
SAS® 9.1.2 Data Quality Server
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1.2 Data Quality Server: Reference. Cary, NC: SAS Institute Inc.

SAS® 9.1.2 Data Quality Server: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-512-7
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, April 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

General Enhancements v

Locales vi

Functions vi

System Options vi

AUTOCALL Macros vii

DQSCHEME Procedure vii

DQMATCH Procedure vii

Chapter 1 � Introduction to SAS Data Quality Server 1
Overview of SAS Data Quality Server 1

Chapter 2 � Using the SAS Data Quality Server Software 3
About the Quality Knowledge Base 3

About Locales 4

About the Data Quality Setup File 5

About Input Requirements 6

Transforming Data with Schemes 6

Creating Match Codes 9

About Clusters 10

About Sensitivity 11

About Locale Definitions 11

Using the SAS Data Quality Server Functions 15

Chapter 3 � The DQMATCH Procedure 19
The DQMATCH Procedure in SAS Data Quality Server 19

DQMATCH Procedure Syntax 19

DQMATCH Examples 22

Chapter 4 � The DQSCHEME Procedure 29
The DQSCHEME Procedure 29

DQSCHEME Procedure Syntax 29

PROC DQSCHEME Examples 36

Chapter 5 � AUTOCALL Macros 41
AUTOCALL Macros for SAS Data Quality Server 41

Chapter 6 � Functions and CALL Routines 45
Functions and CALL Routines in SAS Data Quality Server 45

Functions Listed Alphabetically 46

Functions Listed by Category 46

Chapter 7 � Locales for QKB 2004A 77

iv

Overview 77

Chapter 8 � System Options 139
System Options for SAS DATA Quality Server 139

Glossary 143

Index 147

v

What’s New

Overview
New capabilities, functions, and options in SAS Data Quality Server (formerly called

SAS Data Quality – Cleanse) improve your ability to:
� analyze the quality of your data
� minimize defective data
� reduce redundancies
� transform and standardize data
� merge and recombine data.

Note: z/OS is the successor to the OS/390 operating system. SAS Data Quality
Server 9.1 is supported on both OS/390 and z/OS operating systems. Throughout this
document, any reference to z/OS also applies to OS/390. �

General Enhancements

� SAS Data Quality Server is now available under the z/OS (formerly OS/390)
operating environment.

� The software is now closely integrated with:
� SAS ETL Studio for data cleansing as part of enterprise-wide extract,

transform, and load.
� dfPower Studio and Blue Fusion from DataFlux (a SAS company) for locale

editing and additional data cleansing functionality.

� The SAS Sample Library now contains samples for SAS Data Quality Server 9.1.

vi What’s New

Locales

The following locales are provided:

� DEDEU, German language, for use with data from Germany

� ENAUS, English for Australia

� ENGBR, English for Great Britain

� ENUSA, English for the United States

� ENZSA, English for South Africa (new in SAS 9.1.2)

� FRFRA, French for France (new in SAS 9.1.2)

� ITITA, Italian for Italy

� NLNLD, Dutch for The Netherlands.

Functions

The following new functions interpret input character values that have been parsed
(and therefore contain delimiters):

� DQMATCHPARSED returns a match code from a parsed character value.

� DQGENDERPARSED returns a gender determination from the parsed name of an
individual.

The next set of new functions helps you prepare parsed character values:

� DQPARSETOKENPUT creates a new parsed value or adds a parsed value to an
existing parsed value.

� DQMATCHINFOGET returns the name of the parse definition that is associated
with a specified match definition.

� DQGENDERINFOGET returns the name of the parse definition that is associated
with a specified gender definition.

The new function DQLOCALEINFOGET returns a list of the locales that are
currently loaded into memory.

The new function DQPATTERN returns a pattern analysis of the words or characters
in an input character value.

The existing function DQSCHEMEAPPLY and the existing CALL routine CALL
DQSCHEMEAPPLY now accept the following new arguments: scheme-lookup-method,
match-definition, sensitivity, and locale. These arguments implement the new
scheme-apply capabilities that are also available in the DQSCHEME procedure for the
APPLY statement.

System Options

The following system options are new or have changed:

� DQLOCALE= specifies the locales that are to be loaded into memory.

� DQSETUPLOC= specifies the location of the setup file for SAS Data Quality
Server.

What’s New vii

AUTOCALL Macros

The following AUTOCALL macros are new or have changed:

� %DQPUTLOC displays in the SAS log all the definitions and tokens in a specified
locale.

� %DQLOAD loads specified locales. The new DQINFO parameter generates
additional information in the SAS log for debugging purposes.

� %DQUNLOAD unloads all locales.

DQSCHEME Procedure

In the PROC DQSCHEME statement, the BFD and NOBFD options enable you to
generate schemes in SAS format and in BFD format. BFD format schemes can be
displayed and edited using dfPower Customize from DataFlux (a SAS company).

The new CONVERT statement enables you to convert existing schemes between SAS
and BFD formats.

For the CREATE statement in the DQSCHEME procedure, the following options are
new or have been changed:

� INCLUDE_ALL enables you to fully populate the scheme. The scheme includes all
output values, including those that are not transformed.

� MODE= is stored in the scheme to specify that the scheme will, by default, be
applied to the entirety of each value of the input variable (when
MODE=PHRASE), or to each element in each value (when MODE=ELEMENT).
The value of MODE= that is stored in the scheme can be overridden by the value
of the MODE= option in the APPLY statement, or in the mode argument in the
DQSCHEMEAPPLY function or CALL routine.

� SENSITIVITY= enables you to specify the degree of complexity in the match codes
that are generated internally when the scheme is built. Higher sensitivity values
generate match codes that are more complex. Complex match codes are useful
when you want a higher degree of similarity between the DATA values that map
to a given STANDARD value.

� MATCHDEF=, which was previously known as MATCHTYPE=, specifies the
match definition that is referenced during the creation of match codes.

� LOCALE= specifies a locale.

For the APPLY statement in the DQSCHEME procedure, MODE= specifies whether
to apply the scheme to the entire input value or to each element of the input value. The
default value is determined by the value of MODE= that was stored in the scheme
when the scheme was created.

DQMATCH Procedure

For the PROC DQMATCH statement, the options DELIMITER and NODELIMITER
enable you to generate concatenated match codes with or without a delimiter.

For the CRITERIA statement in the DQMATCH procedure, the following options are
new or have been changed:

� SENSITIVITY= now has a maximum value of 95, which equates with the
maximum sensitivity in dfPower Studio.

viii What’s New

� MATCHCODE= enables you to generate more than one match code in a single
pass through the data.

� DELIMSTR= enables you to generate match codes for parsed input character
variables.

� MATCHDEF=, which was previously known as MATCHTYPE=, specifies the
match definition that will be referenced during the creation of match codes.

� LOCALE= specifies a locale.

1

C H A P T E R

1
Introduction to SAS Data Quality
Server

Overview of SAS Data Quality Server 1

Overview of SAS Data Quality Server
The SAS Data Quality Server software enables you to analyze, cleanse, transform,

and standardize your data. Data cleansing increases the accuracy and profitability of
the knowledge that you extract from your data.

You can use the SAS Data Quality Server software to:
� Analyze and transform data by creating and applying schemes. For details, see

Chapter 4, “The DQSCHEME Procedure,” on page 29.
� Create match codes for analysis, reporting, and transformation. For details, see

Chapter 3, “The DQMATCH Procedure,” on page 19 and “About the Match Code
Functions” on page 15.

� Parse character values to allow analysis and cleansing of the elements in character
values. For details, see “About the Parsing Functions” on page 15.

� Standardize values for format, case (uppercase/lowercase), and punctuation. For
details, see “DQCASE Function” on page 48.

� Determine the gender of an individual based on a name. For details, see
“DQGENDER Function” on page 49.

� Determine the locale that best represents a given value. For details, see
“DQLOCALEGUESS Function” on page 53.

� Identify the type of content in character values. For details, see “About the Gender
Analysis, Locale Guessing, and Identification Functions” on page 16.

� Analyze the patterns in character data. For details, see “DQPATTERN Function”
on page 64.

� Integrate the scheme-edit and locale-edit capabilities of the dfPower Studio and
dfPowerCustomize software from DataFlux (a SAS company). For information on
DataFlux products, see www.dataflux.com.

� Apply schemes and create match codes in data quality transformation templates
that are available in the SAS ETL Studio software.

2

3

C H A P T E R

2
Using the SAS Data Quality
Server Software

About the Quality Knowledge Base 3
About Locales 4

About the Data Quality Setup File 5

Editing the SAS Data Quality Server Setup File 5

About Input Requirements 6

Transforming Data with Schemes 6
Creating Schemes 6

About Analysis Data Sets 7

Applying Schemes 7

About Meta Options 8

Creating Match Codes 9

How Match Codes Are Created 9
About the Length of Match Codes 10

About Clusters 10

About Sensitivity 11

About Locale Definitions 11

Using Parse Definitions 11
About the Global Parse Definitions 12

Using Match Definitions 12

About the Scheme Build Match Definitions 13

Using Case and Standardization Definitions 13

About the Standardization of Dates in the EN Locale 13
Using Gender Analysis, Locale Guess, and Identification Definitions 14

Using Pattern Analysis Definitions 14

Using the SAS Data Quality Server Functions 15

About the Parsing Functions 15

About the Match Code Functions 15

About the Scheme-Apply Functions 15
About the Standardization Functions 16

About the Case Functions 16

About the Gender Analysis, Locale Guessing, and Identification Functions 16

About the Pattern Analysis Functions 16

About the Reporting Functions 17

About the Quality Knowledge Base
The Quality Knowledge Base consists of a hierarchy of locales and a collection of

other files. Specified locales are loaded into memory for reference during data cleansing.
Locales are specific to a spoken language and geographic region. For example, the

ENAUS locale contains data cleansing definitions that are specific to the English

4 About Locales � Chapter 2

language, for use with data from or pertaining to the region of Australia. Upper-level
locales, such as EN for English, contain definitions that are inherited by region–specific
locales. The hierarchy of locales, along with descriptions of the definitions in those
locales, is provided in Chapter 7, “Locales for QKB 2004A,” on page 77.

During data cleansing, SAS references a specified definition in a specified locale to
perform a given task, such as standardization, the creation of match codes, or the
parsing of input values. Definitions differ between locales because they accommodate
regional differences in data.

To illustrate the regional differences in definitions, the parse definition ADDRESS in
the ENUSA locale is referenced to associate parts of street addresses with the following
tokens:

� STREET NUMBER
� PRE-DIRECTION
� STREET NAME
� STREET TYPE
� POST-DIRECTION
� ADDRESS EXTENSION
� ADDRESS EXTENSION NUMBER

In the ENGBR locale (English, Great Britain), the ADDRESS parse definition has the
following tokens:

� PREFIX
� HOUSE NAME
� STREET NUMBER
� STREET NAME
� STREET TYPE
� NEIGHBOURHOOD

Data cleansing definitions are tailored to accommodate the data formats in specific
geographic regions.

Global definitions enable consistent data cleansing across locales. For example, the
parse definition PHONE (GLOBAL) provides a consistent set of parse tokens in all
locales. The parsing operation that seeks values for the tokens differs between locales,
but the results can be compared or combined across locales.

To summarize, the Quality Knowledge Base contains a hierarchy of locales that are
language-specific and region-specific. Locales contain definitions that are usage-specific
and content-specific. For further information on locales, see “About Locale Definitions”
on page 11.

You can edit locales using the dfPower Customize software from DataFlux (a SAS
company). For information on DataFlux software products, see www.dataflux.com.

About Locales
Before locales can be referenced for data cleansing, they must be loaded into memory

using the AUTOCALL macro %DQLOAD. The macro sets the value of the system
options DQSETUPLOC= and DQLOCALE= and loads the specified locales into memory.

The system option DQSETUPLOC= specifies the location of the data quality setup
file; that file in turn specifies the location of the Quality Knowledge Base. For further
information on the setup file, see “About the Data Quality Setup File” on page 5.

When you run %DQLOAD (see “%DQLOAD AUTOCALL Macro” on page 41), a
specified list of locales is loaded into memory. That list of locales becomes the value of
the DQLOCALE= system option.

� Editing the SAS Data Quality Server Setup File 5

To ensure that you use the intended locale from the intended Quality Knowledge
Base, be sure to run %DQLOAD before data cleansing.

Note that you can change the values of the system options DQSETUPLOC= and
DQLOCALE=, but doing so does not load different locales into memory. For this reason,
it is recommended that you use %DQLOAD to change the values of the two data quality
system options.

The first locale in the locale list is the default locale. The default locale is referenced
when:

� A locale is not specified.
� The specified locale is not loaded into memory.
� Input data is insufficient for the DQLOCALEGUESS function

(see“DQLOCALEGUESS Function” on page 53) to determine the best locale for
that data.

If you change locale files in the Quality Knowledge Base, make sure that you reload
macros into memory with %DQLOAD before data cleansing.

You can display information on a locale that is currently loaded into memory using
the AUTOCALL macro %DQPUTLOC. For further information on that macro, see
“%DQPUTLOC AUTOCALL Macro” on page 42.

After you submit your data cleansing programs, you can restore the memory by
unloading locales using the AUTOCALL macro %DQUNLOAD (see “%DQUNLOAD
AUTOCALL Macro” on page 43).

New locales and updates to existing locales are provided by DataFlux (a SAS
company). You can download new locales from the following Web address:

www.dataflux.com/QKB

Downloading a locale also downloads new reference documentation for that locale.

About the Data Quality Setup File
The setup file for the SAS Data Quality Server software specifies the storage

locations that comprise the Quality Knowledge Base. In the Windows and UNIX
operating environments, the name of the setup file is DQSETUP.TXT. In the z/OS
operating environment, the setup file is a member named DQSETUP in a SAS Data
Quality Configuration PDS.

The location of the setup file is specified with the system option DQSETUPLOC=. If
you move the setup file, you need to change the value of this system option. The value
may be set by default when you initialize SAS. If you have more than one Quality
Knowledge Base, the DQSETUPLOC= system option must be set to a value that points
to the right one.

Editing the SAS Data Quality Server Setup File
The data quality setup file consists of a table with two columns. The first column

lists file access methods, which must always be DISK. The second column provides
fully-qualified paths to the contents of the Quality Knowledge Base.

When you edit the setup file, be sure to:
� Always include a semicolon at the end of each fully-qualified path.
� Specify the DISK access method only.
� In the Windows and UNIX operating environments, do not change the last

directory or filename in any path. For the z/OS operating environment, do not

6 About Input Requirements � Chapter 2

change the PDS names, and don’t change the names of their contents. For
example, in the following entry in the setup file, you would retain the GRAMMAR
PDS name and not change any member names inside that PDS:

DISK SAS91.DQ.GRAMMAR;

If you would like to add comment lines to your setup file, specify an exclamation
point (!) as the first non-blank character in each line that contains comments. When an
exclamation point is detected in this position, the software ignores any other text on
that line.

You can insert blank lines into the setup file.
In the setup file, the maximum record (line) length is 1024 characters.

About Input Requirements
The SAS Data Quality Server functions and the DQSCHEME procedure process

character values up to a maximum length of 255 characters. The functions check the
actual length of each input value. The DQSCHEME procedure logs an error if the
defined length of a variable exceeds 255, regardless of the actual length of those values.

The DQMATCH procedure does not evaluate the length of input values, because
match codes would almost certainly be the same for input values that diverged after the
255th character.

Transforming Data with Schemes
A scheme is a data set that is created for single input character variable. After a

scheme is created, it is applied to that variable to transform its data. The purpose of the
transformation is to replace values that are similar with a single most-common value.

The DQSCHEME procedure (see Chapter 4, “The DQSCHEME Procedure,” on page
29) is used to create and apply schemes. You can create and apply multiple schemes in
a single procedure step. The DQSCHEMEAPPLY function and CALL routine are also
used to apply schemes (see “DQSCHEMEAPPLY CALL Routine” on page 65). You can
also display, create, apply, and edit schemes in the dfPower Studio software from
DataFlux (a SAS company).

Creating Schemes
Before you apply a scheme (see “Applying Schemes” on page 7), you first create the

scheme data set. Schemes are created with the CREATE statement in the DQSCHEME
procedure. When you submit a CREATE statement, PROC DQSCHEME creates match
codes and assigns cluster numbers. A unique cluster number is assigned to each group
of two or more input values that generate the same match code. After cluster numbers
are assigned, the transformation value is determined. The transformation value is the
one that is the most common value in each cluster.

Note: During scheme creation, the DQSCHEME procedure evaluates the definition
of each input variable in each CREATE statement. An error message is generated if the
defined length of an input variable exceeds 255 characters. �

Scheme data sets are created in SAS format or BFD format. BFD stands for Blue
Fusion Data, which is a format that is recognized by SAS and by the dfPower Studio
software. The SAS Data Quality Server software can create, apply, and display schemes

� Applying Schemes 7

in SAS format or BFD format. The dfPower Studio software can create, apply, display,
and edit schemes in BFD format only. In the z/OS operating environment (formerly
OS/390), the SAS Data Quality Server software can create, apply, and display schemes
in SAS format; schemes in BFD format can be applied.

About Analysis Data Sets
Analysis data sets describe how a transformation would take place, without actually

transforming the data; they enable you to experiment with different options to arrive at
a scheme that provides optimal data cleansing. Analysis data sets are generated by
specifying the ANALYSIS= option in the CREATE statement of the DQSCHEME
procedure.

The key to optimizing a scheme is to choose the sensitivity value that best suits your
data and your goal. You can create a series of analysis data sets using different
sensitivity values to compare the results. Changing the sensitivity value changes the
clustering of input values, as described in “About Sensitivity” on page 11.

When you decide on a sensitivity level you can create the scheme data set, by
replacing the ANALYSIS= option with the SCHEME= option in the CREATE
statement. For further information on sensitivity values and how they affect the
creation of match codes and clusters, see “About Sensitivity” on page 11.

Viewing the analysis data set shows that it contains one observation for each unique
input value. Any adjacent blank spaces are removed from the input values. The
COUNT variable describes the number of occurrences of that value. The CLUSTER
variable designates a cluster number for each input character value.

The CLUSTER variable contains a value only when two or more different input
values generate the same match code. An input value that is repeated receives a cluster
number only if another value generates the same match code.

You can specify the INCLUDE_ALL option in the CREATE statement to include all
input values in the scheme, including the unique input values that did not receive a
cluster number in the analysis data set.

Applying Schemes

After you create a scheme data set (see “Creating Schemes” on page 6), you apply it
to an input variable to transform its values. You can apply a scheme with the APPLY
statement in the DQSCHEME procedure (see “APPLY Statement” on page 33), or with
the DQSCHEMEAPPLY function or CALL routine (see “DQSCHEMEAPPLY Function”
on page 69). Use the CALL routine rather than the function if you want to return the
number of transformations that occurred during the application of the scheme.

The scheme data set consists of the DATA and STANDARD variables. The DATA
variable contains the input character values that were used to create the scheme. The
STANDARD variable contains the transformation values. All of the DATA values in a
given cluster have the same STANDARD value. The STANDARD values are the values
that were the most common values in each cluster when the scheme was created.

When you apply a scheme to a SAS data set, an input value is transformed when the
input value matches a DATA value in the scheme. The transformation replaces the
input value with the transformation value.

The lookup method determines how the input value is matched to the DATA values
in the scheme. The SCHEME_LOOKUP option or argument specifies that the match
must be exact, case-insensitive, or consist of a match between the match codes of the
input value and the match codes of the DATA values in the scheme. When a match
occurs, any adjacent blank spaces in the transformation value are replaced with single

8 About Meta Options � Chapter 2

blank spaces, then the value is written into the output data set. If no match is found
for an input value, that exact value is written into the output data set.

You can specify the MODE argument or the MODE= option to apply schemes in one
of two modes: phrase or element. Applying a scheme by phrase compares the entire
input value (or the match code of the entire value) to the values (or match codes) in the
scheme. Phrase is the default scheme apply mode.

When you apply a scheme by element, each element in the input value (or match
code of each element) is compared to the values (or match codes) in the scheme.
Applying schemes by element allows you to change one or more elements in an input
value, without changing any of the other elements in that value.

The file format of a scheme is important when that scheme is applied. In the z/OS
operating environment, schemes must be created and applied in SAS format. Schemes
that are stored in a PDS in BFD format can be applied, and schemes in BFD format can
be converted to SAS format using the CONVERT statement in the DQSCHEME
procedure.

Note: Schemes in BFD format cannot be created or displayed in the z/OS operating
environment. �

About Meta Options
Meta options are stored in the scheme when the scheme is created; they provide

default values for certain options of the APPLY statement of the DQSCHEME
procedure or default arguments for the DQSCHEMEAPPLY function or CALL routine.
Default values are stored for the lookup mode (SCHEME_LOOKUP option or
argument), apply mode (MODE option or argument), match definition, and sensitivity
level. The values of the meta options are superseded when other values are specified in
the APPLY statement or in the DQSCHEMEAPPLY function or CALL routine.

When the scheme is applied, the meta options for the match definition and
sensitivity value are valid only when the scheme is applied with match-code lookup
(when SCHEME_LOOKUP= USE_MATCHDEF).

The meta options are stored differently depending on the scheme format. For
schemes in SAS format, the meta options are stored in the data set label. For schemes
in BFD format, the meta options are stored within the scheme itself.

Note: In programs that create schemes in SAS format, do not specify a data set
label; doing so deletes the meta options. �

The meta options are stored using the following syntax:

“lookup-method” “apply-mode” “sensitivity-level” “match-definition”

lookup-method
Valid values are:

EM specifies that the default value of the SCHEME_LOOKUP
option or argument is EXACT. To transform an input value,
that value must exactly match a DATA value in the scheme.

IC SCHEME_LOOKUP=IGNORE_CASE

UM SCHEME_LOOKUP=USE_MATCHDEF. Match codes are
created and compared for all input values and all DATA values
in the scheme.

� How Match Codes Are Created 9

apply-mode
Valid values are:

E specifies that the default value of the MODE option or
argument is ELEMENT.

P MODE=PHRASE

sensitivity-level
specifies the amount of information in the match codes that are generated when
SCHEME_LOOKUP=USE_MATCHDEF. Valid values range from 50 to 95.

match-definition
specifies the name of the default match definition that will be used when the value
of the SCHEME_LOOKUP option or argument is USE_MATCHDEF. Available
match definitions are specified in the Locales chapter (see Chapter 7, “Locales for
QKB 2004A,” on page 77).

For example, the following meta options string specifies that, by default, the scheme
uses match code lookup, applied by phrase, using the NAME match definition and a
sensitivity level of 80:

"UM" "P" "80" "NAME"

Creating Match Codes

Match codes are encoded representations of input character variables that are used
to cluster and cleanse input data. Match codes are created by the DQMATCH procedure
and by the functions DQMATCH and DQMATCHPARSED.

The DQMATCH procedure creates an output data set that contains match codes and
cluster numbers for one or more input character variables. Blank values can be
removed from the output data set, or they can receive their own cluster number.

The functions DQMATCH and DQMATCHPARSED return one match code for one
input character variable.

Note that match codes are created internally by the DQSCHEME procedure, the
DQSCHEMEAPPLY function, and the DQSCHEMEAPPLY CALL routine. These match
codes are used in the process of creating or applying a scheme, as described in
“Transforming Data with Schemes” on page 6.

How Match Codes Are Created
You can create two types of match codes:

� Simple match codes are created from a single input character variable.

� Compound match codes consist of a concatenation of match codes from two or more
input character variables. Then the separate match codes are concatenated into a
compound match code. You have the option of specifying that a delimiter, in the
form of an exclamation point (!), is to be inserted between the simple match codes
that comprise the combined match code (via the DELIMITER option or argument).

To create simple match codes, you specify one CRITERIA statement, with one input
variable identified in the VAR= option and one output variable identified with the
MATCHCODE= option. Compound match codes are similar, except that you specify
multiple CRITERIA statements for multiple variables, and all of those CRITERIA
statements specify the same output variable in their respective MATCHCODE= options.

10 About the Length of Match Codes � Chapter 2

The SAS Data Quality Server software creates match codes using these general steps:

1 Parse the input character value to identify tokens.

2 Remove insignificant words.

3 Remove some of the vowels. Remove fewer vowels when a scheme-build match
definition has been specified, as described in “About the Scheme Build Match
Definitions” on page 13.

4 Standardize the format and capitalization of words.

5 Create the match code by extracting the appropriate amount of information from
one or more tokens, based on the specified match definition and level of sensitivity.

Certain match definitions skip some of these steps.

Note: When you work with two or more data sets that you intend to analyze
together or join using match codes, be sure to use identical sensitivities and match
definitions when you create the match codes in each data set. �

About the Length of Match Codes
Match codes can vary in length between 1 and 255 characters. The length is

determined by the specified match definition. If you receive a message in the SAS log
that states that match codes have been truncated, you should extend the length of your
match code variable. Truncated match codes will not produce accurate results.

About Clusters

Clusters are groups of differing input character values that have identical match
codes. The number of clusters, and the number of values in each cluster, is determined
by the match definition and the sensitivity value that were specified when the match
codes were created, as described in “About Sensitivity” on page 11.

Clusters are used in the creation of schemes using the DQSCHEME procedure, as
described in “Creating Schemes” on page 6.

In the DQMATCH procedure, cluster numbers are optionally delivered to the output
data set when match codes are created. You can specify the following options in the
PROC DQMATCH statement to configure the output data set based on clusters.

CLUSTER=
specifies the name of the output variable that contains cluster numbers.

CLUSTERS_ONLY
limits match code output to values that received a cluster number.

CLUSTER_BLANKS
assigns a cluster number to blank values.

As an example of the use of the clustering options in the DQMATCH procedure,
assume that a data cleansing program specifies the options CLUSTERS_ONLY and
NO_CLUSTER_BLANKS. The resulting output would not contain input character
values that were blank. Nor would the output data set contain input character values
that did not receive a cluster number. In this case, a cluster number is assigned only
when two or more input values have the same match code. When you specify
CLUSTERS_ONLY, non-blank input character values are included in the output data
set only when their match codes are held in common with at least one other input
character value.

� Using Parse Definitions 11

The output data set that is generated by the DQMATCH procedure is displayed by
default in the Output window. The output data set contains the applicable values from
the specified input character variable, along with the match codes that were created for
those values.

For information on how match codes are created, see “How Match Codes Are
Created” on page 9.

About Sensitivity
The amount of information contained in match codes is determined by a specified

sensitivity level. Changing the sensitivity level allows you to change what is considered
a match. Match codes that are created at lower levels of sensitivity capture little
information about the input values. The result is more matches, fewer clusters (see
“About Clusters” on page 10), and more values in each cluster. At higher sensitivity
levels, input values must be more similar to receive the same match code. Clusters are
more numerous, and the number of entries in each cluster is smaller.

In some data cleansing jobs, a lower sensitivity value is needed. For example, if you
wanted to transform the following names to a single consistent value using a scheme,
you would need to specify a lower sensitivity level:

Patricia J. Fielding
Patty Fielding
Patricia Feelding
Patty Fielding

In this, all four values would be assigned to the same cluster and would be transformed
to the most-common value, Patty Fielding.

In other cases, a higher sensitivity level is needed. For example, if you were
collecting customer data based on account numbers, you would want to cluster on
individual account numbers. A high sensitivity value would be needed.

In the SAS Data Quality Server software, sensitivity values range from 50 to 95, and
the default value is 85.

To arrive at the sensitivity level that fits your data and your application, run tests
with DQMATCH or create analysis data sets with PROC DQSCHEME.

About Locale Definitions

Using Parse Definitions
Parse definitions are referenced when you want to create parsed input values.

Parsed input values are delimited so that elements in the those values can be
associated with named tokens. After parsing, specific contents of the input values can
be returned by specifying the names of tokens.

Parse definitions and tokens are referenced by the following functions:
� “DQPARSE Function” on page 59.
� “DQPARSEINFOGET Function” on page 61.
� “DQTOKEN Function” on page 74.
� “DQPARSETOKENGET Function” on page 62.

12 About the Global Parse Definitions � Chapter 2

� “DQPARSETOKENPUT Function” on page 63

For a brief example of how tokens are assigned and used, see “About the Quality
Knowledge Base” on page 3.

Parsing a character value assigns tokens only when the content in the input value
meets the criteria in the parse definition. Parsed character values can therefore contain
empty tokens. For example, three tokens are empty when you use the DQPARSE
function to parse the character value Ian M. Banks, using the NAME parse definition
in the ENUSA locale. The resulting token/value pairs are as follows:

NAME PREFIX empty

GIVEN NAME Ian

MIDDLE NAME M.

FAMILY NAME Banks

NAME SUFFIX empty

NAME
APPENDAGE

empty

Note: For parse definitions that work with dates, such as DATE (DMY) in the
ENUSA locale, input values must be character data rather than SAS dates. �

About the Global Parse Definitions
Global parse definitions contain a standard set of parse tokens that enable the

analysis of similar data from different locales. For example, the ENUSA locale and the
DEDEU locale both contain the parse definition ADDRESS (GLOBAL). The parse
tokens are the same in both locales. This global parse definition enables the
combination of parsed character data from multiple locales.

All global parse definitions are identified by the (GLOBAL) suffix.

Using Match Definitions
Match definitions are referenced during the creation of match codes. Match codes

provide a variable method of clustering similar input values as a basis for data
cleansing jobs such as the application of schemes.

When you create match codes, you determine the number of clusters (values with the
same match code) and the number of members in each cluster by specifying a
sensitivity level. The default sensitivity level is specified by the procedure or function,
rather than the match definition. For information on sensitivity levels, see “About
Sensitivity” on page 11.

