pseudocost

LP procedure, 237
proportionality constraints

INTPOINT procedure, 77
NETFLOW procedure, 320
QP procedure, 684

Subject Index � 779

Q
QNPSC

QP procedure, 681
QP examples, 738
QP procedure

arc names, 704, 737
balancing supply and demand, 708, 731, 732
blending constraints, 685
bypass arc, 703
case sensitivity, 673, 705, 706, 724
coefficients, 675, 709
columns, 675, 709
converting QNPSC to QP, 720
costs, 678, 710
data flow, 21
data set options, 669, 701
default arc capacity, 703
default arc cost, 703
default constraint type, 671
default lower bound, 671, 704
default objective function, 671, 703
default options, 736
default upper bounds, 670, 703
demands, 710
dense format, 658, 678, 681, 691, 714
details, 713
distribution problem, 683
dual problem, 657
dual variables, 657
efficiency, 732–737
embedded networks, 689, 720
excess node, 731, 732
flow conservation constraints, 681, 686, 689
functional summary, 668, 700
general options, 669, 702
infeasibility, 726
input data sets, 669, 701, 713
interior point algorithm, 657
introductory QNPSC example, 692
introductory QP example, 659
inventory problem, 683
loop arcs, 725
maximum flow problem, 704
memory requirements, 666, 670, 673, 697, 732–

737
missing supply and missing demand, 727
missing values, 727
multicommodity problems, 687
multiple arcs, 725
multiprocess, multiproduct example, 688
network problems, 683
nonarc variables, 689
options classified by function, 668, 700
output data sets, 669, 701, 723
overview, 655
Primal-Dual with Predictor-Corrector algorithm,

657
primal problem, 657
production-inventory-distribution problem, 683

proportionality constraints, 684
QNPSC, 681
quadratic programming problems, 656, 658
shortest path problem, 707
side constraints, 681, 689
sparse format, 659, 675, 691, 709, 716, 720
supply-chain problem, 683
syntax skeleton, 667, 699
table of syntax elements, 668, 700
TYPE variable, 679

quadratic programming, 535, 575
active set methods, 572
definition, 511
linear complementarity problem, 572
optimization algorithms, 570, 571
specifying the objective function, 556

quadratic programming problems
QP procedure, 656, 658

quasi-Newton methods, 545, 546, 574

R
random numbers

seed, 543
range analysis, 211, 244
range coefficient

LP procedure, 217
ranging control options

LP procedure, 211
ratio test

NETFLOW procedure, 373, 374
reduced costs

LP procedure, 229
NETFLOW procedure, 414

report writing, 41, 43
right-hand-side constants

LP procedure, 218
right-hand-side parametric programming, 244
right-hand-side sensitivity analysis, 242, 253
Rosenbrock function, 513, 549–551, 553
Rosen-Suzuki problem, 559
rows

LP procedure, 214, 219

S
scaling input data

ASSIGN procedure, 53, 55
INTPOINT procedure, 112
LP procedure, 213, 232
NETFLOW procedure, 353

second-order conditions
local minimum, 566

second-order derivatives
finite-difference approximations, 531

sensitivity analysis, 241, 247
sensitivity control options

LP procedure, 211
shortest path problem

INTPOINT procedure, 112
NETFLOW procedure, 354

780 � Subject Index

QP procedure, 707
side constraints

INTPOINT procedure, 66, 82
NETFLOW procedure, 319, 325
QP procedure, 681, 689

simplex algorithm control options
LP procedure, 211

singularity, 544, 594
absolute singularity criterion, 528
relative singularity criterion, 539, 546

sink nodes
NETFLOW procedure, 354

solution summary
LP procedure, 25, 252, 258

source nodes
NETFLOW procedure, 354

sparse input format
INTPOINT procedure, 85, 92, 124, 134
LP procedure, 191, 204, 224
NETFLOW procedure, 329, 355, 400, 430, 433
QP procedure, 659, 675, 691, 709, 716
summary (INTPOINT), 138
summary (NETFLOW), 404
summary (QP), 720

special ordered set, 221
standard errors

computing, 543
step length, 588

INTPOINT procedure, 70
supplies

NETFLOW procedure, 355
supply-chain problem, 76, 683
symbolic factorization

INTPOINT procedure, 71
syntax skeleton

ASSIGN procedure, 52
INTPOINT procedure, 100
LP procedure, 199
NETFLOW procedure, 335
NLP procedure, 524
QP procedure, 667, 699
TRANS procedure, 755

T
table of syntax elements,

See functional summary
tableau

display current, 229
termination criteria, 583

absolute function convergence, 527
absolute gradient convergence, 528
absolute parameter convergence, 528
INTPOINT procedure, 120, 156
NETFLOW procedure, 384, 453
number of function calls, 537
number of iterations, 538
predicted reduction convergence, 530
relative function convergence, 530
relative gradient convergence, 532, 533

relative parameter convergence, 546
time limit, 538

tolerance
LP procedure, 205, 207, 209, 211–213

TRANS examples, 763
capacitated transportation network, 765, 766
infeasibilities, 768
introductory example, 754
minimum flow restrictions, 766
uncapacitated transportation network, 763

TRANS procedure
data flow, 22
demands, 759
details, 758
dual variables, 759
functional summary, 755
infeasibility, 760
input data sets, 756
missing values, 758
objective function, 758
options classified by function, 755
–ORTRANS macro variable, 759
output data set, 756, 758
overview, 753
syntax skeleton, 755
table of syntax elements, 755

transportation problem, 22, 753
balancing, 760–762
data format, 33

trust region methods, 545
TYPE variable

INTPOINT procedure, 129
LP procedure, 220, 225, 259
NETFLOW procedure, 395
NLP procedure, 596–598, 600, 602, 603
QP procedure, 679

U
unconstrained optimization, 574
upper bounds

INTPOINT procedure, 73
QP procedure, 680

V
variable summary

LP procedure, 26
variables

LP procedure, 222, 248–250, 252, 259
VF02AD algorithm, 575
VMCWD algorithm, 575

W
Wald confidence limits, 559, 560
warm starts

NETFLOW procedure, 327, 355, 424, 426, 433
working basis matrix

NETFLOW procedure, 347, 349, 355, 374, 415
wraparound search

NETFLOW procedure, 412

Syntax Index

A
ABORT statement

NLP program statements, 561
ABSCONV= option

PROC NLP statement, 527
ABSFCONV= option

PROC NLP statement, 527
ABSFTOL= option,

See ABSFCONV= option
ABSGCONV= option

PROC NLP statement, 528, 576, 584, 592
ABSGTOL= option,

See ABSGCONV= option
ABSTOL= option,

See ABSCONV= option
ABSXCONV= option

PROC NLP statement, 528
ABSXTOL= option,

See ABSXCONV= option
ACTBC keyword

TYPE variable (NLP), 600
ACTIVEIN= option

PROC LP statement, 204, 241, 250
ACTIVEOUT= option

PROC LP statement, 204, 241, 248
ADDSUPPLY option

PROC TRANS statement, 757
ALL keyword

FDINT= option (NLP), 532
ALL option,

See PALL option
ALLART option

PROC NETFLOW statement, 343
AND–KEEPGOING–C= option

PROC INTPOINT statement, 122, 159
RESET statement (NETFLOW), 386

AND–KEEPGOING–DG= option
PROC INTPOINT statement, 122, 159
RESET statement (NETFLOW), 387

AND–KEEPGOING–IB= option
PROC INTPOINT statement, 122, 159
RESET statement (NETFLOW), 387

AND–KEEPGOING–IC= option
PROC INTPOINT statement, 123, 159
RESET statement (NETFLOW), 387

AND–KEEPGOING–ID= option
PROC INTPOINT statement, 123, 159
RESET statement (NETFLOW), 387

AND–STOP–C= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385

AND–STOP–DG= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385

AND–STOP–IB= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385

AND–STOP–IC= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 385

AND–STOP–ID= option
PROC INTPOINT statement, 121, 158
RESET statement (NETFLOW), 386

ANY keyword
PxSCAN= option (NETFLOW), 413

AOUT= option,
See ARCOUT= option

ARCDATA keyword
GROUPED= option (INTPOINT), 106
GROUPED= option (NETFLOW), 347

ARCDATA= option
PROC INTPOINT statement, 84, 85, 91, 92, 99,

103, 131
PROC NETFLOW statement, 328, 329, 342, 397
PROC QP statement, 690, 692, 697, 701, 713

ARCNAME statement,
See NAME statement

ARCOUT= option
PROC NETFLOW statement, 329, 342, 406
RESET statement (NETFLOW), 370

