
SAS®

9.1 OLAP Server
Administrator’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 OLAP Server: Administrator’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 OLAP Server: Administrator’s Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

Details v

Chapter 1 � OLAP Introduction and Overview 1
What Is OLAP? 1

What Is a Cube? 2

Understanding the Cube Structure 3

What Is SAS OLAP Server? 3

About Cube Metadata Storage 4

Why You Should Use Cubes 4

Analyzing Your Data 5

Chapter 2 � Installing and Administering SAS OLAP Server 7
Installing and Configuring SAS OLAP Server 8

Monitoring OLAP Server Performance 27

Changing an OLAP Server Configuration 28

Optimizing OLAP Server 31

Monitoring and Administering Sessions—SAS OLAP Server Monitor Plug-In 34

Securing Cubes 35

Cubes and the Metadata Server 38

Understanding Change Management in SAS OLAP Cube Studio 39

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP 40

Chapter 3 � Building and Updating Cubes 45
Background 45

Building a Cube from a Detail Table 48

Building a Cube from a Summary Table 55

Building a Cube from a Star Schema 61

Updating a Cube 67

Refreshing Cube Metadata 67

Defining Member Properties 68

Defining Multiple Hierarchies for a Dimension 69

Defining Ragged Hierarchies for a Dimension 70

Manually Tuning Cube Aggregates 73

Multiple Language Support and Dimension Table Translations 74

Adding SAS System Options to a Cube 75

Specifying Tuning and Performance Options in Cube Aggregations 76

Chapter 4 � Using SAS OLAP Cubes 79
Using a Cube with ADO MD 79

Using a Cube with OLE DB for OLAP 79

iv

Using a Cube with Additional SAS Software 80

Using a Cube with Third-Party Clients 80

Chapter 5 � Transitioning from SAS OLAP Server Release 8.2 to SAS 9.1 85
Conversion and Migration Issues from Release 8.2 to SAS 9.1 85

Comparing OLAP Functionality in SAS 8 and SAS 9.1 86

Comparing PROC MDDB Code and PROC OLAP Code 89

Appendix 1 � The OLAP Procedure 91
The OLAP Procedure 92

Syntax: OLAP Procedure 92

PROC OLAP Statement 92

METASVR Statement 97

DIMENSION Statement 99

LEVEL Statement 102

PROPERTY Statement 103

HIERARCHY Statement 105

MEASURE Statement 107

AGGREGATION Statement 110

DROP_AGGREGATION Statement 112

DEFINE Statement 113

USER_DEFINED_TRANSLATIONS Statement 115

Tables Used to Define Cubes 119

Naming Guidelines for SAS OLAP Server 120

Loading Cubes 121

Maintaining Cubes 125

Specialized Syntax Options for PROC OLAP 127

Appendix 2 � Recommended Reading 129
Recommended Reading 129

Glossary 131

Index 139

v

What’s New

Overview
The SAS OLAP Server enables users to develop and deploy scalable Online

Analytical Processing (OLAP) applications. In addition, automated data loading and
cube building is available through the use of a new administration interface called the
SAS OLAP Cube Studio, which was developed using Java technology.

OLAP queries are performed using the Multidimensional Expressions (MDX) query
language in client applications that are connected to the OLAP Server by using

� the SQL Pass-Through Facility for OLAP, which is designed to process MDX
queries within the PROC SQL environment.

� open access technologies such as OLE DB for OLAP, ADO MD, and Java.

Note: This section describes the features of the SAS OLAP Server that are new or
enhanced since SAS 8.2. �

Details
� There are two new tools for data loading and cube building:

� The OLAP procedure, in addition to cube building, includes options for
handling ragged hierarchies, defining global calculated members and named
sets, assigning properties to levels, and optimizing cube creation and query
performance. It also supports multiple hierarchies and drill-through tables.

� The SAS OLAP Cube Studio is an alternative Java interface to the OLAP
procedure. This interface is also integrated with SAS ETL Studio.

� Server performance is recorded and analyzed by using the Application Response
Measurement (ARM) system.

� The new multi-threaded data storage and server functionality provide faster cube
performance. The data can be stored in a multidimensional form (MOLAP) or in a
form that includes existing aggregations from presummarized data sources.

� The metadata structure is improved, and metadata is stored with the cube.

vi What’s New

� Caching and logging can be enabled or disabled.

� Support for ad hoc calculations and time dimensions is improved.

� An SQL Pass-Through Facility for OLAP is available in SAS for use in querying
cubes.

� Aggregations can be added to or deleted from existing cubes.

Note: Version 8 of the SAS OLAP Server can be used with SAS 9. For help, see “V8
SAS OLAP Server” in SAS System Help and Documentation. �

1

C H A P T E R

1
OLAP Introduction and Overview

What Is OLAP? 1
Data Storage and Access 1

Benefits of OLAP 2

What Is a Cube? 2

Understanding the Cube Structure 3

What Is SAS OLAP Server? 3
About Cube Metadata Storage 4

Why You Should Use Cubes 4

Cube Usage and Storage Space Reduction 4

Multi-Threading Capabilities 5

Easy Setup and Maintenance 5

Data Management: Choosing Your Own Tool 5
Analyzing Your Data 5

Data Preparation and Dimension Design 5

Aggregation Design 6

What Is OLAP?
Online Analytical Processnding (OLAP) is a technology that is used to create decision

support software. OLAP enables application users to quickly analyze information that
has been summarized into multidimensional views and hierarchies. By summarizing
predicted queries into multidimensional views prior to run time, OLAP tools provide the
benefit of increased performance over traditional database access tools. Most of the
resource-intensive calculation that is required to summarize the data is done before a
query is submitted.

Data Storage and Access
Decision makers are asked to make timely and accurate decisions that are based on

the past performance and behavior of an organization as well as on future trends and
directives. To make effective business decisions, business analysts must have access to
the data that their company generates and responds to. This access must include
timely queries, summaries, and reviews of numerous levels and combinations of large,
recurrent amounts of data. The information that business analysts review determines
the quality of their decisions.

Organizations usually have databases and data stores that maintain repeated and
frequent business transaction data. This provides simple yet detailed storage and
retrieval of specific data events. However, these data storage systems are not well
suited for analytical summaries and queries that are typically generated by decision

2 Benefits of OLAP � Chapter 1

makers. For decision makers to reveal hidden trends, inconsistencies, and risks in a
business, they must be able to maintain a certain degree of momentum when querying
the data. An answer to one question usually leads to additional questions and review of
the data. Simple data stores do not successfully support this type of querying.

A second type of storage, the data warehouse, is better suited for this. Data is
maintained and organized so that complicated queries and summaries can be run.
OLAP further organizes and summarizes specific categories and subsets of data from
the data warehouse. This results in a robust and detailed level of data storage with
efficient and fast query returns. SAS OLAP cubes can be built from either partially or
completely denormalized data warehouse tables. Stored, precalculated summarizations
called aggregations, can be added to the cube to improve cube access performance.
Aggregations can either be pre-built relational tables, or you can let the cube create its
own optimized aggregates.

Benefits of OLAP
The ability to have coherent and relevant information is the reason OLAP has gained

in popularity. OLAP systems help reveal evasive inconsistencies and trends in data
that might not have been seen before. OLAP users can intuitively search data that has
been consolidated and summarized within the OLAP structure. In addition, OLAP tools
allow for tasks such as sales forecasting, asset analysis, resource planning, budgeting,
and risk assessment. OLAP systems also provide the following benefits:

� fast access, calculations, and summaries of an organization’s data

� support for multiple user access and multiple queries

� the ability to handle multiple hierarchies and levels of data

� the ability to pre-summarize and consolidate data for faster query and reporting
functions

� the ability to expand the number of dimensions and levels of data as a business
grows.

To fully understand the benefits of OLAP and the details of its effective
implementation, it helps to examine the technology from two perspectives—first, from
that of the users and second, from that of the information technology (IT)
administrators who are responsible for OLAP implementation. The users, typically
business analysts and analysts, expect the data to be organized according to categories
that reflect the way in which they think about the enterprise. For IT administrators,
OLAP can present a long list of technical issues, including these concerns:

� storage requirements and associated costs

� client and server capabilities

� maintenance activities such as update and backup

� performance considerations such as the amount of time that is required to build a
multidimensional model

� the ability of the OLAP solution to integrate with current or planned data
warehouse strategies and architectures.

What Is a Cube?

One of the advantages of OLAP is how data and its relationships are stored and
accessed. OLAP systems house data in structures that are readily available for detailed
queries and analytics. Cubes are central to the OLAP storage process.

OLAP Introduction and Overview � What Is SAS OLAP Server? 3

A cube is a set of data that is organized and structured in a hierarchical,
multidimensional arrangement. The cube is usually derived from a subset of a data
warehouse. Unlike relational databases that use two-dimensional data structures (often
in the form of columns and rows in a spreadsheet), OLAP cubes are logical,
multidimensional models that can have numerous dimensions and levels of data. Also,
an organization typically has different cubes for different types of data.

One of the challenges of OLAP cube data storage and retrieval is the growth of data
and how that growth affects the number of dimensions and levels in a cube hierarchy.
As the number of dimensions increases over time, so does the number of data cells on an
exponential scale. To maintain the efficiency and speed of the OLAP queries, the cube
data is often presummarized into various consolidations and subtotals (aggregations).

Note: The SAS OLAP Server term cube is synonymous with the terms hyper-cube
and multi-cube. �

Understanding the Cube Structure
OLAP cubes organize data in a hierarchical arrangement. Data is structured

according to dimensions and measures.
Dimensions group the data along natural categories. (Examples of dimensions are

Time, Products, Organization). Typically, dimensions offer different levels of grouping
(for example, the Time dimension can be grouped by Years, Months, Days, etc.). Levels
are organized into one or more hierarchies, typically from a coarse-grained level (for
example, Year) down to the most detailed one (for example, Day). The individual
category values (for example, 2002 or 21Jan2002) are called members.

Measures are the data values that are summarized and analyzed. Examples of
measures are sales figures or operational costs. The data for measures is located in
cells. Cells are the intersection of one member for every dimension.

Presummarized data in a cube is stored in aggregations. Aggregations are the basis
for fast response to data queries in OLAP applications. An aggregation is possible at
each intersection of a level of one or more dimensions. The selection of aggregations to
presummarize is one of the major factors that determine query response time and cube
size.

What Is SAS OLAP Server?
SAS OLAP Server is a scalable server that provides multi-user access to the data

that is stored in SAS OLAP cubes.
Processing data by using a multi-threaded kernel enables you to take advantage of

your server’s parallel processing abilities. SAS OLAP Server accepts data queries in the
industry-standard MDX query language, which opens it up to a variety of clients. Other
features include

� the SAS OLAP Cube Studio user interface, which is an alternative Java interface,
for building and maintaining cubes

� PROC OLAP for programmatically building and maintaining cubes
� server management by using SAS Management Console
� support for processing external aggregates
� support for OLE DB for OLAP.

Note: OLAP queries are performed by using the Multidimensional Expressions
(MDX) query language in client applications that are connected to the OLAP server by

4 About Cube Metadata Storage � Chapter 1

using OLE DB for OLAP (an extension of OLE DB that is used by COM-based clients),
or through a similarly designed Java interface. �

About Cube Metadata Storage

The SAS Metadata Server stores the metadata that defines the cubes. It is a
multi-user server that enables users to manage metadata in one or more metadata
repositories by using the SAS Open Metadata Interface.

Note: The SAS Open Metadata Interface is an object-oriented application
programming interface (API) that interacts with the SAS Metadata Server. SAS OLAP
Cube Studio is an example of an application that is compliant with the SAS Open
Metadata Interface. �

The SAS Metadata Server uses the Integrated Object Model (IOM) that is provided
by SAS Integration Technologies. IOM provides distributed object interfaces to Base
SAS software features. It enables you to use industry-standard languages,
programming tools, and communication protocols to develop client programs that access
these services on IOM servers.

In the SAS OLAP Server, all relevant structural information is contained within the
cube and most of it is also replicated within the SAS Open Metadata Architecture. This
is done so you can

� disassociate the cube definition process from cube creation, which enables you to
create a cube by using its stored definition

� define and enforce security at the SAS Open Metadata Architecture level

� manage and control the data source in the centralized Open Metadata
Architecture repository.

Documentation about the SAS Open Metadata Architecture is available at
http://support.sas.com.

Why You Should Use Cubes

SAS cubes are designed to offer efficient data storage, fast data access, easy data
maintenance, and flexibility in data management. The following sections explore cubes
and multidimensional storage.

Cube Usage and Storage Space Reduction
While cubes are the format of choice to guarantee fast query response times against

your data warehouse, SAS OLAP cubes are also often a very space efficient choice for
data storage. In many cases, a basic cube without additional aggregations can be
smaller than the input data because the process of creating the cube consolidates
records. SAS OLAP cubes use the hierarchy information for efficient aggregations
storage. SAS OLAP cubes also deal efficiently with data sparsity by using virtual
placeholders for empty cells. This removes the need for any physical representation of
empty cells. A good rule of thumb is, the larger your input data, the greater the storage
gain by loading data into a cube.

OLAP Introduction and Overview � Data Preparation and Dimension Design 5

Multi-Threading Capabilities
Loading data into cubes and executing queries against the cube take advantage of

the multi-threading capabilities of your server machine. Aggregations are created in
parallel at cube build time. The creation of individual aggregations takes advantage of
the Parallel Group-By capabilities of SAS’ data engine. At query execution, the
multi-threading capabilities of your server machine are fully used to concurrently serve
queries by multiple users. Both query evaluation and data access are executed in
parallel. To further increase query performance and reduce disk access, you can allocate
additional memory on your server to be used for an in-memory aggregation cache.

Easy Setup and Maintenance
A cube is the physical representation of your logical dimensional model. The tools

that are provided to update and maintain the cube reflect the multidimensional model,
which makes both setup and maintenance of your cube as intuitive as possible. SAS’
thin-client, Web-based administrator interface, SAS Management Console, enables you
to set up and manage OLAP servers. SAS OLAP Cube Studio provides the workspace
and cube designer tools that you need to create and maintain cubes. You can also use
the SAS OLAP procedure to create and maintain cubes in a batch environment.

Data Management: Choosing Your Own Tool
If you create your own aggregations by using data management tools such as SQL,

PROC SUMMARY, or the tools of your preferred relational database management
system (RDBMS), then you can link those aggregations to your cubes without
replicating the data within the cube. Any queries against those aggregations are
executed by the appropriate SQL engine, and take advantage of any capabilities that
engine might have. This allows you the flexibility to use the data management tools of
your choice. It also allows you to distribute your data for your cube aggregations across
multiple database systems, servers, and platforms. If you choose to let the cube builder
create the aggregations, then you can control where to store the data and index files for
each aggregation.

Analyzing Your Data

Data Preparation and Dimension Design
The goal of an OLAP system is to have data that is organized, available, and

presented as relevant information to decision makers. OLAP cubes are based on data
from data warehouses. A data warehouse consists of data that is extracted from
transactional systems at regular intervals. The extraction process works very closely
with data quality control, making sure that the data is complete and accurate.
Extensive data cleansing (which includes eliminating variant spellings of names) can be
part of this task.

Building a data warehouse also implies transforming data that is optimized for
transactional processing into data that is optimized for user-driven analysis. Part of
that process is grouping facts and attributes into entities that correspond to the users’

6 Aggregation Design � Chapter 1

view of the organization. These groupings are known as dimensions. For related
information, see the SAS online documentation for SAS ETL Studio.

An established technique for implementing a dimensional model is to create star join
schemas that are based on the data. SAS OLAP cubes can be loaded from star schemas,
or from further denormalized tables or views that include some or all dimensions in the
fact table.

Aggregation Design
Efficient drilling or traversing of the cube data is a key factor in flexible and quick

decision making and analysis. In order to maintain speed and consistency in reporting,
data is usually precalculated or aggregated. An important factor in query performance
is good aggregation design, which includes decisions about total storage space, available
build time, storage location, and storage format.

When planning your data storage and design, it is helpful to approximate the size of
aggregations. A basis for estimating aggregation size is the number of distinct values in
a dimension level, otherwise known as cardinality. The other factor that determines
aggregations size is density. Density is a measure of how many members of each
dimension in an aggregation occur in combination with the members of the other
dimensions (for example, there might not be sales of a specific product on a specific
date). The total cube size as well as the resources that are available for the cube build
process determine the build time that is needed. It is also important to note that build
time should not exceed the cube update interval.

Aggregation size and available hardware influence your choices for aggregation
partitioning. You can separate aggregations into multiple files. A reduced file size
might accelerate OLAP server access time, particularly if multiple processors are
available for multi-threaded processing. You can use preaggregated summary tables,
the cube’s own efficient aggregation storage, or a combination of both. Using indexes on
either storage type might increase query performance, while also increasing storage
space and build time.

After an initial aggregation design is chosen, subsequent cube builds enable you to
optimize the cube’s performance and size by adding or removing aggregations. You can
analyze the OLAP users’ behavior by using Application Response Measurement (ARM)
logs, showing which aggregations are needed most and would be the most efficient.

7

C H A P T E R

2
Installing and Administering SAS
OLAP Server

Installing and Configuring SAS OLAP Server 8
Product Installations 9

SAS Configuration Wizard 9

Configuring and Setting Up Open Metadata Architecture 9

Configuring Open Metadata Architecture 9

Setting Up Directory and File Access Permissions for Open Metadata Architecture 10
Setting Up System Access Permissions for Windows Operating Environments 10

Setting Up System Access Permissions for UNIX Operating Environments 10

Creating the omaconfig.xml File 11

Configuring Special Users 11

Starting the Metadata Server—Creating an Executable File 12

Starting the Metadata Server as a Windows Service 13
Setting Up and Configuring SAS Management Console and SAS OLAP Cube Studio 14

SAS Management Console—Setting Up Repositories 14

SAS Management Console—Setting Up a SAS Workspace Server 15

Using an Object Spawner to Control SAS Workspace Servers 15

Setting Memory Usage Options for a SAS Workspace Server 16
Creating a New Library Definition for Source Data Tables 17

Storage Location Requirements for Cube Metadata and Related Objects 18

Using the SAS Workspace Server to Define Tables (That Are Used to Build Cubes) 18

Registering Tables without a SAS Workspace Server 19

Setting Up System Access Permissions for SAS OLAP Server 21
Adding an OLAP Server to a SAS Metadata Repository 21

Creating and Modifying the SAS OLAP Server Script 22

Starting the SAS OLAP Server as a Service 24

Defining Encryption for SAS OLAP Server 25

Cleaning Up Temporary Performance Data Files 27

Java Virtual Machine and SAS OLAP Server 27
Monitoring OLAP Server Performance 27

Changing an OLAP Server Configuration 28

Configuring Server Options 28

Optimizing OLAP Server 31

Cube Cache 31
Data Cache 32

Enabling the Data Cache 32

Disabling the Data Cache 32

Determining Memory Size for the Data Cache 32

Number of Execution Threads 33
Monitoring and Administering Sessions—SAS OLAP Server Monitor Plug-In 34

Securing Cubes 35

Assigning Users and Groups in the User Manager Plug-In 35

8 Installing and Configuring SAS OLAP Server � Chapter 2

Authorization Manager Plug-In 36
Access Control Templates 37

Permission Condition for Dimensions 37

Invoking a Secured Metadata Server 38

Cubes and the Metadata Server 38

Specifying Metadata Server Options in SAS OLAP Cube Studio 39
Specifying Metadata Server Options When Invoking SAS OLAP Server 39

Understanding Change Management in SAS OLAP Cube Studio 39

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP 40

Conversion Issues 41

VALIDVARNAME 41

Data Types 41
PROC SQL Syntax 41

SQL Pass-Through Example 42

Installing and Configuring SAS OLAP Server
To create SAS OLAP cubes, you must complete several installation and configuration

steps. For our purposes, you create a cube using one of the following methods:
� SAS OLAP Cube Studio

� PROC OLAP commands in a SAS session.

To create a cube with either method, complete these steps:

1 Define a metadata repository.
2 Invoke a metadata server.
3 Define a basetable library.
4 Set up an OLAP schema definition in the metadata repository.

And specifically when you create a cube with SAS OLAP Cube Studio, complete these
steps:

1 Invoke a SAS Workspace Server and set configuration parameters.
2 Create tables that are used to build cubes in the SAS Workspace Server.

Two servers are necessary to build OLAP cubes—a SAS Metadata Server and SAS
Workspace Server. A third server, the SAS OLAP Server, is necessary when you query
OLAP cubes. The installation and setup of the SAS Metadata Server, the SAS
Workspace Server, and SAS OLAP Cube Studio combine the installation and
configuration of various SAS components that set parameters, directories, file paths and
data storage locations. The setup includes the following tasks:

� Installing the required components for SAS Management Console, SAS OLAP
Cube Studio, and SAS OLAP Server

� Configuring the required directories, permissions, repositories, servers, spawners,
libraries, and batch files.

Note: SAS OLAP Server is licensed to start and access a SAS Workspace Server for
use with SAS OLAP Cube Studio. Users who have permission to create and maintian
cubes in SAS OLAP Cube Studio can access SAS workspace servers.

If you do not have a separate, unrestricted license to use SAS ETL and SAS
Integration Technologies on the server that SAS OLAP Server is deployed to, then you

Installing and Administering SAS OLAP Server � Configuring and Setting Up Open Metadata Architecture 9

must restrict use of SAS workspace servers to SAS OLAP Cube Studio. This is to avoid
restricted license violations of SAS workspace servers. �

Product Installations
The following components must be installed to configure the OLAP environment:

� JRE 1.4.1

� SAS 9.1

� SAS Management Console 9.1

� SAS Metadata Server 9.1

� SAS OLAP Cube Studio 9.1.

SAS Configuration Wizard
The OLAP Server installation is part of the overall installation and configuration of

SAS servers. The SAS Configuration Wizard is available for automated configuration of
SAS servers and handles many of the server configuration steps for you. After you have
installed the necessary product components that are listed under Product Installations,
the SAS Configuration Wizard can perform various automated configuration tasks.
After the wizard completes the automated tasks, an HTML document is generated that
lists the remaining manual configuration steps that you need to perform. If you choose
not to use the configuration wizard to set up your SAS Metadata and SAS OLAP
servers, then you can use the steps below to configure and set up these servers.

Note: For more information about the SAS Configuration Wizard, see the SAS
Intelligence Architecture: Planning and Administration Guide at http://
support.sas.com. �

Configuring and Setting Up Open Metadata Architecture

Configuring Open Metadata Architecture
The SAS Metadata Server and the SAS Open Metadata Architecture are part of the

SAS 9.1 product installation. The SAS Open Metadata Architecture enables you to
create metadata repositories and set up metadata servers. To configure the Open
Metadata Architecture, you will need to set up default directories, assign permissions,
and generate a configuration XML file. To create the necessary directories on Windows,
complete these steps:

1 On the C: drive, select

File � New � Folder

to create a folder. Name the folder sas server config. This is a user defined name.

2 In the sas server config folder, create a Lev1 folder.

3 In the Lev1 folder, create a SASMain folder.

4 In the SASMain folder, create a MetadataServer folder. You should now have a
folder path of:

c: � sas server config � Lev1 � SASMain � MetadataServer

5 Open the MetadataServer folder and create two new folders. Select

10 Configuring and Setting Up Open Metadata Architecture � Chapter 2

File � New � Folder

twice. Name the first folder rposmgr. Name the second folder
MetadataRepositories. In the MetadataRepositories folder, create a folder called
Foundation.

Note: If you create directories for your repositories as subdirectories of the
Metadata Server directory, as shown above, then the repositories will inherit file and
directory access permissions from the server directory. �

Setting Up Directory and File Access Permissions for Open Metadata
Architecture

To set up or maintain a repository manager and repository, you must have access to
the repository manager and repository directories. In this step, you specify permissions
for the MetadataServer server directory that you created. It is assumed that the
rposmgr and MetadataRepositories\Foundation directories are nested within the
Metadata Server folder so they can inherit permissions.

For Windows operating systems, you right-click the Metadata Server folder and
select the Properties option. From here you set archiving conditions and permissions.
For UNIX and MVS systems, see the operating system commands that are appropriate
to your host environment to set directory and file protections. Steps in the setup
process vary depending on your operating system.

Note: For more information, see the SAS Metadata Server: Setup Guide at
http://support.sas.com. �

Setting Up System Access Permissions for Windows Operating Environments
It is necessary to set up system access permissions to accommodate the SAS

Metadata Server. Depending on your Windows operating system, select the User
Rights or User Rights Assignment option from the Windows administrative tools
folder. Select and add these policy settings for access permissions:

� Act as part of the operating system (Windows NT and Windows 2000 only)
� Log on as a batch job. Assign the Everyone identity as server accessor. This

enables all users and applications to access the metadata server.

Note: As an alternative, you might consider defining a SAS Users group and
assign the Log on as batch job user right to this group instead. �

Note: The process for setting user rights depends on your Windows operating
environment. For more information, see the SAS Metadata Server: Setup Guide at
http://support.sas.com. �

Setting Up System Access Permissions for UNIX Operating Environments
The SAS Metadata Server requires that the SASPERM and SASAUTH files in the

!SASROOT/utilities/bin directory be setuid and owned by root. These permissions
are typically set at SAS installation by using the setup utility. You might want to verify
that the appropriate permissions are set. If they are not, change setuid to root using
one of the following methods:

Method 1 –
Using SAS
Setup

1 Log in to the root account.

$ su root

Installing and Administering SAS OLAP Server � Configuring and Setting Up Open Metadata Architecture 11

2 Run SAS Setup from !SASROOT/sassetup.
3 Select Run Setup Utilities from the SAS Setup Primary

Menu.
4 Select Perform SAS System Configuration.
5 Select Configure User Authorization.

Method 2 At a UNIX prompt, type the following commands:

$ su root
cd !SASROOT/utilities/bin
chown root sasauth sasperm sasrun
chmod 4755 sasauth sasperm sasrun
exit

Note: For more information, see the SAS Metadata Server: Setup Guide at
http://support.sas.com. �

Creating the omaconfig.xml File
The SAS Metadata Server supports an omaconfig.xml file to enable you to specify

alternate settings for server configuration options. The omaconfig.xml file is an optional
file that you create in the current working directory to identify the configuration options
that you want to change and their new settings. To create an omaconfig.xml file,
complete these steps:

1 In the server directory, use your favorite text editor to create a file named
“omaconfig.xml”.

2 In the file, insert XML elements that represent the server configuration options
whose defaults you want to change. Configuration options whose elements are
omitted from the omaconfig.xml file retain their default values.

Note: For SAS OLAP purposes, the current working directory is
SASMain\MetadataServer within the directory structure c:\sas server
config\Lev1\SASMain\MetadataServer. This directory contains the server startup
scripts, the trusted user and administrative user text files, and the Open Metadata
configuration files. �

Note: For more information, see the SAS Metadata Server: Setup Guide at
http://support.sas.com. �

Configuring Special Users
The metadata server supports the use of text files to register user IDs that are given

special privileges on the server. The server recognizes two classes of special users:

Administrative
user

is a user ID that has been given permission to perform
administrative tasks on the server. These user IDs are identified in
an adminUsers.txt file.

Trusted user is a user ID that acquires credentials on behalf of other users in a
multi-tier server environment. The trusted user ID functionality is
typically required by applications. These user IDs are identified in a
trustedUsers.txt file.

The adminUsers.txt and trustedUsers.txt files are created in the server directory and
read when the server is started. For further information, see “Configuring Special
Users” and “Using the Authorization Facility” in the SAS Metadata Server: Setup
Guide at http://support.sas.com.

12 Configuring and Setting Up Open Metadata Architecture � Chapter 2

Starting the Metadata Server—Creating an Executable File
After all the necessary directories and configuration files have been created, you

must start the server in a non-interactive SAS session. The server can be started by
passing the following basic parameters in the start command. For a complete listing of
recommended and optional parameters see the SAS Metadata Server: Setup Guide at
http://support.sas.com.

Windows:

"where_your_sas_is_installed\sas.exe" -nosplash -noterminal -sasuser sasusrms
-rsasuser -log "logs\sasoms.log" -logparms "write=immediate" -linesize max
-pagesize max -memsize max -objectserver -objectserverparms "protocol=bridge
port=8561 classfactory=2887E7D7-4780-11D4-879F-00C04F38F0DB"

where_your_sas_is_installed is the path to the directory where SAS 9.1 is
installed at your site, typically C:\program files\sas\sas system\9.1 and
port=8561 is the default port to which the server listens for client requests. Edit
the port value to a number that uniquely identifies the metadata server at your
site. For convenience, you might want to store the command in a startsrv.bat
file that you can execute to start the server. The startsrv.bat file is stored in
the MetadataServer directory and should be executed from that directory.

UNIX:

[sas-cmd] -noterminal -sasuser sasusrms -rsasuser -log log/sasms.log
-logparm "write=immediate" -linesize max -pagesize max -memsize max
-objectserver -objectserverparms "protocol=bridge port=8561
classfactory=2887E7D7-4780-11D4-879F-00C04F38F0DB"

[sas-cmd]

is the command that is used to invoke SAS at your site, and port=8561 identifies
the port to which the server listens for client requests. Edit the port value to a
number that uniquely identifies the metadata server at your site. For convenience,
you might want to store the command in a shell script that you can execute.

OS/390
For information about starting the SAS Metadata Server in the OS/390
environment, see the SAS Metadata Server: Setup Guide at http://
support.sas.com.

Note: The SAS Metadata Server starts in a default secured mode, which means that
only authenticated user IDs have access to the server. �

Note: To stop the metadata server, navigate to the Metadata Manager/Active
Server function in SAS Management Console. You must right-click the Active
Server, and then select the Stop function.

You can also execute the PROC METAOPERATE statement:

PROC METAOPERATE
SERVER="localhost"
PORT=1111
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

Installing and Administering SAS OLAP Server � Configuring and Setting Up Open Metadata Architecture 13

ACTION=STOP;
RUN;

For further information, see “Starting and Stopping the Server” in the SAS Metadata
Server: Setup Guide at http://support.sas.com. �

Note: For further information about SAS Metadata Server parameters that are used
in server startup scripts, see “Starting the SAS Metadata Server” in the SAS Metadata
Server: Setup Guide at http://support.sas.com. �

Starting the Metadata Server as a Windows Service
SAS uses the SAS Service Configuration Utility (SSCU) to configure services. To set

up the metadata server to run as a service, complete these steps:
1 Create your omaconfig.xml, adminUsers.txt, and trustedUsers.txt files.
2 Make sure that the domain-qualified user ID that you will use to run the server is

in the adminUsers.txt file.
3 On the Windows Start menu, select

Programs � your-SAS-System-folder � SAS 9.1 Utilities

� SAS Service Configuration Utility

4 Enter the following information in the SAS Service Configuration Utility (SSCU):
� On the Install tabbed page:

Service Name is a name to register the server to Windows. The service name
is also the name that is used when a net start or a net stop
command is issued. The recommended service name for the
metadata server is SASOMS.

Display Name is the name of the service that is displayed to user-interface
applications. The recommended display name is SAS Metadata
Server.

Start Type specifies how the server is started. Select Automatic.

Service Path specifies the command to invoke the metadata server. Type the
batch SAS Metadata Server start command shown in the
previous section. Here is an example:

C:\Program Files\SAS\SAS 9.1\sas.exe" -nosplash -noterminal
-sasuser sasusrms -rsasuser -log "sasoms.log" -logparm
"write=immediate" -linesize max -pagesize max -memsize max
-objectserver -objectserverparms "protocol=bridge port=8561
classfactory=2887E7D7-4780-11D4-879F-00C04F38F0DB"

Working Path is the pathname of the directory where the metadata server is
defined. This is the directory that is created for the server, as
described in “Creating Directories for the Metadata Server,”
“Repository Manager,” and “Repositories.” In this example, the
working path is c:\omaserver.

Description is an optional description of the service. The description
appears in the Windows Services window Details pane.

� On the Account tabbed page:

This Account Type the user ID under which the metadata server will run.
The user ID that you enter here should match the user ID that
you specified in the adminUsers.txt file earlier.

14 Setting Up and Configuring SAS Management Console and SAS OLAP Cube Studio � Chapter 2

� Return to the Install tabbed page, and click Install.

5 Confirm that your newly defined service is listed among other services running on
your machine and start it.

a Select

Start � Settings � Control Panel

b Double-click Administrative Tools.
c Double-click Services.
d Scroll down and verify that SAS Metadata Server appears in the list.
e Right-click SAS Metadata Server, and then select Start.

If the metadata server does not start successfully, check the SAS log for messages
indicating reasons for the failure. For further information, see the SAS Metadata
Server Trouble-Shooting Q&A at http://support.sas.com.

Note: For further information about starting a server as a Windows service, see the
SAS Companion for Windows. �

Setting Up and Configuring SAS Management Console and SAS OLAP
Cube Studio

SAS Management Console—Setting Up Repositories
In SAS Management Console, create the metadata profile and the required

repositories with the Metadata Manager. When you set up the metadata profile, add
two different types of repositories:

� the Foundation (parent) repository
� any required Custom (child) repositories.

In SAS Management Console, under Metadata Manager, select and right-click the
Active Server. Select Add Repository. This loads the Select Repository Type
window.

� Add the Foundation (parent) repository:
� For the parent repository, select Foundation.

� Define the engine and path information, and then select Finish in the
Current Settings window.

� Pause the server when prompted.

Note: In the Definition of Data Source window, do not select the change
management option for the parent or Foundation repository. �

� Add any needed Custom (child) repository(s):
� For the child repositories, select Custom.

� In the Define Repository Dependencies window, select the foundation repository
that you defined earlier as the repository that the child repositories depend on
and receive user groups and permissions from.

� Check the box for Create direct dependencies to all parents of
chosen directories.

� Select Finish in the Current Settings window.
� Pause the servers when prompted.

Installing and Administering SAS OLAP Server � Setting Up and Configuring 15

Note: Resource template definitions are automatically added to the foundation
repository when the repository is created. �

Note: See SAS Management Console Help for further information. �

SAS Management Console—Setting Up a SAS Workspace Server
You need to start a SAS server and define a SAS Workspace Server in the metadata

repository if any of the following conditions are true:
� Your tables are not already registered in the metadata repository.
� You plan to create the physical cube in addition to registering its metadata with

SAS OLAP Cube Studio.
� You want to use the Source Designer to define source tables for cubes.
� You want to use SAS OLAP Cube Studio to generate a cube.