Match definitions are referenced by the following procedures and functions:

� Chapter 3, “The DQMATCH Procedure,” on page 19.
� Chapter 4, “The DQSCHEME Procedure,” on page 29.
� “DQMATCH Function” on page 56.
� “DQMATCHINFOGET Function” on page 57.
� “DQMATCHPARSED Function” on page 58.

When you create match codes for parsed character values, your choice of match
definition depends on the parse definition that was used to parse the input character
value. To determine the parse definition that is associated with a given match
definition, use the “DQMATCHINFOGET Function” on page 57.

� About the Standardization of Dates in the EN Locale 13

Note: For match definitions that work with dates, such as DATE (MDY) in the
ENUSA locale, input values must be character data rather than SAS dates. �

About the Scheme Build Match Definitions
Locales contain certain match definitions that are recommended for use in the

DQSCHEME procedure because they produce more desirable schemes. The names of
these scheme-build match definitions always end with “(SCHEME BUILD)”.

Scheme-build match definitions are advantageous because they create match codes
that contain more vowels. Match codes that contain more vowels result in more clusters
with fewer members in each cluster, which in turn results in a larger, more specific set
of transformation values.

When you are using the DQMATCH procedure or function to create simple clusters,
it is better to have fewer vowels in the match code. For example, when using the CITY
match definition in PROC DQMATCH, the values Baltimore and Boltimore receive the
same match codes. The match codes would differ if you used the match definition CITY
(SCHEME BUILD).

Using Case and Standardization Definitions
Case and standardization definitions are applied to character values to make them

more consistent for the purposes of display or in preparation for transforming those
values with a scheme.

Case definitions are referenced by the “DQCASE Function” on page 48.
Standardization definitions are referenced by the “DQSTANDARDIZE Function” on
page 73.

Case definitions transform the capitalization of character values. For example, the
case definition Proper in the ENUSA locale takes as input any general text, capitalizes
the first letter of each word, and uses lowercase for the other letters in the word, while
recognizing and retaining or transforming various words and abbreviations into
uppercase. Other case definitions, such as PROPER – ADDRESS, apply to specific text
content.

Standardization definitions standardize the appearance of specific data values. In
general, words are capitalized appropriately based on the content of the input character
values. Also, adjacent blank spaces are removed, along with unnecessary punctuation.
Additional standardizations may be made for specific content. For example, the
standardization definition STATE (FULL NAME) in the locale ENUSA converts
abbreviated state names to full names in uppercase.

About the Standardization of Dates in the EN Locale
In the EN locale, dates are standardized to two-digit days (00–31), two-digit months

(01–12), and four-digit years (such as 2003). Input dates must be character values
rather than SAS dates. Spaces separate (delimit) the days, months, and years, as
shown in the following table.

Table 2.1 Examples of Date Standardizations

Input Date Standardization Definition Standardized Date

July04, 03 Date (MDY) 07 04 2003

July 04 04 Date (MDY) 07 04 1904

14 Using Gender Analysis, Locale Guess, and Identification Definitions � Chapter 2

July0401 Date (MDY) 07 04 2001

04.07.02 Date (DMY) 04 07 2002

04-07-2004 Date (DMY) 04 07 2004

03/07/04 Date (YMD) 2003 07 04

Two-digit year values are standardized as follows. If an input year is greater than 00
and less than or equal to 03, the standardized year will be 2000, 2001, 2002, or 2003.
Two-digit input year values that are greater than or equal to 04 and less than or equal
to 99 will be standardized into the range of 1904–1999. For example, an input year of
03 is standardized as 2003. An input year of 04 is standardized as 1904. These
standardizations are not affected by the value of the SAS system option
YEARCUTOFF=.

Using Gender Analysis, Locale Guess, and Identification Definitions
Gender analysis, locale guess, and identification definitions enable you make

determinations about character values. With these definitions you can determine:
� The gender of an individual based on a name value.
� The locale that is the most suitable for a given character value.
� The category of a value, which is chosen from a set of available categories.

Gender analysis definitions determine the gender of an individual based on that
individual’s name. The gender is determined to be unknown if the first name is used by
both males and females, if no other clues are provided in the name or if conflicting clues
are found. Gender analysis definitions are referenced by the “DQGENDER Function” on
page 49.

Locale guess definitions allow the software to determine the locale that is most likely
represented by a character value. All locales that are loaded into memory as part of the
locale list are considered, but only if they contain the specified guess definition. If a
definite locale determination cannot be made, the chosen locale is the first locale in the
locale list. Locale guess definitions are referenced by the “DQLOCALEGUESS
Function” on page 53.

Identification definitions are used to categorize character values. For example, using
the Entity identification definition in the ENUSA locale, a name value can be
determined to apply to an individual or an organization. Identification definitions are
referenced by the “DQIDENTIFY Function” on page 52.

Using Pattern Analysis Definitions
Pattern analysis definitions enable you to determine if an input character value

contains characters that are alphabetic, numeric, non-alphanumeric (punctuation
marks or symbols), or a mixture of alphanumeric and non-alphanumeric. The ENUSA
locale contains two pattern analysis definitions. The pattern analysis definition WORD
is referenced by the “DQPATTERN Function” on page 64 to generate one character of
analytical information for each word in the input character value. The CHARACTER
definition generates one character of analytical information for each character in the
input character value.

� About the Scheme-Apply Functions 15

Using the SAS Data Quality Server Functions
The SAS Data Quality Server software provides a number of functions and a CALL

routine that enable you to parse input values, return tokens, create match codes,
analyze values, and return information on character values and locales. The functions
are divided into the following categories:

� Parsing, see “About the Parsing Functions” on page 15.
� Creating Match Codes, see “About the Match Code Functions” on page 15.
� Applying Schemes, see “About the Scheme-Apply Functions” on page 15.
� Standardizing, see “About the Standardization Functions” on page 16.
� Gender Analysis, Locale Guessing, and Identifying, see “About the Gender

Analysis, Locale Guessing, and Identification Functions” on page 16.
� Casing, see “About the Case Functions” on page 16.
� Analyzing Patterns, see “About the Pattern Analysis Functions” on page 16.
� Reporting, see “About the Reporting Functions” on page 17.

About the Parsing Functions
The parsing functions (see “Parsing Functions” on page 47) identify tokens in input

character values, insert elements into input values based on token names, return
elements based on token names, and return information on parse definitions. With
these functions, you can assemble a parsed value from separate elements or create a
match code for a single element in a character value.

About the Match Code Functions
The match code functions (see “Matching Functions” on page 47) return match codes

or provide information that is pertinent to the creation of match codes. For information
on the creation and use of match codes, see “Creating Match Codes” on page 9.

The DQMATCH and DQMATCHPARSED functions have an optional sensitivity
argument that determines the amount of information in the resulting match code.
Lower sensitivity levels generate fewer clusters, with more members in each cluster.
Because higher sensitivities generate match codes with more information, input values
must be more similar to generate the same match code. Resulting clusters are higher in
number, with fewer members per cluster.

About the Scheme-Apply Functions
The scheme apply functions (see “Scheme Apply Functions and CALL Routines” on

page 48) enable you to apply existing schemes to input character values. Each
application seeks to apply a transformation value to one input character value. For
information on schemes, see “Applying Schemes” on page 7.

In a scheme apply function, you specify the location of the scheme, the scheme
format (SAS or BFD), the name of the variable that is to be transformed, and whether
you want to apply the scheme to the entire input value or to elements in the input
value. The return value is the transformed version of the input value. In addition to
the transformed value, the CALL routine also returns the number of transformations
that were performed on the input value.

You can create and store a scheme in a SAS data set or in file that uses BFD format.
The BFD format allows schemes to be shared between SAS and the dfPower Studio

16 About the Standardization Functions � Chapter 2

software from DataFlux (a SAS company). In the z/OS operating environment, all
schemes must be created and applied in SAS format.

About the Standardization Functions
The standardization functions (see “Standardization Functions” on page 48) allow

you to standardize the case, punctuation, format, and content of character data. The
functions return standardized values based on the specified standardization definition
in the specified locale. For example, if the standardization definition ADDRESS in the
ENUSA locale is specified for the DQSTANDARDIZE function, the return value
contains appropriate uppercase letters, with all insignificant blank spaces and
punctuation removed, and with certain recognized words changed to a standardized
representation. Another group of standardization definitions are used to generate
standardized dates in various combinations of year, month, and day.

About the Case Functions
The case functions (see “Case Functions” on page 47) allow you to transform the case

and punctuation of your data, using uppercase and lowercase, as determined by the
specified case definition in the specified locale. For example, in the ENUSA locale, if the
DQCASE function references the case definition PROPER, the return value will contain
capitalized letters at the start of each word, and lowercase letters for the rest. Other
case definitions, such as PROPER – NAME, are used for specific content.

About the Gender Analysis, Locale Guessing, and Identification
Functions

The gender analysis, locale guessing, and identification functions (see “Gender
Analysis, Locale Guessing, and Identification Functions” on page 47) return information
that is determined from the content of an input character value.

The DQGENDER function (see “DQGENDER Function” on page 49) determines
gender based on the name of an individual. The function can enhance data analysis
activities, such as customer analysis by gender, and also mass-mailing activities, such
as customizing the title of the individual and the salutation in correspondence.

The DQLOCALEGUESS function (see “DQLOCALEGUESS Function” on page 53)
determines the locale that is most likely represented by a character value. The function
returns the name of the locale that best fits the character value. To be considered for
selection, the locale must be loaded into memory as part of the locale list, and the locale
must contain the specified guess definition. If more than one locale is selected, the
function returns the name of the locale that appears first in the locale list.

The DQIDENTIFY function (see “DQIDENTIFY Function” on page 52) assigns a
category to a character value, based on an identification definition in a specified locale.
For example, the DQIDENTIFY function returns either INDIVIDUAL,
ORGANIZATION, or UNKNOWN when a name is analyzed using the INDIVIDUAL/
ORGANIZATION definition in the ENUSA locale.

About the Pattern Analysis Functions
The DQPATTERN function (see “DQPATTERN Function” on page 64) returns

information on the presence of numeric, alphabetic, and non-alphanumeric characters
in input character values. Pattern analysis definitions enable you to analyze by word or
character.

� About the Reporting Functions 17

About the Reporting Functions
The reporting functions (see “Reporting Functions” on page 48) return information on

the locales, including the names of the locales in the locale list that is loaded into
memory. For specified locales, you can return a list of definition names, token names for
specified parse definitions, and parse definition names that are related to specified
guess or match definitions.

18

19

C H A P T E R

3
The DQMATCH Procedure

The DQMATCH Procedure in SAS Data Quality Server 19
DQMATCH Procedure Syntax 19

CRITERIA Statement 21

DQMATCH Examples 22

Example 1: Matching Values Using the Default Sensitivity 22

Example 2: Matching Values Using Mixed Sensitivities 24
Example 3: Matching Values Using Minimal Sensitivity 25

Example 4: Creating Match Codes for Parsed Values 26

The DQMATCH Procedure in SAS Data Quality Server
The DQMATCH procedure creates match codes in an output data set for specified

input character variables. The output optionally includes cluster numbers for values
that have identical match codes. Missing values can be removed from the output data
set or they can be retained and be given a cluster number.

Match codes are created based on a specified match definition in a specified locale. A
specified sensitivity level determines the amount of information in the match codes.
The amount of information in the match codes determines the number of clusters and
the number of members in each cluster. Higher sensitivity levels produce fewer
clusters, with fewer members per cluster. Use higher sensitivities when you need
matches that are more exact. Use lower sensitivities to sort data into general categories
or to capture all values that use different spelling to convey the same information.

For further usage information, see “Creating Match Codes” on page 9.

DQMATCH Procedure Syntax
Requirements: At least one CRITERIA statement is required. See “CRITERIA
Statement” on page 21.
See Also:

� “DQMATCH Examples” on page 22.
� “Creating Match Codes” on page 9.
� “About Clusters” on page 10.

PROC DQMATCH
<DATA=input-data-set>
<DELIMITER | NODELIMITER>

20 DQMATCH Procedure Syntax � Chapter 3

<CLUSTER=output-variable-name>
<CLUSTER_BLANKS | NO_CLUSTER_BLANKS>
<CLUSTERS_ONLY>
<LOCALE=locale-name>
<MATCHCODE=output-variable-name>
<OUT=data-set-name>;

CRITERIA options;

The DQMATCH procedure enables the following options:

DATA=input-data-set
identifies the input SAS data set. The default input data set is the most recently
created data set in the current SAS session.

CLUSTER=output-variable-name
specifies the name of the numeric variable in the output data set that contains the
cluster number. If the CLUSTER= option is not specified and if the
CLUSTERS_ONLY option is specified, then an output variable named CLUSTER
is created.

CLUSTER_BLANKS | NO_CLUSTER_BLANKS
specifying the default value CLUSTER_BLANKS writes blank values into the
output data set, without an accompanying match code. Specifying
NO_CLUSTER_BLANKS removes blank values from the output data set.

CLUSTERS_ONLY
excludes from the output data set any input character values that are not found to
be part of a cluster. A cluster number is assigned only when two or more input
values produce the same match code. Specifying CLUSTERS_ONLY excludes
input character values that have unique match codes and are not blank. This
option is not asserted by default, so normally, all input values are included in the
output data set.

DELIMITER | NODELIMITER
when multiple CRITERIA statements are specified, the default value DELIMITER
specifies that exclamation points (!) separate the individual match codes that
make up the concatenated match code. Match codes are concatenated in the order
of appearance of CRITERIA statements in the DQMATCH procedure.

The NODELIMITER option specifies that multiple match codes are
concatenated without the exclamation points.

Note: The default in SAS differs from the default in the dfPower Studio
software from DataFlux (a SAS company). SAS uses a delimiter by default;
DataFlux does not. Be sure to use delimiters consistently if you plan to analyze,
compare, or combine match codes created in SAS and dfPower Studio. �

LOCALE=locale-name
optionally specifies the locale that will be used to create match codes. The value
can be a locale name in quotation marks or the name of a variable whose value is
a locale name or is an expression that evaluates to a locale name.

The specified locale must be loaded into memory as part of the locale list (see
“About Locales” on page 4). If no value is specified, the default locale is used. The
default locale is the first locale in the locale list.

Note that the match definition, which is part of the specified locale, is specified
in the CRITERIA statement. This specification allows different match definitions
to be applied to different variables in the same procedure.

The DQMATCH Procedure � CRITERIA Statement 21

MATCHCODE=output-variable
specifies a name for the output character variable that stores the match codes.
The DQMATCH procedure defines a sufficient length for this variable, even if a
variable with the same name already exists in the input data set.

A default match code variable named MATCH_CD is generated if the following
statements are all true:

� No value is specified for the MATCHCODE= option in the PROC DQMATCH
statement, and no values are specified for the MATCHCODE= option in
subsequent CRITERIA statements.

� No value is specified for the CLUSTER= option.
� No value is specified for the CLUSTERS_ONLY option.

If the MATCHCODE= option is not specified in the PROC DQMATCH or in any
CRITERIA statements, and if CLUSTERS= or CLUSTERS_ONLY is specified,
then no match code output variable is created and no match codes are written into
the output data set.

For further information on match codes, see “Creating Match Codes” on page 9.

OUT=data-set-name
specifies the name of the output data set. If the specified data set does not exist,
PROC DQMATCH creates it. The default output data set is the input data set.

CRITERIA Statement

Creates a match code for an input variable.

Requirement: At least one CRITERIA statement is required in a DQMATCH procedure
step.

CRITERIA
DELIMSTR=parsed–input-variable | VAR=input-variable
MATCHDEF=match-definition
<SENSITIVITY=information-value>
<MATCHCODE=output-variable>;

DELIMSTR= parsed-input-variable
specifies the name of a variable that has been parsed by the DQPARSE function, or
contains tokens that were added with the DQPARSETOKENPUT function.

You cannot specify the DELIMSTR= option and the VAR= option in the same
CRITERIA statement.

MATCHCODE=output-variable
optionally specifies the name of the variable that receives the match codes for the
character variable that is specified in the VAR= or DELIMSTR= option.

In the CRITERIA statement, the value of the MATCHCODE= option is not valid if
you also specify the MATCHCODE= option in the PROC DQMATCH statement.

If you are using multiple CRITERIA statements in a single procedure step, you
must either specify the MATCHCODE= variable in each CRITERIA statement, or
generate compound match codes by specifying the MATCHCODE= option only in the
PROC DQMATCH statement.

22 DQMATCH Examples � Chapter 3

MATCHDEF=match-definition
defines the match definition that will be used to create the match code for the
specified variable. The match definition must exist in the locale that is specified in
the LOCALE= option of the PROC DQMATCH statement. For information on match
definitions, see the “ENUSA” on page 103.

SENSITIVITY=information-value
optionally determines the information of the resulting match codes. Higher
sensitivity values create match codes that contain more information about the input
values. Higher sensitivity levels result in a greater number of clusters, with fewer
values in each cluster. Valid values range from 50 to 95. The default value is 85.

VAR=input-variable
specifies the name of the character variable that will be used to create match codes.
The values of this variable cannot contain delimiters that were added with the
functions DQPARSE or DQPARSETOKENPUT. If the variable contains delimited
values, use the DELIMSTR= option instead of the VAR= option.

Details
Match codes are created for the input variables that are specified in each CRITERIA

statement. The resulting match codes are stored in the output variables that are named
in the MATCHCODE= option. The MATCHCODE= option can be specified in the PROC
DQMATCH statement or the CRITERIA statement.

Simple match codes are created when the CRITERIA statements specify different
values for their respective MATCHCODE= options. Compound match codes are created
when two or more CRITERIA statements specify the same value for their respective
MATCHCODE= options.

To create match codes for a parsed character variable, specify the DELIMSTR=
option instead of the VAR= option. Then be sure to specify in the MATCHDEF= option
the name of the match definition that is associated with the parse definition that was
used to add delimiters to the character variable. To determine the parse definition that
is associated with a match definition, use the DQMATCHINFOGET function (see
“DQMATCHINFOGET Function” on page 57).

DQMATCH Examples

Example 1: Matching Values Using the Default Sensitivity

The following example uses the DQMATCH procedure to create match codes and
cluster numbers. The default sensitivity level of 85 is used in both CRITERIA
statements. The locale ENUSA is assumed to have been loaded into memory previously
with the %DQLOAD AUTOCALL macro.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;

The DQMATCH Procedure � Example 1: Matching Values Using the Default Sensitivity 23

input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720
Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db1 matchcode=match_cd

cluster=clustergrp locale=’ENUSA’;
criteria matchdef=’Name’ var=customer;
criteria matchdef=’Address’ var=address;

run;

/* Print the results. */
proc print data=out_db1;
run;

The PROC PRINT output is as follows.

Display 3.1 PROC DQMATCH Output

The output data set, OUT_DB1, includes the new variables MATCH_CD and
CLUSTERGRP. The MATCH_CD variable contains the match code that represents both
the customer name and address. Because the default argument DELIMITER was used,
the resulting match code is composed of two match code components (one from each
CRITERIA statement) that are separated by an exclamation point.

The CLUSTERGRP variable contains values that indicate that five of the character
values are grouped in a single cluster and that the other three are not part of a cluster.
The clustering is based on the values of the MATCH_CD variable. By looking at the
values for MATCH_CD, you can see that five character values have identical match
code values. Although the match code value for customer Bobby Becket is similar to
the Cluster 1 match codes, the difference in the address caused it not to be included in
Cluster 1.

Example 2 on page 24 shows how the use of non-default sensitivities increases the
accuracy of the analysis.

This example is available in the SAS Sample Library under the name DQMCDFLT.

24 Example 2: Matching Values Using Mixed Sensitivities � Chapter 3

Example 2: Matching Values Using Mixed Sensitivities
The following example is similar to Example 1 on page 22, in that it displays match

codes and clusters for a simple data set. This example differs in that the CRITERIA
statement for the ADDRESS variable uses a sensitivity of 50. The CRITERIA
statement for the NAME variable uses the same default sensitivity of 85.

The use of mixed sensitivities allows you to tailor your clusters for maximum
accuracy. In this case, clustering accuracy is increased when the sensitivity level of a
less-important variable is decreased.

This example primarily shows how to identify possible duplicate customers based on
their name but using minimal sensitivity for their address to avoid false matches.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;
input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720
Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db2 matchcode=match_cd
cluster=clustergrp locale=’ENUSA’;

criteria matchdef=’Name’ var=customer;
criteria matchdef=’Address’ var=address sensitivity=50;

run;

/* Print the results. */
proc print data=out_db2;
run;

The PROC PRINT output is as follows.

The output data set, OUT_DB2, includes the new variables MATCH_CD and
CLUSTERGRP. The MATCH_CD variable contains the match code that represents both

The DQMATCH Procedure � Example 3: Matching Values Using Minimal Sensitivity 25

the customer name and address. Because the default argument DELIMITER was used,
the resulting match code is composed of two match code components (one from each
CRITERIA statement) that are separated by an exclamation point.

The CLUSTERGRP variable contains values that indicate that six of the character
values are grouped in a single cluster and that the other two are not part of any cluster.
The clustering is based on the values of the MATCH_CD variable. This result is
different than in Example 1 on page 22, where only five values were clustered based on
NAME and ADDRESS. This difference is caused by the lower sensitivity setting for the
ADDRESS criteria in the current example, which makes the matching less sensitive to
variations in the address field. Therefore, the value Bobby Becket has now been
included in Cluster 1 because 392 Main St. is considered a match with 392 S. Main
St. PO Box 2270 and the other variations, while this was not true at a sensitivity of
85.

Example 2 on page 24 uses minimum sensitivity levels to assign all values to clusters.
This example is available in the SAS Sample Library under the name DQMCMIXD.

Example 3: Matching Values Using Minimal Sensitivity
The following example shows how minimal sensitivity levels can generate inaccurate

clusters. A sensitivity of 50 is used in both CRITERIA statements, which is the
minimum value for this argument.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;
input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720
Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db3 matchcode=match_cd

cluster=clustergrp locale=’ENUSA’;
criteria matchdef=’Name’ var=customer sensitivity=50;
criteria matchdef=’Address’ var=address sensitivity=50;

run;

/* Print the results. */
proc print data=out_db3;
run;

The PROC PRINT output is as follows.

26 Example 4: Creating Match Codes for Parsed Values � Chapter 3

The output data set OUT_DB3 includes the variables MATCH_CD and
CLUSTERGRP. The MATCH_CD variable contains the match code that represents both
the customer name and address. Because the default argument DELIMITER was used,
the resulting match code is composed of two match code components (one from each
CRITERIA statement) that are separated by an exclamation point.

The CLUSTERGRP variable contains values that indicate that six of the values are
grouped in one cluster and that the other two are grouped in another. The clustering is
based on the values of the MATCH_CD variable. This example shows that, with a
minimal sensitivity level of 50, the following values match and form a cluster.

Mr. Raul Beckett
Paul Becker

A higher sensitivity level would not cluster these observations.
This example is available in the SAS Sample Library under the name DQMCMIN.

Example 4: Creating Match Codes for Parsed Values

The following example creates match codes for parsed character data. The program
loads locales, determines a parse definition, creates character elements, creates parsed
character values, and creates match codes for the parse character elements.

/* load locales */
%dqload(dqlocale=(enusa), dqsetuploc="your-dqsetup-file-here")

/* Determine the parse definition associated with your */
/* match definition. */
data _null_;

parsedefn=dqMatchInfoGet(’Name’);
call symput(’parsedefn’, parsedefn);
put ’The parse definition for the NAME match definition is: ’ parsedefn;
tokens=dqParseInfoGet(parsedefn);
put ’The ’ parsedefn ’parse definition tokens are:’ / @5 tokens;

run;

/* Create variables containing name elements. */
data parsed;

length first last $ 20;
first=’Scott’; last=’James’; output;
first=’James’; last=’Scott’; output;
first=’Ernie’; last=’Hunt’; output;

The DQMATCH Procedure � Example 4: Creating Match Codes for Parsed Values 27

first=’Brady’; last=’Baker’; output;
first=’Ben’; last=’Riedel’; output;
first=’Sara’; last=’Fowler’; output;
first=’Homer’; last=’Webb’; output;
first=’Poe’; last=’Smith’; output;

run;

/* Create parsed character values. */
data parsedview;

set parsed;
length delimstr $ 100;

* Insert one token at a time;
delimstr=dqParseTokenPut(delimstr, first, ’Given Name’, ’Name’);
delimstr=dqParseTokenPut(delimstr, last, ’Family Name’, ’Name’);

run;

/* Generate match codes using the parsed character values. */
proc dqmatch data=parsedview

out=mcodes;
criteria matchdef=’Name’ delimstr=delimstr sensitivity=85;

run;

/* Print the match codes. */
proc print data=mcodes;

title ’Look at the match codes from PROC DQMATCH’;
run;

This example is available in the SAS Sample Library under the name DQMCPARS.

28

29

C H A P T E R

4
The DQSCHEME Procedure

The DQSCHEME Procedure 29
DQSCHEME Procedure Syntax 29

CREATE Statement 30

APPLY Statement 33

CONVERT Statement 35

PROC DQSCHEME Examples 36
Example 1: Creating an Analysis Data Set 36

Example 2: Creating Schemes 37

Example 3: Creating BFD Schemes 38

Example 4: Applying Schemes 38

The DQSCHEME Procedure
The DQSCHEME procedure creates scheme data sets and analysis data sets and

applies schemes to input data sets. You can also apply schemes with the
DQSCHEMEAPPLY function or CALL routine (see “DQSCHEMEAPPLY CALL
Routine” on page 65).

For further information on using the DQSCHEME procedure, see “Transforming
Data with Schemes” on page 6.

DQSCHEME Procedure Syntax
Tips:

� CREATE and APPLY statements can appear in any order in the DQSCHEME
procedure.

� All CREATE statements are processed before all APPLY statements regardless of
their order of appearance.

� All CONVERT statements are processed last, regardless of their order of
appearance in the procedure.

See also: “Transforming Data with Schemes” on page 6.

PROC DQSCHEME
<DATA=input-data-set>
<BFD | NOBFD>
<OUT=output-data-set>;

30 CREATE Statement � Chapter 4

<CREATE options;>
<APPLY options;>
<CONVERT options;>

The DQSCHEME procedure enables the following options

BFD | NOBFD
specifying BFD indicates that all Blue Fusion Data that are created or applied in
the current procedure step are in BFD format. Specifying NOBFD indicates that
all schemes are in SAS format. The default value is BFD.

CAUTION:
Always specify NOBFD when creating schemes in the z/OS operating environment.
Schemes in BFD format can be applied but not created. �

The DQSCHEME procedure can create and apply schemes in either format.
Schemes in BFD format can be edited using the feature-rich graphical user
interface of the dfPower Studio software from DataFlux (a SAS company).

Note: In schemes using SAS format, data set labels are used to store meta
options (see “About Meta Options” on page 8). Therefore, you should not specify
data set labels in scheme data sets that are stored in SAS format. Doing so
overwrites the scheme metadata. �

DATA=input-SAS-data-set
identifies the SAS data set from which one or more schemes are built, when using
the CREATE statement. When using the APPLY statement to apply existing
schemes, the DATA= option specifies the data set against which the schemes are
applied.

The default data set is the most recently created data set in the current SAS
session.

OUT=output-data-set
specifies the name of the output data set. If the specified data set does not exist,
PROC DQSCHEME creates it. The default output data set is the input data set.

If you use an APPLY statement, you must specify the OUT= option. If you use
multiple APPLY statements, the results are written into the output data set after
all schemes have been applied.

CREATE Statement

Creates a scheme or an analysis data set.

See also: “Applying Schemes” on page 7.

CREATE
ANALYSIS=output-data-set
SCHEME=scheme-name
VAR=variable-name
MATCHDEF=match-definition
<SENSITIVITY=complexity-factor>
<LOCALE=locale-name>
<SCHEME_LOOKUP=EXACT | IGNORE_CASE | USE_MATCHDEF>

The DQSCHEME Procedure � CREATE Statement 31

<MODE=PHRASE | ELEMENT>
<INCLUDE_ALL>;

ANALYSIS=output-data-set
names the output data set that will store analytical data, as described in “Creating
Schemes” on page 6. This option is required if the SCHEME= option is not specified.

INCLUDE_ALL
specifies that the scheme is to contain all of the values of the input variable,
including those with unique match codes that were not transformed and that did not
receive a cluster number. INCLUDE_ALL is not specified by default.

LOCALE=locale-name
optionally specifies the locale that contains the specified match definition. The value
can be a locale name in quotation marks or the name of a variable whose value is a
locale name or is an expression that evaluates to a locale name.

The specified locale must be loaded into memory as part of the locale list (see
“About Locales” on page 4). If no value is specified, the default locale is used. The
default locale is the first locale in the locale list.

MATCHDEF=match-definition
specifies the match definition in the specified locale that is used to establish cluster
numbers. For the ENUSA locale, information on available match definitions is
provided in “ENUSA” on page 103. For other locales, consult the documentation that
was downloaded with the locale.

Although you can specify any valid match definition, you are strongly encouraged
to use definitions whose names end in (SCHEME BUILD) when using the ENUSA
locale. These match definitions yield optimal results in the DQSCHEME procedure,
as discussed in “About the Scheme Build Match Definitions” on page 13.

The value of the MATCHEDF= option is stored in the scheme as a meta option,
which provides a default match definition when the scheme is applied. This meta
option is used at apply time only when SCHEME_LOOKUP=MATCHDEF. The
default value that is supplied by this meta option is superseded by a match definition
that is specified in the APPLY statement or in the DQSCHEMEAPPLY function or
CALL routine. For more information on meta options, see “About Meta Options” on
page 8.

MODE=PHRASE | ELEMENT
specifies a default mode of scheme application. This information is stored in the
scheme as metadata. The default mode that you specify here can be superseded
when the scheme is applied, as described in “Applying Schemes” on page 7.

