
SAS/IML® 9.1
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/IML 9.1 User’s Guide.
Cary, NC: SAS Institute Inc.

SAS/IML 9.1 User’s Guide

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-236-5

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What’s New in SAS/IML 9 and 9.1. 1

Chapter 1. Introduction to SAS/IML Software. 5

Chapter 2. Understanding the Language. .11

Chapter 3. Tutorial: A Module for Linear Regression. 27

Chapter 4. Working with Matrices. .41

Chapter 5. Programming Statements. .63

Chapter 6. Working with SAS Data Sets. 85

Chapter 7. File Access. .111

Chapter 8. General Statistics Examples. .129

Chapter 9. Robust Regression Examples. .183

Chapter 10. Time Series Analysis and Examples. .235

Chapter 11. Nonlinear Optimization Examples. .319

Chapter 12. Graphics Examples. .399

Chapter 13. Window and Display Features. .431

Chapter 14. Storage Features. .445

Chapter 15. Using SAS/IML Software to Generate IML Statements.451

Chapter 16. Wavelet Analysis. .467

Chapter 17. Genetic Algorithms. .493

Chapter 18. Sparse Matrix Algorithms. .525

Chapter 19. Further Notes. .535

Chapter 20. Language Reference. .543

Chapter 21. Module Library. .1009

Subject Index. .1021

Syntax Index. .1029

iv

What’s New in SAS/IML 9 and 9.1

Contents

OVERVIEW . 3

ITERATIVE METHODS FOR LARGE SPARSE SYSTEMS OF LINEAR
EQUATIONS . 3

DIRECT ALGORITHMS FOR LARGE SPARSE SYSTEMS OF LINEAR
EQUATIONS: CHOLESKY FACTORIZATION 3

GENETIC ALGORITHMS . 4

NEW FUNCTIONS AND CALLS . 4
BY Group Processing for Matrices. 4
SORT and SORTNDX Calls. 4
RANDSEED and RANDGEN Calls . 4

NEW PROGRAMMING FEATURE . 4
Subscripting by Row or Column Names. 4

2 � What’s New in SAS/IML 9 and 9.1

What’s New in SAS/IML 9 and 9.1
Overview

New to SAS/IML are the following:

• A set of new iterative methods for large sparse systems of linear equations

• A set of new direct algorithms utilizing Cholesky factorization for large sparse
systems of linear equations

• A new chapter on Genetic Algorithms

• A set of new functions and calls for grouping and sorting

• A set of new calls for random number generation

• A new programming feature that extends the matrix subscripting functionality

Iterative Methods for Large Sparse Systems of
Linear Equations

Iterative methods create a new direction in IML: the capability to handle large, sparse9.1
matrices and systems. With sparsity exploitation and iterative approximation algo-
rithms, IML can solve linear systems containing as many as106 variables on a regu-
lar PC. The new methods that are used are Conjugate Gradient, Minimum Residual,
and Biconjugate Gradient. The collection of preconditioners include fast incomplete
Cholesky factorization and Jacobi.

Direct Algorithms for Large Sparse Systems of
Linear Equations: Cholesky
Factorization

The Cholesky algorithm comprises a minimum degree ordering heuristic and sym-9.1
bolic factorization. The implementation is based on a quotient graph model.

4 � What’s New in SAS/IML 9 and 9.1

Genetic Algorithms

Genetic algorithms are a family of search algorithms that seek optimal solutions to
problems using an approach that parallels the principles of natural selection and evo-
lution in nature. There are several new experimental subroutines and functions that
enable you to formulate and implement genetic algorithm optimizations. You have
the flexibility either to write your own modules to specify the objective function and
genetic operators or to use standard functions and operators provided by IML.

New Functions and Calls

BY Group Processing for Matrices

A new function, UNIQUEBY, has been added to IML that makes it easier to retrieve
and process BY groups in a sorted matrix. You can use the SORT and SORTNDX
calls to sort a matrix, and then call the UNIQUEBY function to get a vector of indices
of the first row of each unique BY group in the input matrix. See the Language
Reference section for full details.

SORT and SORTNDX Calls

Two new subroutines have been added to make sorting of matrices easier. The SORT
call sorts a matrix in place, sorting the rows by specified columns. The SORTNDX
function creates an index matrix, without rearranging the input matrix, which enables
you to access the rows of the input matrix in sorted order. The SORTNDX call will
normally be faster than the SORT call, and you can use it to create multiple indexes
into the same input matrix. See the Language Reference section for full details.

RANDSEED and RANDGEN Calls

Two new subroutines have been added to improve the efficiency of random number9.1
generation. RANDSEED and RANDGEN use the same algorithm as the data func-
tions STREAMINIT and RAND, with changes to maximize performance in IML.
See the Language Reference section for full details.

New Programming Feature

Subscripting by Row or Column Names

Matrix subscripting functionality has been extended, so that you can specify a set
of rows or columns by the names given in a MATTRIB statement or assigned by a
data set statement. This is done by using a character matrix as one or both of the
subscripts. IML will attempt to match character string elements to column or row
names assigned to the matrix. See the Language Reference section for full details
and examples.

Chapter 1
Introduction to SAS/IML Software

Chapter Contents

OVERVIEW . 7

SAS/IML SOFTWARE: AN OVERVIEW 7

AN INTRODUCTORY INTERACTIVE SESSION 9

PROC IML STATEMENT . 9

6 � Chapter 1. Introduction to SAS/IML Software

Chapter 1
Introduction to SAS/IML Software
Overview

SAS/IML software gives you access to a powerful and flexible programming lan-
guage (InteractiveMatrix Language) in a dynamic, interactive environment. The
fundamental object of the language is a data matrix. You can use SAS/IML soft-
ware interactively (at the statement level) to see results immediately, or you can store
statements in a module and execute them later. The programming is dynamic be-
cause necessary activities such as memory allocation and dimensioning of matrices
are performed automatically.

SAS/IML software is powerful. You can access built-in operators and call routines
to perform complex tasks such as matrix inversion or eigenvector generation. You
can define your own functions and subroutines using SAS/IML modules. You can
operate on a single value or take advantage of matrix operators to perform operations
on an entire data matrix. For example, the statement

x=x+1;

can be used to add 1 to a single value X, or to add 1 to all elements of a matrixX.

You have access to a wide choice of data management commands. You can read,
create, and update SAS data sets from inside SAS/IML software without ever using
the DATA step. For example, reading a SAS data set to get phone numbers for all
individuals whose last name begins with “Smith” is easy:

read all var{phone} where(lastname=:"Smith");

The result is a matrixPHONE of phone numbers.

SAS/IML Software: An Overview
SAS/IML software is a programming language.

You can program easily and efficiently with the many features for arithmetic and
character expressions in SAS/IML software. You have access to a wide range of
built-in subroutines designed to make your programming fast, easy, and efficient.
Because SAS/IML software is part of the SAS System, you can access SAS data sets
or external files with an extensive set of data processing commands for data input and
output, and you can edit existing SAS data sets or create new ones.

SAS/IML software has a complete set of control statements, such asDO/END,
START/FINISH, iterativeDO, IF-THEN/ELSE, GOTO, LINK , PAUSE, andSTOP,
giving you all of the commands necessary for execution control and program modu-
larization.

8 � Chapter 1. Introduction to SAS/IML Software

SAS/IML software operates on matrices.

While most programming languages deal with single data elements, the fundamen-
tal data element with SAS/IML software is the matrix, a two-dimensional (row×
column) array of numeric or character values.

SAS/IML software possesses a powerful vocabulary of operators.

You can access built-in matrix operations that require calls to math-library subrou-
tines in other languages. You have access to many operators, functions, and CALL
subroutines.

SAS/IML software uses operators that apply to entire matrices.

You can add elements of the matricesA andB with the expressionA + B. You can
perform matrix multiplication with the expressionA ∗ B and perform elementwise
multiplication with the expressionA#B.

SAS/IML software is interactive.

You can execute a command as soon as you enter it, or you can collect commands
in a module to execute later. When you execute a command, you see the results
immediately. You can interact with an executing module by programming IML to
pause, enabling you to enter additional statements before continuing execution.

SAS/IML software is dynamic.

You do not need to declare, dimension, and allocate storage for a data matrix.
SAS/IML software does this automatically. You can change the dimension or type of
a matrix at any time. You can open multiple files or access many libraries. You can
reset options or replace modules at any time.

SAS/IML software processes data.

You can read all observations or read conditionally selected observations from a SAS
data set into a matrix, creating either multiple vectors (one for each variable in the
data set) or a matrix that contains a column for each data set variable. You can create
a new SAS data set, or you can edit or append observations to an existing SAS data
set.

SAS/IML software produces graphics.

You have access to a wide range of graphics commands, enabling you to visually
explore relationships in data.

PROC IML Statement � 9

An Introductory Interactive Session

Here is a simple introductory session that uses SAS/IML software to estimate the
square root of a number, accurate to three decimal places. In this session, you define
a function module named APPROX to perform the calculations and return the ap-
proximation. You then call APPROX to estimate the square root of several numbers
given in a matrix literal (enclosed in braces), and you print the results.

Throughout the session, the right angle brackets (>) indicate statements that you sub-
mit; responses from IML follow.

> proc iml; /* begin IML session */

IML Ready

> start approx(x); /* begin module */
> y=1; /* initialize y */
> do until(w<1e-3); /* begin do loop */
> z=y; /* set z=y */
> y=.5#(z+x/z); /* estimate square root */
> w=abs(y-z); /* compute change in estimate */
> end; /* end do loop */
> return(y); /* return approximation */
> finish approx; /* end module */

NOTE: Module APPROX defined.

> t=approx({3,5,7,9}); /* call function APPROX */
> print t; /* print matrix */

T
1.7320508
2.236068
2.6457513

3

> quit;

Exiting IML

PROC IML Statement

PROC IML <SYMSIZE=n1 > <WORKSIZE=n2 >;

wheren1 andn2 are specified in kilobytes.

The SYMSIZE= and WORKSIZE= options in the PROC IML statement give you
control over the size of memory allocated to the symbol space and the size of each
extent of workspace. If you do not specify these options, PROC IML uses host de-
pendent defaults.

10 � Chapter 1. Introduction to SAS/IML Software

Generally, you do not need to be concerned with the details of memory usage be-
cause memory allocation is done automatically. For special situations, however, see
Memory and Workspace.

Chapter 2
Understanding the Language

Chapter Contents

DEFINING A MATRIX .13

MATRIX NAMES AND LITERALS . 13
Matrix Names .13
Matrix Literals .14

CREATING MATRICES FROM MATRIX LITERALS 14
Scalar Literals .14
Numeric Literals. .15
Character Literals. .16
Repetition Factors. .16
Reassigning Values. .17
Assignment Statements. .17

TYPES OF STATEMENTS .18
Control Statements .19
Functions .19
CALL Statements and Subroutines. 21
Commands. .22

MISSING VALUES .24

SUMMARY .25

12 � Chapter 2. Understanding the Language

Chapter 2
Understanding the Language

Defining a Matrix

The fundamental data object on which all Interactive Matrix Language commands
operate is a two-dimensional (row× column) numeric or character matrix. By their
very nature, matrices are useful for representing data and efficient for working with
data. Matrices have the following properties:

• Matrices can be either numeric or character. Elements of a numeric matrix are
stored in double precision. Elements of a character matrix are character strings
of equal length. The length can range from 1 to 32676 characters.

• Matrices are referred to by valid SAS names. Names can be from 1 to 32
characters long, beginning with a letter or underscore, and continuing with
letters, numbers, and underscores.

• Matrices have dimension defined by the number of rows and columns.

• Matrices can contain elements that have missing values (see the section
“Missing Values”on page 24 later in this chapter).

The dimension of a matrix is defined by the number of rows and columns it has. An
m × n matrix hasmn elements arranged inm rows andn columns. The following
nomenclature is standard in this book:

• 1× n matrices are calledrow vectors.

• m× 1 matrices are calledcolumn vectors.

• 1× 1 matrices are calledscalars.

Matrix Names and Literals

Matrix Names

A matrix is referred to by a valid SAS name. Names can be from 1 to 8 characters
long, beginning with a letter or underscore and continuing with letters, numbers,
and underscores. You associate a name with a matrix when you create or define
the matrix. A matrix name exists independently of values. This means that at any
time, you can change the values associated with a particular matrix name, change the
dimension of the matrix, or even change its type (numeric or character).

14 � Chapter 2. Understanding the Language

Matrix Literals

A matrix literal is a matrix represented by its values. When you represent a matrix
by a literal, you are simply specifying the values of each element of the matrix. A
matrix literal can have a single element (a scalar) or have many elements arranged in
a rectangular form (rows× columns). The matrix can be numeric (all elements are
numeric) or character (all elements are character). The dimension of the matrix is
automatically determined by the way you punctuate the values.

If there are multiple elements, use braces ({ }) to enclose the values and commas
to separate the rows. Within the braces, values must be either all numeric or all
character. If you use commas to create multiple rows, all rows must have the same
number of elements (columns).

The values you input can be any of the following:

• a number, with or without decimal points, possibly in scientific notation (such
as 1E−5)

• a character string. Character strings can be enclosed in either single quotes
(’) or double quotes ("), but they do not necessarily need quotes. Quotes are
required when there are no enclosing braces or when you want to preserve case,
special characters, or blanks in the string. If the string has embedded quotes,
you must double them (for example, WORD=’Can”t’). Special characters can
be any of the following: ? = * : ().

• a period (.), representing a missing numeric value

• numbers in brackets ([]), representing repetition factors

Creating Matrices from Matrix Literals

Creating matrices using matrix literals is easy. You simply input the element values
one at a time, usually inside of braces. Representing a matrix as a matrix literal is not
the only way to create matrices. A matrix can also be created as a result of a function,
a CALL statement, or an assignment statement. Below are some simple examples of
matrix literals, some with a single element (scalars) and some with multiple elements.

For more information on matrix literals, seeChapter 4, “Working with Matrices.”

Scalar Literals

The following examples define scalars as literals. These are examples of simple as-
signment statements, with the matrix name on the left-hand side of the equal sign and
the value on the right. Notice that you do not need to use braces when there is only
one element.

a=12;
a=. ;
a=’hi there’;
a="Hello";

Numeric Literals � 15

Numeric Literals

Matrix literals with multiple elements have the elements enclosed in braces. Use
commas to separate the rows of a matrix. For example, the statement

x={1 2 3 4 5 6};

assigns a row vector to the matrixX:

X
1 2 3 4 5 6

The statement

y={1,2,3,4,5};

assigns a column vector to the matrixY:

Y
1
2
3
4
5

The statement

z={1 2, 3 4, 5 6};

assigns a3× 2 matrix literal to the matrixZ:

Z
1 2
3 4
5 6

The following assignment

w=3#z;

creates a matrixW that is three times the matrixZ:

W
3 6
9 12

15 18

16 � Chapter 2. Understanding the Language

Character Literals

You input a character matrix literal by entering character strings. If you do not use
quotes, all characters are converted to uppercase. You must use either single or dou-
ble quotes to preserve case or when blanks or special characters are present in the
string. For character matrix literals, the length of the elements is determined from the
longest element. Shorter strings are padded on the right with blanks. For example,
the assignment of the literal

a={abc defg};

results inA being defined as a1× 2 character matrix with string length 4 (the length
of the longer string).

A
ABC DEFG

The assignment

a={’abc’ ’DEFG’};

preserves the case of the elements, resulting in the matrix

A
abc DEFG

Note that the string length is still 4.

Repetition Factors

A repetition factor can be placed in brackets before a literal element to have the
element repeated. For example, the statement

answer={[2] ’Yes’, [2] ’No’};

is equivalent to

answer={’Yes’ ’Yes’, ’No’ ’No’};

and results in the matrix

ANSWER
Yes Yes
No No

Assignment Statements � 17

Reassigning Values

You can assign new values to elements of a matrix at any time. The following state-
ment creates a2× 3 numeric matrix namedA.

a={1 2 3, 6 5 4};

The statement

a={’Sales’ ’Marketing’ ’Administration’};

redefines the matrixA as a1× 3 character matrix.

Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the
results to a matrix. The expressions can be composed of operators (for example,
matrix multiplication) or functions (for example, matrix inversion) operating on ma-
trices. Because of the nature of linear algebraic expressions, the resulting matrices
automatically acquire appropriate characteristics and values. Assignment statements
have the general form

result= expression;

whereresult is the name of the new matrix andexpressionis an expression that is
evaluated, the results of which are assigned to the new matrix.

Functions as Expressions

Matrices can be created as a result of a function call. Scalar functions such asLOG
or SQRToperate on each element of a matrix, while matrix functions such asINV or
RANK operate on the entire matrix. For example, the statement

a=sqrt(b);

assigns the square root of each element ofB to the corresponding element ofA.

The statement

y=inv(x);

calls theINV function to compute the inverse matrix ofX and assign the results to
Y.

The statement

r=rank(x);

creates a matrixR with elements that are the ranks of the corresponding elements of
X.

18 � Chapter 2. Understanding the Language

Operators within Expressions

There are three types of operators that can be used in assignment statement expres-
sions. Be sure that the matrices on which an operator acts are conformable to the
operation. For example, matrix multiplication requires that the number of columns
of the left-hand matrix be equal to the number of rows of the right-hand matrix.

The three types of operators are as follows:

prefix operators are placed in front of an operand (−A).

infix operators are placed between operands (A ∗B).

postfix operators are placed after an operand (A′).

All operators can work in a one-to-many or many-to-one manner; that is, they enable
you to, for example, add a scalar to a matrix or divide a matrix by a scalar. The
followingis an example of using operators in an assignment statement.

y=x#(x>0);

This assignment statement creates a matrixY in which each negative element of the
matrixX is replaced with zero. The statement actually has two expressions evaluated.
The expression (X>0) is a many-to-one operation that compares each element ofX
to zero and creates a temporary matrix of results; an element of the temporary matrix
is 1 when the corresponding element ofX is positive, and 0 otherwise. The original
matrix X is then multiplied elementwise by the temporary matrix, resulting in the
matrixY.

For a complete listing and explanation of operators, seeChapter 20, “Language
Reference.”

Types of Statements

Statements in SAS/IML software can be classified into three general categories:

Control Statements
direct the flow of execution. For example, theIF-THEN/ELSE Statementcon-
ditionally controls statement execution.

FunctionsandCALL Statements
perform special tasks or user-defined operations. For example, the statement
CALL: GSTARTactivates the SAS/IML graphics system.

Commands
perform special processing, such as setting options, displaying, and handling
input/output. For example, the commandRESET:PRINTturns on the automatic
displaying option so that matrix results are displayed as you submit statements.

Functions � 19

Control Statements

SAS/IML software has a set of statements for controlling program execution. Control
statements direct the flow of execution of statements in IML. With them, you can
define DO-groups and modules (also known as subroutines) and route execution of
your program. Some control statements are described as follows.

Statements Action
DO, END group statements
iterative DO, END define an iteration loop
GOTO, LINK transfer control
IF-THEN/ELSE routes execution conditionall
PAUSE instructs a module to pause during execution
QUIT ends a SAS/IML session
RESUME instructs a module to resume execution
RETURN returns from a LINK statement or a CALL module
RUN executes a module
START, FINISH define a module
STOP, ABORT stop execution of an IML program

SeeChapter 5, “Programming Statements,”later in this book for more information
on control statements.

Functions

The general form of a function is

result= FUNCTION(arguments);

whereargumentscan be matrix names, matrix literals, or expressions. Functions
always return a single result (whereas subroutines can return multiple results or no
result). If a function returns a character result, the matrix to hold the result is allocated
with a string length equal to the longest element, and all shorter elements are padded
with blanks.

Categories of Functions

Functions fall into the following six categories:

20 � Chapter 2. Understanding the Language

matrix inquiry functions
return information about a matrix. For example, the ANY function returns a
value of 1 if any of the elements of the argument matrix are nonzero.

scalar functions
operate on each element of the matrix argument. For example, the ABS function
returns a matrix with elements that are the absolute values of the corresponding
elements of the argument matrix.

summary functions
return summary statistics based on all elements of the matrix argument. For
example, the SSQ function returns the sum of squares of all elements of the
argument matrix.

matrix arithmetic functions
perform matrix algebraic operations on the argument. For example, the TRACE
function returns the trace of the argument matrix.

matrix reshaping functions
manipulate the matrix argument and return a reshaped matrix. For example,
the DIAG function returns a matrix with diagonal elements that are equal to the
diagonal elements of a square argument matrix. All off-diagonal elements are
zero.

linear algebra and statistical functions
perform linear algebraic functions on the matrix argument. For example, the
GINV function returns the matrix that is the generalized inverse of the argument
matrix.

Exceptions to the SAS DATA Step

SAS/IML software supports most functions supported in the SAS DATA step. These
functions all accept matrix arguments, and the result has the same dimension as the
argument. (See Appendix 1 for a list of these functions.) The following functions are
not supported by SAS/IML software:

DIFn HBOUND LAGn PUT
DIM INPUT LBOUND

The following functions are implemented differently in SAS/IML software.

(SeeChapter 20, “Language Reference,”for descriptions.)

MAX RANK SOUND SUBSTR
MIN REPEAT SSQ SUM

CALL Statements and Subroutines � 21

The random number functions, UNIFORM and NORMAL, are built-in and produce
the same streams as the RANUNI and RANNOR functions, respectively, of the DATA
step. For example, to create a10× 1 vector of random numbers, use

x=uniform(repeat(0,10,1));

Also, SAS/IML software does not support the OF clause of the SAS DATA step. For
example, the statement

a=mean(of x1-x10); /* invalid in IML */

cannot be interpreted properly in IML. The term (X1-X10) would be interpreted as
subtraction of the two matrix arguments rather than its DATA step meaning, “X1
through X10.”

CALL Statements and Subroutines
CALL statements invoke a subroutine to perform calculations, operations, or a ser-
vice. CALL statements are often used in place of functions when the operation returns
multiple results or, in some cases, no result. The general form of the CALL statement
is

CALL SUBROUTINE arguments ;

whereargumentscan be matrix names, matrix literals, or expressions. If you specify
several arguments, use commas to separate them. Also, when using arguments for
output results, always use variable names rather than expressions or literals.

Creating Matrices with CALL Statements

Matrices are created whenever a CALL statement returns one or more result matrices.
For example, the statement

call eigen(val,vec,t);

returns two matrices (vectors),VAL andVEC, containing the eigenvalues and eigen-
vectors, respectively, of the symmetric matrixT.

You can program your own subroutine using the START and FINISH statements
to define a module. You can then execute the module with a CALL statement or
a RUN statement. For example, the following statements define a module named
MYMOD that returns matrices containing the square root and log of each element of
the argument matrix:

start mymod(a,b,c);
a=sqrt(c);
b=log(c);

finish;
run mymod(s,l,x);

Execution of the module statements create matricesS andL, containing the square
roots and logs, respectively, of the elements ofX.

22 � Chapter 2. Understanding the Language

Performing Services

You can use CALL statements to perform special services, such as managing SAS
data sets or accessing the graphics system. For example, the statement

call delete(mydata);

deletes the SAS data set named MYDATA.

The statements

call gstart;
call gopen;
call gpoint(x,y);
call gshow;

activate the graphics system (CALL GSTART), open a new graphics segment (CALL
GOPEN), produce a scatter plot of points (CALL GPOINT), and display the graph
(CALL GSHOW).

Commands

Commands are used to perform specific system actions, such as storing and loading
matrices and modules, or to perform special data processing requests. The following
is a list of some commands and the actions they perform.

Command Action
FREE frees a matrix of its values and increases available space
LOAD loads a matrix or module from the storage library
MATTRIB associates printing attributes with matrices
PRINT prints a matrix or message
RESET sets various system options
REMOVE removes a matrix or module from library storage
SHOW requests that system information be displayed
STORE stores a matrix or module in the storage library

These commands play an important role in SAS/IML software. With them, for ex-
ample, you can control displayed output (with RESET PRINT, RESET NOPRINT,
or MATTRIB) or get system information (with SHOW SPACE, SHOW STORAGE,
or SHOW ALL).

If you are running short on available space, you can use commands to store matrices
in the storage library, free the matrices of their values, and load them back later when
you need them again, as shown in the following example.

Throughout this session, the right angle brackets (>) indicate statements that you
submit; responses from IML follow. First, invoke the procedure by entering PROC
IML at the input prompt. Then, create matricesA andB as matrix literals.

Commands � 23

> proc iml;

IML Ready

> a={1 2 3, 4 5 6, 7 8 9};
> b={2 2 2};

List the names and attributes of all of your matrices with the SHOW NAMES com-
mand.

> show names;

A 3 rows 3 cols num 8
B 1 row 3 cols num 8
Number of symbols = 2 (includes those without values)

Store these matrices in library storage with the STORE command, and release the
space with the FREE command. To list the matrices and modules in library storage,
use the SHOW STORAGE command.

> store a b;
> free a b;
> show storage;

Contents of storage = SASUSER.IMLSTOR
Matrices:
A B

Modules:

The output from the SHOW STORAGE statement indicates that you have two ma-
trices in storage. Because you have not stored any modules in this session, there are
no modules listed in storage. Return these matrices from the storage library with the
LOAD command. (SeeChapter 14, “Storage Features,”for details about storage.)

> load a b;

End the session with the QUIT command.

> quit;

Exiting IML

Data Management Commands

SAS/IML software has many data management commands that enable you to manage
your SAS data sets from within the SAS/IML environment. These data management
commands operate on SAS data sets. There are also commands for accessing external
files. The following is a list of some commands and the actions they perform.

24 � Chapter 2. Understanding the Language

Command Action
APPEND adds records to an output SAS data set
CLOSE closes a SAS data set
CREATE creates a new SAS data set
DELETE deletes records in an output SAS data set
EDIT reads from or writes to an existing SAS data set
FIND finds records that meet some condition
LIST lists records
PURGE purges records marked for deletion
READ reads records from a SAS data set into IML variables
SETIN makes a SAS data set the current input data set
SETOUT makes a SAS data set the current output data set
SORT sorts a SAS data set
USE opens an existing SAS data set for read access

These commands can be used to perform any necessary data management functions.
For example, you can read observations from a SAS data set into a target matrix with
the USE or EDIT command. You can edit a SAS data set, appending or deleting
records. If you have generated data in a matrix, you can output the data to a SAS data
set with the APPEND or CREATE command. SeeChapter 6, “Working with SAS
Data Sets,”andChapter 7, “File Access,”for more information on these commands.

Missing Values

With SAS/IML software, a numeric element can have a special value called amissing
value that indicates that the value is unknown or unspecified. Such missing values
are coded, for logical comparison purposes, in the bit pattern of very large negative
numbers. A numeric matrix can have any mixture of missing and nonmissing values.
A matrix with missing values should not be confused with an empty or unvalued
matrix, that is, a matrix with zero rows and zero columns.

In matrix literals, a numeric missing value is specified as a single period. In data
processing operations involving a SAS data set, you can append or delete missing
values. All operations that move values move missing values properly.

SAS/IML software supports missing values in a limited way, however. Most matrix
operators and functions do not support missing values. For example, matrix multipli-
cation involving a matrix with missing values is not meaningful. Also, the inverse of
a matrix with missing values has no meaning. Performing matrix operations such as
these on matrices that have missing values can result in inconsistencies, depending
on the host environment.

SeeChapter 4, “Working with Matrices,”andChapter 19, “Further Notes,”for more
details on missing values.

Summary � 25

Summary

In this chapter, you were introduced to the fundamentals of the SAS/IML language.
The basic data element, the matrix, was defined, and you learned several ways to
create matrices: the matrix literal, CALL statements that return matrix results, and
assignment statements.

You were introduced to the types of statements with which you can program: com-
mands, control statements for iterative programming and module definition, func-
tions, and CALL subroutines.

Chapter 3, “Tutorial: A Module for Linear Regression,”offers an introductory tuto-
rial that demonstrates using SAS/IML software to build and execute a module.

26 � Chapter 2. Understanding the Language

Chapter 3
Tutorial: A Module for Linear

Regression

Chapter Contents

OVERVIEW .29
Solving a System of Equations. 29

A MODULE FOR LINEAR REGRESSION 31

PLOTTING REGRESSION RESULTS . 37

SUMMARY .40

28 � Chapter 3. Tutorial: A Module for Linear Regression

Chapter 3
Tutorial: A Module for Linear

Regression

Overview

SAS/IML software makes it possible for you to solve mathematical problems or im-
plement new statistical techniques and algorithms. The language is patterned after
linear algebra notation. For example, the least-squares formula familiar to statisti-
cians

B = (X ′X)−1X ′Y

can be easily translated into the Interactive Matrix Language statement

b=inv(x‘*x)*x‘*y;

This is an example of an assignment statement that uses a built-in function (INV) and
operators (transpose and matrix multiplication).

If a statistical method has not been implemented directly in a SAS procedure, you
may be able to program it using IML. Because the operations in IML deal with arrays
of numbers rather than with one number at a time, and the most commonly used
mathematical and matrix operations are built directly into the language, programs
that take hundreds of lines of code in other languages often take only a few lines in
IML.

Solving a System of Equations

Because IML is built around traditional matrix algebra notation, it is often possible
to directly translate mathematical methods from matrix algebraic expressions into
executable IML statements. For example, consider the problem of solving three si-
multaneous equations:

3x1 − x2 + 2x3 = 8
2x1 − 2x2 + 3x3 = 2
4x1 + x2 − 4x3 = 9

These equations can be written in matrix form as 3 −1 2
2 −2 3
4 1 −4

 x1

x2

x3

 =

 8
2
9

30 � Chapter 3. Tutorial: A Module for Linear Regression

and can be expressed symbolically as

Ax = c

BecauseA is nonsingular, the system has a solution given by

x = A−1c

In the following example, you solve this system of equations using an interactive
session. Submit the PROC IML statement to begin the procedure. Throughout this
chapter, the right angle brackets (>) indicate statements you submit; responses from
IML follow:

proc iml;

IML Ready

Enter

reset print;

The PRINT option of theRESETcommand causes automatic printing of results.
Notice that as you submit each statement, it is executed and the results are displayed.
While you are learning IML or developing modules, it is a good idea to have all
results printed automatically. Once you are familiar with SAS/IML software, you
will not need to use automatic printing.

Next, set up the matricesA andc. Both of these matrices are input as matrix literals;
that is, input the row and column values as discussed inChapter 2, “Understanding
the Language.”

> a={3 -1 2,
> 2 -2 3,
> 4 1 -4};

A 3 rows 3 cols (numeric)

3 -1 2
2 -2 3
4 1 -4

> c={8, 2, 9};

C 3 rows 1 col (numeric)

8
2
9

A Module for Linear Regression � 31

Now write the solution equation,x = A−1c, as an IML statement. The appropriate
statement is an assignment statement that uses a built-in function and an operator
(INV is a built-in function that takes the inverse of a square matrix, and * is the
operator for matrix multiplication).

> x=inv(a)*c;

X 3 rows 1 col (numeric)

3
5
2

After IML executes the statement, the first row of matrixX contains thex1 value
for which you are solving, the second row contains thex2 value, and the third row
contains thex3 value.

Now end the session by entering theQUIT command.

> quit;

Exiting IML

A Module for Linear Regression

The previous method may be more familiar to statisticians when different notation is
used. A linear model is usually written

y = Xb + e

wherey is the vector of responses,X is the design matrix, andb is a vector of
unknown parameters estimated by minimizing the sum of squares ofe, the error or
residual.

The following example illustrates the programming techniques involved in perform-
ing linear regression. It is not meant to replace regression procedures such as the
REG procedure, which are more efficient for regressions and offer a multitude of
diagnostic options.

Suppose that you have response datay measured at five values of the independent
variablex and you want to perform a quadratic regression.

Submit the PROC IML statement to begin the procedure.

> proc iml;

IML Ready

Input the design matrixX and the data vectory as matrix literals.

32 � Chapter 3. Tutorial: A Module for Linear Regression

> x={1 1 1,
> 1 2 4,
> 1 3 9,
> 1 4 16,
> 1 5 25};

X 5 rows 3 cols (numeric)

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

> y={1,5,9,23,36};

Y 5 rows 1 col (numeric)

1
5
9
23
36

Compute the least-squares estimate ofb using the traditional formula.

> b=inv(x\baccent *x)*x\baccent *y;

B 3 rows 1 col (numeric)

2.4
-3.2

2

The predicted values are simply theX matrix multiplied by the parameter estimates,
and the residuals are the difference between actual and predictedy.

> yhat=x*b;

YHAT 5 rows 1 col (numeric)

1.2
4

10.8
21.6
36.4

> r=y-yhat;

R 5 rows 1 col (numeric)

A Module for Linear Regression � 33

-0.2
1

-1.8
1.4

-0.4

To calculate the estimate of the variance of the responses, calculate the sum of squared
errors (SSE), its degrees of freedom (DFE), and the mean squared error (MSE). Note
that in computing the degrees, you use the functionNCOL to return the number of
columns ofX.

> sse=ssq(r);

SSE 1 row 1 col (numeric)

6.4

> dfe=nrow(x)-ncol(x);

DFE 1 row 1 col (numeric)

2

> mse=sse/dfe;

MSE 1 row 1 col (numeric)

3.2

Notice that each calculation has required one simple line of code.

Now suppose you want to solve the problem repeatedly on new data sets without
reentering the code. To do this, define a module (or subroutine). Modules begin with
a START statementand end with aFINISH statement, with the program statements
in between. The following statements define a module named REGRESS to perform
linear regression.

> start regress; /* begin module */
> xpxi=inv(t(x)*x); /* inverse of X’X */
> beta=xpxi*(t(x)*y); /* parameter estimate */
> yhat=x*beta; /* predicted values */
> resid=y-yhat; /* residuals */
> sse=ssq(resid); /* SSE */
> n=nrow(x); /* sample size */
> dfe=nrow(x)-ncol(x); /* error DF */
> mse=sse/dfe; /* MSE */
> cssy=ssq(y-sum(y)/n); /* corrected total SS */
> rsquare=(cssy-sse)/cssy; /* RSQUARE */
> print,"Regression Results",
> sse dfe mse rsquare;
> stdb=sqrt(vecdiag(xpxi)*mse); /* std of estimates */

34 � Chapter 3. Tutorial: A Module for Linear Regression

> t=beta/stdb; /* parameter t-tests */
> prob=1-probf(t#t,1,dfe); /* p-values */
> print,"Parameter Estimates",,
> beta stdb t prob;
> print,y yhat resid;
> finish regress; /* end module */

Submit the module REGRESS for execution.

> reset noprint;
> run regress; /* execute module */

Regression Results

SSE DFE MSE RSQUARE
6.4 2 3.2 0.9923518

Parameter Estimates

BETA STDB T PROB
2.4 3.8366652 0.6255432 0.5954801
-3.2 2.9237940 -1.094468 0.3879690

2 0.4780914 4.1833001 0.0526691

Y YHAT RESID
1 1.2 -0.2
5 4 1
9 10.8 -1.8

23 21.6 1.4
36 36.4 -0.4

At this point, you still have all of the matrices defined if you want to continue calcula-
tions. Suppose that you want to correlate the estimates. First, calculate the covariance
estimate of the estimates; then, scale the covariance into a correlation matrix with val-
ues of 1 on the diagonal.

> reset print; /* turn on auto printing */
> covb=xpxi*mse; /* covariance of estimates */

COVB 3 rows 3 cols (numeric)

14.72 -10.56 1.6
-10.56 8.5485714 -1.371429

1.6 -1.371429 0.2285714

> s=1/sqrt(vecdiag(covb));

S 3 rows 1 col (numeric)

A Module for Linear Regression � 35

0.260643
0.3420214
2.0916501

> corrb=diag(s)*covb*diag(s); /* correlation of estimates */

CORRB 3 rows 3 cols (numeric)

1 -0.941376 0.8722784
-0.941376 1 -0.981105
0.8722784 -0.981105 1

Your module REGRESS remains available to do another regression, in this case, an
orthogonalized version of the last polynomial example. In general, the columns of
X will not be orthogonal. You can use theORPOL functionto generate orthogonal
polynomials for the regression. Using them provides greater computing accuracy and
reduced computing times. When using orthogonal polynomial regression, you expect
the statistics of fit to be the same and the estimates to be more stable and uncorrelated.

To perform an orthogonal regression on the data, you must first create a vector con-
taining the values of the independent variablex, which is the second column of the
design matrixX. Then, use theORPOL functionto generate orthogonal second de-
gree polynomials.

> x1={1,2,3,4,5}; /* second column of X */

X1 5 rows 1 col (numeric)

1
2
3
4
5

> x=orpol(x1,2); /* generates orthogonal polynomials */

X 5 rows 3 cols (numeric)

0.4472136 -0.632456 0.5345225
0.4472136 -0.316228 -0.267261
0.4472136 0 -0.534522
0.4472136 0.3162278 -0.267261
0.4472136 0.6324555 0.5345225

> reset noprint; /* turns off auto printing */
> run regress; /* run REGRESS */

36 � Chapter 3. Tutorial: A Module for Linear Regression

Regression Results

SSE DFE MSE RSQUARE
6.4 2 3.2 0.9923518

Parameter Estimates

BETA STDB T PROB
33.093806 1.7888544 18.5 0.0029091
27.828043 1.7888544 15.556349 0.0041068
7.4833148 1.7888544 4.1833001 0.0526691

Y YHAT RESID
1 1.2 -0.2
5 4 1
9 10.8 -1.8

23 21.6 1.4
36 36.4 -0.4

> reset print;
> covb=xpxi*mse;

COVB 3 rows 3 cols (numeric)

3.2 -2.73E-17 4.693E-16
-2.73E-17 3.2 -2.18E-15
4.693E-16 -2.18E-15 3.2

> s=1/sqrt(vecdiag(covb));

S 3 rows 1 col (numeric)

0.559017
0.559017
0.559017

> corrb=diag(s)*covb*diag(s);

CORRB 3 rows 3 cols (numeric)

1 -8.54E-18 1.467E-16
-8.54E-18 1 -6.8E-16
1.467E-16 -6.8E-16 1

Note that the values on the off-diagonal are displayed in scientific notation; the val-
ues are close to zero but not exactly zero because of the imprecision of floating-point

Plotting Regression Results � 37

arithmetic. To clean up the appearance of the correlation matrix, use the FUZZ op-
tion.

> reset fuzz;
> corrb=diag(s)*covb*diag(s);

CORRB 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

Plotting Regression Results

You can create some simple plots by using thePGRAF subroutine. The PGRAF
subroutineproduces scatter plots suitable for printing on a line printer. If you want to
produce better quality graphics using color, you can use the graphics capabilities of
IML (seeChapter 12, “Graphics Examples,”for more information).

Here is how you can plot the residuals againstx. First, create a matrix containing the
pairs of points by concatenatingX1 with RESID using the horizontal concatenation
operator (‖).

> xy=x1||resid;

XY 5 rows 2 cols (numeric)

1 -0.2
2 1
3 -1.8
4 1.4
5 -0.4

Next, use aCALL statementto call thePGRAF subroutineto produce the desired
plot. The arguments toPGRAFare, in order,

• the matrix containing the pairs of points

• a plotting symbol

• a label for the X-axis

• a label for the Y-axis

• a title for the plot

38 � Chapter 3. Tutorial: A Module for Linear Regression

> call pgraf(xy,’r’,’x’,’Residuals’,’Plot of Residuals’);

Plot of Residuals
2 +

|
| r

R |
e | r
s |
i |
d 0 +
u | r r
a |
l |
s |

|
| r

-2 +
--------+------+------+------+------+------+------+------+------+--------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

You can also plot the predicted valuesŷ againstx. You must first create a matrix, say
XYH , containing the points. Do this by concatenatingX1 with YHAT . Next, call the
PGRAF subroutine to plot the points.

> xyh=x1||yhat;

XYH 5 rows 2 cols (numeric)

1 1.2
2 4
3 10.8
4 21.6
5 36.4

> call pgraf(xyh,’*’,’x’,’Predicted’,’Plot of Predicted Values’);

Plotting Regression Results � 39

Plot of Predicted Values
40 +

| *
|

P |
r |
e |
d | *
i 20 +
c |
t |
e | *
d |

|
| *

0 + *
--------+------+------+------+------+------+------+------+------+--------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

You can get a more detailed plot, denoting the observed values with a “y” and the
predicted values with a “p” using the following statements. Create a matrixNEWXY
containing the pairs of points to overlay. You need to use both the horizontal concate-
nation operator (‖) and the vertical concatenation operator (//). TheNROW function
returns the number of observations, that is, the number of rows ofX1. The matrix
LABEL contains the character label for each point, plotting a “y” for each observed
point and a “p” for each predicted point.

> newxy=(x1//x1)||(y//yhat);

NEWXY 10 rows 2 cols (numeric)

1 1
2 5
3 9
4 23
5 36
1 1.2
2 4
3 10.8
4 21.6
5 36.4

> n=nrow(x1);

N 1 row 1 col (numeric)

5

> label=repeat(’y’,n,1)//repeat(’p’,n,1);

40 � Chapter 3. Tutorial: A Module for Linear Regression

LABEL 10 rows 1 col (character, size 1)

y
y
y
y
y
p
p
p
p
p

> call pgraf(newxy,label,’x’,’y’,’Scatter Plot with Regression Line’);

Scatter Plot with Regression Line
y 40 +

| y
|
|
|
|
| y

20 +
|
|
| p
| y
| y
| p

0 + y
--------+------+------+------+------+------+------+------+------+----

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

As you can see, the observed and predicted values are too close together to be able to
distinguish them at all values ofx.

Summary

In this chapter, you have seen the programming techniques necessary for solving
systems of equations. You have seen how to define a module for performing linear
regression and obtaining covariance and correlation matrices, and how to obtain some
simple diagnostic plots. Many of the ideas presented inChapter 2, “Understanding
the Language,”such as the use of assignment statements, functions,CALL state-
ments, and subscripting have been demonstrated.

Chapter 4
Working with Matrices

Chapter Contents

OVERVIEW .43

ENTERING DATA AS MATRIX LITERALS 43
Scalars. .43
Matrices with Multiple Elements. 44

USING ASSIGNMENT STATEMENTS . 45
Simple Assignment Statements. 45
Matrix-generating Functions. 46
Index Vectors .50

USING MATRIX EXPRESSIONS . 50
Operators .50
Compound Expressions. .51
Elementwise Binary Operators. 52
Subscripts .54
Subscript Reduction Operators. 59

DISPLAYING MATRICES WITH ROW AND COLUMN HEADINGS . . 60
Using the AUTONAME Option. 60
Using the ROWNAME= and COLNAME= Options. 60
Using the MATTRIB Statement. 61

MORE ON MISSING VALUES . 61

42 � Chapter 4. Working with Matrices

Chapter 4
Working with Matrices

Overview

SAS/IML software provides many ways to create matrices. You can create matrices
by doing any of the following:

• entering data yourself as a matrix literal

• using assignment statements

• using matrix-generating functions

• creating submatrices from existing matrices with subscripts

• using SAS data sets (seeChapter 6, “Working with SAS Data Sets,”for more
information)

Once you have defined matrices, you have access to many operators and functions
for working on them in matrix expressions. These operators and functions facilitate
programming and make referring to submatrices efficient and simple.

Finally, you have several means available for tailoring your displayed output.

Entering Data as Matrix Literals

The most basic way to create a matrix is to define a matrix literal, either numeric or
character, by entering the matrix elements. A matrix literal can be a single element
(called ascalar), a single row of data (called arow vector), a single column of data
(called acolumn vector), or a rectangular array of data (called amatrix). Thedimen-
sionof a matrix is given by its number of rows and columns. Ann×m matrix hasn
rows andm columns.

Scalars

Scalarsare matrices that have only one element. You define a scalar with the matrix
name on the left-hand side of an assignment statement and its value on the right-hand
side. You can use the following statements to create and display several examples of
scalar literals. First, you must invoke the IML procedure.

> proc iml;

IML Ready

> x=12;
> y=12.34;

44 � Chapter 4. Working with Matrices

> z=.;
> a=’Hello’;
> b="Hi there";
> print x y z a b;

X Y Z A B
12 12.34 . Hello Hi there

Notice that, when defining a character literal, you need to use either single quotes (’)
or double quotes ("). Using quotes preserves uppercase and lowercase distinctions
and embedded blanks. It is also always correct to enclose the data values inside of
braces ({ }).

Matrices with Multiple Elements

To enter a matrix having multiple elements, use braces ({ }) to enclose the data values
and, if needed, commas to separate rows. Inside of the braces, all elements must be
either numeric or character. You cannot have a mixture of data types within a matrix.
Each row must have the same number of elements.

For example, suppose that you have one week of data on daily coffee consumption
(cups per day) for your office of four people. Create a matrixCOFFEE with each
person’s consumption as a row of the matrix and each day represented by a column.
First, submit theRESET: PRINT statementso that results are displayed as you submit
statements.

> reset print;
> coffee={4 2 2 3 2,
> 3 3 1 2 1,
> 2 1 0 2 1,
> 5 4 4 3 4};

COFFEE 4 rows 5 cols (numeric)

4 2 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

Now create a character matrix calledNAMES with rows containing the names of the
people in your office. Note that when you do not use quotes, characters are converted
to uppercase.

> names={Jenny, Linda, Jim, Samuel};

NAMES 4 rows 1 col (character, size 6)

JENNY
LINDA
JIM
SAMUEL

Simple Assignment Statements � 45

Notice that the output with the RESET PRINT statement includes the dimension,
type, and (when type is character) the element size of the matrix. The element size
represents the length of each string, and it is determined from the length of the longest
string.

Now, display theCOFFEE matrix usingNAMES as row labels by specifying the
ROWNAME= option in the PRINT statement.

> print coffee [rowname=names];

COFFEE
JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Using Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the
results to a matrix. The expressions can be composed of operators (for example,
the matrix addition operator (+)), functions (for example, the INV function), and
subscripts. Assignment statements have the general form

result= expression;

whereresult is the name of the new matrix andexpressionis an expression that is
evaluated. The resulting matrix automatically acquires the appropriate dimension,
type, and value. Details on writing expressions are described in “Using Matrix
Expressions” later in this chapter.

Simple Assignment Statements

Simple assignment statements involve an equation having the matrix name on the left-
hand side and either an expression involving other matrices or a matrix-generating
function on the right-hand side.

Suppose you want to generate some statistics for the weekly coffee data. If a cup
of coffee costs 30 cents, then you can create a matrix with the daily expenses,
DAYCOST, by multiplying the per-cup cost with the matrixCOFFEE using the
elementwise multiplication operator (#). Turn off the automatic printing so that you
can tailor the output with the ROWNAME= and FORMAT= options in the PRINT
statement.

> reset noprint;
> daycost=0.30#coffee;
> print "Daily totals", daycost[rowname=names format=8.2];

46 � Chapter 4. Working with Matrices

Daily totals

DAYCOST
JENNY 1.20 0.60 0.60 0.90 0.60
LINDA 0.90 0.90 0.30 0.60 0.30
JIM 0.60 0.30 0.00 0.60 0.30
SAMUEL 1.50 1.20 1.20 0.90 1.20

You can calculate the weekly total cost for each person using the matrix multiplication
operator (*). First create a5 × 1 vector of 1s. This vector sums the daily costs for
each person when multiplied withCOFFEE. (You will see later that there is a more
efficient way to do this using subscript reduction operators.)

> ones={1,1,1,1,1};
> weektot=daycost*ones;
> print "Week total", weektot[rowname=names format=8.2];

Week total

WEEKTOT
JENNY 3.90
LINDA 3.00
JIM 1.80
SAMUEL 6.00

Finally, you can calculate the average number of cups drunk per day by dividing the
grand total of cups by days. To find the grand total, use the SUM function, which
returns the sum of all elements of a matrix. Next, divide the grand total by 5, the
number of days (which is the number of columns) using the division operator (/)
and the NCOL function. These two matrices are created separately, but the entire
calculation could be done in one statement.

> grandtot=sum(coffee);
> average=grandtot/ncol(coffee);
> print "Total number of cups", grandtot,,"Daily average",average;

Total number of cups

GRANDTOT
49

Daily average

AVERAGE
9.8

Matrix-generating Functions

SAS/IML software has many built-in functions that generate useful matri-
ces. For example, theJ function creates a matrix with a given dimension and

Matrix-generating Functions � 47

element value when you supply the number of rows and columns, and an el-
ement value for the new matrix. This function is useful to initialize a matrix
to a predetermined size. Several matrix-generating functions are listed below:

BLOCK creates a block-diagonal matrix.

DESIGNF creates a full-rank design matrix.

I creates an identity matrix.

J creates a matrix of a given dimension.

SHAPE shapes a new matrix from the argument.

The sections that follow illustrate these matrix-generating functions. Again, they are
shown with automatic printing of results, activated by invoking theRESET: PRINT
statement.

reset print;

The BLOCK Function

The BLOCK function has the general form

BLOCK(matrix1,<matrix2,. . .,matrix15 >);

and creates a block-diagonal matrix from the argument matrices. For example, the
statements

> a={1 1,1 1};

A 2 rows 2 cols (numeric)

1 1
1 1

> b={2 2, 2 2};

B 2 rows 2 cols (numeric)

2 2
2 2

> c=block(a,b);

result in the matrix

C 4 rows 4 cols (numeric)

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

48 � Chapter 4. Working with Matrices

The J Function

The J function has the general form

J(nrow<,ncol<,value> >);

and creates a matrix havingnrow rows,ncol columns, and all element values equal
to value. Thencol andvaluearguments are optional, but you will usually want to
specify them. In many statistical applications, it is helpful to be able to create a row
(or column) vector of 1s (you did so to calculate coffee totals in the last section). You
can do this with the J function. For example, the following statement creates a1× 5
row vector of 1s:

> one=j(1,5,1);

ONE 1 row 5 cols (numeric)
1 1 1 1 1

The I Function

The I function creates an identity matrix of a given size. It has the general form

I(dimension);

wheredimensiongives the number of rows. For example, the following statement
creates a3× 3 identity matrix:

> I3=I(3);

I3 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

The DESIGNF Function

The DESIGNF function generates a full-rank design matrix, useful in calculating
ANOVA tables. It has the general form

DESIGNF(column-vector);

For example, the following statement creates a full-rank design matrix for a one-way
ANOVA, where the treatment factor has three levels and there aren1 = 3, n2 = 2,
andn3 = 2 observations at the factor levels:

> d=designf({1,1,1,2,2,3,3});

Matrix-generating Functions � 49

D 7 rows 2 cols (numeric)

1 0
1 0
1 0
0 1
0 1
-1 -1
-1 -1

The SHAPE Function

The SHAPE function shapes a new matrix from an argument matrix. It has the general
form

SHAPE(matrix<,nrow<,ncol<,pad-value >>>);

Although thenrow, ncol, andpad-valuearguments are optional, you will usually want
to specify them. The following example uses the SHAPE function to create a3 × 3
matrix containing the values 99 and 33. The function cycles back and repeats values
to fill in when nopad-valueis given.

> aa=shape({99 33,99 33},3,3);

AA 3 rows 3 cols (numeric)

99 33 99
33 99 33
99 33 99

In the next example, apad-valueis specified for filling in the matrix:

> aa=shape({99 33,99 33},3,3,0);

AA 3 rows 3 cols (numeric)

99 33 99
33 0 0
0 0 0

The SHAPE function cycles through the argument matrix elements in row-major or-
der and then fills in with 0s after the first cycle through the argument matrix.

50 � Chapter 4. Working with Matrices

Index Vectors

You can create a vector by using the index operator (:). Several examples of state-
ments involving index vectors are shown in the following code:

> r=1:5;
R 1 row 5 cols (numeric)

1 2 3 4 5
> s=10:6;

S 1 row 5 cols (numeric)
10 9 8 7 6

> t=’abc1’:’abc5’;
T 1 row 5 cols (character, size 4)

abc1 abc2 abc3 abc4 abc5

If you want an increment other than 1, use the DO function. For example, if you want
a vector ranging from−1 to 1 by 0.5, use the following statement:

> r=do(-1,1,.5);

R 1 row 5 cols (numeric)
-1 -0.5 0 0.5 1

Using Matrix Expressions

Matrix expressions are a sequence of names, literals, operators, and functions that
perform some calculation, evaluate some condition, or manipulate values. These
expressions can appear on either side of an assignment statement.

Operators

Operators used in matrix expressions fall into three general categories:

prefix operators are placed in front of operands. For example,−A uses the sign
reverse prefix operator (−) in front of the operandA to reverse
the sign of each element ofA.

infix operators are placed between operands. For example,A + B uses the ad-
dition infix operator (+) between operandsA andB to add cor-
responding elements of the matrices.

postfix operators are placed after an operand. For example,A` uses the transpose
postfix operator (̀) after the operandA to transposeA.

Matrix operators are listed in Appendix 1, “SAS/IML Quick Reference,” and de-
scribed in detail inChapter 20, “Language Reference.”

Table 4.1on page 51 shows the precedence of matrix operators in Interactive Matrix
Language.

Compound Expressions � 51

Table 4.1. Operator Precedence

Priority Group Operators
I (highest) ˆ ` subscripts −(prefix) ## **
II * # <> >< / @
III + −
IV ‖‖ // :
V < <= > >= = ˆ =
VI &
VII (lowest) |

Compound Expressions

With SAS/IML software, you can write compound expressions involving several ma-
trix operators and operands. For example, the following statements are valid matrix
assignment statements:

a=x+y+z;
a=x+y*z\prime ;
a=(-x)#(y-z);

The rules for evaluating compound expressions are as follows:

• Evaluation follows the order of operator precedence, as described inTable 4.1.
Group I has the highest priority; that is, Group I operators are evaluated first.
Group II operators are evaluated after Group I operators, and so forth. For
example, the statement

a=x+y*z;

first multiplies matricesY andZ since the * operator (Group II) has higher
precedence than the + operator (Group III). It then adds the result of this mul-
tiplication to the matrixX and assigns the new matrix toA.

• If neighboring operators in an expression have equal precedence, the expres-
sion is evaluated from left to right, except for the Group 1 operators. For ex-
ample, the statement

a=x/y/z;

first divides each element of matrixX by the corresponding element of matrix
Y. Then, using the result of this division, it divides each element of the result-
ing matrix by the corresponding element of matrixZ. The operators in Group
1, described inTable 4.1, are evaluated from right to left. For example, the
expression

-x**2

52 � Chapter 4. Working with Matrices

is evaluated as

-(x**2)

When multiple prefix or postfix operators are juxtaposed, precedence is deter-
mined by their order from inside to outside.

For example, the expression

a‘[i,j]

is evaluated as(A)̀[i, j].

• All expressions enclosed in parentheses are evaluated first, using the two pre-
ceding rules. Thus, the IML statement

a=x/(y/z);

is evaluated by first dividing elements ofY by the elements ofZ, then dividing
this result intoX.

Elementwise Binary Operators

Elementwise binary operators produce a result matrix from element-by-element op-
erations on two argument matrices.

Table 4.2on page 52 lists the elementwise binary operators.

Table 4.2. Elementwise Binary Operators

Operator Action
+ addition, concatenation
− subtraction
elementwise multiplication

elementwise power
/ division
<> element maximum
>< element minimum
| logical OR
& logical AND
< less than
<= less than or equal to
> greater than
>= greater than or equal to
ˆ = not equal to
= equal to

MOD(m,n) modulo (remainder)

For example, consider the following two matricesA andB given below.

Let A =
[

2 2
3 4

]
andB =

[
4 5
1 0

]

Elementwise Binary Operators � 53

The addition operator(+) adds corresponding matrix elements:

A + B yields

[
6 7
4 4

]

The elementwise multiplication operator(#) multiplies corresponding elements:

A#B yields

[
8 10
3 0

]

The elementwise power operator(##) raises elements to powers:

A##2 yields

[
4 4
9 16

]

The element maximum operator(<>) compares corresponding elements and
chooses the larger:

A <> B yields

[
4 5
3 4

]

The less than or equal to operator(<=) returns a 1 if an element ofA is less than or
equal to the corresponding element ofB, and returns a 0 otherwise:

A <= B yields

[
1 1
0 0

]
The modulo operator returns the remainder of each element divided by the argument:

MOD(A, 3) yields

[
2 2
0 1

]
All operators can also work in a one-to-many or many-to-one manner, as well as in an
element-to-element manner; that is, they enable you to perform tasks such as adding
a scalar to a matrix or dividing a matrix by a scalar. For example, the statement

x=x#(x>0);

replaces each negative element of the matrixX with 0. The expression (X>0) is a
many-to-one operation that compares each element ofX to 0 and creates a temporary
matrix of results; an element in the result matrix is 1 when the expression is true
and 0 when it is false. When the expression is true (the element is positive), the
element is multiplied by 1. When the expression is false (the element is negative or
0), the element is multiplied by 0. To fully understand the intermediate calculations,
you can use theRESET: PRINTALLcommand to have the temporary result matrices
displayed.

54 � Chapter 4. Working with Matrices

Subscripts

Subscripts are special postfix operators placed in square brackets([]) after a matrix
operand. Subscript operations have the general form

operand[row , column]

where

operand is usually a matrix name, but it can also be an expression or literal.

row refers to an expression, either scalar or vector, for selecting one or
more rows from the operand.

column refers to an expression, either scalar or vector, for selecting one or
more columns from the operand.

You can use subscripts to

• refer to a single element of a matrix

• refer to an entire row or column of a matrix

• refer to any submatrix contained within a matrix

• perform a reduction across rows or columns of a matrix

In expressions, subscripts have the same (high) precedence as the transpose postfix
operator (̀). Note that when bothrow andcolumnsubscripts are used, they are sep-
arated by a comma. If a matrix has row or column labels associated with it from a
MATTRIB or READ statement, then the corresponding row or column subscript may
be a character matrix whose elements match the labels of the rows or columns to be
selected.

Selecting a Single Element

You can select a single element of a matrix in several ways. You can use two sub-
scripts (row, column) to refer to its location, or you can use one subscript to look for
the element down the rows. For instance, referring to the coffee example used earlier,
find the element corresponding to the number of cups that Linda drank on Monday.

First, you can refer to the element by row and column location. In this case, you want
the second row and first column. You can call this matrixc21.

> print coffee[rowname=names];

COFFEE
JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Subscripts � 55

> c21=coffee[2,1];
> print c21;

C21
3

You could also use row and column labels, which can be assigned with anMATTRIB
statement:

> mattrib coffee rowname=names
> colname={’MON’ ’TUE’ ’WED’ ’THU’ ’FRI’};

> c21=coffee[’LINDA’,’MON’];
> print c21;

C21
3

You can also look for the element down the rows. In this case, you refer to this
element as the sixth element ofCOFFEE in row-major order.

> c6=coffee[6];
> print c6;

C6
3

Selecting a Row or Column

To refer to an entire row or column of a matrix, write the subscript with the row or
column number, omitting the other subscript but not the comma. For example, to refer
to the row ofCOFFEE that corresponds to Jim, you want the submatrix consisting
of the third row and all columns:

> jim=coffee[3,];
> print jim;

JIM
2 1 0 2 1

You could also use the row labels assigned previously with theMATTRIB statement:

> jim=coffee[’JIM’,];
> print jim;

JIM
2 1 0 2 1

56 � Chapter 4. Working with Matrices

If you want the data for Friday, you know that the fifth column corresponds to Friday,
so you want the submatrix consisting of the fifth column and all rows:

> friday=coffee[,5];
> print friday;

FRIDAY
2
1
1
4

You could also use the previously assigned column labels:

> friday=coffee[,’FRI’];
> print friday;

FRIDAY
2
1
1
4

Submatrices

You refer to a submatrix by the specific rows and columns you want. Include within
the brackets the rows you want, a comma, and the columns you want. For example,
to create the submatrix ofCOFFEE consisting of the first and third rows and the
second, third, and fifth columns, submit the following statements:

> submat1=coffee[{1 3},{2 3 5}];
> print submat1;

SUBMAT1
2 2 2
1 0 1

The first vector, {1 3}, selects the rows, and the second vector, {2 3 5}, selects the
columns. Alternately, you can create the vectors beforehand and supply their names
as arguments.

> rows={1 3};
> cols={2 3 5};
> submat1=coffee[rows,cols];

Similarly, you can use the previously assigned row and column labels:

> submat1=coffee[{’JENNY’ ’JIM’},{’TUE’ ’WED’ ’FRI’}];
> print submat1;

Subscripts � 57

SUBMAT1
2 2 2
1 0 1

> rows={’JENNY’ ’JIM’};
> cols={’TUE’ ’WED’ ’FRI’};
> submat1=coffee[rows,cols];

You can use index vectors generated by the index creation operator (:) in subscripts
to refer to successive rows or columns. For example, to select the first three rows and
last three columns ofCOFFEE, use the following statements:

> submat2=coffee[1:3,3:5];
> print submat2;

SUBMAT2
2 3 2
1 2 1
0 2 1

Note that, in each example, the number in the first subscript defines the number of
rows in the new matrix; the number in the second subscript defines the number of
columns.

Subscripted Assignment

You can assign values into a matrix using subscripts to refer to the element or sub-
matrix. In this type of assignment, the subscripts appear on the left-hand side of
the equal sign. For example, to change the value in the first row, second column
of COFFEE from 2 to 4, use subscripts to refer to the appropriate element in an
assignment statement:

> coffee[1,2]=4;
> print coffee;

COFFEE
4 4 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

To change the values in the last column ofCOFFEE to 0s use the following state-
ment:

> coffee[,5]={0,0,0,0};
> print coffee;

COFFEE
4 4 2 3 0
3 3 1 2 0
2 1 0 2 0
5 4 4 3 0

58 � Chapter 4. Working with Matrices

As before, you could also use previously assigned row and column labels:

> coffee[,’FRI’]={0,0,0,0};

In the next example, you first locate the positions of negative elements of a matrix
and then set these elements equal to 0. This can be useful in situations where negative
elements may indicate errors or be impossible values. The LOC function is useful for
creating an index vector for a matrix that satisfies some condition.

In the following example, the LOC function is used to find the positions of the neg-
ative elements of the matrixT and then to set these elements equal to 0 using sub-
scripted assignment:

> t={ 3 2 -1,
> 6 -4 3,
> 2 2 2 };
> print t;

T
3 2 -1
6 -4 3
2 2 2

> i=loc(t<0);
> print i;

I
3 5

> t[i]=0;
> print t;

T
3 2 0
6 0 3
2 2 2

Subscripts can also contain expressions with results that are either row or column
vectors. These statements can also be written

> t[loc(t<0)]=0;

If you use a noninteger value as a subscript, only the integer portion is used. Using a
subscript value less than one or greater than the dimension of the matrix results in an
error.

Subscript Reduction Operators � 59

Subscript Reduction Operators

You can use reduction operators, which return a matrix of reduced dimension, in
place of values for subscripts to get reductions across all rows and columns.Table
4.3 lists the eight operators for subscript reduction in IML.

Table 4.3. Subscript Reduction Operators

Operator Action
+ addition
multiplication
<> maximum
>< minimum
<:> index of maximum
>:< index of minimum

: mean
sum of squares

For example, to get column sums of the matrixX (sum across the rows, which re-
duces the row dimension to 1), specify X[+,]. The first subscript (+) specifies that
summation reduction take place across the rows. Omitting the second subscript, cor-
responding to columns, leaves the column dimension unchanged. The elements in
each column are added, and the new matrix consists of one row containing the col-
umn sums.

You can use these operators to reduce either rows or columns or both. When both
rows and columns are reduced, row reduction is done first.

For example, the expression A[+, <>] results in the maximum(<>) of the column
sums(+).

You can repeat reduction operators. To get the sum of the row maxima, use the
expression A[, <>][+,].

A subscript such as A[{23},+] first selects the second and third rows ofA and then
finds the row sums of that matrix. The following examples demonstrate how to use
the operators for subscript reduction.

Let A =

 0 1 2
5 4 3
7 6 8

The following statements are true:

A[23,+] yields

[
12
21

]
(row sums for rows 2 and 3)

A[+, <>] yields
[

13
]

(maximum of column sums)

60 � Chapter 4. Working with Matrices

A[<>,+] yields
[

21
]

(sum of column maxima)

A[, ><][+,] yields
[

9
]

(sum of row minima)

A[, <:>] yields

 3
1
3

 (indices of row maxima)

A[>:<,] yields
[

1 1 1
]

(indices of column minima)

A[:] yields
[

4
]

(mean of all elements)

Displaying Matrices with Row and Column
Headings

You can tailor the way your matrices are displayed with the AUTONAME option, the
ROWNAME= and COLNAME= options, or the MATTRIB statement.

Using the AUTONAME Option

You can use the RESET statement with the AUTONAME option to automatically
display row and column headings. If your matrix hasn rows andm columns, the row
headings are ROW1 to ROWn and the column headings are COL1 to COLm. For
example, the following statements produce the following results:

> reset autoname;
> print coffee;

COFFEE COL1 COL2 COL3 COL4 COL5

ROW1 4 2 2 3 2
ROW2 3 3 1 2 1
ROW3 2 1 0 2 1
ROW4 5 4 4 3 4

Using the ROWNAME= and COLNAME= Options

You can specify your own row and column headings. The easiest way is to create vec-
tors containing the headings and then display the matrix is with the ROWNAME= and
COLNAME= options. For example, the following statements produce the following
results:

> names={jenny linda jim samuel};
> days={mon tue wed thu fri};
> print coffee[rowname=names colname=days];

More on Missing Values � 61

COFFEE MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Using the MATTRIB Statement

The MATTRIB statement associates printing characteristics with matrices. You can
use the MATTRIB statement to displayCOFFEE with row and column headings.
In addition, you can format the displayed numeric output and assign a label to the
matrix name. The following example shows how to tailor your displayed output:

> mattrib coffee rowname=({jenny linda jim samuel})
> colname=({mon tue wed thu fri})
> label=’Weekly Coffee’
> format=2.0;
> print coffee;

Weekly Coffee MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

More on Missing Values

Missing values in matrices are discussed inChapter 2, “Understanding the
Language.”You should read that chapter andChapter 19, “Further Notes,”carefully
so that you are aware of the way IML treats missing values. Following are several
examples that show how IML handles missing values in a matrix.

Let X =

 1 2 .
. 5 6
7 . 9

 andY =

 4 . 2
2 1 3
6 . 5

The following statements are true:

X + Y yields

 5 . .
. 6 9

13 . 14

 (matrix addition)

X#Y yields

 4 . .
. 5 18

42 . 45

 (element multiplication)

X[+,] yields
[

8 7 15
]

(column sums)

62 � Chapter 4. Working with Matrices

Chapter 5
Programming Statements

Chapter Contents

OVERVIEW .65

IF-THEN/ELSE STATEMENTS . 65

DO GROUPS .66
Iterative Execution. .67

JUMPING .69

MODULES .70
Defining and Executing a Module. 71
Nesting Modules. .71
Understanding Symbol Tables. 72
Modules with No Arguments. 73
Modules with Arguments. .73
More about Argument Passing. 79
Module Storage .81

STOPPING EXECUTION .81
PAUSE Statement. .81
STOP Statement. .83
ABORT Statement. .83

SUMMARY .83

64 � Chapter 5. Programming Statements

Chapter 5
Programming Statements

Overview

As a programming language, the Interactive Matrix Language has many features that
enable you to control the path of execution through the statements. The control state-
ments in IML function in a way that is similar to the corresponding statements in the
SAS DATA step. This chapter presents the following control features:

• IF-THEN/ELSE statements

• DO groups

• iterative execution

• jumping (nonconsecutive execution)

• module definition and execution

• termination of execution.

IF-THEN/ELSE Statements

To perform an operation conditionally, use an IF statement to test an expression.
Alternative actions appear in a THEN clause and, optionally, an ELSE statement.
The general form of the IF-THEN/ELSE statement is

IF expression THEN statement1 ;

ELSE statement2 ;

The IF expression is evaluated first. If the expression is true, execution flows through
the THEN alternative. If the expression is false, the ELSE statement, if present, is
executed. Otherwise, the next statement is executed.

The expression to be evaluated is often a comparison, for example,

if max(a)<20 then p=0;
else p=1;

The IF statement results in the evaluation of the condition (MAX(A)<20). If the
largest value found in matrixA is less than 20, P is set to 0. Otherwise, P is set to 1.

You can nest IF statements within the clauses of other IF or ELSE statements. Any
number of nesting levels is allowed. The following is an example of nested IF state-
ments:

66 � Chapter 5. Programming Statements

if x=y then
if abs(y)=z then w=-1;
else w=0;

else w=1;

When the condition to be evaluated is a matrix expression, the result of the evaluation
is a temporary matrix of 0s, 1s, and possibly missing values. If all values of the result
matrix are nonzero and nonmissing, the condition is true; if any element in the result
matrix is 0, the condition is false. This evaluation is equivalent to using the ALL
function.

For example, the statement

if x<y then statement;

produces the same result as the statement

if all(x<y) then statement;

The expressions

if a^=b then statement;

and

if ^(a=b) then statement;

are valid, but the THEN clause in each case is executed only when all corresponding
elements ofA andB are unequal.

If you require that only one element inA not be equal to its corresponding element
in B, use theANY function. For example, evaluation of the expression

if any(a^=b) then statement;

requires only one element ofA andB to be unequal for the expression to be true.

DO Groups

A set of statements can be treated as a unit by putting them into a DO group, which
starts with a DO statement and ends with an END statement. In this way, you can
submit the entire group of statements for execution as a single unit. For some pro-
gramming applications, you must use either a DO group or a module. For example,
LINK andGOTOstatements must be programmed inside of a DO group or a module.

Iterative Execution � 67

The two principal uses of DO groups are

• to group a set of statements so that they are executed as a unit

• to group a set of statements for a conditional (IF-THEN/ELSE) clause

DO groups have the following general form:

DO ;

additional statements

END ;

You can nest DO groups to any level, just like you nestIF-THEN/ELSE statements.
The following is an example of nested DO groups:

do;

statements;
do;

statements;
do;

statements;
end;

end;

end;

It is good practice to indent the statements in DO groups, as shown abovein the pre-
ceding statements so that their position indicates the levels of nesting.

For IF-THEN/ELSEconditionals, DO groups can be used as units for either THEN
or ELSE clauses so that you can perform many statements as part of the conditional
action. An example follows:

if x<y then
do;

z1=abs(x+y);
z2=abs(x-y);

end;
else

do;
z1=abs(x-y);
z2=abs(x+y);

end;

Iterative Execution

The DO statement also serves the feature of iteration. With a DO statement, you can
repeatedly execute a set of statements until some condition stops the execution. A
DO statement is iterative if you specify it with any of the following iteration clauses.
The type of clause determines when to stop the repetition.

68 � Chapter 5. Programming Statements

Clause DO Statement
DATA DO DATA statement
variable= start TO stop< BY increment> iterative DO statement
WHILE(expression) DO WHILE statement
UNTIL(expression) DO UNTIL statement

A DO statement can have any combination of these four iteration clauses, but a given
DO statement must be specified in the order listed in the preceding table.

DO DATA Statement
The general form of the DO DATA statement is

DO DATA ;

The DATA keyword specifies that iteration is to stop when an end-of-file condition
occurs. The group is exited immediately upon encountering the end-of-file condition.
Other DO specifications exit after tests are performed at the top or bottom of the loop.

SeeChapter 6, “Working with SAS Data Sets,”andChapter 7, “File Access,”for
more information about processing data.

You can use the DO DATA statement to read data from an external file or to process
observations from a SAS data set. In the DATA step in base SAS software, the itera-
tion is usually implied. The DO DATA statement simulates this iteration until the end
of file is reached.

The following example reads data from an external file named MYDATA and inputs
the data values into a vector. The data values are read one at a time into the dummy
variable XX and collected into the vectorX using the vertical concatenation operator
(//) after each value is read.

infile ’mydata’; /* infile statement */
do data; /* begin read loop */

input xx; /* read a data value */
x=x//xx; /* concatenate values */

end; /* end loop */

Iterative DO Statement
The general form of the iterative DO statement is

DO variable=start TO stop < BY increment > ;

Thevariablesequence specification assigns thestartvalue to the given variable. This
value is then incremented by theincrementvalue (or by 1 ifincrementis not specified)
until it is greater than or equal to thestopvalue. (If incrementis negative, then the
iterations stop when the value is less than or equal tostop.)

For example, the following statement specifies a DO loop that executes by multiples
of 10 until I is greater than 100:

do i=10 to 100 by 10;

Jumping � 69

DO WHILE Statement

The general form of the DO WHILE statement is

DO WHILE expression;

With a WHILE clause, the expression is evaluated at the beginning of each loop, with
repetition continuing until the expression is false (that is, until the value contains a 0
or missing value). Note that if the expression is false the first time it is evaluated, the
loop is not executed.

For example, if the variable COUNT has an initial value of 1, the statements

do while(count<5);
print count;
count=count+1;

end;

print COUNT four times.

DO UNTIL Statement

The general form of the DO UNTIL statement is

DO UNTIL expression;

The UNTIL clause is like the WHILE clause except that the expression is evaluated
at the bottom of the loop. This means that the loop always executes at least once.

For example, if the variable COUNT has an initial value of 1, the statements

do until(count>5);
print count;
count=count+1;

end;

print COUNT five times.

Jumping

During normal execution, statements are executed one after another. The GOTO and
LINK statements instruct IML to jump from one part of a program to another. The
place to which execution jumps is identified by alabel, which is a name followed
by a colon placed before an executable statement. You can program a jump by using
either the GOTO statement or the LINK statement:

GOTO label;

LINK label;

Both the GOTO and the LINK statements instruct IML to jump immediately to the
labeled statement. The LINK statement, however, reminds IML where it jumped
from so that execution can be returned there if a RETURN statement is encountered.

70 � Chapter 5. Programming Statements

The GOTO statement does not have this feature. Thus, the LINK statement provides a
way of calling sections of code as if they were subroutines. The LINK statement calls
the routine. The routine begins with the label and ends with a RETURN statement.
LINK statements can be nested within other LINK statements to any level.

CAUTION: The GOTO and LINK statements are limited to being inside a mod-
ule or DO group. These statements must be able to resolve the referenced label
within the current unit of statements. Although matrix symbols can be shared across
modules, statement labels cannot. Therefore, all GOTO statement labels and LINK
statement labels must be local to the DO group or module.

The GOTO and LINK statements are not often used because you can usually write
more understandable programs by using other features, such as DO groups for condi-
tionals, iterative DO groups for looping, and module invocations for subroutine calls.

Here are two DO groups that illustrate how the GOTO and LINK statements work:

do; do;
if x<0 then goto negative; if x<0 then link negative;
y=sqrt(x); y=sqrt(x);
print y; print y;
stop; stop;

negative: negative:
print "Sorry, X is negative"; print "Using Abs. value of negative X";

end; x=abs(x);
return;

end;

The following is a comparable way to write the program on the left without using
GOTO or LINK statements:

if x<0 then print "Sorry, X is negative";
else

do;
y=sqrt(x);
print y;

end;

Modules

Modules are used for

• creating groups of statements that can be invoked as a unit from anywhere in
the program, that is, making a subroutine or function

• creating a separate (symbol-table) environment, that is, defining variables that
are local to the module rather than global

A module always begins with the START statement and ends with the FINISH state-
ment. Modules can be thought of as being either functions or subroutines. When a
module returns a single parameter, it is called a function and is executed as if it were

Nesting Modules � 71

a built-in IML function; a function is invoked by its name in an assignment statement
rather than in a CALL or RUN statement. Otherwise, a module is called a subroutine,
and you execute the module in either the RUN statement or the CALL statement.

Defining and Executing a Module

Modules begin with a START statement, which has the general form

START < name > < (arguments) > < GLOBAL(arguments) > ;

Modules end with a FINISH statement, which has the general form

FINISH < name > ;

If no name appears in the START statement, the name of the module defaults to
MAIN.

There are two ways you can execute a module.

You can use either a RUN statement or a CALL statement. The only difference is the
order of resolution.

The general forms of these statements are

RUN name < (arguments) > ;

CALL name < (arguments) > ;

The RUN and CALL statements must have arguments to correspond to the ones de-
fined for the modules they invoke. A module can call other modules provided that it
never recursively calls itself.

The RUN and CALL statements have orders of resolution that need to be considered
only when you have given a module the same name as a built-in IML subroutine. In
such cases, use the CALL statement to execute the built-in subroutine and the RUN
statement to execute the user-defined module.

The RUN statement is resolved in the following order:

1. user-defined module

2. IML built-in function or subroutine

The CALL statement is resolved in the following order:

1. IML built-in subroutine

2. user-defined module

Nesting Modules

You can nest one module within another. You must make sure that each nested mod-
ule is completely contained inside of the parent module. Each module is collected
independently of the others. When you nest modules, it is a good idea to indent the
statements relative to the level of nesting, as shown in the following example:

72 � Chapter 5. Programming Statements

start a;
reset print;
start b;

a=a+1;
finish b;
run b;

finish a;
run a;

In this example, IML starts collecting statements for a module called A. In the middle
of this module, it recognizes the start of a new module called B. It saves its current
work on A and collects B until encountering the first FINISH statement. It then
finishes collecting A. Thus, it behaves the same as if B were collected before A, as
shown below:

start b;
a=a+1;

finish;
start a;

reset print;
run b;

finish;
run a;

Understanding Symbol Tables

Whenever a variable is defined outside of the module environment, its name is stored
in theglobal symbol table. Whenever you are programming in immediate mode out-
side of a module, you are working with symbols (variables) from the global symbol
table. For each module you define with arguments given in a START statement, a
separate symbol table called alocal symbol tableis created for that module. All sym-
bols (variables) used inside the module are stored in its local symbol table. There
can be many local symbol tables, one for each module with arguments. A symbol
can exist in the global table, one or more local tables, or in both the global table and
one or more local tables. Also, depending on how a module is defined, there can be
a one-to-one correspondence between variables across symbol tables (although there
need not be any connection between a variable, say X, in the global table and a vari-
able X in a local table). Values of symbols in a local table are temporary; that is, they
exist only while the module is executing and are lost when the module has finished
execution. Whether or not these temporary values are transferred to corresponding
global variables depends on how the module is defined.

Modules with Arguments � 73

Modules with No Arguments

When you define a module with no arguments, a local symbol table is not created.
All symbols (variables) are global, that is, equally accessible inside and outside the
module. The symbols referenced inside the module are the same as the symbols
outside the module environment. This means that variables created inside the module
are also global, and any operations done on variables inside a module affect the global
variables as well.

The following example shows a module with no arguments:

> /* module without arguments, all symbols are global. */
> proc iml;
> a=10; /* A is global */
> b=20; /* B is global */
> c=30; /* C is global */
> start mod1; /* begin module */
> p=a+b; /* P is global */
> q=b-a; /* Q is global */
> c=40; /* C already global */
> finish; /* end module */

NOTE: Module MOD1 defined.

> run mod1;
> print a b c p q;

A B C P Q
10 20 40 30 10

Note that after executing the module,

• A is still 10

• B is still 20

• C has been changed to 40

• P and Q are created, added to the global symbol table, and set to 30 and 10,
respectively

Modules with Arguments

In general, the following statements are true about modules with arguments:

• You can specify arguments as variable names.

• If you specify several arguments, use commas to separate them.

• If you have both output variables and input variables, it is good practice to list
the output variables first.

74 � Chapter 5. Programming Statements

• When a module is invoked with either a RUN or a CALL statement, the argu-
ments can be any name, expression, or literal. However, when using arguments
for output results, use variable names rather than expressions or literals.

When a module is executed with either a RUN or a CALL statement, the value for
each argument is transferred from the global symbol table to the local symbol table.
For example, consider the module MOD2 defined in the following statements. The
first four statements are submitted in the global environment, and they define vari-
ables (A,B,C, and D): the values of these variables are stored in the global symbol
table. The START statement begins definition of MOD2 and lists two variables (X
and Y) as arguments. This creates a local symbol table for MOD2. All symbols used
inside the module (X, Y, P, Q, and C) are in the local symbol table. There is also a
one-to-one correspondence between the arguments in the RUN statement (A and B)
and the arguments in the START statement (X and Y). Also note that A, B, and D
exist only in the global symbol table, whereas X, Y, P, and Q exist only in the local
symbol table. The symbol C exists independently in both the local and global tables.
When MOD2 is executed with the statement RUN MOD2(A,B), the value of A is
transferred from the global symbol table to X in the local table. Similarly, the value
of B in the global table is transferred to Y in the local table. Because C is not an
argument, there is no correspondence between the value of C in the global table and
the value of C in the local table. When the module finishes execution, the final values
of X and Y in the local table are transferred back to A and B in the global table.

> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod2(x,y); /* begin module */
> p=x+y;
> q=y-x;
> y=100;
> c=25;
> finish mod2; /* end module */

NOTE: Module MOD2 defined.

> run mod2(a,b);
> print a b c d;

A B C D
10 100 30 90

The PRINT statement prints the values of variables in the global symbol table.

Notice that

• A is still 10

• B is changed to 100 since the corresponding argument Y was changed to 100
inside the module

Modules with Arguments � 75

• C is still 30. Inside the module, the local symbol C was set equal to 25, but
there is no correspondence between the global symbol C and the local symbol
C.

• D is still 90

Also note that, inside the module, the symbols A, B, and D do not exist. Outside the
module, the symbols P, Q, X, and Y do not exist.

Defining Function Modules

Functions are special modules that return a single value. They are a special type of
module because modules can, in general, return any number of values through their
argument list. To write a function module, include a RETURN statement that assigns
the returned value to a variable. The RETURN statement is necessary for a module
to be a function. You invoke a function module in an assignment statement, as you
would a standard function.

The symbol-table logic described in the preceding section also applies to function
modules. The following is an example of a function module. In this module, the
value of C in the local symbol table is transferred to the global symbol Z.

> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod3(x,y);
> p=x+y;
> q=y-x;
> y=100;
> c=40;
> return (c); /* return function value */
> finish mod3;

NOTE: Module MOD3 defined.

> z = mod3(a,b); /* call function */
> print a b c d z;

A B C D Z
10 100 30 90 40

Note the following about this example:

• A is still 10.

• B is changed to 100 because Y is set to 100 inside the module, and there is a
one-to-one correspondence between B and Y.

• C is still 30. The symbol C in the global table has no connection with the
symbol C in the local table.

76 � Chapter 5. Programming Statements

• Z is set to 40, which is the value of C in the local table.

Again note that, inside the module, the symbols A, B, D, and Z do not exist. Outside
the module, symbols P, Q, X, and Y do not exist.

In the next example, you define your own function ADD for adding two arguments:

> proc iml;
> reset print;
> start add(x,y);
> sum=x+y;
> return(sum);
> finish;

NOTE: Module ADD defined.

> a={9 2,5 7};

A
9 2
5 7

> b={1 6,8 10};

B
1 6
8 10

> c=add(a,b);

C
10 8
13 17

Function modules can also be called inside each other. For example, in the following
statements, the ADD function is called twice from within the first ADD function:

> d=add(add(6,3),add(5,5));
> print d;

D
19

Modules with Arguments � 77

Functions are resolved in this order:

1. IML built-in function

2. user-defined function module

3. SAS DATA step function

This means that you should not use a name for a function that is already the name of
an IML built-in function.

Using the GLOBAL Clause

For modules with arguments, the variables used inside the module are local and have
no connection with any variables of the same name existing outside the module in the
global table. However, it is possible to specify that certain variables not be placed in
the local symbol table but rather be accessed from the global table. Use the GLOBAL
clause to specify variables you want shared between local and global symbol tables.
The following is an example of a module using a GLOBAL clause to define the
symbol C as global. This defines a one-to-one correspondence between the value of
C in the global table and the value of C in the local table.

> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod4(x,y) global (c);
> p=x+y;
> q=y-x;
> y=100;
> c=40;
> d=500;
> finish mod4;

NOTE: Module MOD4 defined.

> run mod4(a,b);
> print a b c d;

A B C D
10 100 40 90

Note the following about this example:

• A is still 10.

• B is changed to 100.

• C is changed to 40 because it was declared global. The C inside the module
and outside the module are the “same.”

• D is still 90 and not 500, since D independently exists in the global and local
symbol tables.

78 � Chapter 5. Programming Statements

Also note that every module with arguments has its own local table; thus it is possible
to have a global and many local tables. A variable can independently exist in one or
more of these tables. However, a variable can be commonly shared between the
global and any number of local tables when the GLOBAL clause is used.

Nesting Modules with Arguments

For nested module calls, the concept of global and local symbol tables is somewhat
different. Consider the following example:

> start mod1 (a,b);
> c=a+b;
> d=a-b;
> run mod2 (c,d);
> print c d;
> finish mod1;

NOTE: Module MOD1 defined.

> start mod2 (x,y);
> x=y-x;
> y=x+1;
> run mod3(x,y);
> finish mod2;

NOTE: Module MOD2 defined.

> start mod3(w,v);
> w=w#v;
> finish mod3;

NOTE: Module MOD3 defined.

The local symbol table of MOD1 in effect becomes the global table for MOD2. The
local symbol table of MOD2 is the global table for MOD3. The distinction between
the global and local environments is necessary only for modules with arguments. If a
module (say, A) calls another module (say, B) which has no arguments, B shares all
the symbols existing in A’s local symbol table.

For example, consider the following statements:

> x=457;
> start a;
> print ’from a’ x;
> finish;
> start b(p);
> print ’from b’ p;
> run a;
> finish;
> run b(x);

More about Argument Passing � 79

P
from b 457

ERROR: Matrix X has not been set to a value.
Error occurred in module A
called from module B
stmt: PRINT

Paused in module A.

In this example, module A is called from module B. Therefore, the local symbol table
of module B becomes the global symbol table for module A. Module A has access to
all symbols available in module B. No X exists in the local environment of module B;
thus no X is available in module A as well. This causes the error that X is unvalued.

More about Argument Passing

You can pass expressions and subscripted matrices as arguments to a module, but you
must be careful and understand the way IML evaluates the expressions and passes
results to the module. Expressions are evaluated, and the evaluated values are stored
in temporary variables. Similarly, submatrices are created from subscripted variables
and stored in temporary variables. The temporary variables are passed to the module
while the original matrix remains intact. Notice that, in the example that follows, the
matrix X remains intact. You might expect X to contain the squared values of Y.

> proc iml;
> reset printall;
> start square(a,b);
> a=b##2;
> finish;
> /* create two data matrices */
> x={5 9 };

X 1 row 2 cols (numeric)

5 9

> y={10 4};

Y 1 row 2 cols (numeric)

10 4
> /* pass matrices to module element-by-element */
> do i=1 to 2;
> run square(x[i],y[i]);
> end;
> /* RESET PRINTALL prints all intermediate results */

80 � Chapter 5. Programming Statements

I 1 row 1 col (numeric)

1

#TEM1002 1 row 1 col (numeric)

10

#TEM1001 1 row 1 col (numeric)

5

A 1 row 1 col (numeric)

100

#TEM1002 1 row 1 col (numeric)

4

#TEM1001 1 row 1 col (numeric)

9

A 1 row 1 col (numeric)

16

> /* show X and Y are unchanged */
> print x y;

X Y
5 9 10 4

The symbol X remains unchanged because the temporary variables that you generally
do not see are changed. Note that IML will properly warn you of any such instances
in which your results may be lost to the temporary variables.

PAUSE Statement � 81

Module Storage

You can store and reload modules using the forms of the STORE and LOAD state-
ments as they pertain to modules:

STORE MODULE= name;

LOAD MODULE= name;

You can view the names of the modules in storage with the SHOW statement:

show storage;

SeeChapter 14, “Storage Features,”for details on using the library storage facilities.

Stopping Execution

You can stop execution with a PAUSE, STOP, or ABORT statement. The QUIT
statement is also a stopping statement, but it immediately removes you from the IML
environment; the other stopping statements can be performed in the context of a pro-
gram. Following are descriptions of the STOP, ABORT, and PAUSE statements.

PAUSE Statement

The general form of the PAUSE statement is

PAUSE < message > < * > ;

The PAUSE statement

• stops execution of the module

• remembers where it stopped executing

• prints a pausemessagethat you can specify

• puts you in immediate mode within the module environment using the mod-
ule’s local symbol table. At this point you can enter more statements.

A RESUME statement enables you to continue execution at the place where the most
recent PAUSE statement was executed.

You can use a STOP statement as an alternative to the RESUME statement to remove
the paused states and return to the immediate environment outside of the module.

You can specify a message in the PAUSE statement to display a message as the pause
prompt. If no message is specified, IML displays the following default message:

paused in module \ob XXX\obe

82 � Chapter 5. Programming Statements

where XXX is the name of the module containing the pause. To suppress the display
of any messages, use the * option:

pause *;

The followingw are some examples of PAUSE statements with operands:

pause "Please enter an assignment for X, then enter RESUME;";

msg ="Please enter an assignment for X, then enter RESUME;";
pause msg;

When you use the PAUSE, RESUME, STOP, or ABORT statement, you should be
aware of the following details:

• The PAUSE statement can be issued only from within a module.

• IML diagnoses an error if you execute a RESUME statement without any
pauses outstanding.

• You can define and execute modules while paused from other modules.

• A PAUSE statement is automatically issued if an error occurs while executing
statements inside a module. This gives you an opportunity to correct the error
and resume execution of the module with a RESUME statement. Alternately,
you can submit a STOP or ABORT statement to exit from the module environ-
ment.

• You cannot reenter or redefine an active (paused) module; you will get an error
for recursive module execution.

• In paused mode, you can run another module that, in turn, pauses; the paused
environments are stacked.

• You can put a RESUME statement inside a module. For example, suppose you
are paused in module A and then run module B, which executes a RESUME
statement. Execution is resumed in module A and does not return to module B.

• IML supports stopping execution while in a paused state in both subroutine and
function modules.

• If you pause in a subroutine module that has its own symbol table, then the
immediate mode during the pause uses this symbol table rather than the global
one. You must use a RESUME or a STOP statement to return to the global
symbol table environment.

• You can use the PAUSE and RESUME statements, in conjunction with the
PUSH, QUEUE, and EXECUTE subroutines described inChapter 15, “Using
SAS/IML Software to Generate IML Statements,”to execute IML statements
that you generate within a module.

Summary � 83

STOP Statement

The general form of the STOP statement is

STOP ;

The STOP statement stops execution and returns you to immediate mode, where new
statements that you enter are executed. If execution is interrupted by a PAUSE state-
ment, the STOP statement clears all pauses and returns to immediate mode of execu-
tion.

ABORT Statement

The general form of the ABORT statement is

ABORT ;

The ABORT statement stops execution and exits from IML much like a QUIT state-
ment, except that the ABORT statement is executable and programmable. For exam-
ple, you may want to exit IML if a certain error occurs. You can check for the error
in a module and program an ABORT statement to execute if the error occurs. The
ABORT statement does not execute until the module is executed, while the QUIT
statement executes immediately and ends the IML session.

Summary

In this chapter you learned the basics of programming with SAS/IML software. You
learned about conditional execution (IF-THEN/ELSE statements), grouping state-
ments as a unit (DO groups), iterative execution, nonconsecutive execution, defining
subroutines and functions (modules), and stopping execution. With these program-
ming capabilities, you are able to write your own sophisticated programs and store
the code as a module. You can then execute the program later with a RUN or CALL
statement.

84 � Chapter 5. Programming Statements

Chapter 6
Working with SAS Data Sets

Chapter Contents

OVERVIEW .87

OPENING A SAS DATA SET .88

MAKING A SAS DATA SET CURRENT 89

DISPLAYING SAS DATA SET INFORMATION 89

REFERRING TO A SAS DATA SET . 90

LISTING OBSERVATIONS .91
Specifying a Range of Observations. 91
Selecting a Set of Variables. .93
Selecting Observations. .94

READING OBSERVATIONS FROM A SAS DATA SET 97
Using the READ Statement with the VAR Clause. 97
Using the READ Statement with the VAR and INTO Clauses. 98
Using the READ Statement with the WHERE Clause. 99

EDITING A SAS DATA SET .100
Updating Observations. .100
Deleting Observations. .101

CREATING A SAS DATA SET FROM A MATRIX102
Using the CREATE Statement with the FROM Option.102
Using the CREATE Statement with the VAR Clause.104

UNDERSTANDING THE END-OF-FILE CONDITION104

PRODUCING SUMMARY STATISTICS104

SORTING A SAS DATA SET .105

INDEXING A SAS DATA SET .106

DATA SET MAINTENANCE FUNCTIONS107

SUMMARY OF COMMANDS .108

SIMILARITIES AND DIFFERENCES WITH THE SAS DATA STEP . . . 108

SUMMARY .109

86 � Chapter 6. Working with SAS Data Sets

Chapter 6
Working with SAS Data Sets

Overview

SAS/IML software has many statements for passing data from SAS data sets to ma-
trices and from matrices to SAS data sets. You can create matrices from the variables
and observations of a SAS data set in several ways. You can create a column vector
for each data set variable, or you can create a matrix where columns correspond to
data set variables. You can use all the observations in a data set or use a subset of
them.

You can also create a SAS data set from a matrix. The columns correspond to data
set variables and the rows correspond to observations. Data management commands
enable you to edit, append, rename, or delete SAS data sets from within the SAS/IML
environment.

When reading a SAS data set, you can read any number of observations into a matrix
either sequentially, directly by record number, or conditionally according to condi-
tions in a WHERE clause. You can also index a SAS data set. The indexing capability
facilitates retrievals by the indexed variable.

Operations on SAS data sets are performed with straightforward, consistent, and pow-
erful statements. For example, theLIST statementcan perform the following tasks:

• list the next record

• list a specified record

• list any number of specified records

• list the whole file

• list records satisfying one or more conditions

• list specified variables or all variables

If you want to read values into a matrix, use theREAD statementinstead of theLIST
statementwith the same operands and features as the LIST statement. You can specify
operands that control which records and variables are used indirectly, as matrices, so
that you can dynamically program the records, variables, and conditional values you
want.

In this chapter, you use the SAS data set CLASS, which contains the variables
NAME, SEX, AGE, HEIGHT, and WEIGHT, to learn about

• opening a SAS data set

• examining the contents of a SAS data set

88 � Chapter 6. Working with SAS Data Sets

• displaying data values with theLIST statement

• reading observations from a SAS data set into matrices

• editing a SAS data set

• creating a SAS data set from a matrix

• displaying matrices with row and column headings

• producing summary statistics

• sorting a SAS data set

• indexing a SAS data set

• similarities and differences between the data set and the SAS DATA step

Throughout this chapter, the right angle brackets (>) indicate statements that you
submit; responses from Interactive Matrix Language follow.

First, invoke the IML procedure:

> proc iml;

IML Ready

Opening a SAS Data Set

Before you can access a SAS data set, you must first submit a command to open it.
There are three ways to open a SAS data set:

• To simply read from an existing data set, submit a USE statement to open it for
read access. The general form of the USE statement is

USE SAS-data-set < VAR operand > < WHERE(expression) > ;

With read access, you can use the FIND, INDEX, LIST, and READ statements
on the data set.

• To read and write to an existing data set, use the EDIT statement. The general
form of the EDIT statement is

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

This statement enables you to use both the reading statements (LIST, READ,
INDEX, and FIND) and the writing statements (REPLACE, APPEND,
DELETE, and PURGE).

• To create a new data set, use the CREATE statement to open a new data set for
both output and input. The general form of the CREATE statement is

CREATE SAS-data-set < VAR operand > ;

Displaying SAS Data Set Information � 89

CREATE SAS-data-set FROM from-name

< [COLNAME= column-name ROWNAME=row-name] > ;

Use the APPEND statement to place the matrix data into the newly created
data set. If you don’t use the APPEND statement, the new data set has no
observations.

If you want to list observations and create matrices from the data in the SAS data
set CLASS, you must first submit a statement to open the CLASS data set. Because
CLASS already exists, specify the USE statement.

Making a SAS Data Set Current

IML data processing commands work on the current data set. This feature makes
it unnecessary for you to specify the data set as an operand each time. There are
two current data sets, one for input and one for output. IML makes a data set the
current one as it is opened. You can also make a data set current by using two setting
statements, SETIN and SETOUT:

• The USE and SETIN statements make a data set current for input.

• The SETOUT statement makes a data set current for output.

• The CREATE and EDIT statements make a data set current for both input and
output.

If you issue a USE, EDIT, or CREATE statement for a data set that is already open,
the data set is made the current data set. To find out which data sets are open and
which are current input and current output data sets, use the SHOW DATASETS
statement.

The current observation is set by the last operation that performed input/output (I/O).
If you want to set the current observation without doing any I/O, use the SETIN (or
SETOUT) statement with the POINT option. After a data set is opened, the current
observation is set to 0. If you attempt to list or read the current observation, the
current observation is converted to 1. You can make the data set CLASS current for
input and position the pointer at the tenth observation with the statement

> setin class point 10;

Displaying SAS Data Set Information

You can use SHOW statements to display information about your SAS data sets.
The SHOW DATASETS statement lists all open SAS data sets and their status. The
SHOW CONTENTS statement displays the variable names and types, the size, and
the number of observations in the current input data set. For example, to get informa-
tion for the CLASS data set, issue the following statements:

90 � Chapter 6. Working with SAS Data Sets

> use class;
> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS
------- ------- --------- ------
WORK .CLASS Input Current Input

> show contents;

VAR NAME TYPE SIZE
NAME CHAR 8
SEX CHAR 8
AGE NUM 8
HEIGHT NUM 8
WEIGHT NUM 8
Number of Variables: 5
Number of Observations: 19

As you can see, CLASS is the only data set open. The USE statement opens it for
input, and it is the current input data set. The full name for CLASS is WORK.CLASS.
The libref is the default, WORK. The next section tells you how to change the libref
to another name.

Referring to a SAS Data Set

The USE, EDIT, and CREATE statements take as their first operand the data set name.
This name can have either one or two levels. If it is a two-level name, the first level
refers to the name of the SAS data library; the second name is the data set name. If
the libref is WORK, the data set is stored in a directory for temporary data sets; these
are automatically deleted at the end of the session. Other librefs are associated with
SAS data libraries using the LIBNAME statement.

If you specify only a single name, then IML supplies a default libref. At the beginning
of an IML session, the default libref is SASUSER if SASUSER is defined as a libref
or WORK otherwise. You can reset the default libref by using the RESET DEFLIB
statement. If you want to create a permanent SAS data set, you must specify a two-
level name using the RESET DEFLIB statement (refer to the chapter on SAS files in
SAS Language Reference: Conceptsfor more information about permanent SAS data
sets).

> reset deflib=name;

Specifying a Range of Observations � 91

Listing Observations

You can list variables and observations in a SAS data set with the LIST statement.
The general form of the LIST statement is

LIST < range > < VAR operand > < WHERE(expression) > ;

where

range specifies a range of observations.

operand selects a set of variables.

expression is an expression that is evaluated for being true or false.

The next three sections discuss how to use each of these clauses with the CLASS data
set.

Specifying a Range of Observations

You can specify a range of observations with a keyword or by record number using the
POINT option. You can use therangeoperand with the data management statements
DELETE, FIND, LIST, READ, and REPLACE.

You can specifyrangeusing any of the following keywords:

ALL all observations

CURRENT the current observation

NEXT < number> the next observation or nextnumberof observations

AFTER all observations after the current one

POINToperand observations by number, whereoperandcan be one of the fol-
lowing:

Operand Example
a single record number point 5

a literal giving several record numbers point {2 5 10}

the name of a matrix containing record numberspoint p

an expression in parentheses point (p+1)

If you want to list all observations in the CLASS data set, use the keyword ALL to
indicate that the range is all observations:

92 � Chapter 6. Working with SAS Data Sets

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
4 JANE F 12.0000 59.8000 84.5000
5 JOHN M 12.0000 59.0000 99.5000
6 LOUISE F 12.0000 56.3000 77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

10 JEFFREY M 13.0000 62.5000 84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 14.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Without arangespecification, the LIST statement lists only the current observation,
which in this example is now the last observation because of the previous LIST state-
ment:

> list;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

19 PHILIP M 16.0000 72.0000 150.0000

Use the POINT keyword with record numbers to list specific observations. You can
follow the keyword POINT with a single record number or with a literal giving several
record numbers.

> list point 5;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

5 JOHN M 12.0000 59.0000 99.5000

> list point {2 4 9};

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

2 THOMAS M 11.0000 57.5000 85.0000
4 JANE F 12.0000 59.8000 84.5000
9 BARBARA F 13.0000 65.3000 98.0000

Selecting a Set of Variables � 93

You can also indicate the range indirectly by creating a matrix containing the records
you want listed:

> p={2 4 9};
> list point p;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

2 THOMAS M 11.0000 57.5000 85.0000
4 JANE F 12.0000 59.8000 84.5000
9 BARBARA F 13.0000 65.3000 98.0000

The rangeoperand is usually listed first when you are using the access statements
DELETE, FIND, LIST, READ, and REPLACE. Listed below are access statements
and their default ranges.

Statement Default Range
LIST current
READ current
FIND all
REPLACE current
APPEND always at end
DELETE current

Selecting a Set of Variables

You can use the VAR clause to select a set of variables. The general form of the VAR
clause is

VAR operand

whereoperandcan be specified using one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the following keywords:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples show each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

94 � Chapter 6. Working with SAS Data Sets

For example, to list students’ names from the CLASS data set, use the VAR clause
with a literal.

> list point p var{name};

OBS NAME
------ --------

2 THOMAS
4 JANE
9 BARBARA

To list AGE, HEIGHT, and WEIGHT, you can use the VAR clause with a matrix
giving the variables:

> v={age height weight};
> list point p var v;

OBS AGE HEIGHT WEIGHT
------ --------- --------- ---------

2 11.0000 57.5000 85.0000
4 12.0000 59.8000 84.5000
9 13.0000 65.3000 98.0000

The VAR clause can be used with the following statements for the tasks described:

Statement VAR Clause Function
APPEND specifies which IML variables contain data to append to the data set
CREATE specifies the variables to go in the data set
EDIT limits which variables are accessed
LIST specifies which variables to list
READ specifies which variables to read
REPLACE specifies which data set variable’s data values to replace with corre-

sponding IML variable data values
USE limits which variables are accessed

Selecting Observations

The WHERE clause conditionally selects observations, within therange specifi-
cation, according to conditions given in theexpression. The general form of the
WHERE clause is

WHERE variable comparison-op operand ;

where

variable is a variable in the SAS data set.

Selecting Observations � 95

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause| clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

For example, to list the names of all males in the data set CLASS, use the following
statement:

> list all var{name} where(sex=’M’);

96 � Chapter 6. Working with SAS Data Sets

OBS NAME
------ ----------------------

2 THOMAS
3 JAMES
5 JOHN
7 ROBERT

10 JEFFREY
12 HENRY
13 ALFRED
17 RONALD
18 WILLIAM
19 PHILIP

The WHERE comparison arguments can be matrices. In the following cases using
the =* operator, the comparison is made on each name to find a string that sounds
like or is spelled similar to the given string or strings:

> n={name sex age};
> list all var n where(name=*{"ALFRED","CAROL","JUDY"});

OBS NAME SEX AGE
----- ---------------- -------- ---------
11 CAROL F 14.0000
13 ALFRED M 14.0000
14 JUDY F 14.0000

> list all var n where(name=*{"JON","JAN"});

OBS NAME SEX AGE
------ -------- -------- ---------

4 JANE F 12.0000
5 JOHN M 12.0000

To list AGE, HEIGHT, and WEIGHT for all students in their teens, use the following
statement:

> list all var v where(age>12);

OBS AGE HEIGHT WEIGHT
------ --------- --------- ---------

8 13.0000 56.5000 84.0000
9 13.0000 65.3000 98.0000
10 13.0000 62.5000 84.0000
11 14.0000 62.8000 102.5000
12 14.0000 63.5000 102.5000
13 14.0000 69.0000 112.5000
14 14.0000 64.3000 90.0000
15 15.0000 62.5000 112.5000
16 15.0000 66.5000 112.0000
17 15.0000 67.0000 133.0000
18 15.0000 66.5000 112.0000
19 16.0000 72.0000 150.0000

Using the READ Statement with the VAR Clause � 97

Note: In the WHERE clause, the expression on the left-hand side refers to values
of the data set variables, and the expression on the right-hand side refers to matrix
values. You cannot use comparisons involving more than one data set variable in a
single comparison; for example, you cannot use either of the following expressions:

list all where(height>weight);
list all where(weight-height>0);

You could use the first statement if WEIGHT were a matrix name already defined
rather than a variable in the SAS data set.

Reading Observations from a SAS Data Set

Transferring data from a SAS data set to a matrix is done using the READ statement.
The SAS data set you want to read data from must already be open. You can open a
SAS data set with either the USE or the EDIT statement. If you already have several
data sets open, you can point to the one you want with the SETIN statement, making
it the current input data set. The general form of the READ statement is

READ < range > < VAR operand > < WHERE(expression) >

< INTO name > ;

where

range specifies a range of observations.

operand selects a set of variables.

expression is an expression that is evaluated for being true or false.

name names a target matrix for the data.

Using the READ Statement with the VAR Clause

Use theREAD statementwith the VAR clause to read variables from the current SAS
data set into column vectors of the VAR clause. Each variable in the VAR clause
becomes a column vector with the same name as the variable in the SAS data set.
The number of rows is equal to the number of observations processed, depending on
the range specification and the WHERE clause. For example, to read the numeric
variables AGE, HEIGHT, and WEIGHT for all observations in the CLASS data set,
use the following statements:

> read all var {age height weight};

Now submit theSHOW NAMES statementto display all the matrices you have cre-
ated so far in this chapter:

> show names;

AGE 19 rows 1 col num 8

98 � Chapter 6. Working with SAS Data Sets

HEIGHT 19 rows 1 col num 8
N 1 row 3 cols char 4
P 1 row 3 cols num 8
V 1 row 3 cols char 6
WEIGHT 19 rows 1 col num 8
Number of symbols = 8 (includes those without values)

You see that, with theREAD Statement, you have created the three numeric vectors
AGE, HEIGHT , andWEIGHT . (Notice that the matrices you created earlier,N, P,
andV, are also listed.) You can select the variables that you want to access with a
VAR clause in theUSE statement. The two previous statements can also be written
as

use class var{age height weight};
read all;

Using the READ Statement with the VAR and INTO Clauses

Sometimes you want to have all of the numeric variables in the same matrix so that
you can determine correlations. Use the READ statement with the INTO clause and
the VAR clause to read the variables listed in the VAR clause into the single matrix
named in the INTO clause. Each variable in the VAR clause becomes a column of
the target matrix. If there arep variables in the VAR clause andn observations are
processed, the target matrix in the INTO clause is ann× p matrix.

The following statement creates a matrixX containing the numeric variables of the
CLASS data set. Notice the use of the keyword–NUM– in the VAR clause to specify
that all numeric variables be read.

> read all var _num_ into x;
> print x;

X
11 51.3 50.5
11 57.5 85
12 57.3 83
12 59.8 84.5
12 59 99.5
12 56.3 77
12 64.8 128
13 56.5 84
13 65.3 98
13 62.5 84
14 62.8 102.5
14 63.5 102.5
14 69 112.5
14 64.3 90
15 62.5 112.5
15 66.5 112
15 67 133
15 66.5 112
16 72 150

Using the READ Statement with the WHERE Clause � 99

Using the READ Statement with the WHERE Clause

Use the WHERE clause as you did with theLIST statement, to conditionally se-
lect observations from within the specified range. If you want to create a matrix
FEMALE containing the variables AGE, HEIGHT, and WEIGHT for females only,
use the following statements.

> read all var _num_ into female where(sex="F");
> print female;

FEMALE
11 51.3 50.5
12 59.8 84.5
12 56.3 77
13 56.5 84
13 65.3 98
14 62.8 102.5
14 64.3 90
15 62.5 112.5
15 66.5 112

Now try some special features of the WHERE clause to find values that begin with
certain characters (the =: operator) or that contain certain strings (the ? operator). To
create a matrixJ containing the students whose names begin with the letter “J”, use
the following statements:

> read all var{name} into j where(name=:"J");
> print j;

J
JOYCE
JAMES
JANE
JOHN
JEFFREY
JUDY
JANET

To creat a matrixAL of children with names containing the string “AL”, use the
statement

> read all var{name} into al where(name?"AL");
> print al;

AL
ALICE
ALFRED
RONALD

100 � Chapter 6. Working with SAS Data Sets

Editing a SAS Data Set

You can edit a SAS data set using the EDIT statement. You can update values of
variables, mark observations for deletion, delete the marked observations, and save
the changes you make. The general form of the EDIT statement is

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

where

SAS-data-setnames an existing SAS data set.

operand selects a set of variables.

expression is an expression that is evaluated for being true or false.

Updating Observations

Suppose you have updated data and want to change some values in the CLASS data
set. For instance, suppose that the student named HENRY has had a birthday since
the data were added to the CLASS data set. You can

• make the data set CLASS current for input and output

• read the data

• change the appropriate data value

• replace the changed data in the data set

First, submit an EDIT statement to make the CLASS data set current for input and
output. Then use the FIND statement, which finds observation numbers and stores
them in a matrix, to find the observation number of the data for HENRY and store it
in the matrixd.

