
SAS/OR

9.1 User’s Guide:
Constraint Programming

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/OR 9.1 User’s Guide:
Constraint Programming. Cary, NC: SAS Institute Inc.

SAS/OR 9.1 User’s Guide: Constraint Programming

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-258-6

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What’s New in SAS/OR 9 and 9.1. 1

Chapter 1. The CLP Procedure. 5

Subject Index. .31

Syntax Index. .33

iv

Credits

Documentation

Writing Gehan A. Corea

Editing Virginia Clark

Documentation Support Tim Arnold, Michelle Opp

Technical Review Edward P. Hughes, Radhika V. Kulkarni,
Rob Pratt

Software

PROC CLP Gehan A. Corea

Support Groups

Software Testing Rob Pratt

Technical Support Tonya Chapman

vi � Credits

What’s New in SAS/OR 9 and 9.1
Overview

SAS/OR software contains several new and enhanced features since SAS 8.2. Brief
descriptions of the new features appear in the following sections. For more informa-
tion, refer to the SAS/OR documentation, which is now available in the following six
volumes:

• SAS/OR User’s Guide: Bills of Material Processing

• SAS/OR User’s Guide: Constraint Programming

• SAS/OR User’s Guide: Local Search Optimization

• SAS/OR User’s Guide: Mathematical Programming

• SAS/OR User’s Guide: Project Management

• SAS/OR User’s Guide: The QSIM Application

The online help can also be found under the corresponding classification.

The BOM Procedure

The BOM procedure inSAS/OR User’s Guide: Bills of Material Processingwas in-
troduced in Version 8.2 of the SAS System to perform bill of material processing.
Several new features have been added to the procedure, enabling it to read all product
structure records from a product structure data file and all part “master” records from
a part master file, and compose the combined information into indented bills of mate-
rial. This data structure mirrors the most common method for storing bill-of-material
data in enterprise settings; the part master file contains data on each part while the
product structure file holds data describing the various part-component relationships
represented in bills of material.

The PMDATA= option on the PROC BOM statement enables you to specify the name
of the Part Master data set. If you do not specify this option, PROC BOM uses the
Product Structure data set (as specified in the DATA= option) as the Part Master
data set. The BOM procedure now looks up the Part, LeadTime, Requirement,
QtyOnHand, and ID variables in the Part Master data set. On the other hand, the
Component and Quantity variables remain in the Product Structure data set.

You can use the NRELATIONSHIPS= (or NRELTS=) option to specify the number
of parent-component relationships in the Product Structure data set. You have greater
control over the handling of redundant relationships in the Product Structure data set
using the DUPLICATE= option.

2 � What’s New in SAS/OR 9 and 9.1

Several options have been added to the STRUCTURE statement enabling you to spec-
ify information related to the parent-component relationships. In particular, the vari-
able specified with the PARENT= option identifies the parent item, while the vari-
ables listed in the LTOFFSET= option specify lead-time offset information. You can
also specify variables identifying scrap factor information for all parent-component
relationships using the SFACTOR= option. The RID= option identifies all variables
in the Product Structure data set that are to be included in the Indented BOM output
data set.

The CLP Procedure (Experimental)

The new CLP procedure inSAS/OR User’s Guide: Constraint Programmingis an9.1
experimental finite domain constraint programming solver for solving constraint sat-
isfaction problems (CSPs) with linear, logical, global, and scheduling constraints.
In addition to having an expressive syntax for representing CSPs, the solver fea-
tures powerful built-in consistency routines and constraint propagation algorithms,
a choice of nondeterministic search strategies, and controls for guiding the search
mechanism that enable you to solve a diverse array of combinatorial problems.

The CPM Procedure

The CPM procedure inSAS/OR User’s Guide: Project Managementadds more op-
tions for describing resource consumption by activities, enhancing its applicability to
production scheduling models.

A new keyword, RESUSAGE, has been added to the list of values for the OBSTYPE
variable in the Resource data set. This keyword enables you to specify whether a
resource is consumed at the beginning or at the end of a given activity.

The MILESTONERESOURCE option enables you to specify a nonzero usage of
consumable resources for milestone activities. For example, this option is useful if
you wish to designate specific milestones to be the points of payment for a subcon-
tractor. The MILESTONENORESOURCE option is the current default behavior of
the CPM procedure, which indicates that all resource requirements are to be ignored
for milestone activities.

The GA Procedure (Experimental)

The new GA procedure inSAS/OR User’s Guide: Local Search Optimizationfa-9.1
cilitates the application of genetic algorithms to general optimization. Genetic al-
gorithms adapt the biological processes of natural selection and evolution to search
for optimal solutions. The procedure can be applied to optimize problems involv-
ing integer, continuous, binary, or combinatorial variables. The GA procedure is
especially useful for finding optima for problems where the objective function may
have discontinuities or may not otherwise be suitable for optimization by traditional
calculus-based methods.

What’s New in SAS/OR 9 and 9.1 � 3

The GANTT Procedure

The GANTT procedure inSAS/OR User’s Guide: Project Managementincludes a
new option for controlling the width of the Gantt chart. The CHARTWIDTH= option
specifies the width of the axis area as a percentage of the total Gantt chart width.
This option enables you to generate Gantt charts that are consistent in appearance,
independent of the total time spanned by the project.

The LP Procedure

The performances of primal and dual simplex algorithms in the LP procedure
(SAS/OR User’s Guide: Mathematical Programming) have been significantly im-
proved on large scale linear or mixed integer programming problems.

The PM Procedure

The new options added to the CPM procedure are also available with PROC PM.

The QP Procedure (Experimental)

The new QP procedure inSAS/OR User’s Guide: Mathematical Programmingim- 9.1
plements a primal-dual predictor-corrector interior-point algorithm for large sparse
quadratic programs. Depending on the distribution of the eigenvalues of the Hessian
matrix,H, two main classes of quadratic programs are distinguished (assuming min-
imization):

• convex:H is positive semi-definite

• nonconvex:H has at least one negative eigenvalue

Diagonal and nonseparable Hessian matrices are recognized and handled automati-
cally.

Bill of Material Post Processing Macros

Several macros enable users to generate miscellaneous reports using the Indented
BOM output data set from the BOM procedure inSAS/OR User’s Guide: Bills of
Material Processing. Other transactional macros perform specialized transactions
for maintaining and updating the bills of material for a product, product line, plant,
or company.

4 � What’s New in SAS/OR 9 and 9.1

Chapter 1
The CLP Procedure (Experimental)

Chapter Contents

OVERVIEW . 7
The Constraint Satisfaction Problem. 7
Techniques for Solving CSPs. 8
The CLP Procedure. 9

INTRODUCTORY EXAMPLES . 11
Send More Money. .11
Eight Queens. .11

SYNTAX .13
Functional Summary. .14
PROC CLP Statement. .15
ACTIVITY Statement .17
ALLDIFF Statement. .18
ARRAY Statement. .19
FOREACH Statement. .19
LINCON Statement. .19
REIFY Statement .20
REQUIRES Statement. .21
RESOURCE Statement. .21
SCHEDULE Statement. .22
VAR Statement .23

DETAILS .24
Modes of Operation. .24
Activity Data Set. .24
Schedule Data Set. .26
Constraint Data Set. .27
Solution Data Set .28

REFERENCES .29

6 � Chapter 1. The CLP Procedure (Experimental)

Chapter 1
The CLP Procedure (Experimental)

Overview

The CLP procedure is a finite domain constraint programming solver for constraint
satisfaction problems (CSPs) with linear, logical, global, and scheduling constraints.
In addition to having an expressive syntax for representing CSPs, the solver fea-
tures powerful built-in consistency routines and constraint propagation algorithms,
a choice of nondeterministic search strategies, and controls for guiding the search
mechanism that enable you to solve a diverse array of combinatorial problems.

