
SAS/OR® 9.1 User’s Guide:
Local Search Optimization

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/OR® 9.1 User’s
Guide: Local Search Optimization. Cary, NC: SAS Institute Inc.

SAS/OR® 9.1 User’s Guide: Local Search Optimization

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-234-9

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set
forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS
software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-
copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What’s New in SAS/OR 9 and 9.1. 1

Chapter 1. The GA Procedure. 5

Subject Index. .75

Syntax Index. .77

iv

Credits

Documentation

Writing Joe Hutchinson

Editing Virginia Clark

Documentation Support Tim Arnold, Michelle Opp

Technical Review Feng Chen, Gehan A. Corea, Tao Huang,
Radhika V. Kulkarni

Software

PROC GA Joe Hutchinson

Support Groups

Software Testing Feng Chen, Tao Huang

Technical Support Tonya Chapman

vi � Credits

What’s New in SAS/OR 9 and 9.1
Overview

SAS/OR software contains several new and enhanced features since SAS 8.2. Brief
descriptions of the new features appear in the following sections. For more informa-
tion, refer to the SAS/OR documentation, which is now available in the following six
volumes:

• SAS/OR User’s Guide: Bills of Material Processing

• SAS/OR User’s Guide: Constraint Programming

• SAS/OR User’s Guide: Local Search Optimization

• SAS/OR User’s Guide: Mathematical Programming

• SAS/OR User’s Guide: Project Management

• SAS/OR User’s Guide: The QSIM Application

The online help can also be found under the corresponding classification.

The BOM Procedure

The BOM procedure inSAS/OR User’s Guide: Bills of Material Processingwas in-
troduced in Version 8.2 of the SAS System to perform bill of material processing.
Several new features have been added to the procedure, enabling it to read all product
structure records from a product structure data file and all part “master” records from
a part master file, and compose the combined information into indented bills of mate-
rial. This data structure mirrors the most common method for storing bill-of-material
data in enterprise settings; the part master file contains data on each part while the
product structure file holds data describing the various part-component relationships
represented in bills of material.

The PMDATA= option on the PROC BOM statement enables you to specify the name
of the Part Master data set. If you do not specify this option, PROC BOM uses the
Product Structure data set (as specified in the DATA= option) as the Part Master
data set. The BOM procedure now looks up the Part, LeadTime, Requirement,
QtyOnHand, and ID variables in the Part Master data set. On the other hand, the
Component and Quantity variables remain in the Product Structure data set.

You can use the NRELATIONSHIPS= (or NRELTS=) option to specify the number
of parent-component relationships in the Product Structure data set. You have greater
control over the handling of redundant relationships in the Product Structure data set
using the DUPLICATE= option.

2 � What’s New in SAS/OR 9 and 9.1

Several options have been added to the STRUCTURE statement enabling you to spec-
ify information related to the parent-component relationships. In particular, the vari-
able specified with the PARENT= option identifies the parent item, while the vari-
ables listed in the LTOFFSET= option specify lead-time offset information. You can
also specify variables identifying scrap factor information for all parent-component
relationships using the SFACTOR= option. The RID= option identifies all variables
in the Product Structure data set that are to be included in the Indented BOM output
data set.

The CLP Procedure (Experimental)

The new CLP procedure inSAS/OR User’s Guide: Constraint Programmingis an9.1
experimental finite domain constraint programming solver for solving constraint sat-
isfaction problems (CSPs) with linear, logical, global, and scheduling constraints.
In addition to having an expressive syntax for representing CSPs, the solver fea-
tures powerful built-in consistency routines and constraint propagation algorithms,
a choice of nondeterministic search strategies, and controls for guiding the search
mechanism that enable you to solve a diverse array of combinatorial problems.

The CPM Procedure

The CPM procedure inSAS/OR User’s Guide: Project Managementadds more op-
tions for describing resource consumption by activities, enhancing its applicability to
production scheduling models.

A new keyword, RESUSAGE, has been added to the list of values for the OBSTYPE
variable in the Resource data set. This keyword enables you to specify whether a
resource is consumed at the beginning or at the end of a given activity.

The MILESTONERESOURCE option enables you to specify a nonzero usage of
consumable resources for milestone activities. For example, this option is useful if
you wish to designate specific milestones to be the points of payment for a subcon-
tractor. The MILESTONENORESOURCE option is the current default behavior of
the CPM procedure, which indicates that all resource requirements are to be ignored
for milestone activities.

The GA Procedure (Experimental)

The new GA procedure inSAS/OR User’s Guide: Local Search Optimizationfa-9.1
cilitates the application of genetic algorithms to general optimization. Genetic al-
gorithms adapt the biological processes of natural selection and evolution to search
for optimal solutions. The procedure can be applied to optimize problems involv-
ing integer, continuous, binary, or combinatorial variables. The GA procedure is
especially useful for finding optima for problems where the objective function may
have discontinuities or may not otherwise be suitable for optimization by traditional
calculus-based methods.

What’s New in SAS/OR 9 and 9.1 � 3

The GANTT Procedure

The GANTT procedure inSAS/OR User’s Guide: Project Managementincludes a
new option for controlling the width of the Gantt chart. The CHARTWIDTH= option
specifies the width of the axis area as a percentage of the total Gantt chart width.
This option enables you to generate Gantt charts that are consistent in appearance,
independent of the total time spanned by the project.

The LP Procedure

The performances of primal and dual simplex algorithms in the LP procedure
(SAS/OR User’s Guide: Mathematical Programming) have been significantly im-
proved on large scale linear or mixed integer programming problems.

The PM Procedure

The new options added to the CPM procedure are also available with PROC PM.

The QP Procedure (Experimental)

The new QP procedure inSAS/OR User’s Guide: Mathematical Programmingim- 9.1
plements a primal-dual predictor-corrector interior-point algorithm for large sparse
quadratic programs. Depending on the distribution of the eigenvalues of the Hessian
matrix,H, two main classes of quadratic programs are distinguished (assuming min-
imization):

• convex:H is positive semi-definite

• nonconvex:H has at least one negative eigenvalue

Diagonal and nonseparable Hessian matrices are recognized and handled automati-
cally.

Bill of Material Post Processing Macros

Several macros enable users to generate miscellaneous reports using the Indented
BOM output data set from the BOM procedure inSAS/OR User’s Guide: Bills of
Material Processing. Other transactional macros perform specialized transactions
for maintaining and updating the bills of material for a product, product line, plant,
or company.

4 � What’s New in SAS/OR 9 and 9.1

Chapter 1
The GA Procedure (Experimental)

Chapter Contents

OVERVIEW . 7

GETTING STARTED . 8
Initializing the Problem Data. 9
Choosing the Problem Encoding. 12
Setting the Objective Function. 13
Controlling the Selection Process. 13
Setting Crossover Parameters. 14
Setting Mutation Parameters. .15
Creating the Initial Generation. 16
Monitoring Progress and Reporting Results. 17
A Simple Example. .18

SYNTAX .20
PROC GA Statement. .21
ContinueFor Call .22
Cross Calls. .22
Dynamic–array Call .23
EvaluateLC Call. .24
GetDimensions Call. .25
GetObjValues Call. .25
GetSolutions Call .25
Initialize Call .26
MarkPareto Call. .27
Mut Calls .28
PackBits Call .29
Program Statements. .30
ReadChild Call .31
ReadCompare Call. .32
ReadMember Call. .33
ReadParent Call. .33
ReEvaluate Call. .34
SetBounds Call .34
SetCross Calls. .34
SetCrossProb Call. .36
SetElite Call .36

6 � Chapter 1. The GA Procedure (Experimental)

SetEncoding Call .37
SetFinalize Call .37
SetMut Calls. .38
SetMutProb Call. .39
SetObj Call .39
SetSel Call. .40
SetUpdateRoutine Call. .41
UnpackBits Function .41
UpdateSolutions Call .41
WriteChild Call .42
WriteMember Call. .42

DETAILS .43
Using Multisegment Encoding. 43
Using Standard Genetic Operators. 44
Defining User Genetic Operators. 52
Defining an Objective Function. 55
Defining a User Initialization Routine. 56
Incorporating Heuristics and Local Optimizations. 57
Handling Constraints .58
Optimizing Multiple Objectives. 59

EXAMPLES .61
Example 1.1. Traveling Salesman Problem with Local Optimization. 61
Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism64
Example 1.3. Quadratic Objective with Linear Constraints, Using Bicriterion

Approach .67

REFERENCES .74

Chapter 1
The GA Procedure (Experimental)

Overview

Genetic algorithms are a family of local search algorithms that seek optimal solu-
tions to problems using the principles of natural selection and evolution. Genetic
algorithms can be applied to almost any optimization problem, and are especially
useful for problems where other calculus-based techniques do not work, such as
when the objective function has many local optima, is not differentiable or contin-
uous, or solution elements are constrained to be integers or sequences. In most cases,
genetic algorithms require more computation than specialized techniques that take
advantage of specific problem structure or characteristics. However, for optimization
problems with no such techniques available, genetic algorithms provide a robust gen-
eral method of solution. This release of the GA procedure is experimental, and will
be further developed and tested in later SAS releases. For the most recent updates to
the documentation for this experimental procedure, see the Statistics and Operations
Research Documentation page at http://support.sas.com/rnd/app/doc.html.

In general, genetic algorithms use some variation of the following procedure to search
for an optimal solution:

initialization: An initial population of solutions is randomly generated, and the
objective function is evaluated for each member of this initial
generation.

selection: Individual members of the current generation are chosen
stochastically either to parent the next generation or to be passed
on to it, such that those members who are the fittest are more
likely to be selected. A solution’s fitness is based on its objec-
tive value, with better objective values reflecting higher fitness.

crossover: Some of the selected solutions are passed to a crossover oper-
ator. The crossover operator combines two or more parents to
produce new offspring solutions for the next generation. The
crossover operator tends to produce new offspring that retain
the common characteristics of the parent solutions, while com-
bining the other traits in new ways. In this way, new areas of
the search space are explored, hopefully while retaining optimal
solution characteristics.

mutation: Some of the next-generation solutions are passed to a mutation
operator, which introduces random variations in the solutions.
The purpose of the mutation operator is to ensure that the solu-
tion space is adequately searched to prevent premature conver-
gence to a local optimum.

8 � Chapter 1. The GA Procedure (Experimental)

repeat: The current generation of solutions is replaced by the new gen-
eration. If the stopping criterion is not satisfied, the process
returns to theselectionphase.

The crossover and mutation operators are commonly calledgenetic operators.
Selection and crossover distinguish genetic algorithms from a purely random search
and direct the algorithm toward finding an optimum. Mutation is designed to ensure
diversity in the search to prevent premature convergence to a local optimum.

There are many ways to implement the general strategy just outlined, and it is also
possible to combine the genetic algorithm approach with other heuristic solution im-
provement techniques. In the traditional genetic algorithm, the solutions space is
comprised of bit-strings, mapped to an objective function, and the genetic operators
are modeled after biological processes. Although there is a theoretical foundation
for the convergence of genetic algorithms formulated in this way, in practice most
problems do not fit naturally into this paradigm. Modern research has shown that op-
timizations can be set up using the natural solution domain (for example, a real vector
or integer sequence) and applying crossover and mutation operators analogous to the
traditional genetic operators, but more appropriate to the natural formulation of the
problem. This is the approach, sometimes calledevolutionary computing, taken in
the GA procedure. It enables you to model your problem using a variety of solution
forms including sequences, integer or real vectors, boolean encodings, and combina-
tions of these. The GA procedure also provides you with a choice of genetic operators
appropriate for these encodings, while allowing you to write your own.

The GA procedure enables you to implement the basic genetic algorithm by default,
and also to employ other advanced techniques to handle constraints, accelerate con-
vergence, and perform multiobjective optimizations. These advanced techniques are
discussed in the“Details” section beginning on page 43.

Although genetic algorithms have been demonstrated to work well for a variety of
problems, there is no guarantee of convergence to a global optimum. Also, the con-
vergence of genetic algorithms can be sensitive to the choice of genetic operators,
mutation probability, and selection criteria, so that some initial experimentation and
fine-tuning of these parameters is often required.

Getting Started

The optimization problem is described using programming statements, which initial-
ize problem data and specify the objective, genetic operators, and other optimization
parameters. The programming statements are executed once, and are followed by a
RUN statement to begin the optimization process. The GA procedure enables you to
define subroutines and designate them to be called during the optimization process
to calculate objective functions, perform genetic mutation or crossover operations, or
monitor and control the optimization. All variables created within a subroutine are
local to that routine; to access a global variable defined within the GA procedure, the
subroutine must have a parameter with the same name as the variable.

Initializing the Problem Data � 9

To set up a genetic algorithm optimization, your program needs to perform the fol-
lowing steps:

1. You must first initialize your problem data, such as cost coefficients and pa-
rameter limits.

2. You must then specify five basic optimization parameters:

• Encoding: The general structure and form of the solution

• Objective: The function to be optimized

• Selection: How members of the current solution generation are cho-
sen to propagate the next generation

• Crossover: How the attributes of parent solutions are combined to
produce new offspring solutions

• Mutation: How random variation is introduced into the new offspring
solutions to maintain genetic diversity

3. Next, you need to generate a population of solutions for the initial generation.

4. Finally, you need to control the execution of the algorithm and record your
results.

The following sections discuss each of these items in detail.

Initializing the Problem Data

The GA procedure offers great flexibility in how you initialize the problem data. You
can either read data from SAS data sets that are created from other SAS procedures
and DATA steps, or you can initialize the data with programming statements.

In the PROC GA statement, you can specify up to five data sets to be read with the
DATAn= option, wheren is a number from 1 to 5, that can be used to initialize param-
eters and data vectors applicable to the optimization problem. For example, weights
and rewards for a Knapsack Problem could be stored in the variablesWEIGHT and
REWARD in a SAS data set. If you specify the data set with a DATA1= option, the
arraysWEIGHT and REWARD are initialized at the start of the procedure and are
available for computing the objective function and evaluating the constraints with
program statements. You could store the number of items and weight limit constraint
in another data set, as illustrated in the sample programming statements that follow.

data input1;
input weight reward;
datalines;

1 5
2 3
4 7
1 2
8 3

10 � Chapter 1. The GA Procedure (Experimental)

6 9
2 6
4 3
...
;

data input2;
input nitems limit;
datalines;

10 20
;

proc ga data1 = input1 /* creates arrays weight and reward */
data2 = input2; /* creates variables nitems and limit */

function objective(selected[*], reward[*], nitems);
array x[1] /nosym;
call dynamic_array(x, nitems);
call ReadMember(selected,x,1);
obj = 0;
do i=1 to nitems;
obj = obj + reward[x[i]];

end;
return(obj);

endsub;

[Other statements follow]

With these statements, the DATA1= option first establishes the arraysweight and
reward from the data setinput1, and the DATA2= option causes the variablesnitems
andlimit to be created and initialized from the data setinput2. Thereward array and
thenitems variable are then used in the objective function.

For convenience in initializing two-dimensional data such as matrices, the GA pro-
cedure provides you with the MATRIXn= option, wheren is a number from 1 to
5. A two-dimensional array is created within the GA procedure with the same name
as the option, containing the numeric data in the specified data set. For example, a
table of distances between cities for a Traveling Salesman Problem could be stored
as a SAS data set, and a MATRIX1= option specifying that data set would cause a
two-dimensional array namedMATRIX1 to be created containing the data at the start
of the GA procedure.

data distance;
input d1-d10;
datalines;

0 5 3 1 2 ...
5 0 4 2 6 ...
3 4 0 1 3 ...
...
;

Initializing the Problem Data � 11

proc ga matrix1 = distance;
ncities = 10;
call SetEncoding(’S10’);
call SetObjTSP(matrix1);

[Other statements follow]

In this example, the data setdistance is used to create a two-dimensional arrayma-
trix1, wherematrix1[i, j] is the distance from cityi to city j. The SetObjTSP call
then passesmatrix1 to the Traveling Salesman Problem objective function. Note that
when a MATRIXn= option is used, the names of variables in the data set are not
transferred to the GA procedure as they are with a DATAn= option; only the numeric
data is transferred.