ARCS option
PRINT statement (NETFLOW), 361

ARC–SINGLE–OBS option
PROC INTPOINT statement, 104
PROC NETFLOW statement, 344
PROC QP statement, 669, 702

ARCS–ONLY–ARCDATA option
PROC INTPOINT statement, 104, 154
PROC NETFLOW statement, 344, 431
PROC QP statement, 702, 735

ARRAY statement
NLP procedure, 547

ASING= option,
See ASINGULAR= option

ASINGULAR= option
PROC NLP statement, 528, 594

782 � Syntax Index

ASSIGN procedure, 52
BY statement, 53
COST statement, 53
ID statement, 54
PROC ASSIGN statement, 52

AUTO option
PROC LP statement, 207, 239–241

B
BACKTRACK= option

PROC LP statement, 207, 237
BASIC keyword

TYPE variable (LP), 222
BASIC option

PRINT statement (NETFLOW), 362
BEST keyword

PxSCAN= option (NETFLOW), 376, 411, 412
QxFILLSCAN= option (NETFLOW), 377, 413

BEST option
PRINT statement (LP), 215

BEST= option
PROC NLP statement, 528, 549

BFGS keyword
UPDATE= option (NLP), 545, 574, 575

BIGM1 option
RESET statement (NETFLOW), 372

BIGM2 option
RESET statement (NETFLOW), 374

BINARY keyword
TYPE variable (LP), 221

BINFST option
PROC LP statement, 208

BLAND keyword
PRICETYPEx= option (NETFLOW), 376, 411,

414
BOTH keyword

CLPARM= option (NLP), 529
GROUPED= option (INTPOINT), 107
GROUPED= option (NETFLOW), 348
GROUPED= option (QP), 672
SCALE= option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE= option (NETFLOW), 354

BOUNDS statement
NLP procedure, 547, 558, 572

BPD= option,
See BYPASSDIVIDE= option

BY statement
ASSIGN procedure, 53
NLP procedure, 548

BYPASSDIV= option,
See BYPASSDIVIDE= option

BYPASSDIVIDE= option
PROC INTPOINT statement, 104
PROC NETFLOW statement, 344
PROC QP statement, 703

BYTES= option
PROC INTPOINT statement, 99, 105, 154
PROC NETFLOW statement, 344, 431

PROC QP statement, 666, 670, 697, 735

C
CANSELECT= option

PROC LP statement, 208, 236, 239, 241
CAPAC keyword

TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 679

CAPAC statement,
See CAPACITY statement

CAPACITY statement
INTPOINT procedure, 123
NETFLOW procedure, 356
QP procedure, 709

CAPACITY= option
PROC TRANS statement, 756

CD keyword
UPDATE= option (NLP), 545, 577

CDIGITS= option
PROC NLP statement, 529, 581

CENTRAL keyword
FD= option (NLP), 531
FDHESSIAN= option (NLP), 531

CF= option,
See COREFACTOR= option

CHI keyword
FORCHI= option (NLP), 560

CHOLTINYTOL= option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 382

CLOSE keyword
VARSELECT= option (LP), 210, 238

CLPARM= option
PROC NLP statement, 529, 602, 603

COEF statement
INTPOINT procedure, 123
LP procedure, 214
NETFLOW procedure, 356
QP procedure, 675, 709

COEFS keyword
NON–REPLIC= option (INTPOINT), 111
NON–REPLIC= option (NETFLOW), 352
NON–REPLIC= option (QP), 673

COL keyword
SCALE= option (INTPOINT), 112
SCALE= option (NETFLOW), 354

COL statement
LP procedure, 214

COLUMN keyword
SCALE= option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE= option (NETFLOW), 354

COLUMN option
PRINT statement (LP), 215

COLUMN statement
INTPOINT procedure, 124
NETFLOW procedure, 356
QP procedure, 675, 709

Syntax Index � 783

COMPLETE keyword
PRICETYPE= option (LP), 213, 231

CON keyword
FDINT= option (NLP), 532
SCALE= option (INTPOINT), 112
SCALE= option (NETFLOW), 353

CON–ARCS option
PRINT statement (NETFLOW), 361

CONDATA keyword
GROUPED= option (INTPOINT), 107
GROUPED= option (NETFLOW), 347
GROUPED= option (QP), 671

CONDATA= option
PROC INTPOINT statement, 84, 85, 91, 92, 99,

103, 132
PROC NETFLOW statement, 328, 329, 342, 398
PROC QP statement, 658, 659, 666, 669, 691,

692, 697, 701, 714
CONGRA keyword

TECH= option (NLP), 544, 571, 577, 584
CON–NONARCS option

PRINT statement (NETFLOW), 361
CONOPT statement

NETFLOW procedure, 357
CONOUT= option

PROC INTPOINT statement, 85, 92, 99, 103,
141

PROC NETFLOW statement, 329, 343, 406
PROC QP statement, 659, 666, 669, 692, 698,

702, 723
RESET statement (NETFLOW), 370

CON–SINGLE–OBS option
PROC INTPOINT statement, 105
PROC NETFLOW statement, 345
PROC QP statement, 670, 703

CONST keyword
TYPE variable (NLP), 597

CONSTRAINT keyword
SCALE= option (INTPOINT), 112
SCALE= option (NETFLOW), 353

CONSTRAINTS option
PRINT statement (NETFLOW), 361

CONTROL= option
PROC LP statement, 207, 208, 240, 241

CONTYPE statement,
See TYPE statement

COREFACTOR= option
PROC NETFLOW statement, 345

COST keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 679

COST statement
ASSIGN procedure, 53
INTPOINT procedure, 124
NETFLOW procedure, 357
QP procedure, 710

COST= option
PROC TRANS statement, 756

COUT= option,
See CONOUT= option

COVx keyword
TYPE variable (NLP), 601

COV= option
PROC NLP statement, 529, 592

COVARIANCE= option,
See COV= option

COVRANK keyword
TYPE variable (NLP), 602

COVSING= option
PROC NLP statement, 529, 595

CRPJAC keyword
TYPE variable (NLP), 601

CRPJAC statement
NLP procedure, 548, 570, 581

CYCLEMULT1= option
RESET statement (NETFLOW), 373

D
DAMPSTEP= option

PROC NLP statement, 529, 588, 589
DATA= option

PROC ASSIGN statement, 52
PROC LP statement, 204
PROC NLP statement, 530, 596

DATASETS option
SHOW statement (NETFLOW), 391

DBFGS keyword
UPDATE= option (NLP), 545, 574, 576, 579

DBLDOG keyword
TECH= option (NLP), 544, 571, 576, 589

DC= option,
See DEFCAPACITY= option

DCT= option,
See DEFCONTYPE= option

DDFP keyword
UPDATE= option (NLP), 545, 574, 576, 579

DEC= option
PROC ASSIGN statement, 53, 55

DECVAR statement
NLP procedure, 549, 591

DEFCAPACITY= option
PROC INTPOINT statement, 105, 155
PROC NETFLOW statement, 346, 432
PROC QP statement, 670, 703, 736
PROC TRANS statement, 756

DEFCONTYPE= option
PROC INTPOINT statement, 106, 155
PROC NETFLOW statement, 346, 432
PROC QP statement, 671, 736

DEFCOST= option
PROC INTPOINT statement, 106, 155
PROC NETFLOW statement, 346, 432
PROC QP statement, 671, 703, 736

DEFMINFLOW= option
PROC INTPOINT statement, 106, 155
PROC NETFLOW statement, 346, 432
PROC QP statement, 671, 704, 736

784 � Syntax Index

PROC TRANS statement, 756
DEFTYPE= option,

See DEFCONTYPE= option
DELTAIT= option

PROC LP statement, 208
DEMAND statement

INTPOINT procedure, 125
NETFLOW procedure, 357
QP procedure, 710

DEMAND= option
PROC INTPOINT statement, 106, 155
PROC NETFLOW statement, 346, 432
PROC QP statement, 704, 736
PROC TRANS statement, 756, 759

DENSETHR= option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 382

DESCENDING option
BY statement (ASSIGN), 53
BY statement (NLP), 548

DETAIL keyword
GRADCHECK= option (NLP), 533, 582

DETERMIN keyword
TYPE variable (NLP), 602

DEVEX option
PROC LP statement, 211

DF keyword
VARDEF= option (NLP), 545

DFP keyword
UPDATE= option (NLP), 545, 574, 575

DIAHES option
PROC NLP statement, 530, 548, 550

DMF= option,
See DEFMINFLOW= option

DO statement
NLP program statements, 561

DOBJECTIVE= option
PROC LP statement, 209

DOUT= option,
See DUALOUT= option

DS=option,
See DAMPSTEP= option

DUALFREQ= option
RESET statement (NETFLOW), 413

DUALIN= option,
See NODEDATA= option

DUALOUT= option
PROC LP statement, 204, 250
PROC NETFLOW statement, 329, 343, 408
RESET statement (NETFLOW), 370

