
SAS®

9.1
National Language Support
(NLS)
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 National Language Support (NLS): User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 National Language Support (NLS): User’s Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-194-6
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

Details vii

P A R T 1 NLS Concepts 1

Chapter 1 � National Language Support (NLS) 3
Overview to National Language Support 3

Definition of Localization and Internationalization 4

Chapter 2 � Locale for NLS 5
Overview of Locale Concepts for NLS 5

Specifying a Locale 6

Interaction between the LOCALE= and ENCODING= System Options 7

Chapter 3 � Encoding for NLS 9
Overview of Encoding for NLS 9

Difference between Encoding and Transcoding 12

Character Sets for Encoding in NLS 12

Common Encoding Methods 12

Standards Organizations for NLS Encodings 14

Code Point Discrepancies among EBCDIC Encodings 15

Collation Sequence 16

Determining the Encoding of a SAS Session and a Data Set 16

Default SAS Session Encoding 18

Setting the Encoding of a SAS Session 18

Encoding Behavior in a SAS Session 19

Chapter 4 � Transcoding for NLS 21
Overview to Transcoding 21

Common Reasons for Transcoding 21

Transcoding and Translation Tables 22

SAS Options That Transcode SAS Data 23

Transcoding between Operating Environments 23

Transcoding Considerations 24

Compatible and Incompatible Encodings 25

Preventing Transcoding 26

Chapter 5 � Double-Byte Character Sets (DBCS) 29
Overview to Double-Byte Character Sets (DBCS) 29

East Asian Languages 29

Specifying DBCS 30

Requirements for Displaying DBCS Character Sets 30

iv

When You Can Use DBCS Features 30

DBCS and SAS on a Mainframe 31

SAS Data Conversion between DBCS Encodings 31

Avoiding Problems with Split DBCS Character Strings 32

Avoiding Character Data Truncation by Using the CVP Engine 32

P A R T 2 Data Set Options for NLS 35

Chapter 6 � Overview to Data Set Options for NLS 37
Data Set Options for NLS by Category 37

Chapter 7 � Data Set Options for NLS 39

P A R T 3 Formats for NLS 45

Chapter 8 � Overview to Formats for NLS 47
International Date and Datetime Formats 47

European Currency Conversion 52

Formats for NLS by Category 54

Chapter 9 � Formats for NLS 63

P A R T 4 Functions for NLS 205

Chapter 10 � Overview to Functions for NLS 207
Functions for NLS by Category 207

Chapter 11 � Functions for NLS 209

P A R T 5 Informats for NLS 243

Chapter 12 � Overview to Informats for NLS 245
Informats for NLS by Category 245

Chapter 13 � Informats for NLS 249

P A R T 6 Procedures for NLS 311

Chapter 14 � The DBCSTAB Procedure 313
Overview: DBCSTAB Procedure 313

Syntax: DBCSTAB Procedure 313

When to Use the DBCSTAB Procedure 314

Examples: DBCSTAB Procedure 315

Chapter 15 � The TRANTAB Procedure 319
Overview: TRANTAB Procedure 319

Concepts: TRANTAB Procedure 320

v

Syntax: TRANTAB Procedure 323

Examples: TRANTAB Procedure 329

P A R T 7 System Options for NLS 345

Chapter 16 � Overview to SAS System Options for NLS 347
System Options for NLS by Category 347

Chapter 17 � System Options for NLS 349

P A R T 8 Other Commands, Statements, and Procedure Statements for
NLS 365

Chapter 18 � Overview to NLS Options Used in Commands, Statements, and
Procedures 367
Commands, Statements, and Procedures for NLS by Category 367

Chapter 19 � Options for Commands, Statements, and Procedures for NLS 369

Chapter 20 � The TRANTAB Statement Used with Procedures 391

P A R T 9 Values for Locale, Encoding, and Transcoding 395

Chapter 21 � Values for the LOCALE= System Option 397
LOCALE= and Default Values for DFLANG, DATESTYLE, and PAPERSIZE
Options 397

Locale Values and Encoding Values for SBCS, DBCS, and Unicode 400

Chapter 22 � SAS System Options for Processing DBCS Data 405
Overview to System Options Used in a SAS Session for DBCS 405

DBCS Values for a SAS Session 405

Chapter 23 � Encoding Values in SAS Language Elements 407
Overview to SAS Language Elements That Use Encoding Values 407

SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 407

Chapter 24 � Encoding Values for a SAS Session 413
OpenVMS Encoding Values 413

UNIX Encoding Values 414

Windows Encoding Values 415

z/OS Encoding Values 416

P A R T 10 419

Appendix 1 � Recommended Reading 421
Recommended Reading 421

Glossary 423

Index 427

vi

vii

What’s New

Overview
� All information that is related to NLS has been consolidated into a single

document for your convenience.
� The LOCALE= option supports a new set of locale values in the form of Portable

Operating System Interface (POSIX) names.
� The LOCALE= option supports new values that identify unique language and

country combinations.
� The LIBNAME statement for Base SAS supports three new options for NLS:

CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER=.
� The LIBNAME statement for the XML engine supports three new options for NLS:

ODSCHARSET=, ODSTRANTAB=, and XMLENCODING=.
� The LIBNAME statement in SAS/SHARE supports the RENCODING= option for

NLS.
� Numerous NLS formats, informats, and functions are new. These new language

elements are in the following categories: Bi-directional text handling, Date/Time,
Monetary, and Unicode.

Note: z/OS is the successor to the OS/390 operating system. SAS 9.1 is supported on
both OS/390 and z/OS operating systems and, throughout this document, any reference
to z/OS also applies to OS/390, unless otherwise stated. �

Details

New Document Consolidates Information about NLS
SAS 9.1 introduces the SAS National Language Support (NLS): User’s Guide, which

consolidates all information about NLS that was previously contained in multiple SAS
documents. The SAS National Language Support (NLS): User’s Guide provides
comprehensive conceptual information and detailed syntax for all SAS language
elements that contain NLS properties.

viii What’s New

Expanded Values for the LOCALE= System Option
� Locale can be specified by using Portable Operating System Interface (POSIX)

naming standards. For example, the en_US value is the POSIX equivalent for the
SAS value English_UnitedStates.

� Previous releases of SAS software specified some LOCALE= values in the form of
language. The LOCALE= option supports new values that identify unique
language and country combinations that are specified in the form
language_country. Some single LOCALE= values have been replaced by more
granular values. Some new values have been added, and some values have been
deleted. Here is a summary of the changes to LOCALE= values:

Arabic
The single LOCALE= value for Arabic has been deleted. The following new
values have been added: Arabic_Algeria, Arabic_Bahrain, Arabic_Egypt,
Arabic_Jordan, Arabic_Kuwait, Arabic_Lebanon, Arabic_Morocco,
Arabic_Oman, Arabic_Qatar, Arabic_SaudiArabia, Arabic_Tunisia, and
Arabic_UnitedArabEmirates.

Chinese
The single LOCALE= value for Chinese has been deleted. The values
Chinese_Simplified and Chinese_Traditional have also been deleted.

Dutch
The single LOCALE= value for Dutch has been deleted. The following new
values have been added: Dutch_Belgium and Dutch_Netherlands.

English
The single LOCALE= value for English has been deleted. The following new
values have been added: English_HongKong, English_India, and
English_Singapore. The English_Britain value has been changed to
English_UnitedKingdom.

Estonian_Estonia
The LOCALE= value for Estonian_Estonia is new.

French
The single LOCALE= value for French has been deleted. A new value,
French_Luxembourg, has been added.

German
The single LOCALE= value for German has been deleted. The following new
values have been added: German_Liechtenstein and German_Luxembourg.

Spanish
The LOCALE= values for Spain and Spanish_LatinAmerica have been
deleted. The single LOCALE= value for Spanish_LatinAmerica has been
replaced by the following new values: Spanish_Argentina, Spanish_Bolivia,
Spanish_Chile, Spanish_Columbia, Spanish_CostaRica,
Spanish_DominicanRepublic, Spanish_Ecuador, Spanish_ElSalvador,
Spanish_Guatemala, Spanish_Honduras, Spanish_Mexico,
Spanish_Nicaragua, Spanish_Panama, Spanish_Paraguay, Spanish_Peru,
Spanish_PuertoRico, Spanish_UnitedStates, Spanish_Uruguay, and
Spanish_Venezuela.

For a comprehensive list, see Chapter 21, “Values for the LOCALE= System
Option,” on page 397.

What’s New ix

New Options in LIBNAME Statements for NLS
� The LIBNAME statement in Base SAS supports the following new options for NLS:

CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER=
specify the attributes for character variables that are needed in order to
process (or transcode) a SAS file.

� The LIBNAME statement for the XML engine supports the following new options
for NLS:

ODSCHARSET=
specifies the character set to be generated in the META declaration for the
output.

ODSTRANTAB=
specifies the translation table to use when transcoding an XML document for an
output file.

XMLENCODING=
specifies the encoding to use when reading, writing, copying, or saving an
external file.

� The LIBNAME statement in SAS/SHARE supports the following new option for
NLS:

RENCODING=
specifies that the ASCII-based or EBCDIC-based encoding be used when
transcoding data for a SAS/SHARE server session that is using an ASCIIANY
or an EBCDICANY session encoding.

Formats for NLS
The following formats for NLS are new:

$CPTDWw.
writes a character string in Hebrew text that is encoded in IBM-PC (cp862)
to Windows Hebrew encoding (cp1255).

$CPTWDw.
writes a character string that is encoded in Windows (cp1255) to Hebrew
DOS (cp862) encoding.

HDATEw.
writes date values in the form yyyy mmmmm dd where yyyy is the year,
mmmmm represents the month’s name in Hebrew, and dd is the day of
month.

HEBDATEw.
writes date values according to the Jewish calendar.

$LOGVSw.
writes a character string that is in left-to-right logical order to visual order.

$LOGVSRw.
writes a character string that is in right-to-left logical order to visual order.

NLDATEw.
converts a SAS date value to the date value of the specified locale, and then
writes the value in the format of the date value.

x What’s New

NLDATEMNw.
converts a SAS date value to the date value of the specified locale, and then
writes the date value in the format of the name of the month.

NLDATEWw.
converts a SAS date value to the date value of the specified locale, and then
writes the date value in the format of the date and the day of the week.

NLDATEWNw.
converts the SAS date value to the date value of the specified locale, and then
writes the date value in the format of the name of the day of the week.

NLDATMw.
converts a SAS datetime value to the datetime value of the specified locale,
and then writes the value in the format of the datetime.

NLDATMAPw.
converts a SAS datetime value to the datetime value of the specified locale,
and then writes the value in the format of the datetime with a.m. or p.m.

NLDATMTMw.
converts the time portion of a SAS datetime value to the time-of-day value of
the specified locale, and then writes the value in the format of the time of the
day.

NLDATMWw.
converts a SAS date value to a datetime value of the specified locale, and
then writes the value in the format of day of the week and the datetime.

NLMNYw.d
writes the monetary format of the local expression in the specified locale
using local currency.

NLMNYIw.d
writes the monetary format of the international expression in the specified
locale.

NLNUMw.d
writes the numeric format of the local expression in the specified locale.

NLNUMIw.d
writes the numeric format of the international expression in the specified
locale.

NLPCTw.d
writes percentage data of the local expression in the specified locale.

NLPCTIw.d
writes percentage data of the international expression in the specified locale.

NLTIMAPw.
converts a SAS time value to the time value of a specified locale, and then
writes the value in the format of the time with a.m. or p.m.

NLTIMEw.
converts a SAS time value to the time value of the specified locale, and then
writes the value in the format of the time.

$UCS2Bw.
writes a character string in big-endian, 16-bit, universal character set code in
2 octets (UCS2), Unicode encoding.

What’s New xi

$UCS2BEw.
writes a big-endian, 16-bit, universal character set code in 2 octets (UCS2),
character string in the encoding of the current SAS session.

$UCS2Lw.
writes data in little-endian, 16-bit, universal character set code in 2 octets
(UCS2), Unicode encoding.

$UCS2LEw.
writes a character string that is encoded in little-endian, 16-bit, universal
character set code in 2 octets (UCS2), in the encoding of the current SAS
session.

$UCS2Xw.
writes a character string in native-endian, 16-bit, universal character set
code in 2 octets (UCS2), Unicode encoding.

$UCS2XEw.
writes a native-endian, universal character set code in 2 octets (UCS2),
character string in the encoding of the current SAS session.

$UCS4Bw.
writes a character string in big-endian, 32-bit, universal character set code in
4 octets (UCS4), Unicode encoding.

$UCS4BEw.
writes a big-endian, 32-bit, universal character set code in 4 octets (UCS4),
character string in the encoding of the current SAS session.

$UCS4Lw.
writes a character string in little-endian, 32-bit, universal character set code
in 4 octets (UCS4), Unicode encoding.

$UCS4LEw.
writes a little-endian, 32-bit, universal character set code in 4 octets (UCS4),
character string in the encoding of the current SAS session.

$UCS4Xw.
writes a character string in native-endian, 32-bit, universal character set
code in 4 octets (UCS4), Unicode encoding.

$UCS4XEw.
writes a native-endian, 32-bit, universal character set code in 4 octets
(UCS4), character string in the encoding of the current SAS session.

$UESCw.
writes a character string that is encoded in the current SAS session in
Unicode escape (UESC) representation.

$UESCEw.
writes a Unicode escape (UESC) representation character string in the
encoding of the current SAS session.

$UNCRw.
writes a character string that is encoded in the current SAS session in
numeric character representation (NCR).

$UNCREw.
writes the numeric character representation (NCR) character string in the
encoding of the current SAS session.

xii What’s New

$UPARENw.
writes a character string that is encoded in the current SAS session in
Unicode parenthesis (UPAREN) representation.

$UPARENEw.
writes a Unicode parenthesis (UPAREN) character string in the encoding of
the current SAS session.

$UTF8Xw.
writes a character string in universal transformation format (UTF-8)
encoding.

$VSLOGw.
writes a character string that is in visual order to left-to-right logical order.

$VSLOGRw.
writes a character string that is in visual order to right-to-left logical order.

WEEKUw.
writes a week number in decimal format by using the U algorithm.

WEEKVw.
writes a week number in decimal format by using the V algorithm.

WEEKWw.
writes a week number in decimal format by using the W algorithm.

Informats for NLS
The following informats for NLS are new:

$CPTDWw.
reads a character string that is encoded in Hebrew DOS (cp862) and then
converts the character string to Windows (cp1255) encoding.

$CPTWDw.
reads a character string that is encoded in Windows (cp1255) and then
converts the character string to Hebrew DOS (cp862) encoding.

$LOGVSw.
reads a character string that is in left-to-right logical order and then converts
the character string to visual order.

$LOGVSRw.
reads a character string that is in right-to-left logical order and then converts
the character string to visual order.

NLMNYw.d
reads monetary data in the specified locale for the local expression, and then
converts the data to a numeric value.

NLMNYIw.d
reads monetary data in the specified locale for the international expression,
and then converts the data to a numeric value.

NLNUMw.d
reads numeric data in the specified locale for local expressions, and then
converts the data to a numeric value.

NLNUMIw.d
reads numeric data in the specified locale for international expressions, and
then converts the data to a numeric value.

What’s New xiii

NLPCTw.d
reads percentage data in the specified locale for local expressions, and then
converts the data to a numeric value.

NLPCTIw.d
reads percentage data in the specified locale for international expressions,
and then converts the data to a numeric value.

$UCS2Bw.
reads a character string that is encoded in big-endian, 16-bit, universal
character set code in 2 octets (UCS2), Unicode encoding, and then converts
the character string to the encoding of the current SAS session.

$UCS2BEw.
reads a character string that is in the encoding of the current SAS session
and then converts the character string to big-endian, 16-bit, universal
character set code in 2 octets (UCS2), Unicode encoding.

$UCS2Lw.
reads a character string that is encoded in little-endian, 16-bit, universal
character set code in 2 octets (UCS2), Unicode encoding, and then converts
the character string to the encoding of the current SAS session.

$UCS2LEw.
reads a character string that is in the encoding of the current SAS session
and then converts the character string to little-endian, 16-bit, universal
character set code in 2 octets (UCS2), Unicode encoding.

$UCS2Xw.
reads a character string that is encoded in 16-bit, universal character set
code in 2 octets (UCS2), Unicode encoding, and then converts the character
string to the encoding of the current SAS session.

$UCS2XEw.
reads a character string that is in the encoding of the current SAS session
and then converts the character string to 16-bit, universal character set code
in 2 octets (UCS2), Unicode encoding.

$UCS4Bw.
reads a character string that is encoded in big-endian, 32-bit, universal
character set code in 4 octets (UCS4), Unicode encoding, and then converts
the character string to the encoding of the current SAS session.

$UCS4Lw
reads a character string that is encoded in little-endian, 32-bit, universal
character set code in 4 octets (UCS4), Unicode encoding, and then converts
the character string to the encoding of the current SAS session.

$UCS4Xw.
reads a character string that is encoded in 32-bit, universal character set
code in 4 octets (UCS4), Unicode encoding, and then converts the character
string to the encoding of the current SAS session.

$UCS4XEw.
reads a character string that is in the encoding of the current SAS session
and then converts the character string to 32-bit, universal character set code
in 4 octets (UCS4), Unicode encoding.

$UESCw.
reads a character string that is encoded in Unicode escape (UESC)
representation, and then converts the character string to the encoding of the
current SAS session.

xiv What’s New

$UESCEw.
reads a character string that is encoded in the current SAS session, and then
converts the character string to Unicode escape (UESC) representation.

$UNCRw.
reads the numeric character representation (NCR) character string, and then
converts the character string to the encoding of the current SAS session.

$UNCREw.
reads a character string in the encoding of the current SAS session, and then
converts the character string to session-encoded numeric character
representation (NCR).

$UPARENw.
reads a character string that is encoded in Unicode parenthesis (UPAREN)
representation, and then converts the character string to the encoding of the
current SAS session.

$UPARENEw.
reads a character string that is encoded in the current SAS session, and then
converts the character string to the encoding of the Unicode parenthesis
(UPAREN) representation.

$UPARENPw.
reads a character string that is encoded in Unicode parenthesis (UPAREN)
representation, and then converts the character string to the encoding of the
current SAS session with national characters remaining in the encoding of
the UPAREN representation.

$UTF8Xw.
reads a character string that is encoded in Unicode transformation format
(UTF-8), and then converts the character string to the encoding of the current
SAS session.

$VSLOGw.
reads a character string that is in visual order and then converts the
character string to left-to-right logical order.

$VSLOGRw.
reads a character string that is in visual order and then converts the
character string to right-to-left logical order.

WEEKUw.
reads the format of the number-of-week value within the year and returns a
SAS date value by using the U algorithm.

WEEKVw.
reads the format of the number-of-week value within the year and returns a
SAS date value using the V algorithm.

WEEKWw.
reads the format of the number-of-week value within the year and returns a
SAS date value using the W algorithm.

Functions for NLS
The following functions for NLS are new:

NLDATE
converts the SAS date value to the date value of the specified locale by using
the date-format modifiers.

What’s New xv

NLDATM
converts the SAS datetime values to the time value of the specified locale
using the datetime-format modifiers.

NLTIME
converts the SAS time or datetime value to the time value of the specified
locale using the time-format modifiers.

TRANTAB
transcodes a data string by using a translation table.

VARTRANSCODE
returns the transcode attribute of a SAS data set variable.

VTRANSCODE
returns a value that indicates whether transcoding is enabled for the
specified character variable.

VTRANSCODEX
returns a value that indicates whether transcoding is enabled for the
specified argument.

WEEK
returns the week-number value.

xvi What’s New

1

P A R T1

NLS Concepts

Chapter 1.National Language Support (NLS) 3

Chapter 2.Locale for NLS 5

Chapter 3.Encoding for NLS 9

Chapter 4.Transcoding for NLS 21

Chapter 5.Double-Byte Character Sets (DBCS) 29

2

3

C H A P T E R

1
National Language Support (NLS)

Overview to National Language Support 3
Definition of Localization and Internationalization 4

Overview to National Language Support
National Language Support (NLS) is a set of features that enable a software product

to function properly in every global market for which the product is targeted. The SAS
System contains NLS features to ensure that SAS applications can be written so that
they conform to local language conventions. Typically, software that is written in the
English language works well for users who use the English language and use data that
is formatted using the conventions that are observed in the United States. However,
without NLS, these products might not work well for users in other regions of the
world. NLS in SAS enables users in regions such as Asia and Europe to process data
successfully in their native languages and environments.

SAS provides NLS for data as well as for code under all operating environments and
hardware, from the mainframe to the personal computer. This support is especially
important to international users who are running applications in a client/server
environment. SAS provides NLS for mainframes while maintaining consistency with
applications that were developed with previous versions of SAS.

NLS is applied to data that is moved between machines; for example, NLS ensures
that the data is converted to the correct format for use on the target machine.

Text-string operations are sensitive to SAS settings for language and region. This
enables correct results for such operations as uppercasing and lowercasing characters,
classifying characters, and scanning data. SAS provides features to ensure that
national characters, which are characters specific to a particular nation or group of
nations, display and print properly.

Software applications that incorporate NLS can avoid dependencies on
language-specific or cultural-specific conventions for software features such as:

� character classifications

� character comparison rules

� code sets

� date and time formatting

� interface

� message-text language

� numeric and monetary formatting

� sort order.

4 Definition of Localization and Internationalization � Chapter 1

Definition of Localization and Internationalization

Localization is the process of adapting a product to meet the language, cultural, and
other requirements of a specific target environment or market so that users can employ
their own languages and conventions when using the product. Translation of the user
interface, system messages, and documentation is part of localization.

Internationalization is the process of designing a software application without
making assumptions that are based on a single language or locale. One goal of
internationalization is to ensure that international conventions, including rules for
sorting strings and for formatting dates, times, numbers, and currencies, are supported.
Another goal is to design the product to have a consistent look, feel, and functionality
across different language editions.

Although the application logic might support cultural conventions (for example, the
monetary and numeric formats of a particular region), only a localized version of the
software presents user interfaces and system messages in the local language.

SAS NLS features are available for localizing and internationalizing your SAS
applications.

5

C H A P T E R

2
Locale for NLS

Overview of Locale Concepts for NLS 5
Specifying a Locale 6

How Locale Is Specified at SAS Invocation 6

How Locale Is Specified During a SAS Session 7

Interaction between the LOCALE= and ENCODING= System Options 7

Overview of Locale Concepts for NLS

A locale reflects the language, local conventions such as data formatting, and culture
for a geographical region. Local conventions may include specific formatting rules for
dates, times, and numbers and a currency symbol for the country or region. Collating
sequence, paper size, postal addresses, and telephone numbers can also be included in
locale.

Dates have many representations, depending on the conventions that are accepted in
a culture. The month may be represented as a number or as a name. The name may be
fully spelled or abbreviated. The order of the month, day, and year may differ according
to locale.

For example, “the third day of October in the year 2002” would be displayed in a
different way for each of these locales:

Bulgaria 2002–X-3

Canada 02–10–03

Germany 3.10.2002

Italy 3/10/02

United States 10/03/02

Time can be represented in one English-speaking country or region by using the
12-hour notation, while other English speakers expect time values to be formatted
using the 24-hour notation.

Language is part of a locale, but is not unique to any one locale. For example,
Portuguese is spoken in Brazil as well as in Portugal, but the cultures are different. In
Brazil and in Portugal, there are similarities in the formatting of data. Numbers are
formatted using a comma (,) to separate integers from fractional values and a dot (.) to
separate groups of digits to the left of the radix character. However, there are
important differences, such as the currency symbols that are used in the two different
locales. Portugal uses the Euro and requires the Euro symbol (), while Brazil uses the
Real which is represented by the two-character currency symbol R$.

6 Specifying a Locale � Chapter 2

Additionally, a country may have more than one official language. Canada has two
official languages: English and French; two values can be specified for the LOCALE=
system option: English_Canada and French_Canada.

Numbers, including currency, can have different representations. For example, the
decimal separator, or radix character, is a dot (.) in some regions and a comma (,) in
others, while the thousands separator can be a dot, comma, or even a space. Monetary
conventions likewise vary between locales; for example, a dollar sign or a yen sign
might be attached to a monetary value.

Paper size and measurement are also locale considerations. Standard paper sizes
include letter (8-1/2-by-11-inch paper) and A4 (210-by-297-millimeter paper). The letter
paper size is mainly used by some English-speaking countries; A4 is used by most other
locales. While most locales use centimeters, some locales use inches.

Specifying a Locale

How Locale Is Specified at SAS Invocation
You can use the LOCALE= system option to specify the locale of the SAS session at

SAS invocation. LOCALE= also implicitly sets the following SAS system options:

� DATESTYLE=

� DFLANG=

� ENCODING=

� PAPERSIZE=

� TRANTAB=

Windows example:

sas9 -locale English_UnitedStates

Note: Locale can also be specified using POSIX naming standards. For example,
en_US is the POSIX equivalent for the SAS value English_UnitedStates. �

Default values for the LOCALE= option are the same under each operating
environment. For details, see Chapter 21, “Values for the LOCALE= System Option,”
on page 397.

The English_UnitedStates value for LOCALE= causes the following options to be
implicitly set to the specified default values SAS invocation:

� DATESTYLE=MDY

� DFLANG=English

� ENCODING=wlatin1

� PAPERSIZE=Letter

� TRANTAB=(lat1lat1, lat1lat1,wlt1_ucs,wlt1_lcs,wlt1_ccl,,,)

At invocation, an explicitly set system option will override any implicitly set option.
Windows example:

options papersize=A4;

At invocation, the explicit setting PAPERSIZE=A4 will override an implicit setting of
the PAPERSIZE= option via the LOCALE= option. For details, see “DATESTYLE=
System Option” on page 349.

Locale for NLS � Interaction between the LOCALE= and ENCODING= System Options 7

How Locale Is Specified During a SAS Session
You can use the LOCALE= system option to specify the locale of the SAS session

during the SAS session. However, only the values for these system options will change
implicitly to reflect the changed value of LOCALE=:

� DATESTYLE=

� DFLANG=

� PAPERSIZE=

The values for these system options will not change implicitly to reflect the changed
value of LOCALE=:

� ENCODING=
� TRANTAB=

Note: ENCODING= cannot be reset during a SAS session. It can be set only at
invocation. �

Windows example:

options locale=Italian_Ialy;

The Italian_Italy value that is assigned to the LOCALE= option causes the following
options to be implicitly reset during the SAS session to reflect the changed value of the
LOCALE= system option:

� DATESTYLE=DMY

� DFLANG=Italian

� PAPERSIZE=A4

The values for the ENCODING= and TRANTAB= options will not be reset; their
former values will be retained.

For details about these system options, see “System Options for NLS by Category” on
page 347.

Interaction between the LOCALE= and ENCODING= System Options
Most users will implicitly set encoding by using the LOCALE= system option.
Here is how LOCALE= and ENCODING= interact:

� Setting the LOCALE= option implicitly sets the value for the ENCODING= option
only at SAS invocation.

Note: The LOCALE= setting can be changed during a SAS session, but
ENCODING= cannot be changed during a SAS session. If LOCALE= is changed
during a session, ENCODING= is not affected. �

� Setting the LOCALE= option implicitly assigns a default value to each of the
following options, unless an explicit value is set for a specific option:

� DATESTYLE=

� DFLANG=

� PAPERSIZE=

� ENCODING=
� TRANTAB=

8 Interaction between the LOCALE= and ENCODING= System Options � Chapter 2

Note: Values for ENCODING= and TRANTAB= can be reset only at SAS
invocation. �

� If LOCALE= and ENCODING= are both set, ENCODING= will override and set
the session encoding.

� If DBCS (which specifies that SAS process DBCS encodings) is set, the following
options to identify locale and session encoding are also implicitly set:

� DBCSLANG=

� DBCSTYPE=

The DBCS option settings would override LOCALE=.

Example 1:
When the Spanish_Spain locale is specified under windows, the implicit default

encoding value is Windows Latin1 (wlatin1).

sas9 -locale spanish_spain

Example 2:
The explicit encoding value of Pcoem850 overrides the implicit default encoding value

of Windows Latin1 (wlatin1) for the Spanish_Spain locale.

sas9 -locale spanish_spain -encoding pcoem850;

For details about these system options, see “System Options for NLS by Category” on
page 347.

9

C H A P T E R

3
Encoding for NLS

Overview of Encoding for NLS 9
Difference between Encoding and Transcoding 12

Character Sets for Encoding in NLS 12

Common Encoding Methods 12

Standards Organizations for NLS Encodings 14

Code Point Discrepancies among EBCDIC Encodings 15
Collation Sequence 16

Determining the Encoding of a SAS Session and a Data Set 16

Encoding of a SAS Session 16

Encoding of a SAS Data Set 17

Default SAS Session Encoding 18

Setting the Encoding of a SAS Session 18
Encoding Behavior in a SAS Session 19

Encoding Support for Data Sets by SAS Release 19

z/OS: Ensuring Compatibility with Previous SAS Releases 19

Output Processing 19

Input Processing 20
Reading and Writing External Files 20

Overview of Encoding for NLS
An encoding maps each character in a character set to a unique numeric

representation, which results in a table of all code points. This table is referred to as a
code page, which is an ordered set of characters in which a numeric index (code point
value) is associated with each character. The position of a character on the code page
determines its two-digit hexadecimal number.

For example, the following is the code page for the Windows Latin1 encoding. In the
following example, the row determines the first digit and the column determines the
second digit. The numeric representation for the uppercase A is the hexadecimal
number 41, and the numeric representation for the equal sign (=) is the hexadecimal
number 3D.

10 Overview of Encoding for NLS � Chapter 3

Figure 3.1 Windows Latin1 Code Page

A character set is the set of characters and symbols that are used by a language or
group of languages. A character set includes national characters (which are characters
specific to a particular nation or group of nations), special characters (such as
punctuation marks), the unaccented Latin characters A-Z, the digits 0-9, and control
characters that are needed by the computer.

An encoding method is a set of rules that assign the numeric representations to the
set of characters. These rules govern the size of the encoding (number of bits used to
store the numeric representation of the character) and the ranges in the code page
where characters appear. The encoding methods result from the adherence to standards
that have been developed in the computing industry. An encoding method is often
specific to the computer hardware vendor.

An encoding results from applying an encoding method to a character set.
An individual character can occupy a different position in a code page, depending on

the code page used. For example, the German uppercase letter Ä:

Encoding for NLS � Overview of Encoding for NLS 11

� is represented as the hexadecimal number C4 in the Windows Latin1 code page
(1252)

� is represented as the hexadecimal number 4A in the German EBCDIC code page
(273).

In the following code page example, German is the character set and EBCDIC is the
encoding method.

In the following example, the column determines the first digit and the row
determines the second digit.

Figure 3.2 German EBCDIC Code Page

Each SAS session is set to a default encoding, which can be specified by using
various SAS language elements.

12 Difference between Encoding and Transcoding � Chapter 3

Difference between Encoding and Transcoding
Encoding establishes the default working environment for your SAS session. For

example, the Windows Latin1 encoding is the default encoding for a SAS session under
Windows in a Western European locale. As an example, the Windows Latin1 code point
for the uppercase letter Ä is C4 hexadecimal.

Note: The default encoding varies according to the operating environment and the
locale. �

However, if you are working in an international environment (for example, you
access SAS data that is encoded in German EBCDIC), the German EBCDIC code point
for the uppercase letter Ä is 4A hexadecimal. In order for a version of SAS that
normally uses Windows Latin1 to properly interpret a data set that is encoded in
German EBCDIC, the data must be transcoded. Transcoding is the process of
converting data from one encoding to another. When SAS transcodes the Windows
Latin1 uppercase letter Ä to the German EBCDIC uppercase letter Ä, the hexadecimal
representation for the character is converted from the value C4 to a 4A. For conceptual
information, see Chapter 4, “Transcoding for NLS,” on page 21.

Character Sets for Encoding in NLS
Encodings are available to address the requirements of the character set (few

languages use the same 26 characters, A through Z as English). All languages are
represented using either of the following classes of character sets:

SBCS (Single-Byte Character Set)
represents each character in a single (one) byte. A single-byte character set can be
either 7 bits (providing up to 128 characters) or 8 bits (providing up to 256
characters). An example of an 8-bit SBCS is the ISO 8859-5 (Cyrillic) character set
(represents the Russian characters).

For details, see “Locale Values and Encoding Values for SBCS, DBCS, and
Unicode” on page 400.

DBCS (Double-Byte Character Set)
refers to the East Asian character sets (Japanese, Korean, Simplified Chinese, and
Traditional Chinese), which require a mixed-width encoding because most
characters consist of more than one byte. Although the term DBCS (Double-Byte
Character Set) is more commonly used than MBCS (Multi-Byte Character Set),
MBCS is more accurate. Some, but not all characters in an East Asian character
set do require more than one byte.

For details, see Chapter 22, “SAS System Options for Processing DBCS Data,”
on page 405.

MBCS (Multi-Byte Character Set)
is used as a synonym for DBCS.

Common Encoding Methods
The encoding methods result from standards developed by various computer

hardware manufacturers and standards organizations. For more information, see
“Standards Organizations for NLS Encodings” on page 14. The common encoding
methods are listed here:

Encoding for NLS � Common Encoding Methods 13

ASCII (American Standard Code for Information Interchange)
is a 7-bit encoding for the United States that provides 128 character combinations.
The encoding contains characters for uppercase and lowercase English, American
English punctuation, base 10 numbers, and a few control characters. This set of
128 characters is common to most other encodings. ASCII is used by personal
computers.

EBCDIC (Extended Binary Coded Decimal Interchange Code) family
is an 8-bit encoding that provides 256 character combinations. There are multiple
EBCDIC-based encodings. EBCDIC is used on IBM mainframes and most IBM
mid-range computers. EBCDIC follows ISO 646 conventions to facilitate
translations between EBCDIC encodings and 7-bit (and 8-bit) ASCII-based
encodings. The 95 EBCDIC graphical characters include 82 invariant characters
(including a black space), which occupy the same code positions across most
EBCDIC single-byte code pages, and also includes 13 variant graphic characters,
which occupy varying code positions across most EBCDIC single-byte code pages.
For details about variant characters, see “Code Point Discrepancies among
EBCDIC Encodings” on page 15.

ISO (International Organization for Standardization) 646 family
is a 7-bit encoding that is an international standard and provides 128 character
combinations. The ISO 646 family of encodings is similar to ASCII except that it
has 12 code points for national variants. The 12 national variants represent
specific characters that are needed for a particular language.

ISO 8859 family and Windows family
is an 8-bit extension of ASCII that supports all of the ASCII code points and adds
12 more, providing 256 character combinations. Latin1, which is officially named
ISO-8859-1, is the most frequently used member of the ISO 8859 family of
encodings. In addition to the ASCII characters, Latin1 contains accented
characters, other letters needed for languages of Western Europe, and some
special characters. HTTP and HTML protocols are based on ISO Latin1.

Unicode
provides up to 65,536 character combinations. Unicode can accommodate basically
all of the world’s languages.

There are three Unicode encoding forms:

UTF-8
is an MBCS encoding that contains the Latin-script languages, Greek,
Cyrillic, Arabic, and Hebrew, and East Asian languages such as Japanese,
Chinese and Korean. The characters in UTF-8 are of varying width, from one
to four bytes. UTF-8 maintains ASCII compatibility by preserving the ASCII
characters in code positions 1 through 128.

UTF-16
is a 16-bit form that contains all of the most common characters in all
modern writing systems. Most of the characters are uniformly represented
with two bytes, although there is extended space, called surrogate space, for
additional characters that require four bytes.

UTF-32
is a 32-bit form whose characters each occupy four bytes.

Other encodings
The ISO 8859 family has other members that are designed for other languages.
The following table describes the other encodings that are approved by ISO.

14 Standards Organizations for NLS Encodings � Chapter 3

Table 3.1 Other Encodings Approved by ISO

ISO Standard Name of Encoding Description

ISO 8859-1 Latin 1 US and West European

ISO 8859-2 Latin 2 Central and East European

ISO 8859-3 Latin 3 South European, Maltese
and Esperanto

ISO 8859-4 Baltic North European

ISO 8859-5 Cyrillic Slavic languages

ISO 8859-6 Arabic Arabic

ISO 8859-7 Greek Modern Greek

ISO 8859-8 Hebrew Hebrew and Yiddish

ISO 8859-9 Turkish Turkish

ISO 8859-10 Latin 6 Nordic (Inuit, Sámi,
Icelandic)

ISO 8859-11 Latin/Thai Thai

ISO 8859-12 undefined

ISO 8859-13 Latin 7 Baltic Rim

ISO 8859-14 Latin 8 Celtic

ISO 8859-15 Latin 9 West European and Albanian

Additionally, a number of encoding standards have been developed for East
Asian languages, some of which are listed in the following table.

Table 3.2 Some East Asian Language Encodings Approved by ISO

Standard Name of Encoding Description

GB 2312-80 Simplified Chinese People’s Republic of China

CNS 11643 Traditional Chinese Taiwan

Big-5 Traditional Chinese Taiwan

KS C 5601 Korean National Standard Korea

JIS Japan Industry Standard Japan

Shift-JIS Japan Industry Standard
multibyte encoding

Japan

There are other encodings in the standards for EBCDIC and Windows that
support different languages and locales.

Standards Organizations for NLS Encodings
Encodings that are supported by SAS are defined by the following standards

organizations:

International Organization for Standardization (ISO)

Encoding for NLS � Code Point Discrepancies among EBCDIC Encodings 15

promotes the development of standardization and related activities to facilitate the
free flow of goods and services between nations and to advocate for the exchange of
intellectual, scientific, and technological information. ISO also establishes
standards for encodings.

American National Standards Institute (ANSI)
coordinates voluntary standards and conformity to those standards in the United
States. ANSI works with ISO to establish global standards.

Unicode Consortium
that develops and promotes the Unicode standard, which provides a unique
number for every character.

Code Point Discrepancies among EBCDIC Encodings
Selected characters do not occupy the same code point locations in code maps for all

EBCDIC encoding methods. For example, the following characters occupy different code
point locations in the respective EBCDIC code maps for U.S. English and German.

Table 3.3 EBCDIC Code Point Discrepancies for Selected Languages

EBCDIC Code
Points

U.S. English Finnish Spanish German

4A ¢ § [Ä

4F | ! | !

5A ! ¤] Ü

5B $ Å $ $

5F ^ ^

6A ¦ ö ñ ö

79 ‘ é ‘ ‘

7B # Ä Ñ #

7C @ Ö @ §

A1 ~ ü ß¨

C0 { ä { ä

D0 } å } ü

E0 \ É \ Ö

These characters are known as variant characters. For example, if a German
mainframe user entered an ä, which occupies code point C0, an American compiler
would interpret code point C0 as a {.

Especially important are characters that are commonly used in programming
languages, for example, { and $.

16 Collation Sequence � Chapter 3

Collation Sequence
A major effect of the session encoding is the collation sequence (or sorting sequence)

that is used to perform alphanumeric sorting operations (such as the SORT procedure).
Sort order corresponds directly to the arrangement of the code points in the code page.
The two single-byte character-encoding systems that are most widely used in data
processing are ASCII and EBCDIC. OpenVMS, UNIX, and Windows operating
environments use ASCII, and IBM mainframe computers use EBCDIC.

The collation sequence that you use corresponds to your session encoding, by default.
However, when using the SORT procedure, you can override your session’s default
encoding collation sequence and specify an explicit collation sequence.

The following SAS language elements support a collation sequence:
� SORT statement in the SORT procedure (see “Collation Sequence Option” on page

370)
� SORTSEQ= data set option (see “SORTSEQ= Data Set Option” on page 42)
� SORTSEQ= system option (see “SORTSEQ= Data Set Option” on page 42)

You can also select sort sequences by using the VIEWTABLE Window. In the
VIEWTABLE Window, you can select from the sort sequences that are listed under the
Advanced tab of the Sort dialog box. For details about viewing and editing SAS data
sets, see SAS Language Reference: Concepts.

The collation sequence that you use corresponds to your session encoding, by default.
However, when using the SORT procedure, you can override your session’s default
encoding collation sequence and specify an explicit collation sequence. Standard
collation sequences include:

� ASCII
� EBCDIC
� Danish
� Finnish
� Italian
� Norwegian
� Polish
� Spanish
� Swedish

By viewing the contents of a sort translation table, you can determine the collation
sequence because the sort trantabs contain the weight that is assigned to each character.

You can use the following statement to view the trantab contents:

proc trantab table=table-name;
list;

run;

The contents of the collation sequence are displayed in the SAS log.

Determining the Encoding of a SAS Session and a Data Set

Encoding of a SAS Session
To determine your current SAS session encoding, which is the value assigned to the

ENCODING= system option, you can use the OPTIONS procedure or the OPTIONS

Encoding for NLS � Encoding of a SAS Data Set 17

window. For example, the following PROC OPTIONS statement displays the session
encoding value:

proc options option=encoding;
run;

The SAS log displays the following information:

ENCODING=WLATIN1 Specifies default encoding for processing external data.

You can display the encoding of any SAS 9 data set by using the CONTENTS
procedure or the Properties window in the SAS windowing environment.

An example follows of output that is reported from the CONTENT procedure in the
SAS log. The encoding is Western latin1.

Output 3.1 Encoding Reported in the SAS Log

The SAS System 10:15 Friday, June 06, 2003 1

The CONTENTS Procedure

Data Set Name WORK.GRADES Observations 1
Member Type DATA Variables 4
Engine V9 Indexes 0
Created 11:03 Friday, June 06 2003 Observation Length 32
Last Modified 11:03 Friday, June 06, 2003 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64
Encoding latin1 Western (ISO)

Engine/Host Dependent Information

Data Set Page Size 4096
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 126
Obs in First Data Page 1
Number of Data Set Repairs 0
File Name C:\TEMP\SAS Temporary Files_TD228\grades.sas7bdat
Release Created 9.0000M0
Host Created WIN_NT

Alphabetic List of Variables and Attributes

Variable Type Len

4 final Num 8
1 student Char 8
2 test1 Num 8
3 test2 Num 8

Encoding of a SAS Data Set
To determine the encoding of a specific SAS data set, follow these steps:
1 Locate the data set using SAS Explorer.
2 Right-click the data set.

18 Default SAS Session Encoding � Chapter 3

3 Select Properties from the menu.
4 Click the Details tab.
5 The encoding of the data set is listed, along with other information.

Default SAS Session Encoding
The ENCODING= option is used to specify the SAS session encoding, which

establishes the environment to process SAS syntax and SAS data sets, and to read and
write external files. If neither the LOCALE= nor ENCODING= options is set, a default
value is set.

Table 3.4 Default SAS Session Encoding Values

Operating Environment Default ENCODING= Value Description

OpenVMS Alpha Latin1 Western (ISO)

z/OS OPEN_ED_1047 OpenEdition EBCDIC
cp1047-Latin1

UNIX Latin1 Western (ISO)

Windows WLatin1 Western (Windows)

For a complete list of supported encoding values for a SAS session, see “Locale
Values and Encoding Values for SBCS, DBCS, and Unicode” on page 400.

Setting the Encoding of a SAS Session
You can set the session encoding by using the ENCODING= system option or the

LOCALE= system option.

Note: Valid values only for ENCODING= are dependent on the operating
environment used. �

� If ENCODING= is specified, the TRANTAB= option is implicitly set.
� If both LOCALE= and ENCODING= are set, ENCODING= will set the session

encoding.
� If DBCS (which specifies that SAS process DBCS encodings) is set, the following

options to identify locale and session encoding are also implicitly set:
� DBCSLANG=
� DBCSTYPE=.

These options are used for East Asian languages or for English with DBCS
extensions.

The following example shows that for the Spanish_Spain locale encoding is explicitly
set by default.

sas9 -locale Spanish_Spain

The wlatin1 encoding is the default encoding for the Spanish_Spain locale.

Encoding for NLS � Output Processing 19

The following example shows that wlatin2 encoding is set explicitly at SAS invocation.

sas9 -encoding wlatin2

Note: Changing the encoding for a SAS session does not affect SAS keywords, or
SAS log output, which remain in English. �

Encoding Behavior in a SAS Session

Encoding Support for Data Sets by SAS Release
For Base SAS files, there are three categories of encoding support, which is based on

the version of SAS that created the file:
� Data sets that are created in SAS 9 automatically have an encoding attribute,

which is specified in the descriptor portion of the file.
� Data sets that are created in SAS 7 and SAS 8 not have an encoding value that is

specified in the file. It is assumed that SAS 7 and SAS 8 data sets were created in
the SAS session encoding of the operating environment. However, the descriptor
portion of the file does support an encoding value. When you replace or update a
SAS 7 or SAS 8 file in a SAS 9 session, SAS specifies the current session encoding
in the descriptor portion of the file, by default.

� Data sets created in SAS 6 do not have an encoding value that is associated with
the file and cannot have an encoding value specified in the file.

z/OS: Ensuring Compatibility with Previous SAS Releases
Setting the NLSCOMPATMODE system option ensures compatibility with previous

releases of SAS.

Note: NLSCOMPATMODE is supported under the z/OS operating environment
only. �

Programs that were run in previous releases of SAS will continue to work when
NLSCOMPATMODE is specified.

The NONLSCOMPATMODE system option specifies that data is to be processed in
the encoding that is set by the ENCODING= option or the LOCALE= option, including
reading and writing external data and processing SAS syntax and user data.

Some existing programs that ran in previous releases of SAS will no longer run when
NONLSCOMPATMODE is in effect. If you have made character substitutions in SAS
syntax statements, you must modify your programs to use national characters. For
example, a Finnish customer who has substituted the Å character for the $ character in
existing SAS syntax will have to update the program to use the $ in the Finnish
environment.

For details, see “NLSCOMPATMODE System Option: z/OS” on page 360.

Output Processing
When you create a data set in SAS 9, encoding is determined as follows:
� If a new output file is created, the data is written to the file using the current

session encoding.

20 Input Processing � Chapter 3

� If a new output file is created using the OUTREP= option, which specifies a data
representation that is different from the current session, the data is written to the
file using the default session encoding for the operating system that is specified by
the OUTREP= value.

� If a new output file replaces an existing file, the new file inherits the encoding of
the existing file. For output processing that replaces an existing file that is from
another operating environment or if the existing file has no encoding that is
specified in it, then the current session encoding is used.

Input Processing
For input (read) processing in SAS 9, encoding behavior is as follows:
� If the session encoding and the encoding that is specified in the file are

incompatible, the data is transcoded to the session encoding. For example, if the
current session encoding is ASCII and the encoding that is specified in the file is
EBCDIC, SAS transcodes the data from EBCDIC to ASCII.

� If a file does not have an encoding specified in it, SAS transcodes the data only if
the file’s data representation is different from the current session.

Reading and Writing External Files
SAS reads and writes external files using the current session encoding. SAS assumes

that the external file has the same encoding as the session encoding. For example, if
you are creating a new SAS data set by reading an external file, SAS assumes that the
encoding of the external file and the current session are the same. If the encodings are
not the same, the external data could be written incorrectly to the new SAS data set.
For details about the syntax for the SAS statements that perform input and output
processing, see “SAS Options That Transcode SAS Data” on page 23.

21

C H A P T E R

4
Transcoding for NLS

Overview to Transcoding 21
Common Reasons for Transcoding 21

Transcoding and Translation Tables 22

SAS Options That Transcode SAS Data 23

Transcoding between Operating Environments 23

Transcoding Considerations 24
Compatible and Incompatible Encodings 25

Overview to Compatible and Incompatible Encodings 25

Line-feed Characters and Transferring Data between EBCDIC and ASCII 25

EBCDIC and OpenEdition Encodings Are Compatible 26

Some East Asian MBCS Encodings Are Compatible 26

Preventing Transcoding 26

Overview to Transcoding
Transcoding is the process of converting a SAS file (its data) from one encoding to

another encoding. Transcoding is necessary when the session encoding and the file
encoding are different. Transcoding is often necessary when you move data between
operating environments that use different locales.

For example, consider a file that was created under a UNIX operating environment
that uses the Latin1 encoding, then moved to an IBM mainframe that uses the German
EBCDIC encoding. When the file is processed on the IBM mainframe, the data is
remapped from the Latin1 encoding to the German EBCDIC encoding. If the data
contains an uppercase letter Ä, the hexadecimal number is converted from C4 to 4A.

Transcoding does not translate between languages; transcoding remaps characters.
In order to dynamically transcode data between operating environments that use

different encodings, an explicit encoding value must be specified. For details, see
Chapter 23, “Encoding Values in SAS Language Elements,” on page 407.

Common Reasons for Transcoding
Some situations where data might commonly be transcoded are:
� when you share data between two different SAS sessions that are running in

different locales or in different operating environments,
� when you perform text-string operations, such as converting to uppercase or

lowercase,
� when you display or print characters from another language,

22 Transcoding and Translation Tables � Chapter 4

� when you copy and paste data between SAS sessions running in different locales

.

Transcoding and Translation Tables
Specifying LOCALE= or ENCODING= indirectly sets the appropriate trantab values

in the TRANTAB= option. Trantabs are used for transcoding one SBCS encoding to
another and back again. For example, there is a specific trantab that maps Windows
Latin2 to ISO Latin2.

The following figure shows a translation table. The area of a trantab for mapping
from Windows Latin 2 (wlt2) to ISO Latin 2 (lat2) is named "table 1," and the area for
mapping characters from ISO Latin 2 to Windows Latin 2 is named "table 2."

Figure 4.1 SAS Windows Latin 2 to ISO Latin 2 Translation Table

The LOCALE= or ENCODING= system option and other encoding options (to
statements, commands, or procedures) eliminates the need to directly create or manage
translation tables.

Transcoding for NLS � Transcoding between Operating Environments 23

CAUTION:
Do not change a translation table unless you are familiar with its purpose. Translation
tables are used internally by the SAS supervisor to implement NLS. If you are
unfamiliar with the purpose of translation tables, do not change the specifications
without proper technical advice. �

The TRANTAB= option specifies the translation table to be used in the SAS session.
For details, see “TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on
page 362. The TRANTAB procedure is used to create, edit, and display customized
translation tables. For details, see Chapter 15, “The TRANTAB Procedure,” on page 319.

SAS Options That Transcode SAS Data
The following SAS options for various language elements enable you to transcode, or

to override the default encoding behavior. These elements enable you to specify a
different encoding for a SAS file or a SAS application or to suppress transcoding.

Table 4.1 SAS Options That Transcode SAS Data

Option Where Used

CHARSET= ODS MARKUP statement

CORRECTENCODING= MODIFY statement of the DATASETS procedure

ENCODING= %INCLUDE, FILE, FILENAME, INFILE, ODS
statements; FILE and INCLUDE commands

ENCODING= in a DATA step

INENCODING= LIBNAME statement

ODSCHARSET= LIBNAME statement for XML

ODSTRANTAB= LIBNAME statement for XML

OUTENCODING= LIBNAME statement

XMLENCODING= LIBNAME statement for XML

For complete details about these language elements, see Chapter 18, “Overview to
NLS Options Used in Commands, Statements, and Procedures,” on page 367. For a list
of supported encoding values to use for these options, see “SBCS, DBCS, and Unicode
Encoding Values for Transcoding Data” on page 407.

Transcoding between Operating Environments
Transcoding occurs automatically when SAS files are moved or accessed across

operating environments. Common SAS transcoding activities include:

CPORT and CIMPORT procedures
To create a transport file, SAS automatically uses translation tables to transcode
one encoding to another and back again. First, the data is converted from the
source encoding to transport format, then the data is converted from the transport
format to the target encoding. For details, see Base SAS Procedures Guide.

24 Transcoding Considerations � Chapter 4

CEDA (cross environment data access) feature of SAS
when you process a SAS data set that has an encoding that is different from the
current session encoding, SAS automatically uses CEDA software to transcode
data. (CEDA also converts a SAS file to the correct data representation when you
move a file between operating environments.) For details, see SAS Language
Reference: Concepts and SAS Language Reference: Dictionary.

SAS/CONNECT Data Transfer Services (UPLOAD and DOWNLOAD procedures)
For details, see SAS/CONNECT User’s Guide.

SAS/CONNECT Compute Services (RSUBMIT statement)
identifies a block of statements that a client session submits to server session for
processing. For details, see SAS/CONNECT User’s Guide.

SAS/CONNECT and SAS/SHARE Remote Library Services (LIBNAME)
References a library on a remote machine for client access. For details, see
SAS/CONNECT User’s Guide and SAS/SHARE User’s Guide.

Transcoding Considerations
Although transcoding usually occurs with no problems, there are situations that can

affect your data and produce unsatisfactory results. For example:

� Encodings can conflict with another. That is, two encodings can use different code
points for the same character, or use the same code points for two different
characters.

� Characters in one encoding might not be present in another encoding. For
example, a specific encoding might not possess a character for the dollar sign ($).
Transcoding the data to an encoding that does not support the dollar sign would
result in the character not printing or displaying.

� The number of bytes for a character in one encoding can be different from the
number of bytes for the same character in another encoding; for example,
transcoding from a DBCS to an SBCS. Therefore, transcoding can result in
character value truncation.

� If an error occurs during transcoding such that the data cannot be transcoded back
to its original encoding, data can be lost. That is, if you open a data set for update
processing, the observation might not be updated. However, if you open the data
set for input (read) processing and no output data set is open, SAS issues a
warning that can be printed. Processing proceeds and allows a PRINT procedure
or other read operation to show the data that does not transcode.

� CEDA has some processing limitations. For example, CEDA does not support
update processing.

� Incorrect encoding can be stamped on a SAS 7 or SAS 8 data set if it is copied or
replaced in a SAS 9 session with a different session encoding from the data. If a
character variable contains binary data, transcoding might corrupt the data.

Transcoding for NLS � Line-feed Characters and Transferring Data between EBCDIC and ASCII 25

Compatible and Incompatible Encodings

Overview to Compatible and Incompatible Encodings
ASCII is the foundation for most encodings, and is used by most personal computers,

minicomputers, and workstations. However, the IBM mainframe uses an EBCDIC
encoding. Therefore, ASCII and EBCDIC machines and data are incompatible.
Transcoding is necessary if some or all characters in one encoding are different from the
characters in the other encoding.

However, to avoid transcoding, you can create a data set and specify an encoding
value that SAS will not transcode. For example, if you use the following values in
either the ENCODING= data set option, or the INENCODING=, or the
OUTENCODING= option in the LIBNAME statement, transcoding is not performed:

� ANY specifies that no transcoding is desired, even between EBCDIC and ASCII
encodings.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

� ASCIIANY enables you to create a data set that is compatible with all
ASCII-based encodings.

� EBCDICANY enables you to create a data set that is compatible with all
EBCDIC-based encodings.

You might want to create a SAS data set that contains mixed encodings; for example,
both Latin1 and Latin2. You do not want the data transcoded for either input or output
processing. By default, data is transcoded to the current session encoding.

Data must be transcoded when the SAS file and the SAS session use incompatible
encodings; for example, ASCII and EBCDIC.

In some cases, transcoding is not required because the SAS file and the SAS session
have compatible encodings.

For a list of the encodings, by operating environment, see Chapter 24, “Encoding
Values for a SAS Session,” on page 413.

Line-feed Characters and Transferring Data between EBCDIC and ASCII
Software that runs under ASCII operating environments requires the end of the line

be specified by the line-feed character. When data is transferred from z/OS to a
machine that supports ASCII encodings, formatting problems can occur, particularly in
HTML output, because the EBCDIC new-line character is not recognized. SAS supports
two sets of EBCDIC-based encodings for z/OS:

� The encodings that have EBCDIC in their names use the traditional mapping of
EBCDIC line-feed to ASCII line-feed character, which can cause data to appear as
one stream.

� The encodings that have Open Edition in their names use the line-feed character
as the end-of-line character. When the data is transferred to an operating
environment that uses ASCII, the EBCDIC new-line character maps to an ASCII
line-feed character. This mapping enables ASCII applications to interpret the
end-of-line correctly, resulting in better formatting.

For a list of the encodings, by operating environment, see Chapter 24, “Encoding
Values for a SAS Session,” on page 413.

26 EBCDIC and OpenEdition Encodings Are Compatible � Chapter 4

EBCDIC and OpenEdition Encodings Are Compatible
EBCDIC and OpenEdition are compatible encodings.
Encodings that contain EBCDIC in their names use the traditional mapping of

EBCDIC line-feed (0x25) and new-line (0x15) characters.
Encodings that contain OPEN_ED in their names and OpenEdition in their

descriptions switch the mapping of the new-line and line-feed characters. That is, they
use the line-feed character as the end-of-line character.

If the two encodings use the same code page number but one is EBCDIC and the
other is Open Edition, no transcoding is necessary.

Example:
If the data is encoded in EBCDIC1143 and the SAS session is encoded in

OPEN_ED-1143, no transcoding is necessary because they use the same 1143 code page.
In order to transfer data between ASCII and EBCDIC, you can specify Open Edition

encodings from the list of compatible encodings.

Note: Open Edition encodings are used by default in NONLSCOMPATMODE. �

Some East Asian MBCS Encodings Are Compatible
Some East Asian double-byte (DBCS) are compatible encodings. Each line in the list

contains compatible encodings:

� SHIFT-JIS, MS-932, IBM-942, MACOS-1

� MS-949, MACOS-3, EUC-KR

� EUC-CN, MS-936, MACOS-25, DEC-CN

� EUC-TW, DEC-TW

� MS-950, MACOS-2, BIG5

If the SAS session is encoded in one of the encodings in the group and the data set is
encoded in another encoding, but in the same group, then no transcoding occurs.