> edit class;
> find all where(name={’HENRY’}) into d;
> print d;

D
12

List the observation containing the data for HENRY.

> list point d;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

12 HENRY M 14.0000 63.5000 102.5000

As you see, the observation number is 12. Now read the value for AGE into a matrix
and update its value. Finally, replace the value in the CLASS data set and list the
observation containing the data for HENRY again.

Deleting Observations � 101

> age=15;
> replace;

1 observations replaced.

> list point 12;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

12 HENRY M 15.0000 63.5000 102.5000

Deleting Observations

Use the DELETE statement to mark an observation to be deleted. The general form
of the DELETE statement is

DELETE < range > < WHERE(expression) > ;

where

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

The following are examples of valid uses of the DELETE statement.

Code Action
delete; deletes the current observation
delete point 10; deletes observation 10
delete all where (age>12); deletes all observations where

AGE is greater than 12

If a file accumulates a number of observations marked as deleted, you can clean out
these observations and renumber the remaining observations by using the PURGE
statement.

Suppose that the student named John has moved and you want to update the CLASS
data set. You can remove the observation using the EDIT and DELETE statements.
First, find the observation number of the data for JOHN and store it in the matrixd
using the FIND statement. Then submit a DELETE statement to mark the record for
deletion. A deleted observation is still physically in the file and still has an observa-
tion number, but it is excluded from processing. The deleted observations appear as
gaps when you list the file by observation number:

> find all where(name={’JOHN’}) into d;
> print d;

D
5

102 � Chapter 6. Working with SAS Data Sets

> delete point d;

1 observation deleted.
> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000 77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

10 JEFFREY M 13.0000 62.5000 84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Notice that there is a gap in the data where the deleted observation was (observation
5). To renumber the observations and close the gaps, submit the PURGE statement.
Note that the PURGE statement deletes any indexes associated with a data set.

> purge;

Creating a SAS Data Set from a Matrix

SAS/IML software provides the ability to create a new SAS data set from a matrix.
Use the CREATE and APPEND statements to create a SAS data set from a matrix,
where the columns of the matrix become the data set variables and the rows of the
matrix become the observations. Thus, ann×m matrix creates a SAS data set with
m variables andn observations. The CREATE statement opens the new SAS data set
for both input and output, and the APPEND statement writes to (outputs to) the data
set.

Using the CREATE Statement with the FROM Option

You can create a SAS data set from a matrix using the CREATE statement with the
FROM option. This form of the CREATE statement is

Using the CREATE Statement with the FROM Option � 103

CREATE SAS-data-set FROM matrix

< [COLNAME= column-name ROWNAME=row-name] > ;

where

SAS-data-set names the new data set.

matrix names the matrix containing the data.

column-name names the variables in the data set.

row-name adds a variable containing row titles to the data set.

Suppose you want to create a SAS data set named RATIO containing a variable with
the height-to-weight ratios for each student. You first create a matrix containing the
ratios from the matricesHEIGHT and WEIGHT that you have already defined.
Next, use the CREATE and APPEND statements to open a new SAS data set called
RATIO and append the observations, naming the data set variable HTWT instead of
COL1.

htwt=height/weight;
create ratio from htwt[colname=’htwt’];
append from htwt;

Now submit the SHOW DATASETS and SHOW CONTENTS statements.

> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS
------- ------- --------- ------
WORK .CLASS Update
WORK .RATIO Update Current Input Current Output

> show contents;

VAR NAME TYPE SIZE
HTWT NUM 8
Number of Variables: 1
Number of Observations: 18

> close ratio;

As you can see, the new SAS data set RATIO has been created. It has 18 observations
and 1 variable (recall that you deleted 1 observation earlier).

104 � Chapter 6. Working with SAS Data Sets

Using the CREATE Statement with the VAR Clause

You can use a VAR clause with the CREATE statement to select the variables you
want to include in the new data set. In the previous example, the new data set RATIO
had one variable. If you want to create a similar data set but include the second
variable NAME, you use the VAR clause. You could not do this using the FROM
option because the variable HTWT is numeric and the variable NAME is character.
The following statements create a new data set RATIO2 having the variables NAME
and HTWT.

> create ratio2 var{name htwt};
> append;
> show contents;

VAR NAME TYPE SIZE
NAME CHAR 8
HTWT NUM 8
Number of Variables: 2
Number of Observations: 18

> close ratio2;

Notice that now the variable NAME is in the data set.

Understanding the End-of-File Condition

If you try to read past the end of a data set or point to an observation greater than the
number of observations in the data set, you create an end-of-file condition. If an end
of file occurs while inside a DO DATA iteration group, IML transfers control to the
next statement outside the current DO DATA group.

The following example uses a DO DATA loop while reading the CLASS data set. It
reads the variable WEIGHT in one observation at a time and accumulates the weights
of the students in the IML matrix SUM. When the data are read, the total class weight
is stored in the matrix SUM.

setin class point 0;
sum=0;
do data;

read next var{weight};
sum=sum+weight;

end;
print sum;

Producing Summary Statistics

Summary statistics on the numeric variables of a SAS data set can be obtained with
the SUMMARY statement. These statistics can be based on subgroups of the data by
using the CLASS clause in the SUMMARY statement. The SAVE option in the OPT

Sorting a SAS Data Set � 105

clause enables you to save the computed statistics in matrices for later perusal. For
example, consider the following statement.

> summary var {height weight} class {sex} stat{mean std} opt{save};

SEX Nobs Variable MEAN STD
--
F 9 HEIGHT 60.58889 5.01833

WEIGHT 90.11111 19.38391

M 9 HEIGHT 64.45556 4.90742
WEIGHT 110.00000 23.84717

All 18 HEIGHT 62.52222 5.20978
WEIGHT 100.05556 23.43382

--

This summary statement gives the mean and standard deviation of the variables
HEIGHT and WEIGHT for the two subgroups (male and female) of the data set
CLASS. Since the SAVE option is set, the statistics of the variables are stored in
matrices under the name of the corresponding variables, with each column corre-
sponding to a statistic requested and each row corresponding to a subgroup. Two
other vectors, SEX and–NOBS–, are created. The vector SEX contains the two dis-
tinct values of the class variable SEX used in forming the two subgroups. The vector

–NOBS– has the number of observations in each subgroup.

Note that the combined means and standard deviations of the two subgroups are dis-
played but are not saved.

More than one class variable can be used, in which case a subgroup is defined by the
combination of the values of the class variables.

Sorting a SAS Data Set

The observations in a SAS data set can be ordered (sorted) by specific key variables.
To sort a SAS data set, close the data set if it is currently open, and issue a SORT
statement for the variables by which you want the observations to be ordered. Specify
an output data set name if you want to keep the original data set. For example, the
statement

> sort class out=sorted by name;

creates a new SAS data set named SORTED. The new data set has the observations
from the data set CLASS, ordered by the variable NAME.

The statement

> sort class by name;

106 � Chapter 6. Working with SAS Data Sets

sorts in place the data set CLASS by the variable NAME. However, at the completion
of the SORT statement, the original data set is replaced by the sorted data set.

You can specify as many key variables as needed, and, optionally, each variable can
be preceded by the keyword DESCENDING, which denotes that the variable that
follows is to be sorted in descending order.

Indexing a SAS Data Set

Searching through a large data set for information about one or more specific ob-
servations may take a long time because the procedure must read each record. You
can reduce this search time by first indexing the data set by a variable. The INDEX
statement builds a special companion file containing the values and record numbers
of the indexed variables. Once the index is built, IML may use the index for queries
with WHERE clauses if it decides that indexed retrieval is more efficient. Any num-
ber of variables can be indexed, but only one index is in use at a given time. Note
that purging a data set with the PURGE statement results in the loss of all associated
indexes.

Once you have indexed a data set, IML can use this index whenever a search is con-
ducted with respect to the indexed variables. The indexes are updated automatically
whenever you change values in indexed variables. When an index is in use, observa-
tions cannot be randomly accessed by their physical location numbers. This means
that the POINT range cannot be used when an index is in effect. However, if you
purge the observations marked for deletion, or sort the data set in place, the indexes
become invalid and IML automatically deletes them.

For example, if you want a list of all female students in the CLASS data set, you can
first index CLASS by the variable SEX. Then use the LIST statement with a WHERE
clause. Of course, the CLASS data set is small, and indexing does little if anything
to speed queries with the WHERE clause. If the data set had thousands of students,
though, indexing could save search time.

To index the data set by the variable SEX, submit the statement

> index sex;

NOTE: Variable SEX indexed.
NOTE: Retrieval by SEX.

Now list all students. Notice the ordering of the special file built by indexing by the
variable SEX. Retrievals by SEX will be quick.

Data Set Maintenance Functions � 107

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000 77.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

11 CAROL F 14.0000 62.8000 102.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
7 ROBERT M 12.0000 64.8000 128.0000

10 JEFFREY M 13.0000 62.5000 84.0000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Data Set Maintenance Functions

Two functions and two subroutines are provided to perform data set mainte-
nance:

DATASETS function obtains members in a data library. This function returns a
character matrix containing the names of the SAS data sets
in a library.

CONTENTS function obtains variables in a member. This function returns a
character matrix containing the variable names for the SAS
data set specified bylibnameandmemname. The variable
list is returned in alphabetic order.

RENAME subroutine renames a SAS data set member in a specified library.

DELETE subroutine deletes a SAS data set member in a specified library.

SeeChapter 20, “Language Reference,”for details and examples of these functions
and routines.

108 � Chapter 6. Working with SAS Data Sets

Summary of Commands

You have seen that IML has an extensive set of commands that operate on SAS data
sets. The following table summarizes the data management commands you can use
to perform management tasks for which you might normally use the SAS DATA step.

Table 6.1. Data Management Commands

Command Action
APPEND adds observations to the end of a SAS data set
CLOSE closes a SAS data set
CREATE creates and opens a new SAS data set for input and output
DELETE marks observations for deletion in a SAS data set
EDIT opens an existing SAS data set for input and output
FIND finds observations
INDEX indexes variables in a SAS data set
LIST lists observations
PURGE purges all deleted observations from a SAS data set
READ reads observations into IML variables
REPLACE writes observations back into a SAS data set
RESET DEFLIB names default libname
SAVE saves changes and reopens a SAS data set
SETIN selects an open SAS data set for input
SETOUT selects an open SAS data set for output
SHOW CONTENTS shows contents of the current input SAS data set
SHOW DATASETS shows SAS data sets currently open
SORT sorts a SAS data set
SUMMARY produces summary statistics for numeric variables
USE opens an existing SAS data set for input

Similarities and Differences with the SAS DATA
Step

If you want to remain in the IML environment and mimic DATA step processing, you
need to learn the basic differences between IML and the DATA step:

• With SAS/IML software, you start with a CREATE statement instead of a
DATA statement. You must explicitly set up all your variables with the right at-
tributes before you create a data set. This means that you must define character
variables having the desired string length beforehand. Numeric variables are
the default, so any variable not defined as character is assumed to be numeric.
In the DATA step, the variable attributes are determined from context across
the whole step.

Summary � 109

• With SAS/IML software, you must use an APPEND statement to output an
observation; in the DATA step, you either use an OUTPUT statement or let the
DATA step output it automatically.

• With SAS/IML software, you iterate with a DO DATA loop. In the DATA step,
the iterations are implied.

• With SAS/IML software, you have to close the data set with a CLOSE state-
ment unless you plan to leave the IML environment with a QUIT statement.

The DATA step closes the data set automatically at the end of the step.

• The DATA step usually executes faster than IML.

In short, the DATA step treats the problem with greater simplicity, allowing shorter
programs. However, IML has more flexibility because it is both interactive and has a
powerful matrix-handling capability.

Summary

In this chapter, you have learned many ways to interact with SAS data sets from
within the IML environment. You learned how to open and close a SAS data set, how
to make it current for input and output, how to list observations by specifying a range
of observations to process, a set of variables to use, and a condition for subsetting
observations. You also learned summary statistics. You also know how to read obser-
vations and variables from a SAS data set into matrices as well as create a SAS data
set from a matrix of values.

110 � Chapter 6. Working with SAS Data Sets

Chapter 7
File Access

Chapter Contents

OVERVIEW .113

REFERRING TO AN EXTERNAL FILE113
Types of External Files .114

READING FROM AN EXTERNAL FILE115
Using the INFILE Statement. .115
Using the INPUT Statement. .116

WRITING TO AN EXTERNAL FILE .123
Using the FILE Statement. .124
Using the PUT Statement. .124
Examples .125

LISTING YOUR EXTERNAL FILES .127

CLOSING AN EXTERNAL FILE .127

SUMMARY .127

112 � Chapter 7. File Access

Chapter 7
File Access
Overview

In this chapter you learn about external files and how to refer to an external file,
whether it is a text file or a binary file. You learn how to read data from a file using
theINFILE andINPUT statements and how to write data to an external file using the
FILE andPUT statements.

With external files, you must know the format in which the data are stored or to
be written. This is in contrast to SAS data sets, which are specialized files with a
structure that is already known to the SAS System.

The Interactive Matrix Language statements used to access files are very similar to
the corresponding statements in the SAS DATA step. The following table summarizes
the IML statements and their functions.

Statement Function
CLOSEFILE closes an external file
FILE opens an external file for output
INFILE opens an external file for input
INPUT reads from the current input file
PUT writes to the current output file
SHOW:FILES shows all open files, their attributes, and their status

(current input and output files)

Referring to an External File

Suppose that you have data for students in a class. You have recorded the values for
the variables NAME, SEX, AGE, HEIGHT, and WEIGHT for each student and have
stored the data in an external text file named USER.TEXT.CLASS. If you want to
read this data into IML variables, you need to indicate where the data are stored. In
other words, you need to name the input file. If you want to write data from matrices
to a file, you also need to name an output file.

There are two ways to refer to an input or output file: afilepathand afilename. A
filepath is the name of the file as it is known to the operating system. Afilenameis
an indirect SAS reference to the file made using the FILENAME statement. You can
identify a file in either way using the FILE and INFILE statements.

For example, you can refer to the input file where the class data are stored using a
literal filepath, that is, a quoted string. The statement

114 � Chapter 7. File Access

infile ’user.text.class’;

opens the file USER.TEXT.CLASS for input. Similarly, if you want to output data
to the file USER.TEXT.NEWCLASS, you need to reference the output file with the
statement

file ’user.text.newclass’;

You can also refer to external files using afilename. When using a filename as the
operand, simply give the name. The name must be one already associated with a
filepath by a previously issued FILENAME statement.

For example, suppose you want to reference the file with the class data using a
FILENAME statement. First, you must associate the filepath with an alias (called
a fileref), say INCLASS. Then you can refer to USER.TEXT.CLASS with the fileref
INCLASS.

The following statements accomplish the same thing as the previous INFILE state-
ment with the quoted filepath:

filename inclass ’user.text.class’;
infile inclass;

You can use the same technique for output files. The following statements have the
same effect as the previous file statement:

filename outclass ’user.text.newclass’;
file outclass;

Three filenames have special meaning to IML: CARDS, LOG, and PRINT. These re-
fer to the standard input and output streams for all SAS sessions, as described below:

CARDS is a special filename for instream input data.

LOG is a special filename for log output.

PRINT is a special filename for standard print output.

When the filepath is specified, there is a limit of 64 characters to the operand.

Types of External Files

Most files that you work with aretext files, which means that they can be edited
and displayed without any special program. Text files under most host environments
have special characters, called carriage-control characters or end-of-line characters,
to separate one record from the next.

If your file does not adhere to these conventions, it is called abinary file. Typically,
binary files do not have the usual record separators, and they may use any binary

Using the INFILE Statement � 115

codes, including unprintable control characters. If you want to read a binary file, you
must specify RECFM=N in the INFILE statement and use the byte operand (<) in the
INPUT statement to specify the length of each item you want read. Treating a file as
binary enables you to have direct access to a file position by byte-address using the
byte operand (>) in the INPUT or PUT statement.

You write data to an external file using the FILE and PUT statements. The output file
can be text or binary. If your output file is binary, you must specify RECFM=N in
the FILE statement. One difference between binary and text files in output is that the
PUT statement does not put the record-separator characters on the end of each record
written for binary files.

Reading from an External File

After you have chosen a method to refer to the external file you want to read, you
need an INFILE statement to open it for input and an INPUT statement to tell IML
how to read the data.

The next several sections cover how to use an INFILE statement and how to specify
an INPUT statement so that you can input data from an external file.

Using the INFILE Statement

An INFILE statement identifies an external file containing data that you want to read.
It opens the file for input or, if the file is already open, makes it the current input file.
This means that subsequent INPUT statements are read from this file until another
file is made the current input file.

The following options can be used with the INFILE statement:

FLOWOVER
enables the INPUT statement to go to the next record to obtain values for the vari-
ables.

LENGTH=variable
names a variable containing the length of the current record, where the value is set to
the number of bytes used after each INPUT statement.

MISSOVER
prevents reading from the next input record when an INPUT statement reaches the
end of the current record without finding values for all variables. It assigns missing
values to all values that are expected but not found.

RECFM=N
specifies that the file is to be read in as a pure binary file rather than as a file with
record-separator characters. You must use the byte operands (< and >) to get new
records rather than separate INPUT statements or the new line operator (/).

STOPOVER
stops reading when an INPUT statement reaches the end of the current record without
finding values for all variables in the statement. It treats going past the end of a record

116 � Chapter 7. File Access

as an error condition, triggering an end-of-file condition. The STOPOVER option is
the default.

The FLOWOVER, MISSOVER, and STOPOVER options control how the INPUT
statement works when you try to read past the end of a record. You can specify
only one of these options. Read these options carefully so that you understand them
completely.

Below is an example using the INFILE statement with a FILENAME statement to
read the class data file. The MISSOVER option is used to prevent reading from the
next record if values for all variables in the INPUT statement are not found.

filename inclass ’user.text.class’;
infile inclass missover;

You can specify the filepath with a quoted literal also. The preceding statements
could be written as

infile ’user.text.class’ missover;

Using the INPUT Statement

Once you have referenced the data file containing your data with an INFILE state-
ment, you need to tell IML exactly how the data are arranged:

• the number of variables and their names

• each variable’s type, either numeric or character

• the format of each variable’s values

• the columns that correspond to each variable

In other words, you must tell IML how to read the data.

The INPUT statement describes the arrangement of values in an input record. The
INPUT statement reads records from a file specified in the previously executed
INFILE statement, reading the values into IML variables.

There are two ways to describe a record’s values in an IML INPUT statement:

• list (or scanning) input

• formatted input

Here are several examples of valid INPUT statements for the class data file, depend-
ing, of course, on how the data are stored.

If the data are stored with a blank or a comma between fields, then list input can be
used. For example, the INPUT statement for the class data file might look as follows:

infile inclass;
input name $ sex $ age height weight;

Using the INPUT Statement � 117

These statements tell IML the following:

• There are five variables: NAME, SEX, AGE, HEIGHT and WEIGHT.

• Data fields are separated by commas or blanks.

• NAME and SEX are character variables, as indicated by the dollar sign ($).

• AGE, HEIGHT, and WEIGHT are numeric variables, the default.

The data must be stored in the same order in which the variables are listed in the
INPUT statement. Otherwise, you can use formatted input, which is column spe-
cific. Formatted input is the most flexible and can handle any data file. Your INPUT
statement for the class data file might look as follows:

infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0

@20 height 4.1 @25 weight 5.1;

These statements tell IML the following:

• NAME is a character variable; its value begins in column 1 (indicated by @1)
and occupies eight columns ($char8.).

• SEX is a character variable; its value is in column 10 ($char1.).

• AGE is a numeric variable; its value is found in columns 15 and 16 and has no
decimal places (2.0).

• HEIGHT is a numeric variable found in columns 20 through 23 with one deci-
mal place implied (4.1).

• WEIGHT is a numeric variable found in columns 25 through 29 with one dec-
imal place implied (5.1).

The next sections discuss these two modes of input.

List Input

If your data are recorded with a comma or one or more blanks between data fields,
you can use list input to read your data. If you have missing values, that is, unknown
values, they must be represented by a period (.) rather than a blank field.

When IML looks for a value, it skips past blanks and tab characters. Then it scans
for a delimiter to the value. The delimiter is a blank, a comma, or the end of the
record. When the ampersand (&) format modifier is used, IML looks for two blanks,
a comma, or the end of the record.

The general form of the INPUT statement for list input is

118 � Chapter 7. File Access

INPUT variable < $ > < & > < . . .variable < $ > < & > > ;

where

variable names the variable to be read by the INPUT statement.

$ indicates that the preceding variable is character.

& indicates that a character value may have a single embedded blank.
Because a blank normally indicates the end of a data value, use the am-
persand format modifier to indicate the end of the value with at least two
blanks or a comma.

With list input, IML scans the input lines for values. Consider using list input when

• blanks or commas separate input values

• periods rather than blanks represent missing values

List input is the default in several situations. Descriptions of these situations and the
behavior of IML follow:

• If no input format is specified for a variable, IML scans for a number.

• If a single dollar sign or ampersand format modifier is specified, IML scans
for a character value. The ampersand format modifier allows single embedded
blanks to occur.

• If a format is given with width unspecified or 0, IML scans for the first blank
or comma.

If the end of a record is encountered before IML finds a value, then the behavior is
as described by the record overflow options in the INFILE statement discussed in the
section “Using the INFILE Statement.”

When you read with list input, the order of the variables listed in the INPUT statement
must agree with the order of the values in the data file. For example, consider the
following data:

Alice f 10 61 97
Beth f 11 64 105
Bill m 12 63 110

You can use list input to read this data by specifying the following INPUT statement:

input name $ sex $ age height weight;

Note: This statement implies that the variables are stored in the order given. That is,
each line of data contains a student’s NAME, SEX, AGE, HEIGHT, and WEIGHT in
that order and separated by at least one blank or by a comma.

Using the INPUT Statement � 119

Formatted Input

The alternative to list input is formatted input. An INPUT statement reading format-
ted input must have a SAS informat after each variable. Aninformatgives the data
type and field width of an input value. Formatted input may be used with pointer con-
trols and format modifiers. Note, however, that neither pointer controls nor format
modifiers are necessary for formatted input.

Pointer control features

Pointer controls reset the pointer’s column and line positions and tell the INPUT
statement where to go to read the data value. You use pointer controls to specify the
columns and lines from which you want to read:

• Column pointer controlsmove the pointer to the column you specify.

• Line pointer controlsmove the pointer to the next line.

• Line hold controlskeep the pointer on the current input line.

• Binary file indicator controlsindicate that the input line is from a binary file.

Column pointer controls

Column pointer controls indicate in which column an input value starts. Column
pointer controls begin with either an at sign (@) or a plus sign (+).

@n moves the pointer to columnn.

@point-variable moves the pointer to the column given by the current value of
point-variable.

@(expression) moves the pointer to the column given by the value of theexpres-
sion. Theexpressionmust evaluate to a positive integer.

+n moves the pointern columns.

+point-variable moves the pointer the number of columns given by the value of
point-variable.

+(expression) moves the pointer the number of columns given by the value of
expression. The value ofexpressioncan be positive or negative.

Here are some examples using column pointer controls:

Example Meaning
@12 go to column 12
@N go to the column given by the value of N
@(N−1) go to the column given by the value of N−1
+5 skip 5 spaces
+N skip N spaces
+(N+1) skip N+1 spaces

120 � Chapter 7. File Access

In the earlier example using formatted input, you used several pointer controls:

infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0

@20 height 4.1 @25 weight 5.1;

The @1 moves the pointer to column 1, the @10 moves it to column 10, and so on.
You move the pointer to the column where the data field begins and then supply an
informat specifying how many columns the variable occupies. The INPUT statement
could also be written as

input @1 name $char8. +1 sex $char1. +4 age 2. +3 height 4.1
+1 weight 5.1;

In this form, you move the pointer to column 1 (@1) and read eight columns. The
pointer is now at column 9. Now, move the pointer +1 columns to column 10 to read
SEX. The $char1. informat says to read a character variable occupying one column.
After you read the value for SEX, the pointer is at column 11, so move it to column
15 with +4 and read AGE in columns 15 and 16 (the 2. informat). The pointer is
now at column 17, so move +3 columns and read HEIGHT. The same idea applies
for reading WEIGHT.

Line pointer control

The line pointer control (/) directs IML to skip to the next line of input. You need
a line pointer control when a record of data takes more than one line. You use the
new line pointer control (/) to skip to the next line and continue reading data. In the
example reading the class data, you do not need to skip a line because each line of
data contains all the variables for a student.

Line hold control

The trailing at sign (@), when at the end of an INPUT statement, directs IML to
hold the pointer on the current record so that you can read more data with subsequent
INPUT statements. You can use it to read several records from a single line of data.
Sometimes, when a record is very short, say ten columns or so, you can save space in
your external file by coding several records on the same line.

Binary file indicator controls

When the external file you want to read is a binary file (RECFM=N is specified in
the INFILE statement), you must tell IML how to read the values using the following
binary file indicator controls:

>n start reading the next record at the byte positionn in the file.

>point-variable start reading the next record at the byte position in the file given by
point-variable.

>(expression) start reading the next record at the byte position in the file given by
expression.

<n read the number of bytes indicated by the value ofn.

<point-variable read the number of bytes indicated by the value ofpoint-variable.

<(expression) read the number of bytes indicated by the value ofexpression.

Using the INPUT Statement � 121

Pattern Searching

You can have the input mechanism search for patterns of text by using the at sign
(@) positional with a character operand. IML starts searching at the current position,
advances until it finds the pattern, and leaves the pointer at the position immediately
after the found pattern in the input record. For example, the statement

input @ ’NAME=’ name $;

searches for the patternNAME= and then uses list input to read the value after the
found pattern.

If the pattern is not found, then the pointer is left past the end of the record,
and the rest of the INPUT statement follows the conventions based on the options
MISSOVER, STOPOVER, and FLOWOVER described in the section “Using the
INFILE Statement” earlier in this chapter. If you use pattern searching, you usually
specify the MISSOVER option so that you can control for the occurrences of the
pattern not being found.

Notice that the MISSOVER feature enables you to search for a variety of items on
the same record, even if some of them are not found. For example, the statements

infile in1 missover;
input @1 @ "NAME=" name $

@1 @ "ADDR=" addr &
@1 @ "PHONE=" phone $;

are able to read in the ADDR variable even ifNAME= is not found (in which case,
NAME is unvalued).

The pattern operand can use any characters except for the following:

% $ [] { } < > − ? * # @ ˆ ` (backquote)

Record Directives

Each INPUT statement goes to a new record except for the following special cases:

• An at sign (@) at the end of an INPUT statement specifies that the record is to
be held for future INPUT statements.

• Binary files (RECFM=N) always hold their records until the > directive.

As discussed in the syntax of the INPUT statement, the line pointer operator (/)
instructs the input mechanism to go immediately to the next record. For binary
(RECFM=N) files, the > directive is used instead of the /.

122 � Chapter 7. File Access

Blanks

For character values, the informat determines the way blanks are interpreted. For
example, the $CHARw. format reads blanks as part of the whole value, while the
BZw. format turns blanks into 0s. Refer toSAS Language Reference: Dictionaryfor
more information on informats.

Missing Values

Missing values in formatted input are represented by blanks or a single period for a
numeric value and by blanks for a character value.

Matrix Use

Data values are either character or numeric. Input variables always result in scalar
(one row by one column) values with type (character or numeric) and length deter-
mined by the input format.

End-of-File Condition

End of file is the condition of trying to read a record when there are no more records
to read from the file. The consequences of an end-of-file condition are described as
follows.

• All the variables in the INPUT statement that encountered end of file are freed
of their values. You can use the NROW or NCOL function to test if this has
happened.

• If end of file occurs while inside a DO DATA loop, execution is passed to the
statement after the END statement in the loop.

For text files, the end of file is encountered first as the end of the last record. The next
time input is attempted, the end-of-file condition is raised.

For binary files, the end of file can result in the input mechanism returning a record
that is shorter than the requested length. In this case IML still attempts to process
the record, using the rules described in the section “Using the INFILE Statement,”
earlier in this chapter.

The DO DATA mechanism provides a convenient mechanism for handling end of file.

For example, to read the class data from the external file USER.TEXT.CLASS into a
SAS data set, you need to perform the following steps:

1. Establish afileref referencing the data file.

2. Use an INFILE statement to open the file for input.

3. Initialize any character variables by setting the length.

4. Create a new SAS data set with a CREATE statement. You want to list the
variables you plan to input in a VAR clause.

5. Use a DO DATA loop to read the data one line at a time.

Writing to an External File � 123

6. Write an INPUT statement telling IML how to read the data.

7. Use an APPEND statement to add the new data line to the end of the new SAS
data set.

8. End the DO DATA loop.

9. Close the new data set.

10. Close the external file with a CLOSEFILE statement.

Your code would look as follows.

filename inclass ’user.text.class’;
infile inclass missover;
name="12345678";
sex="1";
create class var{name sex age height weight};
do data;

input name $ sex $ age height weight;
append;

end;
close class;
closefile inclass;

Note that the APPEND statement is not executed if the INPUT statement reads past
the end of file since IML escapes the loop immediately when the condition is encoun-
tered.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following fea-
tures are supported differently or are not supported in IML:

• The pound sign (#) directive supporting multiple current records is not sup-
ported.

• Grouping parentheses are not supported.

• The colon (:) format modifier is not supported.

• The byte operands (< and >) are new features supporting binary files.

• The ampersand (&) format modifier causes IML to stop reading data if a
comma is encountered. Use of the ampersand format modifier is valid with
list input only.

• The RECFM=F option is not supported.

Writing to an External File
If you have data in matrices and you want to write this data to an external file, you
need to reference, or point to, the file (as discussed in the section “Referring to an
External File”). The FILE statement opens the file for output so that you can write
data to it. You need to specify a PUT statement to direct how the data is output. These
two statements are discussed in the following sections.

124 � Chapter 7. File Access

Using the FILE Statement

The FILE statement is used to refer to an external file. If you have values stored in
matrices, you can write these values to a file. Just as with the INFILE statement, you
need a fileref to point to the file you want to write to. You use a FILE statement to
indicate that you want to write to rather than read from a file.

For example, if you want to output to the file USER.TEXT.NEWCLASS, you can
specify the file with a quoted literal filepath.

> file ’user.text.newclass’;

Otherwise, you can first establish a fileref and then refer to the file by its fileref:

> filename outclass ’user.text.class’;
> file outclass;

There are two options you can use in the FILE statement:

RECFM=N specifies that the file is to be written as a pure binary file without
record-separator characters.

LRECL=operand specifies the size of the buffer to hold the records.

The FILE statement opens a file for output or, if the file is already open, makes it
the current output file so that subsequent PUT statements write to the file. The FILE
statement is similar in syntax and operation to the INFILE statement.

Using the PUT Statement

The PUT statement writes lines to the SAS log, to the SAS output file, or to any
external file specified in a FILE statement. The file associated with the most recently
executed FILE statement is thecurrent output file.

You can use the following arguments with the PUT statement:

variable names the IML variable with a value that is put to the current
pointer position in the record. The variable must be scalar valued.
The put variable can be followed immediately by an output format.

literal gives a literal to be put to the current pointer position in the record.
The literal can be followed immediately by an output format.

(expression) must produce a scalar-valued result. The expression can be imme-
diately followed by an output format.

format names the output formats for the values.

pointer-control moves the output pointer to a line or column.

Examples � 125

Pointer Control Features

Most PUT statements need the added flexibility obtained with pointer controls. IML
keeps track of its position on each output line with a pointer. With specifications in
the PUT statement, you can control pointer movement from column to column and
line to line. The pointer controls available are discussed in the section “Using the
INPUT statement”.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following fea-
tures are supported differently or are not supported:

• The pound sign (#) directive supporting multiple current records is not sup-
ported.

• Grouping parentheses are not supported.

• The byte operands (< and >) are a new feature supporting binary files.

Examples
Writing a Matrix to an External File

If you have data stored in ann ×m matrix and you want to output the values to an
external file, you need to write out the matrix element by element.

For example, suppose that you have a matrixX containing data that you want written
to the file USER.MATRIX. Suppose also thatX contains 1s and 0s so that the format
for output can be one column. You need to do the following:

1. Establish a fileref, for example, OUT.

2. Use a FILE statement to open the file for output.

3. Specify DO loop for the rows of the matrix.

4. Specify DO loop for the columns of the matrix.

5. Use a PUT statement to specify how to write the element value.

6. End the inner DO loop.

7. Skip a line.

8. End the outer DO loop.

9. Close the file.

Your code should look as follows:

filename out ’user.matrix’;
file out;

do i=1 to nrow(x);
do j=1 to ncol(x);

put (x[i,j]) 1.0 +2 @;
end;
put;

end;
closefile out;

126 � Chapter 7. File Access

The output file contains a record for each row of the matrix. For example, if your
matrix is4× 4, then the file might look as follows:

1 1 0 1
1 0 0 1
1 1 1 0
0 1 0 1

Quick Printing to the PRINT File

You can use the FILE PRINT statement to route output to the standard print file. The
following statements generate data that are output to the PRINT file:

> file print;
> do a=0 to 6.28 by .2;
> x=sin(a);
> p=(x+1)#30;
> put @1 a 6.4 +p x 8.4;
> end;

The result is shown below:

0.0000 0.0000
0.2000 0.1987
0.4000 0.3894
0.6000 0.5646
0.8000 0.7174
1.0000 0.8415
1.2000 0.9320
1.4000 0.9854
1.6000 0.9996
1.8000 0.9738
2.0000 0.9093
2.2000 0.8085
2.4000 0.6755
2.6000 0.5155
2.8000 0.3350
3.0000 0.1411
3.2000 -0.0584
3.4000 -0.2555
3.6000 -0.4425
3.8000 -0.6119
4.0000 -0.7568
4.2000 -0.8716
4.4000 -0.9516
4.6000 -0.9937
4.8000 -0.9962
5.0000 -0.9589
5.2000 -0.8835
5.4000 -0.7728
5.6000 -0.6313
5.8000 -0.4646
6.0000 -0.2794
6.2000 -0.0831

Summary � 127

Listing Your External Files

To list all open files and their current input or current output status, use the SHOW
FILES statement.

Closing an External File

The CLOSEFILE statement closes files opened by an INFILE or a FILE statement.
You specify the CLOSEFILE statement just as you do the INFILE or FILE statement.
For example, the following statements open the external file USER.TEXT.CLASS for
input and then close it:

filename in ’user.text.class’;
infile in;
closefile in;

Summary

In this chapter, you learned how to refer to, or point to, an external file with a
FILENAME statement. You can use the FILENAME statement whether you want
to read from or write to an external file. The file can also be referenced by a quoted
literal filepath. You also learned about the difference between a text file and a binary
file.

You learned how to read data from an external file with the INFILE and INPUT state-
ments, using either list or formatted input. You learned how to write your matrices
to an external file using the FILE and PUT statements. Finally, you learned how to
close your files.

128 � Chapter 7. File Access

Chapter 8
General Statistics Examples

Chapter Contents

OVERVIEW .131

GENERAL STATISTICS EXAMPLES .131
Example 8.1. Correlation. .131
Example 8.2. Newton’s Method for Solving Nonlinear Systems of Equations132
Example 8.3. Regression. .134
Example 8.4. Alpha Factor Analysis. .136
Example 8.5. Categorical Linear Models.138
Example 8.6. Regression of Subsets of Variables.143
Example 8.7. Response Surface Methodology.151
Example 8.8. Logistic and Probit Regression for Binary Response Models. 153
Example 8.9. Linear Programming. .157
Example 8.10. Quadratic Programming.160
Example 8.11. Regression Quantiles. .162
Example 8.12. Simulations of a Univariate ARMA Process.167
Example 8.13. Parameter Estimation for a Regression Model with ARMA

Errors .169
Example 8.14. Iterative Proportional Fitting.176
Example 8.15. Full-Screen Nonlinear Regression.178

130 � Chapter 8. General Statistics Examples

Chapter 8
General Statistics Examples

Overview

SAS/IML software has many linear operators that perform high-level operations com-
monly needed in applying linear algebra techniques to data analysis. The similarity
of the Interactive Matrix Language notation and matrix algebra notation makes trans-
lation from algorithm to program a straightforward task. The examples in this chapter
show a variety of matrix operators at work.

You can use these examples to gain insight into the more complex problems you may
need to solve. Some of the examples perform the same analyses as performed by
procedures in SAS/STAT software and are not meant to replace them. The examples
are included as learning tools.

General Statistics Examples

Example 8.1. Correlation

This example defines modules to compute correlation coefficients between numeric
variables and standardized values for a set of data.

/* Module to compute correlations */
start corr;

n=nrow(x); /* number of observations */
sum=x[+,] ; /* compute column sums */
xpx=t(x)*x-t(sum)*sum/n; /* compute sscp matrix */
s=diag(1/sqrt(vecdiag(xpx))); /* scaling matrix */
corr=s*xpx*s; /* correlation matrix */
print "Correlation Matrix",,corr[rowname=nm colname=nm] ;

finish corr;

/* Module to standardize data */
start std;

mean=x[+,] /n; /* means for columns */
x=x-repeat(mean,n,1); /* center x to mean zero */
ss=x[##,] ; /* sum of squares for columns */
std=sqrt(ss/(n-1)); /* standard deviation estimate*/
x=x*diag(1/std); /* scaling to std dev 1 */
print ,"Standardized Data",,X[colname=nm] ;

finish std;

132 � Chapter 8. General Statistics Examples

/* Sample run */
x = { 1 2 3,

3 2 1,
4 2 1,
0 4 1,
24 1 0,
1 3 8};

nm={age weight height};
run corr;
run std;

The results are as follows.

Correlation Matrix

CORR
AGE WEIGHT HEIGHT

AGE 1 -0.717102 -0.436558
WEIGHT -0.717102 1 0.3508232
HEIGHT -0.436558 0.3508232 1

Standardized Data

X
AGE WEIGHT HEIGHT

-0.490116 -0.322749 0.2264554
-0.272287 -0.322749 -0.452911
-0.163372 -0.322749 -0.452911
-0.59903 1.6137431 -0.452911

2.0149206 -1.290994 -0.792594
-0.490116 0.6454972 1.924871

Example 8.2. Newton’s Method for Solving Nonlinear Systems
of Equations

This example solves a nonlinear system of equations by Newton’s method. Let the
nonlinear system be represented by

F (x) = 0

wherex is a vector andF is a vector-valued, possibly nonlinear, function.

In order to findx such thatF goes to 0, an initial estimatex0 is chosen, and Newton’s
iterative method for converging to the solution is used:

xn+1 = xn − J−1(xn)F (xn)

whereJ(x) is the Jacobian matrix of partial derivatives ofF with respect tox.

Example 8.2. Newton’s Method for Solving Nonlinear Systems of Equations � 133

For optimization problems, the same method is used, whereF (x) is the gradient of
the objective function andJ(x) becomes the Hessian (Newton-Raphson).

In this example, the system to be solved is

x1 + x2 − x1x2 + 2 = 0
x1 exp(−x2)− 1 = 0

The code is organized into three modules: NEWTON, FUN, and DERIV.

/* Newton’s Method to Solve a Nonlinear Function */
/* The user must supply initial values, */
/* and the FUN and DERIV functions. */
/* on entry: FUN evaluates the function f in terms of x */
/* initial values are given to x */
/* DERIV evaluates jacobian j */
/* tuning variables: CONVERGE, MAXITER. */
/* on exit: solution in x, function value in f close to 0 */
/* ITER has number of iterations. */

start newton;
run fun; /* evaluate function at starting values */
do iter=1 to maxiter /* iterate until maxiter iterations */
while(max(abs(f))>converge); /* or convergence */

run deriv; /* evaluate derivatives in j */
delta=-solve(j,f); /* solve for correction vector */
x=x+delta; /* the new approximation */
run fun; /* evaluate the function */

end;
finish newton;

maxiter=15; /* default maximum iterations */
converge=.000001; /* default convergence criterion */

/* User-supplied function evaluation */
start fun;

x1=x[1] ;
x2=x[2] ; /* extract the values */
f= (x1+x2-x1*x2+2)//
(x1*exp(-x2)-1); /* evaluate the function */

finish fun;

/* User-supplied derivatives of the function */
start deriv;

/* evaluate jacobian */
j=((1-x2)||(1-x1))//(exp(-x2)||(-x1*exp(-x2)));

finish deriv;

do;
print "Solving the system: X1+X2-X1*X2+2=0, X1*EXP(-X2)-1=0" ,;
x={.1, -2}; /* starting values */
run newton;

134 � Chapter 8. General Statistics Examples

print x f;
end;

The results are as follows.

The SAS System

Solving the system: X1+X2-X1*X2+2=0, X1*EXP(-X2)-1=0

X F

0.0977731 5.3523E-9
-2.325106 6.1501E-8

Example 8.3. Regression

This example shows a regression module that calculates statistics not calculated by
the two previous examples:

/* Regression Routine */
/* Given X, and Y, this fits Y = X B + E */
/* by least squares. */

start reg;
n=nrow(x); /* number of observations */
k=ncol(x); /* number of variables */
xpx=x‘*x; /* cross-products */
xpy=x‘*y;
xpxi=inv(xpx); /* inverse crossproducts */
b=xpxi*xpy; /* parameter estimates */
yhat=x*b; /* predicted values */
resid=y-yhat; /* residuals */
sse=resid‘*resid; /* sum of squared errors */
dfe=n-k; /* degrees of freedom error */
mse=sse/dfe; /* mean squared error */
rmse=sqrt(mse); /* root mean squared error */
covb=xpxi#mse; /* covariance of estimates */
stdb=sqrt(vecdiag(covb)); /* standard errors */
t=b/stdb; /* ttest for estimates=0 */
probt=1-probf(t#t,1,dfe); /* significance probability */
print name b stdb t probt;
s=diag(1/stdb);
corrb=s*covb*s; /* correlation of estimates */
print ,"Covariance of Estimates", covb[r=name c=name] ,

"Correlation of Estimates",corrb[r=name c=name] ;

if nrow(tval)=0 then return; /* is a t-value specified? */
projx=x*xpxi*x‘; /* hat matrix */
vresid=(i(n)-projx)*mse; /* covariance of residuals */
vpred=projx#mse; /* covariance of predicted values */
h=vecdiag(projx); /* hat leverage values */

Example 8.3. Regression � 135

lowerm=yhat-tval#sqrt(h*mse); /* low. conf. lim. for mean */
upperm=yhat+tval#sqrt(h*mse); /* upper limit for mean */
lower=yhat-tval#sqrt(h*mse+mse); /* lower limit for indiv */
upper=yhat+tval#sqrt(h*mse+mse); /* upper limit for indiv */
print ,,"Predicted Values, Residuals, and Limits" ,,
y yhat resid h lowerm upperm lower upper;

finish reg;

/* Routine to test a linear combination of the estimates */
/* given L, this routine tests hypothesis that LB = 0. */

start test;
dfn=nrow(L);
Lb=L*b;
vLb=L*xpxi*L‘;
q=Lb‘*inv(vLb)*Lb /dfn;
f=q/mse;
prob=1-probf(f,dfn,dfe);
print ,f dfn dfe prob;

finish test;

/* Run it on population of U.S. for decades beginning 1790 */

x= { 1 1 1,
1 2 4,
1 3 9,
1 4 16,
1 5 25,
1 6 36,
1 7 49,
1 8 64 };

y= {3.929,5.308,7.239,9.638,12.866,17.069,23.191,31.443};
name={"Intercept", "Decade", "Decade**2" };
tval=2.57; /* for 5 df at 0.025 level to get 95% conf. int. */
reset fw=7;
run reg;
do;

print ,"TEST Coef for Linear";
L={0 1 0 };
run test;
print ,"TEST Coef for Linear,Quad";
L={0 1 0,0 0 1};
run test;
print ,"TEST Linear+Quad = 0";
L={0 1 1 };
run test;

end;

136 � Chapter 8. General Statistics Examples

The results are as follows.

NAME B STDB T PROBT

Intercept 5.06934 0.96559 5.24997 0.00333
Decade -1.1099 0.4923 -2.2546 0.07385
Decade**2 0.53964 0.0534 10.106 0.00016

COVB
Intercept Decade Decade**2

Intercept 0.93237 -0.4362 0.04277
Decade -0.4362 0.24236 -0.0257
Decade**2 0.04277 -0.0257 0.00285

CORRB
Intercept Decade Decade**2

Intercept 1 -0.9177 0.8295
Decade -0.9177 1 -0.9762
Decade**2 0.8295 -0.9762 1

Y YHAT RESID H LOWERM UPPERM LOWER UPPER

3.929 4.49904 -0.57 0.70833 3.00202 5.99606 2.17419 6.82389
5.308 5.00802 0.29998 0.27976 4.06721 5.94883 2.99581 7.02023
7.239 6.59627 0.64273 0.23214 5.73926 7.45328 4.62185 8.57069
9.638 9.26379 0.37421 0.27976 8.32298 10.2046 7.25158 11.276

12.866 13.0106 -0.1446 0.27976 12.0698 13.9514 10.9984 15.0228
17.069 17.8367 -0.7677 0.23214 16.9797 18.6937 15.8622 19.8111
23.191 23.742 -0.551 0.27976 22.8012 24.6828 21.7298 25.7542
31.443 30.7266 0.71638 0.70833 29.2296 32.2236 28.4018 33.0515

F DFN DFE PROB

5.08317 1 5 0.07385

F DFN DFE PROB

666.511 2 5 8.54E-7

F DFN DFE PROB

1.67746 1 5 0.25184

Example 8.4. Alpha Factor Analysis

This example shows how an algorithm for computing alpha factor patterns (Kaiser
and Caffrey 1965) is transcribed into IML code.

For later reference, you could store the following ALPHA subroutine in an IML
catalog and load it when needed.

Example 8.4. Alpha Factor Analysis � 137

/* Alpha Factor Analysis */
/* Ref: Kaiser et al., 1965 Psychometrika, pp. 12-13 */
/* r correlation matrix (n.s.) already set up */
/* p number of variables */
/* q number of factors */
/* h communalities */
/* m eigenvalues */
/* e eigenvectors */
/* f factor pattern */
/* (IQ,H2,HI,G,MM) temporary use. freed up */
/* */

start alpha;
p=ncol(r);
q=0;
h=0; /* initialize */
h2=i(p)-diag(1/vecdiag(inv(r))); /* smcs */
do while(max(abs(h-h2))>.001); /* iterate until converges */

h=h2;
hi=diag(sqrt(1/vecdiag(h)));
g=hi*(r-i(p))*hi+i(p);
call eigen(m,e,g); /* get eigenvalues and vecs */
if q=0 then
do;

q=sum(m>1); /* number of factors */
iq=1:q;

end; /* index vector */
mm=diag(sqrt(m[iq,])); /* collapse eigvals */
e=e[,iq] ; /* collapse eigvecs */
h2=h*diag((e*mm) [,##]); /* new communalities */

end;
hi=sqrt(h);
h=vecdiag(h2);
f=hi*e*mm; /* resulting pattern */
free iq h2 hi g mm; /* free temporaries */

finish;

/* Correlation Matrix from Harmon, Modern Factor Analysis, */
/* 2nd edition, page 124, "Eight Physical Variables" */

r={1.000 .846 .805 .859 .473 .398 .301 .382 ,
.846 1.000 .881 .826 .376 .326 .277 .415 ,
.805 .881 1.000 .801 .380 .319 .237 .345 ,
.859 .826 .801 1.000 .436 .329 .327 .365 ,
.473 .376 .380 .436 1.000 .762 .730 .629 ,
.398 .326 .319 .329 .762 1.000 .583 .577 ,
.301 .277 .237 .327 .730 .583 1.000 .539 ,
.382 .415 .345 .365 .629 .577 .539 1.000};

nm = {Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8};
run alpha;
print ,"EIGENVALUES" , m;
print ,"COMMUNALITIES" , h[rowname=nm];
print ,"FACTOR PATTERN", f[rowname=nm];

138 � Chapter 8. General Statistics Examples

The results are as follows.

M

5.937855
2.0621956
0.1390178
0.0821054
0.018097
-0.047487
-0.09148
-0.100304

H

VAR1 0.8381205
VAR2 0.8905717
VAR3 0.81893
VAR4 0.8067292
VAR5 0.8802149
VAR6 0.6391977
VAR7 0.5821583
VAR8 0.4998126

F

VAR1 0.813386 -0.420147
VAR2 0.8028363 -0.49601
VAR3 0.7579087 -0.494474
VAR4 0.7874461 -0.432039
VAR5 0.8051439 0.4816205
VAR6 0.6804127 0.4198051
VAR7 0.620623 0.4438303
VAR8 0.6449419 0.2895902

Example 8.5. Categorical Linear Models

This example fits a linear model to a function of the response probabilities

K log π = Xβ + e

whereK is a matrix that compares each response category to the last. Data are
from Kastenbaum and Lamphiear (1959). First, the Grizzle-Starmer-Koch (1969) ap-
proach is used to obtain generalized least-squares estimates ofβ. These form the ini-
tial values for the Newton-Raphson solution for the maximum-likelihood estimates.
The CATMOD procedure can also be used to analyze these binary data (refer to Cox
1970).

/* Categorical Linear Models */
/* by Least Squares and Maximum Likelihood */
/* CATLIN */
/* Input: */
/* n the s by p matrix of response counts */
/* x the s by r design matrix */

Example 8.5. Categorical Linear Models � 139

start catlin;

/*---find dimensions---*/
s=nrow(n); /* number of populations */
r=ncol(n); /* number of responses */
q=r-1; /* number of function values */
d=ncol(x); /* number of design parameters */
qd=q*d; /* total number of parameters */

/*---get probability estimates---*/
rown=n[,+]; /* row totals */
pr=n/(rown*repeat(1,1,r)); /* probability estimates */
p=shape(pr[,1:q] ,0,1); /* cut and shaped to vector */
print "INITIAL PROBABILITY ESTIMATES" ,pr;

/* estimate by the GSK method */

/* function of probabilities */
f=log(p)-log(pr[,r])@repeat(1,q,1);

/* inverse covariance of f */
si=(diag(p)-p*p‘)#(diag(rown)@repeat(1,q,q));
z=x@i(q); /* expanded design matrix */
h=z‘*si*z; /* crossproducts matrix */
g=z‘*si*f; /* cross with f */
beta=solve(h,g); /* least squares solution */
stderr=sqrt(vecdiag(inv(h))); /* standard errors */
run prob;
print ,"GSK ESTIMATES" , beta stderr ,pi;

/* iterations for ML solution */
crit=1;
do it=1 to 8 while(crit>.0005); /* iterate until converge */

/* block diagonal weighting */
si=(diag(pi)-pi*pi‘)#(diag(rown)@repeat(1,q,q));
g=z‘*(rown@repeat(1,q,1)#(p-pi)); /* gradient */
h=z‘*si*z; /* hessian */
delta=solve(h,g); /* solve for correction */
beta=beta+delta; /* apply the correction */
run prob; /* compute prob estimates */
crit=max(abs(delta)); /* convergence criterion */

end;
stderr=sqrt(vecdiag(inv(h))); /* standard errors */
print , "ML Estimates", beta stderr, pi;
print , "Iterations" it "Criterion" crit;

finish catlin;

/* subroutine to compute new prob estimates @ parameters */
start prob;

la=exp(x*shape(beta,0,q));
pi=la/((1+la[,+])*repeat(1,1,q));
pi=shape(pi,0,1);

140 � Chapter 8. General Statistics Examples

finish prob;

/*---prepare frequency data and design matrix---*/
n= { 58 11 05,

75 19 07,
49 14 10,
58 17 08,
33 18 15,
45 22 10,
15 13 15,
39 22 18,
04 12 17,
05 15 08}; /* frequency counts*/

x= { 1 1 1 0 0 0,
1 -1 1 0 0 0,
1 1 0 1 0 0,
1 -1 0 1 0 0,
1 1 0 0 1 0,
1 -1 0 0 1 0,
1 1 0 0 0 1,
1 -1 0 0 0 1,
1 1 -1 -1 -1 -1,
1 -1 -1 -1 -1 -1}; /* design matrix*/

run catlin;

The results are as follows.

Example 8.5. Categorical Linear Models � 141

PR

0.7837838 0.1486486 0.0675676
0.7425743 0.1881188 0.0693069
0.6712329 0.1917808 0.1369863
0.6987952 0.2048193 0.0963855

0.5 0.2727273 0.2272727
0.5844156 0.2857143 0.1298701
0.3488372 0.3023256 0.3488372
0.4936709 0.278481 0.2278481
0.1212121 0.3636364 0.5151515
0.1785714 0.5357143 0.2857143

BETA STDERR

0.9454429 0.1290925
0.4003259 0.1284867
-0.277777 0.1164699
-0.278472 0.1255916
1.4146936 0.267351
0.474136 0.294943
0.8464701 0.2362639
0.1526095 0.2633051
0.1952395 0.2214436
0.0723489 0.2366597
-0.514488 0.2171995
-0.400831 0.2285779

142 � Chapter 8. General Statistics Examples

PI

0.7402867
0.1674472
0.7704057
0.1745023
0.6624811
0.1917744
0.7061615
0.2047033
0.516981

0.2648871
0.5697446
0.2923278
0.3988695
0.2589096
0.4667924
0.3034204
0.1320359
0.3958019
0.1651907
0.4958784

BETA STDERR

0.9533597 0.1286179
0.4069338 0.1284592
-0.279081 0.1156222
-0.280699 0.1252816
1.4423195 0.2669357
0.4993123 0.2943437
0.8411595 0.2363089
0.1485875 0.2635159
0.1883383 0.2202755
0.0667313 0.236031
-0.527163 0.216581
-0.414965 0.2299618

PI

0.7431759
0.1673155
0.7723266
0.1744421
0.6627266
0.1916645
0.7062766
0.2049216
0.5170782
0.2646857
0.5697771
0.292607

0.3984205
0.2576653
0.4666825
0.3027898
0.1323243
0.3963114
0.165475

0.4972044

IT CRIT

Iterations 3 Criterion 0.0004092

Example 8.6. Regression of Subsets of Variables � 143

Example 8.6. Regression of Subsets of Variables

The following example performs regression with variable selection similar to some
of the features in the REG procedure.

/* Initialization */
/* C,CSAVE the crossproducts matrix */
/* N number of observations */
/* K total number of variables to consider */
/* L number of variables currently in model */
/* IN a 0-1 vector of whether variable is in */
/* B print collects results (L MSE RSQ BETAS) */

start initial;
n=nrow(x);
k=ncol(x);
k1=k+1;
ik=1:k;
bnames={nparm mse rsquare} ||varnames;

/* Correct by mean, adjust out intercept parameter */
y=y-y[+,]/n; /* correct y by mean */
x=x-repeat(x[+,]/n,n,1); /* correct x by mean */
xpy=x‘*y; /* crossproducts */
ypy=y‘*y;
xpx=x‘*x;
free x y; /* no longer need the data */

/* Save a copy of crossproducts matrix */
csave=(xpx || xpy) // (xpy‘|| ypy);

finish initial;

/* Forward method */
start forward;
print / "FORWARD SELECTION METHOD";
free bprint;
c=csave;
in=repeat(0,k,1);
l=0; /* No variables are in */
dfe=n-1;
mse=ypy/dfe;
sprob=0;
do while(sprob<.15 & l<k);

indx=loc(^in); /* where are the variables not in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* adjusted xpy */
tsqr=cb#cb/(cd#mse); /* squares of t tests */
imax=tsqr[<:>,]; /* location of maximum in indx */
sprob=(1-probt(sqrt(tsqr[imax,]),dfe))*2;
if sprob<.15 then

do; /* if t-test significant */

144 � Chapter 8. General Statistics Examples

ii=indx[,imax]; /* pick most significant */
run swp; /* routine to sweep */
run bpr; /* routine to collect results */

end;
end;
print bprint[colname=bnames] ;

finish forward;

/* Backward method */
start backward;

print / "BACKWARD ELIMINATION ";
free bprint;
c=csave;
in=repeat(0,k,1);
ii=1:k;
run swp;
run bpr; /* start with all variables in */
sprob=1;
do while(sprob>.15 & l>0);
indx=loc(in); /* where are the variables in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* bvalues */
tsqr=cb#cb/(cd#mse); /* squares of t tests */
imin=tsqr[>:<,]; /* location of minimum in indx */
sprob=(1-probt(sqrt(tsqr[imin,]),dfe))*2;
if sprob>.15 then
do; /* if t-test nonsignificant */

ii=indx[,imin]; /* pick least significant */
run swp; /* routine to sweep in variable */
run bpr; /* routine to collect results */

end;
end;
print bprint[colname=bnames] ;

finish backward;

/* Stepwise method */
start stepwise;

print /"STEPWISE METHOD";
free bprint;
c=csave;
in=repeat(0,k,1);
l=0;
dfe=n-1;
mse=ypy/dfe;
sprob=0;

do while(sprob<.15 & l<k);
indx=loc(^in); /* where are the variables not in? */
nindx=loc(in); /* where are the variables in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* adjusted xpy */
tsqr=cb#cb/cd/mse; /* squares of t tests */
imax=tsqr[<:>,]; /* location of maximum in indx */
sprob=(1-probt(sqrt(tsqr[imax,]),dfe))*2;

Example 8.6. Regression of Subsets of Variables � 145

if sprob<.15 then
do; /* if t-test significant */

ii=indx[,imax]; /* find index into c */
run swp; /* routine to sweep */
run backstep; /* check if remove any terms */
run bpr; /* routine to collect results */
end;

end;
print bprint[colname=bnames] ;

finish stepwise;

/* Routine to backwards-eliminate for stepwise */
start backstep;

if nrow(nindx)=0 then return;
bprob=1;
do while(bprob>.15 & l<k);

cd=vecdiag(c)[nindx,]; /* xpx diagonals */
cb=c[nindx,k1]; /* bvalues */
tsqr=cb#cb/(cd#mse); /* squares of t tests */
imin=tsqr[>:<,]; /* location of minimum in nindx */
bprob=(1-probt(sqrt(tsqr[imin,]),dfe))*2;
if bprob>.15 then
do;

ii=nindx[,imin];
run swp;
run bpr;

end;
end;

finish backstep;

/* Search all possible models */
start all;

/* Use method of schatzoff et al. for search technique */
betak=repeat(0,k,k); /* rec. ests. for best l-param model */
msek=repeat(1e50,k,1); /* record best mse per # parms */
rsqk=repeat(0,k,1); /* record best rsquare */
ink=repeat(0,k,k); /* record best set per # parms */
limit=2##k-1; /* number of models to examine */
c=csave;
in=repeat(0,k,1); /* start out with no variables in model */

do kk=1 to limit;
run ztrail; /* find which one to sweep */
run swp; /* sweep it in */
bb=bb//(l||mse||rsq||(c[ik,k1]#in)‘);
if mse<msek[l,] then
do; /* was this best for l parms? */

msek[l,]=mse; /* record mse */
rsqk[l,]=rsq; /* record rsquare */
ink[,l]=in; /* record which parms in model */
betak[l,]=(c[ik,k1]#in)‘; /* record estimates */

end;
end;

146 � Chapter 8. General Statistics Examples

print / "ALL POSSIBLE MODELS" " IN SEARCH ORDER";
print bb[colname=bnames]; free bb;
bprint=ik‘||msek||rsqk||betak;
print ,"THE BEST MODEL FOR EACH NUMBER OF PARAMETERS";
print bprint[colname=bnames];

/* Mallows CP plot */
cp=msek#(n-ik‘-1)/min(msek)-(n-2#ik‘);
cp=ik‘||cp;
cpname={"nparm" "cp"};

/* output cp out=cp colname=cpname; */
finish all;

/* Subroutine to find number of */
/* trailing zeros in binary number */
/* on entry: kk is the number to examine */
/* on exit: ii has the result */

start ztrail;
ii=1;
zz=kk;
do while(mod(zz,2)=0);

ii=ii+1;
zz=zz/2;

end;
finish ztrail;

/* Subroutine to sweep in a pivot */
/* on entry: ii has the position(s) to pivot */
/* on exit: in, l, dfe, mse, rsq recalculated */

start swp;
if abs(c[ii,ii])<1e-9 then
do;

print , "FAILURE", c;
stop;

end;
c=sweep(c,ii);
in[ii,]=^in[ii,];
l=sum(in);
dfe=n-1-l;
sse=c[k1,k1];
mse=sse/dfe;
rsq=1-sse/ypy;

finish swp;

/* Subroutine to collect bprint results */
/* on entry: l,mse,rsq, and c set up to collect */
/* on exit: bprint has another row */

start bpr;
bprint=bprint//(l||mse||rsq||(c [ik,k1]#in)‘);

finish bpr;

/* Stepwise Methods */
/* After a run to the initial routine, which sets up */

Example 8.6. Regression of Subsets of Variables � 147

/* the data, four different routines can be called */
/* to do four different model-selection methods. */

start seq;
run initial; /* initialization */
run all; /* all possible models */
run forward; /* foreward selection method */
run backward; /* backward elimination method */
run stepwise; /* stepwise method */

finish seq;

/* Data on physical fitness */
/* these measurements were made on men involved in a physical*/
/* fitness course at n.c.state univ. the variables are */
/* age(years), weight(kg), oxygen uptake rate(ml per kg body */
/* weight per minute), time to run 1.5 miles(minutes), heart */
/* rate while resting, heart rate while running (same time */
/* oxygen rate measured), and maximum heart rate recorded */
/* while running. certain values of maxpulse were modified */
/* for consistency. data courtesy dr. a.c. linnerud */

data=
{ 44 89.47 44.609 11.37 62 178 182 ,
40 75.07 45.313 10.07 62 185 185 ,
44 85.84 54.297 8.65 45 156 168 ,
42 68.15 59.571 8.17 40 166 172 ,
38 89.02 49.874 9.22 55 178 180 ,
47 77.45 44.811 11.63 58 176 176 ,
40 75.98 45.681 11.95 70 176 180 ,
43 81.19 49.091 10.85 64 162 170 ,
44 81.42 39.442 13.08 63 174 176 ,
38 81.87 60.055 8.63 48 170 186 ,
44 73.03 50.541 10.13 45 168 168 ,
45 87.66 37.388 14.03 56 186 192 ,
45 66.45 44.754 11.12 51 176 176 ,
47 79.15 47.273 10.60 47 162 164 ,
54 83.12 51.855 10.33 50 166 170 ,
49 81.42 49.156 8.95 44 180 185 ,
51 69.63 40.836 10.95 57 168 172 ,
51 77.91 46.672 10.00 48 162 168 ,
48 91.63 46.774 10.25 48 162 164 ,
49 73.37 50.388 10.08 67 168 168 ,
57 73.37 39.407 12.63 58 174 176 ,
54 79.38 46.080 11.17 62 156 165 ,
52 76.32 45.441 9.63 48 164 166 ,
50 70.87 54.625 8.92 48 146 155 ,
51 67.25 45.118 11.08 48 172 172 ,
54 91.63 39.203 12.88 44 168 172 ,
51 73.71 45.790 10.47 59 186 188 ,
57 59.08 50.545 9.93 49 148 155 ,
49 76.32 48.673 9.40 56 186 188 ,
48 61.24 47.920 11.50 52 170 176 ,
52 82.78 47.467 10.50 53 170 172

148 � Chapter 8. General Statistics Examples

};

x=data[,{1 2 4 5 6 7 }];
y=data[,3];
free data;
varnames={age weight runtime rstpulse runpulse maxpulse};
reset fw=8 linesize=90;
run seq;

The results are as follows.

Example 8.6. Regression of Subsets of Variables � 149

BB
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 26.63425 0.092777 -0.31136 0 0 0 0 0
2 25.82619 0.150635 -0.37042 -0.15823 0 0 0 0
1 28.58034 0.026488 0 -0.1041 0 0 0 0
2 7.755636 0.744935 0 -0.02548 -3.2886 0 0 0
3 7.226318 0.770831 -0.17388 -0.05444 -3.14039 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.798261 0.743533 0 0 -3.28661 -0.00968 0 0
3 7.336089 0.767349 -0.16755 0 -3.07925 -0.04549 0 0
4 7.366649 0.775033 -0.19603 -0.05915 -2.9889 -0.05326 0 0
3 8.037314 0.745111 0 -0.02569 -3.26268 -0.01041 0 0
2 24.91487 0.180607 0 -0.09305 0 -0.27474 0 0
3 20.28031 0.356847 -0.44698 -0.15647 0 -0.32186 0 0
2 21.27632 0.30027 -0.38882 0 0 -0.32286 0 0
1 24.67582 0.159485 0 0 0 -0.27921 0 0
2 23.26003 0.235031 0 0 0 -0.20684 -0.15262 0
3 16.81799 0.466648 -0.52338 0 0 -0.22524 -0.23769 0
4 16.26146 0.503398 -0.56317 -0.12697 0 -0.22981 -0.2246 0
3 23.81815 0.244651 0 -0.06381 0 -0.20843 -0.14279 0
4 7.785151 0.762252 0 -0.01231 -3.16759 0.016669 -0.0749 0
5 6.213174 0.817556 -0.28528 -0.05184 -2.70392 -0.02711 -0.12628 0
4 6.166944 0.81167 -0.26213 0 -2.77733 -0.01981 -0.12874 0
3 7.507972 0.761898 0 0 -3.17665 0.017616 -0.07658 0
2 7.254263 0.761424 0 0 -3.14019 0 -0.07351 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 6.009033 0.816493 -0.27642 -0.04932 -2.77237 0 -0.12932 0
3 7.510162 0.761829 0 -0.01315 -3.13261 0 -0.07189 0
2 25.333 0.166855 0 -0.05987 0 0 -0.19797 0
3 18.63184 0.409126 -0.54408 -0.12049 0 0 -0.28248 0
2 18.97378 0.375995 -0.50665 0 0 0 -0.29382 0
1 24.70817 0.158383 0 0 0 0 -0.2068 0
2 21.60626 0.289419 0 0 0 0 -0.6818 0.571538
3 18.21725 0.422273 -0.4214 0 0 0 -0.57966 0.361557
4 17.29877 0.47172 -0.45243 -0.14944 0 0 -0.61723 0.426862
3 21.41763 0.320779 0 -0.11815 0 0 -0.71745 0.635395
4 6.030105 0.815849 0 -0.05159 -2.9255 0 -0.39529 0.38537
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513
3 5.991568 0.809988 0 0 -2.97019 0 -0.37511 0.354219
4 6.208523 0.8104 0 0 -3.00426 0.016412 -0.37778 0.353998
5 5.549941 0.837031 -0.20154 0 -2.7386 -0.01208 -0.34562 0.269064
6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217
5 6.263348 0.816083 0 -0.05091 -2.95182 0.01239 -0.39704 0.384793
4 20.11235 0.385797 0 -0.1194 0 -0.19092 -0.64584 0.609632
5 15.1864 0.554066 -0.47923 -0.1527 0 -0.21555 -0.53045 0.385424
4 16.29247 0.502451 -0.44717 0 0 -0.21266 -0.49323 0.319267
3 20.37729 0.353772 0 0 0 -0.18993 -0.61019 0.545236
2 25.11456 0.174039 0 0 0 -0.25219 0 -0.07364
3 19.2347 0.390007 -0.52736 0 0 -0.26492 0 -0.20024
4 18.80875 0.425607 -0.55881 -0.12604 0 -0.27056 0 -0.17799
3 25.59719 0.188232 0 -0.07874 0 -0.25524 0 -0.05502
4 8.311496 0.746179 0 -0.02053 -3.25232 -0.00393 0 -0.02064
5 7.19584 0.788701 -0.25795 -0.04936 -2.86147 -0.04121 0 -0.08153
4 7.091611 0.783432 -0.23928 0 -2.92597 -0.0339 0 -0.08777
3 8.033673 0.745227 0 0 -3.26805 -0.00193 0 -0.02526
2 7.746932 0.745221 0 0 -3.27232 0 0 -0.02561
3 6.882626 0.78173 -0.22923 0 -3.01222 0 0 -0.09094
4 7.00018 0.786224 -0.24436 -0.04525 -2.97011 0 0 -0.08585
3 8.00441 0.746155 0 -0.02027 -3.26114 0 0 -0.02139
2 28.35356 0.067516 0 -0.07074 0 0 0 -0.12159
3 22.38148 0.290212 -0.54076 -0.11605 0 0 0 -0.24445
2 22.50135 0.259982 -0.5121 0 0 0 0 -0.2637
1 27.71259 0.056046 0 0 0 0 0 -0.13762

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217

150 � Chapter 8. General Statistics Examples

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

THE BEST MODEL FOR EACH NUMBER OF PARAMETERS

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217

FORWARD SELECTION METHOD

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

BACKWARD ELIMINATION

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

STEPWISE METHOD

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

Example 8.7. Response Surface Methodology � 151

Example 8.7. Response Surface Methodology

A regression model with a complete quadratic set of regressions across several factors
can be processed to yield the estimated critical values that may optimize a response.
First, the regression is performed for two variables according to the model

y = c+ b1x1 + b2x2 + a11x
2
1 + a12x1x2 + a22x

2
2 + e .

The estimates are then divided into a vector of linear coefficients (estimates)b and a
matrix of quadratic coefficientsA. The solution for critical values is

x = −1
2
A−1b .

The following program creates a module to perform quadratic response surface re-
gression.

/* Quadratic Response Surface Regression */
/* This matrix routine reads in the factor variables and */
/* the response, forms the quadratic regression model and */
/* estimates the parameters, then solves for the optimal */
/* response, prints the optimal factors and response, and */
/* then displays the eigenvalues and eigenvectors of the */
/* matrix of quadratic parameter estimates to determine if */
/* the solution is a maximum or minimum, or saddlepoint, and */
/* which direction has the steepest and gentlest slopes. */
/* */
/* Given that d contains the factor variables, */
/* and y contains the response. */
/* */
start rsm;

n=nrow(d);
k=ncol(d); /* dimensions */
x=j(n,1,1)||d; /* set up design matrix */
do i=1 to k;

do j=1 to i;
x=x||d[,i] #d[,j];

end;
end;
beta=solve(x‘*x,x‘*y); /* solve parameter estimates */
print "Parameter Estimates" , beta;
c=beta[1]; /* intercept estimate */
b=beta[2:(k+1)]; /* linear estimates */
a=j(k,k,0);
L=k+1; /* form quadratics into matrix */
do i=1 to k;

do j=1 to i;
L=L+1;
a[i,j]=beta [L,];

end;
end;
a=(a+a‘)*.5; /* symmetrize */

152 � Chapter 8. General Statistics Examples

xx=-.5*solve(a,b); /* solve for critical value */
print , "Critical Factor Values" , xx;

/* Compute response at critical value */
yopt=c + b‘*xx + xx‘*a*xx;
print , "Response at Critical Value" yopt;
call eigen(eval,evec,a);
print , "Eigenvalues and Eigenvectors", eval, evec;
if min(eval)>0 then print , "Solution Was a Minimum";
if max(eval)<0 then print , "Solution Was a Maximum";

finish rsm;

Running the module with the following sample data produces the results shown be-
low.

/* Sample Problem with Two Factors */
d={-1 -1, -1 0, -1 1,

0 -1, 0 0, 0 1,
1 -1, 1 0, 1 1};

y={ 71.7, 75.2, 76.3, 79.2, 81.5, 80.2, 80.1, 79.1, 75.8};
run rsm;

BETA

81.222222
1.9666667
0.2166667
-3.933333

-2.225
-1.383333

XX

0.2949376
-0.158881

YOPT

Response at Critical Value 81.495032

EVAL

-0.96621
-4.350457

EVEC

-0.351076 0.9363469
0.9363469 0.3510761

Example 8.8. Logistic and Probit Regression for Binary Response Models � 153

Example 8.8. Logistic and Probit Regression for Binary
Response Models

A binary response Y is fit to a linear model according to

Pr(Y = 1) = F (Xβ)
Pr(Y = 0) = 1− F (Xβ)

whereF is some smooth probability distribution function. The normal and logistic
distribution functions are supported. The method is maximum likelihood via itera-
tively reweighted least squares (described by Charnes, Frome, and Yu 1976; Jennrich
and Moore 1975; and Nelder and Wedderburn 1972). The row scaling is done by the
derivative of the distribution (density). The weighting is done byw/p(1− p), where
w has the counts or other weights. The following code calculates logistic and probit
regression for binary response models.

/* routine for estimating binary response models */
/* y is the binary response, x are regressors, */
/* wgt are count weights, */
/* model is choice of logit probit, */
/* parm has the names of the parameters */

proc iml ;

start binest;
b=repeat(0,ncol(x),1);
oldb=b+1; /* starting values */
do iter=1 to 20 while(max(abs(b-oldb))>1e-8);

oldb=b;
z=x*b;
run f;
loglik=sum(((y=1)#log(p) + (y=0)#log(1-p))#wgt);
btransp=b‘;
print iter loglik btransp;
w=wgt/(p#(1-p));
xx=f#x;
xpxi=inv(xx‘*(w#xx));
b=b + xpxi*(xx‘*(w#(y-p)));

end;
p0=sum((y=1)#wgt)/sum(wgt); /* average response */
loglik0=sum(((y=1)#log(p0) + (y=0)#log(1-p0))#wgt);
chisq=(2#(loglik-loglik0));
df=ncol(x)-1;
prob=1-probchi(chisq,df);
print ,

’Likelihood Ratio with Intercept-only Model’ chisq df prob,;
stderr=sqrt(vecdiag(xpxi));
tratio=b/stderr;
print parm b stderr tratio,,;

finish;

154 � Chapter 8. General Statistics Examples

/*---routine to yield distribution function and density---*/
start f;

if model=’LOGIT’ then
do;

p=1/(1+exp(-z));
f=p#p#exp(-z);

end;
if model=’PROBIT’ then
do;

p=probnorm(z);
f=exp(-z#z/2)/sqrt(8*atan(1));

end;
finish;

/* Ingot Data From COX (1970, pp. 67-68)*/
data={ 7 1.0 0 10, 14 1.0 0 31, 27 1.0 1 56, 51 1.0 3 13,

7 1.7 0 17, 14 1.7 0 43, 27 1.7 4 44, 51 1.7 0 1,
7 2.2 0 7, 14 2.2 2 33, 27 2.2 0 21, 51 2.2 0 1,
7 2.8 0 12, 14 2.8 0 31, 27 2.8 1 22,
7 4.0 0 9, 14 4.0 0 19, 27 4.0 1 16, 51 4.0 0 1};

nready=data[,3];
ntotal=data[,4];
n=nrow(data);
x=repeat(1,n,1)||(data[,{1 2}]); /* intercept, heat, soak */
x=x//x; /* regressors */
y=repeat(1,n,1)//repeat(0,n,1); /* binary response */
wgt=nready//(ntotal-nready); /* row weights */
parm={intercept, heat, soak}; /* names of regressors */

model={logit};
run binest; /* run logit model */

model={probit};
run binest; /* run probit model */

The results are as follows.

Example 8.8. Logistic and Probit Regression for Binary Response Models � 155

ITER LOGLIK

1 -268.248

BTRANSP

0 0 0

ITER LOGLIK

2 -76.29481

BTRANSP

-2.159406 0.0138784 0.0037327

ITER LOGLIK

3 -53.38033

BTRANSP

-3.53344 0.0363154 0.0119734

ITER LOGLIK

4 -48.34609

BTRANSP

-4.748899 0.0640013 0.0299201

ITER LOGLIK

5 -47.69191

BTRANSP

-5.413817 0.0790272 0.04982

ITER LOGLIK

6 -47.67283

BTRANSP

-5.553931 0.0819276 0.0564395

ITER LOGLIK

7 -47.67281

BTRANSP

-5.55916 0.0820307 0.0567708

156 � Chapter 8. General Statistics Examples

ITER LOGLIK

8 -47.67281

BTRANSP

-5.559166 0.0820308 0.0567713

CHISQ DF PROB

11.64282 2 0.0029634

PARM B STDERR TRATIO

INTERCEPT -5.559166 1.1196947 -4.964895
HEAT 0.0820308 0.0237345 3.4561866
SOAK 0.0567713 0.3312131 0.1714042

ITER LOGLIK

1 -268.248

BTRANSP

0 0 0

ITER LOGLIK

2 -71.71043

BTRANSP

-1.353207 0.008697 0.0023391

ITER LOGLIK

3 -51.64122

BTRANSP

-2.053504 0.0202739 0.0073888

ITER LOGLIK

4 -47.88947

BTRANSP

-2.581302 0.032626 0.018503

ITER LOGLIK

5 -47.48924

BTRANSP

-2.838938 0.0387625 0.0309099

Example 8.9. Linear Programming � 157

Example 8.9. Linear Programming
The two-phase method for linear programming can be used to solve the problem

max c′x

st. Ax ≤,=,≥ b

x ≥ 0

A routine written in IML to solve this problem follows. The approach appends slack,
surplus, and artificial variables to the model where needed. It then solves phase 1 to
find a primal feasible solution. If a primal feasible solution exists and is found, the
routine then goes on to phase 2 to find an optimal solution, if one exists. The routine
is general enough to handle minimizations as well as maximizations.

/* Subroutine to solve Linear Programs */
/* names: names of the decision variables */
/* obj: coefficients of the objective function */
/* maxormin: the value ’MAX’ or ’MIN’, upper or lowercase */
/* coef: coefficients of the constraints */
/* rel: character array of values: ’<=’ or ’>=’ or ’=’ */
/* rhs: right-hand side of constraints */
/* activity: returns the optimal value of decision variables*/
/* */

start linprog(names, obj, maxormin, coef, rel, rhs, activity);

bound=1.0e10;
m=nrow(coef);
n=ncol(coef);

/* Convert to maximization */
if upcase(maxormin)=’MIN’ then o=-1;
else o=1;

/* Build logical variables */
rev=(rhs<0);
adj=(-1*rev)+^ rev;
ge =((rel = ’>=’) & ^rev) | ((rel = ’<=’) & rev);
eq=(rel=’=’);
if max(ge)=1 then
do;

sr=I(m);
logicals=-sr[,loc(ge)]||I(m);
artobj=repeat(0,1,ncol(logicals)-m)|(eq+ge)‘;

end;
else do;

logicals=I(m);
artobj=eq‘;

end;
nl=ncol(logicals);
nv=n+nl+2;

158 � Chapter 8. General Statistics Examples

/* Build coef matrix */
a=((o*obj)||repeat(0,1,nl)||{ -1 0 })//
(repeat(0,1,n)||-artobj||{ 0 -1 })//
((adj#coef)||logicals||repeat(0,m,2));

/* rhs, lower bounds, and basis */
b={0,0}//(adj#rhs);
L=repeat(0,1,nv-2)||-bound||-bound;
basis=nv-(0:nv-1);

/* Phase 1 - primal feasibility */
call lp(rc,x,y,a,b,nv,,l,basis);
print ({ ’ ’,

’**********Primal infeasible problem************’,
’ ’,
’*********Numerically unstable problem**********’,
’*********Singular basis encountered************’,
’*******Solution is numerically unstable********’,
’***Subroutine could not obtain enough memory***’,
’**********Number of iterations exceeded********’
}[rc+1]);

if x[nv] ^=0 then
do;

print ’**********Primal infeasible problem************’;
stop;

end;
if rc>0 then stop;

/* phase 2 - dual feasibility */
u=repeat(.,1,nv-2)||{ . 0 };
L=repeat(0,1,nv-2)||-bound||0;
call lp(rc,x,y,a,b,nv-1,u,l,basis);

/* Report the solution */
print ({ ’*************Solution is optimal***************’,

’*********Numerically unstable problem**********’,
’**************Unbounded problem****************’,
’*******Solution is numerically unstable********’,
’*********Singular basis encountered************’,
’*******Solution is numerically unstable********’,
’***Subroutine could not obtain enough memory***’,
’**********Number of iterations exceeded********’
}[rc+1]);

value=o*x [nv-1];
print ,’Objective Value ’ value;
activity= x [1:n] ;
print ,’Decision Variables ’ activity[r=names];
lhs=coef*x[1:n];
dual=y[3:m+2];
print ,’Constraints ’ lhs rel rhs dual,

’***’;

finish;

Example 8.9. Linear Programming � 159

Consider the following product mix example (Hadley 1963). A shop with three ma-
chines, A, B, and C, turns out products 1, 2, 3, and 4. Each product must be processed
on each of the three machines (for example, lathes, drills, and milling machines). The
following table shows the number of hours required by each product on each machine.

Product
Machine 1 2 3 4

A 1.5 1 2.4 1
B 1 5 1 3.5
C 1.5 3 3.5 1

The weekly time available on each of the machines is 2000, 8000, and 5000 hours,
respectively. The products contribute 5.24, 7.30, 8.34, and 4.18 to profit, respectively.
What mixture of products can be manufactured that maximizes profit? You can solve
the problem as follows:

names={’product 1’ ’product 2’ ’product 3’ ’product 4’};
profit={ 5.24 7.30 8.34 4.18};
tech={ 1.5 1 2.4 1 ,

1 5 1 3.5 ,
1.5 3 3.5 1 };

time={ 2000, 8000, 5000};
rel={ ’<=’, ’<=’, ’<=’ };
run linprog(names,profit,’max’,tech,rel,time,products);

The output from this example follows.

VALUE

Objective Value 12737.059

ACTIVITY

Decision Variables product 1 294.11765
product 2 1500
product 3 0
product 4 58.823529

LHS REL RHS DUAL

Constraints 2000 <= 2000 1.9535294
8000 <= 8000 0.2423529
5000 <= 5000 1.3782353

The following example shows how to find the minimum cost flow through a network
using linear programming. The arcs are defined by an array of tuples; each tuple
names a new arc. The elements in the arc tuples give the names of the tail and head

160 � Chapter 8. General Statistics Examples

nodes defining the arc. The following data are needed: arcs, cost for a unit of flow
across the arcs, nodes, and supply and demand at each node.

A program generates the node-arc incidence matrix and calls the linear program rou-
tine for solution:

arcs={ ’ab’ ’bd’ ’ad’ ’bc’ ’ce’ ’de’ ’ae’ };
cost={ 1 2 4 3 3 2 9 };
nodes={ ’a’, ’b’, ’c’, ’d’, ’e’};
supdem={ 2, 0, 0, -1, -1 };
rel=repeat(’=’,nrow(nodes),1);
inode=substr(arcs,1,1);
onode=substr(arcs,2,1);
free n_a_i n_a_o;
do i=1 to ncol(arcs);

n_a_i=n_a_i || (inode[i]=nodes);
n_a_o=n_a_o || (onode[i]=nodes);

end;
n_a=n_a_i - n_a_o;
run linprog(arcs,cost,’min’,n_a,rel,supdem,x);

The solution is as follows.

VALUE

Objective Value 8

ACTIVITY

Decision Variables ab 2
bd 2
ad 0
bc 0
ce 0
de 1
ae 0

LHS REL RHS DUAL

Constraints 2 = 2 -2.5
0 = 0 -1.5
0 = 0 -0.5

-1 = -1 -0.5
-1 = -1 -2.5

Example 8.10. Quadratic Programming

The quadratic program

min c′x + x′Hx/2
st. Gx ≤,=,≥ b

x ≥ 0

Example 8.10. Quadratic Programming � 161

can be solved by solving an equivalent linear complementarity problem whenH is
positive semidefinite. The approach is outlined in the discussion of the LCP subrou-
tine inChapter 20, “Language Reference.”

The following routine solves the quadratic problem.

/* Routine to solve quadratic programs */
/* names: the names of the decision variables */
/* c: vector of linear coefficients of the objective function */
/* H: matrix of quadratic terms in the objective function */
/* G: matrix of constraint coefficients */
/* rel: character array of values: ’<=’ or ’>=’ or ’=’ */
/* b: right hand side of constraints */
/* activity: returns the optimal value of decision variables */

start qp(names, c, H, G, rel, b, activity);
if min(eigval(h))<0 then
do;

print
’ERROR: The minimum eigenvalue of the H matrix is negative. ’;

print ’ Thus it is not positive semidefinite. ’;
print ’ QP is terminating with this error. ’;
stop;

end;
nr=nrow(G);
nc=ncol(G);

/* Put in canonical form */
rev=(rel=’<=’);
adj=(-1 * rev) + ^rev;
g=adj# G; b = adj # b;
eq=(rel = ’=’);
if max(eq)=1 then
do;

g=g // -(diag(eq)*G)[loc(eq),];
b=b // -(diag(eq)*b)[loc(eq)];

end;
m=(h || -g‘) //(g || j(nrow(g),nrow(g),0));
q=c // -b;

/* Solve the problem */
call lcp(rc,w,z,M,q);

/* Report the solution */
reset noname;
print ({ ’*************Solution is optimal***************’,

’*********No solution possible******************’,
’ ’,
’ ’,
’ ’,
’**********Solution is numerically unstable*****’,
’***********Not enough memory*******************’,
’**********Number of iterations exceeded********’}[rc+1]);

reset name;
activity=z[1:nc];
objval=c‘*activity + activity‘*H*activity/2;
print ,’Objective Value ’ objval,

’Decision Variables ’ activity[r=names],

162 � Chapter 8. General Statistics Examples

’***’;

finish qp;

As an example, consider the following problem in portfolio selection. Models used
in selecting investment portfolios include assessment of the proposed portfolio’s ex-
pected gain and its associated risk. One such model seeks to minimize the variance of
the portfolio subject to a minimum expected gain. This can be modeled as a quadratic
program in which the decision variables are the proportions to invest in each of the
possible securities. The quadratic component of the objective function is the covari-
ance of gain between the securities; the first constraint is a proportionality constraint;
and the second constraint gives the minimum acceptable expected gain.

The following data are used to illustrate the model and its solution:

c = { 0, 0, 0, 0 };
h = { 1003.1 4.3 6.3 5.9 ,

4.3 2.2 2.1 3.9 ,
6.3 2.1 3.5 4.8 ,
5.9 3.9 4.8 10 };

g = { 1 1 1 1 ,
.17 .11 .10 .18 };

b = { 1 , .10 };
rel = { ’=’, ’>=’};
names = {’ibm’, ’dec’, ’dg’, ’prime’ };
run qp(names,c,h,g,rel,b,activity);

The following output shows that the minimum variance portfolio achieving the 0.10
expected gain is composed of DEC and DG stock in proportions of 0.933 and 0.067.

OBJVAL

Objective Value 1.0966667

ACTIVITY

Decision Variables ibm 0
dec 0.9333333
dg 0.0666667
prime 0

Example 8.11. Regression Quantiles

The technique of parameter estimation in linear models using the notion of regres-
sion quantiles is a generalization of the LAE or LAV least absolute value estimation
technique. For a given quantileq, the estimateb∗ of β in the model

Y = Xβ + ε

Example 8.11. Regression Quantiles � 163

is the value ofb that minimizes∑
t∈T

q|yt − xtb| −
∑
t∈S

(1− q)|yt − xtb|

whereT = {t|yt ≥ xtb} andS = {t|yt ≤ xt}. For q = 0.5, the solutionb∗

is identical to the estimates produced by the LAE. The following routine finds this
estimate using linear programming:

/* Routine to find regression quantiles */
/* yname: name of dependent variable */
/* y: dependent variable */
/* xname: names of independent variables */
/* X: independent variables */
/* b: estimates */
/* predict: predicted values */
/* error: difference of y and predicted. */
/* q: quantile */
/* */
/* notes: This subroutine finds the estimates b */
/* that minimize */
/* */
/* q * (y - Xb) * e + (1-q) * (y - Xb) * ^e */
/* */
/* where e = (Xb <= y). */
/* */
/* This subroutine follows the approach given in: */
/* */
/* Koenker, R. and G. Bassett (1978). Regression */
/* quantiles. Econometrica. Vol. 46. No. 1. 33-50. */
/* */
/* Basssett, G. and R. Koenker (1982). An empirical */
/* quantile function for linear models with iid errors. */
/* JASA. Vol. 77. No. 378. 407-415. */
/* */
/* When q = .5 this is equivalent to minimizing the sum */
/* of the absolute deviations, which is also known as */
/* L1 regression. Note that for L1 regression, a faster */
/* and more accurate algorithm is available in the SAS/IML */
/* routine LAV, which is based on the approach given in: */
/* */
/* Madsen, K. and Nielsen, H. B. (1993). A finite */
/* smoothing algorithm for linear L1 estimation. */
/* SIAM J. Optimization, Vol. 3. 223-235. */
/*---*/
start rq(yname, y, xname, X, b, predict, error, q);

bound=1.0e10;
coef = X‘;
m = nrow(coef);
n = ncol(coef);

/*-----------------build rhs and bounds--------------------*/
e = repeat(1,1,n)‘;

164 � Chapter 8. General Statistics Examples

r = {0 0} || ((1-q)*coef*e)‘;
sign = repeat(1,1,m);

do i=1 to m;
if r[2+i] < 0 then do;

sign[i] = -1;
r[2+i] = -r[2+i];

coef[i,] = -coef[i,];
end;

end;

l = repeat(0,1,n) || repeat(0,1,m) || -bound || -bound ;
u = repeat(1,1,n) || repeat(.,1,m) || { . . } ;

/*-------------build coefficient matrix and basis----------*/
a = (y‘ || repeat(0,1,m) || { -1 0 }) //

(repeat(0,1,n) || repeat(-1,1,m) || { 0 -1 }) //
(coef || I(m) || repeat(0,m,2)) ;

basis = n+m+2 - (0:n+m+1);

/*----------------find a feasible solution-----------------*/
call lp(rc,p,d,a,r,,u,l,basis);

/*----------------find the optimal solution----------------*/
l = repeat(0,1,n) || repeat(0,1,m) || -bound || {0} ;
u = repeat(1,1,n) || repeat(0,1,m) || { . 0 } ;
call lp(rc,p,d,a,r,n+m+1,u,l,basis);

/*---------------- report the solution-----------------------*/
variable = xname‘; b=d[3:m+2];
do i=1 to m;

b[i] = b[i] * sign[i];
end;
predict = X*b;
error = y - predict;
wsum = sum (choose(error<0 , (q-1)*error , q*error));

print ,,’Regression Quantile Estimation’ ,
’Dependent Variable: ’ yname ,
’Regression Quantile: ’ q ,
’Number of Observations: ’ n ,
’Sum of Weighted Absolute Errors: ’ wsum ,
variable b,
X y predict error;

finish rq;

Example 8.11. Regression Quantiles � 165

The following example uses data on the United States population from 1790 to 1970:

z = { 3.929 1790 ,
5.308 1800 ,
7.239 1810 ,
9.638 1820 ,
12.866 1830 ,
17.069 1840 ,
23.191 1850 ,
31.443 1860 ,
39.818 1870 ,
50.155 1880 ,
62.947 1890 ,
75.994 1900 ,
91.972 1910 ,

105.710 1920 ,
122.775 1930 ,
131.669 1940 ,
151.325 1950 ,
179.323 1960 ,
203.211 1970 };

y=z[,1];
x=repeat(1,19,1)||z[,2]||z[,2]##2;
run rq(’pop’,y,{’intercpt’ ’year’ ’yearsq’},x,b1,pred,resid,.5);

The output is as follows.

166 � Chapter 8. General Statistics Examples

Dependent Variable: pop

Q

Regression Quantile: 0.5

N

Number of Observations: 19

WSUM

Sum of Weighted Absolute Errors: 14.826429

VARIABLE B

intercpt 21132.758
year -23.52574
yearsq 0.006549

X Y PREDICT ERROR

1 1790 3204100 3.929 5.4549176 -1.525918
1 1800 3240000 5.308 5.308 -4.54E-12
1 1810 3276100 7.239 6.4708902 0.7681098
1 1820 3312400 9.638 8.9435882 0.6944118
1 1830 3348900 12.866 12.726094 0.1399059
1 1840 3385600 17.069 17.818408 -0.749408
1 1850 3422500 23.191 24.220529 -1.029529
1 1860 3459600 31.443 31.932459 -0.489459
1 1870 3496900 39.818 40.954196 -1.136196
1 1880 3534400 50.155 51.285741 -1.130741
1 1890 3572100 62.947 62.927094 0.0199059
1 1900 3610000 75.994 75.878255 0.1157451
1 1910 3648100 91.972 90.139224 1.8327765
1 1920 3686400 105.71 105.71 8.669E-13
1 1930 3724900 122.775 122.59058 0.1844157
1 1940 3763600 131.669 140.78098 -9.111976
1 1950 3802500 151.325 160.28118 -8.956176
1 1960 3841600 179.323 181.09118 -1.768184
1 1970 3880900 203.211 203.211 -2.96E-12

The L1 norm (whenq = 0.5) tends to allow the fit to be better at more points at the
expense of allowing some points to fit worse, as the plot of the residuals against the
least squares residuals:

/* Compare L1 residuals with least squares residuals */
/* Compute the least squares residuals */

resid2=y-x*inv(x‘*x)*x‘*y;

/* x axis of plot */
xx=repeat(x[,2] ,3,1);

/* y axis of plot */
yy=resid//resid2//repeat(0,19,1);

Example 8.12. Simulations of a Univariate ARMA Process � 167

/* plot character*/
id=repeat(’1’,19,1)//repeat(’2’,19,1)//repeat(’-’,19,1);
call pgraf(xx||yy,id,’Year’,’Residual’,

’1=L(1) residuals, 2=least squares residual’);

The output generated is as follows.

1=l(1) residuals, 2=least squares residual

|
5 +
| 2 2

R | 2
e | 1 1 2 2 1 2 2
s 0 + - 1 - - 1 - - 1 - 2 1 1 - 1 1 - - - 1
i | 1 1 1 1 1 1
d |
u |
a -5 + 2 2
l |

|
| 1 1

-10 +
|
-+------+------+------+------+------+------+------+------+------+------+-

1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980

Year

Whenq = 0.5, the results of this module can be compared with the results of the
LAV routine:

b0 = {1 1 1}; /* initial value */
optn = j(4,1,.); /* options vector */

optn[1]= .; /* gamma default */
optn[2]= 5; /* print all */
optn[3]= 0; /* McKean-Schradar variance */
optn[4]= 1; /* convergence test */

call LAV(rc, xr, x, y, b0, optn);

Example 8.12. Simulations of a Univariate ARMA Process

Simulations of time series with known ARMA structure are often needed as part of
other simulations or as learning data sets for developing time series analysis skills.
The following program generates a time series using the IML functions NORMAL,
ARMACOV, HANKEL, PRODUCT, RATIO, TOEPLITZ, and ROOT.

168 � Chapter 8. General Statistics Examples

reset noname;
start armasim(y,n,phi,theta,seed);
/*---*/
/* IML Module: armasim */
/* Purpose: Simulate n data points from ARMA process */
/* exact covariance method */
/* Arguments: */
/* */
/* Input: n : series length */
/* phi : AR coefficients */
/* theta: MA coefficients */
/* seed : integer seed for normal deviate generator */
/* Output: y: realization of ARMA process */
/* --*/

p=ncol(phi)-1;
q=ncol(theta)-1;
y=normal(j(1,n+q,seed));

/* Pure MA or white noise */
if p=0 then y=product(theta,y)[,(q+1):(n+q)];
else do; /* Pure AR or ARMA */

/* Get the autocovariance function */
call armacov(gamma,cov,ma,phi,theta,p);
if gamma[1]<0 then
do;

print ’ARMA parameters not stable.’;
print ’Execution terminating.’;
stop;

end;

/* Form covariance matrix */
gamma=toeplitz(gamma);

/* Generate covariance between initial y and */
/* initial innovations */

if q>0 then
do;

psi=ratio(phi,theta,q);
psi=hankel(psi[,-((-q):(-1))]);
m=max(1,(q-p+1));
psi=psi[-((-q):(-m)),];
if p>q then psi=j(p-q,q,0)//psi;
gamma=(gamma||psi)//(psi‘||i(q));

end;

/* Use Cholesky root to get startup values */
gamma=root(gamma);
startup=y[,1:(p+q)]*gamma;
e=y[,(p+q+1):(n+q)];

/* Generate MA part */
if q>0 then

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

169

do;
e=startup[,(p+1):(p+q)]||e;
e=product(theta,e)[,(q+1):(n+q-p)];

end;

y=startup[,1:p];
phi1=phi[,-(-(p+1):(-2))]‘;

/* Use difference equation to generate */
/* remaining values */

do ii=1 to n-p;
y=y||(e[,ii]-y[,ii:(ii+p-1)]*phi1);

end;
end;
y=y‘;

finish armasim; /* ARMASIM */

run armasim(y,10,{1 -0.8},{1 0.5},1234321);
print ,’Simulated Series:’, y;

The output is as follows.

3.0764594
1.8931735
0.9527984
0.0892395
-1.811471
-2.8063
-2.52739

-2.865251
-1.332334
0.1049046

Example 8.13. Parameter Estimation for a Regression Model
with ARMA Errors

Nonlinear estimation algorithms are required for obtaining estimates of the parame-
ters of a regression model with innovations having an ARMA structure. The three
estimation methods employed by the ARIMA procedure in SAS/ETS software are
programmed in IML in the following example. The algorithms employed are slightly
different from those used by PROC ARIMA, but the results obtained should be simi-
lar. This example combines the IML functions ARMALIK, PRODUCT, and RATIO
to perform the estimation. Note the interactive nature of this example, illustrating
how you can adjust the estimates when they venture outside of the stationary or in-
vertible regions.

170 � Chapter 8. General Statistics Examples

/*---*/
/*---- Grunfeld’s Investment Models Fit with ARMA Errors ----*/
/*---*/

data grunfeld;
input year gei gef gec wi wf wc;
label gei=’gross investment ge’

gec=’capital stock lagged ge’
gef=’value of outstanding shares ge lagged’
wi =’gross investment w’
wc =’capital stock lagged w’
wf =’value of outstanding shares lagged w’;

/*--- GE STANDS FOR GENERAL ELECTRIC AND W FOR WESTINGHOUSE ---*/
cards;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1
1939 48.1 2256.2 172.6 18.84 519.9 23.5
1940 74.4 2132.2 186.6 28.57 628.5 26.5
1941 113.0 1834.1 220.9 48.51 537.1 36.2
1942 91.9 1588.0 287.8 43.34 561.2 60.8
1943 61.3 1749.4 319.9 37.02 617.2 84.4
1944 56.8 1687.2 321.3 37.81 626.7 91.2
1945 93.6 2007.7 319.6 39.27 737.2 92.4
1946 159.9 2208.3 346.0 53.46 760.5 86.0
1947 147.2 1656.7 456.4 55.56 581.4 111.1
1948 146.3 1604.4 543.4 49.56 662.3 130.6
1949 98.3 1431.8 618.3 32.04 583.8 141.8
1950 93.5 1610.5 647.4 32.24 635.2 136.7
1951 135.2 1819.4 671.3 54.38 723.8 129.7
1952 157.3 2079.7 726.1 71.78 864.1 145.5
1953 179.5 2371.6 800.3 90.08 1193.5 174.8
1954 189.6 2759.9 888.9 68.60 1188.9 213.5
;

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

171

proc iml;
reset noname;
/*---*/
/* name: ARMAREG Modules */
/* purpose: Perform Estimation for regression model with */
/* ARMA errors */
/* usage: Before invoking the command */
/* */
/* run armareg; */
/* */
/* define the global parameters */
/* */
/* x - matrix of predictors. */
/* y - response vector. */
/* iphi - defines indices of nonzero AR parameters, */
/* omitting index 0 corresponding to the zero */
/* order constant one. */
/* itheta - defines indices of nonzero MA parameters, */
/* omitting index 0 corresponding to the zero */
/* order constant one. */
/* ml - estimation option: -1 if Conditional Least */
/* Squares, 1 if Maximum Likelihood, otherwise */
/* Unconditional Least Squares. */
/* delta - step change in parameters (default 0.005). */
/* par - initial values of parms. First ncol(iphi) */
/* values correspond to AR parms, next ncol(itheta)*/
/* values correspond to MA parms, and remaining */
/* are regression coefficients. */
/* init - undefined or zero for first call to armareg. */
/* maxit - maximum number of iterations. No other */
/* convergence criterion is used. You can invoke */
/* armareg without changing parameter values to */
/* continue iterations. */
/* nopr - undefined or zero implies no printing of */
/* intermediate results. */
/* */
/* notes: Optimization using Gauss-Newton iterations */
/* */
/* No checking for invertibility or stationarity during */
/* estimation process. The parameter array par may be */
/* modified after running armareg to place estimates */
/* in the stationary and invertible regions, and then */
/* armareg may be run again. If a nonstationary AR operator */
/* is employed, a PAUSE will occur after calling ARMALIK */
/* because of a detected singularity. Using STOP will */
/* permit termination of ARMAREG so that the AR */
/* coefficients may be modified. */
/* */
/* T-ratios are only approximate and may be undependable, */
/* especially for small series. */
/* */
/* The notation follows that of the IML function ARMALIK; */
/* the autoregressive and moving average coefficients have */
/* signs opposite those given by PROC ARIMA. */

172 � Chapter 8. General Statistics Examples

/* Begin ARMA estimation modules */

/* Generate residuals */
start gres;

noise=y-x*beta;
previous=noise[:];
if ml=-1 then do; /* Conditional LS */

noise=j(nrow(y),1,previous)||noise;
resid=product(phi,noise‘) [, 1: nrow(noise)];
resid=ratio(theta,resid,ncol(resid));
resid=resid[,1:ncol(resid)]‘;

end;
else do; /* Maximum likelihood */

free l;
call armalik(l,resid,std,noise,phi,theta);

/* Nonstationary condition produces PAUSE */
if nrow(l)=0 then
do;

print ,
’In GRES: Parameter estimates outside stationary region.’;

end;
else do;

temp=l[3,]/(2#nrow(resid));
if ml=1 then resid=resid#exp(temp);

end;
end;

finish gres; /* finish module GRES */

start getpar; /* Get Parameters */
if np=0 then phi=1;
else do;

temp=parm[,1:np];
phi=1||j(1,p,0);
phi[,iphi] =temp;

end;
if nq=0 then theta=1;
else do;

temp=parm[,np+1:np+nq];
theta=1||j(1,q,0);
theta[,itheta] =temp;

end;
beta=parm[,(np+nq+1):ncol(parm)]‘;

finish getpar; /* finish module GETPAR */

/* Get SS Matrix - First Derivatives */
start getss;

parm=par;
run getpar;
run gres;
s=resid;
oldsse=ssq(resid);
do k=1 to ncol(par);

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

173

parm=par;
parm[,k]=parm[,k]+delta;
run getpar;
run gres;
s=s||((resid-s[,1])/delta); /* append derivatives */

end;
ss=s‘*s;
if nopr^=0 then print ,’Gradient Matrix’, ss;
sssave=ss;
do k=1 to 20; /* Iterate if no reduction in SSE */

do ii=2 to ncol(ss);
ss[ii,ii]=(1+lambda)*ss[ii,ii];

end;
ss=sweep(ss,2:ncol(ss)); /* Gaussian elimination */
delpar=ss[1,2:ncol(ss)]; /* update parm increments */
parm=par+delpar;
run getpar;
run gres;
sse=ssq(resid);
if sse<oldsse then
do; /* reduction, no iteration */

lambda=lambda/10;
k=21;

end;

else do; /* no reduction */
/* increase lambda and iterate */

if nopr^=0 then print ,
’Lambda=’ lambda ’SSE=’ sse ’OLDSSE=’ oldsse,
’Gradient Matrix’, ss ;

lambda=10*lambda;
ss=sssave;
if k=20 then
do;

print ’In module GETSS:
No improvement in SSE after twenty iterations.’;

print ’ Possible Ridge Problem. ’;
return;

end;
end;

end;
if nopr^=0 then print ,’Gradient Matrix’, ss;
finish getss; /* Finish module GETSS */

start armareg; /* ARMAREG main module */

/* Initialize options and parameters */
if nrow(delta)=0 then delta=0.005;
if nrow(maxiter)=0 then maxiter=5;
if nrow(nopr)=0 then nopr=0;
if nrow(ml)=0 then ml=1;
if nrow(init)=0 then init=0;
if init=0 then
do;

174 � Chapter 8. General Statistics Examples

p=max(iphi);
q=max(itheta);
np=ncol(iphi);
nq=ncol(itheta);

/* Make indices one-based */
do k=1 to np;

iphi[,k]=iphi[,k]+1;
end;
do k=1 to nq;

itheta[,k]=itheta[,k]+1;
end;

/* Create row labels for Parameter estimates */
if p>0 then parmname = concat("AR",char(1:p,2));
if q>0 then parmname = parmname||concat("MA",char(1:p,2));
parmname = parmname||concat("B",char(1:ncol(x),2));

/* Create column labels for Parameter estimates */
pname = {"Estimate" "Std. Error" "T-Ratio"};
init=1;

end;

/* Generate starting values */
if nrow(par)=0 then
do;

beta=inv(x‘*x)*x‘*y;
if np+nq>0 then par=j(1,np+nq,0)||beta‘;
else par=beta‘;

end;
print ,’Parameter Starting Values’,;
print par [colname=parmname]; /* stderr tratio */
lambda=1e-6; /* Controls step size */
do iter=1 to maxiter; /* Do maxiter iterations */

run getss;
par=par+delpar;
if nopr^=0 then
do;

print ,’Parameter Update’,;
print par [colname=parmname]; /* stderr tratio */
print ,’Lambda=’ lambda,;

end;
if abs(par[,1])>1 then par[,1] =-.8;

end;

sighat=sqrt(sse/(nrow(y)-ncol(par)));
print ,’Innovation Standard Deviation:’ sighat;
estm=par‘||(sqrt(diag(ss[2:ncol(ss),2:ncol(ss)]))

*j(ncol(par),1,sighat));
estm=estm||(estm[,1] /estm[,2]);
if ml=1 then print ,’Maximum Likelihood Estimation Results’,;
else if ml=-1 then print ,

’Conditional Least Squares Estimation Results’,;
else print ,’Unconditional Least Squares Estimation Results’,;

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

175

print estm [rowname=parmname colname=pname] ;
finish armareg;

/* End of ARMA Estimation modules */

/* Begin estimation for Grunfeld’s investment models */
use grunfeld;
read all var {gei} into y;
read all var {gef gec} into x;
x=j(nrow(x),1,1)||x;
iphi=1;
itheta=1;
maxiter=10;
delta=0.0005;
ml=-1;
/*---- To prevent overflow, specify starting values ----*/
par={-0.5 0.5 -9.956306 0.0265512 0.1516939};
run armareg; /*---- Perform CLS estimation ----*/

The output is as follows.

AR 1 MA 1 B 1 B 2 B 3

0 0 -9.956306 0.0265512 0.1516939

Innovation Standard Deviation: 18.639064

Estimate Std. Error T-Ratio

AR 1 -0.071148 0.3248431 -0.219022
MA 1 1.2737455 0.2319205 5.4921656
B 1 -7.530983 20.447977 -0.3683
B 2 0.0402554 0.0170277 2.3641054
B 3 0.0992474 0.0354776 2.7974682

ml=1;
maxiter=10;
/*---- With CLS estimates as starting values, ----*/
/*---- perform ML estimation. ----*/
run armareg;

The output is as follows.

176 � Chapter 8. General Statistics Examples

AR 1 MA 1 B 1 B 2 B 3

-0.071148 0.7850862 -7.530983 0.0402554 0.0992474

Innovation Standard Deviation: 22.667286

Estimate Std. Error T-Ratio

AR 1 -0.191675 0.3360688 -0.570345
MA 1 0.7367182 0.2101849 3.5050966
B 1 -19.45436 31.327362 -0.621002
B 2 0.038099 0.0168731 2.2579666
B 3 0.121766 0.0433174 2.8110191

Example 8.14. Iterative Proportional Fitting

The classical use of iterative proportional fitting is to adjust frequencies to conform
to new marginal totals. Use the IPF subroutine to perform this kind of analysis. You
supply a table that contains new margins and a table that contains old frequencies.
The IPF subroutine returns a table of adjusted frequencies that preserves any higher
order interactions appearing in the initial table.

The example is a census study that estimates a population distribution according to
age and marital status (Bishop, Fienberg, and Holland 1975, pp. 97-98). Estimates of
the distribution are known for the previous year, but only estimates of marginal totals
are known for the current year. You want to adjust the distribution of the previous
year to fit the estimated marginal totals of the current year.

proc iml;

/* Stopping criteria */
mod={0.01 15};

/* Marital status has 3 levels. age has 8 levels. */
dim={3 8};

/* New marginal totals for age by marital status */
table={1412 0 0 ,

1402 0 0 ,
1174 276 0 ,
0 1541 0 ,
0 1681 0 ,
0 1532 0 ,
0 1662 0 ,
0 5010 2634};

/* Marginal totals are known for both */
/* marital status and age */

config={1 2};

Example 8.14. Iterative Proportional Fitting � 177

/* Use known distribution for start-up values */
initab={1306 83 0 ,

619 765 3 ,
263 1194 9 ,
173 1372 28 ,
171 1393 51 ,
159 1372 81 ,
208 1350 108 ,
1116 4100 2329};

call ipf(fit,status,dim,table,config,initab,mod);

c={’ SINGLE’ ’ MARRIED’ ’WIDOWED/DIVORCED’};
r={’15 - 19’ ’20 - 24’ ’25 - 29’ ’30 - 34’ ’35 - 39’ ’40 - 44’

’45 - 49’ ’50 OR OVER’};
print

’POPULATION DISTRIBUTION ACCORDING TO AGE AND MARITAL STATUS’,,
’KNOWN DISTRIBUTION (PREVIOUS YEAR)’,,
initab [colname=c rowname=r format=8.0] ,,
’ADJUSTED ESTIMATES OF DISTRIBUTION (CURRENT YEAR)’,,
fit [colname=c rowname=r format=8.2] ;

The output is as follows.