For the most recent updates to the documentation for this experimental pro-
cedure, see the Statistics and Operations Research Documentation page at
http://support.sas.com/rnd/app/doc.html.

The Constraint Satisfaction Problem

Many important problems in areas such as Artificial Intelligence (AI) and Operations
Research (OR) can be formulated as constraint satisfaction problems. A CSP is de-
fined by a finite set of variables taking values from finite domains and a finite set of
constraints restricting the values the variables can simultaneously take.

More formally, a CSP can be defined as a triple〈X, D,C〉 where

• X = {x1, . . . , xn} is a finite set ofvariables.

• D = {D1, . . . , Dn} is a finite set ofdomains, whereDi is a finite set of possi-
ble values that the variablexi can take.Di is known as thedomainof variable
xi.

• C = {c1, . . . , cm} is a finite set ofconstraintsrestricting the values that the
variables can simultaneously take.

Note that the domains need not represent consecutive integers. For example, the
domain of a variable could be the set of allevennumbers in the interval [0, 100]. A
domain does not even need to be totally numeric. In fact, in a scheduling problem
with resources, the values are typically multidimensional. For example, an activity
can be considered as a variable and each element of the domain would be ann-tuple
that represents a start time for the activity as well as the resource(s) that must be
assigned to the activity corresponding to the start time.

A solution to a CSP is an assignment of values to the variables in order to satisfy all
the constraints, and the problem amounts to finding solution(s), or possibly determin-
ing that a solution does not exist.

8 � Chapter 1. The CLP Procedure (Experimental)

The CLP procedure can be used to find one or more (and in some instances, all) so-
lutions to a CSP with linear, logical, global, and scheduling constraints. The numeric
components of all variable domains are assumed to be integers.

Techniques for Solving CSPs

Several techniques for solving CSPs are available.Kumar(1992) andTsang(1993)
present a good overview of these techniques.

It should be noted that the Satisfiability problem (SAT) (Garey and Johnson1979) can
be regarded as a CSP. Consequently, most problems in this class are NP-complete
problems, and a backtracking search is an important technique for solving them
(Floyd 1967). However, a backtracking approach is not very efficient due to the
late detection of conflicts; that is, it is oriented towardrecoveringfrom failures and
not avoidingthem to begin with. The search space is reduced only after detection of
a failure, and the performance of this technique drastically reduces with increasing
problem size.

Constraint Propagation

A more efficient technique is that of constraint propagation, which uses consistency
techniques to effectively prune the domains of variables. Consistency techniques are
also known as relaxation algorithms (Tsang1993) and the process is also referred
to as problem reduction, domain filtering, or pruning. The research on consistency
techniques originated with the Waltz filtering algorithm (Waltz 1975). Constraint
propagation is characterized by the extent of propagation (also referred to as the level
of consistency) and the domain pruning scheme that is followed — domain prop-
agation or interval propagation. In practice, interval propagation is preferred over
domain propagation due to its lower computational costs. This mechanism is dis-
cussed in detail inVan Hentenryck(1989). However, constraint propagation is not a
complete solution technique and needs to be complemented by a search technique to
ensure success (Kumar1992).

Finite Domain Constraint Programming

Finite domain constraint programming is an effective and complete solution tech-
nique that embeds incomplete constraint propagation techniques into a nondetermin-
istic backtracking search mechanism, implemented as follows. Whenever a node is
visited, constraint propagation is carried out to attain a desired level of consistency. If
the domain of each variable reduces to a singleton set, the node represents a solution
to the CSP. If the domain of a variable becomes empty, the node is pruned. Otherwise
a variable is selected, its domain distributed, and a new set of CSPs generated, each
of which is a child node of the current node. Several factors play a role in determin-
ing the outcome of this mechanism, such as the extent of propagation (or level of
consistency enforced), the variable selection strategy, and the variable assignment or
domain distribution strategy.

For example, the lack of any propagation reduces this technique to a simple gener-
ate and test, whereas performing consistency on variables already selected reduces
this to chronological backtracking, one of the systematic search techniques. These

The CLP Procedure � 9

are also known as look-back schemas as they share the disadvantage of late conflict
detection. Look-ahead schemas, on the other hand, work to prevent future conflicts.
Some popular examples of look-ahead strategies in increasing degree of consistency
level are Forward Checking (FC), Partial Look Ahead (PLA), and Full Look Ahead
(LA) (Kumar 1992). Forward Checking enforces consistency between the current
variable and future variables; PLA and LA extend this even further to pairs of not yet
instantiated variables.

Two important consequences of this technique are that inconsistencies are discovered
early on and that the current set of alternatives coherent with the existing partial
solution is dynamically maintained. These consequences are powerful enough to
prune large parts of the search tree, thereby reducing the “combinatorial explosion”
of the search process. However, although constraint propagation at each node results
in fewer nodes in the search tree, the processing at each node is more expensive.
The ideal scenario is to strike a balance between the extent of propagation and the
subsequent computation cost.

Variable selection is another strategy that can affect the solution process. The order in
which variables are chosen for instantiation can have substantial impact on the com-
plexity of the backtrack search. Several heuristics have been developed and analyzed
for selecting variable ordering. One of the more common ones is a dynamic heuristic
based on thefail first principle (Haralick and Elliot1980), which selects the vari-
able whose domain has minimal size. Subsequent analysis of this heuristic by several
researchers has validated this technique as providing substantial improvement for a
significant class of problems. Another popular technique is to instantiate the most
constrained variable first. Both these strategies are based on the principle of selecting
the variable most likely to fail and to detect such failures as early as possible.

The domain distribution strategy for a selected variable is yet another area that can
influence the performance of a backtracking search. However, good value ordering
heuristics are expected to be very problem-specific (Kumar1992).

The CLP Procedure

The CLP procedure is a finite domain constraint programming solver for CSPs. In
the context of the CLP procedure, CSPs can be classified into two types: standard
CSPs and scheduling CSPs. A standard CSP is characterized by integer variables,
linear constraints, array type constraints, global constraints, and reified constraints.
In other words,X is a finite set of integer variables, andC can contain linear, ar-
ray, global, or logical constraints. A scheduling CSP is characterized by activities,
temporal constraints, and resource requirement constraints. In other words,X is a
finite set of activities, andC is a set of temporal constraints and resource requirement
constraints. The CSP type is indicated by specifying either theOUT= option or the
SCHEDDATA=option in thePROC CLPstatement.

Specification of theOUT= option in the PROC CLP statement indicates to the CLP
procedure that the CSP is a standard type. As such, the procedure will expectVAR,
LINCON, REIFY, ALLDIFF, ARRAY, andFOREACHstatements. You can also
specify a Problem data set using theDATA= option in the PROC CLP statement in
lieu of, or in combination with,VAR andLINCON statements.