Example:
If the session encoding is SHIFT-JIS and the data set encoding is IBM-942, then no

transcoding occurs.

Preventing Transcoding

Some encoding values enable you to create a data set that SAS does not transcode.
You might not want to transcode data for input or output processing but rather you
might want to create a SAS library that contains data in mixed encodings; for example,
both Latin1 and Latin2.

For example, you can avoid transcoding if you use the following values in either the
ENCODING= data set option or the INENCODING= or OUTENCODING= options in
the LIBNAME statement:

� ANY specifies that no transcoding is desired, even between EBCDIC and ASCII
encodings.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

� ASCIIANY specifies that no transcoding is required between any ASCII-based
encodings.

Transcoding for NLS � Preventing Transcoding 27

� EBCDICANY specifies that no transcoding is required between any
EBCDIC-based encodings.

For details, see “ENCODING= Data Set Option” on page 39 and “INENCODING=
and OUTENCODING= Options” on page 381.

28

29

C H A P T E R

5
Double-Byte Character Sets
(DBCS)

Overview to Double-Byte Character Sets (DBCS) 29
East Asian Languages 29

Specifying DBCS 30

Requirements for Displaying DBCS Character Sets 30

When You Can Use DBCS Features 30

DBCS and SAS on a Mainframe 31
SAS Data Conversion between DBCS Encodings 31

Avoiding Problems with Split DBCS Character Strings 32

Avoiding Character Data Truncation by Using the CVP Engine 32

Overview to Double-Byte Character Sets (DBCS)
Because East Asian languages have thousands of characters, double (two) bytes of

information are needed to represent each character.
Each East Asian language usually has more than one DBCS encoding system, due to

nonstandardization among computer manufacturers. SAS processes the DBCS encoding
information that is unique to each manufacturer for the major East Asian languages.

With the proper software extensions, you can use SAS for the following functions:
� display any of the major East Asian languages in the DBCS version of the SAS

System
� import data from East Asian language computers and move the data from one

application or operating environment to another (which may require SAS ACCESS
or other SAS products)

� convert standard East Asian date and time notation to SAS date values, SAS time
values, and SAS datetime values

� create data sets and various types of output (such as reports and graphs) that
contain East Asian language characters.

East Asian Languages
East Asian languages include:
� Chinese, which is written in Simplified Chinese script, and is used in the People’s

Republic of China and Singapore
� Chinese, which is written in Traditional Chinese script, and is used in Hong Kong

SAR, Macau SAR, and Taiwan
� Japanese
� Korean.

30 Specifying DBCS � Chapter 5

Specifying DBCS
To specify DBCS, use the following SAS system options:

DBCS recognizes DBCS characters

DBCSLANG= specifies the language

DBCSTYPE= specifies the DBCS encoding method type

Example of a SAS configuration file for Windows:

/*basic DBCS options */

-dbms /*Recognizes DBCS*/
-dbcstype PCMS /*Specifies the PCMS encoding method*/

-dbcslang JAPANESE; /*specifies the Japanese language */

DBCSTYPE= and DBCSLANG= were introduced in Version 6.12. As an alternative,
setting ENCODING= implicitly sets the DBCSTYPE= and DBCSLANG= options. For
details, see “Locale Values and Encoding Values for SBCS, DBCS, and Unicode” on page
400.

Requirements for Displaying DBCS Character Sets
In order to display data sets that contain DBCS characters, you must have the

following resources:
� system support for multiple code pages
� DBCS fonts that correspond to the language that you intend to use.

If you need to create a user-defined character for use with SAS software, your
computer must support DBCS. These computers have a limited availability in the U.S.
and Europe. These East Asian language computer systems use various methods of
creating the characters. In one popular method, the user types the phonetic
pronunciation of the character, often using Latin characters. The computer presents a
menu of characters whose sounds are similar to the phonetic pronunciation and
prompts the user to select one of them.

When You Can Use DBCS Features
After you have set up your SAS session to recognize a specific DBCS language and

operating environment, you can work with your specified language in these general
areas:

� the DATA step and batch-oriented procedures
� windowing and interactive capabilities
� cross-system connectivity and compatibility
� access to databases
� graphics.

In a DATA step and in batch-oriented procedures, you can use DBCS wherever a text
string within quotation marks is allowed. Variable values, variable labels, and data set

Double-Byte Character Sets (DBCS) � SAS Data Conversion between DBCS Encodings 31

labels can all be in DBCS. DBCS can also be used as input data and with range and
label specifications in the FORMAT procedure. In WHERE expression processing, you
can search for embedded DBCS text.

DBCS and SAS on a Mainframe
Another type of DBCS encoding exists on mainframe systems, which combine DBCS

support with the 3270-style data stream. Each DBCS character string is surrounded by
escape codes called shift out/shift in, or SO/SI. These codes originated from the need for
the old-style printers to shift out from the EBCDIC character set, to the DBCS
character set. The major manufacturers have different encodings for SO/SI; some
manufacturers pad DBCS code with one byte of shift code information while others pad
the DBCS code with two bytes of shift code information. These differences can cause
problems in reading DBCS information about mainframes.

PCs, minicomputers, and workstations do not have SO/SI but have their own types of
DBCS encodings that differ from manufacturer to manufacturer. SAS has several
formats and informats that can read DBCS on SO/SI systems:

Table 5.1 SAS Formats and Informats That Support DBCS on SO/SI Systems

Keyword Language Element Description

$KANJI informat Removes SO/SI from Japanese Kanji DBCS

$KANJIX informat Adds SO/SI to Japanese Kanji DBCS

$KANJI format Adds SO/SI to Japanese Kanji DBCS

$KANJIX format Removes SO/SI from Japanese Kanji DBCS

SAS Data Conversion between DBCS Encodings
Normally, DBCS data that is generated on one computer system is incompatible with

data generated on another computer system. SAS has features that allow conversion
from one DBCS source to another, as shown in the following table.

Language
Element

Type Use See

KCVT function Converts DBCS data from
one operating environment to
another

“KCVT Function” on page 214

CPORT procedure Moves files from one
environment to another

Base SAS Procedures Guide

CIMPORT procedure Imports a transport file
created by CPORT

Base SAS Procedures Guide

32 Avoiding Problems with Split DBCS Character Strings � Chapter 5

Avoiding Problems with Split DBCS Character Strings

� When working with DBCS characters, review your data to make sure that SAS
recognizes the entire character string when data is imported or converted or used
in a DATA or a PROC step.

� On mainframe systems that employ shift out/shift in escape codes, DBCS character
strings can become truncated during conversion across operating environments.

� There is a possibility that DBCS character strings can be split when working with
the PRINT, REPORT, TABULATE, and FREQ procedures. If undesirable splitting
occurs, you might have to add spaces on either side of your DBCS character string
to force the split to occur in a better place. The SPLIT= option can also be used
with PROC REPORT and PROC PRINT to force string splitting in a better
location.

Avoiding Character Data Truncation by Using the CVP Engine
When you specify the ENCODING= data set option, the encoding for the output data

set might require more space than the original data set. For example, when writing
DBCS data in a Windows environment using the UTF8 encoding, each DBCS character
may require three bytes. To avoid data truncation, each variable must have a width
that is 1.5 times greater than the width of the original data.

When you process a SAS data file that requires transcoding, you can request that the
CVP (character variable padding) engine expand character variable lengths so that
character data truncation does not occur. (A variable’s length is the number of bytes
used to store each of the variable’s values.)

Character data truncation can occur when the number of bytes for a character in one
encoding is different from the number of bytes for the same character in another
encoding, such as when a single-byte character set (SBCS) is transcoded to a
double-byte character set (DBCS) or to a multi-byte character set (MBCS). A SBCS
represents each character in one byte, and a DBCS represents each character in two
bytes. An MBCS represents characters in a varying length from one to four bytes. For
example, when transcoding from Wlatin2 to a Unicode encoding, such as UTF-8, the
variable lengths (in bytes) might not be sufficient to hold the values, and the result is
character data truncation.

Using the CVP engine, you specify an expansion amount so that variable lengths are
expanded prior to transcoding, then the data is processed. Think of the CVP engine as
an intermediate engine that is used to prepare the data for transcoding. After the
lengths are increased, then the primary engine, such as the default base engine, is used
to do the actual file processing.

The CVP engine is a read-only engine for SAS data files only. You can request
character variable expansion (for example with the LIBNAME statement) in either of
the following ways:

� explicitly specify the CVP engine and using the default expansion of 1.5 times the
variable lengths.

� implicitly specifying the CVP engine with the LIBNAME options CVPBYTES= or
CVPMULTIPLIER=. The options specify the expansion amount. In addition, you
can use the CVPENGINE= option to specify the primary engine to use for
processing the SAS file; the default is the default SAS engine.

For example, the following LIBNAME statement explicitly assigns the CVP engine.
Character variable lengths are increased using the default expansion, which multiples

Double-Byte Character Sets (DBCS) � Avoiding Character Data Truncation by Using the CVP Engine 33

the lengths by 1.5. For example, a character variable with a length of 10 will have a
new length of 15, and a character variable with a length of 100 will have a new length
of 150:

libname expand cvp ’SAS data-library’;

Note: The expansion amount must be large enough to accommodate any expansion;
otherwise, truncation will still occur. �

Note: For processing that conditionally selects a subset of observations by using a
WHERE expression, using the CVP engine might affect performance. Processing the
file without using the CVP engine might be faster than processing the file using the
CVP engine. For example, if the data set has indexes, the indexes will not be used in
order to optimize the WHERE expression if you use the CVP engine. �

For more information and examples, see the CVP options in the LIBNAME
Statement in SAS Language Reference: Dictionary.

34

35

P A R T2

Data Set Options for NLS

Chapter 6.Overview to Data Set Options for NLS 37

Chapter 7.Data Set Options for NLS 39

36

37

C H A P T E R

6
Overview to Data Set Options for
NLS

Data Set Options for NLS by Category 37

Data Set Options for NLS by Category
NLS affects the data set control category of options for selected data set options. The

following table provides brief descriptions of the data set options. For more detailed
descriptions, see the dictionary entry for each data set option:

Table 6.1 Summary of Data Set Options for NLS

Category Data Set Options Description

Data Set Control “ENCODING= Data Set
Option” on page 39

Overrides the encoding to use for reading or writing a
SAS data set

“OUTREP= Data Set
Option” on page 41

Specifies the data representation for the output SAS data
set

“SORTSEQ= Data Set
Option” on page 42

Specifies a language-specific collation sequence for the
SORT procedure to use for the specified SAS data set

38

39

C H A P T E R

7
Data Set Options for NLS

ENCODING= Data Set Option 39
OUTREP= Data Set Option 41

SORTSEQ= Data Set Option 42

ENCODING= Data Set Option

Overrides the encoding to use for reading or writing a SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
ENCODING= ANY | ASCIIANY | EBCDICANY | encoding-value

Syntax Description

ANY
specifies that no transcoding occurs.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

ASCIIANY
specifies that no transcoding occurs when the mixed encodings are ASCII encodings.

EBCDICANY
specifies that no transcoding occurs when the mixed encodings are EBCDIC
encodings.

encoding-value
specifies an encoding value. For details, see “Locale Values and Encoding Values for
SBCS, DBCS, and Unicode” on page 400.

Details
The value for ENCODING= indicates that the SAS data set has a different encoding
from the current session encoding. When you read data from a data set, SAS transcodes

40 ENCODING= Data Set Option � Chapter 7

the data from the specified encoding to the session encoding. When you write data to a
data set, SAS transcodes the data from the session encoding to the specified encoding.

Input Processing

By default, encoding for input processing is determined as follows:
� If the session encoding and the encoding that is specified in the file are different,

SAS transcodes the data to the session encoding.
� If a file has no encoding specified, but the file’s data representation is different

from the encoding of the current session, then SAS transcodes the data to the
current session.

Output Processing

By default, encoding for output processing is determined as follows:
� Data is written to a file using the encoding of the current session, except when a

different output representation is specified using the OUTREP= data set option,
the OUTENCODING= option in the LIBNAME statement, or the ENCODING=
data set option.

� If a new file replaces an existing file, then the new file will inherit the encoding of
the existing file.

� If an existing file is replaced by a new file that was created under a different
operating environment or that has no encoding specified, the new file will use the
encoding of the current session.

Comparisons
� Session encoding is specified using the ENCODING= system option or the

LOCALE= system option, with each operating environment having a default
encoding.

� You can specify encoding for a SAS data library by using the LIBNAME
statement’s INENCODING= option (for input files) and the OUTENCODING=
option (for output files). If both the LIBNAME statement option and the
ENCODING= data set option are specified, SAS uses the data set option.

Examples

Example 1: Creating a SAS Data Set with Mixed Encodings and with Transcoding
Suppressed By specifying the data set option ENCODING=ANY, you can create a
SAS data set that contains mixed encodings, and suppress transcoding for either input
or output processing.

In this example, the new data set MYFILES.MIXED contains some data that uses
the Latin1 encoding, and some data that uses the Latin2 encoding. When the data set
is processed, no transcoding occurs. For example, you will see correct Latin1 characters
in a Latin1 session encoding and correct Latin2 characters in a Latin2 session encoding.

libname myfiles ’SAS data-library’;

data myfiles.mixed (encoding=any);
set work.latin1;
set work.latin2;

run;

Example 2: Creating a SAS Data Set with a Particular Encoding For output processing,
you can override the current session encoding. This might be necessary, for example, if
the normal access to the file will use a different session encoding.

Data Set Options for NLS � OUTREP= Data Set Option 41

For example, if the current session encoding is Wlatin1, you can specify
ENCODING=WLATIN2 in order to create the data set that uses the encoding Wlatin2.
The following statements tell SAS to write the data to the new data set using the
Wlatin2 encoding instead of the session encoding. The encoding is also specified in the
descriptor portion of the file.

libname myfiles ’SAS data-library’;

data myfiles.difencoding (encoding=wlatin2);
.
.
.

run;

Example 3: Overriding Encoding for Input Processing For input processing, you can
override the encoding that is specified in the file, and specify a different encoding.

For this example, the current session encoding is EBCDIC-870, but the file has the
encoding value EBCDIC-1047 in the descriptor information. By specifying
ENCODING=EBCDIC-870, SAS does not transcode the data, but instead displays the
data using EBCDIC-870 encoding.

proc print data=myfiles.mixed (encoding=ebcdic870);
run;

See Also

Conceptual discussion in Chapter 3, “Encoding for NLS,” on page 9

Data Set Options:

“SORTSEQ= Data Set Option” on page 42

Options in Statements and Commands:

“ENCODING= Option” on page 378

“INENCODING= and OUTENCODING= Options” on page 381

System Options:

“ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on page 354

“LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS” on page 358

OUTREP= Data Set Option

Specifies the data representation for the output SAS data set

Valid in: DATA step and PROC steps

Category: Data Set Control

See: OUTREP= Data Set Option in SAS Language Reference: Dictionary

42 SORTSEQ= Data Set Option � Chapter 7

SORTSEQ= Data Set Option

Specifies a language-specific collation sequence that the SORT procedure uses for the specified
SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
SORTSEQ=collation-sequence

Syntax Description

collation-sequence
specifies the collation sequence that the SORT procedure uses for the specified SAS
data set. Valid values can be user-supplied, or they can be one of the following:

� ASCII
� DANISH (alias NORWEGIAN)
� EBCDIC
� FINNISH
� ITALIAN
� NATIONAL
� POLISH
� REVERSE
� SPANISH
� SWEDISH

Details
If you want to create or change a collation sequence, use the TRANTAB procedure to
create or modify translation tables. When you create your own translation tables, they
are stored in your PROFILE catalog, and they override any translation tables with the
same name that are stored in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the PROFILE catalog to the HOST catalog. All users can access the new or
modified translation tables. �

If you are in a windowing environment, use the Explorer window to display the
SASHELP.HOST catalog. In the HOST catalog, entries of type TRANTAB contain
collation sequences that are identified by the entry name.

If you are not in a windowing environment, issue the following statements to
generate a list of the contents of the HOST catalog. Collation sequences are entries of
the type TRANTAB.

proc catalog catalog=sashelp.host;
contents;

run;

To see the contents of a particular translation table, use these statements:

Data Set Options for NLS � SORTSEQ= Data Set Option 43

proc trantab table=translation-table-name;
list;

run;

The contents of collation sequences are displayed in the SAS log.

See Also

System Options:

“SORTSEQ= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 361

“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

44

45

P A R T3

Formats for NLS

Chapter 8.Overview to Formats for NLS 47

Chapter 9. Formats for NLS 63

46

47

C H A P T E R

8
Overview to Formats for NLS

International Date and Datetime Formats 47
European Currency Conversion 52

Overview to European Currency Conversion 52

Conversion Rate Tables 53

Methods for Converting from One European Currency to Another European Currency 54

Formats for NLS by Category 54

International Date and Datetime Formats

SAS supports international formats that are equivalent to some of the most
commonly used English-language date formats. In each case the format works like the
corresponding English-language format. Only the maximum, minimum, and default
widths are different.

Table 8.1 International Date and Datetime Formats

Language English Format International Format Min Max Default

Afrikaans (AFR) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWK. 2 38 28

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFDE. 3 37 29

Catalan (CAT) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 5 32 5

48 International Date and Datetime Formats � Chapter 8

Language English Format International Format Min Max Default

WEEKDATX. EURDFWKX. 2 40 27

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EUDFWDX. 3 40 16

Croatian (CRO) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 3 40 27

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 16

Czech (CSY) DATE. EURDFDE. 10 14 12

DATETIME. EURDFDT. 12 40 21

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFWN. 1 32 7

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 10 32 10

WEEKDATX. EURDFWKX. 2 40 25

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 8 40 16

Danish (DAN) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 7

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 2 31 31

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

Dutch (NLD) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 2 38 28

� International Date and Datetime Formats 49

Language English Format International Format Min Max Default

WORDDATX. EURDFWDX. 3 37 29

WEEKDAY. EURDFDN. 1 32 1

Finnish (FIN) DATE. EURDFDE. 9 10 9

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 10

DOWNAME. EURDFDWN. 1 32 11

MONNAME. EURDFMN. 1 32 11

MONYY. EURDFMY. 8 8 8

WEEKDATX. EURDFWKX. 2 37 37

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 20 20

French (FRA) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 8

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 27 27

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

German (DEU) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 30 30

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

Hungarian (HUN) DATE. EURDFDE. 8 12 10

DATETIME. EURDFDT. 0 40 19

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 10

MONYY. EURDFMY. 8 32 8

WEEKDATX. EURDFWKX. 3 40 28

WEEKDAY. EURDFDN. 1 32 1

50 International Date and Datetime Formats � Chapter 8

Language English Format International Format Min Max Default

WORDDATX. EURDFWDX. 6 40 18

Italian (ITA) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 28 28

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Macedonian (MAC) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 3 40 29

WEEKDDATX. EURDFWDX. 1 32 1

WORDDATX. EURDFDN. 3 40 17

Norwegian (NOR) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 7

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 26 26

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Polish (POL) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 12

MONNAME. EURDFMN. 1 32 12

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 2 40 34

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 17

� International Date and Datetime Formats 51

Language English Format International Format Min Max Default

Portuguese (PTG) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 13

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 38 38

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 37 23

Russian (RUS) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 11

MONNAME. EURDFMN. 1 32 8

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 2 40 29

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 16

Spanish (ESP) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 9

MONNAME. EURDFMN. 1 32 10

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 1 35 35

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 24 24

Slovenian (SLO) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 32 5

WEEKDATX. EURDFWKX. 3 40 29

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 40 17

Swedish (SVE) DATE. EURDFDE. 5 9 7

52 European Currency Conversion � Chapter 8

Language English Format International Format Min Max Default

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 7

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 26 26

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Swiss_French (FRS) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 8

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 26 26

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 17 17

Swiss_German (DES) DATE. EURDFDE. 5 9 7

DATETIME. EURDFDT. 7 40 16

DDMMYY. EURDFDD. 2 10 8

DOWNAME. EURDFDWN. 1 32 10

MONNAME. EURDFMN. 1 32 9

MONYY. EURDFMY. 5 7 5

WEEKDATX. EURDFWKX. 3 30 30

WEEKDAY. EURDFDN. 1 32 1

WORDDATX. EURDFWDX. 3 18 18

European Currency Conversion

Overview to European Currency Conversion
SAS enables you to convert European currency from one country’s currency to an

equivalent amount in another country’s currency. You can also convert a country’s
currency to euros, and you can convert euros to a specific country’s currency.

SAS provides a group of formats, informats, and a function to use for currency
conversion. The set of formats that begin with EURFR converts specific European
currencies to an amount in euros. The set of formats that begin with EURTO converts
an amount in euros to an amount in a specific European currency. The EUROCURR
function also converts one European currency to an amount in another currency.

� Conversion Rate Tables 53

The default value of the euro symbol is . The euro symbol precedes the amount with
the EUROw.d, and EUROXw.d formats.

Conversion Rate Tables
The conversion rates for the first eleven countries to agree to euro conversion were

established on January 1, 1999. Greece joined the EMU (European Monetary Union) on
January 1, 2001 and the conversion of Greek drachmas to euros was established at that
time. These rates are fixed, and are incorporated into the EURFR and EURTO formats,
and into the EUROCURR function. The following table lists the currency codes and
conversion rates for the specific currencies whose rates are fixed.

Note: Add the currency code to EURFR and EURTO to create the format that you
need to use. For example, the EURFRATS format converts an amount from Austrian
schillings to euros. �

Table 8.2 Fixed Currency Conversion Rates

Currency code Conversion rate Currency

ATS 13.7603 Austrian schilling

BEF 40.3399 Belgian franc

DEM 1.95583 Deutsche mark

ESP 166.386 Spanish peseta

EUR 1 Euro

FIM 5.94573 Finnish markka

FRF 6.55957 French franc

GRD 340.750 Greek drachma

IEP 0.787564 Irish pound

ITL 1936.27 Italian lira

LUF 40.3399 Luxembourg franc

NLG 2.20371 Dutch guilder

PTE 200.482 Portuguese escudo

For other countries, currency conversion rates can fluctuate. The conversion rates for
these countries are stored in an ASCII text file that you reference with the EURFRTBL
fileref.

The following table lists the currency codes and conversion rates for the specific
currencies whose rates are changeable.

Table 8.3 Changeable Currency Conversion Rates

Currency code Conversion rate Currency

CHF 1.60430 Swiss franc

CZK 34.8563 Czech koruna

DKK 7.49009 Danish krone

GBP 0.700132 British pound

54 Methods for Converting from One European Currency to Another European Currency � Chapter 8

Currency code Conversion rate Currency

HUF 260.325 Hungarian forint

NOK 9.19770 Norwegian krone

PLZ 4.2 Polish zloty

ROL 13.71 Romanian leu

RUR 19.7680 Russian ruble

SEK 9.36591 Swedish krona

SIT 191 Slovenian tolar

TRL 336.912 Turkish lira

YUD 13.0644 Yugoslavian dinar

Methods for Converting from One European Currency to Another
European Currency

The EUROCURR function uses the conversion rate tables to convert between
currencies. If you are converting from one country’s currency to euros, SAS divides the
country’s currency amount by that country’s rate from one of the conversion rate tables.
If you are converting from euros to a country’s currency, SAS multiplies the country’s
currency amount by that country’s rate from one of the conversion rate tables. If you
are converting one country’s currency to another country’s currency, SAS first converts
the amount you want to convert to euros. SAS stores the intermediate value as
precisely as your operating environment allows, and does not round the value. SAS
then converts the amount in euros to an amount in the currency you are converting to.

Formats for NLS by Category
The following categories relate to NLS issues:

Table 8.4 Categories of NLS Formats

Category Description

BIDI text handling Instructs SAS to write bidirectional data values from data variables.

Character Instructs SAS to write character data values from character variables.

Currency Conversion Instructs SAS to convert an amount from one currency to another
currency.

DBCS Instructs SAS to translate double–byte-character sets that are used in
Asian languages.

Hebrew text handling Instructs SAS to read Hebrew data from data variables.

International Date and
Time

Instructs SAS to write data values from variables that represent dates,
times, and datetimes.

Numeric Instructs SAS to write numeric data values from numeric variables.

The following table provides brief descriptions of the SAS formats that are related to
NLS. For more detailed descriptions, see the NLS entry for each format.

� Formats for NLS by Category 55

Table 8.5 Summary of NLS Formats by Category

Category Formats for NLS Description

BIDI text handling “$BIDIw. Format” on page
65

Converts a logically ordered string to a visually ordered
string, and vice versa by reversing the order of Hebrew
characters while preserving the order of Latin words and
numbers

“$LOGVSw. Format” on
page 151

Processes a character string that is in left-to-right-logical
order, and then writes the character string in visual order

“$LOGVSRw. Format” on
page 152

Processes a character string that is in right-to-left-logical
order, and then writes the character string in visual order

“$VSLOGw. Format” on
page 196

Processes a character string that is in visual order, and
then writes the character string in left-to-right logical
order

“$VSLOGRw. Format” on
page 197

Processes a character string that is in visual order, and
then writes the character string in right-to-left logical
order

Character “$UCS2Bw. Format” on
page 174

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in big-endian, 16-bit, UCS2, Unicode encoding

“$UCS2BEw. Format” on
page 175

Processes a character string that is in big-endian, 16-bit,
UCS2, Unicode encoding, and then writes the character
string in the encoding of the current SAS session

“$UCS2Lw. Format” on
page 176

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in little-endian, 16-bit, UCS2, Unicode encoding

“$UCS2LEw. Format” on
page 177

Processes a character string that is in little-endian,
16-bit, UCS2, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session

“$UCS2Xw. Format” on
page 178

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in native-endian, 16-bit, UCS2, Unicode encoding

“$UCS2XEw. Format” on
page 180

Processes a character string that is in native-endian,
16-bit, UCS2, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session

“$UCS4Bw. Format” on
page 181

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in big-endian, 32-bit, UCS4, Unicode encoding

“$UCS4BEw. Format” on
page 182

Processes a character string that is in big-endian, 32-bit,
UCS4, Unicode encoding, and then writes the character
string in the encoding of the current SAS session

“$UCS4Lw. Format” on
page 183

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in little-endian, 32-bit, UCS4, Unicode encoding

56 Formats for NLS by Category � Chapter 8

Category Formats for NLS Description

“$UCS4LEw. Format” on
page 184

Processes a character string that is in little-endian,
32-bit, UCS4, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session

“$UCS4Xw. Format” on
page 186

Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in native-endian, 32-bit, UCS4, Unicode encoding

“$UCS4XEw. Format” on
page 187

Processes a character string that is in native-endian,
32-bit, UCS4, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session

“$UESCw. Format” on
page 188

Processes a character string that is encoded in the
current SAS session, and then writes the character
string in Unicode escape (UESC) representation

“$UESCEw. Format” on
page 189

Processes a character string that is in Unicode escape
(UESC) representation, and then writes the character
string in the encoding of the current SAS session

“$UNCRw. Format” on
page 190

Processes a character string that is encoded in the
current SAS session, and then writes the character
string in numeric character representation (NCR)

“$UNCREw. Format” on
page 191

Processes a character string that is in numeric character
representation (NCR), and then writes the character
string in the encoding of the current SAS session

“$UPARENw. Format” on
page 192

Processes a character string that is encoded in the
current SAS session, and then writes the character
string in Unicode parenthesis (UPAREN) representation

“$UPARENEw. Format”
on page 194

Processes a character string that is in Unicode
parenthesis (UPAREN), and then writes the character
string in the encoding of the current SAS session

“$UTF8Xw. Format” on
page 195

Processes a character string that is in the encoding of the
current SAS session, and then writes the character string
in universal transformation format (UTF-8) encoding

Currency Conversion “EURFRATSw.d Format”
on page 86

Converts an amount from Austrian schillings to euros

“EURFRBEFw.d Format”
on page 87

Converts an amount from Belgian francs to euros

“EURFRCHFw.d Format”
on page 88

Converts an amount from Swiss francs to euros

“EURFRCZKw.d Format”
on page 89

Converts an amount from Czech koruny to euros

“EURFRDEMw.d Format”
on page 90

Converts an amount from Deutsche marks to euros

“EURFRDKKw.d Format”
on page 91

Converts an amount from Danish kroner to euros

“EURFRESPw.d Format”
on page 93

Converts an amount from Spanish pesetas to euros

� Formats for NLS by Category 57

Category Formats for NLS Description

“EURFRFIMw.d Format”
on page 94

Converts an amount from Finnish markkaa to euros

“EURFRFRFw.d Format”
on page 95

Converts an amount from French francs to euros

“EURFRGBPw.d Format”
on page 96

Converts an amount from British pounds to euros

“EURFRGRDw.d Format”
on page 97

Converts an amount from Greek drachmas to euros

“EURFRHUFw.d Format”
on page 98

Converts an amount from Hungarian forints to euros

“EURFRIEPw.d Format”
on page 100

Converts an amount from Irish pounds to euros

“EURFRITLw.d Format”
on page 101

Converts an amount from Italian lire to euros

“EURFRLUFw.d Format”
on page 102

Converts an amount from Luxembourg francs to euros

“EURFRNLGw.d Format”
on page 103

Converts an amount from Dutch guilders to euros

“EURFRNOKw.d Format”
on page 104

Converts an amount from Norwegian krone to euros

“EURFRPLZw.d Format”
on page 105

Converts an amount from Polish zlotys to euros

“EURFRPTEw.d Format”
on page 107

Converts an amount from Portuguese escudos to euros

“EURFRROLw.d Format”
on page 108

Converts an amount from Romanian lei to euros

“EURFRRURw.d Format”
on page 109

Converts an amount from Russian rubles to euros

“EURFRSEKw.d Format”
on page 110

Converts an amount from Swedish kronor to euros

“EURFRSITw.d Format”
on page 111

Converts an amount from Slovenian tolars to euros

“EURFRTRLw.d Format”
on page 113

Converts an amount from Turkish liras to euros

“EURFRYUDw.d Format”
on page 114

Converts an amount from Yugoslavian dinars to euros

“EURTOATSw.d Format”
on page 118

Converts an amount from euros to Austrian schillings

“EURTOBEFw.d Format”
on page 119

Converts an amount from euros to Belgian francs

“EURTOCHFw.d Format”
on page 120

Converts an amount from euros to Swiss francs

“EURTOCZKw.d Format”
on page 121

Converts an amount from euros to Czech koruny

58 Formats for NLS by Category � Chapter 8

Category Formats for NLS Description

“EURTODEMw.d Format”
on page 122

Converts an amount from euros to Deutsche marks

“EURTODKKw.d Format”
on page 124

Converts an amount from euros to Danish kroner

“EURTOESPw.d Format”
on page 125

Converts an amount from euros to Spanish pesetas

“EURTOFIMw.d Format”
on page 126

Converts an amount from euros to Finnish markkaa

“EURTOFRFw.d Format”
on page 127

Converts an amount from euros to French francs

“EURTOGBPw.d Format”
on page 128

Converts an amount from euros to British pounds

“EURTOGRDw.d Format”
on page 130

Converts an amount from euros to Greek drachmas

“EURTOHUFw.d Format”
on page 131

Converts an amount from euros to Hungarian forints

“EURTOIEPw.d Format”
on page 132

Converts an amount from euros to Irish pounds

“EURTOITLw.d Format”
on page 133

Converts an amount from euros to Italian lire

“EURTOLUFw.d Format”
on page 134

Converts an amount from euros to Luxembourg francs

“EURTONLGw.d Format”
on page 135

Converts an amount from euros to Dutch guilders

“EURTONOKw.d Format”
on page 137

Converts an amount from euros to Norwegian krone

“EURTOPLZw.d Format”
on page 138

Converts an amount from euros to Polish zlotys

“EURTOPTEw.d Format”
on page 139

Converts an amount from euros to Portuguese escudos

“EURTOROLw.d Format”
on page 140

Converts an amount from euros to Romanian lei

“EURTORURw.d Format”
on page 141

Converts an amount from euros to Russian rubles

“EURTOSEKw.d Format”
on page 142

Converts an amount from euros to Swedish kronor

“EURTOSITw.d Format”
on page 144

Converts an amount from euros to Slovenian tolars

“EURTOTRLw.d Format”
on page 145

Converts an amount from euros to Turkish liras

“EURTOYUDw.d Format”
on page 146

Converts an amount from euros to Yugoslavian dinars

DBCS “$KANJIw. Format” on
page 149

Adds shift-code data to DBCS data

� Formats for NLS by Category 59

Category Formats for NLS Description

“$KANJIXw. Format” on
page 150

Removes shift-code data from DBCS data

Date and Time “EURDFDDw. Format” on
page 68

Writes international date values in the form dd.mm.yy or
dd.mm.yyyy

“EURDFDEw. Format” on
page 70

Writes international date values in the form ddmmmyy
or ddmmmyyyy

“EURDFDNw. Format” on
page 72

Writes international date values as the day of the week

“EURDFDTw.d Format”
on page 73

Writes international datetime values in the form
ddmmmyy:hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

“EURDFDWNw. Format”
on page 75

Writes international date values as the name of the day

“EURDFMNw. Format” on
page 77

Writes international date values as the name of the
month

“EURDFMYw. Format” on
page 79

Writes international date values in the form mmmyy or
mmmyyyy

“EURDFWDXw. Format”
on page 81

Writes international date values as the name of the
month, the day, and the year in the form dd month-name
yy (or yyyy)

“EURDFWKXw. Format”
on page 83

Writes international date values as the name of the day
and date in the form day-of-week, dd month-name yy (or
yyyy)

“HDATEw. Format” on
page 147

Writes date values in the form yyyy mmmmm dd where
dd is the day-of-the-month, mmmmm represents the
month’s name in Hebrew, and yyyy is the year

“HEBDATEw. Format” on
page 148

Writes date values according to the Jewish calendar

“MINGUOw. Format” on
page 153

Writes date values as Taiwanese dates in the form
yyymmdd

“NENGOw. Format” on
page 154

Writes date values as Japanese dates in the form
e.yymmdd

“NLDATEw. Format” on
page 155

Converts a SAS date value to the date value of the
specified locale, and then writes the date value as a date

“NLDATEMNw. Format”
on page 156

Converts a SAS date value to the date value of the
specified locale, and then writes the value as the
name-of-the-month

“NLDATEWw. Format” on
page 157

Converts a SAS date value to the date value of the
specified locale, and then writes the value as the date
and the day-of-the-week

“NLDATEWNw. Format”
on page 158

Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
day-of-the-week

“NLDATMw. Format” on
page 159

Converts a SAS date-time value to the date-time value of
the specified locale, and then writes the value as a
date-time

60 Formats for NLS by Category � Chapter 8

Category Formats for NLS Description

“NLDATMAPw. Format”
on page 160

Converts a SAS date-time value to the date-time value of
the specified locale, and then writes the value as a
date-time with a.m. or p.m.

“NLDATMTMw. Format”
on page 161

Converts the time portion of a SAS date-time value to
the time-of-day value of the specified locale, and then
writes the value as a time-of-day

“NLDATMWw. Format” on
page 162

Converts a SAS date value to a date-time value of the
specified locale, and then writes the value a day-of-week
and date-time

“NLTIMEw. Format” on
page 172

Converts a SAS time value to the time value of the
specified locale, and then writes the value as a time value

“NLTIMAPw. Format” on
page 173

Converts a SAS time value to the time value of a
specified locale, and then writes the value as a
time-value with a.m. or p.m.

“WEEKUw. Format” on
page 198

Writes a week number in decimal format by using the U
algorithm

“WEEKVw. Format” on
page 199

Writes a week number in decimal format by using the V
algorithm

“WEEKWw. Format” on
page 201

Writes a week number in decimal format by using the W
algorithm

Hebrew text handling “$CPTDWw. Format” on
page 66

Processes a character string that is in Hebrew text,
encoded in IBM-PC (cp862), and then writes the
character string in Windows Hebrew encoding (cp 1255)

“$CPTWDw. Format” on
page 67

Processes a character string that is encoded in Windows
(cp1255), and then writes the character string in Hebrew
DOS (cp862) encoding

Numeric “EUROw.d Format” on
page 115

Writes numeric values with a leading euro symbol (E), a
comma that separates every three digits, and a period
that separates the decimal fraction

“EUROXw.d Format” on
page 116

Writes numeric values with a leading euro symbol (E), a
period that separates every three digits, and a comma
that separates the decimal fraction

“NLMNYw.d Format” on
page 163

Writes the monetary format of the local expression in the
specified locale using local currency

“NLMNYIw.d Format” on
page 165

Writes the monetary format of the international
expression in the specified locale

“NLNUMw.d Format” on
page 166

Writes the numeric format of the local expression in the
specified locale

“NLNUMIw.d Format” on
page 168

Writes the numeric format of the international
expression in the specified locale

“NLPCTw.d Format” on
page 169

Writes percentage data of the local expression in the
specified locale

� Formats for NLS by Category 61

Category Formats for NLS Description

“NLPCTIw.d Format” on
page 170

Writes percentage data of the international expression in
the specified locale

“YENw.d Format” on page
203

Writes numeric values with yen signs, commas, and
decimal points

62

63

C H A P T E R

9
Formats for NLS

$BIDIw. Format 65
$CPTDWw. Format 66

$CPTWDw. Format 67

EURDFDDw. Format 68

EURDFDEw. Format 70

EURDFDNw. Format 72
EURDFDTw.d Format 73

EURDFDWNw. Format 75

EURDFMNw. Format 77

EURDFMYw. Format 79

EURDFWDXw. Format 81

EURDFWKXw. Format 83
EURFRATSw.d Format 86

EURFRBEFw.d Format 87

EURFRCHFw.d Format 88

EURFRCZKw.d Format 89

EURFRDEMw.d Format 90
EURFRDKKw.d Format 91

EURFRESPw.d Format 93

EURFRFIMw.d Format 94

EURFRFRFw.d Format 95

EURFRGBPw.d Format 96
EURFRGRDw.d Format 97

EURFRHUFw.d Format 98

EURFRIEPw.d Format 100

EURFRITLw.d Format 101

EURFRLUFw.d Format 102

EURFRNLGw.d Format 103
EURFRNOKw.d Format 104

EURFRPLZw.d Format 105

EURFRPTEw.d Format 107

EURFRROLw.d Format 108

EURFRRURw.d Format 109
EURFRSEKw.d Format 110

EURFRSITw.d Format 111

EURFRTRLw.d Format 113

EURFRYUDw.d Format 114

EUROw.d Format 115
EUROXw.d Format 116

EURTOATSw.d Format 118

EURTOBEFw.d Format 119

64 Contents � Chapter 9

EURTOCHFw.d Format 120
EURTOCZKw.d Format 121

EURTODEMw.d Format 122

EURTODKKw.d Format 124

EURTOESPw.d Format 125

EURTOFIMw.d Format 126
EURTOFRFw.d Format 127

EURTOGBPw.d Format 128

EURTOGRDw.d Format 130

EURTOHUFw.d Format 131

EURTOIEPw.d Format 132

EURTOITLw.d Format 133
EURTOLUFw.d Format 134

EURTONLGw.d Format 135

EURTONOKw.d Format 137

EURTOPLZw.d Format 138

EURTOPTEw.d Format 139
EURTOROLw.d Format 140

EURTORURw.d Format 141

EURTOSEKw.d Format 142

EURTOSITw.d Format 144

EURTOTRLw.d Format 145
EURTOYUDw.d Format 146

HDATEw. Format 147

HEBDATEw. Format 148

$KANJIw. Format 149

$KANJIXw. Format 150

$LOGVSw. Format 151
$LOGVSRw. Format 152

MINGUOw. Format 153

NENGOw. Format 154

NLDATEw. Format 155

NLDATEMNw. Format 156
NLDATEWw. Format 157

NLDATEWNw. Format 158

NLDATMw. Format 159

NLDATMAPw. Format 160

NLDATMTMw. Format 161
NLDATMWw. Format 162

NLMNYw.d Format 163

NLMNYIw.d Format 165

NLNUMw.d Format 166

NLNUMIw.d Format 168

NLPCTw.d Format 169
NLPCTIw.d Format 170

NLTIMEw. Format 172

NLTIMAPw. Format 173

$UCS2Bw. Format 174

$UCS2BEw. Format 175
$UCS2Lw. Format 176

$UCS2LEw. Format 177

$UCS2Xw. Format 178

$UCS2XEw. Format 180

$UCS4Bw. Format 181

Formats for NLS � $BIDIw. Format 65

$UCS4BEw. Format 182
$UCS4Lw. Format 183

$UCS4LEw. Format 184

$UCS4Xw. Format 186

$UCS4XEw. Format 187

$UESCw. Format 188
$UESCEw. Format 189

$UNCRw. Format 190

$UNCREw. Format 191

$UPARENw. Format 192

$UPARENEw. Format 194

$UTF8Xw. Format 195
$VSLOGw. Format 196

$VSLOGRw. Format 197

WEEKUw. Format 198

WEEKVw. Format 199

WEEKWw. Format 201
YENw.d Format 203

$BIDIw. Format

Converts a logically-ordered string to a visually-ordered string, and vice versa, by reversing the
order of Hebrew characters while preserving the order of Latin words and numbers

Category: BIDI text handling
Alignment: left

Syntax
$BIDIw.

Syntax Description

w
specifies the width of the output field.
Default: 1 if w is not specified
Range: 1–32767

Details
In the Windows operating environment, Hebrew text is stored in logical order. This
means that the text is stored in the order that it is written and not necessarily as it is
displayed. However, in other operating environments, Hebrew text is stored in the
same order it is displayed. This can cause SAS users to encounter Hebrew text that is
reversed. Such situations can occur when you use SAS/CONNECT or other software to
transfer SAS data sets or reports with Hebrew text from a visual operating
environment to a logical one. The $BIDI format is a format that reverses Hebrew text
while maintaining the order of numbers and Latin-1 words.

66 $CPTDWw. Format � Chapter 9

Operating Environment Information: In mainframe operating environments, this
format is designed to work with NewCode Hebrew. Some mainframe operating
environments might experience unsatisfactory results, because they use the OldCode
Hebrew encoding. There is a hotfix for this encoding on SAS Institute’s Web site:
http://support.sas.com/.

�

Comparisons
The $BIDIw. format performs a reversing function similar to the $REVERJw. format,
which writes character data in reverse order and preserves blanks. $BIDIw. behaves in
the following way:

� $BIDIw. reverses the order of words and numbers in a specified string, preserving
blanks. Latin-1 words and numbers themselves are not reversed, only their order
in the string.

� When $BIDI encounters a word consisting of Hebrew characters in the text string,
the characters in the Hebrew word are reversed and the position of the Hebrew
word is reversed in the string.

Examples

This example demonstrates how $BIDIw. reverses Hebrew characters. The Hebrew
is reversed in the string. The Hebrew characters in the words are also reversed.

The following lines are written to the SAS log:

$CPTDWw. Format

Processes a character string that is in Hebrew text, encoded in IBM-PC (cp862), and then writes
the character string in Windows Hebrew encoding (cp 1255)

Category: Hebrew text handling

Alignment: left

Syntax
$CPTDWw.

Formats for NLS � $CPTWDw. Format 67

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Comparisons
The $CPTDWw. format performs processing that is the opposite of the $CPTWDw.
format.

Examples

The following example uses the input value of “808182x.”

Statement Result

----+----1----+

put text $cptdw3.;

See Also

Formats:

“$CPTWDw. Format” on page 67

Informats:

“$CPTDWw. Informat” on page 250

“$CPTWDw. Informat” on page 251

$CPTWDw. Format

Processes a character string that is encoded in Windows (cp1255), and then writes the character
string in Hebrew DOS (cp862) encoding

Category: Hebrew text handling

Alignment: left

Syntax
$CPTWDw.

68 EURDFDDw. Format � Chapter 9

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Comparisons

The $CPTWDw. format performs processing that is the opposite of the $CPTDWw.
format.

Examples

The following example uses the input value of “ ”.

Statement Result

----+----1----+----2----+

put text $cptwd3.;

See Also

Formats:

“$CPTDWw. Format” on page 66

Informats:

“$CPTDWw. Informat” on page 250

“$CPTWDw. Informat” on page 251

EURDFDDw. Format

Writes international date values in the form dd.mm.yy or dd.mm.yyyy

Category: Date and Time

Alignment: right

Syntax

EURDFDDw.

Formats for NLS � EURDFDDw. Format 69

Syntax Description

w
specifies the width of the output field.
Default: 8 (except Finnish, which is 10)
Range: 2–10
Tip: When w is from 2 to 5, SAS prints as much of the month and day as possible.

When w is 7, the date appears as a two-digit year without slashes, and the value
is right aligned in the output field.

Details
The EURDFDDw. format writes SAS date values in the form dd.mm.yy or dd.mm.yyyy,
where

dd
is the two-digit integer that represents the day of the month.

mm
is the two-digit integer that represents the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= system
option.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
international date value. The third PUT statement uses the French language prefix in
the format to write the international date value. Therefore, the value of the DFLANG=
option is ignored.

Statement Result

----+----1

put date eurdfdd8.; 02.01.02

put date espdfdd8.; 02.01.02

put date fradfdd8.; 02/01/02

70 EURDFDEw. Format � Chapter 9

See Also

Formats:
DATEw. in SAS Language Reference: Dictionary

DDMMYYw. in SAS Language Reference: Dictionary
MMDDYYw. in SAS Language Reference: Dictionary
YYMMDDw. in SAS Language Reference: Dictionary

Functions:
MDY in SAS Language Reference: Dictionary

Informats:
DATEw. in SAS Language Reference: Dictionary
DDMMYYw. in SAS Language Reference: Dictionary

MMDDYYw. in SAS Language Reference: Dictionary
YYMMDDw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFDEw. Format

Writes international date values in the form ddmmmyy or ddmmmyyyy

Category: Date and Time
Alignment: right

Syntax
EURDFDEw.

Syntax Description

w
specifies the width of the output field.
Default: 7 (except Finnish)
Range: 5–9 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 9–10 and the

default is 9. �

Details
The EURDFDEw. format writes SAS date values in the form ddmmmyy or ddmmmyyyy:

dd
is an integer that represents the day of the month.

mmm

Formats for NLS � EURDFDEw. Format 71

is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set, such as UTF-8. �

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
international date value in Spanish. The third PUT statement uses the French
language prefix in the format to write the international date value in French.
Therefore, the value of the DFLANG= option is ignored.

Statements Results

----+----1

put date eurdfde9.; 02ene2002

put date espdfde9.; 02ene2002

put date fradfde9.; 02jan2002

See Also

Formats:

DATEw. in SAS Language Reference: Dictionary

Functions:

DATE in SAS Language Reference: Dictionary

Informats:

“EURDFDEw. Informat” on page 252

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

72 EURDFDNw. Format � Chapter 9

EURDFDNw. Format

Writes international date values as the day of the week

Category: Date and Time

Alignment: right

Syntax
EURDFDNw.

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

Details
The EURDFDNw. format writes SAS date values in the form day-of-the-week:

day-of-the-week
is represented as 1=Monday, 2=Tuesday, and so forth.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes that the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
day of the week in Spanish. The third PUT statement uses the Italian language prefix
in the format to write the day of the week in Italian . Therefore, the value of the
DFLANG= option is ignored.

Formats for NLS � EURDFDTw.d Format 73

Statements Results

----+----1

put day eurdfdn.; 3

put day espdfdn.; 3

put day itadfdn.; 3

See Also

Formats:
DOWNAMEw. in SAS Language Reference: Dictionary
WEEKDAYw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFDTw.d Format

Writes international datetime values in the form ddmmmyy:hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss

Category: Date and Time
Alignment: right

Syntax
EURDFDTw.d

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 7–40
Tip: If you want to write a SAS datetime value with the date, hour, and seconds,

the width (w) must be at least 16. Add an additional two places to the width if you
want to return values with optional decimal fractions of seconds.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Range: 1–39

74 EURDFDTw.d Format � Chapter 9

Restriction: must be less than w
Restriction: If w – d < 17, SAS truncates the decimal values.

Details
The EURDFDTw.d format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss:

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

ss.ss
is the number of seconds that range from 00 through 59 with the fraction of a
second following the decimal point.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The example table uses the input value of 1347453583, which is the SAS datetime
value that corresponds to September 12, 2002, at 12:39:43 PM. The first PUT statement
assumes the DFLANG= system option is set to German.

options dflang=german;

The second PUT statement uses the German language prefix in the format to write the
international datetime value in German. The third PUT statement uses the Italian
language prefix in the format to write the international datetime value in Italian. The
value of the DFLANG= option, therefore, is ignored.

Formats for NLS � EURDFDWNw. Format 75

Statements Results

----+----1----+----2

put date eurdfdt20.; 12Sep2002:12:39:43

put date deudfdt20.; 12Sep2002:12:39:43

put date itadfdt20.; 12Set2002:12:39:43

See Also

Formats:

DATEw. in SAS Language Reference: Dictionary

DATETIMEw.d in SAS Language Reference: Dictionary

TIMEw.d in SAS Language Reference: Dictionary

Functions:

DATETIME in SAS Language Reference: Dictionary

Informats:

DATEw. in SAS Language Reference: Dictionary

DATETIMEw.d in SAS Language Reference: Dictionary

“EURDFDTw. Informat” on page 253

TIMEw.d in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFDWNw. Format

Writes international date values as the name of the day

Category: Date and Time

Alignment: right

Syntax
EURDFDWNw.

Syntax Description

w
specifies the width of the output field.

Default: depends on the language prefix you use. The following table shows the
default value for each language:

76 EURDFDWNw. Format � Chapter 9

Language Default

Afrikaans (AFR) 9

Catalan (CAT) 9

Croatian (CRO) 10

Czech (CSY) 7

Danish (DAN) 7

Dutch (NLD) 9

Finnish (FIN) 11

French (FRA) 8

German (DEU) 10

Hungarian (HUN) 9

Italian (ITA) 9

Macedonian (MAC) 10

Norwegian (NOR) 7

Polish (POL) 12

Portuguese (PTG) 13

Russian (RUS) 11

Slovenian (SLO) 10

Spanish (ESP) 9

Swedish (SVE) 7

Swiss-French (FRS) 8

Swiss-German (DES) 10

Range: 1–32
Tip: If you omit w, SAS prints the entire name of the day.

Details
If necessary, SAS truncates the name of the day to fit the format width. The
EURDFDWNw. format writes SAS date values in the form day-name:

day-name
is the name of the day.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain

Formats for NLS � EURDFMNw. Format 77

characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The following example table uses the input value 15344, which is the SAS date value
that corresponds to January 4, 2002. The first PUT statement assumes the DFLANG=
system option is set to French.

options dflang=french;

put day eurdfdwn8.;

The second PUT statement uses the French language prefix in the format to write the
day of the week in French. The third PUT statement uses the Spanish language prefix
in the format to write the day of the week in Spanish.Therefore, the value of the
DFLANG= option is ignored.

Statements Results

----+----1

put day eurdfdwn8.; Vendredi

put day fradfdwn8.; Vendredi

put day espdfdwn8.; viernes

See Also

Formats:
DOWNAMEw. in SAS Language Reference: Dictionary
WEEKDAYw. in SAS Language Reference: Dictionary

Informats:
DATEw. in SAS Language Reference: Dictionary
DATETIMEw.d in SAS Language Reference: Dictionary
“EURDFDTw. Informat” on page 253
TIMEw.d in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFMNw. Format

Writes international date values as the name of the month

Category: Date and Time
Alignment: right

78 EURDFMNw. Format � Chapter 9

Syntax
EURDFMNw.

Syntax Description

w
specifies the width of the output field.
Default: 9 (except for Finnish and Spanish)
Range: 1–32
Note: If you use the Finnish (FIN) language prefix, the default value for w is 11. If

you use the Spanish (ESP) language prefix, the default value for w is 10. �

Details
If necessary, SAS truncates the name of the month to fit the format width. The
EURDFMNw. format writes SAS date values in the form month-name:

month-name
is the name of the month.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The example table uses the input value 15344, which is the SAS date value that
corresponds to January 4, 2002. The first PUT statement assumes the DFLANG=
system option is set to Italian.

options dflang=ita;

The second PUT statement uses the Italian language prefix in the format to write the
name of the month in Italian. The third PUT statement uses German language prefix
in the format to write the name of the month in German. Therefore, the value of the
DFLANG= option is ignored.

Formats for NLS � EURDFMYw. Format 79

Statements Results

----+----1

put date eurdfmn10.; janvier

put date itadfmn10.; Gennaio

put date deudfmn10.; Januar

See Also

Formats:

MONNAMEw. in SAS Language Reference: Dictionary

Functions:

DATE in SAS Language Reference: Dictionary

Informats:

“EURDFDEw. Informat” on page 252

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFMYw. Format

Writes international date values in the form mmmyy or mmmyyyy

Category: Date and Time

Alignment: right

Syntax

EURDFMYw.

Syntax Description

w
specifies the width of the output field.

Default: 5 (excepteu for Finnish)

Range: 5–7

Note: If you use the Finnish (FIN) language prefix, the value for w must be 8, which
is the default value. �

80 EURDFMYw. Format � Chapter 9

Details
The EURDFMYw. format writes SAS date values in the form mmmyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes the DFLANG=
system option is set to Spanish.

options dflang=spanish;

The second PUT statement uses the Spanish language prefix in the format to write the
name of the month in Spanish. The third PUT statement uses the French language
prefix in the format to write the name of the month in French. Therefore, the value of
the DFLANG= option is ignored.

Statements Results

----+----1

put date eurdfmy7.; ene2002

put date espdfmy7.; ene2002

put date fradfmy7.; jan2002

See Also

Formats:
DDMMYYw. in SAS Language Reference: Dictionary

MMDDYYw. in SAS Language Reference: Dictionary

MONYYw. in SAS Language Reference: Dictionary

YYMMDDw. in SAS Language Reference: Dictionary

Functions:

Formats for NLS � EURDFWDXw. Format 81

MONTH in SAS Language Reference: Dictionary
YEAR in SAS Language Reference: Dictionary

Informats:
“EURDFMYw. Informat” on page 255
MONYYw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFWDXw. Format

Writes international date values as the name of the month, the day, and the year in the form dd
month-name yy (or yyyy)

Category: Date and Time
Alignment: right

Syntax
EURDFWDXw.

Syntax Description

w
specifies the width of the output field.
Default: depends on the language prefix you use. The following table shows the

default value for each language:

Language Maximum Default

Afrikaans (AFR) 37 29

Catalan (CAT) 40 16

Croatian (CRO) 40 16

Czech (CSY) 40 16

Danish (DAN) 18 18

Dutch (NLD) 37 29

Finnish (FIN) 20 20

French (FRA) 18 18

German (DEU) 18 18

Hungarian (HUN) 40 18

Italian (ITA) 17 17

Macedonian (MAC) 40 17

Norwegian (NOR) 17 17

82 EURDFWDXw. Format � Chapter 9

Language Maximum Default

Polish (POL) 40 20

Portuguese (PTG) 37 23

Russian (RUS) 40 16

Slovenian (SLO) 40 17

Spanish (ESP) 24 24

Swedish (SVE) 17 17

Swiss-French (FRS) 17 17

Swiss-German (DES) 18 18

Range: 3–(maximum width)
Tip: If the value for w is too small to include the complete day of the week and the

month, SAS abbreviates as necessary.

Details
The EURDFWDXw. format writes SAS date values in the form dd month-name yy or
dd month-name yyyy:

dd
is an integer that represents the day of the month.

month-name
is the name of the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Comparisons
The EURDFWKXw. format is the same as the EURDFWDXw. format except that
EURDFWKX w. format adds the day-of-week in front of dd.

Examples

The example table uses the input value 15342, which is the SAS date value that
corresponds to January 2, 2002. The first PUT statement assumes the DFLANG=
system option is set to Dutch.

Formats for NLS � EURDFWKXw. Format 83

options dflang=dutch;

The second PUT statement uses the Dutch language prefix in the format to write the
name of the month in Dutch. The third PUT statement uses the Italian language prefix
in the format to write the name of the month in Italian. Therefore, the value of the
DFLANG= option is ignored.

Statements Results

----+----1----+----2----+----3

put day eurdfwdx29.; 2 januari 2002

put day nlddfwdx29.; 2 januari 2002

put day itadfwdx17.; 02 Gennaio 1998

See Also

Formats:

WORDDATXw. in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURDFWKXw. Format

Writes international date values as the name of the day and date in the form day-of-week, dd
month-name yy (or yyyy)

Category: Date and Time

Alignment: right

Syntax

EURDFWKXw.

Syntax Description

w
specifies the width of the output field.

84 EURDFWKXw. Format � Chapter 9

Default: depends on the language prefix you use. The following table shows the
default value for each language:

Language Minimum Maximum Default

Afrikaans (AFR) 2 38 28

Catalan (CAT) 2 40 27

Croatian (CRO) 3 40 27

Czech (CSY) 2 40 25

Danish (DAN) 2 31 31

Dutch (NLD) 2 38 28

Finnish (FIN) 2 37 37

French (FRA) 3 27 27

German (DEU) 3 30 30

Hungarian (HUN) 3 40 28

Italian (ITA) 3 28 28

Macedonian (MAC) 3 40 29

Norwegian (NOR) 3 26 26

Polish (POL) 2 40 34

Portuguese (PTG) 3 38 38

Russian (RUS) 2 40 29

Slovenian (SLO) 3 40 29

Spanish (ESP) 1 35 35

Swedish (SVE) 3 26 26

Swiss-French (FRS) 3 26 26

Swiss-German (DES) 3 30 30

Tip: If the value for w is too small to include the complete day of the week and the
month, SAS abbreviates as necessary.