INITAB
SINGLE MARRIED WIDOWED/DIVORCED

15 - 19 1306 83 0
20 - 24 619 765 3
25 - 29 263 1194 9
30 - 34 173 1372 28
35 - 39 171 1393 51
40 - 44 159 1372 81
45 - 49 208 1350 108
50 OR OVER 1116 4100 2329

FIT
SINGLE MARRIED WIDOWED/DIVORCED

15 - 19 1325.27 86.73 0.00
20 - 24 615.56 783.39 3.05
25 - 29 253.94 1187.18 8.88
30 - 34 165.13 1348.55 27.32
35 - 39 173.41 1454.71 52.87
40 - 44 147.21 1308.12 76.67
45 - 49 202.33 1352.28 107.40
50 OR OVER 1105.16 4181.04 2357.81

178 � Chapter 8. General Statistics Examples

Example 8.15. Full-Screen Nonlinear Regression
This example shows how to build a menu system that enables you to perform nonlin-
ear regression from a menu. Six modules are stored on an IML storage disk. After
you have stored them, use this example to try out the system. First invoke IML and
set up some sample data in memory, in this case the population of the U.S. from 1790
to 1970. Then invoke the module NLIN.

reset storage=’nlin’;
load module=_all_;
uspop = {3929, 5308, 7239, 9638, 12866, 17069, 23191, 31443,

39818, 50155, 62947, 75994, 91972, 105710, 122775, 131669,
151325, 179323, 203211}/1000;

year=do(1790,1970,10)‘;
time=year-1790;
print year time uspop;
run nlin;

A menu appears like the one below. The entry fields are shown by underscores here,
but the underscores become blanks in the real session.

Non-Linear Regression
Response function: __
Predictor function: ___

Parameter Value Derivative
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __

Enter an exponential model and fill in the response and predictor expression fields.
For each parameter, enter the name, initial value, and derivative of the predictor with
respect to the parameter.

Non-Linear Regression
Response function: uspop___
Predictor function: a0*exp(a1*time)______________________________

Parameter Value Derivative
: a0______ ________3.9 exp(a1*time)_______________________________
: a1______ __________0 time*a0*exp(a1*time)_______________________
: ________ ___________ ___
: ________ ___________ ___
: ________ ___________ ___
: ________ ___________ ___

Now press the SUBMIT key. The model compiles, the iterations start blinking on the
screen, and when the model has converged, the estimates are displayed along with
their standard errors,t test, and significance probability.

Example 8.15. Full-Screen Nonlinear Regression � 179

To modify and rerun the model, submit the command

run nlrun;

Here is the code that defines and stores the modules of the system.

/* Full Screen Nonlinear Regression */
/* Six modules are defined, which constitute a system for */
/* nonlinear regression. The interesting feature of this */
/* system is that the problem is entered in a menu, and both */
/* iterations and final results are displayed on the same */
/* menu. */
/* */
/* Run this source to get the modules stored. Examples */
/* of use are separate. */
/* */
/* Caution: this is a demonstration system only. It does not */
/* have all the necessary safeguards in it yet to */
/* recover from user errors or rough models. */
/* Algorithm: */
/* Gauss-Newton nonlinear regression with step-halving. */
/* Notes: program variables all start with nd or _ to */
/* minimize the problems that would occur if user variables */
/* interfered with the program variables. */

/* Gauss-Newton nonlinear regression with Hartley step-halving */

/*---Routine to set up display values for new problem---*/
start nlinit;

window nlin rows=15 columns=80 color=’green’
msgline=_msg cmndline=_cmnd
group=title +30 ’Non-Linear Regression’ color=’white’
group=model / @5 ’Response function:’ color=’white’
+1 nddep $55. color=’blue’
/ @5 ’Predictor function:’ color=’white’
+1 ndfun $55. color=’blue’
group=parm0 // @5 ’Parameter’ color=’white’ @15 ’Value’
@30 ’Derivative’
group=parm1 // @5 ’Parameter’ color=’white’ @15 ’Value’
group=parm2 // @5 ’Parameter’ color=’white’ @19 ’Estimate’
@33 ’Std Error’
@48 ’T Ratio’
@62 ’Prob>|T|’
group=parminit /@3 ’:’ color=’white’
@5 ndparm $8. color=’blue’
@15 ndbeta best12. @30 ndder $45.
group=parmiter / @5 _parm color=’white’
@15 _beta best12. color=’blue’
group=parmest / @5 _parm color=’white’
@15 _beta best12. color=’blue’
@30 _std best12.
@45 _t 10.4
@60 _prob 10.4
group=sse // @5 ’Iteration =’ color=’white’ _iter 5. color=’blue’
’ Stephalvings = ’ color=’white’ _subit 3. color=’blue’
/ @5 ’Sum of Squares Error =’ color=’white’ _sse best12.

180 � Chapter 8. General Statistics Examples

color=’blue’;
nddep=cshape(’ ’,1,1,55,’ ’);
ndfun=nddep;
nd0=6;
ndparm=repeat(’ ’,nd0,1);
ndbeta=repeat(0,nd0,1);
ndder=cshape(’ ’,nd0,1,55,’ ’);
_msg=’Enter New Nonlinear Problem’;

finish nlinit; /* Finish module NLINIT */

/* Main routine */
start nlin;

run nlinit; /* initialization routine */
run nlrun; /* run routine */

finish nlin;

/* Routine to show each iteration */
start nliter;

display nlin.title noinput,
nlin.model noinput,
nlin.parm1 noinput,
nlin.parmiter repeat noinput,
nlin.sse noinput;

finish nliter;

/* Routine for one run */
start nlrun;

run nlgen; /* generate the model */
run nlest; /* estimate the model */

finish nlrun;

/* Routine to generate the model */
start nlgen;

/* Model definition menu */
display nlin.title, nlin.model, nlin.parm0, nlin.parminit repeat;

/* Get number of parameters */
t=loc(ndparm=’ ’);
if nrow(t)=0 then
do;

print ’no parameters’;
stop;

end;
_k=t[1] -1;

/* Trim extra rows, and edit ’*’ to ’#’ */
_dep=nddep; call change(_dep,’*’,’#’,0);
_fun=ndfun; call change(_fun,’*’,’#’,0);
_parm=ndparm[1:_k,];
_beta=ndbeta[1:_k,];
_der=ndder [1:_k,];
call change(_der,’*’,’#’,0);

Example 8.15. Full-Screen Nonlinear Regression � 181

/* Construct nlresid module to split up parameters and */
/* compute model */
call queue(’start nlresid;’);
do i=1 to _k;

call queue(_parm[i] ,"=_beta[",char(i,2),"] ;");
end;
call queue("_y = ",_dep,";",

"_p = ",_fun,";",
"_r = _y-_p;",
"_sse = ssq(_r);",
"finish;");

/* Construct nlderiv function */
call queue(’start nlderiv; _x = ’);
do i=1 to _k;

call queue("(",_der[i] ,")#repeat(1,nobs,1)||");
end;
call queue(" nlnothin; finish;");

/* Pause to compile the functions */
call queue("resume;");
pause *;

finish nlgen; /* Finish module NLGEN */

/* Routine to do estimation */
start nlest;

/* Modified Gauss-Newton Nonlinear Regression */
/* _parm has parm names */
/* _beta has initial values for parameters */
/* _k is the number of parameters */
/* after nlresid: */
/* _y has response, */
/* _p has predictor after call */
/* _r has residuals */
/* _sse has sse */
/* after nlderiv */
/* _x has jacobian */
/* */

eps=1;
_iter = 0;
_subit = 0;
_error = 0;
run nlresid; /* f, r, and sse for initial beta */
run nliter; /* print iteration zero */
nobs = nrow(_y);
_msg = ’Iterating’;

/* Gauss-Newton iterations */
do _iter=1 to 30 while(eps>1e-8);

run nlderiv; /* subroutine for derivatives */
_lastsse=_sse;
_xpxi=sweep(_x‘*_x);
_delta=_xpxi*_x‘*_r; /* correction vector */
_old = _beta; /* save previous parameters */
_beta=_beta+_delta; /* apply the correction */
run nlresid; /* compute residual */

182 � Chapter 8. General Statistics Examples

run nliter; /* print iteration in window */
eps=abs((_lastsse-_sse))/(_sse+1e-6);

/* convergence criterion */

/* Hartley subiterations */
do _subit=1 to 10 while(_sse>_lastsse);

_delta=_delta*.5; /* halve the correction vector */
_beta=_old+_delta; /* apply the halved correction */
run nlresid; /* find sse et al */
run nliter; /* print subiteration in window */

end;
if _subit>10 then
do;

_msg = "did not improve after 10 halvings";
eps=0; /* make it fall through iter loop */

end;
end;

/* print out results */
_msg = ’ ’;
if _iter>30 then
do;

_error=1;
_msg = ’convergence failed’;

end;
_iter=_iter-1;
_dfe = nobs-_k;
_mse = _sse/_dfe;
_std = sqrt(vecdiag(_xpxi)#_mse);
_t = _beta/_std;
_prob= 1-probf(_t#_t,1,_dfe);
display nlin.title noinput,
nlin.model noinput,
nlin.parm2 noinput,
nlin.parmest repeat noinput,
nlin.sse noinput;

finish nlest; /* Finish module NLEST */

/* Store the modules to run later */
reset storage=’nlin’;
store module=_all_;

Chapter 9
Robust Regression Examples

Chapter Contents

OVERVIEW .185
Flow Chart for LMS, LTS, MCD, and MVE187

USING LMS AND LTS .188
Example 9.1. Substantial Leverage Points.189
Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS.193
Example 9.3. Univariate (Location) Problem.204

USING MVE AND MCD .206
Example 9.4. Brainlog Data. .207
Example 9.5. Stackloss Data. .214

COMBINING ROBUST RESIDUAL AND ROBUST DISTANCE 224
Example 9.6. Hawkins-Bradu-Kass Data.225
Example 9.7. Stackloss Data. .231

REFERENCES .233

184 � Chapter 9. Robust Regression Examples

Chapter 9
Robust Regression Examples

Overview
SAS/IML has four subroutines that can be used for outlier detection and robust re-
gression. The Least Median of Squares (LMS) and Least Trimmed Squares (LTS)
subroutines performrobust regression(sometimes calledresistant regression). These
subroutines are able to detect outliers and perform a least-squares regression on the
remaining observations. The Minimum Volume Ellipsoid Estimation (MVE) and
Minimum Covariance Determinant Estimation (MCD) subroutines can be used to
find a robust location and a robust covariance matrix that can be used for constructing
confidence regions, detecting multivariate outliers and leverage points, and conduct-
ing robust canonical correlation and principle component analysis.

The LMS, LTS, MVE, and MCD methods were developed by Rousseeuw (1984) and
Rousseeuw and Leroy (1987). All of these methods have the high breakdown value
property. Roughly speaking, the breakdown value is a measure of the proportion
of contamination that a procedure can withstand and still maintain its robustness.
The algorithm used in the LMS subroutine is based on the PROGRESS program
of Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and
Leroy (1987). The algorithm used in the LTS subroutine is based on the algorithm
FAST-LTS of Rousseeuw and Van Driessen (2000). The MCD algorithm is based on
the FAST-MCD algorithm given by Rousseeuw and Van Driessen (1999), which is
similar to the FAST-LTS algorithm. The MVE algorithm is based on the algorithm
used in the MINVOL program by Rousseeuw (1984). LTS estimation has higher
statistical efficiency than LMS estimation. With the FAST-LTS algorithm, LTS is
also faster than LMS for large data sets. Similarly, MCD is faster than MVE for large
data sets.

Besides LTS estimation and LMS estimation, there are other methods for robust re-
gression and outlier detection. You can refer to a comprehensive procedure, PROC
ROBUSTREG, in SAS/STAT. A summary of these robust tools in SAS can be found
in Chen (2002).

The four SAS/IML subroutines are designed for

• LMS: minimizing thehth ordered squared residual

• LTS: minimizing the sum of theh smallest squared residuals

• MCD: minimizing the determinant of the covariance ofh points

• MVE: minimizing the volume of an ellipsoid containingh points

whereh is defined in the range

N

2
+ 1 ≤ h ≤ 3N

4
+
n+ 1

4

186 � Chapter 9. Robust Regression Examples

In the preceding equation,N is the number of observations andn is the number of
regressors.∗ The value ofh determines thebreakdown value, which is “the smallest
fraction of contamination that can cause the estimatorT to take on values arbitrarily
far from T (Z)” (Rousseeuw and Leroy 1987, p.10). Here,T denotes an estimator
andT (Z) appliesT to a sampleZ.

For each parameter vectorb = (b1, . . . , bn), the residual of observationi is ri =
yi − xib. You then denote the ordered, squared residuals as

(r2)1:N ≤ . . . ≤ (r2)N :N

The objective functions for the LMS, LTS, MCD, and MVE optimization problems
are defined as follows:

• LMS, the objective function for the LMS optimization problem is thehth or-
dered squared residual,

FLMS = (r2)h:N −→ min

Note that, forh = N/2 + 1, thehth quantile is the median of the squared
residuals. The defaulth in PROGRESS ish =

[
N+n+1

2

]
, which yields the

breakdown value (where[k] denotes the integer part ofk).

• LTS, the objective function for the LTS optimization problem is the sum of the
h smallest ordered squared residuals,

FLTS =

√√√√1
h

h∑
i=1

(r2)i:N −→ min

• MCD, the objective function for the MCD optimization problem is based on
the determinant of the covariance of the selectedh points.

FMCD = det(Ch) −→ min

whereCh is the covariance matrix of the selectedh points.

• MVE, the objective function for the MVE optimization problem is based on
thehth quantiledh:N of the Mahalanobis-type distancesd = (d1, . . . , dN),

FMVE =
√
dh:Ndet(C) −→ min

subject todh:N =
√
χ2

n,0.5, whereC is the scatter matrix estimate, and the

Mahalanobis-type distances are computed as

d = diag(
√

(X− T)TC−1(X− T))

whereT is the location estimate.

∗The value ofh can be specified (see the “Syntax” section), but in most applications the default
value works just fine and the results seem to be quite stable with different choices ofh.

Flow Chart for LMS, LTS, MCD, and MVE � 187

Because of the nonsmooth form of these objective functions, the estimates cannot be
obtained with traditional optimization algorithms. For LMS and LTS, the algorithm,
as in the PROGRESS program, selects a number of subsets ofn observations out of
theN given observations, evaluates the objective function, and saves the subset with
the lowest objective function. As long as the problem size enables you to evaluate all
such subsets, the result is a global optimum. If computing time does not permit you
to evaluate all the different subsets, a random collection of subsets is evaluated. In
such a case, you may not obtain the global optimum.

Note that the LMS, LTS, MCD, and MVE subroutines are executed only when the
numberN of observations is over twice the numbern of explanatory variablesxj

(including the intercept), that is, ifN > 2n.

Flow Chart for LMS, LTS, MCD, and MVE

Start w/o Initial Point Start w/ Initial Point

?

?

?

LS Estimation

?

LMS or LTS Estimation by:

Enumeration vs. Random Sampling?

?? ?

Enumeration Random Subsamp. Obj. Function

?

?

Improve: Pairwise Exchange?

?

WLS Estimation: Weights from LMS or LTS

Flow Chart Indicating: LS−→ [LMS or LTS] −→ WLS

Separate LMS or LTS Part Inside Dashbox Corresponds to MCD, MVE

188 � Chapter 9. Robust Regression Examples

Using LMS and LTS

Because of space considerations, the output of the tables containing residuals and
resistant diagnostics are not included in this document. The subroutinesprilmts,
scatlmts, and lmsdiapare used in these examples for printing and plotting the re-
sults. These routines are in therobustmc.sas file that is contained in the sample
library.

Example 9.1. Substantial Leverage Points � 189

Example 9.1. LMS and LTS with Substantial Leverage Points:
Hertzsprung-Russell Star Data

The following data are reported in Rousseeuw and Leroy (1987, p. 27) and are based
on Humphreys (1978) and Vansina and De Greve (1982). The 47 observations cor-
respond to the 47 stars of the CYG OB1 cluster in the direction of Cygnus. The
regressor variable (column 2)x is the logarithm of the effective temperature at the
surface of the star (Te), and the response variable (column 3)y is the logarithm of its
light intensity (L/L0). The results for LS and LMS on page 28 of Rousseeuw and
Leroy (1987) are based on a more precise (five decimal places) version of the data set.
This data set is remarkable in that it contains four substantial leverage points (giant
stars) corresponding to observations 11, 20, 30, and 34 that greatly affect the results
of L2 and evenL1 regression.

ab = { 1 4.37 5.23, 2 4.56 5.74, 3 4.26 4.93,
4 4.56 5.74, 5 4.30 5.19, 6 4.46 5.46,
7 3.84 4.65, 8 4.57 5.27, 9 4.26 5.57,
10 4.37 5.12, 11 3.49 5.73, 12 4.43 5.45,
13 4.48 5.42, 14 4.01 4.05, 15 4.29 4.26,
16 4.42 4.58, 17 4.23 3.94, 18 4.42 4.18,
19 4.23 4.18, 20 3.49 5.89, 21 4.29 4.38,
22 4.29 4.22, 23 4.42 4.42, 24 4.49 4.85,
25 4.38 5.02, 26 4.42 4.66, 27 4.29 4.66,
28 4.38 4.90, 29 4.22 4.39, 30 3.48 6.05,
31 4.38 4.42, 32 4.56 5.10, 33 4.45 5.22,
34 3.49 6.29, 35 4.23 4.34, 36 4.62 5.62,
37 4.53 5.10, 38 4.45 5.22, 39 4.53 5.18,
40 4.43 5.57, 41 4.38 4.62, 42 4.45 5.06,
43 4.50 5.34, 44 4.45 5.34, 45 4.55 5.54,
46 4.45 4.98, 47 4.42 4.50 } ;

a = ab[,2]; b = ab[,3];

The following code specifies that most of the output be printed.

print "*** Hertzsprung-Russell Star Data: Do LMS ***";
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b,a);

Some simple statistics for the independent and response variables are shown in
Output 9.1.1.

190 � Chapter 9. Robust Regression Examples

Output 9.1.1. Some Simple Statistics
Median and Mean

Median Mean
VAR1 4.420000000 4.310000000
Intercep 1.000000000 1.000000000
Response 5.100000000 5.012127660

Dispersion and Standard Deviation

Dispersion StdDev
VAR1 0.1630862440 0.2908234187
Intercep 0.0000000000 0.0000000000
Response 0.6671709983 0.5712493409

Partial output for LS regression is shown inOutput 9.1.2.

Output 9.1.2. Table of Unweighted LS Regression

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 -0.4133 0.28626 -1.4438 0.156 -0.9744 0.1478
Intercep 6.7935 1.23652 5.4940 175E-8 4.3699 9.2170

Sum of Squares = 14.346394626
Degrees of Freedom = 45

LS Scale Estimate = 0.5646315343

COV Matrix of Parameter Estimates

VAR1 Intercep
VAR1 0.081943343 -0.353175807
Intercep -0.353175807 1.528970895

R-squared = 0.0442737441
F(1,45) Statistic = 2.0846120667

Probability = 0.1557164396

Output 9.1.3displays the iteration history. Looking at the columnBest Crit in the
iteration history table, you see that, with complete enumeration, the optimal solution
is quickly found.

Example 9.1. Substantial Leverage Points � 191

Output 9.1.3. History of the Iteration Process

*** Complete Enumeration for LMS ***

Subset Singular Best Crit Pct
271 5 0.39279108982007 25%
541 8 0.39279108982007 50%
811 27 0.39279108982007 75%

1081 45 0.39279108982007 100%
Minimum Criterion=0.3927910898

**
Least Median of Squares (LMS) Regression
**

Minimizing the 25th Ordered Squared Residual.
Highest Possible Breakdown Value = 48.94 %

Selection of All 1081 Subsets of 2 Cases Out of 47
Among 1081 subsets 45 are singular.

The results of the optimization for LMS estimation are displayed inOutput 9.1.4.

Output 9.1.4. Results of Optimization
Observations of Best Subset

2 29

Estimated Coefficients

VAR1 Intercep
3.97058824 -12.62794118

LMS Objective Function = 0.2620588235
Preliminary LMS Scale = 0.3987301586

Robust R Squared = 0.5813148789
Final LMS Scale Estimate = 0.3645644492

Output 9.1.5displays the results for WLS regression. Due to the size of the scaled
residuals, six observations (with numbers 7, 9, 11, 20, 30, 34) were assigned zero
weights in the following WLS analysis.

The LTS regression implements the FAST-LTS algorithm, which improves the al-
gorithm (used in SAS/IML Version 7 and before, denoted as V7 LTS in this chap-
ter) in Rousseeuw and Leroy (1987) using techniques called “selective iteration” and
“nested extensions.” These techniques are used in the C-steps of the algorithm. See
Rousseeuw and Van Driessen (2000) for details. The FAST-LTS algorithm signifi-
cantly improves the speed of computation.

192 � Chapter 9. Robust Regression Examples

Output 9.1.5. Table of Weighted LS Regression Based on LMS

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 3.0462 0.43734 6.9652 24E-9 2.1890 3.9033
Intercep -8.5001 1.92631 -4.4126 0.0001 -12.2755 -4.7246

Weighted Sum of Squares = 4.52819451
Degrees of Freedom = 39

RLS Scale Estimate = 0.3407455818

COV Matrix of Parameter Estimates

VAR1 Intercep
VAR1 0.191265604 -0.842128459
Intercep -0.842128459 3.710661875

Weighted R-squared = 0.5543573521
F(1,39) Statistic = 48.514065776

Probability = 2.3923178E-8
There are 41 points with nonzero weight.

Average Weight = 0.8723404255

The following code implements the LTS regression on the Hertzsprung-Russell Star
Data.

print "*** Hertzsprung-Russell Star Data: Do LTS ***";
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lts(sc,coef,wgt,optn,b,a);

Output 9.1.6summarizes the information for the LTS optimization.

Output 9.1.6. Summary of Optimization
Least Trimmed Squares (LTS) Method

Minimizing Sum of 25 Smallest Squared Residuals.
Highest Possible Breakdown Value = 48.94 %

Selection of All 1081 Subsets of 2 Cases Out of 47
Among 1081 subsets 45 is/are singular.

The best half of the entire data set obtained after full iteration consists
of the cases:

2 4 6 10 13 15 17 19 21 22 25 27 28

29 33 35 36 38 39 41 42 43 44 45 46

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 193

Output 9.1.7displays the optimization results andOutput 9.1.8displays the weighted
LS regression based on LTS estimates.

Output 9.1.7. Results of Optimization
Estimated Coefficients

VAR1 Intercep

4.219182102 -13.6239903

LTS Objective Function = 0.1829636959

Preliminary LTS Scale = 0.4524915298

Robust R Squared = 0.4210129994

Final LTS Scale = 0.3731970408

Output 9.1.8. Table of Weighted LS Regression Based on LTS

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LTS

Approx Pr >
Variable Estimate Std Err t Value |t| Lower WCI Upper WCI

VAR1 3.04615694 0.43733923 6.97 <.0001 2.18898779 3.90332608
Intercep -8.5000549 1.92630783 -4.41 <.0001 -12.275549 -4.7245609

Weighted Sum of Squares = 4.52819451

Degrees of Freedom = 39
RLS Scale Estimate = 0.3407455818

Cov Matrix of Parameter Estimates

VAR1 Intercep

VAR1 0.1912656038 -0.842128459
Intercep -0.842128459 3.7106618752

Weighted R-squared = 0.5543573521
F(1,39) Statistic = 48.514065776

Probability = 2.3923178E-8
There are 41 points with nonzero weight.

Average Weight = 0.8723404255

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS

This example presents comparisons of LMS, V7 LTS, and FAST-LTS. We use the
stackloss data of Brownlee (1965), which is also used for documenting the L1 regres-
sion module. The three explanatory variables correspond to measurements for a plant
oxidizing ammonia to nitric acid on 21 consecutive days:

194 � Chapter 9. Robust Regression Examples

• x1 air flow to the plant

• x2 cooling water inlet temperature

• x3 acid concentration

The response variableyi gives the permillage of ammonia lost (stackloss). These data
are also given in Rousseeuw and Leroy (1987, p. 76) and Osborne (1985, p. 267):

print "Stackloss Data";
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

Rousseeuw and Leroy (1987, p. 76) cite a large number of papers in which this data
set was analyzed before. They state that most researchers “concluded that observa-
tions 1, 3, 4, and 21 were outliers” and that some people also reported observation 2
as an outlier.

Consider 2,000 Random Subsets for LMS

ForN = 21 andn = 4 (three explanatory variables including intercept), you obtain
a total of 5985 different subsets of 4 observations out of 21. If you do not specify
optn[5], the LMS algorithms drawNrep = 2000 random sample subsets. Since there
is a large number of subsets with singular linear systems that you do not want to print,
you can chooseoptn[2]=2 for reduced printed output.

title2 "***Use 2000 Random Subsets for LMS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b,a);

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 195

Summary statistics are shown inOutput 9.2.1.

Output 9.2.1. Some Simple Statistics
Median and Mean

Median Mean
VAR1 58.00000000 60.42857143
VAR2 20.00000000 21.09523810
VAR3 87.00000000 86.28571429
Intercep 1.00000000 1.00000000
Response 15.00000000 17.52380952

Dispersion and Standard Deviation

Dispersion StdDev
VAR1 5.93040887 9.16826826
VAR2 2.96520444 3.16077145
VAR3 4.44780666 5.35857124
Intercep 0.00000000 0.00000000
Response 5.93040887 10.17162252

Output 9.2.2displays the results of LS regression.

Output 9.2.2. Table of Unweighted LS Regression

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 0.7156 0.13486 5.3066 58E-6 0.4513 0.9800
VAR2 1.2953 0.36802 3.5196 0.0026 0.5740 2.0166
VAR3 -0.1521 0.15629 -0.9733 0.344 -0.4585 0.1542
Intercep -39.9197 11.89600 -3.3557 0.0038 -63.2354 -16.6039

Sum of Squares = 178.8299616
Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

COV Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep
VAR1 0.0181867 -0.0365107 -0.0071435 0.2875871
VAR2 -0.0365107 0.1354419 0.0000105 -0.6517944
VAR3 -0.0071435 0.0000105 0.0244278 -1.6763208
Intercep 0.2875871 -0.6517944 -1.6763208 141.5147411

R-squared = 0.9135769045
F(3,17) Statistic = 59.9022259
Probability = 3.0163272E-9

Output 9.2.3displays the LMS results for the 2000 random subsets.

196 � Chapter 9. Robust Regression Examples

Output 9.2.3. Iteration History and Optimization Results

*** Random Subsampling for LMS ***

Subset Singular Best Crit Pct
500 23 0.1632616086096 25%

1000 55 0.14051869795752 50%
1500 79 0.14051869795752 75%
2000 103 0.12646682816177 100%
Minimum Criterion=0.1264668282

**
Least Median of Squares (LMS) Regression
**

Minimizing the 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

15 11 19 10

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep
0.75000000 0.50000000 0.00000000 -39.25000000

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375
Final LMS Scale Estimate = 1.2076147288

For LMS, observations 1, 3, 4, and 21 have scaled residuals larger than 2.5 (output
not shown), and they are considered outliers.Output 9.2.4displays the corresponding
WLS results.

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 197

Output 9.2.4. Table of Weighted LS Regression

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 0.7977 0.06744 11.8282 25E-9 0.6655 0.9299
VAR2 0.5773 0.16597 3.4786 0.0041 0.2520 0.9026
VAR3 -0.0671 0.06160 -1.0886 0.296 -0.1878 0.0537
Intercep -37.6525 4.73205 -7.9569 237E-8 -46.9271 -28.3778

Weighted Sum of Squares = 20.400800254
Degrees of Freedom = 13

RLS Scale Estimate = 1.2527139846

COV Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep
VAR1 0.00454803 -0.00792141 -0.00119869 0.00156817
VAR2 -0.00792141 0.02754569 -0.00046339 -0.06501751
VAR3 -0.00119869 -0.00046339 0.00379495 -0.24610225
Intercep 0.00156817 -0.06501751 -0.24610225 22.39230535

Weighted R-squared = 0.9750062263
F(3,13) Statistic = 169.04317954

Probability = 1.158521E-10
There are 17 points with nonzero weight.

Average Weight = 0.8095238095

The subroutine,prilmts(), which is in therobustmc.sas file that is contained in the
sample library, can be called to print the output summary:

call prilmts(3,sc,coef,wgt);

Output 9.2.5, Output 9.2.6, andOutput 9.2.7are the three parts of the output.

Output 9.2.5. First Part of Output Generated by prilmts()
Results of Least Median Squares Estimation

Quantile. 13
Number of Subsets. 2103
Number of Singular Subsets . 103
Number of Nonzero Weights. . 17
Objective Function. 0.75
Preliminary Scale Estimate. . 1.0478511
Final Scale Estimate. 1.2076147
Robust R Squared. 0.9648438
Asymptotic Consistency Factor 1.1413664
RLS Scale Estimate. 1.252714
Weighted Sum of Squares . . 20.4008
Weighted R-squared. 0.9750062
F Statistic 169.04318

198 � Chapter 9. Robust Regression Examples

Output 9.2.6. Second Part of Output Generated by prilmts()
Estimated LMS Coefficients

0.75 0.5 0 -39.25

Indices of Best Sample
15 11 19 10

Estimated WLS Coefficients
0.7976856 0.5773405 -0.06706 -37.65246

Standard Errors
0.0674391 0.1659689 0.0616031 4.7320509

T Values
11.828242 3.4786054 -1.088584 -7.956901

Probabilities
2.4838E-8 0.004078 0.2961071 2.3723E-6

Lower Wald CI
0.6655074 0.2520473 -0.1878 -46.92711

Upper Wald CI
0.9298637 0.9026336 0.0536798 -28.37781

Output 9.2.7. Third Part of Output Generated by prilmts()
LMS Residuals

6.4176097 2.2772163 6.21059 7.2456884 -0.20702 -0.621059
: -0.20702 0.621059 -0.621059 0.621059 0.621059 0.2070197
: -1.863177 -1.449138 0.621059 -0.20702 0.2070197 0.2070197
: 0.621059 1.863177 -6.831649

Diagnostics
10.448052 7.9317507 10 11.666667 2.7297297 3.4864865

: 4.7297297 4.2432432 3.6486486 3.7598351 4.6057675 4.9251688
: 3.8888889 4.5864209 5.2970297 4.009901 6.679576 4.3053404
: 4.0199755 3 11

WLS Residuals
4.9634454 0.9185794 5.1312163 6.5250478 -0.535877 -0.996749

: -0.338162 0.4601047 -0.844485 0.286883 0.7686702 0.3777432
: -2.000854 -1.074607 1.0731966 0.1143341 -0.297718 0.0770058
: 0.4679328 1.544002 -6.888934

Consider 2,000 Random Subsets for V7 LTS

The V7 LTS algorithm is similar to the LMS algorithm.

title2 "***Use 2000 Random Subsets for LTS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
optn[9]= 1; /* V7 LTS */

call lts(sc,coef,wgt,optn,b,a);

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 199

Output 9.2.8displays the iteration history and optimization results of V7 LTS.

Output 9.2.8. Iteration History and Optimization Results

*** Random Subsampling for V7 LTS ***

Subset Singular Best Crit Pct
500 23 0.09950690229748 25%

1000 55 0.08781379221356 50%
1500 79 0.08406140720682 75%
2000 103 0.08406140720682 100%
Minimum Criterion=0.0840614072

Least Trimmed Squares (V7 LTS) Regression

Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

10 11 7 15

Estimated Coefficients
VAR1 VAR2 VAR3 Intercep

0.75000000 0.33333333 0.00000000 -35.70512821

LTS Objective Function = 0.4985185153
Preliminary LTS Scale = 1.0379336739

Robust R Squared = 0.9719626168
Final LTS Scale Estimate = 1.0407755737

In addition to observations 1, 3, 4, and 21, which were considered outliers in LMS,
observations 2 and 13 for LTS have absolute scaled residuals that are larger (but not as
significantly as observations 1, 3, 4, and 21) than 2.5 (output not shown). Therefore,
the WLS results based on LTS are different from those based on LMS.

Output 9.2.9displays the results for the weighted LS regression.

200 � Chapter 9. Robust Regression Examples

Output 9.2.9. Table of Weighted LS Regression

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LTS

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 0.7569 0.07861 9.6293 108E-8 0.6029 0.9110
VAR2 0.4535 0.13605 3.3335 0.0067 0.1869 0.7202
VAR3 -0.0521 0.05464 -0.9537 0.361 -0.1592 0.0550
Intercep -34.0575 3.82882 -8.8950 235E-8 -41.5619 -26.5532

Weighted Sum of Squares = 10.273044977
Degrees of Freedom = 11

RLS Scale Estimate = 0.9663918355

COV Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep
VAR1 0.00617916 -0.00577686 -0.00230059 -0.03429007
VAR2 -0.00577686 0.01850969 0.00025825 -0.06974088
VAR3 -0.00230059 0.00025825 0.00298523 -0.13148741
Intercep -0.03429007 -0.06974088 -0.13148741 14.65985290

Weighted R-squared = 0.9622869127
F(3,11) Statistic = 93.558645037

Probability = 4.1136826E-8
There are 15 points with nonzero weight.

Average Weight = 0.7142857143

Consider 500 Random Subsets for FAST-LTS

The FAST-LTS algorithm uses only 500 random subsets and gets better optimization
results.

title2 "***Use 500 Random Subsets for FAST-LTS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
optn[9]= 0; /* FAST-LTS */

call lts(sc,coef,wgt,optn,b,a);

For this example, the two LTS algorithms identify the same outliers; however, the
FAST-LTS algorithm uses only 500 random subsets and gets a smaller objective func-
tion, as seen inOutput 9.2.10. For large data sets, the advantages of the FAST-LTS
algorithm are more obvious.

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 201

Output 9.2.10. Optimization Results for FAST-LTS

Least Trimmed Squares (FAST-LTS) Regression

Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 523 Subsets
Among 523 subsets 23 is/are singular.

The best half of the entire data set obtained after full iteration consists
of the cases:

5 6 7 8 9 10 11 12 15 16 17 18 19

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.7409210642 0.3915267228 0.0111345398 -37.32332647

LTS Objective Function = 0.474940583
Preliminary LTS Scale = 0.9888435617
Robust R Squared = 0.9745520119
Final LTS Scale = 1.0360272594

Consider All 5,985 Subsets

You now report the results of LMS for all different subsets:

title2 "*** Use All 5985 Subsets***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[5]= -1; /* nrep: all 5985 subsets */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b,a);

Output 9.2.11displays the results for LMS.

202 � Chapter 9. Robust Regression Examples

Output 9.2.11. Iteration History and Optimization Results for LMS

*** Complete Enumeration for LMS ***

Subset Singular Best Crit Pct
1497 36 0.18589932664216 25%
2993 87 0.15826842822584 50%
4489 149 0.14051869795752 75%
5985 266 0.12646682816177 100%
Minimum Criterion=0.1264668282

**
Least Median of Squares (LMS) Regression
**

Minimizing the 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Selection of All 5985 Subsets of 4 Cases Out of 21
Among 5985 subsets 266 are singular.

Observations of Best Subset

8 10 15 19

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep
0.75000000 0.50000000 0.00000000 -39.25000000

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375
Final LMS Scale Estimate = 1.2076147288

Next, report the results of LTS for all different subsets:

title2 "*** Use All 5985 Subsets***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[5]= -1; /* nrep: all 5985 subsets */
optn[8]= 3; /* icov */
optn[9]= 1; /* V7 LTS */

call lts(sc,coef,wgt,optn,b,a);

Output 9.2.12displays the results for LTS.

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 203

Output 9.2.12. Iteration History and Optimization Results for LTS

*** Complete Enumeration for LTS ***

Subset Singular Best Crit Pct
1497 36 0.13544860556893 25%
2993 87 0.10708384510403 50%
4489 149 0.08153552986986 75%
5985 266 0.08153552986986 100%
Minimum Criterion=0.0815355299

Least Trimmed Squares (LTS) Regression

Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %

Selection of All 5985 Subsets of 4 Cases Out of 21
Among 5985 subsets 266 are singular.

Observations of Best Subset

5 12 17 18

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep
0.72916667 0.41666667 0.00000000 -36.22115385

LTS Objective Function = 0.4835390299
Preliminary LTS Scale = 1.0067458407

Robust R Squared = 0.9736222371
Final LTS Scale Estimate = 1.009470149

204 � Chapter 9. Robust Regression Examples

Example 9.3. LMS and LTS Univariate (Location) Problem:
Barnett and Lewis Data

If you do not specify matrixX of the last input argument, the regression problem
is reduced to the estimation problem of the location parametera. The following
example is described in Rousseeuw and Leroy (1987, p. 175):

print "*** Barnett and Lewis (1978) ***";
b = { 3, 4, 7, 8, 10, 949, 951 };

optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b);

Output 9.3.1shows the results of the unweighted LS regression.

Output 9.3.1. Table of Unweighted LS Regression
Robust Estimation of Location and Scale

Unweighted Least-Squares Estimation

Median = 8 MAD (* 1.4826) = 5.930408874
Mean = 276 Standard Deviation = 460.43602523

LS Residuals

Observed Residual Res / S

1 3.000000 -273.000000 -0.592916
2 4.000000 -272.000000 -0.590744
3 7.000000 -269.000000 -0.584229
4 8.000000 -268.000000 -0.582057
5 10.000000 -266.000000 -0.577713
6 949.000000 673.000000 1.461658
7 951.000000 675.000000 1.466002

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-273 -272 -268 0 -266 675

Output 9.3.2shows the results for LMS regression.

Example 9.3. Univariate (Location) Problem � 205

Output 9.3.2. Table of LMS Results

Least Median of Squares (LMS) Method

Minimizing 4th Ordered Squared Residual.
Highest Possible Breakdown Value = 57.14 %

LMS Objective Function = 2.5
LMS Location = 5.5

Preliminary LMS Scale = 5.4137257125
Final LMS Scale = 3.0516389039

LMS Residuals

Observed Residual Res / S

1 3.000000 -2.500000 -0.819232
2 4.000000 -1.500000 -0.491539
3 7.000000 1.500000 0.491539
4 8.000000 2.500000 0.819232
5 10.000000 4.500000 1.474617
6 949.000000 943.500000 309.178127
7 951.000000 945.500000 309.833512

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-2.5 -1.5 2.5 270.5 4.5 945.5

You obtain the LMS location estimate6.5 compared with the mean276 (which is the
LS estimate of the location parameter) and the median8. The scale estimate in the
univariate problem is a resistant (high breakdown) estimator for the dispersion of the
data (refer to Rousseeuw and Leroy 1987, p. 178).

For weighted LS regression, the last two observations are ignored (that is, given zero
weights), as shown inOutput 9.3.3.

Output 9.3.3. Table of Weighted LS Regression

Weighted Least-Squares Estimation

Weighted Mean = 6.4
Weighted Standard Deviation = 2.8809720582
There are 5 points with nonzero weight.

Average Weight = 0.7142857143

Weighted LS Residuals
--

Observed Residual Res / S Weight
--

1 3.000000 -3.400000 -1.180157 1.000000
2 4.000000 -2.400000 -0.833052 1.000000
3 7.000000 0.600000 0.208263 1.000000
4 8.000000 1.600000 0.555368 1.000000
5 10.000000 3.600000 1.249578 1.000000
6 949.000000 942.600000 327.181236 0
7 951.000000 944.600000 327.875447 0

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-3.4 -2.4 1.6 269.6 3.6 944.6

206 � Chapter 9. Robust Regression Examples

optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lts(sc,coef,wgt,optn,b);

The results for LTS are similar to those reported for LMS in Rousseeuw and Leroy
(1987), as shown inOutput 9.3.4.

Output 9.3.4. Table of LTS Results

Least Trimmed Squares (LTS) Method

Minimizing Sum of 4 Smallest Squared Residuals.
Highest Possible Breakdown Value = 57.14 %

LTS Objective Function = 2.0615528128
LTS Location = 5.5

Preliminary LTS Scale = 4.7050421234
Final LTS Scale = 3.0516389039

LTS Residuals

Observed Residual Res / S

1 3.000000 -2.500000 -0.819232
2 4.000000 -1.500000 -0.491539
3 7.000000 1.500000 0.491539
4 8.000000 2.500000 0.819232
5 10.000000 4.500000 1.474617
6 949.000000 943.500000 309.178127
7 951.000000 945.500000 309.833512

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-2.5 -1.5 2.5 270.5 4.5 945.5

Since nonzero weights are chosen for the same observations as with LMS, the WLS
results based on LTS agree with those based on LMS (shown previously inOutput
9.3.3).

In summary, you obtain the following estimates for the location parameter:

• LS estimate (unweighted mean) = 276

• Median = 8

• LMS estimate = 5.5

• LTS estimate = 5.5

• WLS estimate (weighted mean based on LMS or LTS) = 6.4

Using MVE and MCD
The routinesprimve, scatmve, andscatmcdare used in these examples for printing
and plotting the results. These routines are in therobustmc.sas file that is con-
tained in the sample library.

Example 9.4. Brainlog Data � 207

Example 9.4. Brainlog Data
The following data, consisting of the body weights (in kilograms) and brain weights
(in grams) ofN = 28 animals, are reported by Jerison (1973) and can be found also
in Rousseeuw and Leroy (1987, p. 57). Instead of the original data, this example uses
the logarithms of the measurements of the two variables.

title "*** Brainlog Data: Do MCD, MVE ***";
aa={ 1.303338E-001 9.084851E-001 ,

2.6674530 2.6263400 ,
1.5602650 2.0773680 ,
1.4418520 2.0606980 ,

1.703332E-002 7.403627E-001 ,
4.0681860 1.6989700 ,
3.4060290 3.6630410 ,
2.2720740 2.6222140 ,
2.7168380 2.8162410 ,
1.0000000 2.0606980 ,

5.185139E-001 1.4082400 ,
2.7234560 2.8325090 ,
2.3159700 2.6085260 ,
1.7923920 3.1205740 ,
3.8230830 3.7567880 ,
3.9731280 1.8450980 ,

8.325089E-001 2.2528530 ,
1.5440680 1.7481880 ,

-9.208187E-001 .0000000 ,
-1.6382720 -3.979400E-001 ,

3.979400E-001 1.0827850 ,
1.7442930 2.2430380 ,
2.0000000 2.1959000 ,
1.7173380 2.6434530 ,
4.9395190 2.1889280 ,

-5.528420E-001 2.787536E-001 ,
-9.136401E-001 4.771213E-001 ,

2.2833010 2.2552720 };

By default, the MVE subroutine uses only 1500 randomly selected subsets rather than
all subsets. The following specification of the options vector requires that all 3,276
subsets of 3 cases out of 28 cases are generated and evaluated:

title2 "***MVE for BrainLog Data***";
title3 "*** Use All Subsets***";

optn = j(9,1,.);
optn[1]= 3; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: all subsets */

call mve(sc,xmve,dist,optn,aa);

Specifyingoptn[1]=3, optn[2]=1, andoptn[3]=1 requests that all output be printed.
Output 9.4.1shows the classical scatter and correlation matrix.

208 � Chapter 9. Robust Regression Examples

Output 9.4.1. Some Simple Statistics

Minimum Volume Ellipsoid (MVE) Estimation

Consider Ellipsoids Containing 15 Cases.

Classical Covariance Matrix

VAR1 VAR2
VAR1 2.681651236 1.330084693
VAR2 1.330084693 1.085753755

Classical Correlation Matrix

VAR1 VAR2
VAR1 1.000000000 0.779493464
VAR2 0.779493464 1.000000000

Classical Mean

VAR1 1.637857
VAR2 1.921947

Output 9.4.2shows the results of the combinatoric optimization (complete subset
sampling).

Output 9.4.2. Iteration History for MVE

MVE for BrainLog Data

Best
Subset Singular Criterion Percent

819 0 0.439709 25
1638 0 0.439709 50
2457 0 0.439709 75
3276 0 0.439709 100

Observations of Best Subset

1 22 28

Initial MVE Location
Estimates

VAR1 1.3859759333
VAR2 1.8022650333

Initial MVE Scatter Matrix

VAR1 VAR2

VAR1 4.9018525125 3.2937139101
VAR2 3.2937139101 2.3400650932

Output 9.4.3shows the optimization results after local improvement.

Example 9.4. Brainlog Data � 209

Output 9.4.3. Table of MVE Results

MVE for BrainLog Data

Robust MVE Location
Estimates

VAR1 1.29528238
VAR2 1.8733722792

Robust MVE Scatter Matrix

VAR1 VAR2

VAR1 2.0566592937 1.5290250167
VAR2 1.5290250167 1.2041353589

Eigenvalues of Robust
Scatter Matrix

VAR1 3.2177274012
VAR2 0.0430672514

Robust Correlation Matrix

VAR1 VAR2

VAR1 1 0.9716184659
VAR2 0.9716184659 1

Output 9.4.4presents a table containing the classical Mahalanobis distances, the ro-
bust distances, and the weights identifying the outlier observations.

210 � Chapter 9. Robust Regression Examples

Output 9.4.4. Mahalanobis and Robust Distances

MVE for BrainLog Data

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 1.006591 0.897076 1.000000
2 0.695261 1.405302 1.000000
3 0.300831 0.186726 1.000000
4 0.380817 0.318701 1.000000
5 1.146485 1.135697 1.000000
6 2.644176 8.828036 0
7 1.708334 1.699233 1.000000
8 0.706522 0.686680 1.000000
9 0.858404 1.084163 1.000000

10 0.798698 1.580835 1.000000
11 0.686485 0.693346 1.000000
12 0.874349 1.071492 1.000000
13 0.677791 0.717545 1.000000
14 1.721526 3.398698 0
15 1.761947 1.762703 1.000000
16 2.369473 7.999472 0
17 1.222253 2.805954 0
18 0.203178 1.207332 1.000000
19 1.855201 1.773317 1.000000
20 2.266268 2.074971 1.000000
21 0.831416 0.785954 1.000000
22 0.416158 0.342200 1.000000
23 0.264182 0.918383 1.000000
24 1.046120 1.782334 1.000000
25 2.911101 9.565443 0
26 1.586458 1.543748 1.000000
27 1.582124 1.808423 1.000000
28 0.394664 1.523235 1.000000

Again, you can call the subroutinescatmve(), which is included in the sample library
in the filerobustmc.sas, to plot the classical and robust confidence ellipsoids:

optn = j(9,1,.); optn[5]= -1;
vnam = { "Log Body Wgt","Log Brain Wgt" };
filn = "brlmve";
titl = "BrainLog Data: MVE Use All Subsets";

call scatmve(2,optn,.9,aa,vnam,titl,1,filn);

The plot is shown inOutput 9.4.5.

Example 9.4. Brainlog Data � 211

Output 9.4.5. BrainLog Data: Classical and Robust Ellipsoid(MVE)

MCD is another subroutine that can be used to compute the robust location and the
robust covariance of multivariate data sets.

title2 "***MCD for BrainLog Data***";
title3 "*** Use 500 Random Subsets***";

optn = j(9,1,.);
optn[1]= 3; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */

call mcd(sc,xmve,dist,optn,aa);

Similarly, specifyingoptn[1]=3, optn[2]=1, andoptn[3]=1 requests that all output be
printed.

Output 9.4.6shows the results of the optimization.

212 � Chapter 9. Robust Regression Examples

Output 9.4.6. Results of the Optimization
1 2 3 4 5 8 9 11 12 13 18 21 22 23 28

MCD Location Estimate

VAR1 VAR2

1.622226068 2.0150777867

MCD Scatter Matrix Estimate

VAR1 VAR2

VAR1 0.8973945995 0.6424456706
VAR2 0.6424456706 0.4793505736

Output 9.4.7shows the reweighted results after removing outliers.

Output 9.4.7. Final Reweighted MCD Results
Reweighted Location Estimate

VAR1 VAR2

1.3154029661 1.8568731174

Reweighted Scatter Matrix

VAR1 VAR2

VAR1 2.139986054 1.6068556533
VAR2 1.6068556533 1.2520384784

Eigenvalues

VAR1 VAR2

3.363074897 0.0289496354

Reweighted Correlation Matrix

VAR1 VAR2

VAR1 1 0.9816633012
VAR2 0.9816633012 1

Output 9.4.8presents a table containing the classical Mahalanobis distances, the ro-
bust distances, and the weights identifying the outlier observations.

Example 9.4. Brainlog Data � 213

Output 9.4.8. Mahalanobis and Robust Distances (MCD)
Classical Distances and Robust (Rousseeuw) Distances

Unsquared Mahalanobis Distance and
Unsquared Rousseeuw Distance of Each Observation

Mahalanobis Robust
N Distances Distances Weight

1 1.006591 0.855347 1.000000
2 0.695261 1.477050 1.000000
3 0.300831 0.239828 1.000000
4 0.380817 0.517719 1.000000
5 1.146485 1.108362 1.000000
6 2.644176 10.599341 0
7 1.708334 1.808455 1.000000
8 0.706522 0.690099 1.000000
9 0.858404 1.052423 1.000000

10 0.798698 2.077131 1.000000
11 0.686485 0.888545 1.000000
12 0.874349 1.035824 1.000000
13 0.677791 0.683978 1.000000
14 1.721526 4.257963 0
15 1.761947 1.716065 1.000000
16 2.369473 9.584992 0
17 1.222253 3.571700 0
18 0.203178 1.323783 1.000000
19 1.855201 1.741064 1.000000
20 2.266268 2.026528 1.000000
21 0.831416 0.743545 1.000000
22 0.416158 0.419923 1.000000
23 0.264182 0.944610 1.000000
24 1.046120 2.289334 1.000000
25 2.911101 11.471953 0
26 1.586458 1.518721 1.000000
27 1.582124 2.054593 1.000000
28 0.394664 1.675651 1.000000

You can call the subroutinescatmcd(), which is included in the sample library in file
robustmc.sas, to plot the classical and robust confidence ellipsoids:

optn = j(9,1,.); optn[5]= -1;
vnam = { "Log Body Wgt","Log Brain Wgt" };
filn = "brlmcd";
titl = "BrainLog Data: MCD";

call scatmcd(2,optn,.9,aa,vnam,titl,1,filn);

The plot is shown inOutput 9.4.9.

214 � Chapter 9. Robust Regression Examples

Output 9.4.9. BrainLog Data: Classical and Robust Ellipsoid (MCD)

Example 9.5. Stackloss Data

This example analyzes the three regressors of Brownlee (1965) stackloss data. By
default, the MVE subroutine tries only 2,000 randomly selected subsets in its search.
There are, in total, 5,985 subsets of 4 cases out of 21 cases.

title2 "***MVE for Stackloss Data***";
title3 "*** Use All Subsets***";

a = aa[,2:4];
optn = j(9,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */

call mve(sc,xmve,dist,optn,a);

Output 9.5.1of the output shows the classical scatter and correlation matrix.

Example 9.5. Stackloss Data � 215

Output 9.5.1. Some Simple Statistics

Minimum Volume Ellipsoid (MVE) Estimation

Consider Ellipsoids Containing 12 Cases.

Classical Covariance Matrix

VAR1 VAR2 VAR3
VAR1 84.05714286 22.65714286 24.57142857
VAR2 22.65714286 9.99047619 6.62142857
VAR3 24.57142857 6.62142857 28.71428571

Classical Correlation Matrix

VAR1 VAR2 VAR3
VAR1 1.000000000 0.781852333 0.500142875
VAR2 0.781852333 1.000000000 0.390939538
VAR3 0.500142875 0.390939538 1.000000000

Classical Mean

VAR1 60.42857
VAR2 21.09524
VAR3 86.28571

Output 9.5.2shows the results of the optimization (complete subset sampling).

Output 9.5.2. Iteration History

MVE for Stackloss Data

Best
Subset Singular Criterion Percent

1497 22 253.312431 25
2993 46 224.084073 50
4489 77 165.830053 75
5985 156 165.634363 100

Observations of Best Subset

7 10 14 20

Initial MVE Location
Estimates

VAR1 58.5
VAR2 20.25
VAR3 87

Initial MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 34.829014749 28.413143611 62.32560534
VAR2 28.413143611 38.036950318 58.659393261
VAR3 62.32560534 58.659393261 267.63348175

216 � Chapter 9. Robust Regression Examples

Output 9.5.3shows the optimization results after local improvement.

Output 9.5.3. Table of MVE Results

MVE for Stackloss Data

Robust MVE Location
Estimates

VAR1 56.705882353
VAR2 20.235294118
VAR3 85.529411765

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 23.470588235 7.5735294118 16.102941176
VAR2 7.5735294118 6.3161764706 5.3676470588
VAR3 16.102941176 5.3676470588 32.389705882

Eigenvalues of Robust
Scatter Matrix

VAR1 46.597431018
VAR2 12.155938483
VAR3 3.423101087

Robust Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.6220269501 0.5840361335
VAR2 0.6220269501 1 0.375278187
VAR3 0.5840361335 0.375278187 1

Output 9.5.4presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is, the
leverage points when explainingy with these three regressor variables).

Example 9.5. Stackloss Data � 217

Output 9.5.4. Mahalanobis and Robust Distances

MVE for Stackloss Data

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 5.528395 0
2 2.324745 5.637357 0
3 1.593712 4.197235 0
4 1.271898 1.588734 1.000000
5 0.303357 1.189335 1.000000
6 0.772895 1.308038 1.000000
7 1.852661 1.715924 1.000000
8 1.852661 1.715924 1.000000
9 1.360622 1.226680 1.000000

10 1.745997 1.936256 1.000000
11 1.465702 1.493509 1.000000
12 1.841504 1.913079 1.000000
13 1.482649 1.659943 1.000000
14 1.778785 1.689210 1.000000
15 1.690241 2.230109 1.000000
16 1.291934 1.767582 1.000000
17 2.700016 2.431021 1.000000
18 1.503155 1.523316 1.000000
19 1.593221 1.710165 1.000000
20 0.807054 0.675124 1.000000
21 2.176761 3.657281 0

The following specification generates three bivariate plots of the classical and robust
tolerance ellipsoids. They are shown inOutput 9.5.5, Output 9.5.6, andOutput 9.5.7,
one plot for each pair of variables.

optn = j(9,1,.); optn[5]= -1;
vnam = { "Rate", "Temperature", "AcidConcent" };
filn = "stlmve";
titl = "Stackloss Data: Use All Subsets";

call scatmve(2,optn,.9,a,vnam,titl,1,filn);

218 � Chapter 9. Robust Regression Examples

Output 9.5.5. Stackloss Data: Rate vs. Temperature (MVE)

Output 9.5.6. Stackloss Data: Rate vs. Acid Concent (MVE)

Example 9.5. Stackloss Data � 219

Output 9.5.7. Stackloss Data: Temperature vs. Acid Concent (MVE)

You can also use the MCD method for the stackloss data:

title2 "***MCD for Stackloss Data***";
title3 "*** Use 500 Random Subsets***";
a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1 ; /* nrep: use all subsets */
CALL MCD(sc,xmcd,dist,optn,a);

The optimization results are displayed inOutput 9.5.8. The reweighted results are
displayed inOutput 9.5.9.

220 � Chapter 9. Robust Regression Examples

Output 9.5.8. MCD Results of Optimization
MCD for Stackloss Data

*** Use 500 Random Subsets***

4 5 6 7 8 9 10 11 12 13 14 20

MCD Location Estimate

VAR1 VAR2 VAR3

59.5 20.833333333 87.333333333

MCD Scatter Matrix Estimate

VAR1 VAR2 VAR3

VAR1 5.1818181818 4.8181818182 4.7272727273
VAR2 4.8181818182 7.6060606061 5.0606060606
VAR3 4.7272727273 5.0606060606 19.151515152

MCD Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.7674714142 0.4745347313
VAR2 0.7674714142 1 0.4192963398
VAR3 0.4745347313 0.4192963398 1

Consistent Scatter Matrix

VAR1 VAR2 VAR3

VAR1 8.6578437815 8.0502757968 7.8983838007
VAR2 8.0502757968 12.708297013 8.4553211199
VAR3 7.8983838007 8.4553211199 31.998580526

Example 9.5. Stackloss Data � 221

Output 9.5.9. Final Reweighted MCD Results
MCD for Stackloss Data

*** Use 500 Random Subsets***

Reweighted Location Estimate

VAR1 VAR2 VAR3

59.5 20.833333333 87.333333333

Reweighted Scatter Matrix

VAR1 VAR2 VAR3

VAR1 5.1818181818 4.8181818182 4.7272727273
VAR2 4.8181818182 7.6060606061 5.0606060606
VAR3 4.7272727273 5.0606060606 19.151515152

Eigenvalues

VAR1 VAR2 VAR3

23.191069268 7.3520037086 1.3963209628

Reweighted Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.7674714142 0.4745347313
VAR2 0.7674714142 1 0.4192963398
VAR3 0.4745347313 0.4192963398 1

The MCD robust distances and outlying diagnostic are displayed inOutput 9.5.10.
MCD identifies more leverage points than MVE.

222 � Chapter 9. Robust Regression Examples

Output 9.5.10. MCD Robust Distances
MCD for Stackloss Data

*** Use 500 Random Subsets***

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 12.173282 0
2 2.324745 12.255677 0
3 1.593712 9.263990 0
4 1.271898 1.401368 1.000000
5 0.303357 1.420020 1.000000
6 0.772895 1.291188 1.000000
7 1.852661 1.460370 1.000000
8 1.852661 1.460370 1.000000
9 1.360622 2.120590 1.000000

10 1.745997 1.809708 1.000000
11 1.465702 1.362278 1.000000
12 1.841504 1.667437 1.000000
13 1.482649 1.416724 1.000000
14 1.778785 1.988240 1.000000
15 1.690241 5.874858 0
16 1.291934 5.606157 0
17 2.700016 6.133319 0
18 1.503155 5.760432 0
19 1.593221 6.156248 0
20 0.807054 2.172300 1.000000
21 2.176761 7.622769 0

Similarly, you can use the macroscatmcdto generate three bivariate plots of the
classical and robust tolerance ellipsoids, one plot for each pair of variables:

optn = j(9,1,.); optn[5]= -1;
vnam = { "Rate", "Temperature", "AcidConcent" };
filn = "stlmcd";
titl = "Stackloss Data: Use All Subsets";

call scatmcd(2,optn,.9,a,vnam,titl,1,filn);

Output 9.5.11, Output 9.5.12, andOutput 9.5.13display these plots.

Example 9.5. Stackloss Data � 223

Output 9.5.11. Stackloss Data: Rate vs. Temperature(MCD)

Output 9.5.12. Stackloss Data: Rate vs. Acid Concent(MCD)

224 � Chapter 9. Robust Regression Examples

Output 9.5.13. Stackloss Data: Temperature vs. Acid Concent(MCD)

Combining Robust Residual and Robust
Distance
This section is based entirely on Rousseeuw and Van Zomeren (1990). Observations
xi, which are far away from most of the other observations, are calledleverage points.
One classical method inspects the Mahalanobis distancesMDi to find outliersxi:

MDi =
√

(xi − µ)C−1(xi − µ)T

whereC is the classical sample covariance matrix.

Note that the MVE subroutine prints the classical Mahalanobis distancesMDi to-
gether with the robust distancesRDi. In classical linear regression, the diagonal
elementshii of thehatmatrix

H = X(XTX)−1XT

are used to identify leverage points. Rousseeuw and Van Zomeren (1990) report the
following monotone relationship between thehii andMDi:

hii =
(MDi)2

N − 1
+

1
n

They point out that neither theMDi nor thehii are entirely safe for detecting leverage
points reliably. Multiple outliers do not necessarily have largeMDi values because
of the masking effect.

Example 9.6. Hawkins-Bradu-Kass Data � 225

The definition of aleverage pointis, therefore, based entirely on the outlyingness
of xi and is not related to the response valueyi. By including theyi value in the
definition, Rousseeuw and Van Zomeren (1990) distinguish between the following:

• Good leverage pointsare points(xi, yi) that are close to the regression plane;
that is, good leverage points improve the precision of the regression coeffi-
cients.

• Bad leverage pointsare points(xi, yi) that are far from the regression plane;
that is, bad leverage points reduce the precision of the regression coefficients.

Rousseeuw and Van Zomeren (1990) propose to plot the standardized residuals of
robust regression (LMS or LTS) versus the robust distancesRDi obtained from MVE.
Two horizontal lines corresponding to residual values of+2.5 and−2.5 are useful to
distinguish between small and large residuals, and one vertical line corresponding to

the
√
χ2

n,.975 is used to distinguish between small and large distances.

Example 9.6. Hawkins-Bradu-Kass Data

The first 14 observations of this data set (refer to Hawkins, Bradu, and Kass 1984)
are leverage points; however, only observations 12, 13, and 14 have largehii, and
only observations 12 and 14 have largeMDi values.

title "Hawkins, Bradu, Kass (1984) Data";
aa = { 1 10.1 19.6 28.3 9.7,

2 9.5 20.5 28.9 10.1,
3 10.7 20.2 31.0 10.3,
4 9.9 21.5 31.7 9.5,
5 10.3 21.1 31.1 10.0,
6 10.8 20.4 29.2 10.0,
7 10.5 20.9 29.1 10.8,
8 9.9 19.6 28.8 10.3,
9 9.7 20.7 31.0 9.6,

10 9.3 19.7 30.3 9.9,
11 11.0 24.0 35.0 -0.2,
12 12.0 23.0 37.0 -0.4,
13 12.0 26.0 34.0 0.7,
14 11.0 34.0 34.0 0.1,
15 3.4 2.9 2.1 -0.4,
16 3.1 2.2 0.3 0.6,
17 0.0 1.6 0.2 -0.2,
18 2.3 1.6 2.0 0.0,
19 0.8 2.9 1.6 0.1,
20 3.1 3.4 2.2 0.4,
21 2.6 2.2 1.9 0.9,
22 0.4 3.2 1.9 0.3,
23 2.0 2.3 0.8 -0.8,
24 1.3 2.3 0.5 0.7,
25 1.0 0.0 0.4 -0.3,
26 0.9 3.3 2.5 -0.8,
27 3.3 2.5 2.9 -0.7,

226 � Chapter 9. Robust Regression Examples

28 1.8 0.8 2.0 0.3,
29 1.2 0.9 0.8 0.3,
30 1.2 0.7 3.4 -0.3,
31 3.1 1.4 1.0 0.0,
32 0.5 2.4 0.3 -0.4,
33 1.5 3.1 1.5 -0.6,
34 0.4 0.0 0.7 -0.7,
35 3.1 2.4 3.0 0.3,
36 1.1 2.2 2.7 -1.0,
37 0.1 3.0 2.6 -0.6,
38 1.5 1.2 0.2 0.9,
39 2.1 0.0 1.2 -0.7,
40 0.5 2.0 1.2 -0.5,
41 3.4 1.6 2.9 -0.1,
42 0.3 1.0 2.7 -0.7,
43 0.1 3.3 0.9 0.6,
44 1.8 0.5 3.2 -0.7,
45 1.9 0.1 0.6 -0.5,
46 1.8 0.5 3.0 -0.4,
47 3.0 0.1 0.8 -0.9,
48 3.1 1.6 3.0 0.1,
49 3.1 2.5 1.9 0.9,
50 2.1 2.8 2.9 -0.4,
51 2.3 1.5 0.4 0.7,
52 3.3 0.6 1.2 -0.5,
53 0.3 0.4 3.3 0.7,
54 1.1 3.0 0.3 0.7,
55 0.5 2.4 0.9 0.0,
56 1.8 3.2 0.9 0.1,
57 1.8 0.7 0.7 0.7,
58 2.4 3.4 1.5 -0.1,
59 1.6 2.1 3.0 -0.3,
60 0.3 1.5 3.3 -0.9,
61 0.4 3.4 3.0 -0.3,
62 0.9 0.1 0.3 0.6,
63 1.1 2.7 0.2 -0.3,
64 2.8 3.0 2.9 -0.5,
65 2.0 0.7 2.7 0.6,
66 0.2 1.8 0.8 -0.9,
67 1.6 2.0 1.2 -0.7,
68 0.1 0.0 1.1 0.6,
69 2.0 0.6 0.3 0.2,
70 1.0 2.2 2.9 0.7,
71 2.2 2.5 2.3 0.2,
72 0.6 2.0 1.5 -0.2,
73 0.3 1.7 2.2 0.4,
74 0.0 2.2 1.6 -0.9,
75 0.3 0.4 2.6 0.2 };

a = aa[,2:4]; b = aa[,5];

The data are listed also in Rousseeuw and Leroy (1987, p. 94).

The complete enumeration must inspect 1,215,450 subsets.

Example 9.6. Hawkins-Bradu-Kass Data � 227

Output 9.6.1displays the iteration history for MVE.

Output 9.6.1. Iteration History for MVE

*** Complete Enumeration for MVE ***

Subset Singular Best Crit Pct
121545 0 51.1042755960104 10%
243090 2 51.1042755960104 20%
364635 4 51.1042755960104 30%
486180 7 51.1042755960104 40%
607725 9 51.1042755960104 50%
729270 22 6.27172477029496 60%
850815 67 6.27172477029496 70%
972360 104 5.91230765636768 80%

1093905 135 5.91230765636768 90%
1215450 185 5.91230765636768 100%

Minimum Criterion=5.9123076564
Among 1215450 subsets 185 are singular.

Output 9.6.2reports the robust parameter estimates for MVE.

Output 9.6.2. Robust Location Estimates
Robust MVE Location Estimates

VAR1 1.513333333
VAR2 1.808333333
VAR3 1.701666667

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3
VAR1 1.114395480 0.093954802 0.141672316
VAR2 0.093954802 1.123149718 0.117443503
VAR3 0.141672316 0.117443503 1.074742938

Output 9.6.3reports the eigenvalues of the robust scatter matrix and the robust corre-
lation matrix.

Output 9.6.3. MVE Scatter Matrix
Eigenvalues of Robust Scatter Matrix

VAR1 1.339637154
VAR2 1.028124757
VAR3 0.944526224

Robust Correlation Matrix

VAR1 VAR2 VAR3
VAR1 1.000000000 0.083980892 0.129453270
VAR2 0.083980892 1.000000000 0.106895118
VAR3 0.129453270 0.106895118 1.000000000

Output 9.6.4shows the classical Mahalanobis and robust distances obtained by com-
plete enumeration. The first 14 observations are recognized as outliers (leverage
points).

228 � Chapter 9. Robust Regression Examples

Output 9.6.4. Mahalanobis and Robust Distances
Classical and Robust Distances

Mahalanobis Robust

Distance Distance Weight

1 1.916821 29.541649 0
2 1.855757 30.344481 0
3 2.313658 31.985694 0
4 2.229655 33.011768 0
5 2.100114 32.404938 0
6 2.146169 30.683153 0
7 2.010511 30.794838 0
8 1.919277 29.905756 0
9 2.221249 32.092048 0
10 2.333543 31.072200 0
11 2.446542 36.808021 0
12 3.108335 38.071382 0
13 2.662380 37.094539 0
14 6.381624 41.472255 0
15 1.815487 1.994672 1.000000
16 2.151357 2.202278 1.000000
17 1.384915 1.918208 1.000000
18 0.848155 0.819163 1.000000
19 1.148941 1.288387 1.000000
20 1.591431 2.046703 1.000000
21 1.089981 1.068327 1.000000
22 1.548776 1.768905 1.000000
23 1.085421 1.166951 1.000000
24 0.971195 1.304648 1.000000
25 0.799268 2.030417 1.000000
26 1.168373 1.727131 1.000000
27 1.449625 1.983831 1.000000
28 0.867789 1.073856 1.000000
29 0.576399 1.168060 1.000000

Example 9.6. Hawkins-Bradu-Kass Data � 229

Output 9.6.4. (continued)
Classical and Robust Distances

Mahalanobis Robust

Distance Distance Weight

30 1.568868 2.091386 1.000000
31 1.838496 1.793386 1.000000
32 1.307230 1.743558 1.000000
33 0.981988 1.264121 1.000000
34 1.175014 2.052641 1.000000
35 1.243636 1.872695 1.000000
36 0.850804 1.136658 1.000000
37 1.832378 2.050041 1.000000
38 0.752061 1.522734 1.000000
39 1.265041 1.885970 1.000000
40 1.112038 1.068841 1.000000
41 1.699757 2.063398 1.000000
42 1.765040 1.785637 1.000000
43 1.870090 2.166100 1.000000
44 1.420448 2.018610 1.000000
45 1.075973 1.944449 1.000000
46 1.344171 1.872483 1.000000
47 1.966328 2.408721 1.000000
48 1.424238 1.892539 1.000000
49 1.569756 1.594109 1.000000
50 0.423972 1.458595 1.000000
51 1.302651 1.569843 1.000000
51 1.302651 1.569843 1.000000
52 2.076055 2.205601 1.000000
53 2.210443 2.492631 1.000000
54 1.414288 1.884937 1.000000
55 1.230455 1.360622 1.000000
56 1.331101 1.626276 1.000000
57 0.832744 1.432408 1.000000
58 1.404401 1.723091 1.000000
59 0.591235 1.263700 1.000000
60 1.889737 2.087849 1.000000
61 1.674945 2.286045 1.000000
62 0.759533 2.024702 1.000000
63 1.292259 1.783035 1.000000
64 0.973868 1.835207 1.000000
65 1.148208 1.562278 1.000000
66 1.296746 1.444491 1.000000
67 0.629827 0.552899 1.000000
68 1.549548 2.101580 1.000000
69 1.070511 1.827919 1.000000
70 0.997761 1.354151 1.000000
71 0.642927 0.988770 1.000000
72 1.053395 0.908316 1.000000
73 1.472178 1.314779 1.000000
74 1.646461 1.516083 1.000000
75 1.899178 2.042560 1.000000

Distribution of Robust Distances
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

0.55289874 1.44449066 1.88493749 7.56960939 2.16610046 41.4722551

Cutoff Value = 3.0575159206
The cutoff value is the square root of the 0.975 quantile of the

chi square distribution with 3 degrees of freedom
There are 14 points with larger distances receiving zero weights.

These may include boundary cases.
Only points whose robust distances are substantially larger than

the cutoff value should be considered outliers.

230 � Chapter 9. Robust Regression Examples

The following two graphs inOutput 9.6.5andOutput 9.6.6show

• the plot of standardized LMS residuals vs. robust distancesRDi

• the plot of standardized LS residuals vs. Mahalanobis distancesMDi

The graph identifies the four good leverage points 11, 12, 13, and 14, which have
small standardized LMS residuals but large robust distances, and the 10 bad lever-
age points1, . . . , 10, which have large standardized LMS residuals and large robust
distances.

Output 9.6.5. Hawkins-Bradu-Kass Data: LMS Residuals vs. Robust Distances

Example 9.7. Stackloss Data � 231

Output 9.6.6. Hawkins-Bradu-Kass Data: LS Residuals vs. Mahalanobis
Distances

Example 9.7. Stackloss Data

The following two graphs inOutput 9.7.1andOutput 9.7.2show

• the plot of standardized LMS residuals vs. robust distancesRDi

• the plot of standardized LS residuals vs. Mahalanobis distancesMDi

In the first plot, you see that case 4 is a regression outlier but not a leverage point, so
it is a vertical outlier. Cases 1, 3, and 21 are bad leverage points, whereas case 2 is
a good leverage point. Note that case 21 lies near the boundary line between vertical
outliers and bad leverage points and that case 2 is very close to the boundary between
good and bad leverage points.

232 � Chapter 9. Robust Regression Examples

Output 9.7.1. Stackloss Data: LMS Residuals vs. Robust Distances

Output 9.7.2. Stackloss Data: LS Residuals vs. Mahalanobis Distances

References � 233

References

Afifi, A.A. and Azen, S.P. (1979),Statistical Analysis: A Computer Oriented
Approach,New York: Academic Press.

Barnett, V. and Lewis, T. (1978),Outliers in Statistical Data, New York: John Wiley
& Sons, Inc.

Brownlee, K.A. (1965), Statistical Theory and Methodology in Science and
Engineering, New York: John Wiley & Sons, Inc.

Chen C. (2002), “Robust Tools in SAS,” inDevelopments in Robust Statistics:
International Conference on Robust Statistics 2001,(ed. by R. Dutter, P.
Filzmoser, U. Gather, and P.J. Rousseeuw), Springer-Verlag, Heidelberg.

Ezekiel, M. and Fox, K.A. (1959),Methods of Correlation and Regression Analysis,
New York: John Wiley & Sons, Inc.

Hawkins, D.M., Bradu, D., and Kass, G.V. (1984), “Location of Several Outliers in
Multiple Regression Data Using Elemental Sets,”Technometrics, 26, 197–208.

Humphreys, R.M. (1978), “Studies of Luminous Stars in Nearby Galaxies, I.
Supergiants and O Stars in the Milky Way,”Astrophys. J. Suppl. Ser., 38, 309-
350.

Jerison, H.J. (1973),Evolution of the Brain and Intelligence, New York: Academic
Press.

Osborne, M.R. (1985),Finite Algorithms in Optimization and Data Analysis, New
York: John Wiley & Sons, Inc.

Prescott, P. (1975), “An Approximate Test for Outliers in Linear Models,”
Technometrics, 17, 129–132.

Rousseeuw, P.J. (1984), “Least Median of Squares Regression,”Journal of the
American Statistical Association, 79, 871–880.

Rousseeuw, P.J. (1985), “Multivariate Estimation with High Breakdown Point,” in
Mathematical Statistics and Applications, (ed. by W. Grossmann, G. Pflug, I.
Vincze, and W. Wertz), Dordrecht, Netherlands: Reidel Publishing Company,
283–297.

Rousseeuw, P.J. and Hubert, M. (1996), “Recent Developments in PROGRESS,”
Technical Report, University of Antwerp.

Rousseeuw, P.J. and Leroy, A.M. (1987),Robust Regression and Outlier Detection,
New York: John Wiley & Sons, Inc.

Rousseeuw, P.J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum
Covariance Determinant Estimator,”Technometrics, 41, 212–223.

Rousseeuw, P.J. and Van Driessen, K. (2000), “An Algorithm for Positive-Breakdown
Regression Based on Concentration Steps,”Data Analysis: Scientific Modeling
and Practical Application, (ed. by W. Gaul, O. Opitz, and M. Schader), New
York: Springer Verlag, 335–346.

234 � Chapter 9. Robust Regression Examples

Rousseeuw, P.J. and Van Zomeren, B.C. (1990), “Unmasking Multivariate Outliers
and Leverage Points,”Journal of the American Statistical Association, 85, 633
–639.

Vansina, F., and De Greve, J. P. (1982), “Close Binary Systems Before and After
Mass Transfer,”Astrophys. Space Sci., 87, 377-401.

Chapter 10
Time Series Analysis and Examples

Chapter Contents

OVERVIEW .237

BASIC TIME SERIES SUBROUTINES .238
Getting Started. .238
Syntax .240

TIME SERIES ANALYSIS AND CONTROL SUBROUTINES 240
Getting Started. .242
Syntax .267
Details .267

Minimum AIC Procedure .267
Smoothness Priors Modeling. .270
Bayesian Seasonal Adjustment. .271
Nonstationary Time Series. .274
Multivariate Time Series Analysis. .277
Spectral Analysis. .279
Computational Details. .282
Missing Values. .288
ISM TIMSAC Packages. .288

Example 10.1. VAR Estimation and Variance Decomposition.291

KALMAN FILTER SUBROUTINES .296
Getting Started. .296
Syntax .297
Example 10.2. Kalman Filtering: Likelihood Function Evaluation. 298
Example 10.3. Kalman Filtering: Estimating an SSM Using the EM Algorithm301
Example 10.4. Diffuse Kalman Filtering.306

VECTOR TIME SERIES ANALYSIS SUBROUTINES308
Getting Started. .309

Stationary VAR Process. .309
Nonstationary VAR Process. .310

Syntax .312

FRACTIONALLY INTEGRATED TIME SERIES ANALYSIS 312
Getting Started. .312
Syntax .315

236 � Chapter 10. Time Series Analysis and Examples

REFERENCES .316

Chapter 10
Time Series Analysis and Examples

Overview

This chapter describes SAS/IML subroutines related to univariate, multivariate, and
fractional time series analysis, and subroutines for Kalman filtering and smoothing.
These subroutines can be used in analyzing economic and financial time series to
model not only correlated its past values but also contemporaneously correlated each
other and each other’s past values. You can develop a model of the univariate time
series and a model of the relationships between the vector time series. The Kalman
filter subroutines provide analysis of various time series and are presented as a tool
for dealing with state space models.

The subroutines offer the following functions:

• generating univariate, multivariate, and fractional time series

• computing likelihood function of ARMA, VARMA, and ARFIMA models

• computing an autocovariance function of ARMA, VARMA, and ARFIMA
models

• checking the stationarity of ARMA and VARMA models

• filtering and smoothing of time series models using Kalman method

• fitting AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA
models

• handling Bayesian seasonal adjustment model

In addition, decomposition analysis, forecast of an ARMA model, and fractionally
differencing of the series are provided.

This chapter consists of five sections. The first section includes the ARMACOV
and ARMALIK subroutines and ARMASIM function. The second section includes
the TSBAYSEA, TSDECOMP, TSMLOCAR, TSMLOMAR, TSMULMAR,
TSPERARS, TSPRED, TSROOT, TSTVCAR, and TSUNIMAR subrou-
tines. The third section includes the KALCVF, KALCVS, KALDFF, and
KALDFS subroutines. The four section includes the VARMACOV, VARMALIK,
VARMASIM, VNORMAL, and VTSROOT subroutines. The last section includes
the FARMACOV, FARMAFIT, FARMALIK, FARMASIM, and FDIF subroutines.

238 � Chapter 10. Time Series Analysis and Examples

Basic Time Series Subroutines

In classical linear regression analysis, the underlying process often can be represented
simply an intercept and slope parameters. A time series can be modeled by a type of
regression analysis.

The ARMASIM function generates various time series from the underlying AR, MA,
and ARMA models. Simulations of time series with known ARMA structure are
often needed as part of other simulations or as learning data sets for developing time
series analysis skills.

The ARMACOV subroutine provides the pattern of the autocovariance function of
AR, MA, and ARMA models and helps to identify and fit a proper model.

The ARMALIK subroutine provides the log-likelihood of an ARMA model and helps
to obtain estimates of the parameters of a regression model with innovations having
an ARMA structure.

The following subroutines are supported:

ARMACOV computes an autocovariance sequence for an ARMA model

ARMALIK computes the log-likelihood and residuals for an ARMA model

ARMASIM simulates an ARMA series

See the examples of the use of ARMACOV and ARMALIK subroutines inChapter
8, “General Statistics Examples,”.

Getting Started

Consider a time series of length 100 from the ARMA(2,1) model

yt = 0.5yt−1 − 0.04yt−2 + et + 0.25et−1

where the error series follows a normal with mean 10 and variance 2.

The following statements show generating, computing 10 lags of the autocovariance
functions and calculating the log-likelihood function and residuals of the ARMA(2,1)
model:

proc iml;
/* ARMA(2,1) model */
phi = {1 -0.5 0.04};
theta = {1 0.25};
mu = 10;
sigma = 2;
nobs = 100;
seed = 3456;
lag = 10;
yt = armasim(phi, theta, mu, sigma, nobs, seed);
print yt;

Getting Started � 239

call armacov(autocov, cross, convol, phi, theta, lag);
autocov = autocov‘;
cross = cross‘;
convol = convol‘;
lag = (0:lag-1)‘;
print autocov cross convol;
call armalik(lnl, resid, std, yt, phi, theta);
print lnl resid std;

Figure 10.1. Plot of Generated ARMA(2,1) Process (ARMASIM)

The ARMASIM function generates the data shown inFigure 10.1.

LAG AUTOCOV CROSS CONVOL

0 1.6972803 1.1875 1.0625
1 1.0563848 0.25 0.25
2 0.4603012
3 0.1878952
4 0.0755356
5 0.030252
6 0.0121046
7 0.0048422
8 0.0019369
9 0.0007748

Figure 10.2. Autocovariance functions of ARMA(2,1) Model (ARMACOV)

In Figure 10.2, the ARMACOV subroutine prints the autocovariance functions of the
ARMA(2,1) Model and the covariance functions of the moving-average term with
lagged values of the process and the autocovariance functions of the moving-average
term.

240 � Chapter 10. Time Series Analysis and Examples

LNL RESID STD

-154.9148 5.2779797 1.3027971
22.034073 2.3491607 1.0197
0.5705918 2.3893996 1.0011951

8.4086892 1.0000746
2.200401 1.0000047

5.4127254 1.0000003
6.2756004 1
1.1944693 1
4.9425372 1

. .

. .

Figure 10.3. Log-likelihood function of ARMA(2,1) Model (ARMALIK)

The first column inFigure 10.3shows the log-likelihood function, the estimate of the
innovation variance, and the log of the determinant of the variance matrix. The next
two columns are the part of results in the standardized residuals and the scale factors
used to standardize the residuals.

Syntax

CALL ARMACOV (auto, cross, convol, phi, theta, num);

CALL ARMALIK (lnl, resid, std, x, phi, theta);

CALL ARMASIM (phi, theta, mu, sigma, n, <seed>);

Time Series Analysis and Control Subroutines

This section describes an adaptation of parts of theTIM eSeriesAnalysis andControl
(TIMSAC) package developed by the Institute of Statistical Mathematics (ISM) in
Japan.

Selected routines from the TIMSAC package from ISM were converted by SAS
Institute staff into SAS/IML routines under an agreement between SAS Institute and
ISM. Credit for authorship of these TIMSAC SAS/IML routines goes to ISM, which
has agreed to make them available to SAS users without charge.

There are four packages of TIMSAC programs. See the section“ISM TIMSAC
Packages”on page 288 for more information on the TIMSAC package produced
by ISM. Since these SAS/IML time series analysis subroutines are adapted from the
corresponding FORTRAN subroutines in the TIMSAC package produced by ISM,
they are collectively referred to as “the TIMSAC subroutines” in this chapter.

The subroutines analyze and forecast univariate and multivariate time series data. The
nonstationary time series and seasonal adjustment models can also be analyzed by us-
ing the Interactive Matrix Language TIMSAC subroutines. These subroutines contain
the Bayesian modeling of seasonal adjustment and changing spectrum estimation.

Discrete time series modeling has been widely used to analyze dynamic systems in
economics, engineering, and statistics. The Box-Jenkins and Box-Tiao approaches

Time Series Analysis and Control Subroutines � 241

are classical examples of unified time series analysis through identification, estima-
tion, and forecasting (or control). The ARIMA procedure in the SAS/ETS product
uses these approaches. Bayesian methods are being increasingly applied despite the
controversial issues involved in choosing a prior distribution.

The fundamental idea of the Bayesian method is that uncertainties can be explained
by probabilities. If there is a class model(Ω) consisting of sets of member models
(ω), you can describe the uncertainty ofΩ using a prior distribution ofω. The mem-
ber modelω is directly related to model parameters. Let the prior probability density
function bep(ω). When you observe the datay that is generated from the modelΩ,
the data distribution is described asp(Y |ω) given the unknownω with a prior proba-
bility densityp(ω), where the functionp(Y |ω) is the usual likelihood function. Then
the posterior distribution is the updated prior distribution given the sample informa-
tion. The posterior probability density function is proportional toobserved likelihood
function× prior density function.

The TIMSAC subroutines contain various time series analysis and Bayesian mod-
els. Most of the subroutines are based on the minimum Akaike Information Criterion
(AIC) or on the minimum Akaike Bayesian Information Criterion (ABIC) method
to determine the best model among alternative models. The TSBAYSEA subrou-
tine is a typical example of Bayesian modeling. The following subroutines are sup-
ported:

TSBAYSEA Bayesian seasonal adjustment modeling

TSDECOMP time series decomposition analysis

TSMLOCAR locally stationary univariate AR model fitting

TSMLOMAR locally stationary multivariate AR model fitting

TSMULMAR multivariate AR model fitting

TSPERARS periodic AR model fitting

TSPRED ARMA model forecasting and forecast error variance

TSROOT polynomial roots or ARMA coefficients computation

TSTVCAR time-varying coefficient AR model estimation

TSUNIMAR univariate AR model fitting

For univariate and multivariate autoregressive model estimation, the least-squares
method is used. The least-squares estimate is an approximate maximum likelihood
estimate if error disturbances are assumed to be Gaussian. The least-squares least-
squares performed by using the Householder transformation method. See the section
“Least-Squares and Householder Transformation”for details.

The TSUNIMAR and TSMULMAR subroutines estimate the autoregressive mod-
els and select the appropriate AR order automatically by using the minimum AIC
method. The TSMLOCAR and TSMLOMAR subroutines analyze the nonstationary
time series data. The Bayesian time-varying AR coefficient model (TSTVCAR) of-
fers another nonstationary time series analysis method. The state space and Kalman
filter method is systematically applied to the smoothness priors models (TSDECOMP

242 � Chapter 10. Time Series Analysis and Examples

and TSTVCAR), which have stochastically perturbed difference equation constraints.
The TSBAYSEA subroutine provides a way of handling Bayesian seasonal adjust-
ment, and it can be an alternative to the SAS/ETS X-11 procedure. The TSBAYSEA
subroutine employs the smoothness priors idea through constrained least-squares esti-
mation, while the TSDECOMP and TSTVCAR subroutines estimate the smoothness
tradeoff parameters using the state space model and Kalman filter recursive computa-
tion. The TSPRED subroutine computes the one-step or multi-step predicted values
of the ARMA time series model. In addition, the TSPRED subroutine computes
forecast error variances and impulse response functions. The TSROOT subroutine
computes the AR and MA coefficients given the characteristic roots of the polyno-
mial equation and the characteristic roots for the AR or MA model.

Getting Started

Minimum AIC Model Selection

The time series model is automatically selected using the AIC. The TSUNIMAR call
estimates the univariate autoregressive model and computes the AIC. You need to
specify the maximum lag or order of the AR process with the MAXLAG= option or
put the maximum lag as the sixth argument of the TSUNIMAR call.

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411

2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };

call tsunimar(arcoef,ev,nar,aic) data=y opt={-1 1} print=1
maxlag=20;

You can also invoke the TSUNIMAR call as follows:

call tsunimar(arcoef,ev,nar,aic,y,20,{-1 1},,1);

The optional arguments can be omitted. In this example, the argument MISSING is
omitted, and thus the default option (MISSING=0) is used. The summary table of
the minimum AIC method is displayed inFigure 10.4andFigure 10.5. The final
estimates are given inFigure 10.6.

Minimum AIC Model Selection � 243

ORDER INNOVATION VARIANCE
M V(M) AIC(M)
0 0.31607294 -108.26753229
1 0.11481982 -201.45277331
2 0.04847420 -280.51201122
3 0.04828185 -278.88576251
4 0.04656506 -280.28905616
5 0.04615922 -279.11190502
6 0.04511943 -279.25356641
7 0.04312403 -281.50543541
8 0.04201118 -281.96304075
9 0.04128036 -281.61262868
10 0.03829179 -286.67686828
11 0.03318558 -298.13013264
12 0.03255171 -297.94298716
13 0.03247784 -296.15655602
14 0.03237083 -294.46677874
15 0.03234790 -292.53337704
16 0.03187416 -291.92021487
17 0.03183282 -290.04220196
18 0.03126946 -289.72064823
19 0.03087893 -288.90203735
20 0.02998019 -289.67854830

Figure 10.4. Minimum AIC Table - I

AIC(M)-AICMIN (truncated at 40.0)
0 10 20 30 40

M AIC(M)-AICMIN +---------+---------+---------+---------+
0 189.862600 | .
1 96.677359 | .
2 17.618121 | * |
3 19.244370 | * |
4 17.841076 | * |
5 19.018228 | * |
6 18.876566 | * |
7 16.624697 | * |
8 16.167092 | * |
9 16.517504 | * |
10 11.453264 | * |
11 0 * |
12 0.187145 * |
13 1.973577 | * |
14 3.663354 | * |
15 5.596756 | * |
16 6.209918 | * |
17 8.087931 | * |
18 8.409484 | * |
19 9.228095 | * |
20 8.451584 | * |

+---------+---------+---------+---------+

Figure 10.5. Minimum AIC Table - II

The minimum AIC order is selected as 11. Then the coefficients are estimated as in
Figure 10.6. Note that the first 20 observations are used as presample values.

244 � Chapter 10. Time Series Analysis and Examples

..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.181322 .

. 2 -0.551571 .

. 3 0.231372 .

. 4 -0.178040 .

. 5 0.019874 .

. 6 -0.062573 .

. 7 0.028569 .

. 8 -0.050710 .

. 9 0.199896 .

. 10 0.161819 .

. 11 -0.339086 .

. .

. .

. AIC = -298.1301326 .

. Innovation Variance = 0.033186 .

. .

. .

. INPUT DATA START = 21 FINISH = 114 .

..

Figure 10.6. Minimum AIC Estimation

You can estimate the AR(11) model directly by specifying OPT={−1 0} and using
the first 11 observations as presample values. The AR(11) estimates shown inFigure
10.7are different from the minimum AIC estimates inFigure 10.6because the sam-
ples are slightly different.

call tsunimar(arcoef,ev,nar,aic,y,11,{-1 0},,1);

Minimum AIC Model Selection � 245

..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.149416 .

. 2 -0.533719 .

. 3 0.276312 .

. 4 -0.326420 .

. 5 0.169336 .

. 6 -0.164108 .

. 7 0.073123 .

. 8 -0.030428 .

. 9 0.151227 .

. 10 0.192808 .

. 11 -0.340200 .

. .

. .

. AIC = -318.7984105 .

. Innovation Variance = 0.036563 .

. .

. .

. INPUT DATA START = 12 FINISH = 114 .

..

Figure 10.7. AR(11) Estimation

The minimum AIC procedure can also be applied to the vector autoregressive (VAR)
model using the TSMULMAR subroutine. See the section“Multivariate Time Series
Analysis” on page 277 for details. Three variables are used as input. The maximum
lag is specified as 10.

data one;
input invest income consum @@;

datalines;
. . . data lines omitted . . .
;

proc iml;
use one;
read all into y var{invest income consum};
mdel = 1;
maice = 2;
misw = 0; /* instantaneous modeling ? */
opt = mdel || maice || misw;
maxlag = 10;
miss = 0;
print = 1;
call tsmulmar(arcoef,ev,nar,aic,y,maxlag,opt,miss,print);

The VAR(3) model minimizes the AIC and was selected as an appropriate model
(seeFigure 10.8). However, AICs of the VAR(4) and VAR(5) models show little
difference from VAR(3). You can also choose VAR(4) or VAR(5) as an appropriate
model in the context of minimum AIC since this AIC difference is much less than 1.

246 � Chapter 10. Time Series Analysis and Examples

ORDER INNOVATION VARIANCE
M LOG(|V(M)|) AIC(M)
0 25.98001095 2136.36089828
1 15.70406486 1311.73331883
2 15.48896746 1312.09533158
3 15.18567834 1305.22562428
4 14.96865183 1305.42944974
5 14.74838535 1305.36759889
6 14.60269347 1311.42086432
7 14.54981887 1325.08514729
8 14.38596333 1329.64899297
9 14.16383772 1329.43469312
10 13.85377849 1322.00983656

AIC(M)-AICMIN (truncated at 40.0)
0 10 20 30 40

M AIC(M)-AICMIN +---------+---------+---------+---------+
0 831.135274 | .
1 6.507695 | * |
2 6.869707 | * |
3 0 * |
4 0.203825 * |
5 0.141975 * |
6 6.195240 | * |
7 19.859523 | * |
8 24.423369 | * |
9 24.209069 | * |
10 16.784212 | * |

+---------+---------+---------+---------+

Figure 10.8. VAR Model Selection

The TSMULMAR subroutine estimates the instantaneous response model with diag-
onal error variance. See the section“Multivariate Time Series Analysis”on page 277
for details on the instantaneous response model. Therefore, it is possible to select the
minimum AIC model independently for each equation. The best model is selected by
specifying MAXLAG=5.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=5
opt={1 1 0} print=1;

Minimum AIC Model Selection � 247

VARIANCE

256.64375 29.803549 76.846777
29.803549 228.97341 119.60387
76.846777 119.60387 134.21764

AR_COEFFICIENT

13.312109 1.5459098 15.963897
0.8257397 0.2514803 0
0.0958916 1.0057088 0
0.0320985 0.3544346 0.4698934
0.044719 -0.201035 0
0.0051931 -0.023346 0
0.1169858 -0.060196 0.0483318
0.1867829 0 0
0.0216907 0 0
-0.117786 0 0.3500366
0.1541108 0 0
0.0178966 0 0
0.0461454 0 -0.191437
-0.389644 0 0
-0.045249 0 0
-0.116671 0 0

AIC

1347.6198

Figure 10.9. Model Selection via Instantaneous Response Model

You can print the intermediate results of the minimum AIC procedure using the
PRINT=2 option.

Note that the AIC value depends on the MAXLAG=lag option and the number of
parameters estimated. The minimum AIC VAR estimation procedure (MAICE=2)
uses the following AIC formula:

(T − lag) log(|Σ̂|) + 2(p× n2 + n× intercept)

wherep is the order of then-variate VAR process, andintercept=1 if the intercept is
specified; otherwise,intercept=0. When you use the MAICE=1 or MAICE=0 option,
AIC is computed as the sum of AIC for each response equation. Therefore, there is
an AIC difference ofn(n − 1) since the instantaneous response model contains the
additionaln(n− 1)/2 response variables as regressors.

The following code estimates the instantaneous response model. The results are
shown inFigure 10.10.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 0};

print aic nar;
print arcoef;

248 � Chapter 10. Time Series Analysis and Examples

AIC NAR

1403.0762 3

ARCOEF

4.8245814 5.3559216 17.066894
0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746
-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Figure 10.10. AIC from Instantaneous Response Model

The following code estimates the VAR model. The results are shown inFigure 10.11.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 2 0};

print aic nar;
print arcoef;

AIC NAR

1397.0762 3

ARCOEF

4.8245814 5.3559216 17.066894
0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746
-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Figure 10.11. AIC from VAR Model

The AIC computed from the instantaneous response model is greater than that ob-
tained from the VAR model estimation by 6. There is a discrepancy betweenFigure
10.11andFigure 10.8because different observations are used for estimation.

Nonstationary Data Analysis � 249

Nonstationary Data Analysis

This example shows how to manage nonstationary data using TIMSAC calls. In
practice, time series are considered to be stationary when the expected values of first
and second moments of the series do not change over time. This weak or covariance
stationarity can be modeled using the TSMLOCAR, TSMLOMAR, TSDECOMP,
and TSTVCAR subroutines.

First, the locally stationary model is estimated. The whole series (1000 observations)
is divided into three blocks of size 300 and one block of size 90, and the minimum
AIC procedure is applied to each block of the data set. See the“Nonstationary Time
Series”section on page 274 for more details.

data one;
input y @@;

datalines;
. . . data lines omitted . . .
;

proc iml;
use one;
read all var{y};

mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
opt = mdel || lspan || maice;
call tsmlocar(arcoef,ev,nar,aic,first,last)

data=y maxlag=10 opt=opt print=2;

Estimation results are displayed with the graphs of power spectrum
(log 10(fY Y (g))), where fY Y (g) is a rational spectral density function. See
the “Spectral Analysis”section on page 279. As the first block and the second
block do not have any sizable difference, the pooled model (AIC=45.892) is selected
instead of the moving model (AIC=46.957) inFigure 10.13. However, you can
notice a slight change in the shape of the spectrum of the third block of the data
(observations 611 through 910). SeeFigure 10.14on page 252 andFigure 10.16on
page 254 for comparison. The moving model is selected since the AIC (106.830) of
the moving model is smaller than that of the pooled model (108.867).

250 � Chapter 10. Time Series Analysis and Examples

INITIAL LOCAL MODEL: N_CURR = 300
NAR_CURR = 8

AIC = 37.583203

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.605717 .

. 2 -1.245350 .

. 3 1.014847 .

. 4 -0.931554 .

. 5 0.394230 .

. 6 -0.004344 .

. 7 0.111608 .

. 8 -0.124992 .

. .

. .

. AIC = 37.5832030 .

. Innovation Variance = 1.067455 .

. .

. .

. INPUT DATA START = 11 FINISH = 310 .

..

Figure 10.12. Locally Stationary Model for First Block

Nonstationary Data Analysis � 251

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 300)
NAR_CURR = 7

AIC = 46.957398
CONSTANT MODEL: N_POOLED = 600

NAR_POOLED = 8
AIC = 45.892350

***** CONSTANT MODEL ADOPTED *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.593890 .

. 2 -1.262379 .

. 3 1.013733 .

. 4 -0.926052 .

. 5 0.314480 .

. 6 0.193973 .

. 7 -0.058043 .

. 8 -0.078508 .

. .

. .

. AIC = 45.8923501 .

. Innovation Variance = 1.047585 .

. .

. .

. INPUT DATA START = 11 FINISH = 610 .

..

Figure 10.13. Locally Stationary Model Comparison

252 � Chapter 10. Time Series Analysis and Examples

POWER SPECTRAL DENSITY
20.00+

|
|
|
|
| XXXX
XXX XX XXX
| XXXX
| X
|

10.00+
| X
|
| X
|
| X XX
| X
| X X
|
| X X X
0+ X
| X X X
| XX XX
| XXXX X
|
| X
| X
|
| X
| X

-10.0+ X
| XX
| XX
| XX
| XXX
| XXXXXX
|
|
|
|

-20.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.14. Power Spectrum for First and Second Blocks

Nonstationary Data Analysis � 253

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 300)
NAR_CURR = 7

AIC = 106.829869
CONSTANT MODEL: N_POOLED = 900

NAR_POOLED = 8
AIC = 108.867091

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.648544 .

. 2 -1.201812 .

. 3 0.674933 .

. 4 -0.567576 .

. 5 -0.018924 .

. 6 0.516627 .

. 7 -0.283410 .

. .

. .

. AIC = 60.9375188 .

. Innovation Variance = 1.161592 .

. .

. .

. INPUT DATA START = 611 FINISH = 910 .

..

Figure 10.15. Locally Stationary Model for Third Block

254 � Chapter 10. Time Series Analysis and Examples

POWER SPECTRAL DENSITY
20.00+ X

| X
| X
| X
| XXX
| XXXXX
| XX
XX X
|
|

10.00+ X
|
|
| X
|
| X
| X
| X X
| X
| X X
0+ X X X
| X
| X XX X
| XXXXXX
| X
|
| X
|
| X
| X

-10.0+ X
| XX
| XX XXXXX
| XXXXXXX
|
|
|
|
|
|

-20.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.16. Power Spectrum for Third Block

Finally, the moving model is selected since there is a structural change in the last
block of data (observations 911 through 1000). The final estimates are stored in vari-
ables ARCOEF, EV, NAR, AIC, FIRST, and LAST. The final estimates and spectrum
are given inFigure 10.17andFigure 10.18, respectively. The power spectrum of the
final model (Figure 10.18) is significantly different from that of the first and second
blocks (seeFigure 10.14).

Nonstationary Data Analysis � 255

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 90)
NAR_CURR = 6

AIC = 139.579012
CONSTANT MODEL: N_POOLED = 390

NAR_POOLED = 9
AIC = 167.783711

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.181022 .

. 2 -0.321178 .

. 3 -0.113001 .

. 4 -0.137846 .

. 5 -0.141799 .

. 6 0.260728 .

. .

. .

. AIC = 78.6414932 .

. Innovation Variance = 2.050818 .

. .

. .

. INPUT DATA START = 911 FINISH = 1000 .

..

Figure 10.17. Locally Stationary Model for Last Block

256 � Chapter 10. Time Series Analysis and Examples

POWER SPECTRAL DENSITY
30.00+

|
|
|
|
| X
|
| X
|
|

20.00+ X
|
|
| X X
|
| X
XXX X
| XXXXX X
|
|

10.00+ X
|
| X
|
| X
|
| X
| X
| X
| XX
0+ XX XXXXXX
| XXXXXX XX
| XX
| XX XX
| XX XXXX
| XXXXXXXXX
|
|
|
|

-10.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.18. Power Spectrum for Last Block

The multivariate analysis for locally stationary data is a straightforward extension of
the univariate analysis. The bivariate locally stationary VAR models are estimated.
The selected model is the VAR(7) process with some zero coefficients over the last
block of data. There seems to be a structural difference between observations from
11 to 610 and those from 611 to 896.

proc iml;
rudder = {. . . data lines omitted . . .};
yawing = {. . . data lines omitted . . .};

y = rudder‘ || yawing‘;
c = {0.01795 0.02419};

Nonstationary Data Analysis � 257

/*-- calibration of data --*/
y = y # (c @ j(n,1,1));
mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
call tsmlomar(arcoef,ev,nar,aic,first,last) data=y maxlag=10

opt = (mdel || lspan || maice) print=1;

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 286)
NAR_CURR = 7

AIC = -823.845234
CONSTANT MODEL: N_POOLED = 886

NAR_POOLED = 10
AIC = -716.818588

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients .

. .

. 1 0.932904 -0.130964 .

. -0.024401 0.599483 .

. 2 0.163141 0.266876 .

. -0.135605 0.377923 .

. 3 -0.322283 0.178194 .

. 0.188603 -0.081245 .

. 4 0.166094 -0.304755 .

. -0.084626 -0.180638 .

. 5 0 0 .

. 0 -0.036958 .

. 6 0 0 .

. 0 0.034578 .

. 7 0 0 .

. 0 0.268414 .

. .

. .

. AIC = -114.6911872 .

. .

. Innovation Variance .

. .

. 1.069929 0.145558 .

. 0.145558 0.563985 .

. .

. .

. INPUT DATA START = 611 FINISH = 896 .

..

Figure 10.19. Locally Stationary VAR Model Analysis

258 � Chapter 10. Time Series Analysis and Examples

Consider the time series decomposition

yt = Tt + St + ut + εt

whereTt andSt are trend and seasonal components, respectively, andut is a station-
ary AR(p) process. The annual real GNP series is analyzed under second difference
stochastic constraints on the trend component and the stationary AR(2) process.

Tt = 2Tt−1 − Tt−2 + w1t

ut = α1ut−1 + α2ut−2 + w2t

The seasonal component is ignored if you specify SORDER=0. Therefore, the fol-
lowing state space model is estimated:

yt = Hzt + εt

zt = Fzt−1 + wt

where

H =
[

1 0 1 0
]

F =

2 −1 0 0
1 0 0 0
0 0 α1 α2

0 0 1 0

zt = (Tt, Tt−1, ut, ut−1)′

wt = (w1t, 0, w2t, 0)′ ∼

0,

σ2

1 0 0 0
0 0 0 0
0 0 σ2

2 0
0 0 0 0

The parameters of this state space model areσ2
1, σ2

2, α1, andα2.

proc iml;
y = { 116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3

135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7 };

y = y‘; /*-- convert to column vector --*/
mdel = 0;
trade = 0;
tvreg = 0;
year = 0;

Nonstationary Data Analysis � 259

period= 0;
log = 0;
maxit = 100;
update = .; /* use default update method */
line = .; /* use default line search method */
sigmax = 0; /* no upper bound for variances */
back = 100;
opt = mdel || trade || year || period || log || maxit ||

update || line || sigmax || back;
call tsdecomp(cmp,coef,aic) data=y order=2 sorder=0 nar=2

npred=5 opt=opt icmp={1 3} print=1;
y = y[52:61];
cmp = cmp[52:66,];
print y cmp;

The estimated parameters are printed when you specify the PRINT= option. InFigure
10.20, the estimated variances are printed under the title of TAU2(I), showing that
σ̂2

1 = 2.915 andσ̂2
2 = 113.9577. The AR coefficient estimates arêα1 = 1.397 and

α̂2 = −0.595. These estimates are also stored in the output matrix COEF.

<<< Final Estimates >>>

--- PARAMETER VECTOR ---

1.607426E-01 6.283837E+00 8.761628E-01 -5.94879E-01

--- GRADIENT ---

3.385021E-04 5.760929E-06 3.029534E-04 -1.18396E-04

LIKELIHOOD = -249.937193 SIG2 = 18.135052
AIC = 509.874385

I TAU2(I) AR(I) PARCOR(I)
1 2.915075 1.397374 0.876163
2 113.957712 -0.594879 -0.594879

Figure 10.20. Nonstationary Time Series and State Space Modeling

The trend and stationary AR components are estimated using the smoothing method,
and out-of-sample forecasts are computed using a Kalman filter prediction algorithm.
The trend and AR components are stored in the matrix CMP since the ICMP={1 3}
option is specified. The last 10 observations of the original series Y and the last 15
observations of two components are shown inFigure 10.21. Note that the first column
of CMP is the trend component and the second column is the AR component. The
last 5 observations of the CMP matrix are out-of-sample forecasts.

260 � Chapter 10. Time Series Analysis and Examples

Y CMP

487.7 514.01142 -26.94343
497.2 532.62744 -32.48674
529.8 552.02403 -24.46593
551 571.90122 -20.15113

581.1 592.31944 -10.58647
617.8 613.21855 5.2504378
658.1 634.43665 20.799213
675.2 655.70431 22.161602
706.6 677.21249 27.927985
724.7 698.72363 25.95797

720.23477 19.659209
741.74591 12.029407
763.25705 5.1147239
784.76819 -0.008863
806.27933 -3.055027

Figure 10.21. Smoothed and Predicted Values of Two Components

Seasonal Adjustment

Consider the simple time series decomposition

yt = Tt + St + εt

The TSBAYSEA subroutine computes seasonally adjusted series by estimating the
seasonal component. The seasonally adjusted series is computed asy∗t = yt − Ŝt.
The details of the adjustment procedure are given in the section“Bayesian Seasonal
Adjustment”on page 271.

The monthly labor force series (1972–1978) are analyzed. You do not need to spec-
ify the options vector if you want to use the default options. However, you should
change OPT[2] when the data frequency is not monthly (OPT[2]=12). The NPRED=
option produces the multistep forecasts for the trend and seasonal components. The
stochastic constraints are specified as ORDER=2 and SORDER=1.

Tt = 2Tt−1 − Tt−2 + w1t

St = −St−1 − · · · − St−11 + w2t

In Figure 10.22, the first column shows the trend components; the second column
shows the seasonal components; the third column shows the forcasts; the forth col-
umn shows the seasonally adjusted series; the last shows the value of ABIC. The last
12 rows are the forcasts.

proc iml;
y = { 5447 5412 5215 4697 4344 5426

5173 4857 4658 4470 4268 4116
4675 4845 4512 4174 3799 4847
4550 4208 4165 3763 4056 4058

Seasonal Adjustment � 261

5008 5140 4755 4301 4144 5380
5260 4885 5202 5044 5685 6106
8180 8309 8359 7820 7623 8569
8209 7696 7522 7244 7231 7195
8174 8033 7525 6890 6304 7655
7577 7322 7026 6833 7095 7022
7848 8109 7556 6568 6151 7453
6941 6757 6437 6221 6346 5880 };

y = y‘;

call tsbaysea(trend,season,series,adj,abic)
data=y order=2 sorder=1 npred=12 print=2;

print trend season series adj abic;

OBS TREND SEASON SERIES ADJ ABIC

1 4843.2502 576.86675 5420.1169 4870.1332 874.04585
2 4848.6664 612.79607 5461.4624 4799.2039
3 4871.2876 324.02004 5195.3077 4890.98
4 4896.6633 -198.7601 4697.9032 4895.7601
5 4922.9458 -572.5562 4350.3896 4916.5562
.
71 6551.6017 -266.2162 6285.3855 6612.2162
72 6388.9012 -440.3472 5948.5539 6320.3472
73 6226.2006 650.7707 6876.9713
74 6063.5001 800.93733 6864.4374
75 5900.7995 396.19866 6296.9982
76 5738.099 -340.2852 5397.8137
77 5575.3984 -719.1146 4856.2838
78 5412.6979 553.19764 5965.8955
79 5249.9973 202.06582 5452.0631
80 5087.2968 -54.44768 5032.8491
81 4924.5962 -295.2747 4629.3215
82 4761.8957 -487.6621 4274.2336
83 4599.1951 -266.1917 4333.0034
84 4436.4946 -440.3354 3996.1591

Figure 10.22. Trend and Seasonal Component Estimates and Forecasts

262 � Chapter 10. Time Series Analysis and Examples

The estimated spectral density function of the irregular seriesε̂t is shown inFigure

10.23.