You can also initialize problem data with programming statements. The programming
statements in the GA procedure are executed before the optimization process begins.
The variables created and initialized can be used and modified as the optimization
progresses. The programming statement syntax is much like the SAS DATA step,
with a few differences (see the“Syntax” section beginning on page 20). Special calls
are described in the next sections that enable you to specify the objective function
and genetic operators, and to monitor and control the optimization process. In the
following code, a two-dimensional matrix is set up with programming statements to
provide the distances for a 10-city symmetric Traveling Salesman Problem, between
locations specified in a SAS data set.

data positions;
input x y;
datalines;

100 230
50 20
150 100
...
;

proc ga data1 = positions;

call SetEncoding(’S10’);
ncities = 10;

array distances[10,10] /nosym;

do i = 1 to ncities;
do j = 1 to i;

distances[i,j] = sqrt((x[i]-x[j])**2 + (y[i] - y[j])**2);
distances[j,i] = distances[i,j];

end;
end;

call SetObjTSP(distances);

In this example, the DATA1= option creates arraysx andy containing the coordinates
of the cities in anx-y grid, read in from thepositions data set. An array program-

12 � Chapter 1. The GA Procedure (Experimental)

ming statement creates a matrix of distances between cities, and the loops calculate
Euclidean distances from the position data. The array statement is used to create
internal data vectors and matrices. It is similar to the array statement used in the
SAS DATA step, but the /NOSYM option is used in this example to set up the array
without links to other variables. This option allows the array elements to be indexed
more efficiently and the array to be passed efficiently to subroutines. You should use
the /NOSYM option whenever you are creating an array that might be passed as an
argument to a function or call routine.

Choosing the Problem Encoding

Problem encoding refers to the structure or type of solution space that is to be opti-
mized, such as real-valued fixed-length vectors or integer sequences. The GA proce-
dure offers encoding options appropriate to several types of optimization problems.
You specify the problem encoding with aSetEncoding callstatement,

call SetEncoding(‘encoding’);

where theencodingstring is a letter followed by a number, which specifies the type of
encoding and the number of elements. The allowed letters and corresponding types
of encoding are

Ror r: Real-valued vector. This type of encoding is used for general non-
linear optimization problems.

I or i: Integer-valued vector. This encoding is used for integer-valued
problems. An example might be an assignment problem, where
the positions within the vector represent different tasks, and the
integer values represent different machines or other resources that
might be applied to each task.

B or b: Boolean vector. Each element represents one bit or true/false
value.

Sor s: Sequence or permutation. In this encoding, each solution is com-
posed of a sequence of integers ranging from 1 to the number of
elements, with different solutions distinguished by different or-
derings of the elements. This encoding is commonly used for
routing problems such as the Traveling Salesman Problem or for
scheduling problems.

For example, the following statement specifies a 10-element integer vector encoding:

call SetEncoding(’I10’);

For problems where the solution form requires more than one type of encoding, you
can specify multiple encodings in theencodingstring. For example, if you want to
optimize the scheduling of 10 tasks and the assignment of resources to each task, you
could use asegmentedencoding:

call SetEncoding(’I10S10’);

Controlling the Selection Process � 13

Here the I10 (10-element integer vector) is assigned to the first segment, and repre-
sents the resource assignment. The S10 (10-element sequence) is assigned to a second
segment, and represents the sequence of tasks. The use of segmented encodings is
described in the“Using Multisegment Encoding”section on page 43.

Setting the Objective Function

Before executing a genetic algorithm, you must specify the objective function to be
optimized. This is done with aSetObjFunc call:

call SetObjFunc(‘ fname’, minmax);

wherefnameis the name of an objective function you define in your input (see the
“Defining an Objective Function”section on page 55), andminmax is a number
set to 0 to specify minimization or 1 to specify maximization. The GA procedure
also provides a predefined objective function you can use for the Traveling Salesman
Problem:

call SetObjTSP(distances);

where distancesis a two-dimensional array giving the distances between nodes.
Other common objective functions will be added in future releases.

Controlling the Selection Process

There are two competing factors that need to be balanced in the selection process:
theselective pressureandgenetic diversity. Selective pressure, the tendency to select
only the best members of the current generation to propagate to the next, is required
to direct the genetic algorithm to an optimum. Genetic diversity, the maintenance
of a diverse solution population, is also required to ensure that the solution space is
adequately searched, especially in the earlier stages of the optimization process. Too
much selective pressure can lower the genetic diversity so that the global optimum
is overlooked and the genetic algorithm converges prematurely. Yet, with too little
selective pressure, the genetic algorithm may not converge to an optimum in a rea-
sonable time. A proper balance between the selective pressure and genetic diversity
must be maintained for the genetic algorithm to converge in a reasonable time to a
global optimum.

The GA procedure offers two versions of a standard technique for the selection pro-
cess commonly known astournament selection. In general, the tournament selection
process randomly chooses a group of members from the current population, compares
their fitness, and selects the fittest from the group to propagate to the next generation.
Tournament selection is one of the fastest selection methods, and offers good control
over the selection pressure.

In the first version of tournament selection, you can control the selective pressure
by specifying the tournament size, the number of members chosen to compete in
each tournament. This number should be 2 or greater, with 2 implying the weakest
selection pressure. Tournament sizes from 2 to 10 have been successfully applied to
various genetic algorithm optimizations, with sizes over 4 or 5 considered to represent

14 � Chapter 1. The GA Procedure (Experimental)

strong selective pressure. This selection option is chosen with the followingSetSel
call:

call SetSelTournament(size);

wheresizeis the desired tournament size.

The second version of tournament selection provides weaker selective pressure than
the first version just described. The tournament size is set at 2, and the fittest partici-
pant is selected with a probability that you specify. This fittest-is-selected probability
can range from 0.5 to 1.0, with 1.0 implying that the best member is always chosen
(equivalent to a conventional tournament of size 2) and 0.5 implying an equal chance
of either member being chosen (equivalent to pure random selection). This selection
option is chosen with the followingSetSel call:

call SetSelDuel(p);

wherep is the fittest-is-selected probability.

One potential problem with tournament selection is that it does not guarantee that the
best solution in the current generation is passed on to the next. To resolve this prob-
lem, the GA procedure enables you to specify anelite parameter, which ensures that
the very best solutions are passed on to the next generation unchanged by mutation
or crossover. Use theSetElite call:

call SetElite(elite);

whereelite is an integer greater than or equal to 0. The GA procedure preserves
the elite best solutions in the current generation, and ensures they are passed on to
the next generation unchanged. When writing out the final solution population, the
first elitemembers are the best of the generation, and are sorted by their fitness, such
that the fittest is first. By default, if you do not call SetElite in your program, an
elite value of 1 is used. Setting theelite parameter to a higher number accelerates
the convergence of the genetic algorithm; however, it may also lead to premature
convergence before reaching a global optimum, so it should be used with care.

In the future, other selection methods such as roulette and rank selection may be
offered as options. If you do not callSetSelin your input, then the default behavior for
the GA procedure is to use the first version of tournament selection, with a tournament
size of 2.

Setting Crossover Parameters

There are two crossover parameters that need to be specified: the crossover probabil-
ity and the crossover operator. Members of the current generation that have passed
the selection process either go to the crossover operator or are passed unchanged into
the next generation, according to the crossover probability. To set the probability, you
use aSetCrossProb callstatement:

call SetCrossProb(prob);

Setting Mutation Parameters � 15

whereprob is a real number between 0 and 1. A value of 1 implies that the crossover
operator is always applied, while 0 effectively turns off crossover. If you don’t ex-
plicitly set the crossover probability with this call, a default value of 1 is used.

To set the crossover operator, you use aSetCross call. To supply your own operator,
use

call SetCrossRoutine(‘name’);

wherenameis the name of your crossover subroutine. The GA procedure also makes
available to you several standard crossover operators appropriate for each type of
encoding. See the“Crossover Operators”section beginning on page 44 for more
detail on each operator. These operators can be specified as follows.

For Boolean, Real, and Integer encodings:

call SetCrossSimple(alpha);

call SetCross2Point(alpha);

call SetCrossUniform(alpha);

For Integer and Real encodings:

call SetCrossArithmetic();

For Real encoding only:

call SetCrossHeuristic();

For Sequence encoding:

call SetCrossOrder();

call SetCrossPMatch();

call SetCrossCycle();

If you do not use aSetCross callto set the crossover operator, the GA procedure uses
a default crossover operator, which depends on the encoding.

Setting Mutation Parameters

There are two mutation parameters: the mutation probability and the mutation op-
erator. Members of the next generation are chosen to undergo mutation with the
mutation probability you specify. To set the probability, you use aSetMutProb call
statement:

call SetMutProb(prob);

whereprob is a real number between 0 and 1. This probability is usually fairly low
(0.05 or less), since mutation tends to slow the convergence of the genetic algorithm.
If you don’t explicitly set the mutation probability with this call, a default value of
0.05 is used.

16 � Chapter 1. The GA Procedure (Experimental)

To set the mutation operator, you use aSetMut call. To supply your own operator,
use

call SetMutRoutine(‘name’);

wherenameis the name of your mutation subroutine. The GA procedure also makes
available to you several standard mutation operators appropriate for each type of en-
coding. See the“Mutation Operators”section beginning on page 50 for more detail
on each operator. These operators can be specified as follows.

For Real and Integer encodings:

call SetMutDelta(delta, n);

For Boolean, Real, and Integer encodings:

call SetMutUniform(n);

For Sequence encoding:

call SetMutSwap(n);

call SetMutInvert();

If you do not use a SetMut call to set the mutation operator, the GA procedure uses a
default mutation operator, which depends on the encoding.

Creating the Initial Generation

The last step in the initialization for the genetic algorithm optimization is to cre-
ate the initial solution population, the first generation. The GA procedure provides
two methods for generating the initial population. You can specify a data set in the
FIRSTGEN= option of the PROC GA statement that is read to populate the initial
generation, or you can use an initialize call:

call Initialize(‘ initializer’, PopulationSize);

whereinitializer is either the name of a subroutine you have defined to create new
solutions, or DEFAULT to have the GA procedure perform a default initialization.

The default initialization action performed for each solution segment depends on its
encoding. For sequence encoding, the default action produces randomly shuffled
integer sequences from 1 to the segment size. For boolean encoding, the default
action is to randomly generate 0 or 1 bits for each element. For real and integer
encodings, the default initialization depends on whether bounds have been specified
for the segment with aSetBounds call. If bounds have been set for the segment, then
values randomly distributed between the bounds are generated. If no bounds have
been set, then the segment is filled with 0 values. If all the segments in the encoding
are real or integer, default initialization is only allowed if at least one segment has
bounds specified by a SetBounds call.

For other cases where the solution space has more complicated bounds, you are re-
quired to supply your own subroutine to generate new solutions. The specifications
for this subroutine are discussed in the“Defining a User Initialization Routine”sec-
tion on page 56.

Monitoring Progress and Reporting Results � 17

Monitoring Progress and Reporting Results

The GA procedure enables your program to monitor and alter parameters during the
optimization process and record final results.

If a data set is specified in the LASTGEN= option of the PROC GA statement, then
the last generation of solutions is written out to the data set. See the“Syntax” section
beginning on page 20 for a description of the data set created by the LASTGEN=
option.

You can define a subroutine and designate it to be called at each iteration in an up-
date phase, which occurs after the evaluation phase and before selection, crossover,
and mutation. Your subroutine can check solution values and update and store vari-
ables you have defined, adjust any of the optimization parameters such as the muta-
tion probability orelite value, or check termination criteria and end the optimization
process. An update routine can be especially helpful in implementing advanced tech-
niques such as multiobjective optimization. You can specify an update subroutine
with aSetUpdateRoutine call:

call SetUpdateRoutine(‘ routine’);

whereroutine is the name of your subroutine to be executed at each iteration.

You can set the maximum number of iterations allowed for the optimization process
with the MAXITER= option in the PROC GA statement. If none is specified, a
default value of 500 iterations is used. You can also control the number of iterations
dynamically in your program, using theContinueFor call:

call ContinueFor(n);

wheren is the number of iterations to allow beyond the current iteration. A value
of 0 ends the optimization process at the current iteration. One common way this
call might be used is to include it in the logic of an update subroutine declared in
theSetUpdateRoutine call. The update subroutine could check the objective values,
and end the optimization process when the optimal value of the objective function
has not improved for a specific number of iterations. AContinueFor calloverrides an
iteration limit set with the MAXITER= option.

To perform post-processing of the optimization data, you can use aSetFinalize call
to instruct the GA procedure to call a subroutine you have defined, after the last
iteration:

call SetFinalize(‘ routine’);

whereroutine is the name of a subroutine you have defined. Your finalize subrou-
tine could perform some post-processing tasks, such as applying heuristics or a local
optimization technique to try to improve the final solution.

18 � Chapter 1. The GA Procedure (Experimental)

A Simple Example

This example illustrates the application of genetic algorithms to function optimization
over a real-valued domain. It finds the minimum of the Shubert function:

[
5∑

i=1

i cos [(i + 1)x1 + i]

] [
5∑

i=1

i cos [(i + 1)x2 + i]

]

where−10 ≤ xi ≤ 10 for i = 1, 2.

proc ga seed = 12 maxiter = 30;

/* the objective function to be optimized */
function shubert(selected[*]);

array x[2] /nosym;
call ReadMember(selected,1,x);
x1 = x[1];
x2 = x[2];
sum1 = 0;
do i = 1 to 5;

sum1 = sum1 + i * cos((i+1)* x1 + i);
end;
sum2 = 0;
do i = 1 to 5;

sum2 = sum2 + i * cos((i+1) * x2 + i);
end;
result = sum1 * sum2;
return(result);

endsub;

/* Set the problem encoding */
call SetEncoding(’R2’);

/* Set upper and lower bounds on the solution components */
array LowerBound[2] /nosym (-10 -10);
array UpperBound[2] /nosym (10 10);
call SetBounds(LowerBound, UpperBound);

/* Set the objective function */
call SetObjFunc(’shubert’,0);

/* Set the crossover parameters */
call SetCrossProb(0.65);
call SetCrossHeuristic();

/* Set the mutation parameters */
call SetMutProb(0.15);
array delta[2] /nosym (0.2 0.2);
call SetMutDelta(delta, 1);

/* Set the selection criteria */
call SetSelTournament(2);
call SetElite(2);

/* Initialize the first generation, with 120 random solutions */
call Initialize(’DEFAULT’,120);

A Simple Example � 19

/* Now execute the Genetic Algorithm */
run;
quit;

At the beginning of the program, the PROC GA statement sets the initial random
number seed and sets the maximum number of iterations to 30.

A routine to compute the objective function (function shubert) is then defined.
This function is called by the GA procedure once for each member of the solution
population at each iteration. Note that the GA procedure passes the arrayselected
as the first parameter of the function, and the function uses that array to obtain the
selected solution elements with aReadMember call, which places the solution in the
arrayx. The second parameter of the ReadMember call is 1, specifying that segment 1
of the solution be returned, which in this case is the only segment. The programming
statements that follow compute the value of the objective function and return it to the
GA procedure.

After the function definition, the ‘R2’ passed to theSetEncoding callspecifies that
solutions are single-segment, with that segment containing two elements that are real-
valued. Next, a lower bound of -10 and upper bound of 10 are set for each solution
element with theSetBounds call. TheSetObjFunc callspecifies the previously de-
fined Shubert function as the objective function for the optimization; the second pa-
rameter value of 0 indicates that a minimum is desired. TheSetCrossProb callsets
the crossover probability to 0.65, which means that, on average, 65% of the solu-
tions passing the selection phase will undergo the crossover operation. The crossover
operator is set to the heuristic operator by theSetCrossHeuristic call. Similarly, the
mutation probability is set to 0.15 with theSetMutProb call, and the delta operator is
set as the mutation operator with theSetMutDelta call. The selection criteria are then
set: a conventional tournament of size 2 is specified withSetSelTournament call, and
anelite value of 2 is specified with theSetElite call. Theelite value implies that the
best two solutions of each generation are always carried over to the next generation
unchanged by mutation or crossover. The last step before beginning the optimization
is theInitialize call. This call sets the population size at 120, and specifies the default
initialization strategy for the first population. For real encoding, this means that an
initial population randomly distributed between the upper and lower bounds specified
in theSetBounds callis generated. Finally, when the RUN statement is encountered,
the GA procedure begins the optimization process. It iterates through 30 generations,
as set by the MAXITER= option.