DWIA= option
PROC NETFLOW statement, 347

DYNAMIC keyword
PRICETYPE= option (LP), 213, 231

E
ENDPAUSE option

PROC LP statement, 206, 246
ENDPAUSE1 option

RESET statement (NETFLOW), 371
EPSILON= option

PROC LP statement, 211
EQ keyword

TYPE variable (INTPOINT), 129
TYPE variable (LP), 220
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 597, 598, 601
TYPE variable (QP), 679

ERROR keyword
BACKTRACK= option (LP), 208
CANSELECT= option (LP), 208, 237

ESTDATA= option,
See INEST= option

EVERYOBS option
NLINCON statement (NLP), 558

F
F keyword

FORCHI= option (NLP), 560
FACT–METHOD= option

PROC INTPOINT statement, 116
RESET statement (NETFLOW), 381

FAR keyword
VARSELECT= option (LP), 210, 238

FAST keyword
GRADCHECK= option (NLP), 533, 582

FCONV= option
PROC NLP statement, 530

FCONV2= option
PROC NLP statement, 530, 576

FD= option
PROC NLP statement, 531, 579, 582

FDH= option,
See FDHESSIAN= option

FDHES= option,
See FDHESSIAN= option

FDHESSIAN= option
PROC NLP statement, 531, 579, 582

FDIGITS= option
PROC NLP statement, 532, 581

FDINT= option
PROC NLP statement, 532, 581, 591

FEASIBLEPAUSE option
PROC LP statement, 206, 246

FEASIBLEPAUSE1 option
RESET statement (NETFLOW), 371

FEASIBLEPAUSE2 option
RESET statement (NETFLOW), 372

FEASRATIO= option
PROFILE statement (NLP), 560

FFACTOR= option
PROFILE statement (NLP), 560

FIFO keyword
BACKTRACK= option (LP), 207
CANSELECT= option (LP), 208, 236

FIRST keyword
PxSCAN= option (NETFLOW), 376, 411, 412
QxFILLSCAN= option (NETFLOW), 377, 413

Syntax Index � 785

FIXED keyword
TYPE variable (LP), 221, 232

FLOW option
PROC LP statement, 205

FORCHI= option
PROFILE statement (NLP), 560

FORWARD keyword
FD= option (NLP), 531
FDHESSIAN= option (NLP), 531

FP1 option,
See FEASIBLEPAUSE1 option

FP2 option,
See FEASIBLEPAUSE2 option

FR keyword
UPDATE= option (NLP), 545, 577

FREE keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 222, 232
TYPE variable (NETFLOW), 396
TYPE variable (QP), 679

FROM statement,
See TAILNODE statement

FROMNODE statement,
See TAILNODE statement

FSIZE= option
PROC NLP statement, 532

FTOL= option,
See FCONV= option

FTOL2= option,
See FCONV2= option

FUTURE1 option
PROC NETFLOW statement, 425
RESET statement (NETFLOW), 377

FUTURE2 option
PROC NETFLOW statement, 425
RESET statement (NETFLOW), 377

FUZZ= option
PROC LP statement, 205

G
G4= option

PROC NLP statement, 532, 595
GC= option,

See GRADCHECK= option
GCONV= option

PROC NLP statement, 532, 576, 584, 592
GCONV2= option

PROC NLP statement, 533
GE keyword

TYPE variable (INTPOINT), 129
TYPE variable (LP), 220
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 597, 598, 601
TYPE variable (QP), 680

GOALPROGRAM option
PROC LP statement, 212

GRAD keyword
TYPE variable (NLP), 600

GRADCHECK= option

PROC NLP statement, 533, 582
GRADIENT statement

NLP procedure, 550, 553, 570, 581, 583
GRIDPNT keyword

TYPE variable (NLP), 600
GROUPED= option

PROC INTPOINT statement, 106, 153
PROC NETFLOW statement, 347, 430
PROC QP statement, 671, 734

GTOL= option,
See GCONV= option

GTOL2= option,
See GCONV2= option

H
HEAD statement,

See HEADNODE statement
HEADNODE statement

INTPOINT procedure, 125
NETFLOW procedure, 357
QP procedure, 710
TRANS procedure, 757

HESCAL= option
PROC NLP statement, 533, 582

HESSCOEF statement,
See HESSIANCOEF statement

HESSCOL statement,
See HESSIANCOLUMN statement

HESSCOLUMN statement,
See HESSIANCOLUMN statement

HESSIAN keyword
TYPE variable (NLP), 601

HESSIAN statement
NLP procedure, 550, 570, 581

HESSIAN= option
PROC INTPOINT statement, 691
PROC QP statement, 659, 669, 692, 702

HESSIANCOEF statement
QP procedure, 676

HESSIANCOL statement,
See HESSIANCOLUMN statement

HESSIANCOLUMN statement
QP procedure, 676

HESSIANROW statement
QP procedure, 676

HESSROW statement,
See HESSIANROW statement

HS= option,
See HESCAL= option

HYQUAN keyword
TECH= option (NLP), 544, 571, 579, 588

I
ID statement

ASSIGN procedure, 54
INTPOINT procedure, 125
LP procedure, 214
NETFLOW procedure, 358
QP procedure, 677, 711

786 � Syntax Index

IEPSILON= option
PROC LP statement, 209

IFEASIBLEPAUSE= option
PROC LP statement, 206, 246

IFP option,
See INFEASIBLE option

IMAXIT= option
PROC LP statement, 209

IMAXITERB= option,
See MAXITERB= option

INCLUDE statement
NLP procedure, 539, 551, 604

INEST= option
PROC NLP statement, 534, 553, 572, 596, 597,

602
INF= option,

See INFINITY= option
INFEASIBLE option

PROC NLP statement, 534, 550
INFINITY= option

PROC INTPOINT statement, 108
PROC LP statement, 212
PROC NETFLOW statement, 348
PROC QP statement, 672

INHESS= option,
See INHESSIAN= option

INHESSIAN= option
PROC NLP statement, 534, 576, 590

INITIAL keyword
TYPE variable (NLP), 600

INITIAL= option
PROC NLP statement, 535

INQUAD= option
PROC NLP statement, 535, 572, 597, 598

INSTEP= option
PROC NLP statement, 535, 575, 589, 590

INTEGER keyword
TYPE variable (LP), 221, 233

INTEGER–NONZEROS option
PRINT statement (LP), 215

INTEGER option
PRINT statement (LP), 215

INTEGER–ZEROS option
PRINT statement (LP), 216

INTFIRST option
RESET statement (NETFLOW), 374

INTPOINT option
PROC NETFLOW statement, 437, 438
RESET statement (NETFLOW), 348

INTPOINT procedure, 100
CAPACITY statement, 123
COEF statement, 123
COLUMN statement, 124
COST statement, 124
DEMAND statement, 125
HEADNODE statement, 125
ID statement, 125
LO statement, 126
NAME statement, 126

NODE statement, 126
PROC INTPOINT statement, 103
QUIT statement, 126
RHS statement, 127
ROW statement, 127
RUN statement, 127
SUPDEM statement, 128
SUPPLY statement, 128
TAILNODE statement, 128
TYPE statement, 129
VAR statement, 130

INVAR= option,
See INEST= option

INVD–2D option
PROC NETFLOW statement, 349, 417

INVFREQ= option
PROC LP statement, 212
RESET statement (NETFLOW), 374

INVTOL= option
PROC LP statement, 212

IOBJECTIVE= option
PROC LP statement, 209

IPAUSE= option
PROC LP statement, 206, 246

IPIVOT statement
LP procedure, 215, 246

IPRSLTYPE= option,
See PRSLTYPE= option

J
JACNLC statement

NLP procedure, 551, 570
JACOBIAN keyword

TYPE variable (NLP), 601
JACOBIAN statement

NLP procedure, 552, 570, 581, 583

K
KEEPGOING–C= option

PROC INTPOINT statement, 121, 157
RESET statement (NETFLOW), 386

KEEPGOING–DG= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386

KEEPGOING–IB= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386

KEEPGOING–IC= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386

KEEPGOING–ID= option
PROC INTPOINT statement, 122, 157
RESET statement (NETFLOW), 386