I Rational 0.0 10.0 20.0 30.0 40.0 50.0 60.0
Spectrum +---------+---------+---------+---------+---------+---------+

0 1.366798E+00 |* ===>X
1 1.571261E+00 |*
2 2.414836E+00 | *
3 5.151906E+00 | *
4 1.634887E+01 | *
5 8.085674E+01 | *
6 3.805530E+02 | *
7 8.082536E+02 | *
8 6.366350E+02 | *
9 3.479435E+02 | *
10 3.872650E+02 | * ===>X
11 1.264805E+03 | *
12 1.726138E+04 | *
13 1.559041E+03 | *
14 1.276516E+03 | *
15 3.861089E+03 | *
16 9.593184E+03 | *
17 3.662145E+03 | *
18 5.499783E+03 | *
19 4.443303E+03 | *
20 1.238135E+03 | * ===>X
21 8.392131E+02 | *
22 1.258933E+03 | *
23 2.932003E+03 | *
24 1.857923E+03 | *
25 1.171437E+03 | *
26 1.611958E+03 | *
27 4.822498E+03 | *
28 4.464961E+03 | *
29 1.951547E+03 | *
30 1.653182E+03 | * ===>X
31 2.308152E+03 | *
32 5.475758E+03 | *
33 2.349584E+04 | *
34 5.266969E+03 | *
35 2.058667E+03 | *
36 2.215595E+03 | *
37 8.181540E+03 | *
38 3.077329E+03 | *
39 7.577961E+02 | *
40 5.057636E+02 | * ===>X
41 7.312090E+02 | *
42 3.131377E+03 | * ===>T
43 8.173276E+03 | *
44 1.958359E+03 | *
45 2.216458E+03 | *
46 4.215465E+03 | *
47 9.659340E+02 | *
48 3.758466E+02 | *
49 2.849326E+02 | *
50 3.617848E+02 | * ===>X
51 7.659839E+02 | *
52 3.191969E+03 | *
53 1.768107E+04 | *
54 5.281385E+03 | *
55 2.959704E+03 | *
56 3.783522E+03 | *
57 1.896625E+04 | *
58 1.041753E+04 | *
59 2.038940E+03 | *
60 1.347568E+03 | * ===>X

X: If peaks (troughs) appear at these frequencies, try lower (higher) values
of rigid and watch ABIC

T: If a peaks appears here try trading-day adjustment

Figure 10.23. Spectrum of Irregular Component

Miscellaneous Time Series Analysis Tools � 263

Miscellaneous Time Series Analysis Tools

The forecast values of multivariate time series are computed using the TSPRED call.
In this example, the multistep ahead forecasts are produced from the VARMA(2,1)
estimates. Since the VARMA model is estimated using the mean deleted series, you
should specify the CONSTANT=−1 option. You need to provide the original series
instead of the mean deleted series to get the correct predictions. The forecast variance
MSE and the impulse response function IMPULSE are also produced.

The VARMA(p, q) model is written

yt +
p∑

i=1

Aiyt−i = εt +
q∑

i=1

Miεt−i

Then the COEF matrix is constructed by stacking matrices
A1, . . . ,Ap,M1, . . . ,Mq.

proc iml;
c = { 264 235 239 239 275 277 274 334 334 306

308 309 295 271 277 221 223 227 215 223
241 250 270 303 311 307 322 335 335 334
309 262 228 191 188 215 215 249 291 296 };

f = { 690 690 688 690 694 702 702 702 700 702
702 694 708 702 702 708 700 700 702 694
698 694 700 702 700 702 708 708 710 704
704 700 700 694 702 694 710 710 710 708 };

t = { 1152 1288 1288 1288 1368 1456 1656 1496 1744 1464
1560 1376 1336 1336 1296 1296 1280 1264 1280 1272
1344 1328 1352 1480 1472 1600 1512 1456 1368 1280
1224 1112 1112 1048 1176 1064 1168 1280 1336 1248 };

p = { 254.14 253.12 251.85 250.41 249.09 249.19 249.52 250.19
248.74 248.41 249.95 250.64 250.87 250.94 250.96 251.33
251.18 251.05 251.00 250.99 250.79 250.44 250.12 250.19
249.77 250.27 250.74 250.90 252.21 253.68 254.47 254.80
254.92 254.96 254.96 254.96 254.96 254.54 253.21 252.08 };

y = c‘ || f‘ || t‘ || p‘;
ar = { .82028 -.97167 .079386 -5.4382,

-.39983 .94448 .027938 -1.7477,
-.42278 -2.3314 1.4682 -70.996,
.031038 -.019231 -.0004904 1.3677,
-.029811 .89262 -.047579 4.7873,
.31476 .0061959 -.012221 1.4921,
.3813 2.7182 -.52993 67.711,
-.020818 .01764 .00037981 -.38154 };

ma = { .083035 -1.0509 .055898 -3.9778,
-.40452 .36876 .026369 -.81146,
.062379 -2.6506 .80784 -76.952,
.03273 -.031555 -.00019776 -.025205 };

coef = ar // ma;
ev = { 188.55 6.8082 42.385 .042942,

6.8082 32.169 37.995 -.062341,

264 � Chapter 10. Time Series Analysis and Examples

42.385 37.995 5138.8 -.10757,
.042942 -.062341 -.10757 .34313 };

nar = 2; nma = 1;
call tspred(forecast,impulse,mse,y,coef,nar,nma,ev,

5,nrow(y),-1);

OBSERVED PREDICTED
Y1 Y2 P1 P2

264 690 269.950 700.750
235 690 256.764 691.925
239 688 239.996 693.467
239 690 242.320 690.951
275 694 247.169 693.214
277 702 279.024 696.157
274 702 284.041 700.449
334 702 286.890 701.580
334 700 321.798 699.851
306 702 330.355 702.383
308 702 297.239 700.421
309 694 302.651 701.928
295 708 294.570 696.261
271 702 283.254 703.936
277 702 269.600 703.110
221 708 270.349 701.557
223 700 231.523 705.438
227 700 233.856 701.785
215 702 234.883 700.185
223 694 229.156 701.837
241 698 235.054 697.060
250 694 249.288 698.181
270 700 257.644 696.665
303 702 272.549 699.281
311 700 301.947 701.667
307 702 306.422 700.708
322 708 304.120 701.204
335 708 311.590 704.654
335 710 320.570 706.389
334 704 315.127 706.439
309 704 311.083 703.735
262 700 288.159 702.801
228 700 251.352 700.805
191 694 226.749 700.247
188 702 199.775 696.570
215 694 202.305 700.242
215 710 222.951 696.451
249 710 226.553 704.483
291 710 259.927 707.610
296 708 291.446 707.861

293.899 707.430
293.477 706.933
292.564 706.190
290.313 705.384
286.559 704.618

Figure 10.24. Multivariate ARMA Prediction

The first 40 forecasts are one-step predictions. The last observation is the five-step
forecast values of variables C and F. You can construct the confidence interval for
these forecasts using the mean square error matrix, MSE. See the“Multivariate Time

Miscellaneous Time Series Analysis Tools � 265

Series Analysis”section on page 277 for more details on impulse response functions
and the mean square error matrix.

The TSROOT call computes the polynomial roots of the AR and MA equations.
When the AR(p) process is written

yt =
p∑

i=1

αiyt−i + εt

you can specify the following polynomial equation:

zp −
p∑

i=1

αiz
p−i = 0

When allp roots of the preceding equation are inside the unit circle, the AR(p) pro-
cess is stationary. The MA(q) process is invertible if the following polynomial equa-
tion has all roots inside the unit circle:

zq +
q∑

i=1

θiz
q−i = 0

whereθi are the MA coefficients. For example, the best AR model is selected and
estimated by the TSUNIMAR subroutine (seeFigure 10.25). You can obtain the roots
of the preceding equation by calling the TSROOT call. Since the TSROOT call can
handle the complex AR or MA coefficients, note that you should add zero imaginary
coefficients for the second column of the MATIN matrix for real coefficients.

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411

2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };

call tsunimar(ar,v,nar,aic) data=y maxlag=5
opt=({-1 1}) print=1;

/*-- set up complex coefficient matrix --*/
ar_cx = ar || j(nrow(ar),1,0);
call tsroot(root) matin=ar_cx nar=nar nma=0 print=1;

In Figure 10.26, the roots and their lengths from the origin are shown. The roots are
also stored in the matrix ROOT. All roots are within the unit circle, while the mod
values of the fourth and fifth roots appear to be sizable (0.9194).

266 � Chapter 10. Time Series Analysis and Examples

LAG AR_COEF

1 1.3003068
2 -0.72328
3 0.2421928
4 -0.378757
5 0.1377273

AIC INNOVATION_VARINACE

-318.6138 0.0490554

Figure 10.25. Minimum AIC AR Estimation

Roots of AR Characteristic Polynomial

I Real Imaginary MOD(Z) ATAN(I/R) Degree

1 -0.29755 0.55991 0.6341 2.0593 117.9869
2 -0.29755 -0.55991 0.6341 -2.0593 -117.9869
3 0.40529 0 0.4053 0 0
4 0.74505 0.53866 0.9194 0.6260 35.8660
5 0.74505 -0.53866 0.9194 -0.6260 -35.8660

Z**5-AR(1)*Z**4-AR(2)*Z**3-AR(3)*Z**2-AR(4)*Z**1-AR(5)=0

Figure 10.26. Roots of AR Characteristic Polynomial Equation

The TSROOT call can also recover the polynomial coefficients if the roots are given
as an input. You should specify the QCOEF=1 option when you want to compute the
polynomial coefficients instead of polynomial roots. You can compare the result with
the preceding output of the TSUNIMAR call.

call tsroot(ar_cx) matin=root nar=nar qcoef=1
nma=0 print=1;

Polynomial Coefficents

I AR(real) AR(imag)

1 1.30031 0
2 -0.72328 5.55112E-17
3 0.24219 1.61885E-16
4 -0.37876 0
5 0.13773 -4.1674E-18

Figure 10.27. Polynomial Coefficients

Minimum AIC Procedure � 267

Syntax

TIMSAC routines are controlled by the following statements:

CALL TSBAYSEA (trend, season, series, adjust, abic, data

<,order, sorder, rigid, npred, opt, cntl, print>);

CALL TSDECOMP (comp, est, aic, data <,xdata, order, sorder,

nar, npred, init, opt, icmp, print>);

CALL TSMLOCAR (arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

CALL TSMLOMAR (arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

CALL TSMULMAR (arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

CALL TSPEARS (arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

CALL TSPRED (forecast, impulse, mse, data, coef, nar, nma

<,ev, npred, start, constant>);

CALL TSROOT (matout, matin, nar, nma <,qcoef, print>);

CALL TSTVCAR (arcoef, variance, est, aic, data

<,nar, init, opt, outlier, print>);

CALL TSUNIMAR (arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

Details

This section presents an introductory description of the important topics that are di-
rectly related to TIMSAC IML subroutines. The computational details, including
algorithms, are described in the“Computational Details”section on page 282. A de-
tailed explanation of each subroutine is not given; instead, basic ideas and common
methodologies for all subroutines are described first and are followed by more tech-
nical details. Finally, missing values are discussed in the section“Missing Values”
on page 288.

Minimum AIC Procedure

The AIC statistic is widely used to select the best model among alternative parametric
models. The minimum AIC model selection procedure can be interpreted as a max-

268 � Chapter 10. Time Series Analysis and Examples

imization of the expected entropy (Akaike 1981). The entropy of a true probability
density function (PDF)ϕ with respect to the fitted PDFf is written as

B(ϕ, f) = −I(ϕ, f)

whereI(ϕ, f) is a Kullback-Leibler information measure, which is defined as

I(ϕ, f) =
∫ [

log
[
ϕ(z)
f(z)

]]
ϕ(z)dz

where the random variableZ is assumed to be continuous. Therefore,

B(ϕ, f) = EZ log f(Z)− EZ logϕ(Z)

whereB(ϕ, f) ≤ 0 and EZ denotes the expectation concerning the random variable
Z. B(ϕ, f) = 0 if and only if ϕ = f (a.s.). The larger the quantity EZ log f(Z),
the closer the functionf is to the true PDFϕ. Given the datay = (y1, . . . , yT)′ that
has the same distribution as the random variableZ, let the likelihood function of the
parameter vectorθ be

∏T
t=1 f(yt|θ). Then the average of the log-likelihood function

1
T

∑T
t=1 log f(yt|θ) is an estimate of the expected value oflog f(Z). Akaike (1981)

derived the alternative estimate of EZ log f(Z) by using the Bayesian predictive like-
lihood. The AIC is the bias-corrected estimate of−2TEZ log f(Z|θ̂), whereθ̂ is the
maximum likelihood estimate.

AIC = −2(maximum log-likelihood) + 2(number of free parameters)

Let θ = (θ1, . . . , θK)′ be aK × 1 parameter vector that is contained in the parameter
spaceΘK . Given the datay, the log-likelihood function is

`(θ) =
T∑

t=1

log f(yt|θ)

Suppose the probability density functionf(y|θ) has the true PDFϕ(y) = f(y|θ0),
where the true parameter vectorθ0 is contained inΘK . Let θ̂K be a maximum
likelihood estimate. The maximum of the log-likelihood function is denoted as
`(θ̂K) = maxθ∈ΘK

`(θ). The expected log-likelihood function is defined by

`∗(θ) = TEZ log f(Z|θ)

The Taylor series expansion of the expected log likelihood function around the true
parameterθ0 gives the following asymptotic relationship:

`∗(θ) A= `∗(θ0) + T (θ − θ0)′EZ
∂ log f(Z|θ0)

∂θ
− T

2
(θ − θ0)′I(θ0)(θ − θ0)

Minimum AIC Procedure � 269

whereI(θ0) is the information matrix and
A= stands for asymptotic equality. Note

that ∂ log f(z|θ0)
∂θ = 0 sincelog f(z|θ) is maximized atθ0. By substitutingθ̂K , the

expected log-likelihood function can be written as

`∗(θ̂K) A= `∗(θ0)− T

2
(θ̂K − θ0)′I(θ0)(θ̂K − θ0)

The maximum likelihood estimator is asymptotically normally distributed under the
regularity conditions

√
TI(θ0)1/2(θ̂K − θ0) d→ N(0, IK)

Therefore,

T (θ̂K − θ0)′I(θ0)(θ̂K − θ0) a∼ χ2
K

The mean expected log-likelihood function,`∗(K) = EY `
∗(θ̂K), becomes

`∗(K) A= `∗(θ0)− K

2

When the Taylor series expansion of the log likelihood function aroundθ̂K is used,
the log-likelihood functioǹ (θ) is written

`(θ) A= `(θ̂K) + (θ − θ̂K)′
∂`(θ)
∂θ

∣∣∣∣
θ̂K

+
1
2
(θ − θ̂K)′

∂2`(θ)
∂θ∂θ′

∣∣∣∣
θ̂K

(θ − θ̂K)

Since `(θ̂K) is the maximum log-likelihood function,∂`(θ)
∂θ

∣∣∣
θ̂K

= 0. Note that

plim
[
− 1

T
∂2`(θ)
∂θ∂θ′

∣∣∣
θ̂K

]
= I(θ0) if the maximum likelihood estimator̂θK is a con-

sistent estimator ofθ. Replacingθ with the true parameterθ0 and taking expectations
with respect to the random variableY ,

EY `(θ0) A= EY `(θ̂K)− K

2

Consider the following relationship:

`∗(θ0) = TEZ log f(Z|θ0)

= EY

T∑
t=1

log f(Yt|θ0)

= EY `(θ0)

270 � Chapter 10. Time Series Analysis and Examples

From the previous derivation,

`∗(K) A= `∗(θ0)− K

2

Therefore,

`∗(K) A= EY `(θ̂K)−K

The natural estimator for EY `(θ̂K) is `(θ̂K). Using this estimator, you can write the
mean expected log-likelihood function as

`∗(K) A= `(θ̂K)−K

Consequently, the AIC is defined as an asymptotically unbiased estimator of
−2(mean expected log-likelihood)

AIC(K) = −2`(θ̂K) + 2K

In practice, the previous asymptotic result is expected to be valid in finite samples
if the number of free parameters does not exceed2

√
T and the upper bound of the

number of free parameters isT2 . It is worth noting that the amount of AIC is not
meaningful in itself, since this value is not the Kullback-Leibler information measure.
The difference of AIC values can be used to select the model. The difference of the
two AIC values is considered insignificant if it is far less than 1. It is possible to find
a better model when the minimum AIC model contains many free parameters.

Smoothness Priors Modeling

Consider the time seriesyt:

yt = f(t) + εt

wheref(t) is an unknown smooth function andεt is aniid random variable with zero
mean and positive varianceσ2. Whittaker (1923) provides the solution, which bal-
ances a tradeoff between closeness to the data and thekth order difference equation.
For a fixed value ofλ andk, the solutionf̂ satisfies

min
f

T∑
t=1

{
[yt − f(t)]2 + λ2[∇kf(t)]2

}

where∇k denotes thekth order difference operator. The value ofλ can be viewed
as the smoothness tradeoff measure. Akaike (1980a) proposed the Bayesian posterior
PDF to solve this problem.

`(f) = exp

{
− 1

2σ2

T∑
t=1

[yt − f(t)]2
}

exp

{
− λ2

2σ2

T∑
t=1

[∇kf(t)]2
}

Bayesian Seasonal Adjustment � 271

Therefore, the solution can be obtained when the function`(f) is maximized.

Assume that time series is decomposed as follows:

yt = Tt + St + εt

whereTt denotes the trend component andSt is the seasonal component. The trend
component follows thekth order stochastically perturbed difference equation.

∇kTt = w1t, w1t ∼ N(0, τ2
1)

For example, the polynomial trend component fork = 2 is written as

Tt = 2Tt−1 − Tt−2 + w1t

To accommodate regular seasonal effects, the stochastic seasonal relationship is used.

L−1∑
i=0

St−i = w2t, w2t ∼ N(0, τ2
2)

whereL is the number of seasons within a period. In the context of Whittaker and
Akaike, the smoothness priors problem can be solved by the maximization of

`(f) = exp

[
− 1

2σ2

T∑
t=1

(yt − Tt − St)2
]

exp

[
− τ2

1

2σ2

T∑
t=1

(∇kTt)2
]

× exp

− τ2
2

2σ2

T∑
t=1

(
L−1∑
i=0

St−i

)2

The values of hyperparameters,τ2
1 andτ2

2 , refer to a measure of uncertainty of prior
information. For example, the large value ofτ2

1 implies a relatively smooth trend

component. The ratioτ
2
i

σ2 (i = 1, 2) can be considered as a signal-to-noise ratio.

Kitagawa and Gersch (1984) use the Kalman filter recursive computation for the like-
lihood of the tradeoff parameters. The hyperparameters are estimated by combining
the grid search and optimization method. The state space model and Kalman filter
recursive computation are discussed in the section,State Space and Kalman Filter
Method.

Bayesian Seasonal Adjustment
Seasonal phenomena are frequently observed in many economic and business time
series. For example, consumption expenditure might have strong seasonal variations
because of Christmas spending. The seasonal phenomena are repeatedly observed
after a regular period of time. The number of seasons within a period is defined as the
smallest time span for this repetitive observation. Monthly consumption expenditure
shows a strong increase during the Christmas season, with 12 seasons per period.

There are three major approaches to seasonal time series: the regression model, the
moving average model, and the seasonal ARIMA model.

272 � Chapter 10. Time Series Analysis and Examples

Regression Model

Let the trend component beTt =
∑mα

i=1 αiUit and the seasonal component be
St =

∑mβ

j=1 βjVjt. Then the additive time series can be written as the regression
model

yt =
mα∑
i=1

αiUit +
mβ∑
j=1

βjVjt + εt

In practice, the trend component can be written as themαth order polynomial, such
as

Tt =
mα∑
i=0

αit
i

The seasonal component can be approximated by the seasonal dummies(Djt)

St =
L−1∑
j=1

βjDjt

whereL is the number of seasons within a period. The least-squares method is ap-
plied to estimate parametersαi andβj .

The seasonally adjusted series is obtained by subtracting the estimated seasonal com-
ponent from the original series. Usually, the error termεt is assumed to be white
noise, while sometimes the autocorrelation of the regression residuals needs to be al-
lowed. However, the regression method is not robust to the regression function type,
especially at the beginning and end of the series.

Moving Average Model

If you assume that the annual sum of a seasonal time series has small seasonal fluc-
tuations, the nonseasonal componentNt = Tt + εt can be estimated by using the
moving average method.

N̂t =
m∑

i=−m

λiyt−i

wherem is the positive integer andλi is the symmetric constant such thatλi = λ−i

and
∑m

i=−m λi = 1.

When the data are not available, either an asymmetric moving average is used, or the
forecast data is augmented to use the symmetric weight. The X-11 procedure is a
complex modification of this moving average method.

Bayesian Seasonal Adjustment � 273

Seasonal ARIMA Model

The regression and moving average approaches assume that the seasonal component
is deterministic and independent of other nonseasonal components. The time series
approach is used to handle the stochastic trend and seasonal components.

The general ARIMA model can be written

m∏
j=1

φj(B)
k∏

i=1

(1−Bsi)di ỹt = θ0 +
q∏

i=1

θi(B)εt

whereB is the backshift operator and

φj(B) = 1− φ1B − · · · − φjB
pj

θi(B) = 1− θ1B − · · · − θiB
qi

and ỹt = yt − E(Yt) if di = 0; otherwise,ỹt = yt. The power ofB, si, can be
considered as a seasonal factor. Specifically, the Box-Jenkins multiplicative seasonal
ARIMA (p, d, q)(P,D,Q)s model is written as

φp(B)ΦP (Bs)(1−B)d(1−Bs)Dỹt = θq(B)ΘQ(Bs)εt

ARIMA modeling is appropriate for particular time series and requires burdensome
computation.

The TSBAYSEA subroutine combines the simple characteristics of the regression
approach and time series modeling. The TSBAYSEA and X-11 procedures use the
model-based seasonal adjustment. The symmetric weights of the standard X-11 op-
tion can be approximated by using the integrated MA form

(1−B)(1−B12)yt = θ(B)εt

With a fixed valueφ, the TSBAYSEA subroutine is approximated as

(1− φB)(1−B)(1−B12)yt = θ(B)εt

The subroutine is flexible enough to handle trading day or leap year effects, the shift
of the base observation, and missing values. The TSBAYSEA-type modeling ap-
proach has some advantages: it clearly defines the statistical model of the time series;
modification of the basic model can be an efficient method of choosing a particu-
lar procedure for the seasonal adjustment of a given time series; and the use of the
concept of the likelihood provides a minimum AIC model selection approach.

274 � Chapter 10. Time Series Analysis and Examples

Nonstationary Time Series

The subroutines TSMLOCAR, TSMLOMAR, and TSTVCAR are used to analyze
nonstationary time series models. The AIC statistic is extensively used to analyze the
locally stationary model.

Locally Stationary AR Model

When the time series is nonstationary, the TSMLOCAR (univariate) and
TSMLOMAR (multivariate) subroutines can be employed. The whole span of
the series is divided into locally stationary blocks of data, and then the TSMLOCAR
and TSMLOMAR subroutines estimate a stationary AR model by using the least-
squares method on this stationary block. The homogeneity of two different blocks of
data is tested using the AIC.

Given a set of data{y1, . . . , yT }, the data can be divided intok blocks of sizes
t1, . . . , tk, wheret1 + · · · + tk = T , andk and ti are unknown. The locally sta-
tionary model is fitted to the data

yt = αi
0 +

pi∑
j=1

αi
jyt−j + εit

where

Ti−1 =
i−1∑
j=1

tj < t ≤ Ti =
i∑

j=1

tj , for i = 1, . . . , k

whereεit is a Gaussian white noise withEεit = 0 andE(εit)
2 = σ2

i . Therefore, the
log-likelihood function of the locally stationary series is

` = −1
2

k∑
i=1

ti log(2πσ2
i) +

1
σ2

i

Ti∑
t=Ti−1+1

yt − αi
0 −

pi∑
j=1

αi
jyt−j

2
Givenαi

j , j = 0, . . . , pi, the maximum of the log-likelihood function is attained at

σ̂2
i =

1
ti

Ti∑
t=Ti−1+1

yt − α̂i
0 −

pi∑
j=1

α̂i
jyt−j

2

The concentrated log-likelihood function is given by

`∗ = −T
2

[1 + log(2π)]− 1
2

k∑
i=1

ti log(σ̂2
i)

Nonstationary Time Series � 275

Therefore, the maximum likelihood estimates,α̂i
j andσ̂2

i , are obtained by minimizing
the following local SSE:

SSE =
Ti∑

t=Ti−1+1

yt − α̂i
0 −

pi∑
j=1

α̂i
jyt−j

2

The least-squares estimation of the stationary model is explained in the section,Least
Squares and Householder Transformation.

The AIC for the locally stationary model over the pooled data is written as

k∑
i=1

ti log(σ̂2
i) + 2

k∑
i=1

(pi + intercept+ 1)

where intercept= 1 if the intercept term(αi
0) is estimated; otherwise,intercept=

0. The number of stationary blocks (k), the size of each block (ti), and the order of
the locally stationary model is determined by the AIC. Consider the autoregressive
model fitted over the block of data,{y1, . . . , yT }, and let this modelM1 be an AR(p1)
process. When additional data,{yT+1, . . . , yT+T1}, are available, a new modelM2,
an AR(p2) process, is fitted over this new data set, assuming that these data are inde-
pendent of the previous data. Then AICs for modelsM1 andM2 are defined as

AIC1 = T log(σ2
1) + 2(p1 + intercept+ 1)

AIC2 = T1 log(σ2
2) + 2(p2 + intercept+ 1)

The joint model AIC forM1 andM2 is obtained by summation

AICJ = AIC1 + AIC2

When the two data sets are pooled and estimated over the pooled data set,
{y1, . . . , yT+T1}, the AIC of the pooled model is

AICA = (T + T1) log(σ̂2
A) + 2(pA + intercept+ 1)

whereσ2
A is the pooled error variance andpA is the order chosen to fit the pooled data

set.

Decision

• If AICJ < AICA, switch to the new model, since there is a change in the
structure of the time series.

• If AICJ ≥ AICA, pool the two data sets, since two data sets are considered to
be homogeneous.

If new observations are available, repeat the preceding steps to determine the homo-
geneity of the data. The basic idea of locally stationary AR modeling is that, if the
structure of the time series is not changed, you should use the additional information
to improve the model fitting, but you need to follow the new structure of the time
series if there is any change.

276 � Chapter 10. Time Series Analysis and Examples

Time-Varying AR Coefficient Model

Another approach to nonstationary time series, especially those that are nonstationary
in the covariance, is time-varying AR coefficient modeling. When the time series
is nonstationary in the covariance, the problem in modeling this series is related to
an efficient parameterization. It is possible for a Bayesian approach to estimate the
model with a large number of implicit parameters of the complex structure by using
a relatively small number of hyperparameters.

The TSTVCAR subroutine uses smoothness priors by imposing stochastically per-
turbed difference equation constraints on each AR coefficient and frequency response
function. The variance of each AR coefficient distribution constitutes a hyperparam-
eter included in the state space model. The likelihood of these hyperparameters is
computed by the Kalman filter recursive algorithm.

The time-varying AR coefficient model is written

yt =
m∑

i=1

αityt−i + εt

where time-varying coefficientsαit are assumed to change gradually with time. The
following simple stochastic difference equation constraint is imposed on each coeffi-
cient:

∇kαit = wit, wit ∼ N(0, τ2), i = 1, . . . ,m

The frequency response function of the AR process is written

A(f) = 1−
m∑

j=1

αjt exp(−2πjif)

The smoothness of this function can be measured by thekth derivative smoothness
constraint,

Rk =
∫ 1/2

−1/2

∣∣∣∣dkA(f)
dfk

∣∣∣∣2 df = (2π)2k
m∑

j=1

j2kα2
jt

Then the TSTVCAR call imposes zero and second derivative smoothness constraints.
The time-varying AR coefficients are the solution of the following constrained least-
squares:

T∑
t=1

(
yt −

m∑
i=1

αityt−i

)2

+ τ2
T∑

t=1

m∑
i=1

(
∇kαit

)2
+ λ2

T∑
t=1

m∑
i=1

i2α2
it + ν2

T∑
t=1

m∑
i=1

α2
it

whereτ2, λ2, andν2 are hyperparameters of the prior distribution.

Multivariate Time Series Analysis � 277

Using a state space representation, the model is

xt = Fxt−1 + Gwt

yt = Htxt + εt

where

xt = (α1t, . . . , αmt, . . . , α1,t−k+1, . . . , αm,t−k+1)′

Ht = (yt−1, . . . , yt−m, . . . , 0, . . . , 0)
wt = (w1t, . . . , wmt)′

k = 1 : F = Im G = Im

k = 2 : F =
[

2Im −Im

Im 0

]
G =

[
Im

0

]

k = 3 : F =

 3Im −3Im Im

Im 0 0
0 Im 0

 G =

 Im

0
0

[

wt

εt

]
∼ N

(
0,
[
τ2I 0
0 σ2

])
The computation of the likelihood function is straightforward. See the section,State
Space and Kalman Filter Methodfor the computation method.

Multivariate Time Series Analysis

The subroutines TSMULMAR, TSMLOMAR, and TSPRED analyze multivariate
time series. The periodic AR model, TSPEARS, can also be estimated by using a vec-
tor AR procedure, since the periodic AR series can be represented as the covariance-
stationary vector autoregressive model.

The stationary vector AR model is estimated and the order of the model (or each
variable) is automatically determined by the minimum AIC procedure. The stationary
vector AR model is written

yt = A0 + A1yt−1 + · · ·+ Apyt−p + εt

εt ∼ N(0,Σ)

Using theLDL′ factorization method, the error covariance is decomposed as

Σ = LDL′

whereL is a unit lower triangular matrix andD is a diagonal matrix. Then the
instantaneous response model is defined as

Cyt = A∗
0 + A∗

1yt−1 + · · ·+ A∗
pyt−p + ε∗t

whereC = L−1, A∗
i = L−1Ai for i = 0, 1, . . . , p, andε∗t = L−1εt. Each equa-

tion of the instantaneous response model can be estimated independently, since its

278 � Chapter 10. Time Series Analysis and Examples

error covariance matrix has a diagonal covariance matrixD. Maximum likelihood
estimates are obtained through the least-squares method when the disturbances are
normally distributed and the presample values are fixed.

The TSMULMAR call estimates the instantaneous response model. The VAR co-
efficients are computed using the relationship between the VAR and instantaneous
models.

The general VARMA model can be transformed as an infinite order MA process
under certain conditions.

yt = µ+ εt +
∞∑

m=1

Ψmεt−m

In the context of the VAR(p) model, the coefficientΨm can be interpreted as the
m-lagged response of a unit increase in the disturbances at timet.

Ψm =
∂yt+m

∂ε′t

The lagged response on the one-unit increase in the orthogonalized disturbancesε∗t is
denoted

∂yt+m

∂ε∗jt
=
∂E(yt+m|yjt, yj−1,t, . . . ,Xt)

∂yjt
= ΨmLj

where Lj is the jth column of the unit triangular matrixL and Xt =
[yt−1, . . . ,yt−p]. When you estimate the VAR model using the TSMULMAR
call, it is easy to compute this impulse response function.

The MSE of them-step prediction is computed as

E(yt+m − yt+m|t)(yt+m − yt+m|t)
′ = Σ + Ψ1ΣΨ′

1 + · · ·+ Ψm−1ΣΨ′
m−1

Note thatεt = Lε∗t . Then the covariance matrix ofεt is decomposed

Σ =
n∑

i=1

LiL′idii

wheredii is theith diagonal element of the matrixD andn is the number of variables.
The MSE matrix can be written

n∑
i=1

dii

[
LiL′i + Ψ1LiL′iΨ

′
1 + · · ·+ Ψm−1LiL′iΨ

′
m−1

]
Therefore, the contribution of theith orthogonalized innovation to the MSE is

Vi = dii

[
LiL′i + Ψ1LiL′iΨ

′
1 + · · ·+ Ψm−1LiL′iΨ

′
m−1

]

Spectral Analysis � 279

Theith forecast error variance decomposition is obtained from diagonal elements of
the matrixVi.

The nonstationary multivariate series can be analyzed by the TSMLOMAR subrou-
tine. The estimation and model identification procedure is analogous to the univariate
nonstationary procedure, which is explained in the“Nonstationary Time Series”sec-
tion on page 274.

A time seriesyt is periodically correlated with periodd if Eyt = Eyt+d andEysyt =
Eys+dyt+d. Let yt be autoregressive of periodd with AR orders(p1, . . . , pd), that is,

yt =
pt∑

j=1

αjtyt−j + εt

whereεt is uncorrelated with mean zero andEε2t = σ2
t , pt = pt+d, σ2

t = σ2
t+d, and

αjt = αj,t+d(j = 1, . . . , pt). Define the new variable such thatxjt = yj+d(t−1).
The vector series,xt = (x1t, . . . , xdt)′, is autoregressive of orderp, wherep =
maxj int((pj − j)/d) + 1. The TSPEARS subroutine estimates the periodic autore-
gressive model using minimum AIC vector AR modeling.

The TSPRED subroutine computes the one-step or multistep forecast of the mul-
tivariate ARMA model if the ARMA parameter estimates are provided. In addi-
tion, the subroutine TSPRED produces the (intermediate and permanent) impulse
response function and performs forecast error variance decomposition for the vector
AR model.

Spectral Analysis

The autocovariance function of the random variableYt is defined as

CY Y (k) = E(Yt+kYt)

whereEYt = 0. When the real valued processYt is stationary and its autocovariance
is absolutely summable, the population spectral density function is obtained using the
Fourier transform of the autocovariance function

f(g) =
1
2π

∞∑
k=−∞

CY Y (k) exp(−igk) − π ≤ g ≤ π

wherei =
√
−1 andCY Y (k) is the autocovariance function such that∑∞

k=−∞ |CY Y (k)| <∞.

Consider the autocovariance generating function

γ(z) =
∞∑

k=−∞
CY Y (k)zk

280 � Chapter 10. Time Series Analysis and Examples

whereCY Y (k) = CY Y (−k) andz is a complex scalar. The spectral density function
can be represented as

f(g) =
1
2π
γ(exp(−ig))

The stationary ARMA(p, q) process is denoted:

φ(B)yt = θ(B)εt εt ∼ (0, σ2)

whereφ(B) and θ(B) do not have common roots. Note that the autocovariance
generating function of the linear processyt = ψ(B)εt is given by

γ(B) = σ2ψ(B)ψ(B−1)

For the ARMA(p, q) process,ψ(B) = θ(B)
φ(B) . Therefore, the spectral density function

of the stationary ARMA(p, q) process becomes

f(g) =
σ2

2π

∣∣∣∣ θ(exp(−ig))θ(exp(ig))
φ(exp(−ig))φ(exp(ig))

∣∣∣∣2
The spectral density function of a white noise is a constant.

f(g) =
σ2

2π

The spectral density function of the AR(1) process(φ(B) = 1− φ1B) is given by

f(g) =
σ2

2π(1− φ1 cos(g) + φ2
1)

The spectrum of the AR(1) process has its minimum atg = 0 and its maximum at
g = ±π if φ1 < 0, while the spectral density function attains its maximum atg = 0
and its minimum atg = ±π, if φ1 > 0. When the series is positively autocorrelated,
its spectral density function is dominated by low frequencies. It is interesting to
observe that the spectrum approachesσ2

4π
1

1−cos(g) asφ1 → 1. This relationship shows
that the series is difference-stationary if its spectral density function has a remarkable
peak near 0.

The spectrum of AR(2) process(φ(B) = 1− φ1B − φ2B
2) equals

f(g) =
σ2

2π
1{

−4φ2

[
cos(g) + φ1(1−φ2)

4φ2

]2
+ (1+φ2)2(4φ2+φ2

1)
4φ2

}
Refer to Anderson (1971) for details of the characteristics of this spectral density
function of the AR(2) process.

Spectral Analysis � 281

In practice, the population spectral density function cannot be computed. There are
many ways of computing the sample spectral density function. The TSBAYSEA and
TSMLOCAR calls compute the power spectrum using AR coefficients and the white
noise variance.

The power spectral density function ofYt is derived using the Fourier transformation
of CY Y (k).

fY Y (g) =
∞∑

k=−∞
exp(−2πigk)CY Y (k), −1

2
≤ g ≤ 1

2

wherei =
√
−1 andg denotes frequency. The autocovariance function can also be

written as

CY Y (k) =
∫ 1/2

−1/2
exp(2πigk)fY Y (g)dg

Consider the following stationary AR(p) process:

yt −
p∑

i=1

φiyt−i = εt

whereεt is a white noise with mean zero and constant varianceσ2.

The autocovariance function of white noiseεt equals

Cεε(k) = δk0σ
2

whereδk0 = 1 if k = 0; otherwise,δk0 = 0. Therefore, the power spectral density of
the white noise isfεε(g) = σ2,−1

2 ≤ g ≤ 1
2 . Note that, withφ0 = −1,

Cεε(k) =
p∑

m=0

p∑
n=0

φmφnCY Y (k −m+ n)

Using the following autocovariance function ofYt,

CY Y (k) =
∫ 1/2

−1/2
exp(2πigk)fY Y (g)dg

the autocovariance function of the white noise is denoted as

Cεε(k) =
p∑

m=0

p∑
n=0

φmφn

∫ 1/2

−1/2
exp(2πig(k −m+ n))fY Y (g)dg

=
∫ 1/2

−1/2
exp(2πigk)

∣∣∣∣∣1−
p∑

m=1

φm exp(−2πigm)

∣∣∣∣∣
2

fY Y (g)dg

282 � Chapter 10. Time Series Analysis and Examples

On the other hand, another formula of theCεε(k) gives

Cεε(k) =
∫ 1/2

−1/2
exp(2πigk)fεε(g)dg

Therefore,

fεε(g) =

∣∣∣∣∣1−
p∑

m=1

φm exp(−2πigm)

∣∣∣∣∣
2

fY Y (g)

Sincefεε(g) = σ2, the rational spectrum ofYt is

fY Y (g) =
σ2

|1−
∑p

m=1 φm exp(−2πigm)|2

To compute the power spectrum, estimated values of white noise varianceσ̂2 and AR
coefficientsφ̂m are used. The order of the AR process can be determined by using
the minimum AIC procedure.

Computational Details

Least Squares and Householder Transformation

Consider the univariate AR(p) process

yt = α0 +
p∑

i=1

αiyt−i + εt

Define the design matrixX.

X =

 1 yp · · · y1
...

...
...

...
1 yT−1 · · · yT−p

Let y = (yp+1, . . . , yn)′. The least-squares estimate,â = (X′X)−1X′y, is the
approximation to the maximum likelihood estimate ofa = (α0, α1, . . . , αp) if εt is
assumed to be Gaussian error disturbances. CombiningX andy as

Z = [X
...y]

theZ matrix can be decomposed as

Z = QU = Q
[

R w1

0 w2

]

Computational Details � 283

where Q is an orthogonal matrix andR is an upper triangular matrix,w1 =
(w1, . . . , wp+1)′, andw2 = (wp+2, 0, . . . , 0)′.

Q′y =

w1

w2
...

wT−p

The least-squares estimate using Householder transformation is computed by solving
the linear system

Ra = w1

The unbiased residual variance estimate is

σ̂2 =
1

T − p

T−p∑
i=p+2

w2
i =

w2
p+2

T − p

and

AIC = (T − p) log(σ̂2) + 2(p+ 1)

In practice, least-squares estimation does not require the orthogonal matrixQ. The
TIMSAC subroutines compute the upper triangular matrix without computing the
matrixQ.

Bayesian Constrained Least Squares

Consider the additive time series model

yt = Tt + St + εt, εt ∼ N(0, σ2)

Practically, it is not possible to estimate parametersa = (T1, . . . , TT , S1, . . . , ST)′,
since the number of parameters exceeds the number of available observations. Let
∇m

L denote the seasonal difference operator withL seasons and degree ofm; that is,
∇m

L = (1−BL)m. Suppose thatT = L ∗ n. Some constraints on the trend and sea-
sonal components need to be imposed such that the sum of squares of∇kTt, ∇m

L St,
and(

∑L−1
i=0 St−i) is small. The constrained least-squares estimates are obtained by

minimizing

T∑
t=1

{
(yt − Tt − St)2 + d2

[
s2(∇kTt)2 + (∇m

L St)2 + z2(St + · · ·+ St−L+1)2
]}

Using matrix notation,

(y −Ma)′(y −Ma) + (a− a0)′D′D(a− a0)

284 � Chapter 10. Time Series Analysis and Examples

whereM = [IT
... IT], y = (y1, . . . , yT)′, anda0 is the initial guess ofa. The matrix

D is a 3T × 2T control matrix in which structure varies according to the order of
differencing in trend and season.

D = d

 Em 0
zF 0
0 sGk

where

Em = Cm ⊗ IL, m = 1, 2, 3

F =

1 0 · · · 0

1 1
...

...
...

... ... 0
1 · · · 1 1

T×T

G1 =

1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
...

...
...

... 0
0 · · · 0 −1 1

T×T

G2 =

1 0 0 0 · · · 0
−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1
...

...
...

... 0
0 · · · 0 1 −2 1

T×T

G3 =

1 0 0 0 0 · · · 0
−3 1 0 0 0 · · · 0

3 −3 1 0 0 · · · 0
−1 3 −3 1 0 · · · 0

0 −1 3 −3 1
...

...
...

... 0
0 · · · 0 −1 3 −3 1

T×T

Then× n matrixCm has the same structure as the matrixGm, andIL is theL× L
identity matrix. The solution of the constrained least-squares method is equivalent to
that of maximizing the following function

L(a) = exp
{
− 1

2σ2
(y −Ma)′(y −Ma)

}
exp

{
− 1

2σ2
(a− a0)′D′D(a− a0)

}

Computational Details � 285

Therefore, the PDF of the datay is

f(y|σ2,a) =
(

1
2π

)T/2(1
σ

)T

exp
{
− 1

2σ2
(y −Ma)′(y −Ma)

}
The prior PDF of the parameter vectora is

π(a|D, σ2,a0) =
(

1
2π

)T (1
σ

)2T

|D′D| exp
{
− 1

2σ2
(a− a0)′D′D(a− a0)

}
When the constantd is known, the estimatêa of a is the mean of the posterior dis-
tribution, where the posterior PDF of the parametera is proportional to the function
L(a). It is obvious that̂a is the minimizer of‖g(a|d)‖2 = (ỹ − D̃a)′(ỹ − D̃a),
where

ỹ =
[

y
Da0

]

D̃ =
[

M
D

]

The value ofd is determined by the minimum ABIC procedure. The ABIC is defined
as

ABIC = T log
[

1
T
‖g(a|d)‖2

]
+ 2{log[det(D′D + M′M)]− log[det(D′D)]}

State Space and Kalman Filter Method

In this section, the mathematical formulas for state space modeling are introduced.
The Kalman filter algorithms are derived from the state space model. As an example,
the state space model of the TSDECOMP subroutine is formulated.

Define the following state space model:

xt = Fxt−1 + Gwt

yt = Htxt + εt

whereεt ∼ N(0, σ2) andwt ∼ N(0,Q). If the observations,(y1, . . . , yT), and the
initial conditions,x0|0 andP0|0, are available, the one-step predictor(xt|t−1) of the
state vectorxt and its mean square error (MSE) matrixPt|t−1 are written as

xt|t−1 = Fxt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + GQG′

286 � Chapter 10. Time Series Analysis and Examples

Using the current observation, the filtered value ofxt and its variancePt|t are up-
dated.

xt|t = xt|t−1 + Ktet

Pt|t = (I−KtHt)Pt|t−1

whereet = yt − Htxt|t−1 andKt = Pt|t−1H′
t[HtPt|t−1H′

t + σ2I]−1. The log-
likelihood function is computed as

` = −1
2

T∑
t=1

log(2πvt|t−1)−
T∑

t=1

e2t
2vt|t−1

wherevt|t−1 is the conditional variance of the one-step prediction erroret.

Consider the additive time series decomposition

yt = Tt + St + TDt + ut + x′tβt + εt

wherext is a(K × 1) regressor vector andβt is a(K × 1) time-varying coefficient
vector. Each component has the following constraints:

∇kTt = w1t, w1t ∼ N(0, τ2
1)

∇m
L St = w2t, w2t ∼ N(0, τ2

2)

ut =
p∑

i=1

αiut−i + w3t, w3t ∼ N(0, τ2
3)

βjt = βj,t−1 + w3+j,t, w3+j,t ∼ N(0, τ2
3+j), j = 1, · · · ,K

7∑
i=1

γitTDt(i) =
6∑

i=1

γit(TDt(i)− TDt(7))

γit = γi,t−1

where∇k = (1 − B)k and∇m
L = (1 − BL)m. The AR componentut is assumed

to be stationary. The trading day componentTDt(i) represents the number of theith
day of the week in timet. If k = 3, p = 3,m = 1, andL = 12 (monthly data),

Tt = 3Tt−1 − 3Tt−2 + Tt−3 + w1t

11∑
i=0

St−i = w2t

ut =
3∑

i=1

αiut−i + w3t

The state vector is defined as

xt = (Tt, Tt−1, Tt−2, St, . . . , St−11, ut, ut−1, ut−2, γ1t, . . . , γ6t)′

Computational Details � 287

The matrixF is

F =

F1 0 0 0
0 F2 0 0
0 0 F3 0
0 0 0 F4

where

F1 =

 3 −3 1
1 0 0
0 1 0

F2 =
[
−1′ −1
I10 0

]

F3 =

 α1 α2 α3

1 0 0
0 1 0

F4 = I6

1′ = (1, 1, . . . , 1)

The matrixG can be denoted as

G =

g1 0 0
0 g2 0
0 0 g3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

where

g1 = g3 =
[

1 0 0
]′

g2 =
[

1 0 0 0 0 0
]′

Finally, the matrixHt is time-varying,

Ht =
[

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 h′t
]

where

ht =
[
Dt(1) Dt(2) Dt(3) Dt(4) Dt(5) Dt(6)

]′
Dt(i) = TDt(i)− TDt(7), i = 1, . . . , 6

288 � Chapter 10. Time Series Analysis and Examples

Missing Values

The TIMSAC subroutines skip any missing values at the beginning of the data set.
When the univariate and multivariate AR models are estimated via least-squares
(TSMLOCAR, TSMLOMAR, TSUNIMAR, TSMULMAR, and TSPEARS), there
are three options available; that is, MISSING=0, MISSING=1, or MISSING=2.
When the MISSING=0 (default) option is specified, the first contiguous observa-
tions with no missing values are used. The MISSING=1 option specifies that only
nonmissing observations should be used by ignoring the observations with missing
values. If the MISSING=2 option is specified, the missing values are filled with the
sample mean. The least-squares estimator with the MISSING=2 option is biased in
general.

The BAYSEA subroutine assumes the same prior distribution of the trend and sea-
sonal components that correspond to the missing observations. A modification is
made to skip the components of the vectorg(a|d) that correspond to the missing ob-
servations. The vectorg(a|d) is defined in the section,Bayesian Constrained Least
Squares. In addition, the TSBAYSEA subroutine considers outliers as missing val-
ues. The TSDECOMP and TSTVCAR subroutines skip the Kalman filter updating
equation when the current observation is missing.

ISM TIMSAC Packages

A description of each TIMSAC package follows. Each description includes a list of
the programs provided in the TIMSAC version.

TIMSAC-72
analyzes and controls the feedback systems (for example, cement kiln process).
Univariate- and multivariate-AR models are employed in this original TIMSAC pack-
age. The final prediction error (FPE) criterion is used for model selection.

• AUSPEC estimates the power spectrum by the Blackman-Tukey procedure.

• AUTCOR computes autocovariance and autocorrelation.

• DECONV computes the impulse response function.

• FFTCOR computes autocorrelation and crosscorrelation via the fast Fourier
transform.

• FPEAUT computes AR coefficients and FPE for the univariate AR model.

• FPEC computes AR coefficients and FPE for the control system or multivariate
AR model.

• MULCOR computes multiple covariance and correlation.

• MULNOS computes relative power contribution.

• MULRSP estimates the rational spectrum for multivariate data.

• MULSPE estimates the cross spectrum by Blackman-Tukey procedure.

• OPTDES performs optimal controller design.

• OPTSIM performs optimal controller simulation.

• RASPEC estimates the rational spectrum for univariate data.

ISM TIMSAC Packages � 289

• SGLFRE computes the frequency response function.

• WNOISE performs white noise simulation.

TIMSAC-74
estimates and forecasts the univariate and multivariate ARMA models by fitting the
canonical Markovian model. A locally stationary autoregressive model is also ana-
lyzed. Akaike’s information criterion (AIC) is used for model selection.

• AUTARM performs automatic univariate ARMA model fitting.

• BISPEC computes bispectrum.

• CANARM performs univariate canonical correlation analysis.

• CANOCA performs multivariate canonical correlation analysis.

• COVGEN computes the covariance from gain function.

• FRDPLY plots the frequency response function.

• MARKOV performs automatic multivariate ARMA model fitting.

• NONST estimates the locally stationary AR model.

• PRDCTR performs ARMA model prediction.

• PWDPLY plots the power spectrum.

• SIMCON performs optimal controller design and simulation.

• THIRMO computes the third-order moment.

TIMSAC-78
uses the Householder transformation to estimate the time series models. This package
also contains Bayesian modeling and the exact maximum likelihood estimation of
the ARMA model. Minimum AIC or Akaike Bayesian Information Criterion (ABIC)
modeling is extensively used.

• BLOCAR estimates the locally stationary univariate AR model using the
Bayesian method.

• BLOMAR estimates the locally stationary multivariate AR model using the
Bayesian method.

• BSUBST estimates the univariate subset regression model using the Bayesian
method.

• EXSAR estimates the univariate AR model using the exact maximum likeli-
hood method.

• MLOCAR estimates the locally stationary univariate AR model using the min-
imum AIC method.

• MLOMAR estimates the locally stationary multivariate AR model using the
minimum AIC method.

• MULBAR estimates the multivariate AR model using the Bayesian method.

290 � Chapter 10. Time Series Analysis and Examples

• MULMAR estimates the multivariate AR model using the minimum AIC
method.

• NADCON performs noise adaptive control.

• PERARS estimates the periodic AR model using the minimum AIC method.

• UNIBAR estimates the univariate AR model using the Bayesian method.

• UNIMAR estimates the univariate AR model using the minimum AIC method.

• XSARMA estimates the univariate ARMA model using the exact maximum
likelihood method.

In addition, the following test subroutines are available: TSSBST, TSWIND,
TSROOT, TSTIMS, and TSCANC.

TIMSAC-84
contains the Bayesian time series modeling procedure, the point process data analysis,
and the seasonal adjustment procedure.

• ADAR estimates the amplitude dependent AR model.

• BAYSEA performs Bayesian seasonal adjustments.

• BAYTAP performs Bayesian tidal analysis.

• DECOMP performs time series decomposition analysis using state space mod-
eling.

• EPTREN estimates intensity rates of either the exponential polynomial or ex-
ponential Fourier series of the nonstationary Poisson process model.

• LINLIN estimates linear intensity models of the self-exciting point process
with another process input and with cyclic and trend components.

• LINSIM performs simulation of the point process estimated by the subroutine
LINLIN.

• LOCCAR estimates the locally constant AR model.

• MULCON performs simulation, control, and prediction of the multivariate AR
model.

• NONSPA performs nonstationary spectrum analysis using the minimum
Bayesian AIC procedure.

• PGRAPH performs graphical analysis for point process data.

• PTSPEC computes periodograms of point process data with significant bands.

• SIMBVH performs simulation of bivariate Hawkes’ mutually exciting point
process.

• SNDE estimates the stochastic nonlinear differential equation model.

• TVCAR estimates the time-varying AR coefficient model using state space
modeling.

Refer to Kitagawa and Akaike (1981) and Ishiguro (1987) for more information about
TIMSAC programs.

Example 10.1. VAR Estimation and Variance Decomposition � 291

Example 10.1. VAR Estimation and Variance Decomposition

In this example, a VAR model is estimated and forecast. The VAR(3) model is esti-
mated using investment, durable consumption, and consumption expenditures. The
data are found in the appendix to Lütkepohl (1991). The stationary VAR(3) process
is specified as

yt = A0 + A1yt−1 + A2yt−2 + A3yt−3 + εt

The matrix ARCOEF contains the AR coefficients (A1,A2, andA3), and the matrix
EV contains error covariance estimates. An intercept vectorA0 is included in the
first row of the matrix ARCOEF if OPT[1]=1 is specified.

data one;
input invest income consum @@;

datalines;
180 451 415 179 465 421 185 485 434 192 493 448
211 509 459 202 520 458 207 521 479 214 540 487
231 548 497 229 558 510 234 574 516 237 583 525
206 591 529 250 599 538 259 610 546 263 627 555
264 642 574 280 653 574 282 660 586 292 694 602
286 709 617 302 734 639 304 751 653 307 763 668
317 766 679 314 779 686 306 808 697 304 785 688
292 794 704 275 799 699 273 799 709 301 812 715
280 837 724 289 853 746 303 876 758 322 897 779
315 922 798 339 949 816 364 979 837 371 988 858
375 1025 881 432 1063 905 453 1104 934 460 1131 968
475 1137 983 496 1178 1013 494 1211 1034 498 1256 1064
526 1290 1101 519 1314 1102 516 1346 1145 531 1385 1173
573 1416 1216 551 1436 1229 538 1462 1242 532 1493 1267
558 1516 1295 524 1557 1317 525 1613 1355 519 1642 1371
526 1690 1402 510 1759 1452 519 1756 1485 538 1780 1516
549 1807 1549 570 1831 1567 559 1873 1588 584 1897 1631
611 1910 1650 597 1943 1685 603 1976 1722 619 2018 1752
635 2040 1774 658 2070 1807 675 2121 1831 700 2132 1842
692 2199 1890 759 2253 1958 782 2276 1948 816 2318 1994
844 2369 2061 830 2423 2056 853 2457 2102 852 2470 2121
833 2521 2145 860 2545 2164 870 2580 2206 830 2620 2225
801 2639 2235 824 2618 2237 831 2628 2250 830 2651 2271
;

proc iml;
use one;
read all into y var{invest income consum};
mdel = 1;
maice = 0;
misw = 0; /*-- instantaneous modeling ? --*/
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw) print=1;

To obtain the unit triangular matrixL−1 and diagonal matrixDt, you need to estimate
the instantaneous response model. When you specify the OPT[3]=1 option, the first

292 � Chapter 10. Time Series Analysis and Examples

row of the output matrix EV contains error variances of the instantaneous response
model, while the unit triangular matrix is in the second through the fifth rows. See
Output 10.1.1on page 292.

misw = 1;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw) print=1;
print ev;

Output 10.1.1. Error Variance and Unit Triangular Matrix
VAR Estimation and Variance Decomposition

EV

295.21042 190.94664 59.361516
1 0 0

-0.02239 1 0
-0.256341 -0.500803 1

In Output 10.1.2on page 292 andOutput 10.1.3on page 292, you can see the rela-
tionship between the instantaneous response model and the VAR model. The VAR
coefficients are computed asAi = LA∗

i (i = 0, 1, 2, 3), whereA∗
i is a coefficient

matrix of the instantaneous model. For example, you can verify this result using the
first lag coefficient matrix(A1).

 0.886 0.340 −0.014
0.168 1.050 0.107
0.089 0.459 0.447

 =

 1.000 0 0
−0.022 1.000 0
−0.256 −0.501 1.000

−1 0.886 0.340 −0.014
0.149 1.043 0.107

−0.222 −0.154 0.397

Output 10.1.2. VAR Estimates

ARCOEF

0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746
-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Example 10.1. VAR Estimation and Variance Decomposition � 293

Output 10.1.3. Instantaneous Response Model Estimates
ARCOEF

0.885593 0.340174 -0.014398
0.148624 1.042645 0.107386
-0.222272 -0.154018 0.39744
-0.059195 -0.298777 0.162982
0.114188 -0.037349 -0.091835
0.127145 0.072796 -0.023287
0.063723 -0.196504 0.069575
-0.227986 0.057646 -0.101366
-0.20657 -0.115316 0.28979

When the VAR estimates are available, you can forecast the future values using the
TSPRED call. As a default, the one-step predictions are produced until the START=
point is reached. The NPRED=h option specifies how far you want to predict. The
prediction error covariance matrix MSE containsh mean square error matrices. The
output matrix IMPULSE contains the estimate of the coefficients(Ψi) of the infinite
MA process. The following IML code estimates the VAR(3) model and performs
10-step-ahead prediction.

mdel = 1;
maice = 0;
misw = 0;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw);
call tspred(forecast,impulse,mse,y,arcoef,nar,0,ev)

npred=10 start=nrow(y) constant=mdel;
print impulse;

The lagged effects of a unit increase in the error disturbances are included in the
matrix IMPULSE. For example,

∂yt+2

∂ε′t
=

 0.781100 0.353140 0.180211
0.448501 1.165474 0.069731
0.364611 0.692111 0.222342

Output 10.1.4on page 293 displays the first 15 rows of the matrix IMPULSE.

294 � Chapter 10. Time Series Analysis and Examples

Output 10.1.4. Moving Average Coefficients: MA(0)−MA(4)
IMPULSE

1 0 0
0 1 0
0 0 1

0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
0.7810999 0.3531397 0.1802109
0.4485013 1.1654737 0.0697311
0.3646106 0.6921108 0.2223425
0.8145483 0.243637 0.2914643
0.4997732 1.3625363 -0.018202
0.2775237 0.7555914 0.3885065
0.7960884 0.2593068 0.260239
0.5275069 1.4134792 0.0335483
0.267452 0.8659426 0.3190203

In addition, you can compute the lagged response on the one-unit increase in the
orthogonalized disturbancesε∗t .

∂yt+m

∂ε∗jt
=
∂E(yt+m|yjt, yj−1,t, . . . ,Xt)

∂yjt
= ΨmLj

When the error matrix EV is obtained from the instantaneous response model, you
need to convert the matrix IMPULSE. The first 15 rows of the matrix ORTH–IMP
are shown inOutput 10.1.5on page 294. Note that the matrix constructed from the
last three rows of EV become the matrixL−1.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 1};

lmtx = inv(ev[2:nrow(ev),]);
orth_imp = impulse * lmtx;
print orth_imp;

Output 10.1.5. Transformed Moving Average Coefficients
ORTH_IMP

1 0 0
0.0223902 1 0
0.267554 0.5008031 1
0.889357 0.3329638 -0.014398

0.2206132 1.1038799 0.107064
0.219079 0.6832001 0.4473672

0.8372229 0.4433899 0.1802109
0.4932533 1.2003953 0.0697311
0.4395957 0.8034606 0.2223425
0.8979858 0.3896033 0.2914643
0.5254106 1.3534206 -0.018202
0.398388 0.9501566 0.3885065

0.8715223 0.3896353 0.260239
0.5681309 1.4302804 0.0335483
0.3721958 1.025709 0.3190203

Example 10.1. VAR Estimation and Variance Decomposition � 295

You can verify the result for the case of

∂yt+2

∂ε∗2t

=
∂E(yt+2|y2t, y1t, . . . ,Xt)

∂y2t
= Ψ2L2

using the simple computation 0.443390
1.200395
0.803461

 =

 0.781100 0.353140 0.180211
0.448501 1.165474 0.069731
0.364611 0.692111 0.222342

 0.000000
1.000000
0.500803

The contribution of theith orthogonalized innovation to the mean square error matrix
of the 10-step forecast is computed using the formula

dii[LiL′i + Ψ1LiL′iΨ
′
1 + · · ·+ Ψ9LiL′iΨ

′
9]

In Output 10.1.6on page 295, diagonal elements of each decomposed MSE matrix
are displayed as the matrix CONTRIB as well as those of the MSE matrix (VAR).

mse1 = j(3,3,0);
mse2 = j(3,3,0);
mse3 = j(3,3,0);
do i = 1 to 10;

psi = impulse[(i-1)*3+1:3*i,];
mse1 = mse1 + psi*lmtx[,1]*lmtx[,1]‘*psi‘;
mse2 = mse2 + psi*lmtx[,2]*lmtx[,2]‘*psi‘;
mse3 = mse3 + psi*lmtx[,3]*lmtx[,3]‘*psi‘;

end;
mse1 = ev[1,1]#mse1;
mse2 = ev[1,2]#mse2;
mse3 = ev[1,3]#mse3;
contrib = vecdiag(mse1) || vecdiag(mse2) || vecdiag(mse3);
var = vecdiag(mse[28:30,]);
print contrib var;

Output 10.1.6. Orthogonal Innovation Contribution
CONTRIB VAR

1197.9131 116.68096 11.003194 2163.7104
263.12088 1439.1551 1.0555626 4573.9809
180.09836 633.55931 89.177905 2466.506

The investment innovation contribution to its own variable is 1879.3774, and the
income innovation contribution to the consumption expenditure is 1916.1676. It is
easy to understand the contribution of innovations in theith variable to MSE when
you compute the innovation account. InOutput 10.1.7on page 296, innovations in
the first variable (investment) explain 20.45% of the error variance of the second
variable (income), while the innovations in the second variable explain 79.5% of its
own error variance. It is straightforward to construct the general multistep forecast
error variance decomposition.

296 � Chapter 10. Time Series Analysis and Examples

account = contrib * 100 / (var@j(1,3,1));
print account;

Output 10.1.7. Innovation Account
ACCOUNT

55.363835 5.3926331 0.5085336
5.7525574 31.463951 0.0230775
7.3017604 25.68651 3.615556

Kalman Filter Subroutines

This section describes a collection of Kalman filtering and smoothing subroutines for
time series analysis; immediately following are three examples using Kalman filtering
subroutines. The state space model is a method for analyzing a wide range of time
series models. When the time series is represented by the state space model (SSM),
the Kalman filter is used for filtering, prediction, and smoothing of the state vector.
The state space model is composed of the measurement and transition equations.

The following Kalman filtering and smoothing subroutines are supported:

KALCVF performs covariance filtering and prediction

KALCVS performs fixed-interval smoothing

KALDFF performs diffuse covariance filtering and prediction

KALDFS performs diffuse fixed-interval smoothing

Getting Started

The measurement (or observation) equation can be written

yt = bt + Htzt + εt

wherebt is anNy × 1 vector,Ht is anNy ×Nz matrix, the sequence of observation
noiseεt is independent,zt is anNz × 1 state vector, andyt is anNy × 1 observed
vector.

The transition (or state) equation is denoted as a first-order Markov process of the
state vector.

zt+1 = at + Ftzt + ηt

whereat is anNz × 1 vector,Ft is anNz ×Nz transition matrix, and the sequence
of transition noiseηt is independent. This equation is often called ashifted transition
equationbecause the state vector is shifted forward one time period. The transition
equation can also be denoted using an alternative specification

zt = at + Ftzt−1 + ηt

Syntax � 297

There is no real difference between the shifted transition equation and this alternative
equation if the observation noise and transition equation noise are uncorrelated, that
is,E(ηtε

′
t) = 0. It is assumed that

E(ηtη
′
s) = Vtδts

E(εtε′s) = Rtδts

E(ηtε
′
s) = Gtδts

where

δts =
{

1 if t = s
0 if t 6= s

De Jong (1991a) proposed a diffuse Kalman filter that can handle an arbitrarily large
initial state covariance matrix. The diffuse initial state assumption is reasonable if
you encounter the case of parameter uncertainty or SSM nonstationarity. The SSM
of the diffuse Kalman filter is written

yt = Xtβ + Htzt + εt

zt+1 = Wtβ + Ftzt + ηt

z0 = a + Aδ

β = b + Bδ

whereδ is a random variable with a mean ofµ and a variance ofσ2Σ. WhenΣ →∞,
the SSM is said to be diffuse.

The KALCVF call computes the one-step predictionzt+1|t and the filtered estimate
zt|t, together with their covariance matricesPt+1|t andPt|t, using forward recur-
sions. You can obtain thek-step predictionzt+k|t and its covariance matrixPt+k|t
with the KALCVF call. The KALCVS call uses backward recursions to compute the
smoothed estimatezt|T and its covariance matrixPt|T when there areT observations
in the complete data.

The KALDFF call produces one-step prediction of the state and the unobserved ran-
dom vectorδ as well as their covariance matrices. The KALDFS call computes the
smoothed estimatezt|T and its covariance matrixPt|T .

Syntax

CALL KALCVF (pred, vpred, filt, vfilt, data, lead, a, f , b, h,

var <, z0, vz0>);

298 � Chapter 10. Time Series Analysis and Examples

CALL KALCVS (sm, vsm, data, a, f , b, h, var, pred, vpred <,un, vun>);

CALL KALDFF (pred, vpred, initial, s2, data, lead, int, coef, var,

intd, coefd <, n0, at, mt, qt>);

CALL KALDFS (sm, vsm, data, int, coef, var, bvec, bmat, initial, at,

mt, s2 <, un, vun>);

Example 10.2. Kalman Filtering: Likelihood Function
Evaluation

In this example, the log-likelihood function of the SSM is computed using prediction
error decomposition. The annual real GNP series,yt, can be decomposed as

yt = µt + εt

whereµt is a trend component andεt is a white noise error withεt ∼ (0, σ2
ε). Refer

to Nelson and Plosser (1982) for more details on these data. The trend component is
assumed to be generated from the following stochastic equations:

µt = µt−1 + βt−1 + η1t

βt = βt−1 + η2t

whereη1t andη2t are independent white noise disturbances withη1t ∼ (0, σ2
η1

) and
η2t ∼ (0, σ2

η2
).

It is straightforward to construct the SSM of the real GNP series.

yt = Hzt + εt

zt = Fzt−1 + ηt

where

H = (1, 0)

F =
[

1 1
0 1

]
zt = (µt, βt)′

ηt = (η1t, η2t)′

Var

([
ηt

εt

])
=

 σ2
η1 0 0
0 σ2

η2 0
0 0 σ2

ε

Example 10.2. Kalman Filtering: Likelihood Function Evaluation � 299

When the observation noiseεt is normally distributed, the average log-likelihood
function of the SSM is

` =
1
T

T∑
t=1

`t

`t = −Ny

2
log(2π)− 1

2
log(|Ct|)−

1
2
ε̂′tC

−1
t ε̂t

whereCt is the mean square error matrix of the prediction errorε̂t, such thatCt =
HPt|t−1H′ + Rt.

The LIK module computes the average log-likelihood function. First, the average log-
likelihood function is computed using the default initial values: Z0=0 and VZ0=106I.
The second call of module LIK produces the average log-likelihood function with
the given initial conditions: Z0=0 and VZ0=10−3I. You can notice a sizable differ-
ence between the uncertain initial condition (VZ0=106I) and the almost deterministic
initial condition (VZ0=10−3I) in Output 10.2.1.

Finally, the first 15 observations of one-step predictions, filtered values, and real GNP
series are produced under the moderate initial condition (VZ0=10I). The data are the
annual real GNP for the years 1909 to 1969.

title ’Likelihood Evaluation of SSM’;
title2 ’DATA: Annual Real GNP 1909-1969’;
data gnp;

input y @@;
datalines;

116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3
135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7
;

proc iml;
start lik(y,a,b,f,h,var,z0,vz0);

nz = nrow(f);
n = nrow(y);
k = ncol(y);
const = k*log(8*atan(1));
if (sum(z0 = .) | sum(vz0 = .)) then

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
else

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);
et = y - pred*h‘;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

300 � Chapter 10. Time Series Analysis and Examples

vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];
ft = h*vpred_i*h‘ + var[nz+1:nz+k,nz+1:nz+k];
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i‘;

end;
return(-const-.5*(sum1+sum2)/n);

finish;

start main;
use gnp;
read all var {y};

f = {1 1, 0 1};
h = {1 0};
a = j(nrow(f),1,0);
b = j(nrow(h),1,0);
var = diag(j(1,nrow(f)+ncol(y),1e-3));
/*-- initial values are computed --*/
z0 = j(1,nrow(f),.);
vz0 = j(nrow(f),nrow(f),.);
logl = lik(y,a,b,f,h,var,z0,vz0);
print ’No initial values are given’, logl;
/*-- initial values are given --*/
z0 = j(1,nrow(f),0);
vz0 = 1e-3#i(nrow(f));
logl = lik(y,a,b,f,h,var,z0,vz0);
print ’Initial values are given’, logl;
z0 = j(1,nrow(f),0);
vz0 = 10#i(nrow(f));
call kalcvf(pred,vpred,filt,vfilt,y,1,a,f,b,h,var,z0,vz0);
print y pred filt;

finish;
run;

Output 10.2.1. Average Log Likelihood of SSM
Likelihood Evaluation of SSM

DATA: Annual Real GNP 1909-1969

No initial values are given
LOGL

-26314.66

Initial values are given
LOGL

-91884.41

Output 10.2.2shows the observed data, the predicted state vectors, and the filtered
state vectors for the first 16 observations.

Example 10.3. Kalman Filtering: Estimating an SSM Using the EM Algorithm �

301

Output 10.2.2. Filtering and One-Step Prediction
Y PRED FILT

116.8 0 0 116.78832 0
120.1 116.78832 0 120.09967 3.3106857
123.2 123.41035 3.3106857 123.22338 3.1938303
130.2 126.41721 3.1938303 129.59203 4.8825531
131.4 134.47459 4.8825531 131.93806 3.5758561
125.6 135.51391 3.5758561 127.36247 -0.610017
124.5 126.75246 -0.610017 124.90123 -1.560708
134.3 123.34052 -1.560708 132.34754 3.0651076
135.2 135.41265 3.0651076 135.23788 2.9753526
151.8 138.21324 2.9753526 149.37947 8.7100967
146.4 158.08957 8.7100967 148.48254 3.7761324

139 152.25867 3.7761324 141.36208 -1.82012
127.8 139.54196 -1.82012 129.89187 -6.776195

147 123.11568 -6.776195 142.74492 3.3049584
165.9 146.04988 3.3049584 162.36363 11.683345
165.5 174.04698 11.683345 167.02267 8.075817

Example 10.3. Kalman Filtering: Estimating an SSM Using the
EM Algorithm

This example estimates the normal SSM of the mink-muskrat data using the EM al-
gorithm. The mink-muskrat series are detrended. Refer to Harvey (1989) for details
of this data set. Since this EM algorithm uses filtering and smoothing, you can learn
how to use the KALCVF and KALCVS calls to analyze the data. Consider the bi-
variate SSM:

yt = Hzt + εt

zt = Fzt−1 + ηt

whereH is a2× 2 identity matrix, the observation noise has a time invariant covari-
ance matrixR, and the covariance matrix of the transition equation is also assumed
to be time invariant. The initial statez0 has meanµ and covarianceΣ. For estimation,
theΣ matrix is fixed as[

0.1 0.0
0.0 0.1

]

while the mean vectorµ is updated by the smoothing procedure such thatµ̂ = z0|T .
Note that this estimation requires an extra smoothing step since the usual smoothing
procedure does not producezT |0.

The EM algorithm maximizes the expected log-likelihood function given the current
parameter estimates. In practice, the log-likelihood function of the normal SSM is
evaluated while the parameters are updated using the M-step of the EM maximization

Fi+1 = St(1)[St−1(0)]−1

Vi+1 =
1
T

(
St(0)− St(0)[St−1(0)]−1S′t(1)

)

302 � Chapter 10. Time Series Analysis and Examples

Ri+1 =
1
T

T∑
t=1

[
(yt −Hzt|T)(yt −Hzt|T)′ + HPt|TH′]

µi+1 = z0|T

where the indexi represents the current iteration number, and

St(0) =
T∑

t=1

(Pt|T + zt|Tz′t|T),

St(1) =
T∑

t=1

(Pt,t−1|T + zt|Tz′t−1|T)

It is necessary to compute the value ofPt,t−1|T recursively such that

Pt−1,t−2|T = Pt−1|t−1P
∗′
t−2 + P∗

t−1(Pt,t−1|T − FPt−1|t−1)P
∗′
t−2

whereP∗
t = Pt|tF′P−

t+1|t and the initial valuePT,T−1|T is derived using the formula

PT,T−1|T =
[
I−Pt|t−1H

′(HPt|t−1H
′ + R)H

]
FPT−1|T−1

Note that the initial value of the state vector is updated for each iteration

z1|0 = Fµi

P1|0 = FiΣFi′ + Vi

The objective function value is computed as−2` in the IML module LIK. The log-
likelihood function is written

` = −1
2

T∑
t=1

log(|Ct|)−
1
2

T∑
t=1

(yt −Hzt|t−1)C
−1
t (yt −Hzt|t−1)

′

whereCt = HPt|t−1H′ + R.

The iteration history is shown inOutput 10.3.1. As shown inOutput 10.3.2, the
eigenvalues ofF are within the unit circle, which indicates that the SSM is station-
ary. However, the muskrat series (Y1) is reported to be difference stationary. The
estimated parameters are almost identical to those of the VAR(1) estimates. Refer
to Harvey (1989, p. 469). Finally, multistep forecasts ofyt are computed using the
KALCVF call.

call kalcvf(pred,vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);

The predicted values of the state vectorzt and their standard errors are shown in
Output 10.3.3.

Example 10.3. Kalman Filtering: Estimating an SSM Using the EM Algorithm �

303

title ’SSM Estimation using EM Algorithm’;
data one;

input y1 y2 @@;
datalines;

. . . data lines omitted . . .
;

proc iml;
start lik(y,pred,vpred,h,rt);

n = nrow(y);
nz = ncol(h);
et = y - pred*h‘;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];
ft = h*vpred_i*h‘ + rt;
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i‘;

end;
return(sum1+sum2);

finish;

start main;
use one;
read all into y var {y1 y2};

/*-- mean adjust series --*/
t = nrow(y);
ny = ncol(y);
nz = ny;
f = i(nz);
h = i(ny);

/*-- observation noise variance is diagonal --*/
rt = 1e-5#i(ny);

/*-- transition noise variance --*/
vt = .1#i(nz);
a = j(nz,1,0);
b = j(ny,1,0);
myu = j(nz,1,0);
sigma = .1#i(nz);
converge = 0;
do iter = 1 to 100 while(converge = 0);

/*--- construct big cov matrix --*/
var = (vt || j(nz,ny,0)) //

(j(ny,nz,0) || rt);

/*-- initial values are changed --*/
z0 = myu‘ * f‘;
vz0 = f * sigma * f‘ + vt;

/*-- filtering to get one-step prediction and filtered value --*/
call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);

/*-- smoothing using one-step prediction values --*/

304 � Chapter 10. Time Series Analysis and Examples

call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

/*-- compute likelihood values --*/
logl = lik(y,pred,vpred,h,rt);

/*-- store old parameters and function values --*/
myu0 = myu;
f0 = f;
vt0 = vt;
rt0 = rt;
logl0 = logl;
itermat = itermat // (iter || logl0 || shape(f0,1) || myu0‘);

/*-- obtain P*(t) to get P_T_0 and Z_T_0 --*/
/*-- these values are not usually needed --*/
/*-- See Harvey (1989 p154) or Shumway (1988, p177) --*/
jt1 = sigma * f‘ * inv(vpred[1:nz,]);
p_t_0 = sigma + jt1*(vsm[1:nz,] - vpred[1:nz,])*jt1‘;
z_t_0 = myu + jt1*(sm[1,]‘ - pred[1,]‘);
p_t1_t = vpred[(t-1)*nz+1:t*nz,];
p_t1_t1 = vfilt[(t-2)*nz+1:(t-1)*nz,];
kt = p_t1_t*h‘*inv(h*p_t1_t*h‘+rt);

/*-- obtain P_T_TT1. See Shumway (1988, p180) --*/
p_t_ii1 = (i(nz)-kt*h)*f*p_t1_t1;
st0 = vsm[(t-1)*nz+1:t*nz,] + sm[t,]‘*sm[t,];
st1 = p_t_ii1 + sm[t,]‘*sm[t-1,];
st00 = p_t_0 + z_t_0 * z_t_0‘;
cov = (y[t,]‘ - h*sm[t,]‘) * (y[t,]‘ - h*sm[t,]‘)‘ +

h*vsm[(t-1)*nz+1:t*nz,]*h‘;
do i = t to 2 by -1;

p_i1_i1 = vfilt[(i-2)*nz+1:(i-1)*nz,];
p_i1_i = vpred[(i-1)*nz+1:i*nz,];
jt1 = p_i1_i1 * f‘ * inv(p_i1_i);
p_i1_i = vpred[(i-2)*nz+1:(i-1)*nz,];
if (i > 2) then

p_i2_i2 = vfilt[(i-3)*nz+1:(i-2)*nz,];
else

p_i2_i2 = sigma;
jt2 = p_i2_i2 * f‘ * inv(p_i1_i);
p_t_i1i2 = p_i1_i1*jt2‘ + jt1*(p_t_ii1 - f*p_i1_i1)*jt2‘;
p_t_ii1 = p_t_i1i2;
temp = vsm[(i-2)*nz+1:(i-1)*nz,];
sm1 = sm[i-1,]‘;
st0 = st0 + (temp + sm1 * sm1‘);
if (i > 2) then

st1 = st1 + (p_t_ii1 + sm1 * sm[i-2,]);
else st1 = st1 + (p_t_ii1 + sm1 * z_t_0‘);
st00 = st00 + (temp + sm1 * sm1‘);
cov = cov + (h * temp * h‘ +

(y[i-1,]‘ - h * sm1)*(y[i-1,]‘ - h * sm1)‘);
end;

/*-- M-step: update the parameters --*/
myu = z_t_0;
f = st1 * inv(st00);
vt = (st0 - st1 * inv(st00) * st1‘)/t;
rt = cov / t;

Example 10.3. Kalman Filtering: Estimating an SSM Using the EM Algorithm �

305

/*-- check convergence --*/
if (max(abs((myu - myu0)/(myu0+1e-6))) < 1e-2 &

max(abs((f - f0)/(f0+1e-6))) < 1e-2 &
max(abs((vt - vt0)/(vt0+1e-6))) < 1e-2 &
max(abs((rt - rt0)/(rt0+1e-6))) < 1e-2 &
abs((logl-logl0)/(logl0+1e-6)) < 1e-3) then

converge = 1;
end;

reset noname;
colnm = {’Iter’ ’-2*log L’ ’F11’ ’F12’ ’F21’ ’F22’

’MYU11’ ’MYU22’};
print itermat[colname=colnm format=8.4];
eval = teigval(f0);
colnm = {’Real’ ’Imag’ ’MOD’};
eval = eval || sqrt((eval#eval)[,+]);
print eval[colname=colnm];
var = (vt || j(nz,ny,0)) //

(j(ny,nz,0) || rt);

/*-- initial values are changed --*/
z0 = myu‘ * f‘;
vz0 = f * sigma * f‘ + vt;
free itermat;

/*-- multistep prediction --*/
call kalcvf(pred,vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);
do i = 1 to 15;

itermat = itermat // (i || pred[t+i,] ||
sqrt(vecdiag(vpred[(t+i-1)*nz+1:(t+i)*nz,]))‘);

end;
colnm = {’n-Step’ ’Z1_T_n’ ’Z2_T_n’ ’SE_Z1’ ’SE_Z2’};
print itermat[colname=colnm];

finish;
run;

Output 10.3.1. Iteration History

SSM Estimation using EM Algorithm

Iter -2*log L F11 F12 F21 F22 MYU11 MYU22

1.0000 -154.010 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
2.0000 -237.962 0.7952 -0.6473 0.3263 0.5143 0.0530 0.0840
3.0000 -238.083 0.7967 -0.6514 0.3259 0.5142 0.1372 0.0977
4.0000 -238.126 0.7966 -0.6517 0.3259 0.5139 0.1853 0.1159
5.0000 -238.143 0.7964 -0.6519 0.3257 0.5138 0.2143 0.1304
6.0000 -238.151 0.7963 -0.6520 0.3255 0.5136 0.2324 0.1405
7.0000 -238.153 0.7962 -0.6520 0.3254 0.5135 0.2438 0.1473
8.0000 -238.155 0.7962 -0.6521 0.3253 0.5135 0.2511 0.1518
9.0000 -238.155 0.7962 -0.6521 0.3253 0.5134 0.2558 0.1546

10.0000 -238.155 0.7961 -0.6521 0.3253 0.5134 0.2588 0.1565

306 � Chapter 10. Time Series Analysis and Examples

Output 10.3.2. Eigenvalues of F Matrix
Real Imag MOD

0.6547534 0.438317 0.7879237
0.6547534 -0.438317 0.7879237

Output 10.3.3. Multistep Prediction
n-Step Z1_T_n Z2_T_n SE_Z1 SE_Z2

1 -0.055792 -0.587049 0.2437666 0.237074
2 0.3384325 -0.319505 0.3140478 0.290662
3 0.4778022 -0.053949 0.3669731 0.3104052
4 0.4155731 0.1276996 0.4021048 0.3218256
5 0.2475671 0.2007098 0.419699 0.3319293
6 0.0661993 0.1835492 0.4268943 0.3396153
7 -0.067001 0.1157541 0.430752 0.3438409
8 -0.128831 0.0376316 0.4341532 0.3456312
9 -0.127107 -0.022581 0.4369411 0.3465325
10 -0.086466 -0.052931 0.4385978 0.3473038
11 -0.034319 -0.055293 0.4393282 0.3479612
12 0.0087379 -0.039546 0.4396666 0.3483717
13 0.0327466 -0.017459 0.439936 0.3485586
14 0.0374564 0.0016876 0.4401753 0.3486415
15 0.0287193 0.0130482 0.440335 0.3487034

Example 10.4. Diffuse Kalman Filtering

The nonstationary SSM is simulated to analyze the diffuse Kalman filter call
KALDFF. The transition equation is generated using the following formula:

[
z1t

z2t

]
=
[

1.5 −0.5
1.0 0.0

] [
z1t−1

z2t−1

]
+
[
η1t

0

]

whereη1t ∼ N(0, 1). The transition equation is nonstationary since the transition
matrixF has one unit root.

proc iml;
z_1 = 0; z_2 = 0;
do i = 1 to 30;

z = 1.5*z_1 - .5*z_2 + rannor(1234567);
z_2 = z_1;
z_1 = z;
x = z + .8*rannor(1234578);
if (i > 10) then y = y // x;

end;

The KALDFF and KALCVF calls produce one-step prediction, and the result shows
that two predictions coincide after the fifth observation (Output 10.4.1).

t = nrow(y);
h = { 1 0 };

Example 10.4. Diffuse Kalman Filtering � 307

f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0});
ny = nrow(h);
nz = ncol(h);
nb = nz;
nd = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = (vt || j(nz,ny,0)) //

(j(ny,nz,0) || rt);
intd = j(nz+nb,1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,

coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;

Output 10.4.1. Diffuse Kalman Filtering
Diffuse Kalman Filtering

KALCVF_P KALDFF_P

0 0 0 0
1.441911 0.961274 1.1214871 0.9612746
-0.882128 -0.267663 -0.882138 -0.267667
-0.723156 -0.527704 -0.723158 -0.527706
1.2964969 0.871659 1.2964968 0.8716585
-0.035692 0.1379633 -0.035692 0.1379633
-2.698135 -1.967344 -2.698135 -1.967344
-5.010039 -4.158022 -5.010039 -4.158022
-9.048134 -7.719107 -9.048134 -7.719107
-8.993153 -8.508513 -8.993153 -8.508513
-11.16619 -10.44119 -11.16619 -10.44119
-10.42932 -10.34166 -10.42932 -10.34166
-8.331091 -8.822777 -8.331091 -8.822777
-9.578258 -9.450848 -9.578258 -9.450848
-6.526855 -7.241927 -6.526855 -7.241927
-5.218651 -5.813854 -5.218651 -5.813854
-5.01855 -5.291777 -5.01855 -5.291777
-6.5699 -6.284522 -6.5699 -6.284522

-4.613301 -4.995434 -4.613301 -4.995434
-5.057926 -5.09007 -5.057926 -5.09007

The likelihood function for the diffuse Kalman filter under the finite initial covariance
matrixΣδ is written

λ(y) = −1
2
[y# log(σ̂2) +

T∑
t=1

log(|Dt|)]

308 � Chapter 10. Time Series Analysis and Examples

wherey(#) is the dimension of the matrix(y′1, · · · ,y′T)′. The likelihood function
for the diffuse Kalman filter under the diffuse initial covariance matrix(Σδ →∞) is
computed asλ(y)− 1

2 log(|S|), where theS matrix is the upperNδ×Nδ matrix ofQt.
Output 10.4.2on page 308 displays the log likelihood and the diffuse log-likelihood.

d = 0;
do i = 1 to t;

dt = h*mt[(i-1)*nz+1:i*nz,]*h‘ + rt;
d = d + log(det(dt));

end;
s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd];
log_l = -(t*log(s2) + d)/2;
dff_logl = log_l - log(det(s))/2;
print log_l dff_logl;

Output 10.4.2. Diffuse Likelihood Function
Diffuse Kalman Filtering

LOG_L

Log L -11.42547
DFF_LOGL

Diffuse Log L -9.457596

Vector Time Series Analysis Subroutines

Vector time series analysis involves more than one dependent time series variable,
with possible interrelations or feedback between the dependent variables.

The VARMASIM function gerernates various time series from the underlying
VARMA models. Simulations of time series with known VARMA structure offer
learning and developing vector time series analysis skills.

The VARMACOV subroutine provides the pattern of the autocovariance function of
VARMA models and helps to identify and fit a proper model.

The VARMALIK subroutine provides the log-likelihood of a VARMA model and
helps to obtainie estimates of the parameters of a regression model.

The following subroutines are supported:

VARMACOV theoretical cross covariances for a multivariate ARMA model

VARMALIK log-likelihood function for a multivariate ARMA model

VARMASIM multivariate ARMA time series

VNORMAL multivariate normal random series

VTSROOT characteristic roots of a multivariate ARMA model

Stationary VAR Process � 309

Getting Started

Stationary VAR Process

Generate the process following the first order stationary vector autoregressive model
with zero mean

yt =
(

1.2 −0.5
0.6 0.3

)
yt−1 + εt with Σ =

(
1.0 0.5
0.5 1.25

)

The following statements compute the roots of characteristic function, compute the
five lags of cross-covariance matrices, generate 100 observations simulated data, and
evaluate the log-likelihood function of the VAR(1) model:

proc iml;
/* Stationary VAR(1) model */
sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
call varmasim(yt,phi) sigma = sig n = 100 seed=3243; print yt;
call vtsroot(root,phi); print root;
call varmacov(crosscov,phi) sigma = sig lag = 5;
lag = {’0’,’’,’1’,’’,’2’,’’,’3’,’’,’4’,’’,’5’,’’};
print lag crosscov;
call varmalik(lnl,yt,phi) sigma = sig; print lnl;

Figure 10.28. Plot of Generated VAR(1) Process (VARMASIM)

The stationary VAR(1) processes show inFigure 10.28.

310 � Chapter 10. Time Series Analysis and Examples

ROOT

0.75 0.3122499 0.8124038 0.3945069 22.603583
0.75 -0.31225 0.8124038 -0.394507 -22.60358

Figure 10.29. Roots of VAR(1) Model (VTSROOT)

In Figure 10.29, the first column is the real part (R) of the root of the characterstic
function and the second one is the imaginary part (I). The third column is the moduls,
that is the squared root ofR2 + I2. The fourth column isTan−1(I/R) and the last
one is the degree. Since moduli are less than one from the third column, the series is
obviously stationary.

LAG CROSSCOV

0 5.3934173 3.8597124
3.8597124 5.0342051

1 4.5422445 4.3939641
2.1145523 3.826089

2 3.2537114 4.0435359
0.6244183 2.4165581

3 1.8826857 3.1652876
-0.458977 1.0996184

4 0.676579 2.0791977
-1.100582 0.0544993

5 -0.227704 1.0297067
-1.347948 -0.643999

Figure 10.30. Cross-covariance matrices of VAR(1) Model (VARMACOV)

In each matrix inFigure 10.30, the diagonal elements are corresponding to the autoco-
variance functions of each time series. The off-diagonal elements are corresponding
to the cross-covariance functions of between two series.

LNL

-113.4708
2.5058678
224.43567

Figure 10.31. Log-likelihood function of VAR(1) Model (VARMALIK)

In Figure 10.31, the first row is the value of log-likelihood function; the second row
is the sum of log determinant of the innovation variance; the last row is the weighted
sum of squares of residulas.

Nonstationary VAR Process

Generate the process following the Error correction model with a cointegrated rank
of 1:

(1−B)yt =
(
−0.4

0.1

)
(1− 2)yt−1 + εt

Nonstationary VAR Process � 311

with

Σ =
(

100 0
0 100

)
and y0 = 0

The following statements compute the roots of characteristic function, generate sim-
ulated data.

proc iml;
/* Nonstationary model */
sig = 100*i(2);
phi = {0.6 0.8, 0.1 0.8};
call varmasim(yt,phi) sigma = sig n = 100 seed=1324;
call vtsroot(root,phi); print root;
print yt;

Figure 10.32. Plot of Generated Nonstationary Vector Process (VARMASIM)

The nonstationary processes show inFigure 10.32and have a covmovement.

ROOT

1 0 1 0 0
0.4 0 0.4 0 0

Figure 10.33. Roots of Nonstationary VAR(1) Model (VTSROOT)

In Figure 10.33, the first column is the real part (R) of the root of the characterstic
function and the second one is the imaginary part (I). The third column is the moduls,
that is the squared root ofR2+I2. The fourth column isTan−1(I/R) and the last one

312 � Chapter 10. Time Series Analysis and Examples

is the degree. Since the moduli are greater than equal to one from the third column,
the series is obviously nonstationary.

Syntax

CALL VARMACOV (cov, phi, theta, sigma <, p, q, lag>);

CALL VARMALIK (lnl, series, phi, theta, sigma <, p, q, opt>);

CALL VARMASIM (series, phi, theta, mu, sigma, n <, p, q, initial, seed>);

CALL VNORMAL (series, mu, sigma, n <, seed>);

CALL VTSROOT (root, phi, theta<, p, q>);

Fractionally Integrated Time Series Analysis

This section describes subroutines related to fractionally integrated time series anal-
ysis. The phenomenon of long memory can be observed in hydrology, finance, eco-
nomics, and so on. Unlike with a stationary process, the correlations between obser-
vations of a long memory series are slowly decaying to zero.

The following subroutines are supported:

FARMACOV computes the autocovariance function for a fractionally integrated
ARMA model

FARMAFIT estimates the parameters for a fractionally integrated ARMA model

FARMALIK computes the log-likelihood function for a fractionally integrated
ARMA model

FARMASIM generates a fractionally integrated ARMA process

FDIF computes a fractionally differenced process

Getting Started

The fractional differencing enables the degree of differencingd to take any real value
rather than being restricted to integer values. The fractionally differenced processes
are capable of modeling long-term persistence. The process

(1−B)dyt = εt

is known as a fractional Gaussian noise process or an ARFIMA(0, d, 0) process,
whered ∈ (−1, 1)\{0}, εt is a white noise process with mean zero and variance
σ2

ε , andB is the backshift operator such thatBjyt = yt−j . The extension of
an ARFIMA(0, d, 0) model combines fractional differencing with an ARMA(p, q)
model, known as an ARFIMA(p, d, q) model.

Consider an ARFIMA(0, 0.4, 0) represented as(1 − B)0.4yt = εt where εt ∼
iid N(0, 2). With the following statements you can

Getting Started � 313

• generate the simulated 300 observations data

• obtain the fractionally differenced data

• compute the autocovariance function

• compute the log-likelihood function

• fit a fractionally integrated time series model to the data

proc iml;
/* ARFIMA(0,0.4,0) */
lag = (0:12)‘;
call farmacov(autocov_D_IS_04, 0.4);
call farmacov(D_IS_005, 0.05);
print lag autocov_D_IS_04 D_IS_005;
d = 0.4;
call farmasim(yt, d) n = 300 sigma = 2 seed=5345; print yt;
call fdif(zt, yt, d); print zt;
call farmalik(lnl, yt, d); print lnl;
call farmafit(d, ar, ma, sigma, yt); print d sigma;

Figure 10.34. Plot of Generated ARFIMA(0,0.4,0) Process (FARMASIM)

The FARMASIM function generates the data shown inFigure 10.34.

314 � Chapter 10. Time Series Analysis and Examples

Figure 10.35. Plot of Fractionally Differenced Process (FDIF)

The FDIF function creates the fractionally differenced process.Figure 10.35looks a
white noise series.

LAG AUTOCOV_D_IS_04 D_IS_005

0 2.0700983 1.0044485
1 1.3800656 0.0528657
2 1.2075574 0.0284662
3 1.1146683 0.0197816
4 1.0527423 0.0152744
5 1.0069709 0.0124972
6 0.9710077 0.0106069
7 0.9415832 0.0092333
8 0.9168047 0.008188
9 0.8954836 0.0073647

10 0.8768277 0.0066985
11 0.8602838 0.006148
12 0.8454513 0.0056849

Figure 10.36. Autocovariance Functions of ARFIMA(0,0.4,0) and
ARFIMA(0,0.05,0) Models (FARMACOV)

The first column is the autocovariance function of the ARFIMA(0,0.4,0) model, and
the second column is the autocovariance function of the ARFIMA(0,0.05,0) model.
The first column decays to zero more slowly than the second column.

Syntax � 315

LNL

-101.2222
.
.

Figure 10.37. Log-likelihood Function of ARFIMA(0,0.4,0) Model (FARMALIK)

The first row value is the log-likelihood function of the ARFIMA(0,0.4,0) model.
Since the default option of the estimates method is the conditional sum of squares,
the last two rows ofFigure 10.37do not have the values since the default estimation
method is used.

D SIGMA

0.386507 1.9631754

Figure 10.38. Parameter Estimation of ARFIMA(0,0.4,0) Model (FARMAFIT)

The final estimates of the parameters ared = 0.387 andσ2 = 1.96, while the true
values of the data generating process ared = 0.4 andσ2 = 2.

Syntax

CALL FARMACOV (cov, d <, phi, theta, sigma, p, q, lag>);

CALL FARMAFIT (d, phi, theta, sigma, series <, p, q, opt>);

CALL FARMALIK (lnl, series, d <, phi, theta, sigma, p, q, opt>);

CALL FARMASIM (series, d <, phi, theta, mu, sigma, n, p, q, initial,
seed>);

CALL FDIF (out, series, d);

316 � Chapter 10. Time Series Analysis and Examples

References
Afifi, A.A. and Elashoff, R.M. (1967), “Missing Observations in Multivariate

Statistics II. Point Estimation in Simple Linear Regression,”Journal of the
American Statistical Association, 62, 10–29.

Akaike, H. (1974), “A New Look at Statistical Model Identification,”IEEE
Transactions on Automatic Control, 19, 716–723.

Akaike, H. (1977), “On Entropy Maximization Principle,” inApplications of
Statistics, ed. P.R. Krishnaiah, Amsterdam: North-Holland Publishing Co.,
27–41.

Akaike, H. (1978a), “A Bayesian Analysis of the Minimum AIC Procedure,”Ann.
Inst. Statist. Math., 30, 9–14.

Akaike, H. (1978b), “Time Series Analysis and Control through Parametric Models,”
in Applied Time Series Analysis, ed. D.F. Findley, New York: Academic Press,
1–23.

Akaike, H. (1979), “A Bayesian Extension of the Minimum AIC Procedure of
Autoregressive Model Fitting,”Biometrika, 66, 237–242.

Akaike, H. (1980a), “Likelihood and the Bayes Procedure,”Bay Statistics, eds.
J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and M. Smith, Valencia, Spain:
University Press.

Akaike, H. (1980b), “Seasonal Adjustment by a Bayesian Modeling,”Journal of Time
Series Analysis, 1, 1–13.

Akaike, H. (1981), “Likelihood of a Model and Information Criteria,”Journal of
Econometrics, 16, 3–14.

Akaike, H. (1986), “The Selection of Smoothness Priors for Distributed Lag
Estimation,” inBayesian Inference and Decision Techniques, ed. P. Goel and
A. Zellner, Elsevier Science Publishers, 109–118.

Akaike, H. and Ishiguro, M. (1980), “Trend Estimation with Missing Observations,”
Ann. Inst. Statist. Math., 32, 481–488.

Akaike, H. and Nakagawa, T. (1988),Statistical Analysis and Control of Dynamic
Systems, Tokyo: KTK Scientific Publishers.

Anderson, T.W. (1971),The Statistical Analysis of Time Series, New York: John
Wiley & Sons, Inc.

Ansley, C.F. (1980), “Computation of the Theoretical Autocovariance Function for
a Vector ARMA Process,”Journal Statistical Computation and Simulation, 12,
15–24.

Ansley, C.F. and Kohn, R. (1986), “A Note on Reparameterizing a Vector
Autoregressive Moving Average Model to Enforce Stationary,”Journal of
Statistical Computation and Simulation, 24, 99–106.

Brockwell, P.J. and Davis, R.A. (1991),Time Series: Theory and Methods, Second
Edition, New York: Springer-Verlag.

References � 317

Chung, C.F. (1996), “A Generalized Fractionally Integrated ARMA Process,”
Journal of Time Series Analysis, 2, 111–140.

De Jong, P. (1991a), “The Diffuse Kalman Filter,”Annals of Statistics, 19,
1073–1083.

Doan, T., Litterman, R., and Sims, C. (1984), “Forecasting and Conditional
Projection using Realistic Prior Distributions,”Econometric Review, 3, 1–100.

Gersch, W. and Kitagawa, G. (1983), “The Prediction of Time Series with Trends and
Seasonalities,”Journal of Business and Economic Statistics, 1, 253–264.

Geweke, J. and Porter-Hudak, S. (1983), “The Estimation and Application of Long
Memory Time Series Models,”Journal of Time Series Analysis, 4, 221–238.

Granger, C.W.J. and Joyeux, R. (1980), “An Introduction to Long Memory Time
Series Models and Fractional Differencing,”Journal of Time Series Analysis, 1,
15–39.

Harvey, A.C. (1989),Forecasting, Structural Time Series Models and the Kalman
Filter, Cambridge: Cambridge University Press.

Hosking, J.R.M. (1981), “Fractional Differencing,”Biometrika, 68, 165–176.

Ishiguro, M. (1984), “Computationally Efficient Implementation of a Bayesian
Seasonal Adjustment Procedure,”Journal of Time Series Analysis, 5, 245–253.

Ishiguro, M. (1987), “TIMSAC-84: A New Time Series Analysis and Control
Package,”Proceedings of American Statistical Association: Business and
Economic Section, 33–42.

Jones, R.H. and Brelsford, W.M. (1967), “Time Series with Periodic Structure,”
Biometrika, 54, 403–408.

Kitagawa, G. (1981), “A Nonstationary Time Series Model and Its Fitting by a
Recursive Filter,”Journal of Time Series Analysis, 2, 103–116.

Kitagawa, G. (1983), “Changing Spectrum Estimation,”Journal of Sound and
Vibration, 89, 433–445.

Kitagawa, G. and Akaike, H. (1978), “A Procedure for the Modeling of Non-
Stationary Time Series,”Ann. Inst. Statist. Math., 30, 351–363.

Kitagawa, G. and Akaike, H. (1981), “On TIMSAC-78,” inApplied Time Series
Analysis II, ed. D.F. Findley, New York: Academic Press, 499–547.

Kitagawa, G. and Akaike, H. (1982), “A Quasi Bayesian Approach to Outlier
Detection,”Ann. Inst. Statist. Math., 34, 389–398.

Kitagawa, G. and Gersch, W. (1984), “A Smoothness Priors-State Space Modeling
of Time Series with Trend and Seasonality,”Journal of the American Statistical
Association, 79, 378–389.

Kitagawa, G. and Gersch, W. (1985a), “A Smoothness Priors Time-Varying
AR Coefficient Modeling of Nonstationary Covariance Time Series,”IEEE
Transactions on Automatic Control, 30, 48–56.

318 � Chapter 10. Time Series Analysis and Examples

Kitagawa, G. and Gersch, W. (1985b), “A Smoothness Priors Long AR Model
Method for Spectral Estimation,”IEEE Transactions on Automatic Control, 30,
57–65.

Kohn, R. and Ansley, C.F. (1982), “A Note on Obtaining the Theoretical
Autocovariances of an ARMA Process,”Journal Statistical Computation and
Simulation, 15, 273–283.

Li, W.K. and McLeod, A.I. (1986), “Fractional Time Series Modeling,”Biometrika,
73, 217–221.

Lütkepohl, H. (1993), Introduction to Multiple Time Series Analysis, Berlin:
Springer-Verlag.

Mittnik, S. (1990), “Computation of Theoretical Autocovariance Matrices of
Multivariate Autoregressive Moving Average Time Series,”Journal of Royal
Statistical Society, B, 52, 151–155.

Nelson, C.P. and Plosser, C.I. (1982), “Trends and Random Walks in Macroeconomic
Time Series: Some Evidence and Implications,”Journal of Monetary Economics,
10, 139–162.

Pagano, M. (1978), “On Periodic and Multiple Autoregressions,”The Annals of
Statistics, 6, 1310–1317.

Reinsel, G.C. (1997),Elements of Multivariate Time Series Analysis, Second Edition,
New York: Springer-Verlag.

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986),Akaike Information Criterion
Statistics, Tokyo: KTK Scientific Publishers.

Shiller, R.J. (1973), “A Distributed Lag Estimator Derived from Smoothness Priors,”
Econometrica, 41, 775–788.

Sowell, F. (1992), “Maximum Likelihood Estimation of Stationary Univariate
Fractionally Integrated Time Series Models,”Journal of Econometrics, 53,
165–88.

Shumway, R.H. (1988),Applied Statistical Time Series Analysis, Englewood Cliffs,
NJ: Prentice-Hall.

Tamura, Y. H. (1986), “An Approach to the Nonstationary Process Analysis,”Ann.
Inst. Statist. Math., 39, 227–241.

Wei, W.W.S. (1990),Time Series Analysis: Univariate and Multivariate Methods,
Redwood: Addison-Wesley.

Whittaker, E.T. (1923), “On a New Method of Graduation,”Proceedings of the
Edinborough Mathematical Society, 41, 63–75.

Whittaker, E.T. and Robinson, G. (1944),Calculus of Observation, Fourth Edition,
London: Blackie & Son Limited.

Zellner, A. (1971),An Introduction to Bayesian Inference in Econometrics, New
York: John Wiley & Sons, Inc.

Chapter 11
Nonlinear Optimization Examples

Chapter Contents

OVERVIEW .321

GETTING STARTED .323

DETAILS .331
Global Versus Local Optima. .331
Kuhn-Tucker Conditions .332
Definition of Return Codes. .333
Objective Function and Derivatives. .333
Finite Difference Approximations of Derivatives.338
Parameter Constraints. .341
Options Vector. .343
Termination Criteria. .349
Control Parameters Vector. .356
Printing the Optimization History. .359

NONLINEAR OPTIMIZATION EXAMPLES360
Example 11.1. Chemical Equilibrium. .360
Example 11.2. Network Flow and Delay.364
Example 11.3. Compartmental Analysis.368
Example 11.4. MLEs for Two-Parameter Weibull Distribution.377
Example 11.5. Profile-Likelihood-Based Confidence Intervals.379
Example 11.6. Survival Curve for Interval Censored Data.381
Example 11.7. A Two-Equation Maximum Likelihood Problem. 387
Example 11.8. Time-Optimal Heat Conduction.391

REFERENCES .395

320 � Chapter 11. Nonlinear Optimization Examples

Chapter 11
Nonlinear Optimization Examples

Overview

The IML procedure offers a set of optimization subroutines for minimizing or max-
imizing a continuous nonlinear functionf = f(x) of n parameters, wherex =
(x1, . . . , xn)T . The parameters can be subject to boundary constraints and linear
or nonlinear equality and inequality constraints. The following set of optimization
subroutines is available:

NLPCG Conjugate Gradient Method
NLPDD Double Dogleg Method
NLPNMS Nelder-Mead Simplex Method
NLPNRA Newton-Raphson Method
NLPNRR Newton-Raphson Ridge Method
NLPQN (Dual) Quasi-Newton Method
NLPQUA Quadratic Optimization Method
NLPTR Trust-Region Method

The following subroutines are provided for solving nonlinear least-squares problems:

NLPLM Levenberg-Marquardt Least-Squares Method
NLPHQN Hybrid Quasi-Newton Least-Squares Methods

A least-squares problem is a special form of minimization problem where the objec-
tive function is defined as a sum of squares of other (nonlinear) functions.

f(x) =
1
2
{f2

1 (x) + · · ·+ f2
m(x)}

Least-squares problems can usually be solved more efficiently by the least-squares
subroutines than by the other optimization subroutines.

The following subroutines are provided for the related problems of computing finite
difference approximations for first- and second-order derivatives and of determining
a feasible point subject to boundary and linear constraints:

NLPFDD Approximate Derivatives by Finite Differences
NLPFEA Feasible Point Subject to Constraints

Each optimization subroutine works iteratively. If the parameters are subject only
to linear constraints, all optimization and least-squares techniques arefeasible-point

322 � Chapter 11. Nonlinear Optimization Examples

methods; that is, they move from feasible pointx(k) to a better feasible pointx(k+1)

by a step in the search directions(k), k = 1, 2, 3, If you do not provide a feasible
starting pointx(0), the optimization methods call the algorithm used in the NLPFEA
subroutine, which tries to compute a starting point that is feasible with respect to the
boundary and linear constraints.

The NLPNMS and NLPQN subroutines permit nonlinear constraints on parameters.
For problems with nonlinear constraints, these subroutines do not use a feasible-
point method; instead, the algorithms begin with whatever starting point you specify,
whether feasible or infeasible.

Each optimization technique requires a continuous objective functionf = f(x) and
all optimization subroutines except the NLPNMS subroutine require continuous first-
order derivatives of the objective functionf . If you do not provide the derivatives of
f , they are approximated by finite difference formulas. You can use the NLPFDD
subroutine to check the correctness of analytical derivative specifications.

Most of the results obtained from the IML procedure optimization and least-squares
subroutines can also be obtained by using the NLP procedure in the SAS/OR product.

The advantages of the IML procedure are as follows:

• You can use matrix algebra to specify the objective function, nonlinear con-
straints, and their derivatives in IML modules.

• The IML procedure offers several subroutines that can be used to specify the
objective function or nonlinear constraints, many of which would be very dif-
ficult to write for the NLP procedure.

• You can formulate your own termination criteria by using the"ptit" module
argument.

The advantages of the NLP procedure are as follows:

• Although identical optimization algorithms are used, the NLP procedure can
be much faster because of the interactive and more general nature of the IML
product.

• Analytic first- and second-order derivatives can be computed with a special
compiler.

• Additional optimization methods are available in the NLP procedure that do
not fit into the framework of this package.

• Data set processing is much easier than in the IML procedure. You can save
results in output data sets and use them in following runs.

• The printed output contains more information.

Getting Started � 323

Getting Started

Unconstrained Rosenbrock Function

The Rosenbrock function is defined as

f(x) =
1
2
{100(x2 − x2

1)
2 + (1− x1)2}

=
1
2
{f2

1 (x) + f2
2 (x)}, x = (x1, x2)

The minimum function valuef∗ = f(x∗) = 0 is at the pointx∗ = (1, 1).

The following code calls the NLPTR subroutine to solve the optimization problem:

proc iml;
title ’Test of NLPTR subroutine: Gradient Specified’;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);

finish G_ROSEN;

x = {-1.2 1.};
optn = {0 2};
call nlptr(rc,xres,"F_ROSEN",x,optn) grd="G_ROSEN";
quit;

The NLPTR is a trust-region optimization method. The F–ROSEN module repre-
sents the Rosenbrock function, and the G–ROSEN module represents its gradient.
Specifying the gradient can reduce the number of function calls by the optimization
subroutine. The optimization begins at the initial pointx = (−1.2, 1). For more
information on the NLPTR subroutine and its arguments, see the section“NLPTR
Call” on page 817. For details on the options vector, which is given by the OPTN
vector in the preceding code, see the section“Options Vector”on page 343.

A portion of the output produced by the NLPTR subroutine is shown inFigure 11.1
on page 324.

324 � Chapter 11. Nonlinear Optimization Examples

Trust Region Optimization

Without Parameter Scaling
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient 107.8 Radius 1
Element

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 0 2.36594 9.7341 2.3189 0 1.000
2 0 5 0 2.05926 0.3067 5.2875 0.385 1.526
3 0 8 0 1.74390 0.3154 5.9934 0 1.086
.
.
.