Complete these steps to create the required SAS workspace servers:
1 Verify that the correct resource templates are loaded. You can check this by

looking in these folders:

Metadata Manager � Resource Templates

2 In SAS Management Console, Metadata Manager, make sure that the selected
repository is the repository you created as the foundation (parent) repository.

3 In SAS Management Console, select the Server Manager function. Right-click,
and then select the New Server option.

4 In the New Server Wizard window, select the SAS Application Server option,
and then define the new server.

5 Select the Workspace Server type option (the type of server that you are creating).
6 Select the Custom configuration setting method for the workspace server.
7 Enter the server properties, connection type (Bridge or COM), and connection

properties.

Note: For information on when to use the IOM Bridge versus the COM
connection see “Choosing a Server Configuration” in the SAS Integration
Technologies Administrator’s Guide at http://support.sas.com. �

8 Repeat this process for each workspace server that you define.
9 You can now create an object spawner in SAS Management Console to start the

workspace server.

For further information about COM and IOM Bridge connections and setup
instructions, see “Setting Up a Server with a COM/DCOM Connection: Introduction”
and “Setting Up an IOM Bridge Connection: Introduction” in the SAS Integration
Technologies Administrator’s Guide at the Enterprise Integration Community at
http://support.sas.com.

Note: Specifically, if you are setting up a COM connection, you must complete the
steps outlined in “Summary of Setup Steps (COM/DCOM) — Separate Client and
Server machine” in the SAS Integration Technologies Administrator’s Guide at the
Enterprise Integration Community at http://support.sas.com. �

Using an Object Spawner to Control SAS Workspace Servers
The object spawner helps conserve resources. You are required to have an object

spawner to control the workspace servers.

16 Setting Up and Configuring � Chapter 2

1 In SAS Management Console, select the correct metadata repository.
2 Select Server Manager, then right-click and select New Server.
3 In the New Server Wizard, select

SAS Servers � Spawner � Object Spawner

4 Name the object spawner that you are creating and define the server and
initialization properties.

5 Select the workspace servers as the servers that the object spawner will control.
6 Select the connection type and enter the connection properties.
7 Select Finish on the final screen.
8 When you are finished, you will see the spawner that you created listed under the

Server Manager.

You can now create an executable file (batch) to run the object spawner. Create the file
in the SAS 9.1. directory. Here is an example:

objspawn ---omrconfigFile omrconfig.xml

The object spawner requires that certain system access permissions be set. In
addition to the permissions detailed in “Setting Up System Access Permissions for
Windows Operating Environments” on page 10, you must add the following policy
settings.

� Increase Quotas (This is labeled “Adjust memory quotas for a process” on Windows
XP)

� Replace a process level token

Note: For further information about starting an object spawner, see SAS Integration
Technologies at the Enterprise Integration Community at http://support.sas.com. �

Setting Memory Usage Options for a SAS Workspace Server
When you set up a SAS Workspace Server with the New Server Wizard, you define

SAS system options that specify memory usage and cube loading. For a MOLAP cube
that loads from a single input table, the SAS OLAP cube loading process occurs in four
separate stages that overlap at certain points during execution. During cube loading,
one of the stages is typically the dominant consumer of the system’s resources. This
applies to the following stages:

� Data summarization
� Metadata creation
� NWAY disking (the writing of the data values in the NWAY to disk).
� Subaggregation creation.

There are two factors that affect memory usage during cube loading:
� the amount of physical memory and virtual memory that is installed on the

machine
� the value of the SAS options MEMSIZE, REALMEMSIZE, and SUMSIZE.

If any of these options are set to a value that is greater than zero, then they override
the actual physical memory and virtual memory values. As a result, it is recommended
to minimally specify the MEMSIZE and REALMEMSIZE options to the actual amount
of installed memory and virtual memory. If they are not specified, then the cube loader
attempts to allocate memory.

To specify these options in the New Server Wizard window of SAS Management
Console, complete these steps:

Installing and Administering SAS OLAP Server � Setting Up and Configuring 17

1 Select the Custom configuration setting method for the new workspace server.
2 In the Command field, enter the MEMSIZE and REALMEMSIZE options as

needed at the end of the SAS command.

Note: An alternative is to store these options in a configuration file and reference
that file with the CONFIG= option on the command line. For details, see the CONFIG
system option in the SAS Companion for Windows. �

You can also specify these options in SAS OLAP Cube Studio. In the

Cube Designer � Advanced Cube Options

window, enter these options as needed in the Submit SAS Code field. Use the OPTIONS
statement to specify the memory options. For more information, see the OPTIONS
statement in SAS Language Reference: Dictionary.

Creating a New Library Definition for Source Data Tables
You can create a new library definition for your source data tables after you start a

SAS server and define a SAS Workspace Server in a SAS Metadata Repository. You
must create a library definition if any of the following conditions are true:

� You have not already defined your tables in the currently active metadata
repository.

� You plan to create the physical cube in addition to registering its metadata.
� You want to manually add, modify, or drop specific aggregations.

You create new library definitions by using the New Library Wizard, which is
available from SAS OLAP Cube Studio, SAS ETL Studio, and SAS Management
Console. The following steps explain how to use SAS OLAP Cube Studio to launch the
wizard and define a new library:

1 Select

Tools � Source Designer

Note: The Source Designer is also available from the Cube Designer. �
2 Select the SAS source type, and then click Next to continue.

Note: If you have not provided your user ID and password for the selected server,
then you are prompted to log in. �

3 In the Select a SAS Library window, click New to launch the New Library Wizard.
4 Enter the library name. You can also enter an optional description. Click Next.
5 Enter the libref name, the engine type (BASE is the default), and the path

specification. Follow these guidelines:
� The libref is a short name (or alias) for the complete physical name of a SAS

library (for example, sasuser).
� The path specifies the physical location of the tables contained in the library

that you are defining. Select an existing path from the box or click New to
enter a new path.

� Click the Advanced Options button to set options for any host such as file
encoding, as well as host-specific options. Click OK to close the dialog box and
return to the New Library Wizard. Click Next.

6 Select your defined SAS Workspace Server. You assign the library to this server.
Click Next.

18 Setting Up and Configuring � Chapter 2

Note: The logical server name is used to identify a group of machines that are
assigned to a particular server definition. However, only one machine per logical
server is supported for SAS 9.1. �

7 Click Finish to complete the new library definition.

Note: The SAS Metadata Server allows duplicate librefs to be defined in the
metadata. To ensure that the correct SAS library definition is found on the metadata
server, you assign the libref by using the LIBNAME statement for the metadata engine
before you submit the PROC OLAP code. Otherwise, PROC OLAP selects the first
library definition that it finds with your specified libref, and it will associate your cube
metadata with that definition. The selected library definition might or might not
contain a description of the SAS data set that was used to build your cube. For more
information about using the LIBNAME statement for the metadata engine, see
“Statements” in SAS Language Reference: Dictionary. �

Storage Location Requirements for Cube Metadata and Related Objects
The metadata objects that describe the cube and the cube’s associated libraries and

source tables must be stored in the same repository, or the metadata that describes the
cube must be in a custom repository that is dependent on the repository that contains
the library and table objects. Otherwise, you are not be able to create the cube. In
addition, the library and table objects that are referenced by a cube must always be in
the same repository. The following options illustrate these conditions:

� The library, table, and cube objects can be in a Foundation repository.
� The library, table, and cube objects can be in Project A, which is dependent on the

Foundation repository.
� The library and table objects can be in the Foundation repository, and the cube

object can be in Project A.
� The cube object cannot be in the Foundation repository, and the library and table

objects cannot be in Project A.
� The table object cannot be in the Foundation repository, and the library and cube

objects cannot be in Project A.
� The library object cannot be in the Foundation repository, and the table and cube

objects cannot be in Project A.

Using the SAS Workspace Server to Define Tables (That Are Used to Build
Cubes)

Here is a list of the tables that are used to define a cube:
� Detail tables (unsummarized data)
� Fact tables and dimension tables (for cubes that are based on star schemas)
� Aggregation tables (fully summarized external tables)
� Drill-through tables (views maintained by the user that represent all of the data

that is used to define a cube).

You must define the tables that are used to build cubes if any of the following conditions
are true:

� You are not using SAS ETL Studio to load table definitions.
� You have not already defined your tables in the active metadata repository.

Installing and Administering SAS OLAP Server � Setting Up and Configuring 19

� You want to manually add, modify, or drop specific aggregations.

Before completing these steps, a defined SAS Workspace Server must be running and
you must have defined libraries for it. Complete these steps in SAS OLAP Cube Studio:

1 Select

Tools � Source Designer

Note: The Source Designer is also available from the Define Table button,
which you can select from the Cube Designer Input and Drill-Through windows. �

2 Select the SAS source type, and then click Next.

Note: If you have not provided your user ID and password for the selected server,
you are prompted to log in. �

3 Select the name of the SAS library that points to the tables that you are importing
from the current SAS Workspace Server. Click New to create a new library. Click
Next to see a list of SAS tables in the selected library.

4 Select the table(s) that you want to load into the metadata, and then click Next.
5 Click Finish.

Note: These panels might not be available if you have already defined a connection
to the server on the Options panel. �

Note: Subsequently, you can delete the defined table(s) . In SAS OLAP Cube Studio,
complete the following steps:

1 Open SAS OLAP Cube Studio.
2 In the Navigation Tree, expand the Repositories folder.
3 Expand the default repository folder.
4 Expand the Physical Table folder to see a list of OLAP tables that are defined in

the default repository.
5 Right-click the table that you want to delete. Click the Delete option.

�

Registering Tables without a SAS Workspace Server
To register SAS data sets in the SAS Metadata Repository without a SAS Workspace

Server, you can use the meta libname engine’s METAOUT=META option. To do so,
complete the following steps:

1 Register a library in the metadata repository by using SAS Management Console.
In this example, a library definition called mlelib is added to the repository proc.
It is defined as a base engine library with a path of c:\olaptestfiles.

2 Assign the libraries in your SAS session.
You can assign a meta library that points to your new library definition:

libname mymlelib meta repname=proc library=mlelib
ipaddr="d5014.us.sas.com" port=9999
! protocol=BRIDGE;

The libref mymlelib is successfully assigned as follows:

Engine: META
Physical Name:

20 Setting Up and Configuring � Chapter 2

You can assign a base library whose path matches the metadata path.
libname mybaslib "c:\olaptestfiles";

The libref mybaslib is successfully assigned as follows:

Engine: V9
Physical Name: c:\olaptestfiles

If you are using user-defined formats, set them up now.

options fmtsearch = (mybaslib);

Note: The libraries do not have to be base engine libraries. You can define an
Oracle library in the metadata and assign a library by using the Oracle library in
your SAS session. It is important that both libraries resolve to the same
LIBNAME statement. �

3 Use METAOUT=META to register the data set in the metadata. The data set
option METAOUT=META tells the MLE engine that you want to create only
metadata and not a physical file, as it already exisits.

data mymlelib.cars(metaout=meta);
set mybaslib.cars(obs=0);
run;

Note: There were zero observations read from the data set mybaslib.cars. The
data set mymlelib.cars has zero observations and nine variables. �

Note: DATA statement used (total process time):

real time – 1.06 seconds

cpu time – 0.03 seconds

�

The MLE engine has just written all the metadata from the data set to the
metadata repository. Note the use of the (obs=0) data set option for the input data
set. If you leave the option off, the metadata will be registered anyway, but each
observation of the data set will be read unnecessarily.

4 Use PROC OLAP to build the cube by using the new registration. Use the new
metadata registration to build your cube:

proc olap data=mymlelib.cars cube=mddbcars path="c:\v9olap.proc";
METASVR repository=proc olap_schema="proc";
dimension date hierarchies=(date) sort_order=ASCENDING;
hierarchy date levels=(dte);
dimension cars hierarchies=(cars) sort_order=ASCENDING;
hierarchy cars levels=(car color);
dimension dealers hierarchies=(dealers) sort_order=ASCENDING;
hierarchy dealers levels=(dealer dest);
measure sales_sum column=SALES stat=sum format=dollar15.2;
measure sales_n column=SALES stat=n format=12.0;
run;

Note: The number of NWAY records is 20. The cube mddbcars was created
successfully. �

Note: PROCEDURE OLAP used (total process time):

real time – 1.06 seconds

Installing and Administering SAS OLAP Server � Setting Up and Configuring 21

cpu time – 0.12 seconds

�

Setting Up System Access Permissions for SAS OLAP Server
As one step in configuring the SAS Metadata Server, you set up system access

permissions. It is also necessary to set up system access permissions for the SAS OLAP
Server. Depending on your Windows operating system, select the User Rights or User
Rights Assignment option from the Windows administrative tools folder. Select and
add these policy settings for access permissions:

� Act as part of the operating system (Windows NT and Windows 2000 only)
� Log on as a batch job. Assign the Everyone identity as server accessor. This

enables all users and applications to access the OLAP server.

Note: As an alternative, you might consider defining a SAS Users group and
assign the Log on as batch job user right to this group instead. �

Adding an OLAP Server to a SAS Metadata Repository
The following steps are necessary for querying cube data. However, they are not

required to create cubes in SAS OLAP Cube Studio. These steps enable you to add an
OLAP server to a SAS Metadata Repository:

1 Verify that the correct resource templates are loaded.
2 In SAS Management Console, select Server Manager. Right-click, and then select

New Server.
3 In the New Server Wizard window, select SAS Application Server, and then

define the new server. Enter the name, description, and server properties.
4 Select the OLAP Server type that you are creating, and then define the default

configuration settings.

Note: The default configuration generates a default OLAP schema and assigns
that schema to the server that is being defined. However, you can create and
define additional schemas with the property sheet for the SAS application server.
You can also use SAS OLAP Cube Studio to create and assign a new schema. �

5 On the final screen, click Finish to create the server.

You can define any needed additional OLAP schemas in a SAS Metadata Repository. In
addition to an OLAP server definition, you can define an OLAP schema in the active
metadata repository. The OLAP schema specifies which group of cubes that an OLAP
server can access. Each OLAP schema can be accessed by multiple OLAP servers.
However, each OLAP server has access to only one OLAP schema.

To create an OLAP schema in SAS OLAP Cube Studio, complete these steps:

1 Launch SAS OLAP Cube Studio, and connect to the SAS Metadata Server.
2 Select

File � New OLAP Schema

to launch the OLAP Schema wizard.
3 In the General window, enter the schema name and description.
4 (Optional) In the Server Assignment window, specify the OLAP servers that can

access the schema. Click Next.

Note: If you choose not to specify the servers by using the OLAP Schema wizard,
you can add that information later by modifying the schema’s property sheet. �

22 Setting Up and Configuring � Chapter 2

5 In the Finish window, click Finish to create the schema.

For detailed help on completing the OLAP Schema wizard, click the Help button in any
wizard window.

Note: You can also create OLAP schemas by clicking New in the General window of
the Cube Designer wizard. �

Creating and Modifying the SAS OLAP Server Script

You can create a script for the OLAP server startup with the SAS OLAP Server
Monitor plug-in for SAS Management Console. Here you enter the server identification
and user information that is necessary to start an OLAP server.

Note: The SAS OLAP Server Monitor plug-in for SAS Management Console must be
installed in addition to SAS Management Console and SAS OLAP Cube Studio. �

In the SAS Management Console navigation tree, scroll to the Monitoring plug-in
folder, and then select the existing OLAP server that you want to create a server script
for. Right-click on the selected OLAP server, and then select the Generate server
script option. This loads the Command window. In the various windows of this wizard
you enter the following information:

Command Window

Command specifies the SAS command that is used to launch the SAS OLAP
Server. The Command field is required. The command text is
enclosed in double quotation marks when it is written to the script
file.

SAS system
options

specifies SAS system options. For example, you might enter
-nodate -linesize 80, which sets the NODATE and LINESIZE
system options. This field is optional.

Object server
parameters

specifies any additional server startup parameters. It can contain
any object server parameters that are documented in the SAS server
documentation. For example, you might enter multiuser. The
Object server parameters field is optional.

Metadata Window

Host this read-only field identifies the machine that hosts the active
metadata server.

Port this read-only field identifies the port for the active metadata server.

Repository this read-only field identifies the name of the repository that you use
in the active metadata server. The repository must contain the
definition of the SAS OLAP Server that you want to start.

Include the
current user ID
and password

select this check box to include in the script the user ID and
password that were used to access the active metadata server. By
selecting this check box, you are adding the METAUSER and
METAPASS options to the startup script.

Encrypt the
password if
included?

is selected by default. If selected, the password is encrypted before it
is written to the file.

Installing and Administering SAS OLAP Server � Setting Up and Configuring 23

Files Window

AUTOEXEC file
name

specifies the location and filename of the AUTOEXEC file, which
contains SAS statements that you want to process when the SAS
OLAP Server is initialized. You can enter a fully qualified path or a
filename that is relative to the directory where the server is started.
For example, you might enter c:\v9olapserver\autoexec.log.
Users commonly use an AUTOEXEC file to include LIBNAME
statements that are required for cubes that contain data from
summarized sources. This field is optional. If included, the filename
is enclosed in double quotation marks when it is written to the
script file.

Log file name specifies the name of a log file for the -altlog option. You can enter a
fully qualified path or a filename that is relative to the directory
where the server is started. For example, you might enter
c:\v9olapserver\serverlog.log. Server messages are written to
this file. This field is optional. If included, the file name is enclosed
in double quotation marks when it is written to the script file.

Paths Window

SAS user root specifies the name of the SAS user root (SASUSER) file. You can
enter a fully qualified path or a filename that is relative to the
directory where the server is started. For example, you might enter
c:\v9olapserver\sasuser. This field is optional. If included, the
path name is enclosed in double quotation marks when it is written
to the script file.

SAS work root specifies the name of the SAS work root (WORK) file. You can enter
a fully qualified path or a filename that is relative to the directory
where the server is started. For example, you might enter
c:\v9olapserver\saswork. This field is optional. If included, the
path name is enclosed in double quotation marks when it is written
to the script file.

File Window
In this window, you enter the name of the server script file. In the File name field,

enter a fully qualified name for the file. The filename field is required.
Finish Window
This window displays the server script command string as defined by the entries that

you made on the other wizard panels. The command is written to the file that you
specified in the File window. Click Finish to save the file.

Here is an example of a server script:

sas -nosplash -noterminal -objectserver -objectserverparms
"server=’omsobj:LogicalServer/A32JZRHX.AV0000B5 "
-METASERVER finance.us.abc.com -METAPORT 9999
-METAPROTOCOL bridge -METAREPOSITORY "RepositoryOne"
-METAUSER fburns -METAPASS xxxxxxxx
-autoexec " c:\v9olapserver\autoexec.log"
-altlog " c:\v9olapserver\serverlog.log"
-sasuser "c:\v9olapserver\sasuser"
-work "c:\v9olapserver\saswork"

If you do not have the SAS OLAP Server Monitor plug-in installed, you can manually
create a SAS OLAP Server batch job by completing these steps:

1 In SAS Management Console, under Server Manager, select the OLAP server, and
then select

24 Setting Up and Configuring � Chapter 2

OLAP Server � Logical OLAP Server

Right-click, and then select Properties.

2 On the General tab, highlight the ID number and copy it to the Windows clipboard
by pressing Ctrl-C.

3 In the OLAP server batch file, replace the listing for the server with the ID
number that you highlighted and copied.

4 Replace METAUSER and METAPASS with the required user ID and password.

Starting the SAS OLAP Server as a Service
You can set up the OLAP server to start as a service by using the SAS Service

Configuration Utility (SSCU). Follow these steps:

1 Use an ASCII text editor or the SSCU and create a file named SASOMA.INI
in the server directory that contains the following information:
[SASOLAP]
ServiceName="SASOLAP"
DisplayName="SAS OLAP Server"
Dependencies=""
BinaryPathName="["c:\program files\sas\sas 9.1\sas.exe"
-nosplash -noterminal -altlog
"olapserver.log" -objectserver -objectserverparms "
server=omsobj:LogicalServer\A58O0U1V.AT000002 " -METASERVER localhost
-METAPORT 9999 -METAPROTOCOL bridge -METAREPOSITORY "foundation"
-METAUSER userid -METAPASS password]"
StartType=SERVICE_AUTO_START
ErrorControl=SERVICE_ERROR_NORMAL
Interactive=FALSE
AccessChgCfg=TRUE
AccessInterrogate=TRUE
AccessPauseCont=FALSE
AccessQryCfg=TRUE
AccessQryStatus=TRUE
AccessStart=TRUE
AccessStop=TRUE
AccessUserDefCtrl=TRUE
WorkDir="c:\olapserver"
ServiceStartName=userid
Password=<password>

This example uses the —META* options to identify the SAS Metadata Server
that the SAS OLAP Server connects to. See “SAS Metadata System Options” in
SAS Open Metadata Architecture Reference for information about other ways to
identify the SAS Metadata Server.

If your SAS Metadata Server is running as a service, you can define a
dependency between the SAS OLAP Server and the SAS Metadata Server by
entering the SAS Metadata Server ServiceName in the Dependencies field.

Note: The BinaryPathField contains the command that is used to launch the
server. Be sure to specify the correct LogicalServer ID. Or you can use the
Generate Startup Script feature of the SAS OLAP Server Monitor to create this
command. �

2 Issue the following command to uninstall any existing .INI files:

Installing and Administering SAS OLAP Server � Setting Up and Configuring 25

"C:\Program Files\SAS\9.1\core\sscu\SASServiceMngr.exe" /remove SASOLAP

3 Restart your machine.
4 Issue the following command to install the SASOLAP.INI file:

"C:\Program Files\SAS\9.1\core\sscu\SASServiceMngr.exe" C:\sasolap.ini

5 Issue a NET START command or restart your machine.

For more information, see “Starting SAS as a Windows Service” in the SAS
Companion for Microsoft Windows.

Defining Encryption for SAS OLAP Server
Encryption is a security measure that transforms plaintext into ciphertext. The

ciphertext is translated back to plaintext when the appropriate decryption key is
applied. Encryption can be used by all IOM-based servers. SAS OLAP Server
communicates with a SAS Metadata Server. If the metadata server is started with
encryption turned on, SAS OLAP Server must be able to encrypt as well. Two
encryption services that are supported by SAS are SAS Proprietary and SAS/Secure.

SAS
Proprietary

is a fixed encoding algorithm that is included with Base SAS
software and is supported under the OpenVMS Alpha, z/OS, UNIX,
and Windows operating environments. It requires no additional SAS
product licenses. The SAS proprietary algorithm is strong enough to
protect your data from casual viewing.

SAS/Secure is an add-on product that provides encryption algorithms in addition
to the SAS proprietary algorithm. SAS/SECURE software requires a
license, and it must be installed on the metadata server host and
each client host that will use the encryption algorithms. SAS/Secure
is required if you want to use an encryption algorithm that is
different from SAS Proprietary. Some industry-standard algorithms
that require a SAS/Secure license include RC2, RC4, DES, and
TripleDES.

Here are the SAS options that set encryption services attributes:

NETENCRYPT=YES|NO
or
NETENCRYPT | NONETENCRYPT

Set this option for both the local and remote hosts. For the remote host, this
option specifies that encryption is required for each connection from a local host
SAS session. On the local host, this option specifies that the local host must
connect only to a remote host that supports encryption.

By default, encryption is used if the NETENCRALG= option is set and if both
the local and remote hosts are capable of encryption. If encryption algorithms are
specified, but either the local or the remote host is incapable of encryption, then
encryption is not performed.

The NETENCRYPTALGORITHM option specifies that encryption is required by
any client that accesses this server. The metadata server and clients must specify
at least one common algorithm in the NETENCRYPTALGORITHM option, or the
server connections will fail.

NETENCRALGORITHM= (“algorithm1”, “algorithm2”, ...)
the local and remote hosts must have an encryption algorithm in common. If you
specify the option in the remote host session only, then the local host attempts to
select an algorithm that was specified on the remote host. If you also set the

26 Setting Up and Configuring � Chapter 2

option on the local host and specify an algorithm that is not specified on the
remote host, then the attempt by the local host to connect to that remote host fails.
Valid values for this option are RC2, RC4, DES, TripleDES, and SAS Proprietary.

CLIENTENCRYPTIONLEVEL=NONE|CREDENTIALS|EVERYTHING
This is an OBJECTSERVERPARAM option that is set in conjunction with the
NETENCRYPTALGORITHM= option. It specifies the degree of encryption to use
when making outbound calls.

NONE Nothing is encrypted. Clients transmit their user IDs and
passwords as plaintext.

CREDENTIALS Clients encrypt their user IDs and passwords.

EVERYTHING encrypts all client-server communications.

This option is used only by the bridge protocol engine.

You should store information about the encryption options in your metadata server
metadata definition and in your OLAP server metadata definitions. The settings that
are specified in the metadata should match those that are specified in the start
commands. You must change the scripts for the metadata server and OLAP server to
include the objectserverparam CLIENTENCRYPTIONLEVEL and the SAS System
Option -NETENCRYPTALGORITHM set to the appropriate values.

To start an OLAP server by using encryption, you must first define the OLAP server
in SAS Management Console:

1 In the New Server Wizard - SAS Server Configuration window, select Custom
Configuration.

2 In the New Server Wizard - Connection Options window, select Advanced Options.

3 In the Advanced Options window, select the Encryption tab.

4 Select the Server Encryption Algorithms that you want the server to
recognize. Select the Required Encryption Level option, Everything.

5 Select OK when finished. Finish creating the new OLAP server in the New Server
Wizard.

This establishes the encryption settings for the OLAP server that you are creating.
To start the server in a batch file, you need to include the

NETENCRYPTALGORITHM system option and the CLIENTENCRYPTIONLEVEL
OBJECTSERVERPARMS option. The startup command would look like this:

c:\program files\sas\sas 9.1\sas.exe" -nosplash -noterminal -netencryptalgorightm
SASProprietary -objectserver -objectserverparms
"server=omsobj:LogicalServer\A50H71JY.AQ00002T iomlevel=1
clientencryptionlevel=everything" -METASERVER d3635.na.sas.com -METAPORT 9999
-METAPROTOCOL bridge -METAREPOSITORY "foundation" -METAUSER "carynt\sasalw"
-METAPASS "{sas001}RGVhZDA1MTUwMg==" -log "olapserver.log" -sasuser "sasuser

Note:

� See “Encrypting Client-Server Communication” in the SAS Metadata Server:
Setup Guide at http://support.sas.com.

� See “Specifying Server Encryption Settings for IOM Bridge Connections” in the
SAS Integration Technologies Administrator’s Guide at http://support.sas.com.

� For a description of the RC2, RC4, DES, and TripleDES algorithms, see “Data
Security” in the SAS/SHARE User’s Guide.

�

Installing and Administering SAS OLAP Server � Monitoring OLAP Server Performance 27

Cleaning Up Temporary Performance Data Files
When the OLAP server is terminated correctly, various files are automatically deleted.

Occasionally, the OLAP server might terminate incorrectly. When this happens, some
performance data-related files might be left on the host rather than being cleaned up.

There are two types of temporary performance files:

Temporary performance data files that are used to build the aggregates from SAS by
using PROC OLAP

These include the temporary files
� that are used to create the aggregates. These files are created in the cube

subdirectory (within the OLAP PATH= defined directory) or the optionally
defined DATAPATH= aggregate directory.

� that are used to create the aggregate indexes. These files are created in the
working directory for the performance engine.

Temporary performance data files that are used by the OLAP server to query the
aggregates.

The OLAP server uses temporary performance data files to complete queries to the
aggregates. The temporary files are created in the working directory for the
performance engine.

Java Virtual Machine and SAS OLAP Server
As a general rule, SAS OLAP Server always tries to load the Java Virtual Machine

(JVM) when it starts. This is in order to provide support for MDX external functions. If
SAS OLAP Server is unable to load the JVM, it sends the following message and
continues to start up: WARNING: The Java Virtual Machine is not loaded.
External functions are not available. At this point, the SAS functions are
working, but the MDX external functions are disabled.

If you are not planning to use external functions, then you can safely ignore the
warning. Some common reasons why you might not be able to load the JVM include the
following:

� There is no JVM installed on the platform that SAS OLAP Server is installed on.

� An unsupported version of the JVM is installed on the platform that SAS OLAP
Server is installed on.

� The JVM is incorrectly configured (some JVMs require that certain environment
variables be set up in order to load).

Note: For further information about external functions and the JVM, see “External
Functions” in “MDX Queries and Syntax” in the SAS OLAP Server MDX Guide. For
information about installing the Java Runtime Environment, see the SAS Third-Party
Software Components Volume 1 CD. �

Monitoring OLAP Server Performance
SAS OLAP Server performance is monitored and logged with the Application

Response Measurement (ARM) interface. Traditionally, ARM enables system

28 Changing an OLAP Server Configuration � Chapter 2

administrators to monitor application executions, run times, performance, and
completion. SAS OLAP Server uses ARM to monitor

� application behavior
� user behavior and usage
� server loads
� cube optimization (query response time)
� cube metrics—counts of connections and queries.

For more information, see “Monitoring Performance Using Application Response
Measurement (ARM)” in SAS Language Reference: Concepts.

Changing an OLAP Server Configuration
To change the server configuration, complete the following steps:
1 Within SAS Management Console, expand the nodes under the Server Manager

until you can see your OLAP server component. The tree structure lists the SAS
application servers first, then the logical servers that are defined for the
application server, and finally the server components (OLAP and Metadata Profile).

Note: The logical server definitions enables you to pool servers so they can be
treated as a single server. OLAP servers do not support pooled servers in SAS 9.1.
The server components represent the actual machines that the OLAP server is
running on. �

2 After you find the desired OLAP server component in the tree, right-click and
display the properties for the server by selecting Properties from the drop-down
menu. This opens the Properties window, which contains panels for

� General (OLAP server name, ID, and description)
� Options (and Advanced Options button)
� Notes
� Extended Attributes
� Authorization (read, write, create permissions)

3 When you select OK, the information that you entered is written to the server
metadata.

Configuring Server Options
After you start and initialize the OLAP server, you can configure various server

options such as turning its cache on and defining how many cubes can be in a cache. In
the

Server Manager � OLAP Server Properties � Options

panel, you can select the Advanced Options button, which enables you to update
various server options. This window contains panels for

� Cache
� Server
� Debug Query

Installing and Administering SAS OLAP Server � Configuring Server Options 29

� Debug Server
� Journal.

The following table outlines all of the OLAP server options that you can configure.

Table 2.1 Server Options

Server Option Type Description

ARM FLAG integer ARM values set (desired values from
Application Response Measurement
(ARM) Options on page 31)

ARM LOCATION string Filename of ARM log

CACHE ACTIVE integer Cache on/off switch 1=on, 0=off

DEBUG FLAG integer Debug values set

GROUPBY ROW CACHE integer Amount of memory available for parallel
group-by operations. The default and
minimum is 256 megabytes

MAX CUBE CACHE integer Maximum number of cubes (and their
metadata) that can be cached by the
server

MAX FLAT MEMORY integer Maximum amount of memory allowed
for Flattened Data Sets processing

MAX FLAT ROWS integer Maximum number of flattened rows
allowed for Flattened Data Sets

MAX SEGRATIO integer Specifies as a percentage, the upper limit
for the number of index segments in
which a value can be located in order to
perform pre-evaluation on the WHERE
expression processing. The default is 75,
which indicates that the value should be
in 75% of the index segments or less.
The range of valid values is 0-100. If set
to 0, pre-evaluation never occurs; if set
to 100, pre-evaluation always occurs

MAX SET SIZE integer Maximum number of members in a set

MAX THREADS integer Maximum number of region execution
threads

OLAP SCHEMA string Name of OLAP server in SAS Metadata
Repository

SAS METADATA SERVER HOST string SAS Metadata Server IP address

30 Configuring Server Options � Chapter 2

Server Option Type Description

SAS METADATA SERVER
PASSWORD

string SAS Metadata Server authentication
password

SAS METADATA SERVER PORT string SAS Metadata Server port number

SAS METADATA SERVER
PROTOCOL

string SAS Metadata Server protocol

SAS METADATA SERVER REPOS string SAS Metadata Server Repository

SAS METADATA SERVER
USERID

string SAS Metadata Server authentication
user ID

SIZE OF DATA CACHE integer Megabytes to use for data caching

SPDE MAX THREADS integer Number of threads SPD should spawn.
The range of valid values is 1-8

WORKPATH string Path for SPDE temporary work files. It
defaults to the SAS working directory,
or, if that is not given, to the current
cube directory

The following table outlines all of the OLAP server debug options that you can
configure.

Table 2.2 Debug Options

Debug Option Value Description

DBG_CACHEEXEC 0x00400000 Prints the cache-executing flow

DBG_CACHELOAD 0x00200000 Prints the cache-loading flow

DBG_CACHEMEM 0x00080000 Prints the cache memory changes

DBG_CACHEPICK 0x00100000 Prints the cache chooser or picker
flow

DBG_CACHERANGE 0x00800000 Prints the cache iterator ranges

DBG_EXEC 0x00000080 Prints the query execution flow

DBG_FLATRS 0x00000040 Prints the flattened row set

DBG_MDX 0x00000001 Prints the input MDX statement

DBG_MDXSEM 0x00010000 Prints the MDX semantic action
processing flow

DBG_MDXTOK 0x00000800 Prints the assignment of a token
MDX

DBG_OMR 0x00001000 Prints the input/output of OMR
requests

DBG_OVM 0x00000400 Prints the generated OVM code
streams

DBG_OVMEXEC 0x00008000 Prints the OVM execution flow

DBG_PARSE 0x00000002 Prints the MDX parse tree

DBG_RANGES 0x00000008 Prints the query ranges

DBG_REGIONS 0x00000020 Prints the query regions

Installing and Administering SAS OLAP Server � Cube Cache 31

Debug Option Value Description

DBG_SECURITY 0x00040000 Prints the security information

DBG_SETS 0x00000004 Prints the contents of generated sets

DBG_SPDE 0x00000100 Prints SPDE query information

DBG_SPDEROWS 0x00000200 Prints SPDE queried rows

DBG_SQL 0x00020000 Prints SQL statements generated by
the classic SAS plug-in

DBG_WIREFRAME 0x00000010 Prints the query wireframes

DEL_DBGJNL 0x00002000 Deletes the session debug journal
when the session is terminated

DEL_SVRJNL 0x00004000 Deletes the server journal when the
server is terminated

DBG_AVGOFAVGS 0x01000000 Computes the average of averages by
adding all the average values and
dividing by the number of averages.