10 � Chapter 1. The CLP Procedure (Experimental)

Specification of theSCHEDDATA= option in the PROC CLP statement indicates to
the CLP procedure that the CSP is a scheduling type. As such, the procedure will
expectACTIVITY , RESOURCE, REQUIRES, andSCHEDULE statements. You
can also specify an Activity data set using theACTDATA= option in the PROC CLP
statement in lieu of, or in combination with, theACTIVITY andLINCON statements.
Precedence relationships between activities must be defined using theACTDATA=
data set. Resource requirements of activities must be defined using theRESOURCE
andREQUIRESstatements.

The output data set contains any solutions determined by the CLP procedure. For
more information on the format and layout, see the“Details” section on page 24.

Consistency Techniques

The CLP procedure features a Full Look-Ahead algorithm for standard CSPs that
follows a strategy of maintaining a version of Generalized Arc Consistency that
is based on the AC-3 Consistency routine (Mackworth1977). This strategy main-
tains consistency between the selected variable and the unassigned variables and also
maintains consistency between unassigned variables. For the scheduling CSPs, the
CLP procedure uses a Forward Checking algorithm, an arc-consistency routine for
maintaining consistency between unassigned activities, and energetic-based reason-
ing methods for resource-constrained scheduling that feature the Edge Finder algo-
rithm (Applegate and Cook1991). You can elect to turn off some of these consistency
techniques in the interest of performance.

Selection Strategy

A search algorithm for CSPs searches systematically through the possible assign-
ments of values to variables. The order in which a variable is selected can be based
on astaticordering, which is determined before the search begins, or on adynamic
ordering, in which the choice of the next variable depends on the current state of the
search. TheVARSELECT=option in the PROC CLP statement defines the variable
selection strategy for a standard CSP. The default strategy is the dynamic MINR strat-
egy, which selects the variable with the smallest range. TheACTSELECT=option
in theSCHEDULEstatement defines the activity selection strategy for a scheduling
CSP. The default strategy is the RAND strategy, which selects an activity at random
from the set of activities that begin prior to the earliest early finish time. This strategy
was proposed byNuijten (1994).

Assignment Strategy

Once a variable or an activity has been selected, the assignment strategy dictates the
value that is assigned to it. For variables, the assignment strategy is specified with the
VARASSIGN=option in the PROC CLP statement. The default assignment strategy
selects the minimum value from the domain of the selected variable. For activities, the
assignment strategy is specified with theACTASSIGN=option in theSCHEDULE
statement. The default strategy of RAND assigns the time to the earliest start time,
and the resources are chosen randomly from the set of resource assignments that
support the selected start time.

Eight Queens � 11

Introductory Examples

The following examples illustrate the formulation and solution of two well-known
logical puzzles in the constraint programming community using the CLP procedure.

Send More Money

The Send More Money problem consists of finding unique digits for the letters D, E,
M, N, O, R, S, and Y such that S and M are different from zero (no leading zeros)
and the equation

SEND + MORE = MONEY

is satisfied. The unique solution of the problem is9567 + 1085 = 10652.

UsingPROC CLP, we can solve this problem as follows:

proc clp dom=[0,9] /* Define the default domain */
out=out; /* Name the output data set */

var S E N D M O R E M O N E Y;/* Declare the variables */
lincon /* Linear constraints */

/* SEND + MORE = MONEY */
1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E
=
10000*M + 1000*O + 100*N + 10*E + Y,
S<>0, /* No leading zeros */
M<>0;

alldiff(); /* All variables have pairwise distinct values*/
run;

Obs S E N D M O R Y

1 9 5 6 7 1 0 8 2

Figure 1.1. Solution to SEND + MORE = MONEY

Eight Queens

The Eight Queens problem is a special instance of theN -Queens problem where the
objective is to positionN queens on anN × N chessboard such that no two queens
attack each other. The CLP procedure provides an expressive constraint for variable
arrays that can be used for solving this problem very efficiently.

Since each queen must occupy a distinct row, we can model this using a variable array
A of dimensionN , whereA[i] is the row number of the queen in columni. Since
no two queens can be on the same row, it follows that all theA[i]’s must be pairwise
distinct.

12 � Chapter 1. The CLP Procedure (Experimental)

In order to ensure that no two queens can be on the same diagonal, we must have the
following for all i andj:

A[j]−A[i] <> j − i

and

A[j]−A[i] <> i− j

In other words,

A[i]− i <> A[j]− j

and

A[i] + i <> A[j] + j

Hence, the(A[i]+ i)’s are pairwise distinct, and the(A[i]− i)’s are pairwise distinct.
The CLP procedure can be used to find a solution to this problem, as follows:

proc clp out=out
varselect=fifo; /* Variable Selection Strategy */

array A[8] (A1-A8); /* Define the array A */
var (A1-A8)=[1,8]; /* Define each of the variables in the array */

/* Initialize domains */
/* A[i] is the row number of the queen in column i*/
foreach(A, DIFF, 0); /* A[i] ’s are pairwise distinct */
foreach(A, DIFF, -1); /* A[i] - i ’s are pairwise distinct */
foreach(A, DIFF, 1); /* A[i] + i ’s are pairwise distinct */
run;

Obs A1 A2 A3 A4 A5 A6 A7 A8

1 1 5 8 6 3 7 2 4

Figure 1.2. A Solution to the Eight Queens Problem

Syntax � 13

Figure 1.3. A Solution to the Eight Queens Problem

Syntax

The following statements are used in PROC CLP:

PROC CLP options ;
ACTIVITY activity specifications ;
ALLDIFF alldiff constraints ;
ARRAY array specifications ;
FOREACH foreach constraints ;
LINCON linear constraints ;
REIFY reified constraints ;
REQUIRES resource requirement constraints ;
RESOURCE resource specifications ;
SCHEDULE schedule options ;
VAR variable specifications ;

14 � Chapter 1. The CLP Procedure (Experimental)

Functional Summary

The following tables outline the options available for the CLP procedure classified by
function.

Table 1.1. Assignment Strategy Options

Description Statement Option
activity assignment strategy SCHEDULE ACTASSIGN=
variable assignment strategy PROC CLP VARASSIGN=

Table 1.2. Data Set Options

Description Statement Option
activity input data set PROC CLP ACTDATA=
problem input data set PROC CLP DATA=
solution output data set PROC CLP OUT=
schedule output data set PROC CLP SCHEDDATA=

Table 1.3. General Options

Description Statement Option
suppress preprocessing PROC CLP NOPREPROCESS

Table 1.4. Output Control Options

Description Statement Option
find all possible solutions PROC CLP FINDALLSOLNS
indicate progress in log PROC CLP SHOWPROGRESS
number of solutions PROC CLP SOLNS=

Table 1.5. Scheduling CSP Statements

Description Statement Option
activity specifications ACTIVITY
resource requirement specifications REQUIRES
resource specifications RESOURCE
schedule options SCHEDULE

Table 1.6. Scheduling Temporal Constraints Options

Description Statement Option
activity duration ACTIVITY DURATION=
activity start lower bound ACTIVITY SGE=
activity start upper bound ACTIVITY SLE=
activity finish lower bound ACTIVITY FGE=
activity finish upper bound ACTIVITY FLE=
schedule duration SCHEDULE DURATION=
schedule start SCHEDULE START=
schedule finish SCHEDULE FINISH=

PROC CLP Statement � 15

Table 1.7. Scheduling Search Control Options

Description Statement Option
deadend multiplier PROC CLP DEM=
number of allowable deadends per restart PROC CLP DEPR=
number of search restarts PROC CLP RESTARTS=
edge finder consistency routine SCHEDULE EF

Table 1.8. Selection Strategy Options

Description Statement Option
activity selection strategy SCHEDULE ACTSELECT=
variable selection strategy PROC CLP VARSELECT=

Table 1.9. Standard CSP Statements

Description Statement Option
alldifferent constraints ALLDIFF
array specifications ARRAY
foreach constraints FOREACH
linear constraints LINCON
reified constraints REIFY
variable specifications VAR

PROC CLP Statement
PROC CLP options ;

The following options can appear in the PROC CLP statement.