Details
The EURDFWKXw. format writes SAS date values in the form day-of-week, dd
month-name yy (or yyyy):

day-of-week
is the name of day.

dd
is an integer that represents the day of the month.

month-name
is the name of the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

Formats for NLS � EURDFWKXw. Format 85

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes.
When you specify the language prefix in the format, SAS ignores the DFLANG= option.

Note: The EUR-date formats require European character sets and encodings. Some
formats will not work correctly using non-European encodings. When running in a
DBCS environment, the default format width and max width will be larger than in the
single byte system to allow formats to use a double byte representation of certain
characters. However, you must use a session encoding that supports the European
characters set like UTF-8. �

Comparisons
The EURDFWKXw. format is the same as the EURDFWDXw. format except that
EURDFWKXw. format adds day-of-week in front of dd.

Examples

The example table uses the input value 15344, which is the SAS date value that
corresponds to January 4, 2002. The first PUT statement assumes the DFLANG=
system option is set to German.

options dflang=German;

The second PUT statement uses the German language prefix in the format to write the
name of the month in German. The third PUT statement uses the Italian language
prefix in the format to write the name of the month in Italian. Therefore, the value of
the DFLANG= option is ignored.

Statements Results

----+----1----+----2----+----3

put date eurdfwkx30.; Freitag, 4. Januar 2002

put date deudfwkx30.; Freitag, 4. Januar 2002

put date itadfwkx17.; Ven, 04 Gen 2002

See Also

Formats:
DATEw. in SAS Language Reference: Dictionary
DDMMYYw. in SAS Language Reference: Dictionary
MMDDYYw. in SAS Language Reference: Dictionary
TODw. in SAS Language Reference: Dictionary
WEEKDATXw. in SAS Language Reference: Dictionary
YYMMDDw. in SAS Language Reference: Dictionary

Functions:
JULDATE in SAS Language Reference: Dictionary

86 EURFRATSw.d Format � Chapter 9

MDY in SAS Language Reference: Dictionary
WEEKDAY in SAS Language Reference: Dictionary

Informats:
DATEw. in SAS Language Reference: Dictionary
DDMMYYw. in SAS Language Reference: Dictionary
MMDDYYw. in SAS Language Reference: Dictionary
YYMMDDw. in SAS Language Reference: Dictionary

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

EURFRATSw.d Format
Converts an amount from Austrian schillings to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRATSw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRATS w.d format converts an amount from Austrian schillings to an amount
in euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRATSw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Austrian schillings, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrats5.;

put amount eurfrats9.2;

E4

E3,63

Formats for NLS � EURFRBEFw.d Format 87

Amounts Statements Results

5234.56 put amount eurfrats5.;

put amount eurfrats9.2;

E380

E380,41

52345 put amount eurfrats5.;

put amount eurfrats9.2;

3.804

E3.804,06

See Also

Formats:

“EURTOATSw.d Format” on page 118

Functions:

“EUROCURR Function” on page 209

EURFRBEFw.d Format

Converts an amount from Belgian francs to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRBEFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRBEFw.d format converts an amount from Belgian francs to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRBEFw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

88 EURFRCHFw.d Format � Chapter 9

Examples

The following table shows input values in Belgian francs, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrbef5.;

put amount eurfrbef9.2;

E1

E1,24

5234.56 put amount eurfrbef5.;

put amount eurfrbef9.2;

E130

E129,76

52345 put amount eurfrbef5.;

put amount eurfrbef9.2;

1.298

E1.297,60

See Also

Formats:

“EURTOBEFw.d Format” on page 119

Functions:

“EUROCURR Function” on page 209

EURFRCHFw.d Format

Converts an amount from Swiss francs to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRCHFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Formats for NLS � EURFRCZKw.d Format 89

Details
The EURFRCHFw.d format converts an amount from Swiss francs to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRCHFw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Swiss francs, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrchf5.;

put amount eurfrchf9.2;

E31

E31,17

1234.56 put amount eurfrchf5.;

put amount eurfrchf9.2;

E770

E769,53

12345 put amount eurfrchf5.;

put amount eurfrchf9.2;

7.695

E7.694,94

See Also

Formats:
“EURTOCHFw.d Format” on page 120

Functions:
“EUROCURR Function” on page 209

EURFRCZKw.d Format
Converts an amount from Czech koruny to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRCZKw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

90 EURFRDEMw.d Format � Chapter 9

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRCZKw.d format converts an amount from Czech koruny to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRCZKw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Czech koruny, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrczk5.;

put amount eurfrczk9.2;

E1

E1,43

5234.56 put amount eurfrczk5.;

put amount eurfrczk9.2;

E150

E150,18

52345 put amount eurfrczk5.;

put amount eurfrczk9.2;

1.502

E1.501,74

See Also

Formats:

“EURTOCZKw.d Format” on page 121

Functions:

“EUROCURR Function” on page 209

EURFRDEMw.d Format

Converts an amount from Deutsche marks to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRDEMw.d

Formats for NLS � EURFRDKKw.d Format 91

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRDEMw.d format converts an amount from Deutsche marks to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRDEMw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Deutsche marks, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrdem5.;

put amount eurfrdem9.2;

E26

E25,56

1234.56 put amount eurfrdem5.;

put amount eurfrdem9.2;

E631

E631,22

12345 put amount eurfrdem5.;

put amount eurfrdem9.2;

6.312

E6.311,90

See Also

Formats:
“EURTODEMw.d Format” on page 122

Functions:
“EUROCURR Function” on page 209

EURFRDKKw.d Format

Converts an amount from Danish kroner to euros

Category: Currency Conversion

92 EURFRDKKw.d Format � Chapter 9

Alignment: right

Syntax
EURFRDKKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRDKKw.d format converts an amount from Danish kroner to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRDKKw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Danish kroner, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrdkk5.;

put amount eurfrdkk9.2;

E7

E6,68

1234.56 put amount eurfrdkk5.;

put amount eurfrdkk9.2;

E165

E164,83

12345 put amount eurfrdkk5.;

put amount eurfrdkk9.2;

1.648

E1.648,18

See Also

Formats:

“EURTODKKw.d Format” on page 124

Functions:

“EUROCURR Function” on page 209

Formats for NLS � EURFRESPw.d Format 93

EURFRESPw.d Format

Converts an amount from Spanish pesetas to euros

Category: Currency Conversion

Alignment: right

Syntax

EURFRESPw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURFRESPw.d format converts an amount from Spanish pesetas to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRESPw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Spanish pesetas, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

200 put amount eurfresp5.;

put amount eurfresp9.2;

E1

E1,20

20234.56 put amount eurfresp5.;

put amount eurfresp9.2;

E122

E121,61

202345 put amount eurfresp5.;

put amount eurfresp9.2;

1.216

E1.216,12

94 EURFRFIMw.d Format � Chapter 9

See Also

Formats:
“EURTOESPw.d Format” on page 125

Functions:
“EUROCURR Function” on page 209

EURFRFIMw.d Format

Converts an amount from Finnish markkaa to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRFIMw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRFIMw.d format converts an amount from Finnish markkaa to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRFIMw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Finnish markkaa, SAS statements, and the
conversion results in euros.

Formats for NLS � EURFRFRFw.d Format 95

Amounts Statements Results

----+----1----2

50 put amount eurfrfim5.;

put amount eurfrfim9.2;

E8

E8,41

1234.56 put amount eurfrfim5.;

put amount eurfrfim9.2;

E208

E207,64

12345 put amount eurfrfim5.;

put amount eurfrfim9.2;

2.076

E2.076,28

See Also

Formats:

“EURTOFIMw.d Format” on page 126
Functions:

“EUROCURR Function” on page 209

EURFRFRFw.d Format

Converts an amount from French francs to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRFRFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRFRFw.d format converts an amount from French francs to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRFRFw.d format and the EUROCURR function. For more

96 EURFRGBPw.d Format � Chapter 9

information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in French francs, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrfrf5.;

put amount eurfrfrf9.2;

E8

E7,62

1234.56 put amount eurfrfrf5.;

put amount eurfrfrf9.2;

E188

E188,21

12345 put amount eurfrfrf5.;

put amount eurfrfrf9.2;

1.882

E1.881,98

See Also

Formats:

“EURTOFRFw.d Format” on page 127

Functions:

“EUROCURR Function” on page 209

EURFRGBPw.d Format

Converts an amount from British pounds to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRGBPw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Formats for NLS � EURFRGRDw.d Format 97

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRGBPw.d format converts an amount from British pounds to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRGBPw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in British pounds, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrgbp5.;

put amount eurfrgbp9.2;

E71

E71.42

1234.56 put amount eurfrgbp5.;

put amount eurfrgbp9.2;

1,763

E1,763.32

12345 put amount eurfrgbp5.;

put amount eurfrgbp9.2;

17632

17,632.39

See Also

Formats:

“EURTOGBPw.d Format” on page 128

Functions:

“EUROCURR Function” on page 209

EURFRGRDw.d Format

Converts an amount from Greek drachmas to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRGRDw.d

98 EURFRHUFw.d Format � Chapter 9

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRGRDw.d format converts an amount from Greek drachmas to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRGRDw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Greek drachmas, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

400 put amount eurfrgrd5.;

put amount eurfrgrd9.2;

E1

E1,17

40234.56 put amount eurfrgrd5.;

put amount eurfrgrd9.2;

E118

E118,03

402345 put amount eurfrgrd5.;

put amount eurfrgrd9.2;

1.180

E1.180,30

See Also

Formats:
“EURTOGRDw.d Format” on page 130

Functions:
“EUROCURR Function” on page 209

EURFRHUFw.d Format

Converts an amount from Hungarian forints to euros

Category: Currency Conversion

Formats for NLS � EURFRHUFw.d Format 99

Alignment: right

Syntax

EURFRHUFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURFRHUFw.d format converts an amount from Hungarian forints to an amount
in euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRHUFw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Hungarian forints, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

300 put amount eurfrhuf5.;

put amount eurfrhuf9.2;

E1

E1,15

30234.56 put amount eurfrhuf5.;

put amount eurfrhuf9.2;

E116

E116,14

302345 put amount eurfrhuf5.;

put amount eurfrhuf9.2;

1.161

E1.161,41

See Also

Formats:

“EURTOHUFw.d Format” on page 131

100 EURFRIEPw.d Format � Chapter 9

Functions:
“EUROCURR Function” on page 209

EURFRIEPw.d Format

Converts an amount from Irish pounds to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRIEPw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRIEPw.d format converts an amount from Irish pounds to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRIEPw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Irish pounds, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

1 put amount eurfriep5.;

put amount eurfriep9.2;

E1

E1.27

1234.56 put amount eurfriep5.;

put amount eurfriep9.2;

1,568

E1,567.57

12345 put amount eurfriep5.;

put amount eurfriep9.2;

15675

15,674.92

Formats for NLS � EURFRITLw.d Format 101

See Also

Formats:
“EURTOIEPw.d Format” on page 132

Functions:
“EUROCURR Function” on page 209

EURFRITLw.d Format

Converts an amount from Italian lire to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRITLw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRITLw.d format converts an amount from Italian lire to an amount in euros
and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRITLw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Italian lire, SAS statements, and the
conversion results in euros.

102 EURFRLUFw.d Format � Chapter 9

Amounts Statements Results

----+----1----2

2000 put amount eurfritl5.;

put amount eurfritl9.2;

E1

E1,03

7234.56 put amount eurfritl5.;

put amount eurfritl9.2;

E4

E3,74

72345 put amount eurfritl5.;

put amount eurfritl9.2;

E37

E37,36

See Also

Formats:

“EURTOITLw.d Format” on page 133
Functions:

“EUROCURR Function” on page 209

EURFRLUFw.d Format

Converts an amount from Luxembourg francs to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRLUFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRLUFw.d format converts an amount from Luxembourg francs to an amount
in euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRLUFw.d format and the EUROCURR function. For more

Formats for NLS � EURFRNLGw.d Format 103

information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Luxembourg francs, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrluf5.;

put amount eurfrluf9.2;

E1

E1,24

1234.56 put amount eurfrluf5.;

put amount eurfrluf9.2;

E31

E30,60

12345 put amount eurfrluf5.;

put amount eurfrluf9.2;

E306

E306,02

See Also

Formats:

“EURTOLUFw.d Format” on page 134

Functions:

“EUROCURR Function” on page 209

EURFRNLGw.d Format

Converts an amount from Dutch guilders to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRNLGw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

104 EURFRNOKw.d Format � Chapter 9

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRNLGw.d format converts an amount from Dutch guilders to an amount in
euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRNLGw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Dutch guilders, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrnlg5.;

put amount eurfrnlg9.2;

E23

E22,69

1234.56 put amount eurfrnlg5.;

put amount eurfrnlg9.2;

E560

E560,22

12345 put amount eurfrnlg5.;

put amount eurfrnlg9.2;

5.602

E5.601,92

See Also

Formats:

“EURTONLGw.d Format” on page 135

Functions:

“EUROCURR Function” on page 209

EURFRNOKw.d Format

Converts an amount from Norwegian krone to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRNOKw.d

Formats for NLS � EURFRPLZw.d Format 105

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRNOKw.d format converts an amount from Norwegian krone to an amount
in euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRNOKw.d format and the EUROCURR function.
For more information about European currency conversion and currency conversion
rate tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Norwegian krone, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrnok5.;

put amount eurfrnok9.2;

E5

E5,44

1234.56 put amount eurfrnok5.;

put amount eurfrnok9.2;

E134

E134,22

12345 put amount eurfrnok5.;

put amount eurfrnok9.2;

1.342

E1.342,18

See Also

Formats:
“EURTONOKw.d Format” on page 137

Functions:
“EUROCURR Function” on page 209

EURFRPLZw.d Format

Converts an amount from Polish zlotys to euros

Category: Currency Conversion

106 EURFRPLZw.d Format � Chapter 9

Alignment: right

Syntax
EURFRPLZw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRPLZw.d format converts an amount from Polish zlotys to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRPLZw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Polish zlotys, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrplz5.;

put amount eurfrplz9.2;

E12

E11,90

1234.56 put amount eurfrplz5.;

put amount eurfrplz9.2;

E294

E293,94

12345 put amount eurfrplz5.;

put amount eurfrplz9.2;

2.939

E2.939,29

See Also

Formats:

“EURTOPLZw.d Format” on page 138

Functions:

“EUROCURR Function” on page 209

Formats for NLS � EURFRPTEw.d Format 107

EURFRPTEw.d Format

Converts an amount from Portuguese escudos to euros

Category: Currency Conversion

Alignment: right

Syntax

EURFRPTEw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURFRPTEw.d format converts an amount from Portuguese escudos to an amount
in euros and produces a formatted euro value. The conversion rate is a fixed rate that is
incorporated into the EURFRPTEw.d format and the EUROCURR function. For more
information about European currency conversion and currency conversion rate tables,
see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Portuguese escudos, SAS statements, and
the conversion results in euros.

Amounts Statements Results

----+----1----2

300 put amount eurfrpte5.;

put amount eurfrpte9.2;

E1

E1,50

30234.56 put amount eurfrpte5.;

put amount eurfrpte9.2;

E151

E150,81

302345 put amount eurfrpte5.;

put amount eurfrpte9.2;

1.508

E1.508,09

108 EURFRROLw.d Format � Chapter 9

See Also

Formats:
“EURTOPTEw.d Format” on page 139

Functions:
“EUROCURR Function” on page 209

EURFRROLw.d Format

Converts an amount from Romanian lei to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRROLw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRROLw.d format converts an amount from Romanian lei to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRROLw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Romanian lei, SAS statements, and the
conversion results in euros.

Formats for NLS � EURFRRURw.d Format 109

Amounts Statements Results

----+----1----2

50 put amount eurfrrol5.;

put amount eurfrrol9.2;

E4

E3,65

5234.56 put amount eurfrrol5.;

put amount eurfrrol9.2;

E382

E381,81

52345 put amount eurfrrol5.;

put amount eurfrrol9.2;

3.818

E3.818,02

See Also

Formats:

“EURTOROLw.d Format” on page 140
Functions:

“EUROCURR Function” on page 209

EURFRRURw.d Format

Converts an amount from Russian rubles to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRRURw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRRURw.d format converts an amount from Russian rubles to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRRURw.d format and the EUROCURR function. For

110 EURFRSEKw.d Format � Chapter 9

more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Russian rubles, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrrur5.;

put amount eurfrrur9.2;

E3

E2,53

5234.56 put amount eurfrrur5.;

put amount eurfrrur9.2;

E265

E264,80

52345 put amount eurfrrur5.;

put amount eurfrrur9.2;

2.648

E2.647,97

See Also

Formats:
“EURTORURw.d Format” on page 141

Functions:
“EUROCURR Function” on page 209

EURFRSEKw.d Format

Converts an amount from Swedish kronor to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRSEKw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d

Formats for NLS � EURFRSITw.d Format 111

optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRSEKw.d format converts an amount from Swedish kronor to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRSEKw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Swedish kronor, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

50 put amount eurfrsek5.;

put amount eurfrsek9.2;

E5

E5,34

1234.56 put amount eurfrsek5.;

put amount eurfrsek9.2;

E132

E131,81

12345 put amount eurfrsek5.;

put amount eurfrsek9.2;

1.318

E1.318,08

See Also

Formats:

“EURTOSEKw.d Format” on page 142

Functions:

“EUROCURR Function” on page 209

EURFRSITw.d Format

Converts an amount from Slovenian tolars to euros

Category: Currency Conversion

Alignment: right

Syntax
EURFRSITw.d

112 EURFRSITw.d Format � Chapter 9

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRSITw.d format converts an amount from Slovenian tolars to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRSITw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Slovenian tolars, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

200 put amount eurfrsit5.;

put amount eurfrsit9.2;

E1

E1,05

20234.56 put amount eurfrsit5.;

put amount eurfrsit9.2;

E106

E105,94

202345 put amount eurfrsit5.;

put amount eurfrsit9.2;

1.059

E1.059,40

See Also

Formats:
“EURTOSITw.d Format” on page 144

Functions:
“EUROCURR Function” on page 209

Formats for NLS � EURFRTRLw.d Format 113

EURFRTRLw.d Format

Converts an amount from Turkish liras to euros

Category: Currency Conversion

Alignment: right

Syntax

EURFRTRLw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURFRTRLw.d format converts an amount from Turkish liras to an amount in
euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRTRLw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Turkish liras, SAS statements, and the
conversion results in euros.

Amounts Statements Results

----+----1----2

400 put amount eurfrtrl5.;

put amount eurfrtrl9.2;

E1

E1,19

40234.56 put amount eurfrtrl5.;

put amount eurfrtrl9.2;

E119

E119,42

402345 put amount eurfrtrl5.;

put amount eurfrtrl9.2;

1.194

E1.194,21

114 EURFRYUDw.d Format � Chapter 9

See Also

Formats:
“EURTOTRLw.d Format” on page 145

Functions:
“EUROCURR Function” on page 209

EURFRYUDw.d Format

Converts an amount from Yugoslavian dinars to euros

Category: Currency Conversion
Alignment: right

Syntax
EURFRYUDw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURFRYUDw.d format converts an amount from Yugoslavian dinars to an amount
in euros and produces a formatted euro value. The conversion rate is a changeable rate
that is incorporated into the EURFRYUDw.d format and the EUROCURR function. For
more information about European currency conversion and currency conversion rate
tables, see “European Currency Conversion” on page 52.

Examples

The following table shows input values in Yugoslavian dinars, SAS statements, and
the conversion results in euros.

Formats for NLS � EUROw.d Format 115

Amounts Statements Results

----+----1----2

50 put amount eurfryud5.;

put amount eurfryud9.2;

E4

E3,83

5234.56 put amount eurfryud5.;

put amount eurfryud9.2;

E401

E400,67

52345 put amount eurfryud5.;

put amount eurfryud9.2;

4.007

E4.006,69

See Also

Formats:
“EURTOYUDw.d Format” on page 146

Functions:
“EUROCURR Function” on page 209

EUROw.d Format

Writes numeric values with a leading euro symbol (E), a comma that separates every three digits,
and a period that separates the decimal fraction

Category: Numeric
Alignment: right

Syntax
EUROw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 1-32
Tip: If you want the euro symbol to be part of the output, be sure to choose an

adequate width. See “Examples” on page 116.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.
Default: 0
Range: 0-31

116 EUROXw.d Format � Chapter 9

Requirement: must be less than w

Comparisons
� The EUROw.d format is similar to the EUROXw.d format, but EUROXw.d format

reverses the roles of the decimal point and the comma. This convention is common
in European countries.

� The EUROw.d format is similar to the DOLLARw.d format, except that
DOLLARw.d format writes a leading dollar sign instead of the euro symbol.

Examples

These examples use 1254.71 as the value of amount.

Statements Results

----+----1----+----2----+----3

put amount euro10.2; E1,254.71

put amount euro5.; 1,255

put amount euro9.2; E1,254.71

put amount euro15.3; E1,254.710

See Also

Formats:

“EUROXw.d Format” on page 116

Informats:

“EUROw.d Informat” on page 257

“EUROXw.d Informat” on page 258

EUROXw.d Format

Writes numeric values with a leading euro symbol (E), a period that separates every three digits,
and a comma that separates the decimal fraction

Category: Numeric

Alignment: right

Syntax
EUROXw.d

Formats for NLS � EUROXw.d Format 117

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1-32

Tip: If you want the euro symbol to be part of the output, be sure to choose an
adequate width. See “Examples” on page 117.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Default: 0

Range: 0-31

Requirement: must be less than w

Comparisons

� The EUROXw.d format is similar to the EUROw.d format, but EUROw.d format
reverses the roles of the comma and the decimal point. This convention is common
in English–speaking countries.

� The EUROXw.d format is similar to the DOLLARXw.d format, except that
DOLLARXw.d format writes a leading dollar sign instead of the euro symbol.

Examples

These examples use 1254.71 as the value of amount.

Statements Results

----+----1----+----2----+----3

put amount eurox10.2; E1.254,71

put amount eurox5.; 1.255

put amount eurox9.2; E1.254,71

put amount eurox15.3; E1.254,710

See Also

Formats:

“EUROw.d Format” on page 115

Informats:

“EUROw.d Informat” on page 257

“EUROXw.d Informat” on page 258

118 EURTOATSw.d Format � Chapter 9

EURTOATSw.d Format

Converts an amount from euros to Austrian schillings

Category: Currency Conversion

Alignment: right

Syntax

EURTOATSw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURTOATSw.d format converts an amount in euros to an amount in Austrian
schillings. The conversion rate is a fixed rate that is incorporated into the
EURTOATSw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Austrian schillings.

Amounts Statements Results

----+----1----2

1 put amount eurtoats6.;

put amount eurtoats12.2;

14

13.76

1234.56 put amount eurtoats6.;

put amount eurtoats12.2;

16988

16987.92

12345 put amount eurtoats6.;

put amount eurtoats12.2;

169871

169870.90

Formats for NLS � EURTOBEFw.d Format 119

See Also

Formats:
“EURFRATSw.d Format” on page 86

Functions:
“EUROCURR Function” on page 209

EURTOBEFw.d Format

Converts an amount from euros to Belgian francs

Category: Currency Conversion
Alignment: right

Syntax
EURTOBEFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOBEFw.d format converts an amount in euros to an amount in Belgian
francs. The conversion rate is a fixed rate that is incorporated into the EURTOBEFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Belgian francs.

120 EURTOCHFw.d Format � Chapter 9

Amounts Statements Results

----+----1----2

1 put amount eurtobef6.;

put amount eurtobef12.2;

40

40.34

1234.56 put amount eurtobef6.;

put amount eurtobef12.2;

49802

49802.03

12345 put amount eurtobef6.;

put amount eurtobef12.2;

497996

497996.07

See Also

Formats:
“EURFRBEFw.d Format” on page 87

Functions:

“EUROCURR Function” on page 209

EURTOCHFw.d Format

Converts an amount from euros to Swiss francs

Category: Currency Conversion

Alignment: right

Syntax
EURTOCHFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOCHFw.d format converts an amount in euros to an amount in Swiss francs.
The conversion rate is a changeable rate that is incorporated into the EURTOCHFw.d
format and the EUROCURR function. For more information about European currency

Formats for NLS � EURTOCZKw.d Format 121

conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Swiss francs.

Amounts Statements Results

----+----1----2

1 put amount eurtochf6.;

put amount eurtochf12.2;

2

1.60

1234.56 put amount eurtochf6.;

put amount eurtochf12.2;

1981

1980.60

12345 put amount eurtochf6.;

put amount eurtochf12.2;

19805

19805.08

See Also

Formats:

“EURFRCHFw.d Format” on page 88

Functions:

“EUROCURR Function” on page 209

EURTOCZKw.d Format

Converts an amount from euros to Czech koruny

Category: Currency Conversion

Alignment: right

Syntax
EURTOCZKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

122 EURTODEMw.d Format � Chapter 9

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOCZKw.d format converts an amount in euros to an amount in Czech
koruny. The conversion rate is a changeable rate that is incorporated into the
EURTOCZKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Czech koruny.

Amounts Statements Results

----+----1----2

1 put amount eurtoczk6.;

put amount eurtoczk12.2;

35

34.86

1234.56 put amount eurtoczk6.;

put amount eurtoczk12.2;

43032

43032.19

12345 put amount eurtoczk6.;

put amount eurtoczk12.2;

430301

430301.02

See Also

Formats:
“EURFRCZKw.d Format” on page 89

Functions:
“EUROCURR Function” on page 209

EURTODEMw.d Format

Converts an amount from euros to Deutsche marks

Category: Currency Conversion
Alignment: right

Formats for NLS � EURTODEMw.d Format 123

Syntax
EURTODEMw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTODEMw.d format converts an amount in euros to an amount in Deutsche
marks. The conversion rate is a fixed rate that is incorporated into the EURTODEMw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Deutsche marks.

Amounts Statements Results

----+----1----2

1 put amount eurtodem6.;

put amount eurtodem12.2;

2

1.96

1234.56 put amount eurtodem6.;

put amount eurtodem12.2;

2415

2414.59

12345 put amount eurtodem6.;

put amount eurtodem12.2;

24145

24144.72

See Also

Formats:
“EURFRDEMw.d Format” on page 90

Functions:
“EUROCURR Function” on page 209

124 EURTODKKw.d Format � Chapter 9

EURTODKKw.d Format

Converts an amount from euros to Danish kroner

Category: Currency Conversion

Alignment: right

Syntax

EURTODKKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURTODKKw.d format converts an amount in euros to an amount in Danish
kroner. The conversion rate is a changeable rate that is incorporated into the
EURTODKKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Danish kroner.

Amounts Statements Results

----+----1----2

1 put amount eurtodkk6.;

put amount eurtodkk12.2;

7

7.49

1234.56 put amount eurtodkk6.;

put amount eurtodkk12.2;

9247

9246.97

12345 put amount eurtodkk6.;

put amount eurtodkk12.2;

92465

92465.16

Formats for NLS � EURTOESPw.d Format 125

See Also

Formats:
“EURFRDKKw.d Format” on page 91

Functions:
“EUROCURR Function” on page 209

EURTOESPw.d Format

Converts an amount from euros to Spanish pesetas

Category: Currency Conversion
Alignment: right

Syntax
EURTOESPw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOESPw.d format converts an amount in euros to an amount in Spanish
pesetas. The conversion rate is a fixed rate that is incorporated into the
EURTOESPw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Spanish pesetas.

126 EURTOFIMw.d Format � Chapter 9

Amounts Statements Results

—-+—-1—-2

1 put amount eurtoesp8.;

put amount eurtoesp12.2;

166

166.39

1234.56 put amount eurtoesp8.;

put amount eurtoesp12.2;

205414

205413.50

12345 put amount eurtoesp8.;

put amount eurtoesp12.2;

2054035

2054035.17

See Also

Formats:
“EURFRESPw.d Format” on page 93

Functions:
“EUROCURR Function” on page 209

EURTOFIMw.d Format

Converts an amount from euros to Finnish markkaa

Category: Currency Conversion
Alignment: right

Syntax
EURTOFIMw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOFIMw.d format converts an amount in euros to an amount in Finnish
markkaa. The conversion rate is a fixed rate that is incorporated into the
EURTOFIMw.d format and the EUROCURR function. For more information about

Formats for NLS � EURTOFRFw.d Format 127

European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Finnish markkaa.

Amounts Statements Results

----+----1----2

1 put amount eurtofim6.;

put amount eurtofim12.2;

6

5.95

1234.56 put amount eurtofim6.;

put amount eurtofim12.2;

7340

7340.36

12345 put amount eurtofim6.;

put amount eurtofim12.2;

73400

73400.04

See Also

Formats:

“EURFRFIMw.d Format” on page 94

Functions:

“EUROCURR Function” on page 209

EURTOFRFw.d Format

Converts an amount from euros to French francs

Category: Currency Conversion

Alignment: right

Syntax
EURTOFRFw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

128 EURTOGBPw.d Format � Chapter 9

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOFRFw.d format converts an amount in euros to an amount in French
francs. The conversion rate is a fixed rate that is incorporated into the EURTOFRFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in French francs.

Amounts Statements Results

----+----1----2

1 put amount eurtofrf6.;

put amount eurtofrf12.2;

7

6.56

1234.56 put amount eurtofrf6.;

put amount eurtofrf12.2;

8098

8098.18

12345 put amount eurtofrf6.;

put amount eurtofrf12.2;

80978

80977.89

See Also

Formats:

“EURFRFRFw.d Format” on page 95

Functions:

“EUROCURR Function” on page 209

EURTOGBPw.d Format

Converts an amount from euros to British pounds

Category: Currency Conversion

Alignment: right

Syntax
EURTOGBPw.d

Formats for NLS � EURTOGBPw.d Format 129

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOGBPw.d format converts an amount in euros to an amount in British
pounds. The conversion rate is a changeable rate that is incorporated into the
EURTOGBPw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in British pounds.

Amounts Statements Results

----+----1----2

1 put amount eurtogbp6.;

put amount eurtogbp12.2;

1

0.70

1234.56 put amount eurtogbp6.;

put amount eurtogbp12.2;

864

864.35

12345 put amount eurtogbp6.;

put amount eurtogbp12.2;

8643

8643.13

See Also

Formats:
“EURFRGBPw.d Format” on page 96

Functions:
“EUROCURR Function” on page 209

130 EURTOGRDw.d Format � Chapter 9

EURTOGRDw.d Format

Converts an amount from euros to Greek drachmas

Category: Currency Conversion

Alignment: right

Syntax

EURTOGRDw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURTOGRDw.d format converts an amount in euros to an amount in Greek
drachmas. The conversion rate is a fixed rate that is incorporated into the
EURTOGRDw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Greek drachmas.

Amounts Statements Results

----+----1----2

1 put amount eurtogrd8.;

put amount eurtogrd16.2;

341

340.89

1234.56 put amount eurtogrd8.;

put amount eurtogrd16.2;

420843

420842.99

12345 put amount eurtogrd8.;

put amount eurtogrd16.2;

4208225

4208225.33

Formats for NLS � EURTOHUFw.d Format 131

See Also

Formats:
“EURFRGRDw.d Format” on page 97

Functions:
“EUROCURR Function” on page 209

EURTOHUFw.d Format

Converts an amount from euros to Hungarian forints

Category: Currency Conversion
Alignment: right

Syntax
EURTOHUFw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOHUFw.d format converts an amount in euros to an amount in Hungarian
forints. The conversion rate is a changeable rate that is incorporated into the
EURTOHUFw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Hungarian forints.

132 EURTOIEPw.d Format � Chapter 9

Amounts Statements Results

----+----1----2

1 put amount eurtohuf8.;

put amount eurtohuf14.2;

260

260.33

1234.56 put amount eurtohuf8.;

put amount eurtohuf14.2;

321387

321386.83

12345 put amount eurtohuf8.;

put amount eurtohuf14.2;

3213712

3213712.13

See Also

Formats:
“EURFRHUFw.d Format” on page 98

Functions:

“EUROCURR Function” on page 209

EURTOIEPw.d Format

Converts an amount from euros to Irish pounds

Category: Currency Conversion

Alignment: right

Syntax
EURTOIEPw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOIEPw.d format converts an amount in euros to an amount in Irish pounds.
The conversion rate is a fixed rate that is incorporated into the EURTOIEPw.d format
and the EUROCURR function. For more information about European currency

Formats for NLS � EURTOITLw.d Format 133

conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Irish pounds.

Amounts Statements Results

----+----1----2

1 put amount eurtoiep6.;

put amount eurtoiep12.2;

1

0.79

1234.56 put amount eurtoiep6.;

put amount eurtoiep12.2;

972

972.30

12345 put amount eurtoiep6.;

put amount eurtoiep12.2;

9722

9722.48

See Also

Formats:

“EURFRIEPw.d Format” on page 100

Functions:

“EUROCURR Function” on page 209

EURTOITLw.d Format

Converts an amount from euros to Italian lire

Category: Currency Conversion

Alignment: right

Syntax
EURTOITLw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

134 EURTOLUFw.d Format � Chapter 9

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOITLw.d format converts an amount in euros to an amount in Italian lire.
The conversion rate is a fixed rate that is incorporated into the EURTOITLw.d format
and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Italian lire.

Amounts Statements Results

----+----1----2

1 put amount eurtoitl8.;

put amount eurtoitl12.2;

1936

1936.27

1234.56 put amount eurtoitl8.;

put amount eurtoitl12.2;

2390441

2390441.49

12345 put amount eurtoitl8.;

put amount eurtoitl12.2;

23903253

23903253.15

See Also

Formats:

“EURFRITLw.d Format” on page 101

Functions:

“EUROCURR Function” on page 209

EURTOLUFw.d Format

Converts an amount from euros to Luxembourg francs

Category: Currency Conversion

Alignment: right

Syntax
EURTOLUFw.d

Formats for NLS � EURTONLGw.d Format 135

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOLUFw.d format converts an amount in euros to an amount in Luxembourg
francs. The conversion rate is a fixed rate that is incorporated into the EURTOLUFw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Luxembourg francs.

Amounts Statements Results

----+----1----2

1 put amount eurtoluf6.;

put amount eurtoluf12.2;

40

40.34

1234.56 put amount eurtoluf6.;

put amount eurtoluf12.2;

49802

49802.03

12345 put amount eurtoluf6.;

put amount eurtoluf12.2;

497996

497996.07

See Also

Formats:
“EURFRLUFw.d Format” on page 102

Functions:
“EUROCURR Function” on page 209

EURTONLGw.d Format

Converts an amount from euros to Dutch guilders

Category: Currency Conversion

136 EURTONLGw.d Format � Chapter 9

Alignment: right

Syntax
EURTONLGw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTONLGw.d format converts an amount in euros to an amount in Dutch
guilders. The conversion rate is a fixed rate that is incorporated into the
EURTONLGw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Dutch guilders.

Amounts Statements Results

----+----1----2

1 put amount eurtonlg6.;

put amount eurtonlg12.2;

2

2.20

1234.56 put amount eurtonlg6.;

put amount eurtonlg12.2;

2721

2720.61

12345 put amount eurtonlg6.;

put amount eurtonlg12.2;

27205

27204.80

See Also

Formats:

“EURFRNLGw.d Format” on page 103

Functions:

“EUROCURR Function” on page 209

Formats for NLS � EURTONOKw.d Format 137

EURTONOKw.d Format

Converts an amount from euros to Norwegian krone

Category: Currency Conversion

Alignment: right

Syntax

EURTONOKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURTONOKw.d format converts an amount in euros to an amount in Norwegian
krone. The conversion rate is a changeable rate that is incorporated into the
EURTONOKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Norwegian krone.

Amounts Statements Results

----+----1----2

1 put amount eurtonok6.;

put amount eurtonok12.2;

9

9.20

1234.56 put amount eurtonok6.;

put amount eurtonok12.2;

11355

11355.11

12345 put amount eurtonok6.;

put amount eurtonok12.2;

113546

113545.61

138 EURTOPLZw.d Format � Chapter 9

See Also

Formats:
“EURFRNOKw.d Format” on page 104

Functions:
“EUROCURR Function” on page 209

EURTOPLZw.d Format

Converts an amount from euros to Polish zlotys

Category: Currency Conversion
Alignment: right

Syntax
EURTOPLZw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOPLZw.d format converts an amount in euros to an amount in Polish zlotys.
The conversion rate is a changeable rate that is incorporated into the EURTOPLZw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Polish zlotys.

Formats for NLS � EURTOPTEw.d Format 139

Amounts Statements Results

----+----1----2

1 put amount eurtoplz6.;

put amount eurtoplz12.2;

4

4.20

1234.56 put amount eurtoplz6.;

put amount eurtoplz12.2;

5185

5185.15

12345 put amount eurtoplz6.;

put amount eurtoplz12.2;

51849

51849.00

See Also

Formats:
“EURFRPLZw.d Format” on page 105

Functions:

“EUROCURR Function” on page 209

EURTOPTEw.d Format

Converts an amount from euros to Portuguese escudos

Category: Currency Conversion

Alignment: right

Syntax
EURTOPTEw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOPTEw.d format converts an amount in euros to an amount in Portuguese
escudos. The conversion rate is a fixed rate that is incorporated into the
EURTOPTEw.d format and the EUROCURR function. For more information about

140 EURTOROLw.d Format � Chapter 9

European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Portuguese escudos.

Amounts Statements Results

----+----1----2

1 put amount eurtopte8.;

put amount eurtopte12.2;

200

200.48

1234.56 put amount eurtopte8.;

put amount eurtopte12.2;

247507

247507.06

12345 put amount eurtopte8.;

put amount eurtopte12.2;

2474950

2474950.29

See Also

Formats:

“EURFRPTEw.d Format” on page 107

Functions:

“EUROCURR Function” on page 209

EURTOROLw.d Format

Converts an amount from euros to Romanian lei

Category: Currency Conversion

Alignment: right

Syntax
EURTOROLw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Formats for NLS � EURTORURw.d Format 141

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURTOROLw.d format converts an amount in euros to an amount in Romanian
lei. The conversion rate is a changeable rate that is incorporated into the
EURTOROLw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Romanian lei.

Amounts Statements Results

----+----1----2

1 put amount eurtorol6.;

put amount eurtorol12.2;

14

13.71

1234.56 put amount eurtorol6.;

put amount eurtorol12.2;

16926

16925.82

12345 put amount eurtorol6.;

put amount eurtorol12.2;

169250

169249.95

See Also

Formats:

“EURFRROLw.d Format” on page 108

EURTORURw.d Format

Converts an amount from euros to Russian rubles

Category: Currency Conversion

Alignment: right

Syntax

EURTORURw.d

142 EURTOSEKw.d Format � Chapter 9

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTORURw.d format converts an amount in euros to an amount in Russian
rubles. The conversion rate is a changeable rate that is incorporated into the
EURTORURw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Russian rubles.

Amounts Statements Results

----+----1----2

1 put amount eurtorur6.;

put amount eurtorur12.2;

20

19.77

1234.56 put amount eurtorur6.;

put amount eurtorur12.2;

24405

24404.78

12345 put amount eurtorur6.;

put amount eurtorur12.2;

244036

244035.96

See Also

Formats:
“EURFRRURw.d Format” on page 109

Functions:
“EUROCURR Function” on page 209

EURTOSEKw.d Format

Converts an amount from euros to Swedish kronor

Category: Currency Conversion

Formats for NLS � EURTOSEKw.d Format 143

Alignment: right

Syntax
EURTOSEKw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOSEKw.d format converts an amount in euros to an amount in Swedish
kronor. The conversion rate is a changeable rate that is incorporated into the
EURTOSEKw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Swedish kronor.

Amounts Statements Results

----+----1----2

1 put amount eurtosek6.;

put amount eurtosek12.2;

9

9.37

1234.56 put amount eurtosek6.;

put amount eurtosek12.2;

11563

11562.78

12345 put amount eurtosek6.;

put amount eurtosek12.2;

115622

115622.16

See Also

Formats:

“EURFRSEKw.d Format” on page 110

Functions:

“EUROCURR Function” on page 209

144 EURTOSITw.d Format � Chapter 9

EURTOSITw.d Format

Converts an amount from euros to Slovenian tolars

Category: Currency Conversion

Alignment: right

Syntax

EURTOSITw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details

The EURTOSITw.d format converts an amount in euros to an amount in Slovenian
tolars. The conversion rate is a changeable rate that is incorporated into the
EURTOSITw.d format and the EUROCURR function. For more information about
European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Slovenian tolars.

Amounts Statements Results

----+----1----2

1 put amount eurtosit8.;

put amount eurtosit14.2;

191

191.00

1234.56 put amount eurtosit8.;

put amount eurtosit14.2;

235801

235800.96

12345 put amount eurtosit8.;

put amount eurtosit14.2;

2357895

2357895.00

Formats for NLS � EURTOTRLw.d Format 145

See Also

Formats:
“EURFRSITw.d Format” on page 111

Functions:
“EUROCURR Function” on page 209

EURTOTRLw.d Format

Converts an amount from euros to Turkish liras

Category: Currency Conversion
Alignment: right

Syntax
EURTOTRLw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOTRLw.d format converts an amount in euros to an amount in Turkish liras.
The conversion rate is a changeable rate that is incorporated into the EURTOTRLw.d
format and the EUROCURR function. For more information about European currency
conversion and currency conversion rate tables, see “European Currency Conversion” on
page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Turkish liras.

146 EURTOYUDw.d Format � Chapter 9

Amounts Statements Results

----+----1----2

1 put amount eurtotrl8.;

put amount eurtotrl14.2;

337

336.91

1234.56 put amount eurtotrl8.;

put amount eurtotrl14.2;

415938

415938.08

12345 put amount eurtotrl8.;

put amount eurtotrl14.2;

4159179

4159178.64

See Also

Formats:
“EURFRTRLw.d Format” on page 113

Functions:

“EUROCURR Function” on page 209

EURTOYUDw.d Format

Converts an amount from euros to Yugoslavian dinars

Category: Currency Conversion

Alignment: right

Syntax
EURTOYUDw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The EURTOYUDw.d format converts an amount in euros to an amount in Yugoslavian
dinars. The conversion rate is a changeable rate that is incorporated into the
EURTOYUDw.d format and the EUROCURR function. For more information about

Formats for NLS � HDATEw. Format 147

European currency conversion and currency conversion rate tables, see “European
Currency Conversion” on page 52.

Examples

The following table shows input values in euros, SAS statements, and the conversion
results in Yugoslavian dinars.

Amounts Statements Results

----+----1----2

1 put amount eurtoyud6.;

put amount eurtoyud12.2;

13

13.06

1234.56 put amount eurtoyud6.;

put amount eurtoyud12.2;

16129

16128.79

12345 put amount eurtoyud6.;

put amount eurtoyud12.2;

161280

161280.02

See Also

Formats:
“EURFRYUDw.d Format” on page 114

Functions:
“EUROCURR Function” on page 209

HDATEw. Format

Writes date values in the form yyyy mmmmm dd where dd is the day-of-the-month, mmmmm
represents the month’s name in Hebrew, and yyyy is the year

Category: Date and Time
Alignment: right

Syntax
HDATEw.

Syntax Description

w
specifies the width of the output field.

Note: Use widths 9, 11, 15, or 17 for the best view. �

148 HEBDATEw. Format � Chapter 9

Default: 17

Range: 9–17

Details

The HDATEw. format writes the SAS date value in the form yyyy mmmmm dd:

yyyy
is the year

mmmmm
is the Hebrew name of the month

dd
is the day-of-the-month

Examples

The following example uses the input value of 15780, which is the SAS date of March
16, 2003.

Statements Results

----+----1----+----2----+

put day hdate9.; 03 16

put day hdate11.; 2003 16

put day hdate17.; 2003 16

See Also

Formats:

“HEBDATEw. Format” on page 148

HEBDATEw. Format

Writes date values according to the Jewish calendar

Category: Date and Time

Alignment: right

Syntax

HEBDATEw.

Formats for NLS � $KANJIw. Format 149

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 7–24

Details
The HEBDATEw. format writes the SAS date value according to the Jewish calendar.
The date is written in one of the following formats:

long

default

short

Examples

The following example uses the input value of 15780, which is the SAS date of March
16, 2003.

Statements Results

----+----1----+

put day hebdate13.;

put day hebdate16.;

put day hebdate24.;

See Also

Informats:
“HDATEw. Format” on page 147

$KANJIw. Format

Adds shift-code data to DBCS data

Category: DBCS
Alignment: left

Syntax
$KANJIw.

150 $KANJIXw. Format � Chapter 9

Syntax Description

w
specifies the width of the output field.

Restriction: The width must be an even number. If it is an odd number, it is
truncated.

Range: The minimum width of the format is 2 + (length of shift code used
on the current DBCSTYPE= setting)*2.

See Also

Formats:

“$KANJIXw. Format” on page 150
Informats:

“$KANJIw. Informat” on page 263
“$KANJIXw. Informat” on page 263

System Options:

“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 351

$KANJIXw. Format

Removes shift-code data from DBCS data

Category: DBCS
Alignment: left

Syntax
$KANJIXw.

Syntax Description

w
specifies the width of the output field.
Restriction: The width must be an even number. If it is an odd number, it is

truncated.
Range: The minimum width of the format is 2.

Details
The input data length must be 2 + (SO/SI length)*2. The data must start with SO
and end with SI, unless single-byte data is returned. This format always returns a
blank for DBCSTYPE data that does not use a shift-code mechanism.

Formats for NLS � $LOGVSw. Format 151

See Also

Formats:

“$KANJIw. Format” on page 149

Informats:

“$KANJIw. Informat” on page 263

“$KANJIXw. Informat” on page 263

System Options:

“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 351

$LOGVSw. Format

Processes a character string that is in left-to-right-logical order, and then writes the character
string in visual order

Category: BIDI text handling

Alignment: left

Syntax
$LOGVSw.

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Details
The $LOGVSw. format is used when you store logical-ordered text on a visual server.

Note: If the $LOGVSw. format is not accessible, then the Hebrew portion of the
data will be reversed. �

Comparisons
The $LOGVSw. format performs processing that is the opposite of the $LOGVSRw.
format.

Examples

The following example uses the input value of “ flight”.

152 $LOGVSRw. Format � Chapter 9

Statements Results

----+----1----+----2----+

put text $logvs12.; flight

See Also

Formats:
“$LOGVSRw. Format” on page 152

Informats:
“$LOGVSRw. Informat” on page 265
“$LOGVSw. Informat” on page 264

$LOGVSRw. Format
Processes a character string that is in right-to-left-logical order, and then writes the character
string in visual order

Category: BIDI text handling
Alignment: left

Syntax
$LOGVSRw.

Syntax Description

w
specifies the width of the output field.
Default: 200
Range: 1–32000

Details
The $LOGVSRw. format is used when you store logical-ordered text on a visual server.
The Hebrew portion of the text will be reversed if the $LOGVSw. format is not on the
server.

Comparisons
The $LOGVSRw. format performs processing that is opposite of the $LOGVSw. format.

Examples

The following example uses the input value of “ flight”.

Formats for NLS � MINGUOw. Format 153

Statements Results

----+----1----+

put text $logvsr12.; flight

See Also

Formats:

“$LOGVSw. Format” on page 151

Informats:

“$LOGVSw. Informat” on page 264

“$LOGVSRw. Informat” on page 265

MINGUOw. Format

Writes date values as Taiwanese dates in the form yyymmdd

Category: Date and Time

Alignment: left

Syntax
MINGUOw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–10

Details
The MINGUOw. format writes SAS date values in the form yyyymmdd, where

yyyy
is an integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

154 NENGOw. Format � Chapter 9

The Taiwanese calendar uses 1912 as the base year (01/01/01 is January 1, 1912).
Dates prior to 1912 appear as a series of asterisks. Year values do not roll around after
100 years; instead, they continue to increase.

Examples

The example table uses the following input values:

1 12054 is the SAS date value that corresponds to January 1, 1993.

2 18993 is the SAS date value that corresponds to January 1, 2012.

3 -20088 is the SAS date value that corresponds to January 1, 1905.

Statements Results

----+----1

put date minguo10.; 0082/01/01

0101/01/01

See Also

Informats:

“MINGUOw. Informat” on page 266

NENGOw. Format

Writes date values as Japanese dates in the form e.yymmdd

Category: Date and Time

Alignment: left

Syntax
NENGOw.

Syntax Description

w
specifies the width of the output field.

Default: 10

Range: 2–10

Formats for NLS � NLDATEw. Format 155

Details
The NENGOw. format writes SAS date values in the form e.yymmdd, where

e
is the first letter of the name of the emperor (Meiji, Taisho, Showa, or Heisei).

yy
is an integer that represents the year.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

If the width is too small, SAS omits the period.

Examples

The example table uses the input value of 15342, which is the SAS date value that
corresponds to January 2, 2002.

Statements Results

----+----1

put date nengo3.; H14

put date nengo6.; H14/01

put date nengo8.; H.140102

put date nengo9.; H14/01/02

put date nengo10.; H.14/01/02

See Also

Informats:
“NENGOw. Informat” on page 267

NLDATEw. Format

Converts a SAS date value to the date value of the specified locale, and then writes the date value
as a date

Category: Date and Time
Alignment: left

Syntax
NLDATEw.

156 NLDATEMNw. Format � Chapter 9

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date to fit
the format width.
Default: 20
Range: 10–200

Comparisons
NLDATEw. is similar to DATEw. and WORDDATEw. except that NLDATEw. is locale
specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1----+----2

options locale=English_UnitedStates;

put day nldate.; February 24, 2003

options locale=German_Germany;

put day nldate.; 24. Februar 2003

See Also

Formats:
“NLDATEMNw. Format” on page 156
“NLDATEWw. Format” on page 157
“NLDATEWNw. Format” on page 158

NLDATEMNw. Format
Converts a SAS date value to the date value of the specified locale, and then writes the value as
the name-of-the-month

Category: Date and Time
Alignment: left

Syntax
NLDATEMNw.

Formats for NLS � NLDATEWw. Format 157

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the
name-of-the-month to fit the format width.
Default: 10
Range: 4–200

Comparisons
NLDATEMNw. is similar to MONNAMEw. except that NLDATEMNw. is locale
specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1

options locale=English_UnitedStates;

put month nldatemn.; February

options locale=German_Germany;

put month nldatemn.; Februar

See Also

Formats:
“NLDATEw. Format” on page 155
“NLDATEWw. Format” on page 157
“NLDATEWNw. Format” on page 158

NLDATEWw. Format
Converts a SAS date value to the date value of the specified locale, and then writes the value as
the date and the day-of-the-week

Category: Date and Time
Alignment: left

Syntax
NLDATEWw.

158 NLDATEWNw. Format � Chapter 9

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date and the
day-of-the-week to fit the format width.
Default: 20
Range: 10–200

Comparisons
NLDATEWw. is similar to WEEKDATEw. except that NLDATEWw. is locale specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1----+----2

options locale=English_UnitedStates;

put date nldatew.; Sun, Feb 24, 03

options locale=German_Germany;

put date nldatew.; So, 24. Feb 03

See Also

Formats:
“NLDATEw. Format” on page 155
“NLDATEMNw. Format” on page 156
“NLDATEWNw. Format” on page 158

NLDATEWNw. Format

Converts the SAS date value to the date value of the specified locale, and then writes the date
value as the day-of-the-week

Category: Date and Time
Alignment: left

Syntax
NLDATEWNw.

Formats for NLS � NLDATMw. Format 159

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the
day-of-the-week to fit the format width.

Default: 10

Range: 4–200

Comparisons
NLDATEWNw. is similar to DOWNAMEw. except that NLDATEWNw. is locale
specific.

Examples

These examples use the input value of 15760, which is the SAS date value that
corresponds to February 24, 2003.

Statements Results

----+----1

options locale=English_UnitedStates;

put date nldatewn.; Sunday

options locale=German_Germany;

put date nldatewn.; Sonntag

See Also

Formats:

“NLDATEw. Format” on page 155

“NLDATEMNw. Format” on page 156

“NLDATEWw. Format” on page 157

NLDATMw. Format

Converts a SAS date-time value to the date-time value of the specified locale, and then writes the
value as a date-time

Category: Date and Time

Alignment: left

160 NLDATMAPw. Format � Chapter 9

Syntax
NLDATMw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date-time
value to fit the format width.
Default: 30
Range: 10–200

Comparisons
The NLDATMw. format is similar to the DATETIMEw. format except that the
NLDATMw. format is locale specific.

Examples

These examples use the input value of 1361709583, which is the SAS datetime value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Statements Results

----+----1----+----2----+----3

options locale=English_UnitedStates;

put day nldatm.;
24Feb03:12:39:43

options locale=German_Germany;

put day nldatm.;
24. Februar 2003 12.39 Uhr

See Also

Formats:
“NLDATMAPw. Format” on page 160
“NLDATMTMw. Format” on page 161
“NLDATMWw. Format” on page 162

NLDATMAPw. Format
Converts a SAS date-time value to the date-time value of the specified locale, and then writes the
value as a date-time with a.m. or p.m.

Formats for NLS � NLDATMTMw. Format 161

Category: Date and Time
Alignment: left

Syntax
NLDATMAPw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the date-time
value to fit the format width.
Default: 32
Range: 16–200

Comparisons
The NLDATMAPw. format is similar to DATEAMPMw. except that the NLDATMAPw.
format is locale specific.

Examples

These examples use the input value of 1361709583, which is the SAS date-time value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Statements Results

----+----1----+----2----+----3

options locale=English_UnitedStates;

put event nldatmap.; February 24, 2003 12:39:43 PM

options locale=Spanish_Mexico;

put event nldatmap.; 01 de enero de 2003 01:24:35 PM

See Also

Formats:
“NLDATMw. Format” on page 159
“NLDATMTMw. Format” on page 161
“NLDATMWw. Format” on page 162

NLDATMTMw. Format
Converts the time portion of a SAS date-time value to the time-of-day value of the specified
locale, and then writes the value as a time-of-day

162 NLDATMWw. Format � Chapter 9

Category: Date and Time
Alignment: left

Syntax
NLDATMTMw.

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 16–200

Comparisons
The NLDATMTMw. format is similar to the TODw. format except that the
NLDATMTMw. format is locale specific.

Examples

These examples use the input value of 1361709583, which is the SAS date-time value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Statements Results

----+----1

options locale=English_UnitedStates;

put event nldatmtm.; 12:39:43

options locale=German_Germany;

put event nldatmtm.; 12.39 Uhr

See Also

Formats:
“NLDATMw. Format” on page 159
“NLDATMAPw. Format” on page 160
“NLDATMWw. Format” on page 162

NLDATMWw. Format
Converts a SAS date value to a date-time value of the specified locale, and then writes the value a
day-of-week and date-time

Formats for NLS � NLMNYw.d Format 163

Category: Date and Time
Alignment: left

Syntax
NLDATMWw.

Syntax Description

w
specifies the width of the output field. If necessary, SAS abbreviates the day-of-week
and date-time to fit the format width.
Default: 30
Range: 16–200

Comparisons
The NLDATMWw. format is similar to the TWMDYw. format except that the
NLDATMWw. format is locale specific.

Examples

These examples use the input value of 1361709583, which is the SAS date-time value
that corresponds to 12:39:43 p.m. on February 24, 2003.

Statements Results

----+----1----+----2----+----3

options locale=English_UnitedStates;

put event nldatmw.; Sun, Feb 24, 2003 12:39:43

options locale=German_Germany;

put event nldatmw.; So, 24. Feb 2003 12.39 Uhr

See Also

Formats:
“NLDATMw. Format” on page 159
“NLDATMAPw. Format” on page 160
“NLDATMTMw. Format” on page 161

NLMNYw.d Format
Writes the monetary format of the local expression in the specified locale using local currency

164 NLMNYw.d Format � Chapter 9

Category: Numeric

Alignment: left

Syntax
NLMNYw.d

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Details
The NLMNYw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLMNYw.d format
writes numeric values by using the currency symbol, the thousands separator, and the
decimal separator that is used by the locale.

Note: The NLMNYw.d format does not convert currency format, therefore, the value
of the formatted number should equal the currency of the current locale value. �

Comparisons
The NLMNYw.d format writes the monetary format of the local expression in the
specified locale using local currency. The NLMNYIw.d format writes the monetary
format of the international expression in the specified locale. Typically the NLMNYw.d
format and the NLMNYIw.d format return the same results, however some of the
locales produce different results for the local and international expressions.

The NLMNYw.d format is similar to the DOLLARw.d format except that the
NLMNYw.d format is locale-specific.

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmny32.2);
y=put(-1234.56789,dollar32.2);

Formats for NLS � NLMNYIw.d Format 165

Statements Results

----+----1----+

put x=;

put y=;

($1,234.57)

$-1,234.57

See Also

Formats:
“NLMNYIw.d Format” on page 165

Informats:
“NLMNYw.d Informat” on page 270
“NLMNYIw.d Informat” on page 272

NLMNYIw.d Format

Writes the monetary format of the international expression in the specified locale

Category: Numeric
Alignment: left

Syntax
NLMNYIw.d

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLMNYIw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLMNYIw.d format
writes numeric values by using the currency symbol, the thousands separator, and the
decimal separator that is used by the locale.