The following table outlines all of the OLAP server ARM options that you can
configure.

Table 2.3 Application Response Measurement (ARM) Options

ARM Option Value Description

DATA_QUERY 0x00000080 Records each individual data retrieval from
stored cube aggregations or from the cache

MDX_QUERY 0x00000008 Records cube name and result set size (in cells)
for each query

MDX_STRING 0x00000800 Records the actual MDX query string

OLAP_SESSION 0x00000001 Records which user was logged in to which
server for how long

Optimizing OLAP Server
SAS Management Console affects server query performance in three ways, by

controlling the amount of
� cube metadata that is cached
� cube aggregations that are cached
� parallelism that can be used to execute a query.

Cube Cache
The cube cache helps speed up queries by saving an in-memory copy of a cube’s

metadata. A cube’s metadata contains information that is necessary to parse and plan
an MDX query for the cube. The metadata does not include any disk-resident

32 Data Cache � Chapter 2

aggregates. As the server processes each query, the server first checks the cube cache to
determine if the cube metadata is in memory. If it is, the server uses the cached
metadata. If it is not, it needs to load the metadata.

SAS Management Console can control the number of cubes that can be cached by the
server. Increasing the number of cubes increases performance, but it uses more
memory. The cube cache is an LRU (least recently used) cache. As the cache becomes
full, cubes are removed based on the usage.

Note: The default number of cubes cached is 20. �

Data Cache
The data cache helps speed up queries by saving copies of the underlying aggregates

in memory from previous queries. As the server processes each query, it first checks the
in-memory aggregates to see if the query contents are there. If the query contents are
there, the query processor uses those aggregates instead of accessing the disk. SAS
OLAP Cube Studio provides a plug-in to SAS Management Console that enables you to
define and start a server, assign a schema, and configure your data cache. See
“Installing and Configuring SAS OLAP Server” on page 8 for further information about
OLAP server configuration and setup. For more information about SAS Management
Console, see the SAS Management Console Administrator’s Guide.

Enabling the Data Cache
The OLAP Server data cache is enabled by default. However, if the data cache has

been previously disabled, then it can be enabled in SAS Management Console. To
enable data cache in SAS Management Console, complete these steps:

1 Navigate to Server Manager in the navigation tree.
2 Select OLAP Server (not the logical OLAP Server), and then right-click. Select

Properties.
3 In the OLAP Server Properties window, select the Options tab, and then select

the Advanced Options button.
4 Select the Cache tab.
5 Click the Cache Active check box to enable the data cache. Select OK.

Disabling the Data Cache
To disable the data cache through SAS Management Console, complete these steps:

1 Navigate to Server Manager in the navigation tree.
2 Right-click OLAP server. Select Properties.
3 In the OLAP Server Properties window, select the Options tab, and then the

Advanced Options button.
4 Select the Cache tab.
5 Click the Cache Active check box to disable the data cache. Select OK.

Determining Memory Size for the Data Cache
When you establish data cache memory, you should use no more than 10 percent of

the system’s virtual memory. To get the recommended amount of memory for caching
aggregates, follow this formula:

(Number of possible cells) * (Number of stored statistics) * (8 bytes) * 4
= number of megabytes of memory to allocate for the OLAP data cache

Installing and Administering SAS OLAP Server � Number of Execution Threads 33

To calculate the possible number of cells, multiply the number of values in each level
of each dimension or hierarchy that is stored in the aggregate. For example, if you use
the PRDMDDB cube, then the NWAY aggregate has three dimensions (Time,
Geography, and ProductLine).

� In the Time dimension, the NWAY aggregate has three levels (Years, Quarters,
and Months). Multiply the number of Years (2) * Quarters (4) * Months (12) to get
96 possible cells for Time.

� In the Geography dimension, the NWAY aggregate has three levels (Country,
Region, and Division). Multiply Countries (3) * Region (2) * Division (2) to get 12
possible cells for Geography.

� In the ProductLine dimension, the NWAY aggregate has two levels (ProductType
and Product). Multiply ProductType (2) * Product (5) to get 10 possible cells for
ProductLine.

The total number of possible cells is Time (96) * Geography (12) * ProductLine (10).
This results in a final count of 11,520 possible cells.

To calculate the number of stored statistics, add the stored statistics for each
measure. For example, if you have two measures named Actual and Budget,

� the measure Actual has six stored statistics: Count, Sum, Max, Min, USS, and X.
� the measure Budget has two stored statistics: Count and Sum.

These stored statistics measure results in eight total stored statistics (six and two).
Multiplying the above values for possible cell count by the number of stored statistics

results in a total number of possible cells (11,520) * the total stored
statistics (8) * 8 * 4 = 2,949,120 bytes for the NWAY aggregate. The recommended
cache size is 3 * 4 = 12 MB of memory to allocate for the OLAP data cache.

Note: The default MAXMEM size is 16 megabytes (MB). �

Note: As a general rule, you can expect that more than one cube will be active in a
given server invocation, so you need to have space for multiple aggregates across
multiple cubes. In addition, although the NWAY is a single aggregate of this size, you
need space to handle multiple aggregates in the same cube.

A basic rule is to multiply the NWAY size by 4 in order to reserve enough memory to
hold the NWAY and its derivative aggregates. �

Note: The data cache size can be set in SAS Management Console. At the Server
Manager, complete these steps:

1 Select OLAP server (not the logical OLAP Server), and then right-click. Select
Properties.

2 In the OLAP Server Properties window, select the Options tab, and then the
Advanced Options button.

3 Select the Cache tab.
4 Set the data cache to the needed size. Select OK.

�

Number of Execution Threads
A single MDX query is planned and executed into several MDX subqueries.

Executing the subqueries in parallel allows for improved query performance. SAS
Management Console controls the maximum number of threads that can concurrently
execute a single MDX query. To set the number of execution threads through SAS
Management Console, complete these steps:

34 Monitoring and Administering Sessions—SAS OLAP Server Monitor Plug-In � Chapter 2

1 Navigate to Server Manager in the navigation tree.
2 Select OLAP server, and then right-click. Select Properties.
3 In the OLAP Server Properties window, select the Options tab, and then the

Advanced Options button.
4 In the Advanced Options window, select the Server tab.
5 Enter the number of threads in the Maximum number of region execution

threads field. Select OK.

Increasing this value can increase parallelism for those queries that use the full
number of threads that are available. However, limited system resources must be
shared by all MDX queries. As a result, on a system with many users, the maximum
number of execution threads should be judiciously set to allow queries to perform
without having a single query monopolize the system resources.

Typically, a reasonable range for the number of execution threads per MDX query
would be

� a minimum of two execution threads.
� a maximum number of execution threads, which is determined by the number of

processors on the system multiplied by two. This is the default value.

Monitoring and Administering Sessions—SAS OLAP Server Monitor
Plug-In

The SAS OLAP Server Monitor plug-in is an additional component of SAS
Management Console. It enables you to connect to an OLAP server, generate a server
startup script, monitor sessions and queries, and stop a server.

To access the SAS OLAP Server Monitor, expand Monitoring in the navigation tree
until you can see the SAS OLAP Server Monitor and the Logical OLAP Server. Select
the Logical OLAP Server. From here you perform the following administrative
functions:

1 Connect to the OLAP server and subsequently
� view sessions and queries for an active OLAP server
� close individual active sessions.

2 Disconnect from the OLAP server.
3 Stop the OLAP server from processing queries.
4 Generate a server script for the OLAP server.
5 View Properties for the Logical OLAP Server.

These functions are available from the Actions menu or the Toolbar.

When you connect to a server, you see a list of sessions that are running queries
against cubes that are stored on the OLAP server machine that is associated with the
selected logical server.

View Sessions
and Queries

The active sessions for the server are listed in a table on the right
side of the screen. Click the plus sign (+) next to the logical server
name to see a list of active sessions. Sessions are identified by the
ID of the user who initiated the session. If the server is not secured,
then the owner displays as <unknown>. The following information
is displayed about sessions:

� session name

Installing and Administering SAS OLAP Server � Assigning Users and Groups in the User Manager Plug-In 35

� description
� session owner
� time (in seconds) that the server has been inactive
� number of open results sets.

If you select a server and it already has an active connection, then
the active sessions will be listed in the table. If there are no active
sessions (either no connections exist, or there is no active
connection), then an error message displays in the table.

To list the active queries for a session, select the session in the
navigation tree in the display area of SAS Management Console.
For each active query, SAS Management Console displays the

� type of query (unspecified, multidimensional, or flattened)
� MDX string.

Close Sessions To close a session, select the session in the table and select Close
session from the drop-down menu.

You can create a server startup script with the Generate Server Script Wizard that is
available from the

Monitoring � SAS OLAP Server Monitor plug-in

With this script you define information that is needed to start a server including the
following:

� command to launch the OLAP server
� object server parameters
� host, port, and repository information
� user ID and password (optional)
� autoexec and log filenames
� name of SAS user and work root files
� server startup filename.

See “Creating and Modifying the SAS OLAP Server Script” on page 22 for further
information.

Note: If you are running a secured OLAP server, then users who connect to view
sessions or stop the server must have administrative privileges defined for their login in
the metadata. �

Securing Cubes
When you administer the OLAP server, you must assign and maintain security

permissions for users. The User Manager plug-in for SAS Management Console
establishes users, groups, and login access. The Authorization Manager plug-in for SAS
Management Console is used to grant read and readmetadata permissions for cubes.
These restrictions are set for individual users, multiple users within a group, and
groups.

Assigning Users and Groups in the User Manager Plug-In
In SAS Management Console, you maintain user, group, and login information in a

metadata repository. The User Manager plug-in enables you to register a unique

36 Authorization Manager Plug-In � Chapter 2

metadata identity for each individual and group by creating user definitions and group
definitions. For SAS Management Console purposes, a user is someone who is
registered in a SAS Open Metadata environment. Until a particular user is represented
in the metadata environment by an identity object that owns at least one login, you
cannot select that user when you configure access control or change management. After
a user is established, the user can be assigned to a group. A group can also contain
other groups. This allows for more streamlined control of user privileges. An
administrator can also establish multiple logins for each user or group. This enables
each user or group to connect to all of the resources that are registered in the metadata
environment by using a single identity.

To assign users or groups in SAS Management Console, select User Manager from
the navigation tree. Right-click and select New, and then User or Group. This opens the
Properties dialog box for either the new user or new group. You can assign new users,
groups, and user IDs and passwords. See the User Manager Help in SAS Management
Console for further information.

Authorization Manager Plug-In
The Authorization Manager enables you to set permissions for objects in the SAS

Metadata Repository. If you are using a secured metadata server, you must have read
permission granted in order to read SAS OLAP cubes. Read permission is required to
view cube data. The read permission is enforced for OLAP queries by the OLAP Server
code. The administer permission is enforced by the IOM code for the stop action or list
session action of the OLAP Server Monitor.

Readmetadata and Writemetadata permissions are enforced by the metadata
server. The Readmetadata permission is required to see the cubes that are listed in the
navigation tree. OLAP then inherits the permission enforcement.

Note: For further information about SAS Metadata Server permissions, see the
SAS Metadata Server: Setup Guide at
http://support.sas.com. �

In the SAS Management Console navigation tree, select

Environment Manager � Authorization Manager � Resource Management

� By Location

The By Location folder lists cube resources according to their server locations. You can
choose cubes, schemas, dimensions, levels, hierarchies, and measures that exist for an
OLAP cube. You can then set permissions for the selected OLAP cubes, schemas, and
other resources.

Select a cube or other resource and complete the following steps:

1 Right-click and select Properties. This opens the Properties dialog box.

2 In the Properties dialog box, select the Authorization tab.

3 Use the Add button to assign users to the Names list box.

4 In the Permissions list, select the Read and ReadMetadata check boxes in the
Grant column. Do this for each user that you want to assign read permissions to.

Note: The SAS OLAP Server supports only read permission for cube data. �

See the Authorization Manager help in SAS Management Console for further
information.

Installing and Administering SAS OLAP Server � Authorization Manager Plug-In 37

Access Control Templates
An access contol template (ACT) consists of a list of users and groups that are

represented in the metadata environment. An ACT indicates, for each user or group,
whether permissions are granted or denied. The permissions information in an ACT is
reusable and can be applied to multiple resources.

A default ACT is automatically created when you register a repository. During the
permission evaluation process, the default ACT is examined to determine whether any
access controls that pertain to the requesting user and the requested action have been
specified. The Default ACT is located in the SAS Management Console navigation tree
under

Authorization Manager � Access Control Templates

If a default ACT is not listed, then you can select the ACT that you want to designate
as the default ACT for the current repository. To make an ACT the default, from the
main menu select

Actions � Repository ACT

Note: The default ACT grants readmetadata and writemetadata permission to the
PUBLIC implicit group. It is important to note that if you run a secured metadata
server but do not add users or groups, you should grant the read permission in the
default ACT template. �

Permission Condition for Dimensions
OLAP cube dimensions have specific permission conditions that are set. A permission

condition is used to specify member-level security for a dimension in a cube. When you
specify a permission condition for a dimension, the selected user or group has read
access to only those members for which the condition evaluates as true. A permission
condition is defined by specifying an MDX expression that results in the return of a
member or a set of members. In addition, valid MDX expressions are limited to those
that would return a member or set of members from the descendants of the dimension
in question (not a union of members from other dimensions).

For example, you are building a cube that has the following structure and
parameters:

� The cube contains the dimensions Dealers, Cars, Date, and Measures.
� The Dealers dimension contains the levels All, Dealer, and Destination.
� The permission condition is applied to the Dealers dimension.

� The Dealer level contains the members: Finch, Jones, and Smith.

38 Invoking a Secured Metadata Server � Chapter 2

Here are sample MDX expressions that would return members from the various levels
of the Dealers dimension:

�

{[Dealers].[Dealer].members}

This expression enables the user to see only the members of the Dealer level
(Finch, Jones, Smith). Using this expression would prevent the user from seeing
any of the members of the Destination level.

�

EXCEPT({[Dealers].members}, [Dealers].[Dealer].members)

This expression enables the user to see all members from the Dealers dimension
except the members of the Dealer level (in other words, the members of the
Destination level).

�

EXCEPT({[Dealers].members}, [Dealers].[All Dealers].Finch)

This expression enables the user to see all members from the Dealers dimension
except the member Finch from the Dealer level and its children (from the
Destination level).

�

{[Cars].[Car].members}

This expression, placed on the Dealers dimension, is invalid. This results in the
user seeing no members of the dimension. The same expression, placed on the
Cars dimension is valid and would enable the user to see only the members of the
Car level.

In SAS 9.1, you can set permission conditions only for dimension objects.
Additionally, these conditions limit only read access. See “Set Permission Conditions” in
the Authorization Manager help in SAS Management Console for further information.

Invoking a Secured Metadata Server
Currently, SAS Management Console provides a default option on the server startup

command line that indicates whether the server should be secured or not. If a
non-secured metadata server is desired (this is not recommended), add the nosecurity
parameter to the list of Object server parameters. This is located in the Generate
server script/Command window in the OLAP Server Monitor plug-in.

-objectserverparms "nosecurity protocol=bridge port=9999
classfactory=2887E7D7-4780-11D4-879F-00C04F38F0DB"

Cubes and the Metadata Server
When an OLAP server is defined with SAS Management Console, this information is

saved in a repository within a metadata server. When cubes are defined within an
OLAP server (through SAS OLAP Cube Studio or PROC OLAP), metadata about those
cubes is also saved on that metadata server. When the OLAP server is loaded, it must
contain connection information for that server, which includes the following:

� machine name or host name
� port number

Installing and Administering SAS OLAP Server � Understanding Change Management in SAS OLAP Cube Studio 39

� protocol (com or bridge)
� user ID

Note: The password is case-sensitive and needs to be enclosed in quotation marks
for lowercase or mixed-case passwords. �

� password
� repository (this is the name of the metadata repository that contains the cube

metadata.)
� schema (this is the collection of cubes that are available to this server.)

Other SAS applications use their metadata to report on the cube as well.

Specifying Metadata Server Options in SAS OLAP Cube Studio
When SAS OLAP Cube Studio is executed, a window appears that enables you to

select a metadata profile. You are then given the option to select an existing profile or
create a new one. Select the Create a new metadata profile radio button. This
opens the Metadata Profile Wizard. This wizard prompts you for a machine (host) name,
a port number, a userID, and a password. This is information that is used by SAS OLAP
Cube Studio to create and store metadata for the cubes that are created in this session.

Specifying Metadata Server Options When Invoking SAS OLAP Server
Metadata server options are set on the SAS command line when you execute an

OLAP server:

../sas.exe -objectserver -nologo -noterminal -METAREPOSITORY default
-METAUSER olaptst1-METAPASS xxxxxx -METAPROTOCOL BRIDGE -METASERVER
t1044.us.sas.com -METAPORT 9999 -objectserverparms
"multiuser classfactory=f3f46472-1e31-11d5-87c2-00c04f38f9f6
SERVER= omsobj:LogicalServer?@Name=’permng‘‘.

SERVER= is the name of the OLAP server as defined in SAS Management Console.

Note: For more information about metadata server administration, see the SAS
Metadata Server: Setup Guide. �

Understanding Change Management in SAS OLAP Cube Studio
In SAS Open Metadata Architecture, change management is a facility that is used to

implement the primary functions of metadata promotion, metadata replication, and
metadata source control.

Metadata
Promotion

enables you to copy the contents of a metadata repository to another
repository and to specify changes in the metadata that are stored in
the target repository. For example, you can use this feature to move
metadata from a testing or project environment to a production
environment. In such a scenario, you would change ports, hosts, and
schema names because the metadata has been moved from one
computing environment to another. You can preserve the integrity of
the project metadata and at the same time make changes to enable
the metadata to work in the production environment. Metadata

40 Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP � Chapter 2

promotion must be performed in SAS Management Console. For
details, see “Promoting Metadata” in the Metadata Manager help in
SAS Management Console. Also see the SAS Management Console
User’s Guide.

Metadata
Replication

enables you to copy the contents of a metadata repository to another
repository. Replication is used to make an exact copy of a metadata
repository in a new location. For example, it can be used to back up
a repository. You can replicate a repository and all, some, or none of
its dependent repositories. The replication task can also be saved to
run at a scheduled time. Metadata replication must be performed in
SAS Management Console. For details, see “Replicating Metadata”
in the Metadata Manager help in SAS Management Console. Also
see the SAS Management Console User’s Guide.

Metadata
Source Control

enables multiple users to work with the same metadata repository at
the same time without overwriting each other’s changes. SAS ETL
Studio provides features for metadata source control. For details
about how SAS ETL Studio supports metadata source control, see
“Understanding Metadata Source Control” and “Using Metadata
Source Control in SAS ETL Studio” in the help for SAS ETL Studio.

While SAS OLAP Cube Studio does not provide the features to
check in or check out objects, the locked state of an object is honored
in SAS OLAP Cube Studio. This enables users to simultaneously
work with the same metadata repository, without overwriting each
other’s changes.

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP

The SQL Pass-Through facility enables a SAS user to connect to an OLAP server and
execute cube queries within the PROC SQL environment. PROC SQL establishes a
connection to an OLAP server by using the PROC SQL CONNECT statement.

After a connection is made to the OLAP server, multiple queries can be submitted by
using the OLAP query language, Multidimensional Expressions (MDX). These queries
are run against existing OLAP cubes. A PROC SQL query is then closed after all
observations (rows) of data are returned.

To disconnect from the server, you must submit the PROC SQL DISCONNECT
statement.

The main function of the SQL Pass-Through facility for OLAP is to query data, but
MDX commands can be submitted that create named sets, globally scoped sets,
drill-through paths, and other OLAP components. Additionally, named sets that are
created by using MDX can then be used to run queries. It is important to note the
following conditions:

� These sets are only available during the current PROC SQL session.

� Other PROC SQL sessions cannot access or reference these sets.

� After a PROC SQL connection is disconnected, any session-created sets are
discarded.

Installing and Administering SAS OLAP Server � PROC SQL Syntax 41

Conversion Issues
OLAP cube data is multidimensional and flexible in regard to data name lengths and

restrictions. However, when PROC SQL sends a query to the OLAP server, data is
returned in a flattened, tabular format that contains rows (observations) and columns
(variables).

The SAS OLAP Server has unique naming conventions that specify valid column
names, lengths, and types. Column names that are returned from SAS OLAP can
contain characters (periods, spaces, brackets) and can be unrestrained in length.
Additionally, OLAP types can be variable-length strings, floating-point numbers, or
integers. This differs from SAS data set naming conventions, and some conversion is
necessary.

VALIDVARNAME
The SQL Pass-Through facility supports the existing SAS option VALIDVARNAME.

You can specify the VALIDVARNAME option to control variable names. The current
default setting for VALIDVARNAME is V7, and variable names can be a maximum of
32 characters in length. Each variable must start with a letter or the underscore
character and can contain letters, underscores, and numbers. Uppercase and lowercase
letters are also allowed.

When converting column names to SAS variable names, the SQL Pass-Through
facility for OLAP will

� truncate the column name to the maximum size that is allowed.

� replace any invalid characters with an underscore.

� use a numeric suffix to differentiate between duplicate variable names that are
generated during the data conversion.

Note: For additional information about naming restrictions for SAS OLAP Server,
see “Naming Guidelines for SAS OLAP Server” on page 120. �

Note: For further information about the VALIDVARNAME= system option, see
“VALIDVARNAME=Systerm Option” and “Names in the SAS Language” in the SAS
Language Reference: Dictionary. �

Data Types
OLAP query results that contain member names or strings are converted to a fixed

length CHAR type. All OLAP numeric types are converted to standard SAS numeric
types (8-byte floating point). Missing values are handled by standard SAS conventions.

PROC SQL Syntax
Here is an example of the basic syntax that is used to connect to an OLAP server and

execute a cube query:

proc sql;
connect to dbms-name (connection options);
execute (MDX query);
select . . . from connection to remote | alias (dbms-query);
disconnect from dbms-name;
quit;

42 SQL Pass-Through Example � Chapter 2

CONNECT TO REMOTE
establishes a connection to a remote DBMS or to remote SAS data through a SAS
server. This statement is required. Remote SQL Pass-Through (RSPT) does not
support implicit connection.

DBMS=dbms-name
specifies the name of the remote DBMS that you want to connect to. For SAS
OLAP Server, the dbms-name is saseolap or olap.

DISCONNECT FROM REMOTE | alias
ends the connection to the remote DBMS or to the SAS SQL processor in the
server SAS session.

EXECUTE (SQL-statement) BY REMOTE | alias
specifies an SQL statement to be executed by the SAS SQL processor or by the
remote DBMS in the server SAS session.

SELECT . . . FROM CONNECTION TO REMOTE | alias (dbms-query);
specifies the connection to the remote SAS SQL processor or the remote DBMS as
the source of data for the SELECT statement and the recipient of the dbms-query.

Here are the bridge server connection-options:

HOST=machine-name
specifies either the DNS name or the IP address of the machine that is hosting the
OLAP server.

PORT=port-number | SERVICE=service-name
either the port-number or service-name is required. The port-number specifies the
numeric value of the port on which the OLAP server resides. The service-name is
used to look up the port number of the machine that is hosting the OLAP server.

USER=userid
a string that specifies the user’s identification for the specified OLAP server. If
included, this option is enclosed within parentheses with the required arguments
and any other options.

PASS=password
a string that specifies the password for the user who is identified with the USER=
option. If included, this option is enclosed within parentheses with the required
arguments and any other options.

This is the COM server connection-option:

machine-name
specifies either the DNS name or the IP address of the machine that is hosting the
OLAP server. This is the only argument that is used for COM server connections.

Note: For detailed information about PROC SQL syntax see “Overview of the
Pass-Through Facility” in SAS/ACCESS for Relational Databases: Reference and
“Syntax for Remote SQL Pass-Through (RSPT) Facility” in SAS/SHARE User’s Guide. �

SQL Pass-Through Example
In the following example, PROC SQL connects to the pass-through facility for OLAP

to create a new data set named temp, which contains all the variables that are returned
from the multidimensional expression (MDX) defined in the SELECT query. The OLAP
server returns query results in a tabular format known as a flattened rowset. The table
rows become the observations of the output data set, and the table columns become the
variables. After all the rows are returned, PROC SQL closes the query. The server

Installing and Administering SAS OLAP Server � SQL Pass-Through Example 43

connection is terminated when the program encounters a DISCONNECT statement or
when the PROC SQL step ends.

Note: Because the OLAP server does not impose the same restrictions on column
names, types, and lengths that SAS imposes on data sets, some conversion might be
required. �

100 proc sql;
101 connect to olap (host=localhost service=olap1);
102 create table temp as select * from connection to olap
103 (
104 select { dealers.dealer.members } on 0,
105 { [cars].[Car].members,
106 [cars].[Color].members } on 1
107 from mddbcars
108);
109 disconnect from olap;
110 quit;

44

45

C H A P T E R

3
Building and Updating Cubes

Background 45
Preparations for Building a Cube 46

Storage Location Requirements for Cube Metadata and Related Objects 47

Building a Cube from a Detail Table 48

SAS OLAP Cube Studio 48

Saving a Cube’s PROC OLAP Code 51
PROC OLAP 51

Building a Cube from a Summary Table 55

Building a Cube from a Star Schema 61

Updating a Cube 67

Refreshing Cube Metadata 67

MDX DDL REFRESH Statement 68
Defining Member Properties 68

Property Statement 69

Cube Designer 69

Defining Multiple Hierarchies for a Dimension 69

Hierarchies Statement 70
Cube Designer 70

Defining Ragged Hierarchies for a Dimension 70

Defining Ragged Hierarchies in SAS OLAP Cube Studio 71

PROC OLAP Options for Ragged Hierarchies 72

Ragged Hierarchies and Unique Member Names 73
Manually Tuning Cube Aggregates 73

Using PROC OLAP to Tune Aggregates 74

Multiple Language Support and Dimension Table Translations 74

SAS OLAP Cube Studio and Dimension Table Translations 74

PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement 75

SAS Servers and Character Encoding 75
Adding SAS System Options to a Cube 75

Specifying Tuning and Performance Options in Cube Aggregations 76

Setting Options on the Cube Designer Wizard 76

Global Tab 76

Aggregation Tab 76
Setting Options with PROC OLAP 77

Background
At this point in the cube-building process, the collecting and scrubbing of the data

should be finished as well as planning a dimensional design. After you have collected
and analyzed your data, you are ready to create the cube. When you define the cube,

46 Preparations for Building a Cube � Chapter 3

you define the dimensions and measures for the cube along with information about how
aggregations should be created and stored. There are two methods of creating a cube:

� You can submit PROC OLAP code by using either the SAS Program Editor or a
batch job. If you use PROC OLAP, the cube is created, and then the cube
definition is stored in a metadata repository.

� You can use the Cube Designer interface in SAS OLAP Cube Studio to define and
create the cube. The Cube Designer first stores the cube definition in a metadata
repository, and then submits a shorter form of PROC OLAP code to create the cube.

Note: The Cube Designer can also be launched from SAS ETL Studio. �

Preparations for Building a Cube
To build a cube by using either PROC OLAP or SAS OLAP Cube Studio, you must

complete several preliminary tasks:
� Configure a metadata server.
� Define an OLAP server in the metadata. The server does not need to be running

to create cubes, but it must be defined in the metadata.
� Analyze the data to determine the location of the table(s) that will be used to build

your cubes and what dimensions and measures will be created.
� Define the table(s) that will be used to create the cube in the metadata. You do

this by using SAS ETL Studio or by using SAS OLAP Cube Studio and SAS
Management Console as follows:

� Use SAS Management Console to define, in the metadata, the server that will
be used to access the tables. This is a SAS application server with a
workspace server component.

� Use SAS Management Console to define, in the metadata, the SAS library
that contains the table.

� In SAS OLAP Cube Studio, specify the server that will be used to access the
tables. To set the server, select

Tools � Options

Or, if the shortcut bar is displayed, select Options to set the server.
� In SAS OLAP Cube Studio, select

Source Designer

to load the table definitions (or other information source) as follows:
� From the shortcut bar, select

Tools � Source Designer

or select

Source Designer

� Select a Source Type (SAS, ODBC, etc.), and then select Next.
� If you have not specified a server, or if the server that is specified is not

valid, then you will be prompted again for a server.
� Select the SAS Library that contains the tables that you want to define,

and then select Next.
� Select the tables to define, and then select Next.
� Select Finish. The table definitions are loaded into the metadata.

Building and Updating Cubes � Storage Location Requirements for Cube Metadata and Related Objects 47

� If you start to create a cube and do not see the table that you need to
continue, then you can select the Define Table button in any of the windows
that prompt for tables.

� In the Finish window of the cube designer, you are given the option to create the
physical cube. The metadata definition is always stored as you leave the Finish
window. However, you can defer creation of the physical cube. If you choose to
create the cube as you leave the Finish window, then you must have a SAS
Workspace Server defined that you can submit PROC OLAP code to. This server is
defined in SAS Management Console.

Note: For further information about the different data types that you can use to
load cubes from, see “Loading Cubes” on page 121. �

Note: The SAS Metadata Server enables duplicate librefs to be defined in the
metadata. To ensure that the correct SAS library definition is found on the metadata
server, you should assign the libref by using the LIBNAME statement for the metadata
engine before submitting the PROC OLAP code. Otherwise, PROC OLAP will select the
first library definition that it finds with your specified libref, and it will associate your
cube metadata with that definition. The selected library definition might or might not
contain a description of the SAS data set that was actually used to build your cube. For
more information about using the LIBNAME statement for the metadata engine, see
“Statements” in SAS Language Reference: Dictionary. �

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example: When you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

For further information about preliminary setup and configuration steps, see “Installing
and Configuring SAS OLAP Server” on page 8.

Storage Location Requirements for Cube Metadata and Related
Objects

When storing metadata that describes a cube, the metadata objects that describe the
cube and the cube’s associated libraries and source tables must be stored in the same
repository, or the metadata that describes the cube must be in a custom repository that
is dependent on the repository that contains the library and table objects. Otherwise,
you will not be able to create the cube. In addition, the library and table objects that
are referenced by a cube must always be in the same repository. The following options
illustrate these conditions:

� The library, table, and cube objects can be in a Foundation repository.

� The library, table, and cube objects can be in Project A, which is dependent on the
Foundation repository.

� The library and table objects can be in the Foundation repository, and the cube
object can be in Project A.

� The cube object cannot be in the Foundation repository, and the library and table
objects cannot be in Project A.

� The table object cannot be in the Foundation repository, and the library and cube
objects cannot be in Project A.

� The library object cannot be in the Foundation repository, and the table and cube
objects cannot be in Project A.

48 Building a Cube from a Detail Table � Chapter 3

Building a Cube from a Detail Table

SAS OLAP Cube Studio
You can build an OLAP cube by using the Cube Designer in SAS OLAP Cube Studio.

In this example, we are using data from a recent product marketing campaign. We
want to establish measures and summaries of various aspects of our data such as
geographic location of potential voters, age of potential voters, and revenue summaries.
Our data is held in a detail table called olapsio.campnrml.

1 Define the metadata profile. The File menu options for New Metadata Profile and
Open Metadata Profile allow you to define and connect to a metadata server. At
the Open a Metadata Profile dialog box, you can choose to either create a new
metadata profile or edit an existing one. Enter the machine information of the
metadata server that you will connect to and retrieve a data source from.

� At the Connection Information dialog box, enter the machine ID, port, your
user ID, and password.

Note: These options are the equivalent of the METASVR statement options:
� HOST=
� PORT=
� USERID=
� PW=.

�

� At the Repository Selection dialog box, select a default repository.

2 Enter general cube information.
� After you have established a metadata server, you can begin to create a cube.

Select Cube Designer from the shortcut menu. At the Cube Designer –
General dialog box, enter the general cube information. For input type, you
select Detail Table.
� Cube Name
� Description
� Repository
� OLAP Schema
� Path in the file system to store the cube
� Input Type

Note: These options are equivalent to the PROC OLAP and METASVR
statement options:

� CUBE=
� DESC=
� REPOSITORY=
� OLAP_SCHEMA=
� PATH=.

�

Building and Updating Cubes � SAS OLAP Cube Studio 49

� At the Cube Designer – Input dialog box, select a data source or detail table for
your cube. If one does not exist for your data, select Define Table, and then
define the source that you will import your metadata from.

Note: These options are equivalent to the
� Source Designer function in the Tools Menu
� DATA|FACT= option for PROC OLAP.

�

� At the Cube Designer - Drill-Through dialog box, you select or define an optional
drill-through table. Drill-through tables can be used by client applications to
provide a view from processed data into the underlying data source.

If a drill-through table does not exist for your data, select Define Table, and
then define the source that you will import your metadata from.

Note: These options are equivalent to the
� Source Designer function in the Tools Menu
� DRILLTHROUGH_TABLE | DT_TABLE | DT_TBL= option for PROC OLAP.

�

The Table Options button that is available at both the Cube Designer - Input
and the Cube Designer - Drill-Through dialog boxes, opens the Table Options
dialog box. It enables you to specify data set options that are used to open the
data set. For example, you could enter a WHERE clause or subsetting information
that is then applied to the selected table when it is opened. The options are stored
as part of the cube and then reapplied when the data is accessed at run time. You
can also specify data set options in the Dimension Designer – General window (for
use with star schemas) and the Stored Aggregates window (for use with
summarized tables). For more information, see “Data Set Options” in SAS
Language Reference: Concepts.

3 Define dimensions, levels, and hierarchies. Now that your basic metadata server
and cube information has been entered, you can define the different dimensions
and their respective levels and hierarchies. For this example, you will define the
following dimensions and levels:

� Campaigns
� campaign type
� campaign
� subcampaign.

� Campaign Dates
� campaign start year
� campaign start month
� campaign start day.

� Geographic
� division
� region
� client_id.

� Customer Age
� age group1
� age group2.

� Products

50 SAS OLAP Cube Studio � Chapter 3

� product group
� product type.

Define the dimensions for the cube. For each dimension you will define the
dimension, its levels, and its hierarchies.

