Contents

What's New vii
Overview viii
Details ix

PART 1 Usage 1

Chapter 1 △ Getting Started with SAS/SHARE
SAS/SHARE: Learning to Use 4
Frequently Asked Questions (FAQs) about SAS/SHARE 13

Chapter 2 △ Using SAS/SHARE Software 19
SAS/SHARE Is a Multi-User Data Server 19
Accessing SAS Files through an Operating Environment 23
Accessing SAS Files through a SAS/SHARE Server 24
Remote Library Services Provides Remote File Access 25
SAS/SHARE Software Components 25
SAS/SHARE Users 26
Migration and Cross-Version Compatibility (Version 6 through SAS 9.1) 26

Chapter 3 △ Managing a SAS/SHARE Server (Server Administrators) 27
Starting a Server: A Fast-Track Approach 27
Specifying a Communications Access Method 28
Pre-Defining SAS Data Libraries to the Server 29
Starting a Server 31
Server Security 33
Writing a SAS Program to Start a Server 36
Automating Server Start-Up 36
Managing a Server, Its Libraries, and Its Users 36

Chapter 4 △ Writing End-User Applications to Access Shared Data 41
Accessing Libraries through a Server 41
Locking Data Objects in your Programming Environment 43
SAS Programming Considerations 43
SQL Programming Considerations 47
SCL Programming Considerations 48
SAS Data View Programming Considerations 52
Using SAS Catalog Entries in Programs 55
Using SAS/CONNECT with SAS/SHARE 55

Chapter 5 △ Locking SAS Data Objects 57
SAS/SHARE Lock Manager Facility 57
Locking and SAS Data Object Hierarchy 58
Types of Locks 60
All Operating Environments: Setting SAS System Performance and Logging Options 219
OpenVMS Alpha: Creating the Server Environment 220
z/OS: Creating the Server Environment 223
UNIX: Creating the Server Environment 226
Windows: Creating the Server Environment 228

Appendix 3 △ Tuning Tips for Applications That Use SAS/SHARE Software 233
Authors 234
Introduction to Tuning Tips for Applications That Use SAS/SHARE Software 234
Overview of Tuning Tips for Applications That Use SAS/SHARE Software 234
The SAS Data Library Model 235
How Data Flows When You Use SAS Files 235
Concurrent Access: Update versus Read-only 237
Computer Resources Used by a Server 238
Minimizing and Optimizing Resource Consumption 242
Using Operating Environment Tools 251
Conclusion 253

Appendix 4 △ SAS Component Language (SCL) Application 255
Introduction to SAS Component Language (SCL) Application 255
Audience 255
Inventory and Order System 256
The Inventory/Order System SCL Application 257

Appendix 5 △ SAS/SHARE Cross-Version Issues, SAS 9.1 263
Limitations of Cross-Version Client/Server Access 263
Consequences of a Client/Server Upgrade to SAS 9.1 263
Observations and Variables: SAS 9.1 and Version 8 Differences 264
SAS Files Access in a Mixed Client/Server Environment 265

Appendix 6 △ Recommended Reading 267
Recommended Reading 267

Glossary 269

Index 277
What’s New

Overview

The following new and enhanced features for SAS/SHARE ensure information privacy and improve ease of use:

- The network security protocol Secure Sockets Layer (SSL) encrypts connections between client and server.
- TCP/IP users can specify a port number explicitly, instead of specifying an already defined server ID.
- Any form of a password option in a SAS/SHARE statement can be specified as an encoded password.
- The SERVER= option in the LIBNAME statement specifies a CONNECT server definition that has been defined in a SAS Metadata Repository.
- The HOSTNAME= option in the LIBNAME statement specifies the name of the node on which the SAS/SHARE server runs.
- The CLIENTID= option in the PROC SERVER statement enables you to select whether the log identifies clients by their session names or their secured names.
- The THREADEDTCP option in the PROC SERVER statement invokes the threaded version of the TCP/IP access method and associated threaded infrastructure when the TCP/IP access method is specified. (This option is experimental.)
- Specifying an automatic log rollover by using the LOGPARM option is a preferred log management strategy for a SAS/SHARE server.
- Revised procedures are available for creating the SAS/SHARE server environment under the UNIX and Windows operating environments.
- If the SAS/SHARE server log is not available, error messages are written to the SAS console log.
What's New

Note:
- This section describes the features of SAS/SHARE 9.1 that are new or enhanced since SAS 8.2.
- z/OS is the successor to the OS/390 operating system. SAS/SHARE is supported on both OS/390 and z/OS operating systems and, throughout this document, any reference to z/OS also applies to OS/390, unless otherwise stated.

Details

Security
- Secure Sockets Layer (SSL) is a protocol that provides network security and protects the privacy of information by encrypting SAS/SHARE client/server transfers under the UNIX and Windows operating environments. SSL is implemented by means of SSL system options. For more information, see Chapter 20, “Secure Sockets Layer (SSL) Options,” on page 195.
- Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords. The syntax for each of the following statements in SAS/SHARE enables you to specify encoded passwords.
 - PROC SERVER
 - OAPW=password;
 - UAPW=password;
 - PT2DBPW=password;
 - LIBNAME
 - PASSWORD=password;
 - SAPW=password;
 - PROC OPERATE
 - SAPW=password;
 - PASSWORD=password;
 - DISPLAY SERVER (SAPW=password);
 - QUIESCE SERVER (SAPW=password);
 - START SERVER (SAPW=password);
 - STOP SERVER (SAPW=password);
 - PROC SQL:
 - CONNECT TO REMOTE (SAPW=password);
 - SELECT...FROM CONNECTION TO (PASSWORD=password);
 - SELECT...FROM CONNECTION TO (PT2DBPW=password);
Compatibility

SAS 9.1 does not permit a client or a server to connect to a Version 6 server or client. For details, see Appendix 5, “SAS/SHARE Cross-Version Issues, SAS 9.1,” on page 263.

Explicit Port Specification

If a SAS/SHARE client uses the TCP/IP access method to access a SAS/SHARE server by using an explicit port specification instead of the server ID, you can now use two consecutive underscores (___) with a port number in the syntax, in place of a server ID that has been defined in the client TCP/IP SERVICES file. An explicit port can be specified in the SERVER= option in
- the LIBNAME statement
- the SERVER procedure
- the OPERATE procedure
- the Remote SQL Pass-Through (RSPT) facility.

Note: Specifying a server using a port number is not supported for ODBC clients.

Enhanced Use of the LOGPARM System Option

Specifying an automatic log rollover is a preferred strategy for managing a SAS/SHARE server session. Setting the "ROLLOVER=AUTO" value for the LOGPARM option closes the current log and opens a new log file if the value of the LOG= option changes. Rollover is triggered by a change in the value of the LOG= option. For examples of configuring automatic log rollover in the server environment, under the UNIX and Windows operating environments, see “UNIX: Creating the Server Environment” on page 226 and “Windows: Creating the Server Environment” on page 228.

New LIBNAME Options and Values

- The SERVER= option in the LIBNAME statement specifies a CONNECT server definition that has been defined in a SAS Metadata Repository. For details, see “LIBNAME Statement” on page 137.
- The HOSTNAME= option in the LIBNAME statement specifies the name of the node on which the SAS/SHARE server runs. For details, see “LIBNAME Statement” on page 137.

New PROC SERVER Options

- The CLIENTID= option in the PROC SERVER statement enables you to select whether the log identifies clients by their session names or their secured names. Your choice determines the search order that is used to locate the appropriate client ID. For details, see “PROC SERVER Statement” on page 124.
- The THREADEDTCP option in the PROC SERVER statement invokes the threaded version of the TCP/IP access method and associated threaded infrastructure when the TCP/IP access method is specified. For details, see “PROC SERVER Statement” on page 124.
CAUTION:
THREADEDTCP is an experimental option that is available in SAS 9.1 Do not use this option in production jobs.

Using the SAS Console Log to Analyze Server Errors

If the SAS/SHARE server encounters problems at SAS initialization or at SAS termination, the server log might not be available to receive error messages. If the server log is not available, error messages are written to the SAS console log. For details about the SAS console log, see the companion documentation that is appropriate for the operating environment that you are using.
PART 1

Usage

Chapter 1 Getting Started with SAS/SHARE 3
Chapter 2 Using SAS/SHARE Software 19
Chapter 3 Managing a SAS/SHARE Server (Server Administrators) 27
Chapter 4 Writing End-User Applications to Access Shared Data 41
Chapter 5 Locking SAS Data Objects 57
Chapter 6 SAS/SHARE Macros for Server Access 73
Chapter 7 Interpreting Server Log Messages 85
Chapter 8 Analyzing the Server Log 95
Chapter 9 Data Security 101
Chapter 10 SAS/SECURE and SAS Proprietary Encryption Services 105
Chapter 11 Secure Sockets Layer (SSL) 107
CHAPTER 1

Getting Started with SAS/SHARE

SAS/SHARE: Learning to Use 4
Introduction 4
Setting Up Your Operating Environment 4
Invoking SAS for Client/Server Sessions (All New Users) 5
Starting a SAS/SHARE Server (All New Users) 5
Defining a SAS Data Library to a Server (All New Users) 6
Creating a SAS Data Set (All New Users) 7
Locking an Observation (All New Users) 8
Accessing a Locked Observation (All New Users) 8
Releasing a Locked Observation (All New Users) 9
Retrying Access to a Locked Observation (All New Users) 9
Stopping the Server (All New Users) 9
Identifying the Server (Server Administrators and Applications Developers) 10
Viewing the Server Libraries (Server Administrators and Applications Developers) 10
Viewing Information about Clients (Server Administrators and Applications Developers) 11
Disconnecting Clients from the Server (Server Administrators and Applications Developers) 11
Examining the Server Log (Server Administrators and Applications Developers) 11
Accessing a Closed Server (Server Administrators and Applications Developers) 12
Stopping the Server (Server Administrators and Applications Developers) 12
Closing the SAS Sessions (Server Administrators and Applications Developers) 12
Frequently Asked Questions (FAQs) about SAS/SHARE 13
General Questions 13
What is SAS/SHARE software? Why would I use it? 13
Where can I read about SAS/SHARE software? 13
Do people have to use a new SAS procedure to share their data? 13
Does each person responsible for maintaining data have to run an individual SAS/SHARE server? 13
Three people? I hope this software doesn’t require the effort of a large team of people. 14
FAQs by End Users 14
How do I get started with SAS/SHARE? 14
How can I find out if I’m accessing a SAS library through a SAS/SHARE server? 14
FAQs by Applications Developers 14
How do I get started with SAS/SHARE? 14
What do I have to do to a SAS library so that users can access it through a SAS/SHARE server? 15
Can a SAS/SHARE server access a SAS library across a network? 15
I’ve used servers before. A SAS/SHARE server is similar to the file servers we have on our network, isn’t it? 15
Can a server use more than one communications access method? 15
Do I have to use a different SAS/SHARE server for each file that is updated by the users of my application? 16
SAS/SHARE: Learning to Use

Introduction

If you’re a new user of SAS/SHARE, this section provides answers to frequently asked questions (FAQs). A step-by-step example exercise shows the different types of activities that are involved when using SAS/SHARE. Where applicable, operating environment specifics are provided.

Note: The following exercise is an example only and should not be used to set up production applications.

If you have some experience with SAS/SHARE and choose not to perform this exercise or read the FAQs, proceed to Chapter 2, “Using SAS/SHARE Software,” on page 19.

Setting Up Your Operating Environment

The SAS sessions that you use in this exercise exchange data by using a communications access method. For this exercise, the TCP/IP communications access method is used for all operating environments. SAS/SHARE also supports other communications access methods, which are described in detail in Communications Access Methods for SAS/CONNECT and SAS/SHARE.

To use the TCP/IP access method, you must verify that a SAS/SHARE server ID has been added to the TCP/IP SERVICES file. To find the location of the SERVICES file for your operating environment, see Communications Access Methods for SAS/CONNECT and SAS/SHARE and the documentation for your TCP/IP software.

- If a SAS/SHARE server ID has already been added to the SERVICES file, proceed to the next section “Invoking SAS for Client/Server Sessions (All New Users)” on page 5, and use an existing server ID from the SERVICES file in place of &servername in the remainder of this exercise.

- If a SAS/SHARE server ID has not already been added to the SERVICES file, edit the SERVICES file and add a line similar to the following:

 demoserv port-number/tcp # SAS/SHARE server

 For port-number, specify a number that is not already specified in the SERVICES file.
Execute the following statement in the server, the client, and the operator sessions:

```sas
%let servername=demoserv;
```

If you do not have authority to edit the SERVICES file, ask your server administrator to add `demoserv` to the SERVICES file. A server administrator ensures that SAS/SHARE servers are identified in the SERVICES file on each operating environment that accesses SAS/SHARE.

The TCP/IP access method allows you to specify syntax that uses two consecutive underscores with a port number, in place of a server ID that has been defined in the client TCP/IP SERVICES file. As an alternative to editing the TCP/IP SERVICES file, execute the following statement in the server, the client, and the operator sessions:

```sas
%let servername=_ _port-number;
```

for `port-number` specify a number that is not already used in the TCP/IP SERVICES file. Do not space after the first underscore or the second underscore.

Note: If you choose to use a communications access method that is different from TCP/IP, some configuration of your operating environment might be required. For more information, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE.*

Invoking SAS for Client/Server Sessions (All New Users)

You need to invoke three SAS sessions for this example exercise. You can run these SAS sessions by logging on to three different machines or by logging on to the same machine three times. To invoke a SAS session for two clients and the SAS/SHARE server, use the commands that are specific to your operating environment.

Note: Arrange your SAS sessions so that you can see and use all of them while you are doing this exercise, because you will perform specific tasks in the Program Editor window of the user or server sessions.

In this example, one user logs on to the same machine three times

- USER1 is john(1)
- USER2 is john(2)
- SERVER is demoserv.

Note: Be sure to issue the SAS statements that are appropriate for the specific SAS session. Each step in this example clearly identifies the session for which the instruction is intended.

Starting a SAS/SHARE Server (All New Users)

Note: Usually, a server administrator starts the server so that it is available when end users and applications developers need to share SAS files. It is recommended that the server be run in non-interactive mode. For the z/OS operating environment, the server should be run in line mode.

Note: In this example exercise, the data is logged for a UNIX operating environment, and the TCP/IP communications access method is used. If you choose a different method, replace tcp in every occurrence of the COMAMID= option with the appropriate access method value.
1 In the SERVER session, submit the following statements from the Program Editor window:

 options comamid=tcp;
 libname demo (work);
 proc server id=&servername authenticate=optional;
 run;

The LIBNAME statement associates a SAS library reference (libref) with a SAS data library.

The omission of the USER= and PASSWORD= options in the LIBNAME statement means that the SAS/SHARE client/server session is running unsecured.

The COMAMID= option specifies the access method that is used to communicate between a client SAS session and the server. You must specify the COMAMID= option before you invoke PROC SERVER.

PROC SERVER manages concurrent update access to SAS data libraries and the members in those libraries. PROC SERVER runs in its own SAS session, which serves client SAS sessions by executing input and output requests to SAS data libraries.

The value OPTIONAL for the AUTHENTICATE= option allows users with valid access permission to connect to a server without requiring verification. See “Ensuring That User IDs Are Valid” on page 35. For more information about the AUTHENTICATE= option see the PROC SERVER statement.

2 Examine the SERVER Log window, which now will contain the following information:

 NOTE: Libref DEMO was successfully assigned as follows:
 Engine: V9
 Physical Name: /local/u/john
 1 options comamid=tcp;
 2 libname demo (work);
 3 proc server id=&servername authenticate=optional;
 4 run;

Defining a SAS Data Library to a Server (All New Users)

When you access a SAS data library through a server, your SAS session reads from and writes to that data library through the server instead of reading and writing directly to the library.

The first LIBNAME statement, which specifies a name for the server, connects your SAS session to that server. For a client session, you must specify the COMAMID= option before you try to connect to the server.

1 In the USER1 session, submit the following from the Program Editor window:

 options comamid=tcp;
 libname demo server=&servername;

 Note: If you are connecting to a server on a remote operating environment, you must specify the network node name in the SERVER= option as follows:

 server=network-node-name.&servername

△
See the TCP/IP chapter for your specific operating environment in *Communications Access Methods for SAS/CONNECT and SAS/SHARE* for more information.

Examine the USER1 Log window, which will contain the following information:

NOTE: Libref DEMO was successfully assigned as follows:

<table>
<thead>
<tr>
<th>Engine:</th>
<th>REMOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Name:</td>
<td>/local/u/john</td>
</tr>
</tbody>
</table>

1 options comamid=tcp;
2 libname demo server=&servername;

For convenience in this exercise, the libref DEMO is associated with the server library WORK. In SAS, the default name WORK means that the data files that are created are temporary.

Examine the SERVER Log window, which now contains the following information about your connection to the server. The messages include the server name, the name of the server library that you specified, and the user identification in the form user-ID(n), where n is the server connection number.

30Apr2003:15:16:46.521 User john(1) has connected to server demoserv.
30Apr2003:15:16:52.566 User john(1) has created "DMS Process"(1) under "Kernel"(0).

Creating a SAS Data Set (All New Users)

1 In the USER1 session, submit the following from the Program Editor window:

```sas
data demo.test;
  do i=1 to 5;
    output;
  end;
run;
```

This DATA step creates a SAS data set that contains 5 observations and 1 variable that you will use in the remainder of this example. The Log window displays information about the DATA step and the name of the SAS data set that is opened for output and then closed.

2 Examine the SERVER Log window again.

30Apr2003:15:23:17.110 User john(1) has created "DATASTEP"(2) under "DMS Process"(1).
30Apr2003:15:23:20.719 DEMO.TEST.DATA(1) opened for output via engine V9 by "DATASTEP"(2) of user john(1).
30Apr2003:15:23:26.835 DEMO.TEST.DATA(1) closed by "DATASTEP"(2) of user john(1).
30Apr2003:15:23:27.194 User john(1) has terminated "DATASTEP"(2) (under "DMS Process"(1)).
Locking an Observation (All New Users)

1 In the USER2 session, submit the following from the Program Editor window:

 options comamid=tcp;
 libname demo server=&servername;
 proc fsedit data=demo.test;
 run;

 An FSEDIT window appears in the center of the screen. It shows the value 1 in the first observation.

 i: 1

 Examine the USER2 Log window, which contains the following information:

 NOTE: Libref DEMO was successfully assigned as follows:
 Engine: REMOTE
 Physical Name: /local/u/sasvcl
 1 options comamid=tcp;
 2 libname demo server=shr9;
 3 proc fsedit data=demo.test;
 4 run;

2 Examine the SERVER Log window, to which the following information was added:

 30Apr2003:15:29:39.116 User john(2) has connected to server demoserv.
 30Apr2003:15:29:42.483 User john(2) has created “Process”(1) under “Kernel”(0).
 30Apr2003:15:29:54.124 User john(2) has created “FSEDIT”(2) under “DMS Process”(1).
 30Apr2003:15:29:56.109 DEMO.TEST.DATA(1) opened for input/2 via engine V9 by “FSEDIT”(2) of user john(2).
 30Apr2003:15:29:56.933 DEMO.TEST.DATA(1) reopened for update/R by “FSEDIT”(2) of user john(2).

 The FSEDIT procedure accesses the data set that was created by USER1 in the previous section. The first observation is currently locked by USER2 for update access.

3 In the FSEDIT window in the USER2 session, change the value in the first observation by placing the cursor over the value 1 and type 5, but do not save it.

 The FSEDIT window of USER2 now looks like this:

 i: 5

Accessing a Locked Observation (All New Users)

In the USER1 session, submit the following from the Program Editor window:

 proc fsedit data=demo.test;
 run;

PROC FSEDIT also accesses the data set that was created by USER1.

When the FSEDIT window opens, the following message is displayed because the first observation is already locked by the PROC FSEDIT statement in USER2’s session:

 WARNING: User john(2) (server connection 2) is using this observation.
USER1 cannot update the observation until after USER2 releases it. Notice that the value of i is still 1 because USER2 did not save the change in the previous step.

Releasing a Locked Observation (All New Users)

In the USER2 session, close the FSEDIT window by selecting **File -> Close** from the pull-down menu. This action releases the observation that was locked by USER2.

Retrying Access to a Locked Observation (All New Users)

1. After the FSEDIT window in the USER2 session closes, return to the USER1 FSEDIT session, re-read the observation by selecting **View -> Observation Number** from the pull-down menu and type 1 in the resulting pop-up window, click OK and the USER1 FSEDIT window now looks like this:

 ![FSEDIT window with i: 5]

 Notice that the observation was updated to reflect USER2’s change from 1 to 5.

2. In the FSEDIT window in the USER1 session, change the value from 5 to 4.

 ![FSEDIT window with i: 4]

Stopping the Server (All New Users)

Note: In the real world, servers are usually stopped by server administrators, not by end users.

For this example exercise, if you are an end user, stop the server and close all SAS sessions.

1. In the USER1 session, close the FSEDIT window by selecting **File -> Close** from the pull-down menu.

2. Also, in the USER1 session, stop the server by submitting the following from the Program Editor window:

   ```
   proc operate server=&servername;
   stop server;
   quit;
   ```

 Examine the USER1 Log window, which now contains the following information:

   ```
   16 proc operate server=&servername;
   PROC OPERATE is set to default server DEMOSERV.
   =========================================================================
   17 stop server;
   Default server DEMOSERV is now stopped.
   PROC OPERATE was previously set to default server DEMOSERV but is not set to any server now.
   =========================================================================
   18 quit;
   ```

 Note: If you are not on the same machine as the server, you must specify the network node name in the `SERVER=` option in the `PROC OPERATE` statement,

   ```
   proc operate server=network_node_name.&servername;
   ```
3 In the SERVER Program Editor window, close the server session by submitting
the following:
endsas;

4 On the command lines of both the USER1 and USER2 Program Editor windows,
close the user sessions by issuing the following command:
bye

For SAS/SHARE end users, you have finished the example exercise. See “Frequently
Asked Questions (FAQs) about SAS/SHARE” on page 13.

Identifying the Server (Server Administrators and Applications
Developers)

Note: Usually, the OPERATE procedure is used by a server administrator;
sometimes an applications developer has responsibilities that include server
administration.

The remainder of the steps in this section are mainly here for applications developers
and server administrators who are continuing this exercise. In the USER2 session,
submit the following from the Program Editor window:

proc operate server=&servername;

PROC OPERATE is an interactive procedure that is terminated by a QUIT statement.
A RUN statement is not used or needed with a PROC OPERATE statement.
PROC OPERATE manages the execution of a SAS/SHARE server. You must identify
which SAS/SHARE server you want to manage, even if there is only one server
executing. If you are not on the same machine as the server, you must specify the
network node name in the SERVER= option in the PROC OPERATE statement:

proc operate server=network_node_name.&servername;

Examine the USER2 Log window, which contains the following information:

proc operate server=&servername;
PROC OPERATE is set to default server DEMOSERV.

Usually, you should specify the COMAMID= option before using PROC OPERATE to
connect to a server. If you know that you will use the default access method on your
operating environment, you may omit the COMAMID= option. You do not need to
specify a value for the COMAMID= option in this step because it was already specified
for this SAS session in an earlier step. See “Locking an Observation (All New Users)”
on page 8.

Viewing the Server Libraries (Server Administrators and Applications
Developers)

PROC OPERATE has several commands. You will use some of the commands in the
next steps. All output generated by PROC OPERATE is displayed in the Log window.
In the USER2 session, submit the following from the Program Editor window:

display library _all_

The DISPLAY LIBRARY command in the PROC OPERATE step displays information about the libref, status, the number of users, and the library name of all SAS data libraries that have been defined to the server.

Examine the USER2 Log window.

Viewing Information about Clients (Server Administrators and Applications Developers)

In the USER2 session, submit the following from the Program Editor window:

display user _all_

The DISPLAY USER command displays information about the user ID, the status, and the number of libraries that have been defined by each connected client.

Examine the USER2 Log window, which now contains the following information:

<table>
<thead>
<tr>
<th>USER ID</th>
<th>STATUS</th>
<th>NUMBER OF LIBRARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>john</td>
<td>ACTIVE</td>
<td>0</td>
</tr>
<tr>
<td>john</td>
<td>ACTIVE</td>
<td>1</td>
</tr>
<tr>
<td>john</td>
<td>ACTIVE</td>
<td>1</td>
</tr>
</tbody>
</table>

7 display user _all_

Disconnecting Clients from the Server (Server Administrators and Applications Developers)

In the USER2 session, submit the following from the Program Editor window:

quiesce user 1 2;

The QUIESCE USER command gradually terminates a user’s access to a server by denying new user requests for resources and moving the user from active status to stopped status. The user can continue the SAS program step or window that is currently in use but will not be able to use the server after that step terminates or after the window closes.

Users can be identified by user IDs or connection numbers. For example, user JOHN(1) can be quiesced by executing either of the following:

quiesce user 1;
quiesce user john;

Examining the Server Log (Server Administrators and Applications Developers)

1 In the USER1 session, because the FSEDIT window is still opened, USER1 can still edit the data set that was created in an earlier step. See “Creating a SAS Data Set (All New Users)” on page 7. Close the USER1 FSEDIT window by selecting **File -> Close** from the pull-down menu.
2 Examine the SERVER Log window, which displays the following information:

30Apr2003:15:56:57.207 PROC OPERATE command from user john(3):
 QUIESCE USER 1 2;
30Apr2003:15:59:52.065 DEMO.TEST.DATA(1) closed by "FSEDIT"(3)
 of user john(1).
30Apr2003:15:00:02.161 User john(1) has terminated "FSEDIT"(3)
 (under "DMS Process"(1)).

Accessing a Closed Server (Server Administrators and Applications Developers)

In the USER1 session, re-submit the following from the Program Editor window:

proc fsedit data=demo.test;
run;

Examine the USER1 Log window, which contains the following information:

10 proc fsedit data=demo.test;
11 run;

NOTE: The SAS System stopped processing this step because of errors.

The messages in the Log window tell you that the attempt by USER1 to communicate
with the server is rejected. Because USER1 is stopped, you cannot access the data set.

Stopping the Server (Server Administrators and Applications Developers)

In the USER2 session, submit the following from the Program Editor window:

stop server;
quit;

The STOP SERVER command in the PROC OPERATE step terminates a server as
quickly as possible. If users are connected to the server when you execute a STOP
SERVER command, changes that they have not saved are lost. The QUIT command
terminates PROC OPERATE in interactive mode.

Closing the SAS Sessions (Server Administrators and Applications Developers)

1 In the SERVER Program Editor window, close the server session by submitting
 the following:
 endsas;

2 On the command lines of both the USER1 and USER2 Program Editor windows,
close the user session by submitting the following:
 bye
Frequently Asked Questions (FAQs) about SAS/SHARE

General Questions

What is SAS/SHARE software? Why would I use it?
You use SAS/SHARE software when
- more than one user needs to update a SAS file (or several SAS files) at the same time.
- users want to access SAS files on a server without having to use a separate SAS/CONNECT remote log in for each user.

Where can I read about SAS/SHARE software?
You can read about SAS/SHARE in:
- This document, which explains SAS/SHARE software, describes the parts of the software, and applies to all operating environments. It also includes basic and detailed reference material for PROC SERVER, PROC OPERATE, the LIBNAME statement, and the LOCK statement.
- Also see Communications Access Methods for SAS/CONNECT and SAS/SHARE for information about using a communications access method to connect from a client session to a server session and for instructions to configure the access method.

Do people have to use a new SAS procedure to share their data?
No. The users who add and maintain data continue to use the SAS procedures and windows that they already know: PROC FSEDIT, PROC APPEND, PROC FSVIEW, and so forth.
Instead of requiring users to change the SAS tools they already know and use, SAS/SHARE takes advantage of the SAS Multiple Engine Architecture (MEA) to allow those SAS tools to access data through a “traffic cop” that’s formally known as a SAS/SHARE server. A SAS/SHARE server allows many users to read and update data in one or multiple SAS files, concurrently, by tracking locks on observations, catalog entries, and SAS files.

Does each person responsible for maintaining data have to run an individual SAS/SHARE server?
No. There are three roles that users assume with respect to SAS/SHARE:
- end user
 - The end user reads, adds, and updates data.
- applications developer
 - The applications developer writes SAS programs used by the end users.
- server administrator
 - The server administrator makes sure SAS/SHARE servers are available to the end users.
The three roles can be performed by the same person, or one person may perform two roles, or each role may be assigned to a separate group of people.

It’s not unusual for the same person to perform the tasks of an applications developer and a server administrator, for example, when the person who develops an application is responsible for the SAS/SHARE server(s) used by that application.

Three people? I hope this software doesn’t require the effort of a large team of people.

No, three roles. The three roles help organize the efforts so that shared maintenance of data is possible. In real life, the responsibilities of the various people involved in a project might overlap. Often, the same person who develops an application also maintains a SAS/SHARE server.

To help you keep track of how responsibilities usually are divided when multiple users need to update a SAS file at the same time, the remainder of this section answers the questions most frequently asked by end users, application developers, and server administrators.

FAQs by End Users

How do I get started with SAS/SHARE?

You use an application that someone else developed to read, add, or update data in one or in multiple SAS files. Occasionally, you find that an observation, a catalog entry, a file, or a library is locked by another user. If that happens, a message appears and you cannot modify the data. SAS/SHARE keeps track of which users have which data locked, so users cannot cause each other’s changes to become mysteriously “lost.”

How can I find out if I’m accessing a SAS library through a SAS/SHARE server?

The SERVER= option is required in a LIBNAME statement (or, in SCL programs, any LIBNAME() function) for a library to be accessed through a SAS/SHARE server.

When a library is accessed through a server, the information that is displayed in the Log window about the LIBNAME statement shows you that the engine, which was used to access the library, is named REMOTE, and the physical name is a subdirectory accessed by the server SAS session.

Use the LIST option in a LIBNAME statement to obtain information about how a SAS library is defined to a SAS session. This information includes:

- the name of the server through which the library is accessed.
- the libref used by the server to refer to the library. (This libref might be the same as or different from the user’s libref for that library.)
- the engine used in the server SAS session to read and write files in the library.
- the operating environment and machine type on which the server is running.

FAQs by Applications Developers

How do I get started with SAS/SHARE?

Getting Started with SAS/SHARE

Topics of importance for applications developers include SAS library access, locking data objects, and SAS programming considerations. See Chapter 4, “Writing End-User Applications to Access Shared Data,” on page 41. For a sample SCL application, see Appendix 4, “SAS Component Language (SCL) Application,” on page 255. For complete details about locking, see Chapter 5, “Locking SAS Data Objects,” on page 57.

You might also find helpful information about how server administrators manage SAS/SHARE servers. See Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27. For specific details about creating a SAS/SHARE server and setting SAS options to enhance performance and to establish logging parameters, by operating environment, see Appendix 2, “Creating the SAS/SHARE Server Environment,” on page 219.

What do I have to do to a SAS library so that users can access it through a SAS/SHARE server?

You have to add a SERVER= option to each LIBNAME statement that a user will use to access the library.

You might want to pre-define one or more libraries to a server. To do that, include a LIBNAME statement for each library before executing the PROC SERVER statement. This removes the requirement for a physical name in each user's LIBNAME statement that accesses any of those libraries. This can make it easier to maintain your application.

For more information about server libraries, see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27. For details about the LIBNAME statement, see Chapter 13, “Remote Library Services,” on page 137.

Can a SAS/SHARE server access a SAS library across a network?

Yes, but you usually do not want to organize it that way.

Even though a SAS/SHARE server is not exactly like other file servers that you might be familiar with, it is still a process that generates a lot of disk I/O. That's especially true because a server generates I/O to files on behalf of a large number of users. For that reason, you want the path length between the server SAS session and the physical disk to be as short as possible. That means storing data on the same computer as the server that is used to access that data, whenever possible.

I've used servers before. A SAS/SHARE server is similar to the file servers we have on our network, isn’t it?

Not really. Usually, file servers are not aware of the content of the files they manage, but a SAS/SHARE server allows several users to update the same copy of a SAS file at the same time.

SAS/SHARE is tuned to manage locking conflicts within SAS files, for example, two users attempting to update the same observation of a SAS data file or two users attempting to modify the same entry in a SAS catalog. SAS/SHARE is not optimized to provide the bulk data transfer services at which many file servers excel.

Can a server use more than one communications access method?

Yes. A server administrator uses SAS options to enable this.

If your application requires the use of more than one communications access method, ask your server administrator to set up the server for your application with the access methods that you need. For more information about access methods, see “Specifying a Communications Access Method” on page 28.
Do I have to use a different SAS/SHARE server for each file that is updated by the users of my application?

No. A server can share many files in the same SAS library and in many different SAS libraries at the same time.

Is there a limit on how many users or libraries a SAS/SHARE server can support?

No. There are no limits coded into the software, and you do not need to use SAS options to specify how many users or files a server will support at one time.

However, a server is the same as any other process on a computer; as it is asked to handle greater workloads it takes longer to do the work. It is possible to put so much traffic through a server that users complain about response time. If any of your servers become that busy, you should consider creating one or more additional servers and dividing the files among the servers.

See your server administrator about creating additional servers.

Do I need to ask my server administrator to start and stop my application’s server each day?

Probably not. As with other processes on a computer, SAS/SHARE servers can usually run for long periods of time without intervention. Sometimes periodic maintenance or backup activity requires processes to be stopped for a period of time and then re-started. Servers are not immune to such interruptions.

FAQs by Server Administrators

How do I get started with SAS/SHARE software?

Read Chapter 1, “Getting Started with SAS/SHARE,” on page 3, giving special attention to when PROC SERVER is started and stopped. Occasionally, you might need to use PROC OPERATE, so you should read those tasks in this exercise.

Usually, a SAS/SHARE server is started when initialization of the operating environment is completed, and it continues to run until the computer is shut down or the server is terminated. You should be familiar with creating and managing those types of processes. Of course, a server only generates I/O or uses the processor while users are accessing data through it; a server doesn’t process a residual amount of work when it is not processing work on behalf of other users.

Because a server executes within a SAS session, you need to know how to invoke SAS on each computer on which a server will run.

I’ve used servers before. A SAS/SHARE server is similar to the file servers we have on our network, isn’t it?

Not really. Ordinarily, file servers are not aware of the content of the files they manage, but a SAS/SHARE server allows several users to update a single copy of a SAS file at the same time. Also, SAS/SHARE servers automatically translate transmitted data when the client operating environment represents data differently from the server operating environment.

Is being a SAS/SHARE server administrator a full-time job?

No! SAS/SHARE is designed to require no regular maintenance or other administrative activity.
Can a server administrator control access to a server?

Yes. By default, SAS/SHARE does not restrict who can connect to a server or which files they can access, but you can restrict access to a server with the OAPW= and UAPW= options in the PROC SERVER statement. The OAPW= option specifies a password, which the server administrator must supply (in the OPERATE procedure), to connect to the server. The UAPW= option specifies a password that the user must supply in the LIBNAME statement to connect to the server. Of course, your file system restricts a server's access to files based on the access permission set for the files and the server's process. You can also set up a secured server. For more information, see “Server Security” on page 33.

Can a server administrator control which libraries users can access through a server?

Yes. For each server, you can prevent users from defining libraries to the server and restrict them to using only those libraries that you define. To do this, use the NOALLOC option in the PROC SERVER statement. See “Limiting the Libraries a Server Can Access” on page 34.

Remember that passwords can be used to restrict access to individual SAS files. See the PW= data set option in SAS Language Reference: Dictionary for more information about data set passwords.

How can I terminate a user’s connection to a SAS/SHARE server?

First, decide whether you want the access terminated immediately or as soon as it is convenient for the user.

The QUIESCE USER command disconnects a user from a server when the user ends the SAS program step currently being executed or closes the window currently being used. The STOP USER command immediately terminates a user’s connection to a server and might cause loss of updates that have not been communicated to the server.

In either instance, the user cannot re-connect to the server until a START USER command is executed, which lets the user re-connect, or until the server is re-started. Servers do not retain a list of stopped users when they are terminated and re-started.

See “Quiescing User Access to a Server” on page 159 and “Terminating User Connections to a Server” on page 160.

How can I stop a SAS/SHARE server?

The QUIESCE SERVER command causes a server to stop when all users have disconnected from the server. The STOP SERVER command immediately stops the server and might cause loss of updates that have not been communicated to the server.

See “Quiescing a Server” on page 154 and “Stopping a Server” on page 157.

Can a server use more than one communications access method?

Yes, if your operating environment supports more than one communications access method. See “Specifying a Communications Access Method” on page 28 for information about the communications access methods available on your operating environment.

How can I determine when I need to create a second SAS/SHARE server?

You need to create a second server when the traffic on a server becomes so heavy that an application’s performance is less efficient.
Just as you periodically check the resource consumption of the other service processes on a computer, you should, from time-to-time, take a look at how much CPU, I/O, and virtual storage the servers are using. Using operating environment management tools, you might notice that a server is executing a very large number of disk I/O operations or needs a very high percentage of the processor. When you observe those conditions, consider moving some of the work from that server to another, possibly new, server.

Distributing the workload among servers must be a cooperative effort between server administrators and applications developers. SAS Institute provides a set of autocall macros that assign resources to servers symbolically. These macros can make moving resources from one server to another much easier. See Chapter 6, “SAS/SHARE Macros for Server Access,” on page 73.
SAS/SHARE Is a Multi-User Data Server

SAS/SHARE Enables Concurrent Update Access

SAS/SHARE is a multi-user data server that provides several advantages for local and remote SAS clients and external clients (that is, not SAS applications). The multi-user SAS/SHARE server enables two or more clients to write to the same SAS file at the same time. This is called concurrent update access.

Often, SAS/SHARE is run in an environment in which multiple client sessions want to share (read from and write to) records in the same SAS data set.

The following list gives a sample of operations that multiple clients can perform concurrently:

- While one user is creating a member in a data library, other users can create, read, delete, and update members in the same library.
- While one user is using the SAS Explorer window on a data library, other users can open the same window to browse, delete, edit, or rename members in the same library. You can also copy a member from the SAS Explorer window.
- While one user opens the CATALOG window on a catalog, other users can open the CATALOG window to browse, copy, delete, or rename entries in the same catalog.
- While one or more users are using the FSEDIT procedure, the FSVIEW procedure in edit mode, the UPDATE statement in the SQL procedure, or an SCL program to update a SAS data set, other users can
 - update the SAS data set by using the MODIFY, REMOVE, or REPLACE statement in a DATA step
 - read the SAS data set as input data by using the SET statement in a DATA step
- add observations to the SAS data set by using the APPEND or SQL procedure or remove observations by using the SQL procedure
- copy the SAS data set that is being updated (and copy other members of the library) into another library by using the COPY or the CATALOG procedure.

SAS/SHARE Provides a Path to Remote Data

The multi-user SAS/SHARE server also provides remote clients a path to shared data, even if they want only to read that data, without the overhead of a SAS/CONNECT sign on.

In this scenario, you might have a network of client machines that need read access to a data set that resides on a central server system machine. You have two choices. You can use SAS/CONNECT and have each client create a SAS/CONNECT server session on the central server machine. However, if you need to read only a small-to-moderate amount of data, the overhead for each client that is signing on to the central server and starting a SAS/CONNECT server session might be significant. Also, the additional load on the central machine that comes with each of these server sessions might have a negative impact. Alternatively, you can have those client sessions access data through a SAS/SHARE server that is running on the central machine and avoid the overhead and additional load. Because the server is already running and it serves multiple users, connecting to the server and accessing the data takes very little time.

SAS/SHARE Is the Hub between Data and Clients

Think of a SAS/SHARE server as a hub that serves clients with data from many different sources. For example, a server must use a SAS/ACCESS engine to Oracle in order to access data that is stored in an Oracle DBMS. Or, a server can access SAS data through a Native Library engine. See your SAS/ACCESS documentation for details about using an engine to access specific data. Figure 2.1 on page 20 shows a sample of the data sources that a SAS/SHARE server can provide to its clients.

Figure 2.1 Data Sources for a SAS/SHARE Server
With an identified DBMS, a SAS/SHARE server provides data to the requesting client for its data processing needs. Beginning with SAS Version 8, this support extends to clients other than the classic SAS client.

Licensing SAS/SHARE*NET software, enables you to send requests to a SAS/SHARE server from a client that is not a SAS application. A SAS/SHARE*NET server is a SAS/SHARE server that includes the Data Services component of SAS/IntrNet software. Examples of clients that are not SAS applications are:

htmSQL
- runs a Web server and provides a gateway to your SAS data from a Web browser. It enables you to incorporate data into a Web page by using SQL queries.

Java applets or applications
- uses SAS/SHARE*NET Driver for JDBC, which enables you to write Java applets or applications that can view and update data through a direct connection to a SAS/SHARE*NET server.

C programs
- uses the SAS SQL Library for C, which is an API that enables you to create applications that use SQL queries and statements to access data in SAS data sets and in other database management systems.

Applications that use the ODBC driver, such as Microsoft Excel
- uses the ODBC driver, which provides ODBC-compliant Windows applications with read-and-write access to local and remote SAS data sets.

OLE DB consumer or ADO applications
 (beginning in Version 8) uses ShareProvider to view and update data through a direct connection to a SAS/SHARE*NET server. ShareProvider implements the Microsoft OLE DB specification and can be used by OLE DB-compliant or ADO-enabled applications.

Each of the preceding client interfaces or applications has its own documentation. Figure 2.2 on page 22 shows a sample of the types of clients that a V8 (and later) server supports and a SAS/SHARE server that is running in a SAS session in a supported operating environment. A server administrator starts the SAS/SHARE server session. SAS/SHARE clients can connect to the server from any machine on your network. SAS clients use the REMOTE engine to access data through a SAS/SHARE server.
Other Client refers to a client that is not a SAS application. For each of these clients, the appropriate client-side drivers and libraries must be invoked.
Accessing SAS Files through an Operating Environment

Figure 2.3 on page 23 illustrates two client sessions that are accessing SAS files without using a SAS/SHARE server.

In this instance, your operating environment provides two types of access: read-only and read-write. With read-only access, multiple users can simultaneously read the same member or different members in the same library.

SAS files that have read-write access are usually associated with only one user. Some operating environments support only read access to libraries that are accessed directly by more than one user. Other operating environments permit two users to write to different files in the same SAS library but do not permit them to write to the same file simultaneously. Still other operating environments permit multiple users to write to the same file at the same time, even though doing so is not safe and often results in lost changes made by one or more users. The only safe way for more than one user to share a SAS file (and on some operating environments an entire library) is to use a common third-party process to sequentially access the low-level parts of the file and coordinate updates to the data.

For more information about the SAS data library model, see SAS Language Reference: Concepts.
Accessing SAS Files through a SAS/SHARE Server

Figure 2.4 on page 24 illustrates two client sessions that are accessing SAS files by using a SAS/SHARE server.

The SAS/SHARE server enables multiple clients to effectively share the same SAS file at the same time. In this context, share means to allow access by multiple clients to a different unit (for example, an observation) in the same SAS file. In the preceding figure, Client 1 can read from and write to observation 1, and Client 2 can read from and write to observation 2 in the same SAS file. Both clients can also read the same observation at the same time. However, only one client at a time can write to an observation.

The server enables client access to the lowest unit of the SAS data library hierarchy through its powerful lock manager facility. Locks are applied in either of two ways:

- A client may specify an explicit lock with a LOCK command or a LOCK statement.
- A client operation may automatically submit a request for an implicit lock.

The SAS/SHARE server evaluates each incoming client request to access a specific SAS data library unit (for example, a data library, a data set, or an observation) against a complex set of locking rules whose application seems transparent to clients. The server balances the client requests for access to data while ensuring the integrity of that data. The server grants permission to a qualifying client and denies a conflicting request. The denied client receives an informational message. For more information about server locking rules, see Chapter 5, “Locking SAS Data Objects,” on page 57. For information about the use of the LOCK command and the LOCK statement, see “Locking Objects Explicitly (LOCK Statement)” on page 61, and “Locking Explicitly in a SAS Window (LOCK Command)” on page 66.
Remote Library Services Provides Remote File Access

SAS/SHARE provides remote file access through its Remote Library Services (RLS). RLS provides transparent access to remote data libraries for moving data through the network as the local SAS session requests it.

This access to remote data is provided through the REMOTE engine. Therefore, SAS products can gain single-user or multi-user access to remote SAS data or third-party DBMS data, as applicable, by invoking a SAS/SHARE server and assigning a library to the server through the REMOTE engine.

The LIBNAME statement associates a SAS library reference (libref) with a permanent SAS data library, which can be specified by using an operating environment-specific full physical name. Usually, the SAS/SHARE server uses the BASE engine to access data; however, alternative engines can be assigned by using the ENGINE= option. Attributes for the BASE or alternative engine can be supplied by using the ROPTIONS= option. For information about the LIBNAME statement in SAS/SHARE, see Chapter 13, “Remote Library Services,” on page 137; for the LIBNAME statement in SAS/CONNECT, see the syntax for the LIBNAME statement in SAS/CONNECT User’s Guide. For information about the LIBNAME statement in SAS/ACCESS, see the LIBNAME statement for relational databases in SAS/ACCESS for Relational Databases: Reference.

SAS/SHARE Software Components

SAS/SHARE software consists of the following procedures and engine:

.SERVER procedure
manages and performs input and output requests to SAS files on behalf of SAS clients and clients that are not SAS applications.

.OPERATE procedure
manages server, library, and client resources. For example, you can allocate a library to a server, free a library, stop a server, re-start a server, and display information about clients.

.REMOTE engine
enables a client SAS session to access SAS data by means of a SAS/SHARE server. (The REMOTE engine is also licensed and distributed as part of SAS/CONNECT software.)

The REMOTE engine does not operate directly on files in a SAS data library; it communicates with a SAS/SHARE server. Each client runs a private copy of the REMOTE engine to communicate with a server.

A server uses one or more library engines or view engines to operate directly on files in SAS data libraries that clients access through the server. The server routes requests from the REMOTE engine to the appropriate engine for the SAS library or the file that the client accesses. A server’s default library engine is specified in the ENGINE= system option. You may override the default and specify another engine when you start a server. Other engines are documented in the SAS documentation for your operating environment.
SAS/SHARE Users

SAS/SHARE users are divided into three groups.

end users
update or use concurrently accessed data in other ways. End users might not even be aware of SAS/SHARE. They just need some basic information about how to update data sets and search for observations that they want to modify.

programmers or developers
write applications that use a server to access shared data. They must know how to define a libref for a SAS data library that is accessed through a SAS/SHARE server and have knowledge of how the server handles locking.

server administrators
start a server, manage its session, and evaluate its performance. They give a server access to SAS data libraries (taking into account library security) and supply clients with information to access these libraries. Server administrators also make a server accessible to clients who have permission to use it. At some sites, a server administrator might delegate specific functions to other personnel and work with systems personnel to automate administrative functions.

Migration and Cross-Version Compatibility (Version 6 through SAS 9.1)

Accessing your data is a primary concern when migrating to a new version of SAS. If the server (and clients) have been upgraded to SAS 9.1, and you want the SAS data and SAS applications to run at the same level as the server and clients, you can migrate the data to the version that the server runs. For complete details about migration, see http://support.sas.com/rnd/migration.

If you do not migrate your SAS data and applications to the new version of SAS, you will be accessing SAS files and using SAS applications in a cross-version environment. Therefore, it is important to be aware of any restrictions when operating in a cross-version environment.

Note: SAS 9.1 has many of the same features as Version 8, but a SAS 9.1 client cannot access a Version 6 server, and a Version 6 client cannot access a SAS 9.1 server. Because Version 8 can communicate with both Version 6 and SAS 9.1, Version 8 serves as the intermediate release.

Access to data depends on:
- the SAS data object being accessed (library, file, view, or catalog).
- the version and release of SAS being used (Version 6 through SAS 9.1)
 - to create the data that is being accessed.
 - to develop the client application.
 - by the client session.
 - by the server session.

For more information about cross-version issues, see Appendix 5, “SAS/SHARE Cross-Version Issues, SAS 9.1,” on page 263.
Starting a Server: A Fast-Track Approach

You might need to start a new server quickly if

- you are installing SAS/SHARE for the first time.
- a new application presents a sudden demand.
- system resources become overloaded and require that the workload be shifted to a new server.
If you are a new user of SAS/SHARE, there are various issues to consider as you fine-tune your server environment, such as system options, pre-defined libraries, and automated start-up. However, you might want to defer some of these issues and start a server right away so that your applications developers can begin to create new applications or migrate old ones to the multi-user environment.

To get a server started and running with minimal effort, perform the following tasks in a SAS session on the server machine:

1. After the necessary configuration is completed for the communications access method, specify the access method to be used between a SAS/SHARE server and its clients by using the COMAMID= option in an OPTIONS statement at SAS invocation or in a SAS configuration file. For example,

   ```
   options comamid=tcp;
   ```

2. Start the server and assign it the name that you just configured. For example, start a server named SHARE1 as follows:

   ```
   proc server authenticate=optional id=share1;
   run;
   ```

 The following message appears in the server SAS log with a default time stamp:

 30Apr2003:09:47:30.000 SAS server SHARE1 started.

 The server SHARE1 can now be used by SAS clients and other clients that are not SAS applications.

 CAUTION:

 Here are two limitations to the fast-track approach to starting a server. Server security is not set. It might be possible for a client that accesses the server to have the same permissions as the server to access data. Also, any SAS client that can access the server can manage the server by using PROC OPERATE statements. This means that a client can stop the server or stop access to any library through the server. For details about setting server and library security, see “Server Security” on page 33.

 If you run a server SAS session interactively, the SAS session assumes that, by using a requestor window, you can resolve any problems that it encounters. While the SAS session waits for a response to its query, the server might not be able to continue to service client requests until the query is answered. However, you might not be aware that a response is required if the window in which the server is running is not visible or is not being monitored. Therefore, it is recommended that you specify the SAS system option NOTERMINAL so that SAS does not display requestor windows, and it performs whatever is required without prompting.

Specifying a Communications Access Method

A communications access method is the interface between SAS and the network protocol that you use to connect two operating environments. The access method that you use is determined by the network protocols that you have available at your site and the operating environments that you are connecting. Supported access methods for SAS 9.1 are

- TCP/IP (Transmission Control Protocol/Internet Protocol)
- XMS (Cross Memory Services)

For a complete list of valid connections among operating environments and access methods for SAS/SHARE, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.
Advantages of Pre-Defining Libraries

Although it is not required, pre-defining one or more selected SAS data libraries to the server for use by client applications provides the following advantages:

- Applications can use the libref that you define to identify the library. This protects the applications against changes to the library’s physical pathname.
The library is available to all clients that use the server’s SQL services, including SAS clients that use the Remote SQL Pass-Through (RSPT) facility, and other clients that use the SAS ODBC driver, the JDBC driver, or the SQL library for C.

The server administrator can refer to the library with a libref in PROC OPERATE commands.

Be aware that the user ID from which the server runs must have the appropriate permissions to access the SAS data library that you want to pre-define to a server. You should be familiar with the permissions requirements of the operating environment, the network, and the security software before you pre-define a library. For information about server security, see “Server Security” on page 33.

Methods for Pre-Defining a Server Library

Pre-Defining a Server Library by Using the LIBNAME Statement

In your server program, prior to specifying the PROC SERVER step, you can pre-define one or more SAS data libraries to the server by using the following syntax:

```
LIBNAME libref ’SAS-data-library’ <options>;
```

How you specify the physical pathname of the SAS data library and options depends on your operating environment. For details about the LIBNAME statement and options specific to your operating environment, see *SAS Language Reference: Concepts* and the SAS documentation for your operating environment.

Here is an example of how to pre-define a library to the server for a UNIX operating environment by using the LIBNAME statement:

```
libname mylib ’/payroll/div2/emp’;
```

After you define a library to the server, a message is displayed in the SAS log. For example, a message for a server on a UNIX operating environment follows:

```
1 libname mylib ‘.’;
NOTE: Libref MYLIB was successfully assigned as follows:
Engine: V9
Physical Name: /payroll/div2/emp
```

Pre-Defining a Server Library by Using the ALLOCATE LIBRARY Command in PROC OPERATE

In a server administrator session, while the server is running, you can pre-define one or more SAS data libraries to the server by using the following syntax:

```
PROC OPERATE SERVER=server-ID;
ALLOCATE LIBRARY libref ’SAS-data-library’ <options>;
```

How you specify the physical pathname of the SAS data library and options depends on your operating environment. For details about the ALLOCATE LIBRARY command, see “Defining a Library to a Server That Is Running” on page 148. For details about options specific to an operating environment, see *SAS Language Reference: Dictionary* and the SAS documentation for your operating environment.

Here is an example of using the ALLOCATE LIBRARY command in a PROC OPERATE step under Windows:

```
proc operate server=share1;
    allocate library mylib ‘\payroll\dev2\emp’;
```
Starting a Server

PROC SERVER Statement

To start a server, execute the PROC SERVER statement, which enables multiple clients to simultaneously access and use SAS data libraries and members in those libraries. As part of server start-up, you must assign a server name, but specifying operational attributes is optional.

To start a server with selected options, use the following syntax:

```
PROC SERVER <ID=server-ID> <ALLOC|NOALLOC>
   <AUTHENTICATE=OPT|REQ> <CLIENTID=SECURITY|SESSION>
   <LOG=value > <DTF=SAS-datetime-format>;
```

The following sections explain the preceding options. For complete information about server options, see Chapter 12, “The SERVER Procedure,” on page 123. For an example of a typical log, see “Sample Log for SAS/SHARE Server SHARE2” on page 86.

Identifying the Server

`ID=server-ID` assigns a valid SAS name to the server. In SAS, valid names can contain a maximum of eight alphanumeric characters and can include the following special characters: dollar sign ($), at sign (@), and pound sign (#). For more information about the rules for naming SAS variables, see *SAS Language Reference: Concepts*.

Server names are also constrained by the operating environment under which that server runs and the access method that is used. For complete information about server IDs by operating environment, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.

Here is an example of specifying a server ID:

```
proc server id=share1;
```

Limiting Users to Pre-Defined Libraries

Use the NOALLOC option to limit users to accessing only libraries that you pre-define to the server and to control which data users can access through the server.

Validating Server Users

Use the AUTHENTICATE= option to control whether the server will require clients to provide valid user IDs and passwords before they are connected to the server. See “Ensuring That User IDs Are Valid” on page 35.

Note: In addition to these recommended methods, you can also define a libref externally to SAS. For this information, see the SAS documentation for your operating environment.
Selecting How Clients Are Identified in the Log

Use the CLIENTID= option to specify whether clients are identified in the server log by their session names or their secured names. For more information, see “PROC SERVER Statement” on page 124.

Logging Server Usage Statistics

Usage statistics can be requested for each client that accesses a server. These statistics are useful for debugging and tuning server applications. Usage statistics also enable you to charge users for the amount of server resources that they consume. By default, the server writes a client’s usage statistics to the server log when the client disconnects from the server. Here are some of the statistics that you can request:

- **Number of messages processed**
 the number of messages (requests and replies) that a client exchanges with a server in a single session.