Valid values for the MODE= option are defined as follows:

PHRASE
this default value specifies that the entirety of each value of the input character
variable is compared to the data values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for the entire input value
is compared to the match codes that are generated for each data value in the
scheme.

ELEMENT
specifies that each element in each value of the input character variable is
compared to the data values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for each element is
compared to the match codes that are generated for each element in each value of
the DATA variable in the scheme.

32 CREATE Statement � Chapter 4

The value of the MODE= option is stored in the scheme as a meta option, which
specifies a default mode when the scheme is applied. The default value that is
supplied by this meta option is superseded by a mode that is specified in the APPLY
statement or in the DQSCHEMEAPPLY function or CALL routine. For more
information on meta options, see “About Meta Options” on page 8.

SCHEME=scheme-name
specifies the name of the scheme that will be created. To create a scheme data set in
Blue Fusion Data format, specify the BFD option in the PROC DQSCHEME
statement (see “DQSCHEME Procedure Syntax” on page 29), and specify an existing
fileref as the value of the SCHEME= option. The fileref must reference a fully
qualified path with a filename that ends in .sch.bfd. Lowercase letters are required.

CAUTION:
In the z/OS operating environment, specify only schemes using SAS format. BFD
schemes can be applied but not created in the z/OS operating environment. �

To create a scheme in SAS format, specify the NOBFD option in the PROC
DQSCHEME statement and specify a one-level or two-level SAS data set name.

The SCHEME= option is required if the ANALYSIS= option is not specified.

SCHEME_LOOKUP=EXACT | IGNORE_CASE | USE_MATCHDEF
specifies one of three mutually exclusive methods of applying the scheme to the
values of the input character variable. Valid values are defined as follows:

EXACT
this default value specifies that the values of the input variable are to be
compared to the DATA values in the scheme without changing the input values in
any way. The transformation value in the scheme is written into the output data
set only when an input value exactly matches a DATA value in the scheme. Any
adjacent blank spaces in the input values are replaced with single blank spaces
prior to comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when input values are compared to the
DATA values in the scheme. Any adjacent blank spaces in the input values are
replaced with single blank spaces prior to comparison.

USE_MATCHDEF
specifies that comparisons are to be made between the match codes of the input
values and the match codes of the DATA values in the scheme. A transformation
occurs when the match code of an input value is identical to the match code of a
DATA value in the scheme.

Specifying USE_MATCHDEF enables the options LOCALE=, MATCHDEF=,
and SENSITIVITY=, which can be used to override the default values that may be
stored in the scheme.
The value of the SCHEME_LOOKUP= option is stored in the scheme as a meta

option, which specifies a default lookup method when the scheme is applied. The
default value that is supplied by this meta option is superseded by a lookup method
that is specified in the APPLY statement or in the DQSCHEMEAPPLY function or
CALL routine. For more information on meta options, see “About Meta Options” on
page 8.

SENSITIVITY=information-factor
optionally determines the amount of information that will be included in the match
codes that are generated during the creation and perhaps the application of the
scheme. Higher sensitivity values generate match codes that contain more
information, which generally results in fewer matches, a greater number of clusters,

The DQSCHEME Procedure � APPLY Statement 33

and fewer values in each cluster. Valid values range from 50 to 95. The default value
is 85.

The value of the SENSITIVITY= option is stored in the scheme as a meta option,
which provides a default sensitivity value when the scheme is applied. This meta
option is used at apply time only when SCHEME_LOOKUP=MATCHDEF. The
default value that is supplied by this meta option is superseded by a sensitivity value
that is specified in the APPLY statement or in the DQSCHEMEAPPLY function or
CALL routine. For more information on meta options, see “About Meta Options” on
page 8.

VAR=variable-name
identifies the input character variable that is analyzed and transformed.

APPLY Statement
Applies a scheme to transform the values of a single variable.

See also: “Applying Schemes” on page 7.

APPLY
SCHEME=scheme-name
VAR=variable-name
<SCHEME_LOOKUP=EXACT | IGNORE_CASE | USE_MATCHDEF>
<MATCHDEF=match definition>
<SENSITIVITY=complexity-factor>
<LOCALE=locale-name>
<MODE=PHRASE | ELEMENT>;

LOCALE=locale-name
specifies the locale that contains the match definition that is specified in the
MATCHDEF= option.

Note: This option is valid only when SCHEME_LOOKUP= USE_MATCHDEF. �
If USE_MATCHDEF is specified and LOCALE= is not specified, the locale that is

used is the default locale, which is the first locale in the locale list.
If USE_MATCHDEF is not specified, then the locale that is used is the locale that

is stored in the scheme or the default locale if a locale is not stored in the scheme.
The default locale is the first locale in the locale list. For information on the locale

list, see “About Locales” on page 4.

MATCHDEF=match-definition
specifies the name of the match definition in the specified locale that will be used to
create match codes during the application of the scheme.

Note: This option is valid only when SCHEME_LOOKUP= USE_MATCHDEF. �
If USE_MATCHDEF is specified and the MATCHDEF= option is not specified, the

match definition that is used is the one that is stored in the scheme. If
USE_MATCHDEF is not specified and if a match definition is not stored in the
scheme, then a value is required for the MATCHDEF= option.

For information on available match definitions, see the documentation for your
locale, or submit the AUTOCALL macro %DQPUTLOC (see “%DQPUTLOC
AUTOCALL Macro” on page 42).

34 APPLY Statement � Chapter 4

MODE=PHRASE | ELEMENT
specifies how the scheme is to be applied. The default value is the mode that is stored
in the scheme. If no mode is stored in the scheme, then PHRASE is the default mode.

Valid values for the MODE= option are defined as follows:

PHRASE
specifies that the entirety of each value of the input character variable is compared
to the data values in the scheme. When SCHEME_LOOKUP=USE_MATCHDEF,
the match code for the entire input value is compared to the match codes that are
generated for each DATA value in the scheme.

ELEMENT
specifies that each element in each value of the input character variable is
compared to the DATA values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for each element is
compared to the match codes that are generated for each element in each data
value in the scheme.

SCHEME=scheme-name
identifies the scheme to apply to the input data set. In all operating environments
other than z/OS, schemes using BFD format are identified by specifying a fileref for a
fully-qualified filename that ends in .sch.bfd. In the z/OS operating environment,
no special naming conventions are required. For schemes with SAS format, specify a
one-level or two-level SAS data set name.

SCHEME_LOOKUP=EXACT | IGNORE_CASE | USE_MATCHDEF
specifies one of three mutually exclusive methods of applying the scheme to the
values of the input character variable. Valid values are defined as follows:

EXACT
this default value specifies that the values of the input variable are to be
compared to the DATA values in the scheme without changing the input values in
any way. The transformation value in the scheme is written into the output data
set only when an input value exactly matches a DATA value in the scheme. Any
adjacent blank spaces in the input values are replaced with single blank spaces
prior to comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when input values are compared to the
DATA values in the scheme. Any adjacent blank spaces in the input values are
replaced with single blank spaces prior to comparison.

USE_MATCHDEF
specifies that comparisons are to be made between the match codes of the input
values and the match codes of the DATA values in the scheme. A transformation
occurs when the match code of an input value is identical to the match code of a
DATA value in the scheme.

Specifying USE_MATCHDEF enables the options LOCALE=, MATCHDEF=,
and SENSITIVITY=, which can be used to override the default values that may be
stored in the scheme.

Note: The options LOCALE=, MATCHDEF=, and SENSITIVITY= are valid only
when SCHEME_LOOKUP= USE_MATCHDEF. �

SENSITIVITY=complexity-factor
specifies the amount of information in the match codes that are created during the
application of the scheme. With higher sensitivity values, two values must be
increasingly similar to create the same match code. At lower sensitivity values, two
values can receive the same match code despite dissimilarities.

The DQSCHEME Procedure � CONVERT Statement 35

Note: The SENSITIVITY= option is valid only when SCHEME_LOOKUP=
USE_MATCHDEF. �

If USE_MATCHDEF is specified and SENSITIVITY= is not specified, the
sensitivity value is 85. If USE_MATCHDEF is not specified, the sensitivity value is
the value that is stored in the scheme. If USE_MATCHDEF is not specified and if a
sensitivity value is not stored in the scheme, the sensitivity value is 85.

Valid values for the SENSITIVITY= option range from 50 to 95.

VAR=variable-name
identifies the character variable in the input data set that is to be transformed.

CONVERT Statement

Converts schemes between SAS and BFD formats.

Required: All options are required (IN, OUT, and BFDTOSAS or SASTOBFD).
See also: “Applying Schemes” on page 7.

CONVERT
IN=file-specificationOUT=file-specification

BFDTOSAS | SASTOBFD ;

BFDTOSAS | SASTOBFD
specify BDFTOSAS to convert a scheme in Blue Fusion Data format to SAS format.
Specify SASTOBFD to convert a scheme in SAS format to Blue Fusion Data format.
Schemes with SAS format are created with the CREATE statement using the
NOBFD option on the PROC DQSCHEME statement.

CAUTION:
In the z/OS operating environment, specify BFDTOSAS only. In z/OS, schemes in BFD
format can be applied but not created. �

IN=file-specification
identifies the existing scheme that is to be converted. If BFDTOSAS is specified, then
the value must be the name of a fileref that references a fully-qualified path in
lowercase that ends in .sch.bfd. (In the z/OS operating environment, the PDS
specification has no special naming requirements.) If SASTOBFD is specified, then
the value must be a one-level or two-level SAS data set name.

OUT=file-specification
specifies the name of the converted scheme. If BFDTOSAS is specified, then the
value must be a one-level or two-level SAS data set name. If SASTOBFD is specified,
then the value must be the name of a fileref that references a fully-qualified path in
lowercase that ends in .sch.bfd. (In the z/OS operating environment, the PDS
specification has no special naming requirements.)

36 PROC DQSCHEME Examples � Chapter 4

PROC DQSCHEME Examples

Example 1: Creating an Analysis Data Set

The following example generates an analysis of the STATE variable in the
VENDORS data set. Note that you do not have to create a scheme to generate the
analysis data set. Also note that the locale ENUSA is assumed to have been loaded into
memory as part of the locale list.

/* Create the input data set. */
data vendors;

input city $char16. state $char22. company $char34.;
datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank
SanJose CA Wal mart
New York New York Ernst & Young
Virginia Bch VA TRW INC - Space Defense
Dallas TX Walmart Corp.
San Francisco California The Jackson Data Corp.
New York NY Ernst & Young
Washington DC Federal Reserve Bank 12th District
New York N.Y. Ernst & Young
San Francisco CA Jackson Data Corporation
Atlanta GA Farmers Insurance Group
RTP NC Kaiser Permantente
New York NY Ernest and Young
Virginia Beach VIRGINIA TRW Space & Defense
Detroit Michigan Ford Motor Company
San Jose CA Jackson Data Corp
Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

/* Create the analysis data set. */
proc dqscheme data=vendors;

create analysis=a_state
matchdef=’State (Scheme Build)’
var=state
locale=’ENUSA’;

run;

/* Print the analysis data set. */

The DQSCHEME Procedure � Example 2: Creating Schemes 37

title ’Analysis of state name variations’;
proc print data=a_state;
run;

The analysis data set WORK.A_STATE shows for each value for the STATE variable
the number of occurrences and the associated cluster number. Variables that are not
clustered with any other values have a blank value for the cluster number.

Example 2: Creating Schemes

The following example generates three schemes in SAS format. Note that the locale
ENUSA is assumed to have been loaded into memory as part of the locale list.

/* Create the input data set. */
data vendors;
input city $char17. state $char22. company $char36.;

datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank

/* See Example 1 on page 36 for the full data set. */

Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

proc dqscheme data=vendors nobfd;
create matchdef=’City (Scheme Build)’ var=city

scheme=city_scheme locale=’ENUSA’;
create matchdef=’State (Scheme Build)’ var=state

scheme=state_scheme locale=’ENUSA’;
create matchdef=’Organization (Scheme Build)’

var=company scheme=org_scheme locale=’ENUSA’;
run;

title ’City scheme’;
proc print data=work.city_scheme;
run;

title ’State scheme’;
proc print data=work.state_scheme;
run;

title ’Organization scheme’;
proc print data=work.org_scheme;
run;

Notice that we did not create and then immediately apply one or more schemes
within the same step. After you create schemes, it is important that someone familiar
with the data reviews the results. In this particular example, the City scheme chose

38 Example 3: Creating BFD Schemes � Chapter 4

Dalas as the transformation value for the city of Dallas. Although the values Dalas
and Dallas were correctly clustered together, you would probably prefer Dallas to be
the transformation value.

Example 3: Creating BFD Schemes
Blue Fusion Data schemes can be read by SAS and by the dfPower Studio software.

Generating Blue Fusion Data schemes is advantageous when you wish to use dfPower
to edit those schemes. The following example generates three schemes in Blue Fusion
Data format. Also note that the locale ENUSA is assumed to have been loaded into
memory as part of the locale list.

/* Create filerefs with required suffixes. */
filename city ’c:\my schemes\city.sch.bfd’;
filename state ’c:\my schemes\state.sch.bfd’;
filename org ’c:\my schemes\org.sch.bfd’;

/* Create the input data set. */
data vendors;

input city $char17. state $char22. company $char36.;
datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank

/* See Example 1 on page 36 for the full data set. */

Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

proc dqscheme data=vendors bfd;
create matchdef=’City (Scheme Build)’
var=city scheme=city locale=’ENUSA’;

create matchdef=’State (Scheme Build)’
var=state scheme=state locale=’ENUSA’;

create matchdef=’Organization (Scheme Build)’
var=company scheme=org locale=’ENUSA’;

run;

Example 4: Applying Schemes
In this example, the APPLY statement generates cleansed data in the

VENDORS_OUT data set. All schemes are applied before the result is written into the
output data set. The locale ENUSA is assumed to be loaded into memory as part of the
locale list.

The DQSCHEME Procedure � Example 4: Applying Schemes 39

/* Create filerefs with required suffixes. */
filename city ’c:\my schemes\city.sch.bfd’;
filename state ’c:\my schemes\state.sch.bfd’;
filename org ’c:\my schemes\org.sch.bfd’;

/* Create the input data set. */
data vendors;
input city $char17. state $char22. company $char36.;

datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank

/* See Example 1 on page 36 for the full data set. */

Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

proc dqscheme data=vendors out=vendors_out bfd;
create matchdef=’City (Scheme Build)’

var=city scheme=city_scheme locale=’ENUSA’;
create matchdef=’State (Scheme Build)’

var=state scheme=state_scheme locale=’ENUSA’;
create matchdef=’Organization (Scheme Build)’

var=company scheme=org_scheme locale=’ENUSA’;
apply var=city scheme=city_scheme;
apply var=state scheme=state_scheme;
apply var=company scheme=org_scheme;

run;

title ’Result after applying all three SAS format schemes’;
proc print data=work.vendors_out;
run;

Note that the APPLY statements do not specify a locale. Nor do they specify the
scheme lookup method using the SCHEME_LOOKUP= option. This means that the
schemes are applied with the ENUSA locale, which was stored in the schemes when
they were created. Also, the default scheme lookup method
(SCHEME_LOOKUP=EXACT) specifies that the value in the scheme replaces the input
value in the output data set when an exact match is found between the input value and
a DATA value in the scheme. The default scheme apply mode (MODE=PHRASE) is
used, which means that the entirety of each input value is compared to the DATA
values in the scheme.

40

41

C H A P T E R

5
AUTOCALL Macros

AUTOCALL Macros for SAS Data Quality Server 41

AUTOCALL Macros for SAS Data Quality Server

The SAS Data Quality Server software provides the following AUTOCALL macros:

� “%DQLOAD AUTOCALL Macro” on page 41.

� “%DQPUTLOC AUTOCALL Macro” on page 42.

� “%DQUNLOAD AUTOCALL Macro” on page 43.

For more general information about the SAS AUTOCALL libraries and macros, see
SAS Macro Language: Reference and SAS Language Reference: Dictionary.

%DQLOAD AUTOCALL Macro

Sets system option values and loads locales into memory.

Syntax
%DQLOAD(DQLOCALE=(locale1 ...localeN), DQSETUPLOC=‘file-specification’,

<DQINFO=0 | 1>)

DQLOCALE=(locale1 ...localeN)
specifies a value for the DQLOCALE= system option to load an ordered list of locales
into memory.

DQSETUPLOC=‘file-specification’
specifies a value for the DQSETUPLOC= system option, which identifies the location
of the setup file. The setup file in turn identifies the location of the Quality
Knowledge Base, which contains the specified locales.

DQINFO=0 | 1
specifying DQINFO=1 generates additional information in the SAS log about the
status of the locale load operation. The default value is DQINFO=0.

42 %DQPUTLOC AUTOCALL Macro � Chapter 5

Details
The %DQLOAD AUTOCALL macro should be used at the beginning of each data
cleansing program to ensure that the proper list and order of locales is loaded into
memory prior to cleansing data. This loading prevents the use of an unintended default
locale or locale list. Specifying the %DQLOAD macro before data cleansing, instead of
at SAS invocation using an AUTOEXEC or configuration file, preserves memory and
shortens the duration of the SAS invocation. Doing so is particularly beneficial when
the SAS session will not be used to run data cleansing programs.

It is strongly suggested that you use only the %DQLOAD macro to set the value of
the DQLOCALE= system option. Setting the value of this system option by the usual
means (such as an OPTIONS statement) does not load the specified locales into
memory. Not loading locales into memory can lead to the use of an unintended locale.
For the same reason, it is not recommended that you set the DQLOCALE= system
option at SAS invocation using a configuration file or AUTOEXEC.

In addition to setting the DQLOCALE= system option, the %DQLOAD macro also
sets the DQSETUPLOC= system option (if that value is not set by default at your site).
When SAS is installed, the value of the DQSETUPLOC= option is set to point to the
location where the setup file is installed.

Example

The following example loads the ENUSA and DEDEU locales into memory in the
UNIX operating environment:

%DQLOAD(DQLOCALE=(ENUSA DEDEU), DQSETUPLOC=’/sas/dqc/dqsetup.txt’);

%DQPUTLOC AUTOCALL Macro

Displays current information on a specified locale in the SAS log.

Requirement: At least one locale must be loaded into memory before this macro is called.

Tip: Specifying no parameters displays the full report for the default locale.

Syntax
%DQPUTLOC(locale, <SHORT=0 | 1>, <PARSEDEFN=0 | 1)>

locale
specifies the locale of interest. The value can be a locale name in quotation marks or
the name of a variable whose value is a locale name or an expression that evaluates
to a locale name.

The specified locale must have been loaded into memory as part of the locale list
(see “About Locales” on page 4). If no value is specified, the default locale is used.
The default locale is the first locale in the locale list.

SHORT= 0 | 1
optionally shortens the length of the entry in the SAS log. Specify SHORT=1 to
remove the descriptions of how the definitions are used. The default value is
SHORT=0, which displays the descriptions of how the definitions are used.

AUTOCALL Macros � %DQUNLOAD AUTOCALL Macro 43

PARSEDEFN = 0 | 1
optionally lists with each gender analysis definition and each match definition the
related parse definition, if such a parse definition exists. The default value
PARSEDEFN=1 lists the related parse definition. PARSEDEFN=0 does not list the
related parse definition.

Details
The %DQPUTLOC AUTOCALL macro provides a quick means of displaying current
information in the SAS log for the specified locale that is loaded into memory at that
time. This display eliminates possible discrepancies that could be introduced by
outdated documentation from other sources. Other sources of locale information,
including the information provided for the ENUSA locale (see “ENUSA” on page 103),
may have been superseded by a later download of a newer locale or by a new locale that
was edited after download using the dfPower Customize software from DataFlux (a SAS
company).

The available locale information includes a list of all definitions, parse tokens,
related functions, and the names of the parse definitions that are related to each match
definition. Knowing the related parse definitions enables the creation of parsed
character values (see “DQPARSETOKENPUT Function” on page 63) and the creation of
match codes for parsed character values (see “DQMATCHPARSED Function” on page
58).

Example

The following example displays in the SAS log the definitions, related parse
definitions, and related SAS Data Quality Server functions for the ENUSA locale:

%dqputloc(enusa);

See Also

� “DQLOCALEINFOGET Function” on page 54.

� “DQLOCALEINFOLIST Function” on page 55.

%DQUNLOAD AUTOCALL Macro

Unloads all locales to increase the amount of free memory.

Syntax
%DQUNLOAD

Details
The %DQUNLOAD AUTOCALL macro unloads all locales that are currently loaded
into memory. After unloading memory, be sure to load locales again with the
%DQLOAD AUTOCALL macro before running any data cleansing programs.

44

45

C H A P T E R

6
Functions and CALL Routines

Functions and CALL Routines in SAS Data Quality Server 45
Functions Listed Alphabetically 46

Functions Listed by Category 46

Case Functions 47

Gender Analysis, Locale Guessing, and Identification Functions 47

Matching Functions 47
Parsing Functions 47

Pattern Analysis Functions 47

Reporting Functions 48

Scheme Apply Functions and CALL Routines 48

Standardization Functions 48

DQCASE Function 48
DQGENDER Function 49

DQGENDERINFOGET Function 50

DQGENDERPARSED Function 51

DQIDENTIFY Function 52

DQLOCALEGUESS Function 53
DQLOCALEINFOGET Function 54

DQLOCALEINFOLIST Function 55

DQMATCH Function 56

DQMATCHINFOGET Function 57

DQMATCHPARSED Function 58
DQPARSE Function 59

DQPARSEINFOGET Function 61

DQPARSETOKENGET Function 62

DQPARSETOKENPUT Function 63

DQPATTERN Function 64

DQSCHEMEAPPLY CALL Routine 65
DQSCHEMEAPPLY Function 69

DQSTANDARDIZE Function 73

DQTOKEN Function 74

Functions and CALL Routines in SAS Data Quality Server

The functions and CALL routines in the SAS Data Quality Server software enable
you to cleanse data in specific and discrete steps. For lists of available functions and
CALL routines, see “Functions Listed by Category” on page 46 and “Functions Listed
Alphabetically” on page 46. For information on using these functions, see “Using the
SAS Data Quality Server Functions” on page 15.

46 Functions Listed Alphabetically � Chapter 6

Note that the SAS Data Quality Server functions and CALL routines are also
available in the Expression Builder of the SAS ETL Studio software.

Functions Listed Alphabetically

The “DQCASE Function” on page 48 returns a character value with standardized
capitalization.

The “DQGENDER Function” on page 49 returns a gender determination from the
name of an individual.

The “DQGENDERPARSED Function” on page 51 returns a gender determination
from the parsed name of an individual.

The “DQIDENTIFY Function” on page 52 returns a category name from a character
value.

The “DQLOCALEGUESS Function” on page 53 returns the name of the locale that is
most likely represented by a character value.

The “DQLOCALEINFOGET Function” on page 54 returns information about locales.
The “DQLOCALEINFOLIST Function” on page 55 displays the names of the

definitions in a locale and returns a count of those definitions.
The “DQMATCH Function” on page 56 returns a match codes from a character value.
The “DQMATCHINFOGET Function” on page 57 returns the name of the parse

definition that is associated with a match definition.
The “DQMATCHPARSED Function” on page 58 returns a match code from a parsed

character value.
The “DQPARSE Function” on page 59 returns a parsed character value.
The “DQPARSEINFOGET Function” on page 61 returns the token names for the

specified parse definition.
The “DQPARSETOKENGET Function” on page 62 returns a token from a parsed

character value.
The “DQPARSETOKENPUT Function” on page 63 inserts a token into a parsed

character value and returns the updated parsed character value.
The “DQPATTERN Function” on page 64 returns a pattern analysis from an input

character value.
The “DQSCHEMEAPPLY Function” on page 69 applies a scheme and returns a

transformed value after applying a scheme.
The “DQSCHEMEAPPLY CALL Routine” on page 65 applies a scheme and returns a

transformed value and a transformation flag.
The “DQSTANDARDIZE Function” on page 73 returns a character value after

standardizing casing, spacing, and format, and applying a common representation
to certain words and abbreviations.

The “DQTOKEN Function” on page 74 returns a token from a character value.

Functions Listed by Category
The functions in the SAS Data Quality Server software can be divided into the

following categories.

Functions and CALL Routines � Pattern Analysis Functions 47

Case Functions
The “DQCASE Function” on page 48 returns a character value with standardized

capitalization.

Gender Analysis, Locale Guessing, and Identification Functions
The gender analysis, locale guessing, and identification functions return information

that is determined from the content of an input character value.

The “DQGENDER Function” on page 49returns a gender determination from the
name of an individual.

The “DQGENDERINFOGET Function” on page 50 returns the name of the parse
definition that is associated with a specified gender analysis definition.

The “DQGENDERPARSED Function” on page 51 returns a gender determination
from the parsed name of an individual.

The “DQLOCALEGUESS Function” on page 53 returns the name of the locale that is
most likely represented by a character value.

The “DQIDENTIFY Function” on page 52 returns a category name from a character
value.

Matching Functions

The “DQMATCH Function” on page 56 returns a match code from a character value.

The “DQMATCHINFOGET Function” on page 57 returns the name of the parse
definition that is associated with a match definition.

The “DQMATCHPARSED Function” on page 58 returns a match code from a parsed
character variable.

Parsing Functions

The “DQPARSE Function” on page 59 returns a parsed character value.

The “DQPARSETOKENGET Function” on page 62 returns a token from a parsed
character value.

The “DQPARSETOKENPUT Function” on page 63 inserts a token into a parsed
character value and returns the updated parsed character value.

The “DQTOKEN Function” on page 74 returns a token from a character value.

Pattern Analysis Functions
The “DQPATTERN Function” on page 64 returns analytical information on the words

or characters in an input character value.

48 Reporting Functions � Chapter 6

Reporting Functions

The “DQGENDERINFOGET Function” on page 50 returns the name of the parse
definition that is associated with a specified gender analysis definition.

The “DQLOCALEINFOGET Function” on page 54 returns information about locales.
The “DQLOCALEINFOLIST Function” on page 55 displays the names of the

definitions in a locale and returns a count of those definitions.
The “DQMATCHINFOGET Function” on page 57 returns the name of the parse

definition that is associated with a match definition.
The “DQPARSEINFOGET Function” on page 61 returns the token names for the

specified parse definition.

Scheme Apply Functions and CALL Routines

The “DQSCHEMEAPPLY Function” on page 69 applies a scheme and returns a
transformed value.

The “DQSCHEMEAPPLY CALL Routine” on page 65 applies a scheme and returns a
transformed value and a transformation flag.

Standardization Functions
The “DQSTANDARDIZE Function” on page 73 returns a character value after

standardizing casing, spacing, and format, and applying a common representation to
certain words and abbreviations.

DQCASE Function

Returns a character value with standardized capitalization.

Valid: in the DATA step, PROC SQL, and SCL

Syntax
DQCASE(char, ‘case-definition’ <, ‘locale’>)

char
is the value that is transformed, according to the specified case definition. The value
can be the name of a character variable, a character value in quotation marks, or an
expression that evaluates to a variable name or a quoted value.

case-definition
specifies the name of the case definition that will be referenced during the
transformation. If the content of the char value is represented by a case definition,
that definition is recommended above a generic case definition. For example, if your

Functions and CALL Routines � DQGENDER Function 49

char value is a street address and if you are using the ENUSA locale, the
recommended case definition would be PROPER – ADDRESS rather than the generic
case definition PROPER.

The specified case definition must exist in the specified locale. For information on
available case definitions, see Chapter 7, “Locales for QKB 2004A,” on page 77, or
submit the AUTOCALL macro %DQPUTLOC (see “%DQPUTLOC AUTOCALL
Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified case definition.
The value can be a name in quotation marks, the name of a variable whose value is a
locale name, or an expression that evaluates to a variable name or to a quoted locale
name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQCASE function operates on any character content, such as names, organizations,
and addresses. All instances of adjacent blank spaces are replaced with single blank
spaces. For information on available case definitions, see “ENUSA” on page 103.

Example

The following example standardizes capitalization and spacing with the PROPER
case definition in the ENUSA locale.

orgname=dqCase("BILL’S PLUMBING & HEATING", ’Proper’, ’ENUSA’);

After this function call, the value for the ORGNAME variable is Bill’s Plumbing &
Heating.

DQGENDER Function

Returns a gender determination from the name of an individual.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQGENDER(char, ’gender-analysis-definition’<, ’locale’>)

char
is the name of a character variable, a character value in quotation marks, or an
expression that evaluates to a variable name or a quoted value.

gender-analysis-definition
specifies the name of the gender analysis definition, which must exist in the specified
locale. For information on available gender analysis definitions, see Chapter 7,

50 DQGENDERINFOGET Function � Chapter 6

“Locales for QKB 2004A,” on page 77, or submit the AUTOCALL macro
%DQPUTLOC (see “%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified gender analysis
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQGENDER function evaluates the name of an individual to determine the gender
of that individual. If the evaluation finds substantial clues that indicate gender, the
function returns a value that indicates that the gender is female or male. If the
evaluation is inconclusive, the function returns a value that indicates that the gender is
unknown. The exact return value is determined by the specified gender analysis
definition and locale.

For information on the available gender analysis definitions, see “ENUSA” on page
103.

Example

The following example returns the value M for the variable GENDER.

gender=dqGender(’Mr. John B. Smith’, ’Gender’, ’ENUSA’);

See Also
“DQGENDERPARSED Function” on page 51.

DQGENDERINFOGET Function

Returns the name of the parse definition that is associated with the specified gender definition.