� At the Cube Designer - Dimensions dialog box, select the Add button. This
opens the Dimension Designer - General dialog box. Enter the following
information:

� dimension name
� caption
� description
� type of dimension (standard or time)
� sort order.

Note: If you are using a star schema, enter the Dimension Tables Definition
information. �

� Select Dimension Levels from the Dimension Designer - Levels dialog box.
� Next, define properties such as format, time type, and sort order from the

Dimension Designer - Level Properties dialog box.
� Next, define hierarchies for the levels from the Dimension Designer - Define a

Hierarchy dialog box.
� Repeat this process for each dimension.

Note: Use the DIMENSION, HIERARCHY, and LEVEL statements here. For
time-specific levels in a dimension, the LEVEL statement is required. Also, there
can be only one time-specific dimension. �

4 Define measures. You can now define the measures for the cube. In your example,
you want measures for revenue totals and the number of customers you tracked
during the campaigns. Define the measures for the cube at the Cube Designer -
Select Measures dialog box.

Modify any measure attributes such as Measure Captions and Formats at the
Cube Designer - Measure Details dialog box.

Note: The MEASURE statement is used here. �
5 Define member properties. You can now define the member properties for any

needed cube members. A member property is an attribute of a dimension member.
A member property is also an optional cube feature that is created in a dimension
to provide users with additional information about members. For this example,
you can define the zip code or postal code as a member property. Define member
properties at the Cube Designer - Member Property dialog box.

At the Define a Member Property dialog box, enter the member property name,
level, column, and caption.

Note: The PROPERTY= statement is used here. �
6 Define aggregations. You can now define the aggregations for the cube.

Aggregations are summaries of detailed data that is stored with a cube or referred
by a cube. They can help reduce the build time that is required for the cube and
contribute to faster query response. Define the aggregations for the cube from the
Cube Designer - Generated Aggregations dialog box.

Select the levels for the aggregation with the Specify a generated user-defined
aggregation dialog box.

Note: The AGGREGATION= statement is used here. �

Building and Updating Cubes � PROC OLAP 51

7 Build the cube. You can now build the cube. You can choose to build the cube and
register it to the metadata repository, or you can register the cube to the metadata
repository. At the Cube Designer - Finish dialog box, review the settings for the
cube, and then select one of the cube creations options.

Select whether to save the generated PROC OLAP code. At the Save PROC
OLAP Code dialog box, enter the file location where you want to save the resulting
code.

Select the Finish button from the Cube Designer - Finish dialog box.

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Saving a Cube’s PROC OLAP Code
In SAS OLAP Cube Studio, you can elect to save the PROC OLAP code that is

generated when a cube is built. The code is saved to a text file that you specify. The
information saved in the file includes the following items:

� the SAS LIBNAME statement
� any FMTSEARCH statements
� any additional SAS code
� the PROC OLAP statement
� the METASVR statement
� all other PROC OLAP statements.

You can access the Save PROC OLAP Code window by using one of the following
methods:

1 On the navigation tree in SAS OLAP Cube Studio, right-click on a cube and select
Save PROC OLAP code.

2 In the Finish window in the Cube Designer wizard, right-click the Save PROC
OLAP Code button.

The Save PROC OLAP Code window opens. In the Path field, enter the name and
location of the file that you are saving to. An example is c:/temp/olapcode.txt.

PROC OLAP
You can build an OLAP cube with PROC OLAP and execute it in a SAS session.

Running PROC OLAP registers your cube and its sources in a metadata repository. It
also creates the files that make up the cube. These are the possible input types for an
OLAP cube:

� a fact table (specified in the PROC OLAP statement DATA= option)
� dimension tables (specified in the DIMENSION statement DIMTBL= option)
� presummarized tables (specified in the AGGREGATION statement TABLE=option)

Note: You use the DATA= option when you use a detail table as the input. �

In this example, you are using data from a recent product marketing campaign. You
want to establish measures and summaries of various aspects of your data such as
geographic location of potential voters, age of potential voters, and revenue summaries.
Our data is held in a table called olapsio.campnrml.

1 Define the metadata profile and general information. You use the PROC OLAP
and METASVR statements here. The fact table is specified in the PROC OLAP

52 PROC OLAP � Chapter 3

statement DATA= option. The METASRV statement is used to establish the
metadata connection. It identifies the metadata repository in which existing cube
metadata information exists or in which metadata about a new cube should be
stored. The statement is also used to provide a user’s identification and password
for the identified repository. Also the DRILLTHROUGH_TABLE= option is used
here to indicate the drill-through table. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data source.

proc olap data=olapsio.campnrml cube=Campaign1 path= c:\cubes
drillthrough_table=olapsio.campnrml;

metasvr host=&host port=&port protocol=&protocol
userid=&userid pw=&pw repository=&repos olap_schema=&olap_serv;

In OLAP Cube Studio, you define the above options in the following windows:

� Metadata Profile

� Connection Information

� Cube Wizard - General

� Cube Wizard - Input.

2 Define dimensions, levels, and hierarchies. Now that your basic metadata server
and cube information has been entered, you can define the different dimensions
and their respective levels and hierarchies. For this example, you define the
following dimensions and levels:

� Campaigns

� campaign type

� campaign
� subcampaign.

� Campaign Dates

� campaign start year

� campaign start month

� campaign start day

� Geographic

� division

� region

� client_id.

� Customer Age

� age group1

� age group2.

� Products

� product group

� product type.

You use the DIMENSION, HIERARCHY, and LEVEL statements here.

Note: For time-specific levels in a dimension, the LEVEL statement is
required. Also, there can be only one time-specific dimension. �

Building and Updating Cubes � PROC OLAP 53

dimension campaigns hierarchies=(campaigns) caption="Campaigns"
sort_order=ascformatted;
hierarchy campaigns levels=(campaign_type campaign sub_campaign);

dimension campaign_dates hierarchies=(campaign_dates)
caption="Campaign launch dates" type=time;

hierarchy campaign_dates levels=(campaign_start_year campaign_start_month
campaign_start);

level campaign_start_year type=year;
level campaign_start_month type=months;
level campaign_start type=days;

dimension geographic hierarchies=(geographic) caption="Geographic";
hierarchy geographic levels=(division region client_id);

dimension customer_age hierarchies=(customer_age) caption="Customer age";
hierarchy customer_age levels=(age_group_1 age_group_2);

dimension products hierarchies=(products) caption="Products";
hierarchy products levels=(product_group product_type);

In OLAP Cube Studio, the above options are defined in the following windows:
� Dimension Designer - General
� Dimension Designer - Levels
� Dimension Designer - Level Properties
� Dimension Designer - Define a Hierarchy.

3 Define measures. You can now define the measures for the cube, both stored and
derived. A measure is an input column and a roll-up rule (statistic). Only certain
measures are physically stored. Other measures are derived from the stored
measures at run time. In this example, you want measures for revenue totals and
the number of customers you tracked during the campaigns.

You use the MEASURE statement here.

measure revenue_sum column=revenue stat=sum format=dollar15.2;
measure number_of_customers_sum column=number_of_customers
stat=sum format=12.0;

In OLAP Cube Studio, the above options are defined in the following windows:
� Cube Designer - Select Measures
� Cube Designer - Measure Details.

4 Define member properties. You can now define the member properties for any
needed cube members. A member property is an attribute of a dimension member.
A member property is also an optional cube feature that is created in a dimension
to provide users with additional information about members. For this example,
you can define the zip code or postal code as a member property.

You use the PROPERTY statement here.

PROPERTY zipcode-region column = post_code
HIHIERARCHY= geographic
LEVEL = region;

54 PROC OLAP � Chapter 3

In OLAP Cube Studio, the above options are defined in the following windows:
� Cube Designer
� Member Property
� Define a Member Property.

5 Define aggregations. You can now define the aggregations for the cube.
Aggregations are summaries of detailed data that is stored with a cube or referred
by a cube. Their existence can reduce cube query time. If all aggregations are to
be generated at the time of cube creation (MOLAP cube), then you can select
specific aggregations that must be created in addition to the NWAY, which is the
only aggregation that PROC OLAP makes by default.

You use the AGGREGATION statement here.

aggregation product_group product_type age_group_1 age_group_2
division region;

Note: The input type – presummarized tables – can also be specified in the
AGGREGATION statement by using the TABLE= option. �

In OLAP Cube Studio, the above options are defined in the following windows:
� Cube Designer - Generate Aggregations
� Specify a generated user-defined aggregation.

6 Build the cube. You can now build the cube. Execute the PROC OLAP statement
within the SAS System or in batch-mode. Here is the complete PROC OLAP code.

proc olap data=olapsio.campnrml cube=Campaign1 path= c:\cubes;

metasvr host=&host port=&port protocol=&protocol userid=&userid pw=&pw
repository=&repos olap_schema=&olap_serv;

dimension campaigns hierarchies=(campaigns) caption="Campaigns"
sort_order=ascformatted;
hierarchy campaigns levels=(campaign_type campaign sub_campaign);

dimension campaign_dates hierarchies=(campaign_dates)
caption="Campaign launch dates" type=time;
hierarchy campaign_dates levels=(campaign_start_year campaign_start_month
campaign_start);
level campaign_start_year type=year;
level campaign_start_month type=months;
level campaign_start type=days;

dimension geographic hierarchies=(geographic) caption="Geographic";
hierarchy geographic levels=(division region client_id);

dimension customer_age hierarchies=(customer_age) caption="Customer age";
hierarchy customer_age levels=(age_group_1 age_group_2);

dimension products hierarchies=(products) caption="Products";
hierarchy products levels=(product_group product_type);

measure revenue_sum column=revenue stat=sum format=dollar15.2;
measure number_of_customers_sum column=number_of_customers
stat=sum format=12.0;

Building and Updating Cubes � Building a Cube from a Summary Table 55

aggregation product_group product_type age_group_1 age_group_2
division region;

run;

Note: Any libraries or fmtsearch options must be specified prior to running the
PROC OLAP code. �

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Building a Cube from a Summary Table
In this example, you can build a cube with fully summarized data. A summary table

is a data source that contains a crossing of all dimensions for a cube. In this example,
the data for the Campaign cube has been summarized into a table called
CAMPAIGN_SUMMARY. The table contains a column

� for each of the levels that you want
� for each of the stored measures, total revenue, and total number of customers
� for the member property and zip code region

The table contains only the NWAY. The data set was produced with the following SAS
code:

proc summary data=olaplib.campaign nway noprint;
class campaign_type campaign sub_campaign campaign_start_year
campaign_start_month campaign_start division region client_id
age_group_1 age_group_2 product_group product_type;
var revenue number_of_customers;
id post_code;
output out=olaplib.campaign_summary sum=totrev totcust;
run;

To create the cube by using SAS Cube Studio, follow these steps:
1 Start SAS Cube Studio and connect to the appropriate metadata server.
2 Define the campaign_summary table in the metadata by using the Source Designer.
3 To create a cube, select Cube Designer from the shortcut menu.
4 At the Cube Designer - General dialog box, enter the following information:

� Cube Name
� Description
� Repository
� OLAP Schema
� Path in file system to store the cube
� Input Type.

For input type, select Fully Summarized Table.
5 At the Cube Designer - Input dialog box, select a data source or detail table for

your cube. For this example, select the campaign_summary table.

Note: If a detail table does not exist for your data, then select Define Table
and define the source that you will import your metadata from. �

56 Building a Cube from a Summary Table � Chapter 3

Note: When you create a cube from a detail table or star schema, it is the
equivalent of specifying the DATA= or FACT= options in the PROC OLAP
statement. When you select Fully Summarized Table, this is the same as not
specifying DATA= or FACT= and then specifying an AGGREGATION statement
that has all levels listed and has the TABLE= option specified with the table
name. Here is an example:

aggregation campaign campaign_type?.. /
TABLE=olaplib.campaign_summary name=’Default’;

�

6 On the Cube Designer - Drill-Through panel, select whether or not you will have a
drill-through table. In most cases, when you use a fully summarized table to load
the cube you specify as the drill-through table, the table that the summarized
table was created from. In this example, that is the campaign table. Select the
radio button Select drill-through table from list, and then select the
Campaign table.

7 Now that your basic metadata server and cube information has been entered, you
can define the different dimensions and their respective levels and hierarchies.
This example cube has these dimensions:

� Campaigns
� campaign type
� campaign
� subcampaign.

� Campaign Dates
� campaign start year
� campaign start month
� campaign start day.

� Geographic
� division
� region
� client_id.

� Customer Age
� age group1
� age group2.

� Products
� product group
� product type.

Define the dimensions for the cube. For each dimension, define the dimension, its
levels, and its hierarchies.

� At the Cube Designer - Dimensions dialog box, select the Add button. This
opens the Dimension Designer - General dialog box. Enter the following
information:

� dimension name
� caption

Building and Updating Cubes � Building a Cube from a Summary Table 57

� description
� type of dimension (standard or time)

� sort order.

� Select the necessary dimension levels at the Dimension Designer - Levels
dialog box.

� Define properties such as format, time type, and sort order at the Dimension
Designer - Level Properties dialog box.

� Define hierarchies for the levels at the Dimension Designer - Define a
Hierarchy dialog box.

� Repeat this process for each dimension.

Note: You use the DIMENSION, HIERARCHY, and LEVEL statements here.
For time-specific levels in a dimension, the LEVEL statement is required. Also,
there can only be one time-specific dimension. �

8 You can now select the stored (base) measures for the cube in the Cube Designer -
Select Stored Measures window. When loading from a detail table, the base and
derived measures are generated from a single column in the detail table. For
example, a detail table that has a column ACTUAL can have two measures –
ACTUAL_SUM and ACTUAL_AVG – that are created from the column. However,
with a fully summarized table, you must have one column for any base measure
that you want to include in the cube. The base statistics are SUM, N, NMISS,
MIN, MAX, and USS. Measures that are created with these statistics must have a
single column in the summarized table. For this example, we have two base or
stored measures: TOTREV and TOTCUST. Select the two columns in this window.

Note: This step is equivalent to using the AGGR_COLUMN option in the
MEASURE statement. �

9 In the Cube Designer - Assign Stored Measures window, you can specify the
Statistic and Analysis Group options for the stored statistics. Select SUM as the
statistic for both the TOTREV and TOTCUST measures. For Analysis group,
specify REVENUE for TOTREV and NUMBER_OF_CUSTOMERS for TOTCUST.
If the table contained two measures from the same analysis column, both of the
base measures would have the same analysis group specified. For example, if
campaign_summary contained a column called REVN, which is the number of
non-missing values for the REVENUE column, then we could have a base measure
REVN with the statistic of count (N) and an analysis group of REVENUE.

Note: The analysis group is equivalent to the COLUMN|ANALYSIS option in
the MEASURE statement. �

10 In the Cube Designer – Select Derived Measures window, specify any measures
that will be derived from the base or stored measures. Each derived measure is
based on a set of required stored measures. If the stored measures for an analysis
group do not include all those required for a specific derived measure, then that
measure cannot be included in the cube. For example, TOTREV is the SUM of the
REVENUE group. You cannot include AVGREV because you do not have the N or
count of the REVENUE group in the stored measures.

11 In the Cube Designer - Edit Measure Details window, specify captions, formats,
and other information about the measures that are listed.

12 Define the member properties for any needed cube members. A member property
is an attribute of a dimension member. A member property is also an optional
cube feature that is created in a dimension to provide users with additional
information about members. Define member properties at the Cube Designer -
Member Property dialog box.

58 Building a Cube from a Summary Table � Chapter 3

At the Define a Member Property dialog box, enter the member property name,
level, column, and caption.

Note: You use the PROPERTY= statement here. �

13 Define the aggregations for the cube. Aggregations are summaries of detailed data
that is stored with a cube or referred by a cube. They can help reduce the build
time that is required for the cube and contribute to faster query response. If you
have additional aggregation tables, select them in the Cube Designer -
Aggregation Tables window.

14 Define the stored aggregations in the Cube Designer - Stored Aggregations
window. These are aggregations that are contained in the additional input tables
that were selected in the Cube Designer - Aggregation Tables window.

Note: Defining aggregations in this panel is equivalent to using the
AGGREGATION statement with the TABLE= option. �

15 In the Cube Designer - Generated Aggregations window, define additional
aggregations that will be generated when the cube is built.

16 Build the cube. In the Cube Designer - Finish window, you can select whether or
not you want the cube to be physically created after the metadata is saved. When
you select the Finish button, the metadata for the cube is always saved. If you
select Save the metadata and create the cube, the short form of the PROC
OLAP code is generated along with the necessary LIBNAME statements and
submitted to an application server. You can also select whether to save the PROC
OLAP code that is generated. At the Save PROC OLAP Code dialog box, enter the
file location where you want to save the resulting code.

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Here is the complete PROC OLAP code:

PROC OLAP DrillThrough_Table=olaplib.CAMPAIGN_SUMMARY
cube="Summary1"
Path="c:\cubes"
Description="Summary1"
;

METASVR host=localhost port=9999 protocol=bridge userid=userid pw=pw
repository=Foundation olap_schema= ‘‘OLAP Schema’’;

DIMENSION Campaigns hierarchies=(Campaigns)
CAPTION=’Campaigns’
SORT_ORDER=ASCENDING ;

HIERARCHY Campaigns levels=(Campaign_Type Campaign Sub_Campaign)
CAPTION=’Campaigns’
DEFAULT
;

LEVEL Campaign_Type
CAPTION=’Campaign Type’
SORT_ORDER=ASCENDING
;

Building and Updating Cubes � Building a Cube from a Summary Table 59

LEVEL Campaign
CAPTION=’Campaign ID’
SORT_ORDER=ASCENDING
;

LEVEL Sub_Campaign
CAPTION=’Sub Campaign’
SORT_ORDER=ASCENDING
;

DIMENSION CampaignDates hierarchies=(CampaignDates)
CAPTION=’CampaignDates’
TYPE=TIME SORT_ORDER=ASCENDING ;

HIERARCHY CampaignDates levels=(Campaign_Start_Year
Campaign_Start_Month Campaign_Start)

CAPTION=’CampaignDates1’
DEFAULT
;

LEVEL Campaign_Start_Year TYPE=YEAR
CAPTION=’Campaign Start Year’
SORT_ORDER=ASCENDING
;

LEVEL Campaign_Start_Month TYPE=MONTHS
CAPTION=’Campaign Start Month’
SORT_ORDER=ASCENDING
;

LEVEL Campaign_Start TYPE=DAYS
CAPTION=’Campaign Start’
SORT_ORDER=ASCENDING
;

DIMENSION Geographic hierarchies=(Geographic)
CAPTION=’Geographic’
SORT_ORDER=ASCENDING ;

HIERARCHY Geographic levels=(Division Region Client_ID)
CAPTION=’Geographic’
DEFAULT
;

LEVEL Division
CAPTION=’Division’
SORT_ORDER=ASCENDING
;

LEVEL Region
CAPTION=’IFA Region’

60 Building a Cube from a Summary Table � Chapter 3

SORT_ORDER=ASCENDING
;

LEVEL Client_ID
CAPTION=’Client id’
SORT_ORDER=ASCENDING
;

DIMENSION CustomerAge hierarchies=(CustomerAge)
CAPTION=’CustomerAge’
SORT_ORDER=ASCENDING ;

HIERARCHY CustomerAge levels=(Age_Group_1 Age_Group_2)
CAPTION=’AgeGroup1’
DEFAULT
;

LEVEL Age_Group_1
CAPTION=’Age Group 1’
SORT_ORDER=ASCENDING
;

LEVEL Age_Group_2
CAPTION=’Age Group 2’
SORT_ORDER=ASCENDING
;

DIMENSION Products hierarchies=(Products)
CAPTION=’Products’
SORT_ORDER=ASCENDING ;

HIERARCHY Products levels=(Product_Group Product_Type)
CAPTION=’Products1’
DEFAULT
;

LEVEL Product_Group
CAPTION=’Product Group’
SORT_ORDER=ASCENDING
;

LEVEL Product_Type
CAPTION=’Product Code’
SORT_ORDER=ASCENDING
;

MEASURE totrevSUM
STAT=SUM
ANALYSIS=Revenue
AGGR_COLUMN=totrev
CAPTION=’Sum of Revenue’
FORMAT=BEST12.

Building and Updating Cubes � Building a Cube from a Star Schema 61

DEFAULT
;

MEASURE totcustSUM
STAT=SUM
ANALYSIS=Number_Of_Customers
AGGR_COLUMN=totcust
CAPTION=’Sum of Number_Of_Customers’
FORMAT=BEST12.
;

RUN;

Building a Cube from a Star Schema
In this example, you can build a cube from a star schema. A star schema is a data

source that contains tables in a database in which a single fact table is connected to
multiple dimension tables. In this example, an international retail company sells sports
and outdoor products.

To create the cube by using SAS Cube Studio, complete these steps:
1 Start SAS OLAP Cube Studio and connect to the appropriate metadata server.
2 To begin creating a cube, select Cube Designer from the shortcut menu.
3 In the Cube Designer - General window, enter the following information:

� Cube Name
� Description
� Repository
� OLAP Schema
� Path in file system to store the cube
� Input Type.

For input type, select Star Schema.
4 In the Cube Designer - Input window, select a data source or detail table for your

cube. For this example select the ORDER_FACT table. If a detail table does not exist
for your data, select Define Table, and then define the source that you will
import your metadata from.

Note: When you build the dimensions using PROC OLAP, and if you use a fact
table from a star schema, use the FACT= option. Additionally, use FACT= option
to read a star schema, then use the DIMTBL= option to specify the dimension
tables. �

Note: If the cube is built from a star schema, then the keys that link the
dimension table and the fact table are also defined by using the DIMKEY= and
FACTKEY= options. See “DIMENSION Statement” on page 99 for further
information. �

5 In the Cube Designer - Drill-Through window, determine whether or not you will
have a drill-through table. In this example, you will not use a drill-through table,
so you can select the option No table for Drill-Through.

6 In the Cube Designer - Dimension Tables window, select dimension tables that are
associated with the ORDER_FACT star schema that you specified as the data
source for the cube. For this example, select the following tables:

62 Building a Cube from a Star Schema � Chapter 3

� CUSTOMER_DIM
� GEOGRAPHY_DIM
� ORGANIZATION_DIM_MOD_LEVELLED
� TIME_DIM.

7 Now that your basic metadata server and cube information has been entered,
define the different dimensions and their respective levels and hierarchies. This
example cube has these dimensions and levels:

� Time
� Year_ID

� Quarter
� Month_Name
� Week_Name
� Date_ID.

For the Time dimension, the following star schema information is also
included:

Table TIME_DIM

Key Date_ID

Fact Key Order_Date

� Customers
� Customer_Name

� Customer_Age
� Customer_Gender
� Customer_Group

� Customer_Type.

For the Customers dimension, the following star schema information is
also included:

Table CUSTOMER_DIM

Key Customer_Id

Fact Key Customer_Id

� Geography

� Continent_Name
� Country
� State

� Region
� Province
� County
� City.

Building and Updating Cubes � Building a Cube from a Star Schema 63

For the Geography dimension, the following star schema information is
also included:

Table GEOGRAPHY_DIM

Key Street_Id

Fact Key Street_Id

� Organization
� Employee_Name
� Job_Title
� Salary
� Gender
� Company
� Department
� Org_Group
� Section.

For the Organization dimension, the following star schema information is
also included:

Table ORGANIZATION_DIM

Key Employee_Id

Fact Key Employee_Id

Define the dimensions for the cube. For each dimension, you define the dimension,
its levels, and its hierarchies.

� At the Cube Designer - Dimensions dialog box, select the Add button. This
opens the Dimension Designer - General dialog box. Enter the following
information:

� dimension name
� caption
� description
� type of dimension (standard or time)
� sort order.

When you define the dimensions for a cube based on a star schema, you will
need to provide additional information about the dimensions in the
Dimension Designer - General window. On the Star Schema Dimension
Tables Definition panel, enter the following information:

� Table
� Key
� Fact Key
� Data Set Options.

� Select the necessary dimension levels at the Dimension Designer - Levels
dialog box.

64 Building a Cube from a Star Schema � Chapter 3

� Define properties such as format, time type, and sort order at the Dimension
Designer - Level Properties dialog box.

� Define hierarchies for the levels at the Dimension Designer - Define a
Hierarchy dialog box.

� Repeat this process for each dimension.

Note: You use the DIMENSION, HIERARCHY, and LEVEL statements here.
For time-specific levels in a dimension, the LEVEL statement is required. Also,
there can be only one time-specific dimension. �

8 Specify the columns or measures for the cube. In the Cube Designer - Selected
Measures window, select the following columns and associated Sum statistics:

� Total_Retail_Price /Sum
� Quantity /Sum
� CostPrice_Per_Unit /Sum
� Discount /Sum.

9 Specify detail information for the measures. In the Cube Designer - Measure
Details window, enter any necessary information for the different measures:

� Caption
� Format
� Unit
� Description.

For the measure Total_Retail_Price, enter a format value of DOLLAR12.2. For
the measure CostPrice_Per_Unit, enter a format value of DOLLAR10.2.

10 Specify member property information for the levels in the cube. In the Cube
Designer - Member Property window, select the Add button to create a new
member property. In the Define a Member Property window, enter the following
information about the member property:
� Name
� Level
� Column
� Format
� Caption Description
� Selected Hierarchies.

In this example, the following member properties are created:

Property Name Level Column Caption
Selected
Hierarchy

WeekDay_Number_US date weekday_no US WeekDay Number

WeekDay_Number_EU date weekday_eu EU WeekDay Number

Week_Number_EU week_name week_no EU Week Number YWD

Month_Number month_name month_no Month

Number

YMD

Month_Number month_name month_no Month

Number

YQMD

Holiday_US date Holiday_US US

Holidays

Building and Updating Cubes � Building a Cube from a Star Schema 65

11 Specify the aggregations for the cube. Aggregations are summaries of detailed
data that is stored with a cube or referred by a cube. They can help reduce the
build time that is required for the cube and contribute to faster query response. In
the Cube Designer - Generated Aggregations window, select the Add button to
specify aggregations and associated levels. Order the levels for the aggregations to
follow the hierarchy drill path. The aggregations include

� RegionalCustomerUse
� QuarterlyCustomerUse
� YearlyCustomerUse
� WorldwideStaff
� WorldwideSalaries.

Note: When you create cubes in SAS OLAP Cube Studio, a default
aggregation,which is the NWAY aggregation, is automatically created and listed in
the Cube Designer - Generated Aggregations window. �

12 Build the cube. In the Cube Designer - Finish window, select whether or not you
want the cube to be physically created after the metadata is saved. When you click
Finish, the metadata for the cube is always saved. If you select Save the
metadata and create the cube, the short form of the PROC OLAP code is
generated along with the necessary LIBNAME statements and submitted to an
application server. You can also select whether to save the PROC OLAP code that
is generated. At the Save PROC OLAP Code dialog box, enter the file location
where you want to save the resulting code.

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Here is the complete PROC OLAP code:

proc olap cube=Star
path=c:\cubes
fact=olapsio.ordfact

metasvr host=localhost
port=9999t
protocol=bridge
userid=userid
pw=pw
repository=Foundation
olap_schema=OLAP Schema
;

dimension Time hierarchies=(YWD YMD YQMD) type=time
dimtbl=olapsio.timedim dimkey=date_ID factkey=order_date
;

hierarchy YWD caption="Year-Week-Day"
levels=(Year_ID Week_Name Date_ID);

hierarchy YMD caption="Year-Month-Day"
levels=(Year_ID Month_Name Date_ID);

hierarchy YQMD caption="Year-Quarter-Month-Day"
levels=(Year_ID Quarter Month_name Date_ID);

level year_ID type=year;
level quarter type=quarters;
level month_name type=months;
level week_name type=weeks;

66 Building a Cube from a Star Schema � Chapter 3

level date_ID type=days;
property WeekDay_Number_US caption="US WeekDay Number" column=weekday_no
level=date;
property WeekDay_Number_EU caption="EU WeekDay Number" column=weekday_eu
level=date;
property Week_Number_EU caption="EU Week Number" column=week_no
hierarchy=YWD level=week_name;
property Month_Number caption="Month Number" column=month_no
hierarchy=YMD level=month_name;
property Month_Number caption="Month Number" column=month_no
hierarchy=YQMD level=month_name;
property Holidays_US caption="US Holidays" column=Holiday_us
level=date;

dimension Customers hierarchies=(PersonalData CompanyUsage)
dimtbl=olapsio.custdim dimkey=customer_id factkey=customer_id;

hierarchy PersonalData levels=(Customer_Name Customer_Age Customer_Gender);

hierarchy CompanyUsage
empty_char=_missing_
levels=(Customer_Group Customer_Type);

dimension Geography hierarchies=(Geography)
dimtbl=olapsio.geogdim dimkey=street_id factkey=street_id;

hierarchy Geography
empty_char=_missing_
levels=(Continent_Name Country State Region Province County City)
;

dimension Organization hierarchies=(PersonalStats Organization)
dimtbl=olapsio.orgdim dimkey=employee_id factkey=employee_id;

hierarchy PersonalStats levels=(Employee_name Job_Title Salary Gender);

hierarchy Organization
empty_char=_missing_
levels=(Company Department Org_Group Section Job_Title);

MEASURE DiscountSUM STAT=SUM COLUMN=Discount;

MEASURE CostPrice_Per_UnitSUM STAT=SUM COLUMN=CostPrice_Per_Unit
FORMAT=DOLLAR10.2
;

MEASURE QuantitySUM STAT=SUM COLUMN=Quantity
CAPTION=’Sum of Quantity’
;

MEASURE Total_Retail_PriceSUM STAT=SUM COLUMN=Total_Retail_Price
FORMAT=DOLLAR12.2
;

AGGREGATION Continent_Name Country State Region Customer_Group Customer_Type
/ NAME=’RegionalCustomerUse’
;

AGGREGATION Year Quarter Customer_Group Customer_Type
/ NAME=’QuarterlyCustomerUse’
;

Building and Updating Cubes � Refreshing Cube Metadata 67

AGGREGATION Year Customer_Group Customer_Type
/ NAME=’YearlyCustomerUse’
;

AGGREGATION Continent_Name Country State Region Province Company Department
Org_Group Section

/ NAME=’WorldwideStaff’
;

AGGREGATION Continent_Name Country State Region Province Employee_Name
Job_Title Salary
/ NAME=’WorldwideSalaries’
;

run;

Updating a Cube
A cube can be updated after its initial creation in order to optimize cube performance

and to add or remove aggregations. Any cube update changes elements of both the
physical cube and its metadata registration. You can update a cube in either SAS OLAP
Cube Studio or with PROC OLAP code.

� To update an existing cube in SAS OLAP Cube Studio, select the cube that you
want to modify, right-click, and select the Edit Cube Structure option. You can
also access this function from the Actions menu. This opens the Cube Designer
Wizard. Make any necessary changes to the cube. At the Cube Designer - Finish
dialog box, review the settings for the cube and select one of the cube creations
options. SAS OLAP Cube Studio deletes the cube, and then rebuilds it with the
changes that you entered.

� To update a cube by using PROC OLAP code, modify the code as needed and save
the updated code. Use the DELETE option, the DELETE_PHYSICAL option, or
both from the PROC OLAP statement to delete the cube. Resubmit the modified
code to rebuild the cube. See the DELETE and DELETE_PHYSICAL options for
the “PROC OLAP Statement” on page 92 for further information. Here are three
possible usage scenarios:

If you are changing captions and descriptions or the dimensions or measures,
You must use DELETE to remove the physical cube and the metadata
registration. This is because you are submitting the full PROC OLAP syntax
with changes.

If the input table has new data and you only want to refresh the cube,
You should use DELETE_PHYSICAL to delete only the physical cube. You can
then submit the shorter form of the PROC OLAP syntax with only the PROC
OLAP statement and METASVR statement.

If you are optimizing cube performance by adding or deleting aggregations,
You should not use the DELETE or DELETE_PHYSICAL options. This is
because you are updating the cube in its current state.

Refreshing Cube Metadata
You can refresh the metadata for calculated members and named sets that are

associated with a cube by using the Refresh Cubes function, which is available from the

68 MDX DDL REFRESH Statement � Chapter 3

SAS OLAP Cube Studio toolbar. The refresh cubes function reads the information about
calculated members and named sets that is stored on the metadata server. The refresh
cubes function then updates the OLAP server metadata for the cube. You must be
connected to a server and have administrative permissions in order to select the
Refresh Cubes function.

With the Refresh Cubes function, you can select from a list of one or more cubes to
refresh. You can also select a check box that selects all cubes. The cubes listed are
those cubes that are assigned to the current OLAP schema and that physically exist.
When you have selected the cubes that you want to refresh, select OK. The refresh
command is then sent to all cubes that were selected.

After the selected cubes have been refreshed, you are prompted to check other
servers that the current OLAP schema is associated with.

MDX DDL REFRESH Statement
The REFRESH statement can be sent manually. You can send the REFRESH

statement for each additional server that the schema is associated with.

REFRESH CUBE (cubename | "_ALL_")

Where cubename specifies a single cube to refresh for the current server connection. Or
ALL specifies that all cubes are refreshed for the current server connection. Here are
some examples.

This example uses the REFRESH statement to refresh the metadata associated with
a STAR cube.

REFRESH CUBE [STAR]

This example uses the REFRESH statement to refresh the metadata for all cubes
managed by the connected server.

REFRESH CUBE _ALL_

You can use the OLAP MDX SQL Pass-Through facility to send the DLL REFRESH
statement to a server. Here is an example.

proc sql noerrorstop;
connect to olap (&olapcon);
execute
(
REFRESH CUBE [STAR]

) by olap;

proc sql noerrorstop;
connect to olap (&olapcon);
execute
(
REFRESH CUBE _ALL_

) by olap;

Defining Member Properties
When you create a SAS OLAP cube, the information that is relevant to the cube is

defined with the cube hierarchy, measures, and aggregations (summaries) that will be
stored with the cube. Additional information that is part of the cube member data can
be included in the cube definition as a member property.

Building and Updating Cubes � Defining Multiple Hierarchies for a Dimension 69

Member properties are attributes of dimension members that provide an additional
gradation of information to users of the cube data. Member property information is
usually not as significant as the levels and members within a dimension, and therefore,
does not qualify as a level or member. However, it often has additional analytical value
that can be useful at query time.