166 NLNUMw.d Format � Chapter 9

Note: The NLMNYIw.d format does not convert currency format, therefore, the
value of the formatted number should equal the currency of the current locale value. �

Comparisons
The NLMNYw.d format writes the monetary format of the local expression in the
specified locale using local currency. The NLMNYIw.d format writes the monetary
format of the international expression in the specified locale. Typically the NLMNYw.d
format and the NLMNYIw.d format return the same results, however, some of the
locales produce different results for the local and international expressions.

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-1234.56789,nlmnyi32.2);
y=put(-1234.56789,nlmny32.2);
z=put(-1234.56789,dollar32.2);

Statements Results

----+----1----+

put x=;

put y=;

put z=;

(USD1,234.57)

($1,234.57)

$-1,234.57

See Also

Formats:

“NLMNYw.d Format” on page 163

Informats:

“NLMNYw.d Informat” on page 270

“NLMNYIw.d Informat” on page 272

NLNUMw.d Format

Writes the numeric format of the local expression in the specified locale

Category: Numeric

Alignment: left

Syntax
NLNUMw.d

Formats for NLS � NLNUMw.d Format 167

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.

Default: 0

Range: 0–31

Details
The NLMUMw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLNUMw.d format
writes numeric values by using the thousands separator and the decimal separator that
is used by the locale.

Comparisons
The NLNUMw.d format writes the numeric format of the local expression in the
specified locale. The NLNUMIw.d format writes the numeric format of the
international expression in the specified locale. Typically the NLNUMw.d format and
the NLNUMIw.d format return the same results, however some of the locales produce
different results for the local and international expressions.

The NLNUMw.d format is similar to the COMMAw.d format except that the
NLNUMw.d format is locale specific.

Examples

x=put(-1234356.7891,nlnum32.2);

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

put x=; -1,234,356.79

options LOCALE=German_Germany;

put x=; -1.234.356,79

See Also

Formats:

“NLNUMIw.d Format” on page 168

168 NLNUMIw.d Format � Chapter 9

Informats:

“NLNUMw.d Informat” on page 273

“NLNUMIw.d Informat” on page 274

NLNUMIw.d Format

Writes the numeric format of the international expression in the specified locale

Category: Numeric

Alignment: left

Syntax

NLNUMIw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal points,
the d value is ignored.

Default: 0

Range: 0–31

Details

The NLMUMIw.d format reads integer binary (fixed-point) values, including negative
values that are represented in two’s-complement notation. The NLNUMIw.d format
writes numeric values by using the thousands separator and the decimal separator that
is used by the locale.

Comparisons

The NLNUMw.d format writes the numeric format of the local expression in the
specified locale. The NLNUMIw.d format writes the numeric format of the
international expression in the specified locale. Typically the NLNUMw.d format and
the NLNUMIw.d format return the same results, however, some of the locales produce
different results for the local and international expressions.

The NLNUMIw.d format is similar to the COMMAw.d format except that the
NLNUMIw.d format is locale specific.

Formats for NLS � NLPCTw.d Format 169

Examples

x=put(-1234356.7891,nlnumi32.2);

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

put x=; -1,234,356.79

options LOCALE=German_Germany;

put x=; -1.234.356,79

See Also

Formats:
“NLNUMw.d Format” on page 166

Informats:
“NLNUMw.d Informat” on page 273
“NLNUMIw.d Informat” on page 274

NLPCTw.d Format

Writes percentage data of the local expression in the specified locale

Category: Numeric
Alignment: left

Syntax
NLPCTw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0

170 NLPCTIw.d Format � Chapter 9

Range: 0–31

Comparisons
The NLPCTw.d format writes percentage data of the local expression in the specified
locale. The NLPCTIw.d format writes percentage data of the international expression
in the specified locale. Typically the NLPCTw.d format and the NLPCTIw.d format
return the same results, however some of the locales produce different results for the
local and international expressions.

The NLPCTw.d format is similar to the PERCENTw.d format except the NLPCTw.d
format is locale specific.

Examples

x=put(-12.3456789,nlpct32.2);
y=put(-12.3456789,nlpcti32.2);
z=put(-12.3456789,percent32.2);

Statements Results

----+----1

options LOCALE=English_UnitedStates;

put x=;

put y=;

put z=;

-1,234.57%

-1,234.57%

(1234.57%)

options LOCALE=German_Germany;

put x=;

put y=;

put z=;

-1.234,57%

-1,234.57%

(1234.57%)

See Also

Formats:
“NLPCTIw.d Format” on page 170

Informats:
“NLPCTw.d Informat” on page 275
“NLPCTIw.d Informat” on page 277

NLPCTIw.d Format

Writes percentage data of the international expression in the specified locale

Category: Numeric
Alignment: left

Formats for NLS � NLPCTIw.d Format 171

Syntax
NLPCTIw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.

Default: 0

Range: 0–31

Comparisons
The NLPCTw.d format writes percentage data of the local expression in the specified
locale. The NLPCTIw.d format writes percentage data of the international expression
in the specified locale. Typically the NLPCTw.d format and the NLPCTIw.d format
return the same results, however some of the locales produce different results for the
local and international expressions.

The NLPCTw.d format is similar to the PERCENTw.d format except the NLPCTw.d
format is locale specific.

Examples

In the following example, the LOCALE= system option is set to
English_UnitedStates.

x=put(-12.3456789,nlpcti32.2);
y=put(-12.3456789,percent32.2);

Statements Results

----+----1

put x=;

put y=;

-1,234.57%

(1234.57)

See Also

Formats:

“NLPCTw.d Format” on page 169

172 NLTIMEw. Format � Chapter 9

Informats:

“NLPCTw.d Informat” on page 275

“NLPCTIw.d Informat” on page 277

NLTIMEw. Format

Converts a SAS time value to the time value of the specified locale, and then writes the value as a
time value

Category: Date and Time

Alignment: left

Syntax
NLTIMEw.

Syntax Description

w
specifies the width of the input field.

Default: 20

Range: 10–200

Comparisons
The NLTIMEw. format is similar to the TIMEw. format except that the NLTIMEw.
format is locale specific.

Examples

These examples use the input value of 59083, which is the SAS date-time value that
corresponds to 4:24:43 p.m.

Statements Results

----+----1----+

options locale=English_UnitedStates;

put time nltime.; 4:24:43

options locale=German_Germany;

put time nltime.; 16.24

Formats for NLS � NLTIMAPw. Format 173

See Also

Formats:

“NLTIMAPw. Format” on page 173

NLTIMAPw. Format

Converts a SAS time value to the time value of a specified locale, and then writes the value as a
time value with a.m. or p.m.

Category: Date and Time

Alignment: left

Syntax
NLTIMAPw.

Syntax Description

w
specifies the width of the output field.

Default: 10

Range: 4–200

Comparisons
The NLTIMAPw. format is similar to the TIMEAMPMw. format except that the
NLTIMAPw. format is locale specific.

Examples

These examples use the input value of 59083, which is the SAS date-time value that
corresponds to 4:24:43 p.m.

Statements Results

----+----1----+

options locale=English_UnitedStates;

put time nltimap.; 4:24:43 PM

options locale=German_Germany;

put time nltimap.; 16.24 Uhr

174 $UCS2Bw. Format � Chapter 9

See Also

Formats:
“NLTIMEw. Format” on page 172

$UCS2Bw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in big-endian, 16-bit, UCS2, Unicode encoding

Category: Character
Alignment: left

Syntax
$UCS2Bw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32767

Details
The $UCS2Bw. format writes a character string in big-endian, 16-bit, UCS2 (universal
character set code in two octets), Unicode encoding. It processes character strings that
are in the encoding of the current SAS session.

Comparison
The $UCS2Bw. format performs processing that is the opposite of the $UCS2BEw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Results

----+----1

x = ’ ’;

put x $ucs2b2.; ’5927’x (binary)

Formats for NLS � $UCS2BEw. Format 175

See Also

Formats:

“$UCS2Lw. Format” on page 176

“$UCS2Xw. Format” on page 178

“$UTF8Xw. Format” on page 195

“$UCS2BEw. Format” on page 175

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2BEw. Informat” on page 283

“$UCS2Lw. Informat” on page 284

“$UCS2Xw. Informat” on page 286

“$UTF8Xw. Informat” on page 300

$UCS2BEw. Format

Processes a character string that is in big-endian, 16-bit, UCS2, Unicode encoding, and then
writes the character string in the encoding of the current SAS session

Category: Character

Alignment: left

Syntax
$UCS2BEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Details
The $UCS2BEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in big-endian, 16-bit, UCS2 (universal
character set code in two octets), Unicode encoding.

Comparison
The $UCS2BEw. format performs processing that is the opposite of the $UCS2Bw.
format.

176 $UCS2Lw. Format � Chapter 9

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Results

----+----1

x =’592700410042’x;

put x $ucs2be4.; AB

See Also

Formats:
“$UCS2Bw. Format” on page 174

Informats:
“$UCS2Bw. Informat” on page 282
“$UCS2BEw. Informat” on page 283

$UCS2Lw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in little-endian, 16-bit, UCS2, Unicode encoding

Category: Character
Alignment: left

Syntax
$UCS2Lw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32767

Details
The $UCS2Lw. format writes a character string in little-endian, 16-bit, UCS2
(universal character set code in two octets), Unicode encoding. It processes character
strings that are in the encoding of the current SAS session.

Formats for NLS � $UCS2LEw. Format 177

Comparison
The $UCS2Lw. format performs processing that is the opposite of the $UCS2LEw.
format.

Example
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs2l2.; ’2759’x (binary)

See Also

Formats:

“$UCS2Bw. Format” on page 174

“$UCS2LEw. Format” on page 177

“$UCS2Xw. Format” on page 178

“$UTF8Xw. Format” on page 195

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284

“$UCS2LEw. Informat” on page 285

“$UCS2Xw. Informat” on page 286

“$UTF8Xw. Informat” on page 300

$UCS2LEw. Format

Processes a character string that is in little-endian, 16-bit, UCS2, Unicode encoding, and then
writes the character string in the encoding of the current SAS session

Category: Character

Alignment: left

Syntax
$UCS2LEw.

178 $UCS2Xw. Format � Chapter 9

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Details
The $UCS2LEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in little-endian, 16-bit, UCS2 (universal
character set code in two octets), Unicode encoding.

Comparison
The $UCS2LEw. format performs processing that is the opposite of the $UCS2Lw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’275941004200’x;

put x $ucs2le4.; AB

See Also

Formats:
“$UCS2Lw. Format” on page 176

Informats:
“$UCS2Lw. Informat” on page 284
“$UCS2LEw. Informat” on page 285

$UCS2Xw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in native-endian, 16-bit, UCS2, Unicode encoding

Category: Character
Alignment: left

Formats for NLS � $UCS2Xw. Format 179

Syntax
$UCS2Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32767

Details
The $UCS2Xw. format writes a character string in 16-bit, UCS2 (universal character
set code in two octets), Unicode encoding, by using byte order that is native to the
operating environment.

Comparison
The $UCS2Xw. format performs processing that is the opposite of the $UCS2XEw.
format. If you are exchanging data within the same operating environment, use the
$UCS2Xw. format. If you are exchanging data with a different operating environment,
use the $UCS2Bw. format or $UCS2Lw. format.

Example
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs2x2.; ’5927’x (binary) or ’2759’x (little endian)

See Also

Formats:
“$UCS2Bw. Format” on page 174
“$UCS2XEw. Format” on page 180
“$UCS2Lw. Format” on page 176
“$UTF8Xw. Format” on page 195

Informats:
“$UCS2Bw. Informat” on page 282
“$UCS2Lw. Informat” on page 284
“$UCS2Xw. Informat” on page 286
“$UCS2XEw. Informat” on page 287
“$UTF8Xw. Informat” on page 300

180 $UCS2XEw. Format � Chapter 9

$UCS2XEw. Format

Processes a character string that is in native-endian, 16-bit, UCS2, Unicode encoding, and then
writes the character string in the encoding of the current SAS session

Category: Character
Alignment: left

Syntax
$UCS2XEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Details
The $UCS2XEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in native-endian, 16-bit, UCS2
(universal character set code in two octets), Unicode encoding.

Comparison
The $UCS2XEw. format performs processing that is the opposite of the $UCS2Xw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’e5a4a7’x; /* Japanese ’ ’ in
UTF8 */;

put x $utf8xe10.;

See Also

Formats:

Formats for NLS � $UCS4Bw. Format 181

“$UCS2Xw. Format” on page 178
Informats:

“$UCS2Xw. Informat” on page 286
“$UCS2XEw. Informat” on page 287

$UCS4Bw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in big-endian, 32-bit, UCS4, Unicode encoding

Category: Character
Alignment: left

Syntax
$UCS4Bw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32767

Details
The $UCS4Bw. format writes a character string in big-endian, 32-bit, UCS4 (universal
character set code in four octets), Unicode encoding. It processes character strings that
are in the encoding of the current SAS session.

Comparison
The $UCS4Bw. format performs processing that is the opposite of the $UCS4BEw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x = ’ ’;
put x $ucs4b4.; ’00005927’x (binary)

182 $UCS4BEw. Format � Chapter 9

See Also

Formats:

“$UCS2Lw. Format” on page 176

“$UCS2Xw. Format” on page 178

“$UCS4BEw. Format” on page 182

“$UCS4Lw. Format” on page 183

“$UCS4Xw. Format” on page 186

“$UTF8Xw. Format” on page 195

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284

“$UCS2Xw. Informat” on page 286

“$UCS4Bw. Informat” on page 288

“$UCS4Lw. Informat” on page 289

“$UCS4Xw. Informat” on page 290

“$UTF8Xw. Informat” on page 300

$UCS4BEw. Format

Processes a character string that is in big-endian, 32-bit, UCS4, Unicode encoding, and then
writes the character string in the encoding of the current SAS session

Category: Character

Alignment: left

Syntax
$UCS4BEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Details
The $UCS4BEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in big-endian, 32-bit, UCS4 (universal
character set code in four octets), Unicode encoding.

Formats for NLS � $UCS4Lw. Format 183

Comparison
The $UCS4BEw. format performs processing that is the opposite of the $UCS4Bw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’000059270000004100000042’x;

put x $ucs4be4.; AB

See Also

Formats:

“$UCS4Bw. Format” on page 181

Informats:

“$UCS4Bw. Informat” on page 288

$UCS4Lw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in little-endian, 32-bit, UCS4, Unicode encoding

Category: Character

Alignment: left

Syntax
$UCS4Lw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 4

Range: 4–32767

184 $UCS4LEw. Format � Chapter 9

Details
The $UCS4Lw. format writes a character string in little-endian, 32-bit, UCS4
(universal character set code in four octets), Unicode encoding. It processes character
strings that are in the encoding of the current SAS session.

Comparisons
The $UCS4Lw. format performs processing that is the opposite of the $UCS4LEw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x = ’ ’;

put x $ucs4l4.; ’27590000’x (binary)

See Also

Formats:

“$UCS2Bw. Format” on page 174
“$UCS2Xw. Format” on page 178

“$UCS4Bw. Format” on page 181
“$UCS4LEw. Format” on page 184

“$UCS4Xw. Format” on page 186
“$UTF8Xw. Format” on page 195

Informats:
“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284
“$UCS2Xw. Informat” on page 286

“$UCS4Bw. Informat” on page 288
“$UCS4Lw. Informat” on page 289

“$UCS4Xw. Informat” on page 290
“$UTF8Xw. Informat” on page 300

$UCS4LEw. Format

Processes a character string that is in little-endian, 32-bit, UCS4, Unicode encoding, and then
writes the character string in the encoding of the current SAS session

Formats for NLS � $UCS4LEw. Format 185

Category: Character

Alignment: left

Syntax
$UCS4LEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Details
The $UCS4LEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in little-endian, 32-bit, UCS4 (universal
character set code in four octets), Unicode encoding.

Comparison
The $UCS4LEw. format performs processing that is the opposite of the $UCS4Lw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’275900004100000042000000’x;

put x $ucs4le4.; AB

See Also

Formats:

“$UCS4Lw. Format” on page 183

Informats:

“$UCS4Lw. Informat” on page 289

186 $UCS4Xw. Format � Chapter 9

$UCS4Xw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in native-endian, 32-bit, UCS4, Unicode encoding

Category: Character

Alignment: left

Syntax

$UCS4Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 4

Range: 4–32767

Details

The $UCS4Xw. format writes a character string in 32-bit, UCS4 (universal character
set code in two octets), Unicode encoding, by using byte order that is native to the
operating environment.

Comparisons

The $UCS4Xw. format performs processing that is the opposite of the $UCS4XEw.
format. If you are exchanging data within the same operating environment, use the
$UCS4Xw. format. If you are exchanging data with a different operating environment,
use the $UCS4Bw. format or $UCS4Lw. format.

Example

This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating environment.

Statements Results

----+----1

x = ’ ’;

put x $ucs4x4.; ’00005927’x (binary) or ’27590000’x (little endian)

Formats for NLS � $UCS4XEw. Format 187

See Also

Formats:

“$UCS2Lw. Format” on page 176

“$UCS4XEw. Format” on page 187

“$UCS2Xw. Format” on page 178

“$UCS4Bw. Format” on page 181

“$UCS4Lw. Format” on page 183

“$UTF8Xw. Format” on page 195

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284

“$UCS2Xw. Informat” on page 286

“$UCS4Bw. Informat” on page 288

“$UCS4Lw. Informat” on page 289

“$UCS4Xw. Informat” on page 290

“$UTF8Xw. Informat” on page 300

$UCS4XEw. Format

Processes a character string that is in native-endian, 32-bit, UCS4, Unicode encoding, and then
writes the character string in the encoding of the current SAS session

Category: Character

Alignment: left

Syntax
$UCS4XEw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Details
The $UCS4XEw. format writes a character string in the encoding of the current SAS
session. It processes character strings that are in native-endian, 32-bit, UCS4
(universal character set code in four octets), Unicode encoding.

188 $UESCw. Format � Chapter 9

Comparison
The $UCS4XEw. format performs processing that is the opposite of the $UCS4Xw.
format.

Example

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1

x =’275900004100000042000000’x;

put x $ucs4be4.; AB (little endian)

See Also

Formats:
“$UCS4Xw. Format” on page 186

Informats:
“$UCS4Xw. Informat” on page 290

$UESCw. Format
Processes a character string that is encoded in the current SAS session, and then writes the
character string in Unicode escape (UESC) representation

Category: Character
Alignment: left

Syntax
$UESCw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Details
If the characters are not available on all operating environments, for example, 0–9, a–z,
A–Z, they must be represented in UESC. $UESCw. can be nested.

Formats for NLS � $UESCEw. Format 189

Comparisons
The $UESCw. format performs processing that is opposite of the $UESCEw. format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+----2

x=’ ’ ;

y=’u5927’

z=’uu5927’;

put x = $uesc10. ;

put y = $uesc10. ;

put z = $uesc10. ;

¥u5927

¥uu5927

¥uuu5927

See Also

Formats:
“$UESCEw. Format” on page 189

Informats:
“$UESCw. Informat” on page 292
“$UESCEw. Informat” on page 294

$UESCEw. Format

Processes a character string that is in Unicode escape (UESC) representation, and then writes the
character string in the encoding of the current SAS session

Category: Character
Alignment: left

Syntax
$UESCEw.

Syntax Description

w
specifies the width of the output field.
Default: 8

190 $UNCRw. Format � Chapter 9

Range: 1–32000

Details

If the data is not supported by the encoding of the current SAS session, the data will
remain in UESC.

Comparisons

The $UESCEw. format performs processing that is the opposite of the $UESCw. format.

Examples

This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1----+----2

x=put(’¥u5927’,$uesce10.) ;

x=put(’¥uu5927’,$uesce10.) ;

x=put(’¥uuu5927’,$uesce10.) ;

x=

x=¥u5927

x=¥uu5927

See Also

Formats:

“$UESCw. Format” on page 188

Informats:

“$UESCw. Informat” on page 292

“$UESCEw. Informat” on page 294

$UNCRw. Format

Processes a character string that is encoded in the current SAS session, and then writes the
character string in numeric character representation (NCR)

Category: Character

Alignment: left

Syntax

$UNCRw.

Formats for NLS � $UNCREw. Format 191

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32000

Comparison
The $UNCRw. format performs processing that is the opposite of the $UNCREw.
format.

Examples
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1----+----2

x=’91E5’x ; /* Japanese ’ ’ in
Shift-JIS */

y=’abc’;

put x $uncr10.;

put y $uncr10.;

大

abc

See Also

Formats:

“$UNCREw. Format” on page 191

Informats:

“$UNCRw. Informat” on page 295

“$UNCREw. Informat” on page 296

$UNCREw. Format

Processes a character string that is in numeric character representation (NCR), and then writes
the character string in the encoding of the current SAS session

Category: Character

Alignment: left

192 $UPARENw. Format � Chapter 9

Syntax
$UNCREw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–32000

Details
National characters should be represented in NCR.

Comparison
The $UNCREw. format performs processing that is the opposite of the $UNCRw.
format.

Examples
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1

x=’大abc’;

put x $uncr10.; abc

See Also

Formats:
“$UNCRw. Format” on page 190

Informats:
“$UNCRw. Informat” on page 295
“$UNCREw. Informat” on page 296

$UPARENw. Format

Processes a character string that is encoded in the current SAS session, and then writes the
character string in Unicode parenthesis (UPAREN) representation

Category: Character

Formats for NLS � $UPARENw. Format 193

Alignment: left

Syntax

$UPARENw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 27–32000

Details

The character string will be encoded with parenthesis and Unicode hex representation.

Comparisons

The $UPARENw. format performs processing that is the opposite of the $UPARENEw.
format.

Examples

This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating system.

Statements Results

----+----1----+----2----+----3----+

x=’ ’;

y=’abc3’;

put x $uparen7.;

put y $uparen28.;

<u5927>

<u0061> <u0062> <u0063> <u0033>

See Also

Formats:

“$UPARENEw. Format” on page 194

Informats:

“$UPARENw. Informat” on page 297

“$UPARENEw. Informat” on page 298

194 $UPARENEw. Format � Chapter 9

$UPARENEw. Format

Processes a character string that is in Unicode parenthesis (UPAREN), and then writes the
character string in the encoding of the current SAS session

Category: Character

Alignment: left

Syntax
$UPARENEw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32000

Comparisons
The $UPARENEw. format performs processing that is the opposite of the $UPARENw.
format.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+

x=’<u0061><u0062><u0063><u0033>’;

put x $uparene4.; abc3

See Also

Formats:

“$UPARENw. Format” on page 192

Informats:

“$UPARENw. Informat” on page 297

“$UPARENEw. Informat” on page 298

Formats for NLS � $UTF8Xw. Format 195

$UTF8Xw. Format

Processes a character string that is in the encoding of the current SAS session, and then writes
the character string in universal transformation format (UTF-8) encoding

Category: Character

Alignment: left

Syntax
$UTF8Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to include all of the
characters in the variable. The width of the characters will be dependent on the code
point value of the individual characters.

Default: 8

Range: 2–32767

Examples
This example uses the Japanese Shift_JIS session encoding, which is supported under
the UNIX operating environment.

Statements Results

----+----1

x =’91E5’x; ; /* Japanese ’ ’ in
Shift-JIS */

put x $utf8x10.; x=’e5a4a7’x

See Also

Formats:

“$UCS2Bw. Format” on page 174

“$UCS2Lw. Format” on page 176

“$UCS2Xw. Format” on page 178

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284

“$UCS2Xw. Informat” on page 286

196 $VSLOGw. Format � Chapter 9

$VSLOGw. Format

Processes a character string that is in visual order, and then writes the character string in
left-to-right logical order

Category: BIDI text handling

Alignment: left

Syntax
$VSLOGw.

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Details
The $VSLOGw. format is used when transferring data that is stored in visual order. An
example is transferring data from a UNIX server to a Windows client.

Note: The $VSLOGw. format does not correctly process all combinations of data
strings. �

Comparisons
The $VSLOGw. format performs processing that is opposite to the $VSLOGRw. format.

Examples

The following example used the input value of “ flight”.

Statements Results

----+----1----+----2----+

put text $vslog12.; flight

See Also

Formats:

“$VSLOGRw. Format” on page 197

Formats for NLS � $VSLOGRw. Format 197

Informats:

“$VSLOGw. Informat” on page 301

“$VSLOGRw. Informat” on page 302

$VSLOGRw. Format

Processes a character string that is in visual order, and then writes the character string in
right-to-left logical order

Category: BIDI text handling

Alignment: left

Syntax
$VSLOGRw.

Syntax Description

w
specifies the width of the output field.

Default: 200

Range: 1–32000

Details
The $VSLOGRw. format is used when transferring data that is stored in visual order.
An example is transferring data from a UNIX server to a Windows client.

Note: The $VSLOGRw. format does not correctly process all combinations of data
strings. �

Comparisons
The $VSLOGRw. format performs processing that is opposite to the $VSLOGw. format.

Examples

The following example uses the input value of “ flight.”

Statements Results

----+----1----+

put text $logvs12;
flight

198 WEEKUw. Format � Chapter 9

See Also

Formats:
$VSLOGw.

Informats:
“$VSLOGw. Informat” on page 301
“$VSLOGRw. Informat” on page 302

WEEKUw. Format

Writes a week number in decimal format by using the U algorithm

Category: Date and Time
Alignment: left

Syntax
WEEKUw.

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 3–200

Details
The WEEKUw. format writes a week-number format. The WEEKUw. format writes
the various formats depending on the specified width. Algorithm U calculates the SAS
date value by using the number of the week within the year (Sunday is considered the
first day of the week). The number-of-the-week value is represented as a decimal
number in the range 0–53, with a leading zero and maximum value of 53. For example,
the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Formats for NLS � WEEKVw. Format 199

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53, with weeks beginning on a Monday and week 1 of the year including both
January 4th and the first Thursday of the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The
WEEKWw. format writes the week number of the year as a decimal number in the
range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the
week number of the year (Sunday as the first day of the week) as a decimal number in
the range 0–53, with a leading zero.

Examples

sasdate = ’01JAN2003’d;

Statements Results

----+----1----+

v=put(sasdate,weeku3.);
w=put(sasdate,weeku5.);
x=put(sasdate,weeku7.);
y=put(sasdate,weeku9.);
z=put(sasdate,weeku11.);
put v;
put w;
put x;
put y;
put z;

W00
03W00
03W0004
2003W0004
2003-W00-04

See Also

Formats:
“WEEKVw. Format” on page 199
“WEEKWw. Format” on page 201

Functions:
“WEEK Function” on page 239

Informats:
“WEEKUw. Informat” on page 303
“WEEKVw. Informat” on page 305
“WEEKWw. Informat” on page 307

WEEKVw. Format

Writes a week number in decimal format by using the V algorithm

Category: Date and Time
Alignment: left

200 WEEKVw. Format � Chapter 9

Syntax
WEEKVw.

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 3–200

Details
The WEEKVw. format writes the various formats depending on the specified width.
Algorithm V calculates the SAS date value, with the number-of-the-week value
represented as a decimal number in the range 01–53, with a leading zero and
maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week
that includes both January 4th and the first Thursday of the year. If the first Monday
of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For example, the fifth week of the year would be represented as 06.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53, with weeks beginning on a Monday and week 1 of the year including both
January 4th and the first Thursday of the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The
WEEKWw. format writes the week number of the year as a decimal number in the
range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the
week number of the year (Sunday as the first day of the week) as a decimal number in
the range 0–53, with a leading zero.

Examples

sasdate=’01JAN2003’d;

Formats for NLS � WEEKWw. Format 201

Statements Results

----+----1----+

v=put(sasdate,weekv3.);
w=put(sasdate,weekv5.);
x=put(sasdate,weekv7.);
y=put(sasdate,weekv9.);
z=put(sasdate,weekv11.);
put v;
put w;
put x;
put y;
put z;

W01
03W01
03W0103
2003W0103
2003-W01-03

See Also

Formats:

“WEEKUw. Format” on page 198

“WEEKWw. Format” on page 201

Functions:

“WEEK Function” on page 239

Informats:

“WEEKUw. Informat” on page 303

“WEEKVw. Informat” on page 305

“WEEKWw. Informat” on page 307

WEEKWw. Format

Writes a week number in decimal format by using the W algorithm

Category: Date and Time

Alignment: left

Syntax
WEEKWw.

Syntax Description

w
specifies the width of the output field.

Default: 11

Range: 3–200

202 WEEKWw. Format � Chapter 9

Details
The WEEKWw. format writes the various formats depending on the specified width.
Algorithm W calculates the SAS date value using the number of the week within the
year (Monday is considered the first day of the week). The number-of-the-week value is
represented as a decimal number in the range 0–53, with a leading zero and maximum
value of 53. For example, the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53. Weeks beginning on a Monday and on week 1 of the year include both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or
4th, the preceding days are part of the last week of the preceding year. The WEEKWw.
format writes the week number of the year as a decimal number in the range 00–53,
with Monday as the first day of week 1. The WEEKUw. format writes the week
number of the year (Sunday as the first day of the week) as a decimal number in the
range 0–53, with a leading zero.

Examples

sasdate = ’01JAN2003’d;

Statements Results

----+----1----+

v=put(sasdate,weekw3.);
w=put(sasdate,weekw5.);
x=put(sasdate,weekw7.);
y=put(sasdate,weekw9.);
z=put(sasdate,weekw11.);
put v;
put w;
put x;
put y;
put z;

W03
03W03
03W0003
2003W0003
2003-W00-03

Formats for NLS � YENw.d Format 203

See Also

Formats:

“WEEKUw. Format” on page 198

“WEEKVw. Format” on page 199

Functions:

“WEEK Function” on page 239

Informats:

“WEEKUw. Informat” on page 303

“WEEKVw. Informat” on page 305

“WEEKWw. Informat” on page 307

YENw.d Format

Writes numeric values with yen signs, commas, and decimal points

Category: Numeric

Alignment: right

Syntax
YENw.d

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Restriction: must be either 0 or 2

Tip: If d is 2, then YENw.d writes a decimal point and two decimal digits. If d is 0,
then YENw.d does not write a decimal point or decimal digits.

Details
The YENw.d format writes numeric values with a leading yen sign and with a comma
that separates every three digits of each value.

The hexadecimal representation of the code for the yen sign character is 5B on
EBCDIC systems and 5C on ASCII systems. The monetary character these codes
represent may be different in other countries.

204 YENw.d Format � Chapter 9

Examples

put cost yen10.2;

Cost Result

----+----1

1254.71 ¥1,254.71

See Also

Informats:

“YENw.d Informat” on page 309

205

P A R T4

Functions for NLS

Chapter 10.Overview to Functions for NLS 207

Chapter 11. Functions for NLS 209

206

207

C H A P T E R

10
Overview to Functions for NLS

Functions for NLS by Category 207

Functions for NLS by Category

The following table provides brief descriptions of the SAS functions. For more
detailed descriptions, see the NLS entry for each function.

Table 10.1 NLS Functions Summary

Category Functions for NLS Description

Character “KCVT Function” on page
214

Converts data from an encoding code to another encoding
code

“TRANTAB Function” on
page 235

Transcodes a data string by using a translation table

Currency Conversion “EUROCURR Function” on
page 209

Converts one European currency to another

DBCS “KCOMPARE Function” on
page 212

Returns the result of a comparison of character strings

“KCOMPRESS Function”
on page 213

Removes specific characters from a character string

“KCOUNT Function” on
page 214

Returns the number of double-byte characters in a string

“KINDEX Function” on
page 216

Searches a character expression for a string of characters

“KINDEXC Function” on
page 216

Searches a character expression for specific characters

“KLEFT Function” on page
217

Left-aligns a character expression by removing
unnecessary leading DBCS blanks and SO/SI

“KLENGTH Function” on
page 218

Returns the length of an argument

“KLOWCASE Function” on
page 218

Converts all letters in an argument to lowercase

“KREVERSE Function” on
page 219

Reverses a character expression

208 Functions for NLS by Category � Chapter 10

Category Functions for NLS Description

“KRIGHT Function” on
page 219

Right-aligns a character expression by trimming trailing
DBCS blanks and SO/SI

“KSCAN Function” on
page 220

Selects a specific word from a character expression

“KSTRCAT Function” on
page 221

Concatenates two or more character strings

“KSUBSTR Function” on
page 221

Extracts a substring from an argument

“KSUBSTRB Function” on
page 222

Extracts a substring from an argument according to the
byte position of the substring in the argument

“KTRANSLATE Function”
on page 223

Replaces specific characters in a character expression

“KTRIM Function” on page
224

Removes trailing DBCS blanks and SO/SI from character
expressions

“KTRUNCATE Function”
on page 224

Truncates a numeric value to a specified length

“KUPCASE Function” on
page 225

Converts all single-byte letters in an argument to
uppercase

“KUPDATE Function” on
page 225

Inserts, deletes, and replaces character value contents

“KUPDATEB Function” on
page 226

Inserts, deletes, and replaces the contents of the
character value according to the byte position of the
character value in the argument

“KVERIFY Function” on
page 227

Returns the position of the first character that is unique
to an expression

Date and Time “NLDATE Function” on
page 228

Converts the SAS-date value to the date value of the
specified locale by using the date format modifiers

“NLDATM Function” on
page 231

Converts the SAS-datetime value to the time value of the
specified locale by using the datetime- format modifiers

“NLTIME Function” on
page 233

Converts the SAS time or the datetime value to the time
value of the specified locale by using the time-format
modifiers

“WEEK Function” on page
239

Returns the week-number value

Variable Information “VARTRANSCODE
Function” on page 236

Returns the transcode attribute of a SAS-data set
variable

“VTRANSCODE Function”
on page 237

Returns a value that indicates whether transcoding is on
or off for the specified character variable

“VTRANSCODEX
Function” on page 238

Returns a value that indicates whether transcoding is on
or off for the specified argument

209

C H A P T E R

11
Functions for NLS

EUROCURR Function 209
KCOMPARE Function 212

KCOMPRESS Function 213

KCOUNT Function 214

KCVT Function 214

KINDEX Function 216
KINDEXC Function 216

KLEFT Function 217

KLENGTH Function 218

KLOWCASE Function 218

KREVERSE Function 219

KRIGHT Function 219
KSCAN Function 220

KSTRCAT Function 221

KSUBSTR Function 221

KSUBSTRB Function 222

KTRANSLATE Function 223
KTRIM Function 224

KTRUNCATE Function 224

KUPCASE Function 225

KUPDATE Function 225

KUPDATEB Function 226
KVERIFY Function 227

NLDATE Function 228

NLDATM Function 231

NLTIME Function 233

TRANTAB Function 235

VARTRANSCODE Function 236
VTRANSCODE Function 237

VTRANSCODEX Function 238

WEEK Function 239

EUROCURR Function

Converts one European currency to another

Category: Currency Conversion

210 EUROCURR Function � Chapter 11

Syntax
EUROCURR(from-currency-amount, from-currency-code, to-currency-code)

Arguments

from-currency-amount
is a numeric value that specifies the amount to convert.

from-currency-code
specifies a three-character currency code that identifies the currency that you are
converting from. (See European Currency and Currency CodesTable 11.1 on page
210.)
Tip: If from-currency-code has a blank value, EUROCURR converts currency values

from euros to the currency of the European country that you specify.
Featured in: Example 4 on page 212

to-currency-code
specifies a three-character currency code that identifies the currency that you are
converting to. (See European Currency and Currency CodesTable 11.1 on page 210.)
Tip: If to-currency-code has a blank value, EUROCURR converts values from the

currency of the European country that you specify to euros.

Details
The following table lists European currencies and the associated currency codes. Use
the currency codes to identify the type of currency that you are converting to or
converting from.

Table 11.1 European Currency and Currency Codes

Currency Currency code

Austrian schilling ATS

Belgian franc BEF

British pound sterling GBP

Czech koruna CZK

Danish krone DKK

Deutsche mark DEM

Dutch guilder NLG

Euro EUR

Finnish markka FIM

French franc FRF

Greek drachma GRD

Hungarian forint HUF

Irish pound IEP

Functions for NLS � EUROCURR Function 211

Currency Currency code

Italian lira ITL

Luxembourg franc LUF

Norwegian krone NOK

Polish zloty PLZ

Portuguese escudo PTE

Romanian leu ROL

Russian ruble RUR

Slovenian tolar SIT

Spanish peseta ESP

Swedish krona SEK

Swiss franc CHF

Turkish lira TRL

Yugoslavian dinar YUD

The EUROCURR function converts a specific country’s currency to an equivalent
amount in another country’s currency. It also can convert a specific country’s currency
to euros. EUROCURR uses the values in either the fixed currency conversion rate table
or the changeable currency conversion rate table to convert currency.

If you are converting from one country’s currency to euros, SAS divides the
from-currency-amount by that country’s rate from one of the conversion rate tables. See
Example 1 on page 211. If you are converting from euros to a country’s currency, SAS
multiplies the from-currency-amount by that country’s rate from one of the conversion
rate tables. See Example 2 on page 211. If you are converting one country’s currency to
another country’s currency, SAS first converts the from-currency-amount to euros. SAS
stores the intermediate value in as much precision as your operating environment
allows, and does not round the value. SAS then converts the amount in euros to an
amount in the currency you are converting to. See Example 3 on page 212.

Examples

Example 1: Converting from Deutsche Marks to Euros The following example converts
1 Deutsche mark to an equivalent amount of euros.

data _null_;
amount=eurocurr(50,’dem’,’eur’);
put amount= ;

run;

The value in the SAS log is: amount=25.56459406.

Example 2: Converting from Euros to Deutsche Marks The following example converts
1 euro to an equivalent amount of Deutsche marks.

data _null_;
amount=eurocurr(25,’eur’,’dem’);
put amount= ;

run;

212 KCOMPARE Function � Chapter 11

The value in the SAS log is: amount=48.89575.

Example 3: Converting from French Francs to Deutsche Marks The following example
converts 50 French francs to an equivalent amount of Deutsche marks.

data _null_;
x=50;
amount=eurocurr(x,’frf’,’dem’);
put amount=;

run;

The value in the SAS log is: amount=14.908218069.

Example 4: Converting Currency When One Variable is Blank The following example
converts 50 euros to Deutsche marks.

data _null_;
x=50;
amount=eurocurr(x,’ ’,’dem’);
put amount=;

run;

The value in the SAS log is: amount=97.7915.

See Also

Formats:
“EUROw.d Format” on page 115
“EUROXw.d Format” on page 116

Informats:
“EUROw.d Informat” on page 257
“EUROXw.d Informat” on page 258

KCOMPARE Function

Returns the result of a comparison of character strings

Category: DBCS

Syntax
KCOMPARE(source,<pos, <count,>>findstr)

Arguments

source
specifies the character string to be compared.

Functions for NLS � KCOMPRESS Function 213

pos
specifies the starting position in source to begin the comparison. If pos is omitted, the
entire source is compared. If pos is less than 0, source is assumed as extended DBCS
data that does not contain any SO/SI characters.

count
specifies the number of bytes to compare. If count is omitted, all of source that
follows pos is compared, except for any trailing blanks.

findstr
specifies the character string to compare to source.

Details
KCOMPARE returns values as follows:

� a negative value if source is less than findstr

� 0 if source is equal to findstr

� a positive value if source is greater than findstr.

KCOMPRESS Function

Removes specified characters from a character string

Category: DBCS

Syntax
KCOMPRESS(source,<characters-to-remove>)

Arguments

source
specifies a character string that contains the characters to be removed. When only
source is specified, KCOMPRESS returns this string with all of the single and
double-byte blanks removed.

characters-to-remove
specifies the character or characters that KCOMPRESS removes from the character
string.

Note: If characters-to-remove is omitted, KCOMPRESS removes all blanks. �

Tip: Enclose a literal string of characters in quotation marks.

See Also

Functions:

“KLEFT Function” on page 217

“KTRIM Function” on page 224

214 KCOUNT Function � Chapter 11

KCOUNT Function

Returns the number of double-byte characters in a string

Category: DBCS

Syntax
KCOUNT(source)

Arguments

source
specifies the character string to count.

KCVT Function

Converts data from one type of encoding data to another encoding data

Category: Character

Syntax
KCVT(text, intype, outtype, <options,…>)

Arguments

text
specifies the character variable to be converted.

intype
specifies the encoding of the data. The encoding of the text must match the input
data’s encoding. For valid values, see “SBCS, DBCS, and Unicode Encoding Values
for Transcoding Data” on page 407.

Note: ASCIIANY and EBCIDICANY are invalid encoding values. �

outtype
specifies the encoding to be converted into character data. For valid values
see“SBCS, DBCS, and Unicode Encoding Values for Transcoding Data” on page 407.

Note: ASCIIANY and EBCIDICANY are invalid encoding values. �

options
specifies character data options. Following are the available options:

NOSOSI |
NOSHIFT

No shift code or Hankaku characters

Functions for NLS � KCVT Function 215

INPLACE Replaces character data by conversion. The INPLACE option is
specified to secure the same location between different hosts
whose lengths of character data are not identical. For example,
the INPLACE option converts data from the host which requires
Shift-Codes, into the other host, which does not require shift
codes. Truncation occurs when the length of the character data
that is converted into outtype for Shift-Codes is longer than the
length that is specified in intype.

KANA Includes Hankaku katakana characters in columns of character
data.

UPCASE Converts 2-byte alphabet to uppercase characters.

LOWCASE Converts 2-byte alphabet to lowercase characters.

KATA2HIRA Converts Katakana data to Hiragana.

HIRA2KATA Converts Hiragana data to Katakana.

Details
The KCVT function converts SBCS, DBCS, and MBCS character strings into encoding
data. For example, the KCVT function can convert: ASCII code data to UCS2 encoding
data, Greek code data to UTF-8, and Japanese SJIS code data to another Japanese code
data. You can specify the following types for Intype and Outtype options: UCS2,
UCS2L, UCS2B, and UTF8. To enable the DBCS mode, specify the following SAS
options in the configuration file or in the command line.

� DBCS

� DBCSLANG Japanese or Korean or Chinese or Taiwanese

� DBCSTYPE dbcstype value

Example

The following code converts IBM PC codes into DEC codes for the external text file
specified as my-input-file, and writes in OUTDD.

data _null_;
infile ’my-input-file’;
file outdd noprint;
input @1 text $char80.;
text = kcvt(text, ’pcibm’, ’dec’);
put @1 text $char80.;

run;

See Also

System options:

“DBCS System Option: UNIX, Windows, and z/OS” on page 349

“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 350

“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 351

Procedure:

Chapter 14, “The DBCSTAB Procedure,” on page 313

216 KINDEX Function � Chapter 11

KINDEX Function

Searches a character expression for a string of characters

Category: DBCS

Syntax

KINDEX(source, excerpt)

Arguments

source
specifies the character expression to search.

excerpt
specifies the string of characters to search for in the character expression.

Tip: Enclose a literal string of characters in quotation marks.

Details

The KINDEX function searches source, from left to right, for the first occurrence of the
string that is specified in excerpt, and returns the position in source of the string’s first
character. If the string is not found in source, KINDEX returns a value of 0. If there
are multiple occurrences of the string, KINDEX returns only the position of the first
occurrence.

See Also

Functions:

“KINDEXC Function” on page 216

KINDEXC Function

Searches a character expression for specified characters

Category: DBCS

Syntax

KINDEXC(source,excerpt-1<,… excerpt-n>)

Functions for NLS � KLEFT Function 217

Arguments

source
specifies the character expression to search.

excerpt
specifies the characters to search for in the character expression.

Tip: If you specify more than one excerpt, separate them with a comma.

Details
The KINDEXC function searches source, from left to right, for the first occurrence of
any character present in the excerpts and returns the position in source of that
character. If none of the characters in excerpt-1 through excerpt-n in source are found,
KINDEXC returns a value of 0.

Comparisons
The KINDEXC function searches for the first occurrence of any individual character
that is present within the character string, whereas the KINDEX function searches for
the first occurrence of the character string as a pattern.

See Also

Function:

“KINDEX Function” on page 216

KLEFT Function

Left-aligns a character expression by removing unnecessary leading DBCS blanks and SO/SI

Category: DBCS

Syntax
KLEFT(argument)

Arguments

argument
specifies any SAS character expression.

Details
KLEFT returns an argument and removes the leading blanks.

218 KLENGTH Function � Chapter 11

See Also

Functions:

“KCOMPRESS Function” on page 213

“KRIGHT Function” on page 219

“KTRIM Function” on page 224

KLENGTH Function

Returns the length of an argument

Category: DBCS

Syntax

KLENGTH(argument)

Arguments

argument
specifies any SAS expression.

Details

The KLENGTH function returns an integer that represents the position of the
rightmost non-blank character in the argument. If the value of the argument is
missing, KLENGTH returns a value of 1. If the argument is an uninitialized numeric
variable, KLENGTH returns a value of 12 and prints a note in the SAS log that the
numeric values have been converted to character values.

KLOWCASE Function

Converts all letters in an argument to lowercase

Category: DBCS

Syntax

KLOWCASE(argument)

Functions for NLS � KRIGHT Function 219

Arguments

argument
specifies any SAS character expression.

Details
The KLOWCASE function copies a character argument, converts all uppercase letters
to lowercase letters, and returns the altered value as a result.

KREVERSE Function
Reverses a character expression

Category: DBCS

Syntax
KREVERSE(argument)

Arguments

argument
specifies any SAS character expression.

KRIGHT Function
Right-aligns a character expression by trimming trailing DBCS blanks and SO/SI

Category: DBCS

Syntax
KRIGHT(argument)

Arguments

argument
specifies any SAS character expression.

Details
The KRIGHT function returns an argument with trailing blanks moved to the start of
the value. The argument’s length does not change.

220 KSCAN Function � Chapter 11

See Also

Functions:

“KCOMPRESS Function” on page 213

“KLEFT Function” on page 217

“KTRIM Function” on page 224

KSCAN Function

Selects a specified word from a character expression

Category: DBCS

Syntax
KSCAN(argument,n<, delimiters>)

Arguments

argument
specifies any character expression.

n
specifies a numeric expression that produces the number of the word in the character
string you want KSCAN to select.

Tip: If n is negative, KSCAN selects the word in the character string starting from
the end of the string. If |n| is greater than the number of words in the character
string, KSCAN returns a blank value.

delimiters
specifies a character expression that produces characters that you want KSCAN to
use as word separators in the character string.

Default: If you omit delimiters in an ASCII environment, SAS uses the following
characters:

blank . < (+ & ! $ *); ^ – / , % |

In ASCII environments without the ^ character, KSCAN uses the ~ character
instead.

If you omit delimiters on an EBCDIC environment, SAS uses the following
characters:

blank . < (+ | & ! $ *); – / , % | ¢

Tip: If you represent delimiters as a constant, enclose delimiters in quotation marks.

Details
Leading delimiters before the first word in the character string do not effect KSCAN. If
there are two or more contiguous delimiters, KSCAN treats them as one.

Functions for NLS � KSUBSTR Function 221

KSTRCAT Function

Concatenates two or more character strings

Category: DBCS

Syntax
KSTRCAT(argument-1, argument-2<, ... argument-n>)

Arguments

argument
specifies any single-byte or double-byte character string.

Details
KSTRCAT concatenates two or more single-byte or double-byte character strings. It
also removes unnecessary SO/SI pairs between the strings.

KSUBSTR Function

Extracts a substring from an argument

Category: DBCS

Syntax
KSUBSTR(argument,position<,n>)

Arguments

argument
specifies any SAS character expression.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring to extract.

Interaction: If n is larger than the length of the expression that remains in
argument after position, SAS extracts the remainder of the expression.

Tip: If you omit n, SAS extracts the remainder of the expression.

222 KSUBSTRB Function � Chapter 11

Details

The KSUBSTR function returns a portion of an expression that you specify in
argument. The portion begins with the character specified by position and is the
number of characters specified by n.

A variable that is created by KSUBSTR obtains its length from the length of
argument.

See Also

Functions:

“KSUBSTRB Function” on page 222

KSUBSTRB Function

Extracts a substring from an argument according to the byte position of the substring in the
argument

Category: DBCS

Syntax

KSUBSTRB(argument,position<,n>)

Arguments

argument
specifies any SAS character expression.

position
specifies the beginning character position in byte units.

n
specifies the length of the substring to extract in byte units.

Interaction: If n is larger than the length (in byte units) of the expression that
remains in argument after position, SAS extracts the remainder of the expression.

Tip: If you omit n, SAS extracts the remainder of the expression.

Details

The KSUBSTRB function returns a portion of an expression that you specify in
argument. The portion begins with the byte unit specified by position and is the
number of byte units specified by n.

A variable that is created by KSUBSTRB obtains its length from the length of
argument.

Functions for NLS � KTRANSLATE Function 223

See Also

Functions:

“KSUBSTR Function” on page 221

KTRANSLATE Function

Replaces specific characters in a character expression

Category: DBCS

See: KTRANSLATE Function in the documentation for your operating environment.

Syntax

KTRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Arguments

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want KTRANSLATE to use as substitutes.

from
specifies the characters that you want KTRANSLATE to replace.

Interaction: Values of to and from correspond on a character-by-character basis;
KTRANSLATE changes character one of from to character one of to, and so on. If
to has fewer characters than from, KTRANSLATE changes the extra from
characters to blanks. If to has more characters than from, KTRANSLATE ignores
the extra to characters.

Operating Environment Information: You must have pairs of to and from arguments
on some operating environments. On other operating environments, a segment of the
collating sequence replaces null from arguments. See the SAS documentation for your
operating environment for more information. �

Details

You can use KTRANSLATE to translate a single-byte character expression to a
double-byte character expression, or translate a double-byte character expression to a
single-byte character expression.

The maximum number of pairs of to and from arguments that KTRANSLATE accepts
depends on the operating environment you use to run SAS. There is no functional
difference between using several pairs of short arguments, or fewer pairs of longer
arguments.

224 KTRIM Function � Chapter 11

KTRIM Function

Removes trailing DBCS blanks and SO/SI from character expressions

Category: DBCS

Syntax

KTRIM(argument)

Arguments

argument
specifies any SAS character expression.

Details

KTRIM copies a character argument, removes all trailing blanks, and returns the
trimmed argument as a result. If the argument is blank, KTRIM returns one blank.
KTRIM is useful for concatenating because concatenation does not remove trailing
blanks.

Assigning the results of KTRIM to a variable does not affect the length of the
receiving variable. If the trimmed value is shorter than the length of the receiving
variable, SAS pads the value with new blanks as it assigns it to the variable.

See Also

Functions:

“KCOMPRESS Function” on page 213

“KLEFT Function” on page 217

“KRIGHT Function” on page 219

KTRUNCATE Function

Truncates a numeric value to a specified length

Category: DBCS

Syntax

KTRUNCATE(argument, number,length)

Functions for NLS � KUPDATE Function 225

Arguments

argument
specifies any SAS character expression.

number
is numeric.

length
is an integer.

Details
The KTRUNCATE function truncates a full-length number (stored as a double) to a
smaller number of bytes, as specified in length and pads the truncated bytes with 0s.
The truncation and subsequent expansion duplicate the effect of storing numbers in less
than full length and then reading them.

KUPCASE Function
Converts all single-byte letters in an argument to uppercase

Category: DBCS

Syntax
KUPCASE(argument)

Arguments

argument
specifies any SAS character expression.

Details
The KUPCASE function copies a character argument, converts all single-byte lowercase
letters to uppercase letters, and returns the altered value as a result.

KUPDATE Function
Inserts, deletes, and replaces character value contents

Category: DBCS

Syntax
KUPDATE(argument,position,n<, characters-to-replace>)

226 KUPDATEB Function � Chapter 11

KUPDATE(argument,position<,n>, characters-to-replace)

Arguments

argument
specifies a character variable.

position
specifies a numeric expression that is the beginning character position.

n
specifies a numeric expression that is the length of the substring to be replaced.
Restriction: n can not be larger than the length of the expression that remains in

argument after position.
Restriction: n is optional, but you cannot omit both n and characters-to-replace

from the function.
Tip: If you omit n, SAS uses all of the characters in characters-to-replace to replace

the values of argument.

characters-to-replace
specifies a character expression that will replace the contents of argument.
Restriction: characters-to-replace is optional, but you cannot omit both

characters-to-replace and n from the function.
Tip: Enclose a literal string of characters in quotation marks.

Details
The KUPDATE function replaces the value of argument with the expression in
characters-to-replace. KUPDATE replaces n characters starting at the character you
specify in position.

See Also

Functions:
“KUPDATEB Function” on page 226

KUPDATEB Function

Inserts, deletes, and replaces the contents of the character value according to the byte position of
the character value in the argument

Category: DBCS

Syntax
KUPDATEB(argument,position,n<,characters-to-replace>)

KUPDATEB(argument,position <, n>, characters-to-replace)

Functions for NLS � KVERIFY Function 227

Arguments

argument
specifies a character variable.

position
specifies the beginning character position in byte units.

n
specifies the length of the substring to be replaced in byte units.

Restriction: n can not be larger than the length (in bytes) of the expression that
remains in argument after position.

Restriction: n is optional, but you cannot omit both n and characters-to-replace
from the function.

Tip: If you omit n, SAS uses all of the characters in characters-to-replace to replace
the values of argument.

characters-to-replace
specifies a character expression to replace the contents of argument.

Restriction: characters-to-replace is optional, but you cannot omit both
characters-to-replace and n from the function.

Tip: Enclose a literal string of characters in quotation marks.

Details

The KUPDATEB function replaces the value of argument with the expression in
characters-to-replace. KUPDATEB replaces n byte units starting at the byte unit that
you specify in position.

See Also

Functions:

“KUPDATE Function” on page 225

KVERIFY Function

Returns the position of the first character that is unique to an expression

Category: DBCS

Syntax

KVERIFY(source,excerpt-1<,…excerpt-n>)

228 NLDATE Function � Chapter 11

Arguments

source
specifies any SAS character expression.

excerpt
specifies any SAS character expression. If you specify more than one excerpt,
separate them with a comma.

Details
The KVERIFY function returns the position of the first character in source that is not
present in any excerpt. If KVERIFY finds every character in source in at least one
excerpt, it returns a 0.

NLDATE Function

Converts the SAS date value to the date value of the specified locale by using the date format
descriptors

Category: Date and Time

Syntax
NLDATE(date,descriptor)

Arguments

date
specifies a SAS date value.

descriptor
is a variable or expression that specifies how dates and times will be formatted in
output. The following descriptors are case sensitive:

%%
specifies the % character.

%a
specifies the short-weekday descriptor. The range for the day descriptor is
Mon–Sun.

%A
specifies the long-weekday descriptor. The range for the long-weekday descriptor is
Monday–Sunday.

%b
specifies the short-month descriptor. The range for the short-month descriptor is
Jan–Dec.

Functions for NLS � NLDATE Function 229

%B
specifies the long-month descriptor. The range for the long-month descriptor is
January–December.

%C
specifies the long-month descriptor and uses blank padding. The range for the
long-month descriptor is January–December.

%d
specifies the day descriptor and uses 0 padding. The range for the day modifier is
01–31.

%e
specifies the day descriptor and uses blank padding. The range for the day
descriptor is 01–31.

%F
specifies the long-weekday descriptor and uses blank padding. The range for the
day descriptor is Monday–Sunday.

%j
specifies the day-of-year descriptor as a decimal number and uses a leading zero.
The range for the day-of-year descriptor is 1–366.

%m
specifies the month descriptor and uses 0 padding. The range for the month
descriptor is 01–12.

%o
specifies the month descriptor. The range for the month descriptor is 1–12 with
blank padding.

%u
specifies the weekday descriptor as a number in the range 1–7 that represents
Monday–Sunday.

%U
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value using the number of week within the year (Sunday is
considered the first day of the week). The number-of-the-week value is represented
as a decimal number in the range 0–53 and uses a leading zero and a maximum
value of 53.

%V
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value. The number-of-week value is represented as a decimal number
in the range 01–53 and uses a leading zero and a maximum value of 53. Weeks
begin on a Monday and week 1 of the year is the week that includes both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

%w
specifies the weekday descriptor as a number in the range 0–6 that represents
Sunday–Saturday.

%W
specifies the week-number-of-year descriptor by calculating the descriptor value as
SAS date value by using the number of week within the year (Monday is considered
the first day of the week). The number-of-week value is represented as a decimal
number in the range 0–53 and uses a leading zero and a maximum value of 53.

230 NLDATE Function � Chapter 11

%y
specifies the year (2-digit) modifier. The range for the year descriptor is 00–99.

%Y
specifies the year (4-digit) descriptor. The range for the year descriptor is
1970–2069.

Details

The NLDATE function converts the SAS date value to the date value of the specified
locale by using the date descriptors.

Examples

The following example shows a log file name that is created from a SAS date value.

Statements Results

options locale=English_unitedstates;

logfile=nldate(’24Feb2003’d,’%B-%d.log’);

put logfile; February-24.log

options locale=German_Germany;

logfile=nldate(’24Feb2003’d,’%B-%d.log’);

put logfile; Februar-24.log

The following example shows a weekday name that is created from a SAS date value.

Statements Results

----+----1----+

options locale=English_unitedstates;

weekname=nldate(’24Feb2003’d,’%A’);

put weekname; Monday

options locale=German_Germany;

weekname=nldate(’24Feb2003’d,’%A’);

put weekname; Montag

See Also

Format:

“NLDATEw. Format” on page 155

Functions for NLS � NLDATM Function 231

NLDATM Function

Converts the SAS datetime value to the time value of the specified locale by using the datetime-
format descriptors

Category: Date and Time

Syntax
NLDATM(datetime,descriptor)

Arguments

datetime
specifies a SAS datetime value.

descriptor
is a variable or expression that specifies how dates and times will be formatted in
output. The following descriptors are case sensitive:

%%
specifies the % character.