Valid: in the DATA step, PROC SQL, or SCL

Syntax

DQGENDERINFOGET (‘gender-analysis-definition’ <, ‘locale’>)

gender-analysis-definition
specifies the name of the gender analysis definition, which must exist in the specified
locale. For information on available gender analysis definitions, see Chapter 7,
“Locales for QKB 2004A,” on page 77, or submit the AUTOCALL macro
%DQPUTLOC (see “%DQPUTLOC AUTOCALL Macro” on page 42).

Functions and CALL Routines � DQGENDERPARSED Function 51

locale
optionally specifies the name of the locale that contains the specified gender analysis
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Example

The following example displays the parse definition that is associated with the
gender analysis definition in the ENUSA locale called GENDER. The parse definition
that is returned is then used to display the names of the tokens that are enabled for
that parse definition. The tokens are then used to construct a parsed value and return
a match code for that parsed value.

/* display the parse definition associated with the */
/* GENDER definition and display the tokens in that */
/* parse definition. */
data _null_;

parseDefn=dqGenderInfoGet(’Gender’, ’ENUSA’);
tokens=dqParseInfoGet(parseDefn, ’ENUSA’);
put parseDefn= / tokens=;

run;

/* build a parsed value from two tokens and display */
/* in the log the gender determination for that value. */
data _null_;

length parsedValue $ 200 gender $ 1;
parsedValue=dqParseTokenPut(parsedValue, ’Sandi’, ’Given Name’, ’Name’);
parsedValue=dqParseTokenPut(parsedValue, ’Baker’, ’Family Name’, ’Name’);
gender=dqGenderParsed(parsedValue, ’Gender’);
put gender=;

run;

See Also

� “DQPARSE Function” on page 59.
� “DQPARSETOKENPUT Function” on page 63.
� “DQGENDERPARSED Function” on page 51.

DQGENDERPARSED Function

Returns a gender determination from the parsed name of an individual.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQGENDERPARSED(parsed-char, ’gender-analysis-definition’ <, ’locale’>)

52 DQIDENTIFY Function � Chapter 6

parsed-char
is a parsed value that contains the name of an individual. The value can be
expressed as the name of a character variable, a character value in quotation marks,
or an expression that evaluates to a variable name or a quoted value.

gender-analysis-definition
specifies the name of the gender analysis definition that will be referenced to
determine gender. The specified gender analysis definition has a related parse
definition. To return an accurate gender determination, the related parse definition
must be the same parse definition that was used to parse the parsed-char. To
return the names of related parse definitions, use the DQGENDERINFOGET
function (see “DQGENDERINFOGET Function” on page 50).

The specified gender analysis definition must exist in the specified locale. For
information on available gender analysis definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified gender analysis
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQGENDERPARSED function returns a gender determination from a parsed
character value that contains the name of an individual. If the analysis finds
substantial clues that indicate the gender of the individual, the function returns a value
that indicates that the gender is female or male. If the analysis is inconclusive, the
function returns a value that indicates that the gender is unknown. The specific return
value depends on the specified gender analysis definition and locale.

See Also

� “DQGENDERINFOGET Function” on page 50 for an example that uses
DQGENDERPARSED.

� “DQGENDER Function” on page 49.

DQIDENTIFY Function

Returns a category name from a character value.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQIDENTIFY(char, ’identification-definition’<, ‘locale’>)

Functions and CALL Routines � DQLOCALEGUESS Function 53

char
is the value that is transformed, according to the specified identification definition.
The value can be the name of a character variable, a character value in quotation
marks, or an expression that evaluates to a variable name or a quoted value.

identification-definition
specifies the name of the identification definition, which must exist in the specified
locale. For information on available identification definitions, see Chapter 7, “Locales
for QKB 2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified identification
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQIDENTIFY function returns a value that indicates the category of the content in
an input character value. The available categories and return values depend on your
choice of identification definition and locale.

Example

The following example determines if a character value represents an individual or an
organization.

id=dqIdentify(’LL Bean’, ’Individual/Organization’, ’ENUSA’);

After this function call, the value for the ID variable is ORGANIZATION.

DQLOCALEGUESS Function

Returns the name of the locale that is most likely represented by a character value.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQLOCALEGUESS(char, ‘locale-guess-definition’)

char
is the value that is analyzed to determine a locale, according to the specified guess
definition. The value can be the name of a character variable, a character value in

54 DQLOCALEINFOGET Function � Chapter 6

quotation marks, or an expression that evaluates to a variable name or a quoted
value.

locale-guess-definition
specifies the name of the guess definition. For information on available locale guess
definitions, see Chapter 7, “Locales for QKB 2004A,” on page 77, or submit the
AUTOCALL macro %DQPUTLOC (see “%DQPUTLOC AUTOCALL Macro” on page
42).

Details
The DQLOCALEGUESS function evaluates the input character value using the
specified locale guess definition in each of the locales that are loaded into memory. An
applicability score is generated for each locale in the locale list. If the highest score is
held by more than one locale or if none of the locales possess the specified locale guess
definition, then the return value is the name of the first locale in the locale list.

For information on available locale guess definitions, see “ENUSA” on page 103.

Example

The following example returns the name of a locale as the value of the LOC variable:

loc=dqLocaleGuess(’101 N. Main Street’, ’Address’);

The name of the locale that is returned depends on which locales are loaded into
memory.

See Also

� “About Locales” on page 4.
� “ENUSA” on page 103.

DQLOCALEINFOGET Function

Returns information about locales.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQLOCALEINFOGET(< ‘info-type’>)

info-type
specifies the type of locale information that is to be returned. The only valid value is
LOADED. If no parameter is specified, LOADED is used by default.

Details
The DQLOCALEINFOGET function returns a comma-delimited list of locale names.
The ordered list contains the names of the locales that are currently loaded into
memory. These locales are the ones that are available for use in data cleansing.

Functions and CALL Routines � DQLOCALEINFOLIST Function 55

Example

The following example returns the locales that are currently loaded into memory.

loadedLocales=dqLocaleInfoGet(’loaded’);
put loadedLocales;

If the locales ENUSA and ENGBR locales are loaded in that order, the return value is
ENUSA,ENGBR, and ENUSA is the default locale.

See Also

� “DQLOCALEINFOLIST Function” on page 55.
� “%DQPUTLOC AUTOCALL Macro” on page 42.
� “About Locales” on page 4.

DQLOCALEINFOLIST Function
Displays the names of the definitions in a locale and returns a count of those definitions.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQLOCALEINFOLIST(‘definition-type’ <, ‘locale’>)

definition-type
specifies the definitions that are displayed. Valid values are as follows:

� ALL
� CASE
� GENDER
� GUESS
� IDENTIFICATION
� MATCH
� PARSE
� PATTERN
� STANDARDIZATION

locale
optionally specifies the name of the locale. The value can be a name in quotation
marks, the name of a variable whose value is a locale name, or an expression that
evaluates to a variable name or to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQLOCALEINFOLIST function displays in the SAS log the names of the
definitions of the specified type in the specified locale. The return value of the function
is the total number of definitions that are displayed in the log.

56 DQMATCH Function � Chapter 6

Examples

The following example displays in the SAS log a list of all of the definition names in
the first locale in the locale list.

num=dqLocaleInfoList(’all’);

The following example displays a list of the parse definitions in the DEDEU locale.

num=dqLocaleInfoList(’parse’, ’DEDEU’);

See Also

� “ENUSA” on page 103.
� “DQLOCALEINFOGET Function” on page 54.
� “%DQPUTLOC AUTOCALL Macro” on page 42.
� “About Locales” on page 4.

DQMATCH Function

Returns a match code from a character value.

Valid: in the DATA step, PROC SQL, and SCL

Syntax
DQMATCH(char, ‘match-definition’ < , sensitivity, ‘locale’>)

char
is the value for which a match code is created, according to the specified match
definition. The value can be the name of a character variable, a character value in
quotation marks, or an expression that evaluates to a variable name or a quoted
value.

match-definition
specifies the name of the match definition, which must exist in the specified locale.
For information on available match definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

sensitivity
optionally specifies an integer value that determines the amount of information in
the returned match code. Valid values range from 50 to 95. The default value is 85.
A higher sensitivity value includes more information in the match code. In general,
higher sensitivity values result in a greater number of clusters, with fewer members
per cluster, because matches require greater similarity between input values.

locale
optionally specifies the name of the locale that contains the specified match
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

Functions and CALL Routines � DQMATCHINFOGET Function 57

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQMATCH function internally parses the input character value and creates and
returns a match code. The match code represents a condensed version of the character
value. The amount of information in the match code is determined by the sensitivity
level. For higher sensitivities, two values must be very similar to produce the same
match codes. At lower sensitivities, two values produce the same match codes despite
their dissimilarities.

Example

The following example returns a match code that contains the maximum amount of
information about the input value.

mcName=dqMatch(’Dr. Jim Goodnight’, ’NAME’, 95, ’ENUSA’);

See Also

� “Creating Match Codes” on page 9.
� Chapter 3, “The DQMATCH Procedure,” on page 19.
� “ENUSA” on page 103.

DQMATCHINFOGET Function

Returns the name of the parse definition that is associated with a match definition.

Valid in: in the DATA step, PROC SQL, or SCL

Syntax
DQMATCHINFOGET (‘match-definition’ <, ‘locale’>)

match-definition
specifies the name of the match definition, which must exist in the specified locale.
For information on available match definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified match
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

58 DQMATCHPARSED Function � Chapter 6

Details

The DQMATCHINFOGET function returns the name of the parse definition that is
associated with the specified match definition. Obtaining the name of that parse
definition enables you to create parsed character values with the DQPARSE or
DQPARSETOKENPUT functions. If the specified match definition does not have an
associated parse definition, the DQMATCHINFOGET function returns a missing value.

Example

The following example displays the name of the parse definition that is associated
with the NAME match definition in the ENUSA locale. That parse definition is then
used to display the tokens that are enabled for that parse definition. The tokens are
then used to construct a parsed value, create and return a match code, and display the
match code.

data _null_;
parseDefn=dqMatchInfoGet(’Name’, ’ENUSA’);
tokens=dqParseInfoGet(parseDefn);
put parseDefn= / tokens=;

run;

data _null_;
length parsedValue $ 200 matchCode $ 15;
parsedValue=dqParseTokenPut(parsedValue, ’Joel’, ’Given Name’, ’Name’);
parsedValue=dqParseTokenPut(parsedValue, ’Alston’, ’Family Name’, ’Name’);
matchCode=dqMatchParsed(parsedValue, ’Name’);
put matchCode=;

run;

DQMATCHPARSED Function

Returns a match code from a parsed character value.

Valid: in the DATA step, PROC SQL, or SCL

Syntax

DQMATCHPARSED(parsed-char, ’match-definition’ <, sensitivity>, <, ‘locale’>)

parsed-char
is a parsed character value for which a match code will be created. The value can be
the name of a character variable, a character value in quotation marks, or an
expression that evaluates to a variable name or a quoted value. The value must have
been parsed with the parse definition that is associated with the specified match
definition. To determine the name of the associated parse definition, use
“DQMATCHINFOGET Function” on page 57. To determine the tokens that are
enabled by that parse definition, use “DQPARSEINFOGET Function” on page 61.

Functions and CALL Routines � DQPARSE Function 59

match-definition
specifies the name of the match definition, which must exist in the specified locale.
For information on available match definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

sensitivity
optionally specifies an integer value that determines the amount of information in
the returned match code. Valid values range from 50 to 95. The default value is 85.
A higher sensitivity value inserts more information in the match code. In general,
higher sensitivity values result in a greater number of clusters, with fewer members
per cluster; input values must be more similar to receive the same match codes.

locale
optionally specifies the name of the locale that contains the specified match
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Example

The following example returns a match code for the parsed name of an individual.
The amount of information in the match code will be high.

data _null_;
length nameIndividual matchCode $ 20 parsedName $ 200;
nameIndividual=’Susan B. Anthony’;
parsedName=dqParse(nameIndividual, ’name’, ’enusa’);
matchCode=dqMatchParsed(parsedName, ’name’, 90, ’enusa’);

run;

See Also

� “Creating Match Codes” on page 9.

� Chapter 3, “The DQMATCH Procedure,” on page 19.

� “ENUSA” on page 103.

DQPARSE Function

Returns a parsed character value.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQPARSE(char, ‘ parse-definition’ <, ’locale’>)

60 DQPARSE Function � Chapter 6

char
is the value that is parsed according to the specified parse definition. The value can
be the name of a character variable, a character value in quotation marks, or an
expression that evaluates to a variable name or a quoted value.

parse-definition
specifies the name of the parse definition, which must exist in the specified locale.
For information on available parse definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified parse definition.
The value can be a name in quotation marks, the name of a variable whose value is a
locale name, or an expression that evaluates to a variable name or to a quoted locale
name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQPARSE function returns a parsed character value. The return value contains
delimiters that identify the elements in the value that correspond to the tokens that are
enabled by the parse definition. The delimiters in the value allow functions such as
DQPARSETOKENGET to access the elements in the value based on specified token
names.

Note: Always use the DQPARSETOKENGET function to extract tokens from parsed
values. To extract tokens from values that do not contain delimiters, use the
“DQTOKEN Function” on page 74 function. �

Example

The following example parses the name of an individual. Then the
DQPARSETOKENGET function returns the values of two of the tokens.

parsedValue=dqParse(’Mrs. Sallie Mae Pravlik’, ’NAME’, ’ENUSA’);
prefix=dqParseTokenGet(parsedValue, ’Name Prefix’, ’NAME’, ’ENUSA’);
given=dqParseTokenGet(parsedValue, ’Given Name’, ’NAME’, ’ENUSA’);

After these function calls, the value of the PREFIX variable is Mrs. and the value of
the GIVEN variable is Sallie.

See Also

� “DQPARSEINFOGET Function” on page 61.
� “DQTOKEN Function” on page 74.

Functions and CALL Routines � DQPARSEINFOGET Function 61

DQPARSEINFOGET Function

Returns the token names in a parse definition.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQPARSEINFOGET(‘parse-definition’ <, ‘locale’>)

parse-definition
specifies the name of the parse definition, which must exist in the specified locale.
For information on available parse definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified parse definition.
The value can be a name in quotation marks, the name of a variable whose value is a
locale name, or an expression that evaluates to a variable name or to a quoted locale
name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQPARSEINFOGET function returns the names of the tokens that can be inserted
into character values using the DQPARSETOKENPUT function. You can also use the
token names to return token values with the functions DQPARSETOKENGET and
DQTOKEN.

Example

The following example returns the token names for the parse definition E–MAIL in
the locale ENUSA and displays the token names in the SAS log.

tokenNames=dqParseInfoGet(’e-mail’, ’ENUSA’);
put tokenNames;

After this function call, the value of the TOKENNAMES variable is
Mailbox,Sub-Domain,Top-Level Domain, which are the names of the three tokens in
this parse definition.

See Also

� “DQPARSETOKENPUT Function” on page 63.

� “DQPARSETOKENGET Function” on page 62.

� “DQTOKEN Function” on page 74.

62 DQPARSETOKENGET Function � Chapter 6

DQPARSETOKENGET Function

Returns a token from a parsed character value.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQPARSETOKENGET(parsed-char, ‘token’, ‘parse-definition’ <, ’locale’>)

parsed-char
is the parsed character value from which will be returned the value of the specified
token. The parsed-char can be the name of a character variable, a character value
in quotation marks, or an expression that evaluates to a variable name or a quoted
value. The value must contain delimiters that are consistent with the specified parse
definition. To determine how the parse definition inserts delimiters, use
“DQPARSEINFOGET Function” on page 61.

token
specifies the name of the token that is returned from the parsed value. The token
must be enabled by the specified parse definition.

parse-definition
specifies the name of the parse definition that will be used to obtain the value of the
token. The parse definition must be the same as the parse definition that originally
parsed the parsed-char value. The specified parse definition must exist in the
specified locale. For information on available parse definitions, see Chapter 7,
“Locales for QKB 2004A,” on page 77, or submit the AUTOCALL macro
%DQPUTLOC (see “%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified parse definition.
The value can be a name in quotation marks, the name of a variable whose value is a
locale name, or an expression that evaluates to a variable name or to a quoted locale
name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The DQPARSETOKENGET function returns the value of the specified token from a
character value that was previously parsed.

Note: Do not attempt to extract tokens from parsed values using any means other
than the DQPARSETOKENGET function. �

Example

The following example parses a character value with the DQPARSE function and
extracts two of the tokens with the DQPARSETOKENGET function.

Functions and CALL Routines � DQPARSETOKENPUT Function 63

parsedValue=dqParse(’Mrs. Sallie Mae Pravlik’, ’NAME’, ’ENUSA’);
prefix=dqParseTokenGet(parsedValue, ’Name Prefix’, ’NAME’, ’ENUSA’);
given=dqParseTokenGet(parsedValue, ’Given Name’, ’NAME’, ’ENUSA’);

After these function calls, the value of the PREFIX variable is Mrs. and the value of
the GIVEN variable is Sallie.

See Also

� “DQPARSE Function” on page 59.
� “DQPARSEINFOGET Function” on page 61.
� “DQTOKEN Function” on page 74.

DQPARSETOKENPUT Function

Inserts a token into a parsed character value and returns the updated parsed character value.

Valid: in the DATA step and SCL

Syntax
DQPARSETOKENPUT(parsed-char, token-value, ’token-name’, ’parse-definition’ <,

‘locale’>)

parsed-char
is the parsed character value that receives the new token value, according to the
specified parse definition. The parsed-char value can be the name of a character
variable, a character value in quotation marks, or an expression that evaluates to a
variable name or a quoted value.

token-value
specifies the value of the token that is to be inserted into the parsed value.

token-name
specifies the name of the token that is to be inserted into the parsed value. The
specified token must be enabled by the specified parse definition.

parse-definition
specifies the name of the parse definition, which must exist in the specified locale.
The specified parse definition must be the same definition that was used to parse the
parsed-char value. For information on available parse definitions, see Chapter 7,
“Locales for QKB 2004A,” on page 77, or submit the AUTOCALL macro
%DQPUTLOC (see “%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified parse definition.
The value can be a name in quotation marks, the name of a variable whose value is a
locale name, or an expression that evaluates to a variable name or to a quoted locale
name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

64 DQPATTERN Function � Chapter 6

Details
Use the DQPARSETOKENPUT function to insert into a parsed value a new value that
is associated with a specified token. If a value exists for that token in the input value,
the new value is inserted before the existing value, and the existing value is retained.

As shown in the example that is referenced below, you can specify a variable name as
the value of the parsed-char argument, then assign the return value from the function
to the same variable.

See Also

� “DQGENDERINFOGET Function” on page 50 for an example that uses the
DQPARSETOKENPUT function.

� “DQPARSETOKENGET Function” on page 62.
� “DQMATCHPARSED Function” on page 58.
� “DQGENDERPARSED Function” on page 51.

DQPATTERN Function

Returns a pattern analysis from an input character value.

Valid: in the DATA step, PROC SQL, and SCL

Syntax
DQPATTERN (char, ‘pattern-analysis-definition’ <, ‘locale’>);

char
is the name of the value that will be analyzed. The value can be a character variable,
a character value in quotation marks, or an expression that evaluates to a variable
name or a quoted value.

pattern-analysis-definition
specifies the name of the definition that will be referenced during the creation of the
pattern analysis. The definition must exist in the specified locale. For information on
available pattern–analysis definitions, see Chapter 7, “Locales for QKB 2004A,” on
page 77, or submit the AUTOCALL macro %DQPUTLOC (see “%DQPUTLOC
AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified pattern analysis
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The pattern analysis that is returned by the DQPATTERN function identifies words or
characters in the input value as numeric, alphabetic, non-alphanumeric, or mixed. The

Functions and CALL Routines � DQSCHEMEAPPLY CALL Routine 65

choice of pattern analysis definition determines the nature of the analysis. For
information on pattern analysis definitions in the ENUSA locale, see “ENUSA Pattern
Analysis Definitions” on page 109.

Available return values are defined as follows:

* non-alphanumeric, such as punctuation marks or symbols.

A alphabetic

M mixture of alphabetic, numeric, and non-alphanumeric.

N numeric

Example

The following example analyzes the words in an input character value and displays
the results in the SAS log.

pattern=dqPattern(’WIDGETS 5" 32CT’, ’WORD’, ’ENUSA’);
put pattern;

The value of the PATTERN variable after this function call would be A N* M. Using the
CHARACTER pattern analysis definition returns the value AAAAAAA N* NNAA.

DQSCHEMEAPPLY CALL Routine

Applies a scheme and returns a transformed value and a transformation flag.

Requirement: Schemes using SAS format are required in the z/OS operating environment.

Valid: in the DATA step and SCL

Syntax
CALL DQSCHEMEAPPLY(char, output-variable, ‘scheme’ <, ‘scheme-format’, ‘mode’,

transform-count-variable, ’scheme-lookup-method’, ’match-definition’, sensitivity,
’locale’>)

char
is the value to which the specified scheme will be applied. The value can be the name
of a character variable, a character value in quotation marks, or an expression that
evaluates to a variable name or a quoted value.

output-variable
identifies the character variable that receives the transformed input value.

scheme
identifies the scheme that is applied to the input value. For schemes using SAS
format, the scheme argument is a fully-qualified SAS data set name in quotation
marks. For schemes using Blue Fusion Data format, the scheme argument is the
name of an existing fileref in quotation marks. For all operating environments other
than z/OS, the fileref must reference a fully-qualified path that ends in .sch.bfd.
Lowercase letters are required. In the z/OS operating environment, the normal

66 DQSCHEMEAPPLY CALL Routine � Chapter 6

naming conventions apply for the partitioned data set (PDS) that contains the
scheme.

scheme-format
optionally identifies the file format of the scheme. Valid values are as follows:

BFD
indicates that the specified scheme is stored in Blue Fusion Data format. This is
the default value.

NOBFD
indicates that the specified scheme is stored in SAS format.

For further information, see “Applying Schemes” on page 7.

mode
specifies how the scheme is to be applied to the values of the input character
variable. The default value of the mode argument is the mode that is stored in the
scheme. If a mode is not stored in the scheme, then the default mode is PHRASE. If
the value of the scheme-lookup-method argument is USE_MATCHDEF, and if a value
is not specified for the mode argument, then the default mode is PHRASE.

Valid values for the mode argument are defined as follows:

PHRASE
compares the entire input character value to the entirety of each of the DATA
values in the scheme. When the value of the scheme-lookup-method argument is
USE_MATCHDEF, the match code of the entire input character value is compared
to the match codes of the DATA values in the scheme. A transformation occurs
when a match is found between the input character value (or match code) and a
DATA value (or match code) in the scheme.

ELEMENT
compares each element in the input character value to each of the DATA values in
the scheme. When the value of the scheme-lookup-method argument is
USE_MATCHDEF, the match code of each element in the input character value is
compared to the match codes of the DATA values in the scheme. A transformation
occurs when a match is found between an element in the input character value (or
match code of an element) and a DATA value (or match code) in the scheme.

transform-count-variable
optionally identifies the numeric variable that receives the returned number of
transformations that were performed on the input value.

If the value of the mode argument is PHRASE and if the input value is not
transformed, then the value of the transform-count variable is 0. If the input
variable is transformed, then the value of the transform-count variable is 1.

If the value of the mode argument is ELEMENT and if the input value is not
transformed, then the value of the transform-count variable is 0. If the input
variable is transformed, then the value is a positive integer that represents the
number of elements in the input value that were transformed.

Note: The transformation count may appear to be inaccurate if the
transformation value in the scheme is the same as the input value (or element(s) in
the input value). �

scheme-lookup-method
specifies one of three mutually-exclusive methods of applying the scheme. Valid
values are as follows:

EXACT
this default value specifies that the input value is to be compared to the DATA
values in the scheme without changing the input value in any way. The

Functions and CALL Routines � DQSCHEMEAPPLY CALL Routine 67

transformation value in the scheme is written into the output data set only when
the input value exactly matches a DATA value in the scheme. Any adjacent blank
spaces in the input value are replaced with single blank spaces prior to comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when the input value is compared to
the DATA values in the scheme. Any adjacent blank spaces in the input value are
replaced with single blank spaces prior to comparison.

USE_MATCHDEF
specifies that the match code of the input value is to be compared to the match
codes of the DATA values in the scheme. A transformation occurs when the two
match codes are identical.

Specifying USE_MATCHDEF enables the arguments locale, match-definition,
and sensitivity, which can be used to override the default values that may be
stored in the scheme.

Note: The arguments locale, match-definition, and sensitivity are valid only when
the value of the scheme-lookup-method option is USE_MATCHDEF. �

match-definition
specifies the name of the match definition in the specified locale that will be used to
create match codes during the application of the scheme.

Note: The match-definition argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF. �

If USE_MATCHDEF is specified and the match-definition argument is not
specified, then the default match definition is the one that is stored in the scheme. If
USE_MATCHDEF is specified and a match definition is not stored in the scheme,
then a value is required for the match-definition argument.

For information on available match definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

sensitivity
specifies the amount of information in the match codes that are created during the
application of the scheme. With higher sensitivity values, two values must be
increasingly similar to create the same match code. At lower sensitivity values, two
values receive the same match code despite their dissimilarities. Valid values range
from 50 to 95.

Note: The sensitivity argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF. �

When USE_MATCHDEF is specified and the sensitivity argument is not specified,
the default sensitivity is the sensitivity value that is stored in the scheme. When
USE_MATCHDEF is specified and when a sensitivity value is not stored in the
scheme, the default sensitivity value is 85.

locale
specifies the locale that contains the specified match definition that will be referenced
during the application of the scheme. The value can be a locale name in quotation
marks or the name of a variable whose value resolves to a locale name.

Note: The locale argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF. �

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

68 DQSCHEMEAPPLY CALL Routine � Chapter 6

Details

The CALL routine DQSCHEMEAPPLY transforms an input value by applying a
scheme. The scheme can be in SAS format or Blue Fusion Data format. Schemes using
SAS format can be created with the DQSCHEME procedure (see “The DQSCHEME
Procedure” on page 29). Schemes using Blue Fusion Data format can be created with
the DQSCHEME procedure or with the dfPower Studio software from DataFlux (a SAS
company).

Example

The following example generates a scheme using Blue Fusion Data format with the
DQSCHEME procedure and then applies that scheme to a data set with CALL
DQSCHEMEAPPLY. The example assumes that the ENUSA has been loaded into
memory as the default locale.

/* Create the input data set. */
data suppliers;

length company $ 50;
input company $char50.;

datalines;
Ford Motor Company
Walmart Inc.
Federal Reserve Bank
Walmart
Ernest & Young
TRW INC - Space Defense
Wal-Mart Corp.
The Jackson Data Corp.
Ernest & Young
Federal Reserve Bank 12th District
Ernest and Young
Jackson Data Corp.
Farmers Insurance Group
Kaiser Permantente
Ernest and Young LLP
TRW Space & Defense
Ford Motor
Jackson Data Corp
Federal Reserve Bank
Target
;
run;

/* Create the scheme. */
proc dqscheme data=suppliers bfd;

create matchdef=’Organization (Scheme Build)’
var=company scheme=work.myscheme
locale=’ENUSA’;

run;

/* Print the scheme. */
proc print data=work.myscheme;
title ’Organization Scheme’;
run;

Functions and CALL Routines � DQSCHEMEAPPLY Function 69

/* Apply the scheme and display the results. */
data suppliers;

set suppliers;
length outCompany $ 50;
call dqSchemeApply(company, outCompany, ’work.myscheme’, ’nobfd’, ’phrase’, numTrans);
put ’Before applying the scheme: ’ company /

’After applying the scheme: ’ outCompany /
’Transformation count: ’ numTrans /;

run;

The value of the NUMTRANS variable is 0 if the organization name is not
transformed or 1 if the organization name is transformed. In the output of this example,
a transformation count of 1 is shown in several instances, when no transformation
appears to have been made, as shown in the following PROC PRINT output:

Before applying the scheme: Jackson Data Corp
After applying the scheme: Jackson Data Corp
Transformation count: 1

Instances such as these are not errors because in these cases the transformation value
is the same as the input value.

See Also

� “DQSCHEMEAPPLY Function” on page 69.
� Chapter 4, “The DQSCHEME Procedure,” on page 29.
� “Transforming Data with Schemes” on page 6.

DQSCHEMEAPPLY Function

Applies a scheme and returns a transformed value.

Requirement: Schemes using SAS format are required in the z/OS operating environment.
Valid: in the DATA step, PROC SQL, and SCL

Syntax
DQSCHEMEAPPLY(char, ‘scheme’ <, ‘scheme-format’, ‘mode’, ‘scheme-lookup-method’,

‘match-definition’, sensitivity, ‘locale’>)

char
is the value to which the specified scheme will be applied. The value can be the name
of a character variable, a character value in quotation marks, or an expression that
evaluates to a variable name or a quoted value.

output-variable
identifies the character variable that receives the transformed input value.

scheme
identifies the scheme that is applied to the input value. For schemes using SAS
format, the scheme argument is a fully-qualified SAS data set name in quotation

70 DQSCHEMEAPPLY Function � Chapter 6

marks. For schemes using Blue Fusion Data format, the scheme argument is the
name of an existing fileref in quotation marks. For all operating environments other
than z/OS, the fileref must reference a fully-qualified path that ends in .sch.bfd.
Lowercase letters are required. In the z/OS operating environment, the normal
naming conventions apply for the partitioned data set (PDS) that contains the
scheme.

scheme-format
optionally identifies the file format of the scheme. Valid values are as follows:

BFD
indicates that the specified scheme is stored in Blue Fusion Data format. This is
the default value.

NOBFD
indicates that the specified scheme is stored in SAS format.

For further information, see “Applying Schemes” on page 7.

mode
specifies how the scheme is to be applied to the values of the input character
variable. The default value of the mode argument is the mode that is stored in the
scheme (see “About Meta Options” on page 8). If a mode is not stored in the scheme,
then the default mode is PHRASE. If the value of the scheme-lookup-method
argument is USE_MATCHDEF, and if a value is not specified for the mode argument,
then the default mode is PHRASE.