A member property is assigned to a level within a hierarchy, and a level can have
multiple properties that are assigned to it. For hierarchy placement, a member
property is assigned (by default) to all hierarchies that the select level is in. However,
you can remove one or more (but not all) of the hierarchies that the member property is
assigned to.

When you create a member property, you must specify the name, column, and level.
Member property names can be shared across a cube but must be unique for a specific
level within a specific hierarchy. You can also specify a caption, description, and format.
The format that you specified here will be used instead of the format in the data set.

Property Statement
The PROPERTY statement is used with the PROC OLAP statement when you

define a cube:

PROPERTY zipcode-region column = post_code
HIERARCHY= geographic
LEVEL = region;

Cube Designer
You can also establish member properties with the Member Property dialog box that

is part of the Cube Designer interface in SAS OLAP Cube Studio. This is accessed after
measures are defined, when you create a cube or edit a cube. Select Add to create a
member property. At the Define a Member Property dialog box, enter the member
property name, level, column, and caption.

Defining Multiple Hierarchies for a Dimension

SAS OLAP cubes are organized into dimensions and levels of data. The levels are
then arranged into hierarchies. After an initial hierarchy has been created, you can
define additional hierarchies for a single dimension of a cube. This enables you to have
multiple possible drill paths of the same data. When you create more than one
hierarchy for a dimension, the levels have some restrictions:

� A level in a dimension might be used in more than one hierarchy within that
dimension. However, levels cannot be used in hierarchies that are not defined
within the dimension that the level is defined in.

� Each level must be used in at least one hierarchy.

� Levels from the same dimension that are picked for an aggregation must be in the
drill order for at least one hierarchy in that dimension.

You can arrange the levels in a hierarchy in any order. The one exception to this is
the Time dimension. Levels in hierarchies in the Time dimension must follow a
prescribed order that is determined by the numerical value that is assigned to the type.

70 Hierarchies Statement � Chapter 3

This order is from the smallest value (Years, 16) to the greatest value (Seconds, 3,096).
The dimension hierarchies also have some restrictions:

� The first hierarchy that is defined for the dimension is designated as the default.
When there are multiple hierarchies, you can designate the default hierarchy for
the dimension.

� Hierarchy names must be unique across the cube. If there is a single hierarchy for
a dimension, then its name must be the name of the dimension Also, dimension
and hierarchy names cannot be the same as a level name within that dimension.

� For any cube loaded with a star schema, in which a dimension table represents
multiple hierarchies for that dimension, the dimension key that is used to join the
dimension table to the fact table will be used for all hierarchies of that dimension.

Hierarchies Statement
The HIERARCHY statement is used with the PROC OLAP statement when you

define a cube:

hierarchy campaigns levels=(campaign_type campaign sub_campaign);

Cube Designer
You can establish multiple hierarchies by using the Cube Designer - Dimensions

window, which is located in the SAS OLAP Cube Studio Cube Designer. To add a
hierarchy to an existing dimension, select a dimension, and then click Modify. This
opens the Dimension Designer - General window. It is populated with the values for the
selected dimension. Select Next until you reach the Dimension Designer - Hierarchy
window. Select Add to create an additional hierarchy.

Note: You can modify existing hierarchies by selecting a hierarchy and clicking
Modify. You can also assign a default hierarchy by selecting a hierarchy and clicking
Default. The first hierarchy is automatically the default hierarchy. �

Note: An exception to defining multiple hierarchies for a dimension is the Time
dimension. Levels in hierarchies in the Time dimension must follow a prescribed order
that is determined by the numeric value that is assigned to the type. This order is from
the smallest value (Year, 16) to the greatest value (Seconds, 3,096). �

In the Dimension Designer - Define a Hierarchy window, you can define a new
hierarchy and select the different levels and their order for the hierarchy.

Defining Ragged Hierarchies for a Dimension
Dimension levels are arranged in one or more hierarchies. Hierarchies, by process of

ordering, have a branching arrangement, and the different member levels have parent
and child relationships. For instance, at company X the sales staff are located in
different regions and cities in different countries. A balanced hierarchy might look like
this:

� Global sales president (top of hierarchy)

� Sales presidents (per country)

� Regional sales managers
� City sales managers.

Building and Updating Cubes � Defining Ragged Hierarchies in SAS OLAP Cube Studio 71

Because of differences in the cube data, hierarchies are often not balanced and possibly
have missing members. For example, some sales regions might not have sales managers
assigned to a specific city. Or, some countries might not have sales regions, just cities.
These real-world scenarios would create hierarchies that have missing member data
and possibly ragged hierarchies. This affects the drillpath of the cube data.

How Ragged Hierarchies Affect Querying
Unbalanced levels and missing hierarchy members affect the path through your

cube. For example, you can descend to missing members, which means that

� you have reached the leaf member of that particular branch of the hierarchy

� the leaf member is at a higher level than the hierarchy’s other leaf members.

You can also drill to missing members within a path and continue to drill down to
members that are present.

Defining Ragged Hierarchies in SAS OLAP Cube Studio
The Cube Designer in SAS OLAP Cube Studio enables you to specify the missing

members for a hierarchy and the type of data that is missing. Here are the Cube
Designer windows that enable you to specify missing member information:

Ragged
Hierarchies

Located in the Cube Designer General - Advanced Cube Options
window, this tab enables s you to specify character and numeric
missing member information. By default, no missing member
information is indicated with the value None.

Dimension
Designer - Level
Properties

� Ragged - Ignore Missing Members specifies whether to
ignore or use global or hierarchy-specific ragged hierarchy
settings. To ignore settings, set this property to True. To use
the settings, set this property to False. By default, this is set
to False.

� Ragged - Designate Missing Members specifies that the
Cube Designer use the specified string to identify missing
values and override any global or hierarchy-specific ragged
hierarchy settings. You can use up to 256 characters. The
value of the True/False setting in Ragged - Ignore Missing
Members controls whether or not you override any global or
hierarchy-specific ragged hierarchy settings.

Dimension
Designer -
Define a
Hierarchy

You can select one of these options from the Ragged Hierarchies tab:

� Ignore. From this drop-down list, select True to ignore the
global missing member settings that you entered at the
Advanced Cube Options dialog box. Select False to use the
global settings for the current hierarchy.

� Character. For this hierarchy only, enter a maximum of 256
characters that will be used to identify missing character
members.

� Numeric. For this hierarchy only, enter a maximum of 256
characters that will be used to identify missing numeric
members.

72 PROC OLAP Options for Ragged Hierarchies � Chapter 3

PROC OLAP Options for Ragged Hierarchies
You can specify missing member information in a PROC OLAP statement with the

following options:

EMPTY_CHAR=
’string’

for ragged hierarchies, this option specifies the string that identifies
missing hierarchy members. For example, by default SAS identifies
missing characters as a blank space. To identify blank spaces as
missing hierarchy members, enter (‘’) as the value of the
EMPTY_CHAR= option. If you enclose the string within quotation
marks, then you can use a maximum of 256 characters. If you do
not use quotation marks, then the string must be a valid SAS name.

This option can be specified in the PROC statement or in the
HIERARCHY statement only. If the option is specified in the
HIERARCHY statement, then it overrides the value that is specified
in the PROC statement. It cannot be used in the LEVEL statement.

EMPTY_NUM=
‘string’

for ragged hierarchies, this option specifies the string that identifies
missing hierarchy members whose underlying input data for the
member is numeric-based. For example, by default SAS identifies
missing numeric values as a single period (.). To identify periods as
missing values, enter a period (‘.’) as the value of the
EMPTY_NUM= option. If you enclose the string within quotation
marks, then you can use a maximum of 256 characters. If you do
not use quotation marks, then the string must be a valid SAS name.

This option can be specified in the PROC statement or in the
HIERARCHY statement only. If the option is specified in the
HIERARCHY statement, then it overrides the value that is specified
in the PROC statement. It cannot be used in the LEVEL statement.

Note: This option is ignored if the IGNORE_EMPTY option is
specified in the HIERARCHY statement or the corresponding
LEVEL statement. �

EMPTY=‘string’ specifies that PROC OLAP override any ragged hierarchy option
settings in the PROC OLAP or HIERARCHY statements and instead
use the specified string to identify missing hierarchy members. For
example, if you set EMPTY=’absent’, then hierarchy members that
have the value ’absent’ are treated as missing for all levels in which
the hierarchy appears. If you enclose the string within quotation
marks, then you can use a maximum of 256 characters. If you do
not use quotation marks, then the string must be a valid SAS name.

This option can be specified only in the LEVEL statement. If
specified, it overrides any values that are entered in either the
PROC or HIERARCHY statements. It cannot be used in the PROC
or HIERARCHY statement.

IGNORE_EMPTY when this option is set, then ragged hierarchy option settings in
PROC OLAP or HIERARCHY statements are ignored for this level.
This option can be specified in the HIERARCHY statement to ignore
the PROC statement specification or in the LEVEL statement to
ignore the PROC and HIERARCHY specifications.

Note: You can specify the level or hierarchy options without first specifying the
global option. �

Building and Updating Cubes � Manually Tuning Cube Aggregates 73

Ragged Hierarchies and Unique Member Names
In a ragged hierarchy, the parent of a member might not be at the level directly above

that member. Furthermore, not all children of a member are necessarily at the same
level. This can lead to a situation where two children have the same unique name.

For example, in a geography hierarchy you might have the levels state, county, and
city. The state Washington might have a child at the county level called Olympia and
another child at the city level, also named Olympia. The city member is not a
descendant of the county member of the same name. It is a child of Washington.

In a ragged hierarchy, levels can have an unconventional structure, and unpopulated
levels are not assigned a token or placeholder. As a result, the unique name for the
county member is Geography, [All Geography], Washington, Olympia, and the
unique name for the city member is Geography, [All Geography], Washington,
Olympia.

The result of this anomaly is that the city member cannot be asked for by a unique
name in a query, either through MDX or an OLE DB for OLAP (ODBO) request for
metadata. It will be returned in any set that contains it so the data that is associated
with it is not lost. The same applies to the children of a member such as Olympia.
Because the server searches through the hierarchy to validate member names, a
request by name for a child of Olympia the city will result in a bad member name error.
This is because the server actually searches under the county Olympia.

This situation occurs only when two members with the same name share a parent.
Any number of Olympia(s)could exist under other parents with no unusual results.

Manually Tuning Cube Aggregates

When a cube is created, aggregations can be specified by the user. Aggregations are
usually created to improve query performance. After a cube is created and queries are
run against the cube, users might discover that certain aggregations are not being used,
and adjustments and changes to the aggregations are needed. You might want to
change the levels in an aggregation, add another aggregation, or entirely remove an
aggregation. The Manual Tuning function allows you to adjust and improve an existing
cube by adding, dropping, or modifying aggregations.

Manual Tuning requires an active IOM server connection. When you select Manual
Tuning you are prompted for a SAS IOM Server. If no valid server is available, the
Manual Tuning window will not open. In addition, only MOLAP cubes that have an
existing physical cube, along with a SAS Metadata Repository registration, can use the
Manual Tuning function.

You can access the Manual Tuning function within SAS OLAP Cube Studio by
selecting an existing cube and right-clicking to display the menu that lists the Manual
Tuning function. Or, you can also access it from the main OLAP Cube Studio menu
under the Actions menu. The Manual Tuning window lists the defined aggregations for
the selected cube. When you finish making selections and select OK, the PROC OLAP
statements are submitted to the IOM application server and the cube data is updated.
With the Manual Tuning Window you can

� Add an aggregation - select Add to create a new aggregation. Enter the
aggregation name and select the levels for the aggregation. Select Apply to save
and validate the aggregation. If the aggregation is a duplicate or it is not in
hierarchy order, you will receive an error message.

� Delete an aggregation - select an aggregation from the list box, and then select
Delete.

74 Using PROC OLAP to Tune Aggregates � Chapter 3

� Modify an aggregation - select an aggregation from the list box, and then select
Modify. The bottom panel populates with the aggregation values, and you can
select or deselect the levels. When you finish modifying the aggregation levels,
select Apply to save the changes. Select Apply to validate the aggregation. If the
aggregation is not in hierarchy order, you will receive an error message.

Here are some guidelines for using Manual Tuning:

� Manual Tuning is available only for MOLAP cubes.

� Levels that are specified for an aggregation must follow at least one existing
hierarchy.

� When you modify aggregations, you cannot modify the aggregation name.

� If the cube has an NWAY aggregation, it will display, but it cannot be modified or
deleted.

� You cannot add duplicate aggregations in the Manual Tuning window. A duplicate
aggregation has the same name as another aggregation or the same list of levels
as another aggregation. When you add an aggregation to a cube and select Apply,
validation will occur to ensure that the aggregation to add is not a duplicate and
that its levels follow a hierarchy order.

Using PROC OLAP to Tune Aggregates
To modify an aggregation through PROC OLAP, use the DROP_AGGREGATION

statement to delete the aggregation, and then use the AGGREGATION statement to
define the new aggregation.

� DROP_AGGREGATION level-name1 < level-name2 ...level-nameN > /
NAME=aggregation-name;

� AGGREGATION level-name1 < / TABLE=libname.dataset ></ NAME=’
aggregation-name’>;

For more information about the DROP_AGGREGATION and AGGREGATION
statements, see “The OLAP Procedure” on page 92.

Multiple Language Support and Dimension Table Translations
OLAP cube data is often generated in one language but needed in other languages.

For example, a company’s OLAP cube data might be stored in English, but users who
speak Spanish and Turkish need access to it. So, the member values as well as the
captions that are assigned to dimensions, hierarchies, levels, etc., need to be translated.
Multiple language support is available only for cubes that are loaded from star schemas.
It is used to read your alternate locale data sets and create locale-specific metadata for
use at query time. Query results are returned in the language of the requested locale.

You can specify language support when building a cube either in the Cube Designer
Wizard or with PROC OLAP code. There are 56 possible language locales, and English
is the default language.

SAS OLAP Cube Studio and Dimension Table Translations
In the Cube Designer - General window, select the Advanced button. If you selected

Star Schema as the input type in the Cube Designer - General window, you will see the
Dimension Table Translations tab. From the Available Languages/Locales list box,

Building and Updating Cubes � Adding SAS System Options to a Cube 75

select the needed languages for the translation tables. The first language in the
Selected Languages/Locales list box is the default language.

PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement
The USER_DEFINED_TRANSLATIONS statement is used in conjunction with the

DIMENSION statement options DIMTABLEMEMPREF= and DIMTABLELIBREF=.
For more information, see the “DIMENSION Statement” on page 99.

SAS Servers and Character Encoding
If your server metadata contains characters other than those typically found in

English, then you must be careful to start your server with an encoding= or locale=
system option that accommodates those characters. For example, a SAS server started
with the default US English locale cannot read metadata that contains Japanese
characters. SAS will fail to start and log a message indicating a transcoding failure.

In general, different SAS jobs or servers can run different encodings (such as ASCII/
EBCDIC or various Asian DBCS encodings) as long as the encoding that is used by the
particular job or server can represent all the characters of the data being processed. In
the context of server start up, this requires that you review the characters used in the
metadata describing your server (as indicated by the server= objectserverparm) to
ensure that SAS runs under an encoding that supports those characters.

Adding SAS System Options to a Cube
When you build an OLAP cube, it is often necessary to include additional SAS code

that must run prior to the creation of the cube. This includes the creation of
user-written formats, PROC statements, and format search paths for the formats that
are used on input tables. The Advanced Cube Options window that is accessed from the
Cube Designer - General window provides the two entry tabs, Submit SAS Code and
Format Search Path. Both tabs provide entry fields for SAS code. You can enter any
text in the fields. There is no validation of the text that is entered. However, error
messages are sent to the SAS log.

The text is saved to the cube metadata in the SAS Metadata Repository and is used
every time the cube is created. You can edit or remove the text after it is initially
entered. Highlight the text and make any needed changes, or use the Delete key to
remove the text. Select OK to save your changes.

Submit SAS
Code

You can use this field to enter a PROC statement or any SAS code
that you want to submit before the cube is created. SAS code is
submitted before any format search path.

Format Search
Path

You can use this field to enter names of catalogs or libraries for the
format search path. The catalogs and libraries must be separated by
a blank and will be searched in the order in which they are listed.
You use the SAS system option FMTSEARCH= here.

Note: For more information about SAS formats, see “Formats” in
SAS Language Reference: Dictionary. �

Note: When you build a cube with SAS OLAP Cube Studio, the format search path
is saved with the cube metadata in the SAS Metadata Repository and used every time
the cube is recreated. However, if you submit PROC OLAP code through a SAS session,

76 Specifying Tuning and Performance Options in Cube Aggregations � Chapter 3

outside of SAS OLAP Cube Studio, the format search path is ignored. PROC OLAP will
not read the information from the SAS Metadata Repository or write the information to
the SAS Metadata Repository. �

Specifying Tuning and Performance Options in Cube Aggregations
When you build cubes, you can set various options that improve and optimize cube

creation and query performance. These options can be set for all aggregations in a cube
or for a specific aggregation. Additionally, these options can be set by using the PROC
OLAP options or in SAS OLAP Cube Studio. These options are stored with the cube
metadata in the SAS Metadata Repository.

Setting Options on the Cube Designer Wizard
In the Cube Designer - Generated Aggregations window, an Advanced button is

provided for access to tuning options. Select the Advanced button to open the
Performance Options window. There are two tabs for setting tuning options, the Global
tab and Aggregation tab.

Global Tab
The global performance options are applied to all aggregations for the cube. These

performance options include the

� amount of memory (in megabytes) that is available for aggregation creation

� maximum number of threads that are used to create an aggregation index

� number of aggregations to create in parallel

� partition size (in megabytes) of aggregation table partitions

� number of observations (in kilobytes) to include in the index component file
segment

� location of index component files

� location of partitions in which to place aggregation table data

� aggregation tables that are stored in compressed format.

For specific information about these functions, see the Performance Options - Global tab
in SAS OLAP Cube Studio Help.

Aggregation Tab
The aggregation-specific performance options are applied to an individual

aggregation for the cube and override the global option settings for that aggregation.
You can define and modify performance options for an aggregation or delete options for
an aggregation. The aggregation-specific performance options include the

� partition size (in megabytes) of aggregation table partitions

� number of observations (in kilobytes) to include in the index component file

� location of index component files

� location of partitions in which to place aggregation table data

� aggregation tables stored in compressed format

� aggregations created with indexes

Building and Updating Cubes � Setting Options with PROC OLAP 77

For specific information about these functions, see the Performance Options - Define
Aggregation Options dialog box in SAS OLAP Cube Studio Help.

Setting Options with PROC OLAP
You can set options for all aggregations in a cube or for a specific aggregation. To set

options for all aggregations, set the options in the PROC OLAP statement. To set
options for a single aggregation, set the options in the PROC OLAP - Aggregation
statement. The options include

INDEXSORTSIZE=n
specifies the amount of memory in megabytes that is available when aggregations
are created. The default is the system’s available memory.

MAXTHREADS=n
specifies the maximum number of threads that are used to asynchronously create
the aggregation indexes. The processing engine calculates how many threads are
needed based on the number of indexes that are created and the
INDEXSORTSIZE= value. This option sets a limit on the number of threads
regardless of the number that is calculated by the processing engine. However, if
the processing engine determines that fewer than the maximum number of
threads is needed, then only the calculated number of threads are used. The
default is the value of the SAS system option SPDEMAXTHREADS or 0.

CONCURRENT=n
specifies the number of aggregations to create in parallel. This option does not
apply to the NWAY, which is always built first (unless the NO_NWAY option is
set). The default is a maximum of two, based on the results of a special algorithm
that takes into consideration the number of aggregations that are being created
and the number of processors that are available. The algorithm assumes that CPU
resources should be saved for creating aggregation indexes.

WORKPATH=path-name
specifies one or more locations for temporary work files. For all platforms except
MVS and VMS, if the WORKPATH option is not specified, then PROC OLAP uses
the SPDEUTILLOC system option. If SPDEUTILLOC is not specified, then PROC
OLAP uses the UTILLOC system option. If UTILLOC is not specified, then PROC
OLAP uses the SAS WORK library path. For MVS and VMS, then PROC OLAP
uses the SPDEUTILLOC system option. If neither WORKPATH= nor
SPDEUTILLOC is specified for MVS and VMS, the following error is returned:
“ERROR: No valid work path has been given. Use the WORKPATH= PROC OLAP
option or the SPDEUTILLOC= system option to set a valid work path.”

DATAPATH=(’path-name’ ...’pathnameN’)
specifies the location of one or more partitions (.DPF files) in which to place
aggregation table data. The data is distributed by cycling through each partition
location according to the partition size (set by using the PARTSIZE= option). The
default is the cube subdirectory of the location that is specified by the PATH=
option in the PROC OLAP statement.

INDEXPATH=(’path-name’ ...’pathnameN’)
specifies the locations of the index component files (.IDX and .HYB files) that
correspond to each aggregation table partition as specified by the DATAPATH=
option. The default is the cube subdirectory of the location that is specified by the
PATH= option in the PROC OLAP statement.

78 Setting Options with PROC OLAP � Chapter 3

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation tables in a compressed format on
disk. The default is NOCOMPRESS.

INDEX | NOINDEX
specifies whether or not to create the aggregations with indexes. For faster cube
creation and adding and deleting aggregations, you can set this option to
NOINDEX. However, the lack of indexes will adversely affect query performance.
The default is INDEX.

PARTSIZE=size-in-megabytes
specifies the partition size in megabytes of the aggregation table partitions (.DPF
files) and their corresponding index components (.IDX and .HYB files). The default
is 128 megabytes. The minimum value is 16 megabytes.

SEGSIZE=number-of-rows-in-kb
specifies the number of observations (table rows) in kilobytes to include in the
index component file segment. The minimum size is 1k (1,024 rows), so the value
of SEGSIZE= is a multiple of 1024 as expressed in kilobytes. The segmented
indexes are used to optimize WHERE-expression processing. Each parallel thread
is given a segment of the table to evaluate that is equal to the SEGSIZE= value.
The default is 8 kilobytes (8,192 rows). The minimum is 1 kilobyte (1,024 rows).

Note: INDEXSORTSIZE=, MAXTHREADS=, and CONCURRENT= are only
available in the PROC OLAP statement. �

For more information about these options, see “PROC OLAP Statement” on page 92 and
“AGGREGATION Statement” on page 110.

79

C H A P T E R

4
Using SAS OLAP Cubes

Using a Cube with ADO MD 79
Using a Cube with OLE DB for OLAP 79

Using a Cube with Additional SAS Software 80

Using a Cube with Third-Party Clients 80

Microsoft Excel 2000 and Excel 2002 PivotTable 80

Saving a PivotTable as a Web Page 82
Microsoft Office Web Components 2000 and 2002 PivotTable 82

ProClarity Professional 83

Using a Cube with ADO MD
Applications gain access to SAS OLAP cubes through ADO MD. ADO MD is an

industry standard programming interface to multidimensional data. It offers the same
functionality as OLE DB for OLAP but in a simpler programming model. Accessing
SAS OLAP cubes through ADO MD requires the SAS Integrated Object Model (IOM)
Data Provider, which is a component of SAS Integration Technologies. The SAS IOM
Data Provider is installed with the client-side SAS Integration Technologies 9.0
product. See the SAS Data Providers: ADO/OLE DB Cookbook for more information
about IOM data provider usage with ADO MD. In particular, see the topics “Reading
Multidimensional Data with ADO MD” and “About Schema Rowsets.”

Using a Cube with OLE DB for OLAP
In addition to ADO MD, applications gain access to SAS OLAP cubes through OLE

DB for OLAP, an industry standard set of programmable Component Object Model
(COM) interfaces that expose multidimensional data. For SAS OLAP cubes, the OLE
DB interfaces are exposed by the SAS IOM Data Provider, a component of SAS
Integration Technologies. The SAS IOM Data Provider enables applications to perform
data analysis by providing a means to view schema information, submit MDX queries,
and retrieve results. The SAS IOM Data Provider is installed with the client-side SAS
Integration Technologies 9.0 product. See the SAS Data Providers: ADO/OLE DB
Cookbook for more information about IOM data provider usage. In particular, see the
topics “About OLE DB Interfaces” and “About Schema Rowsets.”

80 Using a Cube with Additional SAS Software � Chapter 4

Using a Cube with Additional SAS Software
Several additional SAS products gain access to SAS OLAP cubes:
� Enterprise Guide
� SAS AppDev Studio
� SAS Desktop Report Studio
� SAS Information Map Studio
� SAS Web Report Studio
� SQL Pass-Through Facility for OLAP. For more information, see “Accessing OLAP

Cubes from SAS: SQL Pass-Through Facility for OLAP” on page 40.

Note: The SQL Pass-Through Facility for OLAP does not require additional
licensing. �

See the product help and documentation for these products for information on how to
access SAS OLAP cubes.

Using a Cube with Third-Party Clients
The SAS OLAP Server exposes multidimensional data through OLE DB for OLAP

interfaces. Supporting these industry standard interfaces enables the SAS OLAP
Server to integrate with third-party clients. The user interfaces for these clients vary
widely. To ensure successful integration with the SAS OLAP Server, usage guidelines
for some third-party clients have been established.

Microsoft Excel 2000 and Excel 2002 PivotTable
To view SAS OLAP cubes in Microsoft Excel, you must identify the server where your

cubes are stored and the cube you want to analyze with the PivotTable and PivotChart
Wizard.

1 In Microsoft Excel, select

Data � PivotTable and PivotChart Report

This opens the PivotTable and PivotChart Wizard.
2 At the PivotTable and PivotChart Wizard, select the radio buttons for External

data source and PivotTable. Select Next.
3 At the PivotTable and PivotChart Wizard, select Get Data. This opens the Choose

Data Source window.
� On the OLAP Cubes tab, select <New Data Source>.
� Select OK. This opens the Create New Data Source window.

� In field 1, enter the name that you want to associate with the cube data
you are accessing.

Note: This is the name that Excel uses to store your work. �
� In field 2, select SAS OLAP Data Provider 9.1.
� In field 3, select the Connect button. This opens the Data Link

Properties window. In the Data Source field, enter the name of the SAS
9 OLAP Server you are accessing. If necessary, enter your user ID and

Using SAS OLAP Cubes � Microsoft Excel 2000 and Excel 2002 PivotTable 81

password for accessing the server. Select the SAS Protocol (Bridge,
Com, or Corba). If you select Bridge, then you must specify the SAS
Service Name/Port. Select OK.

� If the connection to the server is successful, field 4 will be active.

Note: A successful connection depends on several factors such as
accurate data source and port information, accurate user account
information, and whether the server is running and can be accessed.
For details about SAS Protocol, SAS Service Name, and other connection
properties, see “SAS OLAP Provider Connection Properties” in the SAS
Data Providers: ADO/OLE DB Cookbook. �

Select the cube that you want to analyze in Excel.

Note: If field 4 is active, but there are no cubes shown in the drop
down box, this means the OLAP server was unable to locate any cubes.
A possible cause is that your OLAP server is not associated with the
correct OLAP schema. You can determine the OLAP schema assigned to
your OLAP server from the SAS Management Console. Then in SAS
OLAP Cube Studio, verify that the OLAP schema has cubes. For more
information about OLAP schemas see the SAS Intelligence Architecture:
Planning and Administration Guide. �

� You must select the radio button Save my userID and password in
the data source definition when you connect to a secure server. If
you select the radio button, then a message window opens that informs
you how the user ID and password will be stored in the data source
definition. At this point you must confirm your selection of the radio
button. There are variations in performance between Microsoft Excel
2000 and Microsoft Excel 2002. If you do not select the radio button,
then when you connect to a secure server, the connection will fail in one
of these ways:

� In Microsoft Excel 2000, you will return to the Choose Data Source
window in the PivotTable and PivotChart Wizard.

� In Microsoft Excel 2002, the DataLink Properties window reloads,
which allows you to re-enter the data source information.

� When you finish entering information in the Create New Data Source
window, select OK. At this point Excel saves the data as a Microsoft
query (OQY) file that you can later reference and load in Excel.

After completing the fields in the Create New Data Source window, you return
to the Choose Data Source window. You see your new data source listed on the
OLAP Cubes panel. Select OK. This returns you to the PivotTable and PivotChart
Wizard window. Select Next. This loads the PivotTable and PivotChart Wizard.

4 At On the PivotTable and PivotChart Wizard, select where you want to put the
PivotTable. You can choose to place the PivotTable in a New worksheet or in the
Existing worksheet. Select Finish. The PivotTable is loaded.

5 At the worksheet and PivotTable menu, select cube data items to populate the
columns and rows of the PivotTable. Use the drag-and-drop selection method to
move the data buttons to the PivotTable. For the PivotTable data area, select the
data buttons that are measures of the cube data.

6 From this point, use standard Microsoft Excel functionality to view cube data.

Note: You must have Microsoft Query installed to view OLAP cubes in Microsoft
Excel. �

82 Microsoft Office Web Components 2000 and 2002 PivotTable � Chapter 4

Saving a PivotTable as a Web Page
When you save a PivotTable as a static Web page in Microsoft Excel 2002, the user

password is not automatically saved with the HTML file that is generated. For Excel
2002 PivotTables that are connected to a secure OLAP server, this can result in an
error message when the HTML file is loaded into Internet Explorer.

In Microsoft Excel 2002, when you select

File � Save as Web Page

a message window displays stating that the user password will not be saved. You then
have an opportunity to continue saving the HTML file or not. If you choose to save the
HTML file without the password, an error message might be displayed when the user
tries to load the HTML file in Microsoft Internet Explorer. To prevent this error
message, you can manually edit the HTML file to include the user password. For
example, in this connection tag, you would add the password option,
password=mypass; to the <Connection> string.

<Connection>Provider=sas.OLAPProvider.9.1;User ID=&userid;Data
Source=SAS OLAP Provider Server;Location=&location;
Mode=ReadWrite|Share Deny None;SAS Logical Name="";
SAS Machine DNS Name=&SASMachineDNSName ;
SAS Port=&Port;SAS Protocol=2;
SAS Server Type=2</x:Connection>

Microsoft Office Web Components 2000 and 2002 PivotTable
For the Microsoft Office Web Components 2000 and 2002 PivotTable user interface,

the PivotTable connection string must specify the provider and data source. Specifically,
the connection string must specify

� Provider=sas.IOMProvider.9.1

� the data source as a URL/URI style string that contains all the necessary
connection properties:

olapServerName&Property1=value&property2=Value&property3=value

The string must begin with the name of the OLAP Server to which you are
connecting. To list additional connection properties, follow the server name with
“&” and list “property name=property value” pairs, delimited by “&”.

Note: All connection properties, with the exception of provider, must be
specified within the data source string. �

Note: For a description of these properties see the SAS Data Providers: ADO/
OLE DB Cookbook. In particular, see the sections “Connections and Data Sources”
and “Connecting to a Remote SAS OLAP server with the IOM Provider.” �

Here is an example of an HTML page using a Microsoft Office 2000 PivotTable in
conjunction with the SAS OLAP Server. The data source string specifies an OLAP
server with the name mktg.unx.com, a SAS port of 6176, and the ProtocolBridge for
SAS protocol defined as 2.

<HTML>
<BODY ONLOAD = "Setup_PT()">
<OBJECT id="PivotTable1"

CLASSID="CLSID:0002E520-0000-0000-C000-000000000046"
style="HEIGHT: 500px; WIDTH: 500px">

</OBJECT>

Using SAS OLAP Cubes � ProClarity Professional 83

<SCRIPT language=VBScript>
Sub Setup_PT()

constr=‘‘Provider=sas.iomprovider.9.1;Data Source=mktg.unx.com&SAS Port=6176
&Location=localhost&SAS Protocol=2’’

PivotTable1.ConnectionString=constr
PivotTable1.DataMember="CAMPAIGN"
PivotTable1.ActiveView.AutoLayout

End Sub
</SCRIPT>

</BODY>
</HTML>

For Microsoft Office 2002 PivotTable Web Components, use
CLASSID=“CLSID:0002E552-0000-0000-C000-000000000046”.

ProClarity Professional
You can access SAS OLAP cubes from within ProClarity Professional. The following

steps show you how to load a SAS OLAP cube for analysis:

1 From the File menu, select

Options � OLAP Provider � Change Provider

SAS OLAP Data Provider 9.1 � OK

On the OLAP Provider tab of the Options window, SAS OLAP Data Provider 9.1
should now appear as the current provider. Select OK.

2 From the File menu, select Open Cube. This opens the Connect window.

3 In the Server field, enter the name of the SAS OLAP server that you are
connecting to as well as the user name and password. Select OK. This loads the
Open Cube window.

4 In the Open Cube window, select a cube to open. Select OK. The cube is loaded into
the ProClarity workspace.

5 From this point, use standard ProClarity functionality to manipulate the SAS
OLAP cube.

Note: The ProClarity interface currently enables you to specify the data source that
you are connecting to as well as the user name and password. However, it does not
allow you to specify other provider properties that might be necessary to establish a
server connection such as SAS Port or SAS Protocol. For further information about how
to set additional SAS Provider properties, see the SAS Data Providers: ADO/OLE DB
Cookbook. �

Note: In ProClarity you can access and view measures by selecting

View � MDX Editor

The cube measures are displayed in the lower metadata window. However, when
viewing SAS OLAP cubes in ProClarity, user-defined measures are not recognized. �

84

85

C H A P T E R

5
Transitioning from SAS OLAP
Server Release 8.2 to SAS 9.1

Conversion and Migration Issues from Release 8.2 to SAS 9.1 85
Data Conversion and Migration 85

Code Conversion and Migration 86

PROC MDDB versus PROC OLAP 86

Data Model and Viewer Customizations 86

Repository Conversion and Migration 86
Comparing OLAP Functionality in SAS 8 and SAS 9.1 86

Comparing PROC MDDB Code and PROC OLAP Code 89

Conversion and Migration Issues from Release 8.2 to SAS 9.1

Data Conversion and Migration
Version 8 OLAP data is accessible in SAS 9.1. However, when you build or read

Version 8 MDDBs, you will not be able to take advantage of the new optimization
features of SAS 9.1 such as the threaded kernel, without re-creating the data as SAS
9.1 data. SAS OLAP data structures have changed from Version 8 to SAS 9.1 in the
following ways:

Data Sets In Version 8, any library reference that was assigned to a folder that
contained a Version 6 data set was automatically assigned using the
Version 6 engine, and new data sets that were written to that
library were Version 6 data sets. In SAS 9.1, a libref is assigned
using the SAS 9.1 engine regardless of whether the data sets in that
library were generated in Version 8 or SAS 9.1. All new data sets
are written as SAS 9.1 data.