%a
specifies the short-weekday descriptor. The range for the day descriptor is
Mon–Sun.

%A
specifies the long-weekday descriptor. The range for the long-weekday descriptor is
Monday–Sunday.

%b
specifies the short-month descriptor. The range for the short-month descriptor is
Jan–Dec.

%B
specifies the long-month descriptor. The range for the long-month descriptor is
January–December.

%c
specifies the long-month descriptor and uses blank padding. The range for the
long-month descriptor is January–December.

%d
specifies the day descriptor and uses 0 padding. The range for the day descriptor
is 01–31.

%e
specifies the day descriptor and uses blank padding. The range for the day
descriptor is 01–31.

%F
specifies the long-weekday descriptor and uses blank padding. The range for the
day descriptor is Monday–Sunday.

232 NLDATM Function � Chapter 11

%H
specifies the hour descriptor that is based on a 24-hour clock. The range for the
hour descriptor is 00–23.

%I
specifies the hour descriptor that is based on a 12-hour clock. The range for the
hour descriptor is 01–12.

%j
specifies the day-of-year descriptor as a decimal number and uses a leading zero.
The range for the day-of-year descriptor is 1–366.

%m
specifies the month descriptor and uses 0 padding. The range for the month
descriptor is 01–12.

%M
specifies the minute descriptor. The range for the minute descriptor is 00–59.

%o
specifies the month descriptor and uses blank padding. The range for the month
descriptor is 1–12.

%p
specifies a.m. or p.m. descriptor.

%S
specifies the second descriptor. The range for the second descriptor is 00–59.

%u
specifies the weekday descriptor as a number in the range of 1–7 that represents
Monday–Sunday.

%U
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value and uses the number-of-week value within the year (Sunday is
considered the first day of the week). The number-of-week value is represented as
a decimal number in the range 0–53. A leading zero and a maximum value of 53 is
used.

%V
specifies the week-number-of-year descriptor by calculating the descriptor value as
the SAS date value. The number-of-week value is represented as a decimal number
in the range 01–53. A leading zero and a maximum value of 53 is used. Weeks
begin on a Monday and week 1 of the year is the week that includes both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd,
3rd, or 4th, the preceding days are part of the last week of the preceding year.

%w
specifies the weekday descriptor as a number in the range of 0–6 that represents
Sunday–Saturday.

%W
specifies the week-number-of-year descriptor by calculating the descriptor value as
SAS date value using the number of week within the year (Monday is considered
the first day of the week). The number-of-week value is represented as a decimal
number in the range of 0–53. A leading zero and a maximum value of 53 are used.

%y
specifies the year (2-digit) descriptor. The range for the year descriptor is 00–99.

Functions for NLS � NLTIME Function 233

%Y
specifies the year (4-digit) descriptor. The range for the year descriptor is
1970–2069.

Details
The NLDATM function converts the SAS datetime value to the datetime value of the
specified locale by using the datetime descriptors.

Examples

The following example shows a time (a.m or p.m.) that is created from a SAS
datetime value.

Statements Results

----+----1----+

options locale=English;

time_ampm=nldatm(’24Feb2003:12:39:43’dt,’%I%p’);

put time_ampm; 00 PM

options locale=German;

time_ampm=nldatm(’’24Feb2003:12:39:43’dt,’%I%p’);

put time_ampm; 00 nachm

See Also

Format:
“NLDATMw. Format” on page 159

NLTIME Function

Converts the SAS time or the datetime value to the time value of the specified locale by using the
NLTIME descriptors

Category: Date and Time

Syntax
NLTIME(time|datetime,descriptor,startpos)

Arguments

time
specifies a SAS time value.

234 NLTIME Function � Chapter 11

datetime
specifies a SAS datetime value.

descriptor
is a variable, or expression, that specifies the value of a descriptor. You can enter the
following descriptors in uppercase or lowercase:

%%
specifies the % character.

%H
specifies the hour descriptor that is based on a 24-hour clock. The range for the
hour descriptor is 00–23.

%I
specifies the hour descriptor that is based on a 12-hour clock. The range for the
hour descriptor is 01–12.

%M
specifies the minute modifier. The range for the minute descriptor is 00–59.

%P
specifies the a.m. or p.m. descriptor.

%S
specifies the second descriptor. The range for the second descriptor is 00–59.

startpos
is an integer that specifies the position at which the search should start and that
specifies the direction of the search.

Details
The NLTIME function converts a SAS time or datetime value to the time value of the
specified locale by using the time descriptors.

Examples

The following example shows an AM or PM time that is created from a SAS time.

Statements Results

----+----1----+

options locale=English;

time_ampm=nltime(’12:39:43’t,’%i%p’);

put time_ampm; 00 PM

options locale=German;

time_ampm=nltime(’12:39:43’t,’%i%p’);

put time_ampm; 00 nachm

Functions for NLS � TRANTAB Function 235

See Also

Formats:
“NLTIMEw. Format” on page 172

TRANTAB Function
Transcodes a data string by using the specified translation table

Category: Character

Syntax
TRANTAB(string,trantab_name)

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.1 supports the TRANTAB
function for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases. �

Arguments

string
input string that is transcoded.

trantab_name
translation table.

Details
The TRANTAB function transcodes a data string by using a translation table to remap
the characters from one internal representation to another. The encoding of the data in
the input string must match the encoding of table 1 in the translation table. The
TRANTAB function remaps the data from the encoding using table 1.

CAUTION:
Only experienced SAS users should use the TRANTAB function. �

Examples

The following example uses a translation table that transcodes data that is encoded
in Latin2 to an uppercase Latin2 encoding:

Statements Result

teststrg=trantab(’testing’,’lat2_ucs’);
put teststrg; TESTING

236 VARTRANSCODE Function � Chapter 11

See Also

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 319

VARTRANSCODE Function

Returns the transcode attribute of a SAS data set variable

Category: Variable Information

Syntax
VARTRANSCODE(data-set-id, var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the position of the variable in the SAS data set.
Tip: The VARNUM function returns this value.

Details
Transcoding is the process of converting data from one encoding to another. The
VARTRANSCODE function returns 0 if the var-num variable does not transcode its
value, or 1 if the var-num variable transcodes its value.

For more information about transcoding variables, see “Transcoding” in SAS
National Language Support (NLS): User’s Guide. For information about encoding
values and transcoding data, see “SBCS, DBCS, and Unicode Encoding Values When
Transcoding SAS Data” in SAS National Language Support (NLS): User’s Guide.

Examples

The following example shows how to determine whether a character variable is
transcoded:

data a;
attrib x length=$3. transcode=no;
attrib y length=$3. transcode=yes;
x=’abc’;
y=’xyz’;

run;

data _null_;
dsid=open(’work.a’,’i’);

Functions for NLS � VTRANSCODE Function 237

nobs=attrn(dsid,"nobs");
nvars=attrn(dsid,"nvars");
do i=1 to nobs;

xrc=fetch(dsid,1);
do j=1 to nvars;

transcode = vartranscode(dsid,j);
put transcode=;

end;
end;

run;

SAS writes the following output to the log:

transcode=0
transcode=1

See Also

Functions:

ATTRN in SAS Language Reference: Dictionary

OPEN in SAS Language Reference: Dictionary

VARNUM in SAS Language Reference: Dictionary

“VTRANSCODE Function” on page 237

“VTRANSCODEX Function” on page 238

VTRANSCODE Function

Returns a value that indicates whether transcoding is enabled for the specified character variable

Category: Variable Information

Syntax
VTRANSCODE (var)

Arguments

var
specifies a character variable that is expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
The VTRANSCODE function returns 0 if transcoding is off, and 1 if transcoding is on.

By default, all character variables in the DATA step are transcoded. You can use the
TRANSCODE= attribute of the ATTRIB statement to turn transcoding off.

238 VTRANSCODEX Function � Chapter 11

Comparisons
� The VTRANSCODE function returns a value that indicates whether transcoding is

enabled for the specified variable. The VTRANSCODEX function, however,
evaluates the argument to determine the variable name. The function then returns
the transcoding status (on or off) that is associated with that variable name.

� The VTRANSCODE function does not accept an expression as an argument. The
VTRANSCODEX function accepts expressions, but the value of the specified
expression cannot denote an array reference.

� Related functions return the value of other variable attributes, such as the
variable name, type, format, and length. For a list of the variable attributes, see
the “Variable Information” functions in SAS Language Reference: Dictionary.

Example

Statements Result

----+----1----+

attrib x transcode = yes;
attrib y transcode = no;
rc1 = vtranscode(y);
put rc1=; rc1=0

See Also

Functions:
“VTRANSCODEX Function” on page 238

Statements:
ATTRIB in SAS Language Reference: Dictionary

VTRANSCODEX Function

Returns a value that indicates whether transcoding is enabled for the specified argument

Category: Variable Information

Syntax
VTRANSCODEX (var)

Arguments

var
specifies any SAS character expression that evaluates to a character variable name.

Functions for NLS � WEEK Function 239

Restriction: The value of the specified expression cannot denote an array reference.

Details
The VTRANSCODEX function returns 0 if transcoding is off, and 1 if transcoding is on.

By default, all character variables in the DATA step are transcoded. You can use the
TRANSCODE= attribute of the ATTRIB statement to turn transcoding off.

Comparisons
� The VTRANSCODE function returns a value that indicates whether transcoding is

enabled for the specified variable. The VTRANSCODEX function, however,
evaluates the argument to determine the variable name. The function then returns
the transcoding status (on or off) that is associated with that variable name.

� The VTRANSCODE function does not accept an expression as an argument. The
VTRANSCODEX function accepts expressions, but the value of the specified
expression cannot denote an array reference.

� Related functions return the value of other variable attributes, such as the
variable name, type, format, and length. For a list of the variable attributes, see
the “Variable Information” functions in SAS Language Reference: Dictionary.

Examples

Statements Result

----+----1----+

attrib x transcode = yes;
attrib y transcode = no;
rc1 = vtranscodex(’y’);
put rc1=; rc1=0

See Also

Functions:
“VTRANSCODE Function” on page 237

Statements:
ATTRIB in SAS Language Reference: Dictionary

WEEK Function
Returns the week-number value

Category: Date and Time

Syntax
WEEK(<sas_date>, <descriptor>)

240 WEEK Function � Chapter 11

Arguments

sas_date
specifies the SAS date value. If the SAS date argument is not specified, the WEEK
function returns the week-number value of the current date.

descriptor
specifies the value of the descriptor. The following descriptors can be specified in
uppercase or lowercase characters.

U
specifies the SAS date value by using the number-of-week within the year (Sunday
is considered the first day of the week). The number-of-week value is represented
as a decimal number in the range 0–53 and uses a leading zero and a maximum
value of 53.

V
specifies the SAS date value. The number-of-week value is represented as a
decimal number in the range 01–53 and uses a leading zero and a maximum value
of 53. Weeks begin on a Monday and week 1 of the year is the week that includes
both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year.

W
calculates the SAS date value by using the number of week within the year
(Monday is considered the first day of the week). The number-of-week value is
represented as a decimal number in the range 0–53 and uses a leading zero and a
maximum value of 53.

Details
The WEEK function reads a SAS date value and returns the week number.

Examples

The following example shows a week number that is created from a SAS date value.

week(’01FEB2003’d,modifier);

Descriptors Results

----+----1----+

U 4

V 5

W 4

See Also

Formats:
“WEEKUw. Format” on page 198

Functions for NLS � WEEK Function 241

“WEEKVw. Format” on page 199

“WEEKWw. Format” on page 201

Informats:

“WEEKUw. Informat” on page 303

“WEEKVw. Format” on page 199

“WEEKWw. Informat” on page 307

242

243

P A R T5

Informats for NLS

Chapter 12.Overview to Informats for NLS 245

Chapter 13. Informats for NLS 249

244

245

C H A P T E R

12
Overview to Informats for NLS

Informats for NLS by Category 245

Informats for NLS by Category
There are six categories of SAS informats that support NLS:

Table 12.1 Categories of Informats for NLS

Category Description

BIDI text handling Instructs SAS to read bidirectional data values from data variables.

Character Instructs SAS to read character data values into character variables.

DBCS Instructs SAS to manage various Asian languages.

Date and Time Instructs SAS to read data values into variables that represent dates,
times, and datetimes.

Hebrew text handling Instructs SAS to read Hebrew data from data variables.

Numeric Instructs SAS to read numeric data values into numeric variables.

The following table provides brief descriptions of the SAS informats. For more
detailed descriptions, see the NLS entry for each informat.

Table 12.2 Summary of NLS Informats by Category

Category Informats for NLS Description

BIDI text handling “$LOGVSw. Informat” on
page 264

Reads a character string that is in left-to-right logical
order, and then converts the character string to visual
order

“$LOGVSRw. Informat” on
page 265

Reads a character string that is in right-to-left logical
order, and then converts the character string to visual
order

“$VSLOGw. Informat” on
page 301

Reads a character string that is in visual order, and then
converts the character string to left-to-right logical order

“$VSLOGRw. Informat” on
page 302

Reads a character string that is in visual order, and then
converts the character string to right-to-left logical order

Character “$REVERJw. Informat” on
page 280

Reads character data from right to left and preserves
blanks

246 Informats for NLS by Category � Chapter 12

Category Informats for NLS Description

“$REVERSw. Informat” on
page 281

Reads character data from right to left, and then left
aligns the text

“$UCS2Bw. Informat” on
page 282

Reads a character string that is encoded in big-endian,
16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session

“$UCS2BEw. Informat” on
page 283

Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to big-endian, 16-bit, UCS2, Unicode encoding

“$UCS2Lw. Informat” on
page 284

Reads a character string that is encoded in little-endian,
16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session

“$UCS2LEw. Informat” on
page 285

Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to little-endian, 16-bit, UCS2, Unicode encoding

“$UCS2Xw. Informat” on
page 286

Reads a character string that is encoded in 16-bit, UCS2,
Unicode encoding, and then converts the character string
to the encoding of the current SAS session

“$UCS2XEw. Informat” on
page 287

Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to 16-bit, UCS2, Unicode encoding

“$UCS4Bw. Informat” on
page 288

Reads a character string that is encoded in big-endian,
32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session

“$UCS4Lw. Informat” on
page 289

Reads a character string that is encoded in little-endian,
32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session

“$UCS4Xw. Informat” on
page 290

Reads a character string that is encoded in 32-bit, UCS4,
Unicode encoding, and then converts the character string
to the encoding of the current SAS session

“$UCS4XEw. Informat” on
page 291

Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to 32-bit, UCS4, Unicode encoding

“$UESCw. Informat” on
page 292

Reads a character string that is encoded in UESC
representation, and then converts the character string to
the encoding of the current SAS session

“$UESCEw. Informat” on
page 294

Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to UESC representation

“$UNCRw. Informat” on
page 295

Reads an NCR character string, and then converts the
character string to the encoding of the current SAS
session

� Informats for NLS by Category 247

Category Informats for NLS Description

“$UNCREw. Informat” on
page 296

Reads a character string in the encoding of the current
SAS session, and then converts the character string to
NCR

“$UPARENw. Informat”
on page 297

Reads a character string that is encoded in UPAREN
representation, and then converts the character string to
the encoding of the current SAS session

“$UPARENEw. Informat”
on page 298

Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to UPAREN representation

“$UPARENPw. Informat”
on page 299

Reads a character string that is encoded in UPAREN
representation, and then converts the character string to
the encoding of the current SAS session, with national
characters remaining in the encoding of the UPAREN
representation

“$UTF8Xw. Informat” on
page 300

Reads a character string that is encoded in UTF-8, and
then converts the character string to the encoding of the
current SAS session

DBCS “$KANJIw. Informat” on
page 263

Removes shift code data from DBCS data

“$KANJIXw. Informat” on
page 263

Adds shift-code data to DBCS data

Date and Time “EURDFDEw. Informat”
on page 252

Reads international date values

“EURDFDTw. Informat”
on page 253

Reads international datetime values in the form
ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

“EURDFMYw. Informat”
on page 255

Reads month and year date values in the form mmmyy
or mmmyyyy

“JDATEYMDw. Informat”
on page 260

Reads Japanese Kanji date values in the format
yymmmdd or yyyymmmdd

“JNENGOw. Informat” on
page 261

Reads Japanese Kanji date values in the form yymmdd

“MINGUOw. Informat” on
page 266

Reads dates in Taiwanese format

“NENGOw. Informat” on
page 267

Reads Japanese date values in the form eyymmdd

“NLDATEw. Informat” on
page 269

Reads the date value in the specified locale, and then
converts the date value to the local SAS date value

“NLDATMw. Informat” on
page 269

Reads the datetime value of the specified locale, and then
converts the datetime value to the local SAS datetime
value

“NLTIMAPw. Informat” on
page 278

Reads the time value and uses a.m. and p.m. in the
specified locale, and then converts the time value to the
local SAS time value

“NLTIMEw. Informat” on
page 279

Reads the time value in the specified locale, and then
converts the time value to the local SAS time value

248 Informats for NLS by Category � Chapter 12

Category Informats for NLS Description

“WEEKUw. Informat” on
page 303

Reads the format of the number-of-week value within the
year and returns a SAS date value by using the U
algorithm

“WEEKVw. Informat” on
page 305

Reads the format of the number-of-week value within the
year and returns a SAS date value using the V algorithm

“WEEKWw. Informat” on
page 307

Reads the format of the number-of-week value within the
year and returns a SAS date value using the W algorithm

Hebrew text handling “$CPTDWw. Informat” on
page 250

Reads a character string that is in Hebrew DOS (cp862)
encoding, and then converts the character string to
Windows (cp1255) encoding

“$CPTWDw. Informat” on
page 251

Reads a character string that is in Windows (cp1255)
encoding, and then converts the character string to
Hebrew DOS (cp862) encoding

Numeric “EUROw.d Informat” on
page 257

Reads numeric values, removes embedded characters in
European currency, and reverses the comma and decimal
point

“EUROXw.d Informat” on
page 258

Reads numeric values and removes embedded characters
in European currency

“NLMNYw.d Informat” on
page 270

Reads monetary data in the specified locale for the local
expression, and then converts the data to a numeric value

“NLMNYIw.d Informat” on
page 272

Reads monetary data in the specified locale for the
international expression, and then converts the data to a
numeric value

“NLNUMw.d Informat” on
page 273

Reads numeric data in the specified locale for local
expressions, and then converts the data to a numeric
value

“NLNUMIw.d Informat”
on page 274

Reads numeric data in the specified locale for
international expressions, and then converts the data to
a numeric value

“NLPCTw.d Informat” on
page 275

Reads percentage data in the specified locale for local
expressions, and then converts the data to a numeric
value

“NLPCTIw.d Informat” on
page 277

Reads percentage data in the specified locale for
international expressions, and then converts the data to
a numeric value

“YENw.d Informat” on
page 309

Removes embedded yen signs, commas, and decimal
points

249

C H A P T E R

13
Informats for NLS

$CPTDWw. Informat 250
$CPTWDw. Informat 251

EURDFDEw. Informat 252

EURDFDTw. Informat 253

EURDFMYw. Informat 255

EUROw.d Informat 257
EUROXw.d Informat 258

JDATEYMDw. Informat 260

JNENGOw. Informat 261

$KANJIw. Informat 263

$KANJIXw. Informat 263

$LOGVSw. Informat 264
$LOGVSRw. Informat 265

MINGUOw. Informat 266

NENGOw. Informat 267

NLDATEw. Informat 269

NLDATMw. Informat 269
NLMNYw.d Informat 270

NLMNYIw.d Informat 272

NLNUMw.d Informat 273

NLNUMIw.d Informat 274

NLPCTw.d Informat 275
NLPCTIw.d Informat 277

NLTIMAPw. Informat 278

NLTIMEw. Informat 279

$REVERJw. Informat 280

$REVERSw. Informat 281

$UCS2Bw. Informat 282
$UCS2BEw. Informat 283

$UCS2Lw. Informat 284

$UCS2LEw. Informat 285

$UCS2Xw. Informat 286

$UCS2XEw. Informat 287
$UCS4Bw. Informat 288

$UCS4Lw. Informat 289

$UCS4Xw. Informat 290

$UCS4XEw. Informat 291

$UESCw. Informat 292
$UESCEw. Informat 294

$UNCRw. Informat 295

$UNCREw. Informat 296

250 $CPTDWw. Informat � Chapter 13

$UPARENw. Informat 297
$UPARENEw. Informat 298

$UPARENPw. Informat 299

$UTF8Xw. Informat 300

$VSLOGw. Informat 301

$VSLOGRw. Informat 302
WEEKUw. Informat 303

WEEKVw. Informat 305

WEEKWw. Informat 307

YENw.d Informat 309

$CPTDWw. Informat

Reads a character string that is in Hebrew DOS (cp862) encoding, and then converts the character
string to Windows (cp1255) encoding

Category: Hebrew text handling

Syntax

$CPTDWw.

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons

The $CPTDWw. informat performs processing that is opposite of the $CPTWDw.
informat.

Examples

The following example uses the input value of 808182.

Statements Result

----+----1----+

x=input(’808182’,$cptdw6.);
put x;

Informats for NLS � $CPTWDw. Informat 251

See Also

Formats:
“$CPTDWw. Format” on page 66
“$CPTWDw. Format” on page 67

Informats:
“$CPTWDw. Informat” on page 251

$CPTWDw. Informat

Reads a character string that is in Windows (cp1255) encoding, and then converts the character
string to Hebrew DOS (cp862) encoding

Category: Hebrew text handling

Syntax
$CPTWDw.

Syntax Description

w
specifies the width of the input field.
Default: 200
Range: 1–32000

Comparisons
The $CPTWDw. informat performs processing that is opposite of the $CPTDWw.
informat.

Examples

The following example uses the input value of .

Statements Result

----+----1----+

x=input (’ ’,$cptwd6.);

put x;

252 EURDFDEw. Informat � Chapter 13

See Also

Formats:
“$CPTWDw. Format” on page 67
“$CPTDWw. Format” on page 66

Informats:
“$CPTDWw. Informat” on page 250

EURDFDEw. Informat

Reads international date values

Category: Date and Time

Syntax
EURDFDEw.

w
specifies the width of the input field.
Default: 7 (except Finnish)
Range: 7–32 (except Finnish)
Note: If you use the Finnish (FIN) language prefix, the w range is 10–32 and the

default w is 10. �

Details
The date values must be in the form ddmmmyy or ddmmmyyyy:

dd
is an integer from 01–31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year values.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes .
When you specify the language prefix in the informat, SAS ignores the DFLANG=
system option.

Informats for NLS � EURDFDTw. Informat 253

Examples

This INPUT statement uses the value of the DFLANG= system option to read the
international date values in Spanish.

options dflang=spanish;
input day eurdfde10.;

This INPUT statement uses the Spanish language prefix in the informat to read the
international date values in Spanish. The value of the DFLANG= option, therefore, is
ignored.

input day espdfde10.;

Values Results

----+----1

01abr1999 14335

01-abr-99 14335

See Also

Formats:

“EURDFDEw. Format” on page 70

Informats:

DATEw. in SAS Language Reference: Dictionary

“EURDFDTw. Informat” on page 253

“EURDFMYw. Informat” on page 255

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

YEARCUTOFF= in SAS Language Reference: Dictionary

EURDFDTw. Informat

Reads international datetime values in the form ddmmmyy hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss

Category: Date and Time

Syntax

EURDFDTw.

254 EURDFDTw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field.
Default: 18
Range: 13–40

Details
The date values must be in the form ddmmmyy or ddmmmyyyy, followed by a blank or
special character, and then the time values as hh:mm:ss.ss. The syntax for the date is
represented as follows:

dd
is an integer from 01–31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

The syntax for time is represented as follows:

hh
is the number of hours ranging from 00–23,

mm
is the number of minutes ranging from 00–59,

ss.ss
is the number of seconds ranging from 00–59 with the fraction of a second
following the decimal point.

The EURDFDTw. informat requires values for both the date and the time; however,
the ss.ss portion is optional.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes .
When you specify the language prefix in the informat, SAS ignores the DFLANG=
system option.

Examples

This INPUT statement uses the value of the DFLANG= system option to read the
international datetime values in German.

options dflang=german;
input date eurdfdt20.;

This INPUT statement uses the German language prefix to read the international
datetime values in German. The value of the DFLANG= option, therefore, is ignored.

Informats for NLS � EURDFMYw. Informat 255

input date deudfdt20.;

Values Results

----+----1----+----2

23dez99:10:03:17.2 1261562597.2

23dez1999:10:03:17.2 1261562597.2

See Also

Formats:
DATEw. in SAS Language Reference: Dictionary
DATETIMEw.d in SAS Language Reference: Dictionary
“EURDFDTw.d Format” on page 73
TIMEw.d in SAS Language Reference: Dictionary

Functions:
DATETIME in SAS Language Reference: Dictionary

Informats:
DATETIMEw. in SAS Language Reference: Dictionary
“EURDFDEw. Informat” on page 252
“EURDFMYw. Informat” on page 255

System Options:
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353
YEARCUTOFF= in SAS Language Reference: Dictionary

EURDFMYw. Informat

Reads month and year date values in the form mmmyy or mmmyyyy

Category: Date and Time

Syntax
EURDFMYw.

Syntax Description

w
specifies the width of the input field.

256 EURDFMYw. Informat � Chapter 13

Default: 5 (except Finnish)

Range: 5–32 (except Finnish)

Note: If you use the Finnish (FIN) language prefix, the w range is 7–32 and the
default value for w is 7. �

Details

The date values must be in the form mmmyy or mmmyyyy:

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can place blanks and other special characters between day, month, and year values.
A value that is read with EURDFMYw. results in a SAS date value that corresponds to
the first day of the specified month.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

You can set the language for the SAS session with the DFLANG= system option.
(Because the SAS Installation Representative usually sets a default language for the
site, you might be able to skip this step.) If you work with dates in multiple languages,
you can replace the EUR prefix with a language prefix. See “DFLANG= System Option:
OpenVMS, UNIX, Windows, and z/OS” on page 353 for the list of language prefixes .
When you specify the language prefix in the informat, SAS ignores the DFLANG=
option.

Examples

This INPUT statement uses the value of DFLANG= system option to read the
international date values in French.

options dflang=french;
input month eurdfmy7.;

The second INPUT statement uses the French language prefix, and DFLANG is not
specified.

input month fradfmy7.;

Values Results

----+----1

avr1999 14335

avr 99 14335

Informats for NLS � EUROw.d Informat 257

See Also

Formats:

DDMMYYw. in SAS Language Reference: Dictionary

“EURDFMYw. Format” on page 79

MMDDYYw. in SAS Language Reference: Dictionary

MONYYw. in SAS Language Reference: Dictionary

YYMMDDw. in SAS Language Reference: Dictionary

Functions:

MONTH in SAS Language Reference: Dictionary

YEAR in SAS Language Reference: Dictionary

Informats:

“EURDFDEw. Informat” on page 252

“EURDFDTw. Informat” on page 253

MONYYw. in SAS Language Reference: Dictionary

System Options:

“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353

YEARCUTOFF= in SAS Language Reference: Dictionary

EUROw.d Informat

Reads numeric values, removes embedded characters in European currency, and reverses the
comma and decimal point

Category: Numeric

Syntax
EUROw.d

Syntax Description

w
specifies the width of the input field.

Default: 6

Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contains
decimal points, the d value is ignored.

Default: 0

Range: 0–31

258 EUROXw.d Informat � Chapter 13

Details
The EUROw.d informat reads numeric values and removes embedded euro symbols (E),
commas, blanks, percent signs, dashes, and right parentheses from the input data. A
decimal point is assumed to be a separator between the whole number and the decimal
portion. The EUROw.d informat converts a left parenthesis at the beginning of a field
to a minus sign.

Comparisons
� The EUROw.d informat is similar to the EUROXw.d informat, but EUROXw.d

reverses the roles of the decimal point and the comma. This convention is common
in European countries.

� If no commas or periods appear in the input, then the EUROw.d and the
EUROXw.d informats are interchangeable.

Examples

The following table shows input values for currency in euros, the SAS statements
that are applied, and the results.

Values Statements Results

----+----1----2

E1 input x euro10.;
put x; 1

E1.23 input x euro10.;
put x; 1.23

1.23 input x euro10.;
put x; 1.23

1,234.56 input x euro10.;
put x; 1234.56

See Also

Formats:
“EUROw.d Format” on page 115
“EUROXw.d Format” on page 116

Informats:
“EUROXw.d Informat” on page 258

EUROXw.d Informat

Reads numeric values and removes embedded characters in European currency

Category: Numeric

Informats for NLS � EUROXw.d Informat 259

Syntax
EUROXw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value. If the data contains
a comma, which represents a decimal point, the d value is ignored.
Default: 0
Range: 0–31

Details
The EUROXw.d informat reads numeric values and removes embedded euro symbols
(E), periods, blanks, percent signs, dashes, and right parentheses from the input data.
A comma is assumed to be a separator between the whole number and the decimal
portion. The EUROXw.d informat converts a left parenthesis at the beginning of a field
to a minus sign.

Comparisons
� The EUROXw.d informat is similar to the EUROw.d informat, but EUROw.d

reverses the roles of the comma and the decimal point. This convention is common
in English–speaking countries.

� If no commas or periods appear in the input, the EUROXw.d and the EUROw.d
informats are interchangeable.

Examples

The following table shows input values for currency in euros, the SAS statements
that are applied, and the results.

Values Statements Results

----+----1----2

E1 input x eurox10.;
put x; 1

E1.23 input x eurox10.;
put x; 123

1.23 input x eurox10.;
put x; 123

1,234.56 input x eurox10.;
put x; 1.23456

260 JDATEYMDw. Informat � Chapter 13

See Also

Formats:
“EUROw.d Format” on page 115
“EUROXw.d Format” on page 116

Informats:
“EUROw.d Informat” on page 257

JDATEYMDw. Informat

Reads Japanese Kanji date values in the format yymmmdd or yyyymmmdd

Category: Date and Time

Syntax
JDATEYMDw.

Syntax Description

w
specifies the width of the input field.
Default: 12
Range: 12–32

Details
The date values must be in the form yymmmdd or yyyymmmdd.

You can separate the year, month, and day values by blanks or by special characters.
Note that in the example, the date values in the datalines are separated by special
characters.

When you use this informat, ensure that the width of the input field includes space
for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
The following examples show how to use the JDATEYMD informat to convert Kanji
values to SAS date values.

Informats for NLS � JNENGOw. Informat 261

See Also

Informats:

“JNENGOw. Informat” on page 261

System Options:

YEARCUTOFF= in SAS Language Reference: Dictionary

JNENGOw. Informat

Reads Japanese Kanji date values in the form yymmdd

Category: Date and Time

Alignment: left

Syntax

JNENGOw.

262 JNENGOw. Informat � Chapter 13

Syntax Description

w
specifies the width of the output field.

Default: 16
Range: 16–32

Details
The JNENGOw. informat reads Japanese Kanji values in the form yymmdd.

You can separate the year, month, and day values by blanks or by special characters.
Note that in the example, the date values in the datalines are separated by special
characters.

When you use this informat, ensure that the width of the input field includes space
for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
The following examples show how to use the JNENGO informat to convert Kanji values
to SAS date values.

See Also

Informats:
“JDATEYMDw. Informat” on page 260

System Options:
YEARCUTOFF= in SAS Language Reference: Dictionary

Informats for NLS � $KANJIXw. Informat 263

$KANJIw. Informat

Removes shift code data from DBCS data

Category: DBCS

Syntax
$KANJIw.

Syntax Description

w
specifies the width of the input field.

Restriction: The width must be an even number. If it is an odd number, it is
truncated.

Range: The minimum width for the informat is 2.

Details
The data must start with SO and end with SI, unless single-byte blank data are
returned. This informat always returns a blank for the DBCSTYPE data that does not
use a shift-code mechanism. The input data length must be 2 + (SO/SI length)*2.

See Also

Formats:

“$KANJIw. Format” on page 149

“$KANJIXw. Format” on page 150

Informats:

“$KANJIXw. Informat” on page 263

$KANJIXw. Informat

Adds shift-code data to DBCS data

Category: DBCS

Syntax
$KANJIXw.

264 $LOGVSw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field.

Restriction: The width must be an even number. If it is an odd number, it is
truncated.

Range: The minimum width for the informat is 2 + (length of shift code
used on the current DBCSTYPE= setting)*2.

See Also

Formats:

“$KANJIw. Format” on page 149

“$KANJIXw. Format” on page 150

Informats:

“$KANJIw. Informat” on page 263

$LOGVSw. Informat

Reads a character string that is in left-to-right logical order, and then converts the character string
to visual order

Category: BIDI text handling

Syntax

$LOGVSw.

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons

The $LOGVSw. informat performs processing that is opposite to the LOGVSRw.
informat.

Informats for NLS � $LOGVSRw. Informat 265

Examples

The following example uses the input value of “ flight.”

Statements Result

----+----1----+

x=input (’ flight’,$logvs12.);

put x; flight

See Also

Formats:
“$LOGVSRw. Format” on page 152
“$LOGVSw. Format” on page 151

Informats:
“$LOGVSRw. Informat” on page 265

$LOGVSRw. Informat
Reads a character string that is in right-to-left logical order, and then converts the character string
to visual order

Category: BIDI text handling

Syntax
$LOGVSRw.

Syntax Description

w
specifies the width of the input field.
Default: 200
Range: 1–32000

Comparisons
The $LOGVSRw. informat performs processing that is opposite to the $LOGVSw.
informat.

Examples

The following example uses the input value of “ flight.”

266 MINGUOw. Informat � Chapter 13

Statements Results

----+----1----+

x=input (’ flight’,$logvsr12.);

put x; flight

See Also

Formats:
“$LOGVSw. Format” on page 151
“$LOGVSRw. Format” on page 152

Informats:
“$LOGVSw. Informat” on page 264

MINGUOw. Informat

Reads dates in Taiwanese format

Category: Date and Time

Syntax
MINGUOw.

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 6–10

Details
The general form of a Taiwanese date is yyyymmdd:

yyyy
is an integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

Informats for NLS � NENGOw. Informat 267

The Taiwanese calendar uses 1912 as the base year (01/01/01 is January 1, 1912).
Dates prior to 1912 are not valid. Year values do not roll over after 100 years; instead,
they continue to increase.

You can separate the year, month, and day values with any delimiters, such as
blanks, slashes, or dashes, that are permitted by the YYMMDDw. informat. If
delimiters are used, place them between all the values. If you omit delimiters, be sure
to use a leading zero for days or months that have a value less than 10.

Examples

The following examples use different dates for input values.

input date minguo10.;
put date date9.;

Values Results

----+----1----+

49/01/01 01JAN1960

891215 15DEC2000

103-01-01 01JAN2014

See Also

Formats:
“MINGUOw. Format” on page 153

Informats:
YYMMDDw. in SAS Language Reference: Dictionary

NENGOw. Informat

Reads Japanese date values in the form eyymmdd

Category: Date and Time

Syntax
NENGOw.

268 NENGOw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field.

Default: 10

Range: 7–32

Details
The general form of a Japanese date is eyymmdd:

e
is the first letter of the name of the imperial era(Meiji, Taisho, Showa, or Heisei).

yy
is an integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

The e value can be separated from the integers by a period. If you omit e, SAS uses the
current imperial era. You can separate the year, month, and day values by blanks or
any nonnumeric character. However; if delimiters are used, place them between all the
values. If you omit delimiters, be sure to use a leading zero for days or months that are
values less than 10.

Examples

The following examples use different input values.

input nengo_date nengo8.;
put nengo_date date9.;

Values Results

----+----1----+

h11108 08OCT1999

h.11108 08OCT1999

11/10/08 08OCT1999

See Also

Formats:

“NENGOw. Format” on page 154

Informats for NLS � NLDATMw. Informat 269

NLDATEw. Informat

Reads the date value in the specified locale, and then converts the date value to the local SAS
date value

Category: Date and Time

Syntax
NLDATEw.

Syntax Description

w
specifies the width of the input field.

Default: 20

Range: 10–200

Examples

The following examples use the input February 24, 2003.

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’February 24, 2003,nldate17.);

put y=nldate.; y=February 24, 2003

options locale=German_Germany;

y=input(’24. Februar 2003’,nldate16.);

put y=nldate; y=24. Februar 2003

See Also

Formats:

“NLDATEw. Format” on page 155

NLDATMw. Informat

Reads the datetime value of the specified locale, and then converts the datetime value to the local
SAS datetime value

270 NLMNYw.d Informat � Chapter 13

Category: Date and Time

Syntax
NLDATMw.

Syntax Description

w
specifies the width of the input field.
Default: 30
Range: 10–200

Examples

The following examples use the input value of February 24, 2003 12:39:43.

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’24.Feb03:12:39:43’ nldatm.);

put y=; 1361709583

options locale=German_Germany;

y=input(’24. Februar 2003 12.39 Uhr;, nldatm.);

put y=; 1330171200

See Also

Formats:
“NLDATMw. Format” on page 159

NLMNYw.d Informat

Reads monetary data in the specified locale for the local expression, and then converts the data to
a numeric value

Category: Numeric

Syntax
NLMNYw.d

Informats for NLS � NLMNYw.d Informat 271

Syntax Description

w
specifies the width of the input field.

Default: 9

Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.

Default: 0

Range: 0–31

Details
The NLMNYw.d informat reads monetary data in the specified locale for the local
expression, and then converts the data to a numeric value. It removes any thousands
separators, decimal separators, blanks, the currency symbol, and the right parenthesis
from the input data.

Comparisons
The NLMNYw.d informat performs processing that is the opposite of the NLMNYIw.d
informat.

The NLMNYw.d informat is similar to the DOLLARw.d informat except that the
NLMNYw.d informat is locale specific.

Examples

The following examples use the input value of $12,345.67.

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’($12,345.67)’,nlmny32.2);

y=input(’($12,345.67)’,dollar32.2);

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:

“NLMNYw.d Format” on page 163

“NLMNYIw.d Format” on page 165

272 NLMNYIw.d Informat � Chapter 13

Informats:
“NLMNYIw.d Informat” on page 272

NLMNYIw.d Informat

Reads monetary data in the specified locale for the international expression, and then converts the
data to a numeric value

Category: Numeric

Syntax
NLMNYIw.d

Syntax Description

w
specifies the width of the input field.
Default: 9
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLMNYIw.d informat reads monetary data in the specified locale for the
international expression, and then converts the data to a numeric value. It removes
any thousands separators, decimal separators, blanks, the currency symbol, and the
right parenthesis from the input data.

Comparisons
The NLMNYIw.d informat performs processing that is the opposite of the NLMNYw.d
informat.

Examples

The following examples use the input value of 12,345.67.

Informats for NLS � NLNUMw.d Informat 273

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’(USD12,345.67)’,nlmnyi32.2);

y=input(’$-12,345.67)’,dollar32.2);

put x=;

put y=;

-12345.67

-12345.67

See Also

Formats:
“NLMNYw.d Format” on page 163
“NLMNYIw.d Format” on page 165

Informats:
“NLMNYw.d Informat” on page 270

NLNUMw.d Informat

Reads numeric data in the specified locale for local expressions, and then converts the data to a
numeric value

Category: Numeric

Syntax
NLNUMw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLNUMw.d) informat reads numeric data in the specified locale for local
expressions, and then converts the data to a numeric value. It removes any thousands

274 NLNUMIw.d Informat � Chapter 13

separators, decimal separators, blanks, the currency symbol, and the right parenthesis
from the input data.

Comparisons
The NLNUMw.d informat performs processing that is opposite to the NLNUMIw.d
informat.

Examples

The following example uses -1234356.78 as the input value.

Statements Results

----+----1----+

options locale=English_UnitedStates;

x=input(’-1,234,356.78’,nlnum32.2);

put x=; -1234356.78

See Also

Formats:

“NLNUMw.d Format” on page 166
“NLMNYIw.d Format” on page 165

Informats:
“NLNUMIw.d Informat” on page 274

NLNUMIw.d Informat

Reads numeric data in the specified locale for international expressions, and then converts the
data to a numeric value

Category: Numeric

Syntax
NLNUMIw.d

Syntax Description

w
specifies the width of the input field.
Default: 6

Informats for NLS � NLPCTw.d Informat 275

Range: 1–32

d
optionally specifies to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.

Default: 0

Range: 0–31

Details
The NLNUMIw.d informat reads numeric data in the specified locale for international
expressions, and then converts the data to a numeric value. It removes any thousands
separators, decimal separators, blanks, the currency symbol, and the right parenthesis
from the input data.

Comparisons
The NLNUMIw.d informat performs processing that is opposite to the NLNUMw.d
informat.

Examples

The following example uses -1,234,356.78 as the input value.

Statements Results

----+----1----+

options locale=English_UnitedStates;

x=input(’-1,234,356.78’, nlnumi32.2);

put x=; -1234356.78

See Also

Formats:

“NLNUMw.d Format” on page 166

“NLNUMIw.d Format” on page 168

Informats:

“NLNUMw.d Informat” on page 273

NLPCTw.d Informat

Reads percentage data in the specified locale for local expressions, and then converts the data to
a numeric value

Category: Numeric

276 NLPCTw.d Informat � Chapter 13

Syntax
NLPCTw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLPCTw.d informat reads percentage data in the specified locale for local
expressions, and then converts the data to a numeric value. It divides the value by 100
and removes any thousands separators, decimal separators, blanks, the percent sign,
and the right parenthesis from the input data.

Comparisons
The NLPCTw.d informat performs processing that is opposite of the NLPCTIw.d
informat. The NLPCTw.d informat is similar to the PERCENTw.d informat except that
the NLPCTw.d informat is locale specific.

Examples

The following example uses -12,345.67% as the input value.

Statements Result

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’-12,345.67%’,nlpct32.2);

y=input(’(12,345.67%)’,percent32.2);

put x=;

put y=;

-123.4567

-123.4567

Informats for NLS � NLPCTIw.d Informat 277

See Also

Formats:
“NLPCTw.d Format” on page 169
“NLPCTIw.d Format” on page 170

Informats:
“NLPCTIw.d Informat” on page 277

NLPCTIw.d Informat

Reads percentage data in the specified locale for international expressions, and then converts the
data to a numeric value

Category: Numeric

Syntax
NLPCTIw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
optionally specifies whether to divide the number by 10d. If the data contains decimal
separators, the d value is ignored.
Default: 0
Range: 0–31

Details
The NLPCTIw.d informat reads percentage data in the specified locale for international
expressions, and then converts the data to a numeric value. It divides the value by 100
and removes any thousands separators, decimal separators, blanks, the percent sign,
and the right parentheses from the input data.

Comparisons
The NLPCTIw.d informat performs processing that is opposite of the NLPCTw.d
informat.

Examples

The following example uses -12,345.67% as the input value.

278 NLTIMAPw. Informat � Chapter 13

Statements Results

----+----1----+

options LOCALE=English_UnitedStates;

x=input(’-12,345.67%’,nlpct32.2);

y=input(’(12,345.67%)’,percent32.2);

put x=;

put y=;

-123.4567

-123.4567

See Also

Formats:

“NLPCTw.d Format” on page 169

“NLPCTIw.d Format” on page 170

Informats:

“NLPCTw.d Informat” on page 275

NLTIMAPw. Informat

Reads the time value and uses a.m. and p.m. in the specified locale, and then converts the time
value to the local SAS time value

Category: Date and Time

Syntax
NLTIMAPw.

Syntax Description

w
specifies the width of the input field.

Default: 10

Range: 4–200

Examples

The following example uses 04:24:43 p.m. as the input value.

Informats for NLS � NLTIMEw. Informat 279

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’04:24:43 PM’,nltimap11.);

put y time.; 16:24:43

options locale=German_Germany;

y=input(’16.24 Uhr’,nltimap11.);

put y time.; 16:24:43

See Also

Formats:
“NLTIMAPw. Format” on page 173

NLTIMEw. Informat

Reads the time value in the specified locale, and then converts the time value to the local SAS
time value

Category: Date and Time

Syntax
NLTIMEw.

Syntax Description

w
specifies the width of the input field.
Default: 20
Range: 10–200

Examples

The following example uses 16:24:43 as the input value.

280 $REVERJw. Informat � Chapter 13

Statements Results

----+----1----+

options locale=English_UnitedStates;

y=input(’16:24:43’,nltime.);

put y time.; 16:24:43

options locale=German_Germany;

y=input(’16.24 Uhr’,nltime.);

put y time; 16:24:00

See Also

Formats:
“NLTIMEw. Format” on page 172

$REVERJw. Informat

Reads character data from right to left and preserves blanks

Category: Character

Syntax
$REVERJw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if w is not specified
Range: 1–32767

Comparisons
The $REVERJw. informat is similar to the $REVERSw. informat except that
$REVERSw. informat left aligns the result by removing all leading blanks.

Examples

The following example uses ABCD as the input value.

input @1 name $reverj7.;

Informats for NLS � $REVERSw. Informat 281

Values Results

----+----1

ABCD ###DCBA

ABCD DCBA###

* The character # represents a blank space.

See Also

Informats:

“$REVERSw. Informat” on page 281

$REVERSw. Informat

Reads character data from right to left, and then left aligns the text

Category: Character

Syntax
$REVERSw.

Syntax Description

w
specifies the width of the input field.

Default: 1 if w is not specified

Range: 1–32767

Comparisons
The $REVERSw. informat is similar to the $REVERJw. informat except that
$REVERJw. informat preserves all leading and trailing blanks.

Examples

The following example uses ABCD as the input value.

input @1 name $revers7.;

282 $UCS2Bw. Informat � Chapter 13

Values Results

----+----1

ABCD DCBA###

ABCD DCBA###

* The # character represents a blank space.

See Also

Informats:
“$REVERJw. Informat” on page 280

$UCS2Bw. Informat

Reads a character string that is encoded in big-endian, 16-bit, UCS2, Unicode encoding, and then
converts the character string to the encoding of the current SAS session

Category: Character

Syntax
$UCS2Bw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32000

Comparisons
The $UCS2Bw. informat performs processing that is opposite of the $UCS2BEw.
informat. If you are processing data within the same operating environment, then use
the $UCS2Xw. informat. If you are processing data from different operating
environments, then use the $UCS2Bw. and $UCS2Lw. informats.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Informats for NLS � $UCS2BEw. Informat 283

Statements Result

----+----1----+

x=input(’5927’x,ucs2b.);

put x=$hex4.; x=91e5

See Also

Formats:

“$UCS2Bw. Format” on page 174

“$UCS2Lw. Format” on page 176

“$UCS2Xw. Format” on page 178

“$UTF8Xw. Format” on page 195

Informats:

“$UCS2Lw. Informat” on page 284

“$UCS2Xw. Informat” on page 286

“$UTF8Xw. Informat” on page 300

$UCS2BEw. Informat

Reads a character string that is in the encoding of the current SAS session and then converts the
character string to big-endian, 16-bit, UCS2, Unicode encoding

Category: Character

Syntax
$UCS2BEw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 1–32000

Comparisons
The $UCS2BEw. informat performs processing that is opposite of the $UCS2Bw.
informat.

284 $UCS2Lw. Informat � Chapter 13

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs2str=input (’ ’, $ucs2be2.);

put ucs2str=$hex4; ucs2str=5927

See Also

Formats:
“$UCS2Bw. Format” on page 174
“$UCS2BEw. Format” on page 175

Informats:
“$UCS2Bw. Informat” on page 282

$UCS2Lw. Informat

Reads a character string that is encoded in little-endian, 16-bit, UCS2, Unicode encoding, and
then converts the character string to the encoding of the current SAS session

Category: Character

Syntax
$UCS2Lw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8
Range: 2–32000

Comparisons
The $UCS2Lw. informat performs processing that is opposite of the $UCS2LEw.
informat. If you are processing data within the same operating environment, then use

Informats for NLS � $UCS2LEw. Informat 285

the $UCS2Xw.informat. If you are processing data from different operating
environments, then use the $UCS2Bw. and $UCS2Lw. informats.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

x=input(’2759’x,ucs2l.);

put x=$hex4.; x=91e5

See Also

Formats:
“$UCS2Bw. Format” on page 174
“$UCS2Lw. Format” on page 176
“$UCS2Xw. Format” on page 178
“$UTF8Xw. Format” on page 195

Informats:
“$UCS2Bw. Informat” on page 282
“$UCS2Xw. Informat” on page 286
“$UTF8Xw. Informat” on page 300

$UCS2LEw. Informat

Reads a character string that is in the encoding of the current SAS session and then converts the
character string to little-endian, 16-bit, UCS2, Unicode encoding

Category: Character

Syntax
$UCS2LEw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8

286 $UCS2Xw. Informat � Chapter 13

Range: 1–32000

Comparisons
The $UCS2LEw. informat performs processing that is opposite of the $UCS2Lw.
informat.

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs2str=input (’ ’, $ ucs2le2.);

put ucs2str=$hex4; ucs2str=2759

See Also

Formats:

“$UCS2Lw. Format” on page 176
“$UCS2LEw. Format” on page 177

Informats:

“$UCS2Lw. Informat” on page 284

$UCS2Xw. Informat

Reads a character string that is encoded in 16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS session

Category: Character

Syntax
$UCS2Xw.

Syntax Description

w
specifies the width of the output field. Specify enough width to accommodate the
16-bit size of the Unicode characters.
Default: 8

Informats for NLS � $UCS2XEw. Informat 287

Range: 2–32000

Comparisons
The $UCS2Xw. informat performs processing that is the opposite of the $UCS2XEw.
informat. If you are processing data within the same operating environment, then use
the $UCS2Xw. informat. If you are processing data from different operating
environments, then use the $UCS2Bw. and $UCS2Lw. informats.

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment. This example uses little-endian formatting.

Statements Result

----+----1----+

x=input(’5927’x,ucs2x.);

put x=$hex4.; x=91e5

See Also

Formats:

“$UCS2Bw. Format” on page 174

“$UCS2Lw. Format” on page 176

“$UCS2Xw. Format” on page 178

“$UTF8Xw. Format” on page 195

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284

“$UTF8Xw. Informat” on page 300

$UCS2XEw. Informat

Reads a character string that is in the encoding of the current SAS session and then converts the
character string to 16-bit, UCS2, Unicode encoding

Category: Character

Syntax
$UCS2XEw.

288 $UCS4Bw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
16-bit size of the Unicode characters.

Default: 8

Range: 1-32000

Comparisons
The $UCS2XEw. informat performs processing that is opposite of the $UCS2Xw.
informat.

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs2str=input (’ ’, $ ucs2xe2.);

put ucs2str=$hex6; ucs2str=5927

See Also

Formats:

“$UCS2Xw. Format” on page 178

“$UCS2XEw. Format” on page 180

Informats:

“$UCS2Xw. Informat” on page 286

$UCS4Bw. Informat

Reads a character string that is encoded in big-endian, 32-bit, UCS4, Unicode encoding, and then
converts the character string to the encoding of the current SAS session

Category: Character

Syntax
$UCS4Bw.

Informats for NLS � $UCS4Lw. Informat 289

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32000

Comparison
If you are processing data within the same operating environment, then use the
$UCS4Xw. informat. If you are processing data from different operating environments,
then use the $UCS4Bw. and $UCS4Lw. informats.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

z=put(’Zero1’,$UCS4B20.);

x=input(z,$UCS4B20.);

put x; Zero1

See Also

Formats:
“$UCS4Bw. Format” on page 181

Informats:
“$UCS4Lw. Informat” on page 289
“$UCS4Xw. Informat” on page 290

$UCS4Lw. Informat

Reads a character string that is encoded in little-endian, 32-bit, UCS4, Unicode encoding, and
then converts the character string to the encoding of the current SAS session

Category: Character

Syntax
$UCS4Lw.

290 $UCS4Xw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.

Default: 4

Range: 4–32000

Comparison
If you are processing data within the same operating environment, then use the
$UCS4Xw. informat. If you are processing data from different operating environments,
then use the $UCS4Bw. and $UCS4Lw. informats.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+----2----+----3----+

z=put(’.com’,$UCS4L16.);

put z $hex32.; 2E000000630000006F0000006D000000

See Also

Formats:

“$UCS4Lw. Format” on page 183

Informats:

“$UCS4Bw. Informat” on page 288

“$UCS4Xw. Informat” on page 290

$UCS4Xw. Informat

Reads a character string that is encoded in 32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS session

Category: Character

Syntax
$UCS4Xw.

Informats for NLS � $UCS4XEw. Informat 291

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 4
Range: 4–32000

Comparisons
The $UCS4Xw. informat performs processing that is the opposite of the $UCS4XEw.
informat. Use the $UCS4Xw. informat when you are processing data within the same
operating environment. Use the $UCS4Bw. and $UCS4Lw. informats when you are
processing data from different operating environments.

Examples
These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment. This example uses little-endian formatting.

Statements Results

----+----1----+

ucs4=put(’91e5’x,$ucs4x.);

sjis=input(ucs4,$ucs4x.);

put ucs4=$hex8. sjis=$hex8.;

run;

ucs4=27590000

sjis=91E52020

See Also

Formats:
“$UCS2Xw. Format” on page 178
“$UCS2Bw. Format” on page 174
“$UCS2Lw. Format” on page 176
“$UCS4Xw. Format” on page 186
“$UTF8Xw. Format” on page 195

Informats:
“$UCS2Bw. Informat” on page 282
“$UCS2Lw. Informat” on page 284
“$UTF8Xw. Informat” on page 300

$UCS4XEw. Informat

Reads a character string that is in the encoding of the current SAS session, and then converts the
character string to 32-bit, UCS4, Unicode encoding

292 $UESCw. Informat � Chapter 13

Category: Character

Syntax
$UCS4XEw.

Syntax Description

w
specifies the width of the input field. Specify enough width to accommodate the
32-bit size of the Unicode characters.
Default: 8
Range: 1–32000

Comparisons
The $UCS4XEw. informat performs processing that is the opposite of the $UCS4Xw.
informat.

Examples

This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

ucs4str=input (’ ’, $ ucs4xe2.);

put ucs4str=$hex8; ucs4str=00005927

See Also

Formats:
“$UCS4Xw. Format” on page 186
“$UCS4XEw. Format” on page 187

Informats:
“$UCS4Xw. Informat” on page 290

$UESCw. Informat

Reads a character string that is encoded in UESC representation, and then converts the character
string to the encoding of the current SAS session

Informats for NLS � $UESCw. Informat 293

Category: Character

Syntax
$UESCw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 1–32000

Details
If the characters are not available on all operating environments, for example, 0–9, a–z,
A–Z, they must be represented in UESC representation. The $UESCw. informat can be
nested.

Comparisons
The $UESCw. informat performs processing that is the opposite of the $UESCEw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

x=input(’¥u5927’, $uesc10.);
y=input(’¥uu5927’, $uesc10.);
z=input(’¥uuu5927’, $uesc10.);
put x;
put y;
put z;

¥u5927
¥uu5927

See Also

Formats:

“$UESCw. Format” on page 188

“$UESCEw. Format” on page 189

Informats:

“$UESCEw. Informat” on page 294

294 $UESCEw. Informat � Chapter 13

$UESCEw. Informat

Reads a character string that is in the encoding of the current SAS session, and then converts the
character string to UESC representation

Category: Character

Syntax
$UESCEw.

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 1–32000

Details
The $UESCEw. informat can be nested.

Comparisons
The $UESCEw. informat performs processing that is opposite of the $UESCw. informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

x=input(’ ’, $uesc10.);

y=input(’¥u5927’,$uesc10.);

z=input(’¥uu5927’,$uesc10.);

put x y z;

¥u5927

¥uu5927

¥uuu5927

See Also

Formats:

“$UESCw. Format” on page 188

“$UESCEw. Format” on page 189

Informats for NLS � $UNCRw. Informat 295

Informat:

“$UESCw. Informat” on page 292

$UNCRw. Informat

Reads an NCR character string, and then converts the character string to the encoding of the
current SAS session

Category: Character

Syntax
$UNCRw.

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 1–32000

Details
The input string must contain only characters and NCR. Any national characters must
be represented in NCR.

Comparison
The $UNCRw. informat performs processing that is opposite of the $UNCREw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Result

----+----1----+

x=input (’大’, $uncr10.);

y=input(’abc’, $uncr10);

put X;

put Y; abc

296 $UNCREw. Informat � Chapter 13

See Also

Formats:
“$UNCRw. Format” on page 190
“$UNCREw. Format” on page 191

Informats:
“$UNCREw. Informat” on page 296

$UNCREw. Informat
Reads a character string in the encoding of the current SAS session, and then converts the
character string to NCR

Category: Character

Syntax
$UNCREw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Details
The output string will be converted to plain characters and NCR. Any national
characters will be converted to NCR.

Comparison
The $UNCREw. informat performs processing that is the opposite of the $UNCRw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Result

----+----1----+

x=input (’ abc’, $uncre12.);

put x; 大abc

Informats for NLS � $UPARENw. Informat 297

See Also

Formats:
“$UNCRw. Format” on page 190
“$UNCREw. Format” on page 191

Informats:
“$UNCRw. Informat” on page 295

$UPARENw. Informat

Reads a character string that is encoded in UPAREN representation, and then converts the
character string to the encoding of the current SAS session

Category: Character

Syntax
$UPARENw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Details
If the SAS session encoding does not have a corresponding Unicode expression, the
expression will remain in encoding of the current SAS session.