Valid values for the mode argument are defined as follows:

PHRASE
compares the entire input character value to the entirety of each of the DATA
values in the scheme. When the value of the scheme-lookup-method argument is
USE_MATCHDEF, the match code of the entire input character value is compared
to the match codes of the DATA values in the scheme. A transformation occurs
when a match is found between the input character value (or match code) and a
DATA value (or match code) in the scheme.

ELEMENT
compares each element in the input character value to each of the DATA values in
the scheme. When the value of the scheme-lookup-method argument is
USE_MATCHDEF, the match code of each element in the input character value is
compared to the match codes of the DATA values in the scheme. A transformation
occurs when a match is found between an element in the input character value (or
match code of an element) and a DATA value (or match code) in the scheme.

scheme-lookup-method
specifies one of three mutually-exclusive methods of applying the scheme. Valid
values are as follows:

EXACT
this default value specifies that the input value is to be compared to the DATA
values in the scheme without changing the input value in any way. The
transformation value in the scheme is written into the output data set only when
the input value exactly matches a DATA value in the scheme. Any adjacent blank
spaces in the input value are replaced with single blank spaces prior to comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when the input value is compared to
the DATA values in the scheme. Any adjacent blank spaces in the input value are
replaced with single blank spaces prior to comparison.

Functions and CALL Routines � DQSCHEMEAPPLY Function 71

USE_MATCHDEF
specifies that the match code of the input value is to be compared to the match
codes of the DATA values in the scheme. A transformation occurs when the two
match codes are identical.

Specifying USE_MATCHDEF enables the arguments locale, match-definition,
and sensitivity.

Note: The arguments locale, match-definition, and sensitivity are valid only when
the value of the scheme-lookup-method option is USE_MATCHDEF. �

The default value of scheme_lookup_method option is generally provided in the
scheme (see “About Meta Options” on page 8). If not provided in the scheme, the
default value is EXACT.

match-definition
specifies the name of the match definition in the specified locale that will be used to
create match codes during the application of the scheme.

Note: The match-definition argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF. �

If USE_MATCHDEF is specified and the match-definition argument is not
specified, then the default match definition is the one that is stored in the scheme
(see “About Meta Options” on page 8). If USE_MATCHDEF is specified and a match
definition is not stored in the scheme, then a value is required for the
match-definition argument.

For information on available match definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

sensitivity
specifies the amount of information in the match codes that are created during the
application of the scheme. With higher sensitivity values, two values must be
increasingly similar to create the same match code. At lower sensitivity values,
values can receive the same match code despite their dissimilarities. Valid values
range from 50 to 95.

Note: The sensitivity argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF. �

When USE_MATCHDEF is specified and the sensitivity argument is not specified,
the default sensitivity is the sensitivity value that is stored in the scheme (see
“About Meta Options” on page 8). When USE_MATCHDEF is specified and when a
sensitivity value is not stored in the scheme, the default sensitivity value is 85.

locale
specifies the locale that contains the specified match definition that will be referenced
during the application of the scheme. The value can be a locale name in quotation
marks, or the name of a variable whose value resolves to a locale name.

Note: The locale argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF. �

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
The CALL routine DQSCHEMEAPPLY transforms an input value by applying a
scheme. The scheme can be in SAS format or Blue Fusion Data format. Schemes using
SAS format can be created with the DQSCHEME procedure (see “The DQSCHEME

72 DQSCHEMEAPPLY Function � Chapter 6

Procedure” on page 29). Schemes using Blue Fusion Data format can be created with
the DQSCHEME procedure or with the dfPower Studio software from DataFlux (a SAS
company).

Note: To return a count of the number of transformations that take place during a
scheme application, use “DQSCHEMEAPPLY CALL Routine” on page 65. �

Example

The following example generates a scheme with the DQSCHEME procedure and then
applies that scheme to a data set with the DQSCHEME function. This example
assumes that the ENUSA locale has been loaded into memory as part of the locale list.

/* Create the input data set. */
data suppliers;

length company $ 50;
input company $char50.;

datalines;
Ford Motor Company
Walmart Inc.
Federal Reserve Bank
Walmart
Ernest & Young
TRW INC - Space Defense
Wal-Mart Corp.
The Jackson Data Corp.
Ernest & Young
Federal Reserve Bank 12th District
Ernest and Young
Jackson Data Corp.
Farmers Insurance Group
Kaiser Permantente
Ernest and Young LLP
TRW Space & Defense
Ford Motor
Jackson Data Corp
Federal Reserve Bank
Target
;
run;

/* Assign a fileref to the scheme file. */
filename myscheme ’c:\temp\company.sch.bfd’;

/* Create the scheme. */
proc dqscheme data=suppliers bfd;

create matchdef=’Organization (Scheme Build)’
var=company scheme=myscheme
locale=’ENUSA’;

run;

/* Apply the scheme and display the results. */
data suppliers;

set suppliers;

Functions and CALL Routines � DQSTANDARDIZE Function 73

length outCompany $ 50;
outCompany=dqSchemeApply(company, ’myscheme’, ’bfd’, ’phrase’, ’EXACT’);
put ’Before applying the scheme: ’ company /

’After applying the scheme: ’ outCompany;
run;

See Also

� “DQSCHEMEAPPLY CALL Routine” on page 65.
� Chapter 4, “The DQSCHEME Procedure,” on page 29.
� “Transforming Data with Schemes” on page 6.

DQSTANDARDIZE Function

Returns a character value after standardizing casing, spacing, and format, and applies a common
representation to certain words and abbreviations.

Valid: in the DATA step, PROC SQL, and SCL

Syntax
DQSTANDARDIZE(char, ‘ standardization-definition’ <, locale>)

char
is the value that will be standardized according to the specified standardization
definition. The value can be the name of a character variable, a character value in
quotation marks, or an expression that evaluates to a variable name or a quoted
value.

standardization-definition
specifies the name of the standardization definition, which must exist in the specified
locale. For information on available standardization definitions, see Chapter 7,
“Locales for QKB 2004A,” on page 77, or submit the AUTOCALL macro
%DQPUTLOC (see “%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified standardization
definition. The value can be a name in quotation marks, the name of a variable
whose value is a locale name, or an expression that evaluates to a variable name or
to a quoted locale name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
In the locales, standardization definitions are provided for character content such as
dates, names, and ZIP codes. The available standardization definitions vary from one
locale to the next.

The return value is provided in appropriate case, with insignificant blank space and
punctuation removed. The standardization definition that was specified in the

74 DQTOKEN Function � Chapter 6

DQSTANDARDIZE function may standardize certain words and abbreviations. The
order of the elements in the return value may differ from the order of the elements in
the input character value.

Example

The following example standardizes four names using the NAME standardization
definition from the ENUSA locale. This example assumes that the ENUSA locale has
been loaded into memory as part of the locale list.

data _null_;
length name stdName $ 50;
input name $char50.;
stdName=dqStandardize(name, ’Name’);
put ’Name:’ @10 name /

’StdName:’ @10 stdName /;
datalines;
HOUSE, KEN
House, Kenneth
House, Mr. Ken W.
MR. KEN W. HOUSE
;
run;

After this function call, the SAS log displays the following information:

Name: HOUSE, KEN
StdName: Ken House

Name: House, Kenneth
StdName: Kenneth House

Name: House, Mr. Ken W.
StdName: Mr Ken W House

Name: MR. KEN W. HOUSE
StdName: Mr Ken W House

DQTOKEN Function

Returns a token from a character value.

Valid: in the DATA step, PROC SQL, or SCL

Syntax
DQTOKEN(char, ‘token’, ’parse-definition’<, locale>)

char
is the value from which the specified token will be returned, according to the
specified parse definition. The value can be the name of a character variable, a

Functions and CALL Routines � DQTOKEN Function 75

character value in quotation marks, or an expression that evaluates to a variable
name or a quoted value.

token
identifies the token that is returned.

parse-definition
specifies the name of the parse definition, which must exist in the specified locale.
For information on available parse definitions, see Chapter 7, “Locales for QKB
2004A,” on page 77, or submit the AUTOCALL macro %DQPUTLOC (see
“%DQPUTLOC AUTOCALL Macro” on page 42).

locale
optionally specifies the name of the locale that contains the specified parse definition.
The value can be a name in quotation marks, the name of a variable whose value is a
locale name, or an expression that evaluates to a variable name or to a quoted locale
name.

The specified locale must be loaded into memory as part of the locale list. If no
value is specified, the default locale is used. The default locale is the first locale in
the locale list. For information on the locale list, see “About Locales” on page 4.

Details
Use the DQTOKEN function to parse a value and return one token. If the DQTOKEN
function does not find a value for that token, the return value for that token will be
blank.

To return more than one token from a parsed value, use the combination of the
“DQPARSE Function” on page 59 and the “DQPARSETOKENGET Function” on page 62.

Example

The following example parses a single token from a character value.

prefix=dqToken(’Mrs. Sallie Mae Pravlik’, ’Name Prefix’, ’Name’, ’ENUSA’);

After this function call, the value for the PREFIX variable is Mrs..

See Also

� “DQPARSE Function” on page 59.
� “DQPARSETOKENGET Function” on page 62.

76

77

C H A P T E R

7
Locales for QKB 2004A

Overview 77

Overview

The following table lists the locales that are provided in Version 2004A of the Quality
Knowledge Base.

Table 7.1 Locales in Quality Knowledge Base Version 2004A

Locale See National Language Region

Global “Global Definitions” on
page 78

L1 “L1” on page 78 ISO-8859 (Latin-1)

DE “DE” on page 79 German

DEDEU “DEDEU” on page 81 German Germany

EN “EN” on page 86 English

ENAUS “ENAUS” on page 91 English Australia

ENGBR “ENGBR” on page 97 English Great Britain

ENUSA “ENUSA” on page 103 English United States

ENZAF “ENZAF” on page 111 English South Africa

FR “FR” on page 118 French

FRFRA “FRFRA” on page 120 French France

IT “IT” on page 125 Italian

ITITA “ITITA” on page 127 Italian Italy

NL “NL” on page 132 Dutch

NLNLD “NLNLD” on page 133 Dutch Netherlands

For information on using locales, see “About the Quality Knowledge Base” on page 3.
To download new and updated versions of locales, including updated documentation,

refer to the following Web site of DataFlux (a SAS company):

www.dataflux.com/QKB

78 Global Definitions � Chapter 7

Global Definitions

Provide information about locales.

Global Locale Guess Definitions
The Quality Knowledge Base includes the following locale guess definitions, which
determine the locale that best fits an input value:

ADDRESS
determines the name of the locale that best fits an input street address.

COUNTRY
determines the name of the locale that best fits an input country name.

LOCALE CODE
determines the name of the locale that best fits an input locale code (such as
ENUSA or DEDEU).

L1

Provides data cleansing definitions for the Latin-1 character encoding standard ISO-8859–1.

The L1 locale is the ancestor the following locales:
� “DE” on page 79.
� “EN” on page 86.
� “IT” on page 125.
� “NL” on page 132.
� “FR” on page 118

Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

The L1 locale includes:
� Parse definitions (see “L1 Parse Definitions” on page 78).
� Pattern analysis definitions (see “L1 Pattern Analysis Definitions” on page 79).

L1 Parse Definitions
The L1 locale includes the following parse definitions:

E-MAIL
parses the addresses of electronic mail. Values are sought for the following tokens:

� MAILBOX
� SUB-DOMAIN
� TOP-LEVEL DOMAIN

Locales for QKB 2004A � DE 79

For example, the token/value pairs for the e-mail address JohnDoe@hisIsp.com
are:

MAILBOX JohnDoe

SUB-DOMAIN hisIsp

TOP-LEVEL
DOMAIN

com

L1 Pattern Analysis Definitions
The L1 locale includes the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
character value. Return values are an asterisk (*) for non-alphanumeric, A for
alphabetic, or N for numeric.

WORD
generates one character of analytical information for each word in the input
character value. Return values are the same as those in the CHARACTER
definition, with the addition of M for words that contain a mixture of two or more
of the character types alphabetic, numeric, and non-alphanumeric.

DE

Provides inheritable data cleansing definitions for the German language.

The DE locale is a descendant of the L1 locale (see “L1” on page 78). The DE locale is
the ancestor of the DEDEU locale (see “DEDEU” on page 81). Descendant locales
inherit definitions from ancestor locales. Inherited definitions may be superseded by
local definitions.

The DE locale includes:

� Gender analysis definitions, see “DE Gender Analysis Definitions” on page 79.

� Match definitions, see “DE Match Definitions” on page 80.

� Parse definitions, see “DE Parse Definitions” on page 80.

� Pattern analysis definitions, see “DE Pattern Analysis Definitions” on page 81.

� Standardization definitions, see “DE Standardization Definitions” on page 81.

DE Gender Analysis Definitions
The DE locale includes the following gender analysis definition:

GENDER
determines gender based on the name of an individual. The determination can be
M for male, F for female, or U for unknown. The gender is unknown if gender clues
conflict or if a name can be applied to either gender and no other gender clues are
provided. For example, the gender determination for the name T. Schmidt is U,
but the determination for the name Irene Himpsl is F. The related parse
definition is NAME.

80 DE � Chapter 7

DE Match Definitions
The DE locale includes the following match definitions:

CITY
creates match codes for city names. For example, at certain levels of sensitivity,
the same match codes are created for the following city names:
Doerfles-Esbach
Dörfles Esbach

E-MAIL
creates match codes for the addresses of electronic mail. For example, at certain
levels of sensitivity, the same match codes are created for the following e-mail
addresses:
PMayer@T-Online.de
pmeier@t-online.de

The related parse definition is E-MAIL.

NAME
creates match codes for the names of individuals. For example, at certain levels of
sensitivity, the same match codes are created for the following names:
Herr Peter Kuehner
Peter Kühner

TEXT
creates match codes for general text. For example, at certain levels of sensitivity,
the same match codes are created for the following character values:
dfPower Studio
Das DfPower Studio

DE Parse Definitions
The DE locale contains the following parse definitions:

E-MAIL
parses the addresses of electronic mail. This definition is inherited from the L1
locale. See “L1 Parse Definitions” on page 78.

NAME
parses the names of individuals. Values are sought for the following tokens:

� PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� SUFFIX
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Herr Hans-Peter Kühnel are:

PREFIX Herr

GIVEN NAME Hans-Peter

FAMILY NAME Kühnel

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX

Locales for QKB 2004A � DEDEU 81

� GIVEN NAME

� MIDDLE NAME

� FAMILY NAME

� SUFFIX

� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Johann Scheuchenzuber,
jun. are:

GIVEN NAME Johann

FAMILY NAME Scheuchenzuber

SUFFIX jun.

DE Pattern Analysis Definitions
The DE locale contains the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
character value. This definition is inherited from the L1 locale (see “L1 Pattern
Analysis Definitions” on page 79).

WORD
generates one character of analytical information for each word in the input
character value. This definition is inherited from the L1 locale (see “L1 Pattern
Analysis Definitions” on page 79).

DE Standardization Definitions
The DE locale contains the following standardization definitions:

CITY
standardizes city names. For example, the city name

Neustadt b. Coburg

is standardized as

NEUSTADT BEI COBURG

NAME
standardizes the names of individuals. For example, the name

vogelsang, sven

is standardized as

SVEN VOGELSANG

DEDEU

Provides inheritable data cleansing definitions for the German language, for use with data from
Germany.

82 DEDEU � Chapter 7

The DEDEU locale is a descendant of the L1 and DE locales. Descendant locales
inherit definitions from ancestor locales. Inherited definitions may be superseded by
local definitions.

The DEDEU locale includes:
� Gender analysis definitions, see “DEDEU Gender Analysis Definitions” on page 82.
� Identification definitions, see “DEDEU Identification Definitions” on page 82.
� Match definitions, see “DEDEU Match Definitions” on page 82.
� Parse definitions, see “DEDEU Parse Definitions” on page 83.
� Pattern analysis definitions, see “DEDEU Pattern Analysis Definitions” on page 86.
� Standardization definitions, see “DEDEU Standardization Definitions” on page 86.

DEDEU Gender Analysis Definitions
The gender analysis definition GENDER establishes gender based on the names of
individuals. This definition is inherited from the DE locale (see “DE Gender Analysis
Definitions” on page 79).

DEDEU Identification Definitions
The DEDEU locale contains the following identification definition:

INDIVIDUAL/ORGANIZATION
identifies an input name as belonging to an individual or an organization. Return
values can be INDIVIDUAL, ORGANIZATION, or UNKNOWN. For example, an
input name of SAS Institute GmbH returns the value ORGANIZATION. The
input name Manfred Kiefer returns a value of INDIVIDUAL.

DEDEU Match Definitions
The DEDEU locale contains the following match definitions:

ADDRESS
creates match codes for the “first line” street address of a mailing address. At
certain levels of sensitivity, the same match codes are created for the following
character values:
Viktoriastr. 35
Viktoriastra�e 35
The related parse definition is ADDRESS (SEPARATED STREET TYPE).

CITY
creates match codes for city names. This definition is inherited from the DE locale
(see “DE Match Definitions” on page 80).

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. At certain levels of
sensitivity, the same match codes are created for the following values:
06120 Halle/Saale
D-06120 Halle
The related parse definition is CITY–STATE/PROVINCE–POSTAL CODE.

E–MAIL
creates match codes for e-mail addresses. This definition is inherited from the DE
locale (see “DE Match Definitions” on page 80).

NAME
creates match codes for the names of individuals. This definition is inherited from
the DE locale (see “DE Match Definitions” on page 80).

Locales for QKB 2004A � DEDEU 83

ORGANIZATION
creates match codes for the names of organizations. At certain levels of sensitivity,
the following values generate the same match codes:
Deutsches Inst. f. Wirtschaftsforschung
Institut für Wirtschaftsforschung

ORGANIZATION (WITH LEGAL FORM ANALYSIS)
creates match codes for the names of organizations. The legal form of the name is
represented in the match code, which results in a more exact match than
ORGANIZATION. At certain levels of sensitivity, the following values generate the
same match codes:
DIDIER WERKE AG
DIDIER WERKE AKTIENGESELLSCHAFT
The related parse definition is ORGANIZATION.

PHONE
creates match codes for telephone numbers. At some levels of sensitivity, the
following values generate the same match codes:
+49 6221 123-456
6221 123-456
The related parse definition is PHONE.

TEXT
creates match codes for general text. This definition is inherited from the DE
locale (see “DE Match Definitions” on page 80).

DEDEU Parse Definitions
The DEDEU locale contains the following parse definitions:

ADDRESS
parses the “first line” street addresses in mailing addresses. Values are sought for
the following tokens:

� STREET PREFIX

� STREET NAME

� HOUSE NUMBER

� ADDRESS EXTENSION

For example, the token/value pairs for the value Bei den Kornschrannen 1 are:

STREET
PREFIX

Bei den

STREET NAME Kornschrannen

HOUSE
NUMBER

1

ADDRESS (GLOBAL)
parses “first lines” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� BUILDING NAME

� BUILDING NUMBER

� STREET

� EXTENSION

� ADDITIONAL INFO

84 DEDEU � Chapter 7

For example, token/value pairs for the value Aachenerstra�e 13, Gebäude 2
are:

BUILDING
NUMBER

13

STREET Aachenerstra�e

EXTENSION Gebäude 2

CITY - STATE/PROVINCE - POSTAL CODE
parses the “last line” of mailing addresses. Values are sought for the following
tokens:

� CITY
� REGION
� NEIGHBORING CITY
� FEDERAL STATE

� POSTAL CODE

For example, the token/value pairs of the value D-85579 Gut Unterbiberg bei
München, Bayern are:

CITY Gut Unterbiberg

NEIGHBORING
CITY

München

FEDERAL
STATE

Bayern

POSTAL CODE 85579

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY
� STATE/PROVINCE
� POSTAL CODE

For example, the token/value pairs for D-69118 Hiedelberg
Baden-Württemberg are:

CITY Hiedelberg

STATE/
PROVINCE

Baden-Württemberg

POSTAL CODE 69118

E-MAIL
parses the addresses of electronic mail. This definition is inherited from the L1
locale. See “L1 Parse Definitions” on page 78.

NAME
parses the names of individuals. This definition is inherited from the DE locale
(see “DE Parse Definitions” on page 80).

NAME (GLOBAL)
parses the names of individuals. The tokens in this definition are shared by
similar definitions in other locales. This definition is inherited from the DE locale
(see “DE Parse Definitions” on page 80).

Locales for QKB 2004A � DEDEU 85

ORGANIZATION
parses the names of organizations. Values are sought for the following tokens:

� NAME
� LEGAL FORM

For example, the token/value pairs for Didier Werke AG are:

NAME Didier Werke

LEGAL FORM AG

PHONE
parses telephone numbers. Values are sought for the following tokens:

� COUNTRY CODE
� AREA CODE
� BASE NUMBER

For example, the token/value pairs for the value +49 6221 123-456 are:

COUNTRY
CODE

+49

AREA CODE 6221

BASE
NUMBER

123-456

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� PREFIX
� COUNTRY CODE
� AREA CODE
� BASE NUMBER
� EXTENSION

For example, the token/value pairs for the value +49 6221 123-456 are:

COUNTRY
CODE

+49

AREA CODE 6221

BASE
NUMBER

123–456

POSTAL CODE
Parses postal codes. Values are sought for the following tokens:

� COUNTRY CODE
� FIRST TWO POSTAL CODE DIGITS
� LAST THREE POSTAL CODE DIGITS

For example, the token/value pairs for the value D-69118 are:

COUNTRY
CODE

D

FIRST TWO
POSTAL CODE
DIGITS

69

LAST THREE
POSTAL CODE
DIGITS

118

86 EN � Chapter 7

DEDEU Pattern Analysis Definitions
The DEDEU locale contains the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

WORD
generates one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

DEDEU Standardization Definitions
The DEDEU locale contains the following standardization definitions:

ADDRESS
standardizes the “first line” of mailing addresses. For example, the street address
Victoria Stra�e 12 is standardized as VIKTORIA STR. 12.

CITY
standardizes the names of cities. This definition is inherited from the DE locale
(see “DE Standardization Definitions” on page 81).

CITY - STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, the location
D-48465 Schütorf is standardized as 48465 SCHÜTTORF.

NAME
standardizes the names of individuals. This definition is inherited from the DE
locale (see “DE Standardization Definitions” on page 81).

ORGANIZATION
standardizes the names of organizations. For example, the name Didier Werke
Aktg is standardized as DIDIER WERKE AG.

PHONE
standardizes telephone numbers. For example, the phone number +49 6221 123
- 456 is standardized as 0049 6221 123456.

EN

Provides inheritable data cleansing definitions for the English language.

The EN locale is a descendant of the L1 locale (see “L1” on page 78). The EN locale is
the ancestor the following locales:

� “ENAUS” on page 91.

� “ENGBR” on page 97.

� “ENUSA” on page 103.

� “ENZAF” on page 111

Locales for QKB 2004A � EN 87

Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

The EN locale includes:
� Gender analysis definitions, see “EN Gender Analysis Definitions” on page 87.
� Match definitions, see “EN Match Definitions” on page 87.
� Parse definitions, see “EN Parse Definitions” on page 88.
� Standardization definitions, see “EN Standardization Definitions” on page 90.

EN Gender Analysis Definitions
The EN locale includes the following gender analysis definition:

GENDER
determines gender based on the name of an individual. The determination can be
M for male, F for female, or U for unknown. The gender is unknown if gender clues
conflict or if a name can be applied to either gender and no other gender clues are
provided. For example, the gender determination for the name Pat Bishop is U,
but the determination for the name Mrs. Pat Bishop is F. The related parse
definition is NAME.

EN Match Definitions
The EN locale includes the following match definitions:

ACCOUNT NUMBER
generates match codes for account numbers. Data values are rendered right-to-left
in the match codes, so matches will be found based on the least-significant
positions in the input data.

At certain levels of sensitivity, the following account numbers create the same
match codes:

111-AB-3333-4C-266L6
211-AB-3333-4C-266L6

ACCOUNT NUMBER (MOST SIGNIFICANT FIRST)
generates match codes for account numbers. Data values are rendered left-to-right
in the match codes, so matches will be found based on the most-significant
positions in the input data.

At certain levels of sensitivity, the following account numbers generate the same
match codes:

111-AB-3333-4C-266L6
111-AB-3333-4C-266L7

DATE (DMY)
creates match codes for dates that are specified by day, month, and year. For
example, the date 17March1960 generates the same match code as the date 17/
3/60. The related parse definition is DATE (DMY).

DATE (MDY)
creates match codes for dates that are specified by month, day, and year. The
related parse definition is DATE (MDY).

DATE (YMD)
creates match codes for dates that are specified by year, month, and day. The
related parse definition is DATE (YMD).

E-MAIL
creates match codes for electronic mail addresses. For example, the e-mail address
JohnQPublic@serviceProvider.com generates the same match code as the

88 EN � Chapter 7

e-mail address JohnQPublic@serviceProvider.net. The related parse
definition is E-MAIL.

NAME
creates match codes for the names of individuals. For example, the name Mary
Shafer generates the same match code, at lower sensitivity levels, as the name
Mrs. Marian V. Schaeffer. The related parse definition is NAME.

EN Parse Definitions
The EN locale includes the following parse definitions:

DATE (DMY)
parses dates that are specified by day, month, and year. Values are sought for the
following tokens:

� DAY

� MONTH

� YEAR

For example, the token/value pairs for the date 24July2004 are:

DAY 24

MONTH July

YEAR 2004

DATE (MDY)
parses dates that are specified by month, day, and year. Values are sought for the
following tokens:

� MONTH

� DAY

� YEAR

For example, the token/value pairs for the date July/24/2004 are:

MONTH July

DAY 24

YEAR 2004

DATE (YMD)
parses dates that are specified by year, month, and day. Values are sought for the
following tokens:

� YEAR

� MONTH

� DAY

For example, the token/value pairs for the date 2004.July.24 are:

YEAR 2004

MONTH July

DAY 24

E-MAIL
parses e-mail addresses. This parse definition is inherited from the L1 locale. See
“L1 Parse Definitions” on page 78.

Locales for QKB 2004A � EN 89

NAME
parses the names of individuals. Values are sought for the following tokens:

� NAME PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� NAME SUFFIX
� NAME APPENDAGE

For example, the token/value pairs for the name Smith, Sr., Ronald G. are:

GIVEN NAME Ronald

MIDDLE NAME G.

FAMILY NAME Smith

NAME SUFFIX Sr.

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� SUFFIX
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Dr. Alexander Graham
Bell are:

PREFIX Dr.

GIVEN NAME Alexander

MIDDLE NAME Graham

FAMILY NAME Bell

NAME (TWO NAME)
parses input values that contain the names of two individuals. Values are sought
for the following tokens:

� NAME PREFIX 1
� GIVEN NAME 1
� MIDDLE NAME 1
� FAMILY NAME 1
� NAME SUFFIX 1
� NAME APPENDAGE 1
� NAME PREFIX 2
� GIVEN NAME 2
� MIDDLE NAME 2
� FAMILY NAME 2
� NAME SUFFIX 2
� NAME APPENDAGE 2

90 EN � Chapter 7

For example, the token/value pairs for the value Mr. Jonathan Doe II DDS
and Mrs. Jane Alice Doe, MSSW are:

NAME PREFIX
1

Mr.

GIVEN NAME 1 Jonathan

FAMILY NAME
1

Doe

NAME SUFFIX
1

II

NAME
APPENDAGE 1

DDS

NAME PREFIX
2

Mrs.

GIVEN NAME 2 Jane

MIDDLE
NAME 2

Alice

FAMILY NAME
2

Doe

NAME
APPENDAGE 2

MSSW

EN Pattern Analysis Definitions
The EN locale includes the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in an input
value. This pattern analysis definition is inherited from the L1 locale (see “L1
Pattern Analysis Definitions” on page 79).

WORD
generates one character of analytical information for each character in an input
value. This pattern analysis definition is inherited from the L1 locale (see “L1
Pattern Analysis Definitions” on page 79).

EN Standardization Definitions
The EN locale includes the following standardization definitions:

DATE (DMY)
standardizes dates that have format DMY. The output is a zero-padded two-digit
day, followed by a zero-padded two-digit month, followed by a four-digit year. The
day, month, and year are separated by spaces. If the input year is a two-digit
value, it is assumed to be within the hundred year span with 2004 as the end of
the span. For example, a year of 04 will be 2004, but a year of 05 will be 1905.
DMY dates are standardized as follows:

04/07/02 04 07 2002
04July05 04 07 1905
04.07.05 04 07 1905
04July2005 04 07 2005
04-07-2005 04 07 2005

Locales for QKB 2004A � ENAUS 91

DATE (MDY)
standardizes dates that have format MDY. The output is a zero-padded two-digit
month, followed by a zero-padded two-digit day, followed by a four-digit year. The
month, day, and year are separated by spaces. If the input year is a two-digit
value, it is assumed to be within the hundred year span with 2004 as the end of
the span. For example, a year of 04 will be 2004, but a year of 05 will be 1905.
MDY dates are standardized as follows:

July04, 02 07 04 2002
07/04/02 07 04 2002
July04, 05 07 04 1905
07.04.05 07 04 1905
July 4, 2005 07 04 2005
07-04-2005 07 04 2005

DATE (YMD)
standardizes dates that have format YMD. The output is a four-digit year, followed
by a zero-padded two-digit month, followed by a zero-padded two-digit day. The
year, month, and day are separated by spaces. If the input year is a two-digit
value, it is assumed to be within the hundred year span with 2004 as the end of
the span. For example, a year of 04 will be 2004, but a year of 05 will be 1905.
YMD dates are standardized as follows:

02July04 2002 07 04
02/07/04 2002 07 04
05July04 1905 07 04
05.07.04 1905 07 04
2005July04 2005 07 04
2005-07-04 2005 07 04

ENAUS

Provides cleansing definitions for the English language and the region of Australia.