L
LABEL statement

NLP procedure, 553
LAGRANGE keyword

TYPE variable (NLP), 601

Syntax Index � 787

LB keyword
TYPE variable (NLP), 596, 597, 600

LCD= option,
See LCDEACT= option

LCDEACT= option
PROC NLP statement, 535, 576, 586

LCE= option,
See LCEPSILON= option

LCEPS= option,
See LCEPSILON= option

LCEPSILON= option
PROC NLP statement, 536, 573, 576, 585

LCS= option,
See LCSINGULAR= option

LCSING= option,
See LCSINGULAR= option

LCSINGULAR= option
PROC NLP statement, 536, 576, 585

LE keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 220
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 596, 598, 601
TYPE variable (QP), 680

LEVMAR keyword
TECH= option (NLP), 544, 571, 578, 589

LICOMP keyword
TECH= option (NLP), 544, 570, 572, 597

LIFO keyword
BACKTRACK= option (LP), 207
CANSELECT= option (LP), 208, 236, 240

LIFOTYPE= option
PROC LP statement, 209

LINCON statement
NLP procedure, 572, 578

LINEAR keyword
TYPE variable (NLP), 597, 598

LINESEARCH= option
PROC NLP statement, 536, 577, 579, 587

LIS= option,
See LINESEARCH= option

LIST option
PROC NLP statement, 537, 606

LISTCODE option
PROC NLP statement, 537, 606

LO statement
INTPOINT procedure, 126
NETFLOW procedure, 358
QP procedure, 677, 711

LONG option
PRINT statement (NETFLOW), 362

LOW keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

LOWER= option
RESET statement (LP), 218

LOWERBD keyword
TYPE variable (INTPOINT), 129

TYPE variable (LP), 221
TYPE variable (NETFLOW), 396
TYPE variable (NLP), 596, 597, 600
TYPE variable (QP), 680

LOWERBD statement,
See LO statement

LP procedure, 199
COEF statement, 214
COL statement, 214
ID statement, 214
IPIVOT statement, 215
PIVOT statement, 215
PRINT statement, 215
PROC LP statement, 204
QUIT statement, 217
RANGE statement, 217
RESET statement, 218
RHS statement, 218
RHSSEN statement, 219
ROW statement, 219
RUN statement, 220
SHOW statement, 220
TYPE statement, 220
VAR statement, 222

LRATIO1 option
RESET statement (NETFLOW), 373

LRATIO2 option
RESET statement (NETFLOW), 373

LSP= option,
See LSPRECISION= option

LSPRECISION= option
PROC NLP statement, 537, 588

LSQ statement
NLP procedure, 556

M
MATRIX option

PRINT statement (LP), 216
MATRIX statement

NLP procedure, 554
MAX keyword

TYPE variable (LP), 220
MAX option,

See MAXIMIZE option
MAX statement

NLP procedure, 556
MAXARRAYBYTES= option

PROC NETFLOW statement, 349, 431
MAXFLOW option

PROC INTPOINT statement, 108
PROC NETFLOW statement, 349
PROC QP statement, 704

MAXFU= option,
See MAXFUNC= option

MAXFUNC= option
PROC NLP statement, 537, 607

MAXIMIZE keyword
TYPE variable (NETFLOW), 396

MAXIMIZE option

788 � Syntax Index

PROC INTPOINT statement, 108
PROC NETFLOW statement, 350
PROC QP statement, 673

MAXIMUM option
PROC ASSIGN statement, 53
PROC TRANS statement, 756

MAXIT1= option
PROC LP statement, 212
RESET statement (NETFLOW), 372

MAXIT2= option
PROC LP statement, 212
RESET statement (NETFLOW), 372

MAXIT3= option
PROC LP statement, 212

MAXIT= option,
NLP procedure, See MAXITER= option
PROC LP statement, 212

MAXITER= option
PROC NLP statement, 538, 607

MAXITERB= option
PROC INTPOINT statement, 120, 156
PROC NETFLOW statement, 453
RESET statement (NETFLOW), 384

MAXL= option
RESET statement (NETFLOW), 375

MAXLUUPDATES= option
RESET statement (NETFLOW), 375

MAXQUAD statement
NLP procedure, 556, 572

MAXSTEP= option
PROC NLP statement, 538, 589

MAXTIME= option
PROC NLP statement, 538, 607

MAZIMIZE keyword
TYPE variable (INTPOINT), 129
TYPE variable (QP), 680

MEMREP option
PROC INTPOINT statement, 108, 154
PROC NETFLOW statement, 350, 431
PROC QP statement, 673, 735

MF option,
See MAXFLOW option

MIN keyword
TYPE variable (LP), 220

MIN statement
NLP procedure, 556

MINBLOCK1= option
RESET statement (NETFLOW), 373

MINFLOW statement,
See LO statement

MINFLOW= option
PROC TRANS statement, 756

MINIMIZE keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

MINIT= option,
See MINITER= option

MINITER= option

PROC NLP statement, 538
MINQUAD statement

NLP procedure, 556, 572
MISC option

SHOW statement (NETFLOW), 393
MLUU= option,

See MAXLUUPDATES= option
MOD= option,

See MODEL= option
MODEL= option

PROC NLP statement, 539, 604
MODFILE= option,

See MODEL= option
MOREOPT option

RESET statement (NETFLOW), 377
MSING= option,

See MSINGULAR= option
MSINGULAR= option

PROC NLP statement, 539, 594

N
N keyword

VARDEF= option (NLP), 545
NACTBC keyword

TYPE variable (NLP), 600
NACTLC keyword

TYPE variable (NLP), 600
NAME statement

INTPOINT procedure, 126
NETFLOW procedure, 358
QP procedure, 677, 711

NAMECTRL= option
PROC INTPOINT statement, 108
PROC NETFLOW statement, 350
PROC QP statement, 704

NARCS= option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 707, 735

NCOEFS= option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 673, 735

NCONS= option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 673, 735

NEIGNEG keyword
TYPE variable (NLP), 602

NEIGPOS keyword
TYPE variable (NLP), 602

NEIGZER keyword
TYPE variable (NLP), 602

NETFLOW procedure, 335
CAPACITY statement, 356
COEF statement, 356
PROC NETFLOW statement, 342
RESET statement, 366
RHS statement, 387

Syntax Index � 789

ROW statement, 388
RUN statement, 388
SAVE statement, 388
SHOW statement, 390
SUPDEM statement, 394
SUPPLY statement, 395
TAILNODE statement, 395
TYPE statement, 395
VAR statement, 397

NEWRAP keyword
TECH= option (NLP), 545, 570, 573

NLC statement,
See NLINCON statement

NLDACTLC keyword
TYPE variable (NLP), 600

NLINCON statement
NLP procedure, 558, 578

NLP procedure
ARRAY statement, 547
BOUNDS statement, 547, 558, 572
BY statement, 548
CRPJAC statement, 548, 570, 581
DECVAR statement, 549
GRADIENT statement, 550, 553, 570, 581, 583
HESSIAN statement, 550, 570, 581
INCLUDE statement, 539, 551, 604
JACNLC statement, 551, 570
JACOBIAN statement, 552, 570, 581, 583
LABEL statement, 553
LINCON statement, 553, 572, 578
LSQ statement, 556
MATRIX statement, 554
MAX statement, 556
MAXQUAD statement, 556, 572
MIN statement, 556
MINQUAD statement, 556, 572
NLINCON statement, 558, 578
PROC NLP statement, 527
PROFILE statement, 559, 602, 603

NMSIMP keyword
TECH= option, 577
TECH= option (NLP), 544, 570, 571

NNAS= option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 673, 707, 735

NNODES= option
PROC INTPOINT statement, 111, 154
PROC NETFLOW statement, 352, 430
PROC QP statement, 707, 735

NOAUTO option
PROC LP statement, 209

NOBIGM1 option,
See TWOPHASE1 option

NOBIGM2 option,
See TWOPHASE2 option

NOBINFST option
PROC LP statement, 209

–NOBS– keyword

TYPE variable (NLP), 600
NODE statement

INTPOINT procedure, 126
NETFLOW procedure, 359
QP procedure, 712

NODEDATA= option
PROC INTPOINT statement, 84, 85, 99, 103
PROC NETFLOW statement, 328, 329, 343
PROC QP statement, 690, 692, 697, 702

NODEOUT= option
PROC NETFLOW statement, 329, 343, 408
RESET statement (NETFLOW), 371