- **Bytes transferred**
 the cumulative number of bytes that are received from a client and that are sent to a client in a single session.

- **Active and elapsed time**
 the cumulative elapsed time during which the server processed requests on behalf of a client in a single session. Although this figure is not CPU time, it is related to CPU time. Whereas CPU time for a specific operation usually is relatively independent of other server usage, this figure increases with an increased level of server activity. However, active time should give a good indication of the CPU usage by the client compared with other clients’ values that are tracked during similar levels of server activity. The active time value can exceed the elapsed time value, especially in the server totals, because many server requests can be active (therefore, they are being timed) concurrently.

Here are examples of setting log usage:

```sas
proc server id=share1 log=message;
proc server id=share1 log=bytecount;
proc server id=share1 log=(message bytecount activetime elapsedtime);
proc server id=share1 log=all;
```

Here is an example of a client log for all statistics:

```
Usage statistics for user mike(1):
   Messages processed: 5,143
   Bytes transferred: 10,578K
   Active time: 1:47:23.6148
   Elapsed time: 3:28:64.7386
```

For complete information about the LOG option, see Chapter 12, “The SERVER Procedure,” on page 123. For a more complete example of a SAS log, see “Usage Statistics in the Server Log” on page 86.

To charge users for the amount of server resources that they consume, allocate consumption proportionately according to the usage statistics. You can allocate consumption based on a single statistic or on a combination of statistics. The most useful statistics for this purpose are the number of messages that are processed, the number of bytes that are transferred, and the amount of active time used.
Controlling Administrator Access to a Server

You might need to experiment with the relative weights of these statistics in your charge-back formula. These statistics are sensitive to the specific operating environment, access method, level of server activity, and types of applications.

The number of messages that are processed represents actual, billable work by the server. When used together the MESSAGE, BYTECOUNT, and ACTIVETIME values in the LOG= option report data that characterizes the work that a user asked the server to perform. Here are some examples:

- Small BYTECOUNT and MESSAGE values and a large ACTIVETIME value might indicate that a small amount of data was selected from a large file by sequentially searching the file or by interpreting a complex view.
- Moderate or large BYTECOUNT values and a large MESSAGE value might indicate that a small amount of data is being read by the user on each message that is exchanged with the server. This might be caused by random access or exceptionally long observations and might suggest taking a snapshot of the data for the user's analysis.
- Small ACTIVETIME values and a large BYTECOUNT value suggest that the user is exchanging data “in bulk” with the server. Usually, that does not indicate a problem, but if the server is overloaded, you might want to suggest that the user try another bulk-data transfer technique.

Specifying the Format for the Server Log Datetime Stamp

You can prepend a datetime stamp of a specific format to each message that is written to the server log, or you can suppress the datetime stamp. The default format DATETIME22.3 presents the date and time in the form DDMMMYYYY:hh:mm:ss.ddd.

Here are examples of how to set the datetime stamp:

- proc server id=share1 alloc log=cpu dtformat=time11.2;
- proc server id=share1 noalloc log=io dtformat=_NODTS_;

Here is an example of a datetime format:

30Apr2003:14:02.39.186

Using the SAS Console Log To Analyze Server Errors

If the SAS/SHARE server encounters problems at SAS initialization or at SAS termination, the server log might not be available to receive error messages. If the server log is not available, error messages are written to the SAS console log. For details about the SAS console log, see the companion documentation that is appropriate for the operating environment that you are using.

Server Security

Controlling Administrator Access to a Server

By default, any user can send administrator requests to a SAS/SHARE server to stop the server or to display and modify its characteristics, such as who can access the server and what SAS libraries it can serve. To prevent unauthorized users from sending these types of requests, you can assign an administrator password to a server when you start it by using the OAPW= option in the PROC SERVER statement. Here is an example:
To specify an administrator password when you use PROC OPERATE to send administrator commands to the server, you must use the SAPW= option. For example,

```
proc operate id=share1 sapw=blue31;
```

You can also specify an administrator password in each PROC OPERATE server management command. For details, see “Displaying Information about a Server” on page 152.

Controlling Access to Data through a Server

Setting Server Security

A SAS/SHARE server must have valid access permission to read and write data that is requested by any of the server's clients. Usually, this means that a server is authorized to access more libraries and data sets than any one of its clients. For this reason, you might want to set server security to prevent unauthorized access to data through the server by using one or more of the following:

- assigning a single password on the server
- limiting which libraries the server can access
- setting passwords for SAS data sets, views, and catalogs
- placing operating environment or file system protections on libraries and data sets
- requiring user ID validation.

Assigning a User Password to a Server

The simplest method that you can use to limit access to data through a server is to assign a user password to the server when you start the server. This password must be supplied whenever a client connects to the server. This method offers the broadest control over who can access data through the server. It applies to all users regardless of the data that they access or the operations that they perform.

To assign a user password to a server, use the UAPW= option in the PROC SERVER statement. Here is an example:

```
proc server id=share1 uapw=hotwings;
run;
```

When a user specifies the server for the first time in a LIBNAME statement or in a PROC SQL CONNECT TO statement, use the SAPW= option to specify the user password. Here is an example:

```
libname invoice server=share1 sapw=hotwings;
```

Limiting the Libraries a Server Can Access

To prevent unauthorized access to libraries or data sets that should not be accessed through a specific server, use the operating environment or file system security software to deny access by the server to those libraries or files.

You can also use the NOALLOC option in the PROC SERVER statement to limit users to accessing only those libraries that you pre-define. For more information, see “Pre-Defining SAS Data Libraries to the Server” on page 29 and “Limiting Users to Pre-Defined Libraries” on page 31.
Controlling Access to Data through a Server

Operating Environment or File System Protections

When a user reads or writes SAS libraries and SAS files, most operating environments and file systems validate the user’s authority to read from or write to that data.

Because a server is interposed between a user and the data, checking access permissions, which is usually performed by the operating environment or the file system security software, must be performed in the server’s session to protect access to that data through the server. For this reason, a SAS/SHARE server calls the operating environment or the file system to validate a user’s authority whenever an attempt is made to read from or write to a library through the server.

Providing a validated user ID and password as arguments in the LIBNAME statement, the ALLOCATE LIBRARY command in the PROC OPERATE statement, or the Remote SQL Pass-Through statement pre-empts earlier SAS methods of supplying a user ID and password by using a communications access method. Regardless of the method used for collecting a user ID and password, the server uses the validated user ID in making the authority check. To permit access by user IDs that are not validated, you can use the AUTHENTICATE=OPTIONAL option in the PROC SERVER statement. For more information about setting options in the PROC SERVER statement, see Chapter 12, “The SERVER Procedure,” on page 123. For more information about user IDs and passwords, see “LIBNAME Statement” on page 137, “Syntax: RSPT SQL Procedure” on page 163, or Chapter 14, “The OPERATE Procedure,” on page 145.

In order to validate a user ID, most access methods require using an access method-specific mechanism to provide the user ID and corresponding password for the server operating environment. The access method encrypts the user ID and password and transmits them to the server session to be validated. For information about the mechanisms that control whether an access method validates connecting users and the mechanisms by which users can provide their user IDs and passwords, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

On most operating environments, to validate a user ID and to verify access permissions, a SAS/SHARE server calls the operating environment or the file system directly. Under UNIX, the server performs these functions by calling an external program (that is, not a SAS application) that you can modify.

Ensuring That User IDs Are Valid

Because a SAS/SHARE server calls the operating environment or the file system to verify a user’s access permission to data, the accuracy of the user ID that the server presents to the operating environment or to the file system determines whether a user is allowed to access data.

When all communications access methods are configured (see Communications Access Methods for SAS/CONNECT and SAS/SHARE), on most operating environments each user ID is validated by the communications access methods when a user connects to the server. That validation is used for the duration of the connection. The server presents that user ID to the operating environment or to the file system whenever the user attempts to access data through the server.

Specifying the option AUTHENTICATE=OPTIONAL in a PROC SERVER statement bypasses the requirement that the access methods validate a connecting user ID. Use the option AUTHENTICATE=OPTIONAL to get a server up-and-running quickly with an absolute minimum of work. Also, this use shows the value of configuring production servers to run without the option AUTHENTICATE=OPTIONAL, which means that production servers can run unattended while only allowing users to access data that they have permission to access.

If you are running a SAS/SHARE server in an operating environment that does not have a security facility that controls user access to files, or if you are running a
SAS/SHARE server in an operating environment in which every user should have full access to every file that is available to the server, you might want to use the option AUTHENTICATE=OPTIONAL instead of implementing security for each of the access methods that is used by the server. For example, if a SAS/SHARE server is running under UNIX without a security facility installed, it is not possible for communications access methods to validate connecting user IDs, nor is it possible for the server to verify access to files for each individual user ID.

Using Encryption Services

As an alternate form of security, you can implement encryption services that protect data that is sent between operating environments across a network. For details, see Chapter 9, “Data Security,” on page 101, Chapter 10, “SAS/SECURE and SAS Proprietary Encryption Services,” on page 105, and Chapter 11, “Secure Sockets Layer (SSL),” on page 107.

Writing a SAS Program to Start a Server

When you write a simple SAS program to start a server, you can set SAS options in a configuration file, which is processed during SAS invocation, or you can set the options explicitly in a server session. To enable communication between the server and clients that are running under different operating environments, you must specify a communications access method. Also, you can pre-define SAS data libraries to the server. Finally, you start the server and specify the options that you want.

The following sample program shows how to start a server on UNIX. (The exact syntax varies by operating environment.)

```sas
options comamid=tcp;
libname payable '/dept/acct/pay';
proc server authenticate=optional id=share1 msgnumber;
```

Automating Server Start-Up

An alternative to starting a server in interactive mode is to create a command file that runs during system initialization and automates server start-up. The tasks that you perform vary by operating environment. For more information about how to automate server start-up under specific operating environments, see Appendix 2, “Creating the SAS/SHARE Server Environment,” on page 219.

Managing a Server, Its Libraries, and Its Users

Server Management: OPERATE Procedure

Use commands in the OPERATE procedure to manage the following:

- an active server, that is, a server that is running. You can display information about, quiesce, re-set (for subsequent management operations), re-start (a quiesced
server), and stop a server. For information about managing a server, see “Server Management Commands” on page 152.

- server libraries. You can allocate a library to an active server, display information about, free, quiesce, or stop a library. For information about managing a library, see “Library Management Commands” on page 148.

- users. You can display information about, quiesce access to, re-start (a quiesced or a stopped user), or terminate user connections to a server. For information about managing users, see “User Management Commands” on page 158.

Server Log Reporting: OPERATE Procedure

Output 3.1 shows part of the server administrator’s log for PROC OPERATE. The log reports client/server transactions for users John and Maria, who are working on a server named SHARE1. For information about interpreting server logs that are generated by users, see Chapter 7, “Interpreting Server Log Messages,” on page 85.
Output 3.1 Administrator’s Log for the OPERATE Procedure

LOG
Command ===>
1 proc operate serverid=share1;
2 display user _all_;

```
NUMBER OF 
USER ID STATUS LIBRARIES 
----------------------------------
john(1) ACTIVE 1
maria(2) ACTIVE 2
myid(3) ACTIVE 0
```

3 stop user maria;
User maria(2) stopped from active state.
User maria is now disallowed from connecting to server SHARE1.

4 display user maria;

```
NUMBER OF 
USER ID STATUS LIBRARIES 
----------------------------------
maria(2) STOPPED 0
```

5 quiesce user 1;
User john(1) quiesced from active state.

6 display user 1;

```
NUMBER OF 
USER ID STATUS LIBRARIES 
----------------------------------
john(1) QUIESCED 1
```

User john(1) is accessing these libraries:

```
USER LIBREF SERVER LIBREF LIBRARY NAME
-----------------------------
DATALIB SYSUSE <SAS-library-name>
```

User john(1) is accessing these data sets:

```
USER LIBREF SERVER LIBREF MEMBER TYPE OPEN MODE
-----------------------------------------------
DATALIB SYSUSE USAGE CATALOG UPDATE
```

7 start user maria;
User maria started from stopped state and therefore has become unknown to server SHARE1.

8 quit;

1 PROC OPERATE executes commands 2 through 8 (shown in the preceding output).

2 The DISPLAY USER command requests general information about all users who are currently accessing SHARE1. The users are listed by user ID, current status, and the number of library assignments to the server.

3 The STOP USER command immediately disconnects user MARIA(2) from the server. If Maria is using the FSEDIT procedure to update an observation when the STOP command is issued, she loses the updates on her display, but she does not lose previous updates. The STOP USER command terminates all attachments to that server, and she is prohibited from accessing that server until the administrator issues a START USER command.
4 The DISPLAY USER command shows Maria’s current status. No libraries are listed for Maria because the STOP USER command released them.

5 The QUIESCE USER command gradually terminates user JOHN(1), which allows John to finish work in the data sets that he currently has open.

6 The subsequent DISPLAY USER command reports that John is still accessing member USAGE in library DATALIB. When John closes USAGE in that library, the server releases the library and disconnects John. Because John’s session was quiesced by its connect number, John can re-connect to the server when he wants to. He receives a new connection number at that time.

7 The START USER command allows Maria to access the server again. Note that the START USER command does not establish a communication path between the server and Maria. It only enables Maria to re-establish a path by using a LIBNAME statement or an SQL CONNECT TO statement. She must explicitly re-access the server.

8 The QUIT statement terminates PROC OPERATE.
CHAPTER

Writing End-User Applications to Access Shared Data

Accessing Libraries through a Server

Introduction
Using the LIBNAME Statement
Using Macros to Generate a LIBNAME Statement

Locking Data Objects in your Programming Environment

SAS Programming Considerations
DATA Step Processing
Using Ordered Data in a Shared Environment
Using Non-Interactive SAS Applications in a Shared Environment

SQL Programming Considerations

SCL Programming Considerations
Concurrent SCL Applications

Locking Rows in SAS Tables

Locking Rows in SCL

Programming with PROC FSEDIT and PROC FSBROWSE
Programming with the Data Table and Data Form Classes
Locating and Fetching Control Rows

Unlocking Rows

SAS Data View Programming Considerations
Data Sets of Type VIEW
Interpreting SAS Data Views
Example: Using RLS and a DATA Step View to Improve the Performance of PROC APPEND

Using SAS Catalog Entries in Programs

Using SAS/CONNECT with SAS/SHARE
SAS/CONNECT Used with SAS/SHARE
Example: Using a SAS/SHARE Server in a SAS/CONNECT Server Session

Accessing Libraries through a Server

Introduction

The information in this section is primarily directed to applications developers. However, server administrators and end-users might also find it of interest. For more information about programming techniques and adjusting SAS system option values to improve the performance of your client/server applications, see Appendix 3, “Tuning Tips for Applications That Use SAS/SHARE Software,” on page 233.
Using the LIBNAME Statement

To access a SAS data library or an external DBMS through a SAS/SHARE server, you must use the REMOTE engine to define a libref for the library. In a LIBNAME statement, specify the libref, which identifies the library or the DBMS, and the SAS/SHARE server that you’ll use to access that library or DBMS.

In the following example, the engine name REMOTE, which is usually specified between the libref and the pathname, is omitted because it is implied by the SERVER= option.

 libname invoice '/dept/acct/data/invoice' server=share1;

If the library is pre-defined to the server by a server administrator, you can omit the pathname and use only the libref, which is defined for the library in the server SAS session, to identify the library. Omitting the pathname protects your application if the pathname for the library has changed.

In the following example, the REMOTE engine and the server assume that the libref (invdata), which you defined for your SAS session, is the same libref that is defined by the server administrator in the server SAS session.

 libname invdata server=share1;

If the library is pre-defined to the server but you want to define a libref that is different from the one that is defined in the server SAS session, use the SLIBREF= option in the LIBNAME statement to specify a newly defined server libref, as shown in the following example. However, if a server runs with the option NOALLOC in effect, all libraries that are accessed through that server must be pre-defined by the server administrator.

 libname invoice server=share1 slibref=invdata;

For details about the LIBNAME statement syntax, see Chapter 13, “Remote Library Services,” on page 137.

Using Macros to Generate a LIBNAME Statement

Hard coding the server name in a LIBNAME statement can be a problem if the server administrator shifts one server’s traffic to another server, thereby invalidating the server name.

You can avoid this problem by using a SAS macro to generate the required LIBNAME statement. If you use a macro in your end-user application, you can change the name of the server in one place, even though multiple applications access data through that server. This makes it easier to maintain your SAS programs.

SAS/SHARE provides macros for generating LIBNAME statements. To associate a server name with a SAS data library, register the library in the table that is maintained by the server administrator. Instead of specifying a LIBNAME statement to access the library, use the LIBDEF macro. When you invoke the LIBDEF macro, it searches the table of registered data libraries for the specified library. When the LIBDEF macro finds the library, it uses the associated server name and the specified libref to construct the LIBNAME statement. Before the first invocation of the LIBDEF macro in a SAS execution, you must invoke the SHRMACS macro with the keyword USER.

 %shrmacs(user);

The SHRMACS macro generates and compiles other SAS/SHARE macros and builds the SAS server-alias and library-alias tables in which server libraries are registered.
To invoke the LIBDEF macro, specify the libref and the optional server library. Here is an example:

```sas
%libdef(datalib<, SAS-data-library>);
```

For more information about using the LIBDEF macro, see “Generating a LIBNAME Statement with the LIBDEF Macro” on page 82. For complete details about macro syntax, see Chapter 17, “SAS/SHARE Macros,” on page 175. Contact your server administrator for information about how the macros and tables are implemented and how they are used at your site.

Locking Data Objects in your Programming Environment

The SAS/SHARE lock manager enables multiple clients to share the same SAS file at the same time. The server's ability to manage multi-client access of selected data objects is contingent on a complex set of locking rules that are affected by many factors. These locking rules must be considered in relation to each programming product (SAS and other products) that you use to write applications that enable accessing data through the SAS/SHARE server. For complete information about locking, see Chapter 5, “Locking SAS Data Objects,” on page 57.

SAS Programming Considerations

DATA Step Processing

John and Maria have concurrent access to the SAS data set FUEL in their respective sessions. While Maria is editing the data set DATALIB.FUEL in an FSEDIT window, John can use a SET, a MERGE, or an UPDATE statement in a DATA step to read DATALIB.FUEL. Although John cannot create a new version of DATALIB.FUEL, he can create other data sets or written reports.

The following program shows the effect of implicit locking when two clients access the same SAS data set at the same time:

```sas
data _null_;  
set datalib.fuel; 
file report ps=24 n=ps;  
...  
run; 

data composit;  
merge datalib.fuel fuel96;  
run; 

If John uses a SET statement to read DATALIB.FUEL, he cannot specify the KEY= or POINT= option unless he overrides the member-level control. By default, member-level control is required when either of these options are included in a SET statement. Here's an example.

```sas
data pressure;
set fuel (keep=fuel maxpress);
set datalib.fuel (cntllev=rec) key=fuel;
```
run;

If John uses an UPDATE statement or a SET or a MERGE statement with a BY statement to read DATALIB.FUEL, he should consider specifying member-level control to ensure that the data set remains correctly ordered while his DATA step runs. Here’s an example.

```sas
data composit;
 merge datalib.fuel (cntllev=mem) fuel96;
 by grade;
run;
```

John cannot create a new version of DATALIB.FUEL, but he can use a MODIFY statement in a DATA step to update the shared data set. Here’s an example.

```sas
data datalib.fuel;
 modify datalib.fuel;
 if (grade='03N') then
 do;
 grade='3Np';
 revised=today();
 replace datalib.fuel;
 end;
 run;
```

When John uses the preceding DATA step to update an observation that Maria is editing in her FSEDIT window, the replace operation for that observation fails because Maria has the observation locked. This failure causes the DATA step to terminate as soon as the locked observation is encountered. However, any observations that are updated prior to the termination retain their updated values.

For applications that update shared data by using a MODIFY statement, it is very important to include error-checking statements to prevent failure in the updating process and premature termination. The automatic variable _IORC_ includes the return codes from the read operation (performed by the MODIFY statement) and the update operations (performed by the REPLACE, OUTPUT, and REMOVE statements). The preceding DATA step would be more effective if it was written as follows:

```sas
data datalib.fuel;
 modify datalib.fuel;
 if (grade='03N') then
 if (_iorc_ = 0) then
 /* read with lock for successful update */
 do;
 grade='3Np';
 revised=today();
 replace datalib.fuel;
 end;
 else
 put 'Observation' _n_
 '(fuel' fuel ') was not replaced.';
 run;
```

The preceding DATA step checks the value of _IORC_ to determine if a warning or an error condition occurred while reading an observation in DATALIB.FUEL. If the observation was read successfully, it can be replaced. If the observation could not be read, a message is written to the SAS log to record the failure and to identify the observation that was not updated.
To check for specific values of _IORC_, use the SYSRC macro. For example,

```sas
data datalib.fuel;
 modify datalib.fuel;
 if (grade='03N') then
 if (_iorc_ = 0) then
 /* read with lock for successful update */
 do;
 grade='3Np';
 revised=today();
 replace datalib.fuel;
 end;
 else if (_iorc_ = %sysrc(_SWNOUPD)) then
 put 'Observation' _n_
 '(fuel' fuel ') was not replaced.';
 else
 put 'Observation' _n_
 '(fuel' fuel ') read with rc' _iorc_;
 end;
run;
```

For complete information about the MODIFY statement, see SAS Language Reference: Dictionary. For information about the SYSRC macro and _IORC_ return code checking, see SAS Macro Language: Reference.

---

**Using Ordered Data in a Shared Environment**

Many applications that use SAS data sets require the data to be stored in sorted order according to the value (or values) of one or more variables. Beginning in Version 6 of SAS, indexes can be defined for one or more variables in a SAS data file to help SAS applications maintain the order of the observations in SAS data sets. This prevents the application from having to sort the entire data set for each use. Because SAS detects if indexes are used in its processing, indexes must be carefully defined to avoid inadvertently causing less efficient SAS performance. For more information about defining indexes, see SAS Language Reference: Concepts.

Shared SAS data sets are frequently ordered according to one or more variables. Programmers who develop SAS applications that use shared, ordered data should be aware of the following ways in which shared data can be used:

- concurrent-update applications
- reporting applications.

**Concurrent-update applications** usually involve several users who repeat the following type of cycle: select an observation, update data; select another observation, update that data; and so on. If these users specify a WHERE clause to move to the next observation and the variable (or variables) in the WHERE clause are indexed, indexing can improve the server's performance by minimizing the server's effort to search for each observation. Because, when using the concurrent-update applications, the users' access pattern is often random instead of sequential, processing with an index does not usually increase the amount of physical I/O that is performed by the server for each user.

**Reporting applications** frequently read the data of one or more shared data sets, capturing the data as it is at that moment, and develop a report from that data. If the application uses a BY statement to return the data in sorted order, the server's performance can vary greatly while the data is being read. The server's performance is based on multiple factors, such as whether the BY variable is indexed, and whether options are added to the BY statement that result in the index not being used.
Due to concern about the server's performance, it is recommended that the server read the data in its physical, unsorted order, and then sort the data in the SAS process that is used to produce the report. You can do this by using the SORT procedure to read the data in physical order through the server, and produce a sorted data file in your library WORK. Here's an example.

```sas
proc sort data=datalib.fuel out=fuel;
 by area;
run;
```

Alternatively, you can use the SQL procedure to create a temporary SAS data file and sort it by using an ORDER BY clause. Here's an example.

```sas
proc sql;
create table fuel as
 select * from datalib.fuel
 order by area;
```

Defining more indexes than are necessary on shared SAS data sets can increase the amount of memory that a server needs. Avoid defining indexes that will not be used by your applications when they access shared data sets through a server.

---

**Using Non-Interactive SAS Applications in a Shared Environment**

Shared data is sometimes maintained by SAS applications that use the batch or a non-interactive method of processing. As in interactive applications, these non-interactive applications update SAS files through a server. Non-interactive applications can be written as one or more SCL programs or as a combination of DATA steps and procedures.

Usually, it is important that no other users access any of the shared SAS files while a non-interactive application runs. To ensure uninterrupted access, use the LOCK statement or the SCL LOCK function (for SCL programs) at the beginning of your program to get exclusive access to the SAS files that your application uses. After your program has completed, be sure to release your exclusive access to these SAS files so that other users can access them.

Here is a two-step SAS program that includes a LOCK statement that opens a shared SAS data set and copies to another data set all data that has not been updated for one month. Then the program deletes the data from the original data set. The following example program gives exclusive access to a specific SAS file and clears the exclusive lock after the program has completed processing.

```sas
%libdef(datalib);
/* Try to get exclusive access to the SAS data set. */
lock datalib.fuel;

/* Did we succeed? If not, stop here. */
data _null_
 put "SYSLCKRC=&SYSLCKRC";
 if "&SYSLCKRC" ^= '0' then
 abort return;
run;

/* Copy any observations that have not been updated in */
/* 30 days to a different, locally-accessed library. */
data permlib.a;
 drop now;
 retain now;
 if (_N_=1) then now=today();
 set datalib.fuel;
 if (accdate<(now-30)) then output permlib.a;
run;

/* Now delete those observations from the master file. */

proc sql;
delete from datalib.fuel where (accdate<(today()-30));
quit;

/* Tasks completed. Release the lock on the master file. */

lock datalib.fuel clear;

SQL Programming Considerations

The REMOTE engine supports the SQL procedure Pass-Through Facility (RSPT), which allows you to pass SQL statements to an SQL server or a DBMS through a SAS/SHARE or a SAS/CONNECT server.

You can use RSPT to reduce network traffic and to shift CPU load by sending requests for data to a server.

Note: If the server is a SAS/CONNECT server, you can also remotely submit queries by using the RSUBMIT statement and achieve the same goals.

For example, if you specify the following statement:

```sql
select emptitle as title, avg(empyears), freq(empnum)
  from sql.employee
  group by title
  order by title;
```

SQL is the libref for a library that is accessed through a SAS/SHARE or a SAS/CONNECT server. Each row in the table EMPLOYEE must be returned to your client in order for the summary functions AVG() and FREQ() to be applied to them. However, if you specify the statement as follows:

```sql
select * from connection to remote
  (select emptitle as title,
   avg(empyears), freq(empnum)
   from sql.employee
   group by title
   order by title);
```

the query is passed through the SAS/SHARE server to the SAS SQL processor, which processes each row in the table EMPLOYEE and returns only the summary rows to your client.

You can also use RSPT to join server data with client data. For example, if you specify,

```sql
libname mylib 'c:\sales';
```
proc sql;
 connect to remote (server=mvs.shr1 dbms=db2
dbmsarg=(ssid=db2p));

 select * from mylib.sales97,
 connection to remote
 (select qtr, division, sales, pct from revenue.all97
 where region = 'Southeast')
 where sales97.div = division;

the subquery against the DB2 data is sent through the SAS/SHARE server to the DB2 server. The rows for the divisions in the Southeast region are returned to your SAS/SHARE client, where they are joined with the corresponding rows from the client data set MYLIB.SALES97.

If your server is a SAS/CONNECT server, you can also use RSPT to send non-query SQL statements to a DBMS. For example, the following statements send the DELETE statement in PROC SQL through the SAS/SHARE server to the Oracle server.

proc sql;
 connect to remote (server=sunserv dbms=oracle);

 execute (delete from parts.inventory
 where part_bin_number = '093A6')
 by remote;

SCL Programming Considerations

Concurrent SCL Applications

You can use SAS Component Language (SCL) with SAS/SHARE software to access data through a SAS/SHARE server. SCL has the ability to read and update SAS tables that are used concurrently by other clients or SCL applications. For complete information about SCL, see *SAS Component Language: Reference*.

A concurrent SCL application opens one SAS data table for update while other SAS operations (possibly in different SAS sessions) have the same data table open for update. You can open other data tables for update by using other invocations of the first SCL application, using a different SAS application or SCL application, or using the FSEDIT or FSVIEW procedure on the table.

Consider the following issues when writing an SCL application that updates data concurrently:

- Locking rows in SAS tables
- Implications of locking rows in SCL
- Programming in PROC FSEDIT and PROC FSBROWSE
- Locating and fetching control rows
- Unlocking a row.

For an application that uses SAS tables that contain inventory and ordering information for each product in a store, see Appendix 4, “SAS Component Language (SCL) Application,” on page 255. The purpose of the application is to automate a system that develops orders and maintains the inventory list while sales representatives simultaneously write orders for products.
Locking Rows in SAS Tables

A row in a SAS table is locked implicitly when it is read by a SAS procedure, a DATA step, or an SCL application. A lock on a row is held until a different row is read or until the SCL application calls the UNLOCK function.

When a SAS table is opened for update, only one row can be locked at a time. However, a SAS table can be opened for update more than one time in the same SAS session or in different SAS sessions (through a server), and a different row can be locked by each user who opens the table. For example, if two users are running an SCL application that calls the OPEN function to open a SAS table for update, row 7 can be locked by one user and row 10 can be locked by the other user.

Locking Rows in SCL

Row locking can give a programmer an important advantage, and should be a key consideration in concurrent SCL programming. While an SCL application has a row locked, no other SAS operation (especially in another SAS session) can alter or delete that row. After a lock on a row is released, your application cannot be sure that the values in that row remain the same; another user might have already modified the values. Any data modifications that you make that are based on the old values might damage the data integrity of the system.

Therefore, you must never assume that the data values in a specific row will not change in a shared table, even though only a very brief amount of time has elapsed between consecutive reads and locks of the row.

When each row in a SAS table can represent a specific instance of a resource that the application must govern, row locking provides a resource-specific, protected period of time in which the application can safely test and modify the state of the resource.

An example of a specific-resource instance is information about one of your customers or the number of items of a specific type that is currently in inventory. The SCL example in Appendix 4, “SAS Component Language (SCL) Application,” on page 255 applies locks to its inventory table to maintain the correct inventory count for each item, even if several sales representatives are simultaneously writing orders for those items.

Programming with PROC FSEDIT and PROC FSBROWSE

Unlike other SCL environments (such as SAS/AF software and the FSVIEW procedure), PROC FSEDIT and PROC FSBROWSE give the SCL programmer multiple labeled sections for structuring an SCL application. The sequence in which these procedures run some of the sections has several implications for concurrent SCL programming.

The INIT section is especially useful in applications that read and update shared data. The initial values of the columns in a row (as currently stored in the SAS table) can be preserved in SCL columns. Preserving initial values in SCL columns is important for applications that update auxiliary tables (that is, in a concurrent SCL application, any table other than the one specified in the DATA= option in the PROC FSEDIT statement) that are based on the PROC FSEDIT user’s modification or on the creation of a row in the primary table (that is, the table that is specified in the DATA= option in the PROC FSEDIT statement.) SCL applications that read and update data usually need to perform the following tasks:

- Determine if a modified window column actually contains a value that is different from its initial, validated value.
Explicitly restore the initial values if the user's modifications to a row in the primary table are not allowed because they could not be validated.

Modify the auxiliary tables because changes (from their initial values) were made to the values in a row in the primary table.

Although the MAIN or TERM sections must validate the user's modifications to a row in the primary table and update auxiliary tables, it is usually best that no row of an auxiliary table remain locked between executions of these sections. Such locks prevent other users or applications from modifying the row while a user is working in the current row in the primary table.

Programming with the Data Table and Data Form Classes

The Data Table and Data Form classes in SAS/AF FRAME entries allow you to specify an SCL entry to use for the model SCL. This SCL entry is separate from the frame's SCL entry. Usually, model SCL is used to initialize computed columns and to perform error checking and data validation.

As in PROC FSEDIT, the Data Table and the Data Form objects give the SCL programmer multiple labeled sections for structuring the order in which events will occur for each row in the table. These sections, which include INIT, MAIN, and TERM, work in the same way as explained in “Programming with PROC FSEDIT and PROC FSBROWSE” on page 49.

If multiple instances of the Data Table or the Data Form objects are displayed within a single SAS/AF FRAME entry, the objects share data, then the model SCL for each data table or data form runs separately. The application developer must remember whether a previous object has a lock on a row that the current object attempts to read or update. In addition, the frame SCL might also be working on the shared data, and timing within the frame could be critical. For more information about when SCL labels are run, see SAS Component Language: Reference.

Locating and Fetching Control Rows

SCL provides a set of functions that are useful for locating and fetching the required auxiliary table rows (observations) in a data-concurrent SCL application. However, you should use caution with these functions in applications that access shared data. The return code, which is obtained directly from the called function or from the SYSRC function, must be checked to ensure that a lock was obtained on the row or that an update was successful. The return value, which is generated by the macro invocation %SYSRC(SWNOUPD), is generated when a fetch or update function fails to lock or update the row because it is locked by another application.

The FETCHOBS table function is useful when the row number can serve as the row identifier. Remember that the FETCHOBS function accepts a relative row number by default. That number might or might not equate to the physical row number. If you can delete rows in the auxiliary table, you probably want to use the ABS option in the FETCHOBS function for absolute row numbering.

The LOCATEC and LOCATEN table functions can be useful for finding rows in small tables when the data can remain sorted by a unique identifier (column) and a binary search is specified. However, due to the overhead of searching with these SCL functions, it is better to use the WHERE and FETCH functions to find the rows. In a shared-data environment, when you use the LOCATEC and LOCATEN functions to find rows, each row must be requested from the server and transmitted to the client’s SAS session.

The SYSRC function must be queried for warnings when the LOCATEC and LOCATEN functions find a row because these functions only return a return code of 0.
for either condition: row found or row not found. For more information about the LOCATEC and LOCATEN functions, see SAS Component Language: Reference. The following SCL program example checks whether the located row is locked by another task:

```sas
gotrec=locatec(data-set-id,var-num,search-string,
                sort-order);
if (gotrec<=0) then do;
   /* Handle row not found */
   end;
else if (sysrc()=%sysrc(_swnoupd)) then do;
   /* Handle row locked */
   end;
```

Note: The LOCATEC and LOCATEN functions cannot perform binary searches on compressed tables, SAS data views, or SAS data files that have deleted rows. △

The more general and, usually, more efficient way to find a row is to use the WHERE function followed by a FETCH function call. The WHERE clause is evaluated in the server’s SAS session, and only the row that needs the specifications in the WHERE clause is transmitted to the client’s SAS session.

If the WHERE clause does not find the specified row, the FETCH function returns a −1 return code, which indicates that the end of the table has been reached. If the WHERE clause is cleared by issuing a null WHERE function call, the next FETCH call that the application issues fetches the first row in the table. The FETCH call, not the WHERE clause, locks the row (if possible). Notice that the WHERE function returns a harmless warning, %SYSRC(_SWWREP), when the WHERE clause is replaced.

The DATALISTC and DATALISTN selection-list functions help a client to select a valid row. These functions actually fetch the entire selected row into the Table Data Vector (DDV) and lock the row (if possible). Because these functions do not return a system return code, the SYSRC function must be queried for warnings. The DATALISTC and DATALISTN functions might cause the entire SAS table to be read, which means that each row that is read is transferred individually from the server to the client SAS session.

Unlocking Rows

In addition to releasing a lock on the current row by reading another row, an SCL application can use the SCL function UNLOCK. The UNLOCK function leaves the read-pointer at its current position in the table and does not update the DDV.

The OBSINFO function in SCL returns information about the primary table’s current row in an FSEDIT application. You can query whether the row has been deleted, locked, or newly created. A row does not attain deleted status until the DELETE command is run on the client. For example, if you specified the CONTROL ENTER statement to force your MAIN section to run, the OBSINFO function will not return a deleted status when issued from the MAIN section (because the DELETE command that was executed on the client has caused MAIN to be run.) However, the OBSINFO function will return a deleted status when the MAIN statement or TERM section is run again.
Data Sets of Type VIEW

Beginning with Version 6 of SAS, SAS data sets can be classified as member type DATA (SAS data file) or member type VIEW. A data set of type VIEW is called a SAS data view. It contains a definition or description of data that is stored elsewhere. SAS data views can be created by using a DATA step, the SQL procedure, or the ACCESS procedure in SAS/ACCESS software. In most SAS programs, whether the data comes from a SAS data view or data file is not important.

Many SAS/ACCESS interface products, such as those for DB2 or Oracle, enable you to update product data by using a SAS/ACCESS view. However, for views that are interpreted in the server’s session, whether you can update a view’s underlying DBMS data depends on the specific SAS/ACCESS interface engine that you are using. For information about how to use SAS/ACCESS engines in a SAS/SHARE server session, see the SAS/ACCESS documentation.

Interpreting SAS Data Views

A SAS data view that is accessed by using a server can be interpreted in either the server or the client session.

The user specifies where a SAS data view is interpreted by specifying the RMTVIEW= option in the LIBNAME statement. When RMTVIEW= YES or the option is omitted, a data view is interpreted in the server session. When RMTVIEW= NO, a data view is interpreted in the client session. For more information about the LIBNAME statement and its options, see Chapter 13, “Remote Library Services,” on page 137.

Interpreting a view consists of loading and calling the view engine to read the view’s underlying data. When a view is interpreted in the client session, the view engine is loaded and called by the client to read and present the underlying data and present it as a SAS data set. When a view is interpreted in the server session, the view engine is loaded and called by the server to read and present the underlying data.

Whether a SAS data view is interpreted in a client or a server session, the underlying data must be accessible to its view engine. Data accessibility is based on whether the view was created by using a DATA step, PROC SQL, or PROC ACCESS.

For DATA step views, accessible means that any external file (or files) must be available and that any filerefs and librefs that are stored in the view must be defined in the SAS session in which the view is interpreted.

For PROC SQL views, accessible means that all librefs that are used in the view must be pre-defined in the SAS session in which the view is interpreted, or included in the USING clause of the query that is stored in the view. This libref can be associated with a SAS data library that is accessed through a server or a library that is stored at the client. You do not have to specify a libref in a PROC SQL view for data sets that are in the same data library as the view itself.

For PROC ACCESS views, accessible means that the interface product and its data, and the SAS/ACCESS interface view engine must be available to the SAS session in which the view is interpreted.

Where SAS data views should be interpreted in a shared environment is based on

- how the view was created.
- how the view’s data will be used.
- specific site considerations.
Is the underlying data accessible? If the data is accessible only from one of the sessions, the view must be interpreted there.

If the data is accessible from the client session and the server session, then performance must be a consideration. If interpreting the view requires the SAS session to read a large number of rows in order to select a small subset, having the SAS/SHARE server interpret the view greatly reduces the number of records that are transmitted to the client session. This method reduces network load and might be faster than having the client session interpret the view. However, putting a heavy processing load on the server (especially if joins are involved) might adversely affect server performance for other clients.

If the view selects most of the input rows or if the selection criteria are processed by a DBMS server, interpreting the view in the client session is probably preferable.

Example: Using RLS and a DATA Step View to Improve the Performance of PROC APPEND

The following code shows the creation and storage of a master data set on a SAS/SHARE server:

```sas
libname share 'path-to-library' server=shr1;

data share.master;
  do key = 1 to 100000;
    var = 'Original Value' ;
    output;
  end;
  array othervars {20};
run;
```

The following program creates a transaction data set, which PROC APPEND adds to the master data set that is located on the server:

```sas
data transactions;
  do key = 100001 to 200000 by 10;
    var = 'New Value: '||put(key,z6.);
    output;
  end;
run;
```

```sas
proc append base=share.master new=transactions force;
run;
```

With the following changes to the preceding code, append processing can be shifted to a SAS/SHARE server.

Note: When using a SAS/SHARE server, you will see performance gains increase as the size of the transaction data set increases.

The SAS DATA step view can be created and stored on the server before the view is actually used. In order to create the view, a copy of the transactions data set (in this example, `swork.transactions`) must be available as a “template” for the expected contents (for example, variables and variable length). The template does not have to contain any observations.
libname swork slibref=work server=shr1;

data swork.transactions;
 do key = 100001 to 200000 by 10;
 var = 'New Value: '||put(key,z6.);
 output;
 end;
run;

data share.append_view share.master / view=share.append_view;
 modify share.master;
 set swork.transactions;
 output;
run;

The following DATA step now references the view that is located on the server and causes the view to be interpreted and run on the server:

data _null_;
 set share.append_view;
run;

After the initial setup of the DATA step view, future production runs that use this "append" view might appear as follows:

libname share ''; server=shr1;
 libname swork slibref=work server=shr1;

data swork.transactions;
 do key = 100001 to 200000 by 10;
 var = 'New Value: '||put(key,z6.);
 output;
 end;
run;

data _null_;
 set share.append_view;
run;

Although there are several ways to create SAS DATA step views in order to improve the performance of the update process when using a SAS/SHARE server, the preceding example shows a simple way to create views. The update process can be improved by using the MODIFY statement in a DATA step view that gets interpreted at the server.

Note: You should consider the advantages and disadvantages of using the MODIFY statement to create views. A primary advantage is that the MODIFY statement allows locking at the observation level rather than at the member level. Locking at the observation level is less restrictive than locking at the member level. However, the MODIFY statement is not the most efficient query technique.
Using SAS Catalog Entries in Programs

Many catalog entries of the following types are stored in the library SASUSER. However, because you cannot access them through a SAS/SHARE server, you are advised against storing them in a SAS library that is accessed through a server.

| Table 4.1 Catalog Entry Types That Cannot Be Accessed through a SAS/SHARE Server |
AFCBT	MODEL
AFGO	MSYMTAB
AFPGM	OLDMACRO
ENGINE	PROFILE
GEDIT	STATGRAP
GLOBAL	TITLE
GOPTIONS	WSAVE

Full access to all other types of entries is supported through a SAS/SHARE server. You can obtain exclusive access to a catalog or to individual entries (other than the types shown in Table 4.1 on page 55) by using the LOCK statement or the LOCK command to lock the catalog or catalog entries. See Chapter 5, “Locking SAS Data Objects,” on page 57 and Chapter 16, “The LOCK Statement and the LOCK Command,” on page 171. You can also lock a catalog or catalog entry by using the SCL function LOCK. See the LOCK function in *SAS Component Language: Reference*.

Using SAS/CONNECT with SAS/SHARE

SAS/CONNECT Used with SAS/SHARE

You can use SAS/CONNECT with SAS/SHARE to extend your access to SAS files and execute SAS tasks on one or more servers. All output and messages that are generated from that server session are directed back to the client for display. This execution can be done in parallel to provide scalability of large jobs and reduce the amount of time to completion.

SAS/CONNECT provides the connection between the client and the server that enables you to run SAS statements on the server, and gives you the ability to perform this execution in parallel. SAS/SHARE allows concurrent update access to data. You must use SAS/SHARE with SAS/CONNECT if SAS files that are used in server processing require concurrent update access. For complete details about SAS/CONNECT, see the *SAS/CONNECT User's Guide*.
Example: Using a SAS/SHARE Server in a SAS/CONNECT Server Session

The following example shows the need to access a SAS/SHARE server in a SAS/CONNECT server session.

You have to create a report from DATALIB.FUEL, but John and Maria are currently accessing this data through a SAS/SHARE server. You can use SAS/CONNECT to connect to the operating environment where the library DATALIB is stored. However, because DATALIB is already being accessed through a SAS/SHARE server, you must use the same SAS/SHARE server to access DATALIB.FUEL and generate the report. Therefore, you connect to the SAS/SHARE server and submit the following:

```
signon apex;
rssubmit;
   libname datalib server=shr1;
   proc print data=datalib.fuel;
      where area='TEX3' and profits<=0;
      title 'Losses in Texas, Area 3';
   run;
endrssubmit;
```

The LIBNAME statement identifies DATALIB as the library to access through the same server that John and Maria are using. Your SAS/CONNECT server session connects to the SAS/SHARE server and executes the PRINT procedure to produce the report. The report is displayed at your client session. Except for some interactive limitations that are imposed by SAS/CONNECT, you can remote submit the same SAS program statements to read from or write to the same data in DATALIB that other users work on when they log on directly to the server.

CAUTION:

Do not remote submit the SERVER procedure when using SAS/CONNECT.
CHAPTER 5

Locking SAS Data Objects

SAS/SHARE Lock Manager Facility 57
Locking and SAS Data Object Hierarchy 58
SAS Data Object Hierarchy 58
Accessing and Using SAS Data Objects 59
Types of Locks 60
Locking Objects Explicitly (LOCK Statement) 61
LOCK Statement: Advantages of Using 61
Syntax for the LOCK Statement 61
Locking a SAS Data Library 62
Locking a SAS Data Set 62
Locking a SAS Catalog 63
Locking a Catalog Entry 63
Clearing an Explicit Lock 63
Explicitly Locking and Clearing Each Data Object 63
Clearing a Higher-Level Data Object Clears Multiple Lower-Level Objects 64
Locking a Higher-Level Data Object Locks Multiple Lower-Level Data Objects and Clearing the Higher-Level Lock 64
Listing Lock Status 65
Return Codes for the LOCK Statement 65
Locking Explicitly in a SAS Window (LOCK Command) 66
Advantages of Using LOCK Command 66
Syntax for the LOCK Command 66
Locking and Clearing Locks on Data Objects 66
How Implicit Locking Works in SAS Program Steps 68
Defaults for Selected SAS Operations 69
Default Data Objects: Reference 69
Changing the Data Set Option Default Object 70
Examples of Messages for Locking SAS Objects 71

SAS/SHARE Lock Manager Facility

Note: In this documentation, the term operation refers to any SAS procedure, statement, or command. △

The SAS/SHARE lock manager facility enables multiple clients to share the same SAS file concurrently. Using a set of complex locking rules, the lock manager evaluates each incoming client request for access to SAS data objects while monitoring the status of all other client activities. The lock manager grants access to a specific data object by locking the data object, and denies all other requests for the locked data object until an operation has been executed or the lock has been cleared explicitly.
SAS Data Object Hierarchy

The information in this section is primarily directed to applications developers, but it might also be of interest to end-users.

Knowing the concepts for locking SAS data objects and the SAS data object hierarchy will help you to understand explicit locking, which is set by using the LOCK statement or a LOCK command; and implicit locking, which is set automatically.

When you perform a SAS operation, the SAS/SHARE server controls which data object is locked and how the data object is locked. This allows you to access data objects and denies access to those data objects by other users for the duration of the operation.

Figure 5.1 Hierarchy of SAS Data Object Types

1 SAS Data Library
 is a collection of one or more SAS files that are recognized by SAS. Each file is a member of the library.

2 Member
 is a file in a SAS data library that can be a SAS data file, a SAS data view, a SAS utility file, or a SAS data catalog.
SAS data file
is a SAS data set that contains the data values and the descriptor information. SAS data files are of member type DATA.

SAS data view
is a SAS data set in which the descriptor information and observations are obtained from other files. SAS data views store only the information that is required to retrieve data values or descriptor information. SAS data views are of member type VIEW.

SAS utility file
is a SAS file that stores information that is exclusive to a component of SAS. For example, SAS/ACCESS descriptors, MDDB (Multi-Dimensional Database) files, and DMDB (Data Mining Database) files.

SAS catalog
is a SAS file that stores many different types of information in smaller units that are called entries. Some catalog entries contain system information, such as the definitions of keys. Other catalog entries contain application information, such as window definitions, help windows, formats, informats, macros, or graphics output.

3 Observation
is a row in a SAS data file that contains a collection of data values that are associated with a single entity, such as a customer or a state. Each row (observation) contains one data value for each column (variable) in the data file.

4 Entry
is a unit of information that is stored in a SAS catalog.

Accessing and Using SAS Data Objects

The type of lock that a server sets on a member or an observation is affected by how the operation accesses and uses the SAS data object type. The ways to access a data object are

- **input** to read data
- **update** to change the values of variables
- **output** to add new variables with values
- **utility** to change the header information of the file.

Each SAS operation has a default action for each object that is accessed and the way that the object is accessed. For example, given that the server engine allows an observation to be locked and the observation is not already locked, the server can open and lock an observation in a data set. If the server engine does not allow an observation to be locked, the engine locks the member (above the observation).
The lowest hierarchical level at which data can be locked varies according to the engine that is used to access the data.

- V8 and V9 (the default) engines allow locking at the library, member, and observation level.
- The V8TAPE engine, V9TAPE engine, and other sequential engines allow locking only at and above the member level.
- If an engine does not allow access to SAS catalogs, that engine does not allow locking at any level.
- The view engine default-locking action is based on how the view is created, that is, by using a DATA step, PROC SQL, or PROC ACCESS (available in SAS/ACCESS). The specific SAS/ACCESS engine that is used is based on the DBMS. See the SAS/ACCESS documentation for information about view engine default-locking action.

Table 5.1 on page 60 shows the combinations of objects that are locked, how objects are locked, and the effects on other client operations.

Table 5.1 Effects of Object Locking on Other Client Operations

<table>
<thead>
<tr>
<th>Which Data Object Is Locked</th>
<th>Mode in Which Data Object Is Locked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input</td>
</tr>
<tr>
<td>Member</td>
<td>Other operations can read the data set but cannot open it for update or output.</td>
</tr>
<tr>
<td>Observation</td>
<td>Other operations can read or update the data set but cannot open it for output.</td>
</tr>
</tbody>
</table>

Types of Locks

The following types of locks can be used on a data object:

- **explicit lock**
 is set with the LOCK statement or the LOCK command for exclusive access to the data object type. The action of the LOCK statement or the LOCK command is restricted by the server engine, the object that is being accessed, and the way that the object is accessed (for example, a data set is locked for writing). For details, see Chapter 16, “The LOCK Statement and the LOCK Command,” on page 171.

- **implicit lock**
 is automatically set on the data object type as required by the SAS operation that is being executed. Each SAS operation has default locking requirements that are affected by two factors: the data object that is being accessed and the way that the object is accessed. For example, a DATA step that includes a MODIFY statement accesses an observation for update, by default.

Regardless of the type of lock that is attempted, in order to lock a selected data object, the server must lock preceding levels of the hierarchy, as needed. This type of lock is also referred to as an *implicit lock*.

When you specify a data object in a LOCK statement, you set an **explicit lock** on that object. If you lock a lower-level object without explicitly locking the higher level or levels, SAS locks the higher level (or levels) automatically.
For example, when you explicitly lock a SAS data set (lower-level lock) but not the SAS data library (higher-level lock) that contains it, the data library is locked implicitly. An implicit lock allows other users to access the locked data library, even though you have exclusive access to the locked data set.

Locking Objects Explicitly (LOCK Statement)

LOCK Statement: Advantages of Using

Explicit locks protect data while it is being updated in a multi-step SAS program. For example, a nightly update process that uses a DATA step to remove observations that are no longer useful, then runs PROC SORT to sort the file and PROC DATASETS to re-build the file’s indexes. No other users can be allowed to access the file between any of these steps because the SORT and DATASETS procedures will fail if they cannot acquire exclusive access to the file. An explicit lock provides the needed protection.

To set an explicit lock, execute a LOCK statement before the first DATA step to acquire exclusive access to the file. If exclusive access cannot be obtained, the LOCK statement return code &SYSLCKRC is issued to indicate that, and the update program can re-schedule the update for a later time, or it can signal an operator or an action that its programmer thinks is appropriate. If the LOCK statement is successful, a user who attempts to access the file before the corresponding LOCK CLEAR statement executes (after the end of the PROC DATASETS step) will be denied access, and the batch update will proceed uninterrupted.

You can use the LOCK statement to obtain exclusive access to the data object and an explicit lock on data libraries, data sets, catalogs, and catalog entries. No other users can read from or write to a data object that you have locked by using this statement.

When you use a LOCK statement to lock a data object, you can open that data object as often as you want to and in any mode that you want. For example, you can create, replace, update, or read from the object, if your PROC or DATA step does not conflict with what is allowed by the engine that the server uses to access the data object. You must first access a SAS data library through a server before you can lock that library or any data object in it. Also, you cannot lock a data object that another user has open.

Syntax for the LOCK Statement

```
LOCK libref<.member-name<.member-type
    | .entry-name.entry-type>> <LIST | CLEAR>;
```

- **libref**
 is the name temporarily associated with a SAS data library.

- **member-name**
 is the name of a member of the referenced SAS data library.

- **member-type**
 is the type of the SAS file to be locked. Valid values are DATA, VIEW, and CATALOG. The default value is DATA.

 If **member-type** is omitted or is specified as the value DATA or VIEW, two locks are obtained: one on `libref.member-name.DATA` and the other on `libref.member-name.VIEW`.
entry-name
is the name of the catalog entry to be locked.

entry-type
is the type of the catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom. This argument is optional.

CLEAR
releases a lock on the specified data object that was acquired in your SAS session by using the LOCK statement. This argument is optional. For details about releasing locks, see “Clearing an Explicit Lock” on page 63.

Locking a SAS Data Library

The following statement locks the SAS data library MYLIB.

```sas
lock mylib;
```

Locking a library prevents other users from reading, updating, or deleting existing SAS files in the library or from creating new SAS files in the library. The lock also prevents other users from obtaining a list of files in the library. It does not prevent users from issuing LIBNAME statements to access the library, but it does prevent them from accessing SAS files in the library while it is locked.

Locking a SAS Data Set

The following statements lock the SAS data set FUEL in the library MYLIB. All these statements are equivalent.

```sas
lock mylib.fuel;
lock mylib.fuel.data;
lock mylib.fuel.view;
```

Locking a SAS data set (that is, a SAS data file or a SAS data view) prevents other users from creating, reading, updating, deleting, or re-naming a SAS data file and from creating, reading, deleting, re-naming, or interpreting a SAS data view.

Beginning with Release 6.06 of SAS, a SAS data set can be either a SAS data file (member type DATA) or a SAS data view (member type VIEW). In most SAS programs, it does not matter whether the data comes from a SAS data file or a data view.

Because of this transparency in users' SAS programs, it is important that a SAS data file and a SAS data view that have the same name be locked at the same time. Therefore, when you execute the LOCK statement on one of these data sets, both of them are automatically locked. In the statements given at the beginning of this section, the server locks the SAS data file MYLIB.FUEL.DATA and the SAS data view MYLIB.FUEL.VIEW concurrently. For more information about SAS data sets, see SAS Language Reference: Concepts.

CAUTION:

The LOCK statement does not lock the source data of a data view. The LOCK statement does not prevent a SAS data view's underlying SAS file (or files) from being read or updated by a SAS library engine or by a SAS view engine when a different view is interpreted in the server SAS session.
Locking a SAS Catalog

The following statement locks the member MYCAT in the library SCLLIB. The member type CATALOG indicates that MYCAT is a SAS catalog.

```sas
lock scllib.mycat.catalog;
```

Locking a member of type CATALOG prevents other users from creating, deleting, or re-naming the catalog, or listing the entries in the catalog. It also prevents creating, reading, updating, deleting, or re-naming any of the entries in the catalog by other users.

While your SAS catalog or catalogs are locked, you can update an application that uses many different catalog entries. For example, you can execute LOCK statements to ensure exclusive access to the catalogs that contain your application's entries. This ensures that no other users are executing your application while you are updating its entries. After you have updated all the entries and tested your application, you can clear the lock by using the argument CLEAR in a LOCK statement. This allows other users to gain access to your catalogs and to execute your application. For more information, see “Clearing an Explicit Lock” on page 63.