The ENAUS locale is a descendant of the EN locale (see “EN” on page 86).
Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

Global definitions can be referenced any time that two or more locales are loaded into
memory (see “Global Definitions” on page 78).

The ENAUS locale includes:
� Gender analysis definitions, see “ENAUS Gender Analysis Definitions” on page 91.
� Match definitions, see “ENAUS Match Definitions” on page 92.
� Parse definitions, see “ENGBR Parse Definitions” on page 98.
� Pattern analysis definitions, see “ENAUS Pattern Analysis Definitions” on page 96.
� Standardization definitions, see “ENAUS Standardization Definitions” on page 96.

ENAUS Gender Analysis Definitions
The gender analysis definition GENDER determines gender based on the names of
individuals. This definition is inherited from the EN locale (see “EN Gender Analysis
Definitions” on page 87).

92 ENAUS � Chapter 7

ENAUS Match Definitions
The ENAUS locale includes the following match definitions:

ACCOUNT NUMBER
creates match codes for account numbers that contain their most significant digits
at the end. This match definition is inherited from the EN locale (see “EN Match
Definitions” on page 87).

ACCOUNT NUMBER (MOST SIGNIFICANT FIRST)
creates match codes for account numbers that contain their most significant digits
at the beginning. This match definition is inherited from the EN locale (see “EN
Match Definitions” on page 87).

ADDRESS
creates match codes for street addresses. For example, at lower levels of
sensitivity, the same match codes are created for the following addresses:

Suite 1, 300 Burns Bay Road
300 Byrnes Bay Rd, ste 1

The related parse definition is ADDRESS.

CITY
creates match codes for city names. For example, at certain levels of sensitivity,
the same match codes are created for the following city names:

North Sydney
N SYDN

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. A particular value
need not contain all three. For example, at certain levels of sensitivity, the same
match codes are created for the following values:

North Quay, Queensland 4002
N Quay, Qld 4002

The related parse definition is CITY–STATE/PROVINCE–POSTAL CODE.

DATE (DMY),
DATE (MDY),
DATE (YMD)

these three separate match definitions create match codes for dates; they are
inherited from the EN locale (see “EN Match Definitions” on page 87).

E-MAIL
creates match codes for electronic mail addresses. This match definition is
inherited from the EN locale (see “EN Match Definitions” on page 87).

NAME
creates match codes for the names of individuals. For example, at certain levels of
sensitivity, the same match codes are created for the following names:

Peter Cullen
Mr. Peter Cullen (Justice of the Peace)

The related parse definition is NAME.

ORGANIZATION
creates match codes for the names of organizations such as corporations,
associations, and partnerships. For example, at certain levels of sensitivity, the
same match codes are created for the following organizations:

Locales for QKB 2004A � ENAUS 93

Moffat Limited
Moffet

PHONE
creates match codes for telephone numbers. For example, the same match codes
are created for the following telephone numbers:

Work: 61 02 94280410
61 02--94280410

The related parse definition is PHONE.

ENAUS Parse Definitions
The ENAUS locale includes the following parse definitions:

ADDRESS
parses street addresses. Values are sought for the following tokens:

� BUILDING NAME
� STREET NUMBER
� PRE-DIRECTION
� STREET NAME
� STREET TYPE
� POST-DIRECTION
� ADDRESS EXTENSION
� ADDRESS EXTENSION NUMBER

For example, the token/value pairs for the street address St George House 4-16
Montgomery Street SE, Basement are:

BUILDING
NAME

St George House

STREET
NUMBER

4–16

STREET NAME Montgomery

STREET TYPE Street

POST-
DIRECTION

SE

ADDRESS
EXTENSION

Basement

ADDRESS (GLOBAL)
parses street addresses. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� BUILDING NAME
� BUILDING NUMBER
� STREET
� EXTENSION
� ADDITIONAL INFO

For example, the token/value pairs for the mailing address St George House
4-16 Montgomery Street SE, Basement are:

BUILDING
NAME

St George House

94 ENAUS � Chapter 7

BUILDING
NUMBER

4–16

STREET Montgomery Street SE

EXTENSION Basement

CITY - STATE/PROVINCE - POSTAL CODE
parses the “last-line” of mailing addresses. Values are sought for the following
tokens:

� CITY
� STATE
� POSTCODE

For example, the token/value pairs for the location Lane Cove, NSW 2066 are:

CITY Lane Cove

STATE NSW

POSTCODE 2066

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY
� STATE/PROVINCE
� POSTAL CODE

For example, the token/value pairs for the location North Quay, QLD 4002 are:

CITY North Quay

STATE/
PROVINCE

QLD

POSTAL CODE 4002

DATE (DMY),
DATE (MDY),
DATE (YMD)

these parse definitions parse dates; they are inherited from the EN locale (see
“ENAUS Parse Definitions” on page 93).

E-MAIL
parses electronic mail addresses. This parse definition is inherited from the L1
locale (see “L1 Parse Definitions” on page 78).

NAME
parses the names of individuals. This parse definition is inherited from the EN
locale (see “EN Match Definitions” on page 87).

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� SUFFIX

Locales for QKB 2004A � ENAUS 95

� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name

Mr. Peter Cullen (Justice of the Peace)

are:

PREFIX Mr.

GIVEN NAME Peter

FAMILY NAME Cullen

TITLE/
ADDITIONAL
INFO

Justice of the Peace

NAME (TWO NAME)
parses input values that contain the names of two individuals. This parse
definition is inherited from the EN locale (see “EN Parse Definitions” on page 88).

PHONE
parses telephone numbers. Values are sought for the following tokens:

� PREFIX
� COUNTRY CODE
� AREA CODE
� BASE NUMBER
� EXTENSION ID
� EXTENSION
� SUFFIX

For example, the token/value pairs for the telephone number Work: 61 02
94280410 ext 44 are:

PREFIX Work

COUNTRY
CODE

61

AREA CODE 02

BASE
NUMBER

94280410

EXTENSION ID ext

EXTENSION 44

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar parse definitions in other locales:

� PREFIX
� COUNTRY CODE
� AREA CODE
� BASE NUMBER
� EXTENSION

For example, the token/value pairs for Work: 61 02 94280410 ext 44 are:

PREFIX Work

96 ENAUS � Chapter 7

COUNTRY
CODE

61

AREA CODE 02

BASE
NUMBER

94280410

EXTENSION ext 44

ENAUS Pattern Analysis Definitions
The ENAUS locale contains the following pattern analysis definitions:

CHARACTER
returns one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

WORD
returns one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

ENAUS Standardization Definitions
The ENAUS locale includes the following standardization definitions:

ADDRESS
standardizes street addresses. For example, the input address 4-16 Montgomery
Street SE is standardized as 4-16 MONTGOMERY ST SE.

CITY
standardizes the names of cities. For example, the input value Adamstown
HEIGHTS is standardized as ADAMSTOWN HTS.

CITY - STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, the location Lane
Cove, New South Wales 2066 is standardized as LANE COVE NSW 2066.

DATE (DMY),
DATE (MDY),
DATE (YMD)

standardize dates that are specified in various combinations of day, month, and
year. These standardization definitions are inherited from the EN locale (see “EN
Standardization Definitions” on page 90).

NAME
standardizes the names of individuals. Names themselves are not changed. For
example, the name Mike is not changed to Michael. The name Cullen, Mister
Peter C. is standardized as MR PETER C. CULLEN.

ORGANIZATION
standardizes the names of organizations. For example, the organization name
Robe River Iron Associates is standardized as ROBE RIVER IRON ASSOC.

PHONE
standardizes telephone numbers. For example, the phone number 02-94280410
ext 44 is standardized as 02 94280410 X 44.

Locales for QKB 2004A � ENGBR 97

ENGBR

Provides cleansing definitions for the English language and the region of Great Britain.

The ENGBR locale is a descendant of the EN locale (see “EN” on page 86).
Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

Global definitions can be referenced any time that two or more locales are loaded into
memory (see “Global Definitions” on page 78).

The ENGBR locale includes:
� Gender analysis definitions, see “ENGBR Gender Analysis Definitions” on page 97.
� Match definitions, see “ENGBR Match Definitions” on page 97.
� Parse definitions, see “ENGBR Parse Definitions” on page 98.
� Pattern analysis definitions, see “ENGBR Pattern Analysis Definitions” on page

102.
� Standardization definitions, see “ENGBR Standardization Definitions” on page 103.

ENGBR Gender Analysis Definitions
The gender analysis definition GENDER determines gender based on the names of
individuals. This definition is inherited from the EN locale (see “EN Gender Analysis
Definitions” on page 87).

ENGBR Match Definitions
The ENGBR locale includes the following match definitions:

ACCOUNT NUMBER
creates match codes for account numbers that contain their most significant digits
at the end. This match definition is inherited from the EN locale (see “EN Match
Definitions” on page 87).

ACCOUNT NUMBER (MOST SIGNIFICANT FIRST)
creates match codes for account numbers that contain their most significant digits
at the beginning. This match definition is inherited from the EN locale (see “EN
Match Definitions” on page 87).

ADDRESS
creates match codes for street addresses. For example, at lower levels of
sensitivity, the same match codes are created for the following addresses:

The Chapter House, 32 Upton Rd, Covent Garden
Chapter House, 32 Upton Road

The related parse definition is ADDRESS.

ADDRESS (FULL)
generates match codes for addresses in which “first line” and “last line” are stored
in the same field. For example, at certain levels of sensitivity, the same match
codes are created for the following addresses:

12 Arthur Street, London, EC4R 9BJ
12 Arthur Road, London, EC4P 9BJ

The related parse definition is ADDRESS (FULL).

98 ENGBR � Chapter 7

CITY
creation match codes for city names. For example, at certain levels of sensitivity,
the same match codes are created for the following city names:

Birmingham
bham

CITY – STATE/PROVINCE – POSTAL CODE
creates match codes for the “last line” of mailing addresses. A particular value
need not contain all three. For example, at certain levels of sensitivity, the same
match codes are created for the following values:

Sheffield, South Yorkshire, S8 8TJ
Sheffield South Yorks. S8 8TJ

The related parse definition is CITY - STATE/PROVINCE – POSTAL CODE.

DATE (DMY),
DATE (MDY),
DATE (YMD)

these three separate match definitions create match codes for dates; they are
inherited from the EN locale (see “EN Match Definitions” on page 87).

E-MAIL
creates match codes for electronic mail addresses. This match definition is
inherited from the EN locale (see “EN Match Definitions” on page 87).

NAME
creates match codes for the names of individuals. For example, at certain levels of
sensitivity, the same match codes are created for the following names:

Sir Paul McCartney
Paul McArtney

The related parse definition is NAME.

ORGANIZATION
creates match codes for the names of organizations such as corporations,
associations, and partnerships. For example, at certain levels of sensitivity, the
same match codes are created for the following organizations:

The John Howard Centre
Jon Howard Ctr

PHONE
creates match codes for telephone numbers. For example, the same match codes
are created for the following telephone numbers:

01628 486933
01628-486933 (Work)

The related parse definitions is PHONE.

ENGBR Parse Definitions
The ENGBR locale includes the following parse definitions:

ADDRESS
parses street addresses. Values are sought for the following tokens:

� PREFIX
� HOUSE NAME
� STREET NUMBER

Locales for QKB 2004A � ENGBR 99

� STREET NAME
� STREET TYPE
� NEIGHBOURHOOD

For example, the token/value pairs for the street address The Chapter House,
32 Upton Rd, Covent Garden are:

HOUSE NAME The Chapter House

STREET
NUMBER

32

STREET NAME Upton

STREET TYPE Rd

NEIGHBOUR–
HOOD

Covent Garden

ADDRESS (FULL)
parses entire addresses. Values are sought for the following tokens:

� PREFIX
� HOUSE NAME
� STREET NUMBER
� STREET NAME
� STREET TYPE
� NEIGHBOURHOOD
� TOWN VILLAGE
� POST TOWN
� COUNTY
� COUNTRY
� POST OUTCODE
� POST INCODE

For example, the token/value pairs for the full mailing address 38 Castle Roe
Road, Coleraine Northern Ireland BT51 3RL are:

STREET
NUMBER

33

STREET NAME Castle Roe

STREET TYPE Road

TOWN
VILLAGE

Coleraine

COUNTRY Northern Ireland

POST
OUTCODE

BT51

POST INCODE 3RL

ADDRESS (GLOBAL)
parses street addresses. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� BUILDING NAME
� BUILDING NUMBER

100 ENGBR � Chapter 7

� STREET
� EXTENSION
� ADDITIONAL INFO

For example, the token/value pairs for the mailing address The Chapter House,
32 Upton Rd are:

BUILDING
NAME

The Chapter House

BUILDING
NUMBER

32

STREET Upton Rd

CITY - STATE/PROVINCE - POSTAL CODE
parses lthe “last line” of mailing addresses. Values are sought for the following
tokens:

� TOWN VILLAGE
� POST TOWN
� COUNTY
� COUNTRY
� POST OUTCODE
� POST INCODE

For example, the token/value pairs for the location Sheffield, South
Yorkshire, S8 8TJ are:

TOWN
VILLAGE

Sheffield

COUNTY South Yorkshire

POST
OUTCODE

S8

POST INCODE 8TJ

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY
� STATE/PROVINCE
� POSTAL CODE

For example, the token/value pairs for the location Sheffield, South
Yorkshire, S8 8TJ are:

CITY Sheffield

STATE/
PROVINCE

South Yorkshire

POSTAL CODE S8 8TJ

DATE (DMY),
DATE (MDY),
DATE (YMD)

these parse definitions parse dates; they are inherited from the EN locale (see “EN
Parse Definitions” on page 88).

Locales for QKB 2004A � ENGBR 101

E-MAIL
parses electronic mail addresses. This parse definition is inherited from the L1
locale (see “L1 Parse Definitions” on page 78).

NAME
parses the names of individuals. Values are sought for the following tokens:

� NAME PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� NAME SUFFIX
� NAME APPENDAGE

For example, the token/value pairs for the name Mr Mervyn Allen are:

NAME PREFIX Mr

GIVEN NAME Mervyn

FAMILY NAME Allen

NAME (GLOBAL)
parses the names of individuals. This parse definition is inherited from the EN
locale (see “EN Parse Definitions” on page 88).

NAME (TWO NAME)
parses input values that contain the names of two individuals. If the input

value contains only one name, only the first six tokens are used. Note that this
definition supersedes the definition of the same name that would otherwise be
inherited from the EN locale. Values are sought for the following tokens:

� NAME PREFIX 1
� GIVEN NAME 1
� MIDDLE NAME 1
� FAMILY NAME 1
� NAME SUFFIX 1
� NAME APPENDAGE 1
� NAME PREFIX 2
� GIVEN NAME 2
� MIDDLE NAME 2
� FAMILY NAME 2
� NAME SUFFIX 2
� NAME APPENDAGE 2

For example, the token/value pairs for the value

Mr. Jonathan Doe II DDS and Mrs. Jane Alice Doe, MSSW

are:

NAME PREFIX
1

Mr.

GIVEN NAME 1 Jonathan

FAMILY NAME
1

Doe

NAME SUFFIX
1

II

102 ENGBR � Chapter 7

NAME
APPENDAGE 1

DDS

NAME PREFIX
2

Mrs.

GIVEN NAME 2 Jane

MIDDLE
NAME 2

Alice

FAMILY NAME
2

Doe

NAME
APPENDAGE 2

MSSW

PHONE
parses telephone numbers. Values are sought for the following tokens:

� PREFIX

� COUNTRY CODE

� AREA CODE

� BASE NUMBER

� SUFFIX

For example, the token/value pairs for the telephone number 01628 486933
(Work) are:

AREA CODE 01628

BASE
NUMBER

486933

SUFFIX Work

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar parse definitions in other locales:

� PREFIX

� COUNTRY CODE

� AREA CODE

� BASE NUMBER

� EXTENSION

For example, the token/value pairs for 01628 486933 are:

AREA CODE 01628

BASE
NUMBER

486933

ENGBR Pattern Analysis Definitions
The ENGBR locale contains the following pattern analysis definitions:

CHARACTER
returns one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

Locales for QKB 2004A � ENUSA 103

WORD
returns one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

ENGBR Standardization Definitions
The ENGBR locale includes the following standardization definitions:

ADDRESS
standardizes “first line” addresses. For example, the input address 47 Marlow
Road is standardized as 47 MARLOW RD.

ADDRESS (FULL)
standardizes addresses in which "first line" and "last line" data are stored in the
same field. For example, the input address 47 Marlow Road, Marlow, Bucks is
standardized as 47 MARLOW RD MARLOW BUCKINGHAMSHIRE.

CITY
standardizes the names of cities. For example, the input value nhampton is
standardized as NORTHAMPTON.

CITY - STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, the location
Sheffield, South Yorks., S8 8TJ is standardized as SHEFFIELD SOUTH
YORKSHIRE S8 8TJ.

DATE (DMY),
DATE (MDY),
DATE (YMD)

standardize dates that are specified in various combinations of day, month, and
year. These standardization definitions are inherited from the EN locale (see “EN
Standardization Definitions” on page 90).

NAME
standardizes the names of individuals. Names themselves are not changed. For
example, the name Mike is not changed to Michael. The name Mr. J.T. Webb,
Junior is standardized as MR J T WEBB JR.

ORGANIZATION
standardizes the names of organizations. For example, the organization name st.
John’s Hospital is standardized as ST JOHNS HOSPITAL.

PHONE
standardizes telephone numbers. For example, the phone number 01628-486933
(Work) is standardized as 01628 486933 WORK.

ENUSA
Provides cleansing definitions for the English language and the region of the United States of
America.

The ENUSA locale is a descendant of the EN locale (see “EN” on page 86).
Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

104 ENUSA � Chapter 7

Global definitions can be referenced any time that two or more locales are loaded into
memory (see “Global Definitions” on page 78).

The ENUSA locale includes:
� Case definitions, see “ENUSA Case Definitions” on page 104.
� Gender analysis definitions, see “ENUSA Gender Analysis Definitions” on page

104.
� Identification definitions, see “ENUSA Identification Definitions” on page 104.
� Match definitions, see “ENUSA Match Definitions” on page 105.
� Parse definitions, see “ENUSA Parse Definitions” on page 107.
� Pattern analysis definitions, see “ENUSA Pattern Analysis Definitions” on page

109.
� Standardization definitions, see “ENUSA Standardization Definitions” on page 110.

ENUSA Case Definitions
The ENUSA locale includes the following case definitions.

PROPER
for general text. For example, the character value propercase general text
becomes Propercase General Text.

PROPER (ADDRESS)
for street addresses without city, state, and ZIP code. For example, 420 PARK
RIDGE RD becomes 420 Park Ridge Rd.

PROPER (CITY - STATE/PROVINCE - POSTAL CODE)
for the “last line” of mailing addresses. For example, cary, nc 27513 becomes
Cary, NC 27513.

PROPER (NAME)
for the names of individuals. For example, john DUNHAM becomes John Dunham.

PROPER (ORGANIZATION)
for the names of organizations. For example, sas institute becomes SAS
Institute.

ENUSA Gender Analysis Definitions
The ENUSA locale contains the following gender analysis definitions:

GENDER
The gender analysis definition GENDER determines gender based on the names of
individuals. This definition is inherited from the EN locale (see “EN Gender
Analysis Definitions” on page 87).

ENUSA Identification Definitions
The ENUSA locale includes the following identification definitions:

CONTACT INFO
identifies the element of an address that is contained in an input character value.
Available return values are defined as follows:

ADDR street address line 1

CSZ city, state, and/or ZIP

UNK unknown

ATTN attention or addressee line

Locales for QKB 2004A � ENUSA 105

ADDR2 street address line 2

BLANK empty input

ORG organization

IND individual

ACCT account information

For example, an input value of 1619 Lexington Dr. returns the value ADDR. An
input value of New York City returns a value of CSZ. An input value of C/O Ken
Wright returns a value of ATTN.

INDIVIDUAL/ORGANIZATION
identifies an input name as belonging to an individual or an organization. Return
values can be INDIVIDUAL, ORGANIZATION, or UNKNOWN. For example, an
input name of SAS Institute, Inc. returns the value ORGANIZATION. The
input name Sandra K. Baker returns a value of INDIVIDUAL.

ENUSA Match Definitions
The ENUSA locale includes the following match definitions:

ACCOUNT NUMBER
creates match codes for account numbers that contain their most significant digits
at the end. This match definition is inherited from the EN locale (see “EN Match
Definitions” on page 87).

ACCOUNT NUMBER (MOST SIGNIFICANT FIRST)
creates match codes for account numbers that contain their most significant digits
at the beginning. This match definition is inherited from the EN locale (see “EN
Match Definitions” on page 87).

ADDRESS
creates match codes for street addresses. For example, at lower levels of
sensitivity, the same match codes are created for the following addresses:

101 Oak Street
101 N. Oak Avenue, Apt. #4-B

The related parse definition is ADDRESS.

CITY
creates match codes for city names. For example, at all levels of sensitivity, the
same match codes are created for the following city names:

North Myrtle Beach
n. mertl bch

CITY (SCHEME BUILD)
creates match codes for city names. When building schemes with the DQSCHEME
procedure, this match definition provides better results than the CITY match
definition.

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. A particular value
need not contain all three. For example, at lower levels of sensitivity, the same
match codes are created for the following values:

Raleigh NC 27614-9520
RALEIGH, NORTH CAROLINA

106 ENUSA � Chapter 7

The related parse definition is CITY - STATE/PROVINCE - POSTAL CODE.

DATE (DMY),
DATE (MDY),
DATE (YMD)

these three separate match definitions create match codes for dates; they are
inherited from the EN locale (see “EN Match Definitions” on page 87).

E-MAIL
creates match codes for electronic mail addresses. This match definition is
inherited from the EN locale (see “EN Match Definitions” on page 87).

NAME
creates match codes for the names of individuals. This match definition is
inherited from the EN locale (see “EN Match Definitions” on page 87).

ORGANIZATION
creates match codes for the names of organizations such as corporations,
associations, and partnerships. For example, at all levels of sensitivity, the same
match codes are created for the following organization names:

SAS Institute, Inc.
SAS

ORGANIZATION (SCHEME BUILD)
creates match codes for organization names. When building schemes with the
DQSCHEME procedure, this match definition provides better results than the
ORGANIZATION match definition.

PHONE
creates match codes for telephone numbers. For example, at lower levels of
sensitivity, the same match codes are created for the following telephone numbers:

1.919.674.2153 extension 999
674-2153

The related parse definition is PHONE.

STATE
creates match codes for state names and abbreviations. For example, at all levels
of sensitivity, the same match codes are created for the following state names:

North Carolina
N.C.

STATE (SCHEME BUILD)
creates match codes for state names and abbreviations. When building schemes
with the DQSCHEME procedure, this match definition provides better results
than the STATE match definition.

TEXT
creates match codes for general text. For example, at lower levels of sensitivity,
the same match codes are created for the following text:

Honda Accord four door
Honda Accord, 4-door Sedan

TEXT (SCHEME BUILD)
creates match codes for general text. When building schemes with the
DQSCHEME procedure, this match definition provides better results than the
TEXT match definition.

Locales for QKB 2004A � ENUSA 107

ZIP
creates match codes for United States Postal Service ZIP Codes. For example, at
lower levels of sensitivity, the same match codes are created for the following ZIP
Codes:

53400
53403-4001

The related parse definition is ZIP.

ENUSA Parse Definitions
The ENUSA locale includes the following parse definitions:

ADDRESS
parses street addresses. Values are sought for the following tokens:

� STREET NUMBER

� PRE-DIRECTION

� STREET NAME

� STREET TYPE

� POST-DIRECTION

� ADDRESS EXTENSION

� ADDRESS EXTENSION NUMBER

For example, the token/value pairs for the street address 4001 E. Independence
Blvd. SW, Suite 301 are:

STREET
NUMBER

4001

PRE-
DIRECTION

E.

STREET NAME Independence

STREET TYPE Blvd.

POST-
DIRECTION

SW

ADDRESS
EXTENSION

Suite

ADDRESS
EXTENSION
NUMBER

301

ADDRESS (GLOBAL)
parses street addresses. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� BUILDING NAME

� BUILDING NUMBER

� STREET

� EXTENSION

� ADDITIONAL INFO

108 ENUSA � Chapter 7

For example, the token/value pairs for the mailing address 4001 E.
Independence Blvd. SW, Suite 301 are:

BUILDING
NUMBER

4001

STREET E. Independence Blvd. SW

EXTENSION Suite 301

CITY - STATE/PROVINCE - POSTAL CODE
parses the “last line” of mailing addresses. Values are sought for the following
tokens:

� CITY

� STATE

� ZIP

For example, the token/value pairs for the location Cary, NC 27513-0001 are:

CITY Cary

STATE NC

ZIP 27513-0001

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY

� STATE/PROVINCE

� POSTAL CODE

For example, the token/value pairs for the location Cary, NC 27513-0001 are:

CITY Cary

STATE/
PROVINCE

NC

POSTAL CODE 27513-0001

DATE (DMY),
DATE (MDY),
DATE (YMD)

these parse definitions parse dates; they are inherited from the EN locale (see “EN
Parse Definitions” on page 88).

E-MAIL
parses electronic mail addresses. This parse definition is inherited from the L1
locale (see “L1 Parse Definitions” on page 78).

NAME
parses the names of individuals. This parse definition is inherited from the EN
locale (see “EN Parse Definitions” on page 88).

NAME (GLOBAL)
parses the names of individuals. This parse definition is inherited from the EN
locale (see “EN Parse Definitions” on page 88).

Locales for QKB 2004A � ENUSA 109

PHONE
parses telephone numbers. Values are sought for the following tokens:

� PREFIX
� COUNTRY CODE
� AREA CODE
� EXCHANGE
� STATION
� EXTENSION ID
� EXTENSION
� SUFFIX

For example, the token/value pairs for the telephone number 919.677.8000 ext.
1111 are:

AREA CODE 919

EXCHANGE 677

STATION 8000

EXTENSION ID ext

EXTENSION 1111

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar parse definitions in other locales:

� PREFIX
� COUNTRY CODE
� AREA CODE
� BASE NUMBER
� EXTENSION

For example, the token/value pairs for 919.677.8000 ext. 1111 are:

AREA CODE 919

BASE
NUMBER

677.8000

EXTENSION ext. 1111

ZIP
parses ZIP codes. Values are sought for the following tokens:

� ZIP
� ZIP ADD-ON

The token/value pairs for the ZIP code 27614-9520 are:

ZIP 27614

ZIP ADD-ON 9520

ENUSA Pattern Analysis Definitions
The ENUSA locale includes the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
character value. This pattern analysis definition is inherited from the L1 locale
(see “L1 Pattern Analysis Definitions” on page 79).

110 ENUSA � Chapter 7

WORD
generates one character of analytical information for each word in the input
character value. This pattern analysis definition is inherited from the L1 locale
(see “L1 Pattern Analysis Definitions” on page 79).

ENUSA Standardization Definitions
The ENUSA locale includes the following standardization definitions:

ADDRESS
standardizes street addresses. Standardized addresses are changed to mixed-case,
insignificant punctuation and extra blank spaces are removed, and certain
abbreviations are changed to a standard representation. For example, the input
address Suite 401, 1619 WEST LEXINGTON DRIVE is standardized as 1619 W
Lexington Dr Ste 401

CITY
standardizes the names of cities. Standardized city names are changed to initial
capital letters, insignificant punctuation and extra blank spaces are removed, and
certain abbreviations are spelled out. For example, the input value NY is
standardized as NEW YORK.

CITY - STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. Standardized city names are
changed to initial capital letters, insignificant punctuation and extra blank spaces
are removed, certain abbreviations are spelled out, and certain abbreviations are
retained. For example, the location cary nc 27513 is standardized as Cary, NC
27513.

DATE (DMY),
DATE (MDY),
DATE (YMD)

standardize dates. These standardization definitions are inherited from the EN
locale (see “EN Standardization Definitions” on page 90).

NAME
standardizes the names of individuals. Standardized names are changed to mixed
case, insignificant punctuation is removed, prefixes, suffixes, and appendages are
changed to a standard representation, and the format of the name is standardized.
No attempt is made to alter any part of the name itself. For example, the name
Mike is not changed to Michael.
For example, the name BAKER, MISTER MIKE R. is standardized as Mr Mike R
Baker.

ORGANIZATION
standardizes the names of organizations. Standardized names are changed to
mixed case, insignificant punctuation is removed, and various organizational
abbreviations are changed to a standard representation. For example, the
organization name i.b.m. corporation is standardized as IBM Corp.

PHONE
standardizes telephone numbers. Standardized phone numbers are changed to
uppercase and all punctuation and blank spaces, other than dashes (-) is excluded.
For example, the phone number (919) 555 1234 ext. 9 is standardized as
919-555-1234 EXT 9.

STATE (FULL NAME)
standardizes state names or abbreviations into a full state name. Insignificant
punctuation is removed and initial letters are capitalized. For example, the state
names N.C. and n. carolina are both standardized as North Carolina.

Locales for QKB 2004A � ENZAF 111

STATE (TWO LETTER)
standardizes state names or abbreviations into two-letter state postal codes. For
example, the state names N.C. and n. carolina are both standardized to NC.

ZIP
standardizes ZIP codes. Any alphabetic characters are removed, any blank spaces
are removed, and a dash is inserted if a ZIP add-on is supplied. For example, the
ZIP code 27513 0001 is standardized as 27513-0001.