ACTDATA= SAS-data-set
ACTIVITY=SAS-data-set

identifies the input data set that defines the activities and temporal constraints. The
temporal constraints consist of time alignment type constraints and precedence type
constraints. The format of the ACTDATA= data set is similar to the Activity data set
used by the CPM procedure in SAS/OR software. The activities and time alignment
constraints can also be directly specified using theACTIVITY statement without
the need for a data set. The CLP procedure enables you to define activities using a
combination of the two specifications.

DATA=SAS-data-set
identifies the input data set that defines the linear constraints. The format of the
DATA= data set is similar to that used by the LP procedure in SAS/OR software.
The linear constraints can also be specified inline using theLINCON statement. The
CLP procedure enables you to define linear constraints using a combination of the
two specifications. When defining linear constraints, you must define the structural
variables using aVAR statement.

DEM=d
specifies the deadend multiplier for the CSP. The deadend multiplier is used to deter-
mine the number of deadends that are permitted before triggering a complete restart

16 � Chapter 1. The CLP Procedure (Experimental)

of the search technique in a scheduling environment. The number of deadends is
the product of the deadend multiplier and the number of unassigned activities. The
default value is 0.15. This option is valid only with theSCHEDDATA=option.

DEPR=n
specifies the number of deadends that are permitted before PROC CLP restarts or
terminates the search, depending on whether or not a randomized search strategy is
used. In the case of a nonrandomized strategy,n is an upper bound on the number of
allowable deadends before terminating. In the case of a randomized strategy,n is an
upper bound on the number of allowable deadends before restarting the search. The
DEPR= option has priority over theDEM= option. The default value of the DEPR=
option is∞.

DOMAIN=[lb, ub]
DOM=[lb, ub]

specifies the global domain of all variables to be the closed interval [lb, ub]. You can
override the global domain for a variable with aVAR statement or theDATA= data
set.

FINDALLSOLNS
ALLSOLNS
FAS
FINDALL

attempts to find all possible solutions to the CSP. When a randomized search strat-
egy is used, it is possible to rediscover the same solution and end up with multiple
instances of the same solution. This is currently the case when solving scheduling-
related problems. Therefore, this option is ignored when solving a scheduling-related
problem.

NOPREPROCESS
suppresses any preprocessing that would typically be performed for the problem.

OUT=SAS-data-set
identifies the output data set that contains the solution(s) to the CSP, if any exist. Each
observation in the OUT= data set corresponds to a solution of the CSP. The number
of solutions generated can be controlled using theSOLNS=option in thePROC CLP
statement.

RESTARTS=n
specifies the number of restarts of the randomized search technique before terminat-
ing the procedure. The default value is 3.

SCHEDDATA=SAS-data-set
SCHEDULE=SAS-data-set

identifies the output data set that contains the scheduling-related solution to the CSP,
if one exists. Each observation in the SCHEDDATA= data set corresponds to an
activity. The format of the schedule data set is similar to the schedule data set gener-
ated by the CPM and PM procedures in SAS/OR software. The number of solutions
generated can be controlled using theSOLNS=option in thePROC CLPstatement.

ACTIVITY Statement � 17

SHOWPROGRESS
prints a message to the log whenever a solution has been found. When a randomized
strategy is used, the number of restarts and deadends that were required are also
printed to the log.

SOLNS=n
specifies the number of solution attempts to be generated for the CSP. The default
value is 1. It is important to note, especially in the context of randomized strategies,
that an attempt could result in no solution, given the current controls on the search
mechanism, such as the number of restarts and the number of deadends permitted. As
a result, the total number of solutions found may not match the SOLNS= parameter.

VARASSIGN=keyword
VALSELECT= keyword

specifies the value selection strategy. Currently there is only one value selection strat-
egy. The MIN strategy selects the minimum value from the domain of the selected
variable. To assign activities, use theACTASSIGN=option in theSCHEDULEstate-
ment.

VARSELECT=keyword
specifies the variable selection strategy. Both static and dynamic strategies are avail-
able. Possible values are as follows.

Static strategies:

• FIFO: Uses the First-In-First-Out ordering of the variables as encountered by
the procedure.

• MAXCS: Selects the variable with the maximum number of constraints.

Dynamic strategies:

• MINR: Selects the variable with the smallest range (that is, the minimum value
of upper bound minus lower bound).

• MAXC: Selects the variable with the largest number of active constraints.

• MINRMAXC: Selects the variable with the smallest range, breaking ties by
selecting the one with the largest number of active constraints.

The dynamic strategies embody the “Fail First Principle” (FFP) ofHaralick and Elliot
(1980), which suggests that “To succeed, try first where you are most likely to fail.”
The default strategy is MINR. To select activities, use theACTSELECT=option in
theSCHEDULEstatement.

ACTIVITY Statement

ACTIVITY activity < = (< DUR= > dur [altype=aldate . . .]) > ;
ACTIVITY (activity–list) < = (< DUR= > dur [altype=aldate . . .]) > ;

wheredur is the activity duration andaltype is a keyword specifying an alignment
type constraint on the activity (or activities) with respect to the date given byaldate.

18 � Chapter 1. The CLP Procedure (Experimental)

The ACTIVITY statement defines one or more activities and the attributes of each
activity, such as the duration and any temporal constraints of the time alignment type.
The default duration is 1.

Valid values for thealtype keyword are as follows:

• SGE: Start greater than or equal toaldate

• SLE: Start less than or equal toaldate

• FGE: Finish greater than or equal toaldate

• FLE: Finish less than or equal toaldate

You can specify any combination of the above keywords. For example, to define an
activity A with duration3 and to set the start time of activityA equal to10, you
would specify the following:

activity A = (dur=3 sge=10 sle=10);

You can alternatively use theACTDATA= data set to define the activities, durations,
and temporal constraints. In fact, you can specify both an ACTIVITY statement and
anACTDATA= data set. You must use anACTDATA= data set to define precedence-
related temporal constraints. TheSCHEDDATA=option must be specified when the
ACTIVITY statement is used.

ALLDIFF Statement

ALLDIFF (variables) . . . ;
ALLDIFFERENT (variables) . . . ;

The ALLDIFF statement can have multiple specifications. Each specification defines
a unique global constraint on a set of variables requiring all of them to be different
from each other. A global constraint is equivalent to a conjunction of elementary
constraints.

For example, the statements

var (X1-X3) A B;
alldiff (X1-X3) (A B);

are equivalent to
X1 6= X2

X2 6= X3

X1 6= X3

A 6= B

LINCON Statement � 19

ARRAY Statement

ARRAY arrayspec [, arrayspec...];

wherearrayspec := arrayname [dimensions] (variables);

The ARRAY statement is used to associate a name with a list of variables. Each of
the variables in the variable list must be defined using aVAR statement. The ARRAY
statement is required when specifying aFOREACHtype constraint.

FOREACH Statement

FOREACH (array, type, <offset <, constant > >) ;

wherearray must be defined using anARRAY statement,type is a keyword that
determines the type of the constraint, andoffset andconstant are integers.