NODEVEX option
PROC LP statement, 212

NOEIGNUM option
PROC NLP statement, 539

NOENDPAUSE option
PROC LP statement, 206

NOENDPAUSE1 option
RESET statement (NETFLOW), 372

NOEP1 option,
See NOENDPAUSE1 option

NOFEASIBLEPAUSE option
PROC LP statement, 206

NOFEASIBLEPAUSE1 option
RESET statement (NETFLOW), 372

NOFEASIBLEPAUSE2 option
RESET statement (NETFLOW), 372

NOFLOW option
PROC LP statement, 205

NOFP1 option,
See NOFEASIBLEPAUSE1 option

NOFP2 option,
See NOFEASIBLEPAUSE2 option

NOFUTURE1 option
RESET statement (NETFLOW), 378

NOFUTURE2 option
RESET statement (NETFLOW), 378

NOINTFIRST option
RESET statement (NETFLOW), 376

NOLRATIO1 option
RESET statement (NETFLOW), 373

NOLRATIO2 option
RESET statement (NETFLOW), 374

NOMISS option
PROC NLP statement, 539, 596, 607

NONARC keyword
SCALE= option (INTPOINT), 112
SCALE= option (NETFLOW), 354

NONARCS option
PRINT statement (NETFLOW), 361

NONBASIC option
PRINT statement (NETFLOW), 362

NONE keyword
GRADCHECK= option (NLP), 533
GROUPED= option (INTPOINT), 107
GROUPED= option (NETFLOW), 348
GROUPED= option (QP), 672
NON–REPLIC= option (INTPOINT), 111

790 � Syntax Index

NON–REPLIC= option (NETFLOW), 352
NON–REPLIC= option (QP), 673
PRICETYPE= option (LP), 213
SCALE= option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE= option (NETFLOW), 354
TECH= option (NLP), 544

NONINTEGER–NONZEROS option
PRINT statement (LP), 216

NONINTEGER option
PRINT statement (LP), 216

NON–REPLIC= option
PROC INTPOINT statement, 111
PROC NETFLOW statement, 352
PROC QP statement, 673

NONZERO option
PRINT statement (NETFLOW), 362

NONZEROS option
PRINT statement (LP), 216

NOP option,
See NOPRINT option

NOPARAPRINT option
PROC LP statement, 205

NOPERTURB1 option
RESET statement (NETFLOW), 373

NOPOSTPROCESS option
PROC LP statement, 209

NOPREPROCESS option
PROC LP statement, 207

NOPRINT option
PROC LP statement, 205
PROC NLP statement, 539, 606

NOQ keyword
PRICETYPEx= option (NETFLOW), 376, 411

NORANGEPRICE option
PROC LP statement, 211

NORANGERHS option
PROC LP statement, 211

NOSCRATCH option
RESET statement (NETFLOW), 378

NOTABLEAUPRINT option
PROC LP statement, 205

NOTHRUNET option
PROC TRANS statement, 756, 760, 762, 763

NOTSORTED option
BY statement (ASSIGN), 53
BY statement (NLP), 548

NOTWOPHASE1 option,
See BIGM1 option

NOTWOPHASE2 option,
See BIGM2 option

NOUT= option,
See NODEOUT= option

NOZTOL1 option
RESET statement (NETFLOW), 378

NOZTOL2 option
RESET statement (NETFLOW), 378

NRRIDG keyword
TECH= option (NLP), 545, 570, 573

O
OBJ keyword

BACKTRACK= option (LP), 207
CANSELECT= option (LP), 208, 236, 239
FDINT= option (NLP), 532

OBJECTIVE keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

OBJFN statement,
See COST statement
QP procedure, 678

OPTCHECK= option
PROC NLP statement, 539, 591

OPTIM–TIMER option
PROC INTPOINT statement, 112
RESET statement (NETFLOW), 378

OPTIONS option
SHOW statement (LP), 220

ORMP, 1
OTHERWISE statement

NLP program statements, 562
OUT= option

PROC ASSIGN statement, 53
PROC NLP statement, 539, 598
PROC TRANS statement, 756

OUTALL option
PROC NLP statement, 540

OUTCRPJAC option
PROC NLP statement, 540

OUTDER= option
PROC NLP statement, 540, 598

OUTEST= option
PROC NLP statement, 540, 553, 599, 602

OUTGRID option
PROC NLP statement, 540

OUTHES option,
See OUTHESSIAN option

OUTHESSIAN option
PROC NLP statement, 540

OUTITER option
PROC NLP statement, 540

OUTJAC option
PROC NLP statement, 540

OUTM= option,
See OUTMODEL= option

OUTMOD= option,
See OUTMODEL= option

OUTMODEL= option
PROC NLP statement, 541, 551, 603

OUTNCJAC option
PROC NLP statement, 541

OUTTABLE option
PROFILE statement (NLP), 560

OUTTIME option
PROC NLP statement, 541

OUTVAR= option,
See OUTEST= option

Syntax Index � 791

P
PxNPARTIAL= option

RESET statement (NETFLOW), 376, 393, 411,
412

PxSCAN= option
PROC NETFLOW statement, 411
RESET statement (NETFLOW), 376, 393, 412,

413
PALL option

PROC NLP statement, 541, 606
PARAMETERS statement,

See DECVAR statement
PARAPRINT option

PROC LP statement, 205, 245
PARARESTORE option

PROC LP statement, 212
PARMS keyword

TYPE variable (NLP), 596, 597, 600
PARMS statement,

See DECVAR statement
PARTIAL keyword

PxSCAN= option (NETFLOW), 376, 411, 412
PRICETYPE= option (LP), 213, 231
QxFILLSCAN= option (NETFLOW), 377, 413

PAUSE option
SHOW statement (NETFLOW), 392

PAUSE1= option
RESET statement (NETFLOW), 372

PAUSE2= option
RESET statement (NETFLOW), 372

PAUSE= option
PROC LP statement, 206, 246

PB keyword
UPDATE= option (NLP), 545, 577

PCOV option
PROC NLP statement, 541, 606

PCRPJAC option
PROC NLP statement, 541, 606

PDGAPTOL= option
PROC INTPOINT statement, 120, 156
PROC NETFLOW statement, 453
RESET statement (NETFLOW), 384

PDSTEPMULT= option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 382

PEIGVAL option
PROC NLP statement, 541, 595, 606

PENALTY keyword
VARSELECT= option (LP), 209, 210, 238

PENALTYDEPTH= option
PROC LP statement, 209, 238

PEPSILON= option
PROC LP statement, 207

PERROR option
PROC NLP statement, 542

PERTURB1 option
RESET statement (NETFLOW), 373

PFUNCTION option
PROC NLP statement, 542, 606

PGRID option
PROC NLP statement, 542, 606

PHASEMIX= option
PROC LP statement, 212

PHES option,
See PHESSIAN option

PHESSIAN option
PROC NLP statement, 542, 606

PHIS option,
See PHISTORY option

PHISTORY option
PROC NLP statement, 542, 606

PICTURE option
PRINT statement (LP), 216

PIN option,
See PINIT option

PINIT option
PROC NLP statement, 542, 606

PIVOT statement
LP procedure, 215, 246
NETFLOW procedure, 359

PJAC option,
See PJACOBI option

PJACOBI option
PROC NLP statement, 542, 606

PJTJ option,
See PCRPJAC option

PL keyword
CLPARM= option (NLP), 529

PL–CL keyword
TYPE variable (NLP), 603

PLC–LOW keyword
TYPE variable (NLP), 603

PLC–UPP keyword
TYPE variable (NLP), 603

PMAXIT= option
PROC LP statement, 207, 232

PNLCJAC option
PROC NLP statement, 542, 606

POBJECTIVE= option
PROC LP statement, 209

POSTPROCESS option
PROC LP statement, 210

PR keyword
UPDATE= option (NLP), 545, 577

PREPROCESS option
PROC LP statement, 207

PRICE keyword
VARSELECT= option (LP), 210, 239

PRICE= option
PROC LP statement, 213, 231

PRICEPHI= option
PROC LP statement, 211, 216, 245, 247

PRICESEN keyword
TYPE variable (LP), 222, 243

PRICESEN option
PRINT statement (LP), 216

PRICETYPEx= option

792 � Syntax Index

RESET statement (NETFLOW), 376, 394, 411,
412, 414

PRICETYPE= option
PROC LP statement, 213, 231

PRICING option
SHOW statement (NETFLOW), 393

PRIMALIN= option
PROC LP statement, 204, 241, 251

PRIMALOUT= option
PROC LP statement, 204, 241, 249

PRINT option
PROC LP statement, 205

PRINT statement
LP procedure, 215, 246
NETFLOW procedure, 359

PRINTFREQ= option
PROC LP statement, 205

PRINTLEVEL= option
PROC LP statement, 205

PRINTLEVEL2= option
PROC INTPOINT statement, 119, 157
PROC NETFLOW statement, 453
RESET statement (NETFLOW), 383