ENZAF

Provides cleansing definitions for the English language and the region of South Africa.

The ENZAF locale is a descendant of the EN locale (see “EN” on page 86).
Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

The ENZAF locale includes:
� Case definitions, see “ENZAF Case Definitions” on page 111.
� Gender analysis definitions, see “ENZAF Gender Analysis Definitions” on page 111.
� Match definitions, see “ENZAF Match Definitions” on page 112.
� Parse definitions, see “ENZAF Parse Definitions” on page 113.
� Pattern analysis definitions, see “ENZAF Pattern Analysis Definitions” on page

117.
� Standardization definitions, see “ENZAF Standardization Definitions” on page 117.

ENZAF Case Definitions
The ENZAF locale includes the following case definitions.

PROPER (ADDRESS)
for street addresses without city, suburb, and postal code. For example, 123 VAN
NIEKERK STRAAT becomes 123 van Niekerk Straat.

PROPER (NAME)
for the names of individuals. For example, WOUTER DE KLEERK, MD becomes
Wouter de Kleerk, MD.

PROPER (ORGANIZATION)
for the names of organizations. For example, RAU COLLEGE FOR EDUCATION AND
HEALTH becomes RAU College For Education And Health.

ENZAF Gender Analysis Definitions
The gender analysis definition GENDER determines gender based on the names of
individuals. This definition is inherited from the EN locale (see “EN Gender Analysis
Definitions” on page 87).

112 ENZAF � Chapter 7

ENZAF Match Definitions

The ENZAF locale includes the following match definitions:

ACCOUNT NUMBER
creates match codes for account numbers that contain their most significant digits
at the end. This match definition is inherited from the EN locale (see “EN Match
Definitions” on page 87).

ACCOUNT NUMBER (MOST SIGNIFICANT FIRST)
creates match codes for account numbers that contain their most significant digits
at the beginning. This match definition is inherited from the EN locale (see “EN
Match Definitions” on page 87).

ADDRESS
creates match codes for street addresses. For example, at lower levels of
sensitivity, the same match codes are created for the following addresses:

173 BLOUWILDEBEES STRAAT
173 Blouwildebees St

The related parse definition is ADDRESS.

ADDRESS (FULL)
creates match codes for mailing addresses that consist of a street address, city,
suburb, and postal code. Particular values need not contain complete addresses.
For example, at certain levels of sensitivity, the same match codes are generated
for the following addresses:

23 THIRD AVE, LOWER HOUGHTON, JOHANNESBURG 2198
23 Third Avenue, Lower Houghton (Johannesburg) 2198

The related parse definition is ADDRESS (FULL).

CITY
creates match codes for city names. For example, at certain levels of sensitivity,
the same match codes are created for the following city names:

East London
E LONDON

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. Particular values need
not contain all three tokens. For example, at certain levels of sensitivity, the same
match codes are created for the following values:

Ladysmith 3370
Ladysmithe 3370

The related parse definition is CITY - STATE/PROVINCE - POSTAL CODE.

DATE (DMY),
DATE (MDY),
DATE (YMD)

these three separate match definitions create match codes for dates; they are
inherited from the EN locale (see “EN Match Definitions” on page 87).

E-MAIL
creates match codes for electronic mail addresses. This match definition is
inherited from the EN locale (see “EN Match Definitions” on page 87). The related
parse definition is E-MAIL.

Locales for QKB 2004A � ENZAF 113

NAME
creates match codes for the names of individuals. For example, at certain levels of
sensitivity, the same match codes are created for the following names:

Piet Van Der Merwe
Mnr Piet van der Merwe

The related parse definition is NAME.

ORGANIZATION
creates match codes for the names of organizations such as corporations,
associations, and partnerships. For example, at certain levels of sensitivity, the
same match codes are created for the following organizations:

Telkom SA Ltd
Telkom S.A.

PHONE
creates match codes for telephone numbers. For example, the same match codes
are created for the following telephone numbers:

27 011 123 4567
+27 (11) 123-4567

The related parse definition is PHONE.

ENZAF Parse Definitions
The ENZAF locale includes the following parse definitions:

ADDRESS
parses street addresses. Values are sought for the following tokens:

� STREET NUMBER

� STREET NAME
� STREET TYPE
� ADDRESS EXTENSION

� ADDRESS EXTENSION NUMBER

For example, the token/value pairs for the street address 173 Blouwildebees
Straat Unit 2 are:

STREET
NUMBER

173

STREET NAME Blouwildebees

STREET TYPE Straat

ADDRESS
EXTENSION

Unit

ADDRESS
EXTENSION
NUMBER

2

ADDRESS (FULL)
parses complete addresses. Values are sought for the following tokens:

� STREET NUMBER
� STREET NAME
� STREET TYPE

114 ENZAF � Chapter 7

� ADDRESS EXTENSION

� ADDRESS EXTENSION NUMBER

� SUBURB

� CITY

� POSTAL CODE

For example, the token/value pairs for the address
Unit 2 173 Blouwildebees Straat
Lower Houghton Johannesburg 2198 are:

STREET
NUMBER

173

STREET NAME Blouwildebees

STREET TYPE Straat

ADDRESS
EXTENSION

Unit

ADDRESS
EXTENSION
NUMBER

2

SUBURB Lower Houghton

CITY Johannesburg

POSTAL CODE 2198

ADDRESS (FULL-SIMPLE)
parses addresses in which the street address and the city, suburb, and postal code
are combined in a single field. Values are sought for the following tokens:

� STREET

� CITY

� SUBURB

� POSTAL CODE

For example, the token/value pairs for the address
Unit 2 173 Blouwildebees Straat Lower Houghton Johannesburg 2198 are:

STREET Unit 2 173 Blouwildebees Straat

SUBURB Lower Houghton

CITY Johannesburg

POSTAL CODE 2198

ADDRESS (GLOBAL)
parses street addresses. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� BUILDING NAME

� BUILDING NUMBER

� STREET

� EXTENSION

� ADDITIONAL INFO

Locales for QKB 2004A � ENZAF 115

For example, the token/value pairs for the street address 29 Midsommer
Crescent are:

BUILDING
NUMBER

29

STREET Midsommer Crescent

CITY - STATE/PROVINCE - POSTAL CODE
parses “last-line” of mailing addresses. Values are sought for the following tokens:

� SUBURB

� CITY

� POSTAL CODE

For example, the token/value pairs for the location LOWER HOUGHTON,
JOHANNESBURG 2198 are:

SUBURB LOWER HOUGHTON

CITY JOHANNESBURG

POSTAL CODE 2198

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY

� STATE/PROVINCE

� POSTAL CODE

For example, the token/value pairs for the location LOWER HOUGHTON,
JOHANNESBURG 2198 are:

CITY LOWER HOUGHTON JOHANNESBURG

STATE/
PROVINCE

POSTAL CODE 2198

DATE (DMY),
DATE (MDY),
DATE (YMD)

these parse definitions parse dates; they are inherited from the EN locale (see “EN
Parse Definitions” on page 88).

E-MAIL
parses electronic mail addresses. This parse definition is inherited from the L1
locale (see “L1 Parse Definitions” on page 78).

NAME
parses the names of individuals. Values are sought for the following tokens:

� PREFIX

� GIVEN NAME

� MIDDLE NAME

� FAMILY NAME

� SUFFIX

� TITLE/ADDITIONAL INFO

116 ENZAF � Chapter 7

For example, the token/value pairs for the location Wouter L. De Klerk, III
are:

GIVEN NAME Wouter

MIDDLE NAME L.

FAMILY NAME De Klerk

SUFFIX III

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX

� GIVEN NAME

� MIDDLE NAME

� FAMILY NAME

� SUFFIX

� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Mnr Piet van der Merwe are:

PREFIX Mnr

GIVEN NAME Piet

FAMILY NAME van der Merwe

PHONE
parses telephone numbers. Values are sought for the following tokens:

� PREFIX

� COUNTRY CODE

� AREA CODE

� EXCHANGE

� STATION

� EXTENSION ID

� EXTENSION

� SUFFIX

For example, the token/value pairs for the telephone number FAX 27 (11)
123-4567 ext 22 are:

PREFIX FAX

COUNTRY
CODE

27

AREA CODE 11

EXCHANGE 123

STATION 4567

EXTENSION ID ext

EXTENSION 22

Locales for QKB 2004A � ENZAF 117

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar parse definitions in other locales:

� PREFIX

� COUNTRY CODE

� AREA CODE

� BASE NUMBER
� EXTENSION

For example, the token/value pairs for FAX 27 (11) 123-4567 ext 22 are:

PREFIX FAX

COUNTRY
CODE

27

AREA CODE 11

BASE
NUMBER

123–4567

EXTENSION ext 22

ENZAF Pattern Analysis Definitions
The ENZAF locale contains the following pattern analysis definitions:

CHARACTER
returns one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

WORD
returns one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

ENZAF Standardization Definitions
The ENZAF locale includes the following standardization definitions:

ADDRESS
standardizes street addresses. For example, the input address 173
blouwildebees straat, flat 3 is standardized as 173 Blouwildebees St
Flat 3.

ADDRESS (FULL)
standardizes complete mailing addresses. For example, the input address 112
VANBUREN STRAAT UMGENI HEIGHTS 4051 is standardized as 112 van Buren
St, Umgeni Hts 4051.

CITY
standardizes the names of cities. For example, the input value UMGENI HEIGHTS is
standardized as Umgeni Hts.

CITY- STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, the location Lower
Houghton (Johannesburg) 2198 is standardized as Lower Houghton
Johannesburg 2198.

118 FR � Chapter 7

DATE (DMY),
DATE (MDY),
DATE (YMD)

standardize dates that are specified in various combinations of day, month, and
year. These standardization definitions are inherited from the EN locale (see “EN
Standardization Definitions” on page 90).

NAME
standardizes the names of individuals. Names themselves are not changed. For
example, the name Mike is not changed to Michael. The name Cullen, Mister
Peter C. is standardized as Mr Peter C Cullen.

ORGANIZATION
standardizes the names of organizations. For example, the organization name
s.a.a. ltd is standardized as SAA Ltd.

PHONE
standardizes telephone numbers. For example, the phone number 27 11 123
4567 is standardized as +27 (011) 123-4567.

FR

Provides cleansing definitions for the French language.

The FR locale is a descendant of the L1 locale (see “L1” on page 78). The FR locale is
the ancestor of the FRFRA locale (see “FRFRA” on page 120). Descendant locales
inherit definitions from ancestor locales. Inherited definitions may be superseded by
local definitions.

The FR locale includes:
� Gender analysis definitions, see “FR Gender Analysis Definitions” on page 118.
� Match definitions, see “FR Match Definitions” on page 119.
� Parse definitions, see “FR Parse Definitions” on page 119.
� Pattern analysis definitions, see “FR Pattern Analysis Definitions” on page 120.
� Standardization definitions, see “FR Standardization Definitions” on page 120.

FR Gender Analysis Definitions
The FR locale includes the following gender analysis definition:

GENDER
determines gender based on the names of individuals. The determination can be M
for male, F for female, or U for unknown. The gender is unknown if gender clues
conflict or if a name can be applied to either gender and no other gender clues are
provided. For example, the gender determination for the name E. Menguy is U,
but the determination for the name Mrs. E. Menguy is F. The related parse
definition is NAME.

Locales for QKB 2004A � FR 119

FR Match Definitions
The FR locale includes the following match definitions:

CITY
creates match codes for the names of cities. For example, at certain levels of
sensitivity, the following city names generate the same match code:

MONT SAINT MICHEL
Mont St Michel

E-MAIL
creates match codes for electronic mail addresses. For example, at certain levels of
sensitivity, the following e-mail addresses generate the same match code:

leveille@wannadoo.fr
J Levaille <levaille@wanadoo.fr>

The related parse definition is E–MAIL.

NAME
creates match codes for the names of individuals. For example, at certain levels of
sensitivity, the following names generate the same match codes:

Mme. Clarisse Audoucet
Clarisse Audouce

The related parse definition is NAME.

FR Parse Definitions
The FR locale includes the following parse definitions:

E-MAIL
parses e-mail addresses. This parse definition is inherited from the L1 locale (see
“L1” on page 78).

NAME
parses the names of individuals. Values are sought for the following tokens:

� PREFIX
� GIVEN NAME
� FAMILY NAME
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name M Fabrice Michel
Couasnon, PDG are:

PREFIX M

GIVEN NAME Fabrice Michel

FAMILY NAME Couasnon

TITLE/
ADDITIONAL
INFO

PDG

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX
� GIVEN NAME

120 FRFRA � Chapter 7

� MIDDLE NAME
� FAMILY NAME
� SUFFIX
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Mme. Clarisse Audoucet
are:

PREFIX Mme.

GIVEN NAME Clarisse

FAMILY NAME Audoucet

FR Pattern Analysis Definitions
The FR locale includes the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in an input
value. This pattern analysis definition is inherited from the L1 locale (see “L1
Pattern Analysis Definitions” on page 79).

WORD
generates one character of analytical information for each character in an input
value. This pattern analysis definition is inherited from the L1 locale (see “L1
Pattern Analysis Definitions” on page 79).

FR Standardization Definitions
The FR locale includes the following standardization definitions:

CITY
standardizes the names of cities. Common abbreviations are expanded into full
names. For example, Mont St Michel is standardized as MONT SAINT MICHEL.

NAME
standardizes the names of individuals. For example, INSPECTEUR JACK VOILEAU
is standardized as Insp Jack Voileau.

FRFRA

Provides cleansing definitions for the French language and the region of France.

The FRFRA locale is a descendant of the FR locale (see “FR” on page 118).
Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

The FRFRA locale includes:
� Gender analysis definitions, see “FRFRA Gender Analysis Definitions” on page 121.
� Match definitions, see “FRFRA Match Definitions” on page 121.
� Parse definitions, see “FRFRA Parse Definitions” on page 122.
� Pattern analysis definitions, see “FRFRA Pattern Analysis Definitions” on page

124.

Locales for QKB 2004A � FRFRA 121

� Standardization definitions, see “FRFRA Standardization Definitions” on page 124.

FRFRA Gender Analysis Definitions
The gender analysis definition GENDER determines gender based on the names of
individuals. This definition is inherited from the FR locale (see “FR Gender Analysis
Definitions” on page 118).

FRFRA Match Definitions
The FRFRA locale includes the following match definitions:

ADDRESS
creates match codes for the “first line” of a mailing address, which consists of a
street address. At certain levels of sensitivity, the following values generate the
same match codes:

27 rue pasteur
27 R. PASTEUR BP 10

CITY
creates match codes for the names of cities. This definition is inherited from the
FR locale (see “FR Match Definitions” on page 119).

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. Particular values need
not contain all three. For example, at certain levels of sensitivity, the following
values generate the same match codes:

01700 SAINT MAURICE DE BEYNOST
01700 ST MAURICE BEYNOST

The related parse definition is CITY - STATE/PROVINCE - POSTAL CODE.

E-MAIL
creates match codes for electronic mail addresses. This definition is inherited from
the FR locale (see “FR Match Definitions” on page 119).

NAME
creates match codes for the names of individuals. This definition is inherited from
the FR locale (see “FR Match Definitions” on page 119).

ORGANIZATION
creates match codes for organizations. At certain levels of sensitivity, the following
values generate the same match codes:

CECA SA
Ceca

PHONE
creates match codes for telephone numbers. At certain levels of sensitivity, the
following values generate the same match codes:

+33 (1) 60 62 11 11
01 60 62 11 11

The related parse definition is PHONE.

122 FRFRA � Chapter 7

FRFRA Parse Definitions
The FRFRA locale includes the following parse definitions:

ADDRESS
parses the “first line” of mailing addresses, which consist of street names and
numbers. Values are sought for the following tokens:

� STREET NUMBER
� STREET TYPE
� STREET NAME
� EXTENSION
� ADDITIONAL INFO

For example, the token/value pairs for the street address 27 rue pasteur are:

STREET
NUMBER

27

STREET TYPE rue

STREET NAME pasteur

ADDRESS (GLOBAL)
parses street addresses. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� BUILDING NAME
� BUILDING NUMBER
� STREET
� EXTENSION
� ADDITIONAL INFO

For example, the token/value pairs for the street address 27 rue pasteur are:

BUILDING
NUMBER

27

STREET rue pasteur

CITY - STATE/PROVINCE - POSTAL CODE
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� GEOGRAPHICAL CITY
� POSTAL CODE
� CITY
� CEDEX NUMBER
� SPECIAL DISTRIBUTION
� SPECIAL DISTRIBUTION NUMBER
� DEPARTMENT
� ADMINISTRATIVE DISTRICT

For example, the token/value pairs for the location BP/TSA 10 Montferrier sur
Lez F-34092 Montpellier Cedex 5 are:

GEOGRAPHICAL
CITY

Montferrier sur Lez

POSTAL CODE F-34092

Locales for QKB 2004A � FRFRA 123

CITY Montpellier

CEDEX
NUMBER

5

SPECIAL
DISTRIBUTION

BP/TSA

SPECIAL
DISTRIBUTION
NUMBER

10

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY

� STATE/PROVINCE

� POSTAL CODE

For example, the token/value pairs for the location BP/TSA 10 Montferrier sur
Lez F-34092 Montpellier Cedex 5 are:

CITY Montpellier

STATE/
PROVINCE

Cedex 5

POSTAL CODE F-34092

E-MAIL
parses e-mail addresses. This parse definition is inherited from the L1 locale (see
“L1 Parse Definitions” on page 78).

NAME
parses the names of individuals. This parse definition is inherited from the FR
locale (see “FR Parse Definitions” on page 119).

NAME (GLOBAL)
parses the names of individuals. This parse definition is inherited from the FR
locale (see “FR Parse Definitions” on page 119).

PHONE
parses telephone numbers. Values are sought for the following tokens:

� COUNTRY CODE

� AREA CODE

� BASE NUMBER

� EXTENSION

For example, the token/value pairs for the telephone number +33 (1) 60 62 11
11 ext 22 are:

COUNTRY
CODE

33

AREA CODE 1

BASE
NUMBER

60 62 11 11

EXTENSION 22

124 FRFRA � Chapter 7

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar parse definitions in other locales:

� PREFIX

� COUNTRY CODE

� AREA CODE

� BASE NUMBER

� EXTENSION

For example, the token/value pairs for +33 (1) 60 62 11 11 ext 22 are:

COUNTRY
CODE

33

AREA CODE 1

BASE
NUMBER

60 62 11 11

EXTENSION 22

FRFRA Pattern Analysis Definitions
The FRFRA locale contains the following pattern analysis definitions:

CHARACTER
returns one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

WORD
returns one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

FRFRA Standardization Definitions
The FRFRA locale includes the following standardization definitions:

ADDRESS
standardizes street addresses. For example, the input address 100 avenue
d’essomes is standardized as 100 av d’essomes.

CITY
standardizes the names of cities. This definition is inherited from the FR locale
(see “FR Standardization Definitions” on page 120).

CITY- STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, the location
F-34092 Montpellier Cedex 5 is standardized as 34092 MONTPELLIER CD 05.

NAME
standardizes the names of individuals. This definition is inherited from the FR
locale (see “FR Standardization Definitions” on page 120).

ORGANIZATION
standardizes the names of organizations. For example, the organization name
ALLIBERT SOCIETE ANONYME is standardized as ALLIBERT SA.

Locales for QKB 2004A � IT 125

PHONE
standardizes telephone numbers. For example, the phone number (1) 6062 1111
is standardized as 01 60 62 11 11.

PHONE (International Format)
standardizes telephone numbers into a format that includes the country code for
France. For example, the phone number 01 6062 1111 is standardized as +33
(1) 60 62 11 11.

IT

Provides inheritable data cleansing definitions for the Italian language.

The IT locale is a descendant of the L1 locale (see “L1” on page 78). The IT locale is
the ancestor of the ITITA locale (see “ITITA” on page 127). Descendant locales inherit
definitions from ancestor locales. Inherited definitions may be superseded by local
definitions.

The IT locale includes:
� Gender analysis definitions, see “IT Gender Analysis Definitions” on page 125.
� Match definitions, see “IT Match Definitions” on page 125.
� Parse definitions, see “IT Parse Definitions” on page 126.
� Pattern analysis definitions, see “IT Pattern Analysis Definitions” on page 127.
� Standardization definitions, see “IT Standardization Definitions” on page 127.

IT Gender Analysis Definitions
The IT locale contains the following gender analysis definitions:

GENDER
determines gender based on the name of an individual. The determination can be
M for male, F for female, or U for unknown. The gender is unknown if gender clues
conflict or if a name can be applied to either gender and no other gender clues are
provided. For example, the name Stefania Barone generates the gender
determination F. The related parse definition is NAME.

IT Match Definitions
The IT locale contains the following match definitions:

CITY
creates match codes for the names of cities. At certain levels of sensitivity, the
following city names generate the same match codes:

Roma
roma

E-MAIL
creates match codes for e-mail addresses. At certain levels of sensitivity, the
following e-mail addresses generate the same match codes:

itwg@itwg.com
ITWG@itwg.com

126 IT � Chapter 7

The related parse definition is E–MAIL.

NAME
creates match codes for the names of individuals. At certain levels of sensitivity,
the following names generate the same match codes:

Stefania Barone
Stefanya Barone

The related parse definition is NAME.

ORGANIZATION
creates match codes for the names of organizations. At certain levels of sensitivity.
The related parse definition is ORGANIZATION.

TEXT
creates match codes for general text. At certain levels of sensitivity, the following
values generate the same match codes:

Crea la mappa
Crea a la mappe

IT Parse Definitions
The IT locale contains the following parse definitions:

NAME
parses the names of individuals. Values are sought for the following tokens:

� NAME PREFIX
� GIVEN NAME
� FAMILY NAME
� NAME APPENDAGE
� NAME EXTENSION

For example, the token/value pairs for the name Dr. Mario Rossi,
Architetto are:

NAME PREFIX Dr.

GIVEN NAME Mario

FAMILY NAME Rossi

NAME
APPENDAGE

Architetto

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� SUFFIX
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Dr. Mario Rossi,
Architetto are:

PREFIX Dr.

Locales for QKB 2004A � ITITA 127

GIVEN NAME Mario

FAMILY NAME Rossi

TITLE/
ADDITIONAL
INFO

Architetto

ORGANIZATION
parses the names of organizations. Values are sought for the following tokens:

� NAME

� LEGAL FORM

� ADDITIONAL INFO

For example, the token/value pairs for MOC MEDITERRANEO S.R.L. are:

NAME MOC MEDITERRANEO

LEGAL FORM S.R.L.

IT Pattern Analysis Definitions
The IT locale contains the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
character value. This definition is inherited from the L1 locale (see “L1 Pattern
Analysis Definitions” on page 79).

WORD
generates one character of analytical information for each word in the input
character value. This definition is inherited from the L1 locale (see “L1 Pattern
Analysis Definitions” on page 79).

IT Standardization Definitions
The IT locale contains the following standardization definitions:

CITY
standardizes the names of cities. For example, Castel di Sangro is standardized
as CASTEL DI SANGRO.

NAME
standardizes the names of individuals. For example, dottor mario rossi is
standardized as DOTT. MARIO ROSSI.

ORGANIZATION
standardizes the names of organizations. For example, CONSULENZE AMBIENTALI
S,P,A, is standardized as CONSULENZE AMBIENTALI SPA.

ITITA

Provides cleansing definitions for the Italian language and the region of Italy.

128 ITITA � Chapter 7

The ITITA locale is a descendant of the IT locale (see “IT” on page 125). Descendant
locales inherit definitions from ancestor locales. Inherited definitions may be
superseded by local definitions.

Global definitions can be referenced any time that two or more locales are loaded into
memory (see “Global Definitions” on page 78).

The ITITA locale includes:

� Gender analysis definitions, see “ITITA Gender Analysis Definitions” on page 128.

� Match definitions, see “ITITA Match Definitions” on page 128.

� Parse definitions, see “ITITA Parse Definitions” on page 129.

� Pattern analysis definitions, see “ITITA Pattern Analysis Definitions” on page 131.

� Standardization definitions, see “ITITA Standardization Definitions” on page 131.

ITITA Gender Analysis Definitions

The ITITA locale contains the following gender analysis definitions:

GENDER
determines gender based on the names of individuals. This definition is inherited
from the IT locale (see “IT Gender Analysis Definitions” on page 125).

ITITA Match Definitions

The ITITA locale contains the following match definitions:

ADDRESS
creates match codes for the “first line” of mailing addresses. At certain levels of
sensitivity, the following values generate the same match codes:

corso Sempione 17-10
via Sempione 17/10

The related parse definition is ADDRESS.

ADDRESS (STAND-ALONE)
creates match codes for stand–alone mailing addresses, which may differ by street
type only. The related parse definition is ADDRESS.

CITY
creates match codes for the names of cities. This definition is inherited from the IT
locale (see “IT Match Definitions” on page 125).

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. At certain levels of
sensitivity, the following locations generate the same match code:

Sicilia, PA 90100
Sicillia, PA 90100

The related parse definition is CITY - STATE/PROVINCE - POSTAL CODE.

E-MAIL
creates match codes for e-mail addresses. This definition is inherited from the IT
locale (see “IT Match Definitions” on page 125).

NAME
creates match codes for the names of individuals. This definition is inherited from
the IT locale (see “IT Match Definitions” on page 125).

Locales for QKB 2004A � ITITA 129

ORGANIZATION
creates match codes for organization names. At certain levels of sensitivity, the
following names generate the same match codes:

Servizi Tecnologie Ambientali S.P.A.
Servizi Tecnologie Ambientali SPA

The related parse definition is ORGANIZATION.

PHONE
creates match code for telephone numbers. At certain levels of sensitivity, the
following values generate the same match codes:

02-809662
028 - 09662

The related parse definition is PHONE.

TEXT
creates match codes for general text. This definition is inherited from the IT locale
(see “IT Match Definitions” on page 125).

ITITA Parse Definitions
The ITITA locale contains the following parse definitions:

ADDRESS
parses the “first line” of mailing addresses. Values are sought for the following
tokens:

� STREET TYPE

� ADDITIONAL STREET TYPE

� STREET NAME

� STREET NUMBER

� STREET NUMBER ADDITIONAL INFO

� FIRST EXTENSION

� SECOND EXTENSION

� THIRD EXTENSION

For example, the token/value pairs for the value via Mario Rossi 5/A palazzo
Martini angolo via Marinetti are:

STREET TYPE via

STREET NAME Mario Rossi

STREET
NUMBER

5

STREET
NUMBER
ADDITIONAL
INFO

A

FIRST
EXTENSION

palazzo Martini

SECOND
EXTENSION

angolo via Marinetti

130 ITITA � Chapter 7

ADDRESS (GLOBAL)
parses the “first line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definition in other locales:

� BUILDING NAME

� BUILDING NUMBER

� STREET

� EXTENSION

� ADDITIONAL INFO

For example, the token/value pairs for VIA DEI SETAIOLI 17 BLOCCO 10 are:

BUILDING
NUMBER

17

STREET VIA DEI SETAIOLI

EXTENSION BLOCCO 10

CITY - STATE/PROVINCE - POSTAL CODE
parses the “last line” of mailing addresses. Values are sought for the following
tokens:

� CITY

� PROVINCE

� STATE

� CAP

For example, the token/value pairs for Navelli, 67020 L’Aquila are:

CITY Navelli

PROVINCE L’Aquila

CAP 67020

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY

� STATE/PROVINCE

� POSTAL CODE

For example, the token/value pairs for Roma, RM 00100 are:

CITY Roma

STATE/
PROVINCE

RM

POSTAL CODE 00100

NAME
parses the names of individuals. This definition is inherited from the IT locale (see
“IT Parse Definitions” on page 126).

NAME (GLOBAL)
parses the names of individuals, using a set of tokens that are shared by similar
definitions in other locales. This definition is inherited from the IT locale (see “IT
Parse Definitions” on page 126).

Locales for QKB 2004A � ITITA 131

PHONE
parses telephone numbers. Values are sought for the following tokens:

� COUNTRY CODE

� PREFIX

� BASE NUMBER

For example, the token/value pairs for 39 347/09987676 are:

COUNTRY
CODE

39

PREFIX 347

BASE
NUMBER

09987676

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� PREFIX

� COUNTRY CODE

� AREA CODE

� BASE NUMBER

� EXTENSION

For example, the token/value pairs for 06-448991 are:

AREA CODE 06

BASE
NUMBER

448991

ITITA Pattern Analysis Definitions
The ITITA locale contains the following pattern analysis definitions:

CHARACTER
returns one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see“L1 Pattern Analysis
Definitions” on page 79).

WORD
returns one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

ITITA Standardization Definitions
The ITITA locale contains the following standardization definitions:

ADDRESS
standardizes the “first line” of mailing addresses. For example, v. mario rossi
5 is standardized as VIA MARIO ROSSI, 5.

CITY
standardizes the names of cities. This definition is inherited from the IT locale
(see “IT Standardization Definitions” on page 127).

132 NL � Chapter 7

CITY - STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, Navelli, 67020
L’Aquila is standardized as NAVELLI 67020 AQ.

NAME
standardizes the names of individuals. This definition is inherited from the IT
locale (see “IT Standardization Definitions” on page 127).

ORGANIZATION
standardizes the names of organizations. This definition is inherited from the IT
locale (see “IT Standardization Definitions” on page 127).

PHONE
standardizes telephone numbers. For example, 39 347/09987676 is standardized
as 0039 347 09987676.

NL

Provides inheritable data cleansing definitions for the Dutch language.

The NL locale is a descendant of the L1 locale (see “L1” on page 78). The NL locale is
the ancestor the NLNLD locale (see “NLNLD” on page 133). Descendant locales inherit
definitions from ancestor locales. Inherited definitions may be superseded by local
definitions.