22 0 31 0 1.3128E-16 6.96E-10 1.977E-7 0 0.00314

Optimization Results

Iterations 22 Function Calls 32
Hessian Calls 23 Active Constraints 0
Objective Function 1.312814E-16 Max Abs Gradient 1.9773384E-7

Element
Lambda 0 Actual Over Pred 0

Change
Radius 0.003140192

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 0.000000198
2 X2 1.000000 -0.000000105

Value of Objective Function = 1.312814E-16

Figure 11.1. NLPTR Solution to the Rosenbrock Problem

Sincef(x) = 1
2{f

2
1 (x) + f2

2 (x)}, you can also use least-squares techniques in this
situation. The following code calls the NLPLM subroutine to solve the problem. The
output is shown inFigure 11.2on page 325.

proc iml;
title ’Test of NLPLM subroutine: No Derivatives’;
start F_ROSEN(x);
y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];

Getting Started � 325

return(y);
finish F_ROSEN;

x = {-1.2 1.};
optn = {2 2};
call nlplm(rc,xres,"F_ROSEN",x,optn);
quit;

Figure 11.2. NLPLM Solution Using the Least-Squares Technique

The Levenberg-Marquardt least-squares method, which is the method used by the
NLPLM subroutine, is a modification of the trust-region method for nonlinear least-
squares problems. The F–ROSEN module represents the Rosenbrock function. Note
that for least-squares problems, them functionsf1(x), . . . , fm(x) are specified as
elements of a vector; this is different from the manner in whichf(x) is specified
for the other optimization techniques. No derivatives are specified in the preceding
code, so the NLPLM subroutine computes finite difference approximations. For more
information on the NLPLM subroutine, see the section“NLPLM Call” on page 795.

Constrained Betts Function

The linearly constrained Betts function (Hock & Schittkowski 1981) is defined as

f(x) = 0.01x2
1 + x2

2 − 100

with boundary constraints

2 ≤ x1 ≤ 50
−50 ≤ x2 ≤ 50

and linear constraint

10x1 − x2 ≥ 10

The following code calls the NLPCG subroutine to solve the optimization problem.
The infeasible initial pointx0 = (−1,−1) is specified, and a portion of the output is
shown inFigure 11.3.

proc iml;
title ’Test of NLPCG subroutine: No Derivatives’;
start F_BETTS(x);

f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpcg(rc,xres,"F_BETTS",x,optn,con);
quit;

326 � Chapter 11. Nonlinear Optimization Examples

The NLPCG subroutine performs conjugate gradient optimization. It requires only
function and gradient calls. The F–BETTS module represents the Betts function,
and since no module is defined to specify the gradient, first-order derivatives are
computed by finite difference approximations. For more information on the NLPCG
subroutine, see the section“NLPCG Call” on page 785. For details on the constraint
matrix, which is represented by the CON matrix in the preceding code, see the section
“Parameter Constraints”on page 341.

NOTE: Initial point was changed to be feasible for boundary and
linear constraints.

Optimization Start
Parameter Estimates

Gradient Lower
Objective Bound

N Parameter Estimate Function Constraint

1 X1 6.800000 0.136000 2.000000
2 X2 -1.000000 -2.000000 -50.000000

Optimization Start
Parameter Estimates

Upper
Bound

Constraint

50.000000
50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Conjugate-Gradient Optimization

Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Figure 11.3. NLPCG Solution to Betts Problem

Getting Started � 327

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient 2
Element

Max Abs Slope
Rest Func Act Objective Obj Fun Gradient Step Search

Iter arts Calls Con Function Change Element Size Direc

1 0 3 0 -99.54682 1.0092 0.1346 0.502 -4.018
2 1 7 1 -99.96000 0.4132 0.00272 34.985 -0.0182
3 2 9 1 -99.96000 1.851E-6 0 0.500 -74E-7

Optimization Results

Iterations 3 Function Calls 10
Gradient Calls 9 Active Constraints 1
Objective Function -99.96 Max Abs Gradient 0

Element
Slope of Search -7.398365E-6
Direction

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 -1.24028E-10 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

[1] 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

Figure 11.3. (continued)

Since the initial point(−1,−1) is infeasible, the subroutine first computes a feasible
starting point. Convergence is achieved after three iterations, and the optimal point is
given to bex∗ = (2, 0) with an optimal function value off∗ = f(x∗) = −99.96. For
more information on the printed output, see the section“Printing the Optimization
History” on page 359.

Rosen-Suzuki Problem

The Rosen-Suzuki problem is a function of four variables with three nonlinear con-
straints on the variables. It is taken from Problem 43 of Hock and Schittkowski
(1981). The objective function is

f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

328 � Chapter 11. Nonlinear Optimization Examples

The nonlinear constraints are

0 ≤ 8− x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4

0 ≤ 10− x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4

0 ≤ 5− 2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4

Since this problem has nonlinear constraints, only the NLPQN and NLPNMS sub-
routines are available to perform the optimization. The following code solves the
problem with the NLPQN subroutine:

proc iml;
start F_HS43(x);

f = x*x‘ + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);

finish F_HS43;
start C_HS43(x);

c = j(3,1,0.);
c[1] = 8 - x*x‘ - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x‘ - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]

- 2.*x[1] + x[2] + x[4];
return(c);

finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpqn(rc,xres,"F_HS43",x,optn) nlc="C_HS43";

The F–HS43 module specifies the objective function, and the C–HS43 module speci-
fies the nonlinear constraints. The OPTN vector is passed to the subroutine as theopt
input argument. See the section“Options Vector”on page 343 for more information.
The value of OPTN[10] represents the total number of nonlinear constraints, and the
value of OPTN[11] represents the number of equality constraints. In the preceding
code, OPTN[10]=3 and OPTN[11]=0, which indicate that there are three constraints,
all of which are inequality constraints. In the subroutine calls, instead of separating
missing input arguments with commas, you can specify optional arguments with key-
words, as in the CALL NLPQN statement in the preceding code. For details on the
CALL NLPQN statement, see the section“NLPQN Call” on page 808.

The initial point for the optimization procedure isx = (1, 1, 1, 1), and the optimal
point isx∗ = (0, 1, 2,−1), with an optimal function value off(x∗) = −44. Part of
the output produced is shown inFigure 11.4on page 329.

Getting Started � 329

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)
Gradient Computed by Finite Differences

Jacobian Nonlinear Constraints Computed by Finite Differences

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -19 Maximum Constraint 0
Violation

Maximum Gradient of 17
the Lagran Func

Maximum
Maximum Grad

Con- Element
straint Predicted of the

Rest Func Objective Viola- Function Step Lagran
Iter arts Calls Function tion Reduction Size Func

1 0 2 -41.88007 1.8988 13.6803 1.000 5.647
2 0 3 -48.83264 3.0280 9.5464 1.000 5.041
3 0 4 -45.33515 0.5452 2.6179 1.000 1.061
4 0 5 -44.08667 0.0427 0.1732 1.000 0.0297
5 0 6 -44.00011 0.000099 0.000218 1.000 0.00906
6 0 7 -44.00001 2.573E-6 0.000014 1.000 0.00219
7 0 8 -44.00000 9.118E-8 5.097E-7 1.000 0.00022

Figure 11.4. Solution to the Rosen-Suzuki Problem by the NLPQN Subroutine

330 � Chapter 11. Nonlinear Optimization Examples

Optimization Results

Iterations 7 Function Calls 9
Gradient Calls 9 Active Constraints 2
Objective Function -44.00000026 Maximum Constraint 9.1176306E-8

Violation
Maximum Projected 0.0002265341 Value Lagrange -44
Gradient Function
Maximum Gradient of 0.00022158 Slope of Search -5.097332E-7
the Lagran Func Direction

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 X1 -0.000001248 -5.000002 -0.000012804
2 X2 1.000027 -2.999945 0.000222
3 X3 1.999993 -13.000027 -0.000054166
4 X4 -1.000003 4.999995 -0.000020681

Value of Objective Function = -44.00000026

Value of Lagrange Function = -44

Figure 11.4. (continued)

In addition to the standard iteration history, the NLPQN subroutine includes the fol-
lowing information for problems with nonlinear constraints:

• conmaxis the maximum value of all constraint violations.

• pred is the value of the predicted function reduction used with the GTOL and
FTOL2 termination criteria.

• alfa is the step sizeα of the quasi-Newton step.

• lfgmaxis the maximum element of the gradient of the Lagrange function.

Global Versus Local Optima � 331

Details

Global Versus Local Optima

All the IML optimization algorithms converge toward local rather than global optima.
The smallest local minimum of an objective function is called the global minimum,
and the largest local maximum of an objective function is called the global maximum.
Hence, the subroutines may occasionally fail to find the global optimum. Suppose
you have the function,f(x) = 1

27(3x4
1− 28x3

1 + 84x2
1− 96x1 + 64) + x2

2, which has
a local minimum atf(1, 0) = 1 and a global minimum at the pointf(4, 0) = 0.

The following statements use two calls of the NLPTR subroutine to minimize the
preceding function. The first call specifies the initial pointxa = (0.5, 1.5), and
the second call specifies the initial pointxb = (3, 1). The first call finds the local
optimumx∗ = (1, 0), and the second call finds the global optimumx∗ = (4, 0).

proc iml;
start F_GLOBAL(x);

f=(3*x[1]**4-28*x[1]**3+84*x[1]**2-96*x[1]+64)/27 + x[2]**2;
return(f);

finish F_GLOBAL;
xa = {.5 1.5};
xb = {3 -1};
optn = {0 2};
call nlptr(rca,xra,"F_GLOBAL",xa,optn);
call nlptr(rcb,xrb,"F_GLOBAL",xb,optn);
print xra xrb;

One way to find out whether the objective function has more than one local optimum
is to run various optimizations with a pattern of different starting points.

For a more mathematical definition of optimality, refer to theKuhn-Tucker theorem
in standard optimization literature. Using a rather nonmathematical language, a local
minimizerx∗ satisfies the following conditions:

• There exists a small, feasible neighborhood ofx∗ that does not contain any
pointx with a smaller function valuef(x) < f(x∗).

• The vector of first derivatives (gradient)g(x∗) = ∇f(x∗) of the objective
functionf (projected toward the feasible region) at the pointx∗ is zero.

• The matrix of second derivativesG(x∗) = ∇2f(x∗) (Hessian matrix) of the
objective functionf (projected toward the feasible region) at the pointx∗ is
positive definite.

A local maximizer has the largest value in a feasible neighborhood and a negative
definite Hessian.

The iterative optimization algorithm terminates at the pointxt, which should be in
a small neighborhood (in terms of a user-specified termination criterion) of a local
optimizerx∗. If the pointxt is located on one or more active boundary or general

332 � Chapter 11. Nonlinear Optimization Examples

linear constraints, the local optimization conditions are valid only for the feasible
region. That is,

• the projected gradient,ZT g(xt), must be sufficiently small

• the projected Hessian,ZTG(xt)Z, must be positive definite for minimization
problems or negative definite for maximization problems

If there aren active constraints at the pointxt, the nullspaceZ has zero columns
and the projected Hessian has zero rows and columns. A matrix with zero rows and
columns is considered positive as well as negative definite.

Kuhn-Tucker Conditions
The nonlinear programming (NLP) problem with one objective functionf andm
constraint functionsci, which are continuously differentiable, is defined as follows:

minimizef(x), x ∈ Rn, subject to

ci(x) = 0, i = 1, . . . ,me

ci(x) ≥ 0, i = me + 1, . . . ,m

In the preceding notation,n is the dimension of the functionf(x), andme is the
number of equality constraints. The linear combination of objective and constraint
functions

L(x, λ) = f(x)−
m∑

i=1

λici(x)

is theLagrange function,and the coefficientsλi are theLagrange multipliers.

If the functionsf and ci are twice differentiable, the pointx∗ is an isolated local
minimizerof the NLP problem, if there exists a vectorλ∗ = (λ∗1, . . . , λ

∗
m) that meets

the following conditions:

• Kuhn-Tucker conditions

ci(x∗) = 0, i = 1, . . . ,me

ci(x∗) ≥ 0, λ∗i ≥ 0, λ∗i ci(x
∗) = 0, i = me + 1, . . . ,m

∇xL(x∗, λ∗) = 0

• Second-order condition

Each nonzero vectory ∈ Rn with

yT∇xci(x∗) = 0i = 1, . . . ,me, and∀i ∈ me + 1, . . . ,m;λ∗i > 0

satisfies

yT∇2
xL(x∗, λ∗)y > 0

In practice, you cannot expect that the constraint functionsci(x∗) will vanish within
machine precision, and determining the set of active constraints at the solutionx∗

may not be simple.

Objective Function and Derivatives � 333

Definition of Return Codes

The return code, which is represented by the output parameterrc in the optimiza-
tion subroutines, indicates the reason for optimization termination. A positive value
indicates successful termination, while a negative value indicates unsuccessful ter-
mination. Table 11.1gives the reason for termination associated with each return
code.

Table 11.1. Summary of Return Codes
rc Reason for Optimization Termination
1 ABSTOL criterion satisfied (absolute F convergence)
2 ABSFTOL criterion satisfied (absolute F convergence)
3 ABSGTOL criterion satisfied (absolute G convergence)
4 ABSXTOL criterion satisfied (absolute X convergence)
5 FTOL criterion satisfied (relative F convergence)
6 GTOL criterion satisfied (relative G convergence)
7 XTOL criterion satisfied (relative X convergence)
8 FTOL2 criterion satisfied (relative F convergence)
9 GTOL2 criterion satisfied (relative G convergence)
10 n linear independent constraints are active atxr and none of them could be

released to improve the function value
-1 objective function cannot be evaluated at starting point
-2 derivatives cannot be evaluated at starting point
-3 objective function cannot be evaluated during iteration
-4 derivatives cannot be evaluated during iteration
-5 optimization subroutine cannot improve the function value (this is a very

general formulation and is used for various circumstances)
-6 there are problems in dealing with linearly dependent active constraints

(changing the LCSING value in thepar vector can be helpful)
-7 optimization process stepped outside the feasible region and the algorithm

to return inside the feasible region was not successful (changing the LCEPS
value in thepar vector can be helpful)

-8 either the number of iterations or the number of function calls is larger than
the prespecified values in thetc vector (MAXIT and MAXFU)

-9 this return code is temporarily not used (it is used in PROC NLP indicating
that more CPU than a prespecified value was used)

-10 a feasible starting point cannot be computed

Objective Function and Derivatives

The input argumentfun refers to an IML module that specifies a function that returns
f , a vector of lengthm for least-squares subroutines or a scalar for other optimization
subroutines. The returnedf contains the values of the objective function (or the least-
squares functions) at the pointx. Note that for least-squares problems, you must
specify the number of function values,m, with the first element of theopt argument
to allocate memory for the return vector. All the modules that you can specify as
input arguments ("fun", "grd", "hes", "jac", "nlc", "jacnlc", and"ptit") allow only a
single input argument,x, which is the parameter vector. Using the GLOBAL clause,

334 � Chapter 11. Nonlinear Optimization Examples

you can provide more input arguments for these modules. Refer to the middle of the
section,Compartmental Analysisfor an example.

All the optimization algorithms assume thatf is continuous inside the feasible region.
For nonlinearly constrained optimization, this is also required for points outside the
feasible region. Sometimes the objective function cannot be computed for all points
of the specified feasible region; for example, the function specification may contain
the SQRT or LOG function, which cannot be evaluated for negative arguments. You
must make sure that the function and derivatives of the starting point can be evaluated.
There are two ways to prevent large steps into infeasible regions of the parameter
space during the optimization process:

• The preferred way is to restrict the parameter space by introducing more
boundary and linear constraints. For example, the boundary constraint
xj >= 1E−10 prevents infeasible evaluations oflog(xj). If the function mod-
ule takes the square root or the log of an intermediate result, you can use non-
linear constraints to try to avoid infeasible function evaluations. However, this
may not ensure feasibility.

• Sometimes the preferred way is difficult to practice, in which case the function
module may return a missing value. This may force the optimization algorithm
to reduce the step length or the radius of the feasible region.

All the optimization techniques except the NLPNMS subroutine require continu-
ous first-order derivatives of the objective functionf . The NLPTR, NLPNRA, and
NLPNRR techniques also require continuous second-order derivatives. If you do not
provide the derivatives with the IML modules"grd", "hes", or "jac", they are au-
tomatically approximated by finite difference formulas. Approximating first-order
derivatives by finite differences usually requiresn additional calls of the function
module. Approximating second-order derivatives by finite differences using only
function calls can be extremely computationally expensive. Hence, if you decide
to use the NLPTR, NLPNRA, or NLPNRR subroutines, you should specify at least
analytical first-order derivatives. Then, approximating second-order derivatives by
finite differences requires onlyn or 2n additional calls of the function and gradient
modules.

For all input and output arguments, the subroutines assume that

• the number of parametersn corresponds to the number of columns. For exam-
ple,x, the input argument to the modules, andg, the output argument returned
by the"grd" module, are row vectors withn entries, andG, the Hessian matrix
returned by the"hes"module, must be a symmetricn× n matrix.

• the number of functions,m, corresponds to the number of rows. For example,
the vectorf returned by the"fun" module must be a column vector withm
entries, and in least-squares problems, the Jacobian matrixJ returned by the
"jac" module must be anm× n matrix.

You can verify your analytical derivative specifications by computing finite differ-
ence approximations of the derivatives off with the NLPFDD subroutine. For most

Objective Function and Derivatives � 335

applications, the finite difference approximations of the derivatives will be very pre-
cise. Occasionally, difficult objective functions and zerox coordinates will cause
problems. You can use thepar argument to specify the number of accurate dig-
its in the evaluation of the objective function; this defines the step sizeh of the
first- and second-order finite difference formulas. See the section“Finite Difference
Approximations of Derivatives”on page 338.

Note: For some difficult applications, the finite difference approximations of deriva-
tives that are generated by default may not be precise enough to solve the optimization
or least-squares problem. In such cases, you may be able to specify better derivative
approximations by using a better approximation formula. You can submit your own
finite difference approximations using the IML modules"grd", "hes", "jac", or "jac-
nlc". SeeExample 11.3on page 368 for an illustration.

In many applications, calculations used in the computation off can help compute
derivatives at the same point efficiently. You can save and reuse such calculations with
the GLOBAL clause. As with many other optimization packages, the subroutines
perform calls of the"grd", "hes", or "jac" modules only after a call of the"fun"
module.

The following statements specify modules for the function, gradient, and Hessian
matrix of the Rosenbrock problem:

proc iml;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);

finish G_ROSEN;

start H_ROSEN(x);
h = j(2,2,0.);
h[1,1] = -200.*(x[2] - 3.*x[1]*x[1]) + 1.;
h[2,2] = 100.;
h[1,2] = -200. * x[1];
h[2,1] = h[1,2];
return(h);

finish H_ROSEN;

The following statements specify a module for the Rosenbrock function when con-
sidered as a least-squares problem. They also specify the Jacobian matrix of the
least-squares functions.

336 � Chapter 11. Nonlinear Optimization Examples

proc iml;
start F_ROSEN(x);

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;

start J_ROSEN(x);
jac = j(2,2,0.);
jac[1,1] = -20. * x[1]; jac[1,2] = 10.;
jac[2,1] = -1.; jac[2,2] = 0.;
return(jac);

finish J_ROSEN;

Diagonal or Sparse Hessian Matrices

In the unconstrained or only boundary constrained case, the NLPNRA algorithm can
take advantage of diagonal or sparse Hessian matrices submitted by the"hes"module.
If the Hessian matrixG of the objective functionf has a large proportion of zeros, you
may save computer time and memory by specifying a sparse Hessian of dimension
nn× 3 rather than a densen× n Hessian. Each of thenn rows(i, j, g) of the matrix
returned by the sparse Hessian module defines a nonzero elementgij of the Hessian
matrix. The row and column location is given byi andj, andg gives the nonzero
value. During the optimization process, only the valuesg can be changed in each call
of the Hessian module"hes"; the sparsity structure(i, j) must be kept the same. That
means that some of the valuesg can be zero for particular values ofx. To allocate
sufficient memory before the first call of the Hessian module, you must specify the
number of rows,nn, by setting the ninth element of theoptargument.

Example 22 of Moré, Garbow, and Hillstrom (1981) illustrates the sparse Hessian
module input. The objective function, which is the Extended Powell’s Singular
Function, forn = 40 is a least-squares problem:

f(x) =
1
2
{f2

1 (x) + · · ·+ f2
m(x)}

with

f4i−3(x) = x4i−3 + 10x4i−2

f4i−2(x) =
√

5(x4i−1 − x4i)
f4i−1(x) = (x4i−2 − 2x4i−1)2

f4i(x) =
√

10(x4i−3 − x4i)2

The function and gradient modules are

start f_nlp22(x);
n=ncol(x);
f = 0.;

Objective Function and Derivatives � 337

do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];
r2 = x[i+2] - x[i+3];
f2 = 5. * r2;
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
f = f + f1 * f1 + r2 * f2 + f3 * f3 + r4 * r4 * f4;

end;
f = .5 * f;
return(f);

finish f_nlp22;

start g_nlp22(x);
n=ncol(x);
g = j(1,n,0.);

do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
g[i] = f1 + 2. * r4 * f4;
g[i+1] = 10. * f1 + 2. * r3 * f3;
g[i+2] = f2 - 4. * r3 * f3;
g[i+3] = -f2 - 2. * r4 * f4;

end;
return(g);

finish g_nlp22;

You can specify the sparse Hessian with the following module:

start hs_nlp22(x);
n=ncol(x);
nnz = 8 * (n / 4);
h = j(nnz,3,0.);
j = 0;
do i=1 to n-3 by 4;

f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
j= j + 1; h[j,1] = i; h[j,2] = i;
h[j,3] = 1. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;
j= j+1; h[j,1] = i; h[j,2] = i+1;
h[j,3] = 10.;
j= j+1; h[j,1] = i; h[j,2] = i+3;
h[j,3] = -4. * f4;

338 � Chapter 11. Nonlinear Optimization Examples

h[j,3] = h[j,3] - 2. * f4;
j= j+1; h[j,1] = i+1; h[j,2] = i+1;
h[j,3] = 100. + 4. * f3;
h[j,3] = h[j,3] + 2. * f3;
j= j+1; h[j,1] = i+1; h[j,2] = i+2;
h[j,3] = -8. * f3;
h[j,3] = h[j,3] - 4. * f3;
j= j+1; h[j,1] = i+2; h[j,2] = i+2;
h[j,3] = 5. + 16. * f3;
h[j,3] = h[j,3] + 8. * f3;
j= j+1; h[j,1] = i+2; h[j,2] = i+3;
h[j,3] = -5.;
j= j+1; h[j,1] = i+3; h[j,2] = i+3;
h[j,3] = 5. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;

end;
return(h);

finish hs_nlp22;

n = 40;
x = j(1,n,0.);
do i=1 to n-3 by 4;

x[i] = 3.; x[i+1] = -1.; x[i+3] = 1.;
end;
opt = j(1,11,.); opt[2]= 3; opt[9]= 8 * (n / 4);
call nlpnra(xr,rc,"f_nlp22",x,opt) grd="g_nlp22" hes="hs_nlp22";

Note: If the sparse form of Hessian defines a diagonal matrix (that is,i = j in all nn
rows), the NLPNRA algorithm stores and processes a diagonal matrixG. If you do
not specify any general linear constraints, the NLPNRA subroutine uses only ordern
memory.

Finite Difference Approximations of Derivatives

If the optimization technique needs first- or second-order derivatives and you do not
specify the corresponding IML modules"grd", "hes", "jac", or "jacnlc", the deriva-
tives are approximated by finite difference formulas using only calls of the module
"fun". If the optimization technique needs second-order derivatives and you specify
the"grd" module but not the"hes"module, the subroutine approximates the second-
order derivatives by finite differences usingn or 2n calls of the"grd" module.

The eighth element of theoptargument specifies the type of finite difference approx-
imation used to compute first- or second-order derivatives and whether the finite dif-
ference intervals,h, should be computed by an algorithm of Gill, Murray, Saunders,
and Wright (1983). The value ofopt[8] is a two-digit integer,ij.

• If opt[8] is missing orj = 0, the fast but not very precise forward difference
formulas are used; ifj 6= 0, the numerically more expensive central difference
formulas are used.

• If opt[8] is missing ori 6= 1, 2, or 3, the finite difference intervalsh are based
only on the information ofpar[8] or par[9], which specifies the number of

Finite Difference Approximations of Derivatives � 339

accurate digits to use in evaluating the objective function and nonlinear con-
straints, respectively. Ifi = 1, 2, or 3, the intervals are computed with an
algorithm by Gill, Murray, Saunders, and Wright (1983). Fori = 1, the inter-
val is based on the behavior of the objective function; fori = 2, the interval
is based on the behavior of the nonlinear constraint functions; and fori = 3,
the interval is based on the behavior of both the objective function and the
nonlinear constraint functions.

Forward Difference Approximations

• First-order derivatives:n additional function calls are needed.

gi =
∂f

∂xi
=
f(x+ hiei)− f(x)

hi

• Second-order derivatives based on function calls only, when the"grd" module
is not specified (Dennis and Schnabel 1983): for a dense Hessian matrix,n +
n2/2 additional function calls are needed.

∂2f

∂xi∂xj
=
f(x+ hiei + hjej)− f(x+ hiei)− f(x+ hjej) + f(x)

hihj

• Second-order derivatives based on gradient calls, when the"grd" module is
specified (Dennis and Schnabel 1983):n additional gradient calls are needed.

∂2f

∂xi∂xj
=
gi(x+ hjej)− gi(x)

2hj
+
gj(x+ hiei)− gj(x)

2hi

Central Difference Approximations

• First-order derivatives:2n additional function calls are needed.

gi =
∂f

∂xi
=
f(x+ hiei)− f(x− hiei)

2hi

• Second-order derivatives based on function calls only, when the"grd" module
is not specified (Abramowitz and Stegun 1972): for a dense Hessian matrix,
2n+ 2n2 additional function calls are needed.

∂2f

∂x2
i

=
−f(x+ 2hiei) + 16f(x+ hiei)− 30f(x) + 16f(x− hiei)− f(x− 2hiei)

12h2
i

∂2f

∂xi∂xj
=

f(x+ hiei + hjej)− f(x+ hiei − hjej)− f(x− hiei + hjej) + f(x− hiei − hjej)
4hihj

• Second-order derivatives based on gradient calls, when the"grd" module is
specified:2n additional gradient calls are needed.

∂2f

∂xi∂xj
=
gi(x+ hjej)− gi(x− hjej)

4hj
+
gj(x+ hiei)− gj(x− hiei)

4hi

340 � Chapter 11. Nonlinear Optimization Examples

The step sizeshj , j = 1, . . . , n, are defined as follows:

• For the forward-difference approximation of first-order derivatives using only
function calls and for second-order derivatives using only gradient calls,
hj = 2

√
ηj(1 + |xj |).

• For the forward-difference approximation of second-order derivatives using
only function calls and for central-difference formulas,hj = 3

√
ηj(1 + |xj |).

If the algorithm of Gill, Murray, Saunders, and Wright (1983) is not used to compute
ηj , a constant valueη = ηj is used depending on the value ofpar[8].

• If the number of accurate digits is specified bypar[8] = k1, thenη is set to
10−k1 .

• If par[8] is not specified,η is set to the machine precision,ε.

If central difference formulas are not specified, the optimization algorithm will
switch automatically from the forward-difference formula to a corresponding central-
difference formula during the iteration process if one of the following two criteria is
satisfied:

• The absolute maximum gradient element is less than or equal to 100 times the
ABSGTOL threshold.

• The term on the left of the GTOL criterion is less than or equal to
max(1E−6, 100×GTOL threshold). The 1E−6 ensures that the switch is
performed even if you set the GTOL threshold to zero.

The algorithm of Gill, Murray, Saunders, and Wright (1983) that computes the finite
difference intervalshj can be very expensive in the number of function calls it uses. If
this algorithm is required, it is performed twice, once before the optimization process
starts and once after the optimization terminates.

Many applications need considerably more time for computing second-order deriva-
tives than for computing first-order derivatives. In such cases, you should use a quasi-
Newton or conjugate gradient technique.

If you specify a vector,c, ofnc nonlinear constraints with the “nlc” module but you do
not specify the “jacnlc” module, the first-order formulas can be used to compute finite
difference approximations of thenc×n Jacobian matrix of the nonlinear constraints.

(∇ci) =
(
∂ci
∂xj

)
, i = 1, . . . , nc, j = 1, . . . , n

You can specify the number of accurate digits in the constraint evaluations with
par[9]. This specification also defines the step sizeshj , j = 1, . . . , n.

Note: If you are not able to specify analytic derivatives and if the finite-difference
approximations provided by the subroutines are not good enough to solve your opti-
mization problem, you may be able to implement better finite-difference approxima-
tions with the “grd”, “ hes”, “ jac”, and “jacnlc” module arguments.

Parameter Constraints � 341

Parameter Constraints

You can specify constraints in the following ways:

• The matrix input argument “blc” enables you to specify boundary and general
linear constraints.

• The IML module input argument “nlc” enables you to specify general con-
straints, particularly nonlinear constraints.

Specifying the BLC Matrix

The input argument “blc” specifies ann1 × n2 constraint matrix, wheren1 is two
more than the number of linear constraints, andn2 is given by

n2 =
{
n if 1 ≤ n1 ≤ 2
n+ 2 if n1 > 2

The first two rows define lower and upper bounds for then parameters, and the re-
mainingc = n1 − 2 rows define general linear equality and inequality constraints.
Missing values in the first row (lower bounds) substitute for the largest negative float-
ing point value, and missing values in the second row (upper bounds) substitute for
the largest positive floating point value. Columnsn + 1 andn + 2 of the first two
rows are not used.

The following c rows of the “blc” argument specifyc linear equality or inequality
constraints:

n∑
j=1

aijxj (≤ | = | ≥) bi, i = 1, . . . , c

Each of thesec rows contains the coefficientsaij in the firstn columns. Columnn+1
specifies the kind of constraint, as follows:

• blc[n+ 1] = 0 indicates an equality constraint.

• blc[n+ 1] = 1 indicates a≥ inequality constraint.

• blc[n+ 1] = −1 indicates a≤ inequality constraint.

Columnn+ 2 specifies the right-hand side,bi. A missing value in any of these rows
corresponds to a value of zero.

For example, suppose you have a problem with the following constraints onx1,x2,
x3, x4:

2 ≤ x1 ≤ 100
x2 ≤ 40

0 ≤ x4

342 � Chapter 11. Nonlinear Optimization Examples

4x1 + 3x2 − x3 ≤ 30
x2 + 6x4 ≥ 17

x1 − x2 = 8

The following statements specify the matrix CON, which can be used as the “blc”
argument to specify the preceding constraints:

proc iml;
con = { 2 . . 0 . . ,

100 40 ,
4 3 -1 . -1 30 ,
. 1 . 6 1 17 ,
1 -1 . . 0 8 };

Specifying the NLC and JACNLC Modules

The input argument “nlc” specifies an IML module that returns a vector,c, of length
nc, with the values,ci, of thenc linear or nonlinear constraints

ci(x) = 0, i = 1, . . . , nec,
ci(x) ≥ 0, i = nec+ 1, . . . , nc,

for a given input parameter pointx.

Note: You must specify the number of equality constraints,nec, and the total number
of constraints,nc, returned by the “nlc” module to allocate memory for the return
vector. You can do this with theopt[11] andopt[10] arguments, respectively.

For example, consider the problem of minimizing the objective function
f(x1, x2) = x1x2 in the interior of the unit circle,x2

1 + x2
2 ≤ 1. The con-

straint can also be written asc1(x) = 1 − x2
1 − x2

2 ≥ 0. The following statements
specify modules for the objective and constraint functions and call the NLPNMS
subroutine to solve the minimization problem:

proc iml;
start F_UC2D(x);

f = x[1] * x[2];
return(f);

finish F_UC2D;

start C_UC2D(x);
c = 1. - x * x‘;
return(c);

finish C_UC2D;

x = j(1,2,1.);
optn= j(1,10,.); optn[2]= 3; optn[10]= 1;
CALL NLPNMS(rc,xres,"F_UC2D",x,optn) nlc="C_UC2D";

Options Vector � 343

To avoid typing multiple commas, you can specify the “nlc” input argument with a
keyword, as in the preceding code. The number of elements of the return vector is
specified by OPTN[10] = 1. There is a missing value in OPTN[11], so the subroutine
assumes there are zero equality constraints.

The NLPQN algorithm uses thenc× n Jacobian matrix of first-order derivatives

(∇xci(x)) =
(
∂ci
∂xj

)
, i = 1, . . . , nc, j = 1, . . . , n

of thenc equality and inequality constraints,ci, for each point passed during the it-
eration. You can use the “jacnlc” argument to specify an IML module that returns
the Jacobian matrixJC. If you specify the “nlc” module without using the “jac-
nlc” argument, the subroutine uses finite difference approximations of the first-order
derivatives of the constraints.

Note: The COBYLA algorithm in the NLPNMS subroutine and the NLPQN sub-
routine are the only optimization techniques that enable you to specify nonlinear
constraints with the “nlc” input argument.

Options Vector

The options vector, represented by the"opt" argument, enables you to specify a vari-
ety of options, such as the amount of printed output or particular update or line-search
techniques.Table 11.2gives a summary of the available options.

344 � Chapter 11. Nonlinear Optimization Examples

Table 11.2. Summary of the Elements of the Options Vector
Index Description

1 specifies minimization, maximization, or the number of least-squares
functions

2 specifies the amount of printed output
3 NLPDD, NLPLM, NLPNRA, NLPNRR, NLPTR: specifies the scaling

of the Hessian matrix (HESCAL)
4 NLPCG, NLPDD, NLPHQN, NLPQN: specifies the update technique

(UPDATE)
5 NLPCG, NLPHQN, NLPNRA, NLPQN (with no nonlinear constraints):

specifies the line-search technique (LIS)
6 NLPHQN: specifies version of hybrid algorithm (VERSION)

NLPQN with nonlinear constraints: specifies version ofµ update
7 NLPDD, NLPHQN, NLPQN: specifies initial Hessian matrix

(INHESSIAN)
8 Finite Difference Derivatives: specifies type of differences and how to

compute the difference interval
9 NLPNRA: specifies the number of rows returned by the sparse Hessian

module
10 NLPNMS, NLPQN: specifies the total number of constraints returned by

the"nlc" module
11 NLPNMS, NLPQN: specifies the number of equality constraints returned

by the"nlc" module

The following list contains detailed explanations of the elements of the options vec-
tor:

• opt[1]
indicates whether the problem is minimization or maximization. The default,
opt[1] = 0, specifies a minimization problem, andopt[1] = 1 specifies a maxi-
mization problem. For least-squares problems,opt[1] = m specifies the num-
ber of functions or observations, which is the number of values returned by the
"fun" module. This information is necessary to allocate memory for the return
vector of the"fun" module.

• opt[2]
specifies the amount of output printed by the subroutine. The higher the value
of opt[2], the more printed output is produced. The following table indicates
the specific items printed for each value.

Options Vector � 345

Value of opt[2] Printed Output
0 No printed output is produced. This is the default.
1 The summaries for optimization start and termination are

produced, as well as the iteration history.
2 The initial and final parameter estimates are also printed.
3 The values of the termination criteria and other control pa-

rameters are also printed.
4 The parameter vector,x, is also printed after each iteration.
5 The gradient vector,g, is also printed after each iteration.

• opt[3]
selects a scaling for the Hessian matrix,G. This option is relevant only for the
NLPDD, NLPLM, NLPNRA, NLPNRR, and NLPTR subroutines. Ifopt[3] 6=
0, the first iteration and each restart iteration set the diagonal scaling matrix

D(0) = diag(d(0)
i), where

d
(0)
i =

√
max(|G(0)

i,i |, ε)

andG(0)
i,i are the diagonal elements of the Hessian matrix, andε is the ma-

chine precision. The diagonal scaling matrixD(0) = diag(d(0)
i) is updated as

indicated in the following table.

Value of opt[3] Scaling Update
0 No scaling is done.
1 Moré (1978) scaling update:

d
(k+1)
i = max

(
d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

2 Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max

(
0.6 ∗ d(k)

i ,

√
max(|G(k)

i,i |, ε)
)

3 di is reset in each iteration:d(k+1)
i =

√
max(|G(k)

i,i |, ε)

For the NLPDD, NLPNRA, NLPNRR, and NLPTR subroutines, the default is
opt[3] = 0; for the NLPLM subroutine, the default isopt[3] = 1.

• opt[4]
defines the update technique for (dual) quasi-Newton and conjugate gradi-
ent techniques. This option applies to the NLPCG, NLPDD, NLPHQN, and
NLPQN subroutines. For the NLPCG subroutine, the following update tech-
niques are available.

346 � Chapter 11. Nonlinear Optimization Examples

Value of opt[4] Update Method for NLPCG
1 automatic restart method of Powell (1977) and Beale

(1972). This is the default.
2 Fletcher-Reeves update (Fletcher 1987)
3 Polak-Ribiere update (Fletcher 1987)
4 Conjugate-descent update of Fletcher (1987)

For the unconstrained or linearly constrained NLPQN subroutine, the following
update techniques are available.

Value of opt[4] Update Method for NLPQN
1 dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS)

update of the Cholesky factor of the Hessian matrix. This is
the default.

2 dual Davidon, Fletcher, and Powell (DDFP) update of the
Cholesky factor of the Hessian matrix

3 original Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update of the inverse Hessian matrix

4 original Davidon, Fletcher, and Powell (DFP) update of the
inverse Hessian matrix

For the NLPQN subroutine used with the"nlc" module and for the NLPDD
and NLPHQN subroutines, only the first two update techniques in the second
table are available.

• opt[5]
defines the line-search technique for the unconstrained or linearly constrained
NLPQN subroutine, as well as the NLPCG, NLPHQN, and NLPNRA subrou-
tines. Refer to Fletcher (1987) for an introduction to line-search techniques.
The following table describes the available techniques.

Options Vector � 347

Value of opt[5] Line-Search Method
1 This method needs the same number of function and gradient calls

for cubic interpolation and cubic extrapolation; it is similar to a
method used by the Harwell subroutine library.

2 This method needs more function than gradient calls for quadratic
and cubic interpolation and cubic extrapolation; it is implemented
as shown in Fletcher (1987) and can be modified to exact line
search with thepar[6] argument (see the“Control Parameters
Vector” section on page 356). This is the default for the NLPCG,
NLPNRA, and NLPQN subroutines.

3 This method needs the same number of function and gradient calls
for cubic interpolation and cubic extrapolation; it is implemented
as shown in Fletcher (1987) and can be modified to exact line
search with thepar[6] argument.

4 This method needs the same number of function and gradient calls
for stepwise extrapolation and cubic interpolation.

5 This method is a modified version of theopt[5]=4 method.

6 This method is the golden section line search of Polak (1971),
which uses only function values for linear approximation.

7 This method is the bisection line search of Polak (1971), which
uses only function values for linear approximation.

8 This method is the Armijo line-search technique of Polak (1971),
which uses only function values for linear approximation.

For the NLPHQN least-squares subroutine, the default is a special line-search
method that is based on an algorithm developed by Lindström and Wedin
(1984). Although it needs more memory, this method sometimes works bet-
ter with large least-squares problems.

• opt[6]
is used only for the NLPHQN subroutine and the NLPQN subroutine with
nonlinear constraints.

In the NLPHQN subroutine, it defines the criterion for the decision of the hy-
brid algorithm to step in a Gauss-Newton or a quasi-Newton search direction.
You can specify one of the three criteria that correspond to the methods of
Fletcher and Xu (1987). The methods are HY1 (opt[6]=1), HY2 (opt[6]=2),
and HY3 (opt[6]=2), and the default is HY2.

In the NLPQN subroutine with nonlinear constraints, it defines the version of
the algorithm used to update the vectorµ of the Lagrange multipliers. The
default isopt[6]=2, which specifies the approach of Powell (1982a,b). You can
specify the approach of Powell (1978b) withopt[6]=1.

• opt[7]
defines the type of start matrix,G(0), used for the Hessian approximation. This
option applies only to the NLPDD, NLPHQN, and NLPQN subroutines. If

348 � Chapter 11. Nonlinear Optimization Examples

opt[7]=0, which is the default, the quasi-Newton algorithm starts with a multi-
ple of the identity matrix where the scalar factor depends onpar[10]; otherwise,
it starts with the Hessian matrix computed at the starting pointx(0).

• opt[8]
defines the type of finite difference approximation used to compute first- or
second-order derivatives and whether the finite difference intervals,h, should
be computed using an algorithm of Gill, Murray, Saunders, and Wright (1983).
The value ofopt[8] is a two-digit integer,ij.

If opt[8] is missing orj = 0, the fast but not very precise for-
ward difference formulas are used; ifj 6= 0, the numerically
more expensive central difference formulas are used.

If opt[8] is missing ori 6= 1, 2, or 3, the finite difference
intervalsh are based only on the information ofpar[8] or
par[9], which specifies the number of accurate digits to
use in evaluating the objective function and nonlinear con-
straints, respectively. Ifi = 1, 2, or 3, the intervals are
computed with an algorithm by Gill, Murray, Saunders, and
Wright (1983). Fori = 1, the interval is based on the be-
havior of the objective function; fori = 2, the interval is
based on the behavior of the nonlinear constraint functions;
and fori = 3, the interval is based on the behavior of both
the objective function and the nonlinear constraint functions.

The algorithm of Gill, Murray, Saunders, and Wright (1983) that computes the
finite difference intervalshj can be very expensive in the number of function
calls it uses. If this algorithm is required, it is performed twice, once before
the optimization process starts and once after the optimization terminates. See
the“Finite Difference Approximations of Derivatives”section on page 338 for
details.

• opt[9]
indicates that the Hessian module"hes" returns a sparse definition of the
Hessian, in the form of annn × 3 matrix instead of the default densen × n
matrix. If opt[9] is zero or missing, the Hessian module must return a dense
n × n matrix. If you specifyopt[9] = nn, the module must return a sparse
nn × 3 table. See the“Objective Function and Derivatives”section on page
333 for more details. This option applies only to the NLPNRA algorithm. If
the dense specification contains a large proportion of analytical zero deriva-
tives, the sparse specification may save memory and computer time.

• opt[10]
specifies the total number of nonlinear constraints returned by the"nlc" mod-
ule. If you specifync nonlinear constraints with the"nlc" argument module,
you must specifyopt[10] = nc to allocate memory for the return vector.

Termination Criteria � 349

• opt[11]
specifies the number of nonlinear equality constraints returned by the"nlc"
module. If the firstnec constraints are equality constraints, you must specify
opt[11] = nec. The default value isopt[11] = 0.

Termination Criteria

The input argumenttc specifies a vector of bounds corresponding to a set of termina-
tion criteria that are tested in each iteration. If you do not specify an IML module with
the"ptit" argument, these bounds determine when the optimization process stops.

If you specify the"ptit" argument, the"tc" argument is ignored. The module specified
by the"ptit" argument replaces the subroutine that is used by default to test the ter-
mination criteria. The module is called in each iteration with the current location,x,
and the value,f , of the objective function atx. The module must give a return code,
rc, that decides whether the optimization process is to be continued or terminated.
As long as the module returnsrc = 0, the optimization process continues. When the
module returnsrc 6= 0, the optimization process stops.

If you use thetc vector, the optimization techniques stop the iteration process when at
least one of the corresponding set of termination criteria are satisfied.Table 11.3and
Table 11.4indicate the criterion associated with each element of thetc vector. There
is a default for each criterion, and if you specify a missing value for the corresponding
element of thetc vector, the default value is used. You can avoid termination with
respect to the ABSFTOL, ABSGTOL, ABSXTOL, FTOL, FTOL2, GTOL, GTOL2,
and XTOL criteria by specifying a value of zero for the corresponding element of the
tc vector.

Table 11.3. Termination Criteria for the NLPNMS Subroutine
Index Description

1 maximum number of iterations (MAXIT)
2 maximum number of function calls (MAXFU)
3 absolute function criterion (ABSTOL)
4 relative function criterion (FTOL)
5 relative function criterion (FTOL2)
6 absolute function criterion (ABSFTOL)
7 FSIZE value used in FTOL criterion
8 relative parameter criterion (XTOL)
9 absolute parameter criterion (ABSXTOL)
9 size of final trust-region radiusρ (COBYLA algorithm)
10 XSIZE value used in XTOL criterion

350 � Chapter 11. Nonlinear Optimization Examples

Table 11.4. Termination Criteria for Other Subroutines
Index Description

1 maximum number of iterations (MAXIT)
2 maximum number of function calls (MAXFU)
3 absolute function criterion (ABSTOL)
4 relative gradient criterion (GTOL)
5 relative gradient criterion (GTOL2)
6 absolute gradient criterion (ABSGTOL)
7 relative function criterion (FTOL)
8 predicted function reduction criterion (FTOL2)
9 absolute function criterion (ABSFTOL)
10 FSIZE value used in GTOL and FTOL criterion
11 relative parameter criterion (XTOL)
12 absolute parameter criterion (ABSXTOL)
13 XSIZE value used in XTOL criterion

Criteria Used by All Techniques

The following list indicates the termination criteria that are used with all the opti-
mization techniques:

• tc[1]
specifies the maximum number of iterations in the optimization process
(MAXIT). The default values are

NLPNMS: MAXIT=1000
NLPCG: MAXIT=400
Others: MAXIT=200

• tc[2]
specifies the maximum number of function calls in the optimization process
(MAXFU). The default values are

NLPNMS: MAXFU=3000
NLPCG: MAXFU=1000
Others: MAXFU=500

• tc[3]
specifies the absolute function convergence criterion (ABSTOL). For mini-
mization, termination requiresf (k) = f(x(k)) ≤ ABSTOL, while for maxi-
mization, termination requiresf (k) = f(x(k)) ≥ ABSTOL. The default values
are the negative and positive square roots of the largest double precision value,
for minimization and maximization, respectively.

These criteria are useful when you want to divide a time-consuming optimization
problem into a series of smaller problems.

Termination Criteria � 351

Termination Criteria for NLPNMS

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination
criteria are available that are based on the gradient of the objective function.

When the NLPNMS subroutine implements Powell’s COBYLA algorithm, it uses
only one criterion other than the three used by all the optimization techniques. The
COBYLA algorithm is a trust-region method that sequentially reduces the radius,ρ,
of a spheric trust region from the start radius,ρbeg, which is controlled with thepar[2]
argument, to the final radius,ρend, which is controlled with thetc[9] argument. The
default value fortc[9] is ρend =1E−4. Convergence to small values ofρend may
take many calls of the function and constraint modules and may result in numerical
problems.

In addition to the criteria used by all techniques, the original Nelder-Mead simplex
algorithm uses several other termination criteria, which are described in the following
list:

• tc[4]
specifies the relative function convergence criterion (FTOL). Termination re-
quires a small relative difference between the function values of the vertices in
the simplex with the largest and smallest function values.

|f (k)
hi − f

(k)
lo |

max(|f (k)
hi)|,FSIZE)

≤ FTOL

whereFSIZE is defined bytc[7]. The default value istc[4] = 10−FDIGITS,
where FDIGITS is controlled by thepar[8] argument. Thepar[8] argument
has a default value oflog10(ε), whereε is the machine precision. Hence, the
default value forFTOL is ε.

• tc[5]
specifies another relative function convergence criterion (FTOL2). Termination
requires a small standard deviation of the function values of then+ 1 simplex

verticesx(k)
0 , . . . , x

(k)
n .√

1
n+ 1

∑
l

(f(x(k)
l)− f(x(k)))2 ≤ FTOL2

wheref(x(k)) = 1
n+1

∑
l f(x(k)

l). If there area active boundary constraints

atx(k), the mean and standard deviation are computed only for then + 1 − a
unconstrained vertices. The default istc[5] =1E−6.

• tc[6]
specifies the absolute function convergence criterion (ABSFTOL). Termination

352 � Chapter 11. Nonlinear Optimization Examples

requires a small absolute difference between the function values of the vertices
in the simplex with the largest and smallest function values.

|f (k)
hi − f

(k)
lo | ≤ ABSFTOL

The default istc[6] = 0.

• tc[7]
specifies the FSIZE value used in the FTOL termination criterion. The default
is tc[7] = 0.

• tc[8]
specifies the relative parameter convergence criterion (XTOL). Termination
requires a small relative parameter difference between the vertices with the
largest and smallest function values.

maxj |xlo
j − xhi

j |
max(|xlo

j |, |xhi
j |,XSIZE)

≤ XTOL

The default istc[8] =1E−8.

• tc[9]
specifies the absolute parameter convergence criterion (ABSXTOL).
Termination requires either a small length,α(k), of the vertices of a restart
simplex or a small simplex size,δ(k).

α(k) ≤ ABSXTOL

δ(k) ≤ ABSXTOL

whereδ(k) is defined as the L1 distance of the simplex vertex with the smallest

function value,y(k), to the othern simplex points,x(k)
l 6= y.

δ(k) =
∑
xl 6=y

‖ x(k)
l − y(k) ‖1

The default istc[9] =1E−8.

• tc[10]
specifies the XSIZE value used in the XTOL termination criterion. The default
is tc[10] = 0.

Termination Criteria � 353

Termination Criteria for Unconstrained and Linearly Constrained Techniques

• tc[4]
specifies the relative gradient convergence criterion (GTOL). For all techniques
except the NLPCG subroutine, termination requires that the normalized pre-
dicted function reduction is small.

g(x(k))T [G(k)]−1g(x(k))
max(|f(x(k))|,FSIZE)

≤ GTOL

whereFSIZEis defined bytc[10]. For the NLPCG technique (where a reliable
Hessian estimate is not available),

‖ g(x(k)) ‖2
2 ‖ s(x(k)) ‖2

‖ g(x(k))− g(x(k−1)) ‖2 max(|f(x(k))|,FSIZE)
≤ GTOL

is used. The default istc[4] =1E−8.

• tc[5]
specifies another relative gradient convergence criterion (GTOL2). This crite-
rion is used only by the NLPLM subroutine.

max
j

|gj(x(k))|√
f(x(k))G(k)

j,j

≤ GTOL2

The default istc[5]=0.

• tc[6]
specifies the absolute gradient convergence criterion (ABSGTOL).
Termination requires that the maximum absolute gradient element be
small.

max
j
|gj(x(k))| ≤ ABSGTOL

The default istc[6] =1E−5.

• tc[7]
specifies the relative function convergence criterion (FTOL). Termination re-
quires a small relative change of the function value in consecutive iterations.

|f(x(k))− f(x(k−1))|
max(|f(x(k−1))|, FSIZE)

≤ FTOL

whereFSIZE is defined bytc[10]. The default istc[7] = 10−FDIGITS, where
FDIGITS is controlled by thepar[8] argument. Thepar[8] argument has a
default value oflog10(ε), whereε is the machine precision. Hence, the default
for FTOL is ε.

354 � Chapter 11. Nonlinear Optimization Examples

• tc[8]
specifies another function convergence criterion (FTOL2). For least-squares
problems, termination requires a small predicted reduction of the objective
function,df (k) ≈ f(x(k))−f(x(k)+s(k)). The predicted reduction is computed
by approximating the objective function by the first two terms of the Taylor se-
ries and substituting the Newton step,s(k) = −G(k)−1g(k), as follows:

df (k) = −g(k)T s(k) − 1
2
s(k)TG(k)s(k)

= −1
2
s(k)T g(k)

≤ FTOL2

The FTOL2 criterion is the unscaled version of the GTOL criterion. The default
is tc[8]=0.

• tc[9]
specifies the absolute function convergence criterion (ABSFTOL). Termination
requires a small change of the function value in consecutive iterations.

|f(x(k−1))− f(x(k))| ≤ ABSFTOL

The default istc[9]=0.

• tc[10]
specifies the FSIZE value used in the GTOL and FTOL termination criteria.
The default istc[10]=0.

• tc[11]
specifies the relative parameter convergence criterion (XTOL). Termination re-
quires a small relative parameter change in consecutive iterations.

maxj |x(k)
j − x

(k−1)
j |

max(|x(k)
j |, |x(k−1)

j |,XSIZE)
≤ XTOL

The default istc[11]=0.

• tc[12]
specifies the absolute parameter convergence criterion (ABSXTOL).
Termination requires a small Euclidean distance between parameter vectors in
consecutive iterations.

‖ x(k) − x(k−1) ‖2≤ ABSXTOL

The default istc[12]=0.

• tc[13]
specifies the XSIZE value used in the XTOL termination criterion. The default
is tc[13]=0.

Termination Criteria � 355

Termination Criteria for Nonlinearly Constrained Techniques

The only algorithm available for nonlinearly constrained optimization other than the
NLPNMS subroutine is the NLPQN subroutine, when you specify the"nlc" module
argument. This method, unlike the other optimization methods, does not monotoni-
cally reduce the value of the objective function or some kind of merit function that
combines objective and constraint functions. Instead, the algorithm uses the watch-
dog technique with backtracking of Chamberlain and others (1982). Therefore, no
termination criteria are implemented that are based on the valuesx or f in consecu-
tive iterations. In addition to the criteria used by all optimization techniques, there are
three other termination criteria available; these are based on the Lagrange function

L(x, λ) = f(x)−
m∑

i=1

λici(x)

and its gradient

∇xL(x, λ) = g(x)−
m∑

i=1

λi∇xci(x)

wherem denotes the total number of constraints,g = g(x) is the gradient of the
objective function, andλ is the vector of Lagrange multipliers. The Kuhn-Tucker
conditions require that the gradient of the Lagrange function is zero at the optimal
point (x∗, λ∗), as follows:

∇xL(x∗, λ∗) = 0

• tc[4]
specifies the GTOL criterion, which requires that the normalized predicted
function reduction be small.

|g(x(k))s(x(k))|+
∑m

i=1 |λici(x(k))|
max(|f(x(k))|,FSIZE)

≤ GTOL

whereFSIZEis defined by thetc[10] argument. The default istc[4] =1E−8.

• tc[6]
specifies the ABSGTOL criterion, which requires that the maximum absolute
gradient element of the Lagrange function be small.

max
j
|{∇xL(x(k), λ(k))}j | ≤ ABSGTOL

The default istc[6] =1E−5.

356 � Chapter 11. Nonlinear Optimization Examples

• tc[8]
specifies the FTOL2 criterion, which requires that the predicted function re-
duction be small.

|g(x(k))s(x(k))|+
m∑

i=1

|λici| ≤ FTOL2.

The default istc[8] =1E−6. This is the criterion used by the programs
VMCWD and VF02AD of Powell (1982b).

Control Parameters Vector

For all optimization and least-squares subroutines, the input argumentpar specifies
a vector of parameters that control the optimization process. For the NLPFDD and
NLPFEA subroutines, theparargument is defined differently. For each element of the
par vector there exists a default value, and if you specify a missing value, the default
is used.Table 11.5summarizes the uses of thepar argument for the optimization and
least-squares subroutines.

Table 11.5. Summary of the Control Parameters Vector
Index Description

1 specifies the singularity criterion (SINGULAR)
2 specifies the initial step length or trust-region radius
3 specifies the range for active (violated) constraints (LCEPS)
4 specifies the Lagrange multiplier threshold for constraints (LCDEACT)
5 specifies a criterion to determine linear dependence of constraints

(LCSING)
6 specifies the required accuracy of the line-search algorithms

(LSPRECISION)
7 reduces the line-search step size in successive iterations (DAMPSTEP)
8 specifies the number of accurate digits used in evaluating the objective

function (FDIGITS)
9 specifies the number of accurate digits used in evaluating the nonlinear

constraints (CDIGITS)
10 specifies a scalar factor for the diagonal of the initial Hessian (DIAHES)

• par[1]
specifies the singularity criterion for the decomposition of the Hessian matrix
(SINGULAR). The value must be between zero and one, and the default is
par[1] =1E−8.

• par[2]
specifies different features depending on the subroutine in which it is used.
In the NLPNMS subroutine, it defines the size of the start simplex. For the
original Nelder-Mead simplex algorithm, the default value ispar[2] = 1; for

Control Parameters Vector � 357

the COBYLA algorithm, the default ispar[2] = 0.5. In the NLPCG, NLPQN,
and NLPHQN subroutines, thepar[2] argument specifies an upper bound for
the initial step length for the line search during the first five iterations. The
default initial step length ispar[2] = 1. In the NLPTR, NLPDD, and NLPLM
subroutines, thepar[2] argument specifies a factor for the initial trust-region
radius,∆. For highly nonlinear functions, the default step length or trust-
region radius can result in arithmetic overflows. In that case, you can specify
stepwise decreasing values ofpar[2], such aspar[2]=1E−1, par[2]=1E−2,
par[2]=1E−4, until the subroutine starts to iterate successfully.

• par[3]
specifies the range (LCEPS) for active and violated linear constraints. The
ith constraint is considered an active constraint if the pointx(k) satisfies the
condition∣∣∣∣∣∣

n∑
j=1

aijx
(k)
j − bi

∣∣∣∣∣∣ ≤ LCEPS(|bi|+ 1)

whereLCEPSis the value ofpar[3] andaij andbi are defined as in the section
“Parameter Constraints”on page 341. Otherwise, the constrainti is either an
inactive inequality or a violated inequality or equality constraint. The default is
par[3] =1E−8. During the optimization process, the introduction of rounding
errors can force the subroutine to increase the value ofpar[3] by a power of 10,
but the value will never become larger than 1E−3.

• par[4]
specifies a threshold (LCDEACT) for the Lagrange multiplier that decides
whether an active inequality constraint must remain active or can be deac-
tivated. For maximization,par[4] must be positive, and for minimization,
par[4] must be negative. The default is

par[4] = ±min
(
0.01,max

(
0.1× ABSGTOL, 0.001× gmax(k)

))
where the positive value is for maximization and the negative value is for mini-
mization.ABSGTOLis the value of the absolute gradient criterion, andgmax(k)

is the maximum absolute element of the gradient,g(k), or the projected gradi-
ent,ZT g(k).

• par[5]
specifies a criterion (LCSING) used in the update of the QR decomposition
that decides whether an active constraint is linearly dependent on a set of other
active constraints. The default ispar[5] =1E−8. As the value ofpar[5] in-
creases, more active constraints are recognized as being linearly dependent. If
the value ofpar[5] is larger than0.1, it is reset to0.1, and if it is negative, it is
reset to zero.

358 � Chapter 11. Nonlinear Optimization Examples

• par[6]
specifies the degree of accuracy (LSPRECISION) that should be obtained by
the second or third line-search algorithm. This argument can be used with the
NLPCG, NLPHQN, and NLPNRA algorithms and with the NLPQN algorithm
if the "nlc" argument is specified. Usually, an imprecise line search is compu-
tationally inexpensive and successful, but for more difficult optimization prob-
lems, a more precise and time consuming line search may be necessary. Refer
to Fletcher (1987) for details. If you have numerical problems, you should de-
crease the value of thepar[6] argument to obtain a more precise line search.
The default values are given in the following table.

Subroutine Update Method Default value
NLPCG All par[6] = 0.1
NLPHQN DBFGS par[6] = 0.1
NLPHQN DDFP par[6] = 0.06
NLPNRA No update par[6] = 0.9
NLPQN BFGS, DBFGS par[6] = 0.4
NLPQN DFP, DDFP par[6] = 0.06

• par[7]
specifies a scalar factor (DAMPSTEP) that can be used to reduce the step size
in each of the first five iterations. In each of these iterations, the starting step
size,α(0), can be no larger than the value ofpar[7] times the step size obtained
by the line-search algorithm in the previous iteration. Ifpar[7] is missing or
ifpar[7]=0, which is the default, the starting step size in iterationt is computed
as a function of the function change from the former iteration,f (t−1) − f (t).
If the computed value is outside the interval[0.1, 10.0], it is moved to the next
endpoint. You can further restrict the starting step size in the first five iterations
with thepar[2] argument.

• par[8]
specifies the number of accurate digits (FDIGITS) used to evaluate the objec-
tive function. The default is− log10(ε), whereε is the machine precision, and
fractional values are permitted. This value is used to compute the step sizeh
for finite difference derivatives and the default value for the FTOL termination
criterion.

• par[9]
specifies the number of accurate digits (CDIGITS) used to evaluate the nonlin-
ear constraint functions of the"nlc" module. The default is− log10(ε), whereε
is the machine precision, and fractional values are permitted. The value is used
to compute the step sizeh for finite difference derivatives. If first-order deriva-
tives are specified by the"jacnlc" module, thepar[9] argument is ignored.

Printing the Optimization History � 359

• par[10]
specifies a scalar factor (DIAHES) for the diagonal of the initial Hessian
approximation. This argument is available in the NLPDD, NLPHQN, and
NLPQN subroutines. If theopt[7] argument is not specified, the initial Hessian
approximation is a multiple of the identity matrix determined by the magni-
tude of the initial gradientg(x(0)). The value of thepar[10] argument is used
to specifypar[10]× I for the initial Hessian in the quasi-Newton algorithm.

Printing the Optimization History

Each optimization and least-squares subroutine prints the optimization history, as
long asopt[2] ≥ 1 and you do not specify the"ptit" module argument. You can
use this output to check for possible convergence problems. If you specify the"ptit"
argument, you can enter a print command inside the module, which is called at each
iteration.

The amount of information printed depends on theopt[2] argument. See the section
“Options Vector”on page 343.

The output consists of three main parts:

• Optimization Start Output
The following information about the initial state of the optimization can be
printed:

– the number of constraints that are active at the starting point, or, more
precisely, the number of constraints that are currently members of the
working set. If this number is followed by a plus sign (+), there are more
active constraints, at least one of which is temporarily released from the
working set due to negative Lagrange multipliers.

– the value of the objective function at the starting point

– the value of the largest absolute (projected) gradient element

– the initial trust-region radius for the NLPTR and NLPLM subroutines

• General Iteration History
In general, the iteration history consists of one line of printed output for each it-
eration, with the exception of the Nelder-Mead simplex method. The NLPNMS
subroutine prints a line only after several internal iterations because some of the
termination tests are time-consuming compared to the simplex operations and
because the subroutine typically uses many iterations.

The iteration history always includes the following columns:

– iter is the iteration number.

– nrestis the number of iteration restarts.

– nfun is the number of function calls.

– act is the number of active constraints.

– optcrit is the value of the optimization criterion.

– difcrit is the difference between adjacent function values.

360 � Chapter 11. Nonlinear Optimization Examples

– maxgradis the maximum of the absolute (projected) gradient compo-
nents.

An apostrophe trailing the number of active constraints indicates that at least
one of the active constraints was released from the active set due to a significant
Lagrange multiplier.

Some subroutines print additional information at each iteration; for details see
the entry corresponding to each subroutine in the“Nonlinear Optimization and
Related Subroutines”section on page 782.

• Optimization Result Output
The output ends with the following information about the optimization result:

– the number of constraints that are active at the final point, or more pre-
cisely, the number of constraints that are currently members of the work-
ing set. When this number is followed by a plus sign (+), there are more
active constraints, at least one of which is temporarily released from the
working set due to negative Lagrange multipliers.

– the value of the objective function at the final point

– the value of the largest absolute (projected) gradient element

Nonlinear Optimization Examples

Example 11.1. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming. It
appeared originally in Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals that
satisfy the mixture’s chemical equilibrium state. The second law of thermodynamics
implies that at a constant temperature and pressure, a mixture of chemicals satisfies
its chemical equilibrium state when the free energy of the mixture is reduced to a
minimum. Therefore, the composition of the chemicals satisfying its chemical equi-
librium state can be found by minimizing the free energy of the mixture.

The following notation is used in this problem:

m number of chemical elements in the mixture
n number of compounds in the mixture
xj number of moles for compoundj, j = 1, . . . , n
s total number of moles in the mixture,s =

∑n
i=1 xj

aij number of atoms of elementi in a molecule of compoundj
bi atomic weight of elementi in the mixturei = 1, . . . , n

The constraints for the mixture are as follows. Each of the compounds must have a
nonnegative number of moles.

xj ≥ 0, j = 1, . . . , n

Example 11.1. Chemical Equilibrium � 361

There is a mass balance relationship for each element. Each relation is given by a
linear equality constraint.

n∑
j=1

aijxj = bi, i = 1, . . . ,m

The objective function is the total free energy of the mixture.

f(x) =
n∑

j=1

xj

[
cj + ln

(xj

s

)]

where

cj =
(
F 0

RT

)
j

+ ln(P)

and
(
F 0/RT

)
j

is the model standard free energy function for thejth compound. The

value of
(
F 0/RT

)
j

is found in existing tables.P is the total pressure in atmospheres.

The problem is to determine the parametersxj that minimize the objective function
f(x) subject to the nonnegativity and linear balance constraints. To illustrate this,
consider the following situation. Determine the equilibrium composition of com-
pound1

2N2H4 + 1
2O2 at temperatureT = 3500◦K and pressureP = 750 psi. The

following table gives a summary of the information necessary to solve the problem.

aij

i=1 i=2 i=3
j Compound (F 0/RT)j cj H N O
1 H −10.021 −6.089 1
2 H2 −21.096 −17.164 2
3 H2O −37.986 −34.054 2 1
4 N −9.846 −5.914 1
5 N2 −28.653 −24.721 2
6 NH −18.918 −14.986 1 1
7 NO −28.032 −24.100 1 1
8 O −14.640 −10.708 1
9 O2 −30.594 −26.662 2

10 OH −26.111 −22.179 1 1

The following statements solve the minimization problem:

proc iml;
c = { -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179 };
start F_BRACK(x) global(c);

s = x[+];

362 � Chapter 11. Nonlinear Optimization Examples

f = sum(x # (c + log(x / s)));
return(f);

finish F_BRACK;

con = { ,
. ,
1. 2. 2. . . 1. . . . 1. 0. 2. ,
. . . 1. 2. 1. 1. . . . 0. 1. ,
. . 1. . . . 1. 1. 2. 1. 0. 1. };

con[1,1:10] = 1.e-6;

x0 = j(1,10, .1);
optn = {0 3};

title ’NLPTR subroutine: No Derivatives’;
call nlptr(xres,rc,"F_BRACK",x0,optn,con);

TheF- BRACKmodule specifies the objective function,f(x). The matrix CON spec-
ifies the constraints. The first row gives the lower bound for each parameter, and to
prevent the evaluation of thelog(x) function for values ofx that are too small, the
lower bounds are set here to 1E−6. The following three rows contain the three linear
equality constraints.

The starting point, which must be given to specify the number of parameters, is rep-
resented by X0. The first element of the OPTN vector specifies a minimization prob-
lem, and the second element specifies the amount of printed output.

The CALL NLPTR statement runs trust-region minimization. In this case, since no
analytic derivatives are specified, theF- BRACKmodule is used to generate finite
difference approximations for the gradient vector and Hessian matrix.

The output is shown in the following figures. The iteration history does not show any
problems.

Example 11.1. Chemical Equilibrium � 363

Optimization Start

Active Constraints 3 Objective Function -45.05516448
Max Abs Gradient 4.4710303342 Radius 1
Element

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 3’ -47.33413 2.2790 4.3613 2.456 1.000
2 0 3 3’ -47.70051 0.3664 7.0044 0.908 0.418
3 0 4 3 -47.73117 0.0307 5.3051 0 0.359
4 0 5 3 -47.73426 0.00310 3.7015 0 0.118
5 0 6 3 -47.73982 0.00555 2.3054 0 0.0169
6 0 7 3 -47.74846 0.00864 1.3029 90.184 0.00476
7 0 9 3 -47.75796 0.00950 0.5073 0 0.0134
8 0 10 3 -47.76094 0.00297 0.0988 0 0.0124
9 0 11 3 -47.76109 0.000155 0.00447 0 0.0111

10 0 12 3 -47.76109 3.385E-7 0.000011 0 0.00332

Optimization Results

Iterations 10 Function Calls 13
Hessian Calls 11 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient 7.3901293E-6

Element
Lambda 0 Actual Over Pred 0

Change
Radius 0.0033214552

The output lists the optimal parameters with the gradient.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.040668 -9.785055
2 X2 0.147730 -19.570111
3 X3 0.783154 -34.792170
4 X4 0.001414 -12.968920
5 X5 0.485247 -25.937841
6 X6 0.000693 -22.753976
7 X7 0.027399 -28.190992
8 X8 0.017947 -15.222060
9 X9 0.037314 -30.444119
10 X10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution.

364 � Chapter 11. Nonlinear Optimization Examples

Linear Constraints Evaluated at Solution

[1] ACT -3.053E-16 = -2.0000 + 1.0000 * X1 + 2.0000 * X2
+ 2.0000 * X3 + 1.0000 * X6 + 1.0000 * X10

[2] ACT -1.735E-17 = -1.0000 + 1.0000 * X4 + 2.0000 * X5
+ 1.0000 * X6 + 1.0000 * X7

[3] ACT -1.527E-16 = -1.0000 + 1.0000 * X3 + 1.0000 * X7
+ 1.0000 * X8 + 2.0000 * X9 + 1.0000 * X10

The Lagrange multipliers and the projected gradient are also printed. The elements
of the projected gradient must be small to satisfy a first-order optimality condition.

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Linear EC [1] -9.785055
Linear EC [2] -12.968922
Linear EC [3] -15.222061

Projected Gradient

Free Projected
Dimension Gradient

1 0.000000328
2 -9.703359E-8
3 3.2183113E-8
4 -0.000007390
5 -0.000005172
6 -0.000005669
7 -0.000000937

Example 11.2. Network Flow and Delay

The following example is taken from the user’s guide of the GINO program
(Liebman, Lasdon, Schrage, and Waren 1986). A simple network of five roads (arcs)
can be illustrated by a path diagram.

The five roads connect four intersections illustrated by numbered nodes. Each minute,
F vehicles enter and leave the network. The parameterxij refers to the flow from
nodei to nodej. The requirement that traffic that flows into each intersectionj must
also flow out is described by the linear equality constraint

∑
i

xij =
∑

i

xji , j = 1, . . . , n

Example 11.2. Network Flow and Delay � 365

In general, roads also have an upper limit on the number of vehicles that can be han-
dled per minute. These limits, denotedcij , can be enforced by boundary constraints:

0 ≤ xij ≤ cij

The goal in this problem is to maximize the flow, which is equivalent to maximizing
the objective functionf(x), wheref(x) is

f(x) = x24 + x34

The boundary constraints are

0 ≤ x12, x32, x34 ≤ 10
0 ≤ x13, x24 ≤ 30

and the flow constraints are

x13 = x32 + x34

x24 = x12 + x32

x12 + x13 = x24 + x34

The three linear equality constraints are linearly dependent. One of them is deleted
automatically by the optimization subroutine. The following notation is used in this
example:

X1 = x12, X2 = x13, X3 = x32, X4 = x24, X5 = x34

Even though the NLPCG subroutine is used, any other optimization subroutine would
also solve this small problem.

proc iml;
title ’Maximum Flow Through a Network’;
start MAXFLOW(x);

f = x[4] + x[5];
return(f);

finish MAXFLOW;

con = { 0. 0. 0. 0. 0. . . ,
10. 30. 10. 30. 10. . . ,
0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
1. 1. 0. -1. -1. 0. 0. };

x = j(1,5, 1.);
optn = {1 3};
call nlpcg(xres,rc,"MAXFLOW",x,optn,con);

366 � Chapter 11. Nonlinear Optimization Examples

The optimal solution is shown in the following output.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 10.000000 0 Upper BC
2 X2 10.000000 0
3 X3 10.000000 1.000000 Upper BC
4 X4 20.000000 1.000000
5 X5 -1.11022E-16 0 Lower BC

Value of Objective Function = 30

Finding the maximum flow through a network is equivalent to solving a simple linear
optimization problem, and for large problems, the LP procedure or the NETFLOW
procedure of the SAS/OR product can be used. On the other hand, finding a traffic
pattern that minimizes the total delay to moveF vehicles per minute from node 1 to
node 4 includes nonlinearities that need nonlinear optimization techniques. As traffic
volume increases, speed decreases. Lettij be the travel time on arc(i, j) and assume
that the following formulas describe the travel time as decreasing functions of the
amount of traffic:

t12 = 5 + 0.1x12/(1− x12/10)
t13 = x13/(1− x13/30)
t32 = 1 + x32/(1− x32/10)
t24 = x24/(1− x24/30)
t34 = 5 + x34/(1− x34/10)

These formulas use the road capacities (upper bounds), and you can assume that
F = 5 vehicles per minute have to be moved through the network. The objective is
now to minimize

f = f(x) = t12x12 + t13x13 + t32x32 + t24x24 + t34x34

The constraints are

0 ≤ x12, x32, x34 ≤ 10
0 ≤ x13, x24 ≤ 30

x13 = x32 + x34

x24 = x12 + x32

x24 + x34 = F = 5

Example 11.2. Network Flow and Delay � 367

In the following code, the NLPNRR subroutine is used to solve the minimization
problem:

proc iml;
title ’Minimize Total Delay in Network’;
start MINDEL(x);

t12 = 5. + .1 * x[1] / (1. - x[1] / 10.);
t13 = x[2] / (1. - x[2] / 30.);
t32 = 1. + x[3] / (1. - x[3] / 10.);
t24 = x[4] / (1. - x[4] / 30.);
t34 = 5. + .1 * x[5] / (1. - x[5] / 10.);
f = t12*x[1] + t13*x[2] + t32*x[3] + t24*x[4] + t34*x[5];
return(f);

finish MINDEL;

con = { 0. 0. 0. 0. 0. . . ,
10. 30. 10. 30. 10. . . ,
0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
0. 0. 0. 1. 1. 0. 5. };

x = j(1,5, 1.);
optn = {0 3};
call nlpnrr(xres,rc,"MINDEL",x,optn,con);

The optimal solution is shown in the following output.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.500001 5.777778
2 X2 2.499999 5.702478
3 X3 5.551115E-17 1.000000 Lower BC
4 X4 2.500001 5.702481
5 X5 2.499999 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are
shown in the following output.

368 � Chapter 11. Nonlinear Optimization Examples

Linear Constraints Evaluated at Solution

[1] ACT 0 = 0 + 1.0000 * X2 - 1.0000 * X3 - 1.0000 * X5

[2] ACT 4.4409E-16 = 0 + 1.0000 * X1 + 1.0000 * X3 - 1.0000 * X4

[3] ACT 0 = -5.0000 + 1.0000 * X4 + 1.0000 * X5

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Lower BC X3 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777777
Linear EC [3] 11.480257

Example 11.3. Compartmental Analysis

Numerical Considerations

An important class of nonlinear models involves a dynamic description of the re-
sponse rather than an explicit description. These models arise often in chemical ki-
netics, pharmacokinetics, and ecological compartmental modeling. Two examples
are presented in this section. Refer to Bates and Watts (1988) for a more general
introduction to the topic.

In this class of problems, function evaluations, as well as gradient evaluations, are
not done in full precision. Evaluating a function involves the numerical solution of
a differential equation with some prescribed precision. Therefore, two choices exist
for evaluating first- and second-order derivatives:

• differential equation approach

• finite difference approach

In the differential equation approach, the components of the Hessian and the gradient
are written as a solution of a system of differential equations that can be solved si-
multaneously with the original system. However, the size of a system of differential
equations,n, would suddenly increase ton2+2n. This huge increase makes the finite
difference approach an easier one.

With the finite difference approach, a very delicate balance of all the precision re-
quirements of every routine must exist. In the examples that follow, notice the rela-
tive levels of precision that are imposed on different modules. Since finite differences
are used to compute the first- and second-order derivatives, it is incorrect to set the
precision of the ODE solver at a coarse level because that would render the numerical
estimation finite difference worthless.

Example 11.3. Compartmental Analysis � 369

A coarse computation of the solution of the differential equation cannot be accom-
panied by very fine computation of the finite difference estimates of the gradient and
the Hessian. That is, you cannot set the precision of the differential equation solver
to be 1E−4 and perform the finite difference estimation with a precision of 1E−10.
In addition, this precision must be well-balanced with the termination criteria im-
posed on the optimization process.

In general, if the precision of the function evaluation isO(ε), the gradient should
be computed by finite differencesO(

√
ε), and the Hessian should be computed with

finite differencesO(ε
1
3). ∗

Diffusion of Tetracycline

Consider the concentration of tetracycline hydrochloride in blood serum. The tetra-
cycline is administered to a subject orally, and the concentration of the tetracycline
in the serum is measured. The biological system to be modeled will consist of two
compartments: a gut compartment in which tetracycline is injected and a blood com-
partment that absorbs the tetracycline from the gut compartment for delivery to the
body. Letγ1(t) andγ2(t) be the concentrations at timet in the gut and the serum,
respectively. Letθ1 and θ2 be the transfer parameters. The model is depicted as
follows.

Gut Compartment (Source)
Chemical is introduced

Concentrationγ1(t)
-

Blood Compartment (Sink)
Chemical is absorbed
Concentrationγ2(t)

?

θ1

θ2

The rates of flow of the drug are described by the following pair of ordinary differen-
tial equations:

dγ1(t)
dt

= −θ1γ1(t)

dγ2(t)
dt

= θ1γ1(t)− θ2γ2(t)

The initial concentration of the tetracycline in the gut is unknown, and while the
concentration in the blood can be measured at all times, initially it is assumed to be
zero. Therefore, for the differential equation, the initial conditions will be given by

γ1(0) = θ3

γ2(0) = 0

∗In Release 6.09 and in later releases, you can specify the step sizeh in the finite difference formu-
las.

370 � Chapter 11. Nonlinear Optimization Examples

Also, a nonnegativity constraint is imposed on the parametersθ1, θ2, andθ3, although
for numerical purposes, you may need to use a small value instead of zero for these
bounds (such as 1E−7).

Supposeyi is the observed serum concentration at timeti. The parameters are esti-
mated by minimizing the sum of squares of the differences between the observed and
predicted serum concentrations:

∑
i

(yi − γ2(ti))
2

The following IML program illustrates how to combine the NLPDD subroutine and
the ODE subroutine to estimate the parameters(θ1, θ2, θ3) of this model. The input
data are the measurement time and the concentration of the tetracycline in the blood.
For more information on the ODE call, see the“ODE Call” section on page 820.

data tetra;
input t c @@;
datalines;

1 0.7 2 1.2 3 1.4 4 1.4 6 1.1
8 0.8 10 0.6 12 0.5 16 0.3
;

proc iml;
use tetra;
read all into tetra;
start f(theta) global(thmtrx,t,h,tetra,eps);

thmtrx = (-theta[1] || 0) //
(theta[1] || -theta[2]);

c = theta[3]//0 ;
t = 0 // tetra[,1];
call ode(r1, "der",c , t, h) j="jac" eps=eps;
f = ssq((r1[2,])‘-tetra[,2]);
return(f);

finish;

start der(t,x) global(thmtrx);
y = thmtrx*x;
return(y);

finish;

start jac(t,x) global(thmtrx);
y = thmtrx;
return(y);

finish;

h = {1.e-14 1. 1.e-5};
opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par = { 1.e-13 . 1.e-10 };

Example 11.3. Compartmental Analysis � 371

con = j(1,3,0.);
itheta = { .1 .3 10};
eps = 1.e-11;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The output from the optimization process is shown inOutput 11.3.1.

Output 11.3.1. Printed Output for Tetracycline Diffusion Problem
Optimization Start

Parameter Estimates
Gradient Lower Upper

Objective Bound Bound
N Parameter Estimate Function Constraint Constraint

1 X1 0.100000 76.48208 0 .
2 X2 0.300000 -48.32095 0 .
3 X3 10.000000 1.66610 0 .

Value of Objective Function = 4.1469872335

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 3
Lower Bounds 3
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 4.1469872326
Max Abs Gradient 76.543381 Radius 1
Element

Max Abs Slope
Rest Func Act Objective Obj Fun Gradient Search

Iter arts Calls Con Function Change Element Lambda Direc

1 0 5 0 3.12117 1.0258 124.3 67.129 -8.023
2 0 6 0 0.89524 2.2259 14.1471 1.885 -5.021
3 0 7 0 0.32333 0.5719 3.7144 1.186 -0.786
.
.
.
31 0 38 0 0.03565 4.24E-11 3.196E-6 0 -18E-12

372 � Chapter 11. Nonlinear Optimization Examples

Output 11.3.1. (continued)
Optimization Results

Iterations 31 Function Calls 39
Gradient Calls 33 Active Constraints 0
Objective Function 0.035648021 Max Abs Gradient 3.195746E-6

Element

Optimization Results

Slope of Search -1.76538E-11 Radius 1
Direction

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.182440 -0.00251
2 X2 0.436010 0.00122
3 X3 6.020476 -0.0001875

Value of Objective Function = 0.0356480211

The differential equation model is linear, and in fact, it can be solved using an
eigenvalue decomposition (this is not always feasible without complex arithmetic).
Alternately, the availability and the simplicity of the closed form representation of
the solution enables you to replace the solution produced by the ODE routine with
the simpler and faster analytical solution. Closed forms are not expected to be easily
available for nonlinear systems of differential equations, which is why the preceding
solution was introduced.

The closed form of the solution requires a change to the functionf(·). The functions
needed as arguments of the ODE routine, namely theder and jac modules, can be
removed.

start f(th) global(theta,tetra);
theta = th;
vv = v(tetra[,1]);
error = ssq(vv-tetra[,2]);
return(error);

finish;

start v(t) global(theta);
v = theta[3]*theta[1]/(theta[2]-theta[1])*

(exp(-theta[1]*t)-exp(-theta[2]*t));
return(v);

finish;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

Example 11.3. Compartmental Analysis � 373

The parameter estimates, which are shown inOutput 11.3.2, are close to those ob-
tained by the first solution.

Output 11.3.2. Second Set of Parameter Estimates for Tetracycline Diffusion
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.183025 -0.000003196
2 X2 0.434482 0.000002274
3 X3 5.995241 -0.000001035

Value of Objective Function = 0.0356467763

Because of the nature of the closed form of the solution, you may want to add an
additional constraint to guarantee thatθ2 6= θ1 at any time during the optimization.
This will prevent a possible division by0 or a value near0 in the execution of thev(·)
function. For example, you might add the constraint

θ2 − θ1 ≥ 10−7

Chemical Kinetics of Pyrolysis of Oil Shale

Pyrolysis is a chemical change effected by the action of heat, and this example con-
siders the pyrolysis of oil shale described in Ziegel and Gorman (1980). Oil shale
contains organic material that is bonded to the rock. To extract oil from the rock,
heat is applied, and the organic material is decomposed into oil, bitumen, and other
by-products. The model is given by

dγ1(t)
dt

= −(θ1 + θ4)γ1(t)ι(t, θ5)

dγ2(t)
dt

= [θ1γ1(t)− (θ2 + θ3)γ2(t)]ι(t, θ5)

dγ3(t)
dt

= [θ4γ1(t) + θ2γ2(t)]ι(t, θ5)

with the initial conditions

γ1(t) = 100, γ2(t) = 0, γ3(t) = 0

A dead time is assumed to exist in the process. That is, no change occurs up to time
θ5. This is controlled by the indicator functionι(t, θ5), which is given by

ι(t, θ5) =
{

0 if t < θ5
1 if t ≥ θ5

whereθ5 ≥ 0. Only one of the cases in Ziegel and Gorman (1980) is analyzed in
this report, but the others can be handled in a similar manner. The following IML
program illustrates how to combine the NLPQN subroutine and the ODE subroutine
to estimate the parametersθi in this model:

374 � Chapter 11. Nonlinear Optimization Examples

data oil (drop=temp);
input temp time bitumen oil;
datalines;

673 5 0. 0.
673 7 2.2 0.
673 10 11.5 0.7
673 15 13.7 7.2
673 20 15.1 11.5
673 25 17.3 15.8
673 30 17.3 20.9
673 40 20.1 26.6
673 50 20.1 32.4
673 60 22.3 38.1
673 80 20.9 43.2
673 100 11.5 49.6
673 120 6.5 51.8
673 150 3.6 54.7
;

proc iml;
use oil;
read all into a;

/**/
/* The INS function inserts a value given by FROM into a vector */
/* given by INTO, sorts the result, and posts the global matrix */
/* that can be used to delete the effects of the point FROM. */
/**/

start ins(from,into) global(permm);
in = into // from;
x = i(nrow(in));
permm = inv(x[rank(in),]);
return(permm*in);

finish;

start der(t,x) global(thmtrx,thet);
y = thmtrx*x;
if (t <= thet[5]) then y = 0*y;
return(y);

finish;

start jac(t,x) global(thmtrx,thet);
y = thmtrx;
if (t <= thet[5]) then y = 0*y;
return(y);

finish;

start f(theta) global(thmtrx,thet,time,h,a,eps,permm);
thet = theta;
thmtrx = (-(theta[1]+theta[4]) || 0 || 0)//

(theta[1] || -(theta[2]+theta[3]) || 0)//
(theta[4] || theta[2] || 0);

t = ins(theta[5],time);
c = { 100, 0, 0};

Example 11.3. Compartmental Analysis � 375

call ode(r1, "der",c , t , h) j="jac" eps=eps;

/* send the intermediate value to the last column */
r = (c ||r1) * permm;
m = r[2:3,(2:nrow(time))];
mm = m‘- a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));

finish;

opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-7;
par = { 1.e-13 . 1.e-10};
con = j(1,5,0.);
h = {1.e-14 1. 1.e-5};
time = (0 // a[,1]);
eps = 1.e-5;
itheta = { 1.e-3 1.e-3 1.e-3 1.e-3 1.};

call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown inOutput 11.3.3.

Output 11.3.3. Parameter Estimates for Oil Shale Pyrolysis
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.013692 150.14987
2 X2 0.012939 248.78071
3 X3 0.016303 -144.46645
4 X4 0.006638 -318.57862
5 X5 1.044177 -3.16737

Value of Objective Function = 85.597262124

Again, compare the solution using the approximation produced by the ODE subrou-
tine to the solution obtained through the closed form of the given differential equa-
tion. Impose the following additional constraint to avoid a possible division by0
when evaluating the function:

θ2 + θ3 − θ1 − θ4 ≥ 10−7

The closed form of the solution requires a change in the functionf(·). The functions
needed as arguments of the ODE routine, namely theder andjac modules, can be
removed.

start f(thet) global(time,a);
do i = 1 to nrow(time);

376 � Chapter 11. Nonlinear Optimization Examples

t = time[i];
v1 = 100;
if (t >= thet[5]) then

v1 = 100*ev(t,thet[1],thet[4],thet[5]);
v2 = 0;
if (t >= thet[5]) then

v2 = 100*thet[1]/(thet[2]+thet[3]-thet[1]-thet[4])*
(ev(t,thet[1],thet[4],thet[5])-
ev(t,thet[2],thet[3],thet[5]));

v3 = 0;
if (t >= thet[5]) then

v3 = 100*thet[4]/(thet[1]+thet[4])*
(1. - ev(t,thet[1],thet[4],thet[5])) +
100*thet[1]*thet[2]/(thet[2]+thet[3]-thet[1]-thet[4])*(
(1.-ev(t,thet[1],thet[4],thet[5]))/(thet[1]+thet[4]) -
(1.-ev(t,thet[2],thet[3],thet[5]))/(thet[2]+thet[3]));

y = y // (v1 || v2 || v3);
end;
mm = y[,2:3]-a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));

finish;

start ev(t,a,b,c);
return(exp(-(a+b)*(t-c)));

finish;

con = { 0. 0. 0. 0. . . . ,
. ,
-1 1 1 -1 . 1 1.e-7 };

time = a[,1];
par = { 1.e-13 . 1.e-10};
itheta = { 1.e-3 1.e-3 1.e-2 1.e-3 1.};

call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown inOutput 11.3.4.

Output 11.3.4. Second Set of Parameter Estimates for Oil Shale Pyrolysis
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.017178 -0.005291
2 X2 0.008912 0.002413
3 X3 0.020007 -0.000520
4 X4 0.010494 -0.002890
5 X5 7.771534 0.000003217

Value of Objective Function = 20.689350642

Example 11.4. MLEs for Two-Parameter Weibull Distribution � 377

Example 11.4. MLEs for Two-Parameter Weibull Distribution

This example considers a data set given in Lawless (1982). The data are the number
of days it took rats painted with a carcinogen to develop carcinoma. The last two
observations are censored. Maximum likelihood estimates (MLEs) and confidence
intervals for the parameters of the Weibull distribution are computed. In the following
code, the data set is given in the vector CARCIN, and the variables P and M give the
total number of observations and the number of uncensored observations. The setD
represents the indices of the observations.

proc iml;
carcin = { 143 164 188 188 190 192 206

209 213 216 220 227 230 234
246 265 304 216 244 };

p = ncol(carcin); m = p - 2;

The three-parameter Weibull distribution uses three parameters: a scale parameter,
a shape parameter, and a location parameter. This example computes MLEs and
corresponding 95% confidence intervals for the scale parameter,σ, and the shape
parameter,c, for a constant value of the location parameter,θ = 0. The program can
be generalized to estimate all three parameters. Note that Lawless (1982) denotesσ,
c, andθ by α, β, andµ, respectively.

The observed likelihood function of the three-parameter Weibull distribution is

L(θ, σ, c) =
cm

σm

∏
i∈D

(
ti − θ

σ

)c−1 p∏
i=1

exp
{
−
(
ti − θ

σ

)c}

and the log likelihood,̀(θ, σ, c) = logL(θ, σ, c), is

`(θ, σ, c) = m log c−mc log σ + (c− 1)
∑
i∈D

log(ti − θ)−
p∑

i=1

(
ti − θ

σ

)c

The log-likelihood function,̀ (θ, σ, c), for θ = 0 is the objective function to be max-
imized to obtain the MLEs(σ̂, ĉ):

start f_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
sum1 = 0.; sum2 = 0.;
do i = 1 to p;

temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])##x[2];

end;
f = m*log(x[2]) - m*x[2]*log(x[1]) + (x[2]-1)*sum1 - sum2;
return(f);

finish f_weib2;

378 � Chapter 11. Nonlinear Optimization Examples

The derivatives of̀ with respect to the parametersθ, σ, andc are given in Lawless
(1982). The following code specifies a gradient module, which computes∂`/∂σ and
∂`/∂c:

start g_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
g = j(1,2,0.);
sum1 = 0.; sum2 = 0.; sum3 = 0.;
do i = 1 to p;

temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])##x[2];
sum3 = sum3 + ((temp / x[1])##x[2]) * (log(temp / x[1]));

end;
g[1] = -m * x[2] / x[1] + sum2 * x[2] / x[1];
g[2] = m / x[2] - m * log(x[1]) + sum1 - sum3;
return(g);

finish g_weib2;

The MLEs are computed by maximizing the objective function with the trust-region
algorithm in the NLPTR subroutine. The following code specifies starting values for
the two parameters,c = σ = 0.5, and to avoid infeasible values during the opti-
mization process, it imposes lower bounds ofc, σ >= 10−6. The optimal parameter
values are saved in the variable XOPT, and the optimal objective function value is
saved in the variable FOPT.

n = 2; thet = 0.;
x0 = j(1,n,.5);
optn = {1 2};
con = { 1.e-6 1.e-6 ,

. . };
call nlptr(rc,xres,"f_weib2",x0,optn,con,,,,"g_weib2");
/*--- Save result in xopt, fopt ---*/
xopt = xres‘; fopt = f_weib2(xopt);

The results shown inOutput 11.4.1are the same as those given in Lawless (1982).

Output 11.4.1. Parameter Estimates for Carcinogen Data
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 234.318611 1.3363283E-9
2 X2 6.083147 -7.850915E-9

Value of Objective Function = -88.23273515

The following code computes confidence intervals based on the asymptotic normal
distribution. These will be compared with the profile-likelihood-based confidence

Example 11.5. Profile-Likelihood-Based Confidence Intervals � 379

intervals computed in the next example. The diagonal of the inverse Hessian (as
calculated by the NLPFDD subroutine) is used to calculate the standard error.

call nlpfdd(f,g,hes2,"f_weib2",xopt,,"g_weib2");
hin2 = inv(hes2);
/* quantile of normal distribution */
prob = .05;
noqua = probit(1. - prob/2);
stderr = sqrt(abs(vecdiag(hin2)));
xlb = xopt - noqua * stderr;
xub = xopt + noqua * stderr;
print "Normal Distribution Confidence Interval";
print xlb xopt xub;

Output 11.4.2. Confidence Interval Based on Normal Distribution
Normal Distribution Confidence Interval

XLB XOP2 XUB

215.41298 234.31861 253.22425
3.9894574 6.0831471 8.1768368

Example 11.5. Profile-Likelihood-Based Confidence Intervals

This example calculates confidence intervals based on the profile likelihood for the
parameters estimated in the previous example. The following introduction on profile-
likelihood methods is based on the paper of Venzon and Moolgavkar (1988).

Let θ̂ be the maximum likelihood estimate (MLE) of a parameter vectorθ0 ∈ Rn and
let `(θ) be the log-likelihood function defined for parameter valuesθ ∈ Θ ⊂ Rn.

The profile-likelihood method reduces`(θ) to a function of a single parameter of
interest,β = θj , whereθ = (θ1, . . . , θj , . . . , θn)′, by treating the others as nuisance
parameters and maximizing over them. The profile likelihood forβ is defined as

˜̀
j(β) = max

θ∈Θj(β)
`(θ)

whereΘj(β) = {θ ∈ Θ : θj = β}. Define the complementary parameter set
ω = (θ1, . . . , θj−1, θj+1, . . . , θn)′ andω̂(β) as the optimizer of̀̃j(β) for each value
of β. Of course, the maximum of functioǹ̃j(β) is located atβ = θ̂j . The profile-
likelihood-based confidence interval for parameterθj is defined as

{β : `(θ̂)− ˜̀
j(β) ≤ 1

2
q1(1− α)}

whereq1(1 − α) is the (1 − α)th quantile of theχ2 distribution with one degree
of freedom. The points(βl, βu) are the endpoints of the profile-likelihood-based
confidence interval for parameterβ = θj . The pointsβl andβu can be computed

380 � Chapter 11. Nonlinear Optimization Examples

as the solutions of a system ofn nonlinear equationsfi(x) in n parameters, where
x = (β, ω):

[
`(θ)− `∗

∂`
∂ω (θ)

]
= 0

where`∗ is the constant threshold̀∗ = `(θ̂) − 1
2q1(1 − α). The first of thesen

equations defines the locationsβl andβu where the functioǹ (θ) cuts `∗, and the
remainingn−1 equations define the optimality of then−1 parameters inω. Jointly,
the n equations define the locationsβl andβu where the functioñ̀ j(β) cuts the
constant threshold̀∗, which is given by the roots of̀̃j(β) − `∗. Assuming that the
two solutions{βl, βu} exist (they do not if the quantileq1(1 − α) is too large), this
system ofn nonlinear equations can be solved by minimizing the sum of squares of
then functionsfi(β, ω):

F =
1
2

n∑
i=1

f2
i (β, ω)

For a solution of the system ofn nonlinear equations to exist, the minimum value of
the convex functionF must be zero.

The following code defines the module for the system ofn = 2 nonlinear equations
to be solved:

start f_plwei2(x) global(carcin,ipar,lstar);
/* x[1]=sigma, x[2]=c */
like = f_weib2(x);
grad = g_weib2(x);
grad[ipar] = like - lstar;
return(grad‘);

finish f_plwei2;

The following code implements the Levenberg-Marquardt algorithm with the
NLPLM subroutine to solve the system of two equations for the left and right
endpoints of the interval. The starting point is the optimizer(σ̂, ĉ), as computed in
the previous example, moved toward the left or right endpoint of the interval by an
initial step (refer to Venzon and Moolgavkar 1988). This forces the algorithm to
approach the specified endpoint.

/* quantile of chi**2 distribution */
chqua = cinv(1-prob,1); lstar = fopt - .5 * chqua;
optn = {2 0};
do ipar = 1 to 2;
/* Compute initial step: */
/* Choose (alfa,delt) to go in right direction */
/* Venzon & Moolgavkar (1988), p.89 */

if ipar=1 then ind = 2; else ind = 1;
delt = - inv(hes2[ind,ind]) * hes2[ind,ipar];

Example 11.6. Survival Curve for Interval Censored Data � 381

alfa = - (hes2[ipar,ipar] - delt‘ * hes2[ind,ipar]);
if alfa > 0 then alfa = .5 * sqrt(chqua / alfa);
else do;

print "Bad alpha";
alfa = .1 * xopt[ipar];

end;
if ipar=1 then delt = 1 || delt;

else delt = delt || 1;

/* Get upper end of interval */
x0 = xopt + (alfa * delt)‘;

/* set lower bound to optimal value */
con2 = con; con2[1,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xub[ipar] = xres[ipar];

else xub[ipar] = .;

/* Get lower end of interval */
x0 = xopt - (alfa * delt)‘;

/* reset lower bound and set upper bound to optimal value */
con2[1,ipar] = con[1,ipar]; con2[2,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xlb[ipar] = xres[ipar];

else xlb[ipar] = .;
end;
print "Profile-Likelihood Confidence Interval";
print xlb xopt xub;

The results, shown inOutput 11.5.1, are close to the results shown inOutput 11.4.2.

Output 11.5.1. Confidence Interval Based on Profile Likelihood
Profile-Likelihood Confidence Interval

XLB XOP2 XUB

215.1963 234.31861 255.2157
4.1344126 6.0831471 8.3063797

Example 11.6. Survival Curve for Interval Censored Data
In some studies, subjects are assessed only periodically for outcomes or responses
of interest. In such situations, the occurrence times of these events are not observed
directly; instead they are known to have occurred within some time interval. The
times of occurrence of these events are said to beinterval censored. A first step in
the analysis of these interval censored data is the estimation of the distribution of the
event occurrence times.

In a study with n subjects, denote the raw interval censored observations by
{(Li, Ri] : 1 ≤ i ≤ n}. For theith subject, the event occurrence timeTi lies in
(Li, Ri], whereLi is the last assessment time at which there was no evidence of the

382 � Chapter 11. Nonlinear Optimization Examples

event, andRi is the earliest time when a positive assessment was noted (if it was
observed at all). If the event does not occur before the end of the study,Ri is given a
value larger than any assessment time recorded in the data.

A set of nonoverlapping time intervalsIj = (qj , pj], 1 ≤ j ≤ m is generated over
which the survival curveS(t) = Pr[T > t] is estimated. Refer to Peto (1973) and
Turnbull (1976) for details. Assuming the independence ofTi and(Li, Ri], and also
independence across subjects, the likelihood of the data{Ti ∈ (Li, Ri], 1 ≤ i ≤ n}
can be constructed in terms of the pseudo-parametersθj = Pr[Ti ∈ Ij], 1 ≤ i ≤ m.
The conditional likelihood ofθ = (θ1, . . . , θm) is

L(θ) =
n∏

i=1

 m∑
j=1

xijθj

wherexij is 1 or 0 according to whetherIj is a subset of(Li, Ri]. The maximum
likelihood estimates,̂θj , 1 ≤ j ≤ m, yield an estimator̂S(t) of the survival function
S(t), which is given by

Ŝ(t) =

1 t ≤ q1∑m

i=j+1 θ̂i pj ≤ t ≤ qj+1, 1 ≤ j ≤ m− 1
0 t ≥ pm

Ŝ(t) remains undefined in the intervals(qj , pj) where the function may decrease in an
arbitrary way. The asymptotic covariance matrix ofθ̂ is obtained by inverting the es-
timated matrix of second partial derivatives of the negative log likelihood (Peto 1973,
Turnbull 1976). You can then compute the standard errors of the survival function
estimators by the delta method and approximate the confidence intervals for survival
function by using normal distribution theory.

The following code estimates the survival curve for interval censored data. As an
illustration, consider an experiment to study the onset of a special kind of palpable
tumor in mice. Forty mice exposed to a carcinogen were palpated for the tumor every
two weeks. The times to the onset of the tumor are interval censored data. These
data are contained in the data set CARCIN. The variable L represents the last time
the tumor was not yet detected, and the variable R represents the first time the tumor
was palpated. Three mice died tumor free, and one mouse was tumor free by the end
of the 48-week experiment. The times to tumor for these four mice were considered
right censored, and they were given an R value of 50 weeks.

data carcin;
input id l r @@;
datalines;
1 20 22 11 30 32 21 22 24 31 34 36
2 22 24 12 32 34 22 22 24 32 34 36
3 26 28 13 32 34 23 28 30 33 36 38
4 26 28 14 32 34 24 28 30 34 38 40
5 26 28 15 34 36 25 32 34 35 38 40

Example 11.6. Survival Curve for Interval Censored Data � 383

6 26 28 16 36 38 26 32 34 36 42 44
7 28 30 17 42 44 27 32 34 37 42 44
8 28 30 18 30 50 28 32 34 38 46 48
9 30 32 19 34 50 29 32 34 39 28 50

10 30 32 20 20 22 30 32 34 40 48 50
;

proc iml;
use carcin;
read all var{l r};
nobs= nrow(l);

/***
construct the nonoverlapping intervals (Q,P) and
determine the number of pseudo-parameters (NPARM)

***/
pp= unique(r); npp= ncol(pp);
qq= unique(l); nqq= ncol(qq);
q= j(1,npp, .);
do;

do i= 1 to npp;
do j= 1 to nqq;

if (qq[j] < pp[i]) then q[i]= qq[j];
end;
if q[i] = qq[nqq] then goto lab1;

end;
lab1:
end;

if i > npp then nq= npp;
else nq= i;
q= unique(q[1:nq]);
nparm= ncol(q);
p= j(1,nparm, .);
do i= 1 to nparm;

do j= npp to 1 by -1;
if (pp[j] > q[i]) then p[i]= pp[j];

end;
end;

/**
generate the X-matrix for the likelihood

**/
_x= j(nobs, nparm, 0);
do j= 1 to nparm;

_x[,j]= choose(l <= q[j] & p[j] <= r, 1, 0);
end;

/**
log-likelihood function (LL)

**/
start LL(theta) global(_x,nparm);

xlt= log(_x * theta‘);
f= xlt[+];
return(f);

384 � Chapter 11. Nonlinear Optimization Examples

finish LL;

/**
gradient vector (GRAD)

***/
start GRAD(theta) global(_x,nparm);

g= j(1,nparm,0);
tmp= _x # (1 / (_x * theta‘));
g= tmp[+,];
return(g);

finish GRAD;

/***
estimate the pseudo-parameters using quasi-newton technique

***/
/* options */
optn= {1 2};

/* constraints */
con= j(3, nparm + 2, .);
con[1, 1:nparm]= 1.e-6;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;

/* initial estimates */
x0= j(1, nparm, 1/nparm);

/* call the optimization routine */
call nlpqn(rc,rx,"LL",x0,optn,con,,,,"GRAD");

/***
survival function estimate (SDF)
**/
tmp1= cusum(rx[nparm:1]);
sdf= tmp1[nparm-1:1];

/***
covariance matrix of the first nparm-1 pseudo-parameters (SIGMA2)
***/
mm= nparm - 1;
_x= _x - _x[,nparm] * (j(1, mm, 1) || {0});
h= j(mm, mm, 0);
ixtheta= 1 / (_x * ((rx[,1:mm]) || {1})‘);
if _zfreq then

do i= 1 to nobs;
rowtmp= ixtheta[i] # _x[i,1:mm];
h= h + (_freq[i] # (rowtmp‘ * rowtmp));

end;
else do i= 1 to nobs;

rowtmp= ixtheta[i] # _x[i,1:mm];
h= h + (rowtmp‘ * rowtmp);

end;

Example 11.6. Survival Curve for Interval Censored Data � 385

sigma2= inv(h);

/***
standard errors of the estimated survival curve (SIGMA3)
***/
sigma3= j(mm, 1, 0);
tmp1= sigma3;
do i= 1 to mm;

tmp1[i]= 1;
sigma3[i]= sqrt(tmp1‘ * sigma2 * tmp1);

end;

/***
95% confidence limits for the survival curve (LCL,UCL)
***/

/* confidence limits */
tmp1= probit(.975);
*print tmp1;
tmp1= tmp1 * sigma3;
lcl= choose(sdf > tmp1, sdf - tmp1, 0);
ucl= sdf + tmp1;
ucl= choose(ucl > 1., 1., ucl);

/***
print estimates of pseudo-parameters

***/
reset center noname;
q= q‘;
p= p‘;
theta= rx‘;
print ,"Parameter Estimates", ,q[colname={q}] p[colname={p}]

theta[colname={theta} format=12.7],;

/***
print survival curve estimates and confidence limits

***/
left= {0} // p;
right= q // p[nparm];
sdf= {1} // sdf // {0};
lcl= {.} // lcl //{.};
ucl= {.} // ucl //{.};
print , "Survival Curve Estimates and 95% Confidence Intervals", ,

left[colname={left}] right[colname={right}]
sdf[colname={estimate} format=12.4]
lcl[colname={lower} format=12.4]
ucl[colname={upper} format=12.4];

The iteration history produced by the NLPQN subroutine is shown inOutput 11.6.1

386 � Chapter 11. Nonlinear Optimization Examples

Output 11.6.1. Iteration History for the NLPQN Subroutine
Dual Quasi-Newton Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Parameter Estimates 12
Lower Bounds 12
Upper Bounds 12
Linear Constraints 1

Optimization Start

Active Constraints 1 Objective Function -93.3278404
Max Abs Gradient Element 65.361558529

Objective Max Abs
Func. Active Objective Function Gradient Step

Iter Rest Calls Constr. Function Change Element Size Slope

1 0 3 1 -88.51201 4.8158 16.6594 0.0256 -305.2
2 0 4 1 -87.42665 1.0854 10.8769 1.000 -2.157
3 0 5 1 -87.27408 0.1526 5.4965 1.000 -0.366
4 0 7 1 -87.17314 0.1009 2.2856 2.000 -0.113
5 0 8 1 -87.16611 0.00703 0.3444 1.000 -0.0149
6 0 10 1 -87.16582 0.000287 0.0522 1.001 -0.0006
7 0 12 1 -87.16581 9.128E-6 0.00691 1.133 -161E-7
8 0 14 1 -87.16581 1.712E-7 0.00101 1.128 -303E-9

Optimization Results

Iterations 8 Function Calls 15
Gradient Calls 11 Active Constraints 1
Objective Function -87.16581343 Max Abs Gradient Element 0.0010060788
Slope of Search Direction -3.033154E-7

NOTE:GCONV convergence criterion satisfied.
NOTE: At least one element of the (projected) gradient is greater than 1e-3.

The estimates of the pseudo-parameter for the nonoverlapping intervals are shown in
Output 11.6.2.

Output 11.6.2. Estimates for the Probability of Event Occurrence
Parameter Estimates

Q P THETA

20 22 0.0499997
22 24 0.0749988
26 28 0.0999978
28 30 0.1033349
30 32 0.0806014
32 34 0.2418023
34 36 0.0873152
36 38 0.0582119
38 40 0.0582119
42 44 0.0873152
46 48 0.0291055
48 50 0.0291055

The survival curve estimates and confidence intervals are displayed inOutput 11.6.3.

Example 11.7. A Two-Equation Maximum Likelihood Problem � 387

Output 11.6.3. Survival Estimates and Confidence Intervals
Survival Curve Estimates and 95% Confidence Intervals

LEFT RIGHT ESTIMATE LOWER UPPER

0 20 1.0000 . .
22 22 0.9500 0.8825 1.0000
24 26 0.8750 0.7725 0.9775
28 28 0.7750 0.6456 0.9044
30 30 0.6717 0.5252 0.8182
32 32 0.5911 0.4363 0.7458
34 34 0.3493 0.1973 0.5013
36 36 0.2619 0.1194 0.4045
38 38 0.2037 0.0720 0.3355
40 42 0.1455 0.0293 0.2617
44 46 0.0582 0.0000 0.1361
48 48 0.0291 0.0000 0.0852
50 50 0.0000 . .

In this program, the quasi-Newton technique is used to maximize the likelihood func-
tion. You can replace the quasi-Newton routine by other optimization routines, such
as the NLPNRR subroutine, which performs Newton-Raphson ridge optimization, or
the NLPCG subroutine, which performs conjugate gradient optimization. Depending
on the number of parameters and the number of observations, these optimization rou-
tines do not perform equally well. For survival curve estimation, the quasi-Newton
technique seems to work fairly well since the number of parameters to be estimated
is usually not too large.