The Shubert function has 760 local minima, 18 of which are global minima, with a
minimum of -186.73. If you experiment with different random seeds with the SEED=
option, PROC GA generally converges to a different global minimum each time.
Figure 1.1shows the output for the chosen seed.

20 � Chapter 1. The GA Procedure (Experimental)

PROC GA Optimum Values

Objective

-186.7307143

Solution
Element Value

1 4.8579319191
2 5.4831317424

Figure 1.1. Shubert Function Example Output

Syntax

To initialize your data and describe your model, you use program statements with a
syntax similar to the SAS DATA step, augmented with some special function calls
to communicate with the genetic algorithm optimizer. Most of the program state-
ments used in the SAS DATA step can be used in the GA procedure, and these are
described fully in theSAS Language Guideand base SAS documentation. Below is
an alphabetical list of the statements and special function calls used.

PROC GA options ;
ContinueFor Call ;
Cross Calls ;
Dynamic –array Call ;
EvaluateLC Call ;
GetDimensions Call ;
GetObjValues Call ;
GetSolutions Call ;
Initialize Call ;
MarkPareto Call ;
Mut Calls ;
PackBits Call ;
Program Statements ;
ReadChild Call ;
ReadCompare Call ;
ReadMember Call ;
ReadParent Call ;
ReEvaluate Call ;
SetBounds Call ;
SetCross Calls ;
SetCrossProb Call ;
SetElite Call ;
SetEncoding Call ;
SetFinalize Call ;

PROC GA Statement � 21

SetMut Calls ;
SetMutProb Call ;
SetObj Calls ;
SetSel Calls ;
SetUpdateRoutine Call ;
UnpackBits Function ;
UpdateSolutions Call ;
WriteChild Call ;
WriteMember Call ;

PROC GA Statement

invokes the GA procedure

PROC GA options ;

The following options are used with the PROC GA statement.

DATAn=SAS-data-set
specifies a data set containing data required to specify the problem, wheren is an
integer from 1 to 5. The data set is read and variables created matching the variables
of the data set. If the data set has more than one observation, then the newly created
variables are vector arrays with the size equal to the number of observations.

FIRSTGEN=SAS-data-set
specifies a SAS data set containing the initial solution generation. Different segments
in the solution should be identified by variable names consisting of a letter followed
by numbers representing the elements in the segments, in alphabetical order. For
example, if the first segment of the solution uses real encoding and contains 10 el-
ements, it should be represented by numeric variablesA1, A2, . . . , A10. A second
segment with integer encoding and five elements would be specified in variablesB1,
B2, . . . , B5. To save memory for segments with boolean encoding, up to 32 binary
elements are packed into each variable, with the least significant bit in the variable
corresponding to the first element in the segment. For example, if the third segment
of the solution was boolean encoding with 40 elements, it should be contained in
variablesC1 andC2, with C1 containing the first 32 elements, andC2 containing
elements 33 through 40. The FIRSTGEN= and LASTGEN= options are designed to
work together, so that a data set generated with a LASTGEN= option can be specified
in the FIRSTGEN= option of a later run of the GA procedure.

MATRIXn=SAS-data-set
specifies a data set containing two-dimensional matrix data, wheren is an integer
from 1 to 5. A two-dimensional numeric array with the same name as the option
is created and initialized from the data set. This option is provided to facilitate the
input of tabular data to be used in setting up the optimization problem. Examples of
data that might be provided by this option include a distance matrix for a Traveling
Salesman Problem or a matrix of coefficients for linear constraints.

MAXITER=n
specifies the maximum number of iterations to allow for the optimization process. A
ContinueFor calloverrides a limit set by this option.

22 � Chapter 1. The GA Procedure (Experimental)

LASTGEN=SAS-data-set
specifies a SAS data set into which the final solution generation is written. Different
segments in the solution are identified by variable names consisting of a letter fol-
lowed by numbers representing the elements in the segments, in alphabetical order.
For example, if the first segment of the solution uses real encoding and contains 10
elements, it would be represented by numeric variablesA1, A2, . . . , A10. A second
segment with integer encoding and five elements would be specified in variablesB1,
B2, . . . , B5. To save memory for segments with boolean encoding, up to 32 binary
elements are packed into each variable, with the least significant bit in the variable
corresponding to the first element in the segment. For example, if the third segment of
a solution was boolean encoding with 40 elements, it would be contained in variables
C1 andC2, with C1 containing the first 32 elements, andC2 containing elements 33
through 40. In addition to the solutions elements, the final objective value for each
solution is output in theOBJECTIVE variable. The FIRSTGEN= and LASTGEN=
options are designed to work together, so that a data set generated with a LASTGEN=
option can be specified in the FIRSTGEN= option of a later run of the GA procedure.

SEED=n
specifies an initial seed to begin random number generation. This option is provided
for reproducibility of results. If it is not specified, or if it is set to 0, a seed is chosen
based on the system clock.

ContinueFor Call

sets the number of additional iterations for the genetic algorithm optimization

call ContinueFor(niter);

The input to the ContinueFor subroutine is as follows:

niter specifies that the optimization continues forniter more iterations.
To stop at the current iteration, setniter to 0.

Cross Calls

executes a genetic crossover operator from within a user subroutine

This call can take one of several forms:

call CrossSimple(selected, seg, alpha);

call Cross2Point(selected, seg, alpha);

call CrossUniform(selected, seg, alpha);

call CrossArithmetic(selected, seg);

call CrossHeuristic(selected, seg);

Dynamic–array Call � 23

call CrossOrder(selected, seg);

call CrossPMatch(selected, seg);

call CrossCycle(selected, seg);

The inputs to the subroutine are as follows:

selected is an array that specifies the solutions to undergo crossover.

seg is the desired segment of the solutions to which the crossover op-
eration should be applied.

alpha is used only with the Simple, 2point and Uniform operators, and
must be a value between 0 and 1.

The Cross subroutines should only be called from within a user crossover subroutine.
A user subroutine is only required if multisegment encoding is used, or if you want
to modify the action of a standard crossover operator. For simple single-segment en-
coding, you would normally use aSetCross callto set the crossover operator without
the need to define your own subroutine. The precise action of these crossover oper-
ators is described in the“Crossover Operators”section beginning on page 44. The
alphaparameter is only used for real and integer encodings; it controls the amount of
change between parent and child solutions. A low value ofalpha restrains the oper-
ator so that the offspring look very much like the parents, while a value of 1 allows
complete recombination. The valuealpha = 1 corresponds to the classic crossover
operators used in early genetic algorithm development. For boolean encoding,alpha
is ignored, and is effectively 1.

Dynamic –array Call

allocates a numeric array

call Dynamic –array(arrayname, dim1<, dim2, ..., dim6>);

The inputs to the Dynamic–array call are as follows:

arrayname is a previously declared array, whose dimensions are to be re-
allocated.

dim1 is the size of the first dimension.

dim2,...,dim6 are optional additional dimensions. Up to six dimensions may be
specified.

The Dynamic–array call is normally used to allocate working arrays when the re-
quired size of the array is data-dependent. It is often useful in user routines for genetic
operators or objective functions to avoid hard-coding array dimensions that might de-
pend on segment length or population size. The array to be allocated must first be
declared in an ARRAY statement with the expected number of dimensions, as in the
following example.

24 � Chapter 1. The GA Procedure (Experimental)

subroutine sub(nx, ny);
array x[1] /nosym;
call dynamic_array(x, nx);
array xy[1,1] /nosym;
call dynamic_array(xy, nx, ny);
...

EvaluateLC Call

evaluates linear constraints

call EvaluateLC(lc, results, sum, selected, seg<, child>);

The inputs to the EvaluateLC subroutine are as follows:

lc is a two-dimensional array representing the linear constraints.

results is a numeric array to receive the magnitude of the constraint viola-
tion for each linear constraint.

sum is a variable to receive the sum of the constraint violations over all
the constraints.

selected is an array identifying the selected solution.

seg is the segment of the solution to which the linear constraints apply.

child is an optional parameter, and should only be specified when
EvaluateLC is called from a user crossover operator.

The EvaluateLC routine can be called from a user crossover operator, mutation op-
erator, or objective function to determine if a solution violates linear inequality con-
straints of the formAx ≤ b. For n linear constraints inm variables, thelc ar-
ray should have dimensionn × (m + 1). For each linear constrainti = 1, . . . , n,
lc[i, j] = A[i, j] for j = 1, . . . ,m, andlc[i, m + 1] = b[i]. Theresultsarray should
be one-dimensional with sizen. The EvaluateLC call fills in the elements ofresults
such that

results[i] =


0, if

m∑
j=1

A[i, j]x[j] ≤ b[i]

m∑
j=1

A[i, j]x[j]− b[i], otherwise

In the variablesum, the EvaluateLC call returns the value
∑n

i=1 results[i]. Note that
sum≥ 0, andsum= 0 implies no constraints are violated. When you call EvaluateLC
from your user routine, theselectedparameter of the EvaluateLC call must be the
same as the first parameter passed to your user routine to properly identify the solution
to be checked. Thesegparameter identifies which segment of the solution should be
checked. Real, integer, or boolean encodings can be checked with this routine. If
EvaluateLC is called from a user crossover operator, thechild parameter must be
specified to indicate which offspring is to be checked. The valuechild = 1 requests
the first offspring,child = 2 requests the second, and so on.

GetSolutions Call � 25

GetDimensions Call

gets the dimensions of an array variable

call GetDimensions(source, dest);

The inputs to the GetDimensions subroutine are as follows:

source is the array variable whose dimensions are desired.

dest is an array to receive the dimensions ofsource.

The GetDimensions subroutine is used to get the dimensions of an array passed into
a user subroutine. The inputdestshould have at least as many dimensions assource.
Any extra dimensions indestare filled with zeros.

GetObjValues Call

retrieves objective function values from the current solution generation

call GetObjValues(dest, n);

The inputs to the GetObjValues subroutine are as follows:

dest is an array to receive the objective values.

n is the number of objective values to get.

The GetObjValues subroutine is used to retrieve the objective values for the current
solution generation. If theelite parameter from aSetElite callis 1 or greater, then
the firstelitemembers of the population are the fittest of the population, and they are
sorted in order, starting with the most fit. The inputdestshould be a dimensioned
variable, with dimension greater than or equal ton.

GetSolutions Call

retrieves solutions from the current generation

call GetSolutions(sol, n, seg);

The inputs to the GetSolutions subroutine are as follows:

sol is an array to receive the solution elements.

n is the number of solutions to get.

seg is the segment of the solution to retrieve.

The GetSolutions subroutine is used to retrieve solutions from the current generation.
You would normally call it from an update or finalize subroutine for post-processing
or analysis. If theelite parameter has been set with aSetElite call, then the firstelite
members of the population are the fittest, and they are sorted in order, starting with
the most fit. Thesol variable should have two dimensions, with the first dimension

26 � Chapter 1. The GA Procedure (Experimental)

representing the solution number, and the second representing the element within the
solution. For example, if the encoding of the problem was I10, thensol [2, 3] would
be the value of the third element of the second solution in the current population. For
real, integer, and sequence encoding, each solution element is mapped to the corre-
sponding element of thesol array. For boolean encoding, the bits are packed into the
array, and you should use thePackBitsandUnpackBitsfunctions to manipulate indi-
vidual bits. Thesegparameter specifies the solution segment desired. For example,
if the encoding was set in theSetEncoding callto ‘R10I5’, then segment 1 is R10 and
segment 2 is I5.

Initialize Call

creates the initial solution generation

call Initialize(‘initializer’, size);

The inputs to the Initialize subroutine are as follows:

initializer is a string that specifies the initialization strategy.

size is the size of the initial solution generation.

The Initialize subroutine must be called to create the first solution generation. If the
initializer parameter is DEFAULT, then the GA procedure initializes solution seg-
ments with a default action appropriate to the problem encoding. If the FIRSTGEN=
option is specified in the PROC GA statement, then the default is to read insizesolu-
tions directly from the data set. If there is no FIRSTGEN= option specified, then for
sequence encoded segments, the default action is to generate random sequences of
numbers from 1 to the segment size, and for boolean encoded segments, random bit
vectors are generated. For integer and real encoded segments, the default action is to
generate vectors randomly distributed between the bounds specified in aSetBounds
call, or if SetBounds has not been called, the segment is filled with zeros. If all the
solution segments are real or integer, then at least one must have bounds set in order
to specify the default action.

If initializer is not DEFAULT, then it must be the name of a subroutine you have
defined through program statements. The first parameter of your subroutine must
be a numeric array. The GA procedure calls your subroutinesizetimes, passing in
an array in the first parameter that specifies the selected solution to be initialized.
You should use this parameter in aWriteMember callto assign initial values to the
solution segments desired. See the“Defining a User Initialization Routine”section
on page 56 for more information on defining an initialization subroutine.

MarkPareto Call � 27

MarkPareto Call

identifies the Pareto-optimal set from a population of solutions

call MarkPareto(result, n, objectives, minmax);

The inputs to the MarkPareto call are as follows:

result is a one-dimensional array to accept the results of the evaluation.
Its size should be the same as the size of the population being eval-
uated;result[i] = 1 if solutioni is Pareto-optimal, and 0 otherwise.

n is a variable to receive the number of Pareto-optimal solutions.

objectives is a two-dimensional array that contains the multiple objective val-
ues for each solution. It should be dimensioned[p, q], wherep is
the size of the population, andq is greater than or equal to the
number of objectives to be considered.

minmax is a one-dimensional array to specify how the objective values are
to be used. It should be of sizeq, whereq is greater than or equal
to the number of objectives to be considered.minmax[k] = −1 if
objectivek is to be minimized,minmax[k] = 1 if objectivek is to
be maximized,minmax[k] = 0 if objectivek is not to be consid-
ered, andminmax[k] = −2 designates an objective that prevents
the member from being considered for Pareto-optimality if it is
nonzero.

The MarkPareto call is used to identify the Pareto-optimal subset from a population
of solutions. See the“Optimizing Multiple Objectives”section on page 59 for a full
discussion of Pareto-optimality. MarkPareto can be called from a user update routine,
which is called after the individual solution objective values have been calculated,
and before selection takes place. To make best use of this routine, in your encoding
you need to set up a segment to record all the objective values you intend to use in
the Pareto-optimal set evaluation. In a user objective function, you should calculate
the multiple objectives and write them to the chosen segment. In an update routine
(designated with aSetUpdateRoutine call), you can use aGetSolutions callto retrieve
these segments, and then pass them to a MarkPareto call. The following code shows
how this could be done:

subroutine update(popsize);

array objectives[1,1] /nosym;
call dynamic_array(objectives, popsize, 3);

array pareto[1] /nosym;
call dynamic_array(pareto, popsize);

array minmax[3] /nosym (1 -1 0);

call GetSolutions(objectives, popsize, 2);

28 � Chapter 1. The GA Procedure (Experimental)

call MarkPareto(pareto, npareto, objectives, minmax);

do i = 1 to popsize;
objectives[i,3] = pareto[i];

end;

call UpdateSolutions(objectives, popsize, 2);

call SetElite(npareto);

endsub;

This is an example of a user update routine that might be used in a multiobjective
optimization problem. It is assumed that a user objective function has calculated two
different objectives, and placed their values in the first two elements of segment 2 of
the problem encoding. The first objective is to be maximized, and the second is to be
minimized. Segment 2 has three elements, and the third element is used to mark the
Pareto-optimal solutions. After dynamically allocating the necessary arrays from the
popsize(population size) parameter, the update routine first retrieves the current solu-
tions into theobjectivesarray with theGetSolutions call. It then passes theobjectives
array directly to the MarkPareto call to perform the Pareto-optimal evaluations. Note
that theminmaxarray directs the MarkPareto call to maximize the first element, min-
imize the second, and ignore the third element. After the MarkPareto call, the update
routine writes the results back to the third element of theobjectivesarray, and writes
the objectivesarray back to the solution population with the UpdateSolutions call.
This marks the solutions that comprise the Pareto-optimal set. The update routine
then sets theeliteparameter equal to the number of Pareto-optimal solutions with the
SetElite call. It is assumed that the user has provided a fitness comparison function
(designated with aSetSel call) that always selects a Pareto-optimal solution over a
non-Pareto optimal one, so theelite setting guarantees that all the Pareto-optimal so-
lutions are retained from generation to generation.Example 1.3on page 67 illustrates
the use of the MarkPareto call.