The FOREACH statement iteratively applies a constraint over an array of variables.
The type of the constraint is determined bytype. The optionaloffset andconstant
parameters are integers and are interpreted in the context of the constraint type.

Currently, the only valid value fortype is DIFF.

The FOREACH statement corresponding to the DIFF keyword iteratively applies the
following constraint to each pair of variables in the array:

A[i] + offset× i 6= A[j] + offset× j ∀ i 6= j, i, j = 1, . . . ,m

For example, the constraint that all(A[i]− i)’s are pairwise distinct for an arrayA is
expressed as

foreach (A, diff, -1);

LINCON Statement

LINCON l–con [, l–con . . .];
LINEAR l–con [, l–con . . .];

wherel–con := linear–term operator linear–term

linear–term is of the following form:

((< +|− > variable|number< ∗variable>) . . .)

operator can be one of the following:

≤, <, =,==,≥, >, <>, LE,EQ,GE,LT,GT,NE

20 � Chapter 1. The CLP Procedure (Experimental)

The LINCON statement allows for a very general specification of linear constraints.
In particular, it allows for specification of the following types of equality or inequality
constraints:

n∑
j=1

aijxj {≤ | < | = | ≥ | > | 6=} bi for i = 1, . . . ,m

For example, the constraint4x1 − 3x2 = 5 is expressed as

var x1 x2;
lincon 4 * x1 - 3 * x2 = 5;

and the constraints
10x1 − x2 ≥ 10

x1 + 5x2 6= 15

are expressed as

var x1 x2;
lincon 10 <= 10 * x1 - x2,

x1 + 5 * x2 <> 15;

Note that variables can be specified on either side of an equality or inequality in a
LINCON statement. Linear constraints can also be specified using theDATA= data
set. When using a LINCON statement, you must define the variables using aVAR
statement.

REIFY Statement

REIFY variable : (l–con)...;

wherel–con := linear–term operator linear–term

linear–term is of the following form:

((< +|− > variable|number< ∗variable>) . . .)

operator can be one of the following:

≤, <, =,==,≥, >, <>, LE,EQ,GE,LT,GT,NE

The REIFY statement associates a binary variable with a linear constraint. The value
of the binary variable is 1 or 0 depending on whether the linear constraint is satisfied
or not, respectively. The linear constraint has been reified, and the logical variable is
referred to as the control variable. As with the other variables, the control variable
must also be defined in aVAR statement or in theDATA= data set.

RESOURCE Statement � 21

The REIFY statement provides a convenient mechanism for expressing logical con-
straints, such as disjunctive and implicative constraints. For example, the disjunctive
constraint

(3x + 4y < 20) ∨ (5x− 2y > 50)

can be expressed with the following statements:

var x y p q;
reify p: (3 * x + 4 * y > 20) q: (5 * x - 2 * y) > 50);
lincon p + q >= 1;

The REIFY constraint can also be used to express a constraint involving the absolute
value of a variable. For example, the constraint

|X| = 5

can be expressed with the following statements:

var x p q;
reify p: (x = 5) q: (x = -5);
lincon p + q = 1;

REQUIRES Statement

REQUIRES activity–spec = (assignment–spec [, assignment–set–spec . . .]);
REQ activity–spec = (assignment–spec [, assignment–set–spec . . .]);

whereactivity–spec:= activity or (activity–list)
andassignment–spec:= resource or (resource–list)

The REQUIRES statement defines the potential activity assignments with respect to
the pool of resources. For example, the following statements specify that activity A
requires resources R1 and R2 simultaneouslyor resources R3 and R4 simultaneously.

activity A;
resource R1-R4;
requires A= ((R1 R2), (R3 R4));

RESOURCE Statement

RESOURCE (resource–spec) . . . ;
RES (resource–spec) . . . ;

whereresource–spec is resource or (resource list)

The RESOURCE statement specifies the names of all resources that are available to
be allocated to the activities. TheREQUIRESstatement is necessary to specify the
resource requirements of an activity. Currently all resources are assumed to be unary
resources in that their capacity is equal to 1 and they may not be assigned to more
than one activity at any given time.

22 � Chapter 1. The CLP Procedure (Experimental)

SCHEDULE Statement

SCHEDULE options;

The following options can appear in the SCHEDULE statement.

ACTASSIGN=keyword
ACTVALSELECT= keyword

specifies the activity assignment strategy. The possible activity assignment strategies
are as follows:

• RAND: Assign the activity to start at its earliest possible start time. If the activ-
ity has any resource requirements, then randomly select a resource requirement
from the set of resource requirements that support the selected start time for the
activity. Assign the activity to the resources specified in this requirement.

• MAXLS: Assign the activity to start at its earliest possible start time. If the
activity has any resource requirements, then select the resource requirement
with the latest start time from the set of resource requirements that support the
selected start time for the activity. Assign the activity to the resources specified
in this requirement.

The default strategy is RAND. For assigning variables, use theVARASSIGN=option
in thePROC CLPstatement.

ACTSELECT=keyword
specifies the activity selection strategy. The activity selection strategy can be ran-
domized or deterministic, as described below.

The following are randomized selection strategies:

• RAND: Selects an activity at random from the set of activities that begin prior
to the earliest early finish time. This strategy was proposed byNuijten (1994).

• MINA: Selects an activity at random from the subset of activities that begin
prior to the earliest early finish time that have the minimum number of resource
assignments.

• MAXD: Selects an activity at random from the subset of activities that begin
prior to the earliest early finish time that have maximum duration.

• MINLS: Selects an activity at random from the subset of activities that begin
prior to the earliest early finish time that have a minimum late start date.

The following are deterministic selection strategies:

• DET: Selects the first activity that begins prior to the earliest activity finish
date.

• DMINLS: Selects the activity with the earliest late start time.

VAR Statement � 23

The default strategy is RAND. For selecting variables, use theVARSELECT=option
in thePROC CLPstatement.

DURATION=dur
SCHEDDUR=dur
DUR=dur

specifies the duration of the schedule. The DURATION= option imposes a constraint
that the duration of the schedule does not exceed the specified value.

EF
EDGEFINDER

activates the edge finder consistency routines for scheduling problems. By default,
the EF option is inactive.

FINISH=finish
END=finish
FINISHBEFORE=finish

specifies the finish time for the schedule. The schedule finish time is an upper bound
on the finish time of each activity (subject to time, precedence, and resource con-
straints). If you wish to impose a tighter upper bound for an activity, you can do
so either by using the FLE= option in anACTIVITY statement or by using the

–ALIGNDATE– and–ALIGNTYPE– variables in theACTDATA= data set.

START=start
BEGIN=start
STARTAFTER=start

specifies the start time for the schedule. The schedule start time is a lower bound on
the start time of each activity (subject to time, precedence, and resource constraints).
If you wish to impose a tighter lower bound for an activity, you can do so either by
using the SGE= option in anACTIVITY statement or by using the–ALIGNDATE–
and–ALIGNTYPE– variables in theACTDATA= data set.

VAR Statement

VAR STATEMENT varspec [,varspec . . .];

wherevarspec := variable <=<lb <,ub>>;
or varspec := (variable list) <=<lb <,ub>>;

The VAR statement specifies all the variables and their domains that are to be con-
sidered in the CSP. Any variable domains specified in a VAR statement override the
default variable domains. Iflb is specified andub is omitted, the corresponding vari-
able(s) are considered as being assigned tolb.