Locking a Catalog Entry

The following statement locks the catalog entry JOHNCBT of type CMAP in the catalog SCLLIB.MYCAT.

```sas
lock scllib.mycat.johncbt.cmap;
```

Locking an entry in a catalog prevents other users from creating, reading, updating, or deleting that entry.

Clearing an Explicit Lock

How you clear an explicit lock depends on the level in the data object hierarchy at which the lock was obtained. There are three ways to clear locks. Each is explained in detail in the sections that follow.

- Explicitly lock and unlock each data object that you access.
- Explicitly lock lower-level data objects and unlock the higher-level data objects, which implicitly unlocks its lower-level objects.
- Explicitly lock a higher-level data object that contains multiple lower-level data objects that you want to access. This allows you to clear the single higher-level lock after you have finished accessing the lower-level objects.

Explicitly Locking and Clearing Each Data Object

When you explicitly lock a specific data object, you must clear each lock individually. Here is an example.

```sas
lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;

/* Update the two catalog entries */
/* as needed. */
lock educlib.mycat.choice1.menu clear;
lock educlib.mycat.choice2.menu clear;

The first LOCK statement in the preceding example sets implicit locks on the SAS data library EDUCLIB and on the SAS catalog EDUCLIB.MYCAT. Then it sets an explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE1.MENU. Because the user already has implicit locks on the catalog and library, the second LOCK statement does not set additional implicit locks before it sets an explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE2.MENU.

The first LOCK statement that contains the argument CLEAR releases the explicit lock on the catalog entry CHOICE1.MENU, but it does not clear the implicit locks because an entry in the catalog is still locked. The second LOCK statement that contains the argument CLEAR releases the explicit lock on the catalog entry CHOICE2.MENU. Because no catalog entries remain locked, the argument CLEAR releases the implicit lock on the SAS catalog EDUCLIB.MYCAT. Also, because no members of the library are locked, this argument clears the implicit lock on the SAS library EDUCLIB.

Clearing a Higher-Level Data Object Clears Multiple Lower-Level Objects

You can set explicit locks on data objects at low levels. However, when you clear a higher-level implicit lock, all of the lower-level explicit locks are cleared automatically. Here is an example.

lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;

/* Update the two catalog entries */
/* as needed. */
lock educlib.mycat clear;

The first LOCK statement in the preceding example sets implicit locks on the SAS data library EDUCLIB and on the SAS catalog EDUCLIB.MYCAT. Then it sets an explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE1.MENU. Because the user already has implicit locks on the catalog and the library, the second LOCK statement does not set additional implicit locks before it sets an explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE2.MENU.

The LOCK statement that contains the argument CLEAR releases the explicit locks on both catalog entries and clears the implicit lock on the SAS catalog. Because no members of the library remain locked, this argument also clears the implicit lock on the SAS library.

Locking a Higher-Level Data Object Locks Multiple Lower-Level Data Objects and Clearing the Higher-Level Lock

To update several lower-level data objects without having to lock each one separately when all the data objects fall under a single higher-level data object, you can lock the higher-level data object to prevent access by other users to all of the data objects that are included under that higher-level data object.

However, you might need to clear the lock on the higher-level data object before you are finished with your work. For example, a co-worker wants to work on other lower-level data objects under the same higher-level data object. In this instance, you can explicitly lock the lower-level data objects that you need and clear your explicit lock on the higher-level data object. You will retain an implicit lock on the higher-level data object as long as you have lower-level data objects locked.
lock educlib;
/* Update various library members */
/* and catalog entries. */

If one of your co-workers needs to work on some SAS files in the library EDUCLIB that you are not updating, you can lock the SAS files in the library EDUCLIB that you need, by using the following statements:

lock educlib.mycat.catalog;
lock educlib.mydata1;
lock educlib.mydata2;

Then, use the following statement to clear your explicit lock on the library to allow your co-worker to use other members of the library:

lock educlib clear;

You retain an implicit lock on the library because you hold explicit locks on three SAS files in the library. You continue to update entries in the SAS catalog EDUCLIB.MYCAT and the SAS data sets EDUCLIB.MYDATA1 and EDUCLIB.MYDATA2 that you have locked. After you finish your updates, you can issue one LOCK statement to clear your explicit locks on the three library members and your implicit lock on the library, as follows:

lock educlib clear;

---

**Listing Lock Status**

The following LOCK statement lists in the SAS log whether a specified data object is locked and by whom. The format used in the LOCK statement for listing lock status is:

```
data-object is status by whom
```

```
lock educlib.mycat.catalog list;
EDUCLIB is locked by sasuser
```

---

**Return Codes for the LOCK Statement**

The SAS macro variable SYSLCKRC contains the return code from a LOCK statement. The following actions result in a non-zero value in SYSLCKRC:

- You try to lock a data object but cannot obtain the lock (for example, the data object was already in use or is locked by another user).
- You use a LOCK statement with the argument LIST to list a lock you do not have.
- You use a LOCK statement with the argument CLEAR to release a lock you do not have.

For more information about the SAS macro variable SYSLCKRC, see *SAS Macro Language: Reference*. 
Advantages of Using LOCK Command

The LOCK command provides a convenient way to lock data objects that are in a SAS window. As with the LOCK statement, you can use the LOCK command to obtain an explicit lock on data libraries, data sets, catalogs, and catalog entries.

You can specify the name of the data object that is to be locked on the command line of a window, such as the Program Editor window.

Note: You must first access a SAS data library through a server before you can lock that library or any data object in it.

Syntax for the LOCK Command

The syntax for the LOCK command is

```
LOCK libref.<member-name><member-type
 | .entry-name.entry-type>><LIST | CLEAR>
```

- `libref` is the name that is temporarily associated with a SAS data library.
- `member-name` is the name that specifies a member of the referenced data library.
- `member-type` is the type of SAS file to be locked. Valid values include DATA, VIEW, and CATALOG. The default is DATA.
  - If you omit `member-type` or if you specify either the value DATA or VIEW, two locks are obtained automatically: one on `libref.member-name.DATA` and one on `libref.member-name.VIEW`.
- `entry-name.entry-type` is the name and type of the SAS catalog entry to be locked.
- `LIST` writes to the SAS log whether the specified data object is locked and by whom. This argument is optional.
- `CLEAR` releases a lock on a specified data object that was acquired in your SAS session by using the LOCK command. This argument is optional.
  - For details about releasing locks, see “Clearing an Explicit Lock” on page 63.

Locking and Clearing Locks on Data Objects

You can issue the LOCK command in any SAS window. It works exactly like the LOCK statement. For details about the LOCK statement, see Chapter 16, “The LOCK Statement and the LOCK Command,” on page 171.

Output 5.1 shows the message in the Log window that lets you know that the catalog MAPS LIB.MAPSCAT.EUROMAP.CMAP has been locked successfully. In the Program Editor window, the LOCK command was issued to obtain a lock on the catalog MAPS LIB.MAPSCAT.EUROMAP.CMAP.
Output 5.1  Locking a Catalog Entry

```
LOG
Command ===>
1 LIBNAME MAPSLIB 'SASXYZ.SHRTEST.SASDATA' SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:
 Engine: REMOTE
 Physical Name: SASXYZ.SHRTEST.SASDATA
NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for exclusive access by you.
```

```
PROGRAM EDITOR
Command ===>
LOCK MAPSLIB.MAPSCAT.EUROMAP.CMAP
00001
00002
00003
00004
00005
00006
```

Output 5.2 shows a LOCK command that contains the argument CLEAR to release the lock on the catalog MAPSLIB.MAPSCAT.EUROMAP.CMAP.

Output 5.2  Releasing a Lock on a Catalog Entry

```
PROGRAM EDITOR
Command ===>
LOCK MAPSLIB.MAPSCAT.EUROMAP.CMAP CLEAR
00001
00002
00003
00004
00005
00006
```

In Output 5.3, the messages in the Log window show that MAPSLIB.MAPSCAT.EUROMAP.CMAP was successfully unlocked. The log also displays the name of the user who clears the lock. In this example, the user who set and cleared the lock is referred to as “you.”

Output 5.3  SAS Log Message after the Lock Has Been Cleared

```
LOG
Command ===>
1 LIBNAME MAPSLIB 'SASXYZ.SHRTEST.SASDATA' SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:
 Engine: REMOTE
 Physical Name: SASXYZ.SHRTEST.SASDATA
NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for exclusive access by you.
NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is no longer locked for exclusive access by you.
```
How Implicit Locking Works in SAS Program Steps

The following example shows the effect of implicit locking when two clients, John and Maria, share access concurrently to the SAS data set FUEL in their respective PROC FSEDIT sessions.

Maria is updating observation 6. John terminates his FSEDIT session to do some data analysis. He wants a sorted report of fuel inventory data, so he submits statements to sort and print the data set FUEL. Output 5.4 shows the SAS log for this part of John’s session.

Output 5.4  Log Window - PROC SORT on a Locked Data Set

```
Command ==>
 3 PROC SORT DATA=DATALIB.FUEL;
 4 BY AREA;
 5 RUN;

ERROR: You cannot open DATALIB.FUEL.DATA for output access with member-level control because DATALIB.FUEL.DATA is in use by FSEDIT.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: The PROCEDURE SORT used 0.03 CPU seconds and 3969K.

6 PROC PRINT DATA=DATALIB.FUEL;
 7 BY AREA;
 8 RUN;

ERROR: Data Set DATALIB.FUEL is not sorted in ascending sequence. The current by-group has AREA = TEX1 and the next by-group has AREA = TEX2.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: The PROCEDURE PRINT used 0.03 CPU seconds and 4068K.
```

For details about error message formats, see “Examples of Messages for Locking SAS Objects” on page 71.

Because the OUT= option is not specified in the PROC SORT statement, the process defaults to the data set named by the DATA= option and the SORT procedure tries to replace the SAS data set. However, because Maria’s FSEDIT session has the data set open for update, the SORT procedure cannot open it for output.

The SAS log shows that the PROC PRINT step executes because the PRINT procedure opens its input data set with observation-level control. However, the PRINT procedure terminates prematurely because the data set is not sorted correctly. Notice that even if the data set were in sorted order when John terminated PROC FSEDIT, Maria could have changed the value of AREA in one or more observations so that the data set would not be sorted correctly when the PRINT procedure executed.

To avoid the conflict and ensure that John gets the report he wants, John can use the OUT= option to write a copy of the sorted data set into his WORK library, as shown in the following example:

```
proc sort data=datalib.fuel out=fuel;
 by area;
run;
```
The preceding PROC SORT statement opens the data set DATALIB.FUEL only for input with observation-level control. Then John can use the PRINT procedure to display the temporary data set WORK.FUEL.

---

### Defaults for Selected SAS Operations

#### Default Data Objects: Reference

Knowledge of the default data objects and how they are accessed will help you to anticipate the results from specific operations when you write your application or issue SAS statements in interactive mode. Table 5.2 on page 69 shows the defaults for some frequently used SAS operations when locking is executed.

#### Table 5.2 Defaults for Selected SAS Operations

<table>
<thead>
<tr>
<th>SAS Operation</th>
<th>Data Object Locked for...</th>
<th>The Data Object Locked (Default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA step</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATA statement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>without MODIFY statement</td>
<td>output</td>
</tr>
<tr>
<td></td>
<td>with MODIFY statement</td>
<td>update</td>
</tr>
<tr>
<td></td>
<td>SET statement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>without POINT= and KEY= options</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>with POINT= and KEY= options</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>MERGE statement</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>MODIFY statement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>without POINT= and KEY= options</td>
<td>update</td>
</tr>
<tr>
<td></td>
<td>with POINT= and KEY= options</td>
<td>update</td>
</tr>
<tr>
<td></td>
<td>UPDATE statement</td>
<td>input</td>
</tr>
<tr>
<td>Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPEND procedure</td>
<td></td>
<td>update</td>
</tr>
<tr>
<td></td>
<td>BASE= option</td>
<td>update</td>
</tr>
<tr>
<td></td>
<td>DATA= option</td>
<td>input</td>
</tr>
<tr>
<td>COPY procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN= option</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>IN= option with MOVE option</td>
<td>output</td>
</tr>
<tr>
<td></td>
<td>OUT= option</td>
<td>output</td>
</tr>
<tr>
<td>FSBROWSE procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATA= option</td>
<td>input</td>
</tr>
<tr>
<td>FSEDIT procedure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Changing the Data Set Option Default Object

In some SAS operations, you can change the SAS data set option default object. When the syntax of a statement or a command allows you to specify SAS data set options, you can use the CNTLLEV= option to override the default object and to specify the object that you want. For example, in a SET statement that contains the POINT= option, you can change the default from member to observation by specifying the CNTLLEV= data set option. In this example, the value, REC (for record), means the same as observation.

```
set datalib.fuel (cntllev=rec) point=obsnum;
```

Note: If you make this change, the values in a specific observation might differ each time that you read the observation.

You can also change the data object observation to member. You might do this to ensure that a data set does not change while you are processing it. For example, if you use a SET statement with a BY statement and you cannot use an index to retrieve the observations in sorted order, you can use the CNTLLEV= option to re-set the data object observation to member.

```
set datalib.fuel (cntllev=mem);
by area;
```

In some SAS operations, you cannot override the default setting because the statement or the command requires it. For example, a DATA statement requires a member setting when the MODIFY statement is omitted from the DATA step. Without the MODIFY statement, the data set that is specified in the DATA statement must be opened for output. Therefore, even if you specify CNTLLEV=REC in such a DATA

<table>
<thead>
<tr>
<th>SAS Operation</th>
<th>Data Object Locked for...</th>
<th>The Data Object Locked (Default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA= option</td>
<td>update</td>
<td>observation</td>
</tr>
<tr>
<td>FSVIEW procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA= option without EDIT option</td>
<td>input</td>
<td>observation</td>
</tr>
<tr>
<td>DATA= option with EDIT option</td>
<td>update</td>
<td>observation</td>
</tr>
<tr>
<td>PRINT procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA= option</td>
<td>input</td>
<td>observation</td>
</tr>
<tr>
<td>UNIFORM= option</td>
<td>input</td>
<td>member</td>
</tr>
<tr>
<td>SORT procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA= option</td>
<td>input</td>
<td>observation</td>
</tr>
<tr>
<td>OUT= option</td>
<td>output</td>
<td>member</td>
</tr>
<tr>
<td>SQL procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREATE TABLE statement</td>
<td>output</td>
<td>member</td>
</tr>
<tr>
<td>DELETE statement</td>
<td>update</td>
<td>observation</td>
</tr>
<tr>
<td>INSERT statement</td>
<td>update</td>
<td>member</td>
</tr>
<tr>
<td>UPDATE statement</td>
<td>update</td>
<td>member</td>
</tr>
</tbody>
</table>

* If no other tasks are currently accessing the BASE= data set, then PROC APPEND opens the data set with a member lock.
statement, the DATA step tries to set the data object as member, but this will fail if other operations are accessing the data set.

*Note:* Be careful when using the CNTLLEV= option in a procedure. Some procedures make multiple passes through an input data set and require that the data remains the same to guarantee the integrity of the output. If a procedure has this requirement, a warning is issued but the procedure will allow its objects to be re-set if you use the CNTLLEV= option. △

For details about the syntax of the CNTLLEV= option in the SET statement, see the CNTLLEV= data set option in *SAS Language Reference: Dictionary*.

---

### Examples of Messages for Locking SAS Objects

SAS/SHARE delivers an informational or an error message if you attempt to access a data object that is already in use or that is locked by another operation. The message is issued in the following form:

*object* is *status* by *whom*

*object*  
SAS data library | SAS data member | SAS data file observation or catalog

*status*  
locked for exclusive access | in use | not locked

*whom*  
you | user *user(server-connection-number)* |  
*n* other users of this server |  
task FSEDIT (*server-connection-number*)

The messages explain the status of the data object that is being accessed. To recover, you usually must wait until the data object is available or find out when the data object will be available by talking to the person who has locked the object. Here are some examples of messages.

In the first example, the SAS data library that is referenced by MYLIB is locked by user SASUSER(1). A lock on a library prevents other users from reading, updating, or deleting existing SAS files or from creating new SAS files in that library. The lock also prevents other users from obtaining a list of files in the library. The lock does not prevent users from issuing LIBNAME statements to access the library, but it does prevent them from using SAS files in the library while it is locked. You must wait for user SASUSER(1) to unlock the library before you can use it.

*NOTE:* SASUSER.MYL1B is not locked or in use by you, but is locked for exclusive access by user sasuser(1).

In this example, because two users are already accessing the MYCAT member in the MYLIB library, you can infer that no locks have been set on the catalog, and that users are reading catalog entries or adding entries to the catalog. Although you can browse the catalog or add entries to the catalog, you cannot attempt to lock the catalog until there are no others using it.

*NOTE:* MYLIB.MYCAT.CATALOG is not locked or in use by you, but is in use by 2 other users of this server.

The catalog entry MYCATENTRY of type CMAP in the catalog MYLIB.MYCAT is not locked by user SASUSER(1). This message results when user SASUSER attempts to unlock a catalog entry that another client has locked.

*NOTE:* MYLIB.MYCAT.MYCATENTRY.CMAP is not locked by sasuser(1).
Using Macros for Server Library Access

Overview

The information in this section is recommended primarily for server administrators and programmers who write applications that access shared data. For complete details about each macro that you can use to access a server and its libraries, see Chapter 17, “SAS/SHARE Macros,” on page 175.

Programs that use SAS/SHARE must include a LIBNAME statement that identifies the SAS/SHARE server through which a specified library will be accessed. Adding servers and changing server IDs can require users and server administrators to obtain current server ID information each time they want to access a server. That could make maintaining production or utility programs difficult.

Although there is no permanent connection between a SAS library and a specific server, there is frequently a logical connection. Programmers, server administrators, and users might always want to access a specific library through the same server because only one server at a time can provide access to a library. The same logical connection can also exist between a group of users and a server. This is an advantage if all the members of a department needed to use the same server, especially if they are sharing libraries.

To use SAS/SHARE most effectively without compromising performance, administrators often need a dynamic and flexible server environment. They need to be able to start and stop servers as the need arises, and to easily re-distribute the load on
the servers. They want to be able to switch libraries and users from one server to
another quickly and easily. To balance the needs of both administrators and users,
SAS/SHARE includes macros to be defined through the autocall function of the SAS
macro facility.

These SAS/SHARE macros enable the administrator to define aliases for a server
and to associate an alias with a specific library. Programs issue these macros to
generate the requisite LIBNAME statements for accessing that library through the
server that is associated with the alias. Then, the administrator can add servers,
change server IDs, and switch libraries and users from one server to another with a
process that is totally transparent to the program or the SAS user.

SAS/SHARE macros can be used to
- generate and display the tables of macro variables that associate libraries with
  server aliases and server aliases with server IDs
- generate part or all of a LIBNAME statement
- start and stop servers
- generate PROC OPERATE and SET SERVER statements.

The server ID that is associated with an alias can be changed during any appropriate
server or application outage (for example, down time). You update only the file that
contains the table of macro variables that maps aliases to server IDs. Additionally, a
library can be logically associated with a different server by updating the table that
associates libraries with server aliases.

For example, a site might have four logical servers (that is, four different server
aliases) but only one physical server by having all the aliases map to the same server
ID. Whenever the load on that one server gets too heavy, the site can start an
additional server and shift specific libraries and users to it by simply pointing one of
the aliases to that new server.

Utility Macros

The following utility macros can be used by all SAS/SHARE programs and sessions:

SHRMACS
  compiles all the other macros and builds the server-alias and library-alias tables.

SERVERID
  takes a server alias and looks up the server ID in the server-alias table and
generates server-ID or SERVER=server-ID, as appropriate.

SERVIIDX
  returns the index of the entry in the server information table for the specified
  server.

LISTSRV
  writes the server-alias table to the log.

LISTLIB
  writes the library-alias table to the log.

LISTSRVI
  writes the server information table to the log.
**User Program Macro**

The following is a user program macro:

**LIBDEF**

takes a libref and an optional physical library name and looks up the SAS library name in the library-alias table and generates a LIBNAME statement.

---

**Server Administrator (Operator) Macros**

The following server administrator macros are used in server administrator programs.

**STRTSRV**

starts a server with the appropriate server ID by using the SERVERID macro to convert the alias. The STRTSRV macro takes a server alias and PROC SERVER statement options.

**SHUTSRV**

generates the PROC OPERATE statement and STOP SERVER command for the appropriate server ID by using the SERVERID macro to convert the alias. The SHUTSRV macro takes a server alias and an optional password.

**OPERATE**

generates PROC OPERATE statements for the appropriate server ID by using the SERVERID macro to convert the alias. The OPERATE macro takes a server alias and an optional password.

**SETSRV**

generates a SET SERVER server ID statement by using the SERVERID macro to convert the alias. The SETSRV macro takes a server alias and an optional password.

---

**Macros Generated by the SHRMACS Macro**

The SHRMACS macro compiles all other macros. A server administrator or an applications programmer must always invoke `%SHRMACS` before invoking any other macro. Use the following syntax:

```
%SHRMACS(category,<log-info>,<APPLSYS=app-sys-lib-tab,><SASSAML=alt-sys-lib-tab>);
```

category

specifies the category of macros to be compiled. Valid values for category are: SERVER, USER, OPER, or ALL.

log-info

specifies whether descriptive information is written to the SAS log about each macro. Valid values for log-info are: NOMSG, MSG, or HELP. The default is MSG.

APPLSYS=

specifies an alternate applications systems library-alias table. For details, see “The APPLSYS Macro Library” on page 77.
SASSAML=
specifies an applications systems library, which is a set of files that specify SAS
data libraries and servers. For details, see “The APPLSYS Macro Library” on page
77.

Table 6.1  SAS/SHARE Macros Generated by the SHRMACS Macro

<table>
<thead>
<tr>
<th>SHRMACS Macro Categories</th>
<th>Server</th>
<th>User</th>
<th>Operator</th>
<th>Implicit Macros Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>LIBDEF</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>LISTLIB</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>LISTSRV</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>LISTSRV1</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>OPERATE</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>SERVERID</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>SEIRED</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>SETSRV</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>SHUTSRV</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td>STRTSRV</td>
</tr>
</tbody>
</table>

For example, all of the following macro definitions
%SHRMACS(SERVER)
%SHRMACS(USER)
%SHRMACS(OPER)
generate these macros: LISTLIB, LISTSRV, LISTSRV1, SERVERID, and SEIRED.
However, only %SHRMACS(USER) generates the LIBDEF macro, only
%SHRMACS(SERVER) generates the STRTSRV macro, and only %SHRMACS(OPER)
generates the OPERATE, SETSRV, and SHUTSRV macros.
In addition to compiling the requested macros, the SHRMACS macro also builds the
appropriate library-alias table and server-alias table. These tables are used for
generating the server name for the PROC SERVER, PROC OPERATE, and LIBNAME
statements. The SERVER category of macros generates the server-alias table; the
OPER category of macros generates the library-alias table; and the USER category of
macros generates both the server-alias and the library-alias tables.
Specifying the ALL category of macros generates all of the macros and both the
server-alias and library-alias tables.
Output 6.1 displays the information in the SAS log about the server macros.
Output 6.1  Server Macro Information

LOG
Command ==>  
1085 %shrmacs {server, msg};

*** SAS/SHARE macros are now available ***

For further information about SAS/SHARE macros:

%SHRMACS(ALL, HELP) - for information on all macros
%SHRMACS(USER, HELP) - for information on macros used in user applications
%SHRMACS(OPER, HELP) - for information on macros used with PROC OPERATE
%SHRMACS(SERVER, HELP) - for information on macros used with PROC SERVER
or %macro(HELP) - for information on a specific macro

SAS/SHARE macros generated are:

SERVERID - translate server alias
LISTLIB - list library table
LISTSRV - list server alias table
STRTSRV - start a server

SERVER ALIAS TABLE

--- SERVER ALIAS ------- SERVERID ------------------------------
CESERV V6DSERVR
COMSERV MYSERV
DEVSERV MYSERV
GLOSSERV V6DSERVR
LIBSERV V6DSERVR
MISSERV MYSERV
PRDSERV V6DSERVR

For more information about the macros that are compiled by %SHRMACS, you can specify the HELP keyword. In the following example,

%shrmacs {server, help};

HELP lists the syntax, a brief description, and an example for each macro that SHRMACS defines in the SERVER category.

The APPLSYS Macro Library

Overview of the APPLSYS Macro Library

The data that is used by the macros is stored in tables in another macro library that you maintain as you add and delete libraries, servers, and application systems. This library is called the APPLSYS (an acronym for application system) macro library.

The tasks to customize macros are explained in the following sections.

See Chapter 17, “SAS/SHARE Macros,” on page 175 for complete information about the syntax of the SAS/SHARE autocall macro library and how to use it.
Specifying the APPLSYS Macro Library

The default name of the APPLSYS macro library is operating environment-dependent. The default macro library names are

OpenVMS
SAS$ROOT:[SASSAML]

z/OS
SAS.SASSAML

UNIX
/sasroot/saspdm/sassaml

Windows
/SASROOT\SHARE\SASMACRO

Files in the APPLSYS macro library are called members, and they must have a .SAS extension.

To use the default library table, do not include the APPLSYS= argument in the SHRMACS macro. For example,

%shrmacs(user);

To specify an alternate library-alias table, include the APPLSYS= argument in the SHRMACS macro. For example,

%shrmacs(user, applsys=purchas);

It might be more convenient to allow different users or departments to maintain their own APPLSYS macro libraries. To use an alternate APPLSYS macro library instead of the default library, specify the SASSAML= argument in the SHRMACS macro.

The value for the SASSAML argument can be the operating environment-specific physical name of the alternate library or the string _DEFINED_, which indicates that the fileref SASSAML has already been assigned to the alternate library. For example,

%shrmacs(user,applsys=purchas,sassaml=library-path);

%shrmacs(user,applsys=_DEFINED_);

Here are some operating environment-specific examples to specify an alternate APPLSYS macro library:

OpenVMS
%shrmacs(user,applsys,sassaml=MIS$:[applsys]);

UNIX
%shrmacs(user,applsys,sassaml=/dept/mis/applsys);

Windows
%shrmacs(user,applsys,sassaml=c:\dept\mis\applsys);

Defining Server Aliases (SERVID)

Server aliases can help

- use your existing SAS programs with new releases of SAS/SHARE without having to change them. This is accomplished by using the name of the existing SAS/SHARE server as an alias for the name of a SAS/SHARE server that is executing the new release of SAS/SHARE.
shift server traffic easily. When you begin using SAS/SHARE, you might create many aliases for a single server, with each alias used by only one or a small number of applications. As server use increases, you’ll want to add a second server and move some of your applications to that server. You can do this by changing the entry in the SERVERID member to point to the new server for the applications that you want to move.

To define server aliases, create a member named SERVERID in the APPLSYS macro library. The member name must be SERVERID because the SHRMACS macro looks for that specific name.

Define a server alias in the SERVERID member using the following syntax:

```
%SERVID(alias,server-ID);
```

Example Code 6.1 on page 79 shows an example of a SERVERID member.

**Example Code 6.1  Server-Alias Table**

```
/**/
/* This member defines aliases for server names. */
/* The entries in this member are loaded into */
/* the server-alias table by the SHRMACS macro. */
/* This server-alias table is used by the */
/* SERVERID macro to translate an alias to an */
/* actual server ID. */
/* To add aliases to the table, specify each */
/* alias and its real server ID in a SERVID call */
/* at the end of this member. */
/**/
%servid(shr7,shrserv7)
%servid(share1,shrserv3)
%servid(pubserv,shrserv7)
```

**Associating SAS Libraries with Server Aliases (SERVLIB)**

Create a member in the APPLSYS macro library for each application system that is specified by the APPLSYS= argument in the SHRMACS macro. Doing this defines library-server pairs that a specific application will probably use. For example, if you specify an APPLSYS library named PURCH in the SHRMACS macro as follows,

```
%SHRMACS(user,APPLSYS=purch);
```

you also create a member in the APPLSYS library of the same name (in this example, PURCH).

In a selected member, use the following syntax to specify the library and server name pairs.

```
%SERVLIB(SAS-data-library, server-name);
```

*SAS-data-library* is specific to the operating environment. *server-name* can be a server ID or its alias.
Example Code 6.2 on page 80 contains a member named PURCH, which references operating environment-specific SAS library names.

Example Code 6.2  Library-Alias Table

/* NAME: PURCH */
/* LIBRARY TABLE ENTRIES - SPECIFIC APPLICATION */
/* This member associates server names with libraries. The entries */
/* in this member are loaded into the library table if the */
/* SHRMACS macro is called by using the argument APPLSYS=APPLSAMP. */
/* If APPLSYS=APPLSAMP is specified, the entries can also be */
/* loaded by using a call to the LIBDEF. */
/* */
/* To add libraries to the definition table, add a SERVLIB call */
/* for each library at the end of this member. Specify the */
/* physical name for the library and the name of the server to be */
/* associated with the library. The name can be an alias or an */
/* actual server ID. */
/* */
/* To add aliases to the table, use a SERVLIB call for each library-server pair. */
/* Additionally, create a member in the APPLSYS macro library named DEFAULTS. */
/* This member can be empty but must be created to avoid having error messages */
/* generated from the SHRMACS macro. */
/* The DEFAULTS member is used when the APPLSYS= argument is omitted in a call */
/* to the SHRMACS and LIBDEF macros. The syntax of the PURCH and the DEFAULTS */
/* members is identical. */

Creating the Server Information Table (SERVINFO)

A server information table is created to store information about the servers at your site. You can use this information in a program, or you can display it. By default, the table contains the following information:

- a default value for the RMTVIEW= option in the REMOTE engine’s LIBNAME statement.
- a network node name that is represented in the two-level server name format: `node.server-id`.

You can use the server information table to store other attributes of the server, its users, or its administrators, such as server access passwords, PROC SERVER statement options, and the SAS release that the server runs under. To add an entry to the server information table, use the SERVINFO macro as follows:

```sas
%SERVINFO (node.server-id, netnode=fully-qualified-node-name, RMTVIEW=NO);
```
Usually, the SERVINFO macro is used to cause the SERVERID macro to generate an alias for a node name that is not a valid SAS name. For example, when the two-level server name and the netnode are specified in the server information table as follows:

```sas
%servinfo (hp.shrserv, netnode=hp103.dom2.acme.com);
```

the server SHRSERV runs on HP103.DOM2.ACME.COM. In resolving an alias for HP.SHRSERV, the SERVERID macro generates

```sas
%let hp=hp103.dom2.acme.com;
```

## Customizing a Server Information Table

The following example shows how to customize your server information table to include the SAS software release number for the SAS/SHARE server. The tasks in this example

- account for a new parameter in the SERVINFO macro
- re-format the table’s appearance
- add the new information to the table
- view the server information table with the LISTSRVI macro.

The following six steps show how to alter the server information table for display only.

1. **Add the new parameter SASREL= to the SERVINFO macro statement.**
   ```sas
 %macro servinfo(servid,version=,rmtview=,netnode=,sasrel=);
   ```

2. **Add the new variable ISREL&SRVINUM to the %GLOBAL statement to account for the new parameter SASREL.**
   ```sas
 %GLOBAL isrvr&srvinum irmtv&srvinum inode&srvinum isrel&srvinum;
   ```

3. **Because the table is implemented as sets of macro variables, assign the value &SASREL to the macro variable ISREL&SRVINUM.**
   ```sas
 %LET isrel&srvinum = &sasrel;
   ```

4. **In the LISTSRVI macro, modify the line that prints the headers for the table.**
   ```sas
 %put &pline RMTVIEW %shrrpt(-,3)
 NETWORK NODE %shrrpt(-,20) RELEASE %shrrpt(-,3);
   ```

5. **You might want to change the %PUT statement in the LISTSRVI macro to extend the dashed line following the table to match the length of the modified header line.**
   ```sas
 %put %shrrpt(-,78);
   ```

6. **Change the loop that prints the table so that it looks like this:**
   ```sas
 %do i=1 %to &srvinum;
 %let pline=%shrrpt(&blank,3)
 %shrfmt(&isrvr&i,16);
 %let pline=&pline
 %shrfmt(&irmtv&i,11)
 %shrfmt(&inode&i,36);
   ```
If you want to be able to access and use the information in the table for a macro or a program, you would have to use the SERVIIDX macro.

```sas
%let i=%serviidx(&new_id);
%if (&&isrel&i^=) %then
%do;
/* some use of &&isrel&i here */
%end;
```

After you have accounted for the new parameter and modified the format of the server information table, you can add entries to the table for all parameters.

```sas
%servinfo(rmthost.share1,netnode=.acme.com,
rmtview=no,sasrel=6.12);
%servinfo(rmthost.share2,netnode=smith.acme.com,
rmtview=yes,sasrel=7);
```

When you invoke the LISTSRVI macro, the server information table is displayed in the SAS log.

```sas
%listsrvi;
```

--- SERVERID --- RMTVIEW -- NETWORK NODE --- RELEASE
RMTHOST.SHARE1 NO rmthost.acme.com 6.12
RMTHOST.SHARE2 YES smith.acme.com 7

---

**Generating a LIBNAME Statement with the LIBDEF Macro**

If your SAS application accesses a server library, use the LIBDEF macro instead of a LIBNAME statement. Use the syntax that follows.

```sas
%LIBDEF(libref,SAS-data-library-name),APPLSYS=app-sys-lib-tab>
```

*Note:* Before you invoke the LIBDEF macro, you must first invoke the SHRMACS macro.

```sas
%LIBDEF(libref,SAS-data-library-name),APPLSYS=app-sys-lib-tab>
```

**CAUTION:**

Do not enclose the SAS data library name in quotation marks. Using quotation marks will cause the generation of the LIBNAME statement to fail.

The LIBDEF macro generates a LIBNAME statement by searching the library table for the library name. Then it invokes the SERVERID macro to convert the server alias into a server ID. Here are some operating environment-specific examples for using the LIBDEF macro.

**OpenVMS**

```sas
%libdef(mylib,disk1$:[shrtest.appljan.lib1];
```

**z/OS**

```sas
%libdef(mylib,shrtest.appljan.lib1);
```
Using APPLSYS= to Call the SHRMACS and LIBDEF Macros

You can specify the APPLSYS= argument in either the SHRMACS or the LIBDEF macro. The following example contains application excerpts that show how to access libraries from three applications systems (PURCH, MAINT, and FACIL) by using the APPLSYS= argument.

**Note:** For SAS-data-library, use the syntax convention that is appropriate for your operating environment.

```
Example Code 6.3 Using the APPLSYS= Argument to Call the SHRMACS and LIBDEF Macros

/* Most libraries will come from purchasing appl sys.*/
%shrmacs(user,nomsg,applsys=purch);

/* Access purchase order library.*/
%libdef(polib,SAS-data-library1);

/* Access vendor service library from maintenance appl sys.*/
%libdef(vndsvc,SAS-data-library2,applsys=maint);

/* Access vendor account library from purchasing appl sys. */
/* (Note: It is not necessary to specify APPLSYS= for this */
/* application system because it was specified above.) */
%libdef(vndacct,SAS-data-library3);

/* Access vendor contact library from maintenance appl sys.*/
```
/* (Note: It is not necessary to specify APPLSYS= for this */
/* application system because it was specified above.) */
%libdef(vndcon,SAS-data-library4);
  .
  .
  .
/* Access inventory library from facilities appl sys. */
%libdef(invlib,SAS-data-library5,applsys=facil);

/* Access invoice library from purchasing appl sys. */
%libdef(invoice,SAS-data-library6);
The Server Log

The server log displays messages that result from starting and stopping a server and from intervening client/server transactions. This section gives an example of a server log for multiple users and interprets some of the common messages that are seen in the server log.

To make the raw data in the server log messages meaningful, you can use a set of server log analysis programs to examine specific data resources and to create usable reports. For more information, see Chapter 8, “Analyzing the Server Log,” on page 95.

Server administrator logs record messages that result from using the OPERATE procedure. For more information, see “Managing a Server, Its Libraries, and Its Users” on page 36.

Starting the Server Log

Use the PROC SERVER statement to explicitly start the server logging with the specific features that you want. To prepare for server log analysis, set the message numbering feature (MSGNUMBER).
Message numbering assigns a number to each message that is recorded in the log. The server log analysis programs parse messages by using the associated numbers. Here is an example of specifying message numbering when the server is started.

**PROC SERVER MSGNUMBER ID=DEMOSERV;**

For more information, see Chapter 12, “The SERVER Procedure,” on page 123.

---

### Usage Statistics in the Server Log

#### Sample Log for SAS/SHARE Server SHARE2

The following server log shows that users JOHN(1), MARIA(2), and JOHN(3) started and closed three separate server sessions. For details about the types of actions that were performed by the users, which created specific messages in the log, see “Reading the Server Log” on page 90. When each of the three sessions was closed, usage statistics were generated. In addition, cumulative usage statistics were generated for the server SHARE2. The usage statistics are controlled by values that you provide for the LOG option in the **PROC SERVER** statement. For explanations of usage statistics for messages processed (MESSAGE), bytes transferred (BYTECOUNT), active time (ACTIVETIME), and elapsed time (ELAPSEDTIME), see Chapter 12, “The SERVER Procedure,” on page 123.

Output 7.1 shows a typical server log with all logging statistics shown for the server SHARE2 that is running under a UNIX operating environment.

**Output 7.1** Sample Log for SAS/SHARE Server SHARE2

```plaintext
```
Format for Server Log Messages

In a server log, a message is posted for each significant client/server transaction. A log message is presented in the form:

`dtformat msgnumber message`

The `dtformat` and `msgnumber` fields are controlled by options that you provide in the PROC SERVER statement. For explanations of these options, see Chapter 12, “The SERVER Procedure,” on page 123.
Server Log Message Components

Server log messages consist of the following components, which are repeated throughout the log:

**engine-name**
the name of the engine that will process the SAS data library in the server’s SAS execution.

**libref**
the name temporarily associated with a SAS data library. You assign a libref by using a LIBNAME statement or operating system control language.

**libref.member-name.member-type** (open sequence number)
libref is the first part of a multi-level SAS file name that is temporarily associated with the SAS data library in which the file is stored.

member name is the file name in a SAS data library that references an access descriptor, or a stored program.

member type is the name assigned by SAS that identifies the type of information that is stored in a SAS file, for example ACCESS, DATA, CATALOG, PROGRAM, or VIEW.

The open sequence number, in parenthesis, is a counter that is used for tracking.

**open mode / access pattern**
The following table shows the types of open mode and their functions.

<table>
<thead>
<tr>
<th>open mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>opens files to read.</td>
</tr>
<tr>
<td>Output</td>
<td>creates or replaces files. (Do not use a slash when specifying the Output mode.)</td>
</tr>
<tr>
<td>Update</td>
<td>modifies existing observations or adds new observations, or both.</td>
</tr>
<tr>
<td>Utility</td>
<td>modifies the header data, for example, assigning a new label or format to a variable.</td>
</tr>
</tbody>
</table>

The following table shows the types of access pattern and their functions.

<table>
<thead>
<tr>
<th>access pattern</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random (R)</td>
<td>processes observations according to the value of an indicator variable without processing preceding observations.</td>
</tr>
<tr>
<td>Sequential (S)</td>
<td>processes observations one after the other, starting at the beginning of the file and continuing to the end of the file.</td>
</tr>
<tr>
<td>Two-pass (2)</td>
<td>enables a SAS procedure to pass through the data more than one time.</td>
</tr>
</tbody>
</table>
Server Log Message Components

<table>
<thead>
<tr>
<th>access pattern</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY-group rewind (B)</td>
<td>enables a SAS procedure to pass through the data more than one time.</td>
</tr>
<tr>
<td>Contents type (C)</td>
<td>reads header data, such as names of variables, but does not read</td>
</tr>
<tr>
<td></td>
<td>observation data, such as data that PROC PRINT reads.</td>
</tr>
</tbody>
</table>

The two-pass and BY-group rewind access patterns both enable SAS procedures to pass through the data more than one time. For example, during the initial pass a sum or count is computed; during the second pass, the values of the variables in each observation are compared to, added to, or subtracted from the value that was computed in the first pass. The distinction between these two access patterns is subtle.

When a SAS data set contains only one BY group, there is no difference. When a SAS data set contains multiple BY groups, “rewinding” a BY group after the first BY group is processed requires the ability to position to a “random” location in the file, which is not complicated when using disk devices but is almost impossible when using tape devices. (The I/O supervisor is able to remember the starting position of the current BY group.)

Only the two-pass access patterns require the ability to rewind the entire SAS data set.

resource environment (resource environment number)

A structure that is used within SAS to scope and manage the usage of system resources. Examples of resource environments include SAS procedures, SAS windows, DATA steps, or other internal SAS activity.

The resource environment number, in parenthesis, is a counter that starts at 1 for each connection. To precisely identify a resource environment in a server's log, you need the connection number and the resource environment number.

serverid

Specifies a name for the server. The server name must meet the criteria for a valid SAS name, which can include the following special characters: dollar sign ($), at sign (@), and pound sign (#). For more information, see the rules for naming SAS variables in SAS Language Reference: Concepts.

Naming a server must also include criteria that are imposed by the operating environment and the access method that you specify for communication between a server and a client session. For example, if you are using the TCP/IP communications access method, the serverid that is specified must be a valid TCP/IP service as defined in the TCP/IP SERVICES file.

For information about naming servers by operating environment, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

userid(connection number)

Specifies a valid user ID for the accessing client on the server. The operating environment on which the client runs can affect user naming conventions. For details about specifying valid user IDs, see “User Name and Password Naming Conventions” on page 143.

The connection number is shown in parenthesis after the user ID. This number begins at 1 and increases by 1 each time a user connects to the server. The server maintains this counter. The connection number is shown in most of the messages that are recording activity for each connection. If the same user ID is connected to a server more than one time, it is possible to track the activity of each connection separately.
Reading the Server Log

The Start Message


This message always appears in the log when the server starts. The message tells
the server administrator that the server initialization completed successfully. In this
example, server SHARE2 identifies which server was started. After this message is
printed, the server waits for clients to connect to it. For information about starting a
server, see “Starting a Server” on page 31. For information about server IDs, see
“Server Log Message Components” on page 88.

The Connect Message

30Apr2003:07:16:20.048 043021 User john(1) has connected to server SHARE2.

This message appears when a client establishes a communication path with the
server. The message contains a user ID, a connection number, and a server ID that tell
which user has connected to which server. In this example, user JOHN(1) has
connected to server SHARE2. For more information about user IDs and server IDs, see
“Server Log Message Components” on page 88. The Connect message is bracketed in
the log by the disconnect message. See “The Disconnect Message” on page 93.

The Create Message

30Apr2003:07:16:20.442 043143 User john(1) has created "Line Mode Process"(1)
under "Kernel"(0).

This message shows that the user has created a resource environment. During a
connection, the user, in this example john(1), creates mirror resource environments,
which are used to maintain (track, scope) the resources that the user consumes in the
server's session (or that the server consumes on the user's behalf). The number of each
newly created resource environment will appear in later messages about the resources
that were consumed.

The quoted string, "Line Mode Process", is the name of the resource environment
that was created. The number in parenthesis is the resource environment number.

The quoted string "Kernel" is the name of another resource environment, and the
number in parenthesis is the resource environment number. "Kernel" is the parent
resource environment of the created resource environment that this message records.
In this example, the "Kernel" resource environment is the parent of the "Line Mode
Process" resource environment. It is possible to deduce a resource environment tree
that is in effect during a server's session.

The "Kernel" (0) resource environment is automatically created when a user
connects to a server. The primary purpose for kernel resource environments is to create
child resource environments.

For more information, see “Server Log Message Components” on page 88.

The Create message is bracketed in the log by the Terminate message.
The Access Message

('/local/u/john/server' V9) accessed as TESTDATA by user john(1).

This message appears when a SAS client executes a LIBNAME statement, or an external client (that is, a client that is not a SAS client) performs an action that associates a libref with a SAS library. This message gives you an association between the libref that you'll see in subsequent messages and the physical name, engine, and server's libref of that library. Under z/OS, accessing a library results in a physical file being opened; in other operating environments, accessing a library is similar to changing directories.

The Access message begins with the libref that the server uses to reference the library. In this example, the libref is TESTDATA. The information in parenthesis ('/local/u/john/server' V9) is the physical name of the library (the quoted string), and the name of the engine (V9) that is used in the server's session to access the library.

The end of the message identifies the user who is accessing the library. In this example, the user is john, and the number in parenthesis (1) is the connection number, which is used for tracking a user's activity on the connection.

For more information about librefs, engine names, and user IDs, see “Server Log Message Components” on page 88. For information about accessing a SAS library, see “Defining a SAS Data Library to a Server (All New Users)” on page 6.

The Access message is bracketed in the log by the Release message. See “The Release Message” on page 92.

The Open Message

30Apr2003:07:17:33.537 043100 DEMOTEST.X.DATA(1) opened for input/S via engine V9 by "PRINT"(2) of user maria(2).

This message appears when a user opens a SAS data file. Opening a SAS file allows the user to move around within the file, see which variables are in the file, the file size, the file formats, and so on.

Opening a SAS data view is more complicated than opening a data file. To open a data view, the server gets help from the engine supervisor to

- load the engine that will interpret the view
- open the view file
- have the view engine open the underlying files and prepare to interpret the instructions in the view file.

The Open message begins with the libref.member-name.member-type. In this example, DEMOTEST.X.DATA shows which file or view is being opened, and the number in parenthesis (1) is the open sequence number. This number is a counter to track how many times a data set is opened within a resource environment.

input is the type of Open mode, and S is the access pattern for this open.
engine V9 identifies which engine is being used to interpret the view for the member type VIEW.
"PRINT" (2) identifies the resource environment that is being used to open the file or view. Opens are considered resources, therefore, resource environments track them.
The same resource environments also track the resources that are consumed when a file or view is opened, such as memory.

*maria* is the user ID, which shows who opened the file or view, and (2) is the number of times that the file was opened. For more information about librefs, member names, member types, open modes, access patterns, engine names, resource environments, and user IDs, see “Server Log Message Components” on page 88.

The Open message is bracketed in the log by the Close message. See “The Close Message” on page 92.

### The Close Message

30Apr2003:07:17:40.361 043102 DEMOTEST.X.DATA(1) closed by "PRINT"(2) of user maria(2).

This message appears when a user closes a file. In this example, user *maria* has closed the file *DEMOTEST.X.DATA* under the resource environment "PRINT". For more information about librefs, member names, member types, resource environments, and user IDs, see “Server Log Message Components” on page 88. See also “The Open Message” on page 91.

### The Release Message

30Apr2003:07:19:06.298 04306A Server library TESTDATA (accessed as TESTDATA) released by user john(1).

This message only appears if the user explicitly executes a LIBNAME statement that includes the CLEAR option. For example,

```
libname TESTDATA clear;
```

In this example, user *john* has released the library *TESTDATA*. The Release message is the opposite of the Access message. See “The Access Message” on page 91.

For more information about user IDs and librefs, see “Server Log Message Components” on page 88.

### The Terminate Message

30Apr2003:07:19:06.319 043144 User john(1) has terminated “Line Mode Process”(1) (under "Kernel"(0)).

This message appears when a user terminates a resource environment, which was previously created. See “The Create Message” on page 90. In this example, user *john* terminated the resource environment "Line Mode Process" (1), which was a child resource environment of "Kernel" (0). For more information about resource environments and user IDs, see “Server Log Message Components” on page 88.
The Disconnect Message

30Apr2003:07:19:06.411 043022 User john(1) has disconnected from server SHARE2.

This message appears when a user who was connected to the server has ended that connection. In this example, user john has disconnected from server SHARE2. For more information about user IDs and server IDs, see “Server Log Message Components” on page 88.

Usually, the Close message appears before the Disconnect message. However, a Disconnect message might appear before a Close message appears if the client’s session with the server was ended abnormally; for example, if the line is disconnected or a client’s machine crashes.

Accounting Information

30Apr2003:07:19:06.425 043151 Usage statistics for user john(1):

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages processed</td>
<td>14</td>
</tr>
<tr>
<td>Bytes transferred</td>
<td>3,133</td>
</tr>
<tr>
<td>Active time</td>
<td>0:00:01.8139</td>
</tr>
<tr>
<td>Elapsed time</td>
<td>0:02:46.6840</td>
</tr>
</tbody>
</table>

By default, accounting data is written to the server’s log when a user disconnects from the server. (See “The Disconnect Message” on page 93.) This data shows the usage of server resources, that is, the messages processed, bytes transferred, active time, and elapsed time, that resulted from a user’s activity while connected to the server. In this example, the data shown is for user john while connected to server SHARE2.

For explanations of usage statistics for messages processed (MESSAGE), bytes transferred (BYTECOUNT), active time (ACTIVETIME), and elapsed time (ELAPSEDTIME), see Chapter 12, “The SERVER Procedure,” on page 123. For more information about accounting level, see Chapter 12, “The SERVER Procedure,” on page 123. For more information about user IDs, see “Server Log Message Components” on page 88.

The Stop Message

The Stop message appears in the log if an administrator uses the STOP command under PROC OPERATE. The server stops all activity and shuts down; all processes end normally. The server log shows that the STOP command was issued, and shows the Close, Release, Terminate, and Disconnect messages that follow as the files, libraries, resource environments, and the connection to the server are shut down. For more information about the server administrator’s log and an example of what the STOP command generates in the server administrator’s log, see “Managing a Server, Its Libraries, and Its Users” on page 36.
Starting the Server Log

The information in this section is recommended for SAS/SHARE server administrators who write SAS programs.

The server log records messages that result from starting and stopping a server and from many intervening client/server transactions. The PROC SERVER statement is used to explicitly start server logging with the specific features that you want. For more information about the PROC SERVER statement see Chapter 12, “The SERVER Procedure,” on page 123. Here is the syntax for the PROC SERVER statement with two options that you can use to start logging:

```
PROC SERVER MSGNUMBER ID=DEMOSERV;
```

To make the log’s raw data meaningful, you can use a set of server log analysis programs to examine specific data resources and to create usable reports. Analysis of the logged data resources of several SAS/SHARE servers allows you to compare server performance and to balance workloads among them.
To prepare for server log analysis, set the message numbering feature. Message numbering assigns a number to each message that is recorded in the log. The server log analysis programs parse messages by using the associated numbers.

Using the Server Log Analysis Tools

SAS provides a set of sample programs that you can use as a basis for developing your own programs to analyze server log data. The location of the sample programs varies according to the operating environment.

OpenVMS

SAS$ROOT:[SAMPLES.SHARE]

UNIX

!SASROOT/samples/share

Windows

!SASROOT\Share\Sample

z/OS

&prefix.SAMPLE

Descriptions of the sample programs follow:

SLTOOLM.SAS

is a look-up table that associates a macro variable with each message number that is generated in the server log. For example, the DINIMSG macro variable is assigned to the 43131 message number, which corresponds to a PROC SERVER start-up.

SLTOOLO.SAS

is a driver program that automates the execution of all the other programs.

SLTOOL1.SAS

converts the server’s log from a file into a SAS data set.

SLTOOL2.SAS

creates a set of SAS data files from the SAS data set that is generated by SLTOOL1.SAS and stores the files in the library SLOGDATA. Each of the created files relates to specific data that is collected in the log. For example, SLOGDATA.SERVINFO is a data file that records the server’s name and the times when it was started and stopped.

SLTOOL3.SAS

is a sample program.

SLTOOL4.SAS

is another sample program.

Before you use these programs, you must customize them to your site’s operating environment and your log analysis needs. Running an untuned program produces unpredictable results.

Customizing Server Log Analysis Programs

SLTOOLO.SAS is a sample driver program that you can use to automate the execution of your set of programs at the same time. Alternatively, you can run them individually in consecutive order. For example,
FILENAME INLOG 'TESTLOG.LOG';
LIBNAME SLOGDATA 'SLOGDATA';
%INCLUDE(SLTOOLM);
%INCLUDE(SLTOOL1);
%INCLUDE(SLTOOL2);
%INCLUDE(SLTOOL3);
%INCLUDE(SLTOOL4);

The first line associates the fileref INLOG with an operating environment-specific name for a file that contains the server log. In this example, 'TESTLOG.LOG' is the name of the file in a UNIX operating environment that contains the server log. In the second line, the LIBNAME statement associates the libref SLOGDATA with the operating environment-specific SAS data library 'SLOGDATA'. The first two lines identify the external file as input and specify a SAS data library to write SAS data files to.

The remaining lines in the driver program are INCLUDE macro statements in SAS, which read and execute each named program consecutively.

Modify the FILENAME and LIBNAME statements in SLTOOL0.SAS to specify your server's log and the repository for the SAS data files, respectively.

SLTOOLM.SAS, SLTOOL1.SAS, and SLTOOL2.SAS do not require modification. They can be run as provided to produce SAS data files that contain information about the server's session. Those data files are the input to the analysis phase, which is performed by the programs in SLTOOL3.SAS and SLTOOL4.SAS.

Usually, you customize the SLTOOL3.SAS and SLTOOL4.SAS programs to produce the analyses of your server that are most relevant to your needs.

---

**Executing the Driver Program (SAS/SHARE)**

How you execute the driver program depends on your operating environment. The following example runs the driver program on a UNIX operating environment:

```
sas pathname/sltool0.sas -log /pathname/logfile
```

**sas** invokes the SAS System. **pathname** specifies the location of SLTOOL0 and the location of the log file.

---

**SLTOOL1 Sample Program (SAS/SHARE)**

Before you use the SLTOOL1 program, the server log must be in a file that can be read by the INFILE and the INPUT statements in the DATA step. The FILENAME statement points to the physical location that contains the server's log.

Because SLTOOL1 produces a compressed SAS data file that contains the server log and some additional data, it is recommended that you reserve an amount of space that is twice the size of the server log file.

SLTOOL1 produces a data file that is stored in the library WORK. Because the library WORK is temporary, it exists only for the duration of the SAS session and is deleted at termination. To keep the data file that is produced by SLTOOL1 for use after the session terminates, save it in a permanent library by specifying a valid, two-level name. For example,