Mut Calls

executes a genetic mutation operator from within a user subroutine

This call can take one of several forms:

call MutDelta(selected, seg, delta, n);

call MutUniform(selected, seg, n);

call MutSwap(selected, seg, n);

call MutInvert(selected, seg);

The inputs to the subroutine are as follows:

PackBits Call � 29

selected is an array that specifies the solution to be mutated.

seg is the desired segment of the solution to which the mutation should
be applied.

delta is a vector of delta values for each component of the solution, used
only for the Delta mutation operator.

n specifies the number of components within the solution that should
be mutated for the Delta and Uniform operators, and the number
of swaps that should be made for the Swap operator.

The Mut subroutines should only be called from within a user mutation subroutine.
Normally, this would only be done when a segmented encoding is used, or you want
to modify the action of the standard mutation operator. For simple one-segment en-
coding, you would normally use aSetMut callto set the mutation operator and you
do not need to define your own subroutine. The precise action of these mutation
operators is described in the“Mutation Operators”section beginning on page 50.

PackBits Call
writes bits to specified variables for boolean encoding

call PackBits(array, start, width, value);

The inputs to the PackBits subroutine are as follows:

array is an array to which the value is to be assigned.

start is the starting position for the bit assignments.

width is the number of bits to assign.

value is the value to be assigned to the bits. For a single bit, this should
be 0 or 1.

The PackBits subroutine is normally called within a user genetic operator subroutine
to assign bit values to a boolean encoding. Thestartparameter should range in value
from 1 to the size of the boolean encoding, and the encoding size should be greater
than or equal tostart+ width - 1. Bits not within the specified range are not changed.
The following code, which might occur in a mutation subroutine, first reads in the
selected solution segment intos with theReadMember calland then assigns ones to
the first and second bits of the solution with the PackBits call before writing it back
out to the current generation.

array s[2];
call ReadMember(selected, seg, s);
...
/* intervening code */
...
call PackBits(s, 1, 2, 3);
call WriteMember(selected, seg, s);

30 � Chapter 1. The GA Procedure (Experimental)

Program Statements

This section lists the program statements used to initialize the model, code the objec-
tive function, and control the optimization process in the GA procedure. It documents
the differences between program statements in the GA procedure and program state-
ments in the DATA step. The syntax of program statements used inPROC GAis
identical to that used in the FCMP procedure.

Most of the program statements that can be used in the SAS DATA step can also be
used in the GA procedure. See theSAS Language Guideor base SAS documentation
for a description of the SAS program statements.

variable= expression;
variable+ expression;
arrayvar[subscript] = expression;
ABORT;
CALL subroutine-name < (parameter-1 <, ...parameter-n >) >;
DELETE;
DO program-statements;END;
DO variable= expressionTO expression<BY expression>;

program-statements;END;
DO WHILE expression;

program-statements;END;
DO UNTIL expression;

program-statements;END;
GOTO statement–label ;
IF expressionTHEN program-statement;

<ELSE program-statement>;
PUT < variable(s)> <@ | @@>;
RETURN <(expression)>;
SELECT <(select-expression)>;

WHEN-1 (expression-1<...,expression-n>)program-statement;
<WHEN-n (expression-1<...,expression-n>)program-statement;>
<OTHERWISE program-statement;>

STOP;
SUBSTR(variable, index, length) = expression;

For the most part, the SAS program statements work as they do in the SAS DATA step
as documented in theSAS Language Guide. However, there are several differences
that should be noted.

• The ABORT statement does not allow any arguments.

• The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however,

do i = ‘A’,‘B’,‘C’;

is not.

ReadChild Call � 31

• The PUT statement, used mostly for program debugging inPROC GA, sup-
ports only some of the features of the DATA step PUT statement, and has some
new features that the DATA step PUT statement does not:

– The PROC GA PUT statement does not support line pointers, factored
lists, iteration factors, overprinting,–INFILE–, the colon (:) format mod-
ifier, or “$”.

– The PROC GA PUT statement does support expressions, but the expres-
sion must be enclosed inside parentheses. For example, the following
statement displays the square root of x:put (sqrt(x));

– The PROC GA PUT statement allows an array name without subscripts.
The statementPUT A; prints all the elements of arrayA. The statement
PUT A=; prints the elements of arrayA with each value labeled with the
name of the element variable.

– The PROC GA PUT statement supports the print item–PDV– to print a
formatted listing of all variables in the program. For example, the follow-
ing statement displays a more readable listing of the variables than the

–all– print item: put –pdv –;

• The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple statement
WHENs. For example, the following syntax is valid:

SELECT;
WHEN (exp1) stmt1;

stmt2;
WHEN (exp2) stmt3;

stmt4;
END;

ReadChild Call

reads a segment from a selected child solution into an array, within a user
crossover operator

call ReadChild(selected, seg, n, values);

The inputs to the ReadChild subroutine are as follows:

selected specifies the family (parents and children) obtained from the selec-
tion process.

seg specifies the solution segment to be read.

n specifies the child in the family from which to read the solution
segment.

values specifies an array to receive the solution elements.

32 � Chapter 1. The GA Procedure (Experimental)

The ReadChild call is used to obtain the solution values for manipulation within a user
crossover operator subroutine. Normally it is only needed if you need to augment the
action of a GA procedure-supplied crossover operator. You might need to make mod-
ifications to satisfy constraints, for example. Theselectedparameter is passed into
the user subroutine by the GA procedure. Thesegparameter is the desired segment of
the solution to be obtained. Segments, which correspond to different encodings in the
encoding string, are numbered, starting from 1 as the first segment. The parametern
should be 1 to get the first child, 2 for the second. The parametervaluesis an array,
which should be dimensioned large enough to contain the segment’s encoding. For
example, the following subroutine illustrates how you could use the Read/WriteChild
calls to modify offspring generated with a standard genetic operator:

call SetEncoding(’R5’);

subroutine cross(selected[*]);

/* generate offspring with arithmetic crossover operator */
call CrossArithmetic(selected, 1); /* here 1 refers to segment 1*/

array child1[5];
array child2[5];

/* get elements of first child solution */
call ReadChild(selected, 1, 1, child1);

/* get elements of second child solution values */
call ReadChild(selected, 1, 2, child2);

...
/* code to modify elements in child1 and child2 */
...

call WriteChild(selected,1,1,child1);
call WriteChild(selected,1,2,child2);

ReadCompare Call

reads a segment from a selected solution into an array, within a user fitness
comparison subroutine

call ReadCompare(selected, seg, n, values);

The inputs to the ReadCompare subroutine are as follows:

selected specifies the pair of solutions to be compared, obtained from the
selection process.

seg specifies the solution segment to be read.

n specifies the solution (1 or 2) from which to read the segment.

values specifies an array to receive the solution elements.

ReadParent Call � 33

The ReadCompare call is used to obtain the solution values for manipulation within
a user fitness comparison subroutine, which can be designated in aSetSel call.

ReadMember Call

reads the selected solution into an array for a user objective function or mutation
operator

call ReadMember(selected, seg, destination);

The inputs to the ReadMember subroutine are as follows:

selected is a parameter passed to the user subroutine by the GA procedure,
which points to the selected solution.

seg specifies which segment of the solution to retrieve.

destination specifies an array in which to store the solution elements.

The ReadMember call is used within a user objective function or mutation operator
to obtain the elements of a selected solution and write them into a specified vector.
They can then be used to compute an objective value, or in the case of a mutation
operator, manipulated and written back out with aWriteMember call.

ReadParent Call

reads selected solution elements into an array in a user crossover subroutine

call ReadParent(selected, seg, n, destination);

The inputs to the ReadParent subroutine are as follows:

selected is a parameter passed to the user subroutine by the GA procedure,
which points to the selected solution family.

seg is the segment of the desired parent solution to be obtained.

n is the number of the parent, starting at 1.

destination is an array in which to store the solution elements.

The ReadParent subroutine is called inside a user crossover operator subroutine to
obtain the elements of selected parent solutions. Normally you would then manipu-
late and combine the elements of the two parents and use aWriteChild call to create
the child offspring and complete the action of the crossover operator.

34 � Chapter 1. The GA Procedure (Experimental)

ReEvaluate Call

reruns the evaluation phase of the genetic algorithm

call ReEvaluate();

The ReEvaluate call recomputes the objective values for the current generation. You
do not normally need to use this call, because the GA procedure evaluates the objec-
tive function during the optimization process in the evaluation phase. This subroutine
should be called from a user update or finalize routine if a parameter that affects the
objective value or solution is changed. For example, you may have a user objective
function that can perform an additional local optimization if a particular parame-
ter is set. If your update routine changes that parameter, then you should call the
ReEvaluate subroutine to update the solutions and objective function values.

SetBounds Call

sets constant upper and lower bounds

call SetBounds(lower, upper <, seg>);

The inputs to the SetBounds subroutine are as follows:

lower is a lower bound for the solution components.

upper is an upper bound for the solution components.

seg is optional, and specifies a segment of the solution to which the
bounds apply. Ifsegis not specified, then it defaults to a value of
1.

The SetBounds subroutine is used to establish upper and lower bounds on the solution
space. It applies only to integer and real encoding. For multiple segment encoding,
use thesegparameter to specify a segment other than the first.upperandlowermust
be arrays, with the same dimension as the encoding size. SetBounds must be called
if you intend to specify default initialization for integer or real encoding and have not
specified the FIRSTGEN= option, or if you use the Uniform mutation operator. The
action of the standard mutation and crossover operators supplied by the GA procedure
is automatically modified so that the bounds established by a SetBounds call are
respected.

SetCross Calls

sets the crossover operator

This call can take one of several forms:

call SetCrossRoutine(‘rname’);

SetCross Calls � 35

call SetCrossSimple(alpha);

call SetCross2Point(alpha);

call SetCrossUniform(alpha);

call SetCrossArithmetic();

call SetCrossHeuristic();

call SetCrossOrder();

call SetCrossPMatch();

call SetCrossCycle();

The inputs to the subroutines are as follows:

rname is the name of a user subroutine to use for the crossover operator.

alpha is a numeric parameter with a value between 0 and 1.

The SetCross subroutines are used to set the crossover operator for the genetic algo-
rithm optimization process.

The SetCrossRoutine specifies that a user subroutinernameshould be used. This
parameter must be a literal quoted string; it cannot be a variable. See the“Defining
User Genetic Operators”section on page 52 for information on defining a crossover
operator.

The Simple, 2point, and Uniform operators are applicable to real, integer, and boolean
encodings. Thealphaparameter is used with real and integer encodings, and should
be set to 1 for boolean. The actions of these operators are explained in detail in the
“Crossover Operators”section beginning on page 44.

The Arithmetic operator is applicable to real and integer encoding, and combines
parent solutions by interpolating between them. The advantage of this operator is
that it automatically respects convex solution domains.

The Heuristic operator is applicable to real encoding. It is based on interpolation and
projection using objective function values.

The Order, PMatch, and Cycle operators are applicable to sequence encoding. For the
PMatch and Cycle operators, the absolute position of elements is emphasized. For
the Order operator, the relative position of elements to each other is most important,
and for that reason it is most often used for circular routing problems, such as the
Traveling Salesman Problem.

All of the operators are explained and discussed in more detail in the“Crossover
Operators”section beginning on page 44.

36 � Chapter 1. The GA Procedure (Experimental)

SetCrossProb Call

sets the crossover probability

call SetCrossProb(p);

The input to the SetCrossProb subroutine is as follows:

p is the crossover probability.

The SetCrossProb subroutine is used to set the crossover probability for the genetic
algorithm optimization process. The crossover probabilityp should be between 0 and
1. Typical values for this parameter range from 0.6 to 1.0. The crossover probabil-
ity will be overridden if required by aSetElite call. The elite solutions are passed
on to the next generation without undergoing crossover, regardless of the crossover
probability.

SetElite Call

sets the number of best solutions to pass to the next generation

call SetElite(elite);

The input to the SetElite subroutine is as follows:

elite is the number of best solutions to be passed unmodified from the
current solution generation to the next.

The SetElite subroutine is used to ensure that the best solutions encountered in the
optimization are not lost by the random selection process. In pure tournament selec-
tion, although better solutions are more likely to be selected, it is also possible that
any given solution will not be chosen to participate in a tournament, and even if it is
selected, it might be modified by crossover or mutation. The SetElite call modifies
the optimization process such that the bestelite solutions in the current population
are exactly preserved and passed on to the next generation. This behavior is observed
regardless of the crossover or mutation settings. When a SetElite call is made, the
first elite solutions in the population retrieved by aGetSolutions callor output to a
data set are the fittest, and theseelitesolutions are sorted so that the most fit is first. In
general, using the SetElite call speeds the convergence of the optimization process.
However, it can also lead to premature convergence before a true global optimum
is reached. If no SetElite call is made, a defaultelite value of 1 is used by the GA
procedure to make sure that the best solution encountered in the optimization process
is never lost.

SetFinalize Call � 37

SetEncoding Call

specifies the problem encoding

call SetEncoding(encoding);

The input to the SetEncoding subroutine is as follows:

encoding is a string used to specify the form of the solution.

The SetEncoding subroutine is used to establish the type of problem solution encod-
ing. Theencodingparameter should be a string of letter-number pairs, where the let-
ter determines the type of encoding: I for integer, R for real-valued, S for sequences,
and B for boolean bit strings. Each letter is followed by a number to indicate the
number of components for that encoding. Multiple letter-number pairs can be used
to specify a multisegment encoding. For example,

call SetEncoding(’I10’);

specifies that solutions are in the form of a 10-member integer vector, and

call SetEncoding(’I5R10’);

specifies that solutions have a 5-component integer segment and 10-component real-
valued segment. See the“Using Multisegment Encoding”section on page 43 for
details on multisegment encoding.

SetFinalize Call

designates a user subroutine to perform post-processing at the end of the opti-
mization process

call SetFinalize(‘routine’);

The input to the SetFinalize subroutine is as follows:

routine is the name of a subroutine you have defined, which is called when
the optimization process ends. This parameter must be a string
literal; a variable is not accepted.

The SetFinalize subroutine enables you to define a subroutine to be called at the end
of the optimization process. You might use this subroutine to perform additional
refinements of the best solution, or you could generate and write out additional data
for plots or reports.

38 � Chapter 1. The GA Procedure (Experimental)

SetMut Calls

sets the mutation operator

This call can take one of several forms:

call SetMutRoutine(‘rname’);

call SetMutDelta(delta, n);

call SetMutUniform(n);

call SetMutSwap(n);

call SetMutInvert();

The inputs to the SetMut subroutines are as follows:

rname is the name of a user subroutine to use for the mutation operator.

delta is a vector of perturbation values, one for each component in the
encoding.

n is the number of components to be perturbed.

The SetMut subroutines are used to set the type and parameters of the genetic muta-
tion operator.

The SetMutRoutine specifies that a user subroutinernameshould be used. This pa-
rameter must be a literal quoted string; it cannot be a variable. See the“Defining
User Genetic Operators”section on page 52 for information on defining a mutation
operator.

The Delta operator is applicable to integer and real encoding only. The operator ran-
domly choosesn components of the solution, and adds or subtracts the corresponding
delta value from it. The result is also truncated to fit within bounds specified in a
SetBounds call.

The Uniform operator is applicable to integer, real, and boolean encoding. The oper-
ator randomly choosesn components of the solution. For boolean encoding, it then
flips the corresponding bits. For integer or real encoding, it changes the component
to a random value between the upper and lower bounds set by aSetBounds call.

The Swap and Invert operators are applicable only to sequence encoding. The Swap
operator swaps the order ofn pairs of components. The Invert operator, which is
primarily used for the Traveling Salesman Problem, swaps one pair of components,
and reverses the order of the components between them.