Comparisons
The $UPARENw. informat performs processing that is opposite of the $UPARENEw.
informat.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

298 $UPARENEw. Informat � Chapter 13

Statements Results

v=input(’<u0061>’,$uparen10.);
w=input(’<u0062>’,$uparen10.);
x=input(’<u0063>’,$uparen10.);
y=input(’<u0033>’,$uparen10.);
z=input(’<u5927>’,$uparen10.);
put v;
put w;
put x;
put y;
put z;

a
b
c
3

See Also

Formats:
“$UPARENw. Format” on page 192
“$UPARENEw. Format” on page 194

Informats:
“$UPARENEw. Informat” on page 298
“$UPARENPw. Informat” on page 299

$UPARENEw. Informat

Reads a character string that is in the encoding of the current SAS session, and then converts the
character string to UPAREN representation

Category: Character

Syntax
$UPARENEw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32000

Comparisons
The $UPARENEw. informat performs processing that is opposite of the $UPARENw.
informat.

Informats for NLS � $UPARENPw. Informat 299

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

v=input(’a’,$uparen10.);
w=input(’b’,$uparen10.);
x=input(’c’,$uparen10.);
y=input(’3’,$uparen10.);
z=input(’ ’,$uparen10.);
put v;
put w;
put x;
put y;
put z;

<u0061>
<u0062>
<u0063>
<u0033>
<u5927>

See Also

Formats:
“$UPARENw. Format” on page 192
“$UPARENEw. Format” on page 194

Informats:
“$UPARENw. Informat” on page 297
“$UPARENPw. Informat” on page 299

$UPARENPw. Informat

Reads a character string that is encoded in UPAREN representation, and then converts the
character string to the encoding of the current SAS session, with national characters remaining in
the encoding of the UPAREN representation

Category: Character

Syntax
$UPARENPw.

Syntax Description

w
specifies the width of the input field.
Default: 8

300 $UTF8Xw. Informat � Chapter 13

Range: 1–32000

Details
If the UPAREN expression contains a national character, whose value is greater than
Unicode 0x00ff, the expression will remain as a UPAREN expression.

Examples

These examples use the Japanese Shift_JIS encoding, which is supported under the
UNIX operating system.

Statements Results

----+----1----+

v=input(’<u0061>’,$uparen10.);
w=input(’<u0062>’,$uparen10.);
x=input(’<u0063>’,$uparen10.);
y=input(’<u0033>’,$uparen10.);
z=input(’<u5927>’,$uparen10.);
put v;
put w;
put x;
put y;
put z;

a
b
c
3
<u5927>

See Also

Formats:

“$UPARENw. Format” on page 192

“$UPARENEw. Format” on page 194

Informats:

“$UPARENw. Informat” on page 297

“$UPARENEw. Informat” on page 298

$UTF8Xw. Informat

Reads a character string that is encoded in UTF-8, and then converts the character string to the
encoding of the current SAS session

Category: Character

Syntax
$UTF8Xw.

Informats for NLS � $VSLOGw. Informat 301

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 1–32000

Examples
This example uses the Japanese Shift_JIS encoding, which is supported under the
UNIX operating environment.

Statements Result

----+----1----+

x=input (’ e5a4a7’ x, utf8x3.);
put x;

See Also

Formats:

“$UCS2Bw. Format” on page 174

“$UCS2Lw. Format” on page 176

“$UCS2Xw. Format” on page 178

“$UTF8Xw. Format” on page 195

Informats:

“$UCS2Bw. Informat” on page 282

“$UCS2Lw. Informat” on page 284

“$UCS2Xw. Informat” on page 286

$VSLOGw. Informat

Reads a character string that is in visual order, and then converts the character string to
left-to-right logical order

Category: BIDI text handling

Syntax
$VSLOGw.

302 $VSLOGRw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons

The $VSLOGw. informat performs processing that is opposite of the $VSLOGRw.
informat.

Examples

The following example used the input value of “ flight”.

Statements Result

----+----1----+

x=input (’ ’,$vslog12.);

put x; flight

See Also

Formats:

“$VSLOGRw. Format” on page 197

“$VSLOGw. Format” on page 196

Informats:

“$VSLOGRw. Informat” on page 302

$VSLOGRw. Informat

Reads a character string that is in visual order, and then converts the character string to
right-to-left logical order

Category: BIDI text handling

Syntax

$VSLOGRw.

Informats for NLS � WEEKUw. Informat 303

Syntax Description

w
specifies the width of the input field.

Default: 200

Range: 1–32000

Comparisons

The $VSLOGRw. informat performs processing that is opposite of the $VSLOGw.
informat.

Examples

The following example used the input value of “ flight.”

Statements Result

----+----1----+

x=input (’ ’,$vslogr12.);

put x; flight

See Also

Formats:

“$VSLOGw. Format” on page 196

“$VSLOGRw. Format” on page 197

Informats:

“$VSLOGw. Informat” on page 301

WEEKUw. Informat

Reads the format of the number-of-week value within the year and returns a SAS date value by
using the U algorithm

Category: Date and Time

Syntax

WEEKUw.

304 WEEKUw. Informat � Chapter 13

Syntax Description

w
specifies the width of the input field.

Default: 11

Range: 3–200

Details

The WEEKUw. informat reads the format of the number-of-week within the year, and
then returns a SAS date value by using the U algorithm. If the input does not contain a
year expression, then WEEKUw. uses the current year as the year expression, which is
the default. If the input does not contain a day expression, then WEEKUw. uses the
first day of the week as the day expression, which is the default.

The U Algorithm calculates the SAS date value using the number-of-week value
within the year (Sunday is considered the first day of the week). The number-of-week
value is represented as a decimal number in the range 0–53, with a leading zero and
maximum value of 53. For example, the fifth week of the year would be represented as
05.

The inputs to the WEEKUw. informat are the same date for the following example.
The current year is 2003.

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons

The WEEKUw. informat reads the number-of-week value within the year. Sunday is
the first day of the week, as a decimal number in the range 0–53, with a leading zero.
The WEEKVw. informat reads the number-of-week value as a decimal number in the
range 01–53. Weeks begin on a Monday and week 1 of the year is the week that
includes both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. The WEEKWw. informat reads the week-number-of-year value as a
decimal number in the range 00–53, with Monday as the first day of week 1.

Examples

The current year is 2003 in the following examples.

Informats for NLS � WEEKVw. Informat 305

Statements Results

----+----1----+

v=input(’W01’,weeku3.);

w=input(’03W01’,weeku5.);

x=input(’03W0101’,weeku7.);

y=input(’2003W0101’,weeku9.);

z=input(’2003-W01-01’,weeku11.);

put v;

put w;

put x;

put y;

put z;

15710

15710

15710

15710

15710

See Also

Formats:
“WEEKUw. Format” on page 198

“WEEKVw. Format” on page 199
“WEEKWw. Format” on page 201

Functions:
“WEEK Function” on page 239

Informats:
“WEEKVw. Informat” on page 305
“WEEKWw. Informat” on page 307

WEEKVw. Informat

Reads the format of the number-of-week value within the year and returns a SAS date value using
the V algorithm

Category: Date and Time

Syntax
WEEKVw.

Syntax Description

w
specifies the width of the input field.
Default: 11

306 WEEKVw. Informat � Chapter 13

Range: 3–200

Details
The WEEKVw. informat reads a format of the number-of-week value. If the input does
not contain a year expression, WEEKVw. uses the current year as the year expression,
which is the default. If the input does not contain a day expression, WEEKVw. uses the
first day of the week as the day expression, which is the default.

The V algorithm calculates the SAS date value. The number-of-week value is
represented as a decimal number in the range 01–53, with a leading zero and
maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week
that includes both January 4th and the first Thursday of the year. If the first Monday
of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For example, the fifth week of the year would be represented as 06.

The inputs to the WEEKVw. informat are the same date for the following example.
The current year is 2003.

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKUw. informat reads the number-of-week value within the year. Sunday is
the first day of the week, as a decimal number in the range 0–53, with a leading zero.
The WEEKVw. informat reads the number-of-week value as a decimal number in the
range 01–53. Weeks begin on a Monday and week 1 of the year is the week that
includes both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. The WEEKWw. informat reads the week-number-of-year value as a
decimal number in the range 00–53, with Monday as the first day of week 1.

Examples

The current year is 2003 in the following examples.

Informats for NLS � WEEKWw. Informat 307

Statements Results

----+----1----+

v=input(’W01’,weekv3.);

w=input(’03W01’,weekv5.);

x=input(’03W0101’,weekv7.);

y=input(’2003W0101’,weekv9.);

z=input(’2003-W01-01’,weekv11.);

put v;

put w;

put x;

put y;

put z;

15704

15704

15704

15704

15704

See Also

Formats:
“WEEKUw. Format” on page 198

“WEEKVw. Format” on page 199
“WEEKWw. Format” on page 201

Functions:
“WEEK Function” on page 239

Informats:
“WEEKUw. Informat” on page 303
“WEEKWw. Informat” on page 307

WEEKWw. Informat

Reads the format of the number-of-week value within the year and returns a SAS date value using
the W algorithm

Category: Date and Time

Syntax
WEEKWw.

Syntax Description

w
specifies the width of the input field.
Default: 11

308 WEEKWw. Informat � Chapter 13

Range: 3–200

Details
The WEEKWw. informat reads a format of the number-of-week value. If the input does
not contain a year expression, the WEEKWw. informat uses the current year as the
year expression, which is the default. If the input does not contain a day expression,
the WEEKWw. informat uses the first day of the week as the day expression, which is
the default. Algorithm W calculates the SAS date value using the number of the week
within the year (Monday is considered the first day of the week). The number-of-week
value is represented as a decimal number in the range 0–53, with a leading zero and
maximum value of 53. For example, the fifth week of the year would be represented as
05.

The inputs to the WEEKWw. informat are the same date for the following example.
The current year is 2003.

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKUw. informat reads the number-of-week value within the year. Sunday is
the first day of the week, as a decimal number in the range 0–53, with a leading zero.
The WEEKVw. informat reads the number-of-week value as a decimal number in the
range 01–53. Weeks begin on a Monday and week 1 of the year is the week that
includes both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. The WEEKWw. informat reads the week-number-of-year value as a
decimal number in the range 00–53, with Monday as the first day of week 1.

Examples

The current year is 2003 in the following examples.

Informats for NLS � YENw.d Informat 309

Statements Results

----+----1----+

v=input(’W01’,weekw3.);
w=input(’03W01’,weekw5.);
x=input(’03W0101’,weekw7.);
y=input(’2003W0101’,weekw9.);
z=input(’2003-W01-01’,weekw11.);
put v;
put w;
put x;
put y;
put z;

15711
15711
15711
15711
15711

See Also

Formats:
“WEEKUw. Format” on page 198
“WEEKVw. Format” on page 199
“WEEKWw. Format” on page 201

Function:
“WEEK Function” on page 239

Informats:
“WEEKUw. Informat” on page 303
“WEEKVw. Informat” on page 305

YENw.d Informat

Removes embedded yen signs, commas, and decimal points

Category: Numeric

Syntax
YENw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–32

d
optionally specifies the power of 10 by which to divide the value.

310 YENw.d Informat � Chapter 13

Requirement: d must be 0 or 2
Tip: If the d is 2, then YENw.d reads a decimal point and two decimal digits. If d is

0, YENw.d reads the value without a decimal point.

Details
The hexadecimal representation of the code for the yen sign character is 5B on EBCDIC
systems and 5C on ASCII systems. The monetary character that these codes represent
might be different in other countries.

Examples

The following example uses yen as the input.

input value yen10.2;

Value Result

----+----1----+

¥1254.71 1254.71

See Also

Formats:
“YENw.d Format” on page 203

311

P A R T6

Procedures for NLS

Chapter 14.The DBCSTAB Procedure 313

Chapter 15.The TRANTAB Procedure 319

312

313

C H A P T E R

14
The DBCSTAB Procedure

Overview: DBCSTAB Procedure 313
Syntax: DBCSTAB Procedure 313

PROC DBCSTAB Statement 313

When to Use the DBCSTAB Procedure 314

Examples: DBCSTAB Procedure 315

Example 1: Creating a Conversion Table with the DBCSTAB Procedure 315
Example 2: Producing Japanese Conversion Tables with the DBCSTAB Procedure 316

Overview: DBCSTAB Procedure
The DBCSTAB procedure produces conversion tables for the double-byte character

sets that SAS supports.

Syntax: DBCSTAB Procedure
PROC DBCSTAB TABLE=table-name

<BASETYPE=base-type> <CATALOG=<libref.>catalog-name>
<DATA=< libref.>table-name > <DBCSLANG=language>
<DESC=’description’> <FORCE> <VERIFY> <VERBOSE>;

PROC DBCSTAB Statement

PROC DBCSTAB TABLE=table-name
<option(s)>;

Required Arguments

TABLE=table-name
specifies the name of the double-byte code table to produce. This table name becomes
an entry of type DBCSTAB in the catalog that is specified with the CATALOG=
option. By default, the catalog name is SASUSER.DBCS.

314 When to Use the DBCSTAB Procedure � Chapter 14

Alias: NAME=, N=

Options

BASETYPE=base-type
specifies a base type for the double-byte code table conversion. If you use this option,
you reduce the number of tables that are produced.

If you specify BASETYPE=, then all double-byte codes are first converted to the
base code, and then converted to the required code. If you have n codes, then there
are n(n-1) conversions that must be made.

Alias: BTYPE=

CATALOG=<libref.>catalog-name
specifies the name of the catalog in which the table is to be stored. If the catalog does
not exist, it is created.

Default: SASUSER.DBCS

DATA=<libref.>table-name
specifies the data for producing the double-byte code table. Several double-byte
character variables are required to produce the table. Use variable names that are
equivalent to the value of the DBCSTYPE system option and are recognized by the
KCVT function.

DBCSLANG=language
specifies the language that the double-byte code table uses. The value of this option
should match the value of the DBCSLANG system option.

Alias: DBLANG

DESC=’description’
specifies a text string to put in the DESCRIPTION field for the entry.

FORCE
produces the conversion tables even if errors are present.

VERIFY
checks the data range of the input table per code. This option is used to check for
invalid double-byte code.

VERBOSE
causes the statistics detail to be printed when building DBCS tables.

When to Use the DBCSTAB Procedure

Use the DBCSTAB procedure to modify an existing DBCS table when

� the DBCS encoding system that you are using is not supported by SAS

� the DBCS encoding system that you are using has a nonstandard translation table.

A situation where you would be likely to use the DBCSTAB procedure is when a valid
DBCSTYPE= value is not available. These values are operating environment
dependent. In such cases, you can use the DBCSTAB procedure to modify a similar
translation table, then specify the use of the new table with the TRANTAB option.

The DBCSTAB Procedure � Example 1: Creating a Conversion Table with the DBCSTAB Procedure 315

Examples: DBCSTAB Procedure

Example 1: Creating a Conversion Table with the DBCSTAB Procedure

Procedure features:
PROC DBCSTAB statement options:

CATALOG=
DBLANG=
BASETYPE=
VERIFY

The following example creates a Japanese translation table called CUSTAB and
demonstrates how the TRANTAB option can be used to specify this new translation
table.

Note: The DBCS, DBCSLANG, and DBCSTYPE options are specified at startup. �

The TRANTAB data set is created as follows:

data trantab;
pcms=’8342’x; dec=’b9b3’x;

run;

proc dbcstab
/* name of the new translate table */

name=custtab
/* based on pcibm encoding */

basetype=pcms
/* data to create the new table */

data=trantab
/* japanese language */

dbcslang=japanese
/* catalog descriptor */

desc=’Modified Japanese Trantab’
/* where the table is stored */

catalog=sasuser.dbcs
/* checks for invalid DBCS in the new data */

verify;
run;

To specify the translate table, use the TRANTAB option:

options trantab=(,,,,,,,,,custtab);

Translate tables are generally used for DBCS conversion with SAS/CONNECT
software, PROC CPORT and PROC CIMPORT, and the DATA step function, KCVT.

The TRANTAB= option may be used to specify DBCS translate tables. For SAS
release 8.2 and earlier versions, the ninth argument was formerly used to specify the
DBCS system table. However, for SAS 9 and later versions, instead of using the ninth
argument, the SAS system uses a system table that is contained in a loadable module.

316 Example 2: Producing Japanese Conversion Tables with the DBCSTAB Procedure � Chapter 14

options trantab=(,,,,,,,,systab); /* ninth argument */

Japanese, Korean, Chinese, and Taiwanese are acceptable for the systab name.
The tenth argument specifies the DBCS user table:

options trantab=(,,,,,,,,,usrtab); /* tenth argument */

Example 2: Producing Japanese Conversion Tables with the DBCSTAB
Procedure

Procedure features:
PROC DBCSTAB statement options:

TABLE=
DATA=
DBLANG=
BASETYPE=
VERIFY

Program
data ja_jpn;

length ibm jis euc pcibm $2.;
ibm=’4040’x;
jis=’2121’x;
euc=’a1a1’x;
pcibm=’8140’x;

run;

proc dbcstab
table=japanese
data=ja_jpn
dblang=japanese
basetype=jis
verify;

run;

The DBCSTAB Procedure � See Also 317

Log

1 proc dbcstab
2 table=ja_jpn
3 data=work.ja_jpn
4 dblang=japanese
5 basetype=jis
6 verify;
7 run;

NOTE: Base table for JIS created.
NOTE: IBM table for JIS created.
NOTE: PCIBM table for JIS created.
NOTE: EUC table for JIS created.
NOTE: Base table for IBM created.
NOTE: JIS table for IBM created.
NOTE: Base table for PCIBM created.
NOTE: JIS table for PCIBM created.
NOTE: Base table for EUC created.
NOTE: JIS table for EUC created.
NOTE: 10 DBCS tables are generated. Each table has 1 DBCS characters.
NOTE: Each table is 2 bytes in size.
NOTE: Required table memory size is 612.
NOTE: There were 1 observations read from the dataset WORK.JA_JPN.

See Also

Functions:
“KCVT Function” on page 214

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 319

System Options:
“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362
“DBCS System Option: UNIX, Windows, and z/OS” on page 349
“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 350
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 351

318

319

C H A P T E R

15
The TRANTAB Procedure

Overview: TRANTAB Procedure 319
Concepts: TRANTAB Procedure 320

Understanding Translation Tables and Character Sets for PROC TRANTAB 320

Storing Translation Tables with PROC TRANTAB 320

Modifying SAS Translation Tables with PROC TRANTAB 321

Using Translation Tables Outside PROC TRANTAB 321
Using Translation Tables in the SORT Procedure 321

Using Translation Tables with the CPORT and CIMPORT Procedures 321

Using Translation Tables with Remote Library Services 322

Using Translation Tables in SAS/GRAPH Software 322

Syntax: TRANTAB Procedure 323

PROC TRANTAB Statement 324
CLEAR Statement 325

INVERSE Statement 325

LIST Statement 325

LOAD Statement 326

REPLACE Statement 327
SAVE Statement 328

SWAP Statement 328

Examples: TRANTAB Procedure 329

Example 1: Viewing a Translation Table 329

Example 2: Creating a Translation Table 330
Example 3: Editing by Specifying a Decimal Value for Starting Position 332

Example 4: Editing by Using a Quoted Character for Starting Position 335

Example 5: Creating the Inverse of a Table 337

Example 6: Using Different Translation Tables for Sorting 339

Example 7: Editing Table 1 and Table 2 341

Overview: TRANTAB Procedure

The TRANTAB procedure creates, edits, and displays customized translation tables.
In addition, you can use PROC TRANTAB to view and modify translation tables that
are supplied by SAS. These SAS supplied tables are stored in the SASHELP.HOST
catalog. Any translation table that you create or customize is stored in your
SASUSER.PROFILE catalog. Translation tables have an entry type of TRANTAB.

Translation tables are operating environment-specific SAS catalog entries that are
used to translate the values of one (coded) character set to another. A translation table
has two halves: table one provides a translation, such as ASCII to EBCDIC; table two
provides the inverse (or reverse) translation, such as EBCDIC to ASCII. Each half of a

320 Concepts: TRANTAB Procedure � Chapter 15

translation table is an array of 256 two-digit positions, each of which contains a
one-byte unsigned number that corresponds to a coded character.

The SAS System uses translation tables for the following purposes:
� determining the collating sequence in the SORT procedure
� performing transport-format translations when you transfer files with the CPORT

and CIMPORT procedures
� performing translations between operating environments when you access remote

data in SAS/CONNECT or SAS/SHARE software
� facilitating data communications between the operating environment and a

graphics device when you run SAS/GRAPH software in an IBM environment
� accommodating national language character sets other than U.S. English.

PROC TRANTAB produces no output. It can display translation tables and notes in
the SAS log.

Concepts: TRANTAB Procedure

Understanding Translation Tables and Character Sets for PROC
TRANTAB

The kth element in a translation table corresponds to the kth element of an ordered
character set. For example, position 00 (which is byte 1) in a translation table contains
a coded value that corresponds to the first element of the ordered character set. To
determine the position of a character in your operating environment’s character set, use
the SAS function RANK. The following example shows how to use RANK:

data _null_;
x=rank(’a’);
put "The position of a is " x ".";

The SAS log prints the following message: The position of a is 97 .
Each position in a translation table contains a hexadecimal number that is within

the range of 0 (’00’x) to 255 (’FF’x). Hexadecimal values always end with an x. You can
represent one or more consecutive hexadecimal values within quotation marks followed
by a single x. For example, a string of three consecutive hexadecimal values can be
written as ’08090A’x. The SAS log displays each row of a translation table as 16
hexadecimal values enclosed in quotes followed by an x. The SAS log also lists reference
numbers in the vertical and horizontal margins that correspond to the positions in the
table. Example 1 on page 329 shows how the SAS log displays a translation table.

Storing Translation Tables with PROC TRANTAB
When you use PROC TRANTAB to create a customized translation table, the

procedure automatically stores the table in your SASUSER.PROFILE catalog. This
enables you to use customized translation tables without affecting other users. When
you specify the translation table in the SORT procedure or in a GOPTIONS statement,
the software first looks in your SASUSER.PROFILE catalog to find the table. If the
specified translation table is not in your SASUSER.PROFILE catalog, the software
looks in the SASHELP.HOST catalog.

The TRANTAB Procedure � Using Translation Tables Outside PROC TRANTAB 321

If you want the translation table you create to be globally accessed, have your SAS
Installation Coordinator copy the table from your SASUSER.PROFILE catalog (using
the CATALOG procedure) to the SASHELP.HOST catalog. If the table is not found
there, the software will continue to search in SASHELP.LOCALE for the table.

Modifying SAS Translation Tables with PROC TRANTAB
If a translation table that is provided by SAS does not meet your needs, you can use

PROC TRANTAB to edit it and create a new table. That is, you can issue the PROC
TRANTAB statement that specifies the SAS table, edit the table, and then save the
table using the SAVE statement. The modified translation table is saved in your
SASUSER.PROFILE catalog. If you are a SAS Installation Coordinator, you can modify
a translation table with PROC TRANTAB and then use the CATALOG procedure to
copy the modified table from your SASUSER.PROFILE catalog to the SASHELP.HOST
catalog, as shown in the following example:

proc catalog c=sasuser.profile;
copy out=sashelp.host entrytype=trantab;

run;

You can use PROC TRANTAB to modify translation tables stored in the
SASHELP.HOST catalog only if you have update (or write) access to that data library
and catalog.

Using Translation Tables Outside PROC TRANTAB

Using Translation Tables in the SORT Procedure

PROC SORT uses translation tables to determine the collating sequence to be used
by the sort. You can specify an alternative translation table with the SORTSEQ= option
of PROC SORT. For example, if your operating environment sorts with the EBCDIC
sequence by default, and you want to sort with the ASCII sequence, you can issue the
following statement to specify the ASCII translation table:

proc sort sortseq=ascii;

You can also create a customized translation table with PROC TRANTAB and specify
the new table with PROC SORT. This is useful when you want to specify sorting
sequences for languages other than U.S. English.

See Example 6 on page 339 for an example that uses translation tables to sort data
in different ways. For information on the tables available for sorting and the
SORTSEQ= option, see “SORTSEQ= System Option: OpenVMS, UNIX, Windows, and
z/OS” on page 361.

Using Translation Tables with the CPORT and CIMPORT Procedures

The CPORT and CIMPORT procedures use translation tables to translate characters
in catalog entries that you export from one operating environment and import on
another operating environment. You may specify the name of a supplied translation
table or a customized translation table in the TRANTAB statement of PROC CPORT.
See “TRANTAB Statement” on page 391 in the CPORT Procedure for more information.

322 Using Translation Tables Outside PROC TRANTAB � Chapter 15

Using Translation Tables with Remote Library Services
Remote Library Services (RLS) uses translation tables to translate characters when

you access SAS 8 remote data. SAS/CONNECT and SAS/SHARE software use
translation tables to translate characters when you transfer or share files between two
operating environments that use different encoding standards.

Using Translation Tables in SAS/GRAPH Software
In SAS/GRAPH software, translation tables are most commonly used on an IBM

operating environment where tables are necessary because graphics commands must
leave IBM operating environments in EBCDIC representation but must reach
asynchronous graphics devices in ASCII representation. Specifically, SAS/GRAPH
software builds the command stream for these devices internally in ASCII
representation but must convert the commands to EBCDIC representation before they
can be given to the communications software for transmission to the device. SAS/
GRAPH software uses a translation table internally to make the initial conversion from
ASCII to EBCDIC. The communications software then translates the command stream
back to ASCII representation before it reaches the graphics device.

Translation tables are operating environment-specific. In most cases, you can simply
use the default translation table, SASGTAB0, or one of the SAS supplied graphics
translation tables. However, if these tables are not able to do all of the translation
correctly, you can create your own translation table with PROC TRANTAB. The
SASGTAB0 table may fail to do the translation correctly when it encounters characters
from languages other than U.S. English.

To specify an alternative translation table for SAS/GRAPH software, you can either
use the TRANTAB= option in a GOPTIONS statement or modify the TRANTAB device
parameter in the device entry. For example, the following GOPTIONS statement
specifies the GTABTCAM graphics translation table:

goptions trantab=gtabtcam;

Translation tables used in SAS/GRAPH software perform both device-to-operating
environment translation and operating environment-to-device translation. Therefore, a
translation table is made up of 512 bytes, with the first 256 bytes used to perform
device-to-operating environment translation (ASCII to EBCDIC on IBM mainframes)
and the second 256 bytes used to perform operating environment-to-device translation
(EBCDIC to ASCII on IBM mainframes). For PROC TRANTAB, the area of a
translation table for device-to-operating environment translation is considered to be
table one, and the area for operating environment-to-device translation is considered to
be table two. See Example 1 on page 329 for a listing of the ASCII translation table (a
SAS provided translation table), which shows both areas of the table.

On operating environments other than IBM mainframes, translation tables can be
used to translate specific characters in the data stream that are created by the driver.
For example, if the driver normally generates a vertical bar in the data stream, but you
want another character to be generated in place of the vertical bar, you can create a
translation table that translates the vertical bar to an alternate character.

For details on how to specify translation tables with the TRANTAB= option in SAS/
GRAPH software, see SAS/GRAPH Software: Reference, Version 6, First Edition,
Volume 1 and Volume 2.

SAS/GRAPH software also uses key maps and device maps to map codes generated
by the keyboard to specified characters and to map character codes to codes required by
the graphics output device. These maps are specific to SAS/GRAPH software and are
discussed in "The GKEYMAP Procedure" in SAS/GRAPH Software: Reference.

The TRANTAB Procedure � Syntax: TRANTAB Procedure 323

Syntax: TRANTAB Procedure
Tip: Supports RUN-group processing

PROC TRANTAB TABLE=table-name <NLS>;
CLEAR <ONE|TWO|BOTH>;
INVERSE;
LIST <ONE|TWO|BOTH>;
LOAD TABLE=table-name <NLS>;
REPLACE position value-1<…value-n>;
SAVE <TABLE=table-name> <ONE|TWO|BOTH>;
SWAP;

Task Use this statement

Set all positions in the translation table to zero CLEAR

Create an inverse of table 1 INVERSE

Display a translation table in hexadecimal
representation

LIST

Load a translation table into memory for editing LOAD

Replace the characters in a translation table with
specified values

REPLACE

Save the translation table in your
SASUSER.PROFILE catalog

SAVE

Exchange table 1 with table 2 SWAP

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.1 supports the TRANTAB
procedure for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases.

PROC TRANTAB is an interactive procedure. Once you submit a PROC TRANTAB
statement, you can continue to enter and execute statements without repeating the
PROC TRANTAB statement. To terminate the procedure, submit a QUIT statement or
submit another DATA or PROC statement. �

324 PROC TRANTAB Statement � Chapter 15

PROC TRANTAB Statement
Tip: If there is an incorrect table name in the PROC TRANTAB statement, use the
LOAD statement to load the correct table. You do not need to reinvoke PROC
TRANTAB. New tables are not stored in the catalog until you issue the SAVE
statement, so you will not have unwanted tables in your catalog.

PROC TRANTAB TABLE=table-name <NLS>;

Required Arguments

TABLE=table-name
specifies the translation table to create, edit, or display. The specified table name
must be a valid one-level SAS name with no more than 8 characters.

Options

NLS
specifies that the table you listed in the TABLE= argument is one of five special
internal translation tables provided with every copy of the SAS System. You must
use the NLS option when you specify one of the five special tables in the TABLE=
argument:

SASXPT
the local-to-transport format translation table (used by the CPORT procedure)

SASLCL
the transport-to-local format translation table (used by the CIMPORT procedure)

SASUCS
the lowercase-to-uppercase translation table (used by the UPCASE function)

SASLCS
the uppercase-to-lowercase translation table (used by the LOWCASE macro)

SASCCL
the character classification table (used internally), which contains flag bytes that
correspond to each character position that indicate the class or classes to which
each character belongs.

NLS stands for National Language Support. This option and the associated translation
tables provide a method to translate characters that exist in languages other than
English. To make SAS use the modified NLS table, specify its name in the SAS system
option TRANTAB= .

Note: When you load one of these special translation tables, the SAS log displays a
note that states that table 2 is uninitialized. That is, table 2 is an empty table that
contains all zeros. PROC TRANTAB does not use table 2 at all for translation in these
special cases, so you do not need to be concerned about this note. �

The TRANTAB Procedure � LIST Statement 325

CLEAR Statement

Sets all positions in the translation table to zero; used when you create a new table

CLEAR <ONE|TWO|BOTH>;

Options

ONE | TWO | BOTH

ONE
clears table 1.

TWO
clears table 2.

BOTH
clears both table 1 and table 2.

Default: ONE

INVERSE Statement

Creates an inverse of table 1 in a translation table; that is, it creates table 2.

Featured in: Example 5 on page 337

INVERSE;

Details
INVERSE does not preserve multiple translations. Suppose table 1 has two (or more)

different characters translated to the same value; for example, "A" and "B" are both
translated to "1". For table 2, INVERSE uses the last translated character for the
value; that is, "1" is always translated to "B" and not "A", assuming that "A" appears
before "B" in the first table.

Sort programs in SAS require an inverse table for proper operation.

LIST Statement

Displays in the SAS log a translation table in hexadecimal representation

Featured in: All examples

LIST <ONE|TWO|BOTH>;

326 LOAD Statement � Chapter 15

Options

ONE | TWO | BOTH

ONE
displays table 1.

TWO
displays table 2.

BOTH
displays both table 1 and table 2.

Default: ONE

LOAD Statement

Loads a translation table into memory for editing

Tip: Use LOAD when you specify an incorrect table name in the PROC TRANTAB
statement. You can specify the correct name without reinvoking the procedure.

Tip: Use LOAD to edit multiple translation tables in a single PROC TRANTAB step.
(Be sure to save the first table before you load another one.)

Featured in: Example 4 on page 335

LOAD TABLE=table-name <NLS>;

Required Arguments

TABLE=table-name
specifies the name of an existing translation table to be edited. The specified table
name must be a valid one-level SAS name.

Option

NLS
specifies that the table you listed in the TABLE= argument is one of five special
internal translation tables that are provided with SAS. You must use the NLS option
when you specify one of the five special tables in the TABLE= argument:

SASXPT
is the local-to-transport format translation table

SASLCL
is the transport-to-local format translation table

SASUCS
is the lowercase-to-uppercase translation table

The TRANTAB Procedure � REPLACE Statement 327

SASLCS
is the uppercase-to-lowercase translation table

SASCCL
is the character classification table, which contains flag bytes that correspond to
each character position, these indicate the class or classes to which each character
belongs.

NLS stands for National Language Support. This option and the associated translation
tables provide a method to map characters from languages other than English to
programs, displays, and files.

Note: When you load one of these special translation tables, the SAS log displays a
note that states that table 2 is uninitialized. That is, table 2 is an empty table that
contains all zeros. PROC TRANTAB does not use table 2 for translation in these special
cases. �

REPLACE Statement

Replaces characters in a translation table with the specified values, starting at the specified
position

Alias: REP
Tip: To save edits, you must issue the SAVE statement.
Featured in: Example 2 on page 330, Example 3 on page 332, and Example 4 on page 335

REPLACE position value-1<…value-n>;

Required Arguments

position
specifies the position in a translation table where the replacement is to begin. The
editable positions in a translation table begin at position decimal 0 and end at
decimal 255. To specify the position, you can do either of the following:

� Use a decimal or hexadecimal value to specify an actual location. If you specify
a decimal value, for example, 20, PROC TRANTAB locates position 20 in the
table, which is byte 21. If you specify a hexadecimal value, for example, ’14’x,
PROC TRANTAB locates the decimal position that is equivalent to the specified
hexadecimal value, which in this case is position 20 (or byte 21) in the table.

� Use a quoted character. PROC TRANTAB locates the quoted character in the
table (that is, the quoted character’s hexadecimal value) and uses that
character’s position as the starting position. For example, if you specify the
following REPLACE statement, the statement replaces the first occurrence of
the hexadecimal value for "a" and the next two hexadecimal values with the
hexadecimal equivalent of "ABC":

replace ’a’ ’ABC’;

This is useful when you want to locate alphabetic and numerical characters
but you do not know their actual location. If the quoted character is not found,
PROC TRANTAB displays an error message and ignores the statement.

328 SAVE Statement � Chapter 15

To edit positions 256 through 511 (table two), follow this procedure:
1 Issue the SWAP statement.
2 Issue the appropriate REPLACE statement.
3 Issue the SWAP statement again to reposition the table.

value-1 <…value-n>
is one or more decimal, hexadecimal, or character constants that give the actual
value to be put into the table, starting at position. You can also use a mixture of the
types of values. That is, you can specify a decimal, a hexadecimal, and a character
value in one REPLACE statement. Example 3 on page 332 shows a mixture of all
three types of values in the REPLACE statement.

SAVE Statement

Saves the translation table in your SASUSER.PROFILE catalog

Featured in: Example 2 on page 330 and Example 4 on page 335

SAVE <TABLE=table-name> <ONE|TWO|BOTH>;

Options

TABLE=table-name
specifies the name under which the current table is to be saved. The name must be a
valid one-level SAS name.
Default: If you omit the TABLE= option, the current table is saved under the name

you specify in the PROC TRANTAB statement or the LOAD statement.

ONE | TWO | BOTH

ONE
saves table one.

TWO
saves table two.

BOTH
saves both table one and table two.

Default: BOTH

SWAP Statement

Exchanges table 1 with table 2 to enable you to edit positions 256 through 511

Tip: After you edit the table, you must the issue SWAP statement again to reposition
the table.
Featured in: Example 7 on page 341

The TRANTAB Procedure � Program 329

SWAP;

Examples: TRANTAB Procedure

Note: All examples were produced in the UNIX environment. �

Example 1: Viewing a Translation Table

Procedure features:
LIST statement

This example uses PROC TRANTAB to display the SAS supplied ASCII translation
table.

Program

Set the options and specify a translation table.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=ascii;

Display both halves of the translation table. The LIST BOTH statement displays both the
table that provides the translation and the table that provides the inverse translation.

list both;

330 SAS Log � Chapter 15

SAS Log

NOTE: Table specified is ASCII.
ASCII table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x
70 ’707172737475767778797A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

ASCII table 2:
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x
70 ’707172737475767778797A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Example 2: Creating a Translation Table

Procedures features:
LIST statement
REPLACE statement
SAVE statement

This example uses PROC TRANTAB to create a customized translation table.

The TRANTAB Procedure � Program 331

Program

Set the system options and specify the translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=newtable;

Replace characters in the translation table starting at a specified position. The
REPLACE statement places the values in the table starting at position 0. You can use
hexadecimal strings of any length in the REPLACE statement. This example uses strings of
length 16 to match the way that translation tables appear in the SAS log.

replace 0
’00010203a309e57ff9ecc40b0c0d0e0f’x
’10111213a5e008e71819c6c51c1d1e1f’x
’c7fce9e2e40a171beaebe8efee050607’x
’c9e616f4f6f2fb04ffd6dca2b6a7501a’x
’20e1edf3faf1d1aababfa22e3c282b7c’x
’265facbdbca1abbb5f5f21242a293bac’x
’2d2f5fa6a6a6a62b2ba6a62c255f3e3f’x
’a62b2b2b2b2b2b2d2d603a2340273d22’x
’2b6162636465666768692d2ba6a62b2b’x
’2d6a6b6c6d6e6f7071722da62d2b2d2d’x
’2d7e737475767778787a2d2b2b2b2b2b’x
’2b2b2b5f5fa65f5f5fdf5fb65f5fb55f’x
’7b4142434445464748495f5f5f5f5f5f’x
’7d4a4b4c4d4e4f5051525f5f5fb15f5f’x
’5c83535455565758595a5f5ff75f5fb0’x
’30313233343536373839b75f6eb25f5f’x
;

Save the table. The SAVE statement saves the table under the name that is specified in the
PROC TRANTAB statement. By default, the table is saved in your SASUSER.PROFILE catalog.

save;

Display both halves of the translation table in the SAS log. The LIST BOTH statement
displays both the table that provides the translation and the table that provides the inverse
translation.

list both;

332 SAS Log � Chapter 15

SAS Log

Create and edit table 2. Table 2 is empty; that is, it consists entirely of 0s. To create table 2,
you can use the INVERSE statement. (See Example 5 on page 337 .) To edit table 2, you can
use the SWAP statement with the REPLACE statement. (See Example 7 on page 341.)

NOTE: Table specified is NEWTABLE.
WARNING: Table NEWTABLE not found! New table is assumed.
NOTE: NEWTABLE table 1 is uninitialized.
NOTE: NEWTABLE table 2 is uninitialized.

NOTE: Saving table NEWTABLE.
NOTE: NEWTABLE table 2 will not be saved because it is uninitialized.
NEWTABLE table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9ECC40B0C0D0E0F’x
10 ’10111213A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

NOTE: NEWTABLE table 2 is uninitialized.
NEWTABLE table 2:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00000000000000000000000000000000’x
10 ’00000000000000000000000000000000’x
20 ’00000000000000000000000000000000’x
30 ’00000000000000000000000000000000’x
40 ’00000000000000000000000000000000’x
50 ’00000000000000000000000000000000’x
60 ’00000000000000000000000000000000’x
70 ’00000000000000000000000000000000’x
80 ’00000000000000000000000000000000’x
90 ’00000000000000000000000000000000’x
A0 ’00000000000000000000000000000000’x
B0 ’00000000000000000000000000000000’x
C0 ’00000000000000000000000000000000’x
D0 ’00000000000000000000000000000000’x
E0 ’00000000000000000000000000000000’x
F0 ’00000000000000000000000000000000’x

Example 3: Editing by Specifying a Decimal Value for Starting Position
Procedure features:

LIST statement
REPLACE statement

The TRANTAB Procedure � SAS Log 333

SAVE statement

This example edits the translation table that was created in Example 2 on page 330.
The decimal value specified in the REPLACE statement marks the starting position for
the changes to the table.

The vertical arrow in both SAS logs marks the point at which the changes begin.

Program 1: Display the Original Table

Set the system options and specify the translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=newtable;

Display the original table. This LIST statement displays the original NEWTABLE
translation table.

list one;

SAS Log

The Original NEWTABLE Translation Table

NOTE: Table specified is NEWTABLE.
NOTE: NEWTABLE table 2 is uninitialized.
NEWTABLE table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9ECC40B0C0D0E0F’x
10 ’10111213A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

334 Program 2: Edit the Table � Chapter 15

Program 2: Edit the Table

Replace characters in the translation table, starting at a specified position. The
REPLACE statement starts at position decimal 10, which is byte 11 in the original table, and
performs a byte-to-byte replacement with the given values.

replace 10
20 10 200 ’x’ ’ux’ ’092040’x;

Save the changes. The SAVE statement saves the changes that you made to the NEWTABLE
translation table.

save;

Display the new table. The second LIST statement displays the edited NEWTABLE
translation table.

list one;

SAS Log

The Edited NEWTABLE Translation Table

NOTE: Saving table NEWTABLE.
NOTE: NEWTABLE table 2 will not be saved because it is uninitialized.
NEWTABLE table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’00010203A309E57FF9EC140AC8787578’x
10 ’09204013A5E008E71819C6C51C1D1E1F’x
20 ’C7FCE9E2E40A171BEAEBE8EFEE050607’x
30 ’C9E616F4F6F2FB04FFD6DCA2B6A7501A’x
40 ’20E1EDF3FAF1D1AABABFA22E3C282B7C’x
50 ’265FACBDBCA1ABBB5F5F21242A293BAC’x
60 ’2D2F5FA6A6A6A62B2BA6A62C255F3E3F’x
70 ’A62B2B2B2B2B2B2D2D603A2340273D22’x
80 ’2B6162636465666768692D2BA6A62B2B’x
90 ’2D6A6B6C6D6E6F7071722DA62D2B2D2D’x
A0 ’2D7E737475767778787A2D2B2B2B2B2B’x
B0 ’2B2B2B5F5FA65F5F5FDF5FB65F5FB55F’x
C0 ’7B4142434445464748495F5F5F5F5F5F’x
D0 ’7D4A4B4C4D4E4F5051525F5F5FB15F5F’x
E0 ’5C83535455565758595A5F5FF75F5FB0’x
F0 ’30313233343536373839B75F6EB25F5F’x

At position 10 (which is byte 11), a vertical arrow denotes the starting point for the
changes to the translation table.

� At byte 11, decimal 20 (which is hexadecimal 14) replaces hexadecimal C4.

The TRANTAB Procedure � Program 1: Display the Original Table 335

� At byte 12, decimal 10 (which is hexadecimal 0A) replaces hexadecimal 0B.
� At byte 13, decimal 200 (which is hexadecimal C8) replaces hexadecimal 0C.
� At byte 14, character ’x’ (which is hexadecimal 78) replaces hexadecimal 0D.
� At bytes 15 and 16, characters ’ux’ (which are hexadecimal 75 and 78, respectively)

replace hexadecimal 0E and 0F.
� At bytes 17, 18, and 19, hexadecimal 092040 replaces hexadecimal 101112.

Example 4: Editing by Using a Quoted Character for Starting Position

Procedure features:
LIST statement
LOAD statement
REPLACE statement
SAVE statement

This example creates a new translation table by editing the already fixed ASCII
translation table. The first occurrence of the hexadecimal equivalent of the quoted
character that was specified in the REPLACE statement is the starting position for the
changes to the table. This differs from Example 3 on page 332 in that you do not need
to know the exact position at which to start the changes to the table. PROC TRANTAB
finds the correct position for you.

The edited table is saved under a new name. Horizontal arrows in both SAS logs
denote the edited rows in the translation table.

Program 1: Display the Original Table

Set the system options and specify which translation table to edit.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=ascii;

Display the translation table. The LIST statement displays the original translation table in
the SAS log.

list one;

336 SAS Log � Chapter 15

SAS Log

NOTE: Table specified is ASCII.
ASCII table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’606162636465666768696A6B6C6D6E6F’x �

70 ’707172737475767778797A7B7C7D7E7F’x �

80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Program 2: Edit the Table

Replace characters in the translation table, starting at a specified position. The
REPLACE statement finds the first occurrence of the hexadecimal "a" (which is 61) and replaces
it, and the next 25 hexadecimal values, with the hexadecimal values for uppercase "A" through
"Z."

replace ’a’ ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’;

Save your changes. The SAVE statement saves the changes made to the ASCII translation
table under the new table name UPPER. The stored contents of the ASCII translation table
remain unchanged.

save table=upper;

Load and display the translation table. The LOAD statement loads the edited translation
table UPPER. The LIST statement displays the translation table UPPER in the SAS log.

load table=upper;
list one;

The TRANTAB Procedure � Program 337

SAS Log

The UPPER Translation Table

The horizontal arrows in the SAS log denote the rows in which the changes are made.

NOTE: Table UPPER being loaded.
UPPER table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x �

70 ’505152535455565758595A7B7C7D7E7F’x �

80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

Example 5: Creating the Inverse of a Table

Procedure features:
INVERSE statement
LIST statement
SAVE statement

This example creates the inverse of the translation table that was created in
Example 4 on page 335. The new translation table that is created in this example is the
operating environment-to-device translation for use in data communications.

Program

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=upper;

Create the inverse translation table, save the tables, and display the tables. The
INVERSE statement creates table 2 by inverting the original table 1 (called UPPER). The SAVE
statement saves the translation tables. The LIST BOTH statement displays both the original
translation table and its inverse.

338 SAS Log � Chapter 15

inverse;
save;
list both;

SAS Log

The UPPER Translation Table and Its Inverse

The SAS log lists all the duplicate values that it encounters as it creates the inverse of table
one. To conserve space, most of these messages are deleted in this example.

NOTE: Table specified is UPPER.
NOTE: This table cannot be mapped one to one.
duplicate of ’41’x found at ’61’x in table one.
duplicate of ’42’x found at ’62’x in table one.
duplicate of ’43’x found at ’63’x in table one.

.

.

.
duplicate of ’58’x found at ’78’x in table one.
duplicate of ’59’x found at ’79’x in table one.
duplicate of ’5A’x found at ’7A’x in table one.
NOTE: Saving table UPPER.
UPPER table 1:

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 ’000102030405060708090A0B0C0D0E0F’x
10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

The TRANTAB Procedure � Program 339

The INVERSE statement lists in the SAS log all of the multiple translations that it
encounters as it inverts the translation table. In Example 4 on page 335, all the
lowercase letters were converted to uppercase in the translation table UPPER, which
means that there are two sets of uppercase letters in UPPER. When INVERSE cannot
make a translation, PROC TRANTAB fills the value with 00. Note that the inverse of
the translation table UPPER has numerous 00 values.

Example 6: Using Different Translation Tables for Sorting

Procedure features:
PROC SORT statement option:

SORTSEQ=

Other features:
PRINT procedure

This example shows how to specify a different translation table to sort data in an
order that is different from the default sort order. Characters that are written in a
language other than U.S. English may require a sort order that is different from the
default order.

Note: You can use the TRABASE program in the SAS Sample Library to create
translation tables for several different languages. �

Program

Set the SAS system options.

options nodate pageno=1 linesize=80 pagesize=60;

Create the TESTSORT data set. The DATA step creates a SAS data set with four pairs of
words, each pair differing only in the case of the first letter.

data testsort;
input Values $10.;
datalines;

Always
always
Forever
forever
Later
later
Yesterday
yesterday
;

340 SAS Output � Chapter 15

Sort the data in an order that is different from the default sort order. PROC SORT sorts
the data by using the default translation table, which sorts all lowercase words first, then all
uppercase words.

proc sort;
by values;

run;

Print the data set. PROC PRINT prints the sorted data set.

proc print noobs;
title ’Default Sort Sequence’;

run;

SAS Output

Output from Sorting Values with Default Translation Table

The default sort sequence sorts all the capitalized words in alphabetical order before it sorts any
lowercase words.

Default Sort Sequence 1

Values

Always
Forever
Later
Yesterday
always
forever
later
yesterday

Sort the data according to the translation table UPPER and print the new data set.
The SORTSEQ= option specifies that PROC SORT sort the data according to the customized
translation table UPPER, which treats lowercase and uppercase letters alike. This is useful for
sorting without regard for case. PROC PRINT prints the sorted data set.

proc sort sortseq=upper;
by values;

run;
proc print noobs;

title ’Customized Sort Sequence’;
run;

The TRANTAB Procedure � Program 341

SAS Output

Output from Sorting Values with Customized Translation Table

The customized sort sequence sorts all the words in alphabetical order, without regard for the
case of the first letters.

Customized Sort Sequence 2

Values

Always
always
Forever
forever
Later
later
Yesterday
yesterday

Example 7: Editing Table 1 and Table 2

Procedure features:
LIST statement

REPLACE statement

SAVE statement

SWAP statement

This example shows how to edit both areas of a translation table. To edit positions
256 through 511 (table 2), you must

1 Issue the SWAP statement to have table 2 change places with table 1.

2 Issue an appropriate REPLACE statement to make changes to table two.

3 Issue the SWAP statement again to reposition the table.

Arrows in the SAS logs mark the rows and columns that are changed.

Program

Set the SAS system options and specify the translation table.

options nodate pageno=1 linesize=80 pagesize=60;
proc trantab table=upper;

342 SAS Log � Chapter 15

Display the original translation table. The LIST statement displays the original UPPER
translation table.

list both;

SAS Log

The Original UPPER Translation Table

NOTE: Table specified is UPPER.
UPPER table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000102030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

The TRANTAB Procedure � SAS Log 343

Replace characters in the translation table starting at a specified position. The
REPLACE statement starts at position 1 and replaces the current value of 01 with ’0A’.

replace 1 ’0A’x;

Prepare table 2 to be edited. The first SWAP statement positions table 2 so that it can be
edited. The second REPLACE statement makes the same change in table 2 that was made in
table 1.

swap;
replace 1 ’0A’x;

Save and display the tables in their original positions. The second SWAP statement
restores tables 1 and table 2 to their original positions. The SAVE statement saves both areas of
the translation table by default. The LIST statement displays both areas of the table.

swap;
save;
list both;

344 SAS Log � Chapter 15

SAS Log

The Edited UPPER Translation Table In byte 2, in both areas of the translation table,
hexadecimal value ’0A’ replaces hexadecimal value 01. Arrows mark the rows and columns of
the table in which this change is made.

NOTE: Table specified is UPPER.
UPPER table 1:

�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000A02030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’604142434445464748494A4B4C4D4E4F’x
70 ’505152535455565758595A7B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

UPPER table 2:
�

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 ’000A02030405060708090A0B0C0D0E0F’x �

10 ’101112131415161718191A1B1C1D1E1F’x
20 ’202122232425262728292A2B2C2D2E2F’x
30 ’303132333435363738393A3B3C3D3E3F’x
40 ’404142434445464748494A4B4C4D4E4F’x
50 ’505152535455565758595A5B5C5D5E5F’x
60 ’60000000000000000000000000000000’x
70 ’00000000000000000000007B7C7D7E7F’x
80 ’808182838485868788898A8B8C8D8E8F’x
90 ’909192939495969798999A9B9C9D9E9F’x
A0 ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’x
B0 ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’x
C0 ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’x
D0 ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’x
E0 ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’x
F0 ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’x

See Also

Conceptual discussion about “Transcoding and Translation Tables” on page 22

System Options:

“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

NLS Options for Commands, Statements, and Procedures:

“TRANTAB Statement” on page 391

345

P A R T7

System Options for NLS

Chapter 16.Overview to SAS System Options for NLS 347

Chapter 17.System Options for NLS 349

346

347

C H A P T E R

16
Overview to SAS System Options
for NLS

System Options for NLS by Category 347

System Options for NLS by Category
The language control category of SAS system options are affected by NLS. The

following table provides brief descriptions of the SAS system options. For more detailed
descriptions, see the dictionary entry for each SAS system option:

Table 16.1 Summary of Categories of System Options for NLS

Category System Options for NLS Description

Environment control:
Language control

“DATESTYLE= System
Option” on page 349

Identifies the sequence of month, day, and year when the
ANYDTDTM, ANYDTDTE, or ANYDTTME informats
encounter input where the year, month, and day
determination is ambiguous

“DBCS System Option:
UNIX, Windows, and z/
OS” on page 349

Recognizes double-byte character sets (DBCS)

“DBCSLANG System
Option: UNIX, Windows,
and z/OS” on page 350

Specifies a double-byte character set (DBCS) language

“DBCSTYPE System
Option: UNIX, Windows,
and z/OS” on page 351

Specifies the encoding method to use for a double-byte
character set (DBCS)

“DFLANG= System
Option: OpenVMS, UNIX,
Windows, and z/OS” on
page 353

Specifies the language for international date informats
and formats

“ENCODING System
Option: OpenVMS, UNIX,
Windows, and z/OS” on
page 354

Specifies the default character-set encoding for the SAS
session

“FSDBTYPE System
Option: UNIX” on page
356

Specifies a full-screen double-byte character set (DBCS)
encoding method

348 System Options for NLS by Category � Chapter 16

Category System Options for NLS Description

“FSIMM System Option:
UNIX” on page 357

Specifies input method modules (IMMs) for full-screen
double-byte character set (DBCS)

“FSIMMOPT System
Option: UNIX” on page
357

Specifies options for input method modules (IMMs) that
are used with a full-screen double-byte character set
(DBCS)

“LOCALE System Option:
OpenVMS, UNIX,
Windows, and z/OS” on
page 358

Specifies a set of attributes in a SAS session that reflect
the language, local conventions, and culture for a
geographical region

“NLSCOMPATMODE
System Option: z/OS” on
page 360

Provides national language compatibility with previous
releases of SAS

“PAPERSIZE= System
Option: OpenVMS, UNIX,
Window, and z/OS” on
page 361

Specifies the paper size for the printer to use

“TRANTAB= System
Option: OpenVMS, UNIX,
Windows, and z/OS” on
page 362

Specifies the translation tables that are used by various
parts of SAS

Sort: Procedure options “SORTSEQ= System
Option: OpenVMS, UNIX,
Windows, and z/OS” on
page 361

Specifies a language-specific collation sequence for the
SORT procedure to use in the current SAS session

349

C H A P T E R

17
System Options for NLS

DATESTYLE= System Option 349
DBCS System Option: UNIX, Windows, and z/OS 349

DBCSLANG System Option: UNIX, Windows, and z/OS 350

DBCSTYPE System Option: UNIX, Windows, and z/OS 351

DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS 353

ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS 354
FSDBTYPE System Option: UNIX 356

FSIMM System Option: UNIX 357

FSIMMOPT System Option: UNIX 357

LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS 358

NLSCOMPATMODE System Option: z/OS 360

PAPERSIZE= System Option: OpenVMS, UNIX, Window, and z/OS 361
SORTSEQ= System Option: OpenVMS, UNIX, Windows, and z/OS 361

TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS 362

DATESTYLE= System Option

Identifies the sequence of month, day, and year when the ANYDTDTM, ANYDTDTE, or ANYDTTME
informats encounter input where the year, month, and day determination is ambiguous

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL, LANGUAGECONTROL
See: DATESTYLE= system option in SAS Language Reference: Dictionary

DBCS System Option: UNIX, Windows, and z/OS

Recognizes double-byte character sets (DBCS)

Default: NODBCS
Valid in: configuration file, SAS invocation
UNIX specifics: Also valid in SASV9_OPTIONS environment variable

350 DBCSLANG System Option: UNIX, Windows, and z/OS � Chapter 17

Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL

Syntax
-DBCS | -NODBCS (UNIX and Windows)

DBCS | NODBCS (z/OS)

DBCS
recognizes double-byte character sets (DBCS) for encoding values. DBCS encodings
are used to support East Asian languages.

NODBCS
does not recognize a DBCS for encoding values. Instead, a single-byte character set
(SBCS) is used for encoding values. A single byte is used to represent each character
in the character set.

Details
The DBCS system option is used for supporting languages from East Asian countries
such as Chinese, Japanese, Korean, and Taiwanese.

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 29

“DBCS Values for a SAS Session” on page 405
Chapter 23, “Encoding Values in SAS Language Elements,” on page 407
System Options:

“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 350
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 351

DBCSLANG System Option: UNIX, Windows, and z/OS

Specifies a double-byte character set (DBCS) language

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
UNIX specifics: Also valid in SASV9_OPTIONS environment variable
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
-DBCSLANG language (UNIX and Windows)

System Options for NLS � DBCSTYPE System Option: UNIX, Windows, and z/OS 351

DBCSLANG = language (z/OS)

language
depends on the operating environment. The following table contains valid language
values:

Table 17.1 Supported DBCS Languages According to Operating Environment

Language z/OS UNIX Windows

CHINESE (simplified) yes* yes yes

JAPANESE yes yes yes

KOREAN yes yes yes

TAIWANESE

(traditional)

yes yes yes

NONE yes no yes

UNKNOWN yes no no

* For z/OS only, HANGUL and HANZI are valid aliases for CHINESE.

Details
The proper setting for the DBCSLANG system option depends on which setting is used
for the DBCSTYPE system option. Some of the settings of DBCSTYPE support all of
the DBCSLANG languages, while other settings of DBCSTYPE support only Japanese.

CHINESE specifies the language used in the People’s Republic of China, which is
known as simplified Chinese. TAIWANESE specifies the Chinese language used in
Taiwan, which is known as traditional Chinese.