```
DATA SLOGDATA.CVTLOG (DROP=SERVREL ANALREL
COMPRESS=YES
LABEL='Server Log');
```
Overview

SLTOOL2 reads the SAS data file produced by SLTOOL1 and creates a group of SAS data sets. Usually, SLTOOL2 is executed during the same SAS session as the SLTOOL1 program.

The libref SLOGDATA is associated with a SAS data library by the LIBNAME statement in SLTOOL0.SAS.

The data sets created by SLTOOL2 are stored in the SAS data library and are associated with the libref SLOGDATA. It is most efficient to run SLTOOL0.SAS one time to create the data files in the library SLOGDATA, and then run multiple analysis programs that access the library SLOGDATA. With large server logs, creating the data sets in the library SLOGDATA can take quite a long time and should be done only one time for each server log.

SLTOOL2 creates data sets with names that include either INFO or SUM. INFO files contain observations that record specific SAS/SHARE activities, such as each time a server is started and stopped. SUM files present the total number of times a specific activity occurred, such as the total number of connections made to a server.

The following sections describe each data set that is created by SLTOOL2.

**SLOGDATA.SERVINFO**

The SERVINFO data set records the server name and the times at which it was started and stopped. You can use this information to write a descriptive header on a report that relates to that server.

**SLOGDATA.CONNINFO**

The CONNINFO data set contains one observation for each time a user connects to the server and one observation for each time a user disconnects from the server.

From this data set, you can obtain a list that shows who connected to a server, how long each user remained connected, or how many times each user connected to the server. You can also chart the simultaneous number of connections to a server over a period of time, which shows peaks and valleys in the number of users who access data through a specific server.

**SLOGINFO.CONNSUM**

The CONNSUM data set contains only one observation with one variable that stores the total number of connections to this server.

**SLOGDATA.TASKINFO**

The TASKINFO data set contains one observation for each creation of a mirror resource environment and one observation for each termination of a mirror resource environment.
The name of a resource environment in this data set corresponds to the name of a SAS procedure or a window that is used to access data through the server. From this data set, you can obtain a list of those SAS procedures and windows and the length of time each procedure or each window remained active.

**SLOGDATA.LIBINFO**

The LIBINFO data set contains one observation for each time a user accesses a SAS library and one observation for each time a user releases a SAS library.

From this file, you can determine how many times each library was accessed through the server and the length of time that each library was accessed. You should use the physical name for the library because each library can be referred to by different librefs at various times. To obtain a list of the libraries accessed through a server, use SLOGDATA.PHYSINFO.

**SLOGDATA.PHYSINFO**

The PHYSINFO data set contains a list of the physical names that correspond to the libraries that were accessed through the server.

**SLOGDATA.ENGSUM1**

The ENGSUM1 data set contains a list of the engines that were used to access SAS data libraries through the server.

**SLOGDATA.MEMINFO**

The MEMINFO data set contains an observation for each time a SAS library member is opened, re-opened, closed, re-named, repaired, or deleted.

From this data set, which usually is very large, you can derive a list of members for each library that has been accessed through the server; the length of time and how many times each member was accessed; whether each member was created, read, or updated; and the number of simultaneous users of each member over a period of time.

You should use the physical name for the library because each library can be referred to by different librefs at various times.

**SLOGDATA.OBJINFO**

The OBJINFO data set contains an observation for each time a SAS catalog entry is opened, closed, re-named, deleted, aliased, or has its directory information or options changed.

This data set is similar to SLOGDATA.MEMINFO, but it contains information for catalog entries instead of members of SAS libraries.

**SLOGDATA.IDXINFO**

The IDXINFO data set creates an observation for each time a user creates or deletes an index through the server.

Because creating an index tends to be expensive, this data set is probably most useful as a warning signal. Also, because indexes can be very helpful for SAS data sets
that are accessed concurrently, having a list of indexes that were deleted during a server's session can also be a warning signal.

**SLOGDATA.DIRINFO**

The DIRINFO data set contains an observation for each time the directory of a SAS library or the directory of a SAS catalog is opened or closed through the server.

**SLOGDATA.IDXSUM**

The IDXSUM data set contains only one observation with two variables. One variable counts how many indexes were created through the server; the other variable counts how many indexes were deleted through the server.

**SLOGDATA.ACCTINFO**

The ACCTINFO data set contains one observation for each accounting message that is written to the server's log after a user disconnects. You must specify the LOG= option in the PROC SERVER statement to collect this data.

**SLTOOL3 and SLTOOL4 Sample Programs**

You can examine the source code of these sample programs by accessing

Help -> SAS Help and Documentation -> Contents -> SAS System Documentation -> Learning to Use SAS -> Sample SAS Programs -> SAS/SHARE
Security Definitions

Cryptography

Cryptography is an area of research that uses mathematics to provide confidentiality for selective information and to create a high level of trust in sensitive data.

Encryption

Encryption is the transformation of intelligible data (plaintext) into an unintelligible form (ciphertext) by means of a mathematical process. The ciphertext is translated back to plaintext when the appropriate key that is necessary for decrypting (unlocking) the ciphertext is applied.

Authentication

Authentication is the act of verifying the identity of an entity. Usually, authentication is used to confirm the authority of an entity to access protected resources.
Encryption Services, Algorithms, and Comparisons of Services

Encryption Services

The following encryption services are supported:

SASProprietary
is a fixed encoding algorithm that is included with Base SAS software and is supported under the OpenVMS Alpha, z/OS, UNIX, and Windows operating environments. It requires no additional SAS product licenses. The SAS proprietary algorithm is strong enough to protect your data from casual viewing. However, because a determined hacker can breach this encoding, SAS cannot guarantee that SASProprietary will prevent unauthorized access to your data.

SAS/SECURE
is an add-on product that provides encryption algorithms in addition to the SAS proprietary algorithm. SAS/SECURE software requires a license, and it must be installed on each machine that runs a client and a server that will use the encryption algorithms. Although SAS/SECURE increases data security, it cannot completely prevent unauthorized access to your data.

SSL
Note: SSL is supported only in the UNIX and Windows operating environments.

is an abbreviation for Secure Sockets Layer, which is a protocol that provides network security and privacy. Developed by Netscape Communications, SSL uses encryption algorithms that include RC2, RC4, DES, TripleDES, IDEA, MD5, and others. In addition to providing encryption services, SSL performs client and server authentication, and it uses message authentication codes to ensure data integrity. SSL is supported by both Netscape Navigator and Internet Explorer. Many Web sites use the protocol to protect confidential user information, such as credit card numbers. By convention, URLs that require an SSL connection begin with https: instead of http:. The SSL protocol is application independent and allows protocols such as HTTP, FTP, and Telnet to be transparently layered above it. SSL is optimized for HTTP. SSL includes software that was developed by the OpenSSL Project for use in the OpenSSL Toolkit. For more information see http://www.OpenSSL.org/.

Data Encryption Algorithms

The following encryption algorithms are supported:

RC2
is a block cipher that encrypts data in blocks of 64 bits. A block cipher is an encryption algorithm that breaks down a message into blocks and encrypts each block. The RC2 key size ranges from 8 to 256 bits. In SAS/SECURE, a configurable key size of 40 or 128 bits is used. (The NETENCRYPTKEYLEN= system option is used to configure the key length.) The RC2 algorithm expands a single message to a maximum of 8 bytes. RC2 is a proprietary algorithm developed by RSA Data Security, Inc.

Note: RC2 is supported in SAS/SECURE and SSL.
RC4

is a stream cipher. A stream cipher is an encryption algorithm that encrypts data 1 byte at a time. The RC4 key size ranges from 8 to 2048 bits. The SAS/SECURE implementation uses a configurable key size of 40 or 128 bits. (The NETENCRYPTKEYLEN= system option is used to configure the key length.) RC4 is a proprietary algorithm developed by RSA Data Security, Inc.

Note: RC4 is supported in SAS/SECURE and SSL.

DES (Data Encryption Standard)

is a block cipher that encrypts data in blocks of 64 bits by using a 56-bit key. The algorithm expands a single message to a maximum of 8 bytes. DES was originally developed by IBM but is now published as a U.S. Government Federal Information Processing Standard (FIPS 46-3).

Note: DES is supported in SAS/SECURE and SSL.

TripleDES

is a block cipher that encrypts data in blocks of 64 bits. TripleDES executes the DES algorithm on a data block three times in succession by using a single, 56-bit key. This has the effect of encrypting the data by using a 168-bit key. TripleDES expands a single message to a maximum of 8 bytes. TripleDES is defined in the American National Standards Institute (ANSI) X9.52 specification.

Note: TripleDES is supported in SAS/SECURE and SSL.

SASProprietary

is a cipher that provides basic fixed encoding encryption services under all operating environments supported by SAS. Included in Base SAS, SASProprietary does not require additional SAS product licenses. The algorithm expands a single message to approximately one-third by using a 32-bit key.

Note: SASProprietary is supported only in SAS proprietary encryption services.

IDEA (International Data Encryption Algorithm)

is a 64-bit iterative block cipher that uses a 128-bit key. The speed of encryption for IDEA is similar to that of DES.

Note: IDEA is supported only in SSL.

MD5 (Message Digest)

is used for digital signature applications in which a large message must be securely compressed before being signed with a private key. The MD2, MD4, and MD5 family of algorithms share common structures, however, each design is unique. MD2 was optimized for 8-bit machines; MD4 and MD5 were designed for 32-bit machines. MD5 produces a 128-bit message digest from a message of arbitrary length.

Note: MD5 is supported only in SSL.

Comparing Encryption Services

Note: SSL is supported only under the UNIX and Windows operating environments.
Table 9.1  Summary of SSL, SAS/SECURE, and SASProprietary Features

<table>
<thead>
<tr>
<th>Features</th>
<th>SSL</th>
<th>SAS/SECURE (all versions)</th>
<th>SASProprietary</th>
</tr>
</thead>
<tbody>
<tr>
<td>License Required</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Action Performed</td>
<td>Encryption and Authentication</td>
<td>Encryption only</td>
<td>Encryption only</td>
</tr>
<tr>
<td>Encryption Strength</td>
<td>Strong</td>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Algorithms Supported</td>
<td>RC2, RC4, DES, TripleDES, IDEA, MD5, and others</td>
<td>RC2, RC4, DES, TripleDES</td>
<td>SASProprietary Fixed Encoding</td>
</tr>
<tr>
<td>Installation Required</td>
<td>Yes</td>
<td>Yes</td>
<td>No (part of Base SAS)</td>
</tr>
<tr>
<td>Operating Environments Supported</td>
<td>UNIX, Windows</td>
<td>UNIX, Windows, z/OS, OpenVMS Alpha</td>
<td>UNIX, Windows, z/OS, OpenVMS Alpha</td>
</tr>
<tr>
<td>Enable with SAS Options</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SAS Version Support</td>
<td>9 and later</td>
<td>8 and later</td>
<td>8 and later</td>
</tr>
</tbody>
</table>

### Configuring and Using Encryption Services

Usually, a network administrator or a local system administrator installs and configures encryption services in the computing environment, as necessary. A user or applications programmer enables encryption in an application or in a SAS session by setting SAS system options. For more information, see “SAS/SECURE and SASProprietary Encryption Services” and “Secure Sockets Layer (SSL)”.
CHAPTER 10

SAS/SECURE and SAS Proprietary Encryption Services

Security System and Software Requirements

SAS/SECURE

SAS 9.1 supports SAS/SECURE under the following operating environments:

- z/OS
- UNIX
  - Compaq Tru64 UNIX
  - HP UX on Itanium 64-bit platform
  - HP UX on a 64-bit platform
  - Linux for Intel Architecture on a 32-bit platform
  - Solaris on a 64-bit platform
- Windows

SASProprietary

SAS 9.1 supports SASProprietary under the following operating environments:

- OpenVMS Alpha
- z/OS
- UNIX (all UNIX environments)
- Windows

Export Restrictions for SAS/SECURE

SAS/SECURE 9.1 is available to most commercial and government users inside and outside the U.S. However, some countries (for example, Russia, China, and France)
have import restrictions on products that contain *encryption*, and the U.S. prohibits the export of encryption software to specific embargoed or restricted destinations. To comply with these regulations, SAS/SECURE is packaged according to the operating environment.

SAS/SECURE for z/OS and UNIX includes the following encryption algorithms:
- RC2 using 128-bit or 40-bit keys
- RC4 using 128-bit or 40-bit keys
- DES using 56-bit keys
- TripleDES using 168-bit keys

SAS/SECURE for Windows uses the encryption algorithms that are available in Microsoft CryptoAPI. The strength of the SAS/SECURE encryption algorithms under Windows depends on the strength of the encryption support in Microsoft CryptoAPI under Windows. For this reason, SAS/SECURE for Windows has very few export restrictions.

### SAS/SHARE Example

**SAS/SHARE Client**

In this example, the NETENCRALGORITHM option is set to RC4 to specify the use of the RC4 algorithm to encrypt the data between the client and the server. The NETENCRALGORITHM option must be set before the LIBNAME statement establishes the connection to the server.

```plaintext
options netencralgorithm=rc4;
options comamid=tcp;
libname sasdata 'edc.prog2.sasdata' server=rmthost.share1;
```

**SAS/SHARE Server**

This example shows how to set the options for encryption services on a SAS/SHARE server. The NETENCYRYPT option specifies that encryption is required by any client that accesses this server. The NETENCRALGORITHM option specifies that the RC4 algorithm be used for encryption of all data that is exchanged with connecting clients.

```plaintext
options netencrypt netencralgorithm=rc4;
options comamid=tcp;
proc server id=share1;
run;
```
What Is SSL?

SSL (Secure Sockets Layer) 107

Certification Authorities (CAs) 108
Public and Private Keys 108
Digital Signatures 108
Digital Certificates 108

Using SSL 109

Overview of SSL Set-Up Process 109

SSL for SAS 109
SSL for UNIX 109

System and Software Requirements for SSL under UNIX 109
Setting Up SSL under UNIX 110
Downloading and Building SSL under UNIX 110
Creating Digital Certificate Requests under UNIX 110
Generating Digital Certificates on UNIX 112
Viewing Digital Certificates 113
Terminating OpenSSL 113
Creating a CA Trust List 113

UNIX: SAS/SHARE Example 114

UNIX: Starting a Multi-User SAS/SHARE Server 114
UNIX: Accessing a SAS/SHARE Server 115

SSL for Windows 116

System and Software Requirements for SSL under Windows 116
Digital Certificates Set-Up Process 116

Generating Digital Certificates Issued by Microsoft Certificate Authority 116
Generating Digital Certificates Issued by a Certificate Authority That Is Not Microsoft 117
Importing Digital Certificates to a Certificate Store 117

Windows: SAS/SHARE Example 119

Windows: Starting a Multi-User SAS/SHARE Server 119
Windows: Accessing a SAS/SHARE Server 120

Converting between PEM and DER File Formats 120

What Is SSL?

SSL (Secure Sockets Layer)

SSL is a protocol that provides secure network communications. Developed by Netscape Communications, SSL uses the encryption algorithms that were developed by RSA Security, Inc. and other cryptography experts.
In addition to providing encryption services, SSL performs client and server authentication and uses message authentication codes. SSL is supported by both Netscape Navigator and Internet Explorer. Many Web sites use this protocol to protect confidential user information, such as credit card numbers. URLs that require an SSL connection begin with https: instead of http:. The SSL protocol is application independent, which allows protocols such as HTTP, FTP, and Telnet to be transparently layered above it. SSL is optimized for HTTP.

**Certification Authorities (CAs)**

As e-business proliferates, there is a great need to ensure the confidentiality of business transactions over a network between an enterprise and its consumers, between enterprises, and within an enterprise. Cryptography products provide security services by exploiting digital certificates, public-key cryptography, private-key cryptography, and digital signatures. Certification authorities (CAs) create and maintain digital certificates, which also help preserve confidentiality.

Various commercial CAs, such as VeriSign and Thawte, provide competitive services for the e-commerce market. You can also develop your own CA by using products from companies such as RSA Security and Microsoft or from the Open Source Toolkit OpenSSL. From a trusted CA, members of an enterprise can obtain digital certificates to facilitate their e-business needs. The CA provides a variety of ongoing services to the business client that include handling digital certificate requests, issuing digital certificates, and revoking digital certificates.

**Public and Private Keys**

Public-key cryptography uses a public and a private key pair. The public key can be known by anyone, therefore, anyone can send a confidential message. The private key is confidential and known only to the owner of the key pair, therefore, only the owner can read the encrypted message. The public key is used primarily for encryption, but it can also be used to verify digital signatures. The private key is used primarily for decryption, but it can also be used to generate a digital signature.

**Digital Signatures**

A digital signature affixed to an electronic document or to a network data packet is like a personal signature that concludes a hand-written letter or that validates a credit card transaction. Digital signatures are a safeguard against fraud. A unique digital signature results from using a private key to encrypt a message digest. Receipt of a document that contains a digital signature enables the receiver to verify the source of the document. Electronic documents can be verified if you know where the document came from, who sent it, and when it was sent. Another form of verification comes from MACs, which ensure that a document has not been changed since it was signed.

**Digital Certificates**

Digital certificates are electronic documents that ensure the binding of a public key to an individual or an organization. Digital certificates provide protection from fraud.

Usually, a digital certificate contains a public key, a user’s name, and an expiration date. It also contains the name of the certification authority (CA) that issued the digital certificate and a digital signature that is generated by the CA. The CA’s validation of
an individual or an organization allows that individual or organization to be accepted at sites that trust the CA.

Using SSL

Overview of SSL Set-Up Process

The details for installing and setting up SSL at your site are based on the operating environment and the digital certificate services software that you use. However, the following tasks are basic:

1. Access the appropriate software for installing and setting up digital certificate services under your operating environment.
2. Define a Certificate Authority (CA).
3. Request that digital certificates be generated by the CA for users, machines, and other CAs.
4. Store the digital certificates in a trusted repository.
5. View the properties of the generated digital certificates.
7. Connect to the server.

SSL for SAS

You can set SAS system options to use SSL in a SAS session. See the SAS options that are appropriate to your operating environment.

SSL for UNIX

System and Software Requirements for SSL under UNIX

The system and software requirements for using SSL under UNIX operating environments are:

- A computer that runs UNIX.
- Internet access and a Web browser such as Netscape Navigator or Internet Explorer.
- The TCP/IP communications access method.
- Access to the OpenSSL utility at www.openssl.org/source if you plan to use the OpenSSL CA.
- Knowledge of your site’s security policy, practices, and technology. The properties of the digital certificates that you request are based on the security policies that have been adopted at your site.
Setting Up SSL under UNIX

Perform the following tasks to set up and use SSL:
1. Download and build SSL.
2. Create digital certificate requests.
3. Generate digital certificates from requests.
4. View the digital certificates.
5. Terminate the OpenSSL utility.
6. Create a trusted list of CAs.

Downloading and Building SSL under UNIX

If you want to use OpenSSL as your trusted Certificate Authority (CA), follow the instructions for downloading and building OpenSSL that are given at www.openssl.org/source. For complete documentation about the OpenSSL utility, visit www.openssl.org/docs/apps/openssl.html.

Information about alternative CAs and their Web sites follows:

- For VeriSign, see www.verisign.com
- For Thawte, see www.thawte.com

Creating Digital Certificate Requests under UNIX

To enable an SSL connection at your site, you must

- Obtain a digital certificate from a certification authority (CA).
- Create a digital certificate request from which a digital certificate is generated.
- Request one or more digital certificates for the CA (if you will be running your own CA), the server, and the client (optional).

The tasks that you perform to request a digital certificate for the CA, the server, and the client are similar, however, the values that you specify will be different.

In this example, Proton, Inc. is the organization that is applying for certification authority status by using OpenSSL. After Proton, Inc. becomes a CA, it can serve as a Certificate Authority for issuing digital certificates to clients (users) and servers on its network.

Perform the following tasks:
1. Select the apps subdirectory of the directory where OpenSSL was built.
2. Initialize OpenSSL.
   
   $ openssl

3. Issue the appropriate command to request a digital certificate. (See Table 11.1 on page 111.) The functions of the arguments used in the commands are shown in Table 11.2 on page 111
Table 11.1  Open SSL Commands for Requesting a Digital Certificate

<table>
<thead>
<tr>
<th>Request Certificate for</th>
<th>OpenSSL Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes</td>
</tr>
<tr>
<td>Server</td>
<td>req -config ./openssl.cnf -new -out server.req -keyout serverkey.pem</td>
</tr>
<tr>
<td>Client</td>
<td>req -config ./openssl.cnf -new -out client.req -keyout clientkey.pem</td>
</tr>
</tbody>
</table>

Table 11.2  Arguments and Values Used in OpenSSL Commands

<table>
<thead>
<tr>
<th>OpenSSL Arguments and Values</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>req</td>
<td>requests a certificate</td>
</tr>
<tr>
<td>-config ./openssl.cnf</td>
<td>specifies where the configuration details for the OpenSSL program are stored</td>
</tr>
<tr>
<td>-new</td>
<td>identifies the request as new</td>
</tr>
<tr>
<td>-out sas.req</td>
<td>specifies where the certificate request will be stored</td>
</tr>
<tr>
<td>-keyout saskey.pem</td>
<td>specifies where the private key will be stored</td>
</tr>
<tr>
<td>-nodes</td>
<td>prevents the private key from being encrypted</td>
</tr>
</tbody>
</table>

4 Informational messages are displayed and prompts for additional information appear according to the specific request.

To accept a default value, press the Return key. To change a default value, type the appropriate information and press the Return key.

Note: Unless the -NODES option is used in the OpenSSL command when creating a digital certificate request, OpenSSL will prompt you for a password before allowing access to the private key. △

The following is an example of a request for a digital certificate:

OpenSSL> req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes
Using configuration from ./openssl.cnf
Generating a 1024 bit RSA private key

............................++++++
..........................................++++++
writing new private key to 'saskey.pem'

-----
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

-----
Country Name (2 letter code) [US]: Joe Bass
State or Province Name (full name) [North Carolina]:
Locality Name (city) [Cary]:
Organization Name (company) [Proton INC.]:
Organizational Unit Name (department) [IDB]:
Common Name (YOUR name) []: Joe Bass
Generating Digital Certificates on UNIX

Perform the following tasks to generate digital certificates for a CA, a server, and a client.

1. Issue the appropriate command to generate a digital certificate from the digital certificate request. (See Table 11.3 on page 112.)

<table>
<thead>
<tr>
<th>Generate Certificate for</th>
<th>OpenSSL Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>x509 req -in sas.req -signkey saskey.pem -out sas.pem</td>
</tr>
<tr>
<td>Server</td>
<td>ca -config ./openssl.cnf -in server.req -out server.pem -nodes</td>
</tr>
<tr>
<td>Client</td>
<td>ca -config ./openssl.cnf -in client.req -out client.pem</td>
</tr>
</tbody>
</table>

The functions performed by the OpenSSL arguments and values are shown in Table 11.4 on page 112.

<table>
<thead>
<tr>
<th>OpenSSL Arguments and Values</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>x509</td>
<td>identifies the certificate display and signing utility</td>
</tr>
<tr>
<td>req</td>
<td>specifies that a certificate be generated from the request</td>
</tr>
<tr>
<td>ca</td>
<td>identifies the certificate authority utility</td>
</tr>
<tr>
<td>-config ./openssl.cnf</td>
<td>specifies where the configuration details for the OpenSSL utility are stored</td>
</tr>
<tr>
<td>-in filename.req</td>
<td>specifies where the input for the certificate request is stored</td>
</tr>
<tr>
<td>-out filename.pem</td>
<td>specifies where the certificate will be stored</td>
</tr>
<tr>
<td>-signkey saskey.pem</td>
<td>specifies the private key that will be used to sign the certificate that is generated by the certificate request</td>
</tr>
</tbody>
</table>

2. Informational messages are displayed and prompts for additional information appear according to the specific request.
To accept a default value, press the Return key. To change a default value, type
the appropriate information, and press the Return key.

Sample dialog for creating a server digital certificate follows:

Note: The password is for the CA’s private key. △
Using configuration from ./openssl.cnf
Enter PEM pass phrase: password
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE: ‘US’
stateOrProvinceName :PRINTABLE: ‘NC’
localityName :PRINTABLE: ‘Cary’
organizationName :PRINTABLE: ‘Proton, Inc.’
organizationalUnitName:PRINTABLE: ‘Development’
commonName :PRINTABLE: ‘Server’
Certificate is to be certified until Oct 16 17:48:27 2003 GMT (365 days)
Sign the certificate? [y/n]: y
1 out of 1 certificate requests certified, commit? [y/n] y
Write out database with 1 new entries Data Base Updated

The subject’s Distinguished Name is obtained from the digital certificate request.

A root CA digital certificate is self-signed. Self-signed means that the digital
certificate is signed with the private key that corresponds to the public key that is
in the digital certificate. Except for root CAs, digital certificates are usually signed
with a private key that corresponds to a public key that belongs to someone else,
usually the CA.

---

Viewing Digital Certificates

To view a digital certificate, issue the following command:

```
openssl > x509 -text -in filename.pem
```

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

---

Terminating OpenSSL

To terminate OpenSSL, type `quit` at the prompt.

---

Creating a CA Trust List

After generating digital certificates for the CA, the server, and the client (optional),
you must identify for the OpenSSL client application one or more CAs that are to be
trusted. This list is called a trust list.

If there is only one CA to trust, specify the name of the file that contains the
OpenSSL CA digital certificate, in the client application.

If multiple CAs are to be trusted, create a new file and copy-and-paste into it the
contents of all the digital certificates for CAs to be trusted by the client application.
Use the following template to create a CA trust list:

Certificate for OpenSSL CA

----BEGIN CERTIFICATE-----

<PEM encoded certificate>

----END CERTIFICATE-----

Certificate for Keon CA

----BEGIN CERTIFICATE-----

<PEM encoded certificate>

----END CERTIFICATE-----

Certificate for Microsoft CA

----BEGIN CERTIFICATE-----

----END CERTIFICATE-----

Because the digital certificate is encoded, it is unreadable. Therefore, the content of the digital certificate in this example is represented as <PEM encoded certificate>. The content of each digital certificate is delimited with a ----BEGIN CERTIFICATE---- and ----END CERTIFICATE---- pair. All text outside the delimiters is ignored. Therefore, you might want to use undelimited lines for descriptive comments. In the preceding template, the file that is used contains the content of digital certificates for the CAs: OpenSSL, Keon, and Microsoft.

Note: If you are including a digital certificate that is stored in DER format, you must first convert it to PEM format. For more information, see “Converting between PEM and DER File Formats” on page 120.

UNIX: SAS/SHARE Example

UNIX: Starting a Multi-User SAS/SHARE Server

After certificates for the CA, the server, and the client have been generated, and a CA trust list for the client has been created, you can start a SAS/SHARE server. An example of how to start a secured SAS/SHARE server follows:

%let tcpsec=_secure_;
options netencralg=ssl;
options sslcertloc="/users/johndoe/certificates/server.pem";
options sslprvkeyloc="/users/johndoe/certificates/serverkey.pem";
options sslprvkeypass="password";
proc server id=shrserv;
run;
The following table lists the SAS option or statement that is used for each task to start a server.

**Table 11.5  Server Start-Up Tasks**

<table>
<thead>
<tr>
<th>Server Start-Up Tasks</th>
<th>SAS Options and Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure the server</td>
<td>TCPSEC= <em>SECURE</em></td>
</tr>
<tr>
<td>Specify SSL as the encryption algorithm</td>
<td>NETENCRLG=SSL</td>
</tr>
<tr>
<td>Specify the filepath for the location of the server's certificate</td>
<td>SSLCERTLOC=server.pem</td>
</tr>
<tr>
<td>Specify the filepath for the location of the server's private key</td>
<td>SSLEVKEYLOC=serverkey.pem</td>
</tr>
<tr>
<td>Specify the password to access server's private key</td>
<td>SSLEVKEYPASS=&quot;password&quot;</td>
</tr>
<tr>
<td>Start the server</td>
<td>PROC SERVER ID=shrserv;</td>
</tr>
</tbody>
</table>

*Note:* As an alternative to using the -SSLEVKEYPASS option to protect the private key, you might prefer that the private key remain unencrypted, and use the file system permissions to prevent read and write access to the file that contains the private key. To store the private key without encrypting it, use the -NODES option when requesting the certificate.

---

**UNIX: Accessing a SAS/SHARE Server**

After a SAS/SHARE server has been started, the client can access it. An example of how to make a client connection to a secured SAS/SHARE server follows:

```sas
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
libname a '.' server=machine.shrserv user=_prompt_;
```

The following table lists the SAS options that are used to access a SAS/SHARE server from a client.

**Table 11.6  Tasks for Accessing a SAS/SHARE Server from a Client**

<table>
<thead>
<tr>
<th>Client Access Tasks</th>
<th>SAS Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the CA trust list</td>
<td>SSLCALISTLOC=cacerts.pem</td>
</tr>
<tr>
<td>Specify the machine and server to connect to</td>
<td>SERVER=machine.shrserv</td>
</tr>
<tr>
<td>Prompt for the user ID and password to be used for authenticating the client to the server</td>
<td>USER=<em>PROMPT</em></td>
</tr>
</tbody>
</table>

The server ID and the server's Common Name that was specified in the server's certificate must be identical.
Chapter 11

System and Software Requirements for SSL under Windows

The system and software requirements for using SSL under the Windows operating environment are:

- A computer that runs Windows 2000 (or later).
- Depending on your configuration, it might be useful to have access to the Internet and a Web browser such as Netscape Navigator or Internet Explorer.
- The TCP/IP communications access method.
- Microsoft Certificate Services add-on software.
- The Microsoft Certificate Authority application (which is accessible from your Web browser) if you will run your own CA.
- In order for a SAS/CONNECT client session to connect to a SAS/CONNECT server session via a Windows spawner using SSL encryption, ensure that the client session runs on a machine that has a Trusted CA Certificate.

  The Windows spawner must run on a machine that has a Trusted CA Certificate and a Personal Certificate.

- Knowledge of your site’s security policy, practices, and technology. The properties of the digital certificates that you request will depend on the security policies that have been adopted at your site.

Complete information about configuring your Windows operating environment for SSL is contained in the Windows installation documentation and at www.microsoft.com. The following keywords might be helpful when searching the Microsoft Web site:

- digital certificate services
- digital certificate authority
- digital certificate request
- site security planning.

Digital Certificates Set-Up Process

The process for generating digital certificates under the Windows operating environment follows:

1. The user requests a digital certificate from a certificate authority (CA).
2. The CA issues a digital certificate.
3. The digital certificate is installed in a certificate store.

The tasks that you perform depend on the CA that you use:

See “Generating Digital Certificates Issued by Microsoft Certificate Authority” on page 116

See “Generating Digital Certificates Issued by a Certificate Authority That Is Not Microsoft” on page 117.

Generating Digital Certificates Issued by Microsoft Certificate Authority

The following tasks are performed to generate digital certificates issued by the Microsoft Certificate Authority:
1. If you are running your own CA, the system administrator uses Microsoft Certificate Services to create an active Certificate Authority (CA).

2. The user
   a. uses the Certificate Request wizard to request a digital certificate from an active enterprise CA. The Certificate Request wizard lists all digital certificate types that the user or computer is eligible to obtain.
   b. selects a digital certificate type
   c. specifies security options
   d. submits the request to an active CA that is configured to issue the digital certificate.

   After the CA issues the requested digital certificate, the digital certificate is automatically installed in the Certificate Store. (See Display 11.1 on page 117 for an example.)

Display 11.1 Digital Certificate Installation in the Certificate Store

---

**Generating Digital Certificates Issued by a Certificate Authority That Is Not Microsoft**

The following tasks are performed to generate digital certificates that are not issued by the Microsoft Certificate Authority:

1. the user requests a digital certificate from a CA and the digital certificate is issued.
2. the user imports digital certificates to a Certificate Store by using the Certificate Manager Import Wizard application from a Web browser. The digital certificates can be generated by using the Certificate Request wizard or any third-party application that generates digital certificates.

*Note:* The Windows operating environment can import digital certificates that were generated in the UNIX operating environment. If you want to convert from PEM format (UNIX) to DER format (Windows) before importing, see “Converting between PEM and DER File Formats” on page 120.

**Importing Digital Certificates to a Certificate Store**

Digital certificates that were issued by a third-party application can be imported to an appropriate Certificate Store, as follows:
Perform the following tasks to import a digital certificate to a Certificate Store:

1. Access the Certificate Manager Import Wizard application from your Web browser. From the **Tools** pull-down menu, select **Tools -> Internet Options -> Content tab -> Certificates** button.
   
   Select the Personal tab in the Certificates window and specify which files you want to import to a Certificate Store. (See Display 11.2 on page 118)

![Display 11.2 Digital Certificate Selections for a Personal Certificate Store](image)

2. Click **Import** and follow the instructions to import digital certificates. Repeat this task in order to import the necessary digital certificates for the CA, the server, and the client, as appropriate.

3. After you have completed the selections for your personal Certificate Store, select the appropriate tab to view your selections.

4. To view the details about a digital certificate, select the digital certificate and click **View**. The results are shown in Display 11.3 on page 119.
Windows: SAS/SHARE Example

Windows: Starting a Multi-User SAS/SHARE Server

After certificates for the CA, the server, and the client have been generated, and imported into the appropriate certificate store, you can start a SAS/SHARE server. An example of how to start a secured SAS/SHARE server follows:

```sas
%let tcpsec=_secure_; options comamid=tcp netencralg=ssl; options sslcertiss="Glenn's CA"; options sslcertserial="0a1dcfa3000000000015"; proc server id=shrserv; run;
```

Table 11.7 on page 119 contains a list of tasks for starting a server and the SAS option or statement that is used for each task.

<table>
<thead>
<tr>
<th>Server Start-Up Tasks</th>
<th>SAS Options and Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure the server</td>
<td>TCPSEC=<em>SECURE</em></td>
</tr>
<tr>
<td>Specify the TCP/IP access method</td>
<td>COMAMID=tcp</td>
</tr>
<tr>
<td>Specify SSL as the encryption algorithm</td>
<td>NETENCRALG=SSL</td>
</tr>
<tr>
<td>Specify the name of the issuer of the digital certificate that SSL should use.</td>
<td>SSLCERTISS=&quot;Glenn's CA&quot;</td>
</tr>
</tbody>
</table>
### Server Start-Up Tasks

<table>
<thead>
<tr>
<th>Server Start-Up Tasks</th>
<th>SAS Options and Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the serial number of the digital certificate that SSL should use.</td>
<td>SSLCERTSERIAL=&quot;0a1dcfa30000000000015&quot;</td>
</tr>
<tr>
<td>Start the server</td>
<td>PROC SERVER ID=shrserv;</td>
</tr>
</tbody>
</table>

---

**Windows: Accessing a SAS/SHARE Server**

After a SAS/SHARE server has been started, the client can access it.

An example of how to make a client connection to a secured SAS/SHARE server follows:

```plaintext
options comamid=tcp;
%let machine=apex.server.com;
libname a '.' server=machine.shrserv user=_prompt_;
```

Table 11.8 on page 120 contains a list of tasks for accessing a server from a client and the SAS option that is used for each task.

#### Table 11.8  Tasks for Accessing a SAS/SHARE Server from a Client

<table>
<thead>
<tr>
<th>Client Access Tasks</th>
<th>SAS Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the TCP/IP access method</td>
<td>COMAMID=tcp</td>
</tr>
<tr>
<td>Specify the machine and server to connect to</td>
<td>SERVER=machine.shrserv</td>
</tr>
<tr>
<td>Prompt for the user ID and password to be used for authenticating the client to the server</td>
<td>USER=<em>PROMPT</em></td>
</tr>
</tbody>
</table>

The server-ID and the server’s Common Name that was specified in the server’s certificate must be identical.

---

**Converting between PEM and DER File Formats**

By default, OpenSSL files are created in PEM (Privacy Enhanced Mail) format. SSL files that are created in Windows operating environments are created in DER (Distinguished Encoding Rules) format.

Under Windows, you can import a file that is created in either PEM or DER format. However, a digital certificate that is created in DER format must be converted to PEM format before it can be included in a trust list under UNIX.

An example of converting a server digital certificate from PEM input format to DER output format follows:

```plaintext
OpenSSL> x509 -inform PEM -outform DER -in server.pem -out server.der
```

An example of converting a server digital certificate from DER input format to PEM output format follows:

```plaintext
OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem
```
Reference

Chapter 12. . . . . . . . . . . . . . . . . The SERVER Procedure 123
Chapter 13. . . . . . . . . . . . . . . . . Remote Library Services 137
Chapter 14. . . . . . . . . . . . . . . . . The OPERATE Procedure 145
Chapter 15. . . . . . . . . . . . . . . . . Remote SQL Pass-Through (RSPT) Facility 163
Chapter 16. . . . . . . . . . . . . . . . . The LOCK Statement and the LOCK Command 171
Chapter 17. . . . . . . . . . . . . . . . . SAS/SHARE Macros 175
Chapter 18. . . . . . . . . . . . . . . . . SAS/SHARE General SAS System Options 187
Chapter 19. . . . . . . . . . . . . . . . . SAS/SECURE and SAS Proprietary System Options 191
Chapter 20. . . . . . . . . . . . . . . . . Secure Sockets Layer (SSL) Options 195
Overview of the SERVER Procedure

The SERVER procedure is the core of SAS/SHARE. It is the component that enables two or more clients to write concurrently to the same SAS file. To start a SAS/SHARE server, invoke the SERVER procedure. Specify an ID for that server with a set of optional parameters that define the server behavior.

You can use any SAS method of processing to invoke PROC SERVER: non-interactive mode, interactive line mode, batch mode, or the SAS windowing environments. For production, SAS/SHARE servers are usually run in batch mode; for interactive testing, they are usually run in interactive line mode.

The SERVER procedure is interactive, which means that the parser processes statements (that are called commands in PROC SERVER) as they are encountered. For details about how to invoke the SERVER procedure and for an example of a SAS log, see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27.

Note: Although the parser is accepting and processing commands, the SAS/SHARE server is not available to users until the RUN statement (or another program step) is executed.
Syntax: SERVER Procedure

PROC SERVER <options>;

PROC SERVER Statement

PROC SERVER <options>;

Options

ALLOC | NOALLOC
determines whether clients can define additional SAS data libraries to a server after
a server has started. The ALLOC option enables clients to define libraries to a server.
The NOALLOC option prevents clients from defining additional libraries to the server
and restricts clients to accessing libraries that are defined by a server administrator.

Default: ALLOC

ACCTLVL=value | (value 1 < ... value n >)
specifies the level of accounting. Use this option to specify the aggregation (or detail)
used in reporting server usage statistics. This option is useful for tuning an
application because it enables you to examine, in more detail, how various parts of
the application use the server resources. The usage statistics also enable you to
charge users for the amount of server resources they consume.

The ACCTLVL= and LOG= options are closely related. The LOG= option specifies
which usage statistic is written to the log; the ACCTLVL= option specifies the level of
aggregation for that statistic (user, file, and resource environment). See the LOG=
option for more information.

You can specify multiple values for the ACCTLVL= option by enclosing the values
in parenthesis and separating them with a space or a comma, for example,
ACCTLVL=(USER DATA). Valid values for ACCTLVL= are:

DATA
causes the server to log statistics every time a SAS file is closed by a user. These
statistics show the usage of server resources for each file by that user.

USER
causes the server to log statistics every time a user disconnects from the server.
These statistics show the usage of server resources for that client session.

RESOURCE_ENVIRONMENT
causes the server to log statistics every time a user terminates a resource
environment. Examples of resource environments include a SAS procedure, a SAS
window, a DATA step, a SAS process, or other internal SAS activity. These
statistics show the usage of server resources by requests that are made in the
context of that resource environment by that user.
ALL
causes the server to log statistics for all accounting levels (DATA, USER, and
RESOURCE_ENVIRONMENT).

Default: USER

ADMINLIBREF=value | _NONE_
specifies the libref associated with the library of administrative data for the server. This option enables a client to handle a server's administrative data in the same way it handles any other SAS file, which enables the client to process that data programmatically. To turn off this type of access to a server's administrative data, specify ADMINLIBREF=_NONE_.

   /* This program segment creates the SAS data file WORK.A, which is a list of all the libraries that clients of the server are accessing. */
   libname sasadmin server=shr1;
   data a;
   set sasadmin.library;
   where users > '0';
   run;

Default: SASADMIN

AUTHENTICATE=REQUIRED | OPTIONAL
controls whether a server requires connecting users to provide a valid user ID and password when they connect to the server. You can use this option with a communications access method security option (for example, use the TCPSEC option for TCP/IP).

AUTHENTICATE=REQUIRED means that the security options of all the access methods that are used by the server must be set to _SECURE_. Also, PROC SERVER will not start unless all of the access methods guarantee that they require a valid user ID and password combination before establishing a connection between a client and the server.

AUTHENTICATE=OPTIONAL means that the communications access method security options might or might not be set to _SECURE_. Each access method can have a different security option. This can be useful for a site that trusts the IDs of users that connect through one access method but does not trust the IDs of users that connect through another access method. In this instance, only the access method used by the non-trusted clients would have its security option set to _SECURE_. Using the parameter OPTIONAL allows trusted users to connect without requiring validation.

When an access method supplies a validated user ID (usually, by requiring a connecting client to specify a valid user ID and password combination), the server uses that validated ID to verify the user’s authorization to access SAS files. When AUTHENTICATE=OPTIONAL and some access methods do not supply validated user IDs, those clients are allowed to access only those SAS files that the server is allowed to access. In this instance, you should run the server under a user ID that does not have open access to the files on its computer.

Default: REQUIRED

Aliases: REQ, OPT

CLIENTID = SESSION | SECURITY
specifies the source of the client user ID to use in log messages that are written to the server log. Your choice determines the search order that is used to locate the client user ID. Choose the source of the client’s name to be used in the server log, as follows:
SESSION
specifies that the source of the client user ID is either the logon name or the batch account name of the client session. The server uses the following search order:
- If a session name is located, the session name is used.
- If a session name is not located, but a secured name is located, the secured name is used. (For details, see the SECURITY value.)
- If neither a session name nor a secured name is located, the string _U_ is used as a generic identifier in the log messages.

SECURITY
specifies that the source of the user ID is the secured name that the client used to connect to the server. The server uses the following search order:
- If a client’s secured name is located, the secured name is used.
  
  Note: A secured name is the user ID that is specified using the USERNAME= and PASSWORD= options in the LIBNAME statement.
  
  Example:
  
  ```
 libname test userid=tbass password=_PROMPT_;
  ```
  
  For details about the LIBNAME statement, see “LIBNAME Statement” on page 137.
  
  - If a secured name is not located, but a session name is located, the session name is used. (For details, see the SESSION value).
  - If neither a session name nor a secured name is located, the string _U_ is used as a generic identifier in the log messages.

DTFORMAT= SAS-datetime-format | _NODTS_
specifies the format for the date-time stamp at the beginning of each message that is written to the server log. You can specify any SAS date, time, or date-and-time format; or you can specify your own date-and-time format. For details about specifying these formats, see the SAS formats in SAS Language Reference: Dictionary.

If you specify your own date-and-time format in this option, a SAS datetime value is supplied to the formatting routine. For an example of the date-and-time format in the server log, see “Usage Statistics in the Server Log” on page 86.

Specifying the value _NODTS_ suppresses the date-time stamp.

Default: DATETIME22.3

Alias: DTF

LRPYIELD=value
indicates, to a long-running process in the server’s SAS session, how frequently the process should yield so that others can use the server. The default is 10000; this value has no units. Increase the value to have a long-running process yield more frequently; decrease the value to have it yield less frequently. LRPYIELD=0 does not yield at all. With a 0 value, the server can process other requests only after the long-running process has finished.

Here are two examples of long-running processes:
- a client accesses a PROC SQL view that joins two large data sets which the server is required to sort.
- a client issues a WHERE clause that requires the server to search millions of observations, sequentially, to find the first observation that satisfies the WHERE clause.
The SERVER Procedure

Default: 10000

**LOG=**\(value\)\( (value 1 < ... value n>)\)

causes the server to log specific usage statistics about client/server transactions and SQL queries that it receives through the Remote SQL Pass-Through facility. This is useful for application tuning and for charging clients for the amount of server resources they consume. The server writes one line to its log for each resource statistic that is specified.

Used with the following values: ACTIVETIME, BYTECOUNT, ELAPSEDTIME, and MESSAGE, the **LOG=** option is related to the ACCTLVL= option. The **LOG=** option specifies which usage statistic is written to the log; the ACCTLVL= option specifies the level of aggregation for that statistic (user, file, and resource environment). See the ACCTLVL= option for more information.

The **LOG=**QUERY option allows you to track SQL queries that are submitted through the Remote SQL Pass-Through facility. This is useful to applications programmers for debugging and to server administrators to learn how the server is being accessed.

You can specify multiple values for the **LOG=** option by enclosing the values in parenthesis and using a space or a comma to separate them. For example, **LOG=(MESSAGE BYTECOUNT)**.

**Note:** The log values IO and CPU are no longer valid. The data that was reported by these options in Version 6 offered limited accuracy, and the changes in resource tracking in Version 8 reduced the potential accuracy even further. If you previously set the SAS options STIMER or FULLSTIMER because you had specified **LOG=**IO or **LOG=**CPU, you can re-set or delete these SAS options in order to improve your server performance.

Valid values for **LOG=** are:

**ACTIVETIME**

causes the server to log the cumulative elapsed time of server processing for the specified event in the ACCTLVL= option. For example, if ACCTLVL=USER and **LOG=**ACTIVE, the server logs the cumulative elapsed time of processing for that client session when that client session ends. This value is printed using the SAS format TIME15.3. An example of a log message that is recorded for this statistic is

```
30Apr2003:10:42:44.060 Usage statistics for user TIM(1):
 Active time: 0:00:01.0394
```

**Alias:** ACTIVE

**BYTECOUNT**

causes the server to log the cumulative number of bytes that are transferred between the client and the server for the event that is being logged. For example, if ACCTLVL=USER and **LOG=**BYTE, the server logs the cumulative number of bytes transferred between the client and the server for that client session when that client session ends. The value for **BYTE** is automatically scaled to make it easier to read and the appropriate character is appended to the data. K=Kilobytes (1,024 bytes), M=Megabytes (1,048,576 bytes) and G=Gigabytes (1,073,741,824 bytes). The values are printed using the SAS format COMMA10.0. An example of a log message that is recorded for this statistic is

```
 Bytes transferred: 40,052 K
```

**Alias:** BYTE

**ELAPSEDTIME**

causes the server to log the elapsed time of the recorded event. For example, if ACCTLVL=DATA and **LOG=**ELAPSEDTIME, the server logs the length of time that a
file was open. If ACCTLVL=USER and LOG=ELAPSED, the server logs the length of time that the user was connected to the server. This value is printed using the SAS format TIME15.3. An example of a log message that is recorded for this statistic is

```
30Apr2003:11:15:44.020 Usage statistics for user JOE(3):
 Elapsed time: 0:22:57.6912
```

**Alias:** ELAPSED

**MESSAGE**
causes the server to log the number of client requests that are processed by the server for the recorded event. For example, if ACCTLVL=USER and LOG=MESSAGE, the server logs the number of requests processed for the client when that client session ends. This value is printed using the SAS format COMMA15.0. An example of a log message that is recorded for this statistic is

```
 Messages processed: 15
```

**Note:** Do not confuse LOG=MESSAGE with the MSGNUMBER option.

**Alias:** MSG

**QUERY**
causes the server to log each SQL query that it receives through the Remote SQL Pass-Through facility from a SAS session or other client. By default, the server logs only update and output SQL statements, not queries. If LOG= QUERY, you will see messages similar to the following in your server log:

```
30Apr2003:15:14:12.898 GISELLE(14) in “SQL”(13) has issued select flight, date, depart from home.chicago where flight='202' to SQLVIEW.
```

**ALL**
causes the server to log all the usage statistics (ACTIVETIME, BYTECOUNT, ELAPSEDTIME, and MESSAGE) for the corresponding accounting level. For example, if ACCTLVL=USER and LOG=ALL, the server logs statistics for ACTIVETIME, BYTECOUNT, ELAPSEDTIME, and MESSAGE for the client session when that client session ends.

If you specify LOG=ALL, the server will also log SQL queries that it receives through the Remote SQL Pass-Through facility. See the QUERY option for an example of the SQL messages that are logged.

Here is an example of a log message that is recorded when ALL is specified.

```
30Apr2003:16:02:44.060 Usage statistics for user BILL(1):
 Messages processed: 47
 Bytes transferred: 104 K
 Active time: 0:00:05.0394
 Elapsed time: 0:22:57.6912
```

**MSGNUMBER**
associates a unique message number (represented in hexademical notation) with each type of operation for which a message is recorded in a server log.

**CAUTION:**

Avoid hardcoding message numbers in your applications. Use macros instead.

Message numbers can change from one software release to another.

Message numbers are useful for server log analysis applications, which can count the number of instances of an operation that occur in a specific client/server session. Collection and analysis of these statistics might help with server load balancing.
The SERVER Procedure  PROC SERVER Statement  129

provides a set of server log analysis program prototypes that you can customize for your needs. Among these prototypes is a file that maps message numbers to operations. See “Starting the Server Log” on page 95 for information about the server log analysis tools.

In the following example of a typical message written to a server log, the message number 043131 identifies a PROC SERVER start-up operation.

30Apr2003:08:28:20.911 043131 SAS server SHR1 started

Note: Do not confuse the MSGNUMBER option with the LOG=MESSAGE option.

Alias: MSGN

NORMTVIEW

disables the ability of a server to interpret SAS data views.

By default, a SAS data view is interpreted in the server SAS session, and the data that is produced by the view is transmitted to a client SAS session.

Occasionally, it is preferable to transmit the view (the instructions for producing the data) to a client SAS session and to have the view interpreted and the data assembled in the server SAS session. You can use the RMTVIEW option in a LIBNAME statement to request this action on a library-by-library basis.

The NORMTVIEW option enforces transmission of the view (instead of the data) for all users of the server, regardless of whether the RMTVIEW option is specified in a LIBNAME statement.

Note: The NORMTVIEW option was developed for specific needs and is only rarely appropriate for use. If you think that you might want to use this option for a server, contact SAS Technical Support to review the circumstances.

OAPW= | “encoded-password”

specifies a password that you must supply (by using the OPERATE procedure) to connect to the server.

password

must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”

is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE statement. The output is generated in the form {key}encoded-password. sas001 is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for encoded-password in the appropriate statement.
**PT2DBPW=**password | “encoded-password”
specifies the client password for controlling pass-through access to a remote DBMS. This password allows a connection between the SAS/SHARE server and another data server (either a DMBS or another SAS/SHARE server) that contains the target database.

Pass-through access to a remote database by means of a SAS/SHARE server requires that you also run the CONNECT TO REMOTE statement in PROC SQL with the DBMS= option and the PT2DBPW= option.

**password**

must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords. To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password srvmach is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password. sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

**Note:** The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for encoded-password in the appropriate statement.

**SERVERID=**server-ID | _port-number
specifies the name of a server.

**server-ID**

must be a valid SAS name that is 8 characters or less in length. Server naming is also affected by the operating environment and the access method that you specify for communication between a server and a client session. For example, if you use the TCP/IP communications access method, server-ID must be a valid TCP/IP service as defined in the TCP/IP SERVICES file.

For complete information about how to name servers by operating environment, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE*. For details about the SERVICES file, see SERVICES File in *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.

**_port-number**

If you are using the TCP/IP access method, you can specify the server’s port number that corresponds to the server ID in the TCP/IP SERVICES file. Precede the port number with two consecutive underscores. For details about the SERVICES file, see SERVICES File in *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.

**Note:** Do not space after the first underscore or the second underscore.
Example:

\_\_1025

*Note:* Specifying a server by using a port number is *not* supported for ODBC clients. △

**Aliases:** SERVER, ID

**THREADETEDTCP | NOTREADEDTCP (Experimental Option)**

specifies whether the threaded version of the TCP access method and associated threaded infrastructure should be used when TCP/IP communication is specified. The default is NOTREADEDTCP.

When THREADETEDTCP is specified, *communication activity* to and from the server is processed primarily in a threaded context. Communication activity refers to the work the server does to receive a request and to reply to the request, including any necessary data representation conversion. Threading enables multiple, concurrent reception and transmission activity when the server runs on SMP hardware.

Also, a portion of the main request processing, which occurs between the time the request is received and the reply time, is performed in the threaded context for a SAS 9 or 9.1 client or a SAS 9 or 9.1 OLE DB provider for SAS/SHARE.

Threaded TCP is currently incompatible with the collection of active-time usage statistics. You specify the collection of statistics by setting either the LOG=ALL or LOG=ACTIVETIME option in the PROC SERVER statement. When THREADETEDTCP is specified, active time is *not* collected and a warning is issued.

Currently, THREADETEDTCP is incompatible with network data encryption, which is specified by using the NETENCRYPT and NETENCRYPTALGORITHM system options. If network data encryption and THREADETEDTCP are specified, an error message is issued and server initialization fails. For details about the encryption system options, see Chapter 19, “SAS/SECURE and SAS Proprietary System Options,” on page 191 and Chapter 20, “Secure Sockets Layer (SSL) Options,” on page 195.

**CAUTION:**

THREADETEDTCP is an experimental option that is available in SAS 9.1. Do not use this option in production jobs. △

**Default:** NOTREADEDTCP

**Aliases:** TTCP, NOTTCP

**TBUFSIZE=value**

specifies the suggested size of a buffer that the server uses to transmit information to a client or receive information from a client. When this option is not specified in the PROC SERVER statement, the value of the TBUFSIZE= SAS system option, if specified, is used.

The use of these transmission buffers is for transmitting observations. The server uses the value of the TBUFSIZE= option when computing the number of observations to transmit in each multi-observation transfer between the server and the client sessions. If the observation size, plus overhead, exceeds the value of the TBUFSIZE= option, only single-observation transfers are executed. Specifying an excessive value for the TBUFSIZE= option might cause your server or clients to run out of memory and to terminate abnormally.

You cannot calculate the number of observations per transfer by dividing the observation length into the value that you specify for the TBUFSIZE= option. To determine the effect of this option on your data sets, use the PROC SERVER options LOG=MESSAGE and ACCTLVL=DATA and compare the number of messages exchanged between the server and the client sessions as a function of the value of the TBUFSIZE= option and the number of observations in the data set.
**Default:** 32k

**UAPW=password | “encoded-password” | _PROMPT_**

specifies a password that a client must supply in the LIBNAME statement to establish communication with the server.

**password**

must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

**“encoded-password”**

is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the *Base SAS Procedures Guide*.

Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

**Note:** The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

**_PROMPT_**

specifies that SAS prompt the user for a valid password. A dialog box appears that contains a message which prompts the user to enter a valid password. This enables you to specify the value at program execution instead of coding it into the program. Using _PROMPT_ is a way to enforce security.

**PROC SERVER: Examples**

The following statements start the server SHARE1:

```sas
proc server id=share1;
run;
```

The following statements start the server SHARE1 and prevent clients from defining SAS data libraries to the server:

```sas
proc server id=share1 noalloc;
run;
```

The following statements start the server SHARE1 and report all message counts to the server log:

```sas
proc server id=share1 log=msg;
run;
```
**ALLOCATE SASFILE Command**

Use the ALLOCATE SASFILE command to specify SAS data sets that you want the SAS/SHARE server to open and hold in memory for the duration of a server session. Keeping SAS data sets open can improve server performance by reducing the overhead that normally occurs when users open and close the data sets during application processing. A file remains open until the program or SAS session ends.

**ALLOCATE SASFILE**  
`SAS-data-set1 <(data-set-options)>`  
`<SAS-data-set2 <(data-set-options)>> ...`  
`SAS-data-set8 <(data-set-options)>>;`

### Arguments

**SAS-data-set**
contains descriptor information and its related data values organized as a table of observations and variables that can be processed by SAS.

**data-set-options**
specify actions that apply only to the SAS data set with which they appear. For complete details about data set options, see *SAS Language Reference: Dictionary*.

*Note:* You must define all librefs before using them in an ALLOCATE SASFILE command.

### ALLOCATE SASFILE Command Considerations

Consider the following when using the ALLOCATE SASFILE command with the PROC SERVER statement:

- A maximum of 8 SAS data set names can be specified in each ALLOCATE SASFILE command.
- The SAS data sets that you specify must exist before the ALLOCATE SASFILE command is issued.
- Only SAS data sets can be specified. Other types of SAS files (for example, catalogs) cannot be specified in an ALLOCATE SASFILE command.
- When you open a SAS data set by using the ALLOCATE SASFILE command, the file is opened for input processing and can be used for subsequent input or update processing. However, the file cannot be used for subsequent utility or output processing, because utility and output processing require exclusive access to the file (member-level locking). For example, you cannot replace the file or rename its variables.
- The ALLOCATE SASFILE command can execute only in the server session.
- After the ALLOCATE SASFILE command executes, all users who subsequently open the file will access the data that is held in memory instead of the data that is stored on the disk.
- After the ALLOCATE SASFILE command executes, the file is closed and the buffers are freed only after the SAS/SHARE server is terminated.
- Do not specify the same data set in both a SASFILE statement and an ALLOCATE SASFILE command.
- You must execute the SASFILE statement before you execute the PROC SERVER statement.
Comparison: ALLOCATE SASFILE Command and SASFILE Statement

The ALLOCATE SASFILE command is similar and complementary to the SASFILE statement in Base SAS. The SASFILE statement can be used in a server session as well as in a single-user session. Both statements used in a server session achieve performance gains by providing in-memory processing using buffers.

A buffer is a reserved area of memory that holds a segment of data while it is processed. The number of allocated buffers determines how much data can be held in memory at one time.

The ALLOCATE SASFILE command offers limited buffering. The SASFILE statement in Base SAS provides maximum buffering, and therefore, the best performance. You can specify any of the following four levels of file buffering (shown in Table 12.1 on page 134) for each data set.

<table>
<thead>
<tr>
<th>Level of File Buffering</th>
<th>Memory Consumed</th>
<th>Use When ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither the ALLOCATE SASFILE command nor the SASFILE statement is used.</td>
<td>The least amount of memory is consumed. Each client that accesses a file duplicates the same overhead that is required for a file open.</td>
<td>File access is limited and memory is constrained.</td>
</tr>
<tr>
<td>Use the ALLOCATE SASFILE command, and accept the default number of buffers that are pre-allocated.</td>
<td>The SAS/SHARE server opens the file and keeps it open for all client access, which eliminates the duplicate overhead that is required for a file open.</td>
<td>File access is frequent and memory is constrained.</td>
</tr>
<tr>
<td>Use the ALLOCATE SASFILE command, and use the BUFNO= data set option to specify the number of buffers to pre-allocate.</td>
<td>Specify buffers according to available memory and the usage pattern of the file.</td>
<td>The file being accessed is large, but only certain pages of the data are accessed frequently.</td>
</tr>
<tr>
<td>Use the SASFILE statement to read the entire data set into memory.</td>
<td>The entire file resides in memory.</td>
<td>File access is frequent and there is sufficient memory for reading in the entire file.</td>
</tr>
</tbody>
</table>

For details about the SASFILE statement in Base SAS, see the following topics in *SAS Language Reference: Dictionary*: the BUFNO= system option, the BUFNO= data set option, and the SASFILE statement.

Example

In the following example, server SHARE1 is started and eight data sets are specified to be stored in memory for client access. The number of buffers that are used is determined by the default value of the BUFNO= system option.