If no SetMut call is made, the GA procedure uses a default operator appropriate to
the problem encoding. For real, integer, and boolean encoding, a Uniform operator
with n = 1 is the default. For sequence encoding, the default is the Swap operator
with n = 1. If the objective function has been set with aSetObjTSP call, the default
is the Invert operator.

SetObj Call � 39

SetMutProb Call

sets the mutation probability

call SetMutProb(p);

The input to the SetMutProb subroutine is as follows:

p is the mutation probability.

The SetMutProb subroutine is used to set the mutation probability for the genetic
algorithm optimization. The probabilityp should be a number between 0 and 1, and
is interpreted as the probability that a solution in the next generation should have
the mutation operator applied to it. If aSetElite callhas been made, then the elite
solutions do not undergo mutation. Generally, a high mutation probability degrades
the convergence of the genetic algorithm optimization, but some level of mutation
is required to assure a thorough search and avoid premature convergence before the
global optimum is found. Typical values forp are near 0.05 or less.

SetObj Call

sets the objective to be optimized

This call can take one of two forms:

call SetObjFunc(‘fname’, minmax);

call SetObjTSP(distance);

The inputs to the SetObj subroutine are as follows:

fname is the name of a user objective function.

minmax is set to 0 to minimize the objective, 1 to maximize.

distance is a matrix of distances between locations for a Traveling Salesman
Problem.

The SetObj subroutine is used to establish the objective function for the optimization
process. The SetObjFunc call specifies that a user function is used for the objective
function. The SetObjFunc call only accepts a literal string for the function name; you
cannot use a variable or expression. See the“Defining an Objective Function”section
on page 55 for more information on defining your own objective function.

The SetObjTSP call provides a quick way to specify the objective function for the
Traveling Salesman Problem. Thedistanceparameter is two-dimensional, and is a
matrix of distances between locations, such thatdistance[i,j] is the distance between
locationsi andj.

40 � Chapter 1. The GA Procedure (Experimental)

SetSel Call

sets the selection parameters

This call can take one of two forms:

call SetSelTournament(size, <‘fname’>);

call SetSelDuel(prob, <‘fname’>);

The inputs to the SetSel subroutine are as follows:

size is the size of a tournament to be used to select a solution.

prob is the probability of the fittest solution being selected in a tourna-
ment of size 2.

fname is optional, representing the name of a user function that is to be
used to compare the fitness of two solutions.

The SetSel call is used to set up the selection process, which selects members of the
current generation to be propagated to the next. Selection is based on solution fitness,
with the fittest solutions more likely to be selected. The fitness of a solution is gen-
erally determined by its objective value, with better objective values corresponding
to higher fitness. However, there are techniques for multiple objective optimization
and constraint handling that use more complicated criteria, and the optionalfname
parameter enables you to supply a fitness comparison routine to implement those
techniques. For a simple single-objective problem, you do not have to supply this
parameter; the objective value is used by default.

The SetSelTournament call is used to specify a tournament in whichsizesolutions
are chosen at random from the population, and the solution with the highest fitness
is selected from that group. The higher the value ofsize, the greater the selection
pressure. See the“Controlling the Selection Process”section on page 13 for guidance
on setting this parameter.

The SetSelDuel call is used to specify a tournament of size 2, in which the fittest
member is selected with the probability specified inprob. The parameterprob
can be valued from 0.5 (corresponding to random selection) to 1.0. The selec-
tive pressure set up by this call is less than the selective pressure that can be set
by the SetSelTournament call. A SetSelDuel call withprob= 1 is equivalent to a
SetSelTournament call withsize= 2.

In general, a higher selection pressure speeds the convergence of the genetic algo-
rithm. However, it also increases the risk of premature convergence before the global
optimum is reached. It is usually better to start the optimization process at a lower
selective pressure, and increase it as the optimization continues. A SetSel can be
made from inside a user update routine (designated with aSetUpdateRoutine call) to
modify the selection parameters or method as the optimization progresses.

If you do not make a SetSel call, then the GA procedure uses a conventional tourna-
ment withsize= 2.

UpdateSolutions Call � 41

SetUpdateRoutine Call

designates a control subroutine to be called at each iteration

call SetUpdateRoutine(‘routine’);

The input to the SetUpdateRouting subroutine is as follows:

routine is the name of a subroutine you have defined that is called once
during each iteration of the optimization process. This parameter
must be a string literal; a variable is not accepted.

The SetUpdate subroutine enables you to define a subroutine to be called at each
iteration of the optimization process, in order to monitor the progress of the genetic
algorithm, adjust optimization parameters, or perform calculations that depend on
the population as a whole. The specified routine is called once at each iteration,
just before the selection process, and after the evaluation phase. See the“Monitoring
Progress and Reporting Results”section on page 17 for a discussion of how an update
routine might be used.

UnpackBits Function

retrieves bit values from a packed bit array

r = UnpackBits(source, start, width);

The inputs to the UnpackBits function are as follows:

source is an array containing the packed bit values.

start is the starting bit, with the lowest bit starting at 1.

width is the number of bits to retrieve. A value of 1 retrieves a single bit.

The UnpackBits function is invoked inside user objective and genetic operators to
retrieve values of individual bits for boolean encoding. Normallysourcewill have
been filled by aReadMember, ReadParent, or ReadChildcall. Thestart parameter
can range in value from 1 up to the size of the boolean encoding. Thewidthparameter
can range from 1, to get a single bit value (0 or 1), to the number of bits in the natural
integer (32 on most computers in use today).

UpdateSolutions Call

updates current solution population

call UpdateSolutions(sol, n, seg);

The inputs to the UpdateSolutions subroutine are as follows:

sol is an array containing the replacement solution elements.

n is the number of solutions to update.

seg is the segment of the solution to replace.

42 � Chapter 1. The GA Procedure (Experimental)

The UpdateSolutions subroutine is used to replace the values of the selected solution
segment with new values computed in an update routine. The update routine can
be designated in aSetUpdateRoutine call. The UpdateSolutions call is often used
to implement advanced strategies such as marking Pareto-optimal sets or employing
local optimizations. Thesolparameter should have 2 dimensions. The first dimension
represents the solution number, and should have a value ofn or greater. The second
dimension represents the element within the solutionseg, and should be equal to the
segment size.

WriteChild Call

assigns values to a selected child solution from within a user crossover operator

call WriteChild(selected, seg, n, source);

The inputs to the WriteChild subroutine are as follows:

selected is an array specifying the selected family of solutions. These-
lectedarray is normally passed into the user subroutine that calls
WriteChild, and should be passed unaltered to WriteChild.

seg is the segment to which the elements are to be written.

n is the child within the family to which the elements are to be writ-
ten. A value of 1 is for the first child, 2 for the second, and so
on.

source is an array containing the values to be written.

The WriteChild subroutine is called inside a user crossover operator subroutine to
assign to the elements of a selected child solution. It is normally used to complete
the action of the crossover operator.

WriteMember Call

assigns values to a selected solution from within a user objective function or
mutation operator

call WriteMember(selected, seg, source);

The inputs to the WriteMember subroutine are as follows:

selected is an array specifying the selected family of solutions. These-
lectedarray is normally passed into the user subroutine that calls
WriteMember, and should be passed unaltered to WriteMember.

seg is the segment to which the elements are to be written.

source is an array containing the values to be written.

Using Multisegment Encoding � 43

The WriteMember subroutine is called inside a user objective function or mutation
operator subroutine to assign values to the elements of a selected solution. It is nor-
mally used to complete the action of the objective function or mutation operator.

Details

Using Multisegment Encoding

The GA procedure enables you to represent problems with solutions consisting of
mixed parameter types using multisegment encoding. Solutions can contain multiple
segments, where each segment is a vector of one particular parameter type. Multiple
segments can also be used to store additional information you want to keep for each
solution for user objective functions or genetic operators. The utility functions pro-
vided by the GA procedure give you full access to read from and write to individual
solution segments you define.

Segments are set up with aSetEncoding call. The input parameter to this call is a
string consisting of letter-number pairs, with each pair describing the type and num-
ber of elements in one segment. The allowed letters and corresponding encodings are
as follows:

Ror r specifies real encoding. The elements of the solution segment are
real numbers. One common problem where this encoding is used
is nonlinear function optimization over the real domain.

I or i specifies integer encoding. The elements of the solution segment
are integers. Examples of where this encoding might be used in-
clude assignment problems where the integers represent which re-
sources are assigned to particular tasks, or in problems involving
real variables that are constrained to be integers.

B or b specifies boolean encoding. The elements of the solution consist
of binary (0 or 1) bits. This type of encoding might be used, for
example, to represent variables in a variable selection problem, or
inclusion of particular items in a 0/1 Knapsack Problem.

Sor s specifies sequence encoding. The segment consists of randomly
ordered sequences of integers ranging from 1 to the number of el-
ements. For example, [2, 4, 5, 1, 3] is an example of S5 encoding,
as is [5, 3, 2, 1, 4]. Sequence encoding is a natural way to repre-
sent routing optimizations like the Traveling Salesman Problem,
or any problem optimizing permutations of parameters.

Suppose the problem is to optimize the scheduling of 20 tasks, and for each task you
need to choose one machine out of a set of appropriate machines for each task. The
natural encoding for that problem could be set up with

call SetEncoding(’I20S20’);

44 � Chapter 1. The GA Procedure (Experimental)

This specifies a two-segment solution encoding, with segment 1 (I20) an integer vec-
tor representing the machine assignment for each task, and segment 2 (S20) repre-
senting the sequence of tasks.

When you use multisegment encoding, you must also define subroutines to calculate
the objective function and perform the genetic crossover and mutation operations.
Within your subroutines, you can use utility functions provided by the GA procedure
to extract and write out values to individual segments of the solution, and routines
provided by the GA procedure to perform standard genetic crossover and mutation
operations on selected segments. See the“Using Standard Genetic Operators”section
beginning on page 44 for a discussion of the operators provided by the GA procedure,
and the“Defining User Genetic Operators”section on page 52 and the“Defining an
Objective Function”section on page 55 for details of defining user routines.

Using Standard Genetic Operators

The GA procedure includes a set of standard crossover and mutation operators, and
also enables you to define your own genetic operator with a subroutine. The following
sections describe the standard genetic operators and how to invoke them.

Crossover Operators

simple: This operator is defined for integer, real, and boolean encoding. This
operator performs the following action: a positionk within an encoding
of lengthn is chosen at random, such that1 ≤ k < n. Then for parents
P andQ, the offspring are

child1 = [P1, P2, ..., Pk, Qk+1, Qk+2, ..., Qn]

child2 = [Q1, Q2, ..., Qk, Pk+1, Pk+2, ..., Pn]

For integer and real encoding, you can specify an additional parameter,
a, where0 < a ≤ 1. It modifies the offspring as follows:

pi = aPi + (1− a)Qi, i = k + 1, k + 2, ..., n

qi = aQi + (1− a)Pi, i = k + 1, k + 2, ..., n

child1 = [P1, P2, ..., Pk, qk+1, qk+2, ..., qn]

child2 = [Q1, Q2, ..., Qk, pk+1, pk+2, ..., pn]

For integer encoding, the elements are then rounded to the nearest inte-
ger. For boolean encoding, thea parameter is ignored, and is effectively
1.

For single-segment encoding, you can specify the use of this operator
with the call

Using Standard Genetic Operators � 45

call SetCrossSimple(a);

From within a user crossover subroutine, you can use

call CrossSimple(selected, seg, a);

whereselectedis the selection passed to your subroutine, andsegis the
segment to which the simple crossover operator is to be applied.

2point: This operator is defined for integer, real, and boolean encoding of
lengthn ≥ 3. Two positions,k1 andk2, are chosen at random, such
that1 ≤ k1 < k2 < n. Element values between those positions are
swapped between parents. For parentsQ andP , the offspring are

child1 = [P1, P2, ..., Pk1, Qk1+1, ..., Qk2, Pk2+1, ..., Pn]

child2 = [Q1, Q2, ..., Qk1, Pk1+1, ..., Pk2, Qk2+1, ..., Qn]

For real and integer encodings, you can specify an additional parame-
ter,a, where0 < a ≤ 1. It modifies the offspring as follows:

pi = aPi + (1− a)Qi, i = k1 + 1, k1 + 2, ..., k2

qi = aQi + (1− a)Pi, i = k1 + 1, k1 + 2, ..., k2

child1 = [P1, P2, ..., Pk1, qk1+1, ..., qk2, Pk2+1, ..., Pn]

child2 = [Q1, Q2, ..., Qk1, pk1+1, ..., pk2, Qk2+1, ..., Qn]

Note that small values ofa reduce the difference between the offspring
and parents. For boolean encoding,a is always 1. For single-segment
encoding, you can specify the use of this operator with the call

call SetCross2Point(a);

From within a user crossover subroutine, you can call

call Cross2Point(selected, seg, a);

whereselectedis the selection passed to your subroutine, andsegis the
segment to which the two-point crossover operator is to be applied.

uniform: This operator is defined for integer, real, and boolean encoding of
lengthn ≥ 3. For parentsQ andP , offspringq andp are generated
such that

qi =
{

Qi, with probability 0.5
aPi + (1− a)Qi, where0 ≤ a ≤ 1

pi =
{

Pi, with probability 0.5
aQi + (1− a)Pi, where0 ≤ a ≤ 1

46 � Chapter 1. The GA Procedure (Experimental)

Note thata determines how much interchange there is between parents.
A low value ofa implies little change between offspring and parents.
For boolean encoding,a is always taken to be 1.

For single-segment encoding, you can specify the use of this operator
with the call

call SetCrossUniform(a);

From within a user crossover subroutine, you can call

call CrossUniform(selected, seg, a);

whereselectedis the selection parameter passed to your crossover sub-
routine, andsegis the segment to which the uniform crossover operator
is to be applied. In both cases, if the encoding is boolean, thea param-
eter is ignored, anda is effectively 1.

arithmetic: This operator is defined for real and integer encoding. It treats the
solution segment as a vector, and computes offspring of parentsP and
Q as

child1 = aP + (1− a)Q

child2 = aQ + (1− a)P

wherea is a random number between 0 and 1 generated by the GA
procedure. For integer encoding, each component is rounded off to the
nearest integer. It has the advantage that it always produces feasible
offspring for a convex solution space. A disadvantage of this operator
is that it tends to produce offspring toward the interior of the search
region, so that it may not work if the optimum lies on or near the search
region boundary. For single-segment encoding, you can specify the use
of this operator with the call

call SetCrossArithmetic();

From within a user crossover subroutine, you can call

call CrossArithmetic(selected, seg);

whereselectedis the selection parameter passed to your subroutine,
andsegis the segment to which the arithmetic crossover operator is to
be applied.

heuristic: This operator is defined for real encoding. It treats the solution seg-
ments as real vectors. It computes the first offspring from two parents
P andQ, whereQ is the parent with the best objective value, as

child1 = a(Q− P) + Q

child2 = aQ + (1− a)P

wherea is a random number between 0 and 1 generated by the GA pro-
cedure. The first child is a projection, and the second child is a convex

Using Standard Genetic Operators � 47

combination, as with the arithmetic operator. This operator is unusual
in that it uses the objective value. It has the advantage of directing
the search in a promising direction, and automatically fine-tuning the
search in an area where solutions are clustered. If the solution space has
upper and lower bound constraints, the offspring are checked against
the bounds, and any component outside its bound is set equal to that
bound. The heuristic operator performs best when the objective func-
tion is smooth, and may not work well if the objective function or its
first derivative is discontinuous. For single-segment encoding, you can
specify the use of this operator with the call

call SetCrossHeuristic();

From within a user crossover subroutine, you can call

call CrossHeuristic(selected, seg);

whereselectedis the selection parameter passed to your subroutine,
andsegis the segment to which the heuristic crossover operator is to
be applied.

pmatch: The partial match operator is defined for sequence encoding. It pro-
duces offspring by transferring a subsequence from one parent, and
filling the remaining positions in a way consistent with the position
and ordering in the other parent. Start with two parents and randomly
chosen cutpoints as indicated:

P = [1, 2, |3, 4, 5, 6, |7, 8, 9]

Q = [8, 7, |9, 3, 4, 1, |2, 5, 6]

The first step is to cross the selected subsegments (note that ‘.’ indicates
positions yet to be determined):

child1 = [., ., 9, 3, 4, 1, ., ., .]

child2 = [., ., 3, 4, 5, 6, ., ., .]