MDDBs Between Version 8 and SAS 9.1, the file structure of a cube changed.
A Version 8 MDDB is a single physical file in the file system (the file
extension on both Windows and UNIX platforms is .sas7bmdb). In
the folder, there are files that represent the cube, its dimensions,
levels, members, and aggregations. Therefore, the only way to
convert a Version 8 MDDB to a SAS 9.1 cube is to rebuild it from
the input data by using PROC OLAP.

86 Code Conversion and Migration � Chapter 5

Code Conversion and Migration

PROC MDDB versus PROC OLAP
There is no automated method to convert Version 8 MDDB code to SAS 9.1 OLAP

code. PROC MDDB executes in SAS 9.1. However, it creates a Version 8 MDDB that
cannot use the SAS 9.1 features such as the threaded kernel and the improved caching
mechanism. To help you rewrite your MDDB code in PROC OLAP syntax, see
“Comparing PROC MDDB Code and PROC OLAP Code” on page 89.

Data Model and Viewer Customizations
A number of Version 8 overrides and customizations might not be needed when you

rework an application in SAS 9.1, because a number of the new features in SAS 9.1
resolve these Version 8 issues. Some of these new features are documented in What’s
New in the OLAP Server in SAS 9.1.

All applications that were written in earlier versions of SAS will work using the
legacy technology. However, these older systems cannot use any of the new features in
SAS 9.1 or the new OLAP or SAS metadata servers, and vice versa.

Repository Conversion and Migration
You can use your current metadata in the SAS Metadata Repository and the

metabases repositories within legacy environments. However, as with the data and
applications, legacy queries (Version 8 and earlier) will run using the Version 8 engine
and not be able to use the enhanced features in SAS 9.1. If changes are made to a
Version 8 repository by using SAS 9.1 (such as adding tables to the repository), those
changes will work properly when accessing that repository in Version 8. Also important
are

� standard CMR to SAS Metadata Repository migration
� customizations, add-ons, and attribute dictionaries.

For more information, see “Comparing OLAP Functionality in SAS 8 and SAS 9.1” on
page 86 and “Comparing PROC MDDB Code and PROC OLAP Code” on page 89.

Comparing OLAP Functionality in SAS 8 and SAS 9.1
The following table lists some of the basic tasks that are performed when you create

a SAS OLAP cube and the differences in how these tasks are handled in SAS Version 8
and SAS 9.1.

Transitioning from SAS OLAP Server Release 8.2 to SAS 9.1 � Comparing OLAP Functionality in SAS 8 and SAS 9.1 87

Functionality How it is handled in Version 8 How it is handled in SAS 9.1

Defining hierarchy levels for
dimensions

PROC MDDB CLASS
statement

PROC OLAP LEVEL
statement

Specifying statistics PROC MDDB VAR statement

In PROC MDDB, you specify
stored statistics. Derived
statistics are available at
query time.

PROC OLAP MEASURE
statement

In PROC OLAP, you have
one MEASURE statement
for each combination of an
input column plus its
associated statistic (which
includes defining derived
statistics).

Grouping levels for
drill-down capability

PROC MDDB HIERARCHY
statement option,
DISPLAY=YES/NODATA
option

In PROC MDDB, individual
classes (levels) are not linked
but can be grouped into
drill-down hierarchies by
using the DISPLAY option in
the HIERARCHY statement .

PROC OLAP DIMENSION
statement

PROC OLAP uses the
DIMENSION statement to
accomplish the same goal.
Each dimension consists of a
hierarchy that is composed
of grouped levels. Each level
is fed by one input column.

88 Comparing OLAP Functionality in SAS 8 and SAS 9.1 � Chapter 5

Functionality How it is handled in Version 8 How it is handled in SAS 9.1

Creating NWAYs and other
aggregations

Implicitly, PROC MDDB
always creates an NWAY
subtable, which is the
combination of all class (level)
variables. Any additional
subtables can be explicitly
requested by using
HIERARCHY statements.

In PROC OLAP, subtables
are called aggregations. As
with PROC MDDB, the
NWAY aggregation is created
by default; although you can
choose not to create the
NWAY. Aggregation creation
is handled by the
AGGREGATION statement.

Specifying hierarchy
navigation

HIERARCHY statement,
DISPLAY=YES/NODATA
option

In PROC MDDB, the
HIERARCHY statement can
be used to specify navigation
hierarchy and, unless you
specify DISPLAY=NODATA,
also to create an aggregation.

HIERARCHY statement

In PROC OLAP, the
navigation hierarchies are
handled by the HIERARCHY
statement.

Loading cubes from star
schemas

Star schema support is
available through the
Distributed Multidimensional
Metabase (DMM) facility.

You can load your cubes from
star schemas and indicate
your dimension tables by
using the DIMTABL=,
DIMKEY=, and FACTKEY=
options in the DIMENSION
statements. You can also use
a specified star schema
instead of an NWAY
aggregation by using the
NO_NWAY option in the
PROC OLAP statement.

To load the cube from a star
schema, use the FACT=
option instead of the DATA=
option.

Transitioning from SAS OLAP Server Release 8.2 to SAS 9.1 � Comparing PROC MDDB Code and PROC OLAP Code 89

Functionality How it is handled in Version 8 How it is handled in SAS 9.1

Using externally
summarized data sources

HOLAP data groups

You use HOLAP data groups
to point to externally
summarized data sources,
which might be available
through RDBMS tables, SAS
data sets, or, in the case of
multiple aggregations
combined in one table, a
PROC SUMMARY output data
set with multiple types.

AGGREGATION statement
or TABLE= option

You use PROC OLAP’s
AGGREGATION statement
to point to externally
summarized sources

Cube metadata registration The SAS/EIS metabase facility
and the Distributed
Multidimensional Metadata
(DMM) facility for HOLAP
data groups serve as an
extension to the MDDB’s own
structural information.
Information about MDDBs,
such as drill-down hierarchies
and distributed data sources,
is stored in those repositories
and accessed there by the
different data model
extensions.

All relevant structural
information is contained
within the cube and most of
it is also replicated within
the SAS Open Metadata
Architecture. This is done to
gain the following
advantages:

� the ability to
disassociate the cube
definition process from
cube creation. Later,
you can create a cube
using its stored
definition

� the ability to define
and enforce security at
the SAS Open
Metadata Architecture
level

� the ability to manage
and control the data
source in the
centralized SAS Open
Metadata Architecture.

Comparing PROC MDDB Code and PROC OLAP Code

The following example code illustrates the difference between PROC MDDB and
PROC OLAP when you create a simple cube.

PROC MDDB Sample Code
To create a Version 8 MDDB and make it ready for use with SAS or external viewers,

you run PROC MDDB. After you run the code, you register the cube in the SAS/EIS
metabase facility in order to transform the display hierarchies into the HIERARCHY
attribute of the metabase registration. For partitioned or distributed cubes, you must

90 Comparing PROC MDDB Code and PROC OLAP Code � Chapter 5

also create a HOLAP data group definition by using the Distributed Multidimensional
Metadata (DMM) facility.

proc mddb data=sashelp.prdsale out=work.prdmddb;
class country region division prodtype product year quarter month;
var actual / sum n;
var predict / sum n;
hierarchy year quarter month / name=’Time YQM’ display=nodata;
hierarchy year month / name=’Time YM’ display=nodata;
hierarchy country region division / name=’Geography’ display=nodata;
hierarchy prodtype product / name=’Product Line’ display=nodata;
hierarchy country prodtype year;

run;

PROC OLAP Sample Code
To create the same cube in SAS OLAP Server 9.1, you use the following PROC OLAP

code:

Note: You can also create this cube by using the Cube Designer wizard, which is
available in SAS OLAP Cube Studio and SAS ETL Studio. �

proc olap data=sashelp.prdsale cube=prdcube path=’c:\tmp’;
metasvr olap_schema=’banking schema’

repository=’financial repository’
host=’misdept.us.mar.com’
port=9999
protocol=com
userid=jjones
pw=’my password’;

dimension Geography hierarchies=(Geography);
hierarchy Geography levels=(country region division);
level country caption=’Country’;
level region caption=’Region’;
level division caption=’Division’;

dimension Time hierarchies=(Time);
hierarchy Time caption=’Time’ levels=(year quarter month);
hierarchy Time caption=’Time’ levels=(year month);
level year caption=’Year’ type=year ;
level quarter caption=’Quarter’ type=quarters ;
level month caption=’Month’ type = months;

dimension prdln caption=’Product Line’ hierarchies=(prdln);
hierarchy prdln caption=’Product Line’ levels=(prodtype product);
level prodtype caption=’Product Type’;
level product caption=’Product Name’;

measure actual_sum caption=’Actual Sum’ stat=sum column=actual;
measure actual_n caption=’Actual Count’ stat=n column=actual;
measure predict_sum caption=’Predict Sum’ stat=sum column=predict;
measure predict_n caption=’Predict Count’ stat=n column=predict;
aggregation country prodtype year /name=’Product Types by Country’;

run;

91

A P P E N D I X

1
The OLAP Procedure

The OLAP Procedure 92
Syntax: OLAP Procedure 92

PROC OLAP Statement 92

Options 93

METASVR Statement 97

Required Argument 98
Options 98

DIMENSION Statement 99

Required Arguments 99

Options 100

LEVEL Statement 102

Required Arguments 102
Options 102

PROPERTY Statement 103

Required Arguments 104

Options 104

HIERARCHY Statement 105
Required Arguments 105

Options 105

MEASURE Statement 107

Required Arguments 107

Options 109
AGGREGATION Statement 110

Required Arguments 111

Options 111

DROP_AGGREGATION Statement 112

Required Arguments 113

DEFINE Statement 113
Required Arguments 114

USER_DEFINED_TRANSLATIONS Statement 115

Required Argument 116

SAS Servers and Character Encoding 118

Tables Used to Define Cubes 119
Naming Guidelines for SAS OLAP Server 120

Loading Cubes 121

Loading Cubes from a Detail Table 121

Loading Cubes from a Star Schema 122

Loading Cubes Using Summarized Data 124
Maintaining Cubes 125

Building a Cube from an Existing Definition 125

Adding Aggregations to an Existing Cube 126

92 The OLAP Procedure � Appendix 1

Deleting Aggregations from an Existing Cube 126
Deleting Cubes 127

Specialized Syntax Options for PROC OLAP 127

Syntax Options for Managing Ragged Hierarchies 127

Syntax Options Used for Performance 128

The OLAP Procedure
The OLAP procedure is one of the tools in SAS 9.1 that you can use to create and

delete cubes, and add and delete aggregations.

Note: You can also use the Cube Designer wizard to maintain OLAP cubes. The
Cube Designer wizard can be launched from SAS ETL Studio and SAS OLAP Cube
Studio. Help on using the wizard to build cubes is available from within both
applications. �

In addition to the basic cube creation tasks, PROC OLAP also enables you to
� build cubes with ragged hierarchies
� control options that can be used to optimize cube creation and query performance
� specify data set options on detail, fact, dimension, and drill-through tables
� create TIME dimensions
� design dimensions that have more than one hierarchy
� define global calculated members and named sets
� include SAS code when you submit PROC OLAP in batch mode
� read alternate locale data sets and create locale-specific metadata for use at query

time

Syntax: OLAP Procedure

PROC OLAP < option(s)>;
METASVR OLAP_SCHEMA=’schema-name’ < option(s)>;
DIMENSION dim-name HIERARCHIES=(hier–name) <option(s)>;
HIERARCHY hier-name LEVELS=(level–name1<level–name2 ... level-nameN>)

<option(s)>;
LEVELlevel-name <option(s)>;
PROPERTY prop-name LEVEL=level-name<option(s)>;
MEASURE measure-name STAT=statname < option(s)>;
AGGREGATION level-list </options>;
DROP_AGGREGATION level-name1 < level-name2 ... level-nameN > /

NAME=’aggregation-name’ ;
DEFINE MEMBER | SET ’member-or-set-name’ AS ’mdx-expression’ ;
USER_DEFINED_TRANSLATIONS one or more of 56 locale specifications;

PROC OLAP Statement
The PROC OLAP statement specifies the input data source, cube name, and path.

This statement can also be used to

PROC OLAP � Options 93

� specify options that might improve query performance
� delete cubes
� specify global settings for handling missing hierarchy members in ragged

hierarchies.

PROC OLAP <option(s)>;

Options
Note: For information about options that can be used to optimize cube creation and

query performance, see Syntax Options Used for Performance“Syntax Options Used for
Performance” on page 128. �

DATA | FACT=dsname
specifies the data source for the cube. The unsummarized data source can be any
SAS data file, including files that are supported by SAS access engines. If you load
the cube from a star schema, then the dsname is the name of the fact table that
contains the analysis variables from which to derive the measures for the cube.
The fact table must also contain fact keys that correspond to dimension tables in
the star schema.

You can also provide data set options along with DATA | FACT=. Options are
stored within the cube and reapplied when the data is accessed at run time. For
more information, see “Data Set Options” in SAS Language Reference: Concepts.

Note: This option is not required if you want to define the cube by using input
data from a fully summarized external data source (a crossing of all dimensions
known as an NWAY); in that case, you specify the data source for the cube by
using the TABLE= option in the AGGREGATION statement. �

Interaction: If you load the cube from a star schema, then you must use the
DIMENSION statement to

specify the dimension table name (the DIMTBL= option)
specify the dimension (primary) key column (the DIMKEY= option)
specify the column (foreign key) in the fact table that corresponds to the

dimension key column (the FACTKEY= option).

DRILLTHROUGH_TABLE | DT_TABLE | DT_TBL=
specifies an optional drill-through table. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data source.
You can specify the DATA | FACT= table or a different table that includes the
necessary data and columns.

You can also specify data set options with this option. Options are stored within
the cube and reapplied when the data is accessed at run time. For more
information, see “Data Set Options” in SAS Language Reference: Concepts.

CUBE=cube-name
specifies a valid SAS name for the cube to be created or updated. For naming
guidelines, see Naming Guidelines for SAS OLAP Server“Naming Guidelines for
SAS OLAP Server” on page 120.

PATH=’path-name’
specifies the physical or logical path to the location of a new cube. Within the
specified path, the cube is stored in a directory that uses the name of the cube in

94 Options � Appendix 1

upper-case letters. For example, if you enter the path ’c:\v9cubes’ and the cube
name is MrktData, then the cube is stored in ’c:\v9cubes\MKRTDATA’. Enclose
the path within quotation marks.

DESC | DESCRIPTION=’cube-description’
specifies any number of characters to be stored as descriptive text. If the text
includes blank spaces or any characters that are not permitted in a valid SAS
name, then enclose the text within quotation marks.

NO_NWAY
prevents PROC OLAP from automatically creating an NWAY aggregation (the
crossing of all dimension levels) for the new cube. The automatically created
NWAY is usually the largest in the cube and most resembles the content of the
unsummarized data source.

Interaction: If you use this option, then the input data source that is specified
with the DATA= or FACT= option must be available at run time; otherwise,
queries that are not covered by other aggregations will fail.

EMPTY_CHAR=’string’
for ragged hierarchies, this option specifies the string that identifies missing
characters as hierarchy members. For example, by default, SAS identifies missing
characters as a blank space. To identify blank spaces as missing hierarchy
members, enter ’’as the value of the EMPTY_CHAR= option. To identify every
instance of the word “empty” as missing hierarchy members, enter ’empty’. In
this case, hierarchy members that have the value ’empty’ are treated as missing
for all levels in which the hierarchy appears, and they are ignored when you drill
down into the cube. If you enclose the string within quotation marks, then you can
use a maximum of 256 characters. If you do not use quotation marks, then the
string must be a valid SAS name. For more information, see Naming Guidelines
for SAS OLAP Server“Naming Guidelines for SAS OLAP Server” on page 120.

Interaction: You can use the HIERARCHY statement to override this string for
specific hierarchies.

EMPTY_NUM=’string’
for ragged hierarchies, this option specifies the string that identifies missing
numeric values as hierarchy members. For example, by default, SAS identifies
missing numeric values as a single period (.). To identify periods as missing
hierarchy members, enter ’.’ as the value of the EMPTY_NUM= option. To
identify every instance of the value “123” as missing hierarchy members, enter
’123’. In this case, hierarchy members that have the value ’123’ are treated as
missing for all levels in which the hierarchy appears, and they are ignored when
you drill down into the cube. If you enclose the string within quotation marks,
then you can use a maximum of 256 characters. If you do not use quotation
marks, then the string must be a valid SAS name. For more information, see
Naming Guidelines for SAS OLAP Server“Naming Guidelines for SAS OLAP
Server” on page 120.

Note: If there is no format associated with the member value, then BEST12 is
used as the format. �

Interaction: You can use a HIERARCHY or LEVEL statement to override this
string of specific hierarchies.

INDEXSORTSIZE=n
specifies the amount of memory in megabytes that is available when aggregations
are being created.

Default: The system’s available memory

PROC OLAP � Options 95

Tip: So that each built index has a fair share of the assigned INDEXSORTSIZE
memory, INDEXSORTSIZE is divided by the CONCURRENT value. The value
of INDEXSORTSIZE should give each concurrent index build enough memory to
at least hold a table PARTSIZE. For best performance, INDEXSORTSIZE
divided by CONCURRENT should be greater than PARTSIZE.

MAXTHREADS=n
specifies the maximum number of threads that are used to asynchronously create
the aggregation indexes. The processing engine calculates how many threads are
needed based on the number of indexes that are being created and the
INDEXSORTSIZE= value. This option sets a limit on the number of threads
regardless of the number that is calculated by the processing engine. However, if
the processing engine determines that fewer than the maximum number of
threads is needed, then only the calculated number of threads are used.

Default: The value of the SAS system option SPDEMAXTHREADS or 0. If the
value is 0, then the processing engine determines the number of threads based
on the number of indexes that are created plus the available memory. The
maximum value is 65,536 threads.

CONCURRENT=n
specifies the number of aggregations to create in parallel. This option does not
apply to the NWAY, which is always built first (unless the NO_NWAY option is set).

Default: A maximum of two, based on the results of a special algorithm that
takes into consideration the number of aggregations that are being created and
the number of processors that are available. The algorithm assumes that CPU
resources should be saved for creating aggregation indexes.

Tip: So that each built index has a fair share of the assigned INDEXSORTSIZE
memory, INDEXSORTSIZE is divided by the CONCURRENT value. The value
of INDEXSORTSIZE should give each concurrent index build enough memory to
at least hold a table PARTSIZE. For best performance, INDEXSORTSIZE
divided by CONCURRENT should be greater than PARTSIZE.

WORKPATH=(’path-name’ ...’pathnameN’)
specifies one or more locations for temporary work files.

Default: For all platforms except MVS and VMS, if the WORKPATH option is
not specified, PROC OLAP uses the SPDEUTILLOC system option. If
SPDEUTILLOC is not specified, PROC OLAP uses the UTILLOC system option.
If UTILLOC is not specified, PROC OLAP uses the SAS WORK library path.
For MVS and VMS, PROC OLAP uses the SPDEUTILLOC system option. If
neither WORKPATH= nor SPDEUTILLOC is specified for MVS and VMS, the
following error is returned: ERROR: No valid work path has been given.
Use the WORKPATH= PROC OLAP option, or the SPDEUTILLOC= system
option to set a valid work path.

DATAPATH=(’path-name’ ...’pathnameN’)
specifies the location of one or more partitions (.DPF files) in which to place
aggregation table data. The data is distributed by cycling through each partition
location according to the partition size (set using the PARTSIZE= option). For
example, if you specify DATAPATH=(’c:\data1’ ’d:\data2’), then PROC OLAP
places the first partition of each aggregation table into directory c:\data1, the
second partition of each table into directory d:\data2, the third partition of each
table into c:\data1, and so on. It is also possible to have aggregation tables that
use less than the specified number of partitions. For example, your cube might
contain an aggregation table that fits entirely into c:\data1.

96 Options � Appendix 1

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a DATAPATH= option in the
AGGREGATION statement. �
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

INDEXPATH=(’path-name’ ...’pathnameN’)
specifies the locations of the index component files (.IDX and .HYB files) that
correspond to each aggregation table partition as specified by the DATAPATH=
option.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify an INDEXPATH= option in the
AGGREGATION statement. �

Note: Indexes are not created for aggregations that have fewer than 1,024
records. �
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation tables in a compressed format on
disk.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a COMPRESS option in the
AGGREGATION statement. �
Default: NOCOMPRESS

INDEX | NOINDEX
specifies whether or not to create the aggregations with indexes. For faster cube
creation and adding and deleting aggregations, you can set this option to
NOINDEX; however, the lack of indexes will adversely affect query performance.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify an INDEX option in the
AGGREGATION statement. �
Default: INDEX

PARTSIZE=size-in-megabytes
specifies the partition size in megabytes of the aggregation table partitions (.DPF
files) and their corresponding index components (.IDX and .HYB files).

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a PARTSIZE= option in the
AGGREGATION statement. �
Default: 128 megabytes. The minimum value is 16 megabytes.

SEGSIZE=number-of-rows-in-kb
specifies the number of observations (table rows) in kilobytes to include in the file
segment of the index component. The minimum size is 1k (1,024 rows), so the
value of SEGSIZE= is a multiple of 1024 as expressed in kilobytes. The segmented
indexes are used to optimize WHERE-expression processing. Each parallel thread
is given a segment of the table to evaluate that is equal to the SEGSIZE= value.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a SEGSIZE= option in the
AGGREGATION statement. �
Default: 8 kilobytes (8,192 rows). The minimum is 1 kilobyte (1,024 rows).

PROC OLAP � METASVR Statement 97

DELETE
deletes the physical cube that is specified with the CUBE= option. It also deletes
the cube’s definition, which is stored in the metadata server. The DELETE option
does not delete the input data source.

If either the physical cube or its registration, or both are not present, then the
DELETE option behaves as explained in the following table:

Table A1.1 How the DELETE Option Behaves If the Physical Cube or Its Registration Is Not Present

Physical cube exists Registration exists DELETE option behaves this way

No Yes The physical cube is not deleted. The
registration is deleted, not updated. If
there is a registration, and you use the
DELETE option, the registration is
always deleted and you cannot recreate
the cube from the registration. You can
only recreate the cube from the
registration when you use the
DELETE_PHYSICAL option.

No No Fails because there is nothing to delete.

Yes No Fails because the cube cannot be located
without its registration information. You
must manually delete the cube.

DELETE_PHYSICAL
deletes the physical cube that is specified with the CUBE= option but leaves the
cube definition intact. This enables you to build a new cube based on the saved
cube definition.

If either the physical cube or its registration, or both are not present, then the
DELETE_PHYSICAL option behaves as explained in the following table:

Table A1.2 How the DELETE_PHYSICAL Option Behaves If the Physical Cube or Its registration Is Not Present

Physical cube exists Registration exists DELETE_PHYSICAL option behaves this
way

No Yes Fails because there is no physical cube to
delete.

No No Fails because there is nothing to delete.

Yes No Fails because the cube cannot be located
without its registration information. You
must manually delete the cube.

METASVR Statement
The METASVR statement identifies the SAS Metadata Repository in which existing

cube metadata information exists or in which metadata about a new cube is stored.

METASVR OLAP_SCHEMA=’schema-name’ < option(s)>;

The METASVR statement options can be used to override the metadata repository
connection values that are specified through SAS start-up options.

98 Required Argument � Appendix 1

Note: During an interactive SAS session, if connection information is not available
either through start-up settings or through a METASVR statement, then the user is
prompted for the missing information. For more information about SAS start-up
options, see SAS Language Reference: Dictionary. �

Following is an example of a METASVR statement with all of its options set:

METASVR olap_schema=’Banking Schema’
repository=’financial repository’
host=’misdept.us.mar.com’
port=9999
protocol=com
userid=jjones
pw=’my password’;

Required Argument
OLAP_SCHEMA=’schema-name’

is a string that specifies the name of the schema that has been defined in a SAS
Metadata Repository. The name can be a maximum of 32 characters. The OLAP
schema specifies which group of cubes that an OLAP server can access. Each
OLAP schema can be accessed by multiple OLAP servers; however, each OLAP
server has access to only one OLAP schema. When using embedded blanks or
special characters in the schema name, enclose the name in quotation marks.

Options
REPOSITORY=’repos-name’

is a string that specifies the name of the SAS Metadata Repository in which
existing cube metadata information exists or in which metadata about a new cube
is stored. The name can be a maximum of 60 characters. When using lowercase
letters, embedded blanks, or special characters in the repository name, enclose the
name in quotation marks.

HOST=’metadata-server-host-name’
is a string that specifies the IP address of the metadata repository host. An
example is misdept.us.mar.com. The address can be a maximum of 256
characters. When using lowercase letters, embedded blanks, or special characters
in the host name, enclose the name in quotation marks.

PORT=port-number
specifies the numeric value of the port on which the metadata repository resides.

PROTOCOL=BRIDGE | COM
specifies the protocol that is used to connect to the specified metadata repository.

USERID=’userid’
is a string that specifies the user’s identification for the specified metadata
repository. The identification can be a maximum of 256 characters. When using
lowercase letters, embedded blanks, or special characters in the user ID, enclose
the user ID in quotation marks.

PW=’password’
is a string that specifies the password for the user identified with the USERID=
option. The password can be a maximum of 512 characters. When using lowercase

PROC OLAP � Required Arguments 99

letters, embedded blanks, or special characters in the password, enclose the
password in quotation marks.

DIMENSION Statement

The DIMENSION statement defines the logical and hierarchical relationships
between the variables in the input data.

DIMENSION dim-name HIERARCHIES=(hier–nam ... hier-nameN) <option(s)>;

At least one DIMENSION statement must be specified when the cube is created. The
DIMENSION statement is not used when adding or deleting aggregations from cubes.
You can have a maximum of 128 dimensions per cube.

Note: The DIMENSION statement does not create aggregations. To create
aggregations, use the AGGREGATION statement. �

A DIMENSION statement must include the name of at least one hierarchy in its
HIERARCHIES= option. In addition, a HIERARCHY statement must include the name
of at least one level in its LEVELS= option. However, you cannot use the same level in
more than one dimension.

Note: You can use LEVEL statements to specify a time period for each level in a
TIME dimension. LEVEL statements are also used to supply information such as a
level-specific sort order or a level description. �

The following example uses one DIMENSION statement, two HIERARCHY statements,
and three optional LEVEL statements to define a fully specified dimension. In the
example, the same levels are being used in different ways.

DIMENSION TIME hierarchies=(Year_Months Year_Weeks);

HIERARCHY Year_Months levels=(year month day);
HIERARCHY Year_Quarter levels=(year quarter day);

LEVEL year type=YEARS caption=’Year’;
LEVEL year type=QUARTER caption=’Quarter’;
LEVEL month type=MONTHS caption=’Month’;
LEVEL day type=DAYS caption=’Day’;

Required Arguments
dim-name

names a dimension by using a valid SAS name up to 32 characters. For naming
guidelines, see Naming Guidelines for SAS OLAP Server“Naming Guidelines for
SAS OLAP Server” on page 120

HIERARCHIES=(hier-name...hier-nameN)
specifies the name of one or more hierarchies as defined by HIERARCHY
statements.

Note: If you are building a cube that will contain multiple national languages, then
DIMTABLELIBREF= and DIMTABLEMEMPREF= are required instead of DIMTBL=. �

100 Options � Appendix 1

Options
DESC | DESCRIPTION=’string’

specifies any number of characters that can be used to create a meaningful
description of the dimension. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: dim-name

CAPTION=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the dimension. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: dim-name

TYPE=TIME
identifies the dimension as a TIME dimension.
Requirement: You must set this option for a TIME dimension. TIME is the only

valid value for this option.
Interaction: You can use LEVEL statements to specify the time period of each

level in the TIME dimension.

SORT_ORDER=ASCENDING | DESCENDING | ASCFORMATTED |
DESFORMATTED | DSORDER

specifies a sort order for all levels in the dimension. Values that are returned from
queries display in this order.
Default: ASCENDING
Interaction: This setting is overridden if sort order is set in a LEVEL statement.
Tip: To specify a sort order for each level within a dimension, set the

SORT_ORDER= option in each LEVEL statement. Values that are returned
from queries display in this order.

DIMTBL=libname.memname
specifies the valid, two-level SAS name for a dimension table in the star schema
that is specified with the FACT= option in the PROC OLAP statement. The
dimension table must contain one column for each dimension level name (specified
with the LEVELS= option in HIERARCHY statements) and one column for the
dimension key. However, if the dimension key is also a level, then the dimension
table needs to have only as many columns as there are levels in the dimension.
Member metadata for the dimension is derived from the information in the level
columns of the dimension table.

You can also specify data set options with DIMTBL=. Options are stored within
the cube and reapplied when the data is accessed at run time. For more
information, see “Data Set Options” in SAS Language Reference: Concepts.

Note: The fact table does not have to contain all of the members. However, the
fact table cannot contain any members that are not described by the level
columns. �

Note: The same dimension tables can be used to load cubes that have some,
but not all, dimensions in common. This means that it is possible for multiple
cubes to share the same dimension data. �

PROC OLAP � Options 101

Note: If you are building a cube that will contain multiple national languages,
then replace the DIMTBL= option with DIMTABLELIBREF= and
DIMTABLEMEMPREF= options. In addition, you must create a
USER_DEFINED_TRANSLATIONS statement. �

DIMKEY=dimension-table-column
specifies the name of the column in the dimension table that is specified in the
DIMTBL= option. That column must contain values that correspond to fact key
values in the fact table and be a value that corresponds to a unique combination of
level values in the fact table.

Note: The corresponding fact key is specified with the FACTKEY= option. The
fact table is specified with the FACT= option in the PROC OLAP statement. �

For example, for a dimension that is composed of three levels—NAME, ADDRESS,
and INCOME—a dimension key named CUSTOMER_ID might exist. In this
dimension, each unique value of CUSTOMER_ID corresponds to a unique
combination of NAME, ADDRESS, and INCOME.

Table A1.3 Sample Dimension Data That Illustrates How Unique DIMKEY Values Correspond to Unique
Combinations of Level Values

CUSTOMER_ID NAME ADDRESS INCOME

1 Juan hostel 2000

2 Shelly apartment 2000

3 Paul house 25000

4 Makoto castle 250000000

FACTKEY=fact-table-column
specifies the name of the column in the fact table that corresponds to the
dimension table column that is specified with the DIMKEY= option. The name
does not have to match the DIMKEY name. Referring back to the previously
discussed example, the FACTKEY name could be CUST_NO even though the
DIMKEY name is CUSTOMER_ID. However, even if the names are different, the
underlying data must match. For example, you must match numeric columns with
numeric columns and character columns with character columns. In addition, if
the FACTKEY is a character column, then it must be the same length as the
DIMKEY column. If the FACTKEY is a numeric column, then it is handled as a
decimal precision number (rather than as an integer).

DIMTABLELIBREF=
specifies the library for the data sets that exist, for this dimension, in each
language that is specified by the USER_DEFINED_TRANSLATIONS statement.
The library is associated with the dimension and not the language. You cannot put
different languages in different libraries, but you can put different dimensions in
different libraries. This option is required if you are using the Multiple Language
Support capabilities of the SAS OLAP Server. It is also used in conjunction with
the DIMTABLEMEMPREF= option.

DIMTABLEMEMPREF=
specifies the member prefix for the translated dimension tables. The member
prefix is the prefix of the data set name. The suffix of the name is provided by the
USER_DEFINED_TRANSLATIONS statement. For example, if the member prefix
is dealdim_ and the suffix is da_DK, then PROC OLAP looks for a data set named
dealdim_da_DK.sas7bdat in the library that is specified by the
DIMTABLELIBREF= option. DIMTABLEMEMPREF= is required if you are using

102 LEVEL Statement � Appendix 1

the Multiple Language Support capabilities of the SAS OLAP Server. It is used in
conjunction with the DIMTABLELIBREF= option and the
USER_DEFINED_TRANSLATIONS statement. This option follows the naming
guidlines for SAS OLAP server“Naming Guidelines for SAS OLAP Server” on page
120.

LEVEL Statement
The LEVEL statement provides additional information about a level specified with

the LEVELS= option in a HIERARCHY statement, and enables you to set options for
ragged hierarchies.

LEVEL level-name <option(s)>;

For TIME dimensions, you can use LEVEL statements to specify a time period for
each level in the dimension. However, if you specify the time period for one level, then
you must specify the time period for all levels. You also use LEVEL statements to
supply information such as a level description or a level-specific sort order. You can
have a maximum of 256 levels per cube.

Note: Levels that are shared between hierarchies share the same ragged hierarchy
option settings. The options are EMPTY_CHAR=, EMPTY_NUM=, EMPTY=, and
IGNORE_EMPTY. �

Note: Levels use formats as specified in the input data source. To override the
format, you can use a SAS FORMAT statement. �

Note: When you rebuild a cube that has been physically deleted, the rebuilt cube
still uses the formats that were originally used to build the cube and were saved in the
cube’s metadata. This means that the rebuilt cube does not automatically include any
formatting changes that you might have made in the input data source. To manually
specify the new formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

Required Arguments
level-name

specifies a valid SAS name for the level that matches the name of a corresponding
column in the input data. (You can use a column as a level even if it is also being
used as a measure.) This is the same name that is used in the LEVELS= option in
the HIERARCHY statement. Level names must be unique within a cube. For
naming guidelines, see Naming Guidelines for SAS OLAP Server“Naming
Guidelines for SAS OLAP Server” on page 120

Options
DESC | DESCRIPTION=’string’

specifies any number of characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the text includes blank spaces or any characters that
are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: The value of the CAPTION= option if one exists; otherwise, the
column’s label. If there is no label available, the default is the level name.

PROC OLAP � PROPERTY Statement 103

CAPTION=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the text includes blank spaces or special characters
that are not permitted in a valid SAS name, then enclose the caption within
quotation marks.
Default: The column’s label in the input data source. If there is no label

available, the default is the level name.