The NL locale includes:

� Parse definitions, see “NL Parse Definitions” on page 132.

� Pattern analysis definitions, see “NL Pattern Analysis Definitions” on page 132.

NL Parse Definitions

The NL locale contains the following parse definitions:

E-MAIL
parses the addresses of electronic mail. This parse definition is inherited from the
L1 locale (see “L1 Parse Definitions” on page 78).

NL Pattern Analysis Definitions

The NL locale contains the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

WORD
generates one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

Locales for QKB 2004A � NLNLD 133

NLNLD

Provides cleansing definitions for the Dutch language and the region of The Netherlands.

The NLNLD locale is a descendant of the NL locale (see “NL” on page 132).
Descendant locales inherit definitions from ancestor locales. Inherited definitions may
be superseded by local definitions.

Global definitions can be referenced any time that two or more locales are loaded into
memory (see “Global Definitions” on page 78).

The NLNLD locale includes:
� Match definitions, see “NLNLD Match Definitions” on page 133.
� Parse definitions, see “NLNLD Parse Definitions” on page 134.
� Pattern analysis definitions, see “NLNLD Pattern Analysis Definitions” on page

137.
� Standardization definitions, see “NLNLD Standardization Definitions” on page 137.

NLNLD Match Definitions
The NLNLD locale contains the following match definitions:

ADDRESS
creates match codes for the “first line” of mailing addresses. At certain levels of
sensitivity, the following street addresses generate the same match codes:

Strawinskylaan 3075
Strawinskyln 3075

CITY
creates match codes for the names of cities. At certain levels of sensitivity, the
following city names generate the same match codes:

AMSTERDAM
z. amsterdam

CITY - STATE/PROVINCE - POSTAL CODE
creates match codes for the “last line” of mailing addresses. At certain levels of
sensitivity, the following locations generate the same match code:

1077 ZX AMSTERDAM NOORD-HOLLAND
1077 zx amsterdam

The related parse definition is CITY - STATE/PROVINCE - POSTAL CODE.

E-MAIL
creates match codes for electronic mail addresses. At certain levels of sensitivity,
the following e-mail addresses generate the same match codes:

mail@filtermat.nl
MAIL@filtermat.nl

The related parse definition is E–MAIL.

NAME
creates match codes for the names of individuals. At certain levels of sensitivity,
the following names generate the same match codes:

Peter von den Hoogenband
Pieter v Hoogenband

134 NLNLD � Chapter 7

The related parse definition is NAME.

NAME (INITIALS)
creates match codes based on the initials of the given names of individuals. At
certain levels of sensitivity, the following names generate the same match codes:

Peter von den Hoogenband
P von den Hoogenband

The related parse definition is NAME.

NAME (NO VOWEL DISTINCTION)
creates match codes for the names of individuals by ignoring all of the vowels in
those names. At certain levels of sensitivity, the following names generate the
same match codes:

Wouter Arts
Wuter Erts

The related parse definition is NAME.

ORGANIZATION
creates match codes for the names of organizations. At certain levels of sensitivity,
the following organization names generate the same match codes:

Essent Energie Noord N.V.
ESSENT ENERGIE

The related parse definition is ORGANIZATION.

ORGANIZATION (ABBR)
creates match codes for organizations based on their abbreviations. At certain
levels of sensitivity, the following organization names generate the same match
codes:

ERIJKO LIJSTEN BV
EL

The related parse definition is ORGANIZATION.

PHONE
creates match codes for telephone numbers. At certain levels of sensitivity, the
following phone numbers generate the same match codes:

0317-477477
0317 477 477

The related parse definition is PHONE.

NLNLD Parse Definitions

The NLNLD locale contains the following parse definitions:

ADDRESS
parses the “first line” of mailing addresses. Values are sought for the following
tokens:

� STREET

� NUMBER

� ADDRESS EXTENSION

� ADDITIONAL INFO

Locales for QKB 2004A � NLNLD 135

For example, the token/value pairs for Gebouw 3, Nachtwachtlaan 20 are:

STREET Nachtwachtlaan

NUMBER 20

ADDRESS
EXTENSION

Gebouw 3

ADDRESS (GLOBAL)
parses the “first line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definition in other locales:

� BUILDING NAME
� BUILDING NUMBER
� STREET
� EXTENSION
� ADDITIONAL INFO

For example, the token/value pairs for Strawinskylaan 3075 are:

BUILDING
NUMBER

3075

STREET Strawinskylaan

CITY - STATE/PROVINCE - POSTAL CODE
parses the “last line” of mailing addresses. Values are sought for the following
tokens:

� POSTAL CODE NUMBER
� POSTAL CODE CHARACTERS
� TOWN
� TOWN PART
� PROVINCE

For example, the token/value pairs for 1270 EB Huizen are:

POSTAL CODE
NUMBER

1270

POSTAL CODE
CHARACTERS

EB

TOWN Huizen

CITY - STATE/PROVINCE - POSTAL CODE (GLOBAL)
parses the “last line” of mailing addresses. Values are sought for the following
tokens, which are shared by similar definitions in other locales:

� CITY
� STATE/PROVINCE
� POSTAL CODE

For example, the token/value pairs for 1077 ZX Amsterdam are:

CITY Amsterdam

POSTAL CODE 1077 ZX

E-MAIL
creates match codes for e-mail addresses. This definition is inherited from the L1
locale (see “L1 Parse Definitions” on page 78).

136 NLNLD � Chapter 7

NAME
parses the names of individuals. Values are sought for the following tokens:

� PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� SUFFIX
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Ruud Van Gullit are:

GIVEN NAME Ruud

FAMILY NAME Van Gullit

NAME (GLOBAL)
parses the names of individuals. Values are sought for the following tokens, which
are shared by similar definitions in other locales:

� PREFIX
� GIVEN NAME
� MIDDLE NAME
� FAMILY NAME
� SUFFIX
� TITLE/ADDITIONAL INFO

For example, the token/value pairs for the name Marco Van Basten are:

GIVEN NAME Marco

FAMILY NAME Van Basten

ORGANIZATION
parses the names of organizations. Values are sought for the following tokens:

� NAME
� LEGAL FORM
� NOISE WORD NAME

For example, the token/value pairs for VAN HELDEN REKLAMEARTIKELEN BV are:

NAME VAN HELDEN REKLAMEARTIKELEN

LEGAL FORM BV

PHONE
parses telephone numbers. Values are sought for the following tokens:

� PREFIX
� COUNTRY CODE
� REGION CODE
� BASE NUMBER
� EXTENSION WORD
� EXTENSION NUMBER
� ADDITIONAL INFO

For example, the token/value pairs for 31493313006 are:

COUNTRY
CODE

31

Locales for QKB 2004A � NLNLD 137

REGION CODE 049

BASE
NUMBER

3313006

PHONE (GLOBAL)
parses telephone numbers. Values are sought for the following tokens, which are
shared by similar definitions in other locales:

� PREFIX
� COUNTRY CODE
� AREA CODE
� BASE NUMBER
� EXTENSION

For example, the token/value pairs for 0317 477477 are:

AREA CODE 0317

BASE
NUMBER

477477

NLNLD Pattern Analysis Definitions
The NLNLD locale contains the following pattern analysis definitions:

CHARACTER
generates one character of analytical information for each character in the input
value. This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

WORD
generates one character of analytical information for each word in the input value.
This definition is inherited from the L1 locale (see “L1 Pattern Analysis
Definitions” on page 79).

NLNLD Standardization Definitions
The NLNLD locale contains the following standardization definitions:

ADDRESS
standardizes the “first line” of mailing addresses. For example, the street address
Strawinskylaan 3075 is standardized as STRAWINSKYLN 3075.

ADDRESS (SHORT STREET TYPE)
standardizes the “first line” of mailing addresses, using abbreviated street types.
For example, the street address Markwegzuid 2a is standardized as MARKWEGZUID
2A.

CITY - STATE/PROVINCE - POSTAL CODE
standardizes the “last line” of mailing addresses. For example, the postal region
2625 BV Delft Zuid Holland is standardized as 2625 BV DELFT ZH.

NAME
standardizes the names of individuals. For example, the name Marco v Basten is
standardized as MARCO VAN BASTEN.

ORGANIZATION
standardizes the names of organizations. For example, SAS Institute b.v. is
standardized as SAS INST BV.

PHONE
standardizes telephone numbers. For example, the phone number 31493313006 is
standardized as 31 3313006 049.

138

139

C H A P T E R

8
System Options

System Options for SAS DATA Quality Server 139

System Options for SAS DATA Quality Server

The SAS Data Quality Server software provides two system options, both of which
must be specified before you begin to cleanse data. The DQLOCALE= system option
specifies an ordered list of locales. The DQSETUPLOC= system option specifies the
location of the SAS Data Quality Server setup file.

To specify values for the DQLOCALE= and DQSETUPLOC= system options, use the
%DQLOAD AUTOCALL macro, as described in “%DQLOAD AUTOCALL Macro” on
page 41.

Note: It is not recommended that you specify these system options by any means
other than invoking the AUTOCALL macro %DQLOAD. Failure to use %DQLOAD or
misapplied use of default settings for these system options can result in data that is
cleansed with inappropriate locales. �

The data quality system options can be referenced by the OPTIONS procedure by
specifying GROUP=DATAQUALITY.

DQLOCALE=

Specifies an ordered list of locales.

Requirements: You must specify at least one locale.

Syntax
DQLOCALE=(locale1 <locale2 ...localeN>)

locale1 <locale2 ...localeN>
specifies an ordered list of locales. The list determines how the data is cleansed.
Locales are applied to the data in the order in which they are specified. All locales in
the list must exist in the Quality Knowledge Base.

140 DQSETUPLOC= � Chapter 8

Details
The DQLOCALE= system option identifies the locales that will be referenced during
data cleansing. The order of the locales in the list affects the locale matching scheme of
the DQMATCH procedure.

Unlike other system options, the value of the DQLOCALE= system option must be
loaded into memory. Normally, system option values go into the system options table
only. Since the locales that are specified with this option must also be loaded into
memory, always set the value of this system option by invoking the AUTOCALL macro
%DQLOAD. This macro takes as its arguments the values for the DQLOCALE= and
DQSETUPLOC= system options.

Note: It is recommended that you invoke the AUTOCALL macro %DQLOAD at the
beginning of each data cleansing program or session. Failure to do so may generate
unintended output. �

SAS specifies no default value for the DQLOCALE= system option.
It is recommended that you not use an AUTOEXEC to load default locales when you

invoke SAS. Loading default locales can allow you to apply the wrong locales to your
data, which generates unintended output. Loading default locales also wastes resources
when you are not cleansing data. Instead of loading default locales, invoke the
%DQLOAD macro at the beginning of each data cleansing program or session, as
described in “%DQLOAD AUTOCALL Macro” on page 41.

DQSETUPLOC=

Specifies the location of the SAS Data Quality Server setup file.

Syntax
DQSETUPLOC=“file-specification”

Details
The DQSETUPLOC= system option specifies the location of the SAS Data Quality
Server setup file. By default, that setup file is named DQSETUP.TXT. The setup file
identifies the location of the Quality Knowledge Base, which contains the locales that
are used to cleanse data. Be sure to change the value of this option with the
AUTOCALL macro %DQLOAD if you:

� Use a different Quality Knowledge Base.
� Move the Quality Knowledge Base.
� Change the location of the setup file.

If you move the Quality Knowledge Base you need to change the contents of the setup
file. Note that if you move the Quality Knowledge Base, you must not change the name
of the last storage locations or the name of the files themselves. The contents of the
setup file must be updated accordingly.

To ensure that you are using the correct Quality Knowledge Base, always set the
DQSETUPLOC= system option by invoking the AUTOCALL macro %DQLOAD. This
macro takes as its arguments the values for the DQSETUPLOC= and DQLOCALE=
system options, as described in “%DQLOAD AUTOCALL Macro” on page 41.

System Options � DQSETUPLOC= 141

Note: It is recommended that you invoke the AUTOCALL macro %DQLOAD at the
beginning of each data cleansing program or session. Failure to do so may generate
unintended output. �

142

143

Glossary

analysis data set
in SAS data quality, a SAS output data set that provides information on the degree of
divergence in specified character values.

Blue Fusion Data format
a file format for schemes that can be created and applied in data quality software
from SAS and from DataFlux (a SAS company).

blank value
in SAS data quality, an empty or missing value in an input character variable.

case definition
a part of a locale that is referenced during data cleansing to impose on character
values a consistent usage of uppercase and lowercase letters.

cluster
in SAS data quality, a set of character values with the same match code.

compound match code
a match code that consists of a concatenation of match codes from values from two or
more input character variables in the same observation. A delimiter can be specified
to separate the individual match codes in the concatenation. See also single-word
match code and multiple-word match code.

data analysis
in SAS data quality, a process that evaluates and reports on the degree of divergence
in specified character values. See also analysis data set.

data cleansing
a process that increases the value of character data through data standardization,
data transformation, and removal of blank values.

data quality
refers to the relative value of data, based on the accuracy of the knowledge that can
be generated using that data. High quality data is consistent, accurate,
unambiguous, and efficient when processed. See also SAS data quality.

data standardization
a data cleansing process that references standardization definitions to change
character values to a single specified format.

144 Glossary

data transformation
in SAS data quality, a data cleansing process that applies a scheme to a specified
character variable. The scheme creates match codes internally to create clusters. All
values in each cluster are then transformed to the standardization value that is
specified in the scheme for each cluster.

definition
in SAS data quality, a part of a locale that is referenced during data cleansing. See
also case, guess, gender, identification, match, parse, and standardization definition.

delimited character value
a value that contains delimiters that were inserted by a SAS Data Quality Server
function, where that function referenced a parse definition in a locale.

delimiter
in SAS data quality, a character value that separates words in a character value that
has been parsed. A delimiter character can also be optionally inserted between
individual match codes in a compound match code.

gender definition
a part of a locale that is referenced during data analysis and data cleansing to
determine gender based on the names of individuals.

guess definition
a part of a locale that is referenced during the selection of the locale in the locale list
that is the best choice for use in the analysis or cleansing of the specified character
values.

identification definition
a part of a locale that is referenced during data analysis or data cleansing to
determine categories for character values.

locale
in SAS data quality, a set of definitions in a quality knowledge base that are specific
to a national language and region. The definitions are referenced during data
analysis and data cleansing.

locale definition
See definition.

locale list
an ordered list of locales that is loaded into memory prior to data analysis or data
cleansing. The first locale in the list is the default locale.

match code
an encoded version of a character value that is created as a basis for data analysis
and data cleansing. Match codes are used to cluster and compare character values.
See also sensitivity.

match definition
a part of a locale that is referenced during the creation of match codes. Each match
definition is specific to a category of data content. In the ENUSA locale, for example,
match definitions are provided for names, e-mail addresses, and street addresses,
among others. See also sensitivity.

multiple-word match code
a match code that is created for a single input character value that contains blank
spaces. Separate match codes are created for each word. The separate match codes
are concatenated into a single match code. See also single-word match code and
compound match code.

Glossary 145

parse
in SAS data quality, a process that inserts into a character value a series of
delimiters, as dictated by a specified parse definition.

parse definition
a part of a locale that is referenced during the parsing of character values. The parse
definition specifies the number and location of the delimiters that are inserted during
parsing. The location of the delimiters depends on the content of the character
values. See also token.

quality knowledge base
a collection of locales and other information that is referenced during data analysis
and data cleansing.

SAS data quality
refers to a collection of SAS software products that are used to increase the value of
data through data analysis and data cleansing.

scheme
in SAS data quality, a reusable collection of match codes and standardization values
that is applied to input character values for the purposes of transformation or
analysis. Schemes can be created in Blue Fusion Data format or SAS format.

sensitivity
in SAS data quality, a value that specifies the degree of complexity in newly created
match codes. A higher sensitivity value results in greater match code complexity,
which in turn results in a larger number of clusters, with fewer members in each
cluster.

single–word match code
a match code that is created for a single input character value that contains no blank
spaces. See also multiple-word match code and compound match code.

standardize
in SAS data quality, to impose a specified format on character values using a
standardization definition.

standardization definition
a part of a locale that is referenced during data cleansing to impose a specified
format on character values.

token
in SAS data quality, identifies by name a word in a delimited character value.
Parsing functions in the SAS Data Quality Server software can insert or remove a
word from a character value by specifying a token name. The software locates the
word by counting delimiters, up to the number of delimiters that is associated with
the specified token.

standardization value
in SAS data quality, the value in a scheme that is applied to the input character
value(s) that have a match code that is identical to the match code in the scheme
that is associated with the standardization value.

146

Index 147

Index

A
analysis data sets 7

creating 29, 31, 36
ANALYSIS= option

CREATE statement (DQSCHEME) 31
APPLY statement

DQSCHEME procedure 33
Australia 91
autocall macros 41

B
BFD format

converting SAS schemes to 35
BFD option

PROC DQSCHEME statement 30
BFD schemes

creating 38
BFDTOSAS option

CONVERT statement (DQSCHEME) 35
Blue Fusion Data format

converting SAS schemes to 35
Blue Fusion Data schemes

creating 38

C
CALL routines 45

scheme-apply 48
case definitions 13, 48

ENUSA locale 104
ENZAF locale 111

case functions 16, 47
CLUSTER= option

PROC DQMATCH statement 20
CLUSTER_BLANKS option

PROC DQMATCH statement 20
CLUSTER_ONLY option

PROC DQMATCH statement 20
clusters 10
compound match codes 9
CONVERT statement

DQSCHEME procedure 35
CREATE statement

DQSCHEME procedure 31
CRITERIA statement

DQMATCH procedure 21

D
DATA= option

PROC DQMATCH statement 20
PROC DQSCHEME statement 30

date standardization
EN locale 13

DE locale 79
gender definitions 79
match definitions 80
parse definitions 80
pattern analysis definitions 81
standardization definitions 81

DEDEU locale 82
gender analysis definitions 82
identification definitions 82
match definitions 82
parse definitions 83
pattern analysis definitions 86
standardization definitions 86

DELIMITER option
PROC DQMATCH statement 20

DELIMSTR= option
CRITERIA statement (DQMATCH) 21

DQCASE function 48
DQGENDER function 49
DQGENDERINFOGET function 50
DQGENDERPARSED function 52
DQIDENTIFY function 53
%DQLOAD autocall macro 41
DQLOCALE= system option 139
DQLOCALEGUESS function 53
DQLOCALEINFOGET function 54
DQLOCALEINFOLIST function 55
DQMATCH function 9, 56
DQMATCH procedure 19

creating match codes 9
examples 22
overview 19
syntax 19

DQMATCHINFOGET function 57
DQMATCHPARSED function 9, 58
DQPARSE function 59
DQPARSEINFOGET function 61
DQPARSETOKENGET function 62
DQPARSETOKENPUT function 63
DQPATTERN function 64
%DQPUTLOC autocall macro 42
DQSCHEME procedure 29

examples 36

overview 29
syntax 29

DQSCHEMEAPPLY CALL routine 65
DQSCHEMEAPPLY function 69
DQSETUPLOC= system option 140
DQSTANDARDIZE function 73
DQTOKEN function 74
%DQUNLOAD autocall macro 43
Dutch language 132

the Netherlands 133

E
element mode 8
EN locale 86

date standardization 13
gender definitions 87
match definitions 87
parse definitions 88
pattern analysis definitions 90
standardization definitions 90

ENAUS locale 3, 91
gender definitions 91
match definitions 92
parse definitions 93
pattern analysis definitions 96
standardization definitions 96

ENGBR locale 97
gender definitions 97
match definitions 97
parse definitions 98
pattern analysis definitions 102
standardization definitions 103

English language 86
Australia 91
Great Britain 97
South Africa 111
United States of America 103

ENUSA locale 103
case definitions 104
gender analysis definitions 104
identification definitions 104
match definitions 105
parse definitions 107
pattern analysis definitions 109
standardization definitions 110

ENZAF locale 111
case definitions 111
gender analysis definitions 111

148 Index

match definitions 112
parse definitions 113
pattern analysis definitions 117
standardization definitions 117

F
FR locale 118

gender analysis definitions 118
match definitions 119
parse definitions 119
pattern analysis definitions 120
standardization definitions 120

French language 118, 120
FRFRA 120
FRFRA locale

gender analysis definitions 121
match definitions 121
parse definitions 122
pattern analysis definitions 124
standardization definitions 124

functions 15, 45
case functions 16, 47
gender analysis functions 16, 47
identification functions 16, 47
list of 46
listed by category 46
locale guessing functions 16, 47
match code functions 15
matching functions 47
parsing functions 15, 47
pattern analysis functions 16, 47
reporting functions 17, 48
scheme-apply functions 15, 48
standardization functions 16, 48

G
gender analysis definitions 14

DEDEU locale 82
ENUSA locale 104
ENZAF 111
FR locale 118
FRFRA locale 121
IT locale 125
ITITA locale 128

gender analysis functions 16, 47
gender definitions

DE locale 79
EN locale 87
ENAUS locale 91
ENGBR locale 97

gender determination 49
from parsed name 52

German language 79, 82
global locale guess definitions 78
global parse definitions 12
Great Britain 97

I
identification definitions 14

DEDEU locale 82

ENUSA locale 104
identification functions 16, 47
IN= option

CONVERT statement (DQSCHEME) 35
INCLUDE_ALL option

CREATE statement (DQSCHEME) 31
input requirements 6
IT locale 125

gender analysis definitions 125
match definitions 125
parse definitions 126
pattern analysis definitions 127
standardization definitions 127

Italian language 125
Italy 128

Italy 128
ITITA locale 128

gender analysis definitions 128
match definitions 128
parse definitions 129
pattern analysis definitions 131
standardization definitions 131

L
L1 locale 78

parse definitions 78
pattern analysis definitions 79

Latin-1 character encoding standard 78
locale definitions 3, 11

case definitions 13
count of 55
date standardization, EN locale 13
gender analysis definitions 14
global parse definitions 12
identification definitions 14
locale guess definitions 14
match definitions 12
name of 55
parse definitions 11
pattern analysis definitions 14
scheme-build match definitions 13
standardization definitions 13

locale guess definitions 14
global 78

locale guessing functions 16, 47
LOCALE= option

APPLY statement (DQSCHEME) 33
CREATE statement (DQSCHEME) 31
PROC DQMATCH statement 20

locales 3, 4
adding 5
default 5
displaying information about 5, 42
downloading 5
getting information about 54, 78
loading into memory 4, 41
name of 53
ordered list of 139
table of 77
unloading 5
unloading to free memory 43
updating 5

log
displaying locale information 42

M
match code functions 15
match codes

compound codes 9
creating 9, 19, 21
creating for parsed values 26
length of 10
returning from character value 56
returning from parsed character value 58
simple codes 9
truncation of 10

match definitions 12
DE locale 80
DEDEU locale 82
EN locale 87
ENAUS locale 92
ENGBR locale 97
ENUSA locale 105
ENZAF locale 112
FR locale 119
FRFRA locale 121
IT locale 125
ITITA locale 128
NLNLD locale 133
scheme-build 13

MATCHCODE= option
CRITERIA statement (DQMATCH) 21
PROC DQMATCH statement 21

MATCHDEF= option
APPLY statement (DQSCHEME) 33
CREATE statement (DQSCHEME) 31
CRITERIA statement (DQMATCH) 22

matching functions 47
matching values

default sensitivity 22
minimal sensitivity 25
mixed sensitivities 24

meta options 8
MODE= option

APPLY statement (DQSCHEME) 34
CREATE statement (DQSCHEME) 31

N
Netherlands 133
NL locale 132

parse definitions 132
pattern analysis definitions 132

NLNLD locale 133
match definitions 133
parse definitions 134
pattern analysis definitions 137
standardization definitions 137

O
OUT= option

CONVERT statement (DQSCHEME) 35
PROC DQMATCH statement 21
PROC DQSCHEME statement 30

Index 149

P
parse definitions 11

DE locale 80
DEDEU locale 83
EN locale 88
ENAUS locale 93
ENGBR locale 98
ENUSA locale 107
ENZAF locale 113
FR locale 119
FRFRA locale 122
global 12
IT locale 126
ITITA locale 129
L1 locale 78
name of 50, 57
NL locale 132
NLNLD locale 134
token names in 61

parsed character values 59
inserting tokens into 63
returning tokens from 62
returning updated values 63

parsed values
match codes for 26

parsing functions 15, 47
pattern analysis

returning from input character value 64
pattern analysis definitions 14

DE locale 81
DEDEU locale 86
EN locale 90
ENAUS locale 96
ENGBR locale 102
ENUSA locale 109
ENZAF locale 117
FR locale 120
FRFRA locale 124
IT locale 127
ITITA locale 131
L1 locale 79
NL locale 132
NLNLD locale 137

pattern analysis functions 16, 47
phrase mode 8
PROC DQMATCH statement 20
PROC DQSCHEME statement 30

Q
Quality Knowledge Base 3

table of locales 77

R
reporting functions 17, 48

S
SAS Data Quality Server 1

autocall macros 41
CALL routines 45
functions 15, 45
input requirements 6
setup file 5
system options 139

SAS format
converting BFD schemes to 35

SASTOBFD option
CONVERT statement (DQSCHEME) 35

scheme-apply CALL routines 48
scheme-apply functions 15, 48
scheme-build match definitions 13
scheme data sets

applying schemes 7
creating 6, 29, 31

SCHEME= option
APPLY statement (DQSCHEME) 34
CREATE statement (DQSCHEME) 32

SCHEME_LOOKUP= option
APPLY statement (DQSCHEME) 34
CREATE statement (DQSCHEME) 32

schemes 6
analysis data sets 7
apply mode 8
applying 7, 33, 38, 65, 69
converting between SAS and BFD formats 35
creating 6, 37
meta options 8
returning transformation flag 65
returning transformed value 65, 69
transformation values 6
z/OS 8

sensitivity 11
matching values, default sensitivity 22
matching values, minimal sensitivity 25
matching values, mixed sensitivities 24

SENSITIVITY= option
APPLY statement (DQSCHEME) 34
CREATE statement (DQSCHEME) 32
CRITERIA statement (DQMATCH) 22

setup file 5
editing 5
location of 140

simple match codes 9

South Africa 111

standardization 73

standardization definitions 13

DE locale 81

DEDEU locale 86

EN locale 90

ENAUS locale 96

ENGBR locale 103

ENUSA locale 110

ENZAF locale 117

FR locale 120

FRFRA locale 124

IT locale 127

ITITA locale 131

NLNLD locale 137

standardization functions 16, 48

system options

SAS Data Quality Server 139

setting values 41

T
token names

in parse definitions 61

tokens

inserting into parsed character values 63

returning from character values 74

returning from parsed character values 62

returning updated parsed character values 63

transformation

schemes for 6

U
United States of America 103

V
VAR= option

APPLY statement (DQSCHEME) 35

CREATE statement (DQSCHEME) 33

CRITERIA statement (DQMATCH) 22

Z
z/OS

applying schemes 8

Your Turn

If you have comments or suggestions about SAS 9.1.2 Data Quality Server: Reference,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	General Enhancements
	Locales
	Functions
	System Options
	AUTOCALL Macros
	DQSCHEME Procedure
	DQMATCH Procedure

	Introduction to SAS Data Quality Server
	Overview of SAS Data Quality Server

	Using the SAS Data Quality Server Software
	About the Quality Knowledge Base
	About Locales
	About the Data Quality Setup File
	About Input Requirements
	Transforming Data with Schemes
	Creating Match Codes
	About Clusters
	About Sensitivity
	About Locale Definitions
	Using the SAS Data Quality Server Functions

	The DQMATCH Procedure
	The DQMATCH Procedure in SAS Data Quality Server
	DQMATCH Procedure Syntax
	CRITERIA Statement

	DQMATCH Examples
	Example 1: Matching Values Using the Default Sensitivity
	Example 2: Matching Values Using Mixed Sensitivities
	Example 3: Matching Values Using Minimal Sensitivity
	Example 4: Creating Match Codes for Parsed Values

	The DQSCHEME Procedure
	The DQSCHEME Procedure
	DQSCHEME Procedure Syntax
	CREATE Statement
	APPLY Statement
	CONVERT Statement

	PROC DQSCHEME Examples
	Example 1: Creating an Analysis Data Set
	Example 2: Creating Schemes
	Example 3: Creating BFD Schemes
	Example 4: Applying Schemes

	AUTOCALL Macros
	AUTOCALL Macros for SAS Data Quality Server
	%DQLOAD AUTOCALL Macro
	%DQPUTLOC AUTOCALL Macro
	%DQUNLOAD AUTOCALL Macro

	Functions and CALL Routines
	Functions and CALL Routines in SAS Data Quality Server
	Functions Listed Alphabetically
	Functions Listed by Category
	DQCASE Function
	DQGENDER Function
	DQGENDERINFOGET Function
	DQGENDERPARSED Function
	DQIDENTIFY Function
	DQLOCALEGUESS Function
	DQLOCALEINFOGET Function
	DQLOCALEINFOLIST Function
	DQMATCH Function
	DQMATCHINFOGET Function
	DQMATCHPARSED Function
	DQPARSE Function
	DQPARSEINFOGET Function
	DQPARSETOKENGET Function
	DQPARSETOKENPUT Function
	DQPATTERN Function
	DQSCHEMEAPPLY CALL Routine
	DQSCHEMEAPPLY Function
	DQSTANDARDIZE Function
	DQTOKEN Function

	Locales for QKB 2004A
	Overview
	Global Definitions
	L1
	DE
	DEDEU
	EN
	ENAUS
	ENGBR
	ENUSA
	ENZAF
	FR
	FRFRA
	IT
	ITITA
	NL
	NLNLD

	System Options
	System Options for SAS DATA Quality Server
	DQLOCALE=
	DQSETUPLOC=

	Glossary
	Index