Next, define a mapping according to the two selected subsegments:

9-3, 3-4, 4-5, 1-6

Then, fill in the positions where there is no conflict from the corre-
sponding parent:

child1 = [., 2, 9, 3, 4, 1, 7, 8, .]

child2 = [8, 7, 3, 4, 5, 6, 2, ., .]

48 � Chapter 1. The GA Procedure (Experimental)

Last, fill in the remaining positions from the subsequence mapping. In
this case, for the first child,1 → 6 and9 → 3, 3 → 4, 4 → 5, and for
the second child,5 → 4, 4 → 3, 3 → 9 and6 → 1.

child1 = [6, 2, 9, 3, 4, 1, 7, 8, 5]

child2 = [8, 7, 3, 4, 5, 6, 2, 9, 1]

This operator tends to maintain similarity of both the absolute position
and relative ordering of the sequence elements, and is useful for a wide
range of sequencing problems. For single-segment encoding, you can
specify the use of this operator with the call

call SetCrossPMatch();

From within a user crossover subroutine, you can call

call CrossPMatch(selected, seg);

whereselectedis the selection parameter passed to your subroutine,
andsegis the segment to which the partial match crossover operator is
to be applied.

order: This operator is defined for sequence encoding. It produces offspring
by transferring a randomly chosen subsequence of random length and
position from one parent, and filling the remaining positions according
to the order from the other parent. For parentsP andQ, first choose
two random cutpoints to define a subsequence:

P = [1, 2, |3, 4, 5, 6, |7, 8, 9]

Q = [8, 7, |9, 3, 4, 1, |2, 5, 6]

child1 = [., ., 3, 4, 5, 6, ., ., .]

child2 = [., ., 9, 3, 4, 1, ., ., .]

Starting at the second cutpoint, the elements ofQ in order are (cycling
back to the beginning):

2 5 6 8 7 9 3 4 1

after removing 3, 4, 5 and 6, which have already been placed inchild1 ,
we have:

2 8 7 9 1

Using Standard Genetic Operators � 49

Placing these back in order starting at the second cutpoint yields

child1 = [9, 1, 3, 4, 5, 6, 2, 8, 7]

Applying this logic tochild2 yields

child2 = [5, 6, 9, 3, 4, 1, 7, 8, 2]

This operator maintains the similarity of the relative order, or adja-
cency, of the sequence elements of the parents. It is especially ef-
fective for circular path-oriented optimizations, such as the Traveling
Salesman Problem. For single-segment encoding, you can specify the
use of this operator with the call

call SetCrossOrder();

From within a user crossover subroutine, you can call

call CrossOrder(selected, seg);

whereselectedis the selection parameter passed to your subroutine,
andsegis the segment to which the order crossover operator is to be
applied.

cycle: This operator is defined for sequence encoding. It produces offspring
such that the position of each element value in the offspring comes
from one of the parents. For example, consider parentsP andQ,

P = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Q = [8, 7, 9, 3, 4, 1, 2, 5, 6]

For the first child, pick the first element from the first parent:

child1 = [1, ., ., ., ., ., ., ., .]

To maintain the condition that the position of each element value must
come from one of the parents, the position of the ‘8’ value must come
from P , because the ‘8’ position inQ is already taken by the ‘1’ in
child1 :

child1 = [1, ., ., ., ., ., ., 8, .]

Now the position of ‘5’ must come fromP , and so on until the process
returns to the first position:

child1 = [1, ., 3, 4, 5, 6, ., 8, 9]

50 � Chapter 1. The GA Procedure (Experimental)

At this point, choose the remaining element positions fromQ:

child1 = [1, 7, 3, 4, 5, 6, 2, 8, 9]

For the second child, starting with the first element from the second
parent, similar logic produces

child2 = [8, 2, 9, 3, 4, 1, 7, 5, 6]

This operator is most useful when the absolute position of the elements
is of most importance to the objective value. For single-segment en-
coding, you can specify the use of this operator with the call

call SetCrossCycle();

From within a user crossover subroutine, you can call

call CrossCycle(selected, seg);

whereselectedis the selection parameter passed to your subroutine,
andsegis the segment to which the cycle crossover operator is to be
applied.

Mutation Operators

uniform: This operator is defined for real or integer encoding with upper and
lower bounds specified with aSetBounds call. To apply this operator, a
positionk is randomly chosen within the solutionS, andSk is modified
to a random value between the upper and lower bounds for elementk.
The process is repeatedn times. For single-segment encoding, you can
specify this operator with the call

call SetMutUniform(n);

For multisegment encoding, you can invoke this operator on a solution
segment from within a user mutation subroutine with

call MutUniform(selected, segment, n);

whereselectedis the selection parameter passed into the subroutine.

This operator may prove especially useful in early stages of the op-
timization, since it tends to distribute solutions widely across the
search space, and to avoid premature convergence to a local optimum.
However, in later stages of an optimization, when the search needs to be
fine-tuned to hone in on an optimum, the uniform operator may hinder
the optimization.

delta: This operator is defined for integer and real encoding. It first chooses
n elements of the solution at random, and then perturbs each element
by a fixed amount, set by adelta input parameter. Thedeltaparameter
is an array with the same length as the encoding. A randomly chosen
elementk of the solutionS is modified such that

Sk ∈ {Sk − deltak, Sk + deltak}

Using Standard Genetic Operators � 51

If upper and lower bounds are specified with aSetBounds call, thenSk

is adjusted as necessary to fit within the bounds. This operator gives
you the ability to fine-tune the search by modifying the magnitude of
thedeltavector. One possible strategy is to start with largerdeltaval-
ues, and then reduce them as the search progresses and begins to con-
verge to an optimum. This operator is also useful if the optimum is
known to be on or near a boundary, in which casedelta can be set
large enough to always perturb the solution element to a boundary. For
single-segment encoding, you can specify this operator with the call

call SetMutDelta(delta, n);

For multisegment encoding, you can invoke this operator on a solution
segment from within a user mutation subroutine with

call MutDelta(selected, segment, delta, n);

whereselectedis the selection parameter passed into the subroutine.

swap: This operator is defined for sequence problem encoding. It picks two
random locations in the solution vector and swaps their values. You
can also specify that multiple swaps be made for each mutation. For
single-segment encoding, you can specify the swap operator with the
call

call SetMutSwap(n);

wheren is the number of swaps for each mutation. For multisegment
encoding, you can invoke this operator on a solution segment from
within a user mutation subroutine with

call MutSwap(selected, segment, n);

whereselectedis the selection parameter passed into the subroutine.

invert: This operator is defined for sequence encoding. It picks two locations at
random and reverses the order of elements between them. This operator
is most often applied to the Traveling Salesman Problem. For single-
segment encoding, you can specify this operator with the call

call SetMutInvert();

For multisegment encoding, you can invoke this operator on a solution
segment from within a user mutation subroutine with

call MutInvert(selected, segment);

whereselectedis the selection parameter passed into the subroutine.

The standard crossover and mutation operators that are allowed for each encoding
type are summarized inTable 1.1.

52 � Chapter 1. The GA Procedure (Experimental)

Table 1.1. Valid Genetic Operators for Each Encoding

Encoding Crossover Mutation
real user subroutine user subroutine

simple uniform
2point delta
arithmetic
heuristic

integer user subroutine user subroutine
simple uniform
2point delta
arithmetic

boolean user subroutine user subroutine
simple uniform
2point
uniform

sequence user subroutine user subroutine
pmatch swap
order invert
cycle

Defining User Genetic Operators

You can define new genetic operators with subroutines. The GA procedure calls your
subroutine when it is necessary to perform mutation or crossover operations. You can
designate that a subroutine be used for crossover with the call

call SetCrossRoutine(‘name’);

wherenameis the name of the subroutine you have defined. Similarly, you can
designate a subroutine for the mutation operator with

call SetMutRoutine(‘name’);

The subroutine name must be a quoted string. The first parameter of the crossover
or mutation subroutine you define must be a numeric array. When the GA procedure
calls your subroutine, it passes information in the first parameter, referred to as the
selectionparameter, which designates the selected members for the operation. You
should not alter the selection parameter in any way, but pass it unchanged into special
utility routines provided by the GA procedure in order to obtain the solution elements
and write them out to the selected members. You can define as many other parame-
ters to your subroutine as you need; they are filled in with values from variables of
the same name created in the global portion of your program. Any array parameters
must be numeric and of type /NOSYMBOLS. All parameters are passed by reference
to your subroutine; therefore, changes to these parameters inside the subroutine are
passed back to the calling environment, which makes it easy to update global pa-
rameters and tabulate cumulative data as the optimization progresses. However, you
should be careful not to alter a parameter that you intend to remain constant.

For a crossover subroutine, use theReadParent callto get the elements of the selected
parents into arrays that you can then manipulate with programming statements. The

Defining User Genetic Operators � 53

results can be written out to the designated offspring with aWriteChild call. The
following code is an example of a crossover subroutine. The subroutine creates two
new offspring from two selected parents by switching the odd-numbered elements
between the two parents.

/* single-segment integer encoding of size 10 */
call SetEncoding(’I10’);

/* encoding size is 10 */
n = 10;

subroutine swapodd(selected[*], n);
array child1[1] /nosym;
array child2[1] /nosym;

/* reallocate child arrays to right size */
call dynamic_array(child1,n);
call dynamic_array(child2,n);

/* read segment 1 from parent 1 into child1 */
call ReadParent(selected, 1, 1, child1);

/* read segment 1 from parent 2 into child2 */
call ReadParent(selected, 1, 2, child2);

/* swap the odd elements in the solution */
do i = 1 to n by 2;
temp = child1[i];
child1[i] = child2[i];
child2[i] = temp;

end;

/* write offspring out to selected children */
call WriteChild(selected, 1, 1, child1);
call WriteChild(selected, 1, 2, child2);

endsub;

/* designate swapodd as the crossover routine */
call SetCrossRoutine(’swapodd’);

The next sample code illustrates a crossover routine that might be used for multi-
segment mixed integer and sequence encoding. The subroutine uses the standard
Simple crossover operator for the integer segment, and the PMatch operator for the
sequence-encoded segment.

/* Solution has 2 segments, integer I5 and sequence S5 */
call SetEncoding(’I5S5’);

/* alpha parameter for Simple crossover operator */
alpha = 1;

subroutine mixedIS(selected[*], alpha);

54 � Chapter 1. The GA Procedure (Experimental)

/* execute simple operator on segment 1 */
call CrossSimple(selected, 1, alpha);

/* execute pmatch operator on segment 2 */
call CrossPMatch(selected, 2);

endsub;

call SetCrossRoutine(’mixedIS’);

For a mutation subroutine, use aReadMember callto obtain the elements of the so-
lution selected to be mutated, and aWriteMember callto write the mutated elements
back out to the solution. For example, the following statements define a mutation
subroutine that swaps two adjacent elements at a randomly chosen position in a se-
quence.

/* Solution has 1 segment, sequence S10 */
call SetEncoding(’S10’);

n = 10;

subroutine swap2(selected[*], n);

/* declare an array for working memory */
array member[1] /nosym;

/* allocate array to required length */
call dynamic_array(member, n);

/* read segment 1 of selected member into array */
call ReadMember(selected,1,member);

/* generate random number between 0 and 1 */
r = rand(’uniform’);

/* convert r to integer between 1 and n-1 */
i = int(r * (n - 1)) + 1;

/* swap element values */
temp = member[i];
member[i] = member[i+1];
member[i+1] = temp;

/* write result back out to solution */
call WriteMember(selected,1,member);

endsub;

/* Set the mutation routine to swap2 */
call SetMutRoutine(’swap2’);

Defining an Objective Function � 55

Defining an Objective Function
The GA procedure enables you to specify your objective to be optimized with a
function you create, or as a standard objective function that the GA procedure pro-
vides. Currently the only standard objective you can specify without writing an ob-
jective function is the Traveling Salesman Problem, which can be specified with a
SetObjTSP call. In the future, other objective functions will be added. You can des-
ignate a user objective function with the call

call SetObjFunc(‘name’, minmax);

wherenameis the name of the function you have defined, andminmaxis set to 0 to
specify a minimum or 1 to specify a maximum.

A user objective function must have a numeric array as its first parameter. When
the GA procedure calls your function, it passes an array in the first parameter that
specifies the selected solution, which is referred to as theselectionparameter. The
selection parameter must not be altered in any way by your function. Your function
should pass the selection parameter to aReadMember callto read the elements of the
selected solution into an array. Your function can then access this array to compute an
objective value, which it must return. As with the genetic operator routines, you can
define additional arguments to your objective function, and the GA procedure passes
in variables with corresponding names that you have created in your global program.
For example, the following statements set up an objective function that minimizes the
sum of the squares of the solution elements.

call SetEncoding(’R5’);

n = 5;

function sumsq(selected[*], n);

/* set up a scratch array to hold solution elements */
array x[1] /nosym;

/* allocate x to hold all solution elements */
call dynamic_array(x, n);

/* read members of the selected solution into x */
call ReadMember(selected, 1, x);

/* compute the sum of the squares */
sum = 0;
do i = 1 to n;
sq = x[i] * x[i];
sum = sum + sq;

end;

/* return the objective value */
return(sum);

endsub;

call SetObjFunc(’sumsq’, 0);

56 � Chapter 1. The GA Procedure (Experimental)

In this example, the functionsumsq is defined, and theSetObjFunc callestablishes
it as the objective function. The 0 for the second parameter of the SetObjFunc call
indicates that the objective should be minimized. Note that the second parameter to
thesumsq function,n, is defined in the procedure, and the value assigned to it there
is passed into the function.

Defining a User Initialization Routine

For problems with simple constant bounds or simple sequencing problems it is not
necessary to define a user initialization subroutine; simply specify ‘DEFAULT’ in
the Initialize call. Defining a routine is only necessary if you need to satisfy more
complicated constraints or apply some initial heuristics or local optimizations. A
user initialization routine is specified with an Initialize call:

call Initialize(‘name’, size);

wherenameis the name of your initialize routine. The first parameter of the sub-
routine you define must be a numeric array. When the GA procedure calls your
subroutine, it passes information in the first parameter, referred to as theselection
parameter, which designates the member selected for initialization. Your subroutine
should generate one solution and write out the values of the solution elements with
a WriteMember call, using the selection parameter passed to your subroutine. The
random number functions from base SAS are available to your subroutine, if needed.
You can define as many other parameters to your subroutine as you need; they are
filled in with values from variables of the same name created in your global pro-
gram. The array used to write the generated solution out to the population must be
numeric and declared with the /NOSYMBOLS option, as well as any arrays passed
as parameters into your subroutine.

The following sample statements illustrate how to define an initialization routine. The
feasible region is a triangle with vertices (0,0), (0,1) and (1,1).

call SetEncoding(’R2’);

/* set vertices of triangle (0,0), (0,1), and (1,1) */
array vertex1[2] /nosym (0,0);
array vertex2[2] /nosym (0,1);
array vertex3[2] /nosym (1,1);

subroutine triangle(selected[*], vertex1[2], vertex2[2], vertex3[2]);

array x[2] /nosym;

/* select 3 random numbers 0 < r < 1 */
r1 = rand(’uniform’);
r2 = rand(’uniform’);
r3 = rand(’uniform’);

/* normalize so r1 + r2 + r3 = 1 */
sumr = r1 + r2 + r3;

Incorporating Heuristics and Local Optimizations � 57

r1 = r1 / sumr;
r2 = r2 / sumr;
r3 = r3 / sumr;

/* form a convex combination of vertices in x */
do i = 1 to 2;
x[i] = r1 * vertex1[i] + r2 * vertex2[i] + r3 * vertex3[i];

end;

/* write x out to the selected population member, to segment 1 */
call WriteMember(selected, 1, x);
endsub;

[other programming statements]

call Initialize(’triangle’,100);

In this example, the triangle initialization subroutine generates a solution that is a
random convex combination of three points, which places it in the interior of the tri-
angular region defined by the points. Note the use of the base SASrand() function
to get random numbers uniformly distributed between 0 and 1. The random numbers
are then normalized so that their sum is 1. In the loop, they are used to compute a
convex linear combination of the vertices, and the WriteMember call writes the solu-
tion out to the selected population member. The encoding specified a single segment,
so theWriteMember callspecifies segment 1 as the target. When the GA procedure
executes theInitialize call, it executes the triangle routine 100 times, once for each
member of the initial population.