Example 11.7. A Two-Equation Maximum Likelihood Problem

This example and notation are taken from Bard (1974). A two-equation model is used
to fit U.S. production data for the years 1909-1949, wherez1 is capital input,z2 is
labor input,z3 is real output,z4 is time in years (with 1929 as the origin), andz5 is
the ratio of price of capital services to wage scale.

proc iml;
z={ 1.33135 0.64629 0.4026 -20 0.24447,

1.39235 0.66302 0.4084 -19 0.23454,
1.41640 0.65272 0.4223 -18 0.23206,
1.48773 0.67318 0.4389 -17 0.22291,
1.51015 0.67720 0.4605 -16 0.22487,
1.43385 0.65175 0.4445 -15 0.21879,
1.48188 0.65570 0.4387 -14 0.23203,
1.67115 0.71417 0.4999 -13 0.23828,
1.71327 0.77524 0.5264 -12 0.26571,
1.76412 0.79465 0.5793 -11 0.23410,
1.76869 0.71607 0.5492 -10 0.22181,
1.80776 0.70068 0.5052 -9 0.18157,
1.54947 0.60764 0.4679 -8 0.22931,
1.66933 0.67041 0.5283 -7 0.20595,
1.93377 0.74091 0.5994 -6 0.19472,

388 � Chapter 11. Nonlinear Optimization Examples

1.95460 0.71336 0.5964 -5 0.17981,
2.11198 0.75159 0.6554 -4 0.18010,
2.26266 0.78838 0.6851 -3 0.16933,
2.33228 0.79600 0.6933 -2 0.16279,
2.43980 0.80788 0.7061 -1 0.16906,
2.58714 0.84547 0.7567 0 0.16239,
2.54865 0.77232 0.6796 1 0.16103,
2.26042 0.67880 0.6136 2 0.14456,
1.91974 0.58529 0.5145 3 0.20079,
1.80000 0.58065 0.5046 4 0.18307,
1.86020 0.62007 0.5711 5 0.18352,
1.88201 0.65575 0.6184 6 0.18847,
1.97018 0.72433 0.7113 7 0.20415,
2.08232 0.76838 0.7461 8 0.18847,
1.94062 0.69806 0.6981 9 0.17800,
1.98646 0.74679 0.7722 10 0.19979,
2.07987 0.79083 0.8557 11 0.21115,
2.28232 0.88462 0.9925 12 0.23453,
2.52779 0.95750 1.0877 13 0.20937,
2.62747 1.00285 1.1834 14 0.19843,
2.61235 0.99329 1.2565 15 0.18898,
2.52320 0.94857 1.2293 16 0.17203,
2.44632 0.97853 1.1889 17 0.18140,
2.56478 1.02591 1.2249 18 0.19431,
2.64588 1.03760 1.2669 19 0.19492,
2.69105 0.99669 1.2708 20 0.17912 };

The two-equation model in five parametersc1, . . . , c5 is

g1 = c110c2z4 [c5z−c4
1 + (1− c5)z−c4

2]−c3/c4 − z3 = 0

g2 = [
c5

1− c5
]
(
z1
z2

)−1−c4

− z5 = 0

where the variablesz1 andz2 are considered dependent (endogenous) and the vari-
ablesz3, z4, andz5 are considered independent (exogenous).

Differentiation of the two equationsg1 andg2 with respect to the endogenous vari-
ablesz1 andz2 yields the Jacobian matrix∂gi/∂zj for i = 1, 2 andj = 1, 2, wherei
corresponds to rows (equations) andj corresponds to endogenous variables (refer to
Bard 1974). You must consider parameter sets for which the elements of the Jacobian
and the logarithm of the determinant cannot be computed. In such cases, the function
module must return a missing value.

start fiml(pr) global(z);
c1 = pr[1]; c2 = pr[2]; c3 = pr[3]; c4 = pr[4]; c5 = pr[5];
/* 1. Compute Jacobian */
lndet = 0 ;
do t= 1 to 41;

Example 11.7. A Two-Equation Maximum Likelihood Problem � 389

j11 = (-c3/c4) * c1 * 10 ##(c2 * z[t,4]) * (-c4) * c5 *
z[t,1]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);

j12 = (-c3/c4) * (-c4) * c1 * 10 ##(c2 * z[t,4]) * (1-c5) *
z[t,2]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);

j21 = (-1-c4)*(c5/(1-c5))*z[t,1]##(-2-c4)/ (z[t,2]##(-1-c4));
j22 = (1+c4)*(c5/(1-c5))*z[t,1]##(-1-c4)/ (z[t,2]##(-c4));

j = (j11 || j12) // (j21 || j22) ;
if any(j = .) then detj = 0.;

else detj = det(j);
if abs(detj) < 1.e-30 then do;

print t detj j;
return(.);

end;
lndet = lndet + log(abs(detj));

end;

Assuming that the residuals of the two equations are normally distributed, the likeli-
hood is then computed as in Bard (1974). The following code computes the logarithm
of the likelihood function:

/* 2. Compute Sigma */
sb = j(2,2,0.);
do t= 1 to 41;

eq_g1 = c1 * 10##(c2 * z[t,4]) * (c5*z[t,1]##(-c4)
+ (1-c5)*z[t,2]##(-c4))##(-c3/c4) - z[t,3];

eq_g2 = (c5/(1-c5)) * (z[t,1] / z[t,2])##(-1-c4) - z[t,5];
resid = eq_g1 // eq_g2;
sb = sb + resid * resid‘;

end;
sb = sb / 41;

/* 3. Compute log L */
const = 41. * (log(2 * 3.1415) + 1.);
lnds = 0.5 * 41 * log(det(sb));
logl = const - lndet + lnds;
return(logl);

finish fiml;

There are potential problems in computing the power and log functions for an un-
restricted parameter set. As a result, optimization algorithms that use line search
will fail more often than algorithms that restrict the search area. For that reason,
the NLPDD subroutine is used in the following code to maximize the log-likelihood
function:

pr = j(1,5,0.001);
optn = {0 2};
tc = {. . . 0};
call nlpdd(rc, xr,"fiml", pr, optn,,tc);
print "Start" pr, "RC=" rc, "Opt Par" xr;

390 � Chapter 11. Nonlinear Optimization Examples

Part of the iteration history is shown inOutput 11.7.1.

Output 11.7.1. Iteration History for Two-Equation ML Problem
Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 5

Optimization Start

Active Constraints 0 Objective Function 909.72691311
Max Abs Gradient Element 41115.729089 Radius 1

Objective Max Abs
Func. Active Obj. Function Gradient

Iter Rest Calls Constr. Func. Change Element Lambda Slope

1 0 2 0 85.24836 824.5 3676.4 711.8 -71032
2 0 7 0 45.14682 40.1015 3382.0 2881.2 -29.683
3 0 10 0 43.46797 1.6788 208.4 95.020 -3.348

35 0 64 0 -110.77858 5.68E-14 0.000111 41.795 -34E-17
36 1 101 0 -110.77858 5.68E-14 0.000119 4E12 -32E-20
36 2 145 0 -110.77858 0 0.000119 3.2E16 -46E-24

Optimization Results

Iterations 36 Function Calls 146
Gradient Calls 41 Active Constraints 0
Objective Function -110.7785811 Max Abs Gradient Element 0.0001186267
Slope of Search Direction -4.55096E-23 Radius 3.771173E-19

The results are very close to those reported by Bard (1974). Bard also reports different
approaches to the same problem that can lead to very different MLEs.

Output 11.7.2. Parameter Estimates
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.583884 -0.000004817
2 X2 0.005882 0.000011377
3 X3 1.362817 -0.000003229
4 X4 0.475091 -0.000018103
5 X5 0.447072 0.000119

Value of Objective Function = -110.7785811

Example 11.8. Time-Optimal Heat Conduction � 391

Example 11.8. Time-Optimal Heat Conduction

This example illustrates a nontrivial application of the NLPQN algorithm that re-
quires nonlinear constraints, which are specified by thenlc module. The example
is listed as problem 91 in Hock & Schittkowski (1981). The problem describes a
time-optimal heating process minimizing the simple objective function

f(x) =
n∑

j=1

x2
j

subjected to a rather difficult inequality constraint:

c(x) = 10−4 − h(x) ≥ 0

whereh(x) is defined as

h(x) =
∫ 1

0

(
30∑
i=1

αi(s)ρi(x)− k0(s)

)2

ds

αi(s) = µ2
iAi cos(µis)

ρi(x) = −µ2
i

exp

−µ2
i

n∑
j=1

x2
j

− 2 exp

−µ2
i

n∑
j=2

x2
j

+ · · ·

+ (−1)n−12 exp
(
−µ2

ix
2
n

)
+ (−1)n

k0(s) = 0.5(1− s2)

Ai =
2 sinµi

µi + sinµi cosµi
,

µ = (µ1, . . . , µ30)′ , whereµi tan(µi) = 1

The gradient of the objective functionf , g(x) = 2x, is easily supplied to the NLPQN
subroutine. However, the analytical derivatives of the constraint are not used; instead,
finite difference derivatives are computed.

In the following code, the vector MU represents the first 30 positive valuesµi that
satisfyµi tan(µi) = 1:

proc iml;
mu = { 8.6033358901938E-01 , 3.4256184594817E+00 ,

6.4372981791719E+00 , 9.5293344053619E+00 ,
1.2645287223856E+01 , 1.5771284874815E+01 ,
1.8902409956860E+01 , 2.2036496727938E+01 ,
2.5172446326646E+01 , 2.8309642854452E+01 ,
3.1447714637546E+01 , 3.4586424215288E+01 ,
3.7725612827776E+01 , 4.0865170330488E+01 ,
4.4005017920830E+01 , 4.7145097736761E+01 ,

392 � Chapter 11. Nonlinear Optimization Examples

5.0285366337773E+01 , 5.3425790477394E+01 ,
5.6566344279821E+01 , 5.9707007305335E+01 ,
6.2847763194454E+01 , 6.5988598698490E+01 ,
6.9129502973895E+01 , 7.2270467060309E+01 ,
7.5411483488848E+01 , 7.8552545984243E+01 ,
8.1693649235601E+01 , 8.4834788718042E+01 ,
8.7975960552493E+01 , 9.1117161394464E+01 };

The vectorA = (A1, . . . , A30)′ depends only onµ and is computed only once, before
the optimization starts:

nmu = nrow(mu);
a = j(1,nmu,0.);
do i = 1 to nmu;

a[i] = 2*sin(mu[i]) / (mu[i] + sin(mu[i])*cos(mu[i]));
end;

The constraint is implemented with the QUAD subroutine, which performs numerical
integration of scalar functions in one dimension. The subroutine calls the module
fquad that supplies the integrand forh(x). For details on the QUAD call, see the
“QUAD Call” section on page 851.

/* This is the integrand used in h(x) */
start fquad(s) global(mu,rho);

z = (rho * cos(s*mu) - 0.5*(1. - s##2))##2;
return(z);

finish;

/* Obtain nonlinear constraint h(x) */
start h(x) global(n,nmu,mu,a,rho);

xx = x##2;
do i= n-1 to 1 by -1;

xx[i] = xx[i+1] + xx[i];
end;
rho = j(1,nmu,0.);
do i=1 to nmu;

mu2 = mu[i]##2;
sum = 0; t1n = -1.;
do j=2 to n;

t1n = -t1n;
sum = sum + t1n * exp(-mu2*xx[j]);

end;
sum = -2*sum + exp(-mu2*xx[1]) + t1n;
rho[i] = -a[i] * sum;

end;
aint = do(0,1,.5);
call quad(z,"fquad",aint) eps=1.e-10;
v = sum(z);
return(v);

finish;

Example 11.8. Time-Optimal Heat Conduction � 393

The modules for the objective function, its gradient, and the constraintc(x) ≥ 0 are
given in the following code:

/* Define modules for NLPQN call: f, g, and c */
start F_HS88(x);

f = x * x‘;
return(f);

finish F_HS88;

start G_HS88(x);
g = 2 * x;
return(g);

finish G_HS88;

start C_HS88(x);
c = 1.e-4 - h(x);
return(c);

finish C_HS88;

The number of constraints returned by the"nlc" module is defined byopt[10] = 1.
The ABSGTOL termination criterion (maximum absolute value of the gradient of the
Lagrange function) is set bytc[6] = 1E−4.

print ’Hock & Schittkowski Problem #91 (1981) n=5, INSTEP=1’;
opt = j(1,10,.);
opt[2]=3;
opt[10]=1;
tc = j(1,12,.);
tc[6]=1.e-4;
x0 = {.5 .5 .5 .5 .5};
n = ncol(x0);
call nlpqn(rc,rx,"F_HS88",x0,opt,,tc) grd="G_HS88" nlc="C_HS88";

Part of the iteration history and the parameter estimates are shown inOutput 11.8.1.

394 � Chapter 11. Nonlinear Optimization Examples

Output 11.8.1. Iteration History and Parameter Estimates
Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Jacobian Nonlinear Constraints Computed by Finite Differences

Parameter Estimates 5
Nonlinear Constraints 1

Optimization Start

Objective Function 1.25 Max Constr. Violation 0.0952775105
Max Grad of the Lagran Func 1.1433393372

Maximum
Gradient
Element

Max. Pred. of the
Func. Obj. Constr. Func. Step Lagrange

Iter Rest Calls Func. Viol. Red. Size Function

1 0 3 0.81165 0.0869 1.7562 0.100 1.325
2 0 4 0.18232 0.1175 0.6220 1.000 1.207
3* 0 5 0.34567 0.0690 0.9321 1.000 0.639
4 0 6 0.77700 0.0132 0.3498 1.000 1.329
.
.
.
21 0 30 1.36266 8.02E-12 1.079E-6 1.000 0.00009

Optimization Results

Iterations 21 Function Calls 31
Grad. Calls 23 Active Constraints 1
Obj. Func. 1.3626568064 Max. Constr. Viol. 8.017286E-12
Max. Proj. Grad. 0.000096451 Value Lagrange Function 1.3626568149
Max. Grad. of the Lagran Func 0.0000887635 Slope -1.079452E-6

NOTE: ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 X1 0.860296 1.720593 0.000030988
2 X2 -0.000002262 -0.000004524 -0.000015387
3 X3 0.643468 1.286936 0.000021570
4 X4 -0.456614 -0.913227 0.000088763
5 X5 0.000000904 0.000001807 0.000077409

Value of Objective Function = 1.3626568064
Value of Lagrange Function = 1.3626568149

Problems 88 to 92 of Hock and Schittkowski (1981) specify the same optimization
problem forn = 2 ton = 6. You can solve any of these problems with the preceding
code by submitting a vector of lengthn as the initial estimate,x0.

References � 395

References

Abramowitz, M. and Stegun, I.A. (1972),Handbook of Mathematical Functions,
New York: Dover Publications, Inc.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least
Squares,”J. Oper. Res. Soc., 36, 405–421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least
Squares,”Journal of Optimization Theory and Applications, 48, 359–377.

Anderson, B.D.O. and Moore, J.B. (1979),Optimal Filtering, New Jersey: Prentice-
Hall.

Bard, Y. (1974),Nonlinear Parameter Estimation, New York: Academic Press.

Bates, D.M. and Watts, D.G. (1988),Nonlinear Regression Analysis and Its
Applications, New York: John Wiley & Sons, Inc.

Beale, E.M.L. (1972), “A Derivation of Conjugate Gradients,”Numerical Methods
for Nonlinear Optimization, ed. F. A. Lootsma, London: Academic Press.

Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming,”
Journal of Optimization Theory and Applications, 21, 137–174.

Bracken, J. and McCormick, G.P. (1968),Selected Applications of Nonlinear
Programming, New York: John Wiley & Sons, Inc.

Chamberlain, R.M.; Powell, M.J.D.; Lemarechal, C.; and Pedersen, H.C. (1982),
“The Watchdog Technique for Forcing Convergence in Algorithms for
Constrained Optimization,”Mathematical Programming, 16, 1–17.

De Jong, P. (1988), “The Likelihood for a State Space Model,”Biometrika, 75,
165–169.

Dennis, J.E.; Gay, D.M.; and Welsch, R.E. (1981), “An Adaptive Nonlinear Least-
Squares Algorithm,”ACM Trans. Math. Software, 7, 348–368.

Dennis, J.E. and Mei, H.H.W. (1979), “Two New Unconstrained Optimization
Algorithms which Use Function and Gradient Values,”J. Optim. Theory Appl.,
28, 453–482.

Dennis, J.E. and Schnabel, R.B. (1983),Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, New Jersey: Prentice-Hall.

Eskow, E. and Schnabel, R.B. (1991), “Algorithm 695: Software for a New Modified
Cholesky Factorization,”ACM Trans. Math. Software, 17, 306–312.

Fletcher, R. (1987),Practical Methods of Optimization, Second Ed., Chichester: John
Wiley & Sons, Inc.

Fletcher, R. and Powell, M.J.D. (1963), “A Rapidly Convergent Descent Method for
Minimization,” Computer Journal, 6, 163–168.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,”
Journal of Numerical Analysis, 7, 371–389.

Gay, D.M. (1983), “Subroutines for Unconstrained Minimization,”ACM Trans.
Math. Software, 9, 503–524.

396 � Chapter 11. Nonlinear Optimization Examples

George, J.A. and Liu, J.W. (1981),Computer Solution of Large Sparse Positive
Definite Systems, New Jersey: Prentice-Hall.

Gill, E.P.; Murray, W.; and Wright, M.H. (1981),Practical Optimization, London:
Academic Press.

Gill, E.P.; Murray, W.; Saunders, M.A.; and Wright, M.H. (1983), “Computing
Forward-Difference Intervals for Numerical Optimization,”SIAM J. Sci. Stat.
Comput., 4, 310–321.

Gill, E.P.; Murray, W.; Saunders, M.A.; and Wright, M.H. (1984), “Procedures
for Optimization Problems with a Mixture of Bounds and General Linear
Constraints,”ACM Trans. Math. Software, 10, 282–298.

Goldfeld, S.M.; Quandt, R.E.; and Trotter, H.F. (1966), “Maximisation by Quadratic
Hill-Climbing,” Econometrica, 34, 541–551.

Hartmann, W. (1991),The NLP Procedure: Extended User’s Guide, Releases 6.08
and 6.10, Cary, NC: SAS Institute Inc.

Hock, W. and Schittkowski, K. (1981), “Test Examples for Nonlinear Programming
Codes,”Lecture Notes in Economics and Mathematical Systems 187, New York:
Springer-Verlag.

Jennrich, R.I. and Sampson, P.F. (1968), “Application of Stepwise Regression to
Nonlinear Estimation,”Technometrics, 10, 63–72.

Lawless, J.F. (1982),Statistical Models and Methods for Lifetime Data, New York:
John Wiley & Sons, Inc.

Liebman, J.; Lasdon, L.; Schrage, L.; and Waren, A. (1986),Modeling and
Optimization with GINO, California: The Scientific Press.

Lindström, P. and Wedin, P.A. (1984), “A New Linesearch Algorithm for Nonlinear
Least-Squares Problems,”Mathematical Programming, 29, 268–296.

Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis,
Berlin: Springer-Verlag.

Moré, J.J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Lecture Notes in Mathematics 630, ed. G.A. Watson, New York:
Springer-Verlag, 105–116.

Moré, J.J.; Garbow, B.S.; and Hillstrom, K.E. (1981), “Testing Unconstrained
Optimization Software,”ACM Trans. Math. Software, 7, 17–41.

Moré, J.J. and Sorensen, D.C. (1983), “Computing a Trust-Region Step,”SIAM J.
Sci. Stat. Comput., 4, 553–572.

Moré, J.J. and Wright, S.J. (1993),Optimization Software Guide, Philadelphia:
SIAM.

Murtagh, B.A. and Saunders, M.A. (1983),MINOS 5.0 User’s Guide; Technical
Report SOL 83-20, Stanford University.

Nelder, J.A. and Mead, R. (1965), “A Simplex Method for Function Minimization,”
Computer Journal, 7, 308–313.

Peto, R. (1973), “Experimental Survival Curves for Interval-Censored Data,”Appl.
Statist, 22, 86–91.

References � 397

Polak, E. (1971),Computational Methods in Optimization, New York, San Francisco,
London: Academic Press, Inc.

Powell, J.M.D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

Powell, J.M.D. (1978a), “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Numerical Analysis, Dundee 1977, Lecture
Notes in Mathematics 630, ed. G.A. Watson, Berlin: Springer-Verlag, 144–175.

Powell, J.M.D. (1978b), “Algorithms for Nonlinear Constraints that use Lagrangian
Functions,”Mathematical Programming, 14, 224–248.

Powell, J.M.D. (1982a), “Extensions to Subroutine VF02AD,”Systems Modeling and
Optimization, Lecture Notes In Control and Information Sciences 38, eds. R.F.
Drenick and F. Kozin, Berlin: Springer-Verlag, 529–538.

Powell, J.M.D. (1982b), “VMCWD: A Fortran Subroutine for Constrained
Optimization,”DAMTP 1982/NA4, Cambridge, England.

Powell, J.M.D. (1992), “A Direct Search Optimization Method that Models the
Objective and Constraint Functions by Linear Interpolation,”DAMTP/NA5,
Cambridge, England.

Rosenbrock, H.H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,”Computer Journal, 3, 175–184.

Schittkowski, K. (1978), “An Adaptive Precision Method for the Numerical Solution
of Constrained Optimization Problems Applied to a Time-Optimal Heating
Process,”Proceedings of the 8th IFIP Conference on Optimization Techniques,
Heidelberg, New York: Springer-Verlag.

Schittkowski, K. (1987),More Test Examples for Nonlinear Programming Codes,
Lecture Notes in Economics and Mathematical Systems 282, Berlin, Heidelberg:
Springer-Verlag.

Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solution
of Constrained Linear Least Squares Problems Allowing Subsequent Data
Changes,”Numer. Math., 31, 431–463.

Turnbull, B.W. (1976), “The Empirical Distribution Function from Arbitrarily
Grouped, Censored and Truncated Data,”J. Royal Statist. Soc. Ser. B, 38,
290–295.

Venzon, D.J. and Moolgavkar, S.H. (1988), “A Method for Computing Profile-
Likelihood-Based Confidence Intervals,”Applied Statistics, 37, 87–94.

Wedin, P.A. and Lindström, P. (1987),Methods and Software for Nonlinear Least
Squares Problems, University of Umea, Report No. UMINF 133.87.

Ziegel, E. R. and J. W. Gorman (1980), “Kinetic Modelling with Multipurpose Data,”
Technometrics, 27, 352–357.

398 � Chapter 11. Nonlinear Optimization Examples

Chapter 12
Graphics Examples

Chapter Contents

OVERVIEW .401

AN INTRODUCTORY GRAPH .401

DETAILS .403
Graphics Segments. .403
Segment Attributes .404
Coordinate Systems. .404
Windows and Viewports. .406
Clipping Your Graphs. .415
Common Arguments. .416

GRAPHICS EXAMPLES .418
Example 12.1. Scatter Plot Matrix. .418
Example 12.2. Train Schedule. .425
Example 12.3. Fisher’s Iris Data. .426

400 � Chapter 12. Graphics Examples

Chapter 12
Graphics Examples

Overview

SAS/IML software provides you with a powerful set of graphics commands (called
graphics primitives) from which to create customized displays. Several basic com-
mands areGDRAW (for drawing a line),GPOINT(for plotting points), andGPOLY
(for drawing a polygon). With each primitive, you can associate a set of attributes
such as color or line style.

In this chapter you learn about

• plotting simple two-dimensional plots

• naming and saving a graph

• changing attributes such as color and line style

• specifying the location and scale of your graph

• adding axes and text

SAS/IML graphics commands depend on the libraries and device drivers distributed
with SAS/GRAPH software, and they do not work unless you have SAS/GRAPH
software.

An Introductory Graph

Suppose that you have data for ACME Corporation’s stock price and you want a
simple PRICE× DAY graph to see the overall trend of the stock’s price. The data
are as follows.

402 � Chapter 12. Graphics Examples

Day Price
0 43.75
5 48.00

10 59.75
15 75.5
20 59.75
25 71.50
30 70.575
35 61.125
40 79.50
45 72.375
50 67.00
55 54.125
60 58.750
65 43.625
70 47.125
75 45.50

To graph a scatter plot of these points, enter the following statements. These state-
ments generateFigure 12.1.

proc iml; /* invoke IML */
call gstart; /* start graphics */
xbox={0 100 100 0};
ybox={0 0 100 100};
day=do(0,75,5); /* initialize day */
price={43.75,48,59.75,75.5, /* initialize price */

59.75,71.5,70.575,
61.125,79.5,72.375,67,
54.125,58.75,43.625,
47.125,45.50};

call gopen; /* start new graph */
call gpoly(xbox,ybox); /* draw a box around plot */
call gpoint(day,price); /* plot the points */
call gshow; /* display the graph */

Graphics Segments � 403

Figure 12.1. Scatter plot

Note that the GSTART statement initializes the graphics session. It usually needs to
be called only once. Next, you enter the data matrices. Then you open a graphics
segment (that is, begin a new graph) with the GOPEN command. The GPOINT com-
mand draws the scatter plot of points of DAY versus PRICE. The GSHOW command
displays the graph.

Notice also that, for this example, thex coordinate of the data is DAY and that0 ≤
DAY ≤ 100. They coordinate is PRICE, which ranges from0 ≤ PRICE≤ 100. For
this example, the ranges are this way because the IML default ranges are from 0 to
100 on both thex andy axes. Later on you learn how to change the default ranges for
the axes with the GWINDOW statement so that you can handle data with any range
of values.

Of course, this graph is quite simple. By the end of this chapter, you will know how
to add axes and titles, to scale axes, and to connect the points with lines.

Details

Graphics Segments

A graph is saved in what is called a graphics segment. Agraphics segmentis simply
a collection of primitives and their associated attributes that creates a graph.

Each time you create a new segment, it is named and stored in a SAS graphics catalog
called WORK.GSEG. If you want to store your graphics segments in a permanent
SAS catalog, do this with options to the GSTART call. You can name the segments
yourself in the GOPEN statement, or you can let the IML procedure automatically

404 � Chapter 12. Graphics Examples

generate a segment name. In this way, graphics segments that are used several times
can be included in subsequent graphs by using the GINCLUDE command with the
segment name. You can also manage and replay a segment using the GREPLAY
procedure as well as replay it in another IML session with the GSHOW command.

To name a segment, include the name as an argument to the GOPEN statement. For
example, to begin a new segment and name it STOCK1, use the statement

call gopen("stock1");

For more information about SAS catalogs and graphics, refer to the chapter on graph-
ics inSAS/GRAPH Software: Reference.

Segment Attributes

A set of attributes is initialized for each graphics segment. These attributes are color,
line style, line thickness, fill pattern, font, character height, and aspect ratio. You can
change any of these attributes for a graphics segment by using the GSET command.
Some IML graphics commands take optional attribute arguments. The values of these
arguments affect only the graphics output associated with the call.

The IML graphics subsystem uses the same conventions that SAS/GRAPH software
uses in setting the default attributes. It also uses the options set in the GOPTIONS
statement when applicable. The SAS/IML default values for the GSET command are
given by their corresponding GOPTIONS default values. To change the default, you
need to issue a GOPTIONS statement. The GOPTIONS statement can also be used
to set graphics options not available through the GSET command (for example, the
ROTATE option).

For more information about GOPTIONS, refer to the chapter on the GOPTIONS
statement inSAS/GRAPH Software: Reference.

Coordinate Systems

Each IML graph is associated with two independent cartesian coordinate systems, a
world coordinate systemand anormalized coordinate system.

Understanding World Coordinates

Theworld coordinate systemis the coordinate system defined by your data. Because
these coordinates help define objects in the data’s two-dimensional world, these are
referred to asworld coordinates. For example, suppose that you have a data set
containing heights and weights and that you are interested in plotting height versus
weight. Your data induces a world coordinate system in which each point(x, y)
represents a pair of data values (height,weight). The world could be defined by the
observed ranges of heights and weights, or it could be enlarged to include a range of
all reasonable values for heights and weights.

Now consider a more realistic example of the stock price data for ACME Corporation.
Suppose that the stock price data were actually the year end prices of ACME stock
for the years 1971 through 1986, as follows.

Coordinate Systems � 405

YEAR PRICE
71 123.75
72 128.00
73 139.75
74 155.50
75 139.75
76 151.50
77 150.375
78 149.125
79 159.50
80 152.375
81 147.00
82 134.125
83 138.75
84 123.625
85 127.125
86 125.500

The actual range of YEAR is from 71 to 86, and the range of PRICE is from $123.625
to $159.50. These are the ranges in world coordinate space for the stock data. Of
course, you could say that the range for PRICE could start at $0 and range upwards
to, for example, $200. Or, if you were interested only in prices during the 80s, you
could say the range for PRICE is from $123.625 to $152.375. As you see, it all
depends on how you want to define your world.

Figure 12.2shows a graph of the stock data with the world defined as the actual data
given. The corners of the rectangle give the actual boundaries for this data.

Figure 12.2. World Coordinates

406 � Chapter 12. Graphics Examples

Understanding Normalized Coordinates

The normalized coordinate systemis defined relative to your display device, usu-
ally a monitor or plotter. It is always defined with points varying between (0,0) and
(100,100), where (0,0) refers to the lower left corner and (100,100) refers to the upper
right corner.

In summary,

• the world coordinate system is defined relative to your data

• the normalized coordinate system is defined relative to the display device

Figure 12.3shows the ACME stock data in terms of normalized coordinates. There
is a natural mathematical relationship between each point in world and normalized
coordinates. The normalized device coordinate system is mapped to the device dis-
play area so that (0,0), the lower left corner, corresponds to (71, 123.625) in world
coordinates, and (100,100), the upper right corner, corresponds to (86,159.5) in world
coordinates.

Figure 12.3. Normalized Coordinates

Windows and Viewports

A windowdefines a rectangular area in world coordinates. You define a window with
a GWINDOW statement. You can define the window to be larger than, the same size
as, or smaller than the actual range of data values, depending on whether you want to
show all of the data or only part of the data.

Windows and Viewports � 407

A viewportdefines in normalized coordinates a rectangular area on the display device
where the image of the data appears. You define a viewport with the GPORT com-
mand. You can have your graph take up the entire display device or show it in only a
portion, say the upper right part.

Mapping Windows to Viewports

A windowand aviewportare related by the linear transformation that maps the win-
dow onto the viewport. A line segment in the window is mapped to a line segment in
the viewport such that the relative positions are preserved.

You don’t have to display all of your data in a graph. InFigure 12.4, the graph on the
left displays all of the ACME stock data, and the graph on the right displays only a
part of the data. Suppose that you wanted to graph only the last ten years of the stock
data, say from 1977 to 1986. You would want to define a window where the YEAR
axis ranges from 77 to 86, while the PRICE axis could range from 120 to 160.Figure
12.4shows stock prices in a window defined for data from 1977 to 1986 along the
horizontal direction and from 120 to 160 along the vertical direction. The window
is mapped to a viewport defined by the points (20,20) and (70,60). The appropriate
GPORT and GWINDOW specifications are as follows.

call gwindow({77 120, 86 160});
call gport({20 20, 70 60});

The window, in effect, defines the portion of the graph that is to be displayed in world
coordinates, and the viewport specifies the area on the device on which the image is
to appear.

Figure 12.4. Window to Viewport Mapping

408 � Chapter 12. Graphics Examples

Understanding Windows

Because the default world coordinate system ranges from (0,0) to (100,100), you
usually need to define awindowin order to set the world coordinates corresponding
to your data. A window specifies which part of the data in world coordinate space
is to be shown. Sometimes you want all of the data shown; other times, you want to
show only part of the data.

A window is defined by an array of four numbers, which define a rectangular area.
You define this area by specifying theworld coordinatesof the lower left and upper
right corners in the GWINDOW statement, which has the general form

CALL GWINDOW(minimum-x minimum-y maximum-x maximum-y);

The argument can be either a matrix or a literal. The order of the elements is impor-
tant. The array of coordinates can be a2×2, 1×4, or4×1matrix. These coordinates
can be specified as matrix literals or as the name of a numeric matrix containing the
coordinates. If you do not define a window, the default is to assume bothx andy
range between 0 and 100.

In summary, a window

• defines the portion of the graph that appears in the viewport

• is a rectangular area

• is defined by an array of four numbers

• is defined in world coordinates

• scales the data relative to world coordinates

In the previous example, the variable YEAR ranges from 1971 to 1986, while PRICE
ranges from 123.625 to 159.50. Because the data do not fit nicely into the default, you
want to define a window that reflects the ranges of the variables YEAR and PRICE.
To draw the graph of this data to scale, you can let the YEAR axis range from 70 to
87 and the PRICE axis range from 100 to 200. Use the following statements to draw
the graph, shown inFigure 12.5.

call gstart;
xbox={0 100 100 0};
ybox={0 0 100 100};
call gopen("stocks1"); /* begin new graph STOCKS1 */
call gset("height", 2.0);
year=do(71,86,1); /* initialize YEAR */
price={123.75 128.00 139.75 /* initialize PRICE */

155.50 139.750 151.500
150.375 149.125 159.500
152.375 147.000 134.125
138.750 123.625 127.125
125.50};

call gwindow({70 100 87 200}); /* define window */
call gpoint(year,price,"diamond","green"); /* graph the points */
call gdraw(year,price,1,"green"); /* connect points */
call gshow; /* show the graph */

Windows and Viewports � 409

Figure 12.5. Stock Data

In this example, you perform several steps that you did not do with the previous
graph:

• You associate the name STOCKS1 with this graphics segment in the GOPEN
command.

• You define a window that reflects the actual ranges of the data with a
GWINDOW command.

• You associate a plotting symbol, the diamond, and the color green with the
GPOINT command.

• You connect the points with line segments with the GDRAW command. The
GDRAW command requests that the line segments be drawn in style 1 and be
green.

Understanding Viewports

A viewportspecifies a rectangular area on the display device where the graph appears.
You define this area by specifying thenormalizedcoordinates, the lower left corner
and the upper right corner, in the GPORT statement, which has the general form

CALL GPORT(minimum-x minimum-y maximum-x maximum-y);

The argument can be either a matrix or a literal. Note that bothx andy must range
between 0 and 100. As with the GWINDOW specification, you can give the coordi-
nates either as a matrix literal enclosed in braces or as the name of a numeric matrix
containing the coordinates. The array can be a2 × 2, 1 × 4, or 4 × 1 matrix. If you
do not define a viewport, the default is to span the entire display device.

410 � Chapter 12. Graphics Examples

In summary, a viewport

• specifies where the image appears on the display

• is a rectangular area

• is specified by an array of four numbers

• is defined in normalized coordinates

• scales the data relative to the shape of the viewport

To display the stock price data in a smaller area on the display device, you must define
a viewport. While you are at it, add some text to the graph. You can use the graph
that you created and named STOCKS1 in this new graph. The following statements
create the graph shown inFigure 12.6.

/* module centers text strings */
start gscenter(x,y,str);

call gstrlen(len,str); /* find string length */
call gscript(x-len/2,y,str); /* print text */

finish gscenter;

call gopen("stocks2"); /* open a new segment */
call gset("font","swiss"); /* set character font */
call gpoly(xbox,ybox); /* draw a border */
call gwindow({70 100,87 200}); /* define a window */
call gport({15 15,85 85}); /* define a viewport */
call ginclude("stocks1"); /* include segment STOCKS1 */
call gxaxis({70 100},17,18, , /* draw x-axis */

,"2.",1.5);
call gyaxis({70 100},100,11, , /* draw y-axis */

,"dollar5.",1.5);
call gset("height",2.0); /* set character height */
call gtext(77,89,"Year"); /* print horizontal text */
call gvtext(68,200,"Price"); /* print vertical text */
call gscenter(79,210,"ACME Stock Data"); /* print title */
call gshow;

Windows and Viewports � 411

Figure 12.6. Stock Data with Axes and Labels

The statements that generated this graph are described below:

• GOPEN begins a new graph and names it STOCKS2.

• GPOLY draws a box around the display area.

• GWINDOW defines the world coordinate space to be larger than the actual
range of stock data values.

• GPORT defines a viewport. It causes the graph to appear in the center of the
display, with a border around it for text. The lower left corner has coordinates
(15,15) and the upper right corner has coordinates (85,85).

• GINCLUDE includes the graphics segment STOCKS1. This saves you from
having to plot points you have already created.

• GXAXIS draws thex axis. It begins at the point (70,100) and is 17 units
(years) long, divided with 18 tick marks. The axis tick marks are printed with
the numeric 2.0 format, and they have a height of 1.5 units.

• GYAXIS draws they axis. It also begins at (70,100) but is 100 units (dollars)
long, divided with 11 tick marks. The axis tick marks are printed with the
DOLLAR5.0 format and have a height of 1.5 units.

• GSET sets the text font to be Swiss and the height of the letters to be 2.0 units.
The height of the characters has been increased because the viewport definition
scales character sizes relative to the viewport.

• GTEXT prints horizontal text. It prints the text stringYear beginning at the
world coordinate point (77,89).

412 � Chapter 12. Graphics Examples

• GVTEXT prints vertical text. It prints the text stringPrice beginning at the
world coordinate point (68,200).

• GSCENTER runs the module to print centered text strings.

• GSHOW displays the graph.

Changing Windows and Viewports

Windows and viewports can be changed for the graphics segment any time that the
segment is active. Using the stock price example, you can first define a window for
the data during the years 1971 to 1974 and map this to the viewport defined on the
upper half of the normalized device; then you can redefine the window to enclose
the data for 1983 to 1986 and map this to an area in the lower half of the normalized
device. Notice how the shape of the viewport affects the shape of the curve. Changing
the viewport can affect the height of any printed characters as well. In this case, you
can modify the HEIGHT parameter.

The following statements generate the graph inFigure 12.7:

/* figure 12.7 */
reset clip; /* clip outside viewport */
call gopen; /* open a new segment */
call gset("color","blue");
call gset("height",2.0);
call gwindow({71 120,74 175}); /* define a window */
call gport({20 55,80 90}); /* define a viewport */
call gpoly({71 74 74 71},{120 120 170 170}); /* draw a border */
call gscript(71.5,162,"Viewport #1 1971-74",, /* print text */

,3.0,"complex","red");
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gblkvpd;
call gwindow({83 120,86 170}); /* define new window */
call gport({20 10,80 45}); /* define new viewport */
call gpoly({83 86 86 83},{120 120 170 170}); /* draw border */
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gscript(83.5,162,"Viewport #2 1983-86",, /* print text */

,3.0,"complex","red");
call gshow;

Windows and Viewports � 413

Figure 12.7. Multiple Viewports

The RESET CLIP command is necessary because you are graphing only a part of the
data in the window. You want to clip the data that falls outside of the window. See
“Clipping Your Graphs” later in this chapter for more on clipping. In this graph, you

• open a new segment (GOPEN)

• define the first window for the first four years’ data (GWINDOW)

• define a viewport in the upper part of the display device (GPORT)

• draw a box around the viewport (GPOLY)

• add text (GSCRIPT)

• graph the points and connect them (GPOINT and GDRAW)

• define the second window for the last four years (GWINDOW)

• define a viewport in the lower part of the display device (GPORT)

• draw a box around the viewport (GPOLY)

• graph the points and connect them (GPOINT and GDRAW)

• add text (GSCRIPT)

• display the graph (GSHOW)

Stacking Viewports

Viewports can be stacked; that is, a viewport can be defined relative to another view-
port so that you have a viewport within a viewport.

414 � Chapter 12. Graphics Examples

A window or a viewport is changed globally through the IML graphics com-
mands: the GWINDOW command for windows, and the GPORT, GPORTSTK, and
GPORTPOP commands for viewports. When a window or viewport is defined, it
persists across IML graphics commands until another window- or viewport-altering
command is encountered. Stacking helps you define a viewport without losing the
effect of a previously defined viewport. When a stacked viewport ispopped, you are
placed into the environment of the previous viewport.

Windows and viewports are associated with a particular segment; thus, they automat-
ically become undefined when the segment is closed. A segment is closed whenever
IML encounters a GCLOSE command or a GOPEN command. A window or a view-
port can also be changed for a single graphics command. Either one can be passed
as an argument to a graphics primitive, in which case any graphics output associated
with the call is defined in the specified window or viewport. When a viewport is
passed as an argument, it is stacked, or defined relative to the current viewport, and
poppedwhen the graphics command is complete.

For example, suppose you want to create a legend that shows the low and peak points
of the data for the ACME stock graph. Create a graphics segment showing this infor-
mation:

call gopen("legend");
call gset(’height’,5); /* enlarged to accommodate viewport later */
call gset(’font’,’swiss’);
call gscript(5,75,"Stock Peak: 159.5 in 1979");
call gscript(5,65,"Stock Low: 123.6 in 1984");
call gclose;

Now create a segment that highlights and labels the low and peak points of the data:

/* Highlight and label the low and peak points of the stock */
call gopen("labels");
call gwindow({70 100 87 200}); /* define window */
call gpoint(84,123.625,"circle","red",4) ;
call gtext(84,120,"LOW","red");
call gpoint(79,159.5,"circle","red",4);
call gtext(79,162,"PEAK","red");
call gclose;

Open a new graphics segment and include the STOCK1 segment created earlier in
the chapter, placing the segment in the viewport {10 10 90 90}.

call gopen;
call gportstk ({10 10 90 90}); /* viewport for the plot itself */
call ginclude(’stocks2’);

To place the legend in the upper right corner of this viewport, use the GPORTSTK
command instead of the GPORT command to define the legend’s viewport relative to
the one used for the plot of the stock data:

Clipping Your Graphs � 415

call gportstk ({70 70 100 100}); /* viewport for the legend */
call ginclude("legend");

Now pop the legend’s viewport to get back to the viewport of the plot itself and
include the segment that labels and highlights the low and peak stock points:

call gportpop; /* viewport for the legend */
call ginclude ("labels");

Finally, display the graph.

call gshow;

Figure 12.8. Stacking Viewports

Clipping Your Graphs

The IML graphics subsystem does not automatically clip the output to the viewport.
Thus, it is possible that data are graphed outside of the defined viewport. This hap-
pens when there are data points lying outside of the defined window. For instance,
if you specify a window to be a subset of the world, then there will be data lying
outside of the window and these points will be graphed outside of the viewport. This
is usually not what you want. To clean up such graphs, you either delete the points
you do not want to graph or clip the graph.

There are two ways to clip a graph. You can use the RESET CLIP command, which
clips outside of a viewport. The CLIP option remains in effect until you submit
a RESET NOCLIP command. You can also use the GBLKVP command, which

416 � Chapter 12. Graphics Examples

clips either inside or outside of a viewport. Use the GBLKVP command to define a
blanking area in which nothing can be drawn until the blanking area is released. Use
the GBLKVPD command to release the blanking area.

Common Arguments

IML graphics commands are available in the form of call subroutines. They generally
take a set of required arguments followed by a set of optional arguments. All graphics
primitives takewindow and viewport as optional arguments. Some IML graphics
commands, like GPOINT or GPIE, allow implicit repetition factors in the argument
lists. The GPOINT command places as many markers as there are well-defined(x, y)
pairs. The GPIE command draws as many slices as there are well-defined pies. In
those cases, some of the attribute matrices can have more than one element, which are
used in order. If an attribute list is exhausted before the repetition factor is completed,
the last element of the list is used as the attribute for the remaining primitives.

The arguments to the IML graphics commands are positional. Thus, to skip over an
optional argument from the middle of a list, you must specify a comma to hold its
place. For example, the command

call gpoint(x,y, ,"red");

omits the third argument from the argument list.

The following list details the arguments commonly used in IML graphics com-
mands:

color is a character matrix or literal that names a valid color as specified
in the GOPTIONS statement. The default color is the first color
specified in the COLORS= list in the GOPTIONS statement. If no
such list is given, IML uses the first default color for the graphics
device. Note thatcolor can be specified either as a quoted literal,
such as "RED", a color number, such as 1, or the name of a matrix
containing a reference to a valid color. A color numbern refers to
thenth color in the color list.

You can change the default color with the GSET command.

font is a character matrix or quoted literal that specifies a valid font
name. The default font is the hardware font, which can be changed
by the GSET command unless a viewport is in effect.

height is a numeric matrix or literal that specifies the character height.
The unit of height is thegunit of the GOPTIONS statement, when
specified; otherwise, the unit is a character cell. The default height
is 1gunit, which you can change using the GSET command.

pattern is a character matrix or quoted literal that specifies the pattern
to fill the interior of a closed curve. You specify a pattern by
a coded character string as documented in the V= option in the
PATTERN statement (refer to the chapter on the PATTERN ttate-
ment inSAS/GRAPH Software: Reference.

Common Arguments � 417

The default pattern set by the IML graphics subsystem is “E”, that
is, empty. The default pattern can be changed using the GSET
command.

segment-name is a character matrix or quoted literal that specifies a valid SAS
name used to identify a graphics segment. Thesegment-nameis
associated with the graphics segment opened with a GOPEN com-
mand. If you do not specifysegment-name, IML generates default
names. For example, to create a graphics segment called PLOTA,
enter

call gopen("plota");

Graphics segments are not allowed to have the same name as an
existing segment. If you try to create a second segment named
PLOTA, (that is, when thereplace flagis turned off), then the sec-
ond segment is named PLOTA1. Thereplaceflag is set by the
GOPEN command for the segment that is being created. To open a
new segment named PLOTA and replace an existing segment with
the same name, enter

call gopen("plota",1);

If you do not specify areplaceargument to the GOPEN command,
the default is set by the GSTART command for all subsequent seg-
ments that are created. By default, the GSTART command sets the
replaceflag to 0, so that new segments do not replace like-named
segments.

style is a numeric matrix or literal that specifies an index correspond-
ing to the line style documented for the SYMBOL statement in
the chapter on the Symbol statement inSAS/GRAPH Software:
Reference. The IML graphics subsystem sets the default line style
to be 1, a solid line. The default line style can be changed using the
GSET command.

symbol is a character matrix or quoted literal that specifies either a charac-
ter string corresponding to a symbol as defined for the V= option
of the SYMBOL statement or specifies the corresponding identify-
ing symbol number. STAR is the default symbol used by the IML
graphics subsystem.

SAS/IML graphics commands are described in detail inChapter 20, “Language
Reference,”.

Refer also toSAS/GRAPH Software: Referencefor additional information.

418 � Chapter 12. Graphics Examples

Graphics Examples

This section provides the details and code for three examples involving SAS/IML
graphics. The first example shows a2× 2 matrix of scatter plots and a3× 3 matrix
of scatter plots. A matrix of scatter plots is useful when you have several variables
that you want to investigate simultaneously rather than in pairs. The second example
draws a grid for representing a train schedule, with arrival and departure dates on
the horizontal axis and destinations along the vertical axis. The final example plots
Fisher’s Iris data. This example shows how to plot several graphs on one page.

Example 12.1. Scatter Plot Matrix

With the viewport capability of the IML graphics subroutine, you can arrange several
graphs on a page. In this example, multiple graphs are generated from three variables
and are displayed in a scatterplot matrix. For each variable, one contour plot is gen-
erated with each of the other variables as the dependent variable. For the graphs on
the main diagonal, a box and whisker plot is generated for each variable.

This example takes advantage of user-defined IML modules:

BOXWHSKR computes median and quartiles.

GBXWHSKR draws box and whisker plots.

CONTOUR generates confidence ellipses assuming bivariate normal data.

GCONTOUR draws the confidence ellipses for each pair of variables.

GSCATMAT produces then × n scatter plot matrix, wheren is the number of
variables.

The code for the five modules and a sample data set follow. The modules produce
Figure 12.9on page 424 andFigure 12.10on page 424.

/* This program generates a data set and uses iml graphics */
/* subsystem to draw a scatterplot matrix. */
/* */

data factory;
input recno prod temp a defect mon;
datalines;

1 1.82675 71.124 1.12404 1.79845 2
2 1.67179 70.9245 0.924523 1.05246 3
3 2.22397 71.507 1.50696 2.36035 4
4 2.39049 74.8912 4.89122 1.93917 5
5 2.45503 73.5338 3.53382 2.0664 6
6 1.68758 71.6764 1.67642 1.90495 7
7 1.98233 72.4222 2.42221 1.65469 8
8 1.17144 74.0884 4.08839 1.91366 9
9 1.32697 71.7609 1.76087 1.21824 10

10 1.86376 70.3978 0.397753 1.21775 11
11 1.25541 74.888 4.88795 1.87875 12
12 1.17617 73.3528 3.35277 1.15393 1
13 2.38103 77.1762 7.17619 2.26703 2
14 1.13669 73.0157 3.01566 1 3

Example 12.1. Scatter Plot Matrix � 419

15 1.01569 70.4645 0.464485 1 4
16 2.36641 74.1699 4.16991 1.73009 5
17 2.27131 73.1005 3.10048 1.79657 6
18 1.80597 72.6299 2.62986 1.8497 7
19 2.41142 81.1973 11.1973 2.137 8
20 1.69218 71.4521 1.45212 1.47894 9
21 1.95271 74.8427 4.8427 1.93493 10
22 1.28452 76.7901 6.79008 2.09208 11
23 1.51663 83.4782 13.4782 1.81162 12
24 1.34177 73.4237 3.42369 1.57054 1
25 1.4309 70.7504 0.750369 1.22444 2
26 1.84851 72.9226 2.92256 2.04468 3
27 2.08114 78.4248 8.42476 1.78175 4
28 1.99175 71.0635 1.06346 1.25951 5
29 2.01235 72.2634 2.2634 1.36943 6
30 2.38742 74.2037 4.20372 1.82846 7
31 1.28055 71.2495 1.24953 1.8286 8
32 2.05698 76.0557 6.05571 2.03548 9
33 1.05429 77.721 7.72096 1.57831 10
34 2.15398 70.8861 0.886068 2.1353 11
35 2.46624 70.9682 0.968163 2.26856 12
36 1.4406 73.5243 3.52429 1.72608 1
37 1.71475 71.527 1.52703 1.72932 2
38 1.51423 78.5824 8.5824 1.97685 3
39 2.41538 73.7909 3.79093 2.07129 4
40 2.28402 71.131 1.13101 2.25293 5
41 1.70251 72.3616 2.36156 2.04926 6
42 1.19747 72.3894 2.3894 1 7
43 1.08089 71.1729 1.17288 1 8
44 2.21695 72.5905 2.59049 1.50915 9
45 1.52717 71.1402 1.14023 1.88717 10
46 1.5463 74.6696 4.66958 1.25725 11
47 2.34151 90 20 3.57864 12
48 1.10737 71.1989 1.19893 1.62447 1
49 2.2491 76.6415 6.64147 2.50868 2
50 1.76659 71.7038 1.70377 1.231 3
51 1.25174 76.9657 6.96572 1.99521 4
52 1.81153 73.0722 3.07225 2.15915 5
53 1.72942 71.9639 1.96392 1.86142 6
54 2.17748 78.1207 8.12068 2.54388 7
55 1.29186 77.0589 7.05886 1.82777 8
56 1.92399 72.6126 2.61256 1.32816 9
57 1.38008 70.8872 0.887228 1.37826 10
58 1.96143 73.8529 3.85289 1.87809 11
59 1.61795 74.6957 4.69565 1.65806 12
60 2.02756 75.7877 5.78773 1.72684 1
61 2.41378 75.9826 5.98255 2.76309 2
62 1.41413 71.3419 1.34194 1.75285 3
63 2.31185 72.5469 2.54685 2.27947 4
64 1.94336 71.5592 1.55922 1.96157 5
65 2.094 74.7338 4.73385 2.07885 6
66 1.19458 72.233 2.23301 1 7
67 2.13118 79.1225 9.1225 1.84193 8
68 1.48076 87.0511 17.0511 2.94927 9
69 1.98502 79.0913 9.09131 2.47104 10
70 2.25937 73.8232 3.82322 2.49798 12
71 1.18744 70.6821 0.682067 1.2848 1
72 1.20189 70.7053 0.705311 1.33293 2
73 1.69115 73.9781 3.9781 1.87517 3

420 � Chapter 12. Graphics Examples

74 1.0556 73.2146 3.21459 1 4
75 1.59936 71.4165 1.41653 1.29695 5
76 1.66044 70.7151 0.715145 1.22362 6
77 1.79167 74.8072 4.80722 1.86081 7
78 2.30484 71.5028 1.50285 1.60626 8
79 2.49073 71.5908 1.59084 1.80815 9
80 1.32729 70.9077 0.907698 1.12889 10
81 2.48874 83.0079 13.0079 2.59237 11
82 2.46786 84.1806 14.1806 3.35518 12
83 2.12407 73.5826 3.58261 1.98482 1
84 2.46982 76.6556 6.65559 2.48936 2
85 1.00777 70.2504 0.250364 1 3
86 1.93118 73.9276 3.92763 1.84407 4
87 1.00017 72.6359 2.63594 1.3882 5
88 1.90622 71.047 1.047 1.7595 6
89 2.43744 72.321 2.32097 1.67244 7
90 1.25712 90 20 2.63949 8
91 1.10811 71.8299 1.82987 1 9
92 2.25545 71.8849 1.8849 1.94247 10
93 2.47971 73.4697 3.4697 1.87842 11
94 1.93378 74.2952 4.2952 1.52478 12
95 2.17525 73.0547 3.05466 2.23563 1
96 2.18723 70.8299 0.829929 1.75177 2
97 1.69984 72.0026 2.00263 1.45564 3
98 1.12504 70.4229 0.422904 1.06042 4
99 2.41723 73.7324 3.73238 2.18307 5

;

proc iml;

/*-- Load graphics --*/
call gstart;

/*--------------------*/
/*-- Define modules --*/
/*--------------------*/

/* Module : compute contours */
start contour(c,x,y,npoints,pvalues);

/* This routine computes contours for a scatter plot */
/* c returns the contours as consecutive pairs of columns */
/* x and y are the x and y coordinates of the points */
/* npoints is the number of points in a contour */
/* pvalues is a column vector of contour probabilities */
/* the number of contours is controlled by the ncol(pvalue) */

xx=x||y;
n=nrow(x);

/* Correct for the mean */
mean=xx[+,]/n;
xx=xx-mean@j(n,1,1);

/* Find principle axes of ellipses */
xx=xx‘ *xx/n;
call eigen(v,e,xx);

Example 12.1. Scatter Plot Matrix � 421

/* Set contour levels */
c=-2*log(1-pvalues);
a=sqrt(c*v[1]); b=sqrt(c*v[2]);

/* Parameterize the ellipse by angle */
t=((1:npoints)-{1})#atan(1)#8/(npoints-1);
s=sin(t);
t=cos(t);
s=s‘ *a;
t=t‘ *b;

/* Form contour points */
s=((e*(shape(s,1)//shape(t,1)))+mean‘@j(1,npoints*ncol(c),1))‘;
c=shape(s,npoints);

/* Returned as ncol pairs of columns for contours */
finish contour;
/*-- Module : draw contour curves --*/
start gcontour(t1, t2);

run contour(t12, t1, t2, 30, {.5 .8 .9});
window=(min(t12[,{1 3}],t1)||min(t12[,{2 4}],t2))//

(max(t12[,{1 3}],t1)||max(t12[,{2 4}],t2));
call gwindow(window);
call gdraw(t12[,1],t12[,2],,’blue’);
call gdraw(t12[,3],t12[,4],,’blue’);
call gdraw(t12[,5],t12[,6],,’blue’);
call gpoint(t1,t2,,’red’);

finish gcontour;

/*-- Module : find median, quartiles for box and whisker plot --*/
start boxwhskr(x, u, q2, m, q1, l);

rx=rank(x);
s=x;
s[rx,]=x;
n=nrow(x);

/*-- Median --*/
m=floor(((n+1)/2)||((n+2)/2));
m=(s[m,])[+,]/2;

/*-- Compute quartiles --*/
q1=floor(((n+3)/4)||((n+6)/4));
q1=(s[q1,])[+,]/2;
q2=ceil(((3*n+1)/4)||((3*n-2)/4));
q2=(s[q2,])[+,]/2;
h=1.5*(q2-q1); /*-- step=1.5*(interquartile range) --*/
u=q2+h;
l=q1-h;
u=(u>s)[+,]; /*-- adjacent values -----------------*/
u=s[u,];
l=(l>s)[+,];
l=s[l+1,];

finish boxwhskr;

/*-- Box and Whisker plot --*/
start gbxwhskr(t, ht);

422 � Chapter 12. Graphics Examples

run boxwhskr(t, up, q2,med, q1, lo);

/*---Adjust screen viewport and data window */
y=min(t)//max(t);
call gwindow({0, 100} || y);
mid = 50;
wlen = 20;

/*-- Add whiskers */
wstart=mid-(wlen/2);
from=(wstart||up)//(wstart||lo);
to=((wstart//wstart)+wlen)||from[,2];

/*-- Add box */
len=50;
wstart=mid-(len/2);
wstop=wstart+len;
from=from//(wstart||q2)//(wstart||q1)//

(wstart||q2)//(wstop||q2);
to=to//(wstop||q2)//(wstop||q1)//

(wstart||q1)//(wstop||q1);

/*---Add median line */
from=from//(wstart||med);
to=to//(wstop||med);

/*---Attach whiskers to box */
from=from//(mid||up)//(mid||lo);
to=to//(mid||q2)//(mid||q1);

/*-- Draw box and whiskers */
call gdrawl(from, to,,’red’);

/*---Add minimum and maximum data points */
call gpoint(mid, y ,3,’red’);

/*---Label min, max, and mean */
y=med//y;
s={’med’ ’min’ ’max’};
call gset("font","swiss");
call gset(’height’,13);
call gscript(wstop+ht, y, char(y,5,2),,,,,’blue’);
call gstrlen(len, s);
call gscript(wstart-len-ht,y,s,,,,,’blue’);
call gset(’height’);

finish gbxwhskr;

/*-- Module : do scatter plot matrix --*/
start gscatmat(data, vname);

call gopen(’scatter’);
nv=ncol(vname);
if (nv=1) then nv=nrow(vname);
cellwid=int(90/nv);
dist=0.1*cellwid;
width=cellwid-2*dist;
xstart=int((90 -cellwid * nv)/2) + 5;
xgrid=((0:nv)#cellwid + xstart)‘;

Example 12.1. Scatter Plot Matrix � 423

/*-- Delineate cells --*/
cell1=xgrid;
cell1=cell1||(cell1[nv+1]//cell1[nv+1-(0:nv-1)]);
cell2=j(nv+1, 1, xstart);
cell2=cell1[,1]||cell2;
call gdrawl(cell1, cell2);
call gdrawl(cell1[,{2 1}], cell2[,{2 1}]);
xstart = xstart + dist; ystart = xgrid[nv] + dist;

/*-- Label variables ---*/
call gset("height", 5);
call gset("font","swiss");
call gstrlen(len, vname);
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(where, 0, vname) ;
len=len[nv-(0:nv-1)];
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(4,where, vname[nv - (0:nv-1)],90);

/*-- First viewport --*/
vp=(xstart || ystart)//((xstart || ystart) + width) ;

/* Since the characters are scaled to the viewport */
/* (which is inversely porportional to the */
/* number of variables), */
/* enlarge it proportional to the number of variables */

ht=2*nv;
call gset("height", ht);
do i=1 to nv;

do j=1 to i;
call gportstk(vp);
if (i=j) then run gbxwhskr(data[,i], ht);
else run gcontour(data[,j], data[,i]);

/*-- onto the next viewport --*/
vp[,1] = vp[,1] + cellwid;
call gportpop;

end;
vp=(xstart // xstart + width) || (vp[,2] - cellwid);

end;
call gshow;

finish gscatmat;

/*-- Placement of text is based on the character height. */
/* The IML modules defined here assume percent as the unit of */
/* character height for device independent control. */

goptions gunit=pct;

use factory;
vname={prod, temp, defect};
read all var vname into xyz;
run gscatmat(xyz, vname[1:2]); /*-- 2 x 2 scatter plot matrix --*/
run gscatmat(xyz, vname); /*-- 3 x 3 scatter plot matrix --*/
quit;

goptions gunit=cell; /*-- reset back to default --*/

424 � Chapter 12. Graphics Examples

Figure 12.9. 2× 2 Scatter Plot Matrix

Figure 12.10. 3× 3 Scatter Plot Matrix

Example 12.2. Train Schedule � 425

Example 12.2. Train Schedule

This example draws a grid on which the horizontal dimension gives the ar-
rival/departure data and the vertical dimension gives the destination. The first section
of the code defines the matrices used. The following section generates the graph.
The following example code shows some applications of the GGRID, GDRAWL,
GSTRLEN, and GSCRIPT subroutines. This code producesFigure 12.11on page
426.

proc iml;
/* Placement of text is based on the character height. */
/* The graphics segment defined here assumes percent as the */
/* unit of character height for device independent control. */

goptions gunit=pct;

call gstart;
/* Define several necessary matrices */
cityloc={0 27 66 110 153 180}‘;
cityname={"Paris" "Montereau" "Tonnerre" "Dijon" "Macon" "Lyons"};
timeloc=0:30;
timename=char(timeloc,2,0);
/* Define a data matrix */
schedule=

/* origin dest start end comment */
{ 1 2 11.0 12.5, /* train 1 */

2 3 12.6 14.9,
3 4 15.5 18.1,
4 5 18.2 20.6,
5 6 20.7 22.3,
6 5 22.6 24.0,
5 4 0.1 2.3,
4 3 2.5 4.5,
3 2 4.6 6.8,
2 1 6.9 8.5,
1 2 19.2 20.5, /* train 2 */
2 3 20.6 22.7,
3 4 22.8 25.0,
4 5 1.0 3.3,
5 6 3.4 4.5,
6 5 6.9 8.5,
5 4 8.6 11.2,
4 3 11.6 13.9,
3 2 14.1 16.2,
2 1 16.3 18.0

};

xy1=schedule[,3]||cityloc[schedule[,1]];
xy2=schedule[,4]||cityloc[schedule[,2]];

call gopen;
call gwindow({-8 -35, 36 240});
call ggrid(timeloc,cityloc,1,"red");
call gdrawl(xy1,xy2,,"blue");

/*-- center title -- */
s = "Train Schedule: Paris to Lyons";
call gstrlen(m, s,5,"titalic");

426 � Chapter 12. Graphics Examples

call gscript(15-m/2,185,s,,,5,"titalic");

/*-- find max graphics text length of cityname --*/
call gset("height",3);
call gset("font","italic");
call gstrlen(len, cityname);
m = max(len) +1.0
call gscript(-m, cityloc,cityname);
call gscript(timeloc - .5,-12,timename,-90,90);
call gshow;

quit;
goptions gunit=cell; /*-- reset back to default --*/

Figure 12.11. Train Schedule

Example 12.3. Fisher’s Iris Data

This example generates four scatter plots and prints them on a single page. Scatter
plots of sepal length versus petal length, sepal width versus petal width, sepal length
versus sepal width, and petal length versus petal width are generated. The following
code producesFigure 12.12on page 429.

data iris;
title ’Fisher (1936) Iris Data’;
input sepallen sepalwid petallen petalwid spec_no @@;
if spec_no=1 then species=’setosa ’;
if spec_no=2 then species=’versicolor’;
if spec_no=3 then species=’virginica ’;
label sepallen=’sepal length in mm.’

sepalwid=’sepal width in mm.’
petallen=’petal length in mm.’

Example 12.3. Fisher’s Iris Data � 427

petalwid=’petal width in mm.’;
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2
67 31 56 24 3 63 28 51 15 3 46 34 14 03 1
69 31 51 23 3 62 22 45 15 2 59 32 48 18 2
46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3
58 27 51 19 3 68 32 59 23 3 51 33 17 05 1
57 28 45 13 2 62 34 54 23 3 77 38 67 22 3
63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3
70 32 47 14 2 64 32 45 15 2 61 28 40 13 2
48 31 16 02 1 59 30 51 18 3 55 24 38 11 2
63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3
44 32 13 02 1 67 33 57 21 3 50 35 16 06 1
58 26 40 12 2 44 30 13 02 1 77 28 67 20 3
63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1
51 38 16 02 1 61 30 49 18 3 48 34 19 02 1
50 30 16 02 1 50 32 12 02 1 61 26 56 14 3
64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3
49 30 14 02 1 51 35 14 02 1 56 30 45 15 2
58 27 41 10 2 50 34 16 04 1 46 32 14 02 1
60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3
58 27 51 19 3 57 29 42 13 2 72 30 58 16 3
54 34 15 04 1 52 41 15 01 1 71 30 59 21 3
64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2
55 42 14 02 1 49 31 15 02 1 77 26 69 23 3
60 22 50 15 3 54 39 17 04 1 66 29 46 13 2
52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2
58 27 39 12 2 47 32 13 02 1 46 31 15 02 1
69 32 57 23 3 62 29 43 13 2 74 28 61 19 3
59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3
67 25 58 18 3 49 31 15 01 1 67 31 47 15 2
63 23 44 13 2 54 37 15 02 1 56 30 41 13 2
63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3
69 31 54 21 3 54 39 13 04 1 51 35 14 03 1
72 36 61 25 3 65 32 51 20 3 61 29 47 14 2
56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1
48 30 14 01 1 45 23 13 03 1 57 25 50 20 3
57 38 17 03 1 51 38 15 03 1 55 23 40 13 2
66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3
67 30 50 17 2 63 33 60 25 3 53 37 15 02 1

;

proc iml;

use iris; read all;

428 � Chapter 12. Graphics Examples

/*-- */
/* Create 5 graphs, PETAL, SEPAL, SPWID, SPLEN, and ALL4 */
/* After the graphs are created, to see any one, type */
/* CALL GSHOW("name"); */
/* where name is the name of any one of the 5 graphs */
/* --- */

call gstart; /*-- always start with GSTART --*/

/*-- Spec_no will be used as marker index, change 3 to 4 */
/*-- 1 is + , 2 is x, 3 is *, 4 is a square -------------*/

do i=1 to 150;
if (spec_no[i] = 3) then spec_no[i] = 4;

end;

/*-- Creates 4 x-y plots stored in 4 different segments */

/*-- Creates a segment called petal, petallen by petalwid --*/
call gopen("petal");

wp = { -10 -5, 90 30};
call gwindow(wp);
call gxaxis({0 0}, 75, 6,,,’5.1’);
call gyaxis({0 0}, 25, 5,,,’5.1’);
call gpoint(petallen, petalwid, spec_no, ’blue’);
labs = "Petallen vs Petalwid";
call gstrlen(len, labs,2, ’swiss’);
call gscript(40-len/2,-4,labs,,,2,’swiss’);

/*-- Creates a segment called sepal, sepallen by sepalwid --*/
call gopen("sepal");

ws = {35 15 85 55};
call gwindow(ws);
call gxaxis({40 20}, 40, 9, , ,’5.1’);
call gyaxis({40 20}, 28, 7, , ,’5.1’);
call gpoint(sepallen, sepalwid, spec_no, ’blue’);
labs = "Sepallen vs Sepalwid";
call gstrlen(len, labs,2, ’swiss’);
call gscript(60-len/2,16,labs,,,2,’swiss’);

/*-- Creates a segment called spwid, petalwid by sepalwid --*/
call gopen("spwid");

wspwid = { 15 -5 55 30};
call gwindow(wspwid);
call gxaxis({20 0}, 28, 7,,,’5.1’);
call gyaxis({20 0}, 25, 5,,,’5.1’);
call gpoint(sepalwid, petalwid, spec_no, ’green’);
labs = "Sepalwid vs Petalwid";
call gstrlen(len, labs,2,’swiss’);
call gscript(35-len/2,-4,labs,,,2,’swiss’);

/*-- Creates a segment called splen, petallen by sepallen --*/
call gopen("splen");

wsplen = {35 -15 85 90};
call gwindow(wsplen);
call gxaxis({40 0}, 40, 9,,,’5.1’);

Example 12.3. Fisher’s Iris Data � 429

call gyaxis({40 0}, 75, 6,,,’5.1’);
call gpoint(sepallen, petallen, spec_no, ’red’);
labs = "Sepallen vs Petallen";
call gstrlen(len, labs,2,’swiss’);
call gscript(60-len/2,-14,labs,,,2,’swiss’);

/*-- Create a new segment */
call gopen("all4");

call gport({50 0, 100 50}); /* change viewport, lower right ----*/
call ginclude("sepal"); /* include sepal in this graph -----*/
call gport({0 50, 50 100}); /* change the viewport, upper left */
call ginclude("petal"); /* include petal -------------------*/
call gport({0 0, 50 50}); /* change the viewport, lower left */
call ginclude("spwid"); /* include spwid -------------------*/
call gport({50 50, 100 100});/* change the viewport, upper right */
call ginclude("splen"); /* include splen -------------------*/

call gshow("Petal");

Figure 12.12. Petal Length versus Petal Width

430 � Chapter 12. Graphics Examples

Chapter 13
Window and Display Features

Chapter Contents

OVERVIEW .433

CREATING A DISPLAY WINDOW FOR DATA ENTRY433

USING THE WINDOW STATEMENT .435
Window Options. .436
Field Specifications. .436

USING THE DISPLAY STATEMENT .437
Group Specifications. .438
Group Options. .438

DETAILS ABOUT WINDOWS .438
The Number and Position of Windows.438
Windows and the Display Surface. .439
Deciding Where to Define Fields. .439
Groups of Fields. .439
Field Attributes .440
Display Execution. .440
Field Formatting and Inputting. .441
Display-only Windows .441
Opening Windows. .441
Closing Windows .441
Repeating Fields. .441
Example .442

432 � Chapter 13. Window and Display Features

Chapter 13
Window and Display Features

Overview

The dynamic nature of IML gives you the ability to create windows on your display
for full-screen data entry or menuing. Using theWINDOW statement, you can define
a window, its fields, and its attributes. Using theDISPLAY statement, you can display
a window and await data entry.

These statements are similar in form and function to the corresponding statements in
the SAS DATA step. The specification of fields in theWINDOW or DISPLAY state-
mentsis similar to the specifications used in theINPUT andPUT statements. Using
these statements you can write applications that behave similarly to other full-screen
facilities in the SAS System, such as the BUILD procedure in SAS/AF software and
the FSEDIT procedure in SAS/FSP software.

Creating a Display Window for Data Entry

Suppose that your application is a data entry system for a mailing list. You want to
create a data set called MAILLIST by prompting the user with a window that displays
all the entry fields. You want the data entry window to look as follows.

+--MAILLIST--+
| Command==> |
| |
| |
| NAME: |
| ADDRESS: |
| CITY: STATE: ZIP: |
| PHONE: |
| |
+--+

The process for creating a display window for this application consists of

• initializing the variables

• creating a SAS data set

• defining a module for collecting data that

1. defines a window

2. defines the data fields

3. defines a loop for collecting data

4. provides an exit from the loop

434 � Chapter 13. Window and Display Features

• executing the data-collecting routine

The whole system can be implemented with the following code to define modules
INITIAL and MAILGET:

/* module to initialize the variables */
/* */
start initial;

name=’ ’;
addr=’ ’;
city=’ ’;
state=’ ’;
zip=’ ’;
phone=’ ’;

finish initial;

This defines a module named INITIAL that initializes the variables you want to col-
lect. The initialization sets the string length for the character fields. You need to do
this prior to creating your data set.

Now define a module for collecting the data:

/* module to collect data */
/* */
start mailget;
/* define the window */

window maillist cmndline=cmnd msgline=msg
group=addr
#2 " NAME: " name
#3 " ADDRESS:" addr
#4 " CITY: " city +2 "STATE: " state +2 "ZIP: " zip
#5 " PHONE: " phone;

/* */
/* collect addresses until the user enters exit */
/* */

do until(cmnd="EXIT");
run initial;
msg="ENTER SUBMIT TO APPEND OBSERVATION, EXIT TO END";

/* */
/* loop until user types submit or exit */
/* */

do until(cmnd="SUBMIT"|cmnd="EXIT");
display maillist.addr;

end;
if cmnd="SUBMIT" then append;

end;
window close=maillist;

finish mailget;
/* initialize variables */
run initial;
/* create the new data set */
create maillist var{name addr city state zip phone};
/* collect data */

Using the WINDOW Statement � 435

run mailget;
/* close the new data set */
close maillist;

In the module MAILGET, the WINDOW statement creates a window named
MAILLIST with a group of fields (the group is named ADDR) presenting data fields
for data entry. The program sends messages to the window through the MSGLINE=
variable MSG. The program receives commands you enter through the CMNDLINE=
variable CMND.

You can enter data into the fields after each prompt field. After you are finished with
the entry, press a key defined as SUBMIT, or type SUBMIT in the command field.
The data are appended to the data set MAILLIST. When data entry is complete, enter
EXIT in the command field. If you enter a command other than SUBMIT, EXIT, or
a valid SAS windowing environment command in the command field, you get this
message on the message line:

ENTER SUBMIT TO APPEND OBSERVATION, EXIT TO END.

Using the WINDOW Statement

You use the WINDOW statement to define a window, its fields, and its attributes. The
general form of the WINDOW statement is

WINDOW <CLOSE=> window-name < window-options >

<GROUP=group-name-1 field-specs

< . . .GROUP=group-name-n field-specs >>;

The following options can be used with the WINDOW statement:

CLOSE=
is used only when you want to close the window.

window-name
is a valid SAS name for the window. This name is displayed in the upper left border
of the window.

window-options
control the size, position, and other attributes of the window. You can change the at-
tributes interactively with window commands such as WGROW, WDEF, WSHRINK,
and COLOR. These options are described in the next section.

GROUP=group-name
starts a repeating sequence of groups of fields defined for the window. Thegroup-
nameis a valid SAS variable name used to identify a group of fields in a DISPLAY
statement that occurs later in the program.

field-specs
is a sequence of field specifications made up of positionals, field operands, formats,
and options. These are described in “Field Specifications” later in this chapter.

436 � Chapter 13. Window and Display Features

Window Options

Window-options control the attributes of the window. The following options are valid
in the WINDOW statement:

CMNDLINE=name
names a character variable in which the command line entered by the user is stored.

COLOR=operand
specifies the background color for the window. Theoperandcan be either a quoted
character literal or the name of a character variable containing the color. The valid
values are BLACK, GREEN, MAGENTA, RED, CYAN, GRAY, and BLUE. This
default is BLACK.

COLUMNS=operand
specifies the starting number of columns of the window. Theoperandcan be either a
literal number, a variable name, or an expression in parentheses. The default is 78.

ICOLUMN=operand
specifies the initial column position of the window on the display screen. The
operandcan be either a literal number or a variable name. The default is column
1.

IROW=operand
specifies the initial row position of the window on the display screen. Theoperand
can be either a literal number or a variable name. The default is row 1.

MSGLINE=operand
specifies the message to be displayed on the standard message line when the window
is made active. Theoperandis a quoted character literal or the name of a character
variable containing the message.

ROWS=operand
determines the starting number of rows of the window. Theoperandis either a literal
number, the name of a variable containing the number, or an expression in parentheses
yielding the number. The default is 23 rows.

Field Specifications

Both the WINDOW and DISPLAY statements allow field specifications. Field spec-
ifications have the general form

<positionals> field-operand <format> <field-options>

Positionals

Thepositionalsare directives specifying the position on the screen in which to begin
the field. There are four kinds of positionals, any number of which are allowed for
each field operand. Positionals are the following:

operand specifies the row position; that is, it moves the current position to
column 1 of the specified line. Theoperandis either a number,

Using the DISPLAY Statement � 437

a variable name, or an expression in parentheses. The expression
must evaluate to a positive number.

/ instructs IML to go to column 1 of the next row.

@ operand specifies the column position. Theoperandis either a number, a
variable name, or an expression in parentheses. The @ directive
should come after the pound sign (#) positional, if it is specified.

+ operand instructs IML to skip columns. Theoperandis either a number, a
variable name, or an expression in parentheses.

Field 0perands

The field-operandspecifies what goes in the field. It is either a character literal in
quotes or the name of a character variable.

Formats

The format is the format used for display, for the value, and also as the informat
applied to entered values. If no format is specified, the standard numeric or character
format is used.

Field Options

Thefield-optionsspecify the attributes of the field as follows:

PROTECT=YES
P=YES

specifies that the field is protected; that is, you cannot enter values in the field. If the
field operand is a literal, it is already protected.

COLOR=operand
specifies the color of the field. Theoperandcan be either a literal character value
in quotes, a variable name, or an expression in parentheses. The colors available
are WHITE, BLACK, GREEN, MAGENTA, RED, YELLOW, CYAN, GRAY, and
BLUE. The default is BLUE. Note that the color specification is different from that
of the corresponding DATA step value because it is an operand rather than a name
without quotes.

Using the DISPLAY Statement

After you have opened a window with the WINDOW statement, you can use the
DISPLAY statement to display the fields in the window.

The DISPLAY statement specifies a list of groups to be displayed. Each group is
separated from the next by a comma. The general form of the DISPLAY statement is
as follows.

438 � Chapter 13. Window and Display Features

DISPLAY <group-spec-1 group-options,< . . ., group-spec-n group-options>>;

Group Specifications

The group specification names a group, either a compound name of the formwin-
downame.groupnameor a windownamefollowed by a group defined by fields and
enclosed in parentheses. For example, you can specifywindowname.groupnameor
windowname(field-specs), wherefield-specsare as defined earlier for the WINDOW
statement.

In the example, you used the statement

display maillist.addr;

to display the window MAILLIST and the group ADDR.

Group Options

Thegroup-optionscan be any of the following:

BELL
rings the bell, sounds the alarm, or beeps the speaker at your workstation when the
window is displayed.

NOINPUT
requests that the group be displayed with all the fields protected so that no data entry
can be done.

REPEAT
specifies that the group be repeated for each element of the matrices specified as
field-operands. See “Repeating Fields” later in this chapter.

Details about Windows

The following sections discuss some of the ideas behind windows.

The Number and Position of Windows

You can have any number of windows. They can overlap each other or be disjoint.
Each window behaves independently from the others. You can specify the starting
size, position, and color of the window when you create it. Each window responds to
SAS windowing environment commands so that it can be moved, sized, popped, or
changed in color dynamically by the user.

You can list all active windows in a session by using the SHOW WINDOWS com-
mand. This makes it easy to keep track of multiple windows.

Groups of Fields � 439

Windows and the Display Surface

A window is really a viewport into a display. The display can be larger or smaller than
the window. If the display is larger than the window, you can use scrolling commands
to move the surface under the window (or equivalently, move the window over the
display surface). The scrolling commands are as follows:

RIGHT< n > scrolls right.

LEFT< n > scrolls left.

FORWARD< n > scrolls forward (down).

BACKWARD < n > scrolls backward (up).

TOP scrolls to the top of the display surface.

BOTTOM scrolls to the bottom of the display surface.

The argumentn is an optional numeric argument that indicates the number of posi-
tions to scroll. The default is 5.

Only one window is active at a time. You can move, zoom, enlarge, shrink, or recolor
inactive windows, but you cannot scroll or enter data.

Each display starts with the same standard lines: first a command line for entering
commands, then a message line for displaying messages (such as error messages).

The remainder of the display is up to you to design. You can put fields in any positive
row and column position of the display surface, even if it is off the displayed viewport.

Deciding Where to Define Fields

You have a choice of whether to define your fields in the WINDOW statement, the
DISPLAY statement, or both. Defining field groups in the WINDOW statement saves
work if you access the window from many different DISPLAY statements. Specifying
field groups in the DISPLAY statement provides more flexibility.

Groups of Fields

All fields must be part of field groups. The group is just a mechanism to treat multiple
fields together as a unit in the DISPLAY statement. There is only one rule about the
field positions of different groups: active fields must not overlap. Overlapping is
acceptable among fields as long as they are not simultaneously active. Active fields
are the ones that are specified together in the current DISPLAY statement.

You name groups specified in the WINDOW statement. You specify groups in the
DISPLAY statement just by putting them in parentheses; they are not named.

440 � Chapter 13. Window and Display Features

Field Attributes

There are two types of fields you can define:

• Protected fields are for constants on the screen.

• Unprotected fields accept data entry.

If the field consists of a character string in quotes, it is protected. If the field is
a variable name, it is not protected unless you specify PROTECT=YES as a field
option. If you want all fields protected, specify the NOINPUT group option in the
DISPLAY statement.

Display Execution

When you execute a DISPLAY statement, the SAS System displays the window with
all current values of the variables. You can then enter data into the unprotected fields.
All the basic editing keys (cursor controls, delete, end, insert, and so forth) work,
as well as SAS windowing environment commands to scroll or otherwise manage
the window. Control does not return to the IML code until you enter a command
on the command line that is not recognized as a SAS windowing environment com-
mand. Typically, a SUBMIT command is used since most users define a function key
for this command. Before control is returned to you, IML moves all modified field
values from the screen back into IML variables using standard or specified informat
routines. If you have specified the CMNDLINE= option in the WINDOW statement,
the current command line is passed back to the specified variable.

The window remains visible with the last values entered until the next DISPLAY
statement or until the window is closed by a WINDOW statement with the CLOSE=
option.

Only one window is active at a time. Every window may be subject to SAS window-
ing environment commands, but only the window specified in the current DISPLAY
statement transfers data to IML.

Each window is composed dynamically every time it is displayed. If you position
fields by variables, you can make them move to different parts of the screen simply
by programming the values of the variables.

The DISPLAY statement even allows general expressions in parentheses as positional
or field operands. The WINDOW statement only allows literal constants or variable
names as operands. If a field operand is an expression in parentheses, then it is always
a protected field. You cannot use the statement

display w(log(X));

and expect it to return the log function of the data entered. You would need the
following code to do that:

lx=log(x);
display w(lx);

Repeating Fields � 441

Field Formatting and Inputting

The length of a field on the screen is specified in the format after the field operand, if
you give one. If a format is not given, IML uses standard character or numeric for-
mats and informats. Numeric informats allow scientific notation and missing values
(represented with periods). The default length for character variables is the size of the
variable element. The default size for numeric fields is as given with the FW= option
(see the discussion of the RESET statement inChapter 20, “Language Reference.”)

If you specify a named format (such as DATE7.), IML attempts to use it for both the
output format and the input informat. If IML cannot find an input informat of that
name, it uses the standard informats.

Display-only Windows

If a window consists only of protected fields, it is merely displayed; that is, it does
not wait for user input. These display-only windows can be displayed rapidly.

Opening Windows

The WINDOW statement is executable. When a WINDOW statement is executed,
it checks to see if the specific window has already been opened. If it has not been
opened, then the WINDOW statement opens it; otherwise, the WINDOW statement
does nothing.

Closing Windows

To close a window, use the CLOSE= option in the WINDOW statement. In the
example given earlier, you closed MAILLIST with the statement

window close=maillist;

Repeating Fields

If you specify an operand for a field that is a multi-element matrix, the routines deal
with the first value of the matrix. However, there is a special group option, REPEAT,
that enables you to display and retrieve values from all the elements of a matrix. If
the REPEAT option is specified, IML determines the maximum number of elements
of any field-operand matrix, and then it repeats the group that number of times. If any
field operand has fewer elements, the last element is repeated the required number of
times (the last one becomes the data entered). Be sure to write your specifications so
that the fields do not overlap. If the fields overlap, an error message results. Although
the fields must be matrices, the positional operands are never treated as matrices.

The repeat feature can come in very handy in situations where you want to menu a
list of items. For example, suppose you want to build a restaurant billing system and
you have stored the menu items and prices in the matrices ITEM and PRICE. You
want to obtain the quantity ordered in a matrix called AMOUNT. Enter the following
code:

442 � Chapter 13. Window and Display Features

item={ "Hamburger", "Hot Dog", "Salad Bar", "Milk" };
price={1.10 .90 1.95 .45};
amount= repeat(0,nrow(item),1);
window menu
group=top
#1 @2 "Item" @44 "Price" @54 "Amount"
group=list
/ @2 item $10. @44 price 6.2 @54 amount 4.
;
display menu.top, menu.list repeat;

This defines the window

+-----Menu---+
+ Command ---> +
+ +
+ Item Price Amount +
+ +
+ Hamburger 1.10 0 +
+ Hot Dog 0.90 0 +
+ Salad Bar 1.95 0 +
+ Milk 0.45 0 +
+ +
+--- +

Example

This example illustrates the following features:

• multiple windows

• the repeat feature

• command- and message-line usage

• a large display surface needing scrolling

• windows linked to data set transactions

This example uses two windows, FIND and ED. The FIND window instructs you to
enter a name. Then a data set is searched for all the names starting with the entered
value. If no observations are found, you receive the following message:

Not found, enter request

If any observations are found, they are displayed in the ED window. You can then
edit all the fields. If several observations are found, you need to use the scrolling
commands to view the entire display surface. If you enter the SUBMIT command,
the data are updated in place in the data set. Otherwise, you receive the following
message:

Not replaced, enter request

Example � 443

If you enter a blank field for the request, you are advised that EXIT is the keyword
needed to exit the system.

start findedit;
window ed rows=10 columns=40 icolumn=40 cmndline=c;
window find rows=5 columns=35 icolumn=1 msgline=msg;
edit user.class;
display ed ("Enter a name in the FIND window, and this"
/ "window will display the observations "
/ "starting with that name. Then you can"
/ "edit them and enter the submit command"
/ "to replace them in the data set. Enter cancel"
/ "to not replace the values in the data set."
/
/ "Enter exit as a name to exit the program.");
do while(1);

msg=’ ’;
again:
name=" ";
display find ("Search for name: " name);
if name=" " then

do;
msg=’Enter exit to end’;
goto again;

end;
if name="exit" then goto x;
if name="PAUSE" then

do;
pause;
msg=’Enter again’;
goto again;

end;
find all where(name=:name) into p;
if nrow(p)=0 then

do;
msg=’Not found, enter request’;
goto again;

end;
read point p;
display ed (//" name: " name

" sex: " sex
" age: " age
/" height: " height
" weight: " weight) repeat;

if c=’submit’ then
do;

msg="replaced, enter request";
replace point p;

end;
else

do;
msg=’Not replaced, enter request’;

end;
end;

444 � Chapter 13. Window and Display Features

x:
display find ("Closing Data Set and Exiting");
close user.class;
window close=ed;
window close=find;

finish findedit;
run findedit;

Chapter 14
Storage Features

Chapter Contents

OVERVIEW .447

STORAGE CATALOGS .447

CATALOG MANAGEMENT .448
Restoring Matrices and Modules. .448
Removing Matrices and Modules. .449
Specifying the Storage Catalog. .449
Listing Storage Entries .449
Storing Matrices and Modules. .450

446 � Chapter 14. Storage Features

Chapter 14
Storage Features

Overview

SAS/IML software can store user-defined modules and the values of matrices in spe-
cial library storage on disk for later retrieval. The library storage feature enables you
to perform the following tasks:

• store and reload IML modules and matrices

• save work for a later session

• keep records of work

• conserve space by saving large, intermediate results for later use

• communicate data to other applications through the library

• store and retrieve data in general

Storage Catalogs

SAS/IML storage catalogs are specially structured SAS files that are located in a
SAS data library. A SAS/IML catalog containsentries that are either matrices or
modules. Like other SAS files, SAS/IML catalogs have two-level names in the form
libref.catalog. The first-level name,libref, is a name assigned to the SAS data library
to which the catalog belongs. The second-level name,catalog, is the name of the
catalog file.

The default libref is initially SASUSER, and the default catalog is IMLSTOR. Thus,
the default storage catalog is called SASUSER.IMLSTOR. You can change the stor-
age catalog with the RESET STORAGE command (see the discussion of the RESET
statement inChapter 20, “Language Reference.”)

Using this command, you can change either the catalog or the libref.

When you store a matrix, IML automatically stores the matrix name, its type, its
dimension, and its current values. Modules are stored in the form of their compiled
code. Once modules are loaded, they do not need to be parsed again, making their
use very efficient.

448 � Chapter 14. Storage Features

Catalog Management

IML provides you with all the commands necessary to reference a particular storage
catalog, to list the modules and matrices in that catalog, to store and remove mod-
ules and matrices, and to load modules and matrices back to IML. The following
commands enable you to perform all necessary catalog management functions:

LOAD recalls entries from storage.

REMOVE removes entries from storage.

RESET STORAGE specifies the library name.

SHOW STORAGE lists all entries currently in storage.

STORE saves modules or matrices to storage.

Restoring Matrices and Modules

You can restore matrices and modules from storage back into the IML active
workspace using the LOAD command. The LOAD command has the general form

LOAD ;

LOAD matrices;

LOAD MODULE= module;

LOAD MODULE=(modules);

LOAD MODULE=(modules) matrices;

Some examples of valid LOAD commands are shown below:

load a b c; /* load matrices A,B, and C */
load module=mymod1; /* load module MYMOD1 */
load module=(mymod1 mymod2) a b; /* load modules and matrices */

The special operand–ALL – can be used to load all matrices or modules, or both. For
example, if you want to load all modules, use the statement

load module=_all_;

If you want to load all matrices and modules in storage, use the LOAD command by
itself:

load; /* loads all matrices and modules */

The LOAD command can be used with the STORE statement to save and restore an
IML environment between sessions.

Listing Storage Entries � 449

Removing Matrices and Modules

You can remove modules or matrices from the catalog using the REMOVE command.
The REMOVE command has the same form as the LOAD command. Some examples
of valid REMOVE statements are shown below:

remove a b c; /* remove matrices A,B, and C */
remove module=mymod1; /* remove module MYMOD1 */
remove module=(mymod1 mymod2) a; /* remove modules and matrices */

The special operand–ALL – can be used to remove all matrices or modules, or both.
For example, if you want to remove all matrices, use the statement

remove _all_;

If you want to remove everything from storage, use the REMOVE command by itself:

remove;

Specifying the Storage Catalog

To specify the name of the storage catalog, use one of the following general forms of
the STORAGE= option in the RESET statement:

RESET STORAGE= catalog;

RESET STORAGE= libref.catalog;

Each time you specify the STORAGE= option, the previously opened catalog is
closed before the new one is opened.

You can have any number of catalogs, but you can have only one open at a time. A
SAS data library can contain many IML storage catalogs, and an IML storage catalog
can contain many entries (that is, many matrices and modules).

For example, you can change the name of the storage catalog without changing the
libref with the statement

reset storage=mystor;

To change the libref as well, use the statement

reset storage=mylib.mystor;

Listing Storage Entries

You can list all modules and matrices in the current storage catalog using the SHOW
STORAGE command, which has the general form

450 � Chapter 14. Storage Features

SHOW STORAGE ;

Storing Matrices and Modules

You can save modules or matrices in the storage catalog using the STORE command.
The STORE command has the same general form as the LOAD command. Several
examples of valid STORE statements are shown below:

store a b c; /* store matrices A,B, and C */
store module=mymod1; /* store module MYMOD1 */
store module=(mymod1 mymod2) a; /* storing modules and matrices */

The special operand–ALL – can be used to store all matrices or modules. For exam-
ple, if you want to store everything, use the statement

store _all_ module=_all_;

Alternatively, to store everything, you can also enter the STORE command by itself:

store;

This can help you to save your complete IML environment before exiting an IML
session. Then you can use the LOAD statement in a subsequent session to restore the
environment and resume your work.

Chapter 15
Using SAS/IML Software to Generate

IML Statements

Chapter Contents

OVERVIEW .453

GENERATING AND EXECUTING STATEMENTS453
Executing a String Immediately. .453
Feeding an Interactive Program. .454
Calling the Operating System. .455
Calling the SAS Windowing Environment.455
Executing Any Command in an EXECUTE Call.456
Making Operands More Flexible. .457
Interrupt Control. .457
Specific Error Control. .458
General Error Control. .459
Macro Interface .461
IML Line Pushing Contrasted with Using the Macro Facility.462
Example 15.1. Full-Screen Editing. .462

SUMMARY .466

452 � Chapter 15. Using SAS/IML Software to Generate IML Statements

Chapter 15
Using SAS/IML Software to Generate

IML Statements
Overview

This chapter describes ways of using SAS/IML software to generate and execute
statements from within the Interactive Matrix Language. You can execute statements
generated at run time, execute global SAS commands under program control, or cre-
ate statements dynamically to get more flexibility.

Generating and Executing Statements

You can push generated statements into the input command stream (queue) with the
PUSH, QUEUE, and EXECUTE subroutines. This can be very useful in situations
that require added flexibility, such as menu-driven applications or interrupt handling.

The PUSH command inserts program statements at the front of the input command
stream, whereas the QUEUE command inserts program statements at the back. In
either case, if they are not input to an interactive application, the statements remain
in the queue until IML enters a pause state, at which point they are executed. The
pause state is usually induced by a program error or an interrupt control sequence.
Any subsequent RESUME statement resumes execution of the module from the point
where the PAUSE command was issued. For this reason, the last statement put into
the command stream for PUSH or QUEUE is usually a RESUME command.

The EXECUTE statement also pushes program statements like PUSH and QUEUE,
but it executes them immediately and returns. It is not necessary to push a RESUME
statement when you use the CALL EXECUTE command.

Executing a String Immediately

The PUSH, QUEUE, and EXECUTE commands are especially useful when used in
conjunction with the pause and resume features because they enable you to generate
a pause-interrupt command to execute the code you push and return from it via a
pushed RESUME statement. In fact, this is precisely how the EXECUTE subroutine
is implemented generally.

CAUTION: Note that the push and resume features work this way only in the context
of being inside modules. You cannot resume an interrupted sequence of statements
in immediate mode, that is, not inside a module.

For example, suppose that you collect program statements in a matrix called CODE.
You push the code to the command input stream along with a RESUME statement
and then execute a PAUSE statement. The PAUSE statement interrupts the execution,

454 � Chapter 15. Using SAS/IML Software to Generate IML Statements

parses and executes the pushed code, and returns to the original execution via the
RESUME statement.

proc iml;
start testpush;

print ’*** ENTERING MODULE TESTPUSH ***’;
print ’*** I should be 1,2,3: ’;
/* constructed code * /
code = ’ do i = 1 to 3; print i; end; ’;
/* push code+resume */
call push (code, ’resume;’);
/* pause interrupt */
pause;
print ’*** EXITING MODULE TESTPUSH ***’;

finish;

When the PAUSE statement interrupts the program, the IML procedure then parses
and executes the line:

do i=1 to 3; print i; end; resume;

The RESUME command then causes the IML procedure to resume the module that
issued the PAUSE.

Note: The EXECUTE routine is equivalent to a PUSH command, but it also adds the
push of a RESUME command, then issues a pause automatically.

A CALL EXECUTE command should be used only from inside a module because
pause and resume features do not support returning to a sequence of statements in
immediate mode.

Feeding an Interactive Program

Suppose that an interactive program gets responses from the statement INFILE
CARDS. If you want to feed it under program control, you can push lines to the
command stream that is read.

For example, suppose that a subroutine prompts a user to respondYES before per-
forming some action. If you want to run the subroutine and feed theYES response
without the user being bothered, you push the response as follows:

/* the function that prompts the user */
start delall;

file log;
put ’Do you really want to delete all records? (yes/no)’;
infile cards;
input answer $;
if upcase(answer)=’YES’ then

do;
delete all;
purge;
print "*** FROM DELALL:

Calling the SAS Windowing Environment � 455

should see End of File (no records to list)";
list all;

end;
finish;

The latter DO group is necessary so that the pushedYES is not read before the RUN
statement. The following example illustrates the use of the module DELALL given
above:

/* Create a dummy data set for delall to delete records */
xnum = {1 2 3, 4 5 6, 7 8 0};
create dsnum1 from xnum;
append from xnum;

do;
call push (’yes’);
run delall;

end;

Calling the Operating System

Suppose that you want to construct and execute an operating system command. Just
push it to the token stream in the form of an X statement and have it executed under
a pause interrupt.

The following module executes any system command given as an argument:

start system(command);
call push(" x ’",command,"’; resume;");
pause;

finish;
run system(’listc’);

The call generates and executes a LISTC command under MVS:

x ’listc’; resume;

Calling the SAS Windowing Environment

The same strategy used for calling the operating system works for SAS global state-
ments as well, including calling the SAS windowing environment by generating DM
statements.

The following subroutine executes a SAS windowing environment command:

start dm(command);
call push(" dm ’",command,"’; resume;");
pause;

finish;

456 � Chapter 15. Using SAS/IML Software to Generate IML Statements

run dm(’log; color source red’);

The call generates and executes the statements

dm ’log; color source red’; resume;

which take you to the LOG window, where all source code is written in red.

Executing Any Command in an EXECUTE Call

The EXECUTE command executes the statements contained in the arguments using
the same facilities as a sequence of CALL PUSH, PAUSE, and RESUME statements.
The statements use the same symbol environment as that of the subroutine that calls
them. For example, consider the following subroutine:

proc iml;
start exectest;
/* IML STATEMENTS */

call execute ("xnum = {1 2 3, 4 5 6, 7 8 0};");
call execute ("create dsnum1 from xnum;");
call execute ("append from xnum;");
call execute ("print ’DSNUM should have 3 obs and 3 var:’;");
call execute ("list all;");

/* global (options) statement */
call execute ("options linesize=68;");
call execute ("print ’Linesize should be 68’;");

finish;
run exectest;

The output generated from EXECTEST is exactly the same as if you had entered the
statements one at a time:

DSNUM should have 3 obs and 3 var:

OBS COL1 COL2 COL3
------ --------- --------- ---------

1 1.0000 2.0000 3.0000
2 4.0000 5.0000 6.0000
3 7.0000 8.0000 0

Linesize should be 68

CALL EXECUTE could almost be programmed in IML as shown here; the difference
between this and the built-in command is that the following subroutine would not
necessarily have access to the same symbols as the calling environment:

start execute(command1,...);
call push(command1,...," resume;");
pause;

finish;

Interrupt Control � 457

Making Operands More Flexible

Suppose that you want to write a program that prompts a user for the name of a data
set. Unfortunately the USE, EDIT, and CREATE commands expect the data set name
as a hardcoded operand rather than an indirect one. However, you can construct and
execute a function that prompts the user for the data set name for a USE statement.

/* prompt the user to give dsname for use statement */
start flexible;

file log;
put ’What data set shall I use?’;
infile cards;
input dsname $;

call execute(’use’, dsname, ’;’);
finish;
run flexible;

If you enter USER.A, the program generates and executes the line

use user.a;

Interrupt Control

Whenever a program error or interrupt occurs, IML automatically issues a pause,
which places the module in a paused state. At this time, any statements pushed to the
input command queue get executed. Any subsequent RESUME statement (including
pushed RESUME statements) resume executing the module from the point where the
error or interrupt occurred.

If you have a long application such as reading a large data set and you want to be able
to find out where the data processing is just by entering a break-interrupt (sometimes
called an attention signal), you push the interrupt text. The pushed text can, in turn,
push its own text on each interrupt, followed by a RESUME statement to continue
execution.

For example, suppose you have a data set called TESTDATA that has 4096 observa-
tions. You want to print the current observation number if an attention signal is given.
The following code does this:

start obsnum;
use testdata;
brkcode={"print ’now on observation number’,i;"

"if (i<4096) then do;"
"call push(brkcode);"
"resume;"
"end;"
};

call push(brkcode);
do i=1 to 4096;

read point i;

458 � Chapter 15. Using SAS/IML Software to Generate IML Statements

end;
finish;
run obsnum;

After the module has been run, enter the interrupt control sequence for your operating
system. Type S to suspend execution. The IML procedure prints a message telling
which observation is being processed. Because the pushed code is executed at the
completion of the module, the message is also printed when OBSNUM ends.

Each time the attention signal is given, OBSNUM executes the code contained in
the variable BRKCODE. This code prints the current itteration number and pushes
commands for the next interrupt. Note that the PUSH and RESUME commands are
inside a DO group, making them conditional and ensuring that they are parsed before
the effect of the PUSH command is realized.

Specific Error Control

A PAUSE command is automatically issued whenever an execution error occurs,
putting the module in a holding state. If you have some way of checking for spe-
cific errors, you can write an interrupt routine to correct them during the pause state.

In this example, if a singular matrix is passed to the INV function, the IML procedure
pauses and executes the pushed code to make the result for the inverse be set to
missing values. The code uses the variable SINGULAR to detect if the interrupt
occurred during the INV operation.

This is particularly necessary because the pushed code is executed on completion of
the routine, as well as on interrupts.

proc iml;
a = {3 3, 3 3}; /* singular matrix */
/* If a singular matrix is sent to the INV function, */
/* IML normally sets the resulting matrix to be empty */
/* and prints an error message. */
b = inv(a);
print "*** A should be non-singular", a;
start singtest;

msg=" Matrix is singular - result set to missing ";
onerror=

"if singular then do; b=a#.; print msg; print b;
resume; end;";

call push(onerror);
singular = 1;
b = inv(a);
singular = 0;

finish ;
call singtest;

The resulting output is shown below:

ERROR: (execution) Matrix should be non-singular.

General Error Control � 459

Error occurred in module SINGTEST at line 67 column 9
operation : INV at line 67 column 16
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 67 column 9

Paused in module SINGTEST.

MSG
Matrix is singular - result set to missing

B
. .
. .

Resuming execution in module SINGTEST.

General Error Control
Sometimes, you may want to process or step over errors. To do this, put all the code
into modules and push a code to abort if the error count goes above some maximum.
Often, you may submit a batch job and get a trivial mistake that causes an error, but
you do not want to cause the whole run to fail because of it. On the other hand, if you
have many errors, you do not want to let the routine run.

In the following example, up to three errors are tolerated. A singular matrixA is
passed to the INV function, which would, by itself, generate an error message and
issue a pause in the module. This module pushes three RESUME statements, so that
the first three errors are tolerated. Messages are printed and execution is resumed.
The DO loop in the module OOPS is executed four times, and on the fourth iteration,
an ABORT statement is issued and you exit IML.

proc iml;
a={3 3, 3 3}; /* singular matrix */

/* */
/* GENERAL ERROR CONTROL -- exit iml for 3 or more errors */
/* */

start; /* module will be named MAIN */
errcode = {" if errors >= 0 then do;",

" errors = errors + 1;",
" if errors > 2 then abort;",
" else do; call push(errcode); resume; end;",
" end;" } ;

call push (errcode);
errors = 0;
start oops; /* start module OOPS */

460 � Chapter 15. Using SAS/IML Software to Generate IML Statements

do i = 1 to 4;
b = inv(a);

end;
finish; /* finish OOPS */
run oops;

finish; /* finish MAIN */
errors=-1; /* disable */
run;

The output generated from this example is shown below:

ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.
Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

Macro Interface � 461

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.
Exiting IML.

Actually, in this particular case it would probably be simpler to put three RESUME
statements after the RUN statement to resume execution after each of the first three
errors.

Macro Interface

The pushed text is scanned by the macro processor; therefore, the text can contain
macro instructions. For example, here is an all-purpose routine that shows what the
expansion of any macro is, assuming that it does not have embedded double quotes:

/* function: y = macxpand(x); */
/* will macro-process the text in x, */
/* and return the expanded text in the result. */
/* Do not use double quotes in the argument */
/* */

start macxpand(x);
call execute(’Y="’,x,’";’);
return(y);

finish;

Consider the following statements:

%macro verify(index);
data _null_;

infile junk&index;
file print;
input;
put _infile_;

run;
%mend;
y = macxpand(’%verify(1)’);
print y;

The output produced is shown below:

Y

DATA _NULL_; INFILE JUNK1; FILE PRINT; INPUT;
PUT _INFILE_; RUN;

462 � Chapter 15. Using SAS/IML Software to Generate IML Statements

IML Line Pushing Contrasted with Using the Macro Facility

The SAS macro language is a language embedded in and running on top of another
language; it generates text to feed the other language. Sometimes it is more conve-
nient to generate the text using the primary language directly rather than embedding
the text generation in macros. The preceding examples show that this can even be
done at execution time, whereas pure macro processing is done only at parse time.
The advantage of the macro language is its embedded, yet independent, nature: it
needs little quoting, and it works for all parts of the SAS language, not just IML.
The disadvantage is that it is a separate language that has its own learning burden,
and it uses extra reserved characters to mark its programming constructs and vari-
ables. Consider the quoting of IML versus the embedding characters of the macro
facility: IML makes you quote every text constant, whereas the macro facility makes
you use the special characters percent sign (%) and ampersand (&) on every macro
item. There are some languages, such as REXX, that give you the benefits of both
(no macro characters and no required quotes), but the cost is that the language forces
you to discipline your naming so that names are not expanded inadvertently.

Example 15.1. Full-Screen Editing

The ability to form and submit statements dynamically provides a very powerful
mechanism for making systems flexible. For example, consider the building of a data
entry system for a file. It is straightforward to write a system using WINDOW and
DISPLAY statements for the data entry and data processing statements for the I/O,
but once you get the system built, it is good only for that one file. With the ability to
push statements dynamically, however, it is possible to make a system that dynami-
cally generates the components that are customized for each file. For example, you
can change your systems from static systems to dynamic systems.

To illustrate this point, consider an IML system to edit an arbitrary file, a system like
the FSEDIT procedure in SAS/FSP software but programmed in IML. You cannot
just write it with open code because the I/O statements hardcode the filenames and
the WINDOW and DISPLAY statements must hardcode the fields. However, if you
generate just these components dynamically, the problem is solved for any file, not
just one.

proc iml;
/* FSEDIT */
/* This program defines and stores the modules FSEINIT, */
/* FSEDT, FSEDIT, and FSETERM in a storage catalog called */
/* FSED. To use it, load the modules and issue the command */
/* RUN FSEDIT; The system prompts or menus the files and */
/* variables to edit, then runs a full screen editing */
/* routine that behaves similar to PROC FSEDIT */
/* */
/* These commands are currently supported: */
/* */
/* END gets out of the system. The user is prompted */
/* as to whether or not to close the files and */
/* window. */
/* SUBMIT forces current values to be written out, */

Example 15.1. Full-Screen Editing � 463

/* either to append a new record or replace */
/* existing ones */
/* ADD displays a screen variable with blank values */
/* for appending to the end of a file */
/* DUP takes the current values and appends them to */
/* the end of the file */
/* number goes to that line number */
/* DELETE deletes the current record after confirmation */
/* by a Y response */
/* FORWARD1 moves to the next record, unless at eof */
/* BACKWARD1 moves to the previous record, unless at eof */
/* EXEC executes any IML statement */
/* FIND finds records and displays them */
/* */
/* Use: proc iml; */
/* reset storage=’fsed’; */
/* load module=_all_; */
/* run fsedit; */
/* */
/*---routine to set up display values for new problem--- */
start fseinit;

window fsed0 rows=15 columns=60 icolumn=18 color=’GRAY’
cmndline=cmnd group=title +30 ’Editing a data set’ color=’BLUE’;
/*---get file name--- */
_file=" ";
msg =

’Please Enter Data Set Name or Nothing For Selection List’;
display fsed0.title,

fsed0 (/ @5 ’Enter Data Set:’
+1 _file
+4 ’(or nothing to get selection list)’);

if _file=’ ’ then
do;

loop:
_f=datasets(); _nf=nrow(_f); _sel=repeat("_",_nf,1);
display fsed0.title,

fsed0 (/ "Select? File Name"/) ,
fsed0 (/ @5 _sel +1 _f protect=yes) repeat ;

_l = loc(_sel^=’_’);
if nrow(_l)^=1 then

do;
msg=’Enter one S somewhere’;
goto loop;

end;
_file = _f[_l];

end;
/*---open file, get number of records--- */
call queue(" edit ",_file,";

setin ",_file," NOBS _nobs; resume;"); pause *;
/*---get variables--- */
_var = contents();
_nv = nrow(_var);
sel = repeat("",_nv,1);
display fsed0.title,

fsed0 (/ "File:" _file) noinput,
fsed0 (/ @10 ’Enter S to select each var, or select none

to get all.’
// @3 ’select? Variable ’),
fsed0 (/ @5 _sel +5 _var protect=yes) repeat;

464 � Chapter 15. Using SAS/IML Software to Generate IML Statements

/*---reopen if subset of variables--- */
if any(_sel^=’_’) then

do;
_var = _var[loc(_sel^=’_’)];
_nv = nrow(_var);
call push(’close ’,_file,’; edit ’,_file,’ var
_var;resume;’);pause *;

end;
/*---close old window--- */
window close=fsed0;
/*---make the window---*/
call queue(’window fsed columns=55 icolumn=25 cmndline=cmnd

msgline=msg ’, ’group=var/@20 "Record " _obs
protect=yes’);

call queue(concat(’/"’,_var,’: " color="YELLOW" ’,
_var,’ color="WHITE"’));

call queue(’;’);
/*---make a missing routine---*/
call queue(’start vmiss; ’);
do i=1 to _nv;

val = value(_var[i]);
if type(val)=’N’ then call queue(_var[i],’=.;’);
else call queue(_var[i],’="’,

cshape(’ ’,1,1,nleng(val)),’";’);
end;
call queue(’finish; resume;’);
pause *;
/*---initialize current observation---*/
_obs = 1;
msg = Concat(’Now Editing File ’,_file);

finish;
/* */
/*---The Editor Runtime Controller--- */

start fsedt;
_old = 0; go=1;
do while(go);
/*--get any needed data--*/

if any(_obs^=_old) then do; read point _obs; _old = _obs;
end;
/*---display the record---*/
display fsed.var repeat;
cmnd = upcase(left(cmnd));
msg=’ ’;
if cmnd=’END’ then go=0;
else if cmnd=’SUBMIT’ then

do;
if _obs<=_nobs then

do;
replace point _obs; msg=’replaced’;

end;
else do;

append;
_nobs=_nobs+nrow(_obs);
msg=’appended’;

end;
end;

else if cmnd="ADD" then
do;

run vmiss;

Example 15.1. Full-Screen Editing � 465

_obs = _nobs+1;
msg=’New Record’;

end;
else if cmnd=’DUP’ then

do;
append;
_nobs=_nobs+1;
_obs=_nobs;
msg=’As Duplicated’;

end;
else if cmnd>’0’ & cmnd<’999999’ then

do;
_obs = num(cmnd);
msg=concat(’record number ’,cmnd);

end;
else if cmnd=’FORWARD1’ then _obs=min(_obs+1,_nobs);
else if cmnd=’BACKWARD1’ then _obs=max(_obs-1,1);
else if cmnd=’DELETE’ then

do;
records=cshape(char(_obs,5),1,1);
msg=concat(’Enter command Y to Confirm delete of’

,records);
display fsed.var repeat;
if (upcase(cmnd)=’Y’) then

do;
delete point _obs;
_obs=1;
msg=concat(’Deleted Records’,records);

end;
else msg=’Not Confirmed, Not Deleted’;

end;
else if substr(cmnd,1,4)=’FIND’ then

do;
call execute("find all where(",

substr(cmnd,5),
") into _obs;");

_nfound=nrow(_obs);
if _nfound=0 then

do;
_obs=1;
msg=’Not Found’;

end;
else

do;
msg=concat("Found ",char(_nfound,5)," records");

end;
end;

else if substr(cmnd,1,4)=’EXEC’ then
do;

msg=substr(cmnd,5);
call execute(msg);

end;
else msg=’Unrecognized Command; Use END to exit.’;
end;

finish;
/*---routine to close files and windows, clean up---*/

start fseterm;
window close=fsed;
call execute(’close ’,_file,’;’);

466 � Chapter 15. Using SAS/IML Software to Generate IML Statements

free _q;
finish;

/*---main routine for FSEDIT---*/
start fsedit;

if (nrow(_q)=0) then
do;

run fseinit;
end;

else msg = concat(’Returning to Edit File ’,_file);
run fsedt;
q=’’;
display fsed ("Enter ’q’ if you want to close files and windows"

_q " (anything else if you want to return later"
pause ’paused before termination’;

run fseterm;
finish;
reset storage=’fsed’;
store module=_all_;

Summary

In this chapter you learned how to use SAS/IML software to generate IML statements.
You learned how to use the PUSH, QUEUE, EXECUTE, and RESUME commands
to interact with the operating system or with the SAS windowing environment. You
also saw how to add flexibility to programs by adding interrupt control features and
by modifying error control. Finally, you learned how IML compares to the SAS
macro language.