24 � Chapter 1. The CLP Procedure (Experimental)

Details

This section provides a detailed outline of the use of the CLP procedure. The material
is organized in subsections that describe different aspects of the procedure.

Modes of Operation

The CLP procedure can be invoked in one of two modes: standard mode and
scheduling mode. The standard mode gives you access to linear constraints, reified
constraints, alldiff constraints, and array constraints, whereas the scheduling mode
gives you access to more scheduling-specific constraints such as temporal constraints
(precedence and time) and resource constraints. In standard mode, the decision vari-
ables are one-dimensional; a variable is assigned an integer in a solution. In schedul-
ing mode, the variables are typically multidimensional; a variable is assigned a start
time and possibly a set of resources in a solution. In scheduling mode, the variables
are referred to as activities and the solution is referred to as a schedule.

Selecting the Mode of Operation

The CLP procedure requires the specification of an output data set to store the so-
lution(s) to the CSP. There are two possible output data sets: the Solution data
set (specified using theOUT= option in thePROC CLPstatement), which corre-
sponds to the standard mode of operation, and the Schedule data set (specified using
the SCHEDDATA= option in thePROC CLPstatement), which corresponds to the
scheduling mode of operation. The mode is determined by which output data set has
been specified. If an output data set is not specified, the procedure terminates with an
error message. If both output data sets have been specified, the Schedule data set is
ignored.

Activity Data Set

You can use an Activity data set in lieu of, or in combination with, anACTIVITY
statement to define activities and constraints relating to the activities. The Activity
data set is similar to the Activity data set input to the CPM procedure in SAS/OR
software and is specified using theACTDATA= option in thePROC CLPstatement.

The Activity data set enables you to define an activity, its domain, and any temporal
constraints. The temporal constraints could be either time alignment type or prece-
dence type constraints. The Activity data set requires, at the minimum, two variables:
one to determine the activity, and another to determine its duration. The procedure
terminates if it cannot find the required variables. The activity is determined with the

–ACTIVITY– variable, and the duration is determined with the–DURATION– vari-
able. In addition to the mandatory variables, you can also specify temporal constraints
related to the activities.

Activity Data Set � 25

Time Alignment Constraints

The –ALIGNDATE– and–ALIGNTYPE– variables enable you to define time align-
ment type constraints. The–ALIGNTYPE– variable defines the type of the alignment
constraint for the activity named in the–ACTIVITY– variable with respect to the

–ALIGNDATE– variable. If the–ALIGNDATE– variable is not present in the Activity
data set, the–ALIGNTYPE– variable is ignored. If the–ALIGNDATE– is present but
the –ALIGNTYPE– variable is missing, the alignment type is assumed to be SGE.
The–ALIGNTYPE– variable can take the values shown inTable 1.10:

Table 1.10. Valid Values for the –ALIGNTYPE– Variable

Value Type of Alignment
SEQ Start equal to
SGE Start greater than or equal to
SLE Start less than or equal to
FEQ Finish equal to
FGE Finish greater than or equal to
FLE Finish less than or equal to

Precedence Constraints

The –SUCCESSOR– variable enables you to define precedence type relationships
between activities using AON (Activity-On-Node) format. The–SUCCESSOR–
variable must have the same type as that of the–ACTIVITY– variable. The–LAG–
variable defines the lag type of the relationship. By default, all precedence relation-
ships are considered to beFinish-to-Start(FS). An FS type of precedence relationship
is also referred to as astandardprecedence constraint. All other types of prece-
dence relationships are considered to be nonstandard precedence constraints. The

–LAGDUR– variable specifies the lag duration. By default, the lag duration is zero.

For each (activity, successor) pair, you can define a lag type and a lag duration.
Consider the pair of activities (A, B) with a lag duration given bylagdur. The in-
terpretation of each of the different lag types is given inTable 1.11.

Table 1.11. Valid Values for the –LAG– Variable

Lag Type Interpretation
FS Finish A + lagdur≤ Start B
SS Start A + lagdur≤ Start B
FF Finish A + lagdur≤ Finish B
SF Start A + lagdur≤ Finish B
FSE Finish A + lagdur = Start B
SSE Start A + lagdur = Start B
FFE Finish A + lagdur = Finish B
SFE Start A + lagdur = Finish B

26 � Chapter 1. The CLP Procedure (Experimental)

The first four lag types (FS, SS, FF, and SF) are also referred to asFinish-to-Start,
Start-to-Start, Finish-to-Finish, andStart-to-Finish, respectively. The next four types
(FSE, SSE, FFE, and SFE) are stricter versions of FS, SS, FF, and SF, respectively.
The first four types impose a lower bound on the start/finish times of B, while the last
four types force the start/finish times to be set equal to the lower bound of the domain.
This enables you to force an activity to begin when its predecessor is finished. It
is relatively easy to generate infeasible scenarios with the stricter versions, so you
should only use the stricter versions if the weaker versions are not adequate for your
problem.

Resource Constraints

The Activity data set cannot be used to define resource requirement type constraints.
To define resource requirement type constraints, you must specifyRESOURCEand
REQUIRESstatements.

Variables in the ACTDATA= data set

Table 1.12lists all the variables associated with the Activity data set and their inter-
pretations by the CLP procedure. The table also lists for each variable its type (C for
character, N for numeric), the possible values it can assume, and its default value.

Table 1.12. Activity Data Set Variables
Name Type Description Allowed Values Default

–ACTIVITY– C/N activity name

–DURATION– N duration 0

–SUCCESSOR– C/N successor name same type as

–ACTIVITY–
–ALIGNDATE– N alignment date 0

–ALIGNTYPE– C alignment type SGE, SLE, SEQ,
FGE, FLE, FEQ

SGE

–LAG– C lag type FS, SS, FF, SF,
FSE, SSE, FFE, SFE

FS

–LAGDUR– N lag duration 0

Schedule Data Set

In order to solve a scheduling type CSP, you need to specify a Schedule data set
using theSCHEDDATA=option in thePROC CLPstatement. The Schedule data set
contains all the solutions that have been determined by the CLP procedure.

The Schedule data set always contains the following five variables:SOLUTION,
ACTIVITY, DUR, START, and FINISH. If any resources have been specified, then
there is also a variable corresponding to each resource with the name of the variable
being the name of the resource. TheSOLUTION variable gives the solution number
that each observation corresponds to. TheACTIVITY variable identifies the activity,
theDUR variable gives the duration of the activity, and theSTART andFINISH vari-
ables give the scheduled start and finish times for the activity. If there are resources
present, the corresponding resource variable indicates whether or not it is being uti-
lized for the activity.

Constraint Data Set � 27

For every solution found and for each activity, the Schedule data set contains an
observation that lists the assignment information for that activity.

If an Activity data set has been specified, then the formats and labels for theACTIVITY
andDUR variables carry over to the Schedule data set.

Constraint Data Set

The Constraint data set defines linear constraints, variable types, and bounds on vari-
able domains. You can use a Constraint data set in lieu of, or in combination with, a
LINCON and/or aVAR statement in order to define linear constraints, variable types,
and variable bounds. The Constraint data set is similar to the problem data set input
to the LP procedure in SAS/OR software and is specified using theDATA= option in
thePROC CLPstatement.