PRIOR keyword
VARSELECT= option (LP), 210, 238

PROBLEM option
PRINT statement (NETFLOW), 361

PROC ASSIGN statement
See also ASSIGN procedure, 52
statement options, 52

PROC INTPOINT statement,
See also INTPOINT procedure
data set options, 103
general options, 104

PROC LP statement,
See also LP procedure
branch-and-bound control options, 207
data set options, 204
display control options, 205
interactive control options, 206
parametric control options, 211
preprocessing control options, 207
ranging control options, 211
sensitivity control options, 211
simplex algorithm control options, 211

PROC NETFLOW statement,
See also NETFLOW procedure
data set options, 342
general options, 343

PROC NLP statement,
See also NLP procedure
statement options, 527

PROC QP statement,
See also QP procedure
data set options, 669, 701
general options, 669, 702

PROC TRANS statement,
See also TRANS procedure
input data set options, 756

output data set options, 756
statement options, 756

PROFILE keyword
TYPE variable (NLP), 603

PROFILE statement
NLP procedure, 559, 602, 603

PROJCRPJ keyword
TYPE variable (NLP), 601

PROJECT keyword
BACKTRACK= option (LP), 207
CANSELECT= option (LP), 208, 236

PROJGRAD keyword
TYPE variable (NLP), 601

PROJHESS keyword
TYPE variable (NLP), 601

PROXIMITYPAUSE= option
PROC LP statement, 206, 215, 246

PRSLTYPE= option
INTPOINT procedure, 118
RESET statement (NETFLOW), 382

PSEUDOC keyword
BACKTRACK= option (LP), 208
CANSELECT= option (LP), 208, 237
VARSELECT= option (LP), 210, 239

PSH option,
See PSHORT option

PSHORT option
PROC NLP statement, 542, 606

PSTDERR option
PROC NLP statement, 543, 606

PSUMMARY option
PROC NLP statement, 543, 606

PTIME option
PROC NLP statement, 543

PTYPEx= option,
See PRICETYPEx= option

PUT statement
NLP program statements, 561

PWOBJECTIVE= option
PROC LP statement, 210

Q
Q keyword

PRICETYPEx= option (NETFLOW), 376, 411,
412

Qx= option,
See QSIZEx= option

QxFILLNPARTIAL= option
RESET statement (NETFLOW), 377, 394, 413

QxFILLSCAN= option
RESET statement (NETFLOW), 377, 394, 413

QP procedure, 667, 699
CAPACITY statement, 709
COEF statement, 675, 709
COLUMN statement, 675, 709
COST statement, 710
DEMAND statement, 710
HEADNODE statement, 710
HESSIANCOEF statement, 676

Syntax Index � 793

HESSIANCOLUMN statement, 676
HESSIANROW statement, 676
ID statement, 677, 711
LO statement, 677, 711
NAME statement, 677, 711
NODE statement, 712
OBJFN statement, 678
PROC QP statement, 669, 701
QUIT statement, 678
RHS statement, 678
ROW statement, 678
RUN statement, 679
SUPDEM statement, 712
SUPPLY statement, 712
TAILNODE statement, 713
TYPE statement, 679
UPPERBD statement, 680
VAR statement, 681

QSIZEx= option
RESET statement (NETFLOW), 377, 394, 412

QUAD keyword
TYPE variable (NLP), 597, 598

QUADAS keyword
TECH= option (NLP), 545, 570, 572, 597

QUANEW keyword
TECH= option (NLP), 545, 570, 571, 574–576,

584, 590
QUIT statement

INTPOINT procedure, 126
LP procedure, 217, 246
NETFLOW procedure, 366
QP procedure, 678

R
RANDOM= option

PROC NLP statement, 543
RANDOMPRICEMULT= option

PROC LP statement, 213
RANGE keyword

TYPE variable (LP), 222
RANGE statement

LP procedure, 217
RANGEPRICE option

PRINT statement (LP), 216
PROC LP statement, 211, 244

RANGERHS option
PRINT statement (LP), 216
PROC LP statement, 211, 244

RCHOLTINYTOL= option,
See CHOLTINYTOL= option

RDENSETHR= option,
See DENSETHR= option

READPAUSE option
PROC LP statement, 207, 246

REDUCEQx= option
RESET statement (NETFLOW), 377

REDUCEQSIZEx= option
RESET statement (NETFLOW), 377, 394, 413

REFACTFREQ= option

RESET statement (NETFLOW), 376
REFRESHQx= option

RESET statement (NETFLOW), 377, 394, 412
RELEVANT option

SHOW statement (NETFLOW), 393
REPSILON= option

PROC LP statement, 213
RESET statement

LP procedure, 218, 246
NETFLOW procedure, 366

REST= option,
See RESTART= option

RESTART= option
PROC NLP statement, 543

RFF= option,
See REFACTFREQ= option

RHS keyword
TYPE variable (INTPOINT), 129
TYPE variable (LP), 222
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

RHS statement
INTPOINT procedure, 127
LP procedure, 218
NETFLOW procedure, 387
QP procedure, 678

RHSOBS= option
PROC INTPOINT statement, 112
PROC NETFLOW statement, 352
PROC QP statement, 673

RHSPHI= option
PROC LP statement, 211, 216, 244, 247

RHSSEN keyword
TYPE variable (LP), 222

RHSSEN option
PRINT statement (LP), 216

RHSSEN statement
LP procedure, 219, 242

ROW keyword
SCALE= option (INTPOINT), 112
SCALE= option (LP), 213, 232
SCALE= option (NETFLOW), 353

ROW option
PRINT statement (LP), 217

ROW statement
INTPOINT procedure, 127
LP procedure, 219
NETFLOW procedure, 388
QP procedure, 678

RPDGAPTOL= option,
See PDGAPTOL= option

RPDSTEPMULT= option,
See PDSTEPMULT= option

RTOLDINF= option,
See TOLDINF= option

RTOLPINF= option,
See TOLPINF= option

RTOLTOTDINF= option,
See TOLTOTDINF= option

794 � Syntax Index

RTOLTOTPINF= option,
See TOLTOTPINF= option

RTTOL= option
PROC INTPOINT statement, 119

RUN statement
INTPOINT procedure, 127
LP procedure, 220, 246
NETFLOW procedure, 388
QP procedure, 679

S
SAME–NONARC–DATA option

PROC NETFLOW statement, 353, 431, 433
SAS/ORMP, 1
SASMPSXS macro function, 198, 226
SAVE option

QUIT statement (LP), 217
SAVE statement

NETFLOW procedure, 388
SCALE= option

PROC INTPOINT statement, 112
PROC LP statement, 213, 232
PROC NETFLOW statement, 353

SCDATA option,
See SPARSECONDATA option

SCRATCH option
RESET statement (NETFLOW), 379

SE option,
See PSTDERR option

SELECT statement
NLP program statements, 562

SENSITIVITY option
PRINT statement (LP), 215, 217, 247

SET statement,
See RESET statement

SHORT option,
NLP procedure, See PSHORT option
PRINT statement (NETFLOW), 362

SHORTPATH option
PROC INTPOINT statement, 112
PROC NETFLOW statement, 354
PROC QP statement, 707

SHOW statement
LP procedure, 220, 246
NETFLOW procedure, 390

SIGSQ keyword
TYPE variable (NLP), 602

SIGSQ= option
PROC NLP statement, 544, 594

SIMPLEX option
SHOW statement (NETFLOW), 392

SING= option,
See SINGULAR= option

SINGULAR= option
PROC NLP statement, 544

SINK= option
PROC INTPOINT statement, 113, 155
PROC NETFLOW statement, 354, 432
PROC QP statement, 708, 736

SINKNODE= option,
See SINK= option

SMALL= option
PROC LP statement, 213

SND option,
See SAME–NONARC–DATA option

SOLUTION option
PRINT statement (LP), 217

SOME–ARCS option
PRINT statement (NETFLOW), 361

SOME–CONS option
PRINT statement (NETFLOW), 361

SOME–NONARCS option
PRINT statement (NETFLOW), 361

SOSEQ keyword
TYPE variable (LP), 221

SOSLE keyword
TYPE variable (LP), 221

SOURCE= option
PROC INTPOINT statement, 113, 155
PROC NETFLOW statement, 354, 432
PROC QP statement, 708, 736