```sas
proc server id=share1;
 allocate sasfile sas-dataset1 sas-dataset2 ... sas-dataset8;
run;
```
ALLOCATE LIBRARY Command

Beginning with Release 8.1 of SAS/SHARE, the ALLOCATE LIBRARY command in PROC SERVER is new. This command allows you to perform the same functions as the ALLOCATE LIBRARY command in PROC OPERATE. In addition, it enables you to specify the library and a libref to use for caching catalog files that have been accessed by using the option LIBTYPE=CATCACHE, which is a Cross-Architecture Catalog Access feature. See “Cross-Architecture Catalog Access in the SAS/SHARE Server” on page 208.

You can define one SAS data library in each ALLOCATE LIBRARY command. You may use ALLOC or AL as aliases for ALLOCATE. LIB or L may be used as aliases for LIBRARY.

ALLOCATE LIBRARY libref <engine> 'SAS-data-library'<LIBTYPE=library-type> <CATCACHELIMIT=n> <engine/system options>;

Required Arguments

libref

is a valid SAS name that is temporarily associated with a SAS data library.

'SAS-data-library'

is the physical name of the SAS data library that is being defined to the server. The name is specific to your operating environment and must be enclosed in either single or double quotation marks.

Options

engine

specifies the engine to be used to process the SAS data library when the server executes SAS.

Note: Usually, you do not have to specify this option because the server automatically determines which engine to use for processing a data library. However, you can specify this option to reduce the time that is used by the server when determining which engine to use to access a specific SAS library.

LIBTYPE=library-type

specifies the type of library to be allocated. The following library types are supported:

CATCACHE

specifies that this library will be used to cache catalogs that have been accessed by means of the cross-architecture catalog support. This option gives you the flexibility to specify a libref and a location for these files. Only one catalog cache may be allocated per SAS/SHARE server invocation.

By default, the SAS/SHARE server uses its WORK library as the location for the catalog cache and assigns the libref SASCATCA to it. In most instances, the default is suitable.

STANDARD

specifies a standard SAS data file library. This is the default.
**CATCACHELIMIT=n**

is a numeric value that specifies the maximum number of catalog files that are held in the cache. The files are accessed by means of the cross-architecture catalog feature. The following values may be used:

- **0**  
The catalog files are not cached.
- **1**  
All catalog files are saved in the catalog cache.
- **n**  
specifies that the cache is limited in size to n files. The cache is maintained, and the files are discarded by using a least-recently-used algorithm. The n argument is only valid when specifying a library type of CATCACHE. By default, the server limits the number of catalogs cached to 3.

**engine/system-options**

are options that apply to the SAS data library. This argument is not required. You can specify any option that is valid in the LIBNAME statement for a specific operating environment and engine. Using the form **keyword=value**, you can specify as many options as you need. Use a blank space to separate options. See the SAS documentation for your operating environment for a complete list of the options that are available for your operating environment and engine.

**Examples**

- The following example allocates the UNIX server library `/data/sales` that has the libref SALES. It specifies that the server use the V9 engine to process this library.

  ```sas
 ALLOC LIBRARY SALES V9 '/data/sales';
  ```

- The following example allocates the z/OS server library SAS.CATALOG (as a catalog cache) that has the libref SRVCATS.

  ```sas
 AL LIB SRVCATS 'SAS.CATALOG' LIBTYPE=CATCACHE;
  ```
Overview of Remote Library Services

The LIBNAME statement implements the SAS/SHARE Remote Library Services (RLS), which provides transparent access to remote data libraries to move data through the network as it is requested by the local SAS session.

A LIBNAME statement associates a SAS library reference (libref) with a permanent SAS data library. In SAS/SHARE software, the SAS data library is accessed through a SAS server and is called a *server library*.

LIBNAME Statement

In a client session, associates a libref (a shortcut name) with a SAS data library that is located on the server for client access. In a server session, pre-defines a server library that clients are permitted to access.

**Valid:** Client and Server Sessions  
**Category:** Data Access  
**See:** LIBNAME statement in the documentation for your operating environment.  
**See Also:** LIBNAME Statement in Base SAS documentation

**Syntax**

```
LIBNAME libref <engine> <'SAS-data-library'> SERVER=server-spec <options>;
```

**Arguments**

*libref*

For a server, specifies the name of a library reference (pre-defines a library) for client access. One or more LIBNAME statements must be issued before the server is started. If you pre-define server libraries and want to limit client access to only the
pre-defined server libraries, use the NOALLOC option in the PROC SERVER statement. Specifying the ALLOC option in the PROC SERVER statement permits clients to assign server libraries for use after a server is started.

For a client, specifies the name of a server library for client access.

**CAUTION:**

A client's ability to access a SAS/SHARE server library depends on the permissions granted at server start-up. If PROC SERVER ALLOC is specified, clients can access both pre-defined libraries and libraries that have not already been allocated at server start-up. If PROC SERVER NOALLOC is specified, client access is limited to pre-defined server libraries. For details about the PROC SERVER statement, see Chapter 12, “The SERVER Procedure,” on page 123.

The libref that you specify is presumed to be the server libref for an existing server library unless you specify the SLIBREF= option or the physical name of the data library.

The libref that you specify must be a valid SAS name, and it must be the first argument in the LIBNAME statement.

**engine**

specifies the name of a valid SAS engine for a client to use to access the server library. Usually, you should not use this option because the client automatically determines which engine to use for accessing a SAS/SHARE server. Specify this option only to override the SAS default for a specific server, or to reduce the time that is needed to determine which engine to use to access a specific server.

For example, if the server library is located on a SAS/SHARE server that is running SAS 9.1, you could specify REMOTE9. Specifying an explicit engine might improve performance slightly.

Examples of engines include REMOTE, REMOTE8, and REMOTE9. For a list of valid engines, see the SAS documentation for your operating environment. For background information about engines, see *SAS Language Reference: Concepts*.

**CAUTION:**

Do not confuse the **engine** positional parameter with the RENGINE= option. An engine is used by a client to access a server. An RENGINE is used by the server to access its SAS data library.

**'SAS-data-library'**

specifies the physical name for the SAS data library (that is on the server) that the client will access. If you specify a server library either as the libref or as the value for the SLIBREF= option, you can omit the physical name.

If you specify 'SAS-data-library', the name must be a valid SAS name, and it must be enclosed in single or double quotation marks. For details about specifying a SAS data library, see the documentation that is appropriate to your operating environment.

**SERVER=server-ID | __ port-number | “Connect-server-definition”**

specifies the name of the server where the SAS data library is located.

**server-ID**

must be a valid SAS name that is 1 to 8 characters in length. For the value of **server-ID**, consult your server administrator.

Server naming is also affected by the operating environment and the access method that you specify for communication between a server and a client session. For example, if you use the TCP/IP communications access method, the **server-ID** must be a valid TCP/IP service as defined in the TCP/IP SERVICES file.
For complete information about how to name servers by operating environment, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE*. For details about the SERVICES file, see SERVICES File in *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.

`port-number`

If you are using the TCP/IP access method, you can specify the server's port number that corresponds to the server ID in the TCP/IP SERVICES file. Precede the port number with two consecutive underscores. (For details about the SERVICES file, see SERVICES File in *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.)

**Note:** Do not space after the first underscore or the second underscore. ▲

Example:

```plaintext
 _ _1025
```

**Note:** Specifying a server by using a port number is not supported for ODBC clients. ▲

“Connect-server-definition”

**CAUTION:**

This option supports a SAS/CONNECT single-user server instead of a SAS/SHARE multi-user server. Although this option is valid in a SAS/SHARE LIBNAME statement, it is most useful in a SAS/CONNECT single-user session. If you use this option, be aware that the assigned library is available only for a single user instead of multiple users in a SAS/CONNECT client/server session. ▲

is used to specify a CONNECT server definition that has been defined in a SAS Metadata Repository. SAS Management Console (SMC) can be used to create, update, and delete server definitions.

If you have not set global options to specify how to connect to the SAS Metadata Server, a requestor window appears in which you can configure the IP address for the server, the port, the protocol, and the user name and password.

**Note:** The CONNECT server definition must be enclosed in quotation marks. ▲

For complete details about creating and populating a SAS Metadata Repository, see the documentation at [support.sas.com/rnd/eai/openmeta](http://support.sas.com/rnd/eai/openmeta).

**Options**

**ACCESS=READONLY**

restricts a client’s access to a SAS data library via a multi-user SAS/SHARE server. If ACCESS=READONLY is specified in the client session, the client can read but not update data in the library. However, other clients might have read/write access to the library via the server.

If ACCESS=READONLY is specified in the server session, all clients are limited to read-only access to the library via the server. No clients will have update access.

**HOSTNAME=node-name**

is used to specify the name of the node that the SAS/SHARE server runs on. The value for `node-name` can be specified as a quoted string that does not exceed 256 characters or as an unquoted SAS name that does not exceed 32 characters.

**HOSTNAME=** is used in conjunction with the `SERVER=` option, which specifies the name of the SAS/SHARE server that runs on the node. If a two-level node name (`node.server-ID`) is assigned to the `SERVER=` option, and the `HOSTNAME=` is also specified, duplicate node names would result and seem to be ambiguous. However, to resolve the ambiguity, the value that is specified as the final option in the LIBNAME statement takes precedence.
Examples:

1. libname test hostname=sirlancelot server=shr1;
2. libname test hostname='stones.unx.apex.com' server=shr1;
3. libname test hostname='110.16.12.24' server=shr1;
4. libname test server=d8433.shr1 hostname=defiant;
5. libname test hostname=defiant server=d8433.shr1;

1. A server library is defined in the server session SHR1 that runs on the node SIRLANCELLOT. The node name is specified as an unquoted SAS name that has a valid length.
2. A server library is defined in the server session SHR1 that runs on the node STONES.UNX.APEX.COM. The node name is specified as a quoted string that has a valid length.
3. A server library is defined in the server session SHR1 that runs on a node whose IP address is 110.16.12.24. The node name is specified as a quoted string that has a valid length.
4. A server library is defined in the server session SHR1 that runs on the node DEFIANT. The node name is specified as an unquoted string that has a valid length.

If both the SERVER= option and the HOSTNAME= option specify the node name, the option that is specified last takes precedence. In this example, the value DEFIANT, which is assigned to the option HOSTNAME=, takes precedence over the value d8433 in the two-level name that is assigned to the option SERVER=.

5. A server library is defined in the server session SHR1 that runs on the node d8433. The node name is specified as an unquoted string that has a valid length.

If both the SERVER= option and the HOSTNAME= option specify the node name, the option that is specified last takes precedence. In this example, the value d8433, in the two-level name that is assigned to the option SERVER=, takes precedence over the value DEFIANT, which is assigned to the option HOSTNAME=.

SLIBREF=server-libref

executed in the client session, specifies an existing server libref that you want to reference from the client. Use this option when you want to reference an existing server libref, but you want to use a different name for that libref on the client. If you specify the SLIBREF= option, you must not specify the physical name for the SAS data library on the server. SLIBREF=server-libref and 'SAS-data-library' are mutually exclusive.

USERNAME=user-ID | _PROMPT_

executed in the client session, specifies a user ID that is valid on the server. This parameter is used in two ways. The server uses it to validate the client on the server operating environment (if authentication is enabled). The server also uses it to verify access permission when the client accesses files on the server. For details about valid user IDs, see “User Name and Password Naming Conventions” on page 143.

If USERNAME=_PROMPT_, a dialog box appears that contains a message, which prompts the user to enter a valid user ID. This enables you to specify the value at program execution instead of coding it into the program. Using _PROMPT_ is a way to enforce security.

Aliases: USERID, USER, UID

PASSWORD=password | “encoded-password” | _PROMPT_

executed in the client session, specifies a password that is valid on the server. This parameter is used by the server to validate the client on the server's operating
password
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the server log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

"encoded-password"
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide. The clear-text password must be 8 characters or less in length.

Example code for obtaining an encoded password:

```
proc PWENCODE in="1Share";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password 1Share is input to the PROC PWENCODE statement. The output is generated in the form (key)encoded-password. sas001 is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for encoded-password in the PROC SERVER statement.

_PROMPT_
specifies that SAS prompt the user for a valid password. A dialog box appears that contains a message, which prompts the user to enter a valid password. This enables you to specify the value at program execution instead of coding it into the program. Using _PROMPT_ is a way to enforce security.

Aliases: PASSWD, PASS, PWD, PW

RENGINE=engine-name
executed in the server session, specifies the engine to be used to process the SAS data library. Using this option is usually unnecessary because the server automatically determines which engine to use to process the data library. Specify this option only to override the SAS default for a specific library, or to reduce the time that is used by the server to determine which engine to use.

CAUTION:
Do not confuse the RENGINE= option with the engine option. An RENGINE is used by the server to access its SAS data library. An engine is used by a client to access a server. Do not use the SPD engine as a remote engine.

ROPTIONS="option=value <option=value> ...
executed in the server session, specifies remote options and options that are specific to an operating environment that the client passes to the engine on the server that will process the SAS data library. Specify as many options as you need by using the form keyword=value. Use a blank space to separate options. You can specify options for either the default engine or an alternative engine that you specify by using the RENGINE= option. You can use the option ROPTIONS= to provide any valid option for the targeted engine. For information about the options that are
supported by a specific engine, see the documentation for the engine that you will use. For details about options that are specific to an operating environment, see the documentation that is appropriate for the operating environment that you use.

RMTVIEW=YES | NO
specified in a client session, determines whether SAS data views are interpreted in the server or in the client SAS session. Where a data view is interpreted determines where the view engine is loaded and used. The default is YES.

SAS data views include DATA step views and PROC SQL views, which are created by using the SQL procedure and the ACCESS procedure (in SAS/ACCESS software). SAS data views are accessed through an engine just as other SAS data sets are. DATA step views use the SASDSV engine. PROC SQL views use the SQLVIEW engine. SAS/ACCESS views use a product-specific engine (supplied by SAS Institute) for each SAS/ACCESS interface product.

RMTVIEW=YES (the default) causes views to be interpreted in the server's SAS execution. This uses more processing time and might increase the amount of memory used, however, the amount of data transferred to the client SAS sessions might be reduced.

RMTVIEW=NO causes views to be interpreted in the client SAS session. This minimizes the processing time on the server but might increase the amount of data transferred between the server and client SAS sessions. Also, if you specify RMTVIEW=NO, there might be version incompatibilities when the client and server are running different versions of SAS. For example, V6 and SAS 9.1 views are not always compatible. For details about view interpretation, see “Interpreting SAS Data Views” on page 52.

Default: YES

SAPW=server-access-password | “encoded-password”
executed in the client session, specifies a server access password. This option is needed to access a SAS/SHARE server that is executing with the UAPW= option in PROC SERVER in effect. SAPW= establishes communication with the server that is used to access the library. Although this option is specified in the LIBNAME statement, it does not control access to the server library itself. For details about valid passwords, see “User Name and Password Naming Conventions” on page 143

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password srvmach is specified in the PROC PWENCODE statement. The output is generated in the form {key}encoded-password. sas001 is the key, which is used to decode the encoded password to its clear-text form when the password is needed.
Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for encoded-password in the appropriate statement.

User Name and Password Naming Conventions

Here are the general rules for creating user names and passwords:

- Mixed case is allowed. For example, user=JoeBlack
- Quotation marks must enclose values that contain one or more spaces. For example, user='joe black'
- Quotation marks must enclose values that contain one or more special characters. For example, user='joe?black'
- Quotation marks must enclose values that contain one or more quotation marks. For example, password="It’s mine"
- begin with a numeric value. For example, password='2BorNot2B'
- do not conform to rules for user-supplied SAS names.
- are NULL values. For example, user='' NULL values are sometimes used in a UNIX environment, when you want to use the local ID. See Communications Access Methods for SAS/CONNECT and SAS/SHARE for details.
- are user names that contain domain information. For example, user='apexdomain\joe'
  Including domain information is sometimes used in the Windows NT environment.
- The SAPW= option requires that you specify a password that is 1 to 8 characters in length.
- Specify the value _PROMPT_ if you want SAS to prompt you for information. For example, password=_prompt_
  Using _PROMPT_ increases security by causing SAS to prompt you for a password instead of coding the password in the LIBNAME statement.

SAS limits each user name and password to 256 characters. The operating environment in which SAS is running might also impose restrictions on user names and passwords. For details, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Examples

Example 1: Client Using the Server’s Libref The client uses the existing server libref SALES to point to a server library that is located on SERVER1.

    libname sales server=server1;

Example 2: Client Assigning a Libref to a Physical Path The client assigns the libref SQLDSLIB to the SAS data library SASXYZ.VIEWLIB.SASDATA that is located on SERVER7. In this example, the client is permitted to access a server library that has not been pre-defined at the server.

    libname sqldslib 'sasxyz.viewlib.sasdata' server=server7;
Example 3: Client Associating a Unique Libref with the Server’s Libref  The client associates the new libref MKTDATA with the existing server libref MARKETD on ABCSERV.

```sas
libname MKTDATA slibref=MARKETD server=abcserv;
```

Example 4: Using a Server Password to Access a Server Library  The client associates the libref EDUCLIB with the SAS data library SASDEMO.EDUCCATS.SCREENS that is located on the server ABCSERV. Users must specify the password DEMOPW in order to access this server.

```sas
libname educlib 'sasdemo.educcats.screens' server=abcserv sapw=demopw;
```

Example 5: Specifying a Prompt for a Password to Access a Server Library  Rather than hard-coding the user’s password to access a server library, the client specifies that a prompt for password be displayed.

```sas
libname mygrade slibref=grades server=shr1 user=bass password=_prompt_;
```

Example 6: Specifying an Encoded Password  To prevent the risk of exposing clear-text passwords in stored SAS programs, the client specifies an encoded password.

```sas
libname sales server=server1 userid="myuserid" password="{sas001}c2Vydm1hY2g=;"
Overview of the OPERATE Procedure

You can use the OPERATE procedure in any SAS method of processing (noninterative mode, interactive-line mode, batch mode, or windowing environment) to manage a server, the server libraries, and the server users. Using PROC OPERATE, you can

- define a SAS data library to a server after the server has started
- display information about assigned libraries
- release libraries from assignment
- terminate access to a library
display IDs of users who are connected to the current server
manage the server from a session other than the server session.

The OPERATE procedure is interactive; that is, its statements are executed as they are encountered. For this reason, statements used in the OPERATE procedure are called commands. The OPERATE procedure executes until it is terminated by a QUIT or a RUN command. The syntax for these commands is discussed later in this section. The syntax for the PROC OPERATE statement follows.

Syntax: OPERATE Procedure

```syntax
PROC OPERATE <options>;
```

Library Management Commands
Server Management Commands
User Management Commands

PROC OPERATE Statement

```syntax
PROC OPERATE <options>;
```

Options

SERVER=server-ID | _port-number

identifies the default server session to be managed. If this option is not specified, you must identify the server in the SET SERVER command or in those PROC OPERATE commands that allow you to identify the server to be managed. For details, see “Specifying a Server” on page 160.

If you are using the TCP/IP access method, you can specify the server's port number that corresponds to the server ID in the TCP/IP SERVICES file. Precede the port number with two consecutive underscores. (For details about the SERVICES file, see SERVICES File in *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.)

Note: Do not space after the first underscore or the second underscore. △

Example:

```
  _ _1025
```

Aliases: ID, SERVERID

PRINTFILE=LOG | PRINT

directs the output from the OPERATE procedure. PRINTFILE=LOG directs the output to the SAS log. PRINTFILE=PRINT directs the output to the procedure output file or Output window.

Alias: PF

Default: LOG
SAPW=password | “encoded-password”
specifies a server-access password. This password is required to access a SAS/SHARE server that is executing with the OAPW= option in PROC SERVER in effect.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```
The clear-text password srvmach is specified in the PROC PWENCODE statement. The output is generated in the form {key}encoded-password. sas001 is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for encoded-password in the appropriate statement.

USER=user-ID | _PROMPT_
specifies the user ID of the accessing client on the server. The operating environment on which the client runs can also affect user ID conventions. For details about user ID conventions that are imposed by the operating environment, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Valid values for this option are

user-ID
For details about a valid user ID, see “User Name and Password Naming Conventions” on page 143.

PROMPT
specifies that SAS prompt the user for a valid user ID. Using _PROMPT_ is a way to enforce security.

Aliases: USERNAME, USERID, UID

PASSWORD=password | “encoded-password” | _PROMPT_
specifies the password of the accessing client on the server. The operating environment on which the client runs can also affect password naming conventions. For details about password naming conventions that are imposed by the operating environment, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
{sas001}c2VydmlhY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key|encoded-password}. sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

Aliases: PASSWD, PASS, PWD, PW

SETSASRC=(YES | NO)
causes the return code of PROC OPERATE to be surfaced to the operating environment when SAS execution terminates. For example, when submitting PROC OPERATE commands under batch mode under z/OS, SETSASRC=YES specifies that a non-zero return code from PROC OPERATE cause a condition code to be set in the JES message log for the batch job that invoked PROC OPERATE.

If SETSASRC=NO, the condition code for the batch job will be 0 regardless of whether the PROC OPERATE commands executed successfully.

Default: NO (disabled)

Library Management Commands

Overview of Library Management Commands

Beginning with Version 8, multiple users can define different SAS data libraries with the same libref name. Enhancements to SAS enable the server engine to differentiate among multiple user sessions that might use the same libref and to manage them appropriately.

Defining a Library to a Server That Is Running

You use the ALLOCATE LIBRARY command to define a SAS data library to a server that is already running. Each library that you define requires a separate ALLOCATE LIBRARY command. The syntax for this command is

```
ALLOCATE LIBRARY libref |'SAS-data-lib' |<RENGINE=engine-name> |<engine/environment options>;
```
libref identifies the SAS data library that is specified in the 'SAS-data-lib' argument.

'SAS-data-lib' specifies the physical name of the SAS data library that is being defined to the server. This name is specific to the operating environment and must be enclosed in single or double quotation marks. See “Specifying a SAS Data Library” on page 152 for examples by operating environment.

RENGINE=engine-name specifies the engine to be used to process the SAS data library in the server’s SAS execution. Usually, this option is not used because the server determines which engine to use to process the data library. Specify this option only if you want to override the SAS default or to reduce the search time that is required by the server to determine which engine to use to access a specific SAS library.

engine/environment options are options that apply to the SAS data library. You can specify any option that is valid in the LIBNAME statement for a specific operating environment and engine. You can specify one or as many options as you need by using the form keyword=value. Use a blank space to separate options. This argument is not required.

These options are effective in the server SAS session, not in the user SAS session. For a complete list of options that are available for your operating environment and engine, see the SAS documentation for your operating environment.

Aliases: ALLOC, AL

Displaying Information about a Library

You use the DISPLAY LIBRARY command to display information about one or more server libraries that are defined to the current server. The information includes the server libref, the physical name of the data library, its status, and the number of users that are accessing it. This information for a server library that is defined by an operating environment-specific external method is reported only after the library becomes active. A library becomes active after the user issues a LIBNAME statement to access a server library. For information about methods to define libraries to the server, see “Pre-Defining SAS Data Libraries to the Server” on page 29. The syntax for this command is

DISPLAY LIBRARY libid-1<...libid-n>;

DISPLAY LIBRARY _ALL_;

libid specifies either a libref for a pre-defined server library or a physical name for a server library. If you specify one or more libids, summary information is displayed. For example, the following command:

display library 'SAS-data-lib';

produces the following information:

<table>
<thead>
<tr>
<th>LIBREF</th>
<th>STATUS</th>
<th>OF USERS</th>
<th>LIBRARY NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINTS</td>
<td>ACTIVE</td>
<td>4</td>
<td>SAS-data-lib</td>
</tr>
</tbody>
</table>
provides summary information about each server library that is currently defined to the server. For example,

```sas
proc operate serverid=share1;
  display library _all_;
```

produces a table similar to the following:

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>LIBREF</th>
<th>STATUS</th>
<th>OF USERS</th>
<th>LIBRARY NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DATALIB</td>
<td>QUIESCED</td>
<td>1</td>
<td>SAS-data-lib</td>
</tr>
<tr>
<td></td>
<td>POINT</td>
<td>ACTIVE</td>
<td>6</td>
<td>SAS-data-lib</td>
</tr>
<tr>
<td></td>
<td>POINTS</td>
<td>ACTIVE</td>
<td>4</td>
<td>SAS-data-lib</td>
</tr>
<tr>
<td></td>
<td>MAIN</td>
<td>STOPPED</td>
<td>0</td>
<td>SAS-data-lib</td>
</tr>
<tr>
<td></td>
<td>MAPS</td>
<td>INACTIVE</td>
<td>0</td>
<td>SAS-data-lib</td>
</tr>
</tbody>
</table>

The summary information is followed by detailed information for each user and libref that is active or quiesced. For example,

<table>
<thead>
<tr>
<th>USER LIBREF</th>
<th>USER</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>JOHN(1) SPACE</td>
<td></td>
</tr>
<tr>
<td>MARY(2) ROW</td>
<td></td>
</tr>
<tr>
<td>IAN(5) FEES</td>
<td></td>
</tr>
<tr>
<td>NORMAN(11) JOBS</td>
<td></td>
</tr>
</tbody>
</table>

The following data sets in library 'SAS-data-lib' are active:

<table>
<thead>
<tr>
<th>MEMBER</th>
<th>TYPE</th>
<th>STATUS</th>
<th>USER LIBREF</th>
<th>OPEN MODE</th>
<th>USER LIBREF</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAGE</td>
<td>DATA</td>
<td>ACTIVE</td>
<td>JOHN(1)</td>
<td>UPDATE</td>
<td>SPACE</td>
</tr>
<tr>
<td>USAGE</td>
<td>DATA</td>
<td>ACTIVE</td>
<td>MARY(2)</td>
<td>INPUT</td>
<td>ROW</td>
</tr>
<tr>
<td>PROD</td>
<td>DATA</td>
<td>ACTIVE</td>
<td>IAN(5)</td>
<td>INPUT</td>
<td>FEES</td>
</tr>
<tr>
<td>MODULE</td>
<td>CATALOG</td>
<td>ACTIVE</td>
<td>JOHN(1)</td>
<td>OUTPUT</td>
<td>SPACE</td>
</tr>
</tbody>
</table>

The column LIBREF (in the first of the four preceding examples) contains the server libref for a SAS 9.1 server. The server libref is the name that a server administrator assigns to the library by using one of the following:

- a LIBNAME statement specified before the PROC SERVER statement
- an ALLOCATE LIBRARY command in a PROC OPERATE statement
- an operating environment-dependent external allocation.

In SAS 9.1, a library that is not defined by using one of the preceding methods does not have a server libref. Therefore, administrative commands that subsequently refer to that library must use a library name that is specific to the operating environment, for example, a UNIX pathname.

The column USER LIBREF (in the third and fourth examples) contains the libref that is specified in the LIBNAME statement by the user. The user's libref is provided only to help communicate with the user, if necessary.

The column STATUS is always ACTIVE. The column OPEN MODE indicates whether the user is currently executing a SAS program step to read, update, or create the member.

Aliases: DISP LIBRARY, D LIBRARY
Freeing a Library

You use the FREE LIBRARY command to free (or release) one or more server-defined libraries. When you issue the FREE LIBRARY command, a library that is not in use is freed immediately; a library that is in use is freed after it is no longer in use. The syntax for this command is

```
FREE LIBRARY libid-1 < . . . libid-n >;
FREE LIBRARY _ALL_;
```

libid

specifies a libref for a pre-defined server library or a physical name for a server library.

ALL

frees all SAS libraries that were defined to the SAS/SHARE server by using an ALLOCATE LIBRARY command or the LIBNAME statement.

Note: To bring a library to a stopped status gradually, issue the QUIESCE LIBRARY command. To bring the library to a stopped status immediately, issue the STOP LIBRARY command. Descriptions of these commands are given later in this section.

Aliases: FR LIBRARY

Quiescing a Library

You use the QUIESCE LIBRARY command to move a library that is defined to the current server from an active status to a stopped status. This command gradually terminates access to a library by denying new requests to use the library. It immediately stops libraries that do not currently have members open. If the library is user defined, after all users are released, the library is stopped and is no longer defined to the server. The syntax for the QUIESCE LIBRARY command is

```
QUIESCE LIBRARY libid-1 < . . . libid-n >;
QUIESCE LIBRARY _ALL_;
```

libid

specifies a libref for a pre-defined server library or a physical name for a server library.

ALL

quiesces all the libraries that are defined to the server.

Alias: QUI LIBRARY, Q LIBRARY

Re-Starting a Library

You use the START LIBRARY command to re-start one or more server libraries that have been stopped or quiesced. Because server libraries are available by default, this command is necessary to undo the effect of a STOP LIBRARY or a QUIESCE LIBRARY command. The syntax for this command is

```
START LIBRARY libid-1 < . . . libid-n >;
START LIBRARY _ALL_;
```
libid
specifies a libref for a pre-defined server library or a physical name for a server library.

ALL
re-starts all server libraries that are quiesced or stopped.

Alias: ST LIBRARY

If a library that was user-defined is stopped and then re-started with the START LIBRARY command, the library is no longer defined to the server.

Stopping a Library

You use the STOP LIBRARY command to immediately terminate user access to one or more server libraries and bring the libraries to a stopped status. The syntax for this command is

```
STOP LIBRARY libid-1 <. . . libid-n>;
STOP LIBRARY _ALL_;
```

libid
specifies a libref for a pre-defined server library or a physical name for a server library.

ALL
stops all libraries that are defined to the server.

If users are in the process of updating a data set, updates might be lost. Subsequent attempts to access a stopped library are denied.

Specifying a SAS Data Library

The **SAS-data-library** argument is specified according to operating environment. For **SAS-data-library** in the library management command examples throughout this section, see the following list of examples for specific operating environments:

- **OpenVMS**

 'DISK1:[AREA2.WEATHER.STATS]'

- **z/OS**

 'AREA2.WEATHER.STATS'

- **UNIX**

 '/area2/weather/stats'

- **Windows**

 'G:\AREA2\WEATHER\STATS'

Server Management Commands

Displaying Information about a Server

You use the DISPLAY SERVER command to display summary information about the current server. The syntax for this command is
DISPLAY SERVER;
DISPLAY SERVER server-ID <(SAPW=password)>;
DISPLAY SERVER server-ID </ SAPW=password>;

server-ID
displays summary information about a specific server For more information, see “Specifying a Server” on page 160.

SAPW= password | “encoded-password”

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.
To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password srvmach is specified in the PROC PWENCODE statement. The output is generated in the form {key}encoded-password. sas001 is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key. △

Use the output from the PROC PWENCODE statement as the value for encoded-password in the appropriate statement.

In the following example, the DISPLAY SERVER command displays information about the server SHARE1.

```
proc operate;
    display server share1;
```

Alternatively, you can use the SERVERID= option in the PROC OPERATE statement to identify the default server. The default server is also the current server unless you use the SET SERVER command and specify a different current server. In the following example, the statements display information about the default server SHARE1, which is also the current server.

```
proc operate serverid=share1;
    display server;
```

Aliases: DISP SERVER, D SERVER
You use the QUIESCE SERVER command to move a server from an active status to a stopped status by gradually releasing libraries and users, and denying new requests to access libraries through the server. The syntax for this command is

QUIESCE SERVER;

QUIESCE SERVER server-ID <(SAPW=password)>;
QUIESCE SERVER server-ID </SAPW=password>;

server-ID specifies the server to be terminated. If you do not specify a server ID, this command gradually terminates the current server. For information about specifying a server ID, see “Specifying a Server” on page 160.

SAPW= password | “encoded-password”

password must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password” is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`. `sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

A quiesced server accepts only PROC OPERATE commands. Current DATA and PROC steps can continue to access files that are already open but cannot open new files or members. After a user closes all members in a server library, the server releases the library. If this is the only server library that the user has accessed, that user is disconnected from it.

The QUIESCE SERVER command does not affect server administrators. When a QUIESCE SERVER command is issued, server administrators who are executing PROC OPERATE remain connected, and the server continues to accept connections. Because the server terminates only after all users are disconnected, a server administrator can keep the server quiesced indefinitely by remaining connected to it. While a server is quiesced, an administrator can issue the START SERVER command to change the status of the server back to active.

Setting the Current Server

You use the SET SERVER command to specify the current server and override the server that was specified in a previous SET SERVER command. This specified server also overrides the default server that was specified in a SERVERID= option in the PROC OPERATE statement. The effect of a SET SERVER command is limited to the current execution of PROC OPERATE. The syntax for this command is

```
SET SERVER;
```

```
SET SERVER server-ID <(SAPW=password)>;
```

```
SET SERVER server-ID </ SAPW=password>;
```

`server-ID` specifies the current server. For information, see “Specifying a Server” on page 160.

SAPW= `password` | “`encoded-password`”

`password` must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“`encoded-password`” is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the *Base SAS Procedures Guide*.

Example code for obtaining an encoded password:

```
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`. `sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key. △

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

If no server is specified, the SET SERVER command re-sets the current server to the default server that is specified in the SERVERID= option in the PROC OPERATE statement. However, if the SERVERID= option was not specified in the PROC OPERATE statement, SET SERVER retains the current server value.

In the following example, the SET SERVER command establishes the current server and displays information about that server without your having to specify a server ID.

```
proc operate;
    set server share1;
    display server;
```
In the following example, PROC OPERATE displays information about the server libraries that are identified by LIB1 and LIB2 in the DISPLAY LIBRARY command. These libraries are defined to the current server MYSHR. Next, the current server is re-set to SHARE, and information is displayed about the library LIBALPHA, which is defined to the server SHARE.

```sas
proc operate serverid=share;
  set server myshr;
  display library lib1 lib2;
  set server;
  display library libalpha;
```

If you do not identify a server before you issue a command that acts on the current server, PROC OPERATE issues the following message:

```
ERROR: PROC OPERATE is not currently set to any server, so this command will be ignored. Use the 'SET SERVER serverid;' command to establish communication with a server.
```

Re-Starting a Quiesced Server

You use the START SERVER command to re-start a server from a quiesced state only. If `server-ID` is not specified, this command starts the current server. The syntax for this command is

```
START SERVER;
START SERVER server-ID <(SAPW=password)>;
START SERVER server-ID </ SAPW=password>;
```

- `server-ID` specifies the name of the quiesced server. For more information, see “Specifying a Server” on page 160.

- `SAPW= password` | “encoded-password”
 - `password`
 - must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.
 - “encoded-password”
 - is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the *Base SAS Procedures Guide*.

Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`. `sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.
Stopping a Server

You use the STOP SERVER command to terminate a server immediately. If users are currently reading from or writing to members in the server library, the server closes the members and updates might be lost. The server releases the libraries held by each user and disconnects each user. The syntax for this command is

```
STOP SERVER;
STOP SERVER server-ID <(SAPW=password)>;
STOP SERVER server-ID </ SAPW=password>;
```

`server-ID` specifies the name of the server to be terminated. If `server-ID` is not specified, this command terminates the current server. For more information, see “Specifying a Server” on page 160.

`SAPW= password | “encoded-password”`

`password` must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password” is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`. `sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

`Note:` The encoded password is case-sensitive. Use the entire generated output string, including the key. ▲

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

`Note:` For Windows NT, Windows 2000, and z/OS operating environments, the SAS/SHARE server also responds to console STOP commands. This means that you do not...
have to use PROC OPERATE to terminate a SAS/SHARE server. For more information, see “SAS/SHARE Server Can Run as a Windows Service” on page 228.

User Management Commands

Displaying Information about a User

You use the DISPLAY USER command to display information about one or more users who are accessing the current server. Summary information is followed by detailed information for each user who has one or more libraries assigned. The syntax for this command is

```
DISPLAY USER user-ID-1 < . . . user-ID-n> ;
```

- `user-ID-1` specifies one user ID. `user-ID-n` specifies multiple user IDs. For more information, see “Specifying a User” on page 161.
- `_ALL_` displays summary information for other administrators and for all users who were connected and have been explicitly stopped.

The next example contains two types of librefs.

- `user libref` is a user-defined name for referring to a library. It is provided only as an aid for communicating with the user, if necessary.
- `server libref` is a user-defined name that a server administrator assigns to the library by using one of these methods:
 - a LIBNAME statement specified before the PROC SERVER statement
 - an ALLOCATE LIBRARY command in PROC OPERATE
 - an operating environment-dependent external allocation.

In SAS 9.1, a library that is not defined by using one of these methods does not have a server libref. Therefore, administrative commands that subsequently refer to that library must use the library name that is specific to the operating environment, for example, a UNIX pathname.

```
DISPLAY USER 15 ;
```

<table>
<thead>
<tr>
<th>USER ID</th>
<th>STATUS</th>
<th>LIBRARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIKE(15)</td>
<td>ACTIVE</td>
<td>2</td>
</tr>
</tbody>
</table>

The preceding summary information is followed by detailed information. For example, user MIKE(15) is accessing the following libraries:

<table>
<thead>
<tr>
<th>USER LIBREF</th>
<th>SERVER LIBREF</th>
<th>LIBRARY NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAGE</td>
<td>USAGE</td>
<td>SAS-data-lib</td>
</tr>
<tr>
<td>MEM</td>
<td></td>
<td>SAS-data-lib</td>
</tr>
</tbody>
</table>
User MIKE(15) is accessing the following data sets:

<table>
<thead>
<tr>
<th>USER</th>
<th>SERVER</th>
<th>MEMBER</th>
<th>TYPE</th>
<th>OPEN</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIBREF</td>
<td>LIBREF</td>
<td>USAGE</td>
<td>USAGE</td>
<td>USAGE</td>
<td>USAGE</td>
</tr>
<tr>
<td>LIBREF</td>
<td>USAGE</td>
<td>MODULE</td>
<td>DATA</td>
<td>INPUT</td>
<td></td>
</tr>
<tr>
<td>MEM</td>
<td>MEMOBY</td>
<td>DATA</td>
<td>INPUT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, MIKE(15) currently has files open in both of the libraries to which he currently has access. If user MIKE(15) had no files opened when the DISPLAY USER command was issued, only the first two parts of the output would be displayed.

The SERVER LIBREF that is missing in the preceding output indicates that the USER LIBREF MEM is not server-defined.

Aliases: DISP USER, D USER

Quiescing User Access to a Server

You use the QUIESCE USER command to gradually terminate a user’s access to a SAS/SHARE server and deny new user requests for resources. This command moves the user from an active status to a stopped status. When a quiesced user closes all files in a server library, the server releases that user’s access to the library. If the user has no open files in an accessed server library, the server terminates that user’s access to the library immediately. When the user has released all server libraries, the user ID is assigned a stopped status and is disconnected from the server. While a user is quiesced or stopped, the START USER command can be issued to change the user’s status back to active. The syntax for this command is

QUIESCE USER user-ID-1 < ... user-ID-n>;
QUIESCE USER _ALL_;

user-ID-1 specifies the ID of a user whose access to the server will be terminated. user-ID-n specifies the IDs of multiple users whose access will be terminated. For more information, see “Specifying a User” on page 161.

ALL quiesces all users who are connected to the current server except the administrator who issues the command. You cannot quiesce yourself, however, you can quiesce other server administrators by name. When PROC OPERATE terminates and its server session is quiesced, that administrator is assigned a stopped status.

Aliases: QUI USER, Q USER

Re-Starting a Quiesced or a Stopped User

You use the START USER command to re-start any users who have been stopped or quiesced. Because users are allowed access to a SAS/SHARE server by default, this command is necessary only to undo the effect of a previous STOP USER or a QUIESCE USER command. The syntax for this command is

START USER user-ID-1 < ... user-ID-n>;
START USER _ALL_;
Terminating User Connections to a Server

You use the STOP USER command to immediately terminate user connections to a server. The server closes library members that the user has open, terminates the user's access to libraries that are accessed through the server, and terminates the user's communication path to the server. If the user is updating a data set when the command is issued, updates might be lost. Because users are allowed access to a SAS/SHARE server by default, this command can be useful as a security tool. The syntax for this command is

```
STOP USER user-ID-1 <... user-ID-n>;  
STOP USER _ALL_;  
```

user-ID-1

specifies the ID of a user whose access to the server was terminated. **user-ID-n** specifies the IDs of multiple users whose access to the server was terminated. When a stopped user ID is re-started, that user ID becomes unknown to the server. For information, see “Specifying a User” on page 161.

ALL

re-starts all users who are quiesced or stopped.

Alias: ST USER

Specifying a Server

A **server-ID** specifies a one- or two-level name for the server that you want to manage. If you started the server, you should already know its name.

The server name must meet the criteria for a valid SAS name, but it can also include the following special characters: dollar sign ($), at sign (@) and pound sign (#).

The operating environment and the access method that you specify for communication between a server session and a user session might also impose server-naming criteria. For complete server-naming details by operating environment, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE*.

Specifying a Server-Access Password

A server-access password (SAPW) is required if you are not already connected to the server and the OAPW= option in the SERVER procedure is in effect. You can specify the server-access password either as a resource ID option (SAPW=password) or as a PROC OPERATE command option (/SAPW=password).
Specifying a User

A user ID identifies a specific user or a specific connection to a server. A user ID may be specified as a number, an identifying connection, or a case-sensitive name. A user ID name must meet the criteria for a valid SAS name, but the ID can also include the following special characters: dollar sign ($), at sign (@), and pound sign (#). The operating environment on which the client runs can also impose user-naming criteria. For details, see *Communications Access Methods for SAS/CONNECT and SAS/SHARE*. The following are examples of user IDs:

- **maria**
- **3**

Each time a user accesses a SAS/SHARE server, the new connection is assigned a number. A user is identified in the server SAS log and in PROC OPERATE output by a combination of that number and the applicable user ID in the form: `user-ID(nnnn)`. A USER command in which you specify a user connection number is restricted to that user's specific connection. For example, if Maria accesses the same server three times, she is identified by the server as **MARIA(3)**. To display information about that connection only, you issue the following command:

```
display user 3;
```

A USER command in which you specify a user ID operates on all current connections for that user. In addition, the QUIESCE, STOP, and START commands act on that user's future connections. For example, if Maria connects to the same server three times and accesses the server a fifth time, the following command provides information about both **MARIA(3)** and **MARIA(5)**:

```
display user MARIA;
```

The following command terminates the **MARIA(3)** and **MARIA(5)** connections to the server and prevents Maria from reconnecting to the server.

```
stop user MARIA;
```
RSPT Facility: Purpose

The Remote SQL Pass-Through (RSPT) enables you to pass PROC SQL statements from the client to a server for processing. RSPT can be used to process SAS data or DBMS data. When you access external databases through a server, you must reference a SAS/SHARE server that has access to the database.

Syntax: RSPT SQL Procedure

Requirement: SAS/ACCESS software

PROC SQL;
CONNECT TO REMOTE <AS alias> (<options>);
SELECT object-item FROM CONNECTION TO server (dbms-select-expression);
EXECUTE (SQL-statement) BY server ;
DISCONNECT FROM server ;
PROC SQL Statement

Initiates the SQL procedure.

```
PROC SQL;
```

CONNECT TO REMOTE Statement

Establishes a connection to a DBMS or to SAS data through a SAS server.

Requirement: SAS/ACCESS software

```
CONNECT TO REMOTE <AS alias> (<options>);
```

Syntax Description

AS alias

specifies an alias for the server.

Options

SERVER=server-ID | _port-number

specifies the name of the server. If the server is a multi-user server, `server-ID` is the name specified in the ID= option in the PROC SERVER statement. If the server is a single-user server that runs on a SAS/CONNECT server, `server-ID` is the name of the SAS/CONNECT server. In either case, `server-ID` is the same server name that is specified in the SERVER= option in a LIBNAME statement.

The TCP/IP access method enables you to specify syntax that uses two consecutive underscores with a port number, in place of a server ID that has been defined in the client TCP/IP SERVICES file.

Note: Do not space after the first underscore or the second underscore.

For `port-number`, specify a number that is greater than 1024 and that is not already used in the TCP/IP SERVICES file.

SAPW=password | “encoded-password” | _PROMPT_

specifies the password for controlling user access to a multi-user server. The password must be a valid SAS name and must be 8 characters or less in length. This password is in the UAPW= option in the PROC SERVER statement. If the UAPW= option is specified when the server is started, you must specify the SAPW= option in a CONNECT TO REMOTE statement that specifies the same server.

`password`

must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`. `sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

`_PROMPT_`
specifies that SAS prompt the user for a valid password. A dialog box appears that contains a message which prompts the user to enter a valid password. This enables you to specify the value at program execution instead of coding it into the program. Using `_PROMPT_` is a way to enforce security.

`USER=username | _PROMPT_`
specifies the user ID of the accessing client on the server. The operating environment in which the client runs can also affect user-naming conventions. For details about user-naming conventions imposed by the operating environment, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Valid values for the `USER=` option are:

`username`
for details about specifying a valid user name, see “User Name and Password Naming Conventions” on page 143.

`_PROMPT_`
specifies that SAS prompt the user for a valid user name. Using `_PROMPT_` is a way to enforce security.

Aliases: USERNAME, USERID, UID

`PASSWORD=password | “encoded-password” | _PROMPT_`
specifies the password of the accessing client on the server. The operating environment in which the client runs can also affect password-naming conventions. For details about password-naming conventions imposed by the operating environment, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Valid values for the `PASSWORD=` option are:

`password`
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`. `sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key. △

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

```
PROMPT_
```
specifies that SAS prompt the user for a valid password. A dialog box appears that contains a message which prompts the user to enter a valid password. This enables you to specify the value at program execution instead of coding it into the program. Using `_PROMPT_` is a way to enforce security.

Aliases: PASSWD, PASS, PWD, PW

DBMS= `dbms-name`
specifies the name of the server DBMS that you want to connect to. This is the same name that you would specify in a CONNECT TO statement if you were connecting directly to the DBMS. Use this option if you want to connect to a server DBMS instead of the SAS SQL server.

PT2DBPW= `passthrough-to-DBMS-password`
specifies the password for controlling pass-through access to server DBMS databases that are specified in the PT2DBPW= option in the PROC SERVER statement. If PT2DBPW= is specified when the server is started, you must specify the PT2DBPW= option in a CONNECT TO REMOTE statement that specifies the same server and also specifies the DBMS= option.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this option is replaced by Xs in the log. To protect this password, you should use the security software at your site to limit access to the SAS program statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.
Example code for obtaining an encoded password:

```sas
proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=
```

The clear-text password `srvmach` is specified in the PROC PWENCODE statement. The output is generated in the form `{key}encoded-password`.

`sas001` is the key, which is used to decode the encoded password to its clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output string, including the key.

Use the output from the PROC PWENCODE statement as the value for `encoded-password` in the appropriate statement.

```sas
DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)
```

specifies the arguments that are required by the server DBMS to establish the connection. These are the same arguments that you would specify in a CONNECT TO statement if you were connecting directly to the DBMS.

SELECT... FROM CONNECTION TO Statement

Specifies which data will be used.

See also: The documentation for the SQL Procedure in the *Base SAS Procedures Guide*.

```
SELECT object-item FROM CONNECTION TO server (dbms-select-expression);
```

Syntax Description

- **object-item**
 specifies one or more columns or expressions. For more information, see the documentation for the SELECT statement in the *Base SAS Procedures Guide*.

- **server**
 specifies the SAS SQL server or server DBMS where the data is stored. The valid values for server are:
 Remote
 the server that is specified in the most recent CONNECT TO REMOTE statement will be used.
 alias
 the server that you assigned the alias to (in the `AS=alias` option in the CONNECT TO REMOTE statement) will be used. Specifying alias is useful if you are connected to several SQL servers at the same time.

- **dbms-select-expression**
 specifies a SELECT expression that will be processed before the data is transmitted. For server data that is accessed through the PROC SQL view engine,
dbms-select-expression is any valid PROC SQL SELECT statement. For a server DBMS, **dbms-select-expression** is the same SQL query that you would specify if you were connected directly to the DBMS. For more information about the PROC SQL SELECT statement, see the documentation for the SELECT statement in the *Base SAS Procedures Guide*.

EXECUTE... BY Statement

Submits SQL statements for server processing.

```
EXECUTE (SQL-statement) BY server;
```

Syntax Description

SQL-statement specifies an SQL statement for server processing. **SQL-statement** can be any valid SAS SQL statement except SELECT. For a server DBMS that is accessed through a single-user server in a SAS/CONNECT session, **SQL-statement** is the same SQL statement that you would specify if you were connected directly to the DBMS.

server specifies the server where the SQL statement will be processed. The valid values for **server** are:

- **REMOTE**
 - the server that is specified in the most recent CONNECT TO REMOTE statement will be used.

- **alias**
 - the server that you assigned the alias to (in the AS=alias option in the CONNECT TO REMOTE statement) will be used. Specifying **alias** is useful if you are connected to several SQL servers at the same time.

DISCONNECT FROM Statement

Closes the connection to the server.

```
DISCONNECT FROM server;
```
Syntax Description

server
specifies which server to disconnect from. The valid values for server are:

REMOTE
the server that is specified in the most recent CONNECT TO REMOTE statement will be used.

alias
the server that you assigned the alias to (in the AS=alias option in the CONNECT TO REMOTE statement) will be used. Specifying alias is useful if you are connected to several SQL servers at the same time.

Examples

Here are examples of processing data by using RSPT. The following program joins two server data sets. (RSPT through a server)

```sql
proc sql;
    connect to remote(server=sdcmv.s.prx6xhsrv);
    select *
    from connection to remote
        (select p.idnum label='ID Number'
            p.jobcode label='Job Code'
            s.city label='City'
        from rmtshr.staff s,
            rmtshr.payroll p
        where s.idnum=p.idnum
        orderby jobcode);
```

The following program uses RSPT to connect to a remote server to read data from a DB2 table. (Accessing a server DBMS with RSPT)

```sql
proc sql;
    connect to remote(server=sdcmv.s.mktserv
dbms=db2 dbmsarg=(ssid=db2));
    select *
    from connection to remote
        (select flight#, orig, destination, delay
        from educ.db2delay
        where delay > 11);
```
Overview of the LOCK Statement and the LOCK Command

The LOCK statement and the LOCK command enable you to acquire, list, or release locks on SAS data objects, which includes SAS data libraries, SAS data sets, SAS catalogs, and SAS catalog entries.

Note: If you want to lock a SAS data library or any object in it by using the LOCK statement, you must first access the library through a SAS/SHARE server.

Using a LOCK statement to lock a data object prevents other users from reading or writing to that data object. However, you can open a locked data object as many times as you want to and in any mode (for example, create, update, replace, or read) if your PROC or DATA step does not conflict with what is allowed by the engine that was used by the SAS/SHARE server to access the data object.

For more information about locking, see Chapter 5, “Locking SAS Data Objects,” on page 57.

LOCK Statement

Places an exclusive lock on a specified data object.

See also: Chapter 5, “Locking SAS Data Objects,” on page 57

Syntax

LOCK

libref<.member-name<.member-type> | <.member-name.entry-name.entry-type>

<List | CLEAR>;
Syntax Description

libref
 specifies the name of a SAS data library that is currently accessed through a
 SAS/SHARE server.

member-name
 specifies the name of a member in the library libref that is to be locked.

member-type
 specifies the type of SAS file to be locked. Valid values are: DATA, VIEW, and
 CATALOG. The default is DATA.
 If member-type is omitted or is specified as the value DATA or VIEW, two locks are
 obtained: one lock on libref.member-name.DATA and the other lock on
 libref.member-name.VIEW.

element-name
 specifies the name of the catalog entry to be locked.

element-type
 specifies the type of the catalog entry to be locked.

LIST
 writes to the SAS log whether the specified data object is locked and by whom. This
 argument is optional.
 Aliases: QUERY, SHOW

CLEAR
 releases a lock on the specified data object that was acquired by using the LOCK
 statement in your SAS session. This argument is optional.
 For more information about how and when a lock is released, see Chapter 5,
 “Locking SAS Data Objects,” on page 57.