Incorporating Heuristics and Local Optimizations

It is often effective to combine the genetic algorithm technique and other local op-
timizations or heuristic improvements. This can be done within the GA procedure
by incorporating a local optimization into a user objective function and returning an
improved objective value. Your user objective function can either replace the original
solution with the optimized one, or you can leave the solution unchanged, replacing
it with the optimized one only at the final iteration.

Replacing the original solution with the locally optimized one speeds convergence,
but it also increases the risk of converging prematurely. If you choose to do so, you
can modify the solution by writing the changed solution back to the population with a
WriteMember call. You could also consider replacing the original solution with some
probabilityp. For some problems, values ofp from 0.05 to 0.15 have been shown to
significantly improve convergence while avoiding premature convergence to a local
optimum. This technique is illustrated inExample 1.1on page 61.

58 � Chapter 1. The GA Procedure (Experimental)

Handling Constraints

Practical optimization problems usually involve constraints, which may make the
problem harder to solve. Constraints are handled in genetic algorithms in several
ways.

Encoding Strategy

The simplest approach is to set the problem encoding, genetic operators, and initial-
ization such that the constraints are automatically satisfied. Fixed constant bounds
are easily handled in this manner in the GA procedure with theSetBounds call. The
default initialization process and genetic operators provided by the GA procedure au-
tomatically respects bounds specified in this manner. For some types of constraints,
you may be able to create a direct mapping from a constrained solution domain to a
second domain with simple constant bounds. You could then define your genetic op-
erator to map the solution into the second domain, apply one of the standard genetic
operators, and then map the result back to the original domain.

If the problem contains equality constraints, you should try to transform the problem
to eliminate the equality constraints and reduce the number of variables. This strat-
egy is opposite from what is usually done in linear programming, where inequality
constraints are turned into equality constraints by the addition of slack variables.

Repair Strategy

If the constraints are more complex and cannot be easily satisfied automatically by
the genetic operators, you may be able to employ a repair strategy: check the solution
and modify it to satisfy the constraints. The check and repair can be done in a user
genetic operator when the solution is generated, or it can be done in the evaluation
phase in a user objective function. Possible strategies for making a repair inside
an objective function include projecting the solution onto the constraint boundary;
while inside a genetic operator you might try adjusting an operator parameter until
the constraint is satisfied. If you do the repair in the objective function, you should
compute the objective value after performing the repair. You can write the repaired
solution back out to the population with aWriteMember callfrom a user objective
function or mutation subroutine, and with aWriteChild call from within a crossover
subroutine.Example 1.2on page 64 illustrates the use of the repair strategy.

Penalty Strategy

Another technique is to allow solutions to violate constraints, but to also impose a
fitness penalty that causes the population to evolve toward satisfying constraints as
well as optimizing the objective. One way of employing this strategy is to simply add
a penalty term to the objective function, but this approach should be used with care,
as it is not always obvious how to construct the penalty function in a way that does
not bias the optimization of the desired objective.

Optimizing Multiple Objectives � 59

Direct Comparison Strategy

Using tournament selection opens another possibility for handling constraints. Define
a fitness comparison routine (designated in aSetSel call) that employs the following
logic:

1: If neither solution is feasible, choose the one closest to satisfying the con-
straints.

2: If one solution is feasible, and the other is not, choose the feasible one.

3: If both solutions are feasible, choose the one with the best objective value.

This strategy has the advantage that the objective function does not have to be cal-
culated for infeasible solutions. To implement this method, you need to provide
a measure of constraint violation and compute it in a user objective function; this
value can be used in the first comparison step outlined above. For linear constraints,
the GA procedure provides theEvaluateLC callfor this purpose. This technique is
illustrated inExample 1.3on page 67. The technique works best when the solu-
tion space normally contains a significant number of solutions that satisfy the con-
straints. Otherwise it is possible that a single feasible solution might quickly domi-
nate the population. In such cases, a better approach might be the following Bicriteria
Comparison Strategy.

Bicriteria Comparison Strategy

A variation of the direct comparison strategy that has proved effective in many ap-
plications is the multiobjective, bicriteria approach. This strategy involves adding a
second objective function, which is the magnitude of the constraint violation. Based
on the original and constraint violation objective functions, a Pareto-optimal set of
solutions is evolved in the population, and the Pareto-optimal set is evolved toward
0 constraint violation. See“Optimizing Multiple Objectives”for a full discussion of
Pareto optimality and how to apply this technique.

Optimizing Multiple Objectives

Many practical optimization problems involve more than one objective criteria, where
the decision maker needs to examine tradeoffs between conflicting objectives. With
traditional optimization methods, these problems are often handled by aggregating
multiple objectives into a single scalar objective, usually accomplished by some lin-
ear weighting of the multiple criteria. Other approaches involve turning objectives
into constraints. One disadvantage of this strategy is that many separate optimiza-
tions with different weighting factors or constraints need to be performed to examine
the tradeoffs between different objectives. Genetic algorithms enable you to attack
multiobjective problems directly, to evolve a set of solutions in one run of the opti-
mization process instead of solving multiple separate problems.

This approach seeks to evolve the Pareto-optimal set: the set of solutions such that
for each solution, all the objective criteria cannot be simultaneously improved. This
is expressed mathematically by the concept of Pareto optimality. A Pareto-optimal

60 � Chapter 1. The GA Procedure (Experimental)

set is the set of all nondominated solutions, according to the following definition for
dominated:

For ann-objective minimizing optimization problem, for each objective functionfi,
a solutionp is dominated byq if

fi(p) ≥ fi(q) for all i = 1, . . . , n andfj(p) > fj(q) for somej = 1, . . . , n

The following is one strategy that can be employed in the GA procedure to evolve a
set of Pareto-optimal solutions to a multiobjective optimization problem:

user objective function: Define and specify a user objective function in a
SetObjFunc callthat computes each of the objective criteria and stores the
objective values in one single solution segment.

user update routine: Define and specify a user update routine in a
SetUpdateRoutine callthat examines the entire solution population and
marks those in the Pareto-optimal set. This can be done with theMarkPareto call
provided by the GA procedure. Also, set theelite parameter equal to the number
of Pareto-optimal solutions found.

selection criteria: Define a fitness comparison routine that favors the least dom-
inated solutions, and designate it in aSetSel call. For selecting between two
solutions when neither solution dominates the other, your routine can check a
secondary criterion to direct the search to the area of ultimate interest.

The multiple objective values are recorded in one segment to enable the use of the
MarkPareto callprovided by the GA procedure. Setting theelite selection parameter
to the size of the Pareto-optimal set, in conjunction with the comparison criteria,
guarantees that the Pareto-optimal set in each generation is preserved to the next.

The secondary comparison criterion can be used to ensure that the final Pareto-
optimal set is distributed in the area of ultimate interest. For example, for the
Bicriteria Constraint Strategy described previously, the actual area of interest is where
there is zero constraint violation, which is the second objective. The secondary com-
parison criterion in that case is to minimize the value of the constraint violation ob-
jective. After enough iterations, the population should evolve to the point that the
best solution to the bicriteria problem is also the best solution to the original con-
strained problem, and the other Pareto-optimal solutions can be examined to analyze
the sensitivity of the optimum solution to the constraints. For other types of problems,
you may need to implement a more complicated secondary comparison criterion to
avoid “crowding” of solutions about some arbitrary point, and ensure the evolved
Pareto-optimal set is distributed over a range of objective values.

Example 1.1. Traveling Salesman Problem with Local Optimization � 61

Examples

Example 1.1. Traveling Salesman Problem with Local
Optimization

This example illustrates the use of the GA procedure to solve a Traveling Salesman
Problem (TSP); it combines a genetic algorithm with a local optimization strategy.
The procedure finds the shortest tour of 20 locations randomly oriented on a two-
dimensionalx-y plane, where0 ≤ x ≤ 1 and0 ≤ y ≤ 1. The location coordinates
are input in the following DATA step:

/* 20 random locations for a Traveling Salesman Problem */
data locations;

input x y;
datalines;

0.0333692 0.9925079
0.6020896 0.0168807
0.1532083 0.7020444
0.3181124 0.1469288
0.1878440 0.8679120
0.9786112 0.4925364
0.7918010 0.7943144
0.5145329 0.0363478
0.5500754 0.8324617
0.3893757 0.6635483
0.9641841 0.6400201
0.7718126 0.5463923
0.7549037 0.4584584
0.2837881 0.7733415
0.3308411 0.1974851
0.7977221 0.1193149
0.3221207 0.7930478
0.9201035 0.1186234
0.2397964 0.1448552
0.3967470 0.6716172
;

First, the GA procedure is run with no local optimizations applied.

proc ga data1 = locations seed = 55555;
call SetEncoding(’S20’);
ncities = 20;
array distances[20,20] /nosym;
do i = 1 to 20;

do j = 1 to i;
distances[i,j] = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2);
distances[j,i] = distances[i,j];

end;
end;
call SetObjTSP(distances);
call SetCrossOrder();
call SetMutInvert();
call Initialize(’DEFAULT’,100);
call ContinueFor(220);
run;

62 � Chapter 1. The GA Procedure (Experimental)

The proc GA statement uses a DATA1= option to get the contents of thelocations
data set, which creates array variablesx andy from the corresponding fields of the
data set. A solution will be represented as a circular tour, modeled as a 20-element
sequence of locations, which is set up with theSetEncoding call. The array variable
distancesis created, and the loop initializesdistancesfrom thex andy location co-
ordinates such thatdistances[i, j] is the Euclidean distance between locationi and
j. Next, theSetObjTSP callspecifies that the GA procedure use the included TSP
objective function with thedistancesarray. Next, the genetic operators are specified,
with SetCrossOrderfor the crossover operator andSetMutInvertfor the mutation op-
erator. Since the crossover probability and mutation probability are not explicitly set
in this example, the default values of 1 and 0.05, respectively, are used. The selection
parameters are not explicitly set (withSetSelandSetElitecalls), so by default, a tour-
nament of size 2 is used, and anelite parameter of 1 is used. Next, theInitialize call
specifies default initialization (random sequences) and a population size of 100. The
ContinueFor callspecifies a run of 220 iterations. This value is a result of experimen-
tation, after it was determined that the solution did not improve with more iterations.
The output of this run of PROC GA is given inOutput 1.1.1.

Output 1.1.1. Simple Traveling Salesman Problem

PROC GA Optimum Values

Objective

3.7465311323

Solution
Element Value

1 13
2 12
3 6
4 11
5 7
6 9
7 20
8 10
9 17
10 14
11 5
12 1
13 3
14 19
15 4
16 15
17 8
18 2
19 16
20 18

The following program illustrates how the problem can be solved in fewer itera-
tions by employing a local optimization. Inside the user objective function, before
computing the objective value, every adjacent pair of cities in the tour is checked
to determine if reversing the pair order would improve the objective value. For a

Example 1.1. Traveling Salesman Problem with Local Optimization � 63

pair of locationsSi andSi+1, this means comparing the distance traversed by the
subsequence{Si−1, Si, Si+1, Si+2} to the distance traversed by the subsequence
{Si−1, Si+1, Si, Si+2}, with appropriate wrap-around at the endpoints of the se-
quence. If the distance for the swapped pair is smaller than the original pair, then
the reversal is done, and the improved solution is written back to the population.

proc ga data1 = locations seed = 55555;
call SetEncoding(’S20’);
ncities = 20;
array distances[20,20] /nosym;
do i = 1 to 20;

do j = 1 to i;
distances[i,j] = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2);
distances[j,i] = distances[i,j];

end;
end;

/* Objective function with local optimization */
function TSPSwap(selected[*],ncities,distances[*,*]);

array s[1] /nosym;
call dynamic_array(s,ncities);
call ReadMember(selected,1,s);

/* First try to improve solution by swapping adjacent cities */
do i = 1 to ncities;

city1 = s[i];
inext = 1 + mod(i,ncities);
city2 = s[inext];
if i=1 then

before = s[ncities];
else

before = s[i-1];
after = s[1 + mod(inext,ncities)];
if (distances[before,city1]+distances[city2,after]) >

(distances[before,city2]+distances[city1,after]) then do;
s[i] = city2;
s[inext] = city1;

end;
end;
call WriteMember(selected,1,s);

/* Now compute distance of tour */
distance = distances[s[ncities],s[1]];
do i = 1 to (ncities - 1);

distance + distances[s[i],s[i+1]];
end;
return(distance);

endsub;
call SetObjFunc(’TSPSwap’,0);
call SetCrossOrder();
call SetMutInvert();
call Initialize(’DEFAULT’,100);
call ContinueFor(85);
run;

The output after 85 iterations is given inOutput 1.1.2.

64 � Chapter 1. The GA Procedure (Experimental)

Output 1.1.2. Traveling Salesman Problem with Local Optimization

PROC GA Optimum Values

Objective

3.7465311323

Solution
Element Value

1 8
2 2
3 16
4 18
5 13
6 12
7 6
8 11
9 7
10 9
11 20
12 10
13 17
14 14
15 5
16 1
17 3
18 19
19 4
20 15

Since all tours are circular, the actual starting point does not matter and this solution
is equivalent to that reached with the simple approach without local optimization. It
is reached after only 85 iterations, versus 220 with the simple approach.

Example 1.2. Nonlinear Objective with Constraints Using
Repair Mechanism

This example illustrates the use of a repair mechanism to satisfy problem constraints.
The problem is to minimize the six-hump camel-back function (Michalewicz1996,
Appendix B):

f(x) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2

)
x2

2

where x is within the triangle with verticesV1 = (−2, 0), V2 = (0, 2), and
V3 = (2,−2). The problem formulation takes advantage of the fact that all feasi-
ble solutions can be expressed as a convex combination ofV1, V2, andV3 in the form

x = aV1 + bV2 + cV3

Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism � 65

wherea, b, andc are nonnegative coefficients and satisfy the following linear equality
constraint:

a + b + c = 1

Therefore, the solution encoding ‘R3’ is used with the three elements corresponding
to the values ofa, b, andc. Note that this strategy can be generalized to any solution
domain that can be specified by a convex hull. An additional ‘R2’ segment is also
created to store the correspondingx value. In the program,function sixhump

computes the objective value. Lower and upper bounds of 0 and 1, respectively,
are used to ensure that solution elements are nonnegative. Violations of the linear
equality constraint are fixed by a simple repair strategy, implemented infunction

sixhump: the sum of the solution elements is computed, and each element is divided
by the sum, so that the sum of the new elements is 1. For the special case of all
elements equal to 0, equal values are assigned to the solution elements.

proc ga seed = 5555;
call SetEncoding(’R3R2’);
npoints = 3;
array cvxhull[3,2] /nosym (-2 0

0 2
2 -2);

/* Objective function */
function sixhump(selected[*],cvxhull[*,*],npoints);

/* Function has global minimum value of -1.0316
* at x = {-0.0898 0.7126} and
* x = { 0.0898 -0.7126}
*/

array w[1] /nosym;
call dynamic_array(w,npoints);
array x[2] /nosym;

call ReadMember(selected,1,w);

/* make sure that weights add up to 1 */
sum = 0;
do i = 1 to npoints;
sum + w[i];

end;

/* if all weights 0, then reinitialize */
if sum=0 then do;
sum = npoints;
do i = 1 to npoints;

w[i] = 1;
end;

end;

/* re-normalize weights */
do i = 1 to npoints;

66 � Chapter 1. The GA Procedure (Experimental)

w[i] = w[i] / sum;
end;

/* convert weights to x-coordinate form */
x[1] = 0;
x[2] = 0;
do i = 1 to npoints;
x[1] + w[i] * cvxhull[i,1];
x[2] + w[i] * cvxhull[i,2];

end;

/* write out x coordinates to second segment */
call WriteMember(selected,2,x);

/* compute objective value */
r = (4 - 2.1*x[1]**2 + x[1]**4/3)*x[1]**2 + x[1]*x[2] +
(-4 + 4*x[2]**2)*x[2]**2;

return(r);
endsub;

call SetObjFunc(’sixhump’,0);

array lower[1] /nosym;
array upper[1] /nosym;

call dynamic_array(lower, npoints);
call dynamic_array(upper, npoints);
do i = 1 to npoints;
lower[i] = 0;
upper[i] = 1;

end;
call SetBounds(lower, upper, 1);
call SetMutUniform(1);
call SetMutProb(0.05);

call SetCross2Point(0.9);
call SetCrossProb(1.0);

call SetSelTournament(2);
call SetElite(3);

call Initialize(’DEFAULT’, 100);
call ContinueFor(35);
run;

Note that this problem uses the standard genetic operators and default initialization,
even though they generate solutions that violate the constraints. This is possible
because all solutions are passed into the user objective function for evaluation, where
they are repaired to fit the constraints. The output is shown inOutput 1.2.1.