SOURCENODE= option,
See SOURCE= option

SP option,
See SHORTPATH option

SP2 option,
See SPARSEP2 option

SPARSECONDATA option
PROC INTPOINT statement, 113, 134
PROC NETFLOW statement, 355, 400
PROC QP statement, 673, 716

SPARSEDATA option
PROC LP statement, 204

SPARSEP2 option
PROC NETFLOW statement, 355

STAGE option
SHOW statement (NETFLOW), 394

STATUS option
SHOW statement (LP), 220
SHOW statement (NETFLOW), 391

STDERR keyword
TYPE variable (NLP), 600

STDERR option,
See PSTDERR option

STOP–DG= option
PROC QP statement, 674

STOP–C= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 384

STOP–DG= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 384

STOP–IB= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 384

STOP–IC= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 385

Syntax Index � 795

STOP–ID= option
PROC INTPOINT statement, 120, 157
RESET statement (NETFLOW), 385

SUM option
See PSUMMARY option, 543

SUMMARY option,
See PSUMMARY option

SUMOBS option
NLINCON statement (NLP), 558

SUPDEM statement
INTPOINT procedure, 128
NETFLOW procedure, 394
QP procedure, 712

SUPPLY statement
INTPOINT procedure, 128
NETFLOW procedure, 395
QP procedure, 712
TRANS procedure, 757

SUPPLY= option
PROC INTPOINT statement, 113, 155
PROC NETFLOW statement, 355, 432
PROC QP statement, 708, 736

T
TABLEAU option

PRINT statement (LP), 217, 229
TABLEAUOUT= option

PROC LP statement, 204, 250
TABLEAUPRINT option

PROC LP statement, 206, 229
TAIL statement,

See TAILNODE statement
TAILNODE statement

INTPOINT procedure, 128
NETFLOW procedure, 395
QP procedure, 713
TRANS procedure, 758

TECH= option
PROC NLP statement, 544, 591

TECHNIQUE= option,
See TECH= option

TERMINAT keyword
TYPE variable (NLP), 602

THRUNET option
PROC INTPOINT statement, 114, 150
PROC NETFLOW statement, 355, 423
PROC QP statement, 708, 731, 732
PROC TRANS statement, 757, 760–763

–TIME– keyword
TYPE variable (NLP), 602

TIME= option
PROC LP statement, 214

TO statement,
See HEADNODE statement

TOLDINF= option
PROC INTPOINT statement, 116
RESET statement (NETFLOW), 381

TOLPINF= option
PROC INTPOINT statement, 116

RESET statement (NETFLOW), 381
TOLTOTDINF= option

PROC INTPOINT statement, 116
RESET statement (NETFLOW), 381

TOLTOTPINF= option
PROC INTPOINT statement, 117
RESET statement (NETFLOW), 381

TONODE statement,
See HEADNODE statement

TRANS procedure, 755
HEADNODE statement, 757
PROC TRANS statement, 755
SUPPLY statement, 757
TAILNODE statement, 758

TREETYPE= option
PROC LP statement, 210

TRUREG keyword
TECH= option (NLP), 545, 570, 573, 589

TWOPHASE1 option
RESET statement (NETFLOW), 372

TWOPHASE2 option
RESET statement (NETFLOW), 374

TYPE keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

TYPE statement
INTPOINT procedure, 129
LP procedure, 220
NETFLOW procedure, 395
QP procedure, 679

TYPEOBS= option
PROC INTPOINT statement, 114
PROC NETFLOW statement, 355
PROC QP statement, 674

U
U= option

PROC LP statement, 214
RESET statement (NETFLOW), 376

UB keyword
TYPE variable (NLP), 596, 597, 600

UNREST keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

UNRSTRCT keyword
TYPE variable (LP), 221

UPD= option,
See UPDATE= option

UPDATE= option
PROC NLP statement, 545, 573, 574

UPPCOST keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396
TYPE variable (QP), 680

UPPER keyword
TYPE variable (INTPOINT), 129
TYPE variable (NETFLOW), 396

796 � Syntax Index

TYPE variable (QP), 680
UPPER= option

RESET statement (LP), 218
UPPERBD keyword

TYPE variable (LP), 221, 233
TYPE variable (NLP), 596, 597, 600

UPPERBD statement,
See CAPACITY statement
QP procedure, 680

V
VAR statement,

NLP procedure, See DECVAR statement
INTPOINT procedure, 130
LP procedure, 222
NETFLOW procedure, 397
QP procedure, 681

VARDATA keyword
GROUPED= option (QP), 671

VARDATA= option
PROC QP statement, 658, 659, 666, 669

VARDEF= option
PROC NLP statement, 545, 592

VARNAME statement,
See NAME statement

VARSELECT= option
PROC LP statement, 209, 210, 238

VERBOSE= option
PROC INTPOINT statement, 114
PROC QP statement, 674
RESET statement (NETFLOW), 379

VERSION= option
PROC NLP statement, 546, 575, 579, 590

VS= option,
See VERSION= option

VSING= option,
See VSINGULAR= option

VSINGULAR= option
PROC NLP statement, 546, 594

W
WALD keyword

CLPARM= option (NLP), 529
WALD–CL keyword

TYPE variable (NLP), 603
WARM option

PROC NETFLOW statement, 355, 425, 433
WHEN statement

NLP program statements, 562
WOBJECTIVE= option

PROC LP statement, 210

X
XCONV= option

PROC NLP statement, 546
XSIZE= option

PROC NLP statement, 546
XTOL= option,

See XCONV= option

Z
Z1= option,

See ZERO1= option
Z2= option,

See ZERO2= option
ZERO option

PRINT statement (NETFLOW), 362
ZERO1= option

RESET statement (NETFLOW), 379
ZERO2= option

PROC INTPOINT statement, 115
RESET statement (NETFLOW), 380

ZEROS option
PRINT statement (LP), 217

ZEROTOL= option
PROC INTPOINT statement, 115
PROC QP statement, 675
RESET statement (NETFLOW), 380

ZTOL1 option
RESET statement (NETFLOW), 380

ZTOL2 option
RESET statement (NETFLOW), 380

Your Turn

If you have comments or suggestions about SAS/OR 9.1.2 User’s Guide:
Mathematical Programming, please send them to us on a photocopy of this page or send
us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	What's New in SAS/OR 9, 9.1, and 9.1.2
	Overview
	The BOM Procedure
	The CLP Procedure (Experimental)
	The CPM Procedure
	The GA Procedure (Experimental)
	The GANTT Procedure
	The INTPOINT Procedure
	The LP Procedure
	The PM Procedure
	The NETFLOW Procedure
	The QP Procedure (Experimental)
	Bill of Material Post Processing Macros

	Using This Book
	Purpose
	Organization
	Typographical Conventions
	Conventions for Examples
	Accessing the SAS/OR Sample Library
	Online Help System and Updates
	Additional Documentation for SAS/OR Software

	Chapter 1. Introduction to Optimization
	Overview
	Data Flow
	PROC LP
	PROC NETFLOW
	PROC INTPOINT
	PROC NLP
	PROC QP (Experimental)
	PROC TRANS
	PROC ASSIGN
	Model Formats: PROC LP and PROC NETFLOW
	Model Formats: PROC ASSIGN and PROC TRANS

	Model Building
	Matrix Generation
	Exploiting Model Structure

	Report Writing
	The DATA Step
	Other Reporting Procedures

	Decision Support Systems
	The Full-Screen Interface
	Communicating with the Optimization Procedures

	References

	Chapter 2. The ASSIGN Procedure
	Overview
	Getting Started
	Introductory Example

	Syntax
	Functional Summary
	PROC ASSIGN Statement
	BY Statement
	COST Statement
	ID Statement

	Details
	Missing Values
	Output Data Set
	The Objective Value
	Macro Variable _ORASSIG
	Scaling

	Examples
	Example 2.1. Assigning Subcontractors to Construction Jobs
	Example 2.2. Assigning Construction Jobs to Subcontractors
	Example 2.3. Minimizing Swim Times
	Example 2.4. Using PROC ASSIGN with a BY Statement

	Chapter 3. The INTPOINT Procedure
	Overview
	Mathematical Description of NPSC
	Mathematical Description of LP
	The Interior Point Algorithm
	Network Models

	Introduction
	Getting Started: NPSC Problems
	Getting Started: LP Problems
	Typical PROC INTPOINT Run

	Syntax
	Functional Summary
	PROC INTPOINT Statement
	CAPACITY Statement
	COEF Statement
	COLUMN Statement
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement
	LO Statement
	NAME Statement
	NODE Statement
	QUIT Statement
	RHS Statement
	ROW Statement
	RUN Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement
	TYPE Statement
	VAR Statement