See Also

Conceptual discussion about Chapter 5, “Double-Byte Character Sets (DBCS),” on
page 29

“DBCS Values for a SAS Session” on page 405
Chapter 23, “Encoding Values in SAS Language Elements,” on page 407
System Options:

“DBCS System Option: UNIX, Windows, and z/OS” on page 349
“DBCSTYPE System Option: UNIX, Windows, and z/OS” on page 351

DBCSTYPE System Option: UNIX, Windows, and z/OS

Specifies the encoding method to use for a double-byte character set (DBCS)

z/OS Default: IBM
UNIX Default: Depends on the specific machine
Windows Default: PCMS
Valid in: configuration file, SAS invocation

352 DBCSTYPE System Option: UNIX, Windows, and z/OS � Chapter 17

Category: Environment control: Language control
UNIX specifics: Also valid in SASV9_OPTIONS environment variable
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
-DBCSTYPE encoding-method (UNIX and Windows)

DBCSTYPE = encoding-method (z/OS)

encoding-method
specifies the method that is used to encode a double-byte character set (DBCS). Valid
values for encoding-method depend on the standard that the computer hardware
manufacturer applies to the operating environment.

Details
DBCS encoding methods vary according to the computer hardware manufacturer and
the standards organization.

The DBCSLANG= system option specifies the language that the encoding method is
applied to. You should specify DBCSTYPE= only if you also specify the DBCS and
DBCSLANG= system options.

z/OS DBCSTYPE= supports the DBCSTYPE= value of IBM.

Operating Environment-Specific DBCSTYPE= Values

Table 17.2 DBCS Encoding Methods for z/OS

DBCSTYPE= Value Description

IBM IBM PC encoding method

Table 17.3 DBCS Encoding Methods for UNIX

DBCSTYPE= Value Description

DEC DEC encoding method

EUC Extended UNIX Code encoding method

HP15 Hewlett Packard encoding method

PCIBM IBM PC encoding method

PCMS Microsoft PC encoding method

System Options for NLS � DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS 353

DBCSTYPE= Value Description

SJIS Shift-JIS encoding method for the Japanese
language only

NONE Disables DBCS processing

Table 17.4 DBCS Encoding Methods for Windows

DBCSTYPE= Value Description

PCMS Microsoft PC encoding method

WINDOWS Alias for PCMS

SJIS Shift-JIS encoding method for the Japanese
language only

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 29

“DBCS Values for a SAS Session” on page 405
Chapter 23, “Encoding Values in SAS Language Elements,” on page 407
System Options:

“DBCS System Option: UNIX, Windows, and z/OS” on page 349
“DBCSLANG System Option: UNIX, Windows, and z/OS” on page 350

DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies the language for international date informats and formats

Default: English
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
DFLANG=’language’

Syntax Description

’language’
specifies the language that is used for international date informats and formats.

These are valid values for language:

354 ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS � Chapter 17

� Afrikaans
� Catalan
� Croatian
� Czech
� Danish
� Dutch
� English
� Finnish

� French
� German
� Hungarian
� Italian
� Japanese
� Macedonian
� Norwegian
� Polish
� Portuguese

� Russian
� Slovenian
� Spanish
� Swedish
� Swiss_French
� Swiss_German

Details
You can change the value during a SAS session, but you can use only one language at a
time. The values for language are not case-sensitive.

See Also

Chapter 8, “Overview to Formats for NLS,” on page 47

ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies the default character-set encoding for the SAS session

OpenVMS and UNIX Default: latin1
z/OS Default: OPEN_ED-1047
Windows Default: wlatin1
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
OpenVMS specifics: Also valid in VMS_SAS_OPTIONS DCL symbol
PROC OPTIONS GROUP: LANGUAGECONTROL

System Options for NLS � ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS 355

Syntax
-ENCODING= ASCIIANY | EBCDICANY | encoding-value (UNIX and Windows)

ENCODING= encoding-value (OpenVMS, UNIX, Windows, and z/OS)

ASCIIANY
is valid only for OpenVMS, UNIX, and OpenVMS. Transcoding normally occurs when
SAS detects that the session encoding and data set encoding are different.
ASCIIANY enables you to create a data set that SAS will not transcode if the SAS
session that accesses the data set has a session that encoding value of ASCII. If you
transfer the data set to a machine that uses EBCDIC encoding, transcoding occurs.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

EBCDICANY
is valid only for z/OS. Transcoding normally occurs when SAS detects that the
session encoding and the data set encoding are different. EBCDICANY enables you
to create a data set that SAS will not transcode if the SAS session accessing the data
set has a session encoding value of EBCDIC. If you transfer the data set to a
machine that uses ASCII encoding, transcoding occurs.

encoding-value
For valid values for all operating environments, see Chapter 24, “Encoding Values for
a SAS Session,” on page 413.

Details
A character-set encoding is a set of characters that have been mapped to numeric
values called code points.

The ENCODING= system option is valid only when the NONLSCOMPATMODE
system option is set.

The encoding for a SAS session is determined by the values of the ENCODING=,
LOCALE=, DBCSTYPE=, and DBCSLANG= system options as follows:

� If the ENCODING= and LOCALE= system options are not specified, the default
value is ENCODING=. For OpenVMS and UNIX, the default value is latin1; for
Windows, the default value is wlatin1; for z/OS, the default is OPEN_ED-1047.

� If both LOCALE= and ENCODING= are specified, the session encoding is the
value that is specified by the ENCODING= option.

� If LOCALE= is specified and ENCODING= is not specified, SAS infers the
appropriate encoding value from the LOCALE= value.

� If the DBCS option is set, the values for the DBCSLANG= and DBCSTYPE=
system options determine the ENCODING= and LOCALE= values.

See Also

Conceptual Information:

“Overview of Locale Concepts for NLS” on page 5
Conceptual discussion about “Overview of Encoding for NLS” on page 9

356 FSDBTYPE System Option: UNIX � Chapter 17

Conceptual discussion about “Overview to Transcoding” on page 21
Chapter 21, “Values for the LOCALE= System Option,” on page 397
Chapter 22, “SAS System Options for Processing DBCS Data,” on page 405
Chapter 23, “Encoding Values in SAS Language Elements,” on page 407

FSDBTYPE System Option: UNIX

Specifies a full-screen double-byte character set (DBCS) encoding method

Default: DEFAULT
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
UNIX specifics: all

Syntax
-FSDBTYPE encoding-method

Details
The FSDBTYPE= system option specifies the encoding method that is appropriate for a
full-screen DBCS enabling method. Full-screen DBCS encoding methods vary according
to the computer hardware manufacturer and the standards organization.

Table 17.5 Full-Screen DBCS Encoding Methods

FSDBTYPE= Encoding Method Description

dec Digital Equipment Corporation encoding method

euc Extended UNIX encoding method

hp15 HP-UX encoding method

jis7 7-bit Shift-JIS encoding method used in an X
windows environment for the Japanese language
only

pcibm IBM PC encoding method

sjis Shift-JIS encoding method for the Japanese
language only

default default method that is used by the specific host

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 29

System Options for NLS � FSIMMOPT System Option: UNIX 357

“DBCS Values for a SAS Session” on page 405
Chapter 23, “Encoding Values in SAS Language Elements,” on page 407

FSIMM System Option: UNIX

Specifies input method modules (IMMs) for full-screen double-byte character set (DBCS)

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
UNIX specifics: all

Syntax
-FSIMM fsdevice_name=IMM-name1<, fsdevice_name=IMM-name2>...

Details
You can specify the following values for IMM-name:

TTY | SASWUJT
provides an interface for /dev/tty. This IMM enables you to enter DBCS strings
through a terminal emulator that has DBCS input capability.

PIPE | SASWUJP
provides a pipe interface. This interface forks the DBCS input server process. The
default server name is saswujms, which uses the vendor-supplied MOTIF toolkit.

For example, to use the PIPE input method module for X11.motif drivers, you would
specify:

-FSIMM X11.motif=PIPE

Note: The server is specified by using the FSIMMOPT option. �

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 29

System Option:
“FSIMMOPT System Option: UNIX” on page 357

FSIMMOPT System Option: UNIX

Specifies options for input method modules (IMMs) that are used with a full-screen double-byte
character set (DBCS)

358 LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS � Chapter 17

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
UNIX specifics: all

Syntax
-FSIMMOPT fullscreen-IMM:IMM-option

Details
The FSIMMOPT system option specifies an option for each full-screen IMM (input
method module). You can specify only one FSIMMOPT option for each IMM. If you
specify multiple FSIMMOPT options for the same IMM, only the last specification is
used.

For option values for each IMM, see SAS Technical Report J-121, DBCS Support
Usage Guide (in Japanese).

For example, you can use the FSIMMOPT option to specify the name of the server,
MOTIF, to be used for the PIPE IMM:

-fsimmopt PIPE:MOTIF

See Also

Conceptual Information:
Chapter 5, “Double-Byte Character Sets (DBCS),” on page 29

System Option:
“FSIMM System Option: UNIX” on page 357

LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies a set of attributes in a SAS session that reflect the language, local conventions, and
culture for a geographical region

Default: English_UnitedStates
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
OpenVMS specifics: Also valid in VMS_SAS_OPTIONS DCL symbol
UNIX specifics: Also valid in SASV9_OPTIONS environment variable
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
-LOCALE locale-name (UNIX and Windows)

System Options for NLS � LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS 359

LOCALE=locale-name (OpenVMS, UNIX, Windows, and z/OS)

locale-name
For a complete list of locale values (SAS names and POSIX names), see Chapter 21,
“Values for the LOCALE= System Option,” on page 397.

Details
The LOCALE= system option is used to specify the locale, which reflects the local
conventions, language, and culture a geographical region.

If the value of the LOCALE= system option is not compatible with the value of the
ENCODING= system option, the character-set encoding is determined by the value of
the ENCODING= system option.

If the DBCS= system option is active, the values of the DBCSTYPE= and
DBCSLANG= system options determine the locale and character-set encoding.

When you set a value for LOCALE=, the value of the following system options are
modified unless explicit values have been specified:

ENCODING=
The locale that you set has a common encoding value that is used most often in
the operating environment where SAS runs. If you start SAS with the LOCALE=
system option and you do not specify the ENCODING= system option, SAS
compares the default value for ENCODING= and the most common locale
encoding value. If the two encoding values are not the same, the ENCODING=
system option is set to the LOCALE= encoding value. When the ENCODING=
system option is set, the TRANTAB= system option is also set.

DATESTYLE=
When LOCALE= is set, the DATESTYLE= system option uses the value that
corresponds to the chosen locale.

DFLANG=
When LOCALE= is set, the DFLANG= system option is set to a value that
corresponds to the chosen locale.

PAPERSIZE=
When LOCALE= is set, the PAPERSIZE= system option is set to a value that
corresponds to the chosen locale and the ODS printer is set to the preferred unit of
measurement, inches or centimeters, for that locale.

CAUTION:
Under the Windows operating systems only: The LOCALE= option can be used to
specify PAPERSIZE= only if the UNIVERSALPRINT and
UPRINTMENUSWITCH system options are also specified. For details about
the UNIVERSALPRINT system option, see SAS Language Reference:
Dictionary. For details about the UPRINTMENUSWITCH system option, see
SAS Companion for Windows. �

See Also

Conceptual Information:

Chapter 2, “Locale for NLS,” on page 5

Chapter 21, “Values for the LOCALE= System Option,” on page 397

360 NLSCOMPATMODE System Option: z/OS � Chapter 17

System Options:
“ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on page 354
DATESTYLE in SAS Language Reference: Dictionary
“DFLANG= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 353
PAPERSIZE in SAS Language Reference: Dictionary
“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

NLSCOMPATMODE System Option: z/OS

Provides national language compatibility with previous releases of SAS

Default: NONLSCOMPATMODE
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL

Syntax
NLSCOMPATMODE | NONLSCOMPATMODE

NLSCOMPATMODE
provides compatibility with previous releases of SAS in order to process data in
languages other than English, which is the default language. Programs that ran in
previous releases of SAS will continue to work when NLSCOMPATMODE is set.

Note: NLSCOMPATMODE might affect the format of outputs that are produced
using ODS. If you are using ODS, set the option value to NONLSCOMPATMODE. �

NONLSCOMPATMODE
provides support for data processing using native characters for languages other than
English. When NONLSCOMPATMODE is set, character data is processed using the
encoding that is specified for the SAS session.

When NONLSCOMPATMODE is in effect, SAS does not support substitution
characters in SAS syntax. If you run SAS with NONLSCOMPATMODE, you must
update existing programs to use national characters instead of substitution
characters. For example, Danish customers who have substituted the ‘Å’ for the ‘$’
character in existing SAS programs will have to update the SAS syntax to use the ‘$’
in their environments.

Details
The NONLSCOMPATMODE system option is provided for international customers who
use non-English encodings and who want to take advantage of emerging industry
standards when they are coding new applications.

The NLSCOMPATMODE or NONLSCOMPATMODE settings do not change the
value of the LOCALE or ENCODING system options. If the ENCODING option is set,
you will see the encoding values that you specified when you display the option, even
though parts of SAS will not use the encoding value for processing when
NLSCOMPATMODE is in effect.

System Options for NLS � SORTSEQ= System Option: OpenVMS, UNIX, Windows, and z/OS 361

PAPERSIZE= System Option: OpenVMS, UNIX, Window, and z/OS

Specifies the paper size for the printer to use

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
See: PAPERSIZE= System Option in SAS Language Reference: Dictionary

SORTSEQ= System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies a language-specific collation sequence for the SORT procedure to use in the current SAS
session

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP: SORT

Syntax
SORTSEQ=collation-sequence

Syntax Description

collation-sequence
specifies the collation sequence that the SORT procedure is to use in the current SAS
session. Valid values can be user-supplied, or they can be one of the following:

� ASCII
� DANISH (alias NORWEGIAN)
� EBCDIC
� FINNISH
� ITALIAN
� NATIONAL
� POLISH
� REVERSE
� SPANISH
� SWEDISH

Details
To create or change a collation sequence, use the TRANTAB procedure to create or
modify translation tables. When you create your own translation tables, they are stored

362 TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS � Chapter 17

in your PROFILE catalog, and they override any translation tables with the same name
that are stored in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the PROFILE catalog to the HOST catalog. All users can access the new or
modified translation tables. �

If you are in a windowing environment, use the Explorer window to display the
SASHELP HOST catalog. In the HOST catalog, entries of type TRANTAB contain
collation sequences that are identified by the entry name.

If you are not in a windowing environment, issue the following statements to
generate a list of the contents of the HOST catalog. Collation sequences are entries of
the type TRANTAB.

proc catalog catalog=sashelp.host;
contents;

run;

To see the contents of a particular translation table, use these statements:

proc trantab table=translation-table-name;
list;

run;

The contents of collation sequences are displayed in the SAS log.

See Also

“Collation Sequence” on page 16

Data Set Options:
“SORTSEQ= Data Set Option” on page 42

System Options:
“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS

Specifies the translation tables that are used by various parts of SAS

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control
PROC OPTIONS GROUP: LANGUAGECONTROL
Interaction: The TRANTAB= system option specifies a translation table to use for the
SAS session, including file transfers. The TRANTAB statement specifies a customized
translation table (for example, to map an EBCDIC character to an ASCII character) to
apply to the character set in the SAS file that is being exported or transferred.

Syntax
TRANTAB=(catalog-entries)

System Options for NLS � TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS 363

Note: TRANTAB= was introduced in SAS 6 to support the requirements of national
languages. SAS 8.2 introduced the LOCALE= system option as an improvement on the
features of TRANTAB=. SAS 9.1 supports TRANTAB= for backward compatibility.
However, using the LOCALE= system option is preferred in later SAS releases. �

Syntax Description

catalog-entries
specifies SAS catalog entries that contain translation tables. If you specify
entry-name.type, SAS searches SASUSER.PROFILE first and then SASUSER.HOST.

Details
Translation tables are specified in a parenthesized list that has ten positions. The
position in which a table appears in the list determines the type of translation table
that is specified. Individual entries in the list are separated by commas. See the list of
positions and types that follows:

Position Type of Translation Table

1st local-to-transport-format

2nd transport-to-local-format

3rd lowercase-to-uppercase

4th uppercase-to-lowercase

5th character classification

6th scanner translation

7th delta characters

8th scanner character classification

9th not used

10th DBCS user table

CAUTION:
Do not change a translation table unless you are familiar with its purpose. Translation
tables are used internally by the SAS supervisor to implement NLS. If you are
unfamiliar with the purpose of translation tables, do not change the specifications
without proper technical advice. �

To change one table, specify null entries for the other tables. For example, to change
the lowercase-to-uppercase table, which is third in the list, specify uppercase as follows:

options trantab = (, , new-uppercase-table);

The other tables remain unchanged. The output from the OPTIONS procedure
reflects the last specification for the TRANTAB= option and not the composite
specification. Here is an example:

options trantab = (, , new-uppercase-table);
options trantab = (, , , new-lowercase-table);

364 TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS � Chapter 17

PROC OPTIONS shows that the value for TRANTAB= is
(, , , new-lowercase-table), but both the new-uppercase and new-lowercase tables are

in effect.

See Also

Chapter 15, “The TRANTAB Procedure,” on page 319

365

P A R T8

Other Commands, Statements, and
Procedure Statements for NLS

Chapter 18.Overview to NLS Options Used in Commands, Statements,
and Procedures 367

Chapter 19.Options for Commands, Statements, and Procedures for
NLS 369

Chapter 20.The TRANTAB Statement Used with Procedures 391

366

367

C H A P T E R

18
Overview to NLS Options Used in
Commands, Statements, and
Procedures

Commands, Statements, and Procedures for NLS by Category 367

Commands, Statements, and Procedures for NLS by Category
The data set control and data access categories of options for selected SAS

statements are affected by NLS. The following table provides brief descriptions of the
statement options. For more detailed descriptions, see the dictionary entry for each
statement option:

Table 18.1 Summary of NLS Statements by Category

Category Statements for NLS Description

Data Access “CVPBYTES=,
CVPENGINE=, and
CVPMULTIPLIER=
Options” on page 373

Specifies attributes for character variables that are
needed in order to transcode a SAS file

“ENCODING= Option” on
page 378

Overrides and transcodes the encoding for input or
output processing of external files

“INENCODING= and
OUTENCODING=
Options” on page 381

Overrides and changes the encoding when reading or
writing SAS data sets in the SAS data library

“ODSCHARSET= Option”
on page 382

Specifies the character set to be generated in the META
declaration for the output

“ODSTRANTAB = Option”
on page 383

Specifies the translation table to use when transcoding
an XML document for an output file

“RENCODING= Option”
on page 385

Specifies the ASCII-based or EBCDIC-based encoding to
use for transcoding data for a SAS/SHARE server session
that is using an EBCDICANY or ASCIIANY session
encoding

“XMLENCODING=
Option” on page 390

Overrides the encoding of an XML document to import or
export an external document

Information “TRANSCODE= Option”
on page 387

Specifies an attribute in the ATTRIB statement (which
associates a format, informat, label, and/or length with
one or more variables) that indicates whether character
variables are to be transcoded

368 Commands, Statements, and Procedures for NLS by Category � Chapter 18

Category Statements for NLS Description

ODS: Third-Party
Formatted

“CHARSET= Option” on
page 369

Specifies the character set to be generated in the META
declaration for the output

“TRANTAB= Option” on
page 389

Specifies the translation table to use when you are
transcoding character data in a SAS file for the
appropriate output file

369

C H A P T E R

19
Options for Commands,
Statements, and Procedures for
NLS

CHARSET= Option 369
Collation Sequence Option 370

CORRECTENCODING = Option 372

CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 373

ENCODING= Option 378

INENCODING= and OUTENCODING= Options 381
ODSCHARSET= Option 382

ODSTRANTAB = Option 383

TRANSCODE= Column Modifier on PROC SQL 384

RENCODING= Option 385

TRANSCODE= Option 387

TRANTAB= Option 389
XMLENCODING= Option 390

CHARSET= Option

Specifies the character set to be generated in the META declaration for the output

Valid in: LIBNAME statement for the ODS MARKUP and ODS HTML statements

Category: ODS: Third-Party Formatted

Syntax
CHARSET=character-set ;

Arguments

character-set
Specifies the character set to use in the META tag for HTML output.

An example of an encoding is ISO-8859-1. Official character sets for use on the
Internet are registered by IANA (Internet Assigned Numbers Authority). IANA is
the central registry for various Internet protocol parameters, such as port, protocol
and enterprise numbers, and options, codes and types. For a complete list of
character-set values, visit www.unicode.org/reports/tr22/index.html and
www.iana.org/assignments/character-sets.

370 Collation Sequence Option � Chapter 19

Note: A character set is like an encoding-value in this context. However,
character set is the term that is used to identify an encoding that is suitable for use
on the Internet. �

Examples

Example 1: Generated Output in a META Declaration for an ODS MARKUP Statement

<META http-equiv="Content-Type" content="text/html; charset=iso-8858-1">

See Also

Conceptual Information:
Chapter 3, “Encoding for NLS,” on page 9

Statements:
ODS MARKUP in SAS Output Delivery System: User’s Guide
ODS HTML in SAS Output Delivery System: User’s Guide

Collation Sequence Option
Specifies the collation sequence for PROC SORT

Valid in: PROC SORT statement
PROC SORT statement: Sorts observations in a SAS data set by one or more characters or
numeric variables

Syntax
PROC SORT collation-sequence-option;

Options

Specify the Collation Sequence Use this option

Specify ASCII ASCII

Specify EBCDIC EBCDIC

Specify Danish DANISH

Specify Finnish FINNISH

Specify Norwegian NORWEGIAN

Specify Polish POLISH

Specify Swedish SWEDISH

Specify a customized sequence NATIONAL

Specify any of these collating sequences: ASCII,
EBCDIC, DANISH, FINNISH, ITALIAN,
NORWEGIAN, POLISH, SPANISH, SWEDISH

SORTSEQ=

Options for Commands, Statements, and Procedures for NLS � Collation Sequence Option 371

Explanations for the options follow:

ASCII
sorts character variables using the ASCII collation sequence. You need this option
only when you sort by ASCII on a system where EBCDIC is the native collation
sequence.

DANISH
NORWEGIAN

sorts characters according to the Danish and Norwegian national standard.

EBCDIC
sorts character variables using the EBCDIC collation sequence. You need this
option only when you sort by EBCDIC on a system where ASCII is the native
collation sequence.

FINNISH
SWEDISH

sorts characters according to the Finnish and Swedish national standard.

NATIONAL
sorts character variables using an alternate collation sequence, as defined by your
installation, to reflect a country’s National Use Differences. To use this option,
your site must have a customized national sort sequence defined. Check with the
SAS Installation Representative at your site to determine if a customized national
sort sequence is available.

NORWEGIAN
See DANISH.

POLISH
sorts characters according to the Polish national standard.

SWEDISH
See FINNISH.

SORTSEQ=collation-sequence
specifies the collation sequence. The value of collation-sequence can be any one of
the collation-sequence-options in the PROC SORT statement, or the value can be
the name of a translation table, either a default translation table or one that you
have created in the TRANTAB procedure. For an example of using PROC
TRANTAB and PROC SORT with SORTSEQ=, see Example 6 on page 339. These
are the available translation tables:

Danish

Finnish

Italian

Norwegian

Polish

Spanish

Swedish

CAUTION:
If you use a host sort utility to sort your data, then specifying the SORTSEQ= option
might corrupt the character BY variables. For more information, see the PROC
SORT documentation for your operating environment. �

372 CORRECTENCODING = Option � Chapter 19

See Also

“Collation Sequence” on page 16
System Options:

“SORTSEQ= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 361
“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

Data Set Option:
“SORTSEQ= Data Set Option” on page 42

CORRECTENCODING = Option

Explicitly changes the encoding attribute of a SAS file to match the encoding of the data in the
SAS file

Valid in: MODIFY statement of the DATASETS procedure

Syntax
MODIFY SAS file </<CORRECTENCODING=encoding-value>> ;

Options
</ <CORRECTENCODING=encoding-value> >

enables you to change the encoding indicator, which is recorded in the file’s
descriptor information, in order to match the actual encoding of the file’s data. You
cannot use this option in parenthesis after the name of each SAS file; you must
specify CORRECTENCODING= after the forward slash. For example:

modify mydata / correctencoding=latin2;

For a list of valid encoding values for transcoding, see “SBCS, DBCS, and
Unicode Encoding Values for Transcoding Data” on page 407.
Restriction: CORRECTENCODING= can be used only when the SAS file uses

the default base engine, which is V9 in SAS 9.

Examples

Example 1: Using the CORRECTENCODING= Option to Resolve a SAS Session Encoding and
a SAS File Encoding A file’s encoding indicator can be different from the data’s
encoding. For example, a SAS file that was created prior to SAS 9 has no encoding
indicator stored on the file. If such a SAS file that has no recorded encoding is opened
in a SAS 9 session, SAS assigns the encoding of the current session. For example, if the
encoding of the data is Danish EBCDIC, but the encoding for the current session is
Western Wlatin1, then the actual encoding of the file’s data and the encoding indicator
that is stored in the file’s descriptor information do not match. When this occurs, the
data does not transcode correctly and could result in unreadable output. The following
MODIFY statement would resolve the problem by explicitly assigning an EDCDIC
encoding:

Options for Commands, Statements, and Procedures for NLS � CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 373

proc datasets library=myfiles;
modify olddata / correctencoding=ebcdic1142;

quit;

CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options

Specifies attributes for character variables that are needed in order to transcode a SAS file

Valid in: LIBNAME statement

Category: Data Access

PROC OPTIONS GROUP: LIBNAME statement in the documentation for your operating
environment

See Also: LIBNAME, SAS/ACCESS

Syntax
LIBNAME libref <CVPBYTES=bytes> <CVPENGINE=engine>

<CVPMULTIPLIER=multiplier> ’SAS data-library’;

Options

CVPBYTES=bytes
specifies the number of bytes by which to expand character variable lengths when
processing a SAS data file that requires transcoding. The CVP engine expands the
lengths so that character data truncation does not occur. The lengths for character
variables are increased by adding the specified value to the current length. You can
specify a value from 0 to 32766.

For example, the following LIBNAME statement implicitly assigns the CVP engine
by specifying the CVPBYTES= option.

libname expand ’SAS data-library’ cvpbytes=5;

Character variable lengths are increased by adding 5 bytes. A character variable
with a length of 10 is increased to 15, and a character variable with a length of 100
is increased to 105.

Default: If you specify CVPBYTES=, SAS automatically uses the CVP engine in
order to expand the character variable lengths according to your specification. If
you explicitly assign the CVP engine but do not specify either CVPBYTES= or
CVPMULTIPLIER=, then SAS uses CVPMULTIPLIER=1.5 to increase the lengths
of the character variables.

Requirement: The number of bytes that you specify must be large enough to
accommodate any expansion; otherwise, truncation will still occur, which results in
an error message in the SAS log.

Restriction: The CVP engine supports SAS data files only; that is, no SAS views,
catalogs, item stores, and so on.

Restriction: The CVP engine is available for input (read) processing only.

374 CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options � Chapter 19

Limitation: For library concatenation with mixed engines that include the CVP
engine, only SAS data files are processed. For example, if you execute the COPY
procedure, only SAS data files are copied.

Interaction: You cannot specify both CVPBYTES= and CVPMULTIPLIER=.
Specify one of these options.

Featured in: Example 1 on page 374
See also: “Avoiding Character Data Truncation by Using the CVP Engine” on page

32

CVPENGINE=engine
specifies the engine to use in order to process the SAS file. The CVP engine expands
the character variable lengths prior to transcoding so that character data truncation
does not occur. Then the specified engine does the actual file processing.
Alias: CVPENG
Default: SAS uses the default SAS engine.
See also: “Avoiding Character Data Truncation by Using the CVP Engine” on page

32

CVPMULTIPLIER=multiplier
specifies a multiplier value in order to expand character variable lengths when you
are processing a SAS data file that requires transcoding. The CVP engine expands
the lengths so that character data truncation does not occur. The lengths for
character variables are increased by multiplying the current length by the specified
value. You can specify a multiplier value from 1 to 5.

For example, the following LIBNAME statement implicitly assigns the CVP engine
by specifying the CVPMULTIPLIER= option.

libname expand ’SAS data-library’ cvpmultiplier=2.5;

Character variable lengths are increased by multiplying the lengths by 2.5. A
character variable with a length of 10 is increased to 25, and a character variable
with a length of 100 is increased to 250.
Alias: CVPMULT
Default: If you specify CVPMULTIPLIER=, SAS automatically uses the CVP engine

in order to expand the character variable lengths according to your specification. If
you explicitly specify the CVP engine but do not specify either CVPMULTIPLIER=
or CVPBYTES=, then SAS uses CVPMULTIPLIER=1.5 to increase the lengths.

Requirement: The number of bytes that you specify must be large enough to
accommodate any expansion; otherwise, truncation will still occur, which results in
an error in the SAS log.

Restriction: The CVP engine supports SAS data files only; that is, no SAS views,
catalogs, item stores, and so on.

Restriction: The CVP engine is available for input (read) processing only.
Limitation: For library concatenation with mixed engines that include the CVP

engine, only SAS data files are processed. For example, if you execute the COPY
procedure, only SAS data files are copied.

Interaction: You cannot specify both CVPMULTIPLIER= and CVPBYTES=.
Specify one of these options.

See also: “Avoiding Character Data Truncation by Using the CVP Engine” on page
32

Examples

Example 1: Using the CVP (Character Variable Padding) Engine The following example
illustrates how to avoid character data truncation by using the CVP engine. The

Options for Commands, Statements, and Procedures for NLS � CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 375

example uses a SAS data set named MYFILES.WLATIN2, which contains some
national characters in Wlatin2 encoding.

Output 19.1 PROC PRINT Output for MYFILES.WLATIN2

The SAS System 1

Obs var1 var2 var3 var4

1 A | ð 3

Here is PROC CONTENTS output for MYFILES.WLATIN2, which shows that the
encoding is Wlatin2 and that the length for each character variable is 1 byte:

Output 19.2 PROC CONTENTS Output for MYFILES.WLATIN2

The SAS System 1

The CONTENTS Procedure

Data Set Name MYFILES.WLATIN2 Observations 1

Member Type DATA Variables 4

Engine V9 Indexes 0

Created Thursday, November 07, 2003 02:02:36 Observation Length 4

Last Modified Thursday, November 07, 2003 02:02:36 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin2 Central Europe (Windows)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 987

Obs in First Data Page 1

Number of Data Set Repairs 0

File Name C:\Documents and Settings\xxxxxx\My

Documents\myfiles\wlatin2.sas7bdat

Release Created 9.0100A0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

1 Var1 Char 1

2 Var2 Char 1

3 Var3 Char 1

4 Var4 Char 1

The following code is executed with the session encoding Wlatin2.

options msglevel=i;
libname myfiles ’SAS data-library’;

data myfiles.utf8 (encoding="utf-8");

376 CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options � Chapter 19

set myfiles.wlatin2;
run;

The DATA step requests a new data set named MYFILES.UTF8, and requests that the
data be read into the new data set in UTF-8 encoding, which means that the data must
be transcoded from Wlatin2 to UTF-8. The request results in errors due to character
data truncation that occurs from the transcoding. The new data set MYFILES.UTF8 is
created but does not contain any data.

Output 19.3 SAS Log with Transcoding Error

1 options msglevel=i;

2 libname myfiles ’C:\Documents and Settings\xxxxxx\My Documents\myfiles’;

NOTE: Libref MYFILES was successfully assigned as follows:

Engine: V9

Physical Name: C:\Documents and Settings\xxxxxx\My Documents\myfiles

3 data myfiles.utf8 (encoding="utf-8");

4 set myfiles.wlatin2;

5 run;

INFO: Data file MYFILES.UTF8.DATA is in a format native to another

host or the file encoding does not match the session encoding.

Cross Environment Data Access will be used, which may require additional

CPU resources and reduce performance.

ERROR: Some character data was lost during transcoding in the dataset MYFILES.UTF8.

NOTE: The data step has been abnormally terminated.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 1 observations read from the data set MYFILES.WLATIN2.

WARNING: The data set MYFILES.UTF8 may be incomplete. When this step was stopped there were 0

observations and 4 variables.

The following code is executed again with the session encoding Wlatin2.

options msglevel=i;
libname myfiles ’SAS data-library’;

libname expand cvp ’SAS data-library’ cvpbytes=2;

data myfiles.utf8 (encoding="utf-8");
set expand.wlatin2;

run;

In this example, the CVP engine is used to expand character variable lengths by
adding 2 bytes to each length. The data is read into the new file in UTF-8 encoding by
transcoding from Wlatin2 to UTF-8. There is no data truncation due to the expanded
character variable lengths, and the new data set is successfully created:

Options for Commands, Statements, and Procedures for NLS � CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options 377

Output 19.4 SAS Log Output for MYFILES.UTF8

12 options msglevel=i;

13 libname myfiles ’C:\Documents and Settings\xxxxxx\My Documents\myfiles’;

NOTE: Directory for library MYFILES contains files of mixed engine types.

NOTE: Libref MYFILES was successfully assigned as follows:

Engine: V9

Physical Name: C:\Documents and Settings\xxxxxx\My Documents\myfiles

14 libname expand cvp ’C:\Documents and Settings\xxxxxx\My Documents\myfiles’ cvpbytes=2;

WARNING: Libname EXPAND refers to the same physical library as MYFILES.

NOTE: Libref EXPAND was successfully assigned as follows:

Engine: CVP

Physical Name: C:\Documents and Settings\xxxxxx\My Documents\myfiles

15 data myfiles.utf8 (encoding="utf-8");

16 set expand.wlatin2;

17 run;

INFO: Data file MYFILES.UTF8.DATA is in a format native to another

host or the file encoding does not match the session encoding.

Cross Environment Data Access will be used, which may require additional

CPU resources and reduce performance.

NOTE: There were 1 observations read from the data set EXPAND.WLATIN2.

NOTE: The data set MYFILES.UTF8 has 1 observations and 4 variables.

Finally, here is PROC CONTENTS output for MYFILES.UTF8 showing that it is in
UTF-8 encoding and that the length of each character variable is 3:

Output 19.5 PROC CONTENTS Output for MYFILES.UTF8

The SAS System 1

The CONTENTS Procedure

Data Set Name MYFILES.UTF8 Observations 1

Member Type DATA Variables 4

Engine V9 Indexes 0

Created Thursday, November 07, 2003 02:40:34 Observation Length 12

Last Modified Thursday, November 07, 2003 02:40:34 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding utf-8 Unicode (UTF-8)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 335

Obs in First Data Page 1

Number of Data Set Repairs 0

File Name C:\Documents and Settings\xxxxxx\My Documents\myfiles\utf8.sas7bdat

Release Created 9.0100A0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

1 Var1 Char 3

2 Var2 Char 3

3 Var3 Char 3

4 Var4 Char 3

378 ENCODING= Option � Chapter 19

ENCODING= Option

Overrides and transcodes the encoding for input or output processing of external files

Valid in: %INCLUDE statement; FILE statement; FILENAME statement; FILENAME
statement, EMAIL (SMTP) Access Method; INFILE statement; ODS statements; FILE
command; INCLUDE command
%INCLUDE statement: Reads SAS statements and data lines from the specified source file
Category: Data Access
%INCLUDE statement-specific: Is not supported under z/OS
FILE statement: Writes to an external file
FILENAME statement: Reads from or writes to an external file
FILENAME statement, EMAIL (SMTP) Access Method: Sends electronic mail programmatically
from SAS using the SMTP (Simple Mail Transfer Protocol)
INFILE statement: Reads from an external file
ODS statements: Controls features of the Output Delivery System that are used to
generate, store, or reproduce SAS procedure and DATA step output
FILE command: Saves the contents of a window to an external file
INCLUDE command: Copies an external file into the current window

Syntax
ENCODING= ’encoding-value’

Options
ENCODING= ’encoding-value’

specifies the encoding to use for reading, writing, copying, or saving an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read, write, copy, or save data using an external file, SAS transcodes
the data from the session encoding to the specified encoding.

For details, see “SBCS, DBCS, and Unicode Encoding Values for Transcoding
Data” on page 407.
Default: SAS uses the current session encoding.

Examples

Example 1: Using the FILE Statement to Specify an Encoding for Writing to an External
File This example creates an external file from a SAS data set. The current session
encoding is Wlatin1, but the external file’s encoding needs to be UTF-8. By default, SAS
writes the external file using the current session encoding.

To specify what encoding to use for writing data to the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename outfile ’external-file’;

Options for Commands, Statements, and Procedures for NLS � ENCODING= Option 379

data _null_;
set myfiles.cars;
file outfile encoding="utf-8";
put Make Model Year;

run;

When you tell SAS that the external file is to be in UTF-8 encoding, SAS then
transcodes the data from Wlatin1 to the specified UTF-8 encoding.

Example 2: Using the FILENAME Statement to Specify an Encoding for Reading an
External File This example creates a SAS data set from an external file. The external
file is in UTF-8 character-set encoding, and the current SAS session is in the Wlatin1
encoding. By default, SAS assumes that an external file is in the same encoding as the
session encoding, which causes the character data to be written to the new SAS data
set incorrectly.

To specify which encoding to use when reading the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename extfile ’external-file’ encoding="utf-8";

data myfiles.unicode;
infile extfile;
input Make $ Model $ Year;

run;

When you specify that the external file is in UTF-8, SAS then transcodes the
external file from UTF-8 to the current session encoding when writing to the new SAS
data set. Therefore, the data is written to the new data set correctly in Wlatin1.

Example 3: Using the FILENAME Statement to Specify an Encoding for Writing to an
External File This example creates an external file from a SAS data set. By default,
SAS writes the external file using the current session encoding. The current session
encoding is Wlatin1, but the external file’s encoding needs to be UTF-8.

To specify which encoding to use when writing data to the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename outfile ’external-file’ encoding="utf-8";

data _null_;
set myfiles.cars;
file outfile;
put Make Model Year;

run;

When you specify that the external file is to be in UTF-8 encoding, SAS then
transcodes the data from Wlatin1 to the specified UTF-8 encoding when writing to the
external file.

Example 4: Changing Encoding for Message Body and Attachment This example
illustrates how to change text encoding for the message body as well as for the
attachment.

380 ENCODING= Option � Chapter 19

filename mymail email ’Joe.Developer@sas.com’;

data _null_;
file mymail

subject=’Text Encoding’
encoding=greek u

attach=(’C:\My Files\Test.out’ v

content_type=’text/plain’
encoding=’ebcdic1047’
outencoding=’latin1’); w

run;

In the program, the following occurs:
1 The ENCODING= e-mail option specifies that the message body will be encoded to

Greek (ISO) before being sent.
2 For the ATTACH= e-mail option, the attachment option ENCODING= specifies the

encoding of the attachment that is read into SAS, which is Western (EBCDIC).
3 Because SMTP and other e-mail interfaces do not support EBCDIC, the

attachment option OUTENCODING= converts the attachment to Western (ISO)
before sending it.

Example 5: Using the INFILE= Statement to Specify an Encoding for Reading from an
External File This example creates a SAS data set from an external file. The external
file’s encoding is in UTF-8, and the current SAS session encoding is Wlatin1. By default,
SAS assumes that the external file is in the same encoding as the session encoding,
which causes the character data to be written to the new SAS data set incorrectly.

To specify which encoding to use when reading the external file, specify the
ENCODING= option:

libname myfiles ’SAS data-library’;

filename extfile ’external-file’;

data myfiles.unicode;
infile extfile encoding="utf-8";
input Make $ Model $ Year;

run;

When you specify that the external file is in UTF-8, SAS then transcodes the
external file from UTF-8 to the current session encoding when writing to the new SAS
data set. Therefore, the data is written to the new data set correctly in Wlatin1.

See Also

Statements:
%INCLUDE in SAS Companion for OpenVMS Alpha
%INCLUDE in SAS Companion for UNIX Environments
%INCLUDE in SAS Companion for Windows
FILE in SAS Language Reference: Dictionary
FILENAME in SAS Language Reference: Dictionary
INFILE in SAS Language Reference: Dictionary
ODS statements that use encoding options in SAS Output Delivery System: User’s

Guide

Options for Commands, Statements, and Procedures for NLS � INENCODING= and OUTENCODING= Options 381

Commands:
FILE in SAS Companion for OpenVMS Alpha
FILE in SAS Companion for z/OS
FILE in SAS Companion for UNIX Environments
FILE in SAS Companion for Windows
INCLUDE in SAS Companion for OpenVMS Alpha
INCLUDE in SAS Companion for z/OS
INCLUDE in SAS Companion for UNIX Environments
INCLUDE in SAS Companion for Windows

INENCODING= and OUTENCODING= Options

Overrides and changes the encoding when reading or writing SAS data sets in the SAS data library

Valid in: LIBNAME statement
Category: Data Access

Syntax
INENCODING=

INENCODING= ANY | ASCIIANY | EBCDICANY | encoding-value
OUTENCODING=

OUTENCODING= ANY | ASCIIANY | EBCDICANY | encoding-value

Syntax Description

ANY
specifies no transcoding between ASCII and EBCDIC encodings.

Note: ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant. �

ASCIIANY
specifies that no transcoding occurs, assuming that the mixed encodings are ASCII
encodings.

EBCDICANY
specifies that no transcoding occurs, assuming that the mixed encodings are EBCDIC
encodings.

encoding-value
specifies an encoding value. For a list of encoding values, see “Locale Values and
Encoding Values for SBCS, DBCS, and Unicode” on page 400.

Details
The INENCODING= option is used to read SAS data sets in the SAS data library. The
OUTENCODING= option is used to write SAS data sets in the SAS data library.

382 ODSCHARSET= Option � Chapter 19

The INENCODING= or the OUTENCODING= value is written to the SAS log when
you use the LIST argument.

INENCODING= and OUTENCODING= are most appropriate when using an existing
library that contains mixed encodings. To read a library that contains mixed encodings,
you can set INENCODING= to ASCIIANY or EBCDICANY. To write a separate data
set, you can use OUTENCODING= to specify a specific encoding, which is applied to
the data set when it is created.

Comparisons

� Session encoding is specified using the ENCODING= system option or the
LOCALE= system option. Each operating environment has a default encoding.

� You can specify the encoding for reading data sets in a SAS data library by using
the LIBNAME statement INENCODING= option for input files. If both the
LIBNAME statement option and the ENCODING= data set option are specified,
SAS uses the data set option.

� You can specify the encoding for writing data sets to a SAS data library by using
the LIBNAME statement OUTENCODING= option for output files. If both the
LIBNAME statement option and the ENCODING= data set option are specified,
SAS uses the data set option.

See Also

“Overview of Encoding for NLS” on page 9

Statements:

LIBNAME in SAS Language Reference: Dictionary

System Options:

“ENCODING System Option: OpenVMS, UNIX, Windows, and z/OS” on page 354

“LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS” on page 358

Data Set Options:

“ENCODING= Data Set Option” on page 39

ODSCHARSET= Option

Specifies the character set to be generated in the META declaration for the output

Valid in: LIBNAME statement for the XML engine

Category: Data Access

LIBNAME statement for the XML engine: Specifies the character set to use for generating an
output XML document

Syntax

ODSCHARSET=character-set ;

Options for Commands, Statements, and Procedures for NLS � ODSTRANTAB = Option 383

Arguments

character-set
For the LIBNAME statement for the XML engine, specifies the character set to use
in the ENCODING= attribute.

An example of an encoding is ISO-8859-1. Official character sets for use on the
Internet are registered by IANA (Internet Assigned Numbers Authority). IANA is
the central registry for various Internet protocol parameters, such as port, protocol
and enterprise numbers, options, codes and types. For a complete list of character-set
values, visit www.unicode.org/reports/tr22/index.html and www.iana.org/
assignments/character-sets.

Note: A character set is like an encoding-value in this context. However,
character set is the term that is used to identify an encoding that is suitable for use
on the Internet. �

Details
An XML declaration is not required in all XML documents. Such a declaration is
required only when the character encoding of the document is other than the default
UTF-8 or UTF-16 and no encoding was determined by a higher-level protocol.

See Also

Conceptual Information:Chapter 3, “Encoding for NLS,” on page 9
Statements:

LIBNAME XML in SAS XML LIBNAME Engine User’s Guide

ODSTRANTAB = Option

Specifies the translation table to use when transcoding an XML document for an output file

Valid in: the LIBNAME statement for the XML engine
Category: Data Access

Syntax
TRANTAB =’translation-table’

Options
translation-table

specifies the translation table to use for the output file. The translation table is an
encoding method that maps characters (letters, logograms, digits, punctuation,
symbols, control characters, and so on) in the character set to numeric values. An
example of a translation table is one that converts characters from EBCDIC to
ASCII-ISO. The table-name can be any translation table that SAS provides, or any
user-defined translation table. The value must be the name of a SAS catalog entry
in either the SASUSER.PROFILE catalog or the SASHELP.HOST catalog.

384 TRANSCODE= Column Modifier on PROC SQL � Chapter 19

Details
For SAS 9.1, using the ODSTRANTAB= option in the LIBNAME statement for the
XML Engine is supported for backward compatibility. The preferred method for
specifying an encoding is to use the LOCALE= system option.

See Also

Conceptual Information:
“Transcoding and Translation Tables” on page 22

Conceptual discussion of Chapter 2, “Locale for NLS,” on page 5
System Options:

“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362
“LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS” on page 358

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 319

Statements:

LIBNAME XML in SAS XML LIBNAME Engine User’s Guide

TRANSCODE= Column Modifier on PROC SQL

Specifies whether values can be transcoded for character columns

Valid in: Column modifier component in the SQL Procedure

Syntax
TRANSCODE=YES|NO

Arguments
TRANSCODE=YES|NO

for character columns, specifies whether values can be transcoded. Use
TRANSCODE=NO to suppress transcoding. Note that when you create a table
using the CREATE TABLE AS statement, the transcoding attribute for a
particular character column in the created table is the same as it is in the source
table unless you change it with the TRANSCODE= column modifier.
Default: YES

Restriction: Suppression of transcoding is not supported for the V6TAPE engine.

See Also
Conceptual Information:

Chapter 4, “Transcoding for NLS,” on page 21
The SQL Procedure in Base SAS Procedures Guide

Options for Commands, Statements, and Procedures for NLS � RENCODING= Option 385

RENCODING= Option

Specifies the ASCII-based or EBCDIC-based encoding to use for transcoding data for a SAS/SHARE
server session that is using an EBCDICANY or ASCIIANY session encoding

Valid in: LIBNAME statement for SAS/SHARE only

Category: Data Access

Important: The RENCODING= option in the LIBNAME statement is relevant only if
using a SAS/SHARE server that has a session encoding set to EBCDICANY or
ASCIIANY to preserve a mixed-encoding computing environment, which was more
common prior to SAS 9.

See Also: LIBNAME statement in SAS/SHARE User’s Guide

Syntax
RENCODING=ASCII-encoding-value | EBCDIC-encoding-value

Syntax Description

ASCII-encoding-value
For a list of valid values for ASCII encodings for OpenVMS, UNIX, and Windows, see
Chapter 24, “Encoding Values for a SAS Session,” on page 413.

EBCDIC-encoding-value
For a list of valid values for EBCDIC encodings for z/OS, see Chapter 24, “Encoding
Values for a SAS Session,” on page 413.

Details
If you use SAS/SHARE in a mixed-encoding environment (for example, SAS/SHARE
client sessions using incompatible encodings such as Latin1 and Latin2), you can set
the following options:

� in the SAS/SHARE server session, set the SAS system option
ENCODING=EBCDICANY or ENCODING=ASCIIANY

� in the SAS/SHARE client session, set the RENCODING= option in the LIBNAME
statement(s) under these conditions:

� a client session that uses an ASCII-based encoding accesses an EBCDICANY
server

� a client session that uses an EBCDIC- based encoding accesses an ASCIIANY
server.

The RENCODING= option enables SAS/SHARE clients to specify which encoding
to assume the server’s data is in when transcoding to or from the client session
encoding.

386 RENCODING= Option � Chapter 19

For SAS 9 and 9.1, if you are processing data in a SAS/SHARE client/server session
from more than one SBCS or DBCS encoding, you are advised to use the UTF8
encoding. For more information about Unicode servers that run the UTF8 session
encoding, visit http://support.sas.com and search for “Unicode Server”. Read the
article SUGI 28: Multi-Lingual Computing with the 9.1 SAS ® Unicode Server.

Background
In SAS 9 and 9.1, you can maintain multilingual data that contains characters from
more than one traditional SBCS or DBCS encoding in a SAS data set by using a UTF8
encoding. To share update access to that data using SAS/SHARE, you must also run
the SAS/SHARE server using a session encoding of UTF8. SAS will transcode the data
to the client encoding if necessary.

Prior to SAS 9, if a SAS/SHARE client and a SAS/SHARE server ran on common
architectures (for example, the client and server ran on UNIX machines), there was no
automatic transcoding of character data. It was possible to build applications that
accessed data sets in different EBCDIC or ASCII encodings within a single SAS/SHARE
server, or that accessed data sets in mixed different encodings within a single data set.
This was very uncommon and required careful programming to set up transcoding
tables from clients that ran in different operating environments.

The following steps describe how you can maintain mixed encoding in SAS 9, if
necessary.

� The SAS/SHARE server must run by using a session encoding of EBCDICANY for
mixed-EBCDIC encodings or ASCIIANY for mixed-ASCII encodings.

This will restore the behavior of Version 8 and earlier releases and prevent the
automatic character transcoding between different client and server encodings in
the same EBCDIC or ASCII family. That is, no transcoding will occur under these
circumstances:

� if the client session encoding is an EBCDIC encoding and the server session
encoding is EBCDICANY

� if the client session encoding is an ASCII encoding and the server session
encoding is ASCIIANY.

� A SAS/SHARE client that does not share the same encoding family as an
ASCIIANY or EBCDICANY server can control the necessary transcoding by using
an RENCODING= option on the first LIBNAME statement that accesses the
server.

For example, an ASCII client that runs in a Polish locale could access a z/OS
EBCDICANY server and specify RENCODING=EBCDIC870 to access data that
the client knows contains Polish-encoded data. Another ASCII client that runs in
a German locale could access the same z/OS EBCDICANY server and specify
RENCODING=EBCDIC1141 to access data that the client knows contains German
data. Similarly, EBCDIC clients that access an ASCIIANY server can specify the
precise ASCII encoding of the data they are accessing by using the RENCODING=
option in the LIBNAME statement.

See Also

Conceptual information:

Chapter 4, “Transcoding for NLS,” on page 21

Statements:

LIBNAME in SAS/SHARE User’s Guide

Options for Commands, Statements, and Procedures for NLS � TRANSCODE= Option 387

TRANSCODE= Option

Specifies an attribute in the ATTRIB statement (which associates a format, informat, label, and/or
length with one or more variables) that indicates whether character variables are to be transcoded

Valid in: the ATTRIB statement in a DATA step

Category: Information

Type: Declarative

See: ATTRIB Statement in the documentation for your operating environment.

Syntax
ATTRIB variable-list(s) attribute-list(s) ;

Arguments

variable-list
names the variables that you want to associate with the attributes.

Tip: List the variables in any form that SAS allows.

attribute-list
specifies one or more attributes to assign to variable-list. Multiple attributes can be
specified in the ATTRIB statement. For a complete list of attributes, see the ATTRIB
Statement in SAS Language Reference: Dictionary.

TRANSCODE= YES | NO
Specifies whether to transcode character variables. Use TRANSCODE=NO to
suppress transcoding. For more information, see “Overview to Transcoding” on
page 21.

Default: YES

Restriction: Prior releases of SAS cannot access a SAS 9.1 data set that contains
a variable with a TRANSCODE=NO attribute.

Interaction: You can use the VTRANSCODE and VTRANSCODEX functions to
return whether transcoding is on or off for a character variable.

Interaction: If the TRANSCODE= attribute is set to NO for any character
variable in a data set, PROC CONTENTS will print a transcode column that
contains the TRANSCODE= value for each variable in the data set. If all
variables in the data set are set to the default TRANSCODE= value (YES), no
transcode column will be printed.

Examples

Example 1: Using the TRANSCODE= Option With the SET Statement When you use the
SET statement to create a data set from several data sets, SAS makes the
TRANSCODE= attribute of the variable in the output data set equal to the
TRANSCODE= value of the variable in the first data set. In this example, the variable
Z’s TRANSCODE= attribute in data set A is NO because B is the first data set and Z’s
TRANSCODE= attribute in data set B is NO.

388 TRANSCODE= Option � Chapter 19

data b;
length z $4;
z = ’ice’;
attrib z transcode = NO;

data c;
length z $4;
z = ’snow’;
attrib z transcode = YES;

data a;
set b;
set c;
/* Check transcode setting for variable Z */
rc1 = vtranscode(z);
put rc1=;

run;

Example 2: Using the TRANSCODE= Option With the MERGE Statement When you use
the MERGE statement to create a data set from several data sets, SAS makes the
TRANSCODE= attribute of the variable in the output data set equal to the
TRANSCODE= value of the variable in the first data set. In this example, the variable
Z’s TRANSCODE= attribute in data set A is YES because C is the first data set and Z’s
TRANSCODE= attribute in data set C is YES.

data b;
length z $4;
z = ’ice’;
attrib z transcode = NO;

data c;
length z $4;
z = ’snow’;
attrib z transcode = YES;

data a;
merge c b;
/* Check transcode setting for variable Z */
rc1 = vtranscode(z);
put rc1=;

run;

Note: The TRANSCODE= attribute is set when the variable is first seen on an
input data set or in an ATTRIB TRANSCODE= statement. If a SET or MERGE
statement comes before an ATTRIB TRANSCODE= statement and the TRANSCODE=
attribute contradicts the SET statement, an error message will occur. �

See Also

Functions:
“VTRANSCODE Function” on page 237
“VTRANSCODEX Function” on page 238

Options for Commands, Statements, and Procedures for NLS � TRANTAB= Option 389

TRANTAB= Option

Specifies the translation table to use when you are transcoding character data in a SAS file for the
appropriate output file

Valid in: ODS MARKUP statement and ODS RTF statement

Category: ODS: Third-Party Formatted

Syntax
TRANTAB = (translation-table)

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.1 supports the the TRANTAB=
option for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases. �

Options
translation-table

specifies the translation table to use for the output file. The translation table is an
encoding method that maps characters (letters, logograms, digits, punctuation,
symbols, control characters, and so on) in the character set to numeric values. An
example of a translation table is one that converts characters from EBCDIC to
ASCII-ISO. The table-name can be any translation table that SAS provides, or any
user-defined translation table. The value must be the name of a SAS catalog entry
in either the SASUSER.PROFILE catalog or the SASHELP.HOST catalog.

Details
Note: For SAS 9.1, using the TRANTAB = option in the ODS MARKUP is supported

for backward compatibility. For specifying encoding, the LOCALE= system option is
preferred. �

See Also

Conceptual Information:

“Transcoding and Translation Tables” on page 22

Chapter 2, “Locale for NLS,” on page 5

System Options:

“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

“LOCALE System Option: OpenVMS, UNIX, Windows, and z/OS” on page 358

Procedures:

Chapter 15, “The TRANTAB Procedure,” on page 319

Statements:

ODS MARKUP in SAS Output Delivery System: User’s Guide

ODS RTF in SAS Output Delivery System: User’s Guide

390 XMLENCODING= Option � Chapter 19

XMLENCODING= Option

Overrides the encoding of an XML document to import or export an external document

Valid in: LIBNAME statement for the XML engine
Category: Data Access
LIBNAME statement for the XML engine: Associates a SAS libref with an XML document to
import or export an external document

Syntax
XMLENCODING= ’encoding-value’

Options
encoding-value

specifies the encoding to use when you read, write, copy, or save an external file.
The value for XMLENCODING= indicates that the external file has a different
encoding from the current session encoding.

For details, see “SBCS, DBCS, and Unicode Encoding Values for Transcoding
Data” on page 407.
Default: SAS uses the current session encoding.

See Also

Statements:
LIBNAME XML in SAS XML LIBNAME Engine User’s Guide

391

C H A P T E R

20
The TRANTAB Statement Used
with Procedures

TRANTAB Statement 391

TRANTAB Statement

Specifies the translation table to use when you transcode character data in order to export or
transfer a SAS file

Valid in: CPORT Procedure, UPLOAD procedure, DOWNLOAD procedure
PROC CPORT: Used when you export a SAS file across a network
PROC UPLOAD and PROC DOWNLOAD: Used when you transfer a SAS file across a network
Requirements for UPLOAD and DOWNLOAD: To use the TRANTAB statement, you must specify
the INCAT= and OUTCAT= options in the PROC UPLOAD or PROC DOWNLOAD
statement.
Restrictions: You can specify only one translation table per TRANTAB statement. To
specify additional translation tables, use additional TRANTAB statements.
Interaction: The TRANTAB statement specifies a customized translation table (for
example, to map an EBCDIC character to an ASCII character) to apply to the character
set in the SAS file that is being exported or transferred. The TRANTAB= system option
specifies a translation table to use for the SAS session, including file transfers.

Syntax
TRANTAB NAME=translation-table-name <TYPE=(etype-list) <OPT=DISP | SRC |

(DISP SRC)>>;

Note: Translation tables were introduced in SAS 6 to support the requirements of
national languages. SAS 8.2 introduced the LOCALE= system option as an
improvement on direct use of translation tables. SAS 9.1 supports the TRANTAB
statement for backward compatibility. However, using the LOCALE= system option is
preferred in later SAS releases. �

Arguments

NAME=translation-table-name
specifies the name of the translation table to apply to the SAS catalog that you want
to export (PROC CPORT) or transfer (PROC UPLOAD or PROC DOWNLOAD). The

392 TRANTAB Statement � Chapter 20

translation-table-name that you specify as the name of a catalog entry in either your
SASUSER.PROFILE catalog or the SASHELP.HOST catalog. The
SASUSER.PROFILE catalog is searched first, and then the SASHELP.HOST catalog
is searched.