Examples

In the following example, the first LOCK statement acquires implicit locks on the SAS
data library EDUCLIB and on the SAS catalog EDUCLIB.MYCAT. It then acquires an
explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE1.MENU. The second
LOCK statement acquires an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE2.MENU.

 lock educlib.mycat.choice1.menu;
 lock educlib.mycat.choice2.menu;

 In the following example, the first LOCK statement that contains the argument
CLEAR releases the explicit lock on the catalog entry CHOICE1.MENU, but it does not
release the implicit locks because an entry in the catalog is still locked. The second
LOCK statement that contains the argument CLEAR releases the explicit lock on the
catalog entry CHOICE2.MENU. Because no catalog entries remain locked, the second
statement that contains the argument CLEAR also releases the implicit lock on the
SAS catalog EDUCLIB.MYCAT. Because no other members of the library are locked, it
also releases the implicit lock on the SAS library EDUCLIB.

 /* Update the two catalog entries as needed. */
 lock educlib.mycat.choice1.menu clear;
 lock educlib.mycat.choice2.menu clear;
LOCK Command

PlACES an exclusive lock on a specified data object.

See also: Chapter 5, “Locking SAS Data Objects,” on page 57

Syntax

LOCK

\texttt{libref\langle member-name\rangle.member-type\rangle} | \langle member-name.entry-name.entry-type\rangle

\langle LIST | CLEAR\rangle;

Syntax Description

\textit{libref}

specifies the name of a SAS data library that is currently accessed through a SAS/SHARE server.

\textit{member-name}

specifies the name of a member of the library \textit{libref} that is to be locked.

\textit{member-type}

specifies the type of the SAS file to be locked. Valid values are: DATA, VIEW, and CATALOG. The default is DATA.

If \textit{member-type} is omitted or is specified as the value DATA or VIEW, two locks are obtained: one lock on \textit{libref.member-name}.DATA and the other lock on \textit{libref.member-name}.VIEW.

\textit{entry-name}

specifies the name of the catalog entry to be locked.

\textit{entry-type}

specifies the type of the catalog entry to be locked.

\textit{LIST}

writes to the SAS log whether the specified data object is locked and by whom. This argument is optional.

\textit{Aliases: QUERY, SHOW}

\textit{CLEAR}

releases a lock on the specified data object that was acquired by using the LOCK statement in your SAS session. This argument is optional.

For more information about how and when a lock is released, see Chapter 5, “Locking SAS Data Objects,” on page 57.

Examples

The following LOCK command locks SAS catalog entries of type CMAP. The SAS log will show that one catalog entry has already been locked.

\texttt{lock mapslib.mapscat.euromap.cmap}
The following LOCK command releases the lock on the catalog entry EUROMAP.CMAP. The SAS log will show that the lock on this catalog entry has been released and by whom.

```
lock mapslib.mapscat.euromap.cmap clear
```
Compiles other SAS/SHARE macros.

Note: The SHRMACS macro must be invoked prior to invoking any other SAS/SHARE macro. △

Category: none

Syntax

\%
\begin{verbatim}
SHRMACS (category,<log-info>,<APPLSYS=app-sys-lib-tab...>,<SASSAML=app-sys-lib-tab...>);
\end{verbatim}

Syntax Description

category
specifies the category of macros to be compiled. For details, see “Macros Generated by the SHRMACS Macro” on page 75.
Valid Values: USER, SERVER, OPER, ALL

log-info
specifies whether descriptive information about each macro is written to the SAS log. MSG displays the SAS/SHARE macros that are generated and the function of each
macro. NOMSG specifies that no information is displayed. HELP displays detailed information about the SAS/SHARE macros that are generated. This includes the syntax, a brief description, and an example of each macro that is generated by the first argument.

Valid Values: MSG, NOMSG, HELP

Default: MSG

APPLSYS=app-sys-lib-tab
specifies which applications systems tables should be loaded. You can specify one or more tables. It is recommended that you use this argument to save initialization time. If the APPLSYS= argument is not specified, the default applications systems table is loaded. Using APPLSYS is optional. For more information, see “The APPLSYS Macro Library” on page 77.

SASSAMAL=app-sys-lib-tab
specifies an alternate APPLSYS macro library. If an alternate library is specified, application systems tables are loaded from it instead of from the default library. The value of SASSAMAL= can be a physical pathname or the string _DEFINED_, which indicates that the fileref SASSAML is already assigned to the alternate APPLSYS macro library. Using SASSAML is optional. For more information, see “The APPLSYS Macro Library” on page 77.

Details
The SHRMACS macro also loads the applications systems tables that associate aliases with server names and associate libraries with aliases. These tables are used to generate the server name for the PROC SERVER, PROC OPERATE, and LIBNAME statements. Based on what is specified in the first argument, the server-alias and library-alias tables can be written to the SAS log if you specify the MSG or the HELP argument in the SHRMACS macro. For example,

```
%shrmacs(user);
%shrmacs(user,help);
%shrmacs(oper,help);
%shrmacs(server,msg);
%shrmacs(all,msg);
```

Early in its execution, the SHRMACS macro invokes PROC SQL to obtain the current settings of the SAS options NOTE, SOURCE2, and LINESIZE= and saves them in macro variables that are named _NOTES_, _SRC2_, and _LS_, respectively. The original values of these options are restored after the settings have been changed by SHRMACS or other SAS/SHARE macros. You can avoid the overhead of this PROC SQL step by explicitly setting the macro variables to the values that you want. For example,

```
%let _notes_=notes;
%let _src2_=nosource2;
%let _ls_=70;
```
LIBDEF Macro

Generates a LIBNAME statement.

Category: User

Syntax

%LIBDEF (libref,<SAS-data-library>,<READONLY>,<RETRY>,<ENGINE=local-engine>,<RENGINE=remote-engine>,<RMTVIEW=remote-engine-RMTVIEW=option>,<SLIBREF=server-library>, <uapw>, <APPLSYS=appl-sys-lib-table>);

Syntax Description

READONLY
specifies that the server library can be accessed in read-only mode.

RETRY
If a LIBNAME statement that specifies the SERVER= option fails, %LIBDEF generates a LIBNAME statement without the SERVER= option.

ENGINE=local-engine
specifies the local engine to be used in the user's session to access the server library. Omit this parameter unless you need to override the default engine.

Default: REMOTE

RENGINE=remote-engine
specifies the remote engine to be used in the server session to access the library. SAS chooses an appropriate engine. Omit this parameter unless you need to override the engine that is chosen by SAS.

Default: No default

RMTVIEW=remote-engine-RMTVIEW=option
specifies the value of the REMOTE engine's RMTVIEW= option in the LIBNAME statement that is generated by the LIBDEF macro. You can use the RMTVIEW parameter to override the default value of the RMTVIEW option for a specific library. This parameter overrides the RMTVIEW= parameter in the SERVINFO and SERVLIB macros.

SLIBREF=server-library
specifies the libref that references the specified library in the server session. If this parameter is specified, the generated LIBNAME statement will include the SLIBREF= option. This parameter overrides any value that is specified for the SAS-data-library argument in the LIBDEF macro statement.

uapw
specifies that a user can access the server only by supplying a password.

APPLSYS=appl-sys-lib-table
specifies a new application system library table to be loaded. This argument is ignored if the table has already been specified in the SHRMACS call or in a previous LIBDEF call.
Details

The LIBDEF macro generates a LIBNAME statement to define a SAS data library that will be accessed locally or through a server. The server administrator can specify a physical name or a reserved libref in the APPLSYS macro library. If a physical name is specified, the server administrator must specify that name as the second argument in this macro; the physical name should not be enclosed in quotation marks. If a libref is specified, the second argument (the physical name) is omitted.

If you specify a physical name that is not specified in the APPLSYS macro library, a LIBNAME statement is generated without the SERVER= option.

After executing the LIBDEF macro, the automatic macro variable SYSLIBRC contains the return code from the LIBNAME statement. For more information, see the section about automatic macro variables in SAS Macro Language: Reference.

Examples

Here are three examples using the LIBDEF macro:

```%libdef(mylib,SAS-data-library,applsys=qa); %libdef(perm,SAS-data-library,readonly,retry,myuserpw); %libdef(datalib);```

LISTLIB Macro

Lists the current library-alias table.

Category: Operator, Server, User

Syntax

```%LISTLIB <FULL>;```

Syntax Description

FULL

an optional argument that writes the values that are specified for the SERVLIB macro parameters to the SAS log. For more information about using the SERVLIB macro parameters, see “Associating SAS Libraries with Server Aliases (SERVLIB)” on page 79.

Details

The LISTLIB macro writes the library-alias table that is currently in use to the SAS log. It shows the server alias that is associated with each SAS data library.
LISTSRV Macro

Lists the server-alias table.

Categories: Operator, Server, User

Syntax

%LISTSRV;

Details

The LISTSRV macro writes the server-alias table to the SAS log. It shows the server ID that is associated with each defined alias.

LISTSRVI Macro

Lists the server information table.

Category: Operator, Server, User

Syntax

%LISTSRVI;

Details

The LISTSRVI macro writes the server information table to the SAS log. It shows the REMOTE engine’s LIBNAME statement option RMTVIEW= and the network node name, by default.

OPERATE Macro

Generates a PROC OPERATE statement.

Category: Operator

Syntax

%OPERATE(server-name,<oapw>);
Syntax Description

server-name
specifies the server name, which can be an alias or an actual server ID. This value identifies the server to be controlled.

oapw
specifies the administrator password if one is required by the server. This value is mapped to the SAPW= option in the PROC OPERATE statement.

Details
The OPERATE macro invokes the OPERATE procedure for a server that is identified by the server-name argument.

SERVERID Macro

Converts a server alias to a server ID.

Category: Operator, Server, User

Syntax

\%SERVERID(server-alias, <NEQ>);

Syntax Description

server-alias
The SERVERID macro converts the server-alias to an actual server ID in the SERVER= option in the SERVER and OPERATE procedures and LIBNAME statements.

NEQ
supplies only the server ID value (without the SERVER= option).

Details
Additionally, the SERVERID macro generates a \%LET statement for a macro variable whose name is the high-level qualifier in a two-level server name in the following form:

\%LET high-level-qualifier=network-node;

Examples
The server name must be listed in the server information table and have a network node name associated with it, as shown in the following examples:

libname mylib ‘SAS-data-library’ %serverid(devserv);
set server %serverid(serv1,neq);

The first example generates the LIBNAME statement, which supplies the SERVER=server-ID parameter. The second example generates a SET SERVER statement, which supplies only the server-ID without the SERVER= parameter keyword.

SERVIIDX Macro

Returns the index of the entry for the specified server in the server identification table.

Category: Operator, Server, User

Syntax

\%SERVIIDX(server-name);

Details

The SERVIIDX macro requires a server name and returns the index for that server entry in the server information table. You can use this index to access the fields in the table entry.

Note: server-name cannot be specified as an alias.

SERVINFO Macro

Adds server attributes to the server information table.

Category: None

Syntax

\%SERVINFO(two-level-server-name,<RMTVIEW=REMOTE-engine-RMTVIEW=-option>,<NETNODE=network-node-name>);

Syntax Description

Usually, the SERVINFO macro is used in the member SERVERID in the APPLSYS macro library.

A server information table is created to contain information about the servers at your site. You can use this information in a program, or you can display it. By default, the table contains the following type of information:

- a default value for the REMOTE engine’s RMTVIEW= option in the LIBNAME statement
- a network node name that is represented by a fully-qualified node name; for example, HP103.DOM2.ACME.COM.
You can also use the server information table to specify other characteristics of a server, its users, or its administrators, such as server access passwords, PROC SERVER statement options, and which release of SAS the server is running under. Optional arguments to %SERVINFO are:

RMTVIEW=
specifies a default value for the REMOTE engine’s RMTVIEW= option in the LIBNAME statement. If you specify this parameter, the LIBDEF macro, by default, generates the RMTVIEW= value for any LIBNAME statement that specifies this server. This parameter is overridden by the RMTVIEW= parameter in the SERVLIB and LIBDEF macros.

NETNODE=
specifies a network node name that is represented by the high-level qualifier in a two-level server name. When a two-level server name is specified in a PROC OPERATE or a LIBNAME statement and the high-level qualifier cannot be found as a network node, the server name is treated as the name of a macro variable whose value is the node name. This substitution is useful when the node name is not a valid SAS name. If you specify NETNODE= in the server information table, the first time that it translates an alias for that server ID %SERVERID generates the following code in an application:

```
%LET high-level-qualifier=network-node;
```

high-level-qualifier is the high-level qualifier in the server ID that is specified in the positional parameter and *network-node* is the value of NETNODE=.

If the high-level qualifier in the server ID is also the high-level qualifier in the full network node name, you may omit it from the value of NETNODE= by using a period (.) at the beginning of the NETNODE= value. For example, if the server SHR SERV runs on HP103.DOM2.ACME.COM, you would specify

```
%servinfo (hp.shrserv,netnode=hp103.dom2.acme.com);
```

The SERVERID macro generates

```
%let hp=hp103.dom2.acme.com;
```

SERVLIB Macro

Adds server-library pairs to the library table.

Category: None

Syntax

```
%SERVLIB(SAS-library-name, server-name< RMTVIEW=REMOTE-engine-RMTVIEW=option>,
         <PHYSNAME=physical-name-of-library>, <SLIBREF=server-libref>,
         <ENGINE=engine-in-user-session>, <RENGINE=engine-in-server-session>);
```

Syntax Description

The SERVLIB macro adds new libraries to the library table in the APPLSYS macro library in the form *SAS-library-name, server-name*. How you specify the SAS library name is based on your operating environment. Optional arguments to %SERVLIB are:
RMTVIEW=
specifies the value of the REMOTE engine’s RMTVIEW= option in the LIBNAME statement that is generated by the LIBDEF macro. You can use the RMTVIEW= parameter in the SERVLIB macro to specify the default value of the RMTVIEW= option for a specific library. This parameter overrides the RMTVIEW= parameter in the SERVINFO macro; but, is overridden by the RMTVIEW= parameter in the LIBDEF macro.

PHYSNAME=
specifies the physical name of a library. This parameter is used by the STRTSRV macro to generate a LIBNAME statement in the server session. If this parameter is used and the SLIBREF= parameter is not used, the first positional parameter in %SERVLIB is assumed to be the server libref. If both PHYSNAME= and SLIBREF= are specified, the first positional parameter is not used for generating the LIBNAME statement. Instead, the first positional parameter can be used as a description of the library that is specified in place of the physical name when the LIBDEF macro is invoked in the application.

SLIBREF=
specifies the library's libref in the server session. This parameter is used by the STRTSRV macro to generate a LIBNAME statement in the server session. If this parameter is used and the PHYSNAME= parameter is not used, the first positional parameter in %SERVLIB is assumed to be the physical name of the library. If both PHYSNAME= and SLIBREF= are specified, the first positional parameter is not used for generating the LIBNAME statement. Instead, the first positional parameter can be used as a description of the library that is specified in place of the physical name when the LIBDEF macro is invoked in the application.

ENGINE=
specifies the engine to be used in the user session to access the library. The default is ENGINE=REMOTE. Omit this parameter unless you need to override the engine that is chosen by SAS.

RENGINE=
specifies the engine to be used in the server session to access the library. There is no default for this option. SAS chooses an appropriate engine. Omit this parameter unless you need to override the engine that is chosen by SAS.

For more information about the SERVLIB macro, see “Associating SAS Libraries with Server Aliases (SERVLIB)” on page 79 and comments in the APPLSYS macro library.

SETSRV Macro

Generates a SET SERVER statement.

Category: Operator

Syntax

```sas
%SETSRV (server-name, <oapw>);
```
Syntax Description

server-name
specifies the name of a server. The name can be an alias or an actual server ID.

oapw
specifies the operator-access password to be specified in the SAPW= option in the SET statement.

Details

The SETSRV macro generates a SET SERVER statement in an OPERATE procedure for a SAS server that is specified by using the *server-name* argument.

SHUTSRV Macro

Stops a server.

Category: Operator

Syntax

\%

\%SHUTSRV(server-name, <oapw>);

Syntax Description

server-name
specifies the server name. The name can be an alias or an actual server ID.

oapw
specifies the operator-access password to be mapped to the SAPW= option in the PROC OPERATE statement.

Details

The SHUTSRV macro invokes the OPERATE procedure to terminate the server that is specified in the *server-name* argument.

STRTSRV Macro

Starts a server.

Category: Server

Syntax

\%

\%STRTSRV(server-name, <options>, <uapw>, <oapw>);
Syntax Description

server-name
specifies the server name. The name can be an alias or an actual server ID.

options
specifies any PROC SERVER statement options. Use blank spaces to separate
options. For information about the PROC SERVER options, see Chapter 12, “The
SERVER Procedure,” on page 123.

uapw
specifies the user-access password.

oapw
specifies the operator-access password to be mapped to the UAPW= and OAPW=
options, respectively, in the PROC SERVER statement.

Details

The STRTSRV macro invokes the SERVER procedure. %STRTSRV generates a
LIBNAME statement for each library in the current library table for the server that is
being started (either directly or through an alias) for which either the SLIBREF= or the
PHYSNAME= parameters in %SERVLIB have been specified. For information about
%SERVLIB, see “SERVLIB Macro” on page 182. Using %STRTSRV to define a library
to the server at start-up automates the change to server start-up when the library is
moved to another server.

The STRTSRV macro also generates a LIBNAME statement for each library that is
listed in the current library-alias table for the server that is being started.
COMAMID= System Option

Identifies the communications access method to connect a SAS/SHARE client and server SAS session

Client: Required
Server: Required
Client: Valid in: configuration file, OPTIONS statement, SAS invocation
Server: Valid in: configuration file, OPTIONS statement, SAS invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group: Communications

Syntax

COMAMID=access-method-ID

Syntax Description

access-method-ID

specifies the name of the communications access method that is used by a client to access a server.

Details

The COMAMID= system option specifies a communications access method that is used by a SAS/SHARE client to connect to a SAS/SHARE server.

For find out about the supported access methods by operating environment (for example, to connect a Windows client to a UNIX server, use the TCP/IP access method), see the supported Communications Access Methods by operating environment in Communications Access Methods for SAS/CONNECT and SAS/SHARE.
COMAUX1= System Option

Specifies the first alternate communication access method

Client: Optional
Server: Optional

Client: Valid in: configuration file, SAS invocation
Server: Valid in: configuration file, SAS invocation

Category: Communications : Networking and Encryption
PROC OPTIONS Group: Communications

Syntax

COMAUX1=name

Details

The COMAUX1= option specifies the first auxiliary communication access method. For example, you may specify COMAMID=XMS and COMAUX1=TCP. These specifications indicate that the primary method of communication is cross-memory services. If this access method is unable to establish a connection, TCP/IP communication is attempted.

If the COMAUX1= option is specified in a destination (server) session, it defines additional communication support to be initialized. In an originating (user) session, it specifies that the communication access method should try to connect to the destination session if the initial COMAMID-based attempt is unsuccessful.

TBUFSIZE= System Option

Specifies the value of the default buffer size that the server uses for transferring data

Client: Optional
Server: Optional
Default: 32K

Client: Valid in: configuration file, OPTIONS statement, SAS invocation
Server: Valid in: OPTIONS statement

Category: Communications : Networking and Encryption
PROC OPTIONS Group: Communications

Syntax

TBUFSIZE=value
Syntax Description

value
 specifies the suggested size of a buffer that the server uses for transmitting information to or receiving information from a client.

Details
The TBUFSIZE= option specifies the suggested size of a buffer that the server uses for transmitting information to or receiving information from a client. When this option is not specified in the PROC SERVER statement, the value of the TBUFSIZE= SAS system option, if specified, will be used.
NETENCRIPT System Option

Specifies whether client/server data transfers are encrypted.

Client: Optional
Server: Optional
Default: NONETENCRYPT

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS invocation

See also: NETENCRYPTALGORITHM
Category: Communications: Networking and Encryption

Syntax

NETENCRYPT | NONETENCRYPT

Syntax Description

NETENCRYPT

specifies that encryption *is* required.

NONETENCRYPT

specifies that encryption *is not* required, but is optional.

Details

The default for this option specifies that encryption *is* used if the NETENCRYPTALGORITHM option is set and if both the client and the server are capable of encryption. If encryption algorithms are specified but either the client or the server is incapable of encryption, then encryption is *not* performed.
Encryption might *not* be supported at the client or at the server if
- You are using a release of SAS (prior to Version 8) that does not support encryption.
- Your site (the client or the machine where the spawner is running) does not have a security software product installed.
- You specified encryption algorithms that are incompatible in SAS sessions on the client and the server.

NETENCRIPTALGORITHM= System Option

Specifies the algorithm(s) to be used for encrypted client/server data transfers.

Client: Optional

Server: Required

Alias: NETENCRALG=

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS invocation

See also: NETENCRIPT

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax

NETENCRIPTALGORITHM=algorithm | ("algorithm-1"... "algorithm-n")

Syntax Description

algorithm | ("algorithm-1"... "algorithm-n")

specifies the algorithm(s) that can be used for encrypting data that is transferred between a client and a server across a network. When you specify two or more encryption algorithms, use a space or a comma to separate them, and enclose the algorithms in parentheses.

The following algorithms may be used:
- RC2
- RC4
- DES
- TripleDES
- SASProprietary
- SSL.

Details

The NETENCRIPTALGORITHM= option *must* be specified in the server session.

Use this option to specify one or more encryption algorithms that you want to use to protect the data that is transferred across the network. If more than one algorithm is specified, the client session negotiates the first specified algorithm with the server session. If the server session does not support that algorithm, the second algorithm is negotiated, and so on.
If either the client or the server session specifies the NETENCRYPT option (which makes encryption mandatory) but a common encryption algorithm cannot be negotiated, the client cannot connect to the server.

If the NETENCRYPTALGORITHM= option is specified in the server session only, then the server’s values are used to negotiate the algorithm selection. If the client session supports only one of multiple algorithms that are specified in the server session, the client can connect to the server.

There is an interaction between either NETENCRYPT or NONETENCRYPT and NETENCRYPTALGORITHM.

Table 19.1 Client/Server Connection Outcomes

<table>
<thead>
<tr>
<th>Server Settings</th>
<th>Client Settings</th>
<th>Connection Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONETENCRYPT</td>
<td>No settings</td>
<td>If the client is capable of encryption, the client/server connection will be encrypted. Otherwise, the connection will not be encrypted.</td>
</tr>
<tr>
<td>NETENCRYPTALGORITHM=algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETENCRYPT</td>
<td>No settings</td>
<td>If the client is capable of encryption, the client/server connection will be encrypted. Otherwise, the connection will not be encrypted.</td>
</tr>
<tr>
<td>NETENCRYPTALGORITHM=algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No settings</td>
<td>NONETENCRYPT</td>
<td>A client/server connection will not be encrypted.</td>
</tr>
<tr>
<td>NETENCRYPTALGORITHM=algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No settings</td>
<td>NETENCRYPT</td>
<td>A client/server connection will fail.</td>
</tr>
<tr>
<td>NETENCRYPTALGORITHM=algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETENCRYPT or NONETENCRYPT</td>
<td>NETENCRYPTALGORITHM=algorithm-b</td>
<td>Regardless of whether NETENCRYPT or NONETENCRYPT is specified, a client/server connection will fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

In the following example, the client and the server specify different values for the NETENCRYPTALGORITHM= option.

The client specifies two algorithms in the following OPTIONS statement:

```plaintext
options netencrypt algorithm=(rc2 tripledes);
```

The server specifies three algorithms and requires encryption in the following OPTIONS statement:

```plaintext
options netencrypt netencryptalgorithm=(ssl des tripledes);
```
The client and the server negotiate an algorithm that they share in common, TripleDES, for encrypting data transfers.

NETENCRYPTKEYLEN= System Option

Specifies the key length to use for encrypting data that is transferred between a client and a server across a network.

- **Client:** Optional
- **Server:** Optional
- **Alias:** NETENCRCRKEY=
- **Default:** 0
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
- **Category:** Communications: Networking and Encryption

Syntax

NETENCRYPTKEYLEN= 0 | 40 | 128

Syntax Description

- **0**
 - specifies that the maximum key length that is supported at both the client and the server is used.

- **40**
 - specifies a key length of 40 bits for the RC2 and RC4 algorithms.

- **128**
 - specifies a key length of 128 bits for the RC2 and RC4 algorithms. If either the client or the server does not support 128-bit encryption, the client cannot connect to the server.

Details

The NETENCRYPTKEYLEN= option supports only the RC2 and RC4 algorithms. The DES, TripleDES, or SSL algorithms are not supported.

Using longer keys consumes more CPU cycles. If you do not need strong encryption, set NETENCRYPTKEYLEN=40 to decrease CPU usage.
CHAPTER 20
Secure Sockets Layer (SSL) Options

SSLCALISTLOC= System Option

Specifies the location of digital certificates for trusted certificate authorities (CA).

- **Client:** Required
- **Server:** Optional
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
- **Operating Environment:** UNIX
- **Category:** Communications: Networking and Encryption
- **PROC OPTIONS Group:** Communications

Syntax

SSLCALISTLOC="file-path"

Syntax Description

"file-path"

specifies the location of a file that contains the digital certificates for the trusted certificate authority (CA).

Details

The SSLCALISTLOC= option identifies the certificate authority that SSL should trust. This option is required at the client because at least one CA must be trusted in order to
validate a server’s digital certificate. This option is required at the server only if client authentication is specified.

SSLCERTISS= System Option

Specifies the name of the issuer of the digital certificate that SSL should use.

- **Client:** Optional
- **Server:** Optional
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
- **Operating Environment:** Windows
- **Category:** Communications: Networking and Encryption
- **PROC OPTIONS Group:** Communications

Syntax

`SSLCERTISS="issuer-of-digital-certificate"`

Syntax Description

"*issuer-of-digital-certificate*"

specifies the name of the issuer of the digital certificate that should be used by SSL.

Details

The SSLCERTISS= option is used with the SSLCERTSERIAL= option to uniquely identify a digital certificate from the Microsoft certificate store.

SSLCERTLOC= System Option

Specifies the location of the digital certificate that is used for authentication.

- **Client:** Optional
- **Server:** Required
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
- **Operating Environment:** UNIX
- **Category:** Communications: Networking and Encryption
- **PROC OPTIONS Group:** Communications

Syntax

`SSLCERTLOC="file-path"`
Syntax Description

“file-path”

specifies the location of a file that contains a digital certificate.

Details

The SSLCERTLOC= option is required for a server. It is required at the client only if client authentication is specified.

SSLCERTSERIAL= System Option

Specifies the serial number of the digital certificate that SSL should use.

- **Client:** Optional
- **Server:** Optional
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
- **Operating Environment:** Windows
- **Category:** Communications: Networking and Encryption
- **PROC OPTIONS Group:** Communications

Syntax

```
SSLCERTSERIAL="serial-number"
```

Syntax Description

“serial-number”

specifies the serial number of the digital certificate that should be used by SSL.

Details

The SSLCERTSERIAL= option is used with the SSLCERTISS= option to uniquely identify a digital certificate from the Microsoft certificate store.

SSLCERTSUBJ= System Option

Specifies the subject name of the digital certificate that SSL should use.

- **Client:** Optional
- **Server:** Optional
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax

SSLCERTSUBJ="subject-name"

Syntax Description

"subject-name"
specifies the subject name of the digital certificate that SSL should use.

Details

The SSLCERTSUBJ= option is used to search for a digital certificate from the Microsoft certificate store.

SSLCLIENTAUTH System Option

Specifies whether a server should perform client authentication.

Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS invocation
Operating Environments: UNIX, Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax

SSLCLIENTAUTH | NOSSLCLIENTAUTH

Syntax Description

SSLCLIENTAUTH
specifies that the server should perform client authentication.

NOSSLCLIENTAUTH
specifies that the server should not perform client authentication.

Details

Server authentication is always performed, but SSLCLIENTAUTH enables a user to control client authentication. This option is valid only when used on a server.
SSLCRLCHECK System Option

Specifies whether a Certificate Revocation List (CRL) is checked when a digital certificate is validated.

Client: Required
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS invocation
Operating Environments: UNIX, Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax

SSLCRLCHECK|NOSSLCRLCHECK

Syntax Description

SSLCRLCHECK
specifies that CRLs are checked when digital certificates are validated.

NOSSLCRLCHECK
specifies that CRLs are not checked when digital certificates are validated.

Details
A Certificate Revocation List (CRL) is published by a Certificate Authority (CA) and contains a list of revoked digital certificates. The list contains only the revoked digital certificates that were issued by a specific certificate authority. SSLCRLCHECK is required at a server only if client authentication is specified. Because clients always check server digital certificates, this option is required at the client.

SSLCRLLOC= System Option

Specifies the location of a Certificate Revocation List (CRL).

Client: Optional
Server: Optional
Operating Environment: UNIX
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax

SSLCRLLOC="file-path"
Syntax Description

\texttt{"file-path"}

specifies the location of a file that contains a Certificate Revocation List (CRL).

Details

The SSLCRLLOC= option is required only when the SSLCRLCHECK option is specified.

SSLPVTKEYLOC= System Option

Specifies the location of the private key that corresponds to the digital certificate that was specified by using the SSLCERTLOC= option.

- **Client:** Optional
- **Server:** Required
- **Valid in:** configuration file, OPTIONS statement, SAS System Options window, SAS invocation
- **Operating Environment:** UNIX
- **Category:** Communications: Networking and Encryption
- **PROC OPTIONS Group:** Communications

Syntax

\texttt{SSLPVTKEYLOC=\textquote{return-style}file-path\textquote{}}

Syntax Description

\texttt{"file-path"}

specifies the location of the file that contains the private key that corresponds to the digital certificate that was specified by using the SSLCERTLOC= option.

Details

The SSLPVTKEYLOC= option is required at the server only when the SSLCERTLOC= option is specified.

SSLPVTKEYPASS= System Option

Specifies the password that SSL requires for decrypting the private key that is stored in the file that is specified by using the SSLPVTKEYLOC= option.

- **Client:** Optional
Secure Sockets Layer (SSL) Options △ SSLPVTKEYPASS= System Option 201

Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS invocation
Operating Environment: UNIX
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax

SSLPVTKEYPASS=“password”

Syntax Description

“password”
specifies the password that SSL requires in order to decrypt the private key. The private key is stored in the file that is specified by using the SSLPVTKEYLOC= option.

Details

SSLPVTKEYPASS= is required only when the private key is encrypted.
Appendix

Appendix 1. Cross-Architecture Access 205
Appendix 2. Creating the SAS/SHARE Server Environment 219
Appendix 3. Tuning Tips for Applications That Use SAS/SHARE Software 233
Appendix 4. SAS Component Language (SCL) Application 255
Appendix 5. SAS/SHARE Cross-Version Issues, SAS 9.1 263
Appendix 6. Recommended Reading 267
Audience for Cross-Architecture Access

End-users who use SAS/SHARE to update shared data across operating environments that have different architectures.

Programmers who develop SAS applications that access shared data when the applications execute in one operating environment, and the shared data resides in another operating environment that has a different architecture.

Server administrators who create and maintain SAS servers that are accessible from operating environments that have different architectures.

Cross-Architecture Access: Overview

Cross-architecture access is a feature of SAS/SHARE software that enables a SAS/SHARE server session and its client sessions to execute on machines that have different architectures. For example, a server and its clients can execute on machines that have different internal representations of data such as the IBM System/390 and Intel Pentium, or Digital Equipment Alpha VMS and Hewlett-Packard Precision Architecture.

Cross-architecture access enables you to move data or applications from one type of operating environment to another. For example, a UNIX application that uses a SAS library on z/OS issues a LIBNAME statement in the same way that a z/OS application does, that is, by specifying the z/OS physical name for the SAS library and the name of the z/OS server. Using cross-architecture access you can

- move a SAS application from z/OS to UNIX, leave the data on z/OS, and continue to access the data without changing the application.
- move an application’s data from UNIX to z/OS, leave the application on UNIX, and change only the LIBNAME statement that accesses the data.
- duplicate the application on both operating environments and simultaneously access the data on z/OS.

Cross-architecture access enables users to read and write SAS data across architecture boundaries. It enables applications that run in one type of operating environment to read DBMS data that is accessed through server-managed SAS/ACCESS views when that DBMS is available only under another operating environment. For example, a SAS session on a Sun workstation can use a SAS/ACCESS view to read the contents of a DB2 table on a machine that runs the z/OS operating environment. For more information about using views under SAS/SHARE, see “SAS Data View Programming Considerations” on page 52.

SAS/SHARE software is especially well-suited to applications that

- require access to a single record at a time.
- use a WHERE clause to subset large data sets.
- execute procedures against small data sets.

An application that processes large quantities of data, especially through multiple passes, might benefit from moving a copy of the data to the computer on which it executes, or from using SAS/CONNECT software to remotely execute SAS on the computer on which the data is stored.

SAS/SHARE 9.1 supports access to some other types of SAS files, such as SAS catalogs, when the architecture of the server machine differs from the architecture of
the client machine. For details, see “Cross-Architectural Differences” on page 207 and “Cross-Architecture Restrictions and Limitations” on page 207.

Cross-Architectural Differences

- The internal data representations are different.

Cross-architecture access is used when the client session and the server session are running on machines that internally represent data differently due to hardware differences between two machines. For example, IBM mainframe machines represent floating-point numbers differently than computers that use Intel CPUs. The code pages that are used to represent character data also vary. For example, EBCDIC and ASCII are two major character-encoding methods.

- The C-language compilers that are used are different.

Different operating environments and C-language compilers also cause differences in data representation due to the varied alignment requirements of aggregate data types, such as the inter-element padding in a specific C structure. Also, two compilers for the same type of CPU might implement simple data types that have differing lengths.

- Operating environments are the same, but the machine architectures are different.

It might not always be obvious when the cross-architecture feature of SAS/SHARE is required. z/OS to CMS access is not cross-architecture because the underlying representation of data in the two operating environments is the same. However, sharing data between OpenVMS for VAX and OpenVMS for AXP uses cross-architecture access because data is represented differently on the Digital VAX and Alpha AXP architectures, even when the same operating environment is used. For complete details about architectural compatibility, see “Identical Architectural Groups” on page 213.

Note: Although neither CMS nor OpenVMS VAX are supported in later versions of SAS, they are included in the preceding example for backward compatibility.

Cross-Architecture Restrictions and Limitations

Cross-Architecture Catalog Access in the Client SAS Session

In cross-architecture catalog access, clients have read-only access to the SAS catalogs, but they cannot create, replace, or update SAS catalogs.

The client application specifies a catalog by using the libref and catalog names. This causes the entire catalog to be stored in a transport file on the server and imported by the client. The catalog is stored in the client’s library WORK under an automatically generated name, such as

```
WORK._SASXHST_00000000000001023144088.CATALOG
```

A maximum of three imported catalogs at a time may be stored in the client’s WORK library. A subsequent read of the original catalog by using the libref and catalog name might read from the imported copy of the catalog in the WORK library, depending on whether the catalog on the server has been modified since the last read by the cross-architecture client. If more than three cross-architecture catalogs are imported, the least recently used catalog is deleted to make room for the most recently used catalog.
The CONTENTS and the CATALOG procedures can be used to examine the imported catalogs in the WORK library. The DATASETS procedure can be used to delete these catalogs.

Cross-Architecture Catalog Access in the SAS/SHARE Server

By default, the SAS/SHARE server uses the library WORK to cache the transport files on the server, in the SAS library SASCATCA. However, you can use the SERVER procedure ALLOCATE LIBRARY command to assign the cache to a different SAS data library. The files in this library are stored in the transport format of SAS catalogs. For example:

```sas
proc server id=shr1;
allocate library mycache '/catalog/cache' libtype=catcache;
run;
```

You might want to assign the cache to a different SAS data library in order to

- minimize activity in the library WORK on the server so that other scratch uses of that library (such as temporary sort files) are not competing for space.
- dedicate a specific amount of space to the cache. The allotted space might be especially large or limited to a modest size by site considerations.
- save the SAS catalog files in transport format, when the SAS/SHARE server is stopped, to avoid having the server repeatedly translate catalogs into transport format.

Although the server caches a maximum of three transport files, an administrator can change the default. The ALLOCATE LIBRARY command, issued in the SERVER procedure, has a CATCACHELIMIT option in which you can specify the number of catalogs that are stored in the library SASCATCA. For details, see “ALLOCATE LIBRARY Command” on page 135.

Concatenating Cross-Architecture Catalogs

You can concatenate catalogs to minimize changes to an application and to increase efficiency when accessing cross-architecture catalogs. To do this, set up a catalog concatenation in the client session that uses the same librefs and catalog names that the application already uses.

Two new catalogs are used in a concatenation:

- One catalog, which is accessed through the SAS/SHARE server, contains catalog entries that change frequently.
- Another catalog contains the entries that do not change frequently. These entries can be built for and distributed to each client. Relocating catalog entries that do not change frequently on each client maintains a low overhead.

Using catalog concatenation in the server session is not recommended because a client that reads an entry in the concatenation will retrieve the entire concatenation as a single catalog, which could be large. Large catalogs can take a long time to read or retrieve entries from.

Catalog concatenation on the server can be an advantage if you have many small catalogs that will be accessed simultaneously. Having all of the catalogs concatenated under one name enables the client to keep that catalog in the library WORK. Having a single concatenated catalog reduces the possibility of thrashing, which can result if the client needs more than three catalogs in the library WORK. Thrashing occurs when catalogs are deleted and then retrieved.
Other SAS File Access

Direct access to PROC SQL views is provided, but SAS view files (type VIEW) cannot be directly accessed across architectures. A DATA step or SAS/ACCESS view can be read cross-architecture as long as it is interpreted in the server session. In this case, you should not specify the RMTVIEW=NO option in the client LIBNAME statement because that option requests interpretation in the client SAS session and requires the SAS view file itself to be transferred to the client session. For more information, see “SAS Data View Programming Considerations” on page 52.

Access descriptor files (type ACCESS) cannot be accessed across architectures. Access descriptors are special files that are produced and used by SAS/ACCESS products to describe data in other vendors’ databases, such as DB/2 or Oracle. Although cross-architecture interpretation of a SAS/ACCESS view is supported, direct access to the descriptor file is not. Therefore, you cannot use PROC ACCESS to create a SAS access descriptor file on a computer that has a different architecture.

SAS files of type PROGRAM cannot be accessed across architectures. These files contain compiled DATA step code. You cannot execute such a DATA step in your local SAS session by using the PGM= option in the DATA step, nor can you write a DATA step PROGRAM entry to a cross-architecture server. A DATA step PROGRAM entry can be executed in a cross-architecture server session if it is referenced by a DATA step view that is interpreted there.

Short Numerics and Mixed-Type Variables

In order for SAS data sets to be accessed across architectures, they should not include two-byte numeric variables. This length is allowed on IBM mainframe machines, but other operating environments that SAS runs on have a minimum numeric variable length of three. As a result, a data set that contains a two-byte numeric cannot be accessed across architectures from other types of operating environments.

With clever programming in the DATA step, it is possible to store numeric values in character variables and character values in numeric variables. However, you should not create data sets this way if you want to access them across architectures. SAS/SHARE performs appropriate character translation of character variables and numeric translation of numeric variables when crossing architectures. However, storing numeric values in character variables and character values in numeric variables will not be preserved. SAS/SHARE has no means to detect such usage.

Implications of Data Translation

Translation of Data at the Client and the Server

In SAS/SHARE, translation of numeric variables occurs when the server machine and the client machine represent floating-point numbers differently. For character variables, translation occurs when their character representations differ. Values are dynamically translated directly from the source representation to the target representation; they do not pass through transport format. Translation occurs both when data flows from the server to the client and when it flows from the client to the server. Therefore, data that flows across architectures from a server to a client and is then sent back to the server is translated twice.
For all operating environments that SAS/SHARE runs on, the REMOTE engine performs all data translations that are necessary in order to converse with the server. The REMOTE engine translates outgoing data to the server format, and translates incoming data from the server to its own format. The administrative procedure, PROC OPERATE, works in the same way.

Note: For all SAS/SHARE clients other than SAS sessions, such as the SAS ODBC driver, data translation occurs on the server, not on the client. △

Translation of Floating-Point Numbers between Machines

Loss of Numeric Precision and Magnitude

If you move SAS data between a client and a server session that run on machines that have different architectures, numeric precision or magnitude can be lost. Precision can be lost when the data value in the source representation contains more significant digits than the target representation can store. A loss of magnitude results when data values exceed the range of values that an operating environment can store. In general,

- the larger the number, the less concern there is for loss of precision.
- the smaller the number, the more concern there is for loss of precision.

For complete details about how SAS stores numeric values, see SAS Language Reference: Concepts.

Avoiding Loss of Precision

To avoid loss of precision, do not store numeric values in short variables. Instead, store numeric values using longer numeric variables (up to 8 bytes) according to the number of significant digits that the target representation can store.

Significance of Loss of Magnitude

When you lose magnitude, SAS produces the following warning:

WARNING: The magnitude of at least one numeric value was decreased to the maximum the target representation allows, due to representation conversion.

A loss of magnitude is unlikely in many applications, but if you have data with extremely large values or extremely small fractions you might experience a loss of magnitude during cross-architecture access. When you lose magnitude, SAS changes the values that are out of range to the maximum or minimum value that the operating environment can represent.

Table A1.1 Approximate Value Ranges by Operating Environment

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenVMS Alpha</td>
<td>2.3E-308</td>
<td>1.8E+308</td>
</tr>
<tr>
<td>OpenVMS VAX</td>
<td>2.9E-39</td>
<td>1.7E+38</td>
</tr>
<tr>
<td>UNIX</td>
<td>2.3E-308</td>
<td>1.8E+308</td>
</tr>
</tbody>
</table>
Cross-Architecture Access

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>2.3E-308</td>
<td>1.8E+308</td>
</tr>
<tr>
<td>z/OS</td>
<td>5.4E-79</td>
<td>7.2E+75</td>
</tr>
</tbody>
</table>

Example

You create a data set under UNIX that contains the value 8.93323×10^{105}. If you copy the file to a z/OS operating environment, magnitude is lost and the value changes to 7.23701×10^{75}, which is the maximum value that z/OS can represent.

Translation of Character Data in International Environments

If SAS/SHARE is used in an international environment, the client and server sessions might use different encodings that reflect their national languages and customs. For example, a server session and server data might be encoded for Latin (language) and Windows (encoding method). A client session might be encoded for German EBCDIC. Data that flows across architectures and encodings that are sent from a server to a client and back to the server is translated twice.

Character-Translation Tables

Note: The use of translation tables is relevant only when using:

- △ SAS Version 8 and SAS 9.1 cross-release access
- △ thin client and SAS 9.1 server access.

The tables that are used for character translation in SAS/SHARE are stored in SAS catalog entries of type TRANTAB. Each of these catalog entries contains two translation tables. The first table is for import translation, and the second table is for export conversion. For example, the EBCDIC/ASCII-OEM translation entry under z/OS contains an import table for ASCII-OEM to EBCDIC translation and an export table for EBCDIC to ASCII-OEM translation.

Table A1.2 Translation Tables and Catalog Entry Names

<table>
<thead>
<tr>
<th>Translation Table Set</th>
<th>Catalog Entry Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBCDIC/ASCII-ISO</td>
<td>_0000030</td>
</tr>
<tr>
<td>EBCDIC/ASCII-ANSI</td>
<td>_0000060</td>
</tr>
<tr>
<td>EBCDIC/ASCII-OEM</td>
<td>_00000A0</td>
</tr>
<tr>
<td>EBCDIC/ASCII-MAC</td>
<td>_0000120</td>
</tr>
<tr>
<td>ASCII-ISO/ASCII-ANSI</td>
<td>_0000050</td>
</tr>
<tr>
<td>ASCII-ISO/ASCII-OEM</td>
<td>_0000090</td>
</tr>
<tr>
<td>ASCII-ISO/ASCII-MAC</td>
<td>_0000110</td>
</tr>
</tbody>
</table>
Character-translation catalog entries are stored in the SASUSER.PROFILE and SASHELP.HOST catalogs. The translation process locates a specific translation entry by first searching the SASUSER.PROFILE catalog and then searching the SASHELP.HOST catalog.

The client’s execution of the REMOTE engine and the client’s translation tables are responsible for all data translations that occur between a SAS/SHARE client and a server. However, the SAS/SHARE server is responsible for the data translations that occur between that server and all SAS/SHARE clients other than SAS sessions.

SAS site administrators can use the TRANTAB procedure to replace or update the translation tables. For details, see the TRANTAB procedure and the TRANTAB= system option in the SAS National Language Support (NLS): User’s Guide.

CAUTION:

Do not attempt to update a translation table in a client session while accessing the SAS/SHARE server that the translation table will be applied against. You cannot ensure that the new version of the table will be used for subsequent translations.

Data Translation Considerations

Data translation in SAS/SHARE has some implications that users need to consider. For example, suppose you assign two SAS data libraries, ROO and ZOO, through a server on an operating environment that has a architecture that is different from your machine. You copy the data sets that are contained in ROO to ZOO:

```r
proc copy in=roo out=zoo mt=data;
run;
```

The contents of the copied data sets in ZOO are not guaranteed to be identical to the contents of the original data sets in ROO because the data sets in ZOO have been translated twice. First, the data is translated from server representation to client representation, then from client representation back to server representation.

As another example, suppose you are using the FSEDIT procedure to edit a data set across architectures. You enter a DUP command and then modify the variable X before saving the new record. You might find that, other than the value of the variable X, the new record is not identical to the old record. The original values of the duplicated record have been translated twice, from server-machine format to client-machine format and back to server-machine format. The new value that was entered for the variable X has been translated only one time, from user-machine format to server-machine format.

Note: When editing or updating a data set across architectures by using the FSEDIT procedure, the FSVIEW procedure, or the MODIFY statement in the DATA step, any variables that are not updated in an updated observation are exempt from translation and will be unaltered.
Identical Architectural Groups

Overview to Identical Data Representation Groups

The following sections contain lists of cross-version architecture groups for Version 8 and SAS 9.1. These architectural groups are valid only for access between
- a Version 8 client (or server) and a SAS 9.1 server (or client)
- a Version 8 client and a Version 8 server.

The lists are grouped on the basis of identical data representation. No data translation is required in communications between any two operating environments in the same group. When two operating environments that are not in the same group communicate, translation of at least one data type is required and restrictions and limitations are applied. For details, see “Cross-Architecture Restrictions and Limitations” on page 207.

Note: For backward compatibility, the following lists include architectures and operating environments that were supported in earlier versions of SAS but are not supported in SAS 9 and later.

IBM System/390 Architecture Operating Environments

- CMS
- z/OS

UNIX RISC Operating Environments

- AIX
- HP-UX
- Solaris 2
- SGI

UNIX 64-bit Operating Environments

- AIX 64
- HP 64
- HP-UX/Itanium
- Solaris 64

Windows 32-bit Operating Environments

- Windows XP
- Windows NT
- Windows 2000
Intel ABI+ Operating Environments

- Windows 98
- Windows 95

Incompatible Operating Environments

Data representation in the following operating environments is incompatible with all other operating environments and each other:

- Compaq Tru64 UNIX (formerly Compaq's DIGITAL UNIX)
- OpenVMS Alpha
- OpenVMS Alpha 64
- OpenVMS VAX
- OS/2
- Windows/Itanium

Note: None of the SAS 9.1 supported operating environments have identical non-character representations.

Numeric Architectural Groups

Overview to Numeric Architectural Groups

The following sections contain lists of cross-version architecture groups for Version 8 and SAS 9.1. These architectural groups are valid only for access between

- a Version 8 client (or server) and a SAS 9.1 server (or client)
- a Version 8 client and a Version 8 server.

The following lists show the Version 8 and SAS 9.1 operating environments that SAS/SHARE software runs on. The lists are grouped on the basis of similar numerical representation. No numeric (floating-point) translation is required in communications between any two operating environments in the same group. When two operating environments in different groups communicate, numeric translation is required and restrictions and limitations are applied. For details, see “Cross-Architecture Restrictions and Limitations” on page 207.

Note: For backward compatibility, the following lists include architectures and operating environments that were supported in earlier versions of SAS but are not supported in SAS 9 and later.
Version 8 Numeric Architecture Groups

IBM System/390 Format Operating Environments

- CMS
- z/OS

IEEE Format Operating Environments

- AIX
- AIX 64
- Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)
- HP-UX
- HP 64
- HP-UX/Itanium
- Intel ABI+ hosts
- OpenVMS Alpha
- OpenVMS Alpha 64
- OS/2
- RedHat Linux/Intel
- SGI
- Solaris 2
- Solaris 64
- Windows XP
- Windows NT
- Windows 2000
- Windows 98
- Windows 95
- Windows/Itanium

Translation of numeric data is necessary between some of these operating environments because byte-ordering or alignment requirements are different. However, because they all use the same number of exponent and mantissa bits, loss of precision or range does not occur.

OpenVMS VAX Operating Environment

OpenVMS VAX uses a unique numeric representation.

SAS 9.1 Numeric Architecture Groups

IBM System/390 Format Operating Environment

- z/OS
IEEE Format Operating Environments

- AIX 64
- Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)
- HP 64
- HP-UX/Itanium
- OpenVMS Alpha 64
- RedHat Linux/Intel
- Solaris 64
- Windows XP
- Windows NT
- Windows 2000
- Windows/Itanium

Translation of numeric data is necessary between some of these operating environments because byte-ordering or alignment requirements are different. However, because they all use the same number of exponent and mantissa bits, loss of precision or range does not occur.

Character Architectural Groups

Overview to Character Architectural Groups

The following sections contain lists of cross-version architecture groups for Version 8 and SAS 9.1. These architectural groups are valid only for access between

- a Version 8 client (or server) and a SAS 9.1 server (or client)
- a Version 8 client and a Version 8 server.

The lists are grouped on the basis of similar character representation. No character translation is required when communicating between any two operating environments in the same group. When two operating environments in different groups communicate, character translation is required and restrictions and limitations are applied. For details, see “Cross-Architecture Restrictions and Limitations” on page 207.

Note: For backward compatibility, the following lists include architectures and operating environments that were supported in earlier versions of SAS but are not supported in SAS 9 and later.

EBCDIC Format Operating Environments

- CMS
- z/OS
ASCII-ISO Format Operating Environments

- AIX
- AIX 64
- Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)
- HP-UX
- HP-UX 64
- HP-UX/Itanium
- Intel ABI+ hosts
- OpenVMS Alpha
- OpenVMS Alpha 64
- OpenVMS VAX
- RedHat Linux/Intel
- SGI
- Solaris 2
- Solaris 64

ASCII-ANSI Format Operating Environments

- Windows XP
- Windows NT
- Windows 2000
- Windows 98
- Windows 95
- Windows/Itanium

ASCII-OEM Format Operating Environment

- OS/2

Note: Because SAS 9.1 uses execution-time session encoding, operating environments cannot be meaningfully grouped according to character representation for SAS 9.1.
APPENDIX

2

Creating the SAS/SHARE Server Environment

Audience for SAS/SHARE Server Start-Up 219
All Operating Environments: Setting SAS System Performance and Logging Options 219
OpenVMS Alpha: Creating the Server Environment 220
 Overview of Tasks to Create the Server Environment 220
 Setting SAS System Performance and Logging Options 220
 Creating a Command File for the Server 221
 Executing the Command File for the Server 221
z/OS: Creating the Server Environment 223
 Starting a Server Using a Started Task 223
 Starting a Server Automatically 224
 Using the Static Program Method 224
 Using the Macro Method 225
 Setting SAS System Performance and Logging Options 225
UNIX: Creating the Server Environment 226
 Assigning the Server a User Account 226
 Starting a Server Manually 226
 Starting a Server Automatically 227
 Setting SAS System Performance and Logging Options 227
Windows: Creating the Server Environment 228
 SAS/SHARE Server Can Run as a Windows Service 228
 Using SSCU to Install a SAS/SHARE Server as a SAS Service 228
 Starting and Stopping a Service 232
 Removing or Changing an Installed SAS/SHARE Server Service 232

Audience for SAS/SHARE Server Start-Up

This information is designed for system administrators or server administrators who are responsible for preparing the operating environment to accommodate a SAS/SHARE server. Requirements for successful server start-up and operation vary according to operating environment type.

All Operating Environments: Setting SAS System Performance and Logging Options

Several SAS system options can help you reduce the number of disk accesses that are needed for SAS files and, therefore, enhance system performance. The SAS system options that are listed here are valid for all operating environments. Options that are operating environment-specific are documented in the sections that follow.
From a SAS session, run PROC OPTIONS to find the default settings for SAS system options on your operating environment.

BUFNO=
 specifies the number of buffers to use for SAS data sets.

BUFSIZE=
 specifies the permanent buffer size for an output SAS data set.

CATCACHE=
 specifies the number of SAS catalogs to keep open.

COMPRESS=
 controls the compression of observations in output SAS data sets.

LOGPARM=
 controls when SAS log files are opened and closed.

For details, see SAS system options in *SAS Language Reference: Dictionary.*

OpenVMS Alpha: Creating the Server Environment

Overview of Tasks to Create the Server Environment

You must perform the following tasks to create the server environment under an OpenVMS Alpha operating environment:

1. Set SAS performance options.
2. Create a command file for the server.
3. Run the command file for the server.
4. Run the SUBMIT command to create the server.

Setting SAS System Performance and Logging Options

The following SAS system options can be used to tune server performance and logging:

BUFNO=
 specifies the number of buffers to use for SAS data sets. The default is 1.

BUFSIZE=
 specifies the permanent buffer size for an output SAS data set. The default is 0.

LOG=
 specifies a destination to which the SAS log is written in batch mode. The default is SYS$PRINT (the default printer queue) or SYS$OUTPUT (the default output stream).

LOGPARM=
 controls when SAS log files are opened and closed.

For details, see system options in the *SAS Companion for OpenVMS Alpha.*
Creating a Command File for the Server

The command file performs any necessary process setup and invokes SAS. SAS runs a program that contains any setup that is needed for the server environment and then runs the PROC SERVER statement. For details about how to write a SAS program to start a server, see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27.

Use the following syntax to create a command file for a server:

```bash
$set noon
$!
$ SAS /ALTLOG=SYS$OUTPUT
   /ALTPRINT=SYS$OUTPUT
   /COMAMID=access-method
   sas-input-file
$!
$exit
```

where

ALTLOG=SYS$OUTPUT and ALTPRINT=SYS$OUTPUT specifies the files to which SAS writes copies of the log and the procedure output, respectively. These copies of the log and the procedure output are in addition to the default .LOG and .LIS files. Specifying /ALTLOG=SYS$OUTPUT and /ALTPRINT=SYS$OUTPUT causes all SAS output from the server process to be written to the SYS$OUTPUT file, which produces a single file that contains the OpenVMS record of the process execution and the SAS record of the server execution.

How the logical name SYS$OUTPUT is defined depends on how the command file is executed. For this information, see “Executing the Command File for the Server” on page 221.

COMAMID=access-method specifies the access method that the server uses to communicate with its clients. Assign TCP to the COMAMID= option.

sas-input-file specifies the name of the file that contains the SAS statements to start the server. For details about writing a program to start a server, see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27.