	Details
	Input Data Sets
	Output Data Set
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	How to Make the Data Read of PROC INTPOINT More Efficient
	Stopping Criteria

	Examples
	Example 3.1. Production, Inventory, Distribution Problem
	Example 3.2. Altering Arc Data
	Example 3.3. Adding Side Constraints
	Example 3.4. Using Constraints and More Alteration to Arc Data
	Example 3.5. Nonarc Variables in the Side Constraints
	Example 3.6. Solving an LP Problem with Data in MPS Format

	References

	Chapter 4. The LP Procedure
	Overview
	Getting Started
	An Introductory Example
	An Integer Programming Example
	An MPS Format Conversion Example

	Syntax
	Functional Summary
	PROC LP Statement
	COEF Statement
	COL Statement
	ID Statement
	IPIVOT Statement
	PIVOT Statement
	PRINT Statement
	QUIT Statement
	RANGE Statement
	RESET Statement
	RHS Statement
	RHSSEN Statement
	ROW Statement
	RUN Statement
	SHOW Statement
	TYPE Statement
	VAR Statement

	Details
	Missing Values
	Dense Data Input Format
	Sparse Data Input Format
	Converting MPS Format
	The Reduced Costs, Dual Activities, and Current Tableau
	Macro Variable _ORLP_
	Pricing
	Scaling
	Preprocessing
	Integer Programming
	Sensitivity Analysis
	Range Analysis
	Parametric Programming
	Interactive Facilities
	Memory Management
	Output Data Sets
	Input Data Sets
	Displayed Output
	ODS Table and Variable Names

	Examples
	Example 4.1. An Oil Blending Problem
	Example 4.2. A Sparse View of the Oil Blending Problem
	Example 4.3. Analyzing the Sensitivity of the Solution to Changes in the Objective Coefficients
	Example 4.4. Additional Analysis of the Sensitivity of the Solution to Changes in the Objective Coefficients
	Example 4.5. Price Parametric Programming for the Oil Blending Problem
	Example 4.6. Special Ordered Sets and the Oil Blending Problem
	Example 4.7. Goal-Programming a Product Mix Problem
	Example 4.8. A Simple Integer Program
	Example 4.9. An Infeasible Problem
	Example 4.10. Restarting an Integer Program
	Example 4.11. Alternative Search of the Branch-and-Bound Tree
	Example 4.12. An Assignment Problem
	Example 4.13. A Scheduling Problem
	Example 4.14. A Multicommodity Transshipment Problem with Fixed Charges

	References

	Chapter 5. The NETFLOW Procedure
	Overview
	Introduction
	Network Models
	Side Constraints
	Advantages of Network Models over LP Models
	Mathematical Description of NPSC
	Flow Conservation Constraints
	Nonarc Variables
	Warm Starts

	Getting Started
	Introductory Example

	Syntax
	Functional Summary
	Interactivity
	PROC NETFLOW Statement
	CAPACITY Statement
	COEF Statement
	COLUMN Statement
	CONOPT Statement
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement
	LO Statement
	NAME Statement
	NODE Statement
	PIVOT Statement
	PRINT Statement
	QUIT Statement
	RESET Statement
	RHS Statement
	ROW Statement
	RUN Statement
	SAVE Statement
	SHOW Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement
	TYPE Statement
	VAR Statement

	Details
	Input Data Sets
	Output Data Sets
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Pricing Strategies
	Dual Variables, Reduced Costs, and Status
	The Working Basis Matrix
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	Warm Starts
	How to Make the Data Read of PROC NETFLOW More Efficient
	Macro Variable _ORNETFL

	The Interior Point Algorithm
	Introduction
	Network Models: Interior Point Algorithm
	Linear Programming Models: Interior Point Algorithm

	Examples
	Example 5.1. Shortest Path Problem
	Example 5.2. Minimum Cost Flow Problem
	Example 5.3. Using a Warm Start
	Example 5.4. Production, Inventory, Distribution Problem
	Example 5.5. Using an Unconstrained Solution Warm Start
	Example 5.6. Adding Side Constraints, Using a Warm Start
	Example 5.7. Using a Constrained Solution Warm Start
	Example 5.8. Nonarc Variables in the Side Constraints

	References

	Chapter 6. The NLP Procedure
	Overview
	Getting Started
	Introductory Examples

	Syntax
	Functional Summary
	PROC NLP Statement
	ARRAY Statement
	BOUNDS Statement
	BY Statement
	CRPJAC Statement
	DECVAR Statement
	GRADIENT Statement
	HESSIAN Statement
	INCLUDE Statement
	JACNLC Statement
	JACOBIAN Statement
	LABEL Statement
	LINCON Statement
	MATRIX Statement
	MIN, MAX, and LSQ Statements
	MINQUAD and MAXQUAD Statements
	NLINCON Statement
	PROFILE Statement
	Program Statements

	Details
	Criteria for Optimality
	Optimization Algorithms
	Finite-Difference Approximations of Derivatives
	Hessian and CRP Jacobian Scaling
	Testing the Gradient Specification
	Termination Criteria
	Active Set Methods
	Feasible Starting Point
	Line-Search Methods
	Restricting the Step Length
	Computational Problems
	Covariance Matrix
	Input and Output Data Sets
	Displayed Output
	Missing Values
	Computational Resources

	Examples
	Example 6.1. Using the DATA= Option
	Example 6.2. Using the INQUAD= Option
	Example 6.3. Using the INEST=Option
	Example 6.4. Restarting an Optimization
	Example 6.5. Approximate Standard Errors
	Example 6.6. Maximum Likelihood Weibull Estimation
	Example 6.7. Simple Pooling Problem
	Example 6.8. Chemical Equilibrium
	Example 6.9. Minimize Total Delay in a Network

	References

	Chapter 7. The QP Procedure
	Overview
	Quadratic Programming Problems
	The Interior Point Algorithm
	Getting Started: QP Problems
	Introductory QP Example
	Typical PROC QP Run: QP Problems
	Syntax: QP Problems
	Functional Summary: QP Problems
	PROC QP Statement: QP Problems
	COEF Statement: QP Problems
	COLUMN Statement: QP Problems
	HESSIANCOEF Statement
	HESSIANCOLUMN Statement
	HESSIANROW Statement
	ID Statement: QP Problems
	LO Statement: QP Problems
	NAME Statement: QP Problems
	OBJFN Statement
	QUIT Statement
	RHS Statement
	ROW Statement
	RUN Statement
	TYPE Statement
	UPPERBD Statement
	VAR Statement

	Quadratic Network Problems with Side Constraints
	Network Models
	Getting Started: QNPSC Problems
	Introductory QNPSC Example
	Typical PROC QP Run: QNPSC Problems
	Syntax: QNPSC Problems
	Functional Summary: QNPSC Problems
	PROC QP Statement: QNPSC Problems
	CAPACITY Statement
	COEF Statement: QNPSC Problems
	COLUMN Statement: QNPSC Problems
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement: QNPSC Problems
	LO Statement: QNPSC Problems
	NAME Statement: QNPSC Problems
	NODE Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement

	Details
	Input Data Sets
	Output Data Set
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	How to Make the Data Read of PROC QP More Efficient

	Examples
	Example 7.1. Dense Format in CONDATA
	Example 7.2. Dense Format in CONDATA and a VARDATA Is Used
	Example 7.3. Sparse Format in CONDATA
	Example 7.4. Another Sparse Format in CONDATA and a VARDATA Is Used
	Example 7.5. A QP Problem with a Network Component
	Example 7.6. Equivalent Nonnetwork QP Problem
	Example 7.7. An Unnamed Arc Has Data in the Hessian
	Example 7.8. A Named Arc Has Data in the Hessian

	References

	Chapter 8. The TRANS Procedure
	Overview
	Getting Started
	Introductory Example

	Syntax
	Functional Summary
	PROC TRANS Statement
	HEADNODE Statement
	SUPPLY Statement
	TAILNODE Statement

	Details
	Missing Values
	Output Data Set
	Objective Value
	Demand
	Dual Variables
	Macro Variable _ORTRANS
	Reasons for Infeasibility
	Balancing Total Supply and Total Demand

	Examples
	Example 8.1. Uncapacitated Transportation Network
	Example 8.2. Capacitated Transportation Network
	Example 8.3. Capacitated Transportation Network with MINFLOW
	Example 8.4. An Infeasible Problem

	Subject Index
	Syntax Index