In most cases, the default translation table is the correct one to use, but you might
need to apply additional translation tables if, for example, your application requires
different national language characters.

You can specify a translation table other than the default in two ways:

� To specify a translation table for an invocation of the procedure, use the
TRANTAB statement in the procedure, as appropriate.

� To specify a translation table for your entire SAS session or job (including all
file exports or transfers), use the TRANTAB= system option.

Options

TYPE=(etype-list)
applies the translation table only to the entries with the type or types that you
specify. The etype-list can be one or more entry types. Examples of catalog entry types
include DATA and FORMAT. If etype-list is a simple entry type, omit the parentheses.

By default, the UPLOAD, DOWNLOAD, and CPORT procedures apply the
translation table to all specified catalog entries.

OPT=DISP | SRC | (DISP SRC)

OPT=DISP applies the translation table only to the specified catalog entries,
which produce window displays.

OPT=SRC applies the translation table only to the specified catalog entries
that are of the type SOURCE.

OPT=(DISP
SRC)

applies the translation table only to the specified catalog entries
that either produce window displays or are of type SOURCE.

If you do not specify the OPT= option, the UPLOAD or DOWNLOAD procedure
applies the translation table to all of the entries in the catalog that you specify.

Default: PROC CPORT, PROC UPLOAD, and PROC DOWNLOAD apply the
translation table to all entries and data sets in the specified catalog.

Examples
Procedure features:

PROC CPORT statement option: FILE=
TRANTAB statement option: TYPE=

This example shows how to apply a customized translation table to the transport file
before PROC CPORT exports it. For this example, assume that you have already
created a customized translation table called TTABLE1.

Example 1: Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

The TRANTAB Statement Used with Procedures � TRANTAB Statement 393

libname source ’SAS data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Apply the translation specifics. The TRANTAB statement applies the translation that you
specify with the customized translation table TTABLE1. TYPE= limits the translation to
FORMAT entries.

proc cport catalog=source.formats file=tranfile;
trantab name=ttable1 type=(format);

run;

Example 2: SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

See Also

Conceptual Information:
Chapter 4, “Transcoding for NLS,” on page 21

System Options:
“TRANTAB= System Option: OpenVMS, UNIX, Windows, and z/OS” on page 362

Procedures:
Chapter 15, “The TRANTAB Procedure,” on page 319
CPORT in Base SAS Procedures Guide

UPLOAD in SAS/CONNECT User’s Guide
DOWNLOAD in SAS/CONNECT User’s Guide

394

395

P A R T9

Values for Locale, Encoding, and
Transcoding

Chapter 21.Values for the LOCALE= System Option 397

Chapter 22.SAS System Options for Processing DBCS Data 405

Chapter 23.Encoding Values in SAS Language Elements 407

Chapter 24.Encoding Values for a SAS Session 413

396

397

C H A P T E R

21
Values for the LOCALE= System
Option

LOCALE= and Default Values for DFLANG, DATESTYLE, and PAPERSIZE Options 397
Locale Values and Encoding Values for SBCS, DBCS, and Unicode 400

LOCALE= and Default Values for DFLANG, DATESTYLE, and PAPERSIZE
Options

The valid LOCALE= values are specified by using either the SAS name or the POSIX
name. The settings for the DFLANG=, DATESTYLE=, and PAPERSIZE= system
options are set automatically.

Example:

sas9 -locale arabic_algeria

When the arabic_algeria locale value is specified, corresponding default settings for
the system options are as follows:

DFLANG=English
DATESTYLE=DMY
PAPERSIZE=A4

Table 21.1 LOCALE= Values and Default Values Assigned to DFLANG=, DATESTYLE=, and
PAPERSIZE=

LOCALE= DFLANG= DATESTYLE= PAPERSIZE=

SAS Name POSIX Name Default Values

Arabic_Algeria ar_DZ English DMY A4

Arabic_Bahrain ar_BH English DMY A4

Arabic_Egypt ar_EG English DMY A4

Arabic_Jordan ar_JO English DMY A4

Arabic_Kuwait ar_KW English DMY A4

Arabic_Lebanon ar_LB English DMY A4

Arabic_Morocco ar_MA English DMY A4

Arabic_Oman ar_OM English DMY A4

Arabic_Qatar ar_QA English DMY A4

Arabic_SaudiArabia ar_SA English DMY A4

398 LOCALE= and Default Values for DFLANG, DATESTYLE, and PAPERSIZE Options � Chapter 21

LOCALE= DFLANG= DATESTYLE= PAPERSIZE=

SAS Name POSIX Name Default Values

Arabic_Tunisia ar_TN English DMY A4

Arabic_UnitedArabEmirates ar_AE English DMY A4

Bulgarian_Bulgaria bg_BG English YMD A4

Byelorussian_Belarus be_BY English DMY A4

Chinese_China zh_CN Locale YMD A4

Chinese_HongKong zh_HK Locale YMD A4

Chinese_Macau zh_MO Locale YMD A4

Chinese_Singapore zh_SG Locale DMY A4

Chinese_Taiwan zh_TW Locale YMD A4

Croatian_Croatia hr_HR Croatian YMD A4

Czech_CzechRepublic cs_CZ Czech DMY A4

Danish_Denmark da_DK Danish DMY A4

Dutch_Belgium nl_BE Dutch DMY A4

Dutch_Netherlands nl_NL Dutch DMY A4

English_Australia en_AU English DMY A4

English_Canada en_CA English DMY letter

English_HongKong en_HK English DMY A4

English_India en_IN English DMY A4

English_Ireland en_IE English DMY A4

English_Jamaica en_JM English DMY letter

English_NewZealand en_NZ English DMY A4

English_Singapore en_SG English DMY A4

English_SouthAfrica en_ZA English DMY A4

English_UnitedKingdom en_GB English DMY A4

English_UnitedStates en_US English MDY letter

Estonian_Estonia et_EE English DMY A4

Finnish_Finland fi_FI Finnish DMY A4

French_Belgium fr_BE French DMY A4

French_Canada fr_CA French DMY letter

French_France fr_FR French DMY A4

French_Luxembourg fr_LU French DMY A4

French_Switzerland fr_CH Swiss_French DMY A4

German_Austria de_AT German DMY A4

German_Germany de_DE German DMY A4

German_Liechtenstein de_LI German DMY A4

German_Luxembourg de_LU German DMY A4

Values for the LOCALE= System Option � LOCALE= and Default Values for DFLANG, DATESTYLE, and PAPERSIZE Options 399

LOCALE= DFLANG= DATESTYLE= PAPERSIZE=

SAS Name POSIX Name Default Values

German_Switzerland de_CH Swiss_German DMY A4

Greek_Greece el_GR English DMY A4

Hebrew_Israel he_IL English DMY A4

Hungarian_Hungary hu_HU Hungarian YMD A4

Icelandic_Iceland is_IS English DMY A4

Italian_Italy it_IT Italian DMY A4

Italian_Switzerland it_CH Italian DMY A4

Japanese_Japan ja_JP Japanese YMD A4

Korean_Korea ko_KR Locale YMD A4

Latvian_Latvia lv_LV English YMD A4

Lithuanian_Lithuania lt_LT English YMD A4

Norwegian_Norway no_NO Norwegian DMY A4

Polish_Poland pl_PL Polish YMD A4

Portuguese_Brazil pt_BR Portuguese DMY letter

Portuguese_Portugal pt_PT Portuguese DMY A4

Romanian_Romania ro_RO English DMY A4

Russian_Russia ru_RU Russian DMY A4

Serbian_Yugoslavia sr_YU English DMY A4

Slovak_Slovakia sk_SK English DMY A4

Slovenian_Slovenia sl_SL Slovenian YMD A4

Spanish_Argentina es_AR Spanish DMY letter

Spanish_Bolivia es_BO Spanish DMY letter

Spanish_Chile es_CL Spanish DMY letter

Spanish_Columbia es_CO Spanish DMY letter

Spanish_CostaRica es_CR Spanish DMY letter

Spanish_DominicanRepublic es_DO Spanish DMY letter

Spanish_Ecuador es_EC Spanish DMY letter

Spanish_ElSalvador es_ES Spanish MDY letter

Spanish_Guatemala es_GT Spanish DMY letter

Spanish_Honduras es_HN Spanish MDY letter

Spanish_Mexico es_MX Spanish DMY letter

Spanish_Nicaragua es_NI Spanish MDY letter

Spanish_Panama es_PA Spanish MDY letter

Spanish_Paraguay es_PY Spanish DMY letter

Spanish_Peru es_PE Spanish DMY letter

Spanish_PuertoRico es_PR Spanish MDY letter

400 Locale Values and Encoding Values for SBCS, DBCS, and Unicode � Chapter 21

LOCALE= DFLANG= DATESTYLE= PAPERSIZE=

SAS Name POSIX Name Default Values

Spanish_Spain es_ES Spanish DMY A4

Spanish_UnitedStates es_US Spanish DMY letter

Spanish_Uruguay es_UY Spanish DMY A4

Spanish_Venezuela es_VE Spanish DMY letter

Swedish_Sweden sv_SE Swedish YMD A4

Thai_Thailand th_TH English DMY A4

Turkish_Turkey tr_TR English DMY A4

Ukrainian_Ukraine uk_UA English DMY A4

Vietnamese_Vietnam vi_VN English DMY A4

Locale Values and Encoding Values for SBCS, DBCS, and Unicode
The following table lists the valid LOCALE= values (specified by using either the

SAS name or the POSIX name) and the default settings for the ENCODING= option, by
operating environment:

Table 21.2 LOCALE= and Default ENCODING= Values

LOCALE= ENCODING=

SAS Name
POSIX
Name

OpenVMS
and UNIX Windows z/OS

NLSCOMPATMODE NONLSCOMPATMODE

Arabic_Algeria ar_DZ arabic warabic ebcdic425 open_ed-425

Arabic_Bahrain ar_BH arabic warabic ebcdic425 open_ed-425

Arabic_Egypt ar_EG arabic warabic ebcdic425 open_ed-425

Arabic_Jordan ar_JO arabic warabic ebcdic425 open_ed-425

Arabic_Kuwait ar_KW arabic warabic ebcdic425 open_ed-425

Arabic_Lebanon ar_LB arabic warabic ebcdic425 open_ed-425

Arabic_Morocco ar_MA arabic warabic ebcdic425 open_ed-425

Arabic_Oman ar_OM arabic warabic ebcdic425 open_ed-425

Arabic_Qatar ar_QA arabic warabic ebcdic425 open_ed-425

Arabic_SaudiArabia ar_SA arabic warabic ebcdic425 open_ed-425

Arabic_Tunisia ar_TN arabic warabic ebcdic425 open_ed-425

Arabic_UnitedArabEmirates ar_AE arabic warabic ebcdic425 open_ed-425

Bulgarian_Bulgaria bg_BG cyrillic wcyrillic ebcdic1025 open_ed-1025

Byelorussian_Belarus be_BY cyrillic wcyrillic ebcdic1025 open_ed-1025

Chinese_China zh_CN n/a n/a n/a n/a

Chinese_HongKong zh_HK n/a n/a n/a n/a

Values for the LOCALE= System Option � Locale Values and Encoding Values for SBCS, DBCS, and Unicode 401

LOCALE= ENCODING=

SAS Name
POSIX
Name

OpenVMS
and UNIX Windows z/OS

NLSCOMPATMODE NONLSCOMPATMODE

Chinese_Macau zh_MO n/a n/a n/a n/a

Chinese_Singapore zh_SG n/a n/a n/a n/a

Chinese_Taiwan zh_TW n/a n/a n/a n/a

Croatian_Croatia hr_HR latin2 wlatin2 ebcdic870 open_ed-870

Czech_CzechRepublic cs_CZ latin2 wlatin2 ebcdic870 open_ed-870

Danish_Denmark da_DK latin9 wlatin1 ebcdic1142 open_ed-1142

Dutch_Belgium nl_BE latin1 wlatin1 ebcdic1148 open_ed-1148

Dutch_Netherlands nl_NL latin1 wlatin1 ebcdic1140 open_ed-1140

English_Australia en_AU latin1 wlatin1 ebcdic1047 open_ed-1047

English_Canada en_CA latin1 wlatin1 ebcdic1047 open_ed-1047

English_HongKong en_HK latin9 wlatin1 ebcdic1146 open_ed-1146

English_India en_IN latin9 wlatin1 ebcdic1146 open_ed-1146

English_Ireland en_IE latin9 wlatin1 ebcdic1146 open_ed-1146

English_Jamaica en_JM latin1 wlatin1 ebcdic1047 open_ed-1047

English_NewZealand en_NZ latin1 wlatin1 ebcdic1047 open_ed-1047

English_Singapore en_SG latin9 wlatin1 ebcdic1146 open_ed-1146

English_SouthAfrica en_ZA latin1 wlatin1 ebcdic1047 open_ed-1047

English_UnitedKingdom en_GB latin9 wlatin1 ebcdic1146 open_ed-1146

English_UnitedStates en_US latin1 wlatin1 ebcdic1047 open_ed-1047

Estonian_Estonia et_EE latin6 wbaltic ebcdic1122 open_ed-1122

Finnish_Finland fi_FI latin9 wlatin1 ebcdic1143 open_ed-1143

French_Belgium fr_BE latin9 wlatin1 ebcdic1148 open_ed-1148

French_Canada fr_CA latin1 wlatin1 ebcdic1047 open_ed-1047

French_France fr_FR latin9 wlatin1 ebcdic1147 open_ed-1147

French_Luxembourg fr_LU latin9 wlatin1 ebcdic1147 open_ed-1147

French_Switzerland fr_CH latin9 wlatin1 ebcdic1148 open_ed-1148

German_Austria de_AT latin9 wlatin1 ebcdic1141 open_ed-1141

German_Germany de_DE latin9 wlatin1 ebcdic1141 open_ed-1141

German_Liechtenstein de_LI latin9 wlatin1 ebcdic1141 open_ed-1141

German_Luxembourg de_LU latin9 wlatin1 ebcdic1141 open_ed-1141

German_Switzerland de_CH latin9 wlatin1 ebcdic1148 open_ed-1148

Greek_Greece el_GR greek wgreek ebcdic875 open_ed-875

Hebrew_Israel he_IL hebrew whebrew ebcdic424 open_ed-424

Hungarian_Hungary hu_HU latin2 wlatin2 ebcdic870 open_ed-870

402 Locale Values and Encoding Values for SBCS, DBCS, and Unicode � Chapter 21

LOCALE= ENCODING=

SAS Name
POSIX
Name

OpenVMS
and UNIX Windows z/OS

NLSCOMPATMODE NONLSCOMPATMODE

Icelandic_Iceland is_IS latin1 wlatin1 ebcdic1047 open_ed-1047

Italian_Italy it_IT latin9 wlatin1 ebcdic1144 open_ed-1144

Italian_Switzerland it_CH latin9 wlatin1 ebcdic1148 open_ed-1148

Japanese_Japan ja_JP n/a n/a n/a n/a

Korean_Korea ko_KR n/a n/a n/a n/a

Latvian_Latvia lv_LV latin6 wbaltic ebcdic1112 open_ed-1112

Lithuanian_Lithuania lt_LT latin6 wbaltic ebcdic1112 open_ed-1112

Norwegian_Norway no_NO latin9 wlatin1 ebcdic1142 open_ed-1142

Polish_Poland pl_PL latin2 wlatin2 ebcdic870 open_ed-870

Portuguese_Brazil pt_BR latin1 wlatin1 ebcdic275 open_ed-275

Portuguese_Portugal pt_PT latin1 wlatin1 ebcdic1140 open_ed-1140

Romanian_Romania ro_RO latin2 wlatin2 ebcdic870 open_ed-870

Russian_Russia ru_RU cyrillic wcyrillic ebcdic1025 open_ed-1025

Serbian_Yugoslavia sr_YU cyrillic wcyrillic ebcdic1025 open_ed-1025

Slovak_Slovakia sk_SK latin2 wlatin2 ebcdic870 open_ed-870

Slovenian_Slovenia sl_SL latin2 wlatin2 ebcdic870 open_ed-870

Spanish_Argentina es_AR latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Bolivia es_BO latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Chile es_CL latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Colombia es_CO latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_CostaRica es_CR latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_DominicanRepublic es_DO latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Ecuador es_EC latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_ElSalvador es_SV latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Guatemala es_GT latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Honduras es_HN latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Mexico es_MX latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Nicaragua es_NI latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Panama es_PA latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Paraguay es_PY latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Peru es_PE latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_PuertoRico es_PR latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Spain es_ES latin9 wlatin1 ebcdic1145 open_ed-1145

Spanish_UnitedStates es_US latin1 wlatin1 ebcdic1047 open_ed-1047

Values for the LOCALE= System Option � Locale Values and Encoding Values for SBCS, DBCS, and Unicode 403

LOCALE= ENCODING=

SAS Name
POSIX
Name

OpenVMS
and UNIX Windows z/OS

NLSCOMPATMODE NONLSCOMPATMODE

Spanish_Uruguay es_UY latin1 wlatin1 ebcdic1047 open_ed-1047

Spanish_Venezuela es_VE latin1 wlatin1 ebcdic1047 open_ed-1047

Swedish_Sweden sv_SE latin9 wlatin1 ebcdic1143 open_ed-1143

Thai_Thailand th_TH thai pcoem874 ebcdic838 open_ed-838

Turkish_Turkey tr_TR latin5 wturkish ebcdic1026 open_ed-1026

Ukrainian_Ukraine uk_UA cyrillic wcyrillic ebcdic1025 open_ed-1025

Vietnamese_Vietnam vi_VN latin1 wvietnamese ebcdic1130 open_ed-1130

404

405

C H A P T E R

22
SAS System Options for
Processing DBCS Data

Overview to System Options Used in a SAS Session for DBCS 405
DBCS Values for a SAS Session 405

Overview to System Options Used in a SAS Session for DBCS
You use the DBCSLANG= and DBCSTYPE= system options to specify the DBCS

encoding values for a SAS session. You do not directly use the ENCODING= system
option when you are using DBCS.

DBCS Values for a SAS Session

Operating Environment Information: The following table shows the supported values
for the DBCSLANG= and DBCSTYPE= system options under the z/OS, UNIX, and
Windows operating environments. DBCS is not supported under the OpenVMS
operating environment. �

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 22.1 DBCS Supported Values for the DBCSLANG= and DBCSTYPE= System
Options

DBCSLANG= z/OS DBCSTYPE= UNIX DBCSTYPE= Windows
DBCSTYPE=

Chinese ibm dec pcms

Chinese n/a hp15 n/a

Chinese n/a euc n/a

Chinese n/a pcms n/a

Japanese ibm dec pcms

Japanese pcibm euc sjis

Japanese n/a hp15 n/a

Japanese n/a sjis n/a

Korean ibm pcibm pcms

406 DBCS Values for a SAS Session � Chapter 22

DBCSLANG= z/OS DBCSTYPE= UNIX DBCSTYPE= Windows
DBCSTYPE=

Korean n/a pcms n/a

Korean n/a dec n/a

Korean n/a euc n/a

Korean n/a hp15 n/a

Taiwanese ibm dec pcms

Taiwanese pcibm euc n/a

Taiwanese n/a hp15 n/a

Taiwanese n/a pcms n/a

407

C H A P T E R

23
Encoding Values in SAS
Language Elements

Overview to SAS Language Elements That Use Encoding Values 407
SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 407

Overview to SAS Language Elements That Use Encoding Values
When the encoding of the SAS session is different from the encoding of the SAS file

or from the data that resides in the SAS file, transcoding must occur. Consider a SAS
file that was created in the Western Latin1 encoding, then moved to an IBM mainframe
that uses the German EBCDIC encoding. In order for the IBM mainframe to
successfully access the file, the SAS data file must be transcoded from the Western
Latin1 encoding to the German EBCDIC encoding. For information about transcoding
concepts, including SAS language elements that contain options for transcoding, see
Chapter 4, “Transcoding for NLS,” on page 21.

SBCS, DBCS, and Unicode Encoding Values for Transcoding Data

The following table presents a list of SBCS, DBCS, and Unicode encoding values for
transcoding data for all operating environments: The encoding values in the following
table are valid for SAS language elements that contain options for transcoding.

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 23.1 SBCS, DBCS, and Unicode Encoding Values Used to Transcode Data

Encoding Value Description

aarabic Arabic Macintosh

agreek Greek Macintosh

ahebrew Hebrew Macintosh

aiceland Icelandic Macintosh

any no transcoding is specified

arabic Arabic ISO

aroman Roman Macintosh

408 SBCS, DBCS, and Unicode Encoding Values for Transcoding Data � Chapter 23

Encoding Value Description

asciiany enables you to create a data set that is
compatible with all ASCII encodings

aturkish Turkish Macintosh

aukrainian Ukrainian Macintosh

big5 Traditional Chinese Big5

cyrillic Cyrillic ISO

dec-cn Simplified Chinese DEC

dec-jp Japanese DEC

dec-tw Traditional Chinese DEC

ebcdic037 North America EBCDIC

ebcdic1025 Cyrillic EBCDIC

ebcdic1026 Turkish EBCDIC

ebcdic1047 Western EBCDIC

ebcdic1112 Baltic EBCDIC

ebcdic1122 Estonian EBCDIC

ebcdic275 Brazil EBCDIC

ebcdic424 Hebrew EBCDIC

ebcdic425 Arabic EBCDIC

ebcdic500 International EBCDIC

ebcdic838 Thai EBCDIC

ebcdic870 Central Europe EBCDIC

ebcdic875 Greek EBCDIC

ebcdic924 European EBCDIC

ebcdic1130 Vietnamese EBCDIC

ebcdic1140 North America EBCDIC

ebcdic1141 Austria/Germany EBCDIC

ebcdic1142 Denmark/Norway EBCDIC

ebcdic1143 Finland/Sweden EBCDIC

ebcdic1144 Italy EBCDIC

ebcdic1145 Spain EBCDIC

ebcdic1146 United Kingdom EBCDIC

ebcdic1147 France EBCDIC

ebcdic1148 International EBCDIC

ebcdicany enables you to create a data set that is
compatible with all EBCDIC encodings

euc-cn Simplified Chinese EUC

euc-jp Japanese EUC

euc-kr Korean EUC

Using Encoding Values � SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 409

Encoding Value Description

euc-tw Traditional Chinese EUC

fujitsu-cn Simplified Chinese FACOM

fujitsu-jp Japanese FACOM

fujitsu-ko Korean FACOM

fujitsu-tw Traditional Chinese FACOM

greek Greek ISO

hebrew Hebrew ISO

hitachi-cn Simplified Chinese HITAC

hitachi-jn Japanese HITAC

hitachi-ko Korean HITAC

hitachi-tw Traditional Chinese HITAC

hitsas-jp Japanese XHITAC

hitsas-ko Korean XHITAC

hitsas-tw Traditional Chinese XHITAC

hp15-tw Traditional Chinese HP15

ibm-1381 Simplified Chinese PCIBM

ibm-933 Korean IBM

ibm-935 Simplified Chinese IBM

ibm-937 Traditional Chinese IBM

ibm-939 Japanese IBM

ibm-942 Japanese PCIBM

ibm-949 Korean PCIBM

latin1 Western ISO

latin2 Central Europe ISO

latin5 Turkish ISO

latin6 Baltic ISO

latin9 European ISO

macos-1 Japanese PCMAC

macos-2 Traditional Chinese PCMAC

macos-25 Simplified Chinese PCMAC

macos-3 Korean PCMAC

ms-932 Japanese PCMS

ms-936 Simplified Chinese PCMS

ms-949 Korean PCMS

ms-950 Traditional Chinese PCMS

msdos720 Arabic MS-DOS

msdos737 Greek MS-DOS

410 SBCS, DBCS, and Unicode Encoding Values for Transcoding Data � Chapter 23

Encoding Value Description

msdos775 Baltic MS-DOS

open_ed-275 Brazil OpenEdition

open_ed-425 Arabic OpenEdition

open_ed-838 Thai OpenEdition

open_ed-924 European OpenEdition

open_ed-1025 Cyrillic OpenEdition

open_ed-1026 Turkish OpenEdition

open_ed-1047 Western OpenEdition

open_ed-1112 Baltic OpenEdition

open_ed-1122 Estonian OpenEdition

open_ed-1130 Vietnamese OpenEdition

open_ed-1140 North American OpenEdition

open_ed-1141 Austria/Germany OpenEdition

open_ed-1142 Denmark/Norway OpenEdition

open_ed-1143 Finland/Sweden OpenEdition

open_ed-1144 Italy OpenEdition

open_ed-1145 Spain OpenEdition

open_ed-1146 United Kingdom OpenEdition

open_ed-1147 France OpenEdition

open_ed-1148 International OpenEdition

open_ed-424 Hebrew OpenEdition

open_ed-870 Central Europe OpenEdition

open_ed-875 Greek OpenEdition

pcoem437 USA IBM-PC

pcoem850 Western IBM-PC

pcoem852 Central Europe IBM-PC

pcoem857 Turkish IBM-PC

pcoem858 European IBM-PC

pcoem860 Portuguese MS-DOS

pcoem862 Hebrew IBM-PC

pcoem863 French Canadian IBM-PC

pcoem864 Arabic IBM-PC

pcoem865 Nordic IBM-PC

pcoem866 Cyrillic IBM-PC

pcoem869 Greek IBM-PC

pcoem874 Thai IBM-PC

pcoem921 Baltic IBM-PC

Using Encoding Values � SBCS, DBCS, and Unicode Encoding Values for Transcoding Data 411

Encoding Value Description

pcoem922 Estonia IBM-PC

pcoem1129 Vietnamese IBM-PC

shift-jis Japanese SJIS

thai Thai ISO

utf-8 Unicode (UTF-8)

utf-16 Unicode (UTF-16)

utf-32 Unicode (UTF-32)

warabic Arabic Windows

wbaltic Baltic Windows

wcyrillic Cyrillic Windows

wgreek Greek Windows

whebrew Hebrew Windows

wlatin1 Western Windows

wlatin2 Central Europe Windows

wturkish Turkish Windows

wvietnamese Vietnamese Windows

412

413

C H A P T E R

24
Encoding Values for a SAS
Session

OpenVMS Encoding Values 413
UNIX Encoding Values 414

Windows Encoding Values 415

z/OS Encoding Values 416

OpenVMS Encoding Values
The encodings in the following tables are valid in the OpenVMS operating

environment.

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 24.1 Single-Byte Encodings for OpenVMS

ENCODING= Value Description

arabic Arabic (ISO)

cyrillic Cyrillic (ISO)

greek Greek (ISO)

hebrew Hebrew (ISO)

latin1 Western (ISO)

latin2 Central Europe (ISO)

latin5 Turkish (ISO)

latin6 Baltic (ISO)

latin9 European (ISO)

thai Thai (ISO)

Table 24.2 Double-Byte Encodings for OpenVMS

ENCODING= Value Description

big5 Traditional Chinese (Big5)

dec-cn Simplified Chinese (DEC)

414 UNIX Encoding Values � Chapter 24

ENCODING= Value Description

dec-jp Japanese (DEC)

dec-tw Traditional Chinese (DEC)

euc-cn Simplified Chinese (EUC)

euc-jp Japanese (EUC)

euc-kr Korean (EUC)

euc-tw Traditional Chinese (EUC)

ms-936 Simplified Chinese (PCMS)

ms-949 Korean (PCMS)

shift-jis Japanese (SJIS)

UNIX Encoding Values
The encodings in the following tables are valid in UNIX environments.

Note: If an encoding value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 24.3 Single-Byte Encodings for UNIX

ENCODING= Value Description

arabic Arabic (ISO)

cyrillic Cyrillic (ISO)

greek Greek (ISO)

hebrew Hebrew (ISO)

latin1 Western (ISO)

latin2 Central Europe (ISO)

latin5 Turkish (ISO)

latin6 Baltic (ISO)

latin9 European (ISO)

thai Thai (ISO)

Table 24.4 Double-Byte Encodings for UNIX

ENCODING= Value Description

big5 Traditional Chinese (Big5)

euc-cn Simplified Chinese (EUC)

euc-jp Japanese (EUC)

euc-kr Korean (EUC)

euc-tw Traditional Chinese (EUC)

Encoding Values � Windows Encoding Values 415

ENCODING= Value Description

hp15-tw Traditional Chinese (HP15)

ms-936 Simplified Chinese (PCMS)

ms-949 Korean (PCMS)

shift-jis Japanese (SJIS)

UNIX also supports the utf-8 Unicode encoding.

Windows Encoding Values
The encodings in the following tables are valid in the Windows operating

environment.

Note: If an encoding-value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 24.5 Single-Byte Encodings for Windows

Description Windows
ENCODING= Value

MS-DOS
ENCODING= Value

IBM-PC
ENCODING= Value

Arabic warabic msdos720 pcoem864

Baltic wbaltic msdos775 pcoem921

Central Europe wlatin2 n/a pcoem852

Cyrillic wcyrillic n/a pcoem866

pcoem855

Central Europe n/a n/a pcoem852

Estonia n/a n/a pcoem922

European n/a n/a pcoem858

French Canadian n/a n/a pcoem863

Greek wgreek msdos737 n/a

Hebrew whebrew n/a pcoem862

Nordic n/a n/a pcoem865

Portuguese n/a pcoem860 n/a

416 z/OS Encoding Values � Chapter 24

Description Windows
ENCODING= Value

MS-DOS
ENCODING= Value

IBM-PC
ENCODING= Value

Thai n/a n/a pcoem874

Turkish wturkish n/a pcoem857

USA n/a n/a pcoem437

Vietnamese wvietnamese n/a n/a

Western wlatin1 n/a pcoem850

Table 24.6 Windows Double-Byte Encodings

Description PCMS ENCODING= Value No Vendor ENCODING=
Value

Traditional Chinese n/a big5

Simplified Chinese ms-936 n/a

Japanese ms-932 shift-jis

Korean ms-949 n/a

Note: Windows also supports the utf-8 Unicode encoding. �

z/OS Encoding Values
The encodings in the following tables are valid in the z/OS operating environment.

Note: If an encoding-value contains a hyphen (-), enclose the encoding value in
quotation marks. �

Table 24.7 Single-Byte Encodings for z/OS

Encoding ENCODING=
Value Description

EBCDIC037 Old North America (EBCDIC)

EBCDIC275 EBCDIC cp275-Brazil

EBCDIC425 EBCDIC cp425-Arabic

EBCDIC838 EBCDIC cp838-Thai

EBCDIC870 EBCDIC cp870-Central Europe

EBCDIC875 EBCDIC cp875-Greek

EBCDIC924 EBCDIC cp924-Western Europe

EBCDIC1025 EBCDIC cp1025-Cyrillic

EBCDIC1026 EBCDIC cp1026-Turkish

EBCDIC1047 EBCDIC cp1047-Latin1

EBCDIC1112 EBCDIC cp1112-Baltic

EBCDIC1122 EBCDIC cp1122-Estonian

EBCDIC1130 EBCDIC cp1130-Vietnamese

Encoding Values � z/OS Encoding Values 417

Encoding ENCODING=
Value Description

EBCDIC1140 EBCDIC cp1140-North America

EBCDIC1141 EBCDIC cp1141-German/Austrian

EBCDIC1142 EBCDIC cp1142-Danish/Norwegian

EBCDIC1143 EBCDIC cp1143-Finnish/Swedish

EBCDIC1144 EBCDIC cp1144-Italian

EBCDIC1145 EBCDIC cp1145-Spanish

EBCDIC1146 EBCDIC cp1146-English (UK)

EBCDIC1147 EBCDIC cp1147-French

EBCDIC1148 EBCDIC cp1148-International

OPEN_ED-037 OpenEdition EBCDIC

OPEN_ED-275 OpenEdition EBCDIC cp275-Brazil

OPEN_ED-425 OpenEdition EBCDIC cp425-Arabic

OPEN_ED-838 OpenEdition EBCDIC cp838-Thai

OPEN_ED-870 OpenEdition EBCDIC cp870-Central Europe

OPEN_ED-875 OpenEdition EBCDIC cp875-Greek

OPEN_ED-924 OpenEdition EBCDIC cp924-Western Europe

OPEN_ED-1025 OpenEdition EBCDIC cp1025-Cyrillic

OPEN_ED-1026 OpenEdition EBCDIC cp1026-Turkish

OPEN_ED-1047 OpenEdition EBCDIC cp1047-Latin1

OPEN_ED-1112 OpenEdition EBCDIC cp1112-Baltic

OPEN_ED-1122 OpenEdition EBCDIC cp1122-Estonian

OPEN_ED-1130 OpenEdition EBCDIC cp1130-Vietnamese

OPEN_ED-1140 OpenEdition EBCDIC cp1140-North America

OPEN_ED-1141 OpenEdition EBCDIC cp1141-German/Austrian

OPEN_ED-1142 OpenEdition EBCDIC cp1142-Danish/Norwegian

OPEN_ED-1143 OpenEdition EBCDIC cp1143-Finnish/Swedish

OPEN_ED-1144 OpenEdition EBCDIC cp1144-Italian

OPEN_ED-1145 OpenEdition EBCDIC cp1145-Spanish

OPEN_ED-1146 OpenEdition EBCDIC cp1146-English (UK)

OPEN_ED-1147 OpenEdition EBCDIC cp1147-French

OPEN_ED-1148 OpenEdition EBCDIC cp1148-International

418 z/OS Encoding Values � Chapter 24

Table 24.8 Double-Byte Encodings for z/OS

Description ENCODING= Value

Japanese IBM-939

Korean IBM-933

Simplified Chinese IBM-935

Traditional Chinese IBM-937

419

P A R T10

Appendix 1.Recommended Reading 421

420

421

A P P E N D I X

1
Recommended Reading

Recommended Reading 421

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� SAS Output Delivery System: User’s Guide
� Base SAS Procedures Guide
� SAS/CONNECT User’s Guide

� SAS/GRAPH Reference, Volumes 1 and 2
� SAS® Companion for your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

422

423

Glossary

ANSI (American National Standards Institute)
an organization in the United States that coordinates voluntary standards and
conformity to those standards. ANSI works with ISO to establish global standards.
See also ISO (International Organization for Standardization).

ASCII (American Standard Code for Information Interchange)
a 7-bit encoding that is the U.S. national variant of ISO 646. The ASCII encoding
includes the upper- and lowercase letters A-Z, digits, symbols (such as &, #, and
mathematical symbols), punctuation marks, and control characters. This set of 128
characters is also included in most other encodings. See also ISO 646 family.

BIDI (bidirectional) text
a mixture of characters that are read from left to right and characters that are read
from right to left. Most Arabic and Hebrew strings of text, for example, are read
from right to left, but numbers and embedded Western terms within Arabic and
Hebrew text are read from left to right.

CEDA (Cross-Environment Data Access)
a feature of SAS software that enables a SAS data file that was created in any
directory-based operating environment (for example, Solaris, Windows, HP-UX,
OpenVMS) to be read by a SAS session that is running in another directory-based
environment. You can access the SAS data files without using any intermediate
conversion steps. See also data representation.

character set
the set of characters that are used by a language or group of languages. A character
set includes national characters, special characters (such as punctuation marks and
mathematical symbols), the digits 0-9, and control characters that are needed by the
computer. Most character sets also include the unaccented upper- and lowercase
letters A-Z. See also national character.

code page
an ordered character set in which a numeric index (code point) is associated with
each character. See also character set.

code point
a hexadecimal value that represents a character in an encoding or that is associated
with a character on a code page. See also code page, encoding.

424 Glossary

code position
the row and column location of a character in a code page. See also code page.

code table
another term for code page. See code page.

data representation
the form in which data is stored in a particular operating environment. Different
operating environments use different standards or conventions for storing
floating-point numbers (for example, IEEE or IBM 390); for character encoding
(ASCII or EBCDIC); for the ordering of bytes in memory (big Endian or little
Endian); for word alignment (4-byte boundaries or 8-byte boundaries); and for
data-type length (16-bit, 32-bit, or 64-bit).

DBCS (double-byte character set)
any East Asian character set (Japanese, Korean, Simplified Chinese, and Traditional
Chinese) that requires a mixed-width encoding because most characters occupy more
than one byte of computer memory or storage. This term is somewhat misleading
because not all characters in a DBCS require more than one byte, and some DBCS
characters actually require four bytes. See also character set.

EBCDIC (Extended Binary Coded Decimal Interchange Code)
a group of 8-bit encodings that each include up to 256 characters. EBCDIC is used
on IBM mainframes and on most IBM mid-range computers. EBCDIC follows ISO
646 conventions in order to facilitate transcoding between EBCDIC encodings,
ASCII, the ISO 646 family of encodings, and 8-bit extensions to ASCII such as the
ISO 8859 family. The 95 EBCDIC graphical characters include 82 invariant
characters (including the SPACE character), which occupy the same code positions
across most single-byte EBCDIC code pages, and 13 variant graphic characters,
which occupy varying code positions across most single-byte EBCDIC code pages. See
also ASCII (American Standard Code for Information Interchange), encoding, ISO
(International Organization for Standardization), ISO 646 family, ISO 8859 family.

encoding
a set of characters (letters, logograms, digits, punctuation marks, symbols, and
control characters) that have been mapped to hexadecimal values (called code points)
that can be used by computers. An encoding results from applying an encoding
method to a specific character set. Groups of encodings that apply the same encoding
method to different character sets are sometimes referred to as families of encodings.
For example, German EBCDIC is an encoding in the EBCDIC family, Windows
Cyrillic is an encoding in the Windows family, and Latin 1 is an encoding in the ISO
8859 family. See also character set, encoding method.

encoding method
the set of rules that is used for assigning numeric representations to the characters
in a character set. For example, these rules specify how many bits are used for
storing the numeric representation of the character, as well as the ranges in the code
page in which characters appear. The encoding methods are standards that have
been developed in the computing industry. An encoding method is often specific to a
computer hardware vendor. See also character set, encoding.

internationalization
the process of designing a software application without making assumptions that are
based on a single language or locale. See also NLS (National Language Support).

ISO (International Organization for Standardization)
an organization that promotes the development of standards and that sponsors
related activities in order to facilitate the dissemination of products and services

Glossary 425

among nations and to support the exchange of intellectual, scientific, and
technological information.

ISO 646 family
a group of 7-bit encodings that are defined in the ISO 646 standard and that each
include up to 128 characters. The ISO 646 encodings are similar to ASCII except for
12 code points that are used for national variants. National variants are specific
characters that are needed for a particular language. See also ASCII (American
Standard Code for Information Interchange), ISO (International Organization for
Standardization).

ISO 8859 family
a group of 8-bit extensions to ASCII that support all 128 of the ASCII code points
plus an additional 128 code points, for a total of 256 characters. ISO-8859-1 (Latin 1)
is a commonly used member of the ISO 8859 family of encodings. In addition to the
ASCII characters, ISO-8859-1 contains accented characters, other letters that are
needed for languages of Western Europe, and some special characters. See also
ASCII (American Standard Code for Information Interchange), ISO (International
Organization for Standardization).

language
an aspect of locale that is not necessarily unique to any one country or geographic
region. For example, Portuguese is spoken in Brazil as well as in Portugal, but there
are separate locales for Portuguese_Portugal and Portuguese_Brazil. See also locale.

locale
a value that reflects the language, local conventions, and culture for a geographic
region. Local conventions can include specific formatting rules for dates, times, and
numbers, and a currency symbol for the country or region. Collating sequences,
paper sizes, and conventions for postal addresses and telephone numbers are also
typically specified for each locale. Some examples of locale values are
French_Canada, Portuguese_Brazil, and Chinese_Singapore.

localization
the process of adapting a product to meet the language, cultural, and other
requirements of a specific target environment or market so that customers can use
their own languages and conventions when using the product. Translation of the
user interface, system messages, and documentation is part of localization.

MBCS (multi-byte character set)
a synonym for DBCS. See DBCS (double-byte character set).

national character
any character that is specific to a language as it is written in a particular nation or
group of nations.

NLS (national language support)
the set of features that enable a software product to function properly in every global
market for which the product is targeted.

SBCS (single-byte character set)
a character set in which each character occupies only one byte of computer memory
or storage. A single-byte character set can be either 7 bits (providing up to 128
characters) or 8 bits (providing up to 256 characters). An example of an 8-bit SBCS
is the ISO-8859-5 character set, which includes the Cyrillic characters that are used
in Russian and other languages. See also character set.

transcoding
the process of converting the contents of a SAS file from one encoding to another
encoding. Transcoding is necessary if the session encoding and the file encoding are

426 Glossary

different, such as when transferring data from a Latin 1 encoding under UNIX to a
German EBCDIC encoding on an IBM mainframe. See also encoding, translation
table.

translation table
a SAS catalog entry that is used for transcoding data from one encoding to another
encoding. SAS language elements that control locale values and encoding properties
automatically invoke the appropriate translation table. Translation tables are
specific to the operating environment. For example, there is a specific translation
table that maps the Windows Latin 2 encoding to the ISO Latin 2 encoding. See also
encoding, transcoding.

Unicode
a 16-bit encoding that supports the interchange, processing, and display of characters
and symbols from dozens of writing systems, for a total of up to 65,536 characters.
Unicode includes all characters from most modern written languages as well as
characters from some historical languages.

Unicode Consortium
an organization that develops and promotes the Unicode standard. See also Unicode.

Index 427

Index

A
alignment

character expressions 217, 219
arguments

extracting a substring from 221
extracting a substring from, based on byte posi-

tion 222
length of, returning 218
lowercase, converting to 219
uppercase letters, converting to 225

ASCII collating sequence 371
ASCII option

PROC SORT statement 371
ATTRIB statement 387

TRANSCODE= option 387

B
BASETYPE= option

PROC DBCSTAB statement 314
BOTH option

CLEAR statement (TRANTAB) 325
LIST statement (TRANTAB) 326
SAVE statement (TRANTAB) 328

BTYPE= option
PROC DBCSTAB statement 314

C
CATALOG= option

PROC DBCSTAB statement 314
character data, reading

from right to left 280, 281
character expressions

deleting character value contents 226
deleting character value contents, based on byte

unit 227
inserting character value contents 226
inserting character value contents, based on

byte unit 227
left-aligning 217
position of first unique character, return-

ing 228
removing trailing blanks and SO/SI 224
replacing character value contents 226
replacing character value contents, based on

byte unit 227

replacing specific characters 223
reversing 219
right-aligning 219
searching for specific characters 216, 217
selecting a given word from 220
translating 223
trimming 224
updating 226
updating, based on byte unit 227
verifying 228

character-set encoding
ENCODING= system option 355
NLSCOMPATMODE system option 360

character sets
translation tables and 320

character strings
comparing 212
concatenating 221
double-byte characters, returning number

of 214
removing characters from 213

CIMPORT procedure
translation tables with 321

CLEAR statement
TRANTAB procedure 325

collating sequence, for SORT procedure 361
commas, removing 309
comparing character strings 212
concatenation

character strings 221
conversion tables

creating 315
for double-byte character sets 313
in Japanese 316

CPORT procedure
translation tables with 321

currency
Yen 203

D
DANISH option

PROC SORT statement 371
DATA= option

PROC DBCSTAB statement 314
data set options

NLS 37
date/time values

international, specifying language for 353

date/time values, reading
international date values 252
international datetime values 254
international month and year values 255
Japanese date format 268
Taiwanese date format 266

date/time values, writing
international, day-of-week and date 83
international, day-of-week name 75
international, day-of-week number 72
international, ddmmmyy 70
international, ddmmmyy:hh:mm:ss:ss 73
international, dd.mm.yy 69
international, mmmyy 79
international, month name 78, 81
Japanese 154

DBCS data
adding shift-code data to 150, 264
removing shift-code data from 150, 263

DBCS (double-byte character sets) 350
NLS 29

DBCS system option 350
DBCSLANG 351
DBCSLANG= option

PROC DBCSTAB statement 314
DBCSLANG system option 351
DBCSTAB procedure 313

conversion tables, creating 315
conversion tables, Japanese 316
examples 315
overview 313
PROC DBCSTAB statement 313
syntax 313
when to use 314

DBCSTYPE 352
DBCSTYPE system option 352
decimal points, removing 309
DESC= option

PROC DBCSTAB statement 314
DFLANG= system option 353
double-byte character sets (DBCS) 350

conversion tables for 313
encoding method 352, 356
full-screen input method module (IMM) 357
full-screen input method module options 358
language for 351
NLS 29
recognizing 350

double-byte characters, in a character string 214

428 Index

E
EBCDIC collating sequence 371
EBCDIC option

PROC SORT statement 371
encoding

NLS 9
ENCODING= data set option 39
ENCODING system option 355
encoding values

OpenVMS 413
UNIX 414
Windows 415
z/OS 416

EURDFDDw. format 69
EURDFDEw. format 70
EURDFDEw. informat 252
EURDFDNw. format 72
EURDFDTw. format 73
EURDFDTw. informat 254
EURDFDWNw. format 75
EURDFMNw. format 78
EURDFMYw. format 79
EURDFMYw. informat 255
EURDFWDXw. format 81
EURDFWKXw. format 83
EURFRATSw.d format 86
EURFRBEFw.d format 87
EURFRCHFw.d format 88
EURFRCZKw.d format 89
EURFRDEMw.d format 91
EURFRDKKw.d format 92
EURFRESPw.d format 93
EURFRFIMw.d format 94
EURFRFRFw.d format 95
EURFRGBPw.d format 96
EURFRGRDw.d format 98
EURFRHUFw.d format 99
EURFRIEPw.d format 100
EURFRITLw.d format 101
EURFRLUFw.d format 102
EURFRNLGw.d format 103
EURFRNOKw.d format 105
EURFRPLZw.d format 106
EURFRPTEw.d format 107
EURFRROLw.d format 108
EURFRRURw.d format 109
EURFRSEKw.d format 110
EURFRSITw.d format 112
EURFRTRLw.d format 113
EURFRYUDw.d format 114
EUROCURR function 210
EUROw.d format 115
EUROw.d informat 257
EUROXw.d format 117
EUROXw.d informat 259
EURTOATSw.d format 118
EURTOBEFw.d format 119
EURTOCHFw.d format 120
EURTOCZKw.d format 121
EURTODEMw.d format 123
EURTODKKw.d format 124
EURTOFIMw.d format 126
EURTOFRFw.d format 127
EURTOGBPw.d format 129
EURTOGRDw.d format 130
EURTOHUFw.d format 131

EURTOIEPw.d format 132
EURTOITLw.d format 133
EURTOLUFw.d format 135
EURTONLGw.d format 136
EURTONOKw.d format 137
EURTOPLZw.d format 138
EURTOPTEw.d format 139
EURTOROLw.d format 140
EURTORURw.d format 142
EURTOSEKw.d format 143
EURTOSITw.d format 144
EURTOTRLw.d format 145
EURTOYUDw.d format 146
external files

character-set encoding 355, 360

F
FINNISH option

PROC SORT statement 371
FORCE option

PROC DBCSTAB statement 314
formats

associating with variables 387
international date and datetime formats 47
language for international dates 353
NLS 47

FSDBTYPE 356
FSDBTYPE system option 356
FSIMM 357
FSIMM system option 357
FSIMMOPT 358
FSIMMOPT system option 358
functions

NLS 207

I
IBw.d informat 271, 272, 273, 274
informats

associating with variables 387
language for international dates 353
NLS 245

integer binary values, reading 271, 272, 273,
274

international date and datetime formats 47
international numerical format 81, 83
INVERSE statement

TRANTAB procedure 325

J
Japanese conversion tables 316
Japanese numerical format 154

K
$KANJIw. format 150
$KANJIw. informat 263
$KANJIXw. format 150
$KANJIXw. informat 264
KCOMPARE function 212

KCOMPRESS function 213
KCOUNT function 214
KCVT function 214
KINDEX function 216
KINDEXC function 217
KLEFT function 217
KLENGTH function 218
KLOWCASE function 219
KREVERSE function 219
KRIGHT function 219
KSCAN function 220
KSTRCAT function 221
KSUBSTR function 221
KSUBSTRB function 222
KTRANSLATE function 223
KTRIM function 224
KTRUNCATE function 225
KUPCASE function 225
KUPDATE function 226
KUPDATEB function 227
KVERIFY function 228

L
labels, associating with variables 387
languages, for international date informats and

formats 353
length, associating with variables 387
LIST statement

TRANTAB procedure 326
LOAD statement

TRANTAB procedure 326
locale

NLS 5
LOCALE system option 359
lowercase letters

in arguments 219

M
MINGUOw. format 153
MINGUOw. informat 266

N
NAME= argument

PROC DBCSTAB statement 313
National Language Support (NLS) 3

data set options 37
DBCSTAB procedure 313
double-byte character sets 29
encoding 9
formats 47
functions 207
informats 245
locale 5
system options 347
transcoding 21
TRANTAB procedure 319

NATIONAL option
PROC SORT statement 371

NENGOw. format 154
NENGOw. informat 268

Index 429

NLPCTIw.d informat 276, 277
NLS

See National Language Support (NLS)
NLS option

LOAD statement (TRANTAB) 326
PROC TRANTAB statement 324

NLSCOMPATMODE system option 360
NONLSCOMPATMODE system option 360
NORWEGIAN option

PROC SORT statement 371
numeric data, writing

currency, Yen 203
international format 81, 83
Japanese format 154
Taiwanese format 153

numeric values
truncating 225

O
ONE option

CLEAR statement (TRANTAB) 325
LIST statement (TRANTAB) 326
SAVE statement (TRANTAB) 328

OpenVMS
encoding values 413

OPT= option, TRANTAB statement 392

P
PROC DBCSTAB statement 313
PROC TRANTAB statement 324

R
Remote Library Services (RLS)

translation tables with 322
REPLACE statement

TRANTAB procedure 327
$REVERJw. informat 280

compared to $REVERSw. informat 281
reversing character expressions 219
$REVERSw. informat 281

compared to $REVERJw. informat 281
RLS (Remote Library Services)

translation tables with 322

S
SAS/GRAPH software

translation tables 322
SAS sessions

locale of 359
SAVE statement

TRANTAB procedure 328
searching

for specific characters in a character expres-
sion 216, 217

shift-code data
adding to DBCS data 150, 264
removing from DBCS data 150, 263

SORT procedure
collating sequence for 361
translation tables in 321

sorting
translation tables for 339

sorting orders
ASCII 371
EBCDIC 371

SORTSEQ= data set option 42
SORTSEQ= option

PROC SORT statement 371
SORTSEQ= system option 361
substrings

extracting from an argument 221
extracting from an argument, based on byte po-

sition 222
SWAP statement

TRANTAB procedure 329
SWEDISH option

PROC SORT statement 371
system options

NLS 347

T
TABLE= argument

PROC DBCSTAB statement 313
TABLE= option

SAVE statement (TRANTAB) 328
Taiwanese date format 153
TRANSCODE= option

ATTRIB statement 387
transcoding

NLS 21
translating character expressions 223
translation tables 319

applying to transport files 392
character sets and 320
CIMPORT procedure 321
CPORT procedure 321
creating 330
device-to-operating environment transla-

tion 322
editing 333, 335, 341
exchanging 329
hexadecimal representation of 326
inverse tables 325, 337
loading into memory for editing 326
modifying SAS tables 321
operating environment-to-device transla-

tion 322
outside TRANTAB procedure 321
positions 319, 320, 325
Remote Library Sservices (RLS) 322
replacing characters in 327
SAS/GRAPH software 322
saving 328
SORT procedure 321
sorting data 339
specifying 363
storing 320
table one area 322
table two area 322
viewing 329

transport files
applying translation tables to 392

TRANTAB procedure 323
concepts 320
examples 329
overview 319
syntax 323
task table 323

TRANTAB statement
UPLOAD procedure 391

TRANTAB= system option 363
trimming character expressions 224
truncating numeric values 225
TWO option

CLEAR statement (TRANTAB) 325
LIST statement (TRANTAB) 326
SAVE statement (TRANTAB) 328

TYPE= option, TRANTAB statement 392

U
$UCS2Bw. format 174, 181
$UCS2Bw. informat 282
$UCS2Lw. format 176
$UCS2Lw. informat 284
$UCS2Xw. format 179
$UCS2Xw. informat 286
$UCS4Bw informat 289
UNIX

encoding values 414
UPLOAD procedure

TRANTAB statement 391
uploading files

translation tables 391
uppercase letters

in arguments 225
$UTF8Xw. format 195
$UTF8Xw. informat 301

V
variables

associating formats with 387
associating informats with 387
labels 387
length, associating with 387

VERIFY option
PROC DBCSTAB statement 314

W
Windows

encoding values 415

Y
yen signs, removing 309
YENw.d format 203
YENw.d informat 309

430 Index

Z
z/OS

encoding values 416

Your Turn

If you have comments or suggestions about SAS® 9.1 National Language Support
(NLS): User’s Guide, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details
	New Document Consolidates Information about NLS
	Expanded Values for the LOCALE= System Option
	New Options in LIBNAME Statements for NLS
	Formats for NLS
	Informats for NLS
	Functions for NLS

	NLS Concepts
	National Language Support (NLS)
	Overview to National Language Support
	Definition of Localization and Internationalization

	Locale for NLS
	Overview of Locale Concepts for NLS
	Specifying a Locale
	How Locale Is Specified at SAS Invocation
	How Locale Is Specified During a SAS Session

	Interaction between the LOCALE= and ENCODING= System Options

	Encoding for NLS
	Overview of Encoding for NLS
	Difference between Encoding and Transcoding
	Character Sets for Encoding in NLS
	Common Encoding Methods
	Standards Organizations for NLS Encodings
	Code Point Discrepancies among EBCDIC Encodings
	Collation Sequence
	Determining the Encoding of a SAS Session and a Data Set
	Encoding of a SAS Session
	Encoding of a SAS Data Set

	Default SAS Session Encoding
	Setting the Encoding of a SAS Session
	Encoding Behavior in a SAS Session
	Encoding Support for Data Sets by SAS Release
	z/OS: Ensuring Compatibility with Previous SAS Releases
	Output Processing
	Input Processing
	Reading and Writing External Files

	Transcoding for NLS
	Overview to Transcoding
	Common Reasons for Transcoding
	Transcoding and Translation Tables
	SAS Options That Transcode SAS Data
	Transcoding between Operating Environments
	Transcoding Considerations
	Compatible and Incompatible Encodings
	Overview to Compatible and Incompatible Encodings
	Line-feed Characters and Transferring Data between EBCDIC and ASCII
	EBCDIC and OpenEdition Encodings Are Compatible
	Some East Asian MBCS Encodings Are Compatible

	Preventing Transcoding

	Double-Byte Character Sets (DBCS)
	Overview to Double-Byte Character Sets (DBCS)
	East Asian Languages
	Specifying DBCS
	Requirements for Displaying DBCS Character Sets
	When You Can Use DBCS Features
	DBCS and SAS on a Mainframe
	SAS Data Conversion between DBCS Encodings
	Avoiding Problems with Split DBCS Character Strings
	Avoiding Character Data Truncation by Using the CVP Engine

	Data Set Options for NLS
	Overview to Data Set Options for NLS
	Data Set Options for NLS by Category

	Data Set Options for NLS
	Formats for NLS
	Overview to Formats for NLS
	International Date and Datetime Formats
	European Currency Conversion
	Overview to European Currency Conversion
	Conversion Rate Tables
	Methods for Converting from One European Currency to Another European Currency

	Formats for NLS by Category

	Formats for NLS
	Functions for NLS
	Overview to Functions for NLS
	Functions for NLS by Category

	Functions for NLS
	Informats for NLS
	Overview to Informats for NLS
	Informats for NLS by Category

	Informats for NLS
	Procedures for NLS
	The DBCSTAB Procedure
	Overview: DBCSTAB Procedure
	Syntax: DBCSTAB Procedure
	When to Use the DBCSTAB Procedure
	Examples: DBCSTAB Procedure
	See Also

	The TRANTAB Procedure
	Overview: TRANTAB Procedure
	Concepts: TRANTAB Procedure
	Understanding Translation Tables and Character Sets for PROC TRANTAB
	Storing Translation Tables with PROC TRANTAB
	Modifying SAS Translation Tables with PROC TRANTAB
	Using Translation Tables Outside PROC TRANTAB

	Syntax: TRANTAB Procedure
	Examples: TRANTAB Procedure
	See Also

	System Options for NLS
	Overview to SAS System Options for NLS
	System Options for NLS by Category

	System Options for NLS
	Other Commands, Statements, and Procedure Statements for NLS
	Overview to NLS Options Used in Commands, Statements, and Procedures
	Commands, Statements, and Procedures for NLS by Category

	Options for Commands, Statements, and Procedures for NLS
	The TRANTAB Statement Used with Procedures
	Values for Locale, Encoding, and Transcoding
	Values for the LOCALE= System Option
	LOCALE= and Default Values for DFLANG, DATESTYLE, and PAPERSIZE Options
	Locale Values and Encoding Values for SBCS, DBCS, and Unicode

	SAS System Options for Processing DBCS Data
	Overview to System Options Used in a SAS Session for DBCS
	DBCS Values for a SAS Session

	Encoding Values in SAS Language Elements
	Overview to SAS Language Elements That Use Encoding Values
	SBCS, DBCS, and Unicode Encoding Values for Transcoding Data

	Encoding Values for a SAS Session
	OpenVMS Encoding Values
	UNIX Encoding Values
	Windows Encoding Values
	z/OS Encoding Values

	Recommended Reading
	Recommended Reading

	Glossary
	Index