Example 1.3. Quadratic Objective with Linear Constraints, Using Bicriterion
Approach � 67

Output 1.2.1. Nonlinear Objective with Constraints Using Repair Mechanism

PROC GA Optimum Values

Objective

-1.031628453

Solution
Segment Element Value

1 1 0.4052493015
1 2 0.9213856377
1 3 0.3307959879
2 1 -0.08984183
2 2 0.712656727

This objective function has a global minimum at−1.0316, at two different points:
(x1, x2) = (−0.0898, 0.7126) and(x1, x2) = (0.0898,−0.7126). The genetic algo-
rithm can converge to either of these minima, depending on the random number seed
set by the SEED= option.

Example 1.3. Quadratic Objective with Linear Constraints,
Using Bicriterion Approach

This example (Floudas and Pardalos1992) illustrates the bicriterion approach to han-
dling constraints. The problem has nine linear constraints and a quadratic objective
function.

Minimize

f(x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2
i −

13∑
i=5

xi

subject to

2x1 + 2x2 + x10 + x11 ≤ 10
2x1 + 2x3 + x10 + x12 ≤ 10
2x1 + 2x3 + x11 + x12 ≤ 10
−8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0
−8x3 + x12 ≤ 0
−2x4 − x5 + x10 ≤ 0
−2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0

68 � Chapter 1. The GA Procedure (Experimental)

and

0 ≤ xi ≤ 1, i = 1, 2, . . . , 9
0 ≤ xi ≤ 100, i = 10, 11, 12
0 ≤ x13 ≤ 1

In this example, the linear constraint coefficients are specified in the SAS data set
lincon and passed to the GA procedure with the MATRIX1= option. The upper and
lower bounds are specified in thebounds data set specified with a DATA1= option,
which creates the array variablesupper andlower, matching the variables in the data
set.

/* Input linear constraint matrix */
data lincon;

input A1-A13 b;
datalines;

2 2 0 0 0 0 0 0 0 1 1 0 0 10
2 0 2 0 0 0 0 0 0 1 0 1 0 10
2 0 2 0 0 0 0 0 0 0 1 1 0 10
-8 0 0 0 0 0 0 0 0 1 0 0 0 0
0 -8 0 0 0 0 0 0 0 0 1 0 0 0
0 0 -8 0 0 0 0 0 0 0 0 1 0 0
0 0 0 -2 -1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 -2 -1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 -2 -1 0 0 1 0 0
;

/* Input lower and upper bounds */
data bounds;

input lower upper;
datalines;

0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 100
0 100
0 100
0 1
;

proc ga lastgen = out matrix1 = lincon
seed = 12345 data1 = bounds;

Example 1.3. Quadratic Objective with Linear Constraints, Using Bicriterion
Approach � 69

Note also that the LASTGEN= option is used to designate a data set to store the final
solution generation.

Next the solution encoding is specified, and a user function is defined and designated
as the objective function.

call SetEncoding(’R13R3’);

nvar = 13;
ncon = 9;

function quad(selected[*], matrix1[*,*], nvar, ncon);
array x[1] /nosym;
array r[3] /nosym;
array violations[1] /nosym;

call dynamic_array(x, nvar);
call dynamic_array(violations, ncon);

call ReadMember(selected,1,x);

sum1 = 0;
do i = 1 to 4;
sum1 + x[i] - x[i] * x[i];

end;

sum2 = 0;
do i = 5 to 13;
sum2 + x[i];

end;

obj = 5 * sum1 - sum2;

call EvaluateLC(matrix1,violations,sumvio,selected,1);
r[1] = obj;
r[2] = sumvio;
call WriteMember(selected,2,r);

return(obj);
endsub;
call SetObjFunc(’quad’,0);

The SetEncoding callspecifies two real-valued segments. The first segment, R13,
holds the 13 variables, and the second segment, R3, holds the two objective criteria
and the marker for Pareto optimality. As described in the“Defining an Objective
Function” section on page 55, the first parameter of the objective function is a nu-
meric array that designates which member of the solution population is to be evalu-
ated. When the quad function is called by the GA procedure during the optimization
process, thematrix1, nvar, andncon parameters receive the values of the correspond-
ing global variables;nvar is set to the number of variables andncon is set to the
number of linear constraints. The function computes the original objective as the first
objective criterion, and the magnitude of constraint violation as the second. With

70 � Chapter 1. The GA Procedure (Experimental)

the first dynamic–array call, it allocates a working array,x, large enough to hold the
number of variables, and a second array,violations, large enough to tabulate each
constraint violation. TheReadMember callfills x with the elements of the first seg-
ment of the solution, then the function computes the original objectivef(x). The
EvaluateLC callis used to compute the linear constraint violation. The objective and
sum of the constraint violations are then stored in the arrayr, and written back to
the second segment of the solution with theWriteMember call. Note that the third
element ofr is not modified, because that element of the segment is used to store the
Pareto-optimality mark, which cannot be determined until all the solutions have been
evaluated.

Next, a user routine is defined and designated to be an update routine. This routine is
called once at each iteration, after all the solutions have been evaluated with the quad
function.

subroutine update(popsize);
/* find pareto-optimal set */

array minmax[3] /nosym (-1 -1 0);
array results[1,1] /nosym;
array scratch[1] /nosym;

call dynamic_array(scratch, popsize);
call dynamic_array(results,popsize,3);

/* read original and constraint objectives, stored in
* solution segment 2, into array */

call GetSolutions(results,popsize,2);
/* mark the pareto-optimal set */
call MarkPareto(scratch, npareto,results, minmax);

/* transfer the results to the solution segment */
do i = 1 to popsize;

results[i,3] = scratch[i];
end;

/* write updated segment 2 back into solution population
*/
call UpdateSolutions(results,popsize,2);

/* Set Elite parameter to preserve the first 15 pareto-optimal
* solutions

*/
if npareto < 16 then

call SetElite(npareto);
else

call SetElite(15);
endsub;

call SetUpdateRoutine(’update’);

This subroutine has one parameter,popsize, defined within the GA procedure, which
is expected to be the population size. The working arraysresults, scratch, andmin-
max are declared. Theminmax array is to be passed to aMarkPareto call, and is

Example 1.3. Quadratic Objective with Linear Constraints, Using Bicriterion
Approach � 71

initialized to specify that the first two elements (the original objective and constraint
violation) are to be minimized, and the third element is not to be considered. The
results andscratch arrays are then dynamically allocated to the dimensions required
by the population size.

Next, theresults array is filled with the second segment of the solution population,
with the GetSolutions call. The minmax and results arrays are passed as inputs to
the MarkPareto call, which returns the number of Pareto-optimal solutions in the
npareto variable. The MarkPareto call also sets the elements of thescratch array to
1 if the corresponding solution is Pareto-optimal, and to 0 otherwise. The next loop
then records the results in thescratch array in the third column of theresults array,
effectively marking the Pareto-optimal solutions. The updated solution segments are
written back to the population with the UpdateSolutions call.

The final step in the update routine is to set theelite selection parameter to guaran-
tee the survival of at least a minimum of 15 of the fittest (Pareto-optimal) solutions
through the selection process.

With the following statements, a routine is defined and designated as a fitness com-
parison routine with aSetSel call. This routine works in combination with the update
routine to evolve the solution population toward Pareto optimality and constraint sat-
isfaction.

function paretocomp(selected[*]);
array member1[3] /nosym;
array member2[3] /nosym;

call ReadCompare(selected,2,1, member1);
call ReadCompare(selected,2,2, member2);

/* if one member is in the pareto-optimal set
* and the other is not, then it is the
* most fit

*/
if(member1[3] > member2[3]) then

return(1);
if(member2[3] > member1[3]) then

return(-1);

/* if both are in the pareto-optimal set, then
* the one with the lowest constraint violation
* is the most fit

*/
if(member1[3] = 1) then do;

if member1[2] <= member2[2] then
return(1);

return(-1);
end;

/* if neither is in the pareto-optimal set, then
* take the one that dominates the other

*/

72 � Chapter 1. The GA Procedure (Experimental)

if (member1[2] <= member2[2]) &
(member1[1] <= member2[1]) then
return(1);

if (member2[2] <= member1[2]) &
(member2[1] <= member1[1]) then
return(-1);

/* if neither dominates, then consider fitness to be
* the same

*/
return(0);

endsub;

call SetSelTournament(2,’paretocomp’);

The paretocomp subroutine is called in the selection process to compare the fit-
ness of two competing solutions. The first parameter,selected, designates the two
solutions to be compared.

The ReadCompare calls retrieve the second segments of the two solutions, where the
objective criteria are stored, and writes the segments into themember1 andmember2
arrays. The logic that follows first checks for the case where only one solution is
Pareto-optimal, and returns it. If both the solutions are Pareto-optimal, then the one
with the smallest constraint violation is chosen. If neither is Pareto-optimal, then
the dominant solution is chosen, if one exists. If neither solution is dominant, then
no preference is indicated. After the function is defined, it is designated as a fitness
comparison routine with theSetSel call, which also specifies tournament selection
with a tournament size of 2.

Next, subroutines are defined and designated as user crossover and mutation opera-
tors.

/* set up crossover parameters */

subroutine Cross1(selected[*], alpha);
call Cross2Point(selected,1, alpha);

endsub;
call SetCrossRoutine(’Cross1’,2,2);
alpha = 0.5;
call SetCrossProb(0.8);

/* set up mutation parameters */

subroutine Mut1(selected[*], delta[*]);
call MutDelta(selected,1,delta,1);

endsub;
call SetMutRoutine(’Mut1’);
array delta[13] /nosym (.5 .5 .5 .5 .5 .5 .5 .5 .5 10 10 10 .1);
call SetMutProb(0.05);

These routines execute standard genetic operators2point for crossover anddelta for
mutation; see the“Using Standard Genetic Operators”section on page 44 for a de-
scription of each. Thealpha anddelta variables defined in the procedure are passed

Example 1.3. Quadratic Objective with Linear Constraints, Using Bicriterion
Approach � 73

as parameters to the user operators, and the crossover and mutation probabilities are
set with theSetCrossProbandSetMutProbcalls.

At this point, the GA procedure is directed to initialize the first population and begin
the optimization process.

/* Initialize first population */
call SetBounds(lower, upper);
popsize = 100;
call Initialize(’DEFAULT’,popsize);

call ContinueFor(500);
run;

First, the upper and lower bounds are established with values in thelower andupper
array variables, which were set up by the DATA1= option in the PROC GA statement.
TheSetBounds callsets the bounds for the first segment, which is the default if none
is specified in the call. The desired population size of 100 is stored in thepopsize
variable, so it will be passed to theupdate subroutine as thepopsize parameter. The
Initialize callspecifies the default initialization, which generates values randomly dis-
tributed between the lower and upper bounds for the first encoding segment. Since no
bounds were specified for the second segment, it is filled with zeros. TheContinueFor
call sets the requested number of iterations to 500, and the RUN statement ends the
GA procedure input and begins the optimization process. The output of the procedure
is shown inOutput 1.3.1.

74 � Chapter 1. The GA Procedure (Experimental)

Output 1.3.1. Bicriteria Constraint Handling Example Output

Bicriteria Constraint Handling Example

PROC GA Optimum Values

Objective

-14.99885993

Solution
Segment Element Value

1 1 1
1 2 1
1 3 1
1 4 1
1 5 1
1 6 0.9999999964
1 7 0.9999999915
1 8 0.9999987482
1 9 0.9999999877
1 10 2.9999999783
1 11 2.9997926643
1 12 2.9990685636
1 13 1
2 1 -14.99885993
2 2 0
2 3 1

The minimum value off(x) is−15 atx∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1).

References

Floudas, C. A. and Pardalos, P. M. (1992),Recent Advances in Global Optimization,
Princeton, NJ: Princeton University Press.

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution
Programs, New York: Springer-Verlag.

Subject Index

G
GA procedure

debugging options,31
overview,7
program statements,30

O
overview

GA procedure,7

P
program statements

GA procedure,30

76 � Subject Index

Syntax Index

A
ABORT statement

GA program statements,30

D
DATAn= option

PROC GA statement,21
DO statement

GA program statements,30

F
FIRSTGEN= option

PROC GA statement,21

G
GA procedure

ContinueFor Call,22
Cross calls,22
dynamic–array,23
EvaluateLC,24
GetDimensions,25
GetObjValues,25
GetSolutions Call,25
Initialize Call,26
MarkPareto Call,27
Mut Calls,28
PackBits Call,29
PROC GA statement,21
ReadChild Call,31
ReadCompare Call,32
ReadMember Call,33
ReadParent Call,33
ReEvaluate Call,34
SetBounds Call,34
SetCross Calls,34
SetCrossProb Call,36
SetElite Call,36
SetEncoding Call,37
SetFinalize Call,37
SetMut Calls,38
SetMutProb Call,39
SetObj Call,39
SetSel Call,40
SetUpdateRoutine Call,41
UnpackBits Function,41
UpdateSolutions Call,41
WriteChild Call,42
WriteMember Call,42

L
LASTGEN= option

PROC GA statement,22

M
MATRIXn= option

PROC GA statement,21

N
NITER= option

PROC GA statement,21

O
ORLSO,ii
OTHERWISE statement

GA program statements,31

P
PROC GA statement,

See alsoGA procedure
statement options,21

PUT statement
GA program statements,31

S
SEED= option

PROC GA statement,22
SELECT statement

GA program statements,31

W
WHEN statement

GA program statements,31

Your Turn

If you have comments or suggestions about SAS/OR® 9.1 User’s Guide: Local
Search Optimization, please send them to us on a photocopy of this page or send us
electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	What's New in SAS/OR 9 and 9.1
	Chapter 1. The GA Procedure
	Overview
	Getting Started
	Initializing the Problem Data
	Choosing the Problem Encoding
	Setting the Objective Function
	Controlling the Selection Process
	Setting Crossover Parameters
	Setting Mutation Parameters
	Creating the Initial Generation
	Monitoring Progress and Reporting Results
	A Simple Example

	Syntax
	PROC GA Statement
	ContinueFor Call
	Cross Calls
	Dynamic_array Call
	EvaluateLC Call
	GetDimensions Call
	GetObjValues Call
	GetSolutions Call
	Initialize Call
	MarkPareto Call
	Mut Calls
	PackBits Call
	Program Statements
	ReadChild Call
	ReadCompare Call
	ReadMember Call
	ReadParent Call
	ReEvaluate Call
	SetBounds Call
	SetCross Calls
	SetCrossProb Call
	SetElite Call
	SetEncoding Call
	SetFinalize Call
	SetMut Calls
	SetMutProb Call
	SetObj Call
	SetSel Call
	SetUpdateRoutine Call
	UnpackBits Function
	UpdateSolutions Call
	WriteChild Call
	WriteMember Call

	Details
	Using Multisegment Encoding
	Using Standard Genetic Operators
	Defining User Genetic Operators
	Defining an Objective Function
	Defining a User Initialization Routine
	Incorporating Heuristics and Local Optimizations
	Handling Constraints
	Optimizing Multiple Objectives

	Examples
	Example 1.1. Traveling Salesman Problem with Local Optimization
	Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism
	Example 1.3. Quadratic Objective with Linear Constraints, Using Bicriterion Approach

	References

	Subject Index
	Syntax Index