The Constraint data set must be in dense input format. In the dense input format, a
model’s columns appear as variables in the input data set and the data set must con-
tain the–TYPE– variable, the–RHS– variable, and at least one numeric variable. In
the absence of the above requirement, the CLP procedure terminates. The–TYPE–
variable is a character variable which tells the CLP procedure how to interpret each
observation. The CLP procedure recognizes the following keywords as valid val-
ues for the–TYPE– variable: EQ, LE, GE, NE, LT, GT, LOWERBD, UPPERBD,
BINARY, and FIXED. An optional character variable,–ID– , can be used to name
each row in the Constraint data set.

Linear Constraints

For the–TYPE– values EQ, LE, GE, NE, LT, GT, the corresponding observation
is interpreted as a linear constraint. The–RHS– variable is a numeric variable that
contains the right-hand-side coefficient of the linear constraint. Any numeric variable
other than–RHS– is interpreted as a structural variable for the linear constraint.

Domain Bounds

The values LOWERBD and UPPERBD specify additional lower bounds and upper
bounds on the variable domains. In an observation where the–TYPE– variable is
equal to LOWERBD, a nonmissing value for a decision variable is considered a lower
bound for that variable. Similarly, in an observation where the–TYPE– variable is
equal to UPPERBD, a nonmissing values for a decision variable is considered an
upper bound for that variable. In both the above instances, it is important to note that
any specified lower or upper bounds on a variable must be consistent with the existing
domain of the variable, or the problem is deemed infeasible.

Variable Types

The keywords BINARY and FIXED are interpreted as specifying numeric types. If
the value of–TYPE– is BINARY for an observation, then any decision variable with
a nonmissing entry for the observation is interpreted as being a binary variable with
domain {0,1}. If the value of–TYPE– is FIXED for an observation, then any decision
variable with a nonmissing entry for the observation is interpreted as being assigned
to that nonmissing value. In other words, if the value of the variableX is c in an

28 � Chapter 1. The CLP Procedure (Experimental)

observation for which–TYPE– is FIXED, then the domain ofX is considered to be
the singleton{c}. It is important to note that the valuec should belong to the domain
of X, or the problem is deemed infeasible.

Any numeric variable other than–RHS– is implicitly considered as appearing in a
VAR statement and does not require a separate definition in aVAR statement. In the
event that a numeric variable has previously been defined in aVAR statement, any
bounds that are defined in the Constraint data set are considered in addition to bounds
that may have been defined using theVAR statement.

Variables in the DATA= data set

Table 1.13lists all the variables associated with the Constraint data set and their
interpretations by the CLP procedure. The table also lists for each variable its type (C
for character, N for numeric), the possible values it can assume, and its default value.

Table 1.13. Constraint Data Set Variables
Name Type Description Allowed Values Default

–TYPE– C observation type EQ, LE, GE, NE,
LT, GT, LOWERBD,
UPPERBD, BINARY,
FIXED

–RHS– N right-hand-side
coefficient

0

–ID– C observation name
(optional)

Any numeric
variable other
than–RHS–

N structural variable

Solution Data Set

In order to solve a standard (nonscheduling) type CSP, you need to specify a Solution
data set using theOUT= option in thePROC CLPstatement. The Solution data set
contains all the solutions that have been determined by the CLP procedure.

The Solution data set contains as many decision variables as have been defined in
the call to PROC CLP. Every observation in the Solution data set corresponds to
a solution to the CSP. If a Problem data set has been specified, then any variable
formats and variable labels from the Problem data set carry over to the Solution data
set.

References � 29

References

Applegate, D. and Cook, W. (1991), “A Computational Study of the Job Shop
Scheduling Problem,”ORSA Journal on Computing, 3, 149–156.

Colmerauer, A. (1990), “An Introduction to PROLOG III,”Communications of the
ACM, 33, 70–90.

Floyd, R. W. (1967), “Nondeterministic Algorithms,”Journal of the ACM, 14,
636–644.

Garey, M. R. and Johnson, D. S. (1979),Computers and Intractability: A Guide to
the Theory of NP-Completeness, New York: W. H. Freeman & Co.

Haralick, R. M. and Elliot, G. L. (1980), “Increasing Tree Search Efficiency for
Constraint Satisfaction Problems,”Artificial Intelligence, 14, 263–313.

Jaffar, J. and Lassez, J. (1987), “Constraint Logic Programming,”Conference Record
of the 14th Annual ACM Symposium in Principles of Programming Languages,
Munich, 111–119.

Kumar, V. (1992), “Algorithms for Constraint-Satisfaction Problems: A Survey,”AI
Magazine, 13, 32–44.

Mackworth, A. K. (1977), “Consistency in Networks of Relations,”Artificial
Intelligence, 8, 99–118.

Nemhauser, G. L. and Wolsey, L. A. (1988),Integer and Combinatorial Optimization,
New York: John Wiley.

Nuijten, W. (1994), Time and Resource Constrained Scheduling, Ph.D. thesis,
Eindhoven Institute of Technology.

Smith, B. M., Brailsford, S. C., Hubbard, P. M., and Williams, H. P. (1996),
“The Progressive Party Problem: Integer Linear Programming and Constraint
Programming Compared,”Constraints, 1, 119–138.

Tsang, E. (1993),Foundations of Constraint Satisfaction, London: Academic Press.

Van Hentenryck, P. (1989),Constraint Satisfaction in Logic Programming,
Cambridge, MA: MIT Press.

Van Hentenryck, P., Deville, Y., and Teng, C. (1992), “A Generic Arc-Consistency
Algorithm and its Specializations,”Artificial Intelligence, 57, 291–321.

Waltz, D. L. (1975), “Understanding Line Drawings of Scenes with Shadows,” in
P. H. Winston, ed., “The Psychology of Computer Vision,” 19–91, New York:
McGraw-Hill.

Williams, H. P. and Wilson, J. M. (1998), “Connections Between Integer Linear
Programming and Constraint Logic Programming – An Overview and Introduction
to the Cluster of Articles,”INFORMS Journal of Computing, 10, 261–264.

30 � Chapter 1. The CLP Procedure (Experimental)

Subject Index

A
Activity data set,10, 24, 26, 27

–ACTIVITY – variable,24–26

–ALIGNDATE– variable,23, 25, 26

–ALIGNTYPE– variable,23, 25, 26

–DURATION– variable,24, 26

–LAG– variable,25, 26

–LAGDUR– variable,25, 26

–SUCCESSOR– variable,25, 26

–ACTIVITY – variable
Activity data set,24–26

ACTIVITY variable
Schedule data set,26

–ALIGNDATE– variable
Activity data set,23, 25, 26

alignment type
FEQ,25
FGE,18, 25
FLE, 18, 25
SEQ,25
SGE,18, 25
SLE,18, 25

–ALIGNTYPE– variable
Activity data set,23, 25, 26

array definition,19
assignment strategy,10

MAXLS, 22
options,14
RAND, 10, 22

B
backtracking search,8

C
CLP procedure

Activity data set,10, 24, 26, 27
assignment strategy,10, 14
consistency techniques,10
Constraint data set,27
data set options,14
details,24
general options,14
introductory examples,11
output control options,14
overview,7, 9
Problem data set,9
Schedule data set,24, 26, 27
scheduling CSP statements,14

scheduling mode,24
scheduling search control options,15
scheduling temporal constraints options,14
selection strategy,10, 15
Solution data set,24, 28
standard CSP statements,15
standard mode,24
syntax,13

consistency techniques,10
Constraint data set,27, 28

–ID– variable,27, 28

–RHS– variable,27, 28

–TYPE– variable,27, 28
constraint programming

finite domain,8
constraint propagation,8
constraint satisfaction problem (CSP),7

backtracking search,8
constraint propagation,8
definition of,7
scheduling CSP,9, 10
standard CSP,9
techniques for solving,8