Executing the Command File for the Server

You can execute the command file for a server by using the SUBMIT command to submit a batch job. The batch job creates a detached process, which then executes the command file.

Use the SUBMIT command to start the server during start-up of your OpenVMS Alpha operating environment or start a server by executing a command.

Because of its nature, a server usually runs in a detached process. Instead of executing the RUN command directly during system start-up or at other times, you should execute the RUN command in a batch command file that you submit with the SUBMIT/USER= command. This ensures that the server is created with appropriate privileges and file access authority. The SUBMIT/USER= command requires the CMKRNL privilege.
The syntax of the SUBMIT command is

$ SUBMIT/USER=user-name batch-filename

where

user-name
 specifies the name of the user that executes the batch job that creates the process in which the server runs.

batch-filename
 specifies the batch job to be executed. The purpose of the batch job is to create a detached process in which the server executes. Therefore, this batch job usually consists of one RUN command, for example:

$ RUN /DETACHED -
 /AUTHORIZE -
 /INPUT=command-input-file -
 /OUTPUT=command-output-file -
 /ERROR=error-file -
 /PROCESS_NAME=process-name -
 /SYS$SYSTEM:LOGINOUT.EXE

where

command-input-file
 specifies the name of the file that contains the commands that are executed in the detached process. For details about the contents of this file, see “Creating a Command File for the Server” on page 221.

 Note: This file must also contain device or directory specifications. If the file does not contain these specifications, then the detached process might fail.

output-file
 specifies the name of the file to which the record of the execution of the detached process is written. This file should be accessible to any administrator of the server and to developers of applications that use the server. This file contains any information that is written to SYS$OUTPUT.

 Note: This file must also contain device or directory specifications. If the file does not contain these specifications, then the detached process might fail.

error-file
 specifies the file to which OpenVMS errors are written. This should be accessible to any administrator of the server and to developers of applications that use the server. This file contains information that is written to SYS$ERROR.

 Note: This file must also contain device or directory specifications. If the file does not contain these specifications, then the detached process might fail.

process-name
 specifies a descriptive name of the detached process in which the server executes. This value may be the same as the server name that you specify for the SERVERID= option in the PROC SERVER statement.
Starting a Server Using a Started Task

You can invoke SAS from a TSO session, a batch job, or a started task. However, it is recommended that you use a started task to invoke SAS in order to run the PROC SERVER statement.

Note: If you use the XMS access method, do not invoke SAS and create the server in a batch environment. Doing this might drain the batch initiator when the server execution ends. The address space (ASID) would not be usable.

1. To start the server, create a cataloged started task procedure that contains the JCL, as follows:

```
Example Code A2.1  Example JCL in the z/OS Started Task Procedure Library

//SHRSTART PROC ENTRY=entry, ID=id, SERVOPT=' ', UAPW=, OAPW=, OPTIONS=
//SAS EXEC PGM=ENTRY, DYNAMNBR=50, REGION=40M,
// PARM='IS=%SHRMACS(SERVER);%STRTSRV(&id',
// ' %STR(&SERVOPT), %UAPW, %OAPW', &options')
//STEPLIB DD DISP=SHR, DSN=&prodfix.LIBRARY
//CONFIG DD DISP=SHR, DSN=&prodfix.CNTL(BATW0)
// DD DISP=SHR, DSN=&prodfix.CNTL(SRVCNFG)
//SASAUTOS DD DISP=SHR, DSN=&prodfix.AUTO LIB
//SASHELP DD DISP=SHR, DSN=&prodfix.SASHELP
//SASMSG DD DISP=SHR, DSN=&prodfix.SASMSG
//WORK DD UNIT=SYSDA, SPACE=(6144, (500,200),,, ROUND)
//SASLOG DD SYSOUT=*, DCB=(BLKSIZE=141, LRECL=137, RECFM=VBA)
//SASCLOG DD SYSOUT=*  
//SASSNAP DD SYSOUT=*  
//SYSUDUMP DD SYSOUT=*  
//SYSIN DD DUMMY
```

where

- `entry` is the value that is specified for the ENTRY= parameter in the cataloged procedure that is used to invoke SAS from a batch job. This procedure was created when Base SAS was installed. For details about this procedure, see http://support.sas.com/documentation/installcenter/os390/v9.1/index.html.

- `id` is the server name (default or otherwise) that is passed to the PROC statement in the STRTSRV macro.

- `SERVOPT=''` can be any valid option in the PROC SERVER statement. For information about PROC SERVER options, see Chapter 12, “The SERVER Procedure,” on page 123.

- `UAPW=uapw` is the user-access password for the server.

- `OAPW=oapw` is the operator (or server administrator) password for the server.
Notice that the PARM= parameter uses the macro STRTSRV to start a server. %STRTSRV is a standard SAS/SHARE autocall macro. For more information, see “Using Macros for Server Library Access” on page 73 and “STRTSRV Macro” on page 184. Alternatively, you can use the SERVER macro to start a server. %SERVER executes faster than %STRTSRV. For more information, see Chapter 12, “The SERVER Procedure,” on page 123.

To use %SERVER instead of %STRTSRV in the PARM= parameter, change the EXEC statement as follows:

```plaintext
  // PARM='IS='''%SERVER(&ID,&SERVOPT,&UAPW,&OAPW)'''
```

After the member SERVER that contains this JCL has been created, the console operator issues the following command to create the server as a started task:

```plaintext
  START SHRSTART
```

The cataloged procedure name for the SAS/SHARE server is SHRSTART.

When this command executes, the procedure passes the appropriate parameters to the SAS macro, STRTSRV or SERVER, which invokes the PROC SERVER statement.

To create a new server (one whose name is different from the ID= parameter in the JCL), enter the following:

```plaintext
  START SHRSTART,ID=server-ID
```

To enter the default PROC SERVER options that are indicated in the SERVOPT= parameter in the JCL, enter the following:

```plaintext
  START SHRSTART,SERVOPT='options'
```

To override the user- and operator-access passwords in the START command and to override those that are specified in the UAPW= and OAPW= parameters in the JCL, enter the following:

```plaintext
  START SHRSTART,UAPW=uapw,OAPW=oapw
```

To enter all of these specifications in one START command and to override those in the JCL, enter the following:

```plaintext
  START SHRSTART,ID=server-ID,SERVOPT='options'
  UAPW=uapw,OAPW=oapw
```

Starting a Server Automatically

Using the Static Program Method

To use the static program method, store a SAS program that contains PROC SERVER in an external file. For information about writing a SAS program to start a server, see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27. Invoke SAS by specifying the program as the primary input data stream. To use the program in the started task, locate the following line in the previous JCL code example.

```plaintext
  //SYSIN DD DUMMY
```

Change it to read as follows:

```plaintext
  //SYSIN DD DSN=data-set-name,DISP=SHR
```

This method creates a server in the same way each time the program runs.
Using the Macro Method

Although it is recommended that you use the STRTSRV macro from the SAS macro autocall library (see Chapter 6, “SAS/SHARE Macros for Server Access,” on page 73), you can also create and use the SERVER macro, which executes faster than %STRTSRV.

Before you can use the SERVER macro, you must create a member named SERVER in the SAS macro autocall library and add the following statements:

```sas
%MACRO SERVER(id,servopt,uapw,oapw);
%********************************************;
%* This macro invokes PROC SERVER to create *
%* a server with the specified ID.       *
%********************************************;
%PROC SERVER ID=&id &servopt
  %if (&uapw=) %then
    %do;
      UAPW=&uapw
    %end;
  %if (&oapw=) %then
    %do;
      OAPW=&oapw
    %end;
;  
run;
endsas;
%MEND;
```

Setting SAS System Performance and Logging Options

The following options affect the operation of the server. Default values for these options are set in the SAS/SHARE server configuration file.

BUFNO=
- specifies the number of buffers to use for SAS data sets. The default value is 1.

LOGPARM=
- controls when SAS log files are opened and closed.

LOG=
- specifies a file to which the SAS log is written when executing SAS programs outside the windowing environment.

MEMLEAVE=
- specifies the amount of memory that is reserved for cleanup in the event of an abnormal termination of SAS.

MEMSIZE=
- specifies the total amount of memory that SAS can use.

STAE
- prevents a system abend exit when recoverable errors occur. STAE is the default.

SVC0SVC=
SVC0R15=
- The SAS SVC Routine 0 is required for SAS/SHARE. You must specify the SAS system options SVC0SVC= and SVC0R15= to accurately reflect the way the SVC was installed. Get this information from the person who installed Base SAS.

For more information about these SAS system options, see http://support.sas.com/documentation/installcenter/os390/v9.1/index.html.
SYNCHIO
specifies whether synchronous IO is enabled.

CAUTION:
Do not specify the SYNCHIO option. The SYNCHIO option prevents SAS/SHARE servers from working properly. NOSYNCHIO is the default.

VMCTLISA
specifies the size of the ISA (initial storage allocation) for SAS memory management and control blocks.

VMPAISA
specifies the size of the ISA for permanent memory above the 16-Mb line.

VMPAOSA
specifies the size of the OSA (overflow storage allocation) for permanent memory above the 16-Mb line.

VMTAISA
specifies the size of the ISA for temporary memory above the 16-Mb line.

VMTAOSA
specifies the size of the OSA for temporary memory above the 16-Mb line.

VMPBISA
specifies the size of the ISA for permanent memory below the 16-Mb line.

VMPBOSA
specifies the size of the OSA for permanent memory below the 16-Mb line.

VMTBISA
specifies the size of the ISA for temporary memory below the 16-Mb line.

VMTBOSA
specifies the size of the OSA for temporary memory below the 16-Mb line.

For details, see information about system options in the *SAS Companion for z/OS*.

UNIX: Creating the Server Environment

Assigning the Server a User Account

Rather than run the server process under root, assign a specific user account to the server process. Identify all SAS data libraries that will be shared. Consider the appropriate file permissions that should be granted based on both the server and user account access. At minimum, the server account will need read and write permissions to the SAS data libraries that it shares. By default, the processes that are initiated from /etc/inittab and /etc/rc will start under root ownership.

Starting a Server Manually

You can invoke SAS and start a server manually by using a UNIX script command. The command line syntax used to invoke SAS and start a server follows:

```
nohup sas -sysin sas-input-file -noterminal -unbuflog
-log "/u/system/server%W.log" -logparm "rollover=auto" &
```
where:

nohup
causes the associated SAS process to ignore HUP or HangUp signals that are sent from the operating system.

sas
specifies a site-specific path to the SAS executable that initiates the process.

-sysin sas-input-file
specifies the file that contains the SAS statements to start a server. For information about the content of this file, see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 27.

-noterminal
specifies that no physical terminal is associated with this process.

-unbuflog
writes server log messages to the server log immediately (without buffering).

-log "/u/system/server%W.log"
directs all log messages to the log file that is named by replacing %W with the current numeric week of the year.
 For example, server02.log identifies a log that was generated during the second week of the year.

-logparm "rollover=auto"
if the path name of the log file changes (for example, when %W is used to name weekly logs), the log is automatically saved in the current file, and a new file is opened to store the new content. For details, see “LOG system option” and “SYSIN system option” in the SAS Companion for UNIX Environments, and “LOGPARM system option” and “TERMINAL system option” in SAS Language Reference: Dictionary.

& (ampersand symbol)
allows the SAS process to run in background mode in the UNIX operating environment.

The following is an example of a SAS command that invokes SAS and starts a server:

nohup /u/system/sas -sysin /u/system/startsrv.sas -noterminal -unbuflog
-log "/u/system/server%W.log" -logparm "rollover=auto" &

Starting a Server Automatically

You can configure a SAS/SHARE server to start automatically whenever the UNIX machine that the server runs on is re-started. The UNIX system administrator can insert the script command (outlined in Starting a Server Manually) into the last portion of either the /etc/inittab or /etc/rc UNIX system files. For a typical script command, see “Starting a Server Manually” on page 226.

Note: The nohup parameter should be omitted from the server’s UNIX script command when it is part of the /etc/inittab or /etc/rc system file.

Setting SAS System Performance and Logging Options

The following options affect the operation of the server:
BUFNO=
specifies the number of buffers to use for SAS data sets. The default is 1.

BUFSIZE=
specifies the permanent buffer size for an output SAS data set. The default is 0.

LOG=
specifies a destination to which the SAS log is written in batch mode.

MEMSIZE=
specifies a limit on the total amount of memory that SAS uses at any one time. The default is 32M.

For more information, see the chapter about system options in the *SAS Companion for UNIX Environments*.

For best performance, run the server on the machine where the shared SAS data resides. Do not run production servers in SAS foreground mode using the SAS windowing environment.

Note: The windowing environment supports a maximum of 32,767 lines that can be written to the SAS log.

Windows: Creating the Server Environment

SAS/SHARE Server Can Run as a Windows Service

You can configure a SAS/SHARE server as a Windows service, which enables the automatic start-up of the server when the Windows operating environment is started.

To configure a SAS/SHARE server as a Windows service, use the SAS Service Configuration Utility (SSCU), which is shipped with Base SAS for Windows. For information about using SSCU, see the on-line help that is provided with the utility.

Note: The complete instructions for installing and using the SSCU are provided in the document "Installation Instructions for 9.1 of the SAS System for Microsoft Windows," which is included with the software.

Using SSCU to Install a SAS/SHARE Server as a SAS Service

Configure the Server Service using the following steps:

1. Start the SAS Service Configuration Utility (SSCU) by selecting:
 - Start → Programs → *your-SAS-System-folder* → SAS Service Configuration Utility

2. In the SSCU window, click the Install tab and complete the following fields:
Service Name
is used to create the service name as recorded in the Windows registry.

Display Name
is used to create the service name that is displayed in the Windows Service Control Manager. In the example, the server ID SHR1 is included to make it easier to identify among the multiple SAS/SHARE servers that might be configured.

Start Type
is used to specify whether the server is started automatically or manually. **Automatic** causes the SAS/SHARE server to start automatically when the Windows operating environment is started. Select **Manual** to enable the service to be started and stopped by an administrator using the Windows Service Control Manager.

Service Path
identifies the SAS invocation command line to be executed with corresponding system options for server-specific behavior. The following is an example of a service path specification:

```bash
C:\Program Files\SAS\SAS System\9.1\sas.exe
-noterminal -unbuflog -sysin "C:\shr1.sas"
-log "C:\shr1%W.log" -logparm "rollover=auto"
```
C:\Program Files\SAS\SAS System\9.1\sas.exe identifies the SAS executable.

-noterminal
prevents interaction with the console.

-unbuflog
writes messages to the server log immediately (without buffering).

-sysin "C:\shr1.sas"
specifies a batch file to start the SAS/SHARE server. The file shr1.sas contains the following SAS program:

```sas
%let tcpsec=_secure_;
proc server id=shr1 authenticate=required;
run;
```

The PROC SERVER statement starts the SAS/SHARE server SHR1. The TCPSEC=_SECURE_ system option and the AUTHENTICATE=REQUIRED option specify that each client must be authenticated before accessing the server.

For more information about the TCP/IP access method, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

-log "C:\shr1%W.log"
directs all log messages to the log file that is named by replacing %W with the current numeric week of the year. For example, shr102.log identifies a log that was generated during the second week of the year.

-logparm "rollover=auto"
if the path name of the log file changes (for example, when %W is used to name weekly logs), the log is automatically saved in the current file, and a new file is opened to store the new content.

For more information, see the documentation for the LOG and SYSIN system options in the SAS Companion for Windows and the documentation for the LOGPARM= and TERMINAL system options in SAS Language Reference: Dictionary.

Dependencies
specifies a list of Windows services, which will be started before the SHARE server service.

3 In the SSCU window, click the Account tab and complete the following fields:
This Account specifies a valid Windows user account that the service will run under. The value for this field should be in the format Domain\Account. For example, CORPSALES\ServAcct.

Password specifies a valid password for the user account that is specified in the This Account field.

Confirm Password confirms the value that you entered in the Password field.

4 In the SSCU window, click the Install tab again and select Install.

A message window appears and confirms that the service was installed successfully.

Click OK to close the message window.

5 Click OK in the SAS Service Configuration Utility window to complete the configuration and installation of the service.

Note: To start the SAS/SHARE server service either manually or automatically, the account that you specified in the This Account field on the Account tab must be assigned the Log on as a service and Act as part of the operating system rights. The administrative interface that is used to assign user rights is dependent on the version of Windows that you are using. See the documentation for your Windows operating environment for instructions about assigning user rights.
Starting and Stopping a Service

Using the Windows Services Utility

From the Services utility in the Windows Control Panel, you can monitor Windows services, including the SAS/SHARE server service that you set up by using the SSCU. To start or stop a service, click **Start** or **Stop**, as appropriate.

Note: In Windows 2000 and Windows XP, the Services utility is located under Administrative Tools in the Windows Control Panel.

Using DOS Commands

You can also start or stop a service by using commands at a DOS prompt.

To start a service, type `NET START service-name` where `service-name` is the name of the service that you want to start.

To stop a service, type `NET STOP service-name` where `service-name` is the name of the service that you want to stop.

Removing or Changing an Installed SAS/SHARE Server Service

Removing the Service

To remove the server service:

1. If the service is active, stop the service by using one of the methods described in “Starting and Stopping a Service” on page 232.
2. Start the SAS Service Configuration Utility (SSCU) by selecting
 - Start → Programs → `your-SAS-System-folder` → SAS Service Configuration Utility
3. In the SSCU window, click the Remove tab. Click the down arrow under Choose the installed SAS service you want to remove and select the service that you want to remove.
4. Click **Remove**.

Changing the Service

To change the configuration for a service, remove the service and install it again.
APPENDIX

3

Tuning Tips for Applications That Use SAS/SHARE Software

Authors 234

Introduction to Tuning Tips for Applications That Use SAS/SHARE Software 234

Overview of Tuning Tips for Applications That Use SAS/SHARE Software 234

The SAS Data Library Model 235

How Data Flows When You Use SAS Files 235

Introduction 235

SAS Data Files 236

SAS Data Views 237

SAS Catalogs 237

Concurrent Access: Update versus Read-only 237

Computer Resources Used by a Server 238

CPU 239

I/O 240

Overlapping I/O 241

Memory 241

Messages 242

Minimizing and Optimizing Resource Consumption 242

Programming Techniques 243

Clean Up Your Data Files 243

Choose the Appropriate Subsetting Strategy 243

Index Wisely 244

Look at a Clock Before You Create an Index 244

Choose Page Size Wisely 244

Understand and Control Random Access 244

Specify Sequential Access when an SCL Program Doesn’t Need Random Access 245

Limit the Number of Files Open During Execution of an SCL Program 245

Evaluate Each Report’s Timeliness Requirement 246

Be Aware of How Frequently Each File Is Updated 246

Know Your Application’s DATA Step Views 247

Tuning Options in SAS/SHARE Software 247

TBUFSIZE= Option in PROC SERVER 248

TOBSNO= Data Set Option 248

RMTVIEW= and NORMTVIEW Options 249

LRPYIELD= Option in PROC SERVER 250

Multiple Servers 250

SAS System Options 250

BUFSIZE= Option 250

COMPRESS= Option 251

Using Operating Environment Tools 251

Introduction 251

Managing CPU 252
Introduction to Tuning Tips for Applications That Use SAS/SHARE Software

SAS has many tuning options, most of which are left at their default values. When an application accesses data through a SAS/SHARE server, sometimes the default values provide adequate performance and sometimes they do not.

SAS software is delivered to you properly tuned for a typical application that uses SAS/SHARE software. SAS Institute makes some assumptions about the kind of processing that is going to take place in a typical application. Recognizing that your application may not be typical, SAS supplies tuning options that you can use to override default behavior.

This paper discusses programming techniques and option value adjustments that you can use to improve the performance of your applications that access data through servers. The information in this paper is the result of tuning several large applications that are in use at SAS Institute.

Overview of Tuning Tips for Applications That Use SAS/SHARE Software

This paper was originally presented at SUGI 18. Since that time, client/server applications have become more common. The paper is being updated and presented again because there is a growing audience interested in tuning their client/server applications.

This paper will give you some ideas to help you develop SAS applications that make the most efficient use of concurrent access to SAS files. Because this audience is composed of people with different amounts of experience developing applications that use concurrent access to data, the first part of the paper will focus on overviewing the general model for accessing data in SAS. The later parts of the paper will draw on the general data model to describe how to tune a client/server application.

Since introducing SAS/SHARE software in 1987, SAS Institute has compared two contrasting images to show the additional capability that SAS/SHARE software brings to SAS. One image shows a user's SAS session accessing files directly; the other image shows a user's SAS session connected to a server's session and the server's session accessing the files directly. The essential difference is that the data in a file that is accessed through a server travels through two SAS sessions whenever it is accessed. Of course, a server controls concurrent access to the data that is read and written through
it, so its overhead has an important purpose. But it is important to remember that data accessed through a server requires more computing resources than data accessed directly.

One or more servers can execute at the same time on a single computer or in a network of computers. You can use different servers for different applications, or you can use a few servers to distribute the load of many applications.

When you use more than one server, each server performs only part of the work load. This allows each server to respond to requests more quickly. On the other hand, every process on a computer requires a certain amount of overhead simply to exist, and servers are no different from other processes in this regard. You must balance the performance improvement that using multiple servers gives your users against the increased load on your system as more servers execute. The later parts of this paper will discuss measuring how much work a server is doing; you can use that information to determine when to add or delete servers.

The SAS Data Library Model

You should make sure you thoroughly understand the material about the SAS data library model in *SAS Language Reference: Concepts* before you attempt to tune SAS applications and servers at your installation. Here are some of the terms defined in that material that are most important to understanding this paper:

A SAS data library can have five types of members, DATA, VIEW, CATALOG, PROGRAM, ACCESS, MDDB, and FDB. This paper will deal only with the types DATA, VIEW, and CATALOG.

A library member of type DATA is a SAS data file. Through Version 5 of SAS, SAS Institute referred to such files as SAS data sets. A SAS data file may be compressed, and it may have zero or more indexes.

A SAS data view is a set of directions that tells a SAS view engine how to combine data from one or more sources into observations.

A SAS catalog is a file that contains smaller files; the files contained in a catalog are catalog entries. Some types of entries you might be familiar with are PROGRAM (SAS/AF programs), SCREEN (PROC FSEDIT screens), and FORMAT (user-written formats).

How Data Flows When You Use SAS Files

Introduction

To tune applications that access data concurrently, it is to your advantage to understand how data is read and written in the different types of members of SAS libraries that can be accessed through a server.

It is important to remember that an application cannot run any faster when it accesses data through a server than it can when it accesses data directly. This might seem obvious, but it is surprisingly easy to simply blame an application’s sluggish performance on the server without ever testing the application while accessing the data without going through a server. For many applications, the difference in performance between accessing the data directly versus accessing the data through a server will not be large. Whenever you develop a new application, verify that the application runs acceptably while accessing its data directly before you add a server to the application’s data access.
SAS Data Files

When a SAS session reads from a SAS data file that is accessed directly:
1. The procedure or DATA step requests an observation from the engine.
2. The engine requests the SAS host interface to read the page of the data file that contains the observation.
3. The engine extracts the observation from the page and returns it to the procedure.

When a SAS session updates or adds to a SAS data file that is accessed directly:
1. The procedure calls the engine to replace or add the observation.
2. The engine replaces or adds the observation in the page.
3. The engine calls the host interface to write the updated or new page to disk.

When a SAS session reads from a SAS data file that is accessed through a server:
1. The procedure or DATA step requests the observation from the REMOTE engine.
2. The REMOTE engine determines whether the requested observation is already available in its transmission buffer in the user’s SAS session. If the observation is available, it is returned to the procedure.
3. If the observation is not already available in the user’s SAS session, the REMOTE engine sends a message to the server to get a buffer full of observations, including the observation requested by the procedure.
4. The server fills the transmission buffer by requesting one or more observations from the engine that accesses the data file in the server’s SAS session.
5. For each observation, the engine in the server’s session requests the SAS host interface to read the page of the data file that contains the observation.
6. The engine in the server’s SAS session extracts each observation from its page and returns it to the server.
7. After filling the transmission buffer, the server sends the buffer to the REMOTE engine.
8. The REMOTE engine extracts the selected observation from the transmission buffer and returns it to the procedure or DATA step.

When a SAS session updates or adds to a SAS data file that is accessed through a server:
1. The procedure calls the REMOTE engine to replace or add the observation.
2. The REMOTE engine replaces the observation in its transmission buffer or adds the observation to its transmission buffer.
3. If the data file is open for update access, the REMOTE engine sends a message to the server that carries the new or updated observation and requests that it be updated in or added to the data file.
4. If the data file is open for output access, the REMOTE engine adds observations to its transmission buffer until the buffer is full. After the transmission buffer is full, the REMOTE engine sends it to the server.
5. The server requests the engine that accesses the library in the server’s SAS session to replace the observation in the data file or add the observation(s) to the data file.
6. The engine in the server’s SAS session replaces or adds each observation by updating and creating pages in the data file.
7. The engine requests the SAS host interface to write each updated and new page to the data file.
8 The engine in the server’s SAS session returns to the server.
9 The server replies to the REMOTE engine indicating that the updated or new observation has been stored in the data file.
10 The REMOTE engine returns to the procedure.

SAS Data Views

The flow of data as a SAS data view is processed can be complex, because a view is a set of instructions that tells how to select and combine data from one or more sources. A SAS data view can be interpreted in a user’s SAS session or a server’s SAS session. When a view is interpreted in a user’s SAS session, the view file and none, some, or all of the data read by the view can be accessed through a server. When a view is interpreted in a server’s SAS session, the view file and all of the data read by the view must be accessed by the server.

There are three types of SAS views:
- PROC SQL views, which are interpreted by the SQL engine
- SAS/ACCESS views, which are interpreted by SAS/ACCESS interface engines
- DATA step views, which are interpreted by the DATA step view engine

A view created by the SQL procedure can read SAS data sets (SAS data files and any kind of SAS data view). When a SAS/ACCESS view engine is used in a multi-user server’s session, the view engine can only read from the database; it cannot update the database. The flow of data is one-way: from the database to the interface engine to the server to the user.

A DATA step view can, like a PROC SQL view, combine data from SAS data files and SAS data views. In addition, DATA step views can include sophisticated calculations and read data from external files. A DATA step view can produce data exclusively by calculation, without reading any data.

SAS Catalogs

SAS catalogs are containers for many different types of entries, and the data in each type of entry is accessed in a pattern unique to the entry type. Like the observations in SAS data sets, the REMOTE engine will combine records in a catalog entry into groups. The combination of records for catalog entries is done only for INPUT open (OUTPUT and UPDATE opens transmit one record at a time).

Concurrent Access: Update versus Read-only

Many applications use several SAS files. It is to your advantage if, while designing your application, you identify and segregate:
- the set of files which must be updateable by more than one user at a time
- the files that will be updated by only one user, but while other users are reading the files
- the files that will be updated so infrequently that access to those files by all users is practically read-only
The files in the first group are excellent candidates for access through a server. The files in the second group are often good candidates for access through a server, but for some applications the performance improvement from not accessing the files through a server might make it worthwhile to use a more complicated procedure to update those files while the users are not around. The files in the third group are almost always poor candidates for access through a server because all of the operating environments that SAS runs under provide shared read-only access to files, and that direct access is almost always faster than access through a server.

Here is a summary of the advantages and disadvantages of segregating files into read only and concurrently updated libraries:

- A SAS file that is accessed through a server usually costs more, in terms of computing resources, for users of the application to use than a SAS file that is stored in a library that is accessed directly by the users.
- Reduced traffic through a server optimizes response time for the users of the concurrently updated files.
- Simpler, more direct access to read-only copies of files reduces the cost of an application’s query and reporting functions. Note that such a copy might be a subset instead of the entire file.
- A SAS file that is accessed through a server can be updated while it is being queried or reported on.
- Copies of files require disk space.
- A file in a SAS library that is accessed directly by users cannot be updated while a user executes the part of the application that uses that file.

Computer Resources Used by a Server

The information in this paper so far has been about SAS files and how they are used by an application. You will be a more effective application developer if, in addition to understanding how to make optimum use of SAS files, you also understand the computer resources that a server consumes. That understanding will allow you to design your applications to make optimum use of a server and optimum use of SAS files.

A server is an independently running SAS session that brokers requests for data from other SAS sessions. There are four types of computer resources that a server consumes:

- CPU (the computer’s processor)
- I/O (input from and output to the computer’s permanent storage)
- Memory (the computer’s working storage)
- Messages (passing data between a server and its users)

CPU, I/O, and memory resources are consumed by every SAS session. Messages is a name for one measurable aspect of the complex area of communications resources; communications resources are consumed by SAS/SHARE software and SAS/CONNECT software because these two products enable SAS sessions to communicate with one another.

Any work done by a server consumes more than one kind of resource (if you are looking for simple uncomplicated truths, you might want to skip this section). A server can do several types of work and, as you might expect, not all types of work consume resources in the same relative amounts. For example, some work a server can do consumes much of the CPU resource but little of the other resources, while other work
consumes much of the memory resource, less of the CPU resource, and very little of the other resources.

CPU

A server creates processes as users connect to it and execute DATA steps, procedures, and windows. These processes (created on users’ behalf) are assigned the work that is actually performed in the server’s SAS session. This allows a process in a server's session to do work requested by one user and then yield control so that another process can do work for another user.

Most requests handled by the processes in a server require small bursts of CPU time. But there are several requests that can consume especially large amounts of CPU time:

- Processing a WHERE clause
- Interpreting a SAS DATA step view
- Processing a compressed SAS data file

When a SAS data set is accessed through a server, every WHERE clause used to select observations from that data set is evaluated by a process in the server’s SAS session. This increases the server's overall use of the CPU resource to reduce its use of the messages resource. Often, evaluation of a WHERE clause can be optimized by using an index to locate the selected observations. But when an index is not used, or selects more observations than satisfy the WHERE clause, the process in the server’s session must search for observations that completely satisfy the WHERE clause. Searching can consume a significant amount of the CPU resource. While a process conducts a search, it yields periodically to allow other processes in the server's session to do work for other users.

A PROC SQL view can consume quite a bit of the CPU resource. The SQL view engine can join tables, it might need to sort intermediate files, and there might be several WHERE clauses in the view that require evaluation. The process in which the SQL view engine executes yields periodically while a view is interpreted.

DATA step views and SAS/ACCESS views also consume the CPU resource. The process in which either of these engines executes does not yield to allow other processes to run, although the server itself allows other processes to run when a group of observations has been prepared for transmission to a user's SAS session. A DATA step view that does a great deal of calculation while preparing each observation can have a visibly harmful impact on a server’s response time to other users’ requests.

When a compressed SAS data file is read, processes in the server's session decompress each observation; when a compressed SAS data file is created or replaced, a process in the server's session compresses each observation. In many cases the time required to decompress (or compress) is shorter than the time required to read the additional pages of an uncompressed file. In other words, trading increased use of the CPU resource for decreased use of the I/O resource can, on balance, reduce the length of time users wait for a server to respond. While a user processes a compressed data file through a server, other processes in the server's session may execute between groups of observations requested by that user; a SAS data file is not compressed or decompressed in its entirety in a single operation.

The "Programming Techniques" section of this paper offers ideas for reducing the CPU consumption of processes in a server's session under the topics:

- Choose the Appropriate Subsetting Strategy
- Index Wisely
- Know Your Application's DATA Step Views
Because most work done by the processes in a server's SAS session involves I/O activity, those processes can spend a significant amount of time waiting for I/O activity to complete. (This time includes moving the head of a disk drive to the correct position, waiting for the disk to spin around to the position of the requested data, and transferring the data from the disk to the computer's working storage.) In the current release of SAS/SHARE software, while a process in a server's session waits for I/O activity to complete, other processes in the server's session do not perform other work that uses a different (CPU, memory, or messages) resource.

That waiting could, it would seem, become a bottleneck for a server, and in a few situations this problem is realized. But in practice most of a server's memory is used for I/O buffers and processes in a server's session usually satisfy most requests for data from I/O buffers that are already in memory.

A server usually allocates memory for one page of a file each time the file is opened, up to the number of pages in the file. For example, if the application being executed by a user opens a file twice, enough of the server's memory to contain two pages of the file is allocated; if ten users run the application, space for 20 pages of the file is allocated in the server's memory. The number of buffers allocated for a file will not exceed the number of pages in the file.

Of course, the pages of the file maintained in memory are not the same set of pages all the time: as users request pages of the file that are not in memory, pages that are in memory are written back to the file on disk if they have been modified, or if an in-memory page has not been modified its buffer is simply used to read the new page.

A larger page size can reduce the number of I/O operations required to process a SAS data file. But it takes longer to read a large page than it takes to read a small one, so unless most of the observations in a large page are likely to be accessed by users, large page sizes can increase the amount of time required to perform I/O activity in the server's SAS session.

There are two patterns in which data is read from or written to SAS files:

- Sequential
- Random

When an application processes a SAS file in sequential order, no page of the file is read into or written from the server's memory more than once each time the file is read or written. Also, observations are transmitted to and from users' sessions in groups, which conserves the messages resource.

In many applications that are used with concurrently accessed files, data is accessed in random order, i.e., a user reads the 250th observation, then the 10,000th observation, then the 5th observation, and so forth. When a file is processed in random order, it is much more difficult to predict how many times each page of the file will be read into or written from the memory of a server's SAS session. In addition, only one observation is transmitted on each message between server and user, which does not conserve the messages resource.

The "Programming Techniques" section of this paper offers ideas for reducing the I/O load of a server under the topics:

- Clean Up Your Data Files
- Choose the Appropriate Subsetting Strategy
- Choose Page Size Wisely
- Specify Sequential Access When an SCL Program Doesn't Need Random Access
Overlapping I/O

Overlapping I/O for sequential read operations is a performance enhancement for applications that use the remote engine. This enhancement was made for Release 8.1 by improving the internal functions of the remote engine to support the use of multiple data buffers for sequential I/O operations.

When the remote engine is reading sequential data from the SAS/SHARE server, it requests a buffer of data from the server and while it is waiting, it starts the I/O for a second buffer of data. When the server returns the first buffer of data, the remote engine passes it to the requesting application.

While the application is reading observations from the first buffer, the server is returning the observations in the second buffer. When the application has read all of the observations in the first buffer and has started reading observations from the second buffer, the REMOTE engine sends a message to the server to retrieve a third buffer of observations. The REMOTE engine reuses the memory that was allocated for the first buffer to store the third buffer of observations.

This sequence continues until all of the requested data has been read. This reduces the elapsed time for applications that read data sequentially by overlapping reading and processing.

Memory

A computer’s working storage is used by a server to load programs, hold I/O buffers, and maintain control information. When a server’s working set becomes large compared to the amount of memory installed on a computer, a significant amount of the server’s working storage can be stored on disk by the operating environment’s virtual memory manager.

Large amounts of a server’s memory are consumed by:

- A SAS data view that contains an ORDER BY clause
- Many indexes on data files accessed through a server
- A large number of files open at the same time
- Data files that have large page sizes

Because the ORDER BY clause causes the observations produced by a view to be sorted every time the view is interpreted, it requires memory to be used for a work area for the sorting step. Your application should only use this clause in its views when it has a clear benefit for your users.

When a SAS data file is opened, all indexes on the file are opened. Therefore, when a SAS data file has many indexes, a large amount of memory in the server’s SAS session can be used to store pages of the index file and related control information. Of course, when many SAS data files that are accessed through a server each have many indexes, this effect is multiplied.

At SAS Institute, we have observed that the majority of servers’ memory has been consumed by I/O buffers. Carefully selecting the number of times each file is opened by your application and the page size of each file can have considerable impact on the amount of memory required by a server.

The “Programming Techniques” section of this paper offers ideas for reducing the memory requirements of a server under the topics:

- Choose Page Size Wisely
- Index Wisely
- Limit the Number of Files Open During Execution of an SCL Program
Messages

Messages are the communication events between users' SAS sessions and a server. Whenever a piece of information (for example, an observation) is moved from a server to a user, a message is sent from the user to the server and a reply is sent back from the server to the user.

Messages and replies are transmitted by communications access methods. The cost of a message varies greatly with access method. Memory-to-memory communication within a single computer, for example by means of the Cross-Memory Services (COMAMID=XMS) access method is very rapid, while messages that flow on cables between computers, for example by means of the TCP/IP (COMAMID=TCP) access method take much longer to travel between SAS sessions.

SAS Institute has observed that the cost of sending data by means of most communications access methods is more directly a function of the number of messages than the amount of data. In other words, to move a million characters of data between a user and a server, it takes less time to send the data in 100 messages than to send the data in 10,000 messages.

SAS/SHARE software conserves the messages resource by:

- Transmitting data between servers and users in groups
- Evaluating WHERE clauses in servers’ sessions
- Interpreting SAS data views in servers’ sessions

The "Programming Techniques" section of this paper offers some ideas for conserving the messages resource under the topics:

- Choose the Appropriate Subsetting Strategy
- Understand and Control Random Access

The "Tuning Options" section shows options you can use to control the grouping of observations in messages between servers and users:

- TBUFFSIZE=
- TOBSNO=

Minimizing and Optimizing Resource Consumption

Now that you understand how SAS and SAS/SHARE software use files and computer resources, it’s time to apply that knowledge to the design and implementation of your applications.

The most productive way to optimize the performance of your application is programming it to work as efficiently as possible. You can almost always realize more performance improvement by coding your application to exploit features of SAS than you can gain by adjusting the operation of SAS.

When you decide to adjust SAS to operate differently, remember that tuning is a balancing act and invariably requires compromise. Of course, to effectively tune SAS you must understand what your application’s bottlenecks are.

This section will first list some programming techniques that are based on the information presented earlier in this paper. After that, the tuning options of SAS/SHARE software and SAS will be described.
Programming Techniques

Clean Up Your Data Files

The most obvious way to reduce the amount of work done by a server is eliminating unused variables and observations from the files that are accessed through the server. To make sure that your files are no larger than they need to be, periodically remove or archive unused data.

As a SAS data file matures, users add new observations, update existing observations, and forget about old observations. In most cases the level of activity is greatest on the newest observations. If the users of your application do not frequently access older information, consider moving older observations from files that are concurrently updated to archive files that are accessed directly (instead of through a server).

Also as a SAS data file matures, new variables are added, some variables turn out to be larger than they need to be, and some variables lose their usefulness. Periodically check your application’s SAS data files for variables that are longer than they need to be and for variables that are no longer used.

While compressing a SAS data file reduces the number of pages in it, compression cannot be as efficient at eliminating unused space as you can be by deleting unused observations and variables and by shortening variables that are longer than necessary.

Smaller data files improve the performance of all SAS sessions by reducing the amount of disk space required by each file, by reducing the number of I/O operations required to process the data in each file, and by reducing the number and size of messages required to transmit the data in a file between a server and its users.

Choose the Appropriate Subsetting Strategy

Creating a subset of the observations in a SAS file can consume large amounts of the I/O and messages resources. There are several subsetting techniques available in SAS:

- any WHERE clause that is optimized by the use of an index
- any WHERE clause that is not optimized by the use of an index
- the subsetting IF statement in the SAS DATA step
- the FIND, SEARCH, and LOCATE commands in SAS/FSP procedures

When an index is not used to locate directly the observations that satisfy a WHERE clause, the process in the server’s session must read observations from the data file until it finds one that matches the WHERE clause. This can consume a very large amount of the I/O and CPU resources. Those resource requirements can be greatly reduced when the variables in the WHERE clause are indexed.

The subsetting IF statement in the DATA step and the FIND, SEARCH, and LOCATE commands in SAS/FSP procedures perform the specified comparison in the user’s SAS session instead of in a process in a server. This requires that every observation in the SAS data set be transmitted from the server’s session to the user’s session, which can consume a very large amount of the messages resource, in addition to the I/O and CPU resources required to read the data file. Because the comparisons of a WHERE clause are performed in the server’s session, only the selected observations are transmitted to the user’s session and the message resource is conserved.

The I/O resource consumption is the same unoptimized WHERE, subsetting IF, and FSP’s FIND, SEARCH, and LOCATE. Using WHERE clauses is recommended, however, because the messages resource consumption is higher for the subsetting IF statement and the FIND, SEARCH, and LOCATE commands.
Index Wisely

Indexing is a tool that optimizes WHERE clause selection of observations from SAS data sets. A WHERE clause without an index requires the process in the server to read every observation in a SAS data set to find the observations that match the WHERE selection criteria. An index often enables the server to locate the records that satisfy a WHERE clause without having to read the records that do not match.

Adding indexes might be a good idea if your application seems to be taking too long to execute WHERE clauses. However, indexes require extra memory and might present a problem for a server that is memory constrained.

A complete description of index usage can be found in the paper "Effective Use of Indexes in the SAS System," in the Proceedings of the SAS User's Group International Sixteenth Annual Conference.

Look at a Clock Before You Create an Index

When a SAS data file is accessed through a server, creating an index on it prevents the server from responding to other users’ requests. While it can be useful to create an index while a data file is accessed through a server, indexes on large files should be created after hours. Indexes on large data files should not be created while a server is expected to respond quickly to users’ requests.

Choose Page Size Wisely

Larger page sizes can be used to reduce the number of I/O operations required to process a SAS data file. But it takes longer to read a large page than it takes to read a small one and larger pages can increase the memory load on a server.

Large page sizes can be useful if most of the observations on each page are likely to be accessed each time the page is read into the server's memory, or if a large page size causes all or most of a SAS data file to be kept in the server's memory. Otherwise, large page sizes can increase the amount of time required to perform I/O activity in the server's SAS session to the detriment of the server's ability to provide timely response to users’ requests.

Understand and Control Random Access

It is often worth the effort to study the order in which the users of your application access the data in your application’s files. That tells you how widely dispersed your users’ patterns of reference are. Sometimes you can reduce the amount of dispersal by sorting one or more files by a variable (like date last updated) that happens to correlate (even to a small degree) with your users’ pattern of access.

The components of SAS that are used most frequently to access data in a random order are:

- The "n" (position to observation number) command of SAS full-screen procedures.
- The POINT= option in the SET and MODIFY statements in the DATA step
- The KEY= option in the SET and MODIFY statements in the DATA step
- The FETCHOBS() function in SAS Component Language
- The SETKEY() function in SAS Component Language
- Using an indexed variable as a BY variable
Specify Sequential Access when an SCL Program Doesn’t Need Random Access

The SCL OPEN() function allows you to specify that a file will be sequentially accessed (the default is random access). There are two types of sequential access that can be requested with SCL OPEN():

- Strict sequential (‘IS’ for input and ‘US’ for update)
- Limited sequential (‘IN’ for input and ‘UN’ for update).

The server will by default transmit multiple observations per read for either ‘IS’ or ‘IN’ open modes.

If the application’s use of data is predominantly sequential, but you occasionally need to re-read a previously read observation then use a mode of ‘IN’ or ‘UN’ in your SCL OPEN() function. If the application’s use of data is strictly sequential (you will never revisit a previously read observation) then use the open mode ‘IS’ or ‘US’. The ‘IS’ and ‘US’ open modes are the most efficient for SCL. An ‘IS’ or ‘US’ open mode, however, will restrict an SCL application to those functions that access data sequentially. The SCL functions that access data in a random pattern are:

- FETCHOBS()
- DATALISTC()
- DATALISTN()
- POINT()

Specifying an access pattern in an SCL OPEN() function is documented in the OPEN function section in SAS Component Language: Reference. An example of specifying a sequential access pattern in an SCL OPEN() function is:

```
DSID = OPEN( 'MYLIB.A', 'IN' );
```

Limit the Number of Files Open During Execution of an SCL Program

An open file consumes memory in both users’ and servers’ SAS sessions. If a server consumes too much memory, check the applications that access data through that server to see if any of them open files before they are needed or leave files open when they are not being used.

There are three strategies for using SAS data sets in an SCL program:

- open during initialization of the application and leave open until the application terminates
- open as needed, then leave open until the application terminates
- open as needed, then close as soon as possible

The initialization code of an application is the place to open the SAS data sets that will be used throughout the execution of the application. But if an application’s initialization code must open a large number of files, the time it takes to get started may be long. By studying how an application is used, you might discover some SAS data sets that can be opened as functions are requested while the application executes, which can reduce the amount of time the application takes to initialize and reduces the concentration of time required to open files.

Whether they are opened during initialization or later, lookup tables that are small should usually not be closed until an application terminates because the single I/O buffer required by such a lookup table does not require a large amount of memory. In such a case it is frequently economical to use a small amount of the memory resource to conserve the CPU resource that would be required to open and close the lookup table over and over.
Larger SAS data sets, and SAS data sets that are used extremely infrequently (for example, once during initialization) or during a seldom-used function (for example, a lookup table on a rarely updated field), should usually be left closed whenever they are not being used.

Evaluate Each Report’s Timeliness Requirement

Consider how frequently each of your application’s reports is generated and how timely the data summarized by the report must be. If a report must be based on current information, it must be based on files that are concurrently updated. A report that does not require up-to-the-second information can be generated from files that are directly (and inexpensively) accessed instead of files that are accessed through a server.

For example, a travel agent making reservations or a stock broker making trades require every query to show up-to-the-second information. On the other hand, daily reports or analysis of long-term trends can use data that are out of date by several hours, several days, or even several weeks or months.

When copying data from a server, it can be subset horizontally with a WHERE clause, and it can be subset vertically with a DROP= or KEEP= data set option. (In relational terminology, the horizontal subsetting is selection and vertical subsetting is projection.) Be sure to take advantage of both methods when copying a file from a server to make the copy of the file as small as possible and, therefore, ensure that reports are generated as efficiently as possible.

Don’t forget that files can be stored in users’ WORK libraries. It can be most efficient to copy a file that is concurrently updated from a server to a user’s WORK library and then use that file more than one time to generate reports. Such a copy of a file contains very timely data yet is not especially expensive to create or use.

A SAS data file that is accessed directly is almost always less costly to use than a file that is accessed through a server.

Be Aware of How Frequently Each File Is Updated

Many applications contain one or more query functions that use a lookup file to offer a user a set of values that are valid to enter into a field. Such a file is read, but never updated, by the majority of the users of the application. Occasionally, values must be added to and removed from the lookup files as the valid input data for the application changes.

A lookup file that is used frequently and updated less often than once a week is likely to be a good candidate for not being accessed through a server, if it would be easy to find some time during the week when the files can be updated because the application is not being used. On the other hand, a lookup file that is updated many times each day should, in many cases, be accessed through a server because updating the file will be convenient: the lookup file can be updated while users use it to perform queries.

SAS catalog entries illustrate another way that update frequency can change. An application might use only a few or many catalog entries. Like lookup files, catalog entries that are updated frequently are likely candidates for access through a server. But catalog entries that are never changed, or only changed very infrequently, should not be accessed through a server.

The update frequency might change for some of an application’s catalog entries over time. For example, while an application is under development and being tested, it can be extremely convenient for the developers of the application to be able to update any catalog entry while those testing the application continue with their work. During this phase, the convenience of accessing the catalog entries through a server can more than pay for the cost of the overhead of server access. After the testing is completed and the application has stabilized, some or all of the application’s catalogs can be moved to a SAS library that is accessed directly by the users of the application; in this phase
efficient access by the users is more important than being able to update the catalog entries conveniently.

Remember that not all of an application’s catalog entries must be accessed the same way. Catalog entries that must be frequently updated can continue to be accessed through a server, while other catalog entries that change very seldom can be stored in SAS catalogs that are accessed directly by the users of the application.

Know Your Application’s DATA Step Views

While it is creating each observation, a process in a server’s session that is interpreting a DATA step view does not yield control to allow other processes in the server to execute other users’ requests. While DATA step views can be useful in a server, they must be used carefully. A DATA step view that requires a small amount of processing to create each observation will not prevent other processes in a server’s SAS session from responding to other users’ requests. But a DATA step view that contains many DO loops with many calculations, and reads (or even writes) many records in external files or SAS data sets, can take a very long time to create each observation. Such a DATA step view should not be interpreted in a server’s session because it does not yield control until each observation is created.

If it is advantageous to your application for its DATA step views to be interpreted in a server’s session, be sure that any external files read by the DATA step view are available to the server’s SAS session.

Tuning Options in SAS/SHARE Software

SAS/SHARE software makes some assumptions about the relative values of resources. For example, SAS/SHARE software considers messages to be more expensive than memory so it attempts to use more memory to reduce the number of messages. The default values and behavior might not be optimum for your application, so you have the opportunity to adjust:

- when and in what amounts observations are transmitted in groups instead of individually
- which SAS data views are interpreted in users’ SAS sessions and which are interpreted in the server’s SAS session
- how frequently a long-running process in a server’s SAS session yields to allow other users’ requests to be processed

SAS/SHARE software automatically attempts to conserve the message resource by transmitting observations in groups whenever possible. Observations can always be transmitted in groups when a data set is being created or replaced, but when a data set is opened for update access it is never appropriate to transmit more than one observation at a time. The grouping of observations when a data set is opened for input depends on the situation; you control whether observations are transmitted in groups according to:

- Whether the data set is opened for random or sequential access
- The control level of the data set
- The use of the TOBSNO= data set option to override the default behavior

The factors that control how many observations are transmitted in each group are:

- The value specified for the TBUFSIZE= option in the PROC SERVER statement
- The value specified for the TOBSNO= data set option
TBUFSIZE= Option in PROC SERVER

The TBUFSIZE= system option in the PROC SERVER statement specifies the suggested size of a buffer that the server uses for transmitting information to or receiving information from a client. When this option is not specified in the PROC SERVER statement, the value of the TBUFSIZE SAS system option, if specified, is used. The default value is 32K.

A key use of these transmission buffers is in transmitting observations. The server uses the TBUFSIZE value when computing the number of observations to transmit in each multi-observation transfer between the server and the client sessions. However if the observation size, plus overhead, exceeds the TBUFSIZE value, only single-observation transfers are done. Specifying an excessive value for TBUFSIZE might cause your server or clients to run out of memory and to terminate abnormally.

You cannot calculate the number of observations per transfer by dividing the observation length into the value that you specify for the TBUFSIZE= option. To determine the effect of this option on your data sets, use the PROC SERVER options LOG=MESSAGE and ACCTLVL=DATA and compare the number of messages exchanged between the server and the client sessions as a function of the value of the TBUFSIZE= option and the number of observations in the data set.

An example of using the TBUFSIZE= option is:

```
PROC SERVER TBUFSIZE=128K
  <other PROC SERVER options>;
```

TOBSNO= Data Set Option

Independently of the TBUFSIZE= option’s effect on a server’s overall behavior, you can control the number of observations per group for individual data sets that are accessed through the server. For example, if you specify TOBSNO=3, three observations will be sent in each message.

The TOBSNO= option can be specified wherever SAS data set options are accepted: as an argument to the OPEN() function of SAS Component Language, in the DATA= option in a SAS procedure, and in the SET, MERGE, UPDATE, and MODIFY statements in the DATA step. It must be specified for each data set for which you want grouping behavior that is different from the default.

When a data set is opened for input with a sequential access pattern, a server calculates the number of observations per group as the smallest of:

- the number of observations in the data set
- 100
- the number of observations that will fit into an MOTB

When a SAS data set is opened for input with a random access pattern, the default behavior is transmitting observations individually (the group size is one). This ensures that a user always receives up-to-date data when they position to an observation, and it reduces wasted communications bandwidth because no observations are transmitted to a user’s session except the specific observations requested.

At other times, the TOBSNO= data set option can be used to increase the number of observations transferred in each group. For example, consider an SCL program in which the SAS data set DSID is passed to a DATALISTC() or DATALISTN() function. The data set is read from beginning-to-end by the function, and then the observation chosen by the user is reread. Because by default the OPEN() function of SCL specifies a random access pattern, observations for that DSID are transmitted individually. But
the access pattern of the DATALISTC() and DATALISTN() functions is really skip sequential, so transmitting observations individually is not optimum. TOBSNO=4 could be specified in a case like this to reduce the number of messages by three-quarters. (Note that the user could change the open mode from 'I' to 'IN' as an alternative to specifying the TOBSNO= data set option.)

The number of observations transmitted when a data set is opened for input is summarized below. An example of using the TOBSNO= data set option is:

PROC FSVIEW DATA=MYLIB.A(TOBSNO=10);

RMTVIEW= and NORMTVIEW Options

Consider each SAS data view used by your application and determine whether the view should be interpreted in the server's SAS session or the users' SAS sessions. You decide where to have a view interpreted according to:

- How many observations does the view produce?
- How much data is read by the view?
- Where is the data that is read by the view?
- How much work must the computer do to interpret the view?

Some PROC SQL views are especially good candidates for interpretation in a server's SAS session because the number of observations produced by the view is much smaller than the number of observations read by the view, the data sets read by the view are available to the server and the amount of processing necessary to build each observation is not large.

Other PROC SQL views should be interpreted in users' SAS sessions because the number of observations produced by the view is not appreciably smaller than the number of observations read by the view, some of the data sets read by the view can be directly accessed by the users' SAS sessions, and the amount of processing done by the view is considerable.

By default, SAS data views are interpreted in a server's SAS session, but the RMTVIEW= option in the LIBNAME statement enables you to have the views in a library interpreted in users' SAS sessions instead. The NORMTVIEW option in the PROC SERVER statement enables you to prevent all SAS data views from being interpreted in the server's session.

SAS/ACCESS views do not provide update access to the underlying database when they are interpreted in a server's session, so it is often more practical to interpret SAS/ACCESS views in users' SAS session.

If it is useful for your application to have a SAS/ACCESS view interpreted in a server's session, make sure that all of the necessary database interface components are available to the server's session.

If a user's SAS session is capable of using a SAS/ACCESS interface engine to access the underlying database, it is more efficient to execute the SAS/ACCESS interface engine in the user's SAS session. Note that in this case it might be convenient to store the view file in a SAS library that is accessed through a server if the view will be updated frequently and used by more than one user.

Like SAS/ACCESS views, DATA step views are very often most useful when interpreted in users' SAS sessions. For more information about interpreting DATA step views in a server's session, see “Know Your Application's DATA Step Views” on page 247.

For a complete description of the RMTVIEW= option in the LIBNAME statement, see Chapter 13, “Remote Library Services,” on page 137.

Examples of specifying the RMTVIEW= and NORMTVIEW options are:

LIBNAME MYLIB 'my SAS data library'
RMTVIEW=YES
LRPYIELD= Option in PROC SERVER

Some components of SAS yield control periodically and can be directed to do so more or less frequently than their default rate. These components are called long-running processes and include evaluating WHERE clauses and interpreting PROC SQL views.

Changing the rate at which control is yielded is delicate because the act of yielding control consumes some CPU resource: increasing the frequency at which control is yielded increases a server’s CPU consumption all by itself. You can change the rate at which the processes in a server yield control by varying the value of the PROC SERVER option LRPYIELD=. The default value of this option is 10,000; the option has no units.

To make long-running processes yield relatively more frequently, specify a value greater than 10,000. While a higher value may have the effect of providing more even response time to a server’s users, this comes at the expense of increased consumption of the server’s CPU resource. Also, the processes that run for a long time run even longer when they are asked to yield more frequently.