Chapter 16
Wavelet Analysis

Chapter Contents

OVERVIEW .469
Some Brief Mathematical Preliminaries.469

GETTING STARTED .471
Creating the Wavelet Decomposition. .473
Wavelet Coefficient Plots. .476
Multiresolution Approximation Plots. .479
Multiresolution Decomposition Plots. .482
Wavelet Scalograms. .483
Reconstructing the Signal from the Wavelet Decomposition.487

DETAILS .489
Using Symbolic Names. .489
Obtaining Help for the Wavelet Macros and Modules.491

REFERENCES .491

468 � Chapter 16. Wavelet Analysis

Chapter 16
Wavelet Analysis

Overview

Wavelets are a versatile tool for understanding and analyzing data, with important
applications in nonparametric modeling, pattern recognition, feature identification,
data compression, and image analysis. Wavelets provide a description of your data
that localizes information at a range of scales and positions. Moreover, they can be
computed very efficiently, and there is an intuitive and elegant mathematical theory
to guide you in applying them.

Some Brief Mathematical Preliminaries

The discrete wavelet transform decomposes a function as a sum of basis functions
called wavelets. These basis functions have the property that they can be obtained by
dilating and translating two basic types of wavelets known as thescaling functionor
father waveletφ, and themother waveletψ. These translates and dilations are defined
as follows:

φj,k(x) = 2j/2φ(2jx− k)

ψj,k(x) = 2j/2ψ(2jx− k)

The indexj defines the dilation orlevel while the indexk defines the translate.
Loosely speaking, sums of theφj,k(x) capture low frequencies and sums of the
ψj,k(x) represent high frequencies in the data. More precisely, for any suitable func-
tion f(x) and for anyj0,

f(x) =
∑

k

cj0k φj0,k(x) +
∑
j≥j0

∑
k

dj
kψj,k(x)

where thecjk anddj
k are known as the scaling coefficients and the detail coefficients

respectively. For orthonormal wavelet families these coefficients can be computed by

cjk =
∫
f(x)φj,k(x) dx

dj
k =

∫
f(x)ψj,k(x) dx

The key to obtaining fast numerical algorithms for computing the detail and scaling
coefficients for a given functionf(x) is that there are simple recurrence relationships

470 � Chapter 16. Wavelet Analysis

that enable you to compute the coefficients at levelj−1 from the values of the scaling
coefficients at levelj. These formulae are

cj−1
k =

∑
i

hi−2kc
j
i

dj−1
k =

∑
i

gi−2kc
j
i

The coefficientshk andgk that appear in these formulae are calledfilter coefficients.
Thehk are determined by the father wavelet and they form a low-pass filter;gk =
(−1)kh1−k and form a high-pass filter. The preceding sums are formally over the
entire (infinite) range of integers. However, for wavelets that are zero except on a
finite interval, only finitely many of the filter coefficients are non-zero and so in this
case the sums in the recurrence relationships for the detail and scaling coefficients
are finite.

Conversely, if you know the detail and scaling coefficients at levelj− 1 then you can
obtain the scaling coefficients at levelj using the relationship

cjk =
∑

i

hk−2ic
j−1
i +

∑
i

gk−2id
j−1
i

Suppose that you have data values

yk = f(xk), k = 0, 1, 2, · · · , N − 1

atN = 2J equally spaced pointsxk. It turns out that the values2−J/2yk are good
approximations of the scaling coefficientscJk . Then using the recurrence formula you
can findcJ−1

k anddJ−1
k , k = 0, 1, 2, · · · , N/2− 1. The discrete wavelet transform of

theyk at levelJ − 1 consists of theN/2 scaling andN/2 detail coefficients at level
J − 1. A technical point that arises is that in applying the recurrence relationships to
finite data, a few values of thecJk for k < 0 or k ≥ N may be needed. One way to
cope with this difficulty is to extend the sequencecJk to the left and right using some
specified boundary treatment.

Continuing by replacing the scaling coefficients at any levelj by the scaling and
detail coefficients at levelj − 1 yields a sequence ofN coefficients

{c00, d0
0, d

1
0, d

1
1, d

2
0, d

2
1, d

2
2, d

2
3, d

3
1, . . . , d

3
7, . . . , d

J−1
0 , . . . , dJ−1

N/2−1}

This sequence is the finite discrete wavelet transform of the input data{yk}. At any
level j0 the finite dimensional approximation of the functionf(x) is

f(x) ≈
∑

k

cj0k φj0,k(x) +
J−1∑
j=j0

∑
k

dj
kψj,k(x)

Getting Started � 471

Getting Started
Fourier Transform Infrared (FT-IR) spectroscopy is an important tool in analytic
chemistry. This example demonstrates wavelet analysis applied to an FT-IR spectrum
of quartz (Sullivan 2000). The following DATA step creates a data set containing the
spectrum, expressed as an absorbance value for each of 850 wave numbers.

data quartzInfraredSpectrum;
WaveNumber=4000.6167786 - _N_ *4.00084378;
input Absorbance @@;

datalines;
4783 4426 4419 4652 4764 4764 4621 4475 4430 4618
4735 4735 4655 4538 4431 4714 4738 4707 4627 4523
4512 4708 4802 4811 4769 4506 4642 4799 4811 4732
4583 4676 4856 4868 4796 4849 4829 4677 4962 4994
4924 4673 4737 5078 5094 4987 4632 4636 5010 5166
5166 4864 4547 4682 5161 5291 5143 4684 4662 5221
5640 5640 5244 4791 4832 5629 5766 5723 5121 4690
5513 6023 6023 5503 4675 5031 6071 6426 6426 5723
5198 5943 6961 7135 6729 5828 6511 7500 7960 7960
7299 6484 7257 8180 8542 8537 7154 7255 8262 8898
8898 8263 7319 7638 8645 8991 8991 8292 7309 8005
9024 9024 8565 7520 7858 8652 8966 8966 8323 7513
8130 8744 8879 8516 7722 8099 8602 8729 8726 8238
7885 8350 8600 8603 8487 7995 8194 8613 8613 8408
7953 8236 8696 8696 8552 8102 7852 8570 8818 8818
8339 7682 8535 9038 9038 8503 7669 7794 8864 9163
9115 8221 7275 8012 9317 9317 8512 7295 7623 9021
9409 9338 8116 6860 7873 9282 9490 9191 7012 7392
9001 9483 9457 8107 6642 7695 9269 9532 9246 7641
6547 8886 9457 9457 8089 6535 7537 9092 9406 9178
7591 6470 7838 9156 9222 7974 6506 7360 8746 9057
8877 7455 6504 7605 8698 8794 8439 7057 7202 8240
8505 8392 7287 6634 7418 8186 8229 7944 6920 6829
7499 7949 7831 7057 6866 7262 7626 7626 7403 6791
7062 7289 7397 7397 7063 6985 7221 7221 7199 6977
7088 7380 7380 7195 6957 6847 7426 7570 7508 6952
6833 7489 7721 7718 7254 6855 7132 7914 8040 7880
7198 6864 7575 8270 8229 7545 7036 7637 8470 8570
8364 7591 7413 8195 8878 8878 8115 7681 8313 9102
9185 8981 8283 8197 8932 9511 9511 9101 8510 8670
9686 9709 9504 8944 8926 9504 9964 9964 9627 9212
9366 9889 10100 9939 9540 9512 9860 10121 10121 9828
9567 9513 9782 9890 9851 9510 9385 9339 9451 9451
9181 9076 9015 8960 9014 8957 8760 8760 8602 8584
8584 8459 8469 8373 8279 8327 8282 8341 8341 8155
8260 8260 8250 8350 8245 8358 8403 8355 8490 8490
8439 8689 8689 8621 8680 8661 8897 9028 8900 8873
8873 9187 9377 9377 9078 9002 9147 9635 9687 9535
9127 9242 9824 9928 9775 9200 9047 9572 10102 10102
9631 9024 9209 10020 10271 9830 9062 9234 10154 10483
10453 9582 9011 9713 10643 10701 10372 9368 9857 10865
10936 10572 9574 9691 10820 11452 11452 10623 9903 10787

472 � Chapter 16. Wavelet Analysis

11931 12094 11302 10604 11458 12608 12808 12589 11629 11795
12863 13575 13575 12968 12498 13268 14469 14469 13971 13727
14441 15334 15515 15410 14986 15458 16208 16722 16722 16618
17061 17661 18089 18089 18184 18617 19015 19467 19633 19830
20334 20655 20947 21347 21756 22350 22584 22736 22986 23412
24126 24498 24501 24598 24986 25729 26356 26356 26271 26754
27624 28162 28162 28028 28305 29223 30073 30219 30185 30308
31831 32699 32819 32793 33320 34466 35600 36038 36086 36518
37517 38765 39462 39681 40209 41243 42274 42772 42876 43172
43929 44842 45351 45395 45551 46035 46774 47353 47353 47362
47908 48539 48936 48978 49057 49497 50101 50670 50914 51134
51603 52276 53007 53399 53769 54281 54815 54914 55365 55874
56180 56272 56669 57076 57422 57458 57525 57681 57679 57318
57318 57181 57417 57409 57144 57047 56377 56551 56483 56098
56034 55598 55364 55364 55146 54904 54990 55501 55533 55362
54387 55340 55240 54748 53710 55346 55795 55795 55060 55945
55945 55753 56759 56859 57509 56741 56273 56961 58566 58566
58104 59275 59275 59051 59090 59461 60362 60560 61103 61272
61380 61878 62067 62237 62214 61182 61532 62173 62253 60473
61346 63143 63378 61519 61753 63078 63841 63841 62115 61227
63237 63237 61338 63951 63951 63604 63633 64625 65135 64976
63630 63494 63834 63338 63218 62324 64131 64234 65122 64551
64127 64415 64621 64621 63142 65344 65585 65476 65074 64714
63803 65085 65085 65646 65646 64851 65390 65390 64997 65541
65587 65682 65952 65952 65390 65702 65846 65734 65734 65628
65509 65571 65636 65636 65620 65487 65544 65547 65738 65758
65711 65360 65362 65362 65231 65333 65453 65473 65435 65302
65412 65412 65351 65242 65242 65170 65221 65297 65297 65202
65177 65183 65184 65179 65209 65209 65144 65134 65113 65009
64919 64945 64988 64988 64856 64686 64529 64370 64282 64233
64169 63869 63685 63480 63373 63349 63307 63131 63017 62885
62736 62736 62706 62666 62622 62671 62781 62853 62950 63106
63135 63141 63220 63263 63489 63807 63966 64132 64294 64612
64841 64985 65159 65204 65259 65540 65707 65749 65732 65719
65820 65895 65925 65925 65888 65937 66059 66109 66109 66078
66007 65897 65897 65747 65490 64947 64598 64363 64140 63801
63571 63395 63333 63442 63442 63339 63196 62911 62118 61795
61454 61456 61607 62025 62190 62190 62023 61780 61502 61482
61458 61320 61015 60852 60708 60684 60522 60488 60506 60640
60797 60995 61141 61141 61036 60664 60522 60017 59681 59129
58605 58035 57192 56137 54995 53586 52037 50283 48565 45419
43341 41111 36131 35377 34431 31679 29237 26898 24655 22417
19876 17244 15176 12575 10532 8180 6040 4059 2210 575

;

The following statements produce the line plot of these data displayed inFigure 16.1.

symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;

plot Absorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1
hreverse frame;

Creating the Wavelet Decomposition � 473

axis1 label = (r=0 a=90);
run;

Figure 16.1. FT-IR Spectrum of Quartz

This data contains information at two distinct scales, namely a low frequency under-
lying curve superimposed with a high frequency oscillation. Notice that the oscilla-
tion is not uniform but that it occurs in several distinct bands. Wavelet analysis is
an appropriate tool for providing insight into this type of data as it enables you to
identify the frequencies present in the absorbance data as the wave number changes.
This property of wavelets is known as “time frequency localization”; in this case
the role of time is played byWaveNumber. Also note that the dependent vari-
ableAbsorbance is measured at equally spaced values of the independent variable
WaveNumber. This condition is necessary for the direct use of the discrete wavelet
transform that is implemented in the SAS/IML wavelet functions.

Creating the Wavelet Decomposition

The following SAS code starts the wavelet analysis:

%wavginit;
proc iml;

%wavinit;

Notice that the previous code segment includes two SAS macro calls. You can use
the IML wavelet functions without using the WAVGINIT and WAVINIT macros. The

474 � Chapter 16. Wavelet Analysis

macros are called to initialize and load IML modules that you can use to produce sev-
eral standard wavelet diagnostic plots. These macros have been provided as autocall
macros that you can invoke directly in your SAS code.

The WAVGINIT macro must be called prior to invoking PROC IML. This macro
defines several macro variables that are used to adjust the size, aspect ratio, and font
size for the plots produced by the wavelet plot modules. This macro can also take
several optional arguments that control the positioning and and size of the wavelet
diagnostic plots. See the“Obtaining Help for the Wavelet Macros and Modules”
section on page 491 for details on getting help about this macro call.

The WAVINIT macro must be called from within PROC IML. It loads the IML mod-
ules that you can use to produce wavelet diagnostic plots. This macro also defines
symbolic macro variables that you can use to improve the readability of your code.

The following statements read the absorbance variable into an IML vector:

use quartzInfraredSpectrum;
read all var{Absorbance} into absorbance;

You are now in a position to begin the wavelet analysis. The first step is to set up the
options vector that specifies which wavelet and what boundary handling you want to
use. You do this as follows:

optn = &waveSpec; /* optn=j(1,4,.); */
optn[&family] = &daubechies; /* optn[3] = 1; */
optn[&member] = 3; /* optn[4] = 3; */
optn[&boundary] = &polynomial; /* optn[1] = 3; */
optn[°ree] = &linear; /* optn[2] = 1; */

These statements use macro variables that are defined in the WAVINIT macro. The
equivalent code without using these macro variables is given in the adjacent com-
ments. As indicated by the suggestive macro variable names, this options vector
specifies that the wavelet to be used is the third member of the Daubechies wavelet
family and that boundaries are to be handled by extending the signal as a linear poly-
nomial at each endpoint.

The next step is to create the wavelet decomposition with the following call:

call wavft(decomp,absorbance,optn);

This call computes the wavelet transform specified by the vectoroptn of the input
vectorabsorbance. The specified transform is encapsulated in the vectordecomp.
This vector is not intended to be used directly. Rather you use this vector as an
argument to other IML wavelet subroutines and plot modules. For example, you
use the WAVPRINT subroutine to print the information encapsulated in a wavelet
decomposition. The following code produces output inFigure 16.2.

Creating the Wavelet Decomposition � 475

call wavprint(decomp,&summary);
call wavprint(decomp,&detailCoeffs,1,4);

Decomposition Summary

Decomposition Name DECOMP
Wavelet Family Daubechies Extremal Phase
Family Member 3
Boundary Treatment Recursive Linear Extension
Number of Data Points 850
Start Level 0

Wavelet Detail Coefficients for DECOMP

Translate Level 1 Level 2 Level 3 Level 4

0 -1.71343E-9 1.36819E-10 -6.6097E-12 5.23868E-11
1 1340085.30 -128245.70 191.084707 4501.36
2 62636.70 6160.27 -1358.23
3 -238445.36 -54836.56 -797.724143
4 39866.95 676.034389
5 -28836.85 -5166.59
6 223421.00 -6088.99
7 -5794.67
8 30144.74
9 -3903.53
10 638.063264
11 -10803.45
12 33616.35
13 -50790.30

Figure 16.2. Output of WAVPRINT CALLS

Usually such displayed output is of limited use. More frequently you will want to
represent the transformed data graphically or use the results in further computational
routines. As an example, you can estimate the noise level of the data using a robust
measure of the standard deviation of the highest level detail coefficients, as demon-
strated in the following statements:

call wavget(tLevel,decomp,&topLevel);
call wavget(noiseCoeffs,decomp,&detailCoeffs,tLevel-1);

noiseScale=mad(noiseCoeffs,"nmad");
print "Noise scale = " noiseScale;

The result is shown inFigure 16.3;

NOISESCALE

Noise scale = 169.18717

Figure 16.3. Scale of Noise in the Absorbance Data

The first WAVGET call is used to obtain the top level number in the wavelet decom-
positiondecomp. The highest level of detail coefficients are defined at one level

476 � Chapter 16. Wavelet Analysis

below the top level in the decomposition. The second WAVGET call returns these
coefficients in the vectornoiseCoeffs. Finally, the MAD function computes a robust
estimate of the standard deviation of these coefficients.

Wavelet Coefficient Plots

Diagnostic plots greatly facilitate the interpretation of a wavelet decomposition. One
standard plot is the detail coefficients arranged by level. Using a module included by
the WAVINIT macro call, you can produce the plot shown inFigure 16.5as follows:

call coefficientPlot(decomp, , , , ,"Quartz Spectrum");

The first argument specifies the wavelet decomposition and is required. All other
arguments are optional and need not be specified. You can use the WAVHELP macro
to obtain a description of the arguments of this and other wavelet plot modules. The
WAVHELP macro is defined in autocall the WAVINIT macro. For example, invoking
the WAVHELP macro as follows writes the calling information shown inFigure 16.4
to the SAS log.

%wavhelp(coefficientPlot);

coefficientPlot Module

Function: Plots wavelet detail coefficients

Usage: call coefficientPlot(decomposition,
threshopt,
startLevel,
endLevel,
howScaled,
header);

Arguments:
decomposition - (required) valid wavelet decompostion produced

by the IML subroutine WAVFT
threshopt - (optional) numeric vector of 4 elements

specifying thresholding to be used
Default: no thresholding

startLevel - (optional) numeric scalar specifying the lowest
level to be displayed in the plot
Default: start level of decomposition

endLevel - (optional) numeric scalar specifying the highest
level to be displayed in the plot
Default: end level of decomposition

howScaled - (optional) character: ’absolute’ or ’uniform’
specifies coefficients are scaled uniformly
Default: independent level scaling

header - (optional) character string specifying a header
Default: no header

Figure 16.4. Log Output Produced by %wavhelp(coefficientPlot) Call

Wavelet Coefficient Plots � 477

Figure 16.5. Detail Coefficients Scaled by Level

In this plot the detail coefficients at each level are scaled independently. The oscil-
lations present in the absorbance data are captured in the detail coefficients at levels
7, 8, and 9. The following statement produces a coefficient plot of just these higher
level detail coefficients and shows them scaled uniformly.

call coefficientPlot(decomp, ,7, ,
’uniform’,"Quartz Spectrum");

The plot is shown inFigure 16.6.

478 � Chapter 16. Wavelet Analysis

Figure 16.6. Uniformly Scaled Detail Coefficients

As noted earlier, noise in the data is captured in the detail coefficients, particularly in
the small coefficients at higher levels in the decomposition. By zeroing or shrinking
these coefficients, you can get smoother reconstructions of the input data. This is
done by specifying a threshold value for each level of detail coefficients and then
zeroing or shrinking all the detail coefficients below this threshold value. The IML
wavelet functions and modules support several policies for how this thresholding is
performed as well as for selecting the thresholding value at each level. See the the
“WAVIFT Call” section on page 983 for details.

An options vector is used to specify the desired thresholding; several standard choices
are predefined as macro variables in the WAVINIT module. The following statements
produce the detail coefficient plot with the “SureShrink” thresholding algorithm of
Donoho and Johnstone (1995).

call coefficientPlot(decomp,&SureShrink,6,, ,
"Quartz Spectrum");

The plot is shown inFigure 16.7.

Multiresolution Approximation Plots � 479

Figure 16.7. Thresholded Detail Coefficients

You can see that “SureShrink” thresholding has zeroed some of the detail coefficients
at the higher levels but the larger coefficients that capture the oscillation in the data are
still present. Consequently, reconstructions of the the input signal using the thresh-
olded detail coefficients will still capture the essential features of the data, but will be
smoother as much of the very fine scale detail has been eliminated.

Multiresolution Approximation Plots

One way of presenting reconstructions is in a multiresolution approximation plot.
In this plot reconstructions of the input data are shown by level. At any level the
reconstruction at that level uses only the detail and scaling coefficients defined below
that level.

The following statement produces such a plot, starting at level 3:

call mraApprox(decomp, ,3, ,"Quartz Spectrum");

The results are shown inFigure 16.8.

480 � Chapter 16. Wavelet Analysis

Figure 16.8. Multiresolution Approximation

You can see that even at level 3, the basic form of the input signal has been captured.
As noted earlier, the oscillation present in the absorbance data is captured in the detail
coefficients above level 7. Thus, the reconstructions at level 7 and below are largely
free of these oscillation since they do not use any of the higher detail coefficients. You
can confirm this observation by plotting just this level in the multiresolution analysis
as follows:

call mraApprox(decomp, ,7,7,"Quartz Spectrum");

The results are shown inFigure 16.9.

Multiresolution Approximation Plots � 481

Figure 16.9. Level 7 of the Multiresolution Approximation

You can also plot the multiresolution approximations obtained with thresholded detail
coefficients. For example, the following statement plots the top level reconstruction
obtained using the “SureShrink” threshold:

call mraApprox(decomp,&SureShrink,10,10,
"Quartz Spectrum");

The results are shown inFigure 16.10.

482 � Chapter 16. Wavelet Analysis

Figure 16.10. Top Level of Multiresolution Approximation with SureShrink
Thresholding Applied

Note that the high frequency oscillation is still present in the reconstruction even with
“SureShrink” thresholding applied.

Multiresolution Decomposition Plots

A related plot is the multiresolution decomposition plot, which shows the detail coef-
ficients at each level. For convenience, the starting level reconstruction at the lowest
level of the plot and the reconstruction at the highest level the plot are also included.
Adding suitably scaled versions of all the detail levels to the starting level reconstruc-
tion recovers the final reconstruction. The following statement produces such a plot,
yielding the results shown inFigure 16.11.

call mraDecomp(decomp, ,5, , ,"Quartz Spectrum");

Wavelet Scalograms � 483

Figure 16.11. Multiresolution Decomposition

Wavelet Scalograms

Wavelet scalograms communicate the time frequency localization property of the dis-
crete wavelet transform. In this plot each detail coefficient is plotted as a filled rect-
angle whose color corresponds to the magnitude of the coefficient. The location and
size of the rectangle are related to the time interval and the frequency range for this
coefficient. Ccoefficients at low levels are plotted as wide and short rectangles to
indicate that they localize a wide time interval but a narrow range of frequencies in
the data. In contrast, rectangles for coefficients at high levels are plotted thin and
tall to indicate that they localize small time ranges but large frequency ranges in the
data. The heights of the rectangles grow as a power of 2 as the level increases. If
you include all levels of coefficients in such a plot, the heights of the rectangles at
the lowest levels are so small that they will not be visible. You can use an option to
plot the heights of the rectangles on a logarithmic scale. This results in rectangles
of uniform height but requires that you interpret the frequency localization of the
coefficients with care.

The following statement produces a scalogram plot of all levels with “SureShrink”
thresholding applied:

call scalogram(decomp,&SureShrink, , ,0.25,
’log’,"Quartz Spectrum");

The sixth argument specifies that the rectangle heights are to be plotted on a logarith-
mic scale. The role of the fifth argument (0.25) is to amplify the magnitude of the
small detail coefficients. This is necessary since the detail coefficients at the lower

484 � Chapter 16. Wavelet Analysis

levels are orders of magnitude larger than those at the higher levels. The amplifi-
cation is done by first scaling the magnitudes of all detail coefficients to lie in the
interval [0, 1] and then raising these scaled magnitudes to the power0.25. Note that
smaller powers yield larger amplification of the small detail coefficient magnitudes.
The default amplification is1/3.

The results are shown inFigure 16.12.

Figure 16.12. Scalogram Showing All Levels

The bar on the left-hand side of the scalogram plot indicates the overall energy of
each level. This energy is defined as the sum of the squares of the detail coefficients
for each level. These energies are amplified using the same algorithm for amplifying
the detail coefficient magnitudes. The energy bar inFigure 16.12shows that higher
energies occur at the lower levels whose coefficients capture the gross features of
the data. In order to interpret the finer-scale details of the data it is helpful to focus
on just the higher levels. The following statement produces a scalogram for levels 6
and above without using a logarithmic scale for the rectangle heights, and using the
default coefficient amplification.

call scalogram(decomp,&SureShrink,6, , , ,
"Quartz Spectrum");

The result is shown inFigure 16.13.

Wavelet Scalograms � 485

Figure 16.13. Scalogram of Levels 6 and Above Using SureShrink Thresholding

The scalogram inFigure 16.13reveals that most of the energy of the oscillation in
the data is captured in the detail coefficients at level 8. Also note that many of the
coefficients at the higher levels are set to zero by “SureShrink” thresholding. You
can verify this by comparingFigure 16.13with Figure 16.14, which shows the cor-
responding scalogram except that no thresholding is done. The following statement
producesFigure 16.14:

call scalogram(decomp, ,6, , , ,"Quartz Spectrum");

486 � Chapter 16. Wavelet Analysis

Figure 16.14. Scalogram of Levels 6 and Above Using No Thresholding

Reconstructing the Signal from the Wavelet Decomposition � 487

Reconstructing the Signal from the Wavelet Decomposition

You can use the WAVIFT subroutine to invert a wavelet transformation computed
using the WAVFT subroutine. If no thresholding is specified, then up to numerical
rounding error this inversion is exact. The following statements provide an illustra-
tion of this:

call wavift(reconstructedAbsorbance,decomp);
errorSS=ssq(absorbance-reconstructedAbsorbance);
print "The reconstruction error sum of squares = " errorSS;

The output is shown inFigure 16.15.

ERRORSS

The reconstruction error sum of squares = 1.321E-16

Figure 16.15. Exact Reconstruction Property of WAVIFT

Usually you use the WAVIFT subroutine with thresholding specified. This yields a
smoothed reconstruction of the input data. You can use the following statements
to create a smoothed reconstruction ofabsorbance and add this variable to the
QuartzInfraredSpectrum data set.

call wavift(smoothedAbsorbance,decomp,&SureShrink);
create temp from smoothedAbsorbance[colname=’smoothedAbsorbance’];

append from smoothedAbsorbance;
close temp;

quit;

data quartzInfraredSpectrum;
set quartzInfraredSpectrum;
set temp;

run;

The following statements produce the line plot of the smoothed absorbance data
shown inFigure 16.16:

symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;

plot smoothedAbsorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1
hreverse frame;
axis1 label = (r=0 a=90);

run;

488 � Chapter 16. Wavelet Analysis

Figure 16.16. Smoothed FT-IR Spectrum of Quartz

You can see by comparingFigure 16.1with Figure 16.16that the wavelet smooth of
the absorbance data has preserved all the essential features of this data.

Using Symbolic Names � 489

Details

Using Symbolic Names

Several of the wavelet subroutines take arguments that are options vectors that spec-
ify user input. For example, the third argument in a WAVFT subroutine call is an
options vector that specifies which wavelet and which boundary treatment are used
in computing the wavelet transform. Typical code that defines this options vector is

optn = j(1, 4, .);
optn[1] = 0;
optn[3] = 1;
optn[4] = 3;

A problem with such code is that it is not easily readable. By using symbolic names
readability is greatly enhanced. SAS macro variables provide a convenient mecha-
nism for creating such symbolic names. For example, the previous code could be
replaced by

optn = &waveSpec;
optn[&family] = &daubechies;
optn[&member] = 3;
optn[&boundary] = &zeroExtension;

where the symbolic macro variables (names with a preceding ampersand) resolve
to the relevant quantities. Another example where symbolic names improve code
readability is to use symbolic names for an integer argument that controls what action
a multipurpose subroutine performs. An illustration is replacing code such as

call wavget(n,decomposition,1);
call wavget(fWavelet,decompostion,8);

by

call wavget(n,decomposition,&numPoints);
call wavget(fWavelet,decompostion,&fatherWavelet);

A set of symbolic names is defined in the autocall WAVINIT macro. The following
tables list the symbolic names that are defined in this macro:

490 � Chapter 16. Wavelet Analysis

Table 16.1. Macro Variables for Wavelet Specification

Position Admissible Values
Name Value Name Value
&boundary 1 &zeroExtension 0

&periodic 1
&polynomial 2
&reflection 3
&antisymmetricReflection 4

°ree 2 &constant 0
&linear 1
&quadratic 2

&family 3 &daubechies 1
&symmlet 2

&member 4 1 - 10

Table 16.2. Macro Variables for Threshold Specification

Position Admissible Values
Name Value Name Value
&policy 1 &none 0

&hard 1
&soft 2
&garrote 3

&method 2 &absolute 0
&minimax 1
&universal 2
&sure 3
&sureHybrid 4
&nhoodCoeffs 5

&value 3 positive real
&levels 4 &all -1

positive integer

Table 16.3. Symbolic Names for the Third Argument of WAVGET

Name Value
&numPoints 1
&detailCoeffs 2
&scalingCoeffs 3
&thresholdingStatus 4
&specification 5
&topLevel 6
&startLevel 7
&fatherWavelet 8

References � 491

Table 16.4. Macro Variables for the Second Argument of WAVPRINT

Name Value
&summary 1
&detailCoeffs 2
&scalingCoeffs 3
&thresholdedDetailCoeffs 4

Table 16.5. Macro Variables for Predefined Wavelet Specifications

Name &boundary °ree &family &member
&waveSpec { }
&haar { &periodic . &daubechies 1 }
&daubechies3 { &periodic . &daubechies 3 }
&daubechies5 { &periodic . &daubechies 5 }
&symmlet5 { &periodic . &symmlet 5 }
&symmlet8 { &periodic . &symmlet 8 }

Table 16.6. Macro Variables for Predefined Threshold Specifications

Name &policy &method &value &levels
&threshSpec { }
&RiskShrink { &hard &minimax . &all }
&VisuShrink { &soft &universal . &all }
&SureShrink { &soft &sureHybrid . &all }

Obtaining Help for the Wavelet Macros and Modules

The WAVINIT macro that you call to define symbolic macro variables and wavelet
plot modules also defines a macro WAVHELP that you can call to obtain help for the
wavelet macros and plot modules. The syntax for calling the WAVHELP macro is

%WAVHELP < (name)>; ;

wherename is one of wavginit, wavinit, coefficientPlot, mraApprox, mraDecomp,
or scalogram. This macro displays usage and argument information for the specified
macro or module. If you call the WAVHELP macro with no arguments, it lists the
names of the macros and modules for which help is available. Note that you can
obtain help for the built-in IML wavelet subroutines using the SAS Online Help.

References

Daubechies, I. (1992),Ten Lectures on Wavelets,Volume 61, CBMS-NSF Regional
Conference Series in Applied Mathematics, Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Donoho, D.L. and Johnstone, I.M. (1994), “Ideal Spatial Adaptation via Wavelet
Shrinkage,”Biometrika, 81, 425–455.

492 � Chapter 16. Wavelet Analysis

Donoho, D.L. and Johnstone, I.M. (1995), “Adapting to Unknown Smoothness
via Wavelet Shrinkage,”Journal of the American Statistical Association, 90,
1200–1224.

Mallat, S. (1989), “Multiresolution Approximation and Wavelets,”Transactions of
the American Mathematical Society, 315, 69–88.

Ogden, R.T. (1997),Essential Wavelets for Statistical Applications and Data
Analysis,Boston: Birkhäuser.

Sullivan, D. (2000), “FT-IR Library,” [http://www.che.utexas.edu/~dls/ir/ir–dir.html],
accessed 16 October 2000.

Chapter 17
Genetic Algorithms (Experimental)

Chapter Contents

OVERVIEW .495

FORMULATING A GENETIC ALGORITHM OPTIMIZATION 497
Choosing the Problem Encoding. .497
Setting the Objective Function. .498
Controlling the Selection Process. .499
Using Crossover and Mutation Operators.500

EXECUTING A GENETIC ALGORITHM505
Setting Up the IML Program .505
Incorporating Local Optimization. .510
Handling Constraints .511
Example 17.1. Genetic Algorithm with Local Optimization.511
Example 17.2. Real-Valued Objective Optimization with Constant Bounds. 514
Example 17.3. Integer Programming Knapsack Problem.518
Example 17.4. Optimization with Linear Constraints Using Repair Strategy. 520

REFERENCES .523

494 � Chapter 17. Genetic Algorithms (Experimental)

Chapter 17
Genetic Algorithms (Experimental)

Overview

Genetic algorithms (referred to hereafter as GAs) are a family of search algorithms
that seek optimal solutions to problems using the principles of natural selection and
evolution. GAs can be applied to almost any optimization problem and are especially
useful for problems where other calculus-based techniques do not work, such as when
the objective function has many local optimums, is not differentiable or continuous,
or solution elements are constrained to be integers or sequences. In most cases GAs
require more computation than specialized techniques that take advantage of specific
problem structure or characteristics. However, for optimization problems with no
such techniques available, GAs provide a robust general method of solution. The
current GA implementation in IML is experimental, and will be furthur developed
and tested in later SAS releases.

In general, GAs use the following procedure to search for an optimum solution:

initialization: An initial population of solutions is randomly generated, and an ob-
jective function value is evaluated for each member of the solution
population.

regeneration: A new solution population is generated from the current solution
population. First, individual members are chosen stochastically to
parent the next generation such that those who are the “fittest” (have
the best objective function values) are more likely to be picked. This
process is calledselection. Those chosen solutions will either copied
directly to the next generation or will be passed to a crossover opera-
tor, with a user-specified crossover probabilty. The crossover opera-
tor combines two or more parents to produce new offspring solutions
for the next generation. A fraction of the next generation solutions,
selected according to a user-specified mutation probability, will be
passed to a mutation operator which introduces random variations in
the solutions.

The crossover and mutation operators are commonly calledgenetic
operators. The crossover operator passes characteristics from each
parent to the offspring, especially those characteristics shared in
common. It is selection and crossover that distinguish GAs from
a purely random search, and direct the algorithm toward finding an
optimum. Mutation is designed to ensure diversity in the search to
prevent premature convergence to a local optimum.

As the final step in regeneration, the current population is replaced
by the new solutions generated by selection, crossover, and mutation.

496 � Chapter 17. Genetic Algorithms (Experimental)

The objective function values are evaluated for the new generation.
A common variation on this approach that is supported in IML is to
pass one or more of the best solutions from the current population on
to the next population unchanged. This often leads to faster conver-
gence, and assures that the best solution generated at any time during
the optimization is never lost.

repeat: After regeneration, the process checks some stopping criteria, such
as the number of iterations or some other convergence criteria. If
the stopping criteria is not met, then the algorithm loops back to the
regenerationstep.

Although GAs have been demonstrated to work well for a variety of problems, there
is no guarantee of convergence to a global optimum. Also, the convergence of GAs
can be sensitive to the choice of genetic operators, mutation probability, and selection
criteria, so that some initial experimentation and fine-tuning of these parameters is
often required.

In the traditional formulation of GAs, the parameter set to be searched is mapped
into finite-length bit strings, and the genetic operators applied to these strings, or
chromosomes, are based on biological processes. While there is a theoretical basis
for the effectiveness of GAs formulated in this way (Goldberg 1989), in practice most
problems don’t fit naturally into this paradigm. Modern research has shown that opti-
mizations can be set up using the natural solution domain (for example, a real vector
or integer sequence) and applying crossover and mutation operators analogous to the
traditional genetic operators, but more appropriate to the natural formulation of the
problem (Michalewicz 1996). This latter approach is sometimes calledevolutionary
computing. IML implements the evolutionary computing approach because it makes
it much easier to formulate practical problems with realistic constraints. Throughout
this documentation, the term “genetic algorithm” is to be interpreted as evolutionary
computing.

IML provides a flexible framework for implementing GAs, enabling you to write
your own modules for the genetic operators and objective function, as well as provid-
ing some standard genetic operators that you can specify. This framework will also
enable you to introduce some variations to the usual GA, such as adapting the opti-
mization parameters during the optimization, or incorporating some problem-specific
local optimizations into the process to enhance convergence.

An IML program to do GA optimization is structured differently from a program do-
ing non-linear optimization with the nlp routines. With the nlp routines, generally
a single call is made in which the user specifies the objective and optimization pa-
rameters, and that call runs the optimization process to completion. In contrast, to
perform a GA optimization you use separate calls to the GA routines to specify the
problem encoding (GASETUP), genetic operators (GASETMUT and GASETCRO),
objective function (GASETOBJ), and selection criteria (GASETSEL). You then call
the GAINIT routine to initialize the problem population. After that, you advance the
optimization process by calling GAREGEN (for the regeneration step) within an IML
loop. Within the loop you can use GAGETMEM and GAGETVAL calls to retrieve
population members and objective function values for examination. This strategy al-

Choosing the Problem Encoding � 497

lows you to monitor the convergence of the GA, adjust optimization parameters with
GA routine calls within the loop, and exit the loop when the GA is not producing
furthur improvement in the objective function. The next section explains the opti-
mization parameters in more detail and gives guidance on how they should be set.

Formulating a Genetic Algorithm Optimization

To formulate a GA in IML you must decide on five basic optimization parame-
ters:

1. Encoding: The general structure and form of the solution.

2. Objective: The function to be optimized. IML also enables you to specify whether
the function is to be minimized or maximized.

3. Selection: How members of the current solution population will be chosen to be
parents to propagate the next generation.

4. Crossover: How the attributes of parent solutions will be combined to produce
new offspring solutions.

5. Mutation: How random variation will be introduced into the new offspring solu-
tions to maintain genetic diversity.

The following section discusses each of these items in more detail.

Choosing the Problem Encoding

Problem encoding refers to the structure or type of solution space that is to be op-
timized, such as real-valued fixed-length vectors or integer sequences. IML offers
encoding options appropriate to several types of optimization problems.

General Numeric Matrix: With this encoding, solutions can take the form of a nu-
meric matrix of any shape. Also, different solutions can have different dimensions.
This is the most flexible option. If you use this encoding, IML makes no assump-
tions about the form of the solution, so you are required to specify user modules for
crossover and mutation operators, and a user module for creating the initial solution
population.

Fixed-length Real-valued Row Vector:If you use this encoding, you must also spec-
ify the number of components in the solution vector. Using this option, you can use
some IML-supplied crossover and mutation operators later, or you can supply custom
modules. You can also specify upper and lower bounds for each component in the
vector, and IML will generate an initial population for the GA randomly distributed
between the bounds. If you don’t explicitly set crossover and mutation operators,
IML will provide default operators to be used in the optimization. This type of en-
coding is often used for general non-linear optimization problems.

Fixed-length Integer-valued Row Vector:This option is similar to the fixed-length
real-valued encoding already described, except that the IML-supplied genetic opera-
tors and initialization process will preserve and generate integer solutions. This type

498 � Chapter 17. Genetic Algorithms (Experimental)

of encoding might be applicable, for example, in an assignment problem where the
positions within the vector represent different tasks, and the integer values represent
different machines or other resources that might be applied to each task.

Fixed-length Integer Sequence:In this encoding, each solution is composed of a
sequence of integers ranging from 1 to the length of the sequence, with different
solutions distinguished by different ordering of the elements. For example,s1 ands2
are two integer sequences of length 6:

s1 = {1 2 3 4 5 6};
s2 = {2 6 5 3 4 1};

This type of encoding is often used for routing problems like the Traveling Salesman
Problem, where each element represents a city in a circular route, or scheduling prob-
lems.

Setting the Objective Function

Before executing a GA, the you must specify the objective function to be opti-
mized. There are currently two options available: a user function module, or an
IML-supplied Traveling Salesman Problem (TSP) objective function.

User Function Module: The module must take exactly one parameter, which will
be one solution, and return a numeric scalar objective function value. The module
can also have a global clause, which may be used to pass in any other information
required to determine the objective function value. If global parameters are used,
you must be careful about changing them after the optimization has been initialized.
If a change in a global parameter affects the objective function values, you must
reevaluate the entire solution population (see GAREEVAL call) to ensure that the
values are consistent with the changed global parameter.

The solution parameter passed into the routine is also written back out to the solution
population when the module exits, so you should take care not to modify the param-
eter and therefore the solution population unintentionally. However, it is permissible
and may prove very effective to add logic to the module to improve the solution
through some heuristic technique or local optimization, and deliberately pass that
improved solution back to the solution population by updating the parameter before
returning. Using this hybrid approach may significantly improve the convergence of
the GA, especially in later stages when solutions may be near an optimum.

TSP Objective Function:An objective function for the Traveling Salesman Problem
can be specified with integer sequence encoding. For the TSP, a solution sequence
represents a circular route. For example, a solutions with the value

s = {2 4 3 1 5};

represents a route going from location 2 to location 4 to 3 to 1 to 5 and back to 2. You
must also specify a cost matrixc, wherec[i,j] is the cost of going from locationi to
location j. The objective function is just the cost of traversing the route determined
by s, and is equivalent to the IML code:

Controlling the Selection Process � 499

start TSPObjectiveFunction(s) global(c);
nc = ncol(s);
cost = c[s[nc],s[1]];
do i = 1 to nc-1;
cost = cost + c[s[i],s[i+1]];

end;
return (cost);
finish;

The IML-supplied order crossover operator and invert mutation operator are espe-
cially appropriate for the TSP and other routing problems.

Controlling the Selection Process

There are two competing factors that need to be balanced in the selection process,
theselective pressureandgenetic diversity. Selective pressure, the tendency to select
only the best members of the current generation to propagate to the next, is required to
direct the GA to an optimum. Genetic diversity, the maintenance of a diverse solution
population, is also required to ensure that the solution space is adequately searched,
especially in the earlier stages of the optimization process. Too much selective pres-
sure can lower the genetic diversity so that the global optimum is overlooked and
the GA converges to a local optimum. Yet, with too little selective pressure the GA
may not converge to an optimum in a reasonable time. A proper balance between the
selective pressure and genetic diversity must be maintained for the GA to converge
in a reasonable time to a global optimum.

IML offers two variants of a standard technique for the selection process commonly
known astournament selection(Miller and Goldberg 1995). In general, the tour-
nament selection process randomly chooses a group of members from the current
population, compares their objective values, and picks the one with the best objec-
tive value to be a parent for the next generation. Tournament selection was chosen
for IML because it is one of the fastest selection methods, and offers you good con-
trol over the selection pressure. Other selection methods such as roulette and rank
selection may be offered as options in the future.

In the first variant of tournament selection, you can control the selective pressure
by specifying the tournament size, the number of members chosen to compete for
parenthood in each tournament. This number should be two or greater, with two
implying the weakest selection pressure. Tournament sizes from two to ten have
been successfully applied to various GA optimizations, with sizes over four to five
considered to represent strong selective pressure.

The second variant of tournament selection provides weaker selective pressure than
the first variant just described. The tournament size is set at two, and the member
with the best objective value is chosen with a probability that you specify. This best-
player-wins probability can range from 0.5 to 1.0, with 1.0 implying that the best
member is always chosen (equivalent to a conventional tournament of size two) and
0.5 implying an equal chance of either member being chosen (equivalent to pure ran-
dom selection). Using this option, you could set the best-player-wins probabilty close
to 0.5 in the initial stages of the optimization, and gradually increase it to strengthen

500 � Chapter 17. Genetic Algorithms (Experimental)

the selective pressure as the optimization progresses, in a similar manner to the sim-
ulated annealing optimization technique.

Another important selection option supported in IML is theeliteparameter. If an elite
value ofn is specified, then the bestn solutions will be carried over to the next gener-
ation unchanged, with the rest of the new population filled in by tournament selection,
crossover, and mutation. Setting the elite parameter to one or greater will therefore
guarantee that the best solution is never lost through selection and propagation, which
often improves the convergence of the algorithm.

Using Crossover and Mutation Operators

IML enables you to use user modules for crossover and mutation operators, or you
may choose from the operators provided by IML. The IML operators are tied to the
problem encoding options, and IML will check to make sure a specified operator is
appropriate to the problem encoding. You can also turn off crossover, in which case
the current population will pass on to the next generation subject only to mutation.
Mutation can be turned off by setting the mutation probability to 0.

The IML-supplied genetic operators are described below, beginning with the
crossover operators:

simple: This operator is defined for fixed-length integer and real vector encod-
ing. To apply this operator, a positionk within a vector of lengthn is
chosen at random, such that1 ≤ k < n. Then for parentsp1 andp2
the offspring are

c1= p1[1,1:k] || p2[1,k+1:n];

c2= p2[1,1:k] || p1[1,k+1:n];

For real fixed-length vector encoding, you can specify an additional
parameter,a, wherea is a scalar and0 < a ≤ 1. It modifies the
offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k] || x2[1,k+1:n];

x1 = a * p1 + (1-a) * p2
c2 = p2[1,1:k] || x1[1,k+1:n];

Note that fora = 1, which is the default value,x2 andx1 are the same
as p2 and p1. Small values ofa reduce the difference between the
offspring and parents. For integer encodinga is always 1.

two-point: This operator is defined for fixed-length integer and real vector encod-
ing with lengthn ≥ 3. To apply this operator, two positionsk1 andk2
within the vector are chosen at random, such that1 ≤ k1 < k2 < n.
Element values between those positions are swapped between parents.
For parentsp1andp2 the offspring are

Using Crossover and Mutation Operators � 501

c1 = p1[1,1:k1] || p2[1,k1+1:k2] || p1[1,k2+1:n];

c2 = p2[1,1:k1] || p1[1,k1+1:k2] || p2[1,k2+1:n];

For real vector encoding you can specify an additional parameter,a,
where0 < a ≤ 1. It modifies the offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k1] || x2[1,k1+1:k2] || p1[1,k2+1:n];

x1 = a * p1 + (1-a) * p2;
c2 = p2[1,1:k1] || x1[1,k1+1:k2] || p2[1,k2+1:n];

Note that fora = 1, which is the default value,x2 andx1 are the same
as p2 and p1. Small values ofa reduce the difference between the
offspring and parents. For integer encodinga is always 1.

arithmetic: This operator is defined for real and integer fixed-length vector encod-
ing. This operator computes offspring of parentsp1andp2as

c1 = a * p1 + (1-a) * p2;

c2 = a * p2 + (1-a) * p1;

wherea is a random number between 0 and 1. For integer encoding,
each component is rounded off to the nearest integer. It has the advan-
tage that it will always produce feasible offspring for a convex solution
space. A disadvantage of this operator is that it will tend to produce
offspring toward the interior of the search region, so that it may be less
effective if the optimum lies on or near the search region boundary.

heuristic: This operator is defined for real fixed-length vector encoding. It com-
putes the first offspring from the two parentsp1andp2as

c1 = a * (p2 - p1) + p2;

wherep2 is the parent with the better objective value, anda is a random
number between 0 and 1. The second offspring is computed as in the
arithmetic operator:

c2 = (1 - a) * p1 + a * p2;

This operator is unusual in that it uses the objective value. It has the ad-
vantage of directing the search in a promising direction, and automat-
ically fine-tuning the search in an area where solutions are clustered.
If the solution space has upper and lower bound constraints the off-
spring will be checked against the bounds, and any component outside
its bound will be set equal to that bound. The heuristic operator will
perform best when the objective function is smooth, and may not work
well if the objective function or its first derivative is discontinuous.

pmatch: The partial match operator is defined for sequence encoding. It pro-
duces offspring by transferring a subsequence from one parent, and
filling the remaining positions in a way consistent with the position

502 � Chapter 17. Genetic Algorithms (Experimental)

and ordering in the other parent. Start with two parents and randomly
chosen cutpoints as indicated:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

The first step is to cross the selected segments (. indicates positions
yet to be determined):

c1 = {. . 9 3 4 1 . . .};
c2 = {. . 3 4 5 6 . . .};

Next, define a mapping according to the two selected segments:

9-3, 3-4, 4-5, 1-6

Next, fill in the positions where there is no conflict from the corre-
sponding parent:

c1 = {. 2 9 3 4 1 7 8 .};
c2 = {8 7 3 4 5 6 2 . .};

Last, fill in the remaining positions from the subsequence mapping. In
this case, for the first child1 → 6 and9 → 3, and for the second child
5 → 4, 4 → 3, 3 → 9 and6 → 1.

c1 = {6 2 9 3 4 1 7 8 5};
c2 = {8 7 3 4 5 6 2 9 1};

This operator will tend to maintain similarity of both the absolute po-
sition and relative ordering of the sequence elements, and is useful for
a wide range of sequencing problems.

order: This operator is defined for sequence encoding. It produces offspring
by transferring a subsequence of random length and position from one
parent, and filling the remaining positions according to the order from
the other parent. For parentsp1andp2, first choose a subsequence:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

c1 = {. . 3 4 5 6 . . .};
c2 = {. . 9 3 4 1 . . .};

Starting at the second cutpoint, the elements ofp2 in order are (cycling
back to the beginning):

2 5 6 8 7 9 3 4 1

after removing 3, 4, 5 and 6, which have already been placed inc1, we
have:

2 8 7 9 1

Placing these back in order starting at the second cutpoint yields

c1 = {9 1 3 4 5 6 2 8 7};

Using Crossover and Mutation Operators � 503

Applying this logic toc2yields

c2 = {5 6 9 3 4 1 7 8 2};

This operator maintains the similarity of the relative order, or adja-
cency, of the sequence elements of the parents. It is especially ef-
fective for circular path-oriented optimizations, such as the Traveling
Salesman Problem.

cycle: This operator is defined for sequence encoding. It produces offspring
such that the position of each element value in the offspring comes
from one of the parents. For example, for parentsp1andp2,

p1 = {1 2 3 4 5 6 7 8 9};
p2 = {8 7 9 3 4 1 2 5 6};

For the first child, pick the first element from the first parent:

c1 = {1};

To maintain the condition that the position of each element value must
come from one of the parents, the position of the ’8’ value must come
from p1, because the ’8’ position inp2 is already taken by the ’1’ inc1:

c1 = {1 8 .};

Now the position of ’5’ must come fromp1, and so on until the process
returns to the first position:

c1 = {1 . 3 4 5 6 . 8 9};

At this point, choose the remaining element positions fromp2:

c1 = {1 7 3 4 5 6 2 8 9};

For the second child, starting with the first element from the second
parent, similar logic produces

c2 = {8 2 9 3 4 1 7 5 6};

This operator is most useful when the absolute position of the elements
is of most importance to the objective value.

The mutation operators supported by IML are as follows:

uniform: This operator is defined for fixed-length real or integer encoding with
specified upper and lower bounds. To apply this operator, a positionk
is randomly chosen within the solution vectorv, andv[k] is modified
to a random value between the upper and lower bounds for element
k. This operator may prove especially useful in early stages of the
optimization, since it will tend to distribute solutions widely across the
search space, and avoid premature convergence to a local optimum.
However, in later stages of an optimization with real vector encoding,
when the search needs to be fine-tuned to hone in on an optimum, the
uniform operator may hinder the optimization.

504 � Chapter 17. Genetic Algorithms (Experimental)

delta: This operator is defined for integer and real fixed-length vector encod-
ing. It first chooses an element of the solution at random, and then
perturbs that element by a fixed amount, set by adeltainput parameter.
deltahas the same dimension as the solution vectors. To apply the mu-
tation, a randomly chosen elementk of the solution vectorv is modified
such that

v[k] = v[k] + delta[k]; /* with probability 0.5 */
or

v[k] = v[k] - delta[k];

If upper and lower bounds are specified for the problem, thenv[k] is ad-
justed as necessary to fit within the bounds. This operator gives you the
ability to control the scope of the search with thedeltavector. One pos-
sible strategy is to start with a largerdeltavalue, and then reduce it as
the search progresses and begins to converge to an optimum. This oper-
ator is also useful if the optimum is known to be on or near a boundary,
in which casedeltacan be set large enough to always perturb the solu-
tion element to a boundary.

swap: This operator is defined for sequence problem encoding. It picks two
random locations in the solution vector, and swaps their value. You can
also specify that multiple swaps be made for each mutation.

invert: This operator is defined for sequence encoding. It picks two locations
at random, and then reverses the order of elements between them. This
operator is most often applied to the Traveling Salesman Problem.

The IML-supplied crossover and mutation operators that are allowed for each prob-
lem encoding are summarized in the following table.

Table 17.1. Valid Genetic Operators for Each Encoding

Encoding Crossover Mutation
general user module user module
fixed-length real vector user module user module

simple uniform
two-point delta
arithmetic
heuristic

fixed-length integer vector user module user module
simple uniform
two-point delta
arithmetic

fixed-length integer sequence user module user module
pmatch swap
order invert
cycle

A user module specified as a crossover operator must be a subroutine with four pa-
rameters. The module should compute and return two new offspring solutions in the

Setting Up the IML Program � 505

first two parameters, based on the two parent solutions, which will be passed into the
module in the last two parameters. The module should not modify the parent solu-
tions passed into it. A global clause can be used to pass in any additional information
that the module might use.

A user module specified as a mutation operator must be a subroutine with exactly one
parameter. When the module is called, the parameter will contain the solution that
is to be mutated. The module will be expected to update the parameter with the new
mutated value for the solution. As with crossover, a global clause can be used to pass
in any additional information that the module might use.

Executing a Genetic Algorithm

Setting Up the IML Program

After you formulate the GA optimization problem as described in the previous
section, executing the genetic algorithm in IML is simple and straightforward.
Remember that the current GA implementation in IML is experimental, and will be
furthur developed and tested in later SAS releases. The following table summarizes
the IML GA modules used to set each of the optimization parameters. IML will use
reasonable default values for some of the parameters if they are not specified by the
GA calls, and these default values are also listed. Parameters shown in italics are not
required in all cases.

Table 17.2. Establishing Optimization Parameters

Type Set By Parameter Value
encoding GASETUP encoding 0 →general

1 →fixed-length real
2 →fixed-length integer
3 →fixed-length sequence

size fixed-length size
seed initial random seed

objective GASETOBJ id returned from GASETUP
objtype 0 →minimize user module

1 →maximize user module
2 →Traveling Salesman Problem

parm if objtype=0 or 1, user module
if objtype=2, cost coefficients

selection GASETSEL id returned from GASETUP
elite integer in [0, population size]
type 0 →conventional tournament

1 →dual tournament with BPW prob
parm if type = 0, tournament size

if type = 1, real number in [0.5,1]
default if elite 1
not set type conventional tournament

parm 2

506 � Chapter 17. Genetic Algorithms (Experimental)

crossover GASETCRO id returned from GASETUP
crossprob crossover probability
type 0 →user module

1 →simple
2 →two-point
3 →arithmetic
4 →heuristic
5 →pmatch
6 →cycle
7 →order

parm module name for type = 0
0 <val≤ 1 if encoding=1, 0<type<3

default if crossprob 1.0
not set type heuristic if encoding=1

simple if encoding=2
pmatch if encoding=3, objtype 0
order if objtype=2 (TSP)

mutation GASETMUT id returned from GASETUP
mutprob mutation probability
type 0 →user module

1 →uniform
2 →delta
3 →swap
4 →invert

parm delta value if type=2
number of swaps if type=3

default if mutprob 0.05
not set type uniform if encoding=1 or 2, bounded

delta if encoding=1 or 2, no bounds
swap if encoding=3, not TSP
invert if objtype=1 (TSP)

After setting the optimization parameters, you are ready to execute the GA. First, an
initial solution population must be generated with a GAINIT call. GAINIT imple-
ments theinitialization phase of the GA, generating an initial population of solutions
and evaluating the objective value of each member solution. In the GAINIT call you
specify the population size and any constant bounds on the solution domain. Next
comes an IML loop containing a GAREGEN call. GAREGEN implements there-
generationphase of the GA, which generates a new solution population based on
selection, crossover, and mutation of the current solution population, then replaces
the current population with the new population and computes the new objective func-
tion values.

After the GAREGEN call, you can monitor the convergence of the GA by retrieving
the objective function values for the current population with the GAGETVAL call.
You might check the average value of the objective population, or check only the best

Setting Up the IML Program � 507

value. If the elite parameter is 1 or more, then it is easy to check the best member of
the population, since it will always be the first member retrieved.

After your stopping criteria has been reached, you can retrieve the members of the
solution population with the GAGETMEM call. To end the optimization, you should
always use the GAEND call to free up memory resources allocated to the GA.

Below are some example programs to illustrate setting up and executing a genetic
algorithm. The first example illustrates a simple program, a ten-city TSP using all
IML defaults. The cost coefficients correspond to the cities being laid out on a two-
by-five grid. The optimal route has a total distance of ten.

proc iml;

/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1,

1 0 1 2 3 4 5 4 3 2,
2 1 0 1 2 3 4 5 4 3,
3 2 1 0 1 2 3 4 5 4,
4 3 2 1 0 1 2 3 4 5,
5 4 3 2 1 0 1 2 3 4,
4 5 4 3 2 1 0 1 2 3,
3 4 5 4 3 2 1 0 1 2,
2 3 4 5 4 3 2 1 0 1,
1 2 3 4 5 4 3 2 1 0 };

/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */

10, /* number of locations */
1234 /* initial seed */

);
/* set objective function */
call gasetobj(id,

2, /* 2 -> Traveling Salesman Problem */
coeffs /* cost coefficient matrix */
);

/* initialization phase */
call gainit(id,

100 /* initial population size */
);

/* execute regeneration loop */

niter = 20; /* number of iterations */
bestValue = j(niter,1); /* to store results */

call gagetval(value, id, 1); /* gets first value */
bestValue[1] = value;

do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);

508 � Chapter 17. Genetic Algorithms (Experimental)

bestValue[i] = value;
end;

/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

"final best value " value [l = ""];

call gaend(id);

For this test case, there is no call to GASETSEL. Therefore IML will use default se-
lection parameters: an elite value of 1 and a conventional tournament of size 2. Also,
since there is no GASETCRO or GASETMUT call, IML will use default genetic op-
erators: the order operator for crossover and the invert operator for mutation, and a
default mutation probability of 0.05. The output results are

iteration BESTVALUE

1 18
2 18
3 16
4 14
5 14
6 14
7 12
8 12
9 12
10 12
11 12
12 12
13 12
14 12
15 12
16 12
17 12
18 12
19 10
20 10

best member 10 1 2 3 4 5 6 7 8 9

final best value 10

The optimal value was reached after 19 iterations. Because the elite value was 1, the
best solution was retained and passed on to each successive generation, and therefore
never lost. Note that out of 3,628,800 possible solutions (representing 362,800 unique

Setting Up the IML Program � 509

paths), the GA found the optimum after only 1,900 function evaluations, without
using any problem-specific information to assist the optimization. You could also do
some experimentation, and specify different genetic operators with a GASETCRO
and GASETMUT call, and different selection parameters with a GASETSEL call:

/* alternate problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */

10, /* number of locations */
1234 /* initial seed */

);
/* set objective function */
call gasetobj(id,

2, /* 2 -> Traveling Salesman Problem */
coeffs /* cost coefficient matrix */
);

call gasetcro(id,
1.0, /* crossover probabilty 1 */
5 /* 5 -> pmatch operator */
);

call gasetmut(id,
0.05, /* mutation probability */
3 /* 3 -> swap operator */
);

call gasetsel(id,
3, /* set elite to 3 */
1, /* dual tournament */
0.95 /* best-player-wins probability 0.95 */
);

/* initialization phase */
call gainit(id,

100 /* initial population size */
);

/* execute regeneration loop */

niter = 15; /* number of iterations */
bestValue = j(niter,1); /* to store results */

call gagetval(value, id, 1); /* gets first value */
bestValue[1] = value;

do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);
bestValue[i] = value;

end;

/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

510 � Chapter 17. Genetic Algorithms (Experimental)

"final best value " value [l = ""];

call gaend(id);

The output of this test case is

iteration BESTVALUE

1 24
2 18
3 18
4 16
5 16
6 14
7 14
8 14
9 14

10 12
11 12
12 12
13 10
14 10
15 10

best member 3 4 5 6 7 8 9 10 1 2

final best value 10

Note that convergence was faster than for the previous case, reaching an optimum
after 13 iterations. This illustrates that the convergence of a GA may be very sensitive
to the choice of genetic operators and selection parameters, and for practical problems
some experimental fine-tuning of optimization parameters may be required to obtain
acceptable convergence.

Incorporating Local Optimization

One commonly used technique is to combine the GA with a local optimization tech-
nique specific to the problem being solved. This can be done within the IML GA
framework by incorporating a local optimization into the objective function evalua-
tion: return a locally optimized objective value, and optionally replace the original
solution passed into the module with the optimized solution.

Always replacing the original solution with the locally optimized one will cause faster
convergence, but it is also more likely to converge prematurely to a local optimum.
One way to reduce this possibility is to not replace the original solution in every case,
but replace it with some probabilityp. For some problems, values ofp from 5 to
15 percent have been shown to significantly improve convergence, while avoiding
premature convergence to a local optimum (Michalewicz 1996) .

Example 17.1. Genetic Algorithm with Local Optimization � 511

Handling Constraints

Practical optimization problems often come with constraints, which may make the
problem difficult to solve. Constraints are handled in GAs in a variety of ways.

If it is possible, the most straightforward approach is to set the problem encoding,
genetic operators, and initialization such that the constraints are automatically met.
For example, a non-linear optimization problem overn real variables with constant
upper and lower bounds is easily formulated in IML using real fixed-length encoding,
arithmetic crossover, and uniform mutation. The arithmetic crossover operator can
be used without modification in any optimization over a convex solution space, when
the optimum is expected to be an interior point of the domain.

Another approach to satisfying constraints is to repair solutions after genetic opera-
tors have been applied. This is what IML does when using the heuristic crossover
operator or delta mutation operator with fixed bounds: it adjusts any individual com-
ponent that violates an upper or lower bound. You can repair a solution inside a user
crossover or mutation module, or repairs can be made by modifying the solution in a
user objective function module, as was described in the previous section.

Another technique is to allow solutions to violate constraints, but to impose a penalty
in the objective function for unsatisfied constraints. If the penalty is severe enough,
the algorithm should converge to an optimum point within the constraints. This ap-
proach should be used carefully. If most of the points in the solution space violate
the constraints, then this technique may converge prematurely to the first feasible
solution found. Also, convergence may be poor to a solution that lies on or near a
constraint boundary.

Example 17.1. Genetic Algorithm with Local Optimization

For the symmetric Traveling Salesman Problem, there is a simple local optimization
that can be incorporated into a user objective function module, which is to check
each pair of adjacent locations in the solution and swap their positions if that would
improve the objective function value. Here is the previous TSP example, modified to
use an objective function module that implements this strategy. In this initial example,
the optimized solution is not written back out to the solution population (except to get
the final solution at the end).

proc iml;

/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1,

1 0 1 2 3 4 5 4 3 2,
2 1 0 1 2 3 4 5 4 3,
3 2 1 0 1 2 3 4 5 4,
4 3 2 1 0 1 2 3 4 5,
5 4 3 2 1 0 1 2 3 4,
4 5 4 3 2 1 0 1 2 3,
3 4 5 4 3 2 1 0 1 2,
2 3 4 5 4 3 2 1 0 1,
1 2 3 4 5 4 3 2 1 0 };

512 � Chapter 17. Genetic Algorithms (Experimental)

start TSPObjectiveFunction(r) global(coeffs, p);
s = r;
nc = ncol(s);
/* local optimization, assumes symmetric cost *
* coefficients */

do i = 1 to nc;
city1 = s[i];
inext = 1 + mod(i,nc);
city2 = s[inext];
if i=1 then

before = s[nc];
else
before = s[i-1];

after = s[1 + mod(inext,nc)];
if (coeffs[before,city1] + coeffs[city2, after]) >

(coeffs[before,city2] + coeffs[city1, after])
then do;
s[i] = city2;
s[inext] = city1;

end;
end;
/* compute objective function */
cost = coeffs[s[nc],s[1]];
do i = 1 to nc-1;
cost = cost + coeffs[s[i],s[i+1]];

end;
if uniform(1234)<=p then

r = s;
return (cost);

finish;

/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */

10, /* number of locations */
123 /* initial random seed */

);
/* set objective function */
call gasetobj(id,

0, /* 0 -> minimize a user-defined module */
"TSPObjectiveFunction"
);

call gasetcro(id, 1.0, 6);
call gasetmut(id, 0.05, 4);
call gasetsel(id, 1, 1, 0.95);
p = 0; /* probability of writing locally optimized

* solution back out to population */
/* initialization phase */
call gainit(id,

100 /* initial population size */
);

/* execute regeneration loop */

niter = 10; /* number of iterations */

Example 17.1. Genetic Algorithm with Local Optimization � 513

bestValue = j(niter,1); /* to store results */

call gagetval(value, id, 1); /* gets first (and best) value */
bestValue[1] = value;

do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);
bestValue[i] = value;

end;

/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;

/* make sure local optimization is
* written back to all solutions */

p = 1.; /* set global probability to 1 */
call gareeval(id);

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

"final best value " value [l = ""];
call gaend(id);

The results of running this program are

iteration BESTVALUE

1 12
2 12
3 12
4 12
5 10
6 10
7 10
8 10
9 10
10 10

best member 7 6 5 4 3 2 1 10 9 8

final best value 10

Convergence is much improved by the local optimization, reaching the optimum in
just 5 iterations compared to 13 with no local optimization. Writing some of the
optimized solutions back to the solution population, by setting the global probability
p to 0.05 or 0.15, will improve convergence even more.

514 � Chapter 17. Genetic Algorithms (Experimental)

Example 17.2. Real-Valued Objective Optimization with
Constant Bounds

The next example illustrates some of the strengths and weaknesses of the arithmetic
and heuristic crossover operators. The objective function to be minimized is

start sin_obj(x) global(xopt);
r = abs(sin(sum(abs(x-xopt))));
return(r);

finish;

This function obviously has a minimum atx=xopt, and is not differentiable at all
points. The following program setsxopt= 0 and specifies constant boundary con-
straints such that the optimum is in the interior of the search space, and specifies the
heuristic crossover operator:

proc iml;

/* objective function, has minimum of 0 at x = xopt */
start sin_obj(x) global(xopt);
r = abs(sin(sum(abs(x-xopt))));
return(r);

finish;

xopt = { 0 0 0 };
optimum = xopt;
optval = sin_obj(optimum);

id = gasetup(1, /* 1-> fixed-length floating point vector encoding */
3, /* 3-> length of solution vectors */
1234 /* 0-> initial random seed */

);
call gasetobj(id,0,"sin_obj"); /* 0->minimize a user module,

* "sin_obj" is name of module */
call gasetcro(id, 0.9, 4); /* crossover probabilty 0.9,

* 4-> heuristic crossover operator */

call gasetmut(id,0.05,2,0.01); /* mutation probability 0.05,
* 2-> delta mutation operator
* 0.01 is delta value */

call gasetsel(id, 5, 1, 0.95); /* carry best 5 solutions over
* to the next generation, dual
* tournment with 0.95 best-player
* wins probability */

bounds = {-1 -1 -1, 1 1 1};
call gainit(id,200,bounds); /* initialize population with

* 200 members, "bounds" gives
* upper and lower bounds for
* components of randomly
* randomly generated vectors */

summary = j(20,2);

Example 17.2. Real-Valued Objective Optimization with Constant Bounds � 515

mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 2 to 20;

call garegen(id);

call gagetval(value, id); /* get all objective values of
* the population */

summary[i,1] = value[1];
summary[i,2] = value[:];

end;

iteration = t(1:20);
print iteration summary;
call gaend(id);

The output results are

SUMMARY
ITERATION bestValue avgValue

1 0.894517 0.8926763
2 0.894517 0.752227
3 0.1840732 0.6087493
4 0.14112 0.4848342
5 0.14112 0.3991614
6 0.14112 0.3539561
7 0.0481937 0.3680798
8 0.0481937 0.3243406
9 0.0481937 0.3027395

10 0.0481937 0.2679123
11 0.0481937 0.2550643
12 0.0481937 0.2582514
13 0.0481937 0.2652337
14 0.0481937 0.2799655
15 0.0383933 0.237546
16 0.0383933 0.3008743
17 0.0383933 0.2341022
18 0.0383933 0.1966969
19 0.0383933 0.2778152
20 0.0383933 0.2690036

To show the convergence of the overall population, the average value of the objec-
tive function for the whole population is printed out as well as the best value. The
optimum value for this formulation is 0, and the optimum solution is (0 0 0). The
output shows the convergence of the GA to be slow, especially as the solutions get
near the optimum. This is the result of applying the heuristic crossover operator to an

516 � Chapter 17. Genetic Algorithms (Experimental)

ill-behaved objective function. If you change the crossover to the arithmetic operator
by changing the GASETCRO call to

call gasetcro(id, 0.9, 3); /* 3-> arithmetic crossover operator */

you get the following output:

SUMMARY
ITERATION bestValue avgValue

1 0.894517 0.8926763
2 0.894517 0.8014329
3 0.1840732 0.6496871
4 0.1705931 0.4703868
5 0.0984926 0.2892114
6 0.076859 0.1832358
7 0.0287965 0.1123732
8 0.0273074 0.0720792
9 0.018713 0.0456323

10 0.0129708 0.0309648
11 0.0087931 0.0240822
12 0.0087931 0.0172102
13 0.0050753 0.0128258
14 0.0019603 0.0092872
15 0.0016225 0.0070575
16 0.0016225 0.0051149
17 0.0012465 0.0036445
18 0.0011895 0.002712
19 0.0007646 0.0023329
20 0.0007646 0.0020842

For this case, the arithmetic operator shows improved convergence. If we change the
problem characteristics again by changing the constraints so that the optimum lies on
a boundary

bounds = {0 0 0, 1 1 1};

The output using the arithmetic operator is

SUMMARY
ITERATION bestValue avgValue

1 0.8813497 0.8749132
2 0.8813497 0.860011
3 0.3721446 0.8339357
4 0.3721446 0.79106
5 0.3721446 0.743336
6 0.3721446 0.7061592
7 0.3721446 0.6797346
8 0.3721446 0.6302206
9 0.3721446 0.5818008

Example 17.2. Real-Valued Objective Optimization with Constant Bounds � 517

10 0.3721446 0.5327339
11 0.3721446 0.5149562
12 0.3721446 0.48525
13 0.3721446 0.4708617
14 0.3721446 0.4582203
15 0.3721446 0.433538
16 0.3721446 0.4256162
17 0.3721446 0.4236062
18 0.3721446 0.4149336
19 0.3721446 0.4135214
20 0.3721446 0.4078068

In this case, the algorithm fails to converge to the true optimum, given the character-
istic of the arithmetic operator to converge on interior points. However, if you switch
back to the heuristic crossover operator the results are

SUMMARY
ITERATION bestValue avgValue

1 0.8813497 0.8749132
2 0.8813497 0.7360591
3 0.3721446 0.5465098
4 0 0.3427185
5 0 0.2006271
6 0 0.0826017
7 0 0.0158228
8 0 0.0002602
9 0 0.00005
10 0 0.00065
11 0 0.0003
12 0 0.0002
13 0 0.0002
14 0 0.000285
15 0 0.0005
16 0 0.0002952
17 0 0.0002
18 0 0.0001761
19 0 0.00035
20 0 0.00035

These results show a rapid convergence to the optimum. This example illustrates
how the results of a GA are very operator-dependent. For complicated problems
with unknown solution, you might need to try a number of different combinations
of parameters in order to have confidence that you have converged to a true global
optimum.

518 � Chapter 17. Genetic Algorithms (Experimental)

Example 17.3. Integer Programming Knapsack Problem

The next example uses the integer encoding, along with user modules for crossover
and mutation. It formulates the Knapsack Problem using fixed-length integer encod-
ing. The integer vector solutions is a vector of ones and zeros, wheres[i]=1 implies
that itemi is packed in the knapsack. The weight constraints of the problem are not
handled explicitly, but are accounted for by including a penalty for overweight in
the objective function. The crossover operator randomly chooses a value for each
element of the solution vector from each parent. The mutation operator randomly
changes the values of a user-set number of elements in the solution vector. For this
problem the value of the global optimum is 18.

proc iml;
weight = {2 3 4 4 1 1 1 1 1 1 1 1 1 1 1};
limit = 9; /* weight limit */
reward = {6 6 6 5 1.3 1.2 1.1 1.0 1.1 1.3 1.0 1.0 0.9 0.8 0.6};

start knapsack(x) global(weight, reward, limit);
wsum = sum(weight # x);
rew = sum(reward # x);
/* subtract penalty for exceeding weight */
if wsum>limit then

rew = rew - 5 * (wsum - limit);
return(rew);

finish;

start switch_mut(s) global(nswitches);
n = ncol(s);
do i = 1 to nswitches;

k = int(uniform(1234) * n) + 1;
if s[k]=0 then

s[k] = 1;
else
s[k] = 0;

end;
finish;

start uniform_cross(child1, child2, parent1, parent2);
child1 = parent1;
child2 = parent2;
do i = 1 to ncol(parent1);

r = uniform(1234);
if r<=0.5 then do;
child1[i] = parent2[i];
child2[i] = parent1[i];

end;
end;

finish;

id = gasetup(2,15, 123);
call gasetobj(id, 1, "knapsack"); /* maximize objective module */
call gasetcro(id, 1.0, 0,"uniform_cross"); /* user crossover module */

Example 17.3. Integer Programming Knapsack Problem � 519

call gasetmut(id,
0.20, /* mutation probabilty */
0, "switch_mut" /* user mutation module */
);

nswitches = 3;
call gasetsel(id, 3, /* carry 3 over to next generation */

1, /* dual tournament */
0.95 /* best-player-wins probabilty */

);
call gainit(id,100,{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1});
niter = 20;
summary = j(niter,2);
mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];

end;
call gagetmem(mem, value, id, 1);
print "best member " mem[f = 1.0 l = ""],

"best value " value[l = ""];
iteration = t(1:niter);
print iteration summary;
call gaend(id);

The output of the program is

best member 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
best value 18

SUMMARY
ITERATION bestValue avgValue

1 16 2.44
2 16 6.257
3 16 6.501
4 16.7 7.964
5 16.7 8.812
6 16.7 9.254
7 16.7 10.021
8 16.8 11.216
9 16.9 12.279
10 16.9 12.094
11 16.9 11.633
12 16.9 11.431
13 18 11.502

520 � Chapter 17. Genetic Algorithms (Experimental)

14 18 13.2
15 18 13.128
16 18 13.282
17 18 12.876
18 18 13.715
19 18 12.889
20 18 13.15

Note that for this problem, the mutation parameters are set higher than is often seen
for GAs. For this example, this is necessary to prevent premature convergence.

Example 17.4. Optimization with Linear Constraints Using
Repair Strategy

This problem seeks a minimum within a convex domain specified by a convex hull,
a set of points such that all points in the search space are normalized linear combi-
nations of those points. Each solution is represented by a set of weightsw such that
there is onewi for each point in the convex hull,0 ≤ wi ≤ 1, andΣwi = 1. In this
example the feasible region is the convex hull defined by the set of points (-3 -2), (3
-2), (-3 2) and (3 2). The objective function is a six-hump camel-back function (see
Michalewicz, Appendix B), with a known global minimum value of -1.0316 at two
different points, (-0.0898,0.7126) and (0.0898,-0.7126). A user mutation module is
specified, and the simple crossover operator is used. Both the mutation operator and
the crossover operator will produce solutions that violate the constraints, so in the
objective function each solution will be checked and re-normalized to bring it back
within the convex hull.

proc iml;

/* Test case using user modules for the mutation operator and
* for initialization
*/

start sixhump(w) global(cvxhull);
/* Function has global minimum value of -1.0316
* at x = {-0.0898 0.7126} and
* x = { 0.0898 -0.7126}
*/
sum = w[1,+];

/* guard against the remote possibility of all-0 weights */
if sum=0 then do;

nc = ncol(w);
w = j(1, nc, 1/nc);

sum = 1;
end;

/* re-normalize weights */
w = w/sum;

/* convert to x-coordinate form */

Example 17.4. Optimization with Linear Constraints Using Repair Strategy � 521

x = (w * cvxhull)[+,];
x1 = x[1];
x2 = x[2];

/* compute objective value */
r = (4 - 2.1*x1##2 + x1##4/3)*x1##2 + x1*x2 +

(-4 + 4*x2*x2)*x2##2;
return(r);

finish;

/* each row is one point on the boundary of
* the convex hull */

cvxhull = {-3 -2,
3 -2,
-3 2,
3 2};

/* initialization module */
start cvxinit(w) global(cvxhull);
sum = 0;
a = j(1, nrow(cvxhull), 1234);
do while(sum = 0);
r = uniform(a);
sum = r[1,+];

end;
w = r / sum;
finish;

/* mutation module */
start cvxmut(w)global(cvxhull);
row = int(uniform(1234) * nrow(cvxhull)) + 1;
r = uniform(1234);
w[1,row] = r;

finish;

id = gasetup(1, /* real fixed-length vector encoding */
nrow(cvxhull), /* vector size = number of points

* specifying convex hull
*/

1234);
call gasetobj(id,

0, /* minimize a user-specified objective function */
"sixhump"
);

call gasetsel(id,
5, /* carry over the best 5 from each generation */
1, /* dual tournament */

0.95 /* best-player-wins probability */
);

call gasetcro(id,
0.8, /* crossover probability */
1 /* simple crossover operator */
);

call gasetmut(id,0.05,0,"cvxmut");

522 � Chapter 17. Genetic Algorithms (Experimental)

call gainit(id,
100, /* population size */

, /* not using constant bounds */
"cvxinit" /* initialization module */

);

niter = 35; /* number of iterations */
summary = j(niter,2);
mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];

end;
call gagetmem(mem, value, id, 1);
bestX = (mem * cvxhull)[+,];
print "best X " bestX[l = ""],

"best value " value[l = ""];
iteration = t(1:niter);
print iteration summary;
call gaend(id);

The output results are

best X 0.089842 -0.712658
best value -1.031628

SUMMARY
ITERATION bestValue avgValue

1 -0.082301 0.9235856
2 -0.948434 0.1262678
3 -0.956136 0.2745601
4 -1.017636 0.1367912
5 -1.028457 -0.241069
6 -1.028457 -0.353218
7 -1.028457 -0.56789
8 -1.028457 -0.73044
9 -1.028457 -0.854496

10 -1.028509 -0.941693
11 -1.031334 -0.936541
12 -1.031334 -0.90363
13 -1.031373 -0.774917
14 -1.031614 -0.873418
15 -1.031614 -0.886818
16 -1.031618 -0.95678
17 -1.031619 -0.933061

References � 523

18 -1.031626 -0.885132
19 -1.031628 -0.936944
20 -1.031628 -0.906637
21 -1.031628 -0.925809
22 -1.031628 -0.860156
23 -1.031628 -0.946146
24 -1.031628 -0.817196
25 -1.031628 -0.883284
26 -1.031628 -0.904361
27 -1.031628 -0.974893
28 -1.031628 -0.975647
29 -1.031628 -0.872004
30 -1.031628 -1.031628
31 -1.031628 -0.897558
32 -1.031628 -0.922121
33 -1.031628 -0.855045
34 -1.031628 -0.922061
35 -1.031628 -0.958257

Any problem with linear constraints could be formulated in this way, by determining
the convex hull corresponding to the constraints. The genetic operators and the repair
strategy are straightforward to apply, and as this case shows, can give reasonable
convergence to a global optimum.

References

Goldberg, D. E. (1989),Genetic Algorithms in Search, Optimization and Machine
Learning,Reading, MA: Addison-Wesley Longman.

Miller, B. L. and Goldberg, D. E. (1995),Genetic Algorithms, Tournament Selecton,
and the Effects of Noise, Technical Report 95006, Illinois Genetic Algorithm
Laboratory, University of Urbana-Champaign.

Michalewicz, Zbigniew (1996),Genetic Algorithms + Data Structures = Evolution
Programs, New York: Springer-Verlag.

524 � Chapter 17. Genetic Algorithms (Experimental)

Chapter 18
Sparse Matrix Algorithms

(Experimental)

Chapter Contents

OVERVIEW .527

ITERATIVE METHODS .528
Input Data Description. .528
Example: Conjugate Gradient Algorithm.529
Example: Minimum Residual Algorithm.531
Example: Biconjugate Gradient Algorithm.532

SYMBOLIC LDL AND CHOLESKY FACTORIZATIONS533

REFERENCES .534

526 � Chapter 18. Sparse Matrix Algorithms (Experimental)

Chapter 18
Sparse Matrix Algorithms

(Experimental)

Overview

This chapter documents direct and iterative algorithms for large sparse systems of
linear equations:

Ax = b, A ∈ Rn×n, x, b ∈ Rn

whereA is a nonsingular square matrix.

The following classes of iterative solvers are supported:

• Conjugate Gradient for symmetric positive-definite systems (ITCGRAD)

• Minimum Residual for symmetric indefinite systems (ITMINRES)

• Biconjugate Gradient for general nonsingular systems (ITBICG)

Iterative algorithms incur zero or controlled amounts of fill-in, have relatively small
working memory requirements, and can converge as fast asO(n) or O(n2) versus
direct dense methods that are typicallyO(n3). Each iteration of an iterative algorithm
is very inexpensive and typically involves a single matrix-vector multiplication and a
pair of forward/backward substitutions.

Convergence of an iterative method depends upon the distribution of eigenvalues for
the matrixA, and can be rather slow for badly conditioned matrices. For such cases
SAS/IML offers hybrid algorithms, which combine an incomplete factorization (a
modified direct method) used in the preconditioning phase with an iterative refine-
ment procedure. The following preconditioners are supported:

• Incomplete Cholesky factorization (“IC”)

• Diagonal Jacobi preconditioner (“DIAG”)

• Modified incomplete LU factorization (“MILU”)

For more information, see the description of theprecondparameter in the section
“Input Data Description”on page 528.

The following direct sparse solvers are supported for symmetric positive-definite sys-
tems:

• Symbolic LDL (SOLVELIN)

• Cholesky (SOLVELIN)

528 � Chapter 18. Sparse Matrix Algorithms (Experimental)

Classical factorization-based algorithms share one common complication: the matrix
A usually suffersfill-in , which means additional operations and computer memory
are required to complete the algorithm. A symmetric permutation of matrix rows and
columns can lead to a dramatic reduction of fill-in. To compute such a permutation,
SAS/IML implements a minimum degree ordering algorithm, which is an automatic
step in theSOLVELIN function.

Iterative Methods

The conjugate gradient algorithm can be interpreted as the following optimization
problem: minimizeφ(x) defined by

φ(x) = 1/2xTAx− xT b

whereb ∈ Rn andA ∈ Rn×n are symmetric and positive definite.

At each iterationφ(x) is minimized along anA-conjugate direction, constructing
orthogonal residuals:

ri ⊥ Ki(A; r0), ri = Axi − b

whereKi is a Krylov subspace:

Ki (A; r) = span{r, Ar, A2r, . . . , Ai−1r}

Minimum residual algorithms work by minimizing the Euclidean norm‖Ax − b‖2

overKi. At each iteration,xi is the vector inKi that gives the smallest residual.

The biconjugate gradient algorithm belongs to a more general class of Petrov-
Galerkin methods, where orthogonality is enforced in a differenti-dimensional sub-
space (xi remains inKi):

ri ⊥ {w, ATw, (AT)2w, . . . , (AT) i−1w}

Input Data Description

All subroutines have the same calling syntax and arguments:

ITCGRAD (x, error, iter, A, b, precond, tol, maxiter, start, history);
ITMINRES(x, error, iter, A, b, precond, tol, maxiter, start, history);
ITBICG (x, error, iter, A, b, precond, tol, maxiter, start, history);

The subroutines ITCGRAD and ITMINRES requireA to be symmetric, hence you
must specify only the lower triangular part ofA, while ITBICG requiresall nonzero
coefficients to be listed. The following table lists valid values for theprecondparam-
eter for each subroutine.

Example: Conjugate Gradient Algorithm � 529

Table 18.1. Subroutine Definitions and Valid Preconditioners

IML Subroutine Algorithm Preconditioners
ITCGRAD conjugate gradient “NONE” “IC” “DIAG”
ITMINRES minimum residual “NONE” “IC” “DIAG”
ITBICG biconjugate gradient “NONE” “MILU”

x solution vector

error final solution error (optional)

iter resultant number of iterations (optional)

A three-column matrix of triplets, where the first column contains the
value, the next column contains the row indices, and the third column
contains the column indices of the nonzero matrix coefficients. The or-
der in which triplets are listed is insignificant. For symmetric matrices
specify only the lower triangular part, including the main diagonal (row
indices must be greater than or equal to the corresponding column in-
dices.) Zero coefficients should not be included. No missing values or
duplicate entries are allowed.

b the right-hand-side vector

precond preconditioner, default value“NONE”

tol desired tolerance, default value10−7

maxiter maximum number of iterations, default value105

start initial guess

history the history of errors for each iteration

Example: Conjugate Gradient Algorithm

Consider the following small example:Ax = b, where

A =

3 1 0 0
1 4 1 3
0 1 10 0
0 3 0 3

and the vector of right-hand-sideb = (1 1 1 1)T . Since the matrix is positive-definite
and symmetric, you can apply the conjugate gradient algorithm to solve the system.
Remember that you must specify only the lower-triangular part of the matrix (so row
indices must be greater than or equal to the corresponding column indices.) The code
for this example is as follows:

/* value row col */
A = { 3 1 1,

1 2 1,
4 2 2,

530 � Chapter 18. Sparse Matrix Algorithms (Experimental)

1 3 2,
3 4 2,
10 3 3,
3 4 4 };

/* right-hand-side */
b = {1, 1, 1, 1};

/* desired solution tolerance (optional) */
tol = 1e-7;

/* maximum number of iterations (optional) */
maxit = 200;

/* allocate iteration progress (optional) */
hist = j(50, 1);

/* provide an initial guess (optional) */
start = {2, 3, 4, 5};

/* invoke conjugate gradient method */
call itcgrad (

x, st, it, /* output parameters */
A, b, "ic", /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist

);

print x; /* print solution */
print st; /* print solution tolerance */
print it; /* print resultant number of iterations */

Notice that the example used an incomplete Cholesky preconditioner (which is rec-
ommended.) Here is the program output:

X
0.5882353
-0.764706
0.1764706
1.0980392

ST
1.961E-16

IT
3

The conjugate gradient method converged successfully within three iterations. You
can also print out thehist (iteration progress) array. Different starting points will
result in different iterative histories.

Example: Minimum Residual Algorithm � 531

Example: Minimum Residual Algorithm

For symmetric indefinite matrices it is best to use the minimum residual algorithm.
The following example is slightly modified from the previous example by negating
the first matrix element:

/* minimum residual algorithm */

/* value row col */
A = { -3 1 1,

1 2 1,
4 2 2,
1 3 2,
3 4 2,

10 3 3,
3 4 4 };

/* right-hand-sides b = (1 1 1 1) */
b = {1, 1, 1, 1};

/* desired solution tolerance (optional) */
tol = 1e-7;

/* maximum number of iterations (optional) */
maxit = 200;

/* allocate iteration progress (optional) */
hist = j(50, 1);

/* initial guess (optional) */
start = {2, 3, 4, 5};

/* invoke minimum residual method */
call itminres (

x, st, it, /* output parameters */
a, b, "ic", /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist

);

print x; /* print solution */
print st; /* print solution tolerance */
print it; /* print resultant number of iterations */

X
-0.27027

0.1891892
0.0810811
0.1441441

532 � Chapter 18. Sparse Matrix Algorithms (Experimental)

ST
1.283E-15

IT
4

Example: Biconjugate Gradient Algorithm

The biconjugate gradient algorithm is meant for general sparse linear systems. Matrix
symmetry is no longer assumed, and a complete list of nonzero coefficients must be
provided. Consider the following matrix:

A =

 10 0 0.2
0.1 3 0
0 0 4

with b = (1 1 1)T .

The code for this example is as follows:

/* biconjugate gradient algorithm */

/* value row column */
A = { 10 1 1,

3 2 2,
4 3 3,
0.1 2 1,
0.2 1 3 };

/* vector of right-hand-sides */
b = {1, 1, 1};

/* desired solution tolerance */
tol = 1e-9;

/* maximum number of iterations */
maxit = 10000;

/* allocate history/progress */
hist = j(50, 1);

/* initial guess (optional) */
start = {2, 3, 4};

/* call biconjugate gradient subroutine */
call itbicg (

x, st, it, /* output parameters */
a, b, "milu", /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist);

Symbolic LDL and Cholesky Factorizations � 533

/* Print results */
print x;
print st;
print it;

Here is the output:

X
0.095

0.3301667
0.25

ST
1.993E-16

IT
3

It is important to observe the resultant tolerance, in order to know how effective the
solution is.

Symbolic LDL and Cholesky Factorizations

Symbolic LDL and Cholesky factorization algorithms are meant for symmetric posi-
tive definite systems; hence, again, only the lower-triangular part of the matrix must
be provided. The PROC IML functionSOLVELIN provides an interface to both
algorithms; the minimum degree ordering heuristic is invoked automatically:

SOLVELIN (x, status, A, b, method)

x solution vector

status status indicator0 success,1 matrix is not positive-definite,2 out of
memory

A sparse matrix (lower-triangular part)

b vector of right-hand-sides

method a character string, which specifies factorization type, possible values:
“LDL” for LDL factorization, and“CHOL” for Cholesky.

The code for this example is as follows:

/* value row col */
A = { 3 1 1,

1 2 1,
4 2 2,
1 3 2,

534 � Chapter 18. Sparse Matrix Algorithms (Experimental)

3 4 2,
10 3 3,
3 4 4 };

/* right-hand-side */
b = {1, 1, 1, 1};

/* invoke LDL factorization */
call solvelin (x, status, a, b, "LDL");

print x; /* print solution */

Here is the program output:

X
0.5882353
-0.764706
0.1764706
1.0980392

References

Golub, G. H. and Van Loan, C. F. (1996), “Matrix Computations,” Third Edition,
Baltimore: Johns Hopkins University Press.

Greenbaum, A. (1997), “Iterative Methods for Solving Linear Systems,” Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Hestenes, M. R. and Stiefel, E. (1952), “Methods of Conjugate Gradients for Solving
Linear Systems,” J. Res. Natl. Bur. Standards, B49, 409–436.

Paige, C. C. and Saunders, M. A. (1975), “Solution of Sparse Indefinite Systems of
Linear Equations,” SIAM Journal on Numerical Analysis, 12:4, 617–629.

Chapter 19
Further Notes

Chapter Contents

MEMORY AND WORKSPACE .537

ACCURACY .539

ERROR DIAGNOSTICS .539

EFFICIENCY .540

MISSING VALUES .540

PRINCIPLES OF OPERATION .541

OPERATION-LEVEL EXECUTION .542

536 � Chapter 19. Further Notes

Chapter 19
Further Notes
Memory and Workspace

You do not need to be concerned with the details of memory usage because mem-
ory allocation is done automatically. However, if you are interested, the following
sections explain how it works.

There are two logical areas of memory,symbolspaceandworkspace. Symbolspace
contains symbol table information and compiled statements. Workspace contains
matrix data values. Workspace itself is divided into one or more extents.

At the start of a session, the symbolspace and the first extent of workspace are al-
located automatically. More workspace is allocated as the need to store data values
grows. The SYMSIZE= and WORKSIZE= options in the PROC IML statement give
you control over the size of symbolspace and the size of each extent of workspace.
If you do not specify these options, PROC IML uses host dependent defaults. For
example, you can begin an IML session and set the SYMSIZE= and WORKSIZE=
options with the statement

proc iml symsize=n1 worksize=n2;

wheren1 andn2 are specified in kilobytes.

If the symbolspace memory becomes exhausted, more memory is automatically ac-
quired. The symbolspace is stable memory and is not compressible like workspace.
Symbolspace is recycled whenever possible for reuse as the same type of object. For
example, temporary symbols may be deleted after they are used in evaluating an ex-
pression. The symbolspace formerly used by these temporaries is added to a list of
free symbol-table nodes. When allocating temporary variables to evaluate another ex-
pression, IML looks for symbol-table nodes in this list first before consuming unused
symbolspace.

Workspace is compressible memory. Workspace extents fill up as more matrices
are defined by operations. Holes in extents appear as you free matrices or as IML
frees temporary intermediate results. When an extent fills up, compression reclaims
the holes that have appeared in the extent. If compression does not reclaim enough
memory for the current allocation, IML allocates a new extent. This procedure results
in the existence of a list of extents, each of which contains a mixture of active memory
and holes of unused memory. There is always a current extent, the one in which the
last allocation was made.

For a new allocation, the search for free space begins in the current extent and pro-
ceeds around the extent list until finding enough memory or returning to the current
extent. If the search returns to the current extent, IML begins a second transversal

538 � Chapter 19. Further Notes

of the extent list, compressing each extent until either finding sufficient memory or
returning to the current extent. If the second search returns to the current extent, IML
opens a new extent and makes it the current one.

If the SAS System cannot provide enough memory to open a new extent with the full
extent size, IML repeatedly reduces its request by 2K. In this case, the successfully
opened extent will be smaller than the standard size.

If a single allocation is larger than the standard extent size, IML requests an allocation
large enough to hold the matrix.

The WORKSIZE= and SYMSIZE= options offer tools for tuning memory usage. For
data intensive applications involving a few large matrices, use a high WORKSIZE=
value and a low SYMSIZE= value. For symbol intensive applications involving many
matrices, perhaps through the use of many IML modules, use a high SYMSIZE=
value.

You can use the SHOW SPACE command to display the current status of IML mem-
ory usage. This command also lists the total number of compressions done on all
extents.

Setting the DETAILS option in the RESET command prints messages in the output
file when IML compresses an extent, opens a new extent, allocates a large object,
or acquires more symbolspace. These messages can be useful because these ac-
tions normally occur without the user’s knowledge. The information can be used to
tune WORKSIZE= and SYMSIZE= values for an application. However, the default
WORKSIZE= and SYMSIZE= values should be appropriate in most applications.

Do not specify a very large value in the WORKSIZE= and SYMSIZE= options unless
absolutely necessary. Many of the native functions and all of the DATA step functions
used are dynamically loaded at execution time. If you use a large amount of the
memory for symbolspace and workspace, there may not be enough remaining to load
these functions, resulting in the error message

Unable to load module module-name.

Should you run into this problem, issue a SHOW SPACE command to examine cur-
rent usage. You may be able to adjust the SYMSIZE= or WORKSIZE= values.

The amount of memory your system can provide depends on the capacity of your
computer and on the products installed. The following techniques for efficient mem-
ory use are recommended when memory is at a premium:

• Free matrices as they are no longer needed using the FREE command.

• Store matrices you will need later in external library storage using the STORE
command, and then FREE their values. You can restore the matrices later using
the LOAD command. SeeChapter 14, “Storage Features.”

• Plan your work to use smaller matrices.

Error Diagnostics � 539

Accuracy

All numbers are stored and all arithmetic is done in double-precision. The algorithms
used are generally very accurate numerically. However, when many operations are
performed or when the matrices are ill-conditioned, matrix operations should be used
in a numerically responsible way because numerical errors add up.

Error Diagnostics

When an error occurs, several lines of messages are printed. The error description, the
operation being performed, and the line and column of the source for that operation
are printed. The names of the operation’s arguments are also printed. Matrix names
beginning with a pound sign (#) or an asterisk (*) may appear; these are temporary
names assigned by the IML procedure.

If an error occurs while you are in immediate mode, the operation is not completed
and nothing is assigned to the result. If an error occurs while executing statements
inside a module, a PAUSE command is automatically issued. You can correct the
error and resume execution of module statements with a RESUME statement.

The most common errors are described below:

• referencing a matrix that has not been set to a value, that is, referencing a matrix
that has no value associated with the matrix name

• making a subscripting error, that is, trying to refer to a row or column not
present in the matrix

• performing an operation with nonconformable matrix arguments, for example,
multiplying two matrices together that do not conform, or using a function that
requires a special scalar or vector argument

• referencing a matrix that is not square for operations that require a square ma-
trix (for example, INV, DET, or SOLVE)

• referencing a matrix that is not symmetric for operations that require a sym-
metric matrix (for example, GENEIG)

• referencing a matrix that is singular for operations that require a nonsingular
matrix (for example, INV and SOLVE)

• referencing a matrix that is not positive definite or positive semidefinite for
operations that require such matrices (for example, ROOT and SWEEP)

• not enough memory (see “Memory and Workspace” earlier in this chapter) to
perform the computations and produce the result matrices.

These errors result from the actual dimensions or values of matrices and are caught
only after a statement has begun to execute. Other errors, such as incorrect number
of arguments or unbalanced parentheses, are syntax errors and resolution errors and
are detected before the statement is executed.

540 � Chapter 19. Further Notes

Efficiency

The Interactive Matrix Language is an interpretive language executor that can be
characterized as follows:

• efficient and inexpensive to compile

• inefficient and expensive for the number of operations executed

• efficient and inexpensive within each operation.

Therefore, you should try to substitute matrix operations for iterative loops. There is a
high overhead involved in executing each instruction; however, within the instruction
IML runs very efficiently.

Consider four methods of summing the elements of a matrix:

s=0; /* method 1 */
do i=1 to m;

do j=1 to n;
s=s+x[i,j];

end;
end;
s=j[1,m]*x*j[n,1]; /* method 2 */
s=x[+,+]; /* method 3 */
s=sum(x); /* method 4 */

Method 1 is the least efficient, method 2 is more efficient, method 3 is more efficient
yet, and method 4 is the most efficient. The greatest advantage of using IML is
reducing human programming labor.

Missing Values

An IML numeric element can have a special value called amissing valuethat indi-
cates that the value is unknown or unspecified. (A matrix with missing values should
not be confused with an empty or unvalued matrix, that is, a matrix with 0 rows and 0
columns.) A numeric matrix can have any mixture of missing and nonmissing values.

SAS/IML software supports missing values in a limited way. The operators listed be-
low recognize missing values and propagate them. Most matrix operators and func-
tions do not support missing values. For example, matrix multiplication or exponen-
tiation involving a matrix with missing values is not meaningful. Also, the inverse of
a matrix with missing values has no meaning.

Missing values are coded in the bit pattern of very large negative numbers, as an
I.E.E.E. “NAN” code, or as a special string, depending on the host system.

In literals, a numeric missing value is specified as a single period. In data processing
operations, you can add or delete missing values. All operations that move values
around move missing values properly. The following arithmetic operators propagate
missing values.

Principles of Operation � 541

addition (+) subtraction (−)
multiplication (#) division (/)
maximum (<>) minimum (><)
modulo (MOD) exponentiation (##)

The comparison operators treat missing values as large negative numbers. The logical
operators treat missing values as zeros. The operators SUM, SSQ, MAX, and MIN
check for and exclude missing values.

The subscript reduction operators exclude missing values from calculations. If all of
a row or column that is being reduced is missing, then the operator returns the result
indicated in the table below.

Operator Result If All Missing
addition (+) 0
multiplication (#) 1
maximum (<>) large negative value
minimum (><) large positive value
sum squares (##) 0
index maximum (<:>) 1
index minimum (>:<) 1
mean (:) missing value

Also note that, unlike the SAS DATA step, IML does not distinguish between special
and generic missing values; it treats all missing values alike.

Principles of Operation

This section presents various technical details on the operation of SAS/IML software.
Statements in IML go through three phases:

• The parsing phase includes text acquisition, word scanning, recognition, syn-
tactical analysis, and enqueuing on the statement queue. This is performed
immediately as IML reads the statements.

• The resolution phase includes symbol resolution, label and transfer resolution,
and function and call resolution. Symbol resolution connects the symbolic
names in the statement with their descriptors in the symbol table. New sym-
bols can be added or old ones recognized. Label and transfer resolution con-
nects statements and references affecting the flow of control. This connects
LINK and GOTO statements with labels; it connects IF with THEN and ELSE
clauses; it connects DO with END. Function-call resolution identifies functions
and call routines and loads them if necessary. Each reference is checked with
respect to the number of arguments allowed. The resolution phase begins after

542 � Chapter 19. Further Notes

a module definition is finished or a DO group is ended. For all other state-
ments outside of any module or DO group, resolution begins immediately after
parsing.

• The execution phase occurs when the statements are interpreted and executed.
There are two levels of execution: statement and operation. Operation-level
execution involves the evaluation of expressions within a statement.

Operation-Level Execution

Operations are executed from a chain of operation elements created at parse-time and
resolved later. For each operation, the interpreter performs the following steps:

1. Prints a record of the operation if the FLOW option is on.

2. Looks at the operands to make sure they have values. Only certain special
operators are allowed to tolerate operands that have not been set to a value.
The interpreter checks whether any argument has character values.

3. Inspects the operator and gives control to the appropriate execution routine. A
separate set of routines is invoked for character values.

4. Checks the operands to make sure they are valid for the operation. Then the
routine allocates the result matrix and any extra workspace needed for inter-
mediate calculations. Then the work is performed. Extra workspace is freed.
A return code notifies IML if the operation was successful. If unsuccessful, it
identifies the problem. Control is passed back to the interpreter.

5. Checks the return code. If the return code is nonzero, diagnostic routines are
called to explain the problem to the user.

6. Associates the results with the result arguments in the symbol table. By keeping
results out of the symbol table until this time, the operation does not destroy
the previous value of the symbol if an error has occurred.

7. Prints the result if RESET PRINT or RESET PRINTALL is specified. The
PRINTALL option prints intermediate results as well as end results.

8. Moves to the next operation.

Chapter 20
Language Reference

Chapter Contents

OVERVIEW .551

OPERATORS .560
Addition Operator: +. .560
Comparison Operators: < > = <= >= ˆ =.561
Concatenation Operator, Horizontal: ||.562
Concatenation Operator, Vertical: //. .563
Direct Product Operator: @. .565
Division Operator: / .565
Element Maximum Operator: <>. .566
Element Minimum Operator: ><. .566
Index Creation Operator: :. .567
Logical Operators: & | ˆ .568
Multiplication Operator, Elementwise: #.569
Multiplication Operator, Matrix: *. .570
Power Operator, Elementwise: ##. .571
Power Operator, Matrix: ** .571
Sign Reverse Operator: –. .572
Subscripts: [] .573
Subtraction Operator: –. .574
Transpose Operator: ‘. .574

STATEMENTS, FUNCTIONS, AND SUBROUTINES575
ABORT Statement. .575
ABS Function .575
ALL Function .575
ANY Function .576
APPCORT Call .577
APPEND Statement. .578
APPLY Function. .580
ARMACOV Call .581
ARMALIK Call .583
ARMASIM Function .584
BLOCK Function .586
BRANKS Function .586
BTRAN Function .587

544 � Chapter 20. Language Reference

BYTE Function .588
CALL Statement. .589
CHANGE Call .590
CHAR Function .590
CHOOSE Function .591
CLOSE Statement. .592
CLOSEFILE Statement. .593
COMPORT Call .593
CONCAT Function .596
CONTENTS Function. .597
CONVEXIT Function .598
COVLAG Function .598
CREATE Statement. .599
CSHAPE Function. .601
CUSUM Function .603
CVEXHULL Function .604
DATASETS Function .604
DELETE Call .605
DELETE Statement. .606
DESIGN Function. .608
DESIGNF Function .608
DET Function .609
DIAG Function .610
DISPLAY Statement. .611
DO Function. .611
DO and END Statements. .612
DO Statement, Iterative. .613
DO DATA Statement .614
DO Statement with an UNTIL Clause. .615
DO Statement with a WHILE Clause. .615
DURATION Function .616
ECHELON Function .617
EDIT Statement. .618
EIGEN Call .620
EIGVAL Function .625
EIGVEC Function. .625
END Statement .626
EXECUTE Call .626
EXP Function .627
FARMACOV Call .627
FARMAFIT Call .629
FARMALIK Call .630
FARMASIM Call .632
FDIF Call .633
FFT Function .634
FILE Statement .635
FIND Statement. .636
FINISH Statement. .638

Chapter 20. Language Reference � 545

FORCE Statement. .638
FORWARD Function .638
FREE Statement. .639
GAEND Call (Experimental) .639
GAGETMEM Call (Experimental) .640
GAGETVAL Call (Experimental). .641
GAINIT Call (Experimental) .641
GAREEVAL Call (Experimental). .642
GAREGEN Call (Experimental) .643
GASETCRO Call (Experimental). .643
GASETMUT Call (Experimental). .648
GASETOBJ Call (Experimental). .650
GASETSEL Call (Experimental). .651
GASETUP Function (Experimental). .652
GBLKVP Call .653
GBLKVPD Call .655
GCLOSE Call .655
GDELETE Call .655
GDRAW Call .656
GDRAWL Call .657
GENEIG Call .657
GGRID Call .659
GINCLUDE Call .659
GINV Function .660
GOPEN Call .662
GOTO Statement .663
GPIE Call .663
GPIEXY Call .664
GPOINT Call .666
GPOLY Call .667
GPORT Call .668
GPORTPOP Call .668
GPORTSTK Call .668
GSCALE Call .669
GSCRIPT Call. .669
GSET Call .671
GSHOW Call .672
GSORTH Call .672
GSTART Call .673
GSTOP Call .674
GSTRLEN Call .674
GTEXT and GVTEXT Calls .675
GWINDOW Call .676
GXAXIS and GYAXIS Calls .677
HALF Function .678
HANKEL Function .679
HDIR Function .680
HERMITE Function. .681

546 � Chapter 20. Language Reference

HOMOGEN Function. .682
I Function .683
IF-THEN/ELSE Statement. .683
IFFT Function .685
INDEX Statement. .686
INFILE Statement. .686
INPUT Statement .687
INSERT Function .689
INT Function .690
INV Function .691
INVUPDT Function .692
IPF Call .694
ITBICG Call .707
ITCGRAD Call .710
ITMINRES Call .713
J Function .715
JROOT Function. .716
KALCVF Call .717
KALCVS Call .721
KALDFF Call .723
KALDFS Call .727
LAV Call .729
LCP Call .733
LENGTH Function .736
LINK and RETURN Statements. .736
LIST Statement .737
LMS Call .740
LOAD Statement .747
LOC Function .748
LOG Function .749
LP Call .750
LTS Call .752
LUPDT Call .759
MAD Function .760
MARG Call .761
MATTRIB Statement .764
MAX Function .765
MAXQFORM Call .766
MCD Call .768
MIN Function .773
MOD Function. .774
MVE Call .774
NAME Function .781
NCOL Function .781
NLENG Function .782
Nonlinear Optimization and Related Subroutines.782
NLPCG Call .785
NLPDD Call .786

Chapter 20. Language Reference � 547

NLPFDD Call .788
NLPFEA Call .791
NLPHQN Call .792
NLPLM Call .795
NLPNMS Call .798
NLPNRA Call .802
NLPNRR Call .805
NLPQN Call .808
NLPQUA Call .814
NLPTR Call .817
NORMAL Function .819
NROW Function. .819
NUM Function. .820
ODE Call .820
OPSCAL Function. .826
ORPOL Function .828
ORTVEC Call .834
PAUSE Statement. .837
PGRAF Call .838
POLYROOT Function. .839
PRINT Statement .840
PRODUCT Function .842
PURGE Statement. .843
PUSH Call .843
PUT Statement. .844
PV Function .845
QR Call .847
QUAD Call .851
QUEUE Call .857
QUIT Statement. .858
RANDGEN Call .858
RANDSEED Call .866
RANK Function .866
RANKTIE Function .868
RATES Function. .869
RATIO Function .870
RDODT and RUPDT Calls. .871
READ Statement .875
REMOVE Function .878
REMOVE Statement. .879
RENAME Call .880
REPEAT Function. .880
REPLACE Statement. .881
RESET Statement. .883
RESUME Statement. .885
RETURN Statement. .885
ROOT Function .886
ROWCAT Function .887

548 � Chapter 20. Language Reference

ROWCATC Function .888
RUN Statement .889
RUPDT Call .889
RZLIND Call .889
SAVE Statement. .898
SEQ, SEQSCALE, and SEQSHIFT Calls.898
SEQSCALE Call .911
SEQSHIFT Call .911
SETDIF Function .911
SETIN Statement .912
SETOUT Statement. .912
SHAPE Function .913
SHOW Statement. .914
SOLVE Function. .915
SOLVELIN Call .916
SORT Call .918
SORT Statement. .919
SORTNDX Call .920
SOUND Call .921
SPLINE and SPLINEC Calls. .921
SPLINEV Function .929
SPOT Function .929
SQRSYM Function .930
SQRT Function .930
SSQ Function .931
START and FINISH Statements. .931
STOP Statement. .932
STORAGE Function. .932
STORE Statement. .933
SUBSTR Function. .933
SUM Function .934
SUMMARY Statement .934
SVD Call .938
SWEEP Function .939
SYMSQR Function .942
T Function .942
TEIGEN Call .943
TEIGVAL Function .943
TEIGVEC Function .943
TOEPLITZ Function .943
TPSPLINE Call .945
TPSPLNEV Call. .947
TRACE Function .950
TRISOLV Function .951
TSBAYSEA Call .952
TSDECOMP Call .954
TSMLOCAR Call .957
TSMLOMAR Call .959

Chapter 20. Language Reference � 549

TSMULMAR Call .960
TSPEARS Call .961
TSPRED Call .962
TSROOT Call .963
TSTVCAR Call .964
TSUNIMAR Call .965
TYPE Function .966
UNIFORM Function. .966
UNION Function .967
UNIQUE Function. .967
UNIQUEBY Function .968
USE Statement. .969
VALSET Call .971
VALUE Function .971
VARMACOV Call .972
VARMALIK Call .973
VARMASIM Call .974
VECDIAG Function .976
VNORMAL Call .976
VTSROOT Call .977
WAVFT Call .978
WAVGET Call .981
WAVIFT Call .983
WAVPRINT Call .985
WAVTHRSH Call .986
WINDOW Statement .987
XMULT Function .989
XSECT Function .989
YIELD Function .990

BASE SAS FUNCTIONS ACCESSIBLE FROM SAS/IML991
Bitwise Logical Operation Functions. .992
Character and Formatting Functions. .992
Character String Matching Functions and Subroutines.995
Date and Time Functions. .996
Descriptive Statistics Functions and Subroutines.996
Double-byte Character String Functions.997
External Files Functions. .997
File I/O Functions .998
Financial Functions. .999
Macro Functions and Subroutines. .999
Mathematical Functions and Subroutines.1000
Probability Functions .1000
Quantile Functions. .1001
Random Number Functions and Subroutines.1001
State and ZIP Code Functions. .1001
Trigonometric and Hyperbolic Functions.1002
Truncation Functions .1002

550 � Chapter 20. Language Reference

Web Tools .1002

REFERENCES .1003

Chapter 20
Language Reference

Overview

This chapter describes all operators, statements, functions, and subroutines that can
be used in SAS/IML software. All necessary details, such as arguments and operands,
are included.