D
data set options,14
deadend multiplier,15, 16
domain,7, 16

bounds,27
distribution strategy,9

DUR variable
Schedule data set,26

duration,23

–DURATION– variable
Activity data set,24, 26

E
edge finder routine,23
examples,11

Eight Queens,11
Send More Money,11

F
finish time,23
FINISH variable

Schedule data set,26
finite domain constraint programming,8

32 � Subject Index

I
–ID– variable

Constraint data set,27, 28
input data set,15, 24, 27

L
lag type,25

FF,26
FFE,26
FS,26
FSE,26
SF,26
SFE,26
SS,26
SSE,26

–LAG– variable
Activity data set,25, 26

–LAGDUR– variable
Activity data set,25, 26

linear constraints,27
specifying,15, 19, 27

look-ahead schemas,9
look-back schemas,9

M
modes of operation,24

O
output control options,14
output data set,16, 26

P
precedence constraints,25
preprocessing,16
Problem data set,9

R
resource requirements,21, 26
restarts,16

–RHS– variable
Constraint data set,27, 28

S
satisfiability problem (SAT),8
schedule

duration,23
finish time,23
start time,23

Schedule data set,24, 26, 27
ACTIVITY variable, 26
DUR variable,26
FINISH variable,26
SOLUTION variable,26
START variable,26

scheduling CSP,9, 10
search control options,15
selection strategy,10, 17

activity, 22

DET, 23
DMINLS, 23
FIFO,17
MAXC, 17
MAXCS, 17
MAXD, 22
MINA, 22
MINLS, 22
MINR, 10, 17
MINRMAXC, 17
options,15
RAND, 10, 22

Solution data set,24, 28
SOLUTION variable

Schedule data set,26
standard CSP,9
start time,23
START variable

Schedule data set,26

–SUCCESSOR– variable
Activity data set,25, 26

syntax tables,13, 14
assignment strategy options,14
data set options,14
general options,14
output control options,14
scheduling CSP statements,14
scheduling search control options,15
scheduling temporal constraints options,14
selection strategy options,15
standard CSP statements,15

T
–TYPE– variable

Constraint data set,27, 28

V
variable selection,9

Syntax Index

A
ACTASSIGN= option

SCHEDULE statement,10, 17, 22
ACTDATA= option

PROC CLP statement,10, 15, 18, 23, 24, 26
ACTIVITY statement,10, 15, 17, 23, 24
ACTIVITY= option,

SeeACTDATA= option
ACTSELECT= option

SCHEDULE statement,10, 17, 22
ACTVALSELECT= option,

SeeACTASSIGN= option
ALLDIFF statement,9, 18
ALLSOLNS,

SeeFINDALLSOLNS
ARRAY statement,9, 19

B
BEGIN= option,

SeeSTART= option

D
DATA= option

PROC CLP statement,9, 15, 16, 20, 27, 28
DEM= option

PROC CLP statement,15
DEPR= option

PROC CLP statement,16
DET selection strategy,23
DMINLS selection strategy,23
DOM= option,

SeeDOMAIN= option
DOMAIN= option

PROC CLP statement,16
DUR= option,

SeeDURATION= option
DURATION= option

SCHEDULE statement,23

E
EDGEFINDER option,

SeeEF option
EF option

SCHEDULE statement,23
END= option,

SeeFINISH= option

F
FAS,

SeeFINDALLSOLNS
FEQ alignment type,25
FF lag type,26
FFE lag type,26
FGE alignment type,18, 25
FIFO selection strategy,17
FINDALL,

SeeFINDALLSOLNS
FINDALLSOLNS

PROC CLP statement,16
FINISH= option

SCHEDULE statement,23
FINISHBEFORE= option,

SeeFINISH= option
FLE alignment type,18, 25
FOREACH statement,9, 19
FS lag type,26
FSE lag type,26

L
LINCON statement,9, 10, 15, 19, 27

M
MAXC selection strategy,17
MAXCS selection strategy,17
MAXD selection strategy,22
MAXLS assignment strategy,22
MINA selection strategy,22
MINLS selection strategy,22
MINR selection strategy,10, 17
MINRMAXC selection strategy,17

N
NOPREPROCESS

PROC CLP statement,16

O
ORCP,1
OUT= option

PROC CLP statement,9, 16, 24, 28

P
PROC CLP statement,15

ACTDATA= option, 10, 15, 18, 23, 24
DATA= option, 9, 15, 16, 20, 27, 28
DEM= option,15

34 � Syntax Index

DEPR= option,16
DOMAIN= option, 16
FINDALLSOLNS, 16
NOPREPROCESS,16
OUT= option,9, 16, 24, 28
RESTARTS= option,16
SCHEDDATA= option,9, 10, 16, 18, 24, 26
SHOWPROGRESS option,17
SOLNS= option,16, 17
VARASSIGN= option,10, 17, 22
VARSELECT= option,10, 17, 23

R
RAND assignment strategy,10, 22
RAND selection strategy,10, 22
REIFY statement,9, 20
REQUIRES statement,10, 21, 26
RESOURCE statement,10, 21, 26
RESTARTS= option

PROC CLP statement,16

S
SCHEDDATA= option

PROC CLP statement,9, 10, 16, 18, 24, 26
SCHEDDUR= option,

SeeDURATION= option
SCHEDULE statement,10, 22

ACTASSIGN= option,10, 17, 22
ACTSELECT= option,10, 17, 22
DURATION= option,23
EF option,23
FINISH= option,23
START= option,23

SCHEDULE= option,
SeeSCHEDDATA= option

SEQ alignment type,25
SF lag type,26
SFE lag type,26
SGE alignment type,18, 25
SHOWPROGRESS option

PROC CLP statement,17
SLE alignment type,18, 25
SOLNS= option

PROC CLP statement,16, 17
SS lag type,26
SSE lag type,26
START= option

SCHEDULE statement,23
STARTAFTER= option,

SeeSTART= option

V
VALSELECT= option,

SeeVARASSIGN= option
VAR statement,9, 15, 19, 20, 23, 27, 28
VARASSIGN= option

PROC CLP statement,10, 17, 22
VARSELECT= option

PROC CLP statement,10, 17, 23

Your Turn

If you have comments or suggestions about SAS/OR 9.1 User’s Guide: Constraint
Programming, please send them to us on a photocopy of this page or send us electronic
mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	What's New in SAS/OR 9 and 9.1
	Chapter 1. The CLP Procedure
	Overview
	The Constraint Satisfaction Problem
	Techniques for Solving CSPs
	The CLP Procedure

	Introductory Examples
	Send More Money
	Eight Queens

	Syntax
	Functional Summary
	PROC CLP Statement
	ACTIVITY Statement
	ALLDIFF Statement
	ARRAY Statement
	FOREACH Statement
	LINCON Statement
	REIFY Statement
	REQUIRES Statement
	RESOURCE Statement
	SCHEDULE Statement
	VAR Statement

	Details
	Modes of Operation
	Activity Data Set
	Schedule Data Set
	Constraint Data Set
	Solution Data Set

	References

	Subject Index
	Syntax Index