To make a long-running process yield less frequently, specify a value smaller than 10,000. A lower LRPYIELD= value might make some individual user requests (like an SQL join with a sort) complete sooner, but the server’s other users are forced to wait as the long-running process does more work before it yields control. Response time can become more uneven when long-running processes are allowed to yield less frequently.

This option is documented in Chapter 12, “The SERVER Procedure,” on page 123.

An example of specifying the LRPYIELD= option is:

```
PROC SERVER LRPYIELD=5000
  <other PROC SERVER options>;
```

Multiple Servers

This is not an option you specify in a SAS program statement; instead it is a method of managing the workload of concurrent access to SAS data sets.

If you determine that a server is consuming too much of a resource and you cannot reduce the server’s consumption of that resource any further, creating an additional server allows you to divide your applications’ workload among several servers.

SAS/SHARE software includes a family of SAS macros that help you manage SAS file access through multiple servers. Those macros are documented in Chapter 6, “SAS/SHARE Macros for Server Access,” on page 73.

SAS System Options

SAS has several SAS I/O tuning options. The options that are most relevant to applications that access data through a server are:

- the BUFSIZE= data set and system option
- the COMPRESS= data set and system option

BUFSIZE= Option

When a file is created, use the BUFSIZE= data set option to specify the size of the pages of the file. The SAS default page size is optimum for files that are processed
sequentially, but it may not be optimum when the observations of a file are accessed in random order. PROC CONTENTS shows the page size of a SAS data file.

You might find it useful to balance the pattern in which a file is randomly accessed against the number of observations stored on each page of the file. If most random access sequences access observations in very different locations in the file, then a small page size will improve performance because most of the observations on each page are not used. On the other hand, if most random access sequences are likely to be to observations that are physically near each other in the file, you might be able to take advantage of a large page size to have many of the observations read from the file into the server's memory at once.

If you want to keep all or most of a SAS data file in memory, you can choose a very large page size. Of course, this can consume a lot of the server's memory so you should only use such a page size when you really want to. If you expect that not much data from a large file will need to be in memory at one time, choose a small page size to make reading and writing each page as fast as possible.

If you find that your server is spending a significant amount of time waiting for I/O operations to complete, consider recreating the files that are not used for sequential access with a smaller page size.

An example of using the BUFSIZE= data set option is:

```
DATA MYLIB.A(BUFSIZE=6K);
  SET MYLIB.A;
RUN;
```

COMPRESS= Option

This option is used to cause a SAS data file to be stored in compressed format. Compressing files usually makes them smaller, so a server is able to read more observations per I/O request when a file is compressed. The reduction in file size for a compressed file (which conserves the I/O resource) is paid for, though, by an increase in the consumption of the CPU resource (which is used to decompress the observations as the file is read). If your server is CPU-bound, compression could do more harm than good, but if your server is I/O-bound, compression could reduce its consumption of the I/O resource.

Using Operating Environment Tools

Introduction

Up to this point, we have been looking at SAS application and server performance from an internal point of view. Now we turn to an external point of view. By performance externals, we mean several things. First, at what rate is a server consuming resources such as CPU, memory, and DASD I/O? Second, with what other workloads is a server competing for these resource? And third, what policy is being used to manage a server's access to resources with respect to other work in the system?

There are several monitors available for MVS and VM to help you analyze a server's resource utilization and contention with other workloads. On MVS, most sites license the IBM RMF product. RMF Monitor II and Monitor III support interactive analysis of SAS/SHARE performance. Also available on MVS are Candle Corporation's Omegamon and Landmark System's TMON for MVS. Prominent products on VM include Omegamon from Candle Corporation and XAMAP and XAMON from Velocity Software. Questions these monitors can help you answer include:
Are my servers getting appropriate access to resources?

Is another workload causing a severe contention problem for one of my servers? For example, is my server fighting with another application over access to the same disk drive?

What resource bottlenecks are most critical to my applications? Where should I direct my tuning efforts?

Often, solutions to resource utilization problems result in making trade-offs among resources. For example, you may be able to reduce I/O by allocating additional buffers. But the additional buffer allocation will take more memory. Use of one of these monitors can help you evaluate the effectiveness of the trade-off.

It is beyond the scope of this paper to tell you exactly how to use specific operating environment performance monitors. We are making the non-trivial assumption that you or someone else on your staff have that knowledge. Basically, every system has three principal resources: CPU, I/O, and memory. We will look at examples of managing each of these for servers:

Managing CPU

The most critical factor here is assuring that your servers are getting a reasonable share of the available CPU time. Servers in general ought to run at a higher priority than clients and at the same priority as other types of server or service work on your system (transaction monitors, database servers, etc.). You can tune your SAS/SHARE application meticulously only to be foiled if a background process (for example) is preventing your servers from getting CPU time.

If CPU time is a scarce resource on your system, that is your system is usually running at very high CPU utilizations, then you need to consider SAS/SHARE tuning actions which can reduce CPU time. Two specific examples are type of server connection and whether or not to use data compression.

Managing I/O

The first thing to consider here is the amount of contention with other work on the system. Are your SAS libraries competing with other work on channels, disk controllers, or disk drives which are too busy? Too busy on I/O channels and control units is highly specific to each operating environment and hardware vendor. But in general it is safe to say that if a disk drive is consistently above twenty percent busy, then off-loading work from that drive ought to be considered.

If there is no significant contention with other work, then you need to consider spreading application libraries using SAS/SHARE across multiple disks.

If waiting for I/O is still a problem for your servers, then you need to consider SAS/SHARE tuning options which can reduce I/O time. These include using smaller page sizes for randomly-accessed data, adding indexes for randomly-accessed data, and possibly using data compression. Data compression is a specific example of the resource trade-off problem mentioned earlier. Data compression can reduce I/O and disk storage but will increase CPU time.

Managing Memory

Memory is an interesting resource in that it directly affects both CPU and I/O resource consumption. Too little memory increases both. Additional memory can reduce
both. The most critical factor here is to ensure that your servers have sufficient memory to prevent excessive wait for paging. Most operating environments have controls to differentiate the amount of memory given to various workloads on the system.

If real memory is a scarce resource on your system, then you need to consider SAS/SHARE tuning actions which reduce memory consumption. Chief among these are reducing data set page sizes to reduce I/O buffer memory requirements and using shared SAS system images where possible.

Conclusion

The concurrent access capabilities that SAS/SHARE software adds to SAS give developers opportunities to create applications that allow their users to have up-to-date data and to be more productive.

Such applications use SAS in new ways. This paper has discussed areas to be aware of and ways to trade usage of one resource for another. This information enables developers of applications that take advantage of concurrently accessed data to write those applications to use the available computer resources in the most efficient ways possible.
Introduction to SAS Component Language (SCL) Application

The SAS Component Language (SCL) application that is presented in this appendix, when used with the FSEDIT procedure or the FSEDIT command, implements an order-processing and inventory-maintenance system. Because the purpose of this example is to illustrate SCL programming techniques, some error-handling and user-friendly enhancements were omitted to keep the example as clear as possible.

This example exploits the features of SAS/SHARE that allow several users to update a SAS data set at the same time. That capability automates maintenance of the inventory data and allows data about the orders to be maintained centrally, which can facilitate analysis of the orders that have been received.

Note: SAS Component Language is new terminology for SAS Screen Control Language. SAS Component Language and SAS Screen Control Language are synonyms. △

Audience

This example is for SAS application programmers who are familiar with SCL and with the FSEDIT procedure and FSEDIT command.
Inventory and Order System

Overview

There are three general types of data that are involved in an order-processing system:

- Customer information, which includes name, address, and a customer number that uniquely identifies the customer.
- Inventory information, which tracks the amount of each item that is in stock at any specific time.
- Orders information, which identifies items in inventory that a customer has placed an order for.

Customer Information

In order to simplify this example, the application in this section does not include a customer data set. This SCL program, which is expanded for use in an actual order-processing system, would open the customer data set during the FSEINIT step and close it during the FSETERM step.

The customer data set is ideal to access through a SAS/SHARE server to keep information up-to-date, such as customers' address changes, contact information, and so forth.

For the purpose of entering orders, the customer data set would usually be opened for read-only access through the server, because customer information is not usually updated at the time an order is taken.

Updating the customer data would ordinarily be done by using a second FSEDIT application that would also access the data set through the server. That application would be available to customer service representatives and administrative personnel.

Inventory Information

In this example, the inventory data is accessed through a SAS/SHARE server. The data is completely hidden from the user of the order-entry application. The purpose of this example is to show how to maintain information automatically in a SAS data set.

The inventory file is also ideal for accessing through a SAS/SHARE server to keep the available quantity of each item current.

In the order-processing example, the inventory data set is opened for update access through the server. Read-only access to the inventory data set might be given for the reporting programs that are run either nightly or on-demand, which would also access the data set through the server. The inventory reporting and analysis programs are not included in this example.

In a mature inventory-management system, there would be additional access to the inventory data by employees who receive merchandise. This example shows only the order-processing side (the "inventory depletion" process), but it is important to remember that replenishing inventory must also take place. Accessing the inventory data by using a SAS/SHARE server allows both the ordering and the receiving operations to maintain current information in the inventory file.
Orders Information

The orders data set is a series of transactions. When a product is ordered, that event is recorded in the orders data set. This makes the orders data set a time-based record of events, which is quite different from the type of information that is maintained in the customer and the inventory data sets.

Accessing the orders data set through a SAS/SHARE server allows all order information to be captured in a single file. This enables simplified reporting and analysis of the orders data, which can be performed on current information at any time. In this example, the data set ORDERS is updated by the users of the application. Reporting and analysis of the orders data, which is not shown here, can be accomplished with read-only access to the data set ORDERS through the server.

The Inventory/Order System SCL Application

The following sample application is referred to in “SCL Programming Considerations” on page 48. See that section for more information about updating concurrently shared data in SCL applications.

```scl
/*-------------------------------*/
/* Inventory/Order System SCL application for use with PROC FSEDIT */
/* when editing an orders data set. */
/* CAUTION: */
/* + The deletion of a non-null order (quantity>0) results in an */
/* error message being written to the SAS log because the inventory */
/* data set will not have been updated to reflect the returned */
/* inventory. */
/* + Do not issue a DELETE command to cancel a new order (not yet added to the */
/* data set ORDERS). In this case, the */
/* program will not detect a cancel or delete condition and will */
/* debit the inventory for the quantity in the cancelled order. */
/* The SCL program included here is designed to run with the following */
/* set up and data set prototype: */
/* The data set ORDERS has these variables: */
/* o PRODUCT type=character  /* Product Code */
/* o QUANTITY type=numeric  /* Amount of Order */
/* The INVENTOR data set has these variables: */
/* o CODE type=character  /* Product Code */
/* o DESC type=character  /* Product Description */
/* o INVENT type=numeric  /* Stock on hand */
/* For information about selecting a communications access method */
```

and server name, see Chapter 3.
To start a SAS/SHARE server to access the data that is used by this example, execute these SAS statements in a SAS session:

```
* OPTIONS COMAMID=communications access method;
* LIBNAME DLIB 'physical name';
* DATA DLIB.INVENTOR;
* CODE='ABC'; DESC='PRODUCT ABC'; INVENT=100;
* RUN;
* DATA DLIB.ORDERS;
* PRODUCT='ABC'; QUANTITY=20;
* RUN;
* PROC SERVER ID=server name; RUN;
```

To create a client SAS session that you can use to execute this example, execute these SAS statements in a second SAS session:

```
* OPTIONS COMAMID=communications access method;
* LIBNAME DLIB SERVER=optional computer name.server name;
* /* EDIT AND COMPILE SCL PROGRAM ON SCREEN AND RUN IT */
* PROC FSEDIT DATA=DLIB.ORDERS
  SCREEN=DLIB.DISPLAY.ORDERS.SCREEN; RUN;
```

```
length rc 8 ; /* System return code storage */
length invent 8 ; /* Current n of items inventoried*/

FSEINIT:
/*-----------------------------------------------*/

/ Open the product control data set and save the needed variable numbers. "Control term" ensures non-null deletions can be detected in TERM.
/-----------------------------------------------*/

codeid=open('dlib.inventor','U');
vdesc=varnum(codeid,'desc');
vinvent=varnum(codeid,'invent');
control term;
return;

INIT:
/*-----------------------------------------------*/

/ Save initial order values for later. For a pre-existing order,
/ get the inventory info (item description) for the display, and
/ do not forget to unlock the record. Also prohibit *changing*
/ the product code on a pre-existing order by using the FIELD
/ function.
/-----------------------------------------------*/

_msg_='';
sav_prod=product; sav_quan=quantity;
```
if (obsinfo('new')) then do;
 oldorder=0;
 rc=field('unprotect','product');
 if (product=' ') then link needcode;
 return;
end;
oldorder=1;
link getrec;
rc=unlock(codeid);
rc=field('protect','product');
return;

MAIN:
/*---*/
// For a change in quantity or for a new order, fetch (and lock) the
// inventory record, validate the request, and update the
// inventory data set. In either case, if all operations succeed,
// issue a SAVE command in the primary data set so that the data set
// cannot be made out-of-sync with the inventory due to a
// subsequent CANCEL command from the user.
/*---*/
if (_STATUS_='C') then return;
else if (product=' ') then link needcode;
else if (sav_quan^=quantity or ^oldorder) then do;
 /* Try to lock inventory record to update. */
 loop_cnt=0;
 lokloop: loop_cnt=loop_cnt+1;
 link getrec;
 if (not gotrec) then return;
 if (rc=%sysrc(_swnoupd)) then do;
 if (loop_cnt<500) then goto lokloop;
 msg='Error: Product was locked.';
 erroron product;
 return;
 end;
 /* Check and debit the inventory. */
 link chkquan;
 if (not quanok) then goto unlok;
 invent=invent-quantity;
call putvarn(codeid,vinvent,invent);
 rc=update(codeid);
 if (sysrc()>0) then do;
 msg=sysmsg();
 erroron product;
 goto unlok;
 end;
/* Check and debit the inventory. */
link chkquan;
if (not quanok) then goto unlok;
invent=invent-quantity;
call putvarn(codeid,vinvent,invent);
rc=update(codeid);
if (sysrc()>0) then do;
 msg=sysmsg();
 erroron product;
 goto unlok;
end;
/ Force PSEDIT to save the observation so that */
/* the primary data set will be up-to-date now. */
call exec(cmd('save;'));

/* In case user did not leave observation, */
/* clarify that this order is saved. */
nvprod=product; nvquan=quantity;
oldorder=1;
unlok: rc=unlock(codeid);
end;
return;

getrec:
/*---*/
/* Usually, this section fetches the record of the inventory */
/* data set that you want. If it is successful, 'gotrec' */
/* will have value 1; else, 0. This section leaves the fetched */
/* record locked. */
/*---*/

gotrec=0;
rc=WHERE(codeid,'code='||product||' ');
if (rc>0) then do;
 msg='WHERE: '||sysmsg();
 erroron product; return;
end;
rc=FETCH(codeid);
if (rc>0) then do; /* Error! */
 msg='FETCH: '||sysmsg();
 erroron product; return;
end;
else if (rc=-1) then do;
 /* Product not found but no error. */
 msg='ERROR: The product code is invalid. Please re-enter';
 erroron product; return;
end;
else gotrec=1;
desc=getvarc(codeid,vdesc);
invent=getvarn(codeid,vinvent);
return;

chkquan: /* Check the amount available */
/*---*/
/* This section checks that the available inventory is sufficient */
/* for the quantity that is being requested. If so, 'quanok' will */
/* have value 1; else, 0. This section may modify 'invent' if a */
/* quantity change is being verified. */
/*---*/
quanok=1;
/* If just a quantity change, add back old quantity. */
if (oldorder) then invent=invent+sav_quan;
if (quantity=0) then do;
 msg='This order is null due to a zero quantity';
 cursor quantity;
end;
else if (quantity>invent) then do;
 msg='ERROR: Available stock is ' || put(invent,best.);
 erroron quantity;
 quanok=0;
end;
return;

needcode:
/*---*/
/* Ask user to enter product code. Set ERRORON to prevent exiting
/* the observation.
/*---*/

 msg='Please enter a product code';
 desc=' ';
 erroron product;
 return;

TERM:
/*---*/
/* For safety, check if the user accidentally deleted a non-null
/* observation, which we are leaving, and log an error message if so.
/*---*/

 if (oldorder & sav_quan & obsinfo('deleted')) then
 put 'ERROR: Order consisting of ' sav_quan
 'units of product number ' sav_prod 'has been deleted.';
 return;

FSTTERM:
/*---*/
/* Termination: Close the lookup data set if it was
/* successfully opened.
/*---*/

 if (codeid>0) then rc=close(codeid);
 return;
Limitations of Cross-Version Client/Server Access

- SAS/SHARE 9.1 clients and servers cannot communicate with Version 6 SAS/SHARE clients and servers.
- Version 8 SAS/SHARE clients and servers can communicate with Version 6 and SAS/SHARE 9.1 clients and servers.

The following topics explain how to accommodate these limitations.

Consequences of a Client/Server Upgrade to SAS 9.1

Upgrade: Definition

An upgrade is the process of installing a later version of SAS software over an existing version of SAS software at the customer site; for example, from Version 8.2 to SAS 9.1. A system manager at your site is responsible for performing the upgrade.

The result of an upgrade can affect the ability of SAS/SHARE clients and servers to connect and share data.

Data Migration

Accessing your data is a primary concern after upgrading to a new version of SAS. If the server (and clients) have been upgraded to SAS 9.1, and you want the SAS data and
SAS applications to run at the same level as the server and clients, you can migrate the data to the release that the server runs. For complete details about migration, see http://support.sas.com/rnd/migration.

Access Restrictions Following an Upgrade to SAS 9.1

If you do not migrate your SAS data and applications to the new version of SAS, you will be accessing SAS files and using SAS applications in a cross-version environment. Therefore, it is important to be aware of any restrictions when operating in a cross-version environment. The following tables identify the combinations of SAS/SHARE clients and servers, the SAS Version that they run, and their ability for access.

Table A5.1 Results of a SAS/SHARE Server Upgrade

<table>
<thead>
<tr>
<th>If the SAS/SHARE client or server runs SAS</th>
<th>If the SAS/SHARE server or client is upgraded from Version n to Version n, can the SAS/SHARE client access the SAS/SHARE server?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V6 to V8</td>
</tr>
<tr>
<td>V6</td>
<td>Yes¹</td>
</tr>
<tr>
<td></td>
<td>No²</td>
</tr>
<tr>
<td></td>
<td>No²</td>
</tr>
<tr>
<td></td>
<td>Yes¹</td>
</tr>
</tbody>
</table>

1 Yes. After SAS has been upgraded, the client and server can connect and exchange data.
2 No. After SAS has been upgraded, the client and server cannot connect.
3 Required. If SAS is not upgraded, the SAS application cannot run.

Some example results of a SAS/SHARE server upgrade are:

- If a SAS/SHARE server is upgraded from Version 6 to SAS 9.1, a SAS/SHARE client that runs Version 6 cannot access the SAS/SHARE server.
- If a SAS/SHARE client that runs SAS 9.1 and uses applications that are written in SAS 9.1 wants to access a SAS/SHARE server that runs Version 6, the Version 6 SAS/SHARE server must be upgraded to SAS 9.1. If the SAS/SHARE server is not upgraded, the SAS/SHARE client’s SAS 9.1 applications cannot run.

Some example results of a SAS/SHARE client upgrade are:

- If a SAS/SHARE client is upgraded from Version 8 to SAS 9.1, a SAS/SHARE server that runs SAS 9.1 can be accessed by the SAS/SHARE client.
- If a SAS/SHARE client that runs Version 6 wants to access a SAS/SHARE server that runs SAS 9.1 and uses applications that are written in SAS 9.1, the Version 6 SAS/SHARE client must be upgraded to SAS 9.1. If the SAS/SHARE client is not upgraded, the SAS/SHARE server’s SAS 9.1 applications cannot run on the client.

Observations and Variables: SAS 9.1 and Version 8 Differences

Resolving the Number of Observations and Variables Supported across Versions

More observations and variables are supported in SAS 9.1 than in Version 8. For example,
If a SAS 9.1 client accesses SAS files on a Version 8 server, the client can access as many observations and variables as the server.

If a Version 8 client accesses SAS files on a SAS 9.1 server, the client cannot access as many observations and variables as the server can store in the file or supply to the client.

To resolve differences between the number of observations and variables that are supported in a cross-version environment, SAS/SHARE will support the older version. For example, a SAS 9.1 server will not present more variables or observations to a Version 8 client than the client is capable of accessing. Conversely, Version 8 clients might not be able to access all the variables or observations in SAS files that are on a SAS/SHARE 9.1 server.

Number of Variables Supported

The maximum number of variables that can be defined in a SAS data set and accessed by a SAS/SHARE client varies according to the SAS version that is used. The number of variables that can be defined and accessed in a data set is greater in SAS 9.1 than in Version 8.

Consequently, a SAS/SHARE 9.1 client can access all the variables in a SAS 9.1 data set that is on a SAS 9.1 server. Also, a SAS/SHARE 8 client can access all the variables in a Version 8 data set that is on a Version 8 server. However, a SAS/SHARE 8 client can access only a maximum of 32,767 variables in a SAS 9.1 data set that is on a SAS/SHARE 9.1 server. Attempts to exceed this limit will result in failure.

Number of Observations Supported

The number of observations in a file is a consideration only if a Version 8 client must access observations by number, for example, if the POINT= option in the SET statement is used. A Version 8 SAS client that reads through a SAS file sequentially is not limited by the number of observations in the file.

A SAS 9.1 client that accesses SAS files on a Version 8 server can randomly access any observation.

SAS Files Access in a Mixed Client/Server Environment

SAS File Format: Definition

A SAS file format is the collection of attributes of a SAS file that are specific to the SAS release. File formats are:

- SAS 9.1
- Version 8
- Version 6.

The “newer” releases are SAS 9.1 and Version 8; “older” release refers to Version 6. Characteristics of newer file formats are:

- long variable names
- long variable labels
- long data set labels
Client/Server Access to Version-Specific SAS Files

Regardless of the version of SAS that the SAS/SHARE client or the SAS/SHARE server runs, the server automatically selects the correct engine for the format of the library. This means that newer clients can access older SAS files on newer servers (and older clients can access newer files when the files don’t use new features). To override the server’s automatic engine selection, a SAS client can specify the RENGINE= option in the LIBNAME statement to tell the server which engine to use. For example, a Version 8 client can use the V6 remote engine to access a Version 6 SAS file on a Version 8 server.

Example:

libname grades ‘SAS-data-library’ server=shr1 rengine=V6;

However, a SAS/SHARE client cannot access a SAS 9.1 file on a Version 8 or a Version 6 server.

A SAS/SHARE 9.1 server can use any SAS library or view engine to search for and retrieve the SAS files of the specified version. The capabilities of each engine when it is used by a SAS/SHARE server are the same as the engine’s capabilities when it is used in a single-user SAS session. For details about the capabilities of each engine in a SAS 9.1 session, see the topic about SAS 9.1 compatibility in SAS Language Reference: Concepts.

Version 8 Clients Accessing SAS Files Created on SAS 9.1 Servers

Consider the following:

- The SAS/SHARE server has been upgraded to SAS 9.1.
- SAS 9.1 SAS files are being created on the SAS 9.1 server.
- A Version 8 client has not been upgraded to SAS 9.1.
- Until the Version 8 client is upgraded to SAS 9.1, the client needs to access the SAS files that have been created on the SAS 9.1 server.
- The Version 8 client cannot access the SAS 9.1 SAS files on the SAS 9.1 server if the files contain SAS 9.1 features, such as long format names.

How can the Version 8 client, which has not yet upgraded to SAS 9.1, but must continue client/server processing, be accommodated?

As a temporary measure, SAS files on the SAS 9.1 server must be created in Version 8 format to ensure that Version 8 clients can access them.

In the SAS application that creates a SAS file, specify the VALIDFMTNAME= option to ensure that format names are restricted to the length that is supported in Version 8. For more information, see the VALIDFMTNAME= System Option in SAS Language Reference: Dictionary.
Recommended Reading

Here is the recommended reading list for this title:

- SAS/CONNECT User’s Guide
- Moving and Accessing SAS Files
- SAS Language Reference: Dictionary
- SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To order the most current publications or to receive a free copy of the catalog, contact a SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs

* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.
access descriptor
a SAS/ACCESS file that describes data that is managed by a data management system. After creating an access descriptor, you can use it as the basis for creating one or more view descriptors. See also SAS data view, view descriptor.

architecture
the manner in which numeric data and character data are represented internally in a particular operating environment. Architecture encompasses standards or conventions for storing floating-point numbers (IEEE or IBM 390); for character encoding (ASCII or EBCDIC); for the ordering of bytes in memory (big Endian or little Endian); for word alignment (4-byte boundaries or 8-byte boundaries); and for data-type length (16-bit, 32-bit, or 64-bit).

authentication
the process of verifying the identity of a person or process within the guidelines of a specific security policy.

batch mode
a method of executing SAS programs in which a file that contains SAS statements plus any necessary operating environment commands is submitted to the computer's batch queue. After you submit the program, control returns to your personal computer or workstation, where you can perform other tasks. Batch mode is sometimes referred to as running in the background. The program output can be written to files or printed on an output device.

binary file
a file that is stored in binary format, which cannot be edited with a text editor. Binary files are usually executable, but they can contain only data.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed, you can view SAS data either one observation (row) at a time or as a group in a tabular format. You cannot update data that you are browsing.

catalog entry
See SAS catalog entry.

client
in a network, a computer or application that requests services, data, or other resources from a server. See also SAS/SHARE client, SAS/CONNECT client, server.
communications access method
an interface between SAS and the network protocol or interface that is used to connect two operating environments. Depending on the operating environments, SAS/SHARE and SAS/CONNECT use either the TCP/IP or XMS communications access method. See also TCP/IP, XMS (Cross-Memory Services).

concurrent
pertaining to the simultaneous use of resources by multiple users or applications.

control level
one of the determinants in the kind of lock that a task obtains on a SAS data set or on an observation in the data set. The control level specifies how other SAS tasks can access the SAS data set concurrently. Every SAS task has an open mode and a default control level for each SAS data set that it accesses, based on how the task operates on that data set. See also locking, open mode.

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS data views, a DATA step view contains a definition of data that is stored elsewhere; the view does not contain the physical data. The view’s input data can come from one or more sources, including external files and other SAS data sets. Because a DATA step view only reads (opens for input) other files, you cannot update the view’s underlying data.

data value
a unit of character or numeric information in a SAS data set. A data value represents one variable in an observation.

database management system (DBMS)
a software application that enables you to create and manipulate data that is stored in the form of databases. See also relational database management system.

editing data
the process of viewing the contents of a file with the intent and the ability to change those contents. Depending on how the file is accessed, you can view the data either one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables SAS to access files that are in a particular file format. There are several types of engines. See also interface view engine, library engine, REMOTE engine.

execution
(1) in the DATA step, the process in which SAS carries out statements for each observation or record in the file. (2) in contexts other than the DATA step, such as SAS macros, procedures, and global statements, the process in which SAS performs the actions that are indicated.

external file
a file that is created and maintained by a host operating system or by another vendor’s software application. SAS can read data from and route output to external files. External files can contain raw data, SAS programming statements, procedure output, or output that was created by the PUT statement. A SAS data set is not an external file. See also fileref (file reference).

fileref (file reference)
a name that is temporarily assigned to an external file or to an aggregate storage location such as a directory or a folder. The fileref identifies the file or the storage location to SAS. See also libref (library reference).
index
A component of a SAS data set that enables SAS to access observations in the SAS data set quickly and efficiently. The purpose of SAS indexes is to optimize WHERE-clause processing and to facilitate BY-group processing.

interactive line mode
A method of running SAS programs in which you enter one line of a SAS program at a time at the SAS session prompt. SAS processes each line immediately after you press the ENTER or RETURN key. Procedure output and informative messages are returned directly to your display device.

interface view engine
A SAS engine that retrieves data directly from files that have been formatted by another vendor's software and which presents the data to SAS in the form of a SAS data set. Interface view engines are transparent to users and are not specified in LIBNAME statements. See also engine.

library engine
An engine that accesses groups of files and puts them into the correct form for processing by SAS utility windows and procedures. A library engine also determines the fundamental processing characteristics of the library, presents lists of files for the library directory, and supports view engines. See also engine, REMOTE engine, view engine.

libref (library reference)
A name that is temporarily associated with a SAS library. The complete name of a SAS file consists of two words, separated by a period. The libref, which is the first word, indicates the library. The second word is the name of the specific SAS file. For example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating system command.

locking
A technique for preventing conflicts among requests from different SAS tasks. A task obtains a lock on a member (for example, a SAS data set) or record (observation) based on the open mode and control level for that SAS data set. In SAS/SHARE software, you can lock a SAS library, data set, catalog, or catalog entry by using the LOCK statement or the LOCK command. See also control level, open mode.

machine
Another term for computer, usually focusing on the computer as a physical object.

member
A SAS file in a SAS library.

member name
A name that is assigned to a SAS file in a SAS library. See also member type.

member type
A SAS name that identifies the type of information that is stored in a SAS file. Member types include ACCESS, DATA, CATALOG, ITEMSTOR, MDDB, PROGRAM, and VIEW.

missing value
In SAS, a term that describes the contents of a variable that contains no data for a particular row or observation. By default, SAS prints or displays a missing numeric value as a single period, and it prints or displays a missing character value as a blank space.
noninteractive mode
a method of running SAS programs in which you prepare a file of SAS statements and submit the program to the operating system. The program runs immediately and occupies your current session.

observation
a row in a SAS data set. All of the data values in an observation are associated with a single entity such as a customer or a state. Each observation contains one data value for each variable.

open mode
the way in which a SAS task accesses and operates on a member in a SAS library. There are three open modes for SAS files: input, update, and output. See also control level, locking.

operating environment
a computer, or a logical partition of a computer, and the resources (such as an operating system and other software and hardware) that are available to the computer or partition.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL view contains no data. Instead, it stores information that enables it to read data values from other files, which can include SAS data files, SAS/ACCESS views, DATA step views, or other PROC SQL views. A PROC SQL view's output can be either a subset or a superset of one or more files. See also view.

quiesce
(1) to gradually cause an active server or server library to become inactive by disallowing new requests to use the resource. (2) to move a user from an active status to a stopped status. When a quiesced user closes all files in a server library, the server releases that user's access to the library. If the user has no open files in an accessed server library, the server terminates that user's access to the library immediately.

relational database management system
a database management system that organizes and accesses data according to relationships between data items. The main characteristic of a relational database management system is the two-dimensional table. Examples of relational database management systems are DB2, Oracle, SYBASE, and Microsoft SQL Server.

REMOTE engine
a SAS library engine for SAS/SHARE software. Using the REMOTE engine enables a client SAS session to access shared data by communicating with a SAS/SHARE server. See also SAS/SHARE server.

Remote Library Services (RLS)
a feature of SAS/SHARE and SAS/CONNECT software that enables you to read, write, and update remote data as if it were stored on the client. RLS can be used to access SAS data sets on computers that have different architectures. RLS also provides read-only access to some types of SAS catalog entries on computers that have different architectures. See also architecture.

RLS
See Remote Library Services (RLS).

SAS catalog
a SAS file that stores many different kinds of information in smaller units called catalog entries. A single SAS catalog can contain several different types of catalog entries. See also SAS catalog entry.
SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that identifies its purpose to SAS. Some catalog entries contain system information such as key definitions. Other catalog entries contain application information such as window definitions, Help windows, formats, informats, macros, or graphics output.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that is associated with the data. The descriptor information includes information such as the data types and lengths of the variables, as well as the name of the engine that was used to create the data. SAS data files are of member type DATA. See also SAS data set, SAS data view.

SAS data library
See SAS library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of SAS data sets: SAS data files and SAS data views. SAS data files contain data values in addition to descriptor information that is associated with the data. SAS data views contain only the descriptor information plus other information that is required for retrieving data values from other SAS data sets or from files whose contents are in other software vendors’ file formats. See also SAS data file, SAS data view.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view contains only descriptor information such as the data types and lengths of the variables (columns), plus other information that is required for retrieving data values from other SAS data sets or from files that are stored in other software vendors’ file formats. SAS data views can be created by the ACCESS and SQL procedures, as well as by the SAS DATA step. See also SAS data set, SAS/ACCESS view, DATA step view, PROC SQL view.

SAS library
a collection of one or more SAS files that are recognized by SAS and that are referenced and stored as a unit. Each file is a member of the library.

SAS task
a logical process that is executed by a SAS session. A task can be a procedure, a DATA step, a window, or a supervisor process.

SAS windowing environment
an interactive windowing interface to SAS software. In this environment you can issue commands by typing them on the command line, by pressing function keys, or by selecting items from menus or menu bars. Within one session, you can perform many different tasks, including preparing and submitting programs, viewing and printing results, and debugging and resubmitting programs.

SAS/ACCESS view
a type of SAS data view that retrieves data values from files that are stored in other software vendors’ file formats. You use the ACCESS procedure of SAS/ACCESS software to create SAS/ACCESS views. See SAS data view, view descriptor.

SAS/CONNECT client
a SAS/CONNECT session that acts as a client. The user that runs a SAS/CONNECT client requests services from a SAS/CONNECT server. See also client, server, SAS/CONNECT server.
SAS/CONNECT server
a SAS/CONNECT session that acts as a server. The SAS/CONNECT server runs a SAS session on a computer that receives requests for services from a SAS/CONNECT client. The server can run on a remote, single-processor computer or on a local or remote SMP computer. SAS/CONNECT servers provide Remote Library Services (for accessing SAS files), Compute Services (for rapid computational processing), and Data Transfer Services (for uploading and downloading selected data). See also client, server, SAS/CONNECT client, SMP (symmetric multiprocessing).

SAS/SHARE client
a SAS/SHARE session that acts as a client. The user that runs a SAS/SHARE client accesses data on a SAS/SHARE server through Remote Library Services (RLS). See also client, server, SAS/SHARE server, Remote Library Services (RLS).

SAS/SHARE library
a SAS library for which input and output requests are controlled and executed by a SAS/SHARE server.

SAS/SHARE server
the result of an execution of the SERVER procedure. The SERVER procedure is part of SAS/SHARE software. A server runs in a separate SAS session that services users’ SAS sessions by controlling and executing input and output requests to one or more SAS data libraries. See also client, server, SAS/SHARE client.

SAS/SHARE server library
a SAS library for which input and output requests are controlled and executed by a SAS/SHARE server.

server
a computer system that provides data or services to multiple users on a network. The term ‘server’ sometimes refers to the computer system's hardware and software, but it often refers only to the software that provides the data or services. In a client/server implementation, a server is a program that waits for and fulfills requests from client sessions for data or services. The client sessions might be running on the same computer or on other computers. See also client, SAS/CONNECT server, SAS/SHARE server.

server library
a SAS library that has been defined to a SAS/SHARE server. The SAS/SHARE server controls access to the library.

SMP (symmetric multiprocessing)
a hardware and software architecture that can improve the speed of I/O and processing. An SMP machine has multiple CPUs and a thread-enabled operating system. An SMP machine is usually configured with multiple controllers and with multiple disk drives per controller.

SQL (Structured Query Language)
a standardized, high-level query language that is used in relational database management systems to create and manipulate database management system objects. SAS implements SQL through the SQL procedure.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol (TCP) is a standard protocol for transferring information on local area networks such as Ethernets. TCP ensures that process-to-process information is delivered in the appropriate order. Internet Protocol (IP) is a protocol for managing connections between operating environments. IP routes information through the network to a particular operating environment and fragments and reassembles information in transfers.
variable
a column in a SAS data set or in a SAS data view. The data values for each variable describe a single characteristic for all observations.

view
a generic term (used by many software vendors) for a definition of a virtual data set. The definition is named and stored for later use. A view contains no data; it merely describes or defines data that is stored elsewhere. See also SAS data view.

view descriptor
a SAS/ACCESS file that defines part or all of the DBMS data that is described by an access descriptor. See also access descriptor.

view engine
an engine that enables SAS to process SAS data views. A view engine performs in a transparent manner. See also engine, SAS data view.

XMS (Cross-Memory Services)
a cross-task communication interface that is part of z/OS. XMS is used by programs that run within a single z/OS operating environment. XMS is also the name of the SAS communications access method that uses XMS for client/server communication.
Index

A
access control 17
data 34
end users 17
SAS libraries 17, 31, 34, 42, 139
server administrator 33
server libraries, read-only access users 17
access descriptor files
- cross-architecture restrictions 209
ACCESS= option
- LIBNAME statement 139
ACCESS procedure
- cross-architecture restrictions 209
ACCTLVL= option
- PROC SERVER statement 124
ADMINLIBREF= option
- PROC SERVER statement 125
ADO clients 21
ALLOC option
- PROC SERVER statement 124
ALLOCATE LIBRARY command examples 136
pre-defining SAS libraries 30
ALLOCATE SASFILE command examples 134
vs. SASFILE statement 134
applications developers 26
frequently asked questions (FAQs) 14
applications systems tables
loading 176
APPLSYS= argument
LIBDEF macro 83, 177
SHRMACS macro 75, 83, 176
APPLSYS macro library
default library names 78
defining server aliases 78
specifying 78
specifying alternate 176
specifying alternate library-alias table 78
architectural groups
centeral 216
numeric 214
table 215
ASCII-ANSI translation 211
ASCII-ISO translation 211
ASCII-Mac translation 211
ASCII-OEM translation 211
AUTHENTICATE= option
PROC SERVER statement authentication clients
definition 101
servers 198
trusted CAs 195
auxiliary tables modifying 50
client authentication
client/client sessions
- digital certificates 198
- encryption algorithms 198
- encryption support 198
client information viewing 11
client/server access
- cross-version 263
- limitations on observations and variables 264
- SAS files 265
- upgrade to Version 9 SAS 263
client/server relationship
- encrypted data transfers 192
- outcomes 193
- TripleDES algorithm 194
- client user ID 125
CLIENTID= option
- PROC SERVER statement 125
clients
- disconnecting from server 11
- CNTLLEVEL= data set option 70
COMAMID option
- OPTIONS statement 29
- COMAMID= system option 29
- COMAU/X option 29
- COMAU/X= system option 188
- communications access methods multiple per server 15
- specifying 28
- COMPRESS= option 251
- concurrent-update applications 45
- CONNECT TO REMOTE statement control rows
- locating and fetching 50
CPORT procedure
- cross-architecture access 209
- CPU management 239
- cross-architecture access
- access descriptor file restrictions 209
- ACCESS procedure restrictions 206
architectural groups 213
audience for capabilities 206
centeral architectural groups 216
centeral-translation tables 211
CIMPORT procedure
- CPORT procedure 209
- DATA step restrictions 209
batch processing 46
Beatrous, Steve 234
Brideson, Bill 234
buffer size 189
for transmission buffers 189
tuning tips 250
BUFSIZE= system option 250
C program clients
catalog entries
- end-user applications 63
- locking 63
catalogs
- locking 237
tuning 237
CATCACHELIMIT= option
ALLOCATE LIBRARY command
Certificate Authority (CA)
creating trust lists 113
CRLs and
definition 108
digital certificate generation 195
digital certificate location 195
digital certificates trusted by SSL 195
Certificate Revocation List (CRL)
centeral-translation tables
- cross-architecture access 211
CIMPORT procedure
cross-architecture access 209
CLEAR option
LOCK command 173
LOCK statement 172
CPU management 239
CROSS-REFERENCE index
architectural groups 213
audience for capabilities 206
centeral architectural groups 216
centeral-translation tables 211
CIMPORT procedure 209
CPORT procedure 209
DATA step restrictions 209
data 34
end users 17
SAS libraries 17, 31, 34, 42, 139
server administrator 33
server libraries, read-only access users 17
ACCESS= option
LIBNAME statement 139
ACCESS procedure
- cross-architecture restrictions 209
ACCTLVL= option
PROC SERVER statement 124
ADMINLIBREF= option
PROC SERVER statement 125
ADO clients 21
ALLOC option
PROC SERVER statement 124
ALLOCATE LIBRARY command examples 136
pre-defining SAS libraries 30
ALLOCATE SASFILE command examples 134
vs. SASFILE statement 134
applications developers 26
frequently asked questions (FAQs) 14
applications systems tables
loading 176
APPLSYS= argument
LIBDEF macro 83, 177
SHRMACS macro 75, 83, 176
APPLSYS macro library
default library names 78
defining server aliases 78
specifying 78
specifying alternate 176
specifying alternate library-alias table 78
architectural groups
centeral 216
numeric 214
table 215
ASCII-ANSI translation 211
ASCII-ISO translation 211
ASCII-Mac translation 211
ASCII-OEM translation 211
AUTHENTICATE= option
PROC SERVER statement authentication clients
definition 101
servers 198
trusted CAs 195
auxiliary tables modifying 50
client authentication
client/client sessions
digital certificates 198
- encryption algorithms 198
- encryption support 198
client information viewing 11
client/server access
cross-version 263
- limitations on observations and variables 264
- SAS files 265
- upgrade to Version 9 SAS 263
client/server relationship
encrypted data transfers 192
outcomes 193
TripleDES algorithm 194
- client user ID 125
CLIENTID= option
PROC SERVER statement 125
clients
disconnecting from server 11
- CNTLLEVEL= data set option 70
COMAMID option
OPTIONS statement 29
- COMAMID= system option 29
- COMAU/X option 29
- COMAU/X= system option 188
- communications access methods multiple per server 15
- specifying 28
- COMRESS= option 251
- concurrent-update applications 45
- CONNECT TO REMOTE statement control rows
- locating and fetching 50
CPORT procedure
cross-architecture access 209
- CPU management 239
- cross-architecture access
- access descriptor file restrictions 209
- ACCESS procedure restrictions 206
architectural groups 213
audience for capabilities 206
centeral architectural groups 216
centeral-translation tables 211
CIMPORT procedure 209
CPORT procedure 209
DATA step restrictions 209
batch processing 46
Beatrous, Steve 234
Brideson, Bill 234
buffer size 189
for transmission buffers 189
tuning tips 250
BUFSIZE= system option 250
C program clients
catalog entries
- end-user applications 63
- locking 63
catalogs
- locking 237
tuning 237
CATCACHELIMIT= option
ALLOCATE LIBRARY command
Certificate Authority (CA)
creating trust lists 113
CRLs and
definition 108
digital certificate generation 195
digital certificate location 195
digital certificates trusted by SSL 195
Certificate Revocation List (CRL)
centeral-translation tables
- cross-architecture access 211
CIMPORT procedure
cross-architecture access 209
CLEAR option
LOCK command 173
LOCK statement 172
CPU management 239
CROSS-REFERENCE index
architectural groups 213
audience for capabilities 206
centeral architectural groups 216
centeral-translation tables 211
CIMPORT procedure 209
CPORT procedure 209
DATA step restrictions 209
data translation 209 212
DOWNLOAD procedure 209
host differences 207
loss of magnitude 210
loss of precision 210
mixed-type variable restrictions 209
natural language differences 211
numeric architectural groups 214
numeric translation 210
PROGRAM file restrictions 209
SAS file access restrictions 209
UPLOAD procedure 209
view file restrictions 209
cross-version client/server access 263
CryptoAPI 106
cryptography 101, 108

D
data access
controlling 34
data security 101
data sets
creating (example) 3
holding in memory 133
data step
cross-architecture restrictions 209
DATA step
processing 45
data views
tuning 247
data tables 50
data transfer
encryption 191 192 194
data translation 209 212
cross-architecture access 209
data views
disabling 129
interpretation location 142
DATALISTC function 51
DATALSTN function 51
date-time stamps, formatting 33
DBMS= option
CONNECT TO REMOTE statement 166
DBMSARG= option
CONNECT TO REMOTE statement 167
derecription 207
DER (Distinguished Encoding Rules) formats 126
DES (Data Encryption Standard) digital certificates 134
CRILs and definition 113
der formats 120
generating 116 117
issuer name and location 196 195
Microsoft certificate store private key location and serial numbers 197
set-up process 116
subject name 198
UNIX and viewing 113
digital signatures 108

E
EBCDIC translation 211
cryptography client/server support 102
data transfers encryption for private keys 104
definition 101
cryptography algorithms DES 103
IDEA 103
MD5 103
NETENCRYPTKEYLEN= system option 194
RC2 102
RC4 103
SAS/SECURE 106
SASProprietary 103
TripleDES 103
cryptograph encryption services comparing 105
configuring 104
deployment example, SAS/SHARE 106
SAS/SECURE 102
SASProprietary 102
software requirements SSL 102 107
der end-user applications
batch processing 46
catalog entries 55
checking lock status of observations 50
checking return codes 45
cryptograph concurrent-update applications 45
data step processing 43
data tables detecting modified window values 49
error-checking 44
external DBMS access 42
FSBROWSE procedure 49
FSEDIT procedure 49
FULL argument 178
LISTLIB macro 178

H
host protections 35
host-specific libraries 152
HOSTNAME= option
LIBNAME statement 139
htmSQL client 21

I
I/O management 240 252
IDEA (International Data Encryption Algorithm) 103
implicit locks 60
in SAS program steps 60
indexes tuning 244
inventory maintenance 256
__IORC__ variable checking 49

J
Java clients 21
joining remote and local data 47

L
LIBDEF macro 75, 177
generating LIBNAME statements 42
LIBNAME statement, SAS/SHARE 137
example 143
generating with LIBDEF macro 42
pre-defining libraries 30
library access, restricting 34
library-alias tables
listing 178
logging 178
specifying alternate 78
library tables
adding server-library pairs 182
librefs 140
for library of administrative data 125
specifying in server session 177, 183
LIBTYPE= option
ALLOCATE LIBRARY command 135
LIST option
LOCK command 173
LOCK statement 172
LISTLIB macro 74, 178
LISTSRV macro 74, 179
LISTSRVI macro 74, 179
local engines
specifying 177
LOCATEC table function 50
LOCATEN table function 50
LOCK command overview 171
setting/clearing locks 66
lock manager facility 24
locking SAS files
overview 171
return codes 65
source data and 62
locked observations checking for 50
modifying 8
locked status
logging 172
locking observations 8
SAS data objects 43
SAS files in SAS programs 46
SAS table rows in SCL programs 49
locks clearing 66
listing 65
types of 60
LOG= option
PROC SERVER statement 127
LRPYIELD= option
PROC SERVER statement 126, 250
M
macro libraries
APPLSYS macro library 77
server administrator macros 75
utility macros 74
macros, compiling
See SHRMACS macro
macros, for server access
adding servers 74
changing servers 74
defining aliases 74
logical connections 78
redistributing server load 78
switching libraries between servers 78
switching users between servers 74
magnitude of loss of 210
MD5 (Message Digest) algorithm
memory management message formats
locking messages tuning 242
Microsoft CryptoAPI 106
digital certificates
mixed-type variables
cross-architecture restrictions 209
model SCL 50
MOTBs (multi-observation transfer buffers) 248
MSNUMBER option
PROC SERVER statement 128
multi-observation transfer buffers (MOTBs) 248
N
natural languages
cross-architecture access 211
NETCRIPT system option 191
NETCRIPTALGORITHM= system option 192
client/server outcomes 193
NETCRIPTKEYLEN= system option 194
NETNODE= argument
SERVINFO macro
non-interactive processing
NORMTVIEW option
PROC SERVER statement numeric magnitude
loss of 210
numeric precision
loss of 210
numeric translation
cross-architecture access 210
O
OAPW= option
PROC SERVER statement observations
changing to members 210
checking lock status compatibility issues 264
grouping 248
locked, modifying 8
unlocking 51
OBSINFO function 51
OLE DB clients 21
OpenSSL arguments and values 111
digital certificates 110, 112
PEM format and terminating 113
OpenVMS Alpha
ALTLOG= system option 221
ALTPRINT= system option 221
creating server command files 221
creating server environment 220
executing server command files 221
starting server 221
SUBMIT command 221
OPERATE macro
OPERATE procedure 25
ordering process 25
page size tuning 244
PASSWORD= option
CONNECT TO REMOTE statement 140
LIBNAME statement 147
PROC OPERATE statement passwords 54
See also access control
decrypting private keys 201
naming conventions 143
remote connections and 130
RSPT server 164
SERVLIB macro
precision loss of 210
PHYSNAME= argument
SYSTEM= argument
user authentication 125
PF= option
PROC OPERATE statement 146

P
passwords 34
See also access control
decrypting private keys 201
naming conventions 143
remote connections and 130
RSPT server 164
SAS/SHARE 137
server access 147
server administrator user 54
user authentication 125
PF= option
PROC OPERATE statement 146
PHYSNAME= argument
SERVLIB macro
precision loss of 210
PRINTFILE= option
PROC OPERATE statement 146
private keys definition 108
passwords for decrypting 201
specifying location of 200
PROC OPERATE statement generating with OPERATE macro 180
identifying default server 153
PROC SERVER statement example 132
starting server logs 95
starting servers 31
PROC SQL statement processes yield frequency 126, 250
PROGRAM files cross-architecture restrictions 209
program macros 75
programmers 26
PT2DBPW= option CONNECT TO REMOTE statement 166
PROC SERVER statement 130
public keys 108
Q QUERY option LOCK command 173
QUIESCE LIBRARY command 151
QUIESCE SERVER command 154
QUIESCE USER command example 57
quiesced servers re-starting 156
quiesced user access re-starting 159
quiescing libraries servers user access 151
154 159
S SAPW= option CONNECT TO REMOTE statement 164
PROC OPERATE statement 142
SAS Component Language (SCL) 255
SAS/CONNECT software end-user applications 55
programming considerations 55
SAS data files accessing with SAS/SHARE server 24
accessing without SAS/SHARE server 23
compatibility issues 256
concurrent access and tuning 237
cross-architecture access restrictions 238
data flow and tuning 235
SAS libraries access restrictions 17 31 34
accessing across networks 148
allocating to running server 124
allowing client definition of 139
controlling user access defining 8
determining server type 14
displaying information about 149
end-user applications freeing 151
locking 62
maximizing per server 16
pre-defining preparing for SAS/SHARE server access 15
re-starting specifying host-specific 151
specifying physical names 152
stopping 152
SAS programming end-user applications 43
SAS/SHARE tuning options 247
SAS/SHARE servers access control, SAS libraries access control, user 16
accessing, on UNIX 115
accessing, on Windows 120
accessing SAS files data sources 20
data sources 21
data sources 22
determining need for a second 17
determining use of disabling data views 17
disconnecting clients 13
random access tuning 244
RC2 algorithm 102
NETENCRYPTKEYLEN= system option 194
SAS/SHARE and 106
SAS/SHARE and SAS/SECURE and 106
NETENCRYPTKEYLEN= system option 194
READONLY argument 106
LIBDEF macro 183
remote DBMS access 165
REMOTE engine default value for RMTVIEW= option 182
specifying RMTVIEW= option 177
SQL Pass-Through Facility (RSPT) 47
SQL programming remote engines
passing options to specifying 177
remote file access 25
Remote Library Services (RLS) 25
Remote SQL Pass-Through Facility (RSPT) 47
RENGINE= argument 177
LIBDEF macro 183
SERVLIB macro 183
SAS data views DATA step views defining 52
interpreting 52
PROC ACCESS views 52
PROC SQL views tuning 235
SAS files accessing with SAS/SHARE server accessing without SAS/SHARE server compatibility issues 265
concurrent access and tuning 237
cross-architecture access restrictions 238
data flow and tuning 235
SAS libraries access restrictions 17 31 34
accessing across networks 148
allocating to running server 124
allowing client definition of 139
controlling user access defining 8
determining server type 14
displaying information about 149
end-user applications freeing 151
locking 62
maximizing per server 16
pre-defining preparing for SAS/SHARE server access 15
re-starting specifying host-specific 152
specifying physical names 152
stopping 152
SAS programming end-user applications 43
SAS/SHARE tuning options 247
SAS/SHARE servers access control, SAS libraries access control, user 16
accessing, on UNIX 115
accessing, on Windows 120
accessing SAS files data sources 20
determining need for a second 17
determining use of disabling data views 17
disconnecting clients 13
trusted certificate authorities 195
UNIX and 109 110
Windows and 116
SSCALISTLOC= system option 195
SSLCERTISS= system option 196
SSLCERTLLOC= system option 196
SSLCERTSERIAL= system option 197
SSLCERTSUBJ= system option 197
SSLCLIENTAUTH system option 197
SSLCRLECHECK system option 199
SSLCRLLOC= system option 199
SSLPVTKEYLOC= system option 200
SSLPVTKEYPASS= system option 200
START LIBRARY command 151
START SERVER command 156
START USER command 159
STOP LIBRARY command 152
STOP SERVER command 157
STOP USER command 37 160
STRTSRV macro 75 185
subsetting strategies 243
tuning 250
SAS/SHARE 187
tuning options 250

T
TBFSIZE= option 131 245
PROC SERVER statement 131 245
TBFSIZE= system option 189
TCP access method 131
threaded version 131
TCP/IP access method 131
setting up 4
THREADEDTCP option 131
PROC SERVER statement 131
timestamps 33 126
TOBSNO= data set option 248
translation tables 248
cross-architecture updates 212
TRANTAB catalog entries 211
TripleDES algorithm 103
client/server relationship 194
NETENCRYPTKEYLEN= system option 194
SAS/SECURE and 106
tuning 113
buffer size 250
catalogs 237
cleaning up data files 243
compressing SAS data files 243
concurrent access 237
CPU management 250
data flow for SAS files 252
data step views 237
grouping observations 248
I/O management 240
indexes 244
limiting open files 245
memory 241 252
messages 242
multi-observation transfer buffers 248
(MOTBs) 248
page size 244
programming techniques 244
random access 244
SAS data library model 245
SAS data view interpretation 249
SAS data views 237
SAS/SHARE options 247
sequential access 245
subsetting strategies 245
system options 250
timing of reports 246
tools for 251
update frequency 246
yield frequency 250

U
UAPW= option 132
PROC SERVER statement 132
UNIX 132
accessing SAS/SHARE servers 115
creating server environment 227
digital certificates 110 112
OpenSSL and 112
SAS/SECURE and 105
SSL and 109 110
starting multi-user SAS/SHARE server 114
UNLOCK function 51
UPLOAD procedure 209
cross-architecture access 209
usage statistics 209
in server logs 60
user access 159
quiescing 159
re-starting quiesced user 159
terminating 160
user authentication 125
user names 143
naming conventions 125
USER= option 165
CONNECT TO REMOTE statement 165
LIBNAME statement 140
PROC OPERATE statement 147
userids 159
specifying 159
users 159
displaying information about 158
utility macros 74

V
VIEW data set type 52
view files 52
cross-architecture restrictions 209

W
Web servers 21
htmSQL client 21
WHERE function 51
Windows 105 106
creating server environment 223
SAS/SECURE and SSL and 116
starting multi-user SAS/SHARE server 119
starting SAS/SHARE servers 120

Y
yield frequency 126 250

Z
z/OS 223
creating server environment 223
SAS/SECURE and 105
starting server 224
If you have comments or suggestions about the *SAS/SHARE 9.1 User’s Guide*, please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com