TYPE=YEAR | HALF_YEARS | QUARTERS | MONTHS | WEEKS | DAYS |
HOURS | MINUTES | SECONDS

if you specify the TYPE=TIME option in the DIMENSION statement, then you can
use this LEVEL statement option to specify the time period for the dimension
levels.
Requirement: If you specify a time period for one level in the TIME dimension,

then you must specify the time period for all levels in the dimension. With
regard to drill path, identify the levels from the most general time period to the
most specific.

SORT_ORDER=ASCENDING | DESCENDING | ASCFORMATTED |
DESFORMATTED | DSORDER

specifies a sort order for a level within a dimension. Values that are returned from
queries display in this order.
Default: If a sort order is not specified in the DIMENSION statement or in the

LEVEL statement, then the default order of ASCENDING is applied.
Interaction: This setting overrides the SORT_ORDER= setting in the

DIMENSION statement.

EMPTY=’string’
specifies that PROC OLAP should override any ragged hierarchy option settings in
the PROC OLAP or HIERARCHY statements and instead use the specified string
to identify missing hierarchy members. For example, if you set EMPTY=’absent’,
then hierarchy members that have the value ’absent’ are treated as missing for
all levels in which the hierarchy appears. If you enclose the string within
quotation marks, then you can use a maximum of 256 characters. If you do not
use quotation marks, then the string must be a valid SAS name. For more
information, see Naming Guidelines for SAS OLAP Server“Naming Guidelines for
SAS OLAP Server” on page 120.

IGNORE_EMPTY
when this option is specified, then ragged hierarchy options in PROC OLAP or
HIERARCHY statements are ignored for this level.

PROPERTY Statement
The PROPERTY statement assigns properties to specific levels within specified

hierarchies.

PROPERTY prop-name LEVEL=level-name <option(s)>;

Each level can have more than one property assigned to it by using multiple
PROPERTY statements. Property names must match the name of a column in the
input data source, or you must use the COLUMN= option to specify the column name.

In the following example, the COLUMN= option is used in the first two PROPERTY
statements because the column name is different from the property name. In this way,

104 Required Arguments � Appendix 1

the property named Population can be assigned to both the country level and the
state level in the geo hierarchy. The level state has two properties: Population
and West_of_Miss.

PROPERTY Population
column=p_country
hierarchy=geo
level=country;

PROPERTY Population
column=p_state
hierarchy=geo
level=state;

PROPERTY West_of_Miss
hierarchy=geo
level=state;

Required Arguments
prop-name

specifies a valid SAS name for the property. Usually this is the name of a column
in the input data source. If it is not the name of a column, then you must include
the COLUMN= option to specify the column name. For naming guidelines, see
Naming Guidelines for SAS OLAP Server“Naming Guidelines for SAS OLAP
Server” on page 120

LEVEL=level-name
specifies the name of the level that you are assigning the property to.

Options
HIERARCHY=(hier-name ... hier-nameN)

specifies the name of one or more hierarchies that contain the level. If you do not
include the HIERARCHY option, then the property is automatically assigned to all
occurrences of the level in all of the hierarchies in which it appears; otherwise, the
property is assigned to the level only in the specified hierarchies.

COLUMN=column-name
specifies the name of a column from the input data source. You must use this
option if the column name is not the same as the property name.

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the description includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: The value of the CAPTION= option if one exists; otherwise, the
column’s label.

CAPTION=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the caption includes blank spaces or special characters
that are not permitted in a valid SAS name, then enclose the caption within
quotation marks.

PROC OLAP � Options 105

Default: The column’s label if it exists, otherwise the property name.

HIERARCHY Statement
The HIERARCHY statement specifies the navigational order of the levels in a

dimension.

HIERARCHY hier-name LEVELS=(level–name1 <level–name2 ...level-nameN>)
<option(s)>;

You must have at least one HIERARCHY statement for each DIMENSION
statement; however, you can also have multiple hierarchies per dimension. Levels in
the same dimension can be shared between hierarchies. Every level in a dimension
must be assigned to a hierarchy in the dimension. You can have a maximum of 19
levels per hierarchy. There is no limit to the number of hierarchies per dimension.

Following is an example of a HIERARCHY statement that specifies three levels:

HIERARCHY Geography levels=(country region division);

Required Arguments
hier-name

specifies a valid SAS name for the hierarchy. This name is also used in the
HIERARCHIES= option in the DIMENSION statement. The hier-name cannot be
the same as any of its level names. Hierarchy names must be unique within the
cube. If the hierarchy that you are defining is the only one in the dimension, then
the hierarchy name must match the dimension name. For other naming
guidelines, see Naming Guidelines for SAS OLAP Server“Naming Guidelines for
SAS OLAP Server” on page 120.

LEVELS=(level-name1 <level-name2 ...level-nameN>)
specifies a valid SAS name for at least one level. These names correspond to
columns in your input data and are used in any optional LEVEL statements.
Level names must be unique within a cube and cannot be the same as the
hier-name. (You can use a column as a level even if it is also being used as a
measure.) Enter one or more names, separated by a space. Enter the level names
in the order in which you want them to be used, beginning with the top level. For
naming guidelines, see Naming Guidelines for SAS OLAP Server“Naming
Guidelines for SAS OLAP Server” on page 120.
Requirement: If the hierarchy is part of a TIME dimension, then the levels

must be listed in order from most general to least general based on their
assigned TYPE. For example, a TYPE=YEAR level must be listed before a
TYPE=QUARTER level.

Options
DESC | DESCRIPTION=’string’

specifies any number of characters that can be used to create a meaningful
description of the hierarchy. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

106 Options � Appendix 1

Default: the hierarchy caption, which may be the default, hier-name.

CAPTION=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the hierarchy. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: hier-name

EMPTY_CHAR=’string’
for ragged hierarchies, this option specifies the string that identifies missing
characters as hierarchy members. For example, by default, SAS identifies missing
characters as a blank space. To identify blank spaces as missing hierarchy
members, enter ’’as the value of the EMPTY_CHAR= option. To identify every
instance of the word “empty” as missing hierarchy members, enter ’empty’. In
this case, hierarchy members that have the value ’empty’ are treated as missing
for all levels in which the hierarchy appears and they are ignored when you drill
down into the cube. If you enclose the string within quotation marks, then you can
use a maximum of 256 characters. If you do not use quotation marks, then the
string must be a valid SAS name. For more information, see Naming Guidelines
for SAS OLAP Server“Naming Guidelines for SAS OLAP Server” on page 120.

Interaction: This option overrides any EMPTY_CHAR option that is specified in
the PROC OLAP statement.

EMPTY_NUM=’string’
for ragged hierarchies, this option specifies the string that identifies missing
numeric values as hierarchy members. For example, by default, SAS identifies
missing numeric values as a single period (.). To identify periods as missing
hierarchy members, enter ’.’ as the value of the EMPTY_NUM= option. To
identify every instance of the value “123” as missing hierarchy members, enter
’123’. In this case, hierarchy members that have the value ’123’ are treated as
missing for all levels in which the hierarchy appears and they are ignored when
you drill down into the cube. If you enclose the string within quotation marks,
then you can use a maximum of 256 characters. If you do not use quotation
marks, then the string must be a valid SAS name. For more information, see
Naming Guidelines for SAS OLAP Server“Naming Guidelines for SAS OLAP
Server” on page 120.

Note: If there is no format associated with the member value, then BEST12 is
used as the format. �

Interaction: This option overrides any EMPTY_NUM option set in the PROC
OLAP statement. In addition, this option is ignored if the IGNORE_EMPTY
option is set in the HIERARCHY statement or the corresponding LEVEL
statement.

IGNORE_EMPTY
specifies that PROC OLAP should ignore any ragged and unbalanced hierarchy
option settings in the PROC OLAP statement.

DEFAULT
identifies a hierarchy as the default hierarchy for the dimension that is defined by
the DIMENSION statement.

Default: The first hierarchy listed for the dimension

PROC OLAP � Required Arguments 107

MEASURE Statement
The MEASURE statement defines the cube’s measures and indicates how they map

to the input data.

MEASURE measure-name STAT=statname <option(s)>;

Include one MEASURE statement for each measure in the cube. Each cube must
have at least one measure. Measure names must be unique. You can have a maximum
of 1,024 measures per cube.

Here are two examples of the MEASURE statement:

MEASURE Sales_Sum
STAT=SUM
COLUMN=sales
AGGR_COLUMN=sales
DESC=’Sales Summary’
UNITS=’Dollars’
FORMAT=COMMA9.2;

MEASURE Sales_Min
STAT=MIN
COLUMN=sales
AGGR_COLUMN=isales
DESC=’Sales Min’
UNITS=’Dollars’
FORMAT=COMMA9.2;

Note: All cube aggregations have identical measures. �

Required Arguments
measure-name

specifies a valid SAS name for the measure. The name must be unique. For
naming guidelines, see Naming Guidelines for SAS OLAP Server“Naming
Guidelines for SAS OLAP Server” on page 120.

STAT= statname
specifies the statistic for the measure. The following base statistics are available:
N, NMISS, SUM, MAX, MIN, or USS. In addition, these derived statistics are also
available: AVG, RANGE, CSS, VAR, STD, STDERR, CV, T, PRT, LCLM, or UCLM.

New cubes that are based on a data source that contains existing summarized
data (where such data has been indicated in at least one AGGREGATION
statement via the TABLE= option), must include measure statements for the
stored statistics required for each derived statistic that you want to create for the
new cube. For example, if you want to calculate AVG, you must create measures
for N and SUM, as well as AVG. The following table indicates which stored
statistics are required for each derived statistic:

Table A1.4 Stored Statistics Required for Each Derived Statistic

Derived Statistics Required Stored Statistics

AVG N, SUM

CSS N, SUM, USS

108 Required Arguments � Appendix 1

Derived Statistics Required Stored Statistics

RANGE MIN, MAX

VAR, STD, STDERR, CV, T,
PRT, LCLM, UCLM

N, SUM, USS

Note: For information about statistic formulas, see “Keywords and Formulas”
in Base SAS Procedures Guide. �

For cubes that are not loaded from a fully summarized data source (that is, you
specified a data source by using the DATA | FACT= option), some statistics use
formats taken from the input data source. Specifically, if the statistic is SUM, MIN,
MAX, RANGE, AVG, STD, STDERR, LCLM, or UCLM, then PROC OLAP uses the
format that is assigned to the column specified by the COLUMN | ANALYSIS=
option. The following table lists the formats used for the other supported statistics:

Table A1.5 Default Formats Used for Statistics

Statistic Format Used

CSS BEST.

CV 8.2

N 12.0

NMISS 10.0

PRT 6.4

T 7.3

USS BEST.

VAR BEST.

For cubes that are loaded from a fully summarized data source (that is, you
specified the data source by using the AGGREGATION statement), the default
format is BEST12.

To override the default formats, you can either set the FORMAT= option or use
a SAS FORMAT statement.

Note: The FORMAT= option also overrides a FORMAT statement. �

Note: When you rebuild a cube that has been physically deleted, the rebuilt
cube still uses the formats originally saved in the cube’s metadata. This means
that the rebuilt cube does not automatically include any formatting changes that
you might have made in the input data source. To manually specify the new
formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

COLUMN | ANALYSIS=anlvar
specifies the name of a numeric column that is contained in the cube’s input data
source. (You can use a column as a measure even if it is also being used as a level.)

If the cube is based on an unsummarized data source, then anlvar is the name
of the column in that data source from which the measure will be calculated. Use
COLUMN= to specify the column.

If the cube is based on a summarized data source, then anlvar can be the name
of the numeric column in the data source that was used as the analysis variable
for the pre-calculated measure. It can also be a name that identifies a logical
association between measures with the same anlvar name. For example, if your
cube has three measures, N, SUM, and AVERAGE, and those measures were

PROC OLAP � Options 109

derived from the same analysis variable, then you could specify ANALYSIS=Sales
to logically link the three measures through their shared analysis variable. You
would also identify the analysis variable in the AGGR_COLUMN= option.

If the cube consists of a combination of summarized and unsummarized data
sources, then anlvar refers to both a physical and a logical entity. For example,
you might have a cube that requires a physical analysis variable to create a
crossing but that same cube already contains other, higher level aggregations. In
this case, the analysis variable is also used to logically link the measures in the
pre-existing aggregations that were derived from the same input column. You
would also identify the analysis variable in the AGGR_COLUMN= option.

Default: measure-name

Interaction: An unsummarized data source is specified with the DATA | FACT=
option in the PROC OLAP statement. A summarized data source is specified
with the TABLE= option in an AGGREGATION statement.

Options
DESC | DESCRIPTION=’string’

specifies any number of characters that can be used to create a meaningful
description of the measure. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: measure-name

CAPTION=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the measure. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: The default is based on the statistic and the COLUMN= value, as
shown in the following table. For example, if the statistic is SUM and the
COLUMN= value is Sales, then the default caption is Sum of Sales.

Table A1.6 Defaults for the CAPTION= Option If No Caption Is Specified

Statistic Used for Measure Default Caption

AVG Average measure-column-name

CSS Corrected Sum of Squares of
measure-column-name

CV Measure-column-name Coefficient of
Variation

LCLM Measure-column-name Lower Confidence
Limit

MAX Maximum measure-column-name

MIN Minimum measure-column-name

N Number of Values for measure-column-name

110 AGGREGATION Statement � Appendix 1

Statistic Used for Measure Default Caption

NMISS Number of Missing Values for
measure-column-name

PRT Probability of Greater Absolute Value for
measure-column-name

RANGE Measure-column-name Range

STD Measure-column-name Standard Deviation

STDERR Measure-column-name Standard Error of
Mean

SUM Sum of measure-column-name

T Measure-column-name T Value

UCLM Measure-column-name Upper Confidence
Limit

USS Measure-column-name Uncorrected Sum of
Squares

VAR Measure-column-name Variance

AGGR_COLUMN=input-column
specifies the name of the numeric column in the summarized input data that
contains the values for the measure. The source of the summarized input data is
specified in the AGGREGATION statement. This option is valid only for stored
statistics.
Default: measure-name

UNITS=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the measure’s units (for example, “pounds sterling”). Third-party
applications that report on cube data might display this description. If the text
includes blank spaces, mixed-case letters, special characters, then enclose the text
within quotation marks.

FORMAT=sas-format-name
specifies the SAS format to be used to display the value of the measure. This
format overrides the default format (see STAT= for more information) and any
format that is specified in a SAS FORMAT statement.

Note: When you rebuild a cube that has been physically deleted, the rebuilt
cube still uses the formats that were originally saved in the cube’s metadata. This
means that the rebuilt cube does not automatically include any formatting
changes that you might have made in the input data source. To manually specify
the new formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

DEFAULT
identifies a measure as the default measure for the cube.
Default: The measure defined in the first MEASURE statement

AGGREGATION Statement
The AGGREGATION statement defines an aggregation of the cube based on level

information that you provide.

PROC OLAP � Options 111

AGGREGATION level-name1 <level-name2 level-name3 ... level-nameN> < /
TABLE=libname.dataset ></ NAME=’ aggregation-name’>;

You can specify level names that are associated with an unsummarized data source,
or you can specify level names that match columns in a table that contains existing
aggregated data. The levels can exist in more than one dimension. You do not need to
include dimension names because level names must be unique across dimensions

Here is an example of an AGGREGATION statement that specifies three levels and
uses the / NAME= option:

AGGREGATION country prodtype year /name=’Product Types by Country’;

Required Arguments
level-name1 <level-name2 level-name3 ...level-nameN>

is the name of one or more levels to be used to create the aggregation. You do not
have to include all levels that are specified in all HIERARCHY statements, but the
names that you do specify must match the names that are used in the
HIERARCHY statements. You can include a TABLE= option to identify a table
that contains existing aggregated information for your specified levels. The levels
that you specify must match columns in the input table.
Restriction: Levels must be listed in drill-path order. In addition, levels must

be contiguous within a hierarchy. You cannot specify an aggregation that
contains a summary level that could never be requested. For example, if your
TIME hierarchy contains the level Year, Month, and Day, you could specify Year
and Month as an aggregation but not Month by itself.

Options
Note: For information about options that can be used to optimize cube creation and

query performance, see Syntax Options Used for Performance. �

/ TABLE=libname.dataset
specifies the name of a SAS data set or data view that contains the data for one
aggregation. Every level that is listed in the AGGREGATION statement must
match a column that contains aggregation information in the specified table. Place
this option after the list of level names.

Analysis columns in the table are mapped to the numeric columns that are
specified with the AGGR_COLUMN= option in MEASURE statements.

You can also set data set options with /TABLE=. Options are stored within the
cube and reapplied when the data is accessed at run time. For more information,
see “Data Set Options” in SAS Language Reference: Concepts.
Restriction: You cannot use the /TABLE= option in an AGGREGATION

statement that is used to add an aggregation to an existing cube.

/ NAME=’aggregation-name’
specifies a maximum of 256 characters as the name of the aggregation. If the
name includes blank spaces or any characters that are not permitted in a valid
SAS name, then enclose the name within quotation marks. The name is stored
with the cube’s metadata. Place this option after the list of level names. An
example is AGGREGATION Year Month Product / NAME= ’Year Prod’;.

Default: A name assigned by SAS such as AGGR1

Requirement: You must include a / before the TABLE= and NAME= options;
however, if you use both options, you include only one slash. An example is

112 DROP_AGGREGATION Statement � Appendix 1

AGGREGATION Year Month Product / TABLE=financial.products
NAME=’Year Prod’;.

DATAPATH=(’path-name’ ...’pathnameN’)
specifies the location of one or more partitions (.DPF files) in which to place
aggregation table data. The data is distributed by cycling through each partition
location according to the partition size. This is set by using the PARTSIZE=
option. For example, if you specify DATAPATH=(’c:\data1’ ’d:\data2’), then
PROC OLAP places the first partition of the aggregation table into directory
c:\data1, the second partition of the table into directory d:\data2, the third
partition of the table into c:\data1, and so on. It is also possible to have
aggregation tables that use fewer than the specified number of partitions. For
example, your aggregation table might fit entirely into c:\data1.

Default: The cube subdirectory of the location that is specified by the PATH=
option in the PROC OLAP statement

INDEXPATH=(’path-name’ ...’pathnameN’)
specifies the locations of the index component files (.IDX and .HYB files) that
correspond to each aggregation table partition as specified by the DATAPATH=
option.

Default: The cube subdirectory of the location that is specified by the PATH=
option in the PROC OLAP statement

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation table in a compressed format on
disk.

Default: NOCOMPRESS

INDEX | NOINDEX
specifies whether or not to create the specified aggregation with indexes. For
faster cube creation and updates, you can set this option to NOINDEX; however,
the lack of indexes might adversely affect query performance.

Note: Indexes are not created for aggregations that have fewer than 1,024
records. �

Default: INDEX

PARTSIZE=size-in-megabytes
specifies the partition size in megabytes of the aggregation table partitions (.DPF
files) and their corresponding index components (.IDX and .HYB files).

Default: 128 megabytes. The minimum value is 16.

SEGSIZE=number-of-rows-in-kb
specifies the number of observations (table rows) in kilobytes to include in the file
segment of the index component. The minimum size is 1k (1,024 rows), so the
value of SEGSIZE= is a multiple of 1024 as expressed in kilobytes. The segmented
indexes are used to optimize WHERE-expression processing. Each parallel thread
is given a segment of the table to evaluate that is equal to the SEGSIZE= value.

Default: 8 kilobytes (8,192 rows). The minimum size is 1 kilobyte (1,024 rows).

DROP_AGGREGATION Statement

The DROP_AGGREGATION statement removes an aggregation from the specified
cube.

PROC OLAP � DEFINE Statement 113

DROP_AGGREGATION level-name1 < level-name2 ... level-nameN > /
NAME=aggregation-name ;

You can specify the levels that are in the aggregation, or the name of the
aggregation, or both the levels and the name.

Required Arguments
At least one of the following arguments is required for a DROP_AGGREGATION

statement:

level-name1 <level-name2 ... level-nameN>
specifies the names of the levels that are in the aggregation that you want to drop.
An example is DROP_AGGREGATION Year Month Product.

/ NAME=’aggregation-name’
specifies the name of the aggregation that you want to drop. If the name includes
blank spaces or any characters that are not permitted in a valid SAS name, then
enclose the name within quotation marks. An example is DROP_AGGREGATION
NAME=‘‘Year Prod’’.
Requirement: You must include a / before NAME= if you specify both a list of

levels and a name. An example is DROP_AGGREGATION Year Month Product /
NAME=’Year Prod’.

DEFINE Statement
The DEFINE statement defines a global calculated member or a named set for any

cube that is registered in the SAS Metadata Repository.

DEFINE MEMBER | SET ’member-or-set-name’ AS ’mdx-expression’ ;

A calculated member is a dimension member that has been calculated from the
member values in the input table. Only the definition of the member is stored; the
value is calculated when a query is submitted. A named set is an alias for a specified
MDX expression. Named sets are often used to make complex MDX queries easier to
read and maintain.

The defined calculated members and named sets are available to any session that
creates a query in the context of the OLAP Server and the schema defined in the
METASRV statement of the proc olap script used to create the global member or set.

DEFINE statements can apply to more than one cube, so the CUBE= option is not
required to use this statement. The METASVR statement verifies that the cube
definition exists in the metadata repository.

The DEFINE statement can be used alone as shown in this example, which defines
two calculated members and one named set. The METASVR is the only other required
statement. To define multiple sets or cubes, separate option values with a comma.

PROC OLAP;
METASVR OLAP_SCHEMA=’Services Schema’

REPOSITORY=’services’
HOST=’misdept.us.mar.com’
PORT=9999
PROTOCOL=com
USERID=jjones

114 Required Arguments � Appendix 1

PW=’my password’;
DEFINE member ’[mddbcars].[Measures].[avg]’ AS

’[Measures].[sales_sum]/[Measures].[sales_n]’,
member ’[sales].[Measures].[stat1]’ AS

’[Measures].[qty] +1’,
set ’[campaign].[myset]’ AS

’[campaign_dates].[All compaign_dates].children’;
run;

The DEFINE statement can also be used with a PROC OLAP program that creates a
cube or with a program that adds aggregations to or deletes aggregations from an
existing cube. Cube builds, additions, and deletions occur before the DEFINE statement
is processed, so the DEFINE statement is not processed if those statements fail.

PROC OLAP DATA=olapsio.cars CUBE=mddbcars PATH=’d:\services\’;

METASVR OLAP_SCHEMA=’Services Schema’
REPOSITORY=’cars’
HOST=’misdept.us.mar.com’
PORT=9999
PROTOCOL=com
USERID=jjones
PW=’my password’;

DIMENSION date HIERARCHIES=(date) SORT_ORDER=ASCENDING;
HIERARCHY date LEVELS=(dte);
LEVEL dte;

DIMENSION cars HIERARCHIES=(cars) SORT_ORDER=ASCENDING;
HIERARCHY cars LEVELS=(car color);

DIMENSION dealers HIERARCHIES=(dealers) SORT_ORDER=ASCENDING;
HIERARCHY dealers LEVELS=(dealer dest);

MEASURE sales_sum COLUMN=SALES STAT=sum FORMAT=dollar15.2;
MEASURE sales_n COLUMN=SALES STAT=n FORMAT=12.0;

DEFINE member ’[mddbcars].[Measures].[avg]’ AS
’[Measures].[sales_sum] / [Measures].[sales_n]’;

run;

Required Arguments

MEMBER | SET
indicates whether you are creating a calculated member or a named set.

’member-or-set-name’
specifies the name of the member or set that you are creating. If you are creating
a calculated member, then this value specifies a name for the member that will be
calculated by the MDX expression. If you are creating a named set, then this
value is the alias for the specified MDX expression.

PROC OLAP � USER_DEFINED_TRANSLATIONS Statement 115

AS ’mdx-expression’
specifies the MDX expression.

USER_DEFINED_TRANSLATIONS Statement

The USER_DEFINED_TRANSLATIONS statement is required to use the Multiple
Language Support capabilities of the SAS OLAP Server. This statement specifies the
locales that are associated with the data sets that you specify in the DIMENSION
statement.

USER_DEFINED_TRANSLATIONS one or more of 56 locales ;

Note: Alternative statement names are UDT and
USER_DEFINED_TRANSLATION. �

PROC OLAP uses the UDT statement information, along with DIMENSION
statement options, to read your alternate locale data sets and create locale-specific
metadata for use at query time. Query results are returned in the language of the
requested locale. The Multiple Language Support feature is available only for cubes
that are loaded from a star schema. The alternate locale data set names consist of a
prefix, which indicates the member, and a suffix, which indicates the language. The
DEFINE statement supplies the suffix. The DIMTABLEMEMPREF= option in the
DIMENSION statement specifies the member prefix. For example, if the member prefix
is dealdim_ and the suffix is pl_PL, then PROC OLAP looks for a data set named
dealdim_pl_PL.sas7bdat in the library that is specified by the DIMTABLELIBREF=
option.

The following sample code looks for these dimension data sets in the mylib library.
The default locale is the first locale specified in the UDT statement. Additionally, the
default locale does not use the suffix that is defined by the UDT statement. In this
example, Polish is the default locale, so the suffix is not used.

Table A1.7 Locales and Associated Data Set Names

Locale Dimension Data Sets

English ctimedim_en_US cardim_en_US dealdim_en_US

Japanese ctimedim_ja_JP cardim_ja_JP dealdim_ja_JP

Polish ctimedim_ cardim_ dealdim_

DIMENSION date hierarchies=(date) sort_order=ASCENDING
dimtablelibref=mylib
dimtablemempref=ctimedim_
factkey=dte
dimkey=dte;

HIERARCHY date levels=(dte);
LEVEL dte;
DIMENSION cars hierarchies=(cars) sort_order=ASCENDING

dimtablelibref=mylib
dimtablemempref=cardim_
factkey=carkey
dimkey=carkey;

116 Required Argument � Appendix 1

DIMENSION cars levels=(car color);
DIMENSION dealers hierarchies=(dealers) sort_order=ASCENDING

dimtablelibref=mylib
dimtablemempref=dealdim_
factkey=dealerkey
dimkey=dealerkey;

HIERARCHY dealers levels=(dealer dest);

USER_DEFINED_TRANSLATIONS pl_PL en_US ja_JP;

Required Argument
one or more of 56 locales

specifies the locales that correspond to the data sets contained in the library that
is specified by the DIMTABLELIBREF= option in the DIMENSION statement.
Separate locales with a space. Your choices are listed below:

ar_AE=Arabic
(United Arab
Emirates)

bg_BG=Bulgarian
(Bulgaria)

be_BY=Byelorussian
(Belarus)

zh_CN=Chinese
(China)

zh_HK=Chinese
(HongKong)

zh_MO=Chinese
(Macau)

zh_SG=Chinese
(Singapore)

zh_TW=Chinese
(Taiwan)

hr_HR=Croatian
(Crotia)

cs_CZ=Czech (Czech
Republic)

da_DK=Danish
(Denmark)

nl_NL=Dutch
(Netherlands)

en_AU=English
(Australia)

en_CA=English
(Canada)

PROC OLAP � Required Argument 117

en_CB=English
(Caribbean)

en_IE=English
(Ireland)

en_JM=English
(Jamaica)

en_NZ=English
(New Zealand)

en_ZA=English
(South Africa)

en_GB=English
(United Kingdom)

en_US=English
(United States)

et_EE=Estonian
(Estonia)

fi_FI=Finnish
(Finland)

fr_BE=French
(Belgium)

fr_CA=French
(Canada)

fr_FR=French
(France)

fr_CH=French
(Switzerland)

de_AT=German
(Austria)

de_DE=German
(Germany)

de_CH=German
(Switzerland)

el_GR=Greek
(Greece)

he_IL=Hebrew
(Israel)

hu_HU=Hungarian
(Hungary)

is_IS=Icelandic
(Iceland)

it_IT=Italian (Italy)

it_CH=Italian
(Switzerland)

ja_JP=Japanese
(Japan)

118 SAS Servers and Character Encoding � Appendix 1

ko_KR=Korean
(South Korea)

lv_LV=Latvian
(Lettish) (Latvia)

lt_LT=Lithuanian
(Lithuania)

no_NO=Norwegian
(Norway)

pl_PL=Polish
(Poland)

pt_BR=Portuguese
(Brazil)

pt_PT=Portuguese
(Portugal)

ro_RO=Romanian
(Romania)

ru_RU=Russian
(Russia)

sr_YU=Serbian
(Yugoslavia)

sk_SK=Slovak
(Slovakia)

sl_SI=Slovenian
(Slovenia)

es_MX=Spanish
(Mexico)

es_ES=Spanish
(Spain)

sv_SE=Swedish
(Sweden)

th_TH=Thai
(Thailand)

tr_TR=Turkish
(Turkey)

uk_UA=Ukrainian
(Ukraine)

vi_VN=Vietnamese
(Vietnam)

SAS Servers and Character Encoding
If your server metadata contains characters other than those typically found in

English, then you must be careful to start your server with an encoding= or locale=
system option that accommodates those characters. For example, a SAS server started

PROC OLAP � Tables Used to Define Cubes 119

with the default US English locale cannot read metadata that contains Japanese
characters. SAS will fail to start and log a message indicating a transcoding failure.

In general, different SAS jobs or servers can run different encodings (such as ASCII/
EBCDIC or various Asian DBCS encodings) as long as the encoding that is used by the
particular job or server can represent all the characters of the data being processed. In
the context of server start up, this requires that you review the characters used in the
metadata describing your server (as indicated by the server= objectserverparm) to
ensure that SAS runs under an encoding that supports those characters.

Tables Used to Define Cubes
There are five types of tables that can be used to define a cube:

� detail tables
� fact tables and dimension tables (for cubes that are based on star schemas)
� aggregation tables
� drill-through tables

Detail Tables
A detail, or base, table is any table that is defined in the SAS Metadata Repository

that contains the columns for the measures and levels of a cube. A detail table consists
of unsummarized data that must include one column for each level and one numeric
analysis column for each set of measures that will be generated.

Fact Tables and Dimension Tables
A star schema refers to a set of input tables that are defined in the SAS Metadata

Repository. A set of tables includes a single fact table and one or more dimension
tables. A fact table must contain one numeric analysis column for each set of measures
that will be generated. For levels, a fact table will either contain the columns for the
levels of a dimension or contain a key column that links the fact table with a dimension
table that contains the columns for the levels of a dimension.

The following statements are also true for star schemas:

� A fact table can contain a dimension. When this occurs, all the level columns are
contained in the fact table and no fact or dimension key is required.

� If the dimension levels are defined in a dimension table, then all the level columns
for that dimension must be contained in the same dimension table.

� Both the dimension keys and the fact keys are single columns, not combinations of
columns.

� The dimension key can also be a level in the dimension.

Aggregation Tables
Aggregation tables are fully summarized, external relational tables. All aggregation

tables must contain a column for each measure in the cube where the statistic for the
measure is one of the following: N, NMISS, SUM, MAX, MIN, or USS. Columns for
derived measures cannot be stored on the aggregation table and are ignored if they
exist. Derived measures are always computed at query time. (See the STAT= option in
the MEASURE statement for more information about stored and derived statistics.)

An aggregation table can be used in two ways:

� As an NWAY data source for the cube. In this case, the table must contain a
column for every level in the cube and a column for every stored measure.

120 Naming Guidelines for SAS OLAP Server � Appendix 1

� As a subaggregation for the cube. In this case, the table must include a column for
each level of the aggregation and a column for every stored measure.

Drill-Through Tables
Drill-through tables are views, data sets, or other data files maintained by the user

that represent all of the relevant input data that is used to define a cube. This data is
later accessed when performing drill-through actions from a client. PROC OLAP checks
that the drill-through table has the correct level and measure names but never looks at
the actual data contents of the table. The name of the drill-through table is stored in
the cube’s metadata in place of a detail or fact table name. (The detail or fact table
name is still referred to when an action is performed on a cube.) The drill-through table
name can be set either when the cube is first created or during an update.

Drill-through tables can be used by client applications to provide a view from
processed data into the underlying data source.

Naming Guidelines for SAS OLAP Server

For SAS OLAP Server, names

� can be up to 32 characters in length.

� can contain mixed-case letters. SAS stores and writes the variable name in the
same case that is used in the first reference to the variable. However, when SAS
processes a variable name, SAS internally converts it to uppercase. You cannot,
therefore, use the same variable name with a different combination of uppercase
and lowercase letters to represent different variables. For example, cat, Cat, and
CAT all represent the same variable.

� can contain characters other than Latin alphabet letters, numerals, and
underscores, including embedded blanks. An exception to this is the dot character
(.), which is an invalid character. You can do this by setting the SAS system option
VALIDVARNAME=ANY. When this is set, PROC OLAP interprets the name as a
SAS name litteral, which is a token that is expressed as a string within quotation
marks, followed by the letter n. Here are some examples:

DIMENSION ’Product@Work Dimension’n hierarchies=(’Product@Work Hierarchy’n);
HIERARCHY "Product@Work Hierarchy"n levels=(prodtype product);

The PROC saves the case of the FIRST LOGICAL ENCOUNTER of an object
name in the PROC script and saves it as the final stored name in the cube
metadata. Therefore, the logical order of statement processing is as follows:

DIMENSION

HIERARCHY

LEVEL

AGGREGATION

MEASURE

PROPERTY.

Every DIMENSION statement is processed before any HIERARCHY statement
and every HIERARCHY statement is processed before any LEVEL statement.
This rule affects hierarchy and level names only. The stored hierarchy names are
copied from the DIMENSION statement and the stored level names are copied
from the first HIERARCHY statement listed in the PROC that uses this level.
Here is an example:

PROC OLAP � Loading Cubes from a Detail Table 121

Hierarchy TimE levels= (Year Month Day);
Dimension Time hierarchies= (Time);
Level YEAR type = year;

In this example the hierarchy name is stored in the cube as “Time” rather than
“TimE”. The level name for year is stored as “Year” rather than “YEAR”. The
AGGREGATION statement does not affect the case of the level names that are
stored in the cube metadata.

Note: For further information about the VALIDVARNAME= system option, see
“VALIDVARNAME=System Option” and “Names in the SAS Language” in SAS
Language Reference: Dictionary. �

Loading Cubes

Loading Cubes from a Detail Table
The following table lists the PROC OLAP statements and options that you use to

load a cube from a detail table. The detail table has a column for each level and at least
one numeric analysis column from which one or more measures can be generated.

Table A1.8 Statements and Options Used for Loading Cubes from a Detail Table

Use these statements Use these options

AGGREGATION The AGGREGATION statement is optional unless you are creating
additional aggregations, in which case, you must specify the names of
the contiguous levels to be used to create the aggregation. Use the /
TABLE= option for cubes that are loaded from fully summarized
tables.

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

LEVEL DESC=

CAPTION=

TYPE=

The LEVEL statement is optional unless you want to specify time
periods for each level in a TIME dimension. If you specify a time
period for one level, then you must specify a time period for all levels.
To specify a time period, you use the TYPE= option.

122 Loading Cubes from a Star Schema � Appendix 1

Use these statements Use these options

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN Required if you use the
AGGREGATION statement with
the /TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

PROC OLAP DATA= Required

CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

Loading Cubes from a Star Schema

The following table lists the PROC OLAP statements and options that you use to
load a cube from a star schema. A star schema is a set of input tables that are defined
in a repository. The set of tables includes a single fact table and one or more dimension
tables. The fact table must contain at least one numeric analysis column for each set of
measures that will be generated.

Table A1.9 Statements and Options Used to Load Cubes from a Star Schema

Use these statements Use these options

PROC OLAP FACT= Required

CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

METASVR OLAP_SCHEMA= Required

PROC OLAP � Loading Cubes from a Star Schema 123

Use these statements Use these options

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

DIMTBL= Required for cubes that support
one locale. If the cube will
contain multiple national
languages, replace this option
with DIMTABLELIBREF= and
DIMTABLEMEMPREF=.

DIMKEY= Required

FACTKEY= Required

DIMTABLELIBREF= Required if you are building a
cube that will contain multiple
national languages. Replaces
DIMTBL=.

DIMTABLEMEMPREF= Required if you are building a
cube that will contain multiple
national languages. Replaces
DIMTBL=.

LEVEL The LEVEL statement is optional
unless you want to specify time
periods for each level in a TIME
dimension. If you specify a time
period for one level, then you
must specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

124 Loading Cubes Using Summarized Data � Appendix 1

Use these statements Use these options

AGGR_COLUMN= Required if you use the
AGGREGATION statement with
the /TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

AGGREGATION The AGGREGATION statement
is optional unless you are
creating additional aggregations,
in which case, you must specify
the names of the contiguous
levels to be used to create the
aggregation. Use the /TABLE=
option for cubes that contain
aggregated data from tables
other than the input data source.

Loading Cubes Using Summarized Data
The following table lists the PROC OLAP statements and options that you use to

load cubes from a fully summarized data source (a crossing of all dimensions also
known as an NWAY):

Table A1.10 Statements and Options Used to Load Cubes from Fully Summarized Data

Use these statements Use these options

PROC OLAP CUBE= Required

PATH= Required

DESC= Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

PROC OLAP � Building a Cube from an Existing Definition 125

Use these statements Use these options

SORT_ORDER= Optional

LEVEL The LEVEL statement is optional
unless you want to specify time
periods for each level in a TIME
dimension. If you specify a time
period for one level, then you
must specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

AGGREGATION names of the contiguous levels to
be used to create the aggregation

Required (additional
AGGREGATION statements
without the /TABLE= option can
be used to create aggregations
other than the automatically
defined NWAY)

/ TABLE= Required

Maintaining Cubes

Building a Cube from an Existing Definition
It is possible to have cube definitions in the SAS Metadata Repository that do not

have associated physical cubes. For example, you can use the DELETE_PHYSICAL=
option in the PROC OLAP statement to delete a cube but leave its definition intact. You
can also use SAS OLAP Cube Studio to save only the definition of a new cube.

The following table lists the PROC OLAP statements and options that you use to
build a cube from an existing metadata definition:

126 Adding Aggregations to an Existing Cube � Appendix 1

Table A1.11 Statements and Options Used to Build a Cube from an Existing Definition

Use these statements Use these options

PROC OLAP CUBE=

METASVR OLAP_SCHEMA=

Adding Aggregations to an Existing Cube
The following table lists the PROC OLAP statements and options that you use to add

aggregations to an existing cube.

Table A1.12 Statements and Options Used to Add Aggregations to an Existing Cube

Use these statements Use these options

PROC OLAP CUBE= Required

METASVR OLAP_SCHEMA= Required

AGGREGATION Names of the contiguous levels to
be used to create the aggregation

Required

/NAME= Optional

DATAPATH= Optional

INDEXPATH= Optional

COMPRESS | NOCOMPRESS Optional

INDEX | NOINDEX Optional

PARTSIZE= Optional

SEGSIZE= Optional

Note: You can add and delete aggregations in the same PROC OLAP script. �

Note: You cannot add aggregations to a cube that contains aggregated data from a
source other than the input data source. �

Deleting Aggregations from an Existing Cube
The following table lists the PROC OLAP statements and options that you use to

delete aggregations from an existing cube.

PROC OLAP � Syntax Options for Managing Ragged Hierarchies 127

Table A1.13 Statements and Options Used to Drop Aggregations from an Existing Cube

Use these statements Use these options

DROP_AGGREGATION Specify one or more level names that correspond to
the aggregations that you want to remove, or use
the aggregation name to specify the aggregation
that you want to remove.

METASVR OLAP_SCHEMA=

PROC OLAP CUBE=

Note: You can add and delete aggregations in the same PROC OLAP script. �

Note: You cannot delete aggregations from a cube that contains aggregated data
from a source other than the input data source. �

Deleting Cubes
The following table lists the PROC OLAP statements and options that you use to

delete aggregations from an existing cube.
If you use the DELETE option, then both the physical cube and its definition, which

is stored in the metadata server, are deleted.

Table A1.14 Statements and Options Used to Delete a Cube and Its Metadata

Use these statements Use these options

METASVR OLAP SCHEMA=

PROC OLAP CUBE=

DELETE

If you use the DELETE_PHYSICAL option, then only the physical cube is deleted;
the definition remains intact.

Table A1.15 Statements and Options Used to Delete a Cube but Retain Its Metadata

Use these statements Use these options

METASVR OLAP_SCHEMA=

PROC OLAP CUBE=

DELETE_PHYSICAL

Specialized Syntax Options for PROC OLAP

Syntax Options for Managing Ragged Hierarchies
If a hierarchy is balanced, then all of its branches descend to the same level, and

each member has a parent level that is positioned immediately above it. However,
hierarchies are not always balanced and sometimes they contain missing hierarchy

128 Syntax Options Used for Performance � Appendix 1

members. To manage missing hierarchy members, you can use these four options,
which were created specifically for ragged hierarchies:

Table A1.16 Options That Can Be Set to Manage Missing Hierarchy Members in Ragged Hierarchies

These options Are available in these statements

EMPTY_CHAR= PROC OLAP and HIERARCHY

EMPTY_NUM= PROC OLAP and HIERARCHY

EMPTY= LEVEL

IGNORE_EMPTY HIERARCHY and LEVEL

Syntax Options Used for Performance
When you create a cube, you can set some options that can be used to optimize cube

creation and query performance. If you set the options in the PROC OLAP statement,
then the settings are applied to all aggregations in the cube. If you set the options in the
AGGREGATION statement, then the options apply to that specific aggregation. Options
set for individual aggregations override any options set in the PROC OLAP statement.

The options are
� INDEXSORTSIZE=
� MAXTHREADS=
� CONCURRENT=
� DATAPATH=
� INDEXPATH=
� COMPRESS | NOCOMPRESS
� NOINDEX | INDEX
� PARTSIZE=
� SEGSIZE= .

Note: INDEXSORTSIZE=, MAXTHREADS=, and CONCURRENT= are available
only on the PROC OLAP statement. �

For an explanation of these options, see the PROC OLAP statement and the
AGGREGATION statement.

129

A P P E N D I X

2
Recommended Reading

Recommended Reading 129

Recommended Reading

Here is the recommended reading list for this title:
� Administrator for Enterprise Clients: User’s Guide
� SAS Data Providers: ADO/OLE DB Cookbook

� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Management Console: User’s Guide

� SAS Metadata Server: Setup Guide
� SAS Open Metadata Architecture Reference
� SAS OLAP Server: Concepts and Excerpts from “MDX Solutions with Microsoft

SQL Server Analysis Services”
� SAS OLAP Server: MDX Guide

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

130

131

Glossary

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

aggregation table
a table that contains pre-calculated totals. Aggregation tables can be referred to by
cubes, reducing the amount of time that is required for building the cubes.

ancestor
within a dimension hierarchy, a member that resides at a higher level in relation to
other members in the hierarchy. For example, if a Geography dimension includes the
levels Continent, Country, and City, then Europe and France would be ancestors of
Paris , and Asia and Thailand would be ancestors of Bangkok.

ARM (Application Response Measurement)
an application programming interface that was developed by an industry partnership
and which is used to monitor the availability and performance of software
applications. ARM monitors the application tasks that are important to a particular
business.

base table
a table that contains detail data that is used for building cubes or aggregation tables.

calculated member
in a dimension, a member whose value is derived from the values of other members.

cell
in a cube, the intersection that is defined by selecting one member from each
dimension of that cube.

child
within a dimension hierarchy, a descendant in level n-1 of a member that is at level
n. For example, if a Geography dimension includes the levels Country and City, then
Bangkok would be a child of Thailand, and Hamburg would be a child of Germany.

cleanse
to improve the consistency and accuracy of data by standardizing it, reorganizing it,
and eliminating redundancy.

132 Glossary

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube includes measures, and it can have numerous dimensions and levels of data.

data cleansing
the process of eliminating inaccuracies, irregularities, and discrepancies from data.

data scrubbing
another term for data cleansing. See data cleansing.

descendant
in a dimension hierarchy, a member that resides at a lower level in relation to other
members in the hierarchy. For example, if a Geography dimension includes the levels
Country, State, and City, then California and Los Angeles would be descendants of
USA .

detail data
nonsummarized (or partially summarized) factual information that pertains to a
single area of interest, such as sales figures, inventory data, or human-resource data.

dimension
a group of closely related hierarchies. Hierarchies within a dimension typically
represent different groupings of information that pertains to a single concept. For
example, a Time dimension might consist of two hierarchies: (1) Year, Month, Date,
and (2) Year, Week, Day. See also hierarchy.

dimension table
in a star schema, a table that contains the data for one of the dimensions. The
dimension table is connected to the star schema’s fact table by a primary key. The
dimension table contains fields for each level of each hierarchy that is included in the
dim ension.

drill down
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more lower levels until you reach the data that you are interested in.

drill up
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more higher levels until you reach the level of summarized data that
you are interested in.

fact
a single piece of factual information in a data table. For example, a fact can be an
employee name, a customer’s phone number, or a sales amount. It can also be a
derived value such as the percentage by which total revenues increased or decreased
from one year to the next.

fact table
the central table in a star schema. The fact table contains the individual facts that
are being stored in the database as well as the keys that connect each particular fact
to the appropriate value in each dimension.

foreign key
a column or combination of columns in one table that references the corresponding
primary key in another table. A foreign key must have the same attributes as the
primary key that it references.

granularity
the relative level of detail that a data item represents. From the top of a dimension
to the bottom, granularity increases. For example, in a Time dimension that consists

Glossary 133

of a Year-Month-Day hierarchy, Month is more granular than Year, and Day is more
gra nular than Month.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of the members
Year, Qua rter, Month, and Day. In a Geography dimension, a hierarchy might consist
of the members Country, State or Province, and City. More than one hierarchy can be
defined for a dimension. Each hierarchy provides a navigational path that enables
users to drill down to increasing levels of detail. See also member, level.

HOLAP (hybrid online analytical processing)
a type of OLAP in which relational OLAP (ROLAP) and multidimensional OLAP
(MOLAP) are combined. In HOLAP, the source data is usually stored using a ROLAP
strategy, and aggregations are stored using a MOLAP strategy. This combination
usually results in the smallest amount of storage space. In HOLAP, aggregates can
be pre-calculated and can be linked into a hybrid storage model.

leaf member
the lowest-level member of a hierarchy. Leaf members do not have any child
members.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

MDDB (multidimensional database)
another term for cube. See cube.

MDX (multidimensional expressions) language
a standardized, high-level language that is used for querying multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language).

measure
a special dimension that contains summarized numeric data values that are
analyzed. Total Sales and Average Revenue are examples of measures. For example,
you might drill down within the Clothing hierarchy of the Product dimension to see
the value of the Total Sales measure for the Shirts member.

member
a name that represents a particular data item within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either
unique or non-unique. For example, 1997 and 1998 represent unique members in the
Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

metadata profile
a definition of where a metadata server is located. The definition includes a host
name, a port number, and a list of one or more metadata repositories. In addition,
the metadata profile can contain a user’s login information and instructions for
connecti ng to the metadata server automatically.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. A SAS Metadata Repository is an
example.

134 Glossary

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

MOLAP (multidimensional online analytical processing)
a type of OLAP that stores aggregates in multidimensional database structures.

navigate
to purposefully move from one view of the data in a table (or in some other data
structure, such as a cube) to another. Drilling down and drilling up are two examples
of navigation.

NWAY aggregation
the aggregation that has the minimum set of dimension levels that is required for
answering any business question. The NWAY aggregation is the aggregation that has
the finest granularity. See also granularity.

OLE
(Object Linking
and Embedding)

a method of interprocess communication supported by Windows that involves a
client/server architecture. OLE enables an object that was created by one application
to be embedded in or linked to another application.

OLE DB
an open specification that has been developed by Microsoft for accessing both
relational and nonrelational data. OLE DB interfaces can provide much of the same
functionality that is provided by database management systems. OLE DB evolved
from the Open Database Connectivity (ODBC) application programming interface.
See also OLE (Object Linking and Embedding).

OLE DB for OLAP
an OLAP API that is used to link OLAP clients and servers by means of a
multidimensional expressions (MDX) language. See also MDX (multidimensional
expressions) language.

Open Metadata Architecture
See SAS Open Metadata Architecture.

parallel processing
a method of processing that divides a large job into several smaller jobs that can be
executed in parallel on multiple CPUs.

parent
within a dimension hierarchy, the ancestor in level n of a member in level n-1. For
example, if a Geography dimension includes the levels Country and City, then
Thailand would be the parent of Bangkok, and Germany would be the parent of
Hamburg. The paren t value is usually a consolidation of all of its children’s values.

primary key
a column or combination of columns that uniquely identifies a row in a table.

reach-through
the act of retrieving and displaying to a user the (unsummarized) detail data from
which the summarized data in a multidimensional database is derived, when that
detail data is stored in a separate data repository.

result set
the set of rows or records that a server or other application returns in response to a
query.

Glossary 135

ROLAP (relational online analytical processing)
a type of OLAP in which the multidimensional data is stored in a relational database.

roll up
to summarize (or apply some other type of calculation or formula to) data values at
one level of a dimension hierarchy in order to derive values for a parent level. For
example, sales figures for January can be rolled up to Quarter1, and employee data
for one department can be rolled up to the division level.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system op tions, which enable you to manage the ARM environment and to log
internal SAS processing transactions. See also ARM (Application Response
Measurement).

SAS Metadata Repository
a repository that is used by the SAS Metadata Server to store and retrieve metadata.
See also SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories. The SAS Metadata Server uses the
Integrated Object Model (IOM), which is provided with SAS Integration Technologies,
to communicate wi th clients and with other servers.

SAS name
a name that is assigned to items such as SAS variables and SAS data sets. The first
character must be a letter or an underscore. Subsequent characters can be letters,
numbers, or underscores. Blanks and special characters (except the underscore) are
not a llowed. The maximum length of a SAS name depends on the language element
that it is assigned to. Many SAS names, such as names of DATA step variables and
array names, can be 32 characters long. Others, such as librefs and filerefs, have a
maximum length o f 8 characters.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried
using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS Open
Metadata Interface

a set of methods that enable users to read metadata from or write metadata to the
SAS Metadata Server.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

136 Glossary

scrubbing
another term for data cleansing. See data cleansing.

shared dimension
a dimension that is used by more than one cube.

slice
a subset of data from a cube, where the data in the slice pertains to one or more
members of one or more dimensions. For example, from a cube that contains data
about customer feedback, one slice might pertain to feedback on one particular
product (one me mber of the Product dimension). Another slice might pertain to
feedback on that product from customers residing in particular geographic areas who
submitted their feedback during a certain time period (one member of the Product
dimension, multiple members of the Geography dimension, one or more members of
the Time dimension).

sparsity
See data sparsity.

SPDE (Scalable Performance Data Engine)
a SAS engine that is able to deliver data to applications rapidly because it organizes
the data into a streamlined file format. SPDE divides a problem (such as a WHERE
clause) into smaller problems that can be processed in parallel. See also parallel proc
essing.

SQL (Structured Query Language)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system objects.

stacking
the act or process of storing individual aggregations in separate files. SAS OLAP
Server supports stacking by storing generated MOLAP aggregations in individual
files and allowing each aggregation to point to an external file.

star schema
tables in a database in which a single fact table is connected to multiple dimension
tables. This is visually represented in a star pattern. SAS OLAP cubes can be
created from a star schema.

stored statistics
statistics that are stored in a cube. Stored statistics can be used to derive
higher-level statistics. Examples include sum, minimum, and maximum.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating environment. In a symmetric
multiprocessing (SMP) environment, which uses multiple CPUs, multiple threads can
be spawned and proces sed simultaneously. Regardless of whether there is one CPU
or many, each thread is an independent flow of control that is scheduled by the
operating system. See also threading, thread-enabled operating environment, SMP
(symmetric multiprocessing).

threaded I/O
I/O that is performed by multiple threads in order to increase its speed. In order for
threaded I/O to improve performance significantly, the application that is performing
the I/O must be capable of processing the data rapidly as well. See also thread.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the

Glossary 137

³boss-workerµ model of threading, the same code for the I/O or calculation process is
executed s imultaeously in separate threads on multiple CPUs. In the ³pipelineµ
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs. See also SMP (symmetric multiprocessing),
parallel processing, parall el I/O.

Time dimension
a dimension that divides time into levels such as Year, Quarter, Month, and Day.

tuple
a data object that contains two or more components. In OLAP, a tuple is a slice of
data from a cube. It is a selection of members (or cells) across dimensions in a cube.
It can also be viewed as a cross-section of member data in a cube. For example, ([tim
e].[all time].[2003], [geography].[all geography].[u.s.a.], [measures].[actualsum]) is a
tuple that contains data from the Time, Geography, and Measures dimensions.

wizard
an interactive utility program that consists of a series of dialog boxes, windows, or
pages. Users supply information in each dialog box, window, or page, and the wizard
uses that information to perform a task.

138

Index 139

Index

A
access control templates (ACTs) 37
ACTs (access control templates) 37
ADO MD

cubes with 79
AGGR_COLUMN= option

MEASURE statement (OLAP) 110
aggregation design 6
AGGREGATION statement

OLAP procedure 110
aggregation tables

defining cubes with 119
aggregations 3

adding to cubes 126
deleting from cubes 112, 126

ANALYSIS argument
MEASURE statement (OLAP) 108

Authorization Manager plug-in 36

C
CAPTION= option

DIMENSION statement (OLAP) 100
HIERARCHY statement (OLAP) 106
LEVEL statement (OLAP) 103
MEASURE statement (OLAP) 109
PROPERTY statement (OLAP) 104

cells 3
change management

SAS OLAP Cube Studio 39
character encoding

SAS servers and 75, 118
code conversion 86
COLUMN argument

MEASURE statement (OLAP) 108
COLUMN= option

PROPERTY statement (OLAP) 104
COMPRESS option

AGGREGATION statement (OLAP) 112
PROC OLAP statement 96

CONCURRENT= option
PROC OLAP statement 95

cube aggregations
manually tuning 73
performance options 76
tuning options 76

cube cache 31

Cube Designer
defining member properties 69
defining multiple hierarchies 70
defining ragged hierarchies 71
dimension table translations 74
setting cube options 76

cube metadata
refreshing 67
storage location requirements 18, 47

CUBE= option
PROC OLAP statement 93

cubes 2
accessing from SAS 40
adding aggregations to 126
adding system options to 75
ADO MD with 79
building 45, 46
building from detail tables 48
building from existing definition 125
building from star schema 61
building from summary tables 55
data management 5
defining member properties 68
defining tables for 18
defining with tables 119
deleting 127
deleting aggregations from 112, 126
Excel 2000 PivotTable with 80
Excel 2000 with 80
loading from detail tables 121
loading from star schema 122
loading with summarized data 124
maintenance 5
metadata servers and 38
metadata storage 4
multi-threading capabilities 5
OLE DB for OLAP with 79
ProClarity Professional with 83
SAS products with 80
saving OLAP procedure code 51
securing 35
setup 5
SQL Pass-Through Facility and 40
storage space reduction 4
structure of 3
third-party clients with 80
updating 67
usage 4

D
data analysis

aggregation design 6
data preparation 5
dimension design 5

data cache 32
disabling 32
enabling 32
memory size for 32

data conversion 85
DATA= option

PROC OLAP statement 93
data preparation 5
data sets

data conversion and migration 85
data storage

cubes and 4
OLAP 1

DATAPATH= option
AGGREGATION statement (OLAP) 112
PROC OLAP statement 95

DEFAULT option
HIERARCHY statement (OLAP) 106
MEASURE statement (OLAP) 110

DEFINE statement
OLAP procedure 113

DELETE option
PROC OLAP statement 97

DELETE_PHYSICAL option
PROC OLAP statement 97

DESC= option
DIMENSION statement (OLAP) 100
HIERARCHY statement (OLAP) 105
LEVEL statement (OLAP) 102
MEASURE statement (OLAP) 109
PROC OLAP statement 94
PROPERTY statement (OLAP) 104

detail tables
building cubes from 48
defining cubes with 119
loading cubes from 121

dimension design 5
DIMENSION statement

OLAP procedure 99
dimension table translations 74
dimension tables

defining cubes with 119
dimensions 3

multiple hierarchies for 69

140 Index

permission condition for 37
ragged hierarchies for 70

DIMKEY= option
DIMENSION statement (OLAP) 101

DIMTABLELIBREF= option
DIMENSION statement (OLAP) 101

DIMTABLEMEMPREF= option
DIMENSION statement (OLAP) 101

DIMTBL= option
DIMENSION statement (OLAP) 100

drill-through tables
defining cubes with 120

DRILLTHROUGH_TABLE= option
PROC OLAP statement 93

DROP_AGGREGATION statement
OLAP procedure 112

E
EMPTY= option

LEVEL statement (OLAP) 103
EMPTY_CHAR= option

HIERARCHY statement (OLAP) 106
PROC OLAP statement 94

EMPTY_NUM= option
HIERARCHY statement (OLAP) 106
PROC OLAP statement 94

encryption
defining for SAS OLAP Server 25

Excel 2000
cubes with 80

Excel 2000 PivotTable
cubes with 80

executable files
creating 12

execution threads 33

F
FACT= option

PROC OLAP statement 93
fact tables

defining cubes with 119
FACTKEY= option

DIMENSION statement (OLAP) 101
FORMAT= option

MEASURE statement (OLAP) 110

G
groups

assigning 35

H
HIERARCHIES= argument

DIMENSION statement (OLAP) 99
HIERARCHY= option

PROPERTY statement (OLAP) 104
HIERARCHY statement

OLAP procedure 70, 105

HOST= option
METASVR statement (OLAP) 98

hyper-cubes
See cubes

I
IGNORE_EMPTY option

HIERARCHY statement (OLAP) 106
LEVEL statement (OLAP) 103

INDEX option
AGGREGATION statement (OLAP) 112
PROC OLAP statement 96

INDEXPATH= option
AGGREGATION statement (OLAP) 112
PROC OLAP statement 96

INDEXSORTSIZE= option
PROC OLAP statement 94

Integrated Object Model (IOM) 4
IOM (Integrated Object Model) 4

J
Java Virtual Machine (JVM)

SAS OLAP Server and 27

L
LEVEL= argument

PROPERTY statement (OLAP) 104
LEVEL statement

OLAP procedure 102
levels 3
LEVELS= argument

HIERARCHY statement (OLAP) 105
library definitions

creating for source data tables 17
loading cubes

from detail tables 121
from star schema 122
with summarized data 124

M
MAXTHREADS= option

PROC OLAP statement 95
MDDB procedure

code conversion and migration 86
comparing code with OLAP procedure

code 89
MDDBs

data conversion and migration 85
MEASURE statement

OLAP procedure 107
measures 3
MEMBER argument

DEFINE statement (OLAP) 114
member properties 68
members 3
memory

for data cache 32
SAS Workspace Servers 16

metadata promotion 39
metadata replication 40
metadata server options

SAS OLAP Cube Studio 39
SAS OLAP Server 39

metadata servers
cubes and 38

metadata source control 40
metadata storage

cubes 4
METASVR statement

OLAP procedure 97
Microsoft Office Web Components 2000/2002

PivotTable 82
migration 85
multi-cubes

See cubes
multi-threading

cubes and 5
multiple language support 74

N
/NAME= argument

DROP_AGGREGATION statement
(OLAP) 113

/NAME= option
AGGREGATION statement (OLAP) 111

naming guidelines
SAS OLAP Server 120

NO_NWAY option
PROC OLAP statement 94

O
object spawners

controlling SAS Workspace Servers 15
OLAP 1

benefits of 2
data storage and access 1
SAS 8 functionality vs. 9.1 86
SQL Pass-Through Facility for 40

OLAP procedure 92
building cubes 51
code conversion and migration 86
comparing code with MDDB procedure

code 89
defining cubes 69
defining ragged hierarchies 72
dimension table translations 75
overview 92
performance options 128
ragged hierarchy options 127
saving code for cubes 51
setting cube options 77
syntax 92
tuning cube aggregates 74

OLAP_SCHEMA= argument
METASVR statement (OLAP) 98

OLE DB for OLAP
cubes with 79

omaconfig.xml file 11
Online Analytical Processing

See OLAP

Index 141

Open Metadata Architecture

configuring 9

directory setup 10

file access permissions 10

P
PARTSIZE= option

AGGREGATION statement (OLAP) 112

PROC OLAP statement 96

PATH= option

PROC OLAP statement 93

performance

cube aggregations 76

OLAP procedure options for 128

SAS OLAP Server 27

performance data files

cleaning up temporary files 27

PivotTable and PivotChart Wizard 80

PivotTables

Microsoft Office Web Components 2000/
2002 82

saving as Web page 82

PORT= option

METASVR statement (OLAP) 98

PROC OLAP 92

PROC OLAP statement 92

ProClarity Professional

cubes with 83

PROPERTY statement

OLAP procedure 69, 103

PROTOCOL= option

METASVR statement (OLAP) 98

PW= option

METASVR statement (OLAP) 98

R
ragged hierarchies

defining for a dimension 70

OLAP procedure options for 127

unique member names and 73

REFRESH statement

MDX DDL 68

repositories

SAS Management Console 14

SAS Metadata repository 21

REPOSITORY= option

METASVR statement (OLAP) 98

S
SAS Configuration Wizard 9

SAS Management Console

setting up and configuring 14

setting up as SAS Workspace Server 15

setting up repositories 14

SAS Metadata Repository

adding an OLAP server to 21

conversion and migration 86

SAS Metadata Server 4

starting 12

starting as Windows service 13

SAS OLAP Cube Studio

building cubes 48

change management 39

metadata server options 39

setting up and configuring 14

SAS OLAP Server 3

changing configuration 28

configuring server options 28

encryption for 25

installing and configuring 8

Java Virtual Machine and 27

metadata server options 39

monitoring performance 27

naming guidelines 120

optimizing 31

product installations 9

script for 22

starting as a service 24

system access permissions 21

SAS OLAP Server Monitor plug-in 34

monitoring and administering sessions 34

SAS Open Metadata Interface 4

SAS servers

character encoding and 75, 118

SAS Workspace Servers

controlling with object spawner 15

defining tables 18

memory usage options 16

registering tables without 19

setting up SAS Management Console as 15

scripts

SAS OLAP Server 22

SEGSIZE= option

AGGREGATION statement (OLAP) 112

PROC OLAP statement 96

SET argument

DEFINE statement (OLAP) 114

SORT_ORDER= option

DIMENSION statement (OLAP) 100

LEVEL statement (OLAP) 103

source data tables

creating library definitions for 17

special users

configuring 11

SQL Pass-Through Facility

for OLAP 40

star schema

building cubes from 61

loading cubes from 122

STAT= argument

MEASURE statement (OLAP) 107

summarized data

loading cubes with 124

summary tables

building cubes from 55

system access permissions

SAS OLAP Server 21

UNIX 10

Windows 10

system options

adding to cubes 75

T
/TABLE= option

AGGREGATION statement (OLAP) 111

tables

defining cubes with 119

defining for building cubes 18

registering without a SAS Workspace
Server 19

third-party clients

cubes with 80

tuning cube aggregations 73, 76

TYPE= option

DIMENSION statement (OLAP) 100

LEVEL statement (OLAP) 103

U
UNITS= option

MEASURE statement (OLAP) 110

UNIX

system access permissions 10

User Manager plug-in 35

USER_DEFINED_TRANSLATIONS statement

OLAP procedure 75, 115

USERID= option

METASVR statement (OLAP) 98

users

assigning 35

W
Web pages

saving PivotTable as 82

Windows

system access permissions 10

Windows services

starting SAS Metadata Server as 13

WORKPATH= option

PROC OLAP statement 95

Your Turn

If you have comments or suggestions about SAS 9.1 OLAP Server: Administrator’s
Guide, please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details

	OLAP Introduction and Overview
	What Is OLAP?
	Data Storage and Access
	Benefits of OLAP

	What Is a Cube?
	Understanding the Cube Structure
	What Is SAS OLAP Server?
	About Cube Metadata Storage
	Why You Should Use Cubes
	Cube Usage and Storage Space Reduction
	Multi-Threading Capabilities
	Easy Setup and Maintenance
	Data Management: Choosing Your Own Tool

	Analyzing Your Data
	Data Preparation and Dimension Design
	Aggregation Design

	Installing and Administering SAS OLAP Server
	Installing and Configuring SAS OLAP Server
	Product Installations
	SAS Configuration Wizard
	Configuring and Setting Up Open Metadata Architecture
	Setting Up and Configuring SAS Management Console and SAS OLAP Cube Studio
	Cleaning Up Temporary Performance Data Files
	Java Virtual Machine and SAS OLAP Server

	Monitoring OLAP Server Performance
	Changing an OLAP Server Configuration
	Configuring Server Options

	Optimizing OLAP Server
	Cube Cache
	Data Cache
	Number of Execution Threads

	Monitoring and Administering Sessions—SAS OLAP Server Monitor Plug- In
	Securing Cubes
	Assigning Users and Groups in the User Manager Plug-In
	Authorization Manager Plug-In
	Invoking a Secured Metadata Server

	Cubes and the Metadata Server
	Specifying Metadata Server Options in SAS OLAP Cube Studio
	Specifying Metadata Server Options When Invoking SAS OLAP Server

	Understanding Change Management in SAS OLAP Cube Studio
	Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP
	Conversion Issues
	PROC SQL Syntax
	SQL Pass-Through Example

	Building and Updating Cubes
	Background
	Preparations for Building a Cube
	Storage Location Requirements for Cube Metadata and Related Objects

	Building a Cube from a Detail Table
	SAS OLAP Cube Studio
	PROC OLAP

	Building a Cube from a Summary Table
	Building a Cube from a Star Schema
	Updating a Cube
	Refreshing Cube Metadata
	MDX DDL REFRESH Statement

	Defining Member Properties
	Property Statement
	Cube Designer

	Defining Multiple Hierarchies for a Dimension
	Hierarchies Statement
	Cube Designer

	Defining Ragged Hierarchies for a Dimension
	Defining Ragged Hierarchies in SAS OLAP Cube Studio
	PROC OLAP Options for Ragged Hierarchies
	Ragged Hierarchies and Unique Member Names

	Manually Tuning Cube Aggregates
	Using PROC OLAP to Tune Aggregates

	Multiple Language Support and Dimension Table Translations
	SAS OLAP Cube Studio and Dimension Table Translations
	PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement
	SAS Servers and Character Encoding

	Adding SAS System Options to a Cube
	Specifying Tuning and Performance Options in Cube Aggregations
	Setting Options on the Cube Designer Wizard
	Setting Options with PROC OLAP

	Using SAS OLAP Cubes
	Using a Cube with ADO MD
	Using a Cube with OLE DB for OLAP
	Using a Cube with Additional SAS Software
	Using a Cube with Third-Party Clients
	Microsoft Excel 2000 and Excel 2002 PivotTable
	Microsoft Office Web Components 2000 and 2002 PivotTable
	ProClarity Professional

	Transitioning from SAS OLAP Server Release 8.2 to SAS 9.1
	Conversion and Migration Issues from Release 8.2 to SAS 9.1
	Data Conversion and Migration
	Code Conversion and Migration
	Repository Conversion and Migration

	Comparing OLAP Functionality in SAS 8 and SAS 9.1
	Comparing PROC MDDB Code and PROC OLAP Code

	The OLAP Procedure
	The OLAP Procedure
	Syntax: OLAP Procedure
	PROC OLAP Statement
	Options

	METASVR Statement
	Required Argument
	Options

	DIMENSION Statement
	Required Arguments
	Options

	LEVEL Statement
	Required Arguments
	Options

	PROPERTY Statement
	Required Arguments
	Options

	HIERARCHY Statement
	Required Arguments
	Options

	MEASURE Statement
	Required Arguments
	Options

	AGGREGATION Statement
	Required Arguments
	Options

	DROP_AGGREGATION Statement
	Required Arguments

	DEFINE Statement
	Required Arguments

	USER_DEFINED_TRANSLATIONS Statement
	Required Argument
	SAS Servers and Character Encoding

	Tables Used to Define Cubes
	Naming Guidelines for SAS OLAP Server
	Loading Cubes
	Loading Cubes from a Detail Table
	Loading Cubes from a Star Schema
	Loading Cubes Using Summarized Data

	Maintaining Cubes
	Building a Cube from an Existing Definition
	Adding Aggregations to an Existing Cube
	Deleting Aggregations from an Existing Cube
	Deleting Cubes

	Specialized Syntax Options for PROC OLAP
	Syntax Options for Managing Ragged Hierarchies
	Syntax Options Used for Performance

	Recommended Reading
	Recommended Reading

	Glossary
	Index