This chapter is divided into two sections. The first section containsoperatordescrip-
tions. They are in alphabetic order according to the name of the operator. The second
section contains descriptions ofstatements, functions, and subroutinesalso arranged
alphabetically by name.

The following tables list all statements, functions, and subroutines available in
SAS/IML software grouped by functionality.

Scalar Functions

ABS Function takes the absolute value
EXP Function calculates the exponential
INT Function truncates a value
LOG Function takes the natural logarithm
MOD Function computes the modulo (remainder)
NORMAL Function generates a pseudo-random normal deviate
SQRT Function calculates the square root
UNIFORM Function generates pseudo-random uniform deviates

Reduction Functions

MAX Function finds the maximum value of a matrix
MIN Function finds the smallest element of a matrix
SSQ Function calculates the sum of squares of all elements
SUM Function sums all elements

Matrix Inquiry Functions

ALL Function checks for all nonzero elements
ANY Function checks for any nonzero elements
CHOOSE Function conditionally chooses and changes elements
LOC Function finds nonzero elements of a matrix
NCOL Function finds the number of columns of a matrix
NLENG Function finds the size of an element
NROW Function finds the number of rows of a matrix
TYPE Function determines the type of a matrix

552 � Chapter 20. Language Reference

Matrix Sorting And By-Group Processing Calls

SORT Call sorts a matrix by specified columns
SORTNDX Call creates a sorted index for a matrix
UNIQUEBY Function finds locations of unique by-groups in a sorted or indexed

matrix

Matrix Reshaping Functions

BLOCK Function forms block-diagonal matrices
BTRAN Function computes block transpose
DIAG Function creates a diagonal matrix
DO Function produces an arithmetic series
I Function creates an identity matrix
INSERT Function inserts one matrix inside another
J Function creates a matrix of identical values
REMOVE Function discards elements from a matrix
REPEAT Function creates a new matrix of repeated values
SHAPE Function reshapes and repeats values
SQRSYM Function converts a symmetric matrix to a square matrix
SYMSQR Function converts a square matrix to a symmetric matrix
T Function transposes a matrix
VECDIAG Function creates a vector from a diagonal

Character Functionality

BYTE Function translates numbers to ordinal characters
CHANGE Call replaces text
CHAR Function produces a character representation of a matrix
CONCAT Function Concatenates elementwise strings
CSHAPE Function reshapes and repeats character values
LENGTH Call finds the lengths of character matrix elements
NAME Function lists the names of arguments
NUM Function produces a numeric representation of a character matrix
ROWCAT Function concatenates rows without using blank compression
ROWCATC Function concatenates rows using blank compression
SUBSTR Function takes substrings of matrix elements

Random Number Generation Functionality

RANDGEN Call generates random numbers from specified distributions
RANDSEED Call initializes seed for subsequent RANGEN calls

Statistical Functionality

BRANKS Function computes bivariate ranks
CUSUM Function calculates cumulative sums

Overview � 553

DESIGN Function creates a design matrix
DESIGNF Function creates a full-rank design matrix
IPF Call performs an iterative proportional fit of a contingency ta-

ble
LAV Call performs linear least absolute value regression by solving

theL1 norm minimization problem
LMS Call performs robust regression
LTS Call performs robust regression
MAD Function finds the univariate (scaled) median-absolute-deviation
MARG Call evaluates marginal totals in a multiway contingency table
MAXQFORM Call computes the subsets of a matrix system that maximize the

quadratic form
MCD Call finds the minimum covariance determinant estimator
MVE Call finds the minimum volume ellipsoid estimator
OPSCAL Function rescales qualitative data to be a least-squares fit to qualita-

tive data
RANK Function ranks elements of a matrix
RANKTIE Function ranks matrix elements using tie-averaging
SEQSCALE Call perform discrete sequential tests
SEQSHIFT Call perform discrete sequential tests
SEQTESTS Calls perform discrete sequential tests
SWEEP Function sweeps a matrix

Time Series Functionality

ARMACOV Call computes an autocovariance sequence for an ARMA
model

ARMALIK Call computes the log-likelihood and residuals for an ARMA
model

ARMASIM Function simulates an ARMA series
CONVEXIT Function calculates convexity of a noncontingent cash-flow
COVLAG Function computes autocovariance estimates for a vector time series
DURATION Function calculates modified duration of a noncontingent cash-flow
FARMACOV Call computes the auto-covariance function for an

ARFIMA(p, d, q) process
FARMAFIT Call estimate the parameters of an ARFIMA(p, d, q) model
FARMALIK Call computes the log-likelihood function of an

ARFIMA(p, d, q) model
FARMASIM Call generates an ARFIMA(p, d, q) process
FDIF Call obtain a fractionally differenced process
FORWARD Function calculates forward rates
KALCVF Call computes the one-step predictionzt+1|t and the filtered

estimatezt|t, as well as their covariance matrices. The call
uses forward recursions, and you can also use it to obtain
k-step estimates.

KALCVS Call uses backward recursions to compute the smoothed esti-
matezt|T and its covariance matrix,Pt|T , whereT is the
number of observations in the complete data set.

554 � Chapter 20. Language Reference

KALDFF Call computes the one-step forecast of state vectors in an SSM
using the diffuse Kalman filter. The call estimates the con-
ditional expectation ofzt, and it also estimates the initial
random vector,δ, and its covariance matrix.

KALDFS Call computes the smoothed state vector and its mean square
error matrix from the one-step forecast and mean square
error matrix computed by KALDFF.

PV Function calculates present value
RATES Function converts interest rates from one base to another
SPOT Function calculates spot rates
TSBAYSEA Call performs Bayesian seasonal adjustment modeling
TSDECOMP Call analyzes nonstationary time series by using smoothness

priors modeling
TSMLOCAR Call analyzes nonstationary or locally stationary time series by

using the minimum AIC procedure
TSMLOMAR Call analyzes nonstationary or locally stationary multivariate

time series by using the minimum AIC procedure
TSMULMAR Call estimates VAR processes by using the minimum AIC pro-

cedure
TSPEARS Call analyzes periodic AR models with the minimum AIC pro-

cedure
TSPRED Call provides predicted values of univariate and multivariate

ARMA processes when the ARMA coefficients are input
TSROOT Call calculates AR and MA coefficients from the characteristic

roots of the model or calculates the characteristic roots of
the model from the AR and MA coefficients

TSTVCAR Call analyzes time series that are nonstationary in the covari-
ance function

TSUNIMAR Call determines the order of an AR process with the minimum
AIC procedure and estimates the AR coefficients

VARMACOV Call computes the theoretical cross-covariance matrices for a
stationary VARMA(p, q) model

VARMALIK Call computes the log-likelihood function for a VARMA(p, q)
model

VARMASIM Call generates VARMA(p,q) time series
VNORMAL Call generates multivariate normal random series
VTSROOT Call computes the characteristic roots for a VARMA(p, q)

model
YIELD Function calculates yield-to-maturity of a cash-flow stream

Numerical Analysis Functionality

FFT Function performs the finite Fourier transform
IFFT Function computes the inverse finite Fourier transform
JROOT Function computes the first nonzero roots of a Bessel function of

the first kind and the derivative of the Bessel function at
each root

Overview � 555

ODE Call performs numerical integration of vector differential equa-
tions of the form

ORPOL Function generates orthogonal polynomials on a discrete set of
points

ORTVEC Call provides columnwise orthogonalization by the Gram-
Schmidt process and stepwise QR decomposition by the
Gram-Schmidt process

POLYROOT Function finds zeros of a real polynomial
PRODUCT Function multiplies matrices of polynomials
QUAD Call performs numerical integration of scalar functions in one

dimension over infinite, connected semi-infinite, and con-
nected finite intervals

RATIO Function divides matrix polynomials
SPLINE Call fit a cubic spline to points
SPLINEC Call fit a cubic spline to points
SPLINEV Function evaluatesa cubic spline at new data points
TPSPLINE Call computes thin-plate smoothing splines
TPSPLNEV Call evaluates the thin-plate smoothing spline at new data

points

Linear Algebra Functionality

APPCORT CALL complete orthogonal decomposition
COMPORT Call complete orthogonal decomposition by Householder

transformations
CVEXHULL Function finds a convex hull of a set of planar points
DET Function computes the determinant of a square matrix
ECHELON Function reduces a matrix to row-echelon normal form
EIGEN Call computes eigenvalues and eigenvectors
EIGVAL Function computes eigenvalues
EIGVEC Function computes eigenvectors
GENEIG Call computes eigenvalues and eigenvectors of a generalized

eigenproblem
GINV Function computes the generalized inverse
GSORTH Call computes the Gram-Schmidt orthonormalization
HALF Function computes Cholesky decomposition
HANKEL Function generates a Hankel matrix
HDIR Function performs a horizontal direct product
HERMITE Function reduces a matrix to Hermite normal form
HOMOGEN Function solves homogeneous linear systems
INV Function produces the inverse
INVUPDT Function updates a matrix inverse
ITBICG Call solves a sparse general linear system by iteration
ITCGRAD Call solves a sparse symmetric positive-definite system by iter-

ation
ITMINRES Call solves a sparse symmetric system by iteration

556 � Chapter 20. Language Reference

LUPDT Call provides updating and downdating for rank deficient linear
least squares solutions, complete orthogonal factorization,
and Moore-Penrose inverses

QR Call produces the QR decomposition of a matrix by
Householder transformations

RDODT Call downdate and update QR and Cholesky decompositions
ROOT Function performs the Cholesky decomposition of a matrix
RUPDT Call update QR and Cholesky decompositions
RZLIND Call update QR and Cholesky decompositions
SOLVE Function solves a system of linear equations
SOLVELIN Call solves a sparse symmetric system of linear equations by

direct decomposition
SVD Call computes the singular value decomposition
TEIGEN Call computes the eigenvalues and eigenvectors of square ma-

trices
TEIGVAL Function compute eigenvalues of square matrices
TEIGVEC Function compute eigenvectors of square matrices
TOEPLITZ Function generates a Toeplitz or block-Toeplitz matrix
TRACE Function sums diagonal elements
TRISOLV Function solves linear systems with triangular matrices
XMULT Function performs accurate matrix multiplication

Optimization Subroutines

LCP Call solves the linear complementarity problem
LP Call solves the linear programming problem
NLPCG Call nonlinear optimization by conjugate gradient method
NLPDD Call nonlinear optimization by double dogleg method
NLPFDD Call approximates derivatives by finite differences method
NLPFEA Call computes feasible points subject to constraints
NLPHQN Call calculates hybrid quasi-Newton least squares
NLPLM Call calculates Levenberg-Marquardt least squares
NLPNMS Call nonlinear optimization by Nelder-Mead simplex method
NLPNRA Call nonlinear optimization by Newton-Raphson method
NLPNRR Call nonlinear optimization by Newton-Raphson ridge method
NLPQN Call nonlinear optimization by quasi-Newton method
NLPQUA Call nonlinear optimization by quadratic method
NLPTR Call nonlinear optimization by trust region method
Nonlinear Optimization
and Related Subroutines

lists of all nonlinear optimization and related subroutines
in IML

Set Functions

SETDIF Function compares elements of two matrices
UNION Function performs unions of sets
UNIQUE Function sorts and removes duplicates
XSECT Function intersects sets

Overview � 557

Control Statements

ABORT Statement ends IML
APPLY Function applies an IML module
CALL Statement calls a subroutine or function
DO and END
Statements

groups statements as a unit

DO, Iterative Statement iteratively executes a Do group
DO and UNTIL
Statement and Clause

conditionally executes statements iteratively

DO and WHILE
Statement and Clause

conditionally executes statements iteratively

END Statement ends a DO loop or DO statement
EXECUTE Call executes SAS statements immediately
FINISH Statement denotes the end of a module
FORCE Statement see the description of the SAVE statement
FREE Statement frees matrix storage space
GOTO Statement jumps to a new statement
IF-THEN/ELSE
Statement

conditionally executes statement

LINK Statement jump to another statement
MATTRIB Statement associates printing attributes with matrices
PAUSE Statement interrupts module execution
PRINT Statement prints matrix values
PURGE Statement removes observations marked for deletion and renumbers

records
PUSH Call pushes SAS statements into the command input stream
QUEUE Call queues SAS statements into the command input stream
QUIT Statement exits from IML
REMOVE Statement removes matrices from storage
RESET Statement sets processing options
RESUME Statement resumes execution
RETURN Statement returns to caller
RUN Statement executes statements in a module
SHOW Statement prints system information
SOUND Call produces a tone
START/FINISH
Statements

define a module

STOP Statement stops execution of statements
STORAGE Function lists names of matrices and modules in storage
STORE Statement stores matrices and modules in library storage
VALSET Call performs indirect assignment
VALUE Function assigns values by indirect reference

Dataset and File Functionality

APPEND Statement adds observations to SAS dataset
CLOSE Statement closes a SAS dataset

558 � Chapter 20. Language Reference

CLOSEFILE Statement closes a file
CONTENTS Function returns the variables in a SAS dataset
CREATE Statement creates a new SAS dataset
DATASETS Function obtains the names of SAS datasets
DELETE Call deletes a SAS data set
DELETE Statement marks observations for deletion
DO DATA Statement repeats a loop until an end of file occurs
EDIT Statement opens a SAS data set for editing
FILE Statement opens or points to an external file
FIND Statement finds observations
INDEX Statement indexes a variable in a SAS data set
INFILE Statement opens a file for input
INPUT Statement inputs data
LIST Statement displays observations of a data set
LOAD Statement loads modules and matrices from library storage
PUT Statement writes data to an external file
READ Statement reads observations from a data set
RENAME Call renames a SAS data set
REPLACE Statement replaces values in observations and updates observations
SAVE Statement saves data
SETIN Statement makes a data set current for input
SETOUT Statement makes a data set current for output
SORT Statement sorts a SAS data set
SUMMARY Statement computes summary statistics for SAS data sets
USE Statement opens a SAS data set for reading

Graphics and Window Functions

DISPLAY Statement displays fields in a display window
GBLKVP Call defines a blanking viewport
GBLKVPD Call deletes the blanking viewport
GCLOSE Call closes the graphics segment
GDELETE Call deletes a graphics segment
GDRAW Call draws a polyline
GDRAWL Call draws individual lines
GGRID Call draws a grid
GINCLUDE Call includes a graphics segment
GOPEN Call opens a graphics segment
GPIE Call draws pie slices
GPIEXY Call converts from polar to world coordinates
GPOINT Call plots points
GPOLY Call draws and fills a polygon
GPORT Call defines a viewport
GPORTPOP Call pops the viewport
GPORTSTK Call stacks the viewport
GSCALE Call calculates round numbers for labeling axes
GSCRIPT Call writes multiple text strings with special fonts
GSET Call sets attributes for a graphics segment

Overview � 559

GSHOW Call shows a graph
GSTART Call initializes the graphics system
GSTOP Call deactivates the graphics system
GSTRLEN Call finds the string length
GTEXT and GVTEXT
Calls

place text horizontally or vertically on a graph

GWINDOW Call defines the data window
GXAXIS and GYAXIS
Calls

draw a horizontal or vertical axis

PGRAF Call produces scatter plots
WINDOW Statement opens a display window

Wavelet Analysis Calls

WAVFT Call computes a specified wavelet transform of one dimen-
sional data

WAVGET Call returns requested information encapsulated in a wavelet
transform

WAVIFT Call inverts a wavelet transform after applying specified thresh-
olding to the detail coefficients

WAVPRINT Call displays requested information encapsulated in a wavelet
transform

WAVTHRSH Call applies specified thresholding to the detail coefficients of
a wavelet transform

Genetic Algorithm Functionality

GAEND Call terminates genetic algorithm and frees memory resources
GAGETMEM Call gets requested members and objective values from current

solution population
GAGETVAL Call gets objective function values for requested member of

current solution population
GAINIT Call initializes the initial solution population
GAREEVAL Call re-evaluates the objective function for all solutions in cur-

rent population
GASETCRO Call specifies a current crossover operator
GASETMUT Call specifies a current mutation operator
GASETOBJ Call specifies a current objective function
GASETSEL Call specifies a current selection parameters
GASETUP Function sets up a specific genetic algorithm optimization problem

560 � Chapter 20. Language Reference

Operators

All operators available in SAS/IML software are described in this section.

Addition Operator: +

adds corresponding matrix elements

matrix1 + matrix2

matrix + scalar

The addition infix operator (+) produces a new matrix containing elements that are
the sums of the corresponding elements ofmatrix1andmatrix2. The element in the
first row, first column of the first matrix is added to the element in the first row, first
column of the second matrix, with the sum becoming the element in the first row, first
column of the new matrix, and so on.

For example, the statements

a={1 2,
3 4};

b={1 1,
1 1};

c=a+b;

produce the matrixC.

C 2 rows 2 cols (numeric)

2 3
4 5

In addition to adding conformable matrices, you can also use the addition operator to
add a matrix and a scalar or two scalars. When you use thematrix+ scalar(or scalar
+ matrix) form, the scalar value is added to each element of the matrix to produce a
new matrix.

For example, you can obtain the same result as you did in the previous example with
the statement

c=a+1;

When a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

You can also use the addition operator on character operands. In this case, the opera-
tor does elementwise concatenation exactly as the CONCAT function.

Comparison Operators: < > = <= >= ˆ = � 561

Comparison Operators: < > = <= >= ˆ =

compare matrix elements

matrix1<matrix2

matrix1<=matrix2

matrix1>matrix2

matrix1>=matrix2

matrix1=matrix2

matrix1ˆ =matrix2

The comparison operators compare two matrices element by element and produce
a new matrix that contains only zeros and ones. If an element comparison is true,
the corresponding element of the new matrix is 1. If the comparison is not true, the
corresponding element is 0. Unlike in base SAS software, you cannot use the English
equivalents GT and LT for the greater than and less than signs. Scalar values can be
used instead of matrices in any of the forms shown above.

For example, let

a={1 7 3,
6 2 4};

and

b={0 8 2,
4 1 3};

Evaluation of the expression

c=a>b;

results in the matrix of values

C 2 rows 3 cols (numeric)

1 0 1
1 1 1

In addition to comparing conformable matrices, you can apply the comparison opera-
tors to a matrix and a scalar. If either argument is a scalar, the comparison is between
each element of the matrix and the scalar.

For example the expression

d=(a>=2);

562 � Chapter 20. Language Reference

yields the result

D 2 rows 3 cols (numeric)

0 1 1
1 1 1

If the element lengths of two character operands are different, the shorter elements
are padded on the right with blanks for the comparison.

If a numeric missing value occurs in an operand, IML treats it as lower than any valid
number for the comparison.

When you are making conditional comparisons, all values of the result must be
nonzero for the condition to be evaluated as true.

Consider the following statement:

if x>=y then goto loop1;

TheGOTOstatement is executed only if every element ofx is greater than or equal
to the corresponding element iny. See also the descriptions of theALL andANY
functions.

Concatenation Operator, Horizontal: ||

concatenates matrices horizontally

matrix1||matrix2

The horizontal concatenation operator (||) produces a new matrix by horizontally join-
ing matrix1andmatrix2. Matrix1 andmatrix2must have the same number of rows,
which is also the number of rows in the new matrix. The number of columns in
the new matrix is the number of columns inmatrix1plus the number of columns in
matrix2.

For example, the statements

a={1 1 1,
7 7 7};

b={0 0 0,
8 8 8};

c=a||b;

Concatenation Operator, Vertical: // � 563

result in

C 2 rows 6 cols (numeric)

1 1 1 0 0 0
7 7 7 8 8 8

Also, if

b={A B C,
D E F};

and

c={"GH" "IJ",
"KL" "MN"};

then

a=b||c;

results in

A 2 rows 5 cols (character, size 2)

A B C GH IJ
D E F KL MN

For character operands, the element size in the result matrix is the larger of the two
operands. In the preceding example,A has element size 2.

You can use the horizontal concatenation operator when one of the arguments has no
value. For example, ifA has not been defined andB is a matrix,A ||B results in a
new matrix equal toB.

Quotation marks (") are needed around matrix elements only if you want to embed
blanks or maintain uppercase and lowercase distinctions.

Concatenation Operator, Vertical: //

concatenates matrices vertically

matrix1//matrix2

The vertical concatenation operator (//) produces a new matrix by vertically joining
matrix1andmatrix2. Matrix1 andmatrix2must have the same number of columns,
which is also the number of columns in the new matrix. For example, ifA has three
rows and two columns andB has four rows and two columns, thenA//B produces
a matrix with seven rows and two columns. Rows 1 through 3 of the new matrix
correspond toA; rows 4 through 7 correspond toB.

564 � Chapter 20. Language Reference

For example, the statements

a={1 1 1,
7 7 7};

b={0 0 0,
8 8 8};

c=a//b;

result in

C 4 rows 3 cols (numeric)

1 1 1
7 7 7
0 0 0
8 8 8

Also let

b={"AB" "CD",
"EF" "GH"};

and

c={"I" "J",
"K" "L",
"M" "N"};

Then the statement

a=b//c;

produces the new matrix

A 5 rows 2 cols (character, size 2)

AB CD
EF GH
I J
K L
M N

For character matrices, the element size of the result matrix is the larger of the element
sizes of the two operands.

You can use the vertical concatenation operator when one of the arguments has not
been assigned a value. For example, ifA has not been defined andB is a matrix,
A//B results in a new matrix equal toB.

Quotation marks (") are needed around matrix elements only if you want to embed
blanks or maintain uppercase and lowercase distinctions.

Division Operator: / � 565

Direct Product Operator: @

takes the direct product of two matrices

matrix1@matrix2

The direct product operator (@) produces a new matrix that is the direct product (also
called theKronecker product) of matrix1 andmatrix2, usually denoted byA ⊗ B.
The number of rows in the new matrix equals the product of the number of rows in
matrix1and the number of rows inmatrix2; the number of columns in the new matrix
equals the product of the number of columns inmatrix1and the number of columns
in matrix2.

For example, the statements

a={1 2,
3 4};

b={0 2};
c=a@b;

result in

C 2 rows 4 cols (numeric)

0 2 0 4
0 6 0 8

The statement

d=b@a;

results in

D 2 rows 4 cols (numeric)

0 0 2 4
0 0 6 8

Division Operator: /

performs elementwise division

matrix1/matrix2

matrix/scalar

The division operator (/) divides each element ofmatrix1by the corresponding ele-
ment ofmatrix2, producing a matrix of quotients.

In addition to dividing elements in conformable matrices, you can also use the divi-
sion operator to divide a matrix by a scalar. If either operand is a scalar, the operation
does the division for each element and the scalar value.

566 � Chapter 20. Language Reference

When a missing value occurs in an operand, the IML procedure assigns a missing
value for the corresponding element in the result.

If a divisor is zero, the procedure prints a warning and assigns a missing value for
the corresponding element in the result. An example of a valid statement using this
operater follows:

c=a/b;

Element Maximum Operator: <>

selects the larger of two elements

matrix1<>matrix2

The element maximum operator (<>) compares each element ofmatrix1to the corre-
sponding element ofmatrix2. The larger of the two values becomes the corresponding
element of the new matrix that is produced.

When either argument is a scalar, the comparison is between each matrix element and
the scalar.

The element maximum operator can take as operands two character matrices of the
same dimensions or a character matrix and a character string. If the element lengths
of the operands are different, the shorter elements are padded on the right with blanks.
The element length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid
number.

For example, the statements

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a<>b;

produce the result

C 2 rows 3 cols (numeric)

2 9 6
20 11 40

Element Minimum Operator: ><

selects the smaller of two elements

matrix1><matrix2

The element minimum operator (><) compares each element ofmatrix1with the cor-
responding element ofmatrix2. The smaller of the values becomes the corresponding
element of the new matrix that is produced.

Index Creation Operator: : � 567

When either argument is a scalar, the comparison is between the scalar and each
element of the matrix.

The element minimum operator can take as operands two character matrices of the
same dimensions or a character matrix and a character string. If the element lengths
of the operands are different, the shorter elements are padded on the right with blanks.
The element length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid
numeric value.

For example, the statements

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a><b;

produce the result

C 2 rows 3 cols (numeric)

1 4 2
10 10 12

Index Creation Operator: :

creates an index vector

value1:value2

The index creation operator (:) creates a row vector with a first element that isvalue1.
The second element isvalue1+1, and so on, as long as the elements are less than or
equal tovalue2. For example, the statement

I=7:10;

results in

I 1 row 4 cols (numeric)

7 8 9 10

If value1is greater thanvalue2, a reverse order index is created. For example, the
statement

r=10:6;

568 � Chapter 20. Language Reference

results in the row vector

R 1 row 5 cols (numeric)

10 9 8 7 6

The index creation operator also works on character arguments with a numeric suffix.
For example, the statement

varlist=’var1’:’var5’;

results in

VARLIST 1 row 5 cols (character, size 4)

var1 var2 var3 var4 var5

Use theDO function if you want an increment other than 1 or−1. See the description
of the DO function later in this chapter.

Logical Operators: & | ˆ

perform elementwise logical comparisons

matrix1&matrix2

matrix&scalar

matrix1|matrix2

matrix|scalar

ˆ matrix

The AND logical operator (&) compares two matrices, element by element, to pro-
duce a new matrix. An element of the new matrix is 1 if the corresponding elements
of matrix1andmatrix2are both nonzero; otherwise, it is a zero.

An element of the new matrix produced by the OR operator (|) is 1 if either of the
corresponding elements ofmatrix1 and matrix2 is nonzero. If both are zero, the
element is zero.

The NOT prefix operator (ˆ) examines each element of a matrix and produces a new
matrix containing elements that are ones and zeros. If an element ofmatrixequals 0,
the corresponding element in the new matrix is 1. If an element ofmatrix is nonzero,
the corresponding element in the new matrix is 0.

The following statements illustrate the use of these logical operators:

z=x&r;
if a|b then print c;
if ^m then link x1;

Multiplication Operator, Elementwise: # � 569

Multiplication Operator, Elementwise: #

performs elementwise multiplication

matrix1#matrix2

matrix#scalar

matrix#vector

The elementwise multiplication operator (#) produces a new matrix with elements
that are the products of the corresponding elements ofmatrix1andmatrix2.

For example, the statements

a={1 2,
3 4};

b={4 8,
0 5};

c=a#b;

result in the matrix

C 2 rows 2 cols (numeric)

4 16
0 20

In addition to multiplying conformable matrices, you can use the elementwise multi-
plication operator to multiply a matrix and a scalar. When either argument is a scalar,
the scalar value is multiplied by each element inmatrix to form the new matrix.

You can also multiply vectors by matrices. You can multiply matrices as long as
they either conform in each dimension or one operand has dimension value 1. For
example, a2× 3 matrix can be multiplied on either side by a2× 3, a1× 3, a2× 1,
or a1× 1 matrix. Multiplying the2× 2 matrixA by the column vectorD, as in

d={10,100};
ad=a#d;

produces the matrix

AD 2 rows 2 cols (numeric)

10 20
300 400

whereas the statements

d={10 100};
ad=a#d;

570 � Chapter 20. Language Reference

produce the matrix

AD 2 rows 2 cols (numeric)

10 200
30 400

The result of elementwise multiplication is also known as the Schur or Hadamard
product. Element multiplication (using the # operator) should not be confused with
matrix multiplication (using the * operator).

When a missing value occurs in an operand, IML assigns a missing value in the result.

Multiplication Operator, Matrix: *

performs matrix multiplication

matrix1*matrix2

The matrix multiplication infix operator (*) produces a new matrix by performing
matrix multiplication. The first matrix must have the same number of columns as the
second matrix has rows. The new matrix has the same number of rows as the first ma-
trix and the same number of columns as the second matrix. The matrix multiplication
operator does not consistently propagate missing values.

For example, the statements

a={1 2,
3 4};

b={1 2};
c=b*a;

result in

C 1 row 2 cols (numeric)

7 10

and the statement

d=a*b‘;

results in

D 2 rows 1 col (numeric)

5
11

Power Operator, Matrix: ** � 571

Power Operator, Elementwise: ##

raises each element to a power

matrix1##matrix2

matrix##scalar

The elementwise power operator (##) creates a new matrix with elements that are the
elements ofmatrix1 raised to the power of the corresponding element ofmatrix2. If
any value inmatrix1 is negative, the corresponding element inmatrix2 must be an
integer.

In addition to handling conformable matrices, the elementwise power operator en-
ables either operand to be a scalar. In this case, the operation takes the power for
each element and the scalar value. Missing values are propagated if they occur.

For example, the statements

a={1 2 3};
b=a##3;

result in

B 1 row 2 cols (numeric)

1 8 27

The statement

b=a##.5;

results in

B 1 row 3 cols (numeric)

1 1.4142136 1.7320508

Power Operator, Matrix: **

raises a matrix to a power

matrix**scalar

The matrix power operator (**) creates a new matrix that ismatrixmultiplied by itself
scalar times.Matrix must be square;scalarmust be an integer greater than or equal
to−1. Large scalar values cause numerical precision problems. If the scalar is not an
integer, it is truncated to an integer.

572 � Chapter 20. Language Reference

For example, the statements

a={1 2,
1 1};

c=a**2;

result in

C 2 rows 2 cols (numeric)

3 4
2 3

If the matrix is symmetric, it is preferable to power its eigenvalues rather than using
the matrix power operator directly on the matrix (see the description of the EIGEN
call). Note that the expression

A**(-1)

is permitted and is equivalent toINV(A).

The matrix power operater does not support missing values.

Sign Reverse Operator: –

reverses the signs of elements

–matrix

The sign reverse prefix operator (−) produces a new matrix containing elements that
are formed by reversing the sign of each element inmatrix. A missing value is as-
signed if the element is missing.

For example, the statements

a={-1 7 6,
2 0 -8};

b=-a;

result in the matrix

B 2 rows 3 cols (numeric)

1 -7 -6
-2 0 8

Subscripts: [] � 573

Subscripts: []

select submatrices

matrix[rows,columns]

matrix[elements]

Subscripts are used with matrices to select submatrices, whererowsandcolumnsare
expressions that evaluate to scalars or vectors. If these expressions are numeric, they
contain valid subscript values of rows and columns in the argument matrix. If a row
or column expression is a character matrix, then it refers to columns or rows in the
argument matrix assigned corresponding labels by aMATTRIB statementor READ
statement. A subscripted matrix can appear on the left side of the equal sign. The
dimensions of the target submatrix must conform to the dimensions of the source
matrix. See“Using Matrix Expressions”for further information.

For example, the statements

x={1 2 3,
4 5 6,
7 8 9};

a=3;
m=x[2,a];

select the element in the second row and third column ofX and produce the matrix
M:

M 1 row 1 col (numeric)

6

The statements

a=1:3;
m=x[2,a];

select row 2, and columns 1 through 3 ofX, producing the matrixM:

M 1 row 3 cols (numeric)

4 5 6

the statements

x={1 2 3,
4 5 6,
7 8 9};

MATTRIB x colname = {’col1’ ’col2’ ’col3’}
rowname = {’row1’ ’row2’ ’row3’};

a=’col3’;
m=x[’row2’,a];

574 � Chapter 20. Language Reference

select the element in the second row and third column ofX and produce the matrix
M:

M 1 row 1 col (numeric)

6

Subtraction Operator: –

subtracts corresponding matrix elements

matrix1–matrix2

matrix–scalar

The subtraction infix operator (−) produces a new matrix containing elements that are
formed by subtracting the corresponding elements ofmatrix2from those ofmatrix1.

In addition to subtracting conformable matrices, you can also use the subtraction op-
erator to subtract a matrix and a scalar. When either argument is a scalar, the operation
is performed by using the scalar against each element of the matrix argument.

When a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

An example of a valid statement follows:

c=a-b;

Transpose Operator: ‘

transposes a matrix

matrix‘

The transpose operator (denoted by the backquote ‘ character) exchanges the rows
and columns ofmatrix, producing the transpose ofmatrix. For example, if an element
in matrix is in the first row and second column, it is in the second row and first column
of the transpose; an element in the first row and third column ofmatrix is in the third
row and first column of the transpose, and so on. Ifmatrix contains three rows and
two columns, its transpose has two rows and three columns.

For example, the statements

a={1 2,
3 4,
5 6};

b=a‘;

ALL Function � 575

result in

B 2 rows 3 cols (numeric)

1 3 5
2 4 6

If your keyboard does not have a backquote character, you can transpose a matrix
with the T (transpose) function, documented later in this chapter.

Statements, Functions, and Subroutines

This section presents descriptions of all statements, functions, and subroutines avail-
able in IML.

ABORT Statement

stops execution and exits IML

ABORT ;

The ABORT statement instructs IML to stop executing statements. It also stops IML
from parsing any further statements, causing IML to close its files and exit. See also
the description of theSTOP statement.

ABS Function

takes the absolute value

ABS(matrix)

wherematrix is a numeric matrix or literal.

The ABS function is a scalar function that returns the absolute value of every element
of the argument matrix. An example of how to use the ABS function follows.

a = { -1 2 -3, 0 -1 2 };
c=abs(a);

ALL Function

checks for all elements nonzero

ALL(matrix)

wherematrix is a numeric matrix or literal.

The ALL function returns a value of 1 if all elements inmatrix are nonzero. If any
element ofmatrix is zero, the ALL function returns a value of 0. Missing values in
matrixare treated as zeros.

You can use the ALL function to express the results of a comparison operator as
a single 1 or 0. For example, the comparison operationA > B yields a matrix

576 � Chapter 20. Language Reference

containing elements that can be either ones or zeros. All the elements of the new
matrix are ones only if each element ofA is greater than the corresponding element
of B.

For example, consider the statement

if all(a>b) then goto loop;

IML executes theGOTO statementonly if every element ofA is greater than the
corresponding element ofB. The ALL function is implicitly applied to the evaluation
of all conditional expressions.

The statements

if (a>b) then goto loop;

and

if all(a>b) then goto loop;

have the same effect.

ANY Function

checks for any nonzero element

ANY(matrix)

wherematrix is a numeric matrix or literal.

The ANY function returns a value of 1 if any of the elements inmatrix are nonzero.
If all the elements ofmatrixare zeros, the ANY function returns a value of 0. Missing
values inmatrixare treated as zeros.

For example, consider the statement

if any(a=b) then print a b;

The matricesA andB are printed if at least one value inA is the same as the corre-
sponding value inB. The following statements do not print the message:

a={-99 99};
b={-99 98};
if a^=b then print ’a^=b’;

However, the following statement prints the message:

if any(a^=b) then print ’a^=b’;

APPCORT Call � 577

APPCORT Call

applies complete orthogonal decomposition by Householder transformations on
the right-hand-side matrix, B for the solution of rank-deficient linear least-
squares systems

CALL APPCORT(prqb, lindep, a, b <, sing>);

The inputs to the APPCORT subroutine are:

a is anm×nmatrixA, withm ≥ n, which is to be decomposed into the
product of them×m orthogonal matrixQ, then× n upper triangular
matrixR, and then× n orthogonal matrixP,

A = Q
[

R
0

]
Π′P′Π

b is them × p matrix B that is to be left multiplied by the transposed
m×m matrixQ′.

sing is an optional scalar specifying a singularity criterion.

The APPCORT subroutine returns the following values:

prqb is ann× p matrix product

PΠ
[

(L′)−1 0
0 0

]
Q′B

which is the minimum 2-norm solution of the (rank deficient) least-
squares problem‖Ax− b‖2

2. Refer to Golub and Van Loan (1989, pp.
241−242) for more details.

lindep is the number of linearly dependent columns in the matrixA detected
by applying ther Householder transformations. That is,lindep= n−r,
wherer = rank(A).

See“COMPORT Call” for information on complete orthogonal decomposition.

An example of using the APPCORT subroutine follows:

/* Only four linearly independent columns */
A = {1 0 1 0 0,

1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };

/* compute Moore-Penrose generalized inverse */
b = i(nrow(A));
call appcort(Ainv,lindep,A,b);

578 � Chapter 20. Language Reference

print Ainv;

/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |

any(Ainv*A*Ainv-Ainv > eps) |
any((A*Ainv)‘-A*Ainv > eps) |
any((Ainv*A)‘-Ainv*A > eps) then

print "Pseudoinverse conditions not satisfied";
else

print "Pseudoinverse conditions satisfied";

/* compute solution for rank deficient LS:
min |Ax-b|^2

The range of A is a line.
b is a point not on the line. */

A = { 1 2,
2 4,
-1 -2 };

b = {1, 3, -2};
call appcort(x,lindep,A,b);
print x;

AINV

0.2666667 0.2666667 0.2666667 -0.066667 -0.066667 -0.066667
-0.066667 -0.066667 -0.066667 0.2666667 0.2666667 0.2666667

0.4 -0.1 -0.1 0.4 -0.1 -0.1
-0.1 0.4 -0.1 -0.1 0.4 -0.1
-0.1 -0.1 0.4 -0.1 -0.1 0.4

Pseudoinverse conditions satisfied

X

0.3
0.6

APPEND Statement

adds observations to the end of a SAS data set

APPEND < VAR operand > ;

APPEND < FROM from-name < [ROWNAME= row-name] > > ;

In the preceding statements,

operand can be specified as one of the following:

• a literal containing variable names

APPEND Statement � 579

• a character matrix containing variable names
• an expression in parentheses yielding variable names
• one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

from-name is the name of a matrix containing data to append.

row-name is a character matrix or quoted literal containing descriptive row
names.

Use the APPEND statement to add data to the end of the current output data set. The
appended observations are from either the variables specified in the VAR clause or
variables created from the columns of the FROM matrix. The FROM clause and the
VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause.

Following are examples showing each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

If the VAR clause includes a matrix with more than one row and column, the
APPEND statement adds one observation for each element in the matrix with the
greatest number of elements. Elements are appended in row-major order. Variables
in the VAR clause with fewer than the maximum number of elements contribute miss-
ing values to observations after all of their elements have been used.

The default variables for the APPEND statement are all matrices that match variables
in the current data set with respect to name and type.

The ROWNAME= operand to the FROM clause specifies the name of a character
matrix to contain row titles. The firstnrow values of this matrix become values of a
variable with the same name in the output data set;nrow is the number of rows in the
FROM matrix. The procedure uses the firstnrowelements in row-major order.

Examples using the APPEND statement follow. The first example shows the use
of the FROM clause when creating a new data set. See also the section“CREATE
Statement”on page 599

x={1 2 3, 4 5 6};
create mydata from x[colname={x1 x2 x3}];
append from x;
show contents;

/* shows 3 variables (x1 x2 x3) and 2 observations */

The next example shows the use of the VAR clause for selecting variables from which
to append data.

580 � Chapter 20. Language Reference

names={’Jimmy’ ’Sue’ ’Ted’};
sex={m f m};
create folks var{names sex};
append;
show contents;
/* shows 2 variables (names,sex) and 3 observations in FOLKS */

You could achieve the same result with the statements

dsvar={names sex};
create folks var dsvar;
append;

APPLY Function

applies an IML module to its arguments

APPLY(modname, argument1<, argument2,. . ., argument15>)

In the preceding statement,

modname is the name of an existing module, supplied in quotes, as a matrix
containing the module name, or an expression rendering the mod-
ule name.

argument is an argument passed to the module. You must have at least one
argument. You can specify up to 15 arguments.

The APPLY function applies a user-defined IML module to each element of the argu-
ment matrix or matrices and returns a matrix of results. The first argument to APPLY
is the name of the module. The module must already be defined before the APPLY
function is executed. The module must be a function module, capable of returning a
result.

The subsequent arguments to the APPLY function are the arguments passed to the
module. They all must have the same dimension. If the module takesn arguments,
argument1throughargumentnshould be passed to APPLY where1 ≤ n ≤ 15. The
APPLY function effectively calls the module. The result has the same dimension
as the input arguments, and each element of the result corresponds to the module
applied to the corresponding elements of the argument matrices. The APPLY function
can work on numeric as well as character arguments. For example, the following
statements define module ABC and then call the APPLY function, with matrixA as
an argument:

start abc(x);
r=x+100;
return (r);

finish abc;

a={6 7 8,
9 10 11};

r=apply("ABC",a);

ARMACOV Call � 581

The result is

R 2 rows 3 cols (numeric)

106 107 108
109 110 111

In the next example, the statements define the module SWAP and call the APPLY
function:

start swap(a,b,c);
r=a*b*c;
a=b;
if r<0 then return(0);
return(r);

finish swap;

a={2 3, 4 5};
b={4 3, 5 6};
c={9 -1, 3 7};
mod={swap};
r=apply(mod,a,b,c);
print a r;

The results are

A R
4 3 72 0
5 6 60 210

ARMACOV Call

computes an autocovariance sequence for an ARMA model

CALL ARMACOV(auto, cross, convol, phi, theta, num);

The inputs to the ARMACOV subroutine are as follows:

phi refers to a1× (p+ 1) matrix containing the autoregressive param-
eters. The first element is assumed to have the value 1.

theta refers to a1 × (q + 1) matrix containing the moving-average pa-
rameters. The first element is assumed to have the value 1.

num refers to a scalar containingn, the number of autocovariances to be
computed, which must be a positive number.

The ARMACOV subroutine returns the following values:

auto specifies a variable to contain the returned1×n matrix containing
the autocovariances of the specified ARMA model, assuming unit
variance for the innovation sequence.

582 � Chapter 20. Language Reference

cross specifies a variable to contain the returned1× (q + 1) matrix con-
taining the covariances of the moving-average term with lagged
values of the process.

convol specifies a variable to contain the returned1× (q + 1) matrix con-
taining the autocovariance sequence of the moving-average term.

The ARMACOV subroutine computes the autocovariance sequence that corresponds
to a given autoregressive moving-average (ARMA) time-series model. An arbitrary
number of terms in the sequence can be requested. Two related covariance sequences
are also returned.

The model notation for the ARMACOV andARMALIK subroutines is the same. The
ARMA(p, q) model is denoted

p∑
j=0

φjyt−j =
q∑

i=0

θiεt−i

with θ0 = φ0 = 1. The notation is the same as that of Box and Jenkins (1976)
except that the model parameters are opposite in sign. The innovations{εt} satisfy
E(εt) = 0 andE(εtεt−k) = 1 if k=0, and are zero otherwise. The formula for the
kth element of theconvolargument is

q∑
i=k−1

θiθi−k+1

for k = 1, 2, . . . , q + 1. The formula for thekth element of thecrossargument is

q∑
i=k−1

θiψi−k+1

for k = 1, 2, . . . , q+1, whereψi is theith impulse response value. Theψi sequence,
if desired, can be computed with the RATIO function. It can be shown thatψk is
the same asE(Yt−kε

2
t)/σ, which is used by Box and Jenkins (1976, p. 75) in their

formulation of the autocovariances. Thekth autocovariance, denotedγk and returned
as thek+1 element of theautoargument(k = 0, 1, . . . , n− 1), is defined implicitly
for k > 0 by

p∑
i=0

γk−iφi = ηk

whereηk is thekth element of thecrossargument. See Box and Jenkins (1976) or
McLeod (1975) for more information.

To compute the autocovariance function at lags zero through four for the model

yt = 0.5yt−1 + et + 0.8et−1

use the following statements:

ARMALIK Call � 583

/* an arma(1,1) model */
phi ={1 -0.5};
theta={1 0.8};
call armacov(auto,cross,convol,phi,theta,5);
print auto,,cross convol;

The result is

AUTO
3.2533333 2.4266667 1.2133333 0.6066667 0.3033333

CROSS CONVOL
2.04 0.8 1.64 0.8

ARMALIK Call

computes the log-likelihood and residuals for an ARMA model

CALL ARMALIK(lnl, resid, std, x, phi, theta);

The inputs to the ARMALIK subroutine are as follows:

x is ann × 1 or 1 × n matrix containing values of the time series
(assuming mean zero).

phi is a 1 × (p + 1) matrix containing the autoregressive parameter
values. The first element is assumed to have the value 1.

theta is a1 × (q + 1) matrix containing the moving-average parameter
values. The first element is assumed to have the value 1.

The ARMALIK subroutine returns the following values:

lnl specifies a3× 1 matrix containing the log likelihood concentrated
with respect to the innovation variance; the estimate of the innova-
tion variance (the unconditional sum of squares divided byn); and
the log of the determinant of the variance matrix, which is stan-
dardized to unit variance for the innovations.

resid specifies ann × 1 matrix containing the standardized residuals.
These values are uncorrelated with a constant variance if the spec-
ified ARMA model is the correct one.

std specifies ann× 1 matrix containing the scale factors used to stan-
dardize the residuals. The actual residuals from the one-step-ahead
predictions using the past values can be computed asstd#resid.

The ARMALIK subroutine computes the concentrated log-likelihood function for an
ARMA model. The unconditional sum of squares is readily available, as are the one-
step-ahead prediction residuals. Factors that can be used to generate confidence limits
associated with prediction from a finite past sample are also returned.

584 � Chapter 20. Language Reference

The notational conventions for the ARMALIK subroutine are the same as those used
by the ARMACOV subroutine. See the description of theARMACOV call for the
model employed. In addition, the condition

∑q
i=0 θ

i
iz 6= 0 for |z| < 1 should be

satisfied to guard against floating-point overflow.

If the column vectorx containsn values of a time series and the variance matrix is
denotedΣ = σ2V, whereσ2 is the variance of the innovations, then, up to additive
constants, the log likelihood, concentrated with respect toσ2, is

−n
2

log
(
x′V−1x

)
− 1

2
log |V| .

The matrixV is a function of the specified ARMA model parameters. IfL is the
lower Cholesky root ofV (that is,V = LL′), then the standardized residuals are
computed asresid= L−1x. The elements ofstd are the diagonal elements ofL.
The variance estimate isx′V−1x/n, and the log determinant islog |V|. See Ansley
(1979) for further details. To compute the log-likelihood for the model

yt − yt−1 + 0.25yt−2 = et + 0.5et−1

use the following IML code:

phi={ 1 -1 0.25} ;
theta={ 1 0.5} ;
x={ 1 2 3 4 5} ;
call armalik(lnl,resid,std,x,phi,theta);
print lnl resid std;

The printed output is

LNL RESID STD
-0.822608 0.4057513 2.4645637
0.8721154 0.9198158 1.2330147
2.3293833 0.8417343 1.0419028

1.0854175 1.0098042
1.2096421 1.0024125

ARMASIM Function

simulates a univariate ARMA series

ARMASIM(phi, theta, mu, sigma, n, <seed>)

The inputs to the ARMASIM function are As follows:

phi is a1 × (p + 1) matrix containing the autoregressive parameters.
The first element is assumed to have the value 1.

theta is a1× (q + 1) matrix containing the moving-average parameters.
The first element is assumed to have the value 1.

ARMASIM Function � 585

mu is a scalar containing the overall mean of the series.

sigma is a scalar containing the standard deviation of the innovation se-
ries.

n is a scalar containingn, the length of the series. The value ofn
must be greater than 0.

seed is a scalar containing the random number seed. If it is not supplied,
the system clock is used to generate the seed. If it is negative, then
the absolute value is used as the starting seed; otherwise, subse-
quent calls ignore the value ofseedand use the last seed generated
internally.

The ARMASIM function generates a series of lengthn from a given autoregressive
moving-average (ARMA) time series model and returns the series in ann×1 matrix.
The notational conventions for the ARMASIM function are the same as those used
by the ARMACOV subroutine. See the description of theARMACOV call for the
model employed. The ARMASIM function uses an exact simulation algorithm as
described in Woodfield (1988). A sequenceY0, Y1, . . . , Yp+q−1 of starting values is
produced using an expanded covariance matrix, and then the remaining values are
generated using the recursion form of the model, namely

Yt = −
p∑

i=1

φiYt−i + εt +
q∑

i=1

θiεt−i t = p+ q, p+ q + 1, . . . , n− 1 .

The random number generator RANNOR is used to generate the noise component of
the model. Note that the statement

armasim(1,1,0,1,n,seed);

returnsn standard normal pseudo-random deviates.

For example, to generate a time series of length 10 from the model

yt = 0.5yt−1 + et + 0.8et−1

use the following code to produce the result shown:

phi={1 -0.5};
theta={1 0.8};
y=armasim(phi, theta, 0, 1, 10, -1234321);
print y;

Y

2.3253578
0.975835

-0.376358

586 � Chapter 20. Language Reference

-0.878433
-2.515351
-3.083021
-1.996886
-1.839975
-0.214027
1.4786717

BLOCK Function

forms block-diagonal matrices

BLOCK(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric matrix or literal.

The BLOCK function creates a new block-diagonal matrix from all the matrices spec-
ified in the argument matrices. Up to 15 matrices can be specified. The matrices are
combined diagonally to form a new matrix. For example, the statement

block(a,b,c);

produces a matrix of the form

 A 0 0
0 B 0
0 0 C

The statements

a={2 2,
4 4} ;

b={6 6,
8 8} ;

c=block(a,b);

result in the matrix

C 4 rows 4 cols (numeric)

2 2 0 0
4 4 0 0
0 0 6 6
0 0 8 8

BRANKS Function

computes bivariate ranks

BTRAN Function � 587

BRANKS(matrix)

wherematrix is ann× 2 numeric matrix.

The BRANKS function calculates the tied ranks and the bivariate ranks for ann× 2
matrix and returns ann× 3 matrix of these ranks. The tied ranks of the first column
of matrix are contained in the first column of the result matrix; the tied ranks of the
second column ofmatrixare contained in the second column of the result matrix; and
the bivariate ranks ofmatrixare contained in the third column of the result matrix.

The tied rank of an elementxj of a vector is defined as

Ri =
1
2

+
∑

j

u(xi − xj)

where

u(t) =

1 if t > 0
1
2 if t = 0
0 if t < 0 .

The bivariate rank of a pair(xj , yj) is defined as

Qi =
3
4

+
∑

j

u(xi − xj)u(yi − yj) .

For example, the following statements produce the result shown below:

x={1 0,
4 2,
3 4,
5 3,
6 3};

f=branks(x);

F 5 rows 3 cols (numeric)

1 1 1
3 2 2
2 5 2
4 3.5 3
5 3.5 3.5

BTRAN Function

computes the block transpose

588 � Chapter 20. Language Reference

BTRAN(x, n, m)

The inputs to the BTRAN function are as follows:

x is an(inx)× (jmx) numeric matrix.

n is a scalar with a value that specifies the row dimension of the submatrix
blocks.

m is a scalar with a value that specifies the column dimension of the submatrix
blocks.

The BTRAN function computes the block transpose of a partitioned matrix. The
argumentx is a partitioned matrix formed from submatrices of dimensionn × n. If
the ith, jth submatrix of the argumentx is denotedAij , then theith, jth submatrix
of the result isAji.

The value returned by the BTRAN function is a(jn) × (im) matrix, the block tran-
pose ofx, where the blocks aren×m.

For example, the statements

z=btran({1 2 3 4,
5 6 7 8},2,2);

print z;

produce the result

Z 4 rows 2 cols (numeric)

1 2
5 6
3 4
7 8

BYTE Function

translates numbers to ordinal characters

BYTE(matrix)

wherematrix is a numeric matrix or literal.

The BYTE function returns a character matrix with the same shape as the numeric
argument. Each element of the result is a single character with an ordinal position in
the computer’s character set that is specified by the corresponding numeric element
in the argument. These numeric elements should generally be in the range 0 to 255.

For example, in the ASCII character set,

a=byte(47);

CALL Statement � 589

specifies that

a="/"; /* the slash character */

The lowercase alphabet can be generated with

y=byte(97:122);

which produces

Y 1 row 26 cols (character, size 1)

a b c d e f g h i j k l m n o p q r s t u v w x y z

This function simplifies the use of special characters and control sequences that can-
not be entered directly using the keyboard into IML source code. Consult the char-
acter set tables for the computer you are using to determine the printable and control
characters that are available and their ordinal positions.

CALL Statement

calls a subroutine or function

CALL name <(arguments)> ;

The inputs to the CALL statement are as follows:

name is the name of a user-defined module or an IML subroutine or func-
tion.

arguments are arguments to the module or subroutine.

The CALL statement executes a subroutine. The order of resolution for the CALL
statement is

1. IML built-in subroutine

2. user-defined module

This resolution order needs to be considered only if you have defined a module with
the same name as an IML built-in subroutine.

See also the section on theRUN statement.

590 � Chapter 20. Language Reference

CHANGE Call

search and replace text in an array

CALL CHANGE(matrix, old, new<, numchange>);

The inputs to the CHANGE call are as follows:

matrix is a character matrix or quoted literal.

old is the string to be changed.

new is the string to replace theold string.

numchange is the number of times to make the change.

The CHANGE subroutine changes the firstnumchangeoccurrences of the substring
old in each element of the character arraymatrix to the formnew. If numchange
is not specified, the routine defaults to 1. Ifnumchangeis 0, the routine changes
all occurrences ofold. If no occurrences are found, the matrix is not changed. For
example, the statements

a="It was a dark and stormy night.";
call change(a, "night","day");

produce

A="It was a dark and stormy day."

In theold operand, the following characters are reserved:

% $ [] { } < > − ? * # @ ’ ‘(backquote) ˆ

CHAR Function

produces a character representation of a numeric matrix

CHAR(matrix<, w <, d >>)

The inputs to the CHAR function are as follows:

matrix is a numeric matrix or literal.

w is the field width.

d is the number of decimal positions.

The CHAR function takes a numeric matrix as an argument and, optionally, a field
widthw and a number of decimal positionsd. The CHAR function produces a char-
acter matrix with dimensions that are the same as the dimensions of the argument

CHOOSE Function � 591

matrix and with elements that are character representations of the corresponding nu-
meric elements.

The CHAR function can take one, two, or three arguments. The first argument is the
name of a numeric matrix and must always be supplied. The second argument is the
field width of the result. If the second argument is not supplied, the system default
field width is used. The third argument is the number of decimal positions in the
result. If no third argument is supplied, the best representation is used. See also the
description of theNUM function, which does the reverse conversion.

For example, the statements

a={1 2 3 4};
f=char(a,4,1);

produce the result

F 1 row 4 cols (character, size 4)

1.0 2.0 3.0 4.0

CHOOSE Function

conditionally chooses and changes elements

CHOOSE(condition, result-for-true, result-for-false)

The inputs to the CHOOSE function are as follows:

condition is checked for being true or false for each element.

result-for-true is returned whenconditionis true.

result-for-false is returned whenconditionis false.

The CHOOSE function examines each element of the first argument for being true
(nonzero and not missing) or false (zero or missing). For each true element, it re-
turns the corresponding element in the second argument. For each false element, it
returns the corresponding element in the third argument. Each argument must be
conformable with the others or be a single element to be propagated.

For example, suppose that you want to choose betweenx andy according to whether
x#y is odd or even, respectively. The statements

x={1, 2, 3, 4, 5};
y={101, 205, 133, 806, 500};
r=choose(mod(x#y,2)=1,x,y);
print x y r;

result in

592 � Chapter 20. Language Reference

X Y R
1 101 1
2 205 205
3 133 3
4 806 806
5 500 500

Suppose you want all missing values inx to be changed to zeros. Submit the follow-
ing statements to produce the result shown below:

x={1 2 ., 100 . -90, . 5 8};
print x;

X 3 rows 3 cols (numeric)

1 2 .
100 . -90
. 5 8

The following statement replaces the missing values inX with zeros:

x=choose(x=.,0,x);
print x;

X 3 rows 3 cols (numeric)

1 2 0
100 0 -90
0 5 8

CLOSE Statement

closes a SAS data set

CLOSE <SAS-data-set>;

whereSAS-data-setcan be specified with a one-word name (for example, A) or a
two-word name (for example, SASUSER.A). For more information on specifying
SAS data sets, seeChapter 6, “Working with SAS Data Sets,”. Also, refer to the
chapter on SAS data sets inSAS Language Reference: Concepts. More than one
SAS data set can be listed in a CLOSE statement.

The CLOSE statement is used to close one or more SAS data sets opened with the
USE, EDIT, or CREATE statements. To find out which data sets are open, use the
SHOW datasetsstatement; see also the section on theSAVE statementlater in this
chapter. IML automatically closes all open data sets when aQUIT statementis exe-
cuted. SeeChapter 6, “Working with SAS Data Sets,”for more information.

Examples of the CLOSE statement are as follows.

close mydata;
close mylib.mydata;
close; /* closes the current data set */

COMPORT Call � 593

CLOSEFILE Statement

closes an input or output file

CLOSEFILE files;

wherefilescan be names (for defined filenames), literals, or expressions in parenthe-
ses (for filepaths).

The CLOSEFILE statement is used to close files opened by the INFILE or FILE
statement. The file specification should be the same as when the file was opened. File
specifications are either a name (for a defined filename), a literal, or an expression
in parentheses (for a filepath). To find out what files are open, use the statement
SHOWfiles. For further information, consultChapter 7, “File Access.”See also the
description of theSAVE statement. IML automatically closes all files when a QUIT
statement is executed.

Examples of the CLOSEFILE statement follow.

filename in1 ’mylib.mydata’;
closefile in1;

or

closefile ’mylib.mydata’;

or

in=’mylib/mydata’;
closefile(in);

COMPORT Call

provides complete orthogonal decomposition by Householder transformations

CALL COMPORT(q, r, p, piv, lindep, a <, b><, sing>);

The COMPORT subroutine returns the following values:

q If b is not specified,q is them × m orthogonal matrixQ that is the
product of themin(m,n) separate Householder transformations. If
b is specified,q is them × p matrix Q′B that has the transposed
Householder transformationsQ′ applied on thep columns of the ar-
gument matrixB.

r is then×n upper triangular matrixR that contains ther×r nonsingular
upper triangular matrixL′ of the complete orthogonal decomposition,
wherer ≤ n is the rank ofA. The fullm× n upper triangular matrix
R of the orthogonal decomposition of matrixA can be obtained by
vertical concatenation (IML operator//) of the (m − n) × n zero
matrix to the resultr.

594 � Chapter 20. Language Reference

p is ann × n matrix that is the productPΠ of a permutation matrixΠ
with an orthogonal matrixP. The permutation matrix is determined by
the vectorpiv.

piv is ann×1 vector of permutations of the columns ofA. That is, the QR
decomposition is computed, not ofA, but of the matrix with columns
[Apiv[1] · · ·Apiv[n]]. The vectorpiv corresponds to ann × n permu-
tation matrix,Π, of the pivoted QR decomposition in the first step of
orthogonal decomposition.

lindep specifies the number of linearly dependent columns in the matrixA
detected by applying ther Householder transformation in the order
specified by the argumentpiv. That is,lindep= n− r.

The inputs to the COMPORT subroutine are as follows:

a specifies them×n matrixA, withm ≥ n, which is to be decomposed
into the product of them ×m orthogonal matrixQ, then × n upper
triangular matrixR, and then× n orthogonal matrixP,

A = Q
[

R
0

]
Π′P′Π

b specifies an optionalm× p matrixB that is to be left multiplied by the
transposedm×m matrixQ′.

sing is an optional scalar specifying a singularity criterion.

The completeorthogonal decomposition of the singular matrixA can be used to
compute the Moore-Penrose inverseA−, r = rank(A) < n, or to compute the
minimum 2-norm solution of the (rank deficient) least-squares problem‖Ax− b‖2

2.

1. Use the QR decomposition ofA with column pivoting,

A = Q
[

R
0

]
Π′ =

[
Y Z

] [R1 R2

0 0

]
Π′

whereR = [R1 R2] ∈ Rr×t is upper trapezoidal,R1 ∈ Rr×r is upper
triangular and invertible,R2 ∈ Rr×s, Q = [Y Z] is orthogonal,Y ∈
Rt×r, Z ∈ Rt×s, andΠ permutes the columns ofA.

2. Use the transposeL12 of the upper trapezoidal matrixR =
[

R1 R2

]
,

L12 =
[

L1

L2

]
= R′ ∈ Rt×r

with rank(L12) = rank(L1) = r, L1 ∈ Rr×r lower triangular,L2 ∈ Rs×r.
The lower trapezoidal matrixL12 ∈ Rt×r is premultiplied withr Householder
transformationsP1, . . . ,Pr:

Pr · · ·P1

[
L1

L2

]
=
[

L
0

]

COMPORT Call � 595

each zeroing out one of ther columns ofL2 and producing the nonsingular
lower triangular matrixL ∈ Rr×r. Therefore, you obtain

A = Q
[

L′ 0
0 0

]
Π′P′ = Y

[
L′ 0

]
Π′P′

with P = ΠPr · · ·P1 ∈ Rt×t and upper triangularL′. This second step is
described in Golub and Van Loan (1989, p. 220 and p. 236).

3. Compute the Moore-Penrose InverseA− explicitly.

A− = PΠ
[

(L′)−1 0
0 0

]
Q′ = PΠ

[
(L′)−1

0

]
Y′

(a) ObtainY in Q =
[

Y Z
]

explicitly by applying ther Householder

transformations obtained in the first step to

[
Ir

0

]
.

(b) Solve ther× r lower triangular system(L′)−1Y′ with t right hand sides
using backward substitution, which yields anr × t intermediate matrix.

(c) Left-apply ther Householder transformations inP on ther × t inter-

mediate matrix

[
(L′)−1Y′

0

]
, which results in the symmetric matrix

A− ∈ Rt×t.

TheGINV functioncomputes the Moore-Penrose inverseA− using the singular value
decomposition ofA. Using complete orthogonal decomposition to computeA− usu-
ally needs far fewer floating point operations. However, it may be slightly more sen-
sitive to rounding errors, which can disturb the detection of the true rank ofA, than
singular value decomposition.

An example of using the APPCORT subroutine follows:

/* Only four linearly independent columns */
A = {1 0 1 0 0,

1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };

m = nrow(A);
n = ncol(A);

call comport(q,r,p,piv,lindep,A);
fullR = r // j(m-n, n, 0);
perm = i(n);
perm[piv,] = i(n);

/* recover A from factorization */
A2 = q*fullR*p‘*perm‘;
reset fuzz;
print A2;

596 � Chapter 20. Language Reference

/* compute Moore-Penrose generalized inverse */
rankA = n - lindep;
subR = R[1:rankA, 1:rankA];
fullRinv = j(n, n, 0);
fullRinv[1:rankA, 1:rankA] = inv(subR);
Ainv = perm*p*fullRinv*q[,1:n]‘;
print Ainv;

/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |

any(Ainv*A*Ainv-Ainv > eps) |
any((A*Ainv)‘-A*Ainv > eps) |
any((Ainv*A)‘-Ainv*A > eps) then

print "Pseudoinverse conditions not satisfied";
else

print "Pseudoinverse conditions satisfied";

A2

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

AINV

0.2666667 0.2666667 0.2666667 -0.066667 -0.066667 -0.066667
-0.066667 -0.066667 -0.066667 0.2666667 0.2666667 0.2666667

0.4 -0.1 -0.1 0.4 -0.1 -0.1
-0.1 0.4 -0.1 -0.1 0.4 -0.1
-0.1 -0.1 0.4 -0.1 -0.1 0.4

Pseudoinverse conditions satisfied

CONCAT Function

performs elementwise string concatenation

CONCAT(argument1, argument2<, . . ., argument15>)

whereargumentsare character matrices or quoted literals.

The CONCAT function produces a character matrix containing elements that are the
concatenations of corresponding element strings from each argument. The CONCAT
function accepts up to 15 arguments, where each argument is a character matrix or
a scalar. All nonscalar arguments must conform. Any scalar arguments are used
repeatedly to concatenate to all elements of the other arguments. The element length
of the result equals the sum of the element lengths of the arguments. Trailing blanks
of one matrix argument appear before elements of the next matrix argument in the
result matrix. For example, if you specify

CONTENTS Function � 597

b={"AB" "C ",
"DE" "FG"};

and

c={"H " "IJ",
" K" "LM"};

then the statement

a=concat(b,c);

produces the new2× 2 matrix

A 2 rows 2 cols (character, size 4)

ABH C IJ
DE K FGLM

Quotation marks (") are needed only if you want to embed blanks or maintain upper-
case and lowercase distinctions. You can also use theADD infix operator to concate-
nate character operands. See the description of the addition operator.

CONTENTS Function

obtains the variables in a SAS data set

CONTENTS(<libref><, SAS-data-set>)

whereSAS-data-setcan be specified with a one-word name or with a libref and a
SAS-data-set name. For more information on specifying SAS data sets, seeChapter
6, “Working with SAS Data Sets.”Also, refer to the chapter on SAS data sets inSAS
Language Reference: Concepts.

The CONTENTS function returns a character matrix containing the variable names
for SAS-data-set. The result is a character matrix withn rows, one column, and
8 characters per element, wheren is the number of variables in the data set. The
variable list is returned in the order in which the variables occur in the data set. If a
one-word name is provided, IML uses the default SAS data library (as specified in
the DEFLIB= option). If no arguments are specified, the current open input data set
is used. Some examples follow.

x=contents(); /* current open input data set */

x=contents(’work’,’a’); /* contents of data set A in */
/* WORK library */

See also the description of theSHOWcontentsstatement.

598 � Chapter 20. Language Reference

CONVEXIT Function

calculates and returns a scalar containing the convexity of a noncontingent cash-
flow

CONVEXIT(times,flows,ytm)

The CONVEXIT function calculates and returns a scalar containing the convexity of
a noncontingent cash-flow.

times is ann-dimensional column vector of times. Elements should be non-
negative.

flows is ann-dimensional column vector of cash-flows.

ytm is the per-period yield-to-maturity of the cash-flow stream. This is a
scalar and should be positive.

Convexity is essentially a measure of how duration, the sensitivity of price to yield,
changes as interest rates change:

C =
1
P

d2P

dy2

With cash-flows that are not yield sensitive, and the assumption of parallel shifts to a
flat term-structure, convexity is given by

C =

∑K
k=1 tk(tk + 1) c(k)

(1+y)tk

P (1 + y)2

whereP is the present value,y is the effective per period yield-to-maturity,K is the
number of cash-flows, and thek-th cash-flow isc(k) tk periods from the present.

The statements

timesn=T(do(1,100,1));
flows=repeat(10,100);
ytm=0.1;
convexit=convexit(timesn,flows,ytm);
print convexit;

result in the following output:

CONVEXIT
199.26229

COVLAG Function

computes autocovariance estimates for a vector time series

CREATE Statement � 599

COVLAG(x, k)

The inputs to the COVLAG function are as follows:

x is ann× nv matrix of time series values;n is the number of observations, and
nv is the dimension of the random vector.

k is a scalar, the absolute value of which specifies the number of lags desired. If
k is positive, a mean correction is made. Ifk is negative, no mean correction is
made.

The COVLAG function computes a sequence of lagged crossproduct matrices. This
function is useful for computing sample autocovariance sequences for scalar or vector
time series.

The value returned by the COVLAG function is annv × (k ∗ nv) matrix. Theith
nv × nv block of the matrix is the sum

1
n

n∑
j=i

x′jxj−i+1 if k < 0

wherexj is thejth row ofx. If k>0, then theith nv × nv block of the matrix is

1
n

n∑
j=i

(xj − x̄)′(xj−i+1 − x̄)

wherex̄ is a row vector of the column means ofx. For example, the statements

x={-9,-7,-5,-3,-1,1,3,5,7,9};
cov=covlag(x,4);

produce the matrix

COV 1 row 4 cols (numeric)

33 23.1 13.6 4.9

CREATE Statement

creates a new SAS data set

CREATE SAS-data-set <VAR operand>;

CREATE SAS-data-set FROM matrix-name

600 � Chapter 20. Language Reference

<[COLNAME= column-name ROWNAME=row-name]>;

The inputs to the CREATE statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, seeChapter 6, “Working with SAS Data
Sets.” Also, refer to the chapter on SAS data sets inSAS Language
Reference: Concepts.

operand gives a set of existing IML variables to become data set variables.

matrix-name names a matrix containing the data.

column-name is a character matrix or quoted literal containing descriptive names
to associate with data set variables.

row-name is a character matrix or quoted literal containing descriptive names
to associate with observations on the data set.

The CREATE statement creates a new SAS data set and makes it both the current
input and output data sets. The variables in the new SAS data set are either the
variables listed in the VAR clause or variables created from the columns of the FROM
matrix. The FROM clause and the VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause, whereoperandcan be
specified as one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Following are examples showing each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

You can specify a COLNAME= and a ROWNAME= matrix in the FROM clause. The
COLNAME= matrix gives names to variables in the SAS data set being created. The
COLNAME= operand specifies the name of a character matrix. The firstncol values
from this matrix provide the variable names in the data set being created, wherencol
is the number of columns in the FROM matrix. The CREATE statement uses the first
ncolelements of the COLNAME= matrix in row-major order.

CSHAPE Function � 601

The ROWNAME= operand adds a variable to the data set to contain row titles. The
operand must be a character matrix that exists and has values. The length of the
data set variable added is the length of a matrix element of the operand. The same
ROWNAME= matrix should be used on any subsequentAPPENDstatements for this
data set.

The variable types and lengths are the current attributes of the matrices specified in
the VAR clause or the matrix in the FROM clause. The default type is numeric when
the name is undefined and unvalued. The default, when no variables are specified, is
all active variables. To add observations to your data set, you must use theAPPEND
statement.

For example, the following statements create a new SAS data set CLASS having
variables NAME, SEX, AGE, HEIGHT, and WEIGHT. The data come from IML
matrices with the same names. You must initialize the character variables (NAME
and SEX) and set the length prior to invoking the CREATE statement. NAME and
SEX are character variables of lengths 12 and 1, respectively. AGE, HEIGHT, and
WEIGHT are, by default, numeric.

name="123456789012";
sex="M";
create class var {name sex age height weight};
append;

In the next example, you use the FROM clause with the COLNAME= operand to cre-
ate a SAS data set named MYDATA. The new data set has variables named with the
COLNAME= operand. The data are in the FROM matrixX, and there are two obser-
vations becauseX has two rows of data. The COLNAME= operand gives descriptive
names to the data set variables.

x={1 2 3, 4 5 6};
varnames=’x1’:’x3’;

/* creates data set MYDATA with variables X1, X2, X3 */
create mydata from x [colname=varnames];
append from x;

CSHAPE Function

reshapes and repeats character values

CSHAPE(matrix, nrow, ncol, size<, padchar>)

The inputs to the CSHAPE function are as follows:

matrix is a character matrix or quoted literal.

nrow is the number of rows.

ncol is the number of columns.

size is the element length.

padchar is a padding character.

602 � Chapter 20. Language Reference

The CSHAPE function shapes character matrices. See also the description of the
SHAPE function, which is used with numeric data.

The dimension of the matrix created by the CSHAPE function is specified bynrow
(the number of rows),ncol (the number of columns), andsize(the element length). A
padding character is specified bypadchar.

The CSHAPE function works by looking at the source matrix as if the characters of
the source elements had been concatenated in row-major order. The source characters
are then regrouped into elements of lengthsize. These elements are assigned to the
result matrix, once again in row-major order. If there are not enough characters for
the result matrix, the source of the remaining characters depends on whether padding
was specified withpadchar. If no padding was specified, the source matrix’s char-
acters are cycled through again. If a padding character was specified, the remaining
characters are all the padding character.

If one of the dimension arguments (nrow, ncol), orsize) is zero, the function computes
the dimension of the output matrix by dividing the number of elements of the input
matrix by the product of the nonzero arguments.

Some examples follow. The statement

r=cshape(’abcd’,2,2,1);

results in

R 2 rows 2 cols (character, size 1)

a b
c d

The statement

r=cshape(’a’,1,2,3);

results in

R 1 row 2 cols (character, size 3)

aaa aaa

The statement

r=cshape({’ab’ ’cd’,
’ef’ ’gh’,
’ij’ ’kl’}, 2, 2, 3);

results in

CUSUM Function � 603

R 2 rows 2 cols (character, size 3)

abc def
ghi jkl

The statement

r=cshape(’XO’,3,3,1);

results in

R 3 rows 3 cols (character, size 1)

X O X
O X O
X O X

And finally, the statement

r=cshape(’abcd’,2,2,3,’*’);

results in

R 2 rows 2 cols (character, size 3)

abc d**
*** ***

CUSUM Function

calculates cumulative sums

CUSUM(matrix)

wherematrix is a numeric matrix or literal.

The CUSUM function returns a matrix of the same dimension as the argument ma-
trix. The result contains the cumulative sums obtained by scanning the argument and
summing in row-major order.

For example, the statements

a=cusum({1 2 4 5});
b=cusum({5 6, 3 4});

produce the result

A 1 row 4 cols (numeric)

1 3 7 12

604 � Chapter 20. Language Reference

B 2 rows 2 cols (numeric)

5 11
14 18

CVEXHULL Function

finds a convex hull of a set of planar points

CVEXHULL(matrix)

wherematrix is ann× 2 matrix of (x, y) points.

The argument for the CVEXHULL function is ann× 2 matrix of (x, y) points. The
result matrix is ann × 1 matrix of indices. The indices of points in the convex hull
in counter-clockwise order are returned as the first part of the result matrix, and the
negative of the indices of the internal points are returned as the remaining elements
of the result matrix. Any points that lie on the convex hull but lie on a line segment
joining two other points on the convex hull are not included as part of the convex hull.

The result matrix can be split into positive and negative parts using theLOC function.
For example, the following statements find the index vector for the convex hull and
print the asociated points.

points = {
0 2, 0.5 2, 1 2, 0.5 1, 0 0, 0.5 0, 1 0,

2 -1, 2 0, 2 1, 3 0, 4 1, 4 0, 4 -1,
5 2, 5 1, 5 0, 6 0 };

indices = cvexhull(points);
hullIndices = indices[loc(indices>0)];
convexHull = points[hullIndices,];
print convexHull;

CONVEXHULL

0 2
0 0
2 -1
4 -1
6 0
5 2

DATASETS Function

obtains the names of SAS data sets in a SAS data library

DELETE Call � 605

DATASETS(<libref>)

wherelibref is the name of a SAS data library. For more information on specifying a
SAS data library, seeChapter 6, “Working with SAS Data Sets.”

The DATASETS function returns a character matrix containing the names of the SAS
data sets in the specified SAS data library. The result is a character matrix withn rows
and one column, wheren is the number of data sets in the library. If no argument is
specified, IML uses the default libname. (See the DEFLIB= option in the description
of theRESET statement.)

For example, suppose you have several data sets in the SAS data library SASUSER.
You can list the names of the data sets in SASUSER by using the DATASETS func-
tion as follows.

lib={sasuser};
a=datasets(lib);

A 6 rows 1 col (character, size 8)

CLASS
FITNESS
GROWTH
HOUSES
SASPARM
TOBACCO

DELETE Call

deletes a SAS data set

CALL DELETE(<libname,> member-name);

The inputs to the DELETE subroutine are as follows:

libname is a character matrix or quoted literal containing the name of a SAS
data library.

member-name is a character matrix or quoted literal containing the name of a data
set.

The DELETE subroutine deletes a SAS data set in the specified library. If a one word
name is specified, the default SAS data library is used. (See the DEFLIB= option in
the description of theRESET statement.)

Some examples follow.

call delete(work,a); /* deletes WORK.A */

reset deflib=work; /* sets default libname to WORK */
call delete(a); /* also deletes WORK.A */

606 � Chapter 20. Language Reference

d=datasets(’work’); /* returns all data sets in WORK */
call delete(work,d[1]);

/* deletes data set whose name is */
/* first element of matrix D */

DELETE Statement

marks observations for deletion

DELETE <range> <WHERE(expression)>;

The inputs to the DELETE statement are as follows:

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

Use the DELETE statement to mark records for deletion in the current output data
set. To delete records and renumber the remaining observations, use thePURGE
statement.

You can specifyrangeby using a keyword or by record number using the POINT
operand. The following keywords are valid values forrange:

ALL specifies all observations.

CURRENT specifies the current observation.

NEXT <number> specifies the next observation or the nextnumberof observa-
tions.

AFTER specifies all observations after the current one.

POINToperand specifies observations by number, whereoperandis one of the
following:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

CURRENT is the default value forrange. If the current data set has an index in use,
the POINT option is invalid.

The WHERE clause conditionally selects observations that are contained within the
rangespecification. The general form of the WHERE clause is

DELETE Statement � 607

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the conditon:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an AND clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

Here are several examples of DELETE statements:

delete; /* deletes the current obs */
delete point 34; /* deletes obs 34 */
delete all where(age<21); /* deletes obs where age<21 */

608 � Chapter 20. Language Reference

You can use theSETOUT statementwith the DELETE statement as follows:

setout class point 34; /* makes CLASS current output */
delete; /* deletes ob 34 */

Observations deleted using the DELETE statement are not physically removed from
the data set until aPURGE statementis issued.

DESIGN Function

creates a design matrix

DESIGN(column-vector)

wherecolumn-vectoris a numeric column vector or literal.

The DESIGN function creates a design matrix of 0s and 1s fromcolumn-vector. Each
unique value of the vector generates a column of the design matrix. This column con-
tains ones in elements with corresponding elements in the vector that are the current
value; it contains zeros elsewhere. The columns are arranged in the sort order of the
original values.

For example, the statements

a={1,1,2,2,3,1};
a=design(a);

produce the design matrix

A 6 rows 3 cols (numeric)

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
1 0 0

DESIGNF Function

creates a full-rank design matrix

DESIGNF(column-vector)

wherecolumn-vectoris a numeric column vector or literal.

The DESIGNF function works similar to theDESIGN function; however, the result
matrix is one column smaller and can be used to produce full-rank design matrices.
The result of the DESIGNF function is the same as if you took the last column off
theDESIGN functionresult and subtracted it from the other columns of the result.

For example, the statements

DET Function � 609

a={1,1,2,2,3,3};
b=designf(a);

produce the following design matrix.

B 6 rows 2 cols (numeric)

1 0
1 0
0 1
0 1

-1 -1
-1 -1

DET Function

computes the determinant of a square matrix

DET(square-matrix)

wheresquare-matrixis a numeric matrix or literal.

The DET function computes the determinant ofsquare-matrix, which must be square.
The determinant, the product of the eigenvalues, is a single numeric value. If the
determinant of a matrix is zero, then that matrix is singular; that is, it does not have
an inverse.

The method performs an LU decomposition and collects the product of the diagonals
(Forsythe, Malcolm, and Moler 1967). For example, the statements

a={1 1 1,1 2 4,1 3 9};
c=det(a);

produce the matrixC containing the determinant:

C 1 row 1 col (numeric)

2

The DET function (as well as theINV and SOLVE functions) uses the following
criterion to decide whether the input matrix,A = [aij]i,j=1,...,n, is singular:

sing= 100×MACHEPS× max
1≤i,j≤n

|aij |

whereMACHEPSis the relative machine precision.

All matrix elements less than or equal tosingare now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal tosing, the
matrix is considered singular by the DET,INV, andSOLVEfunctions.

610 � Chapter 20. Language Reference

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you may
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong,

• try theGINV function to compute the generalized inverse

• examine the size of the singular values returned by theSVD fall. TheSVD call
can be used to compute a generalized inverse with a user-specified singularity
criterion.

If A is ann × n matrix, then the DET function temporarily allocates ann2 array in
order to compute the determinant.

DIAG Function

creates a diagonal matrix

DIAG(argument)

whereargumentcan be either a numeric square matrix or a vector.

If argumentis a square matrix, the DIAG function creates a matrix with diagonal
elements equal to the corresponding diagonal elements. All off-diagonal elements in
the new matrix are zeros.

If argumentis a vector, the DIAG function creates a matrix with diagonal elements
that are the values in the vector. All off-diagonal elements are zeros.

For example, the statements

a={4 3,
2 1};

c=diag(a);

result in

C 2 rows 2 cols (numeric)

4 0
0 1

The statements

b={1 2 3};
d=diag(b);

result in

DO Function � 611

D 3 rows 3 cols (numeric)

1 0 0
0 2 0
0 0 3

DISPLAY Statement

displays fields in display windows

DISPLAY <group-spec group-options<, . . ., group-spec group-options>>;

The inputs to the DISPLAY statement are as follows:

group-spec specifies a group. It can be specified as either a compound name of
the formwindowname.groupnameor a window name followed by
a group of the formwindow-name(field-specs), wherefield-specs
is as defined for theWINDOW statement.

group-options can be any of the following:

NOINPUT displays the group with all fields protected so
that no data can be entered in the fields.

REPEAT repeats the group for each element of the matri-
ces specified as field operands.

BELL rings the bell, sounds the alarm, or beeps the
speaker on your workstation when the window
is displayed.

The DISPLAY statement directs IML to gather data into fields defined on the screen
for purposes of display, data entry, or menu selection. The DISPLAY statement
always refers to a window that has been previously opened by aWINDOW state-
ment. The statement is described completely inChapter 13, “Window and Display
Features.”

Following are several examples of using the DISPLAY statement:

display;
display w(i);
display w ("BELL") bell;
display w.g1 noinput;
display w (i protect=yes

color="blue"
j color="yellow");

DO Function

produces an arithmetic series

612 � Chapter 20. Language Reference

DO(start, stop, increment)

The inputs to the DO function are as follows:

start is the starting value for the series.

stop is the stopping value for the series.

increment is an increment value.

The DO function creates a row vector containing a sequence of numbers starting with
start and incrementing byincrementas long as the elements are less than or equal
to stop (greater than or equal tostop for a negative increment). This function is a
generalization of the index creation operator (:).

For example, the statement

i=do(3,18,3);

yields the result

I 1 row 6 cols (numeric)

3 6 9 12 15 18

The statement

j=do(3,-1,-1);

yields the result

J 1 row 5 cols (numeric)

3 2 1 0 -1

DO and END Statements

groups statements as a unit

DO ;

statements

END ;

The DO statement specifies that the statements following the DO statement are ex-
ecuted as a group until a matching END statement appears. DO statements often
appear in IF-THEN/ELSE statements, where they designate groups of statements to
be performed when the IF condition is true or false.

For example, consider the following statements:

DO Statement, Iterative � 613

if x=y then
do;

i=i+l;
print x;

end;
print y;

The statements between the DO and END statements (called the DO group) are per-
formed only ifX = Y; that is, only if all elements ofX are equal to the correspond-
ing elements ofY. If any element ofX is not equal to the corresponding element of
Y, the statements in the DO group are skipped and the next statement is executed, in
this case

print y;

DO groups can be nested. Any number of nested DO groups is allowed.

Here is an example of nested DO groups:

if y>z then
do;

if z=0 then
do;

z=b*c;
x=2#y;

end;
end;

It is good practice to indent the statements in a DO group as shown above so that their
positions indicate their levels of nesting.

DO Statement, Iterative

iteratively executes a DO group

DO variable=start TO stop <BY increment>;

The inputs to the DO statement are as follows:

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

When the DO group has this form, the statements between the DO and END state-
ments are executed repetitively. The number of times the statements are executed
depends on the evaluation of the expressions given in the DO statement.

The start, stop, andincrementvalues should be scalars or expressions with evalua-
tions that yield scalars. Thevariable is given a new value for each repetition of the

614 � Chapter 20. Language Reference

group. The index variable starts with thestart value, then is incremented by thein-
crementvalue each time. The iterations continue as long as the index variable is less
than or equal to thestopvalue. If a negative increment is used, then the rules reverse
so that the index variable decrements to a lower bound. Note that thestart, stop, and
incrementexpressions are evaluated only once before the looping starts.

For example, the statements

do i=1 to 5 by 2;
print ’THE VALUE OF I IS:’ i;

end;

produce the output

I
THE VALUE OF I IS: 1

I
THE VALUE OF I IS: 3

I
THE VALUE OF I IS: 5

DO DATA Statement

repeats a loop until an end of file occurs

DO DATA <variable=start TO stop>;

The inputs to the DO DATA statement are as follows:

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

The DO DATA statement is used for repetitive DO loops that need to be exited upon
the occurrence of an end of file for anINPUT, READ, or other I/O statement. This
form is common for loops that read data from either a sequential file or a SAS data
set.

When an end of file is reached inside the DO DATA group, IML immediately jumps
from the group and starts executing the statement following theEND statement. DO
DATA groups can be nested, where each end of file causes a jump from the most local
DO DATA group. The DO DATA loop simulates the end-of-file behavior of the SAS
DATA step. You should avoid usingGOTO andLINK statements to jump out of a
DO DATA group.

Examples of valid statements follow. The first example inputs the variable NAME
from an external file for the first 100 lines or until the end of file, whichever occurs
first.

DO Statement with a WHILE Clause � 615

do data i=1 to 100;
input name $8.;

end;

Or, if reading from a SAS data set, then the code can be

do data; /* read next obs until eof is reached */
read next var{x}; /* read only variable X */

end;

DO Statement with an UNTIL Clause

conditionally executes statements iteratively

DO UNTIL(expression);

DO variable=start TO stop <BY increment> UNTIL(expression);

The inputs to the DO UNTIL statement are as follows:

expression is an expression that is evaluated at the bottom of the loop for being
true or false.

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

Using an UNTIL expression makes possible the conditional execution of a set of
statements iteratively. The UNTIL expression is evaluated at the bottom of the loop,
and the statements inside the loop are executed repeatedly as long as the expression
yields a zero or missing value. In the example that follows, the body of the loop
executes until the value of X exceeds 100:

x=1;
do until (x>100);

x+1;
end;
print x; /* x=101 */

DO Statement with a WHILE Clause

conditionally executes statements iteratively

DO WHILE(expression);

616 � Chapter 20. Language Reference

DO variable=start TO stop <BY increment> WHILE(expression);

The inputs to the DO WHILE statement are as follows:

expression is an expression that is evaluated at the top of the loop for being
true or false.

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

Using a WHILE expression makes possible the conditional execution of a set of state-
ments iteratively. The WHILE expression is evaluated at the top of the loop, and the
statements inside the loop are executed repeatedly as long as the expression yields a
nonzero or nonmissing value.

Note that the incrementing is done before the WHILE expression is tested. The fol-
lowing example demonstrates the incrementing:

x=1;
do while(x<100);

x=x+1;
end;
print x; /* x=100 */

The next example increments the starting value by 2:

y=1;
do x=1 to 100 by 2 while(y<200);

y=y#x;
end; /* at end of loop, x=11 and y=945 */

DURATION Function

calculates and returns a scalar containing the modified duration of a noncontin-
gent cash-flow.

DURATION(times,flows,ytm)

The DURATION function returns the modified duration of a noncontingent cash-flow
as a scalar.

times is ann-dimensional column vector of times. Elements should be non-
negative.

flows is ann-dimensional column vector of cash-flows.

ytm is the per-period yield-to-maturity of the cash-flow stream. This is a
scalar and should be positive.

ECHELON Function � 617

Duration of a security is generally defined as

D = −
dP
P

dy

In other words, it is the relative change in price for a unit change in yield. Since
prices move in the opposite direction to yields, the sign change preserves positivity
for convenience. With cash-flows that are not yield-sensitive and the assumption of
parallel shifts to a flat term-structure, duration is given by

Dmod =

∑K
k=1 tk

c(k)
(1+y)tk

P (1 + y)

whereP is the present value,y is the per period effective yield-to-maturity,K is the
number of cash-flows, and thek-th cash flow isc(k), tk periods from the present. This
measure is referred to asmodified durationto differentiate it from the first duration
measure ever proposed,Macaulay duration:

DMac =

∑K
k=1 tk

c(k)
(1+y)tk

P

This expression also reveals the reason for the name duration, since it is a present-
value-weighted average of the duration (that is, timing) of all the cash-flows and is
hence an “average time-to-maturity” of the bond.

For example, the statements below

times={1};
ytm={0.1};
flow={10};
duration=duration(times,flow,ytm);
print duration;

produces the output

DURATION
0.9090909

ECHELON Function

reduces a matrix to row-echelon normal form

ECHELON(matrix)

wherematrix is a numeric matrix or literal.

The ECHELON function uses elementary row operations to reduce a matrix to row-
echelon normal form as in the following example (Graybill 1969, p. 286):

618 � Chapter 20. Language Reference

a={3 6 9,
1 2 5,
2 4 10};

e=echelon(a);

The resulting matrix is

E 3 rows 3 cols (numeric)

1 2 0
0 0 1
0 0 0

If the argument is a square matrix, then the row-echelon normal form can be obtained
from the Hermite normal form by rearranging rows that are all zeros.

EDIT Statement

opens a SAS data set for editing

EDIT SAS-data-set <VAR operand> <WHERE(expression)>

<NOBS name>;

The inputs to the EDIT statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, refer to the chapter on SAS data sets in
SAS Language Reference: Concepts.

operand selects a set of variables.

expression selects observations conditionally.

name names a variable to contain the number of observations.

The EDIT statement opens a SAS data set for reading and updating. If the data set
has already been opened, the EDIT statement makes it the current input and output
data sets.

You can specify a set of variables to use with the VAR clause, whereoperandcan be
specified as one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described below:

–ALL – for all variables

EDIT Statement � 619

–CHAR– for all character variables

–NUM– for all numeric variables

Following are examples showing each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause.

The general form of the WHERE clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

620 � Chapter 20. Language Reference

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

The EDIT statement can define a set of variables and the selection criteria that are
used to control access to data set observations. The NOBS clause returns the total
number of observations in the data set in the variablename.

The VAR and WHERE clauses are optional and can be specified in any order. The
NOBS clause is also optional.

SeeChapter 6, “Working with SAS Data Sets,”for more information on editing SAS
data sets.

To edit the data set DAT, or WORK.DAT, use the statements

edit dat;
edit work.dat;

To control the variables you want to edit and conditionally select observations for
editing, use the VAR and WHERE clauses. For example, to read and update observa-
tions for variable I where I is greater than 9, use the statement

edit work.dat var{i} where (i>9);

Following is an example using the NOBS option.

/* if MYDATA has 10 observations, */
/* then ct is a numeric matrix with value 10 */
edit mydata nobs ct;

EIGEN Call

computes eigenvalues and eigenvectors

CALL EIGEN(eigenvalues, eigenvectors, A) <VECL="vl">;

whereA is an arbitrary square numeric matrix for which eigenvalues and eigenvec-
tors are to be calculated.

The EIGEN call returns the following values:

eigenvalues a matrix to contain the eigenvalues of the input matrix.

eigenvectors names a matrix to contain the right eigenvectors of the input
matrix.

EIGEN Call � 621

vl is an optionaln × n matrix containing the left eigenvectors
of A in the same manner thateigenvectorscontains the right
eigenvectors.

The EIGEN subroutine computeseigenvalues, a matrix containing the eigenvalues of
A. If A is symmetric,eigenvaluesis then × 1 vector containing then real eigen-
values ofA. If A is not symmetric (as determined by the criterion described below)
eigenvaluesis ann×2 matrix containing the eigenvalues of then×nmatrixA. The
first column ofA contains the real parts, Re(λ), and the second column contains the
imaginary parts Im(λ). Each row represents one eigenvalue, Re(λ) + iIm(λ).

If A is symmetric, the eigenvalues are arranged in descending order. Otherwise, the
eigenvalues are sorted first by their real parts, then by the magnitude of their imagi-
nary parts. Complex conjugate eigenvalues, Re(λ) ± iIm(λ), are stored in standard
order; that is, the eigenvalue of the pair with a positive imaginary part is followed by
the eigenvalue of the pair with the negative imaginary part.

The EIGEN subroutine also computeseigenvectors, a matrix. IfA is symmetric, then
eigenvectorshas orthonormal column eigenvectors ofA arranged so that the matrices
correspond; that is, the first column ofeigenvectorsis the eigenvector corresponding
to the largest eigenvalue, and so forth. IfA is not symmetric, theneigenvectorsis
ann × n matrix containing the right eigenvectors ofA. If the eigenvalue in rowi
of eigenvaluesis real, then columni of eigenvectorscontains the corresponding real
eigenvector. If rowsi andi+1 of eigenvaluescontain complex conjugate eigenvalues
Re(λ) ± iIm(λ), then columnsi andi + 1 of eigenvectorscontain the real,u, and
imaginary,v, parts, respectively, of the two corresponding eigenvectorsu± iv.

The eigenvalues of a matrixA are the roots of the characteristic polynomial, which
is defined asp(z) = det(zI − A). The spectrum, denoted byλ(A), is the set of
eigenvalues of the matrixA. If λ(A) = {λ1, . . . , λn}, thendet(A) = λ1λ2 · · ·λn.

The trace ofA is defined by

tr(A) =
n∑

i=1

aii

and tr(A) = λ1 + · · ·+ λn.

An eigenvector is a nonzero vector,x, that satisfiesAx = λx for λ ∈ λ(A). Right
eigenvectors satisfyAx = λx, and left eigenvectors satisfyxHA = λxH , wherexH

is the complex conjugate transpose ofx. Taking the conjugate transpose of both sides
shows that left eigenvectors also satisfyA′x = λ̄x.

The following are properties of the unsymmetricreal eigenvalue problem, in which
the real matrixA is square but not necessarily symmetric:

• The eigenvalues of an unsymmetric matrixA can be complex. IfA has a
complex eigenvalue Re(λ)+iIm(λ), then the conjugate complex value Re(λ)−
iIm(λ) is also an eigenvalue ofA.

622 � Chapter 20. Language Reference

• The right and left eigenvectors corresponding to a real eigenvalue ofA are real.
The right and left eigenvectors corresponding to conjugate complex eigenval-
ues ofA are also conjugate complex.

• The left eigenvectors ofA are the same as the complex conjugate right eigen-
vectors ofA′.

The three routines, EIGEN, EIGVAL, and EIGVEC, use the following test of sym-
metry for a square argument matrixA:

1. Select the entry ofA with the largest magnitude:

amax = max
i,j=1,...,n

|ai,j |

2. Multiply the value ofamax with the square root of the machine precisionε.
(The value ofε is the largest value stored in double precision that, when added
to 1 in double precision, still results in 1.)

3. The matrixA is consideredunsymmetricif there exists at least one pair of
symmetric entries that differs in more thanamax

√
ε,

|ai,j − aj,i| > amax

√
ε

If A is symmetric, the result of the statement

call eigen(m,e,a);

has the properties

A ∗E = E ∗ diag(M)
E′ ∗E = I(N)

that is,

E′ = inv(E)

so that

A = E ∗ diag(M) ∗E′ .

The QL method is used to compute the eigenvalues (Wilkinson and Reinsch 1971).

In statistical applications, nonsymmetric matrices for which eigenvalues are desired
are usually of the formE−1H, whereE andH are symmetric. The eigenvaluesL
and eigenvectorsV of E−1H can be obtained by using the GENEIG subroutine or as
follows:

EIGEN Call � 623

f=root(einv);
a=f*h*f’;
call eigen(l,w,a);
v=f’*w;

The computation can be checked by forming the residuals:

r=einv*h*v-v*diag(l);

The values inR should be of the order of round-off error.

The following code computes the eigenvalues and left and right eigenvectors of a
nonsymmetric matrix with four real and four complex eigenvalues.

A = {-1 2 0 0 0 0 0 0,
-2 -1 0 0 0 0 0 0,
0 0 0.2379 0.5145 0.1201 0.1275 0 0,
0 0 0.1943 0.4954 0.1230 0.1873 0 0,
0 0 0.1827 0.4955 0.1350 0.1868 0 0,
0 0 0.1084 0.4218 0.1045 0.3653 0 0,
0 0 0 0 0 0 2 2,
0 0 0 0 0 0 -2 0 };

call eigen(val,rvec,A) levec=’lvec’;

The sorted eigenvalues of this matrix are

VAL

1 1.7320508
1 -1.732051
1 0

0.2087788 0
0.0222025 0
0.0026187 0

-1 2
-1 -2

We can verify the correctness of the left and right eigenvector computation using the
following code:

/* verify right eigenvectors are correct */
vec = rvec;
do j = 1 to ncol(vec);
/* if eigenvalue is real */
if val[j,2] = 0. then do;
v = a * vec[,j] - val[j,1] * vec[,j];
if any(abs(v) > 1e-12) then
badVectors = badVectors || j;

end;
/* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;

624 � Chapter 20. Language Reference

/* the real part */
rp = val[j,1] * vec[,j] - val[j,2] * vec[,j+1];
v = a * vec[,j] - rp;
/* the imaginary part */
ip = val[j,1] * vec[,j+1] + val[j,2] * vec[,j];
u = a * vec[,j+1] - ip;
if any(abs(u) > 1e-12) | any(abs(v) > 1e-12) then
badVectors = badVectors || j || j+1;

end;
end;

if ncol(badVectors) > 0 then
print "Incorrect right eigenvectors:" badVectors;

else print "All right eigenvectors are correct";

Similar code can be written to verify the left eigenvectors, using the fact that the left
eigenvectors ofA are the same as the complex conjugate right eigenvectors ofA′.

/* verify left eigenvectors are correct */
vec = lvec;
do j = 1 to ncol(vec);
/* if eigenvalue is real */
if val[j,2] = 0. then do;
v = a‘ * vec[,j] - val[j,1] * vec[,j];
if any(abs(v) > 1e-12) then
badVectors = badVectors || j;

end;
/* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;
/* Note the use of complex conjugation */
/* the real part */
rp = val[j,1] * vec[,j] + val[j,2] * vec[,j+1];
v = a‘ * vec[,j] - rp;
/* the imaginary part */
ip = val[j,1] * vec[,j+1] - val[j,2] * vec[,j];
u = a‘ * vec[,j+1] - ip;
if any(abs(u) > 1e-12) | any(abs(v) > 1e-12) then
badVectors = badVectors || j || j+1;

end;
end;

if ncol(badVectors) > 0 then
print "Incorrect left eigenvectors:" badVectors;

else print "All left eigenvectors are correct";

The EIGEN call performs most of its computations in the memory allocated for re-
turning the eigenvectors.

EIGVEC Function � 625

EIGVAL Function

computes eigenvalues

EIGVAL(A)

whereA is a square numeric matrix.

The EIGVAL function returns a column vector of the eigenvalues ofA. See the
description of theEIGENsubroutine for more details.

The following code computes Example 7.1.1 from Golub and Van Loan (1989):

a = { 67.00 177.60 -63.20 ,
-20.40 95.88 -87.16 ,
22.80 67.84 12.12 };

val = EIGVAL(a);
print val;

The matrix produced containing the eigenvalues is

VAL

75 100
75 -100
25 0

Notice thata is not symmetric and that the eigenvalues are complex. The first column
of theVAL matrix is the real part and the second column is the complex part of the
three eigenvalues.

A symmetric example follows:

x={1 1,1 2,1 3,1 4};
xpx=t(x)*x;
a=eigval(xpx); /* xpx is a symmetric matrix */

The matrix produced containing the eigenvalues is

A 2 rows 1 col (numeric)

33.401219
0.5987805

EIGVEC Function

computes right eigenvectors

626 � Chapter 20. Language Reference

EIGVEC(A)

whereA is a square numeric matrix.

The EIGVEC function creates a matrix containing the right eigenvectors ofA. You
can obtain the left eigenvectors by first transposingA. See the description of the
EIGENsubroutine for more details.

An example calculating the eigenvectors of a symmetric matrix follows:

x={1 1,1 2,1 3,1 4};
xpx=t(x)*x;
a=eigvec(xpx); /* xpx is a symmetric matrix */

The matrix produced containing the eigenvectors is

A 2 rows 2 cols (numeric)

0.3220062 0.9467376
0.9467376 -0.322006

END Statement

ends a DO loop or DO statement

END:

See the description of theDO and END statements.

EXECUTE Call

executes SAS statements immediately

CALL EXECUTE(operands);

whereoperandsare character matrices or quoted literals containing valid SAS state-
ments.

The EXECUTE subroutine pushes character arguments to the input command stream,
executes them, and then returns to the calling module. You can specify up to 15
arguments. The subroutine should be called from a module rather than from the
immediate environment (because it uses theresumemechanism that works only from
modules). The strings you push do not appear on the log.

Following are examples of valid EXECUTE subroutines:

call execute("x={1 2 3, 4 5 6};");
call execute(" x ’ls’;");
call execute(" dm ’log; color source red’;");
call execute(concat(" title ’",string,"’;"));

For more details on the EXECUTE subroutine, seeChapter 15, “Using SAS/IML
Software to Generate IML Statements.”

FARMACOV Call � 627

EXP Function

calculates the exponential

EXP(matrix)

wherematrix is a numeric matrix or literal.

The EXP function applies the exponential function to every element of the argument
matrix. The exponential is the natural numbere raised to the indicated power. An
example of a valid statement follows:

b={1 2 3 4};
a=exp(b);

A 1 row 4 cols (numeric)

2.7182818 7.3890561 20.085537 54.59815

If you want to compute the matrix exponential for some matrix, you can call the
EXPMATRIX module inIMLMLIB .

FARMACOV Call

computes the auto-covariance function for an ARFIMA(p, d, q) process

CALL FARMACOV(cov, d <, phi, theta, sigma, p, q, lag>) ;

The inputs to the FARMACOV subroutine are as follows:

d specifies a fractional differencing order. The value ofd must be in the open
interval(−0.5, 0.5) excluding zero. This input is required.

phi specifies anmp-dimensional vector containing the autoregressive coeffi-
cients, wheremp is the number of the elements in the subset of the AR
order. The default is zero. All the roots ofφ(B) = 0 should be greater than
one in absolute value, whereφ(B) is the finite order matrix polynomial in
the backshift operatorB, such thatBjyt = yt−j .

theta specifies anmq-dimensional vector containing the moving-average coeffi-
cients, wheremq is the number of the elements in the subset of the MA
order. The default is zero.

p specifies the subset of the AR order. The quantitymp is defined as the
number of elements ofphi.

If you do not specifyp, the default subset isp= {1, 2, . . . ,mp}.
For example, considerphi=0.5.

If you specify p=1 (the default), the FARMACOV subroutine computes
the theoretical auto-covariance function of an ARFIMA(1, d, 0) process as
yt = 0.5 yt−1 + εt.

If you specify p=2, the FARMACOV subroutine computes the auto-
covariance function of an ARFIMA(2, d, 0) process asyt = 0.5 yt−2 + εt.

628 � Chapter 20. Language Reference

q specifies the subset of the MA order. The quantitymq is defined as the
number of elements oftheta.

If you do not specifyq, the default subset isq= {1, 2, . . . ,mq}.
The usage ofq is the same as that ofp.

lag specifies the length of lags, which must be a positive number. The default
is lag = 12.

The FARMACOV subroutine returns the following value:

cov is a lag + 1 vector containing the auto-covariance function of an
ARFIMA(p, d, q) process.

To compute the auto-covariance of an ARFIMA(1, 0.3, 1) process

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

whereεt ∼ NID(0, 1.2), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmacov(cov, d, phi, theta, sigma) lag=5;
print cov;

Ford ∈ (−0.5, 0.5)\{0}, the seriesyt represented as(1−B)dyt = εt is a stationary
and invertible ARFIMA(0, d, 0) process with the auto-covariance function

γk = E(ytyt−k) =
(−1)kΓ(−2d+ 1)

Γ(k − d+ 1)Γ(−k − d+ 1)

and the auto-correlation function

ρk =
γk

γ0
=

Γ(−d+ 1)Γ(k + d)
Γ(d)Γ(k − d+ 1)

∼ Γ(−d+ 1)
Γ(d)

k2d−1, k →∞

Notice thatρk decays hyperbolically as the lag increases, rather than showing the ex-
ponential decay of the auto-correlation function of a stationary ARMA(p, q) process.

The FARMACOV subroutine computes the auto-covariance function of an
ARFIMA(p, d, q) process.

For d ∈ (0.5, 0.5)\{0}, the seriesyt is a stationary and invertible ARFIMA(p, d, q)
process represented as

φ(B)(1−B)dyt = θ(B)εt

FARMAFIT Call � 629

whereφ(B) = 1−φ1B−φ2B
2− · · ·−φpB

p andθ(B) = 1− θ1B− θ2B2− · · ·−
θqB

q andεt is a white noise process; all the roots of the characteristic AR and MA
polynomial lie outside the unit circle.

Let xt = θ(B)−1φ(B)yt, so thatxt follows an ARFIMA(0, d, 0) process; letzt =
(1−B)dyt, so thatzt follows an ARMA(p, q) process; letγx

k be the auto-covariance
function of{xt} andγz

k be the auto-covariance function of{zt}.

Then the auto-covariance function of{yt} is as follows:

γk =
j=∞∑

j=−∞
γz

j γ
x
k−j

The explicit form of the auto-covariance function of{yt} is given by Sowell (1992,
p. 175).

FARMAFIT Call

estimate the parameters of an ARFIMA(p, d, q) model

CALL FARMAFIT(d, phi, theta, sigma, series <, p, q, opt>) ;

The inputs to the FARMAFIT subroutine are as follows:

series specifies a time series (assuming mean zero).

p specifies the set or subset of the AR order. If you do not specifyp, the
default isp=0.

If you specifyp=3, the FARMAFIT subroutine estimates the coefficient of
the lagged variableyt−3.

If you specifyp={1, 2, 3}, the FARMAFIT subroutine estimates the coeffi-
cients of lagged variablesyt−1, yt−2, andyt−3.

q specifies the subset of the MA order. If you do not specifyq, the default is
q=0.

If you specifyq=2, the FARMAFIT subroutine estimates the coefficient of
the lagged variableεt−2.

If you specifyq={1, 2}, the FARMAFIT subroutine estimates the coeffi-
cients of lagged variablesεt−1 andεt−2.

opt specifies the method of computing the log-likelihood function.

opt=0 requests the conditional sum of squares function. This is the de-
fault.

opt=1 requests the exact log-likelihood function. This option requires
that the time series be stationary and invertible.

The FARMAFIT subroutine returns the following values:

630 � Chapter 20. Language Reference

d is a scalar containing a fractional differencing order.

phi is a vector containing the autoregressive coefficients.

theta is a vector containing the moving-average coefficients.

sigma is a scalar containing a variance of the innovation series.

To estimate parameters of an ARFIMA(1, 0.3, 1) model

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

whereεt ∼ NID(0, 1), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta);
call farmafit(d, ar, ma, sigma, yt) p=1 q=1;
print d ar ma sigma;

The FARMAFIT subroutine estimates parametersd, φ(B), θ(B), and σ2
ε of an

ARFIMA(p, d, q) model. The log-likelihood function needs to be solved by itera-
tive numerical procedures such as the quasi-Newton optimization. The starting value
d is obtained by the approach of Geweke and Poter-Hudak (1983); the starting value
of the AR and MA parameters are obtained from the least squares estimates.

FARMALIK Call

computes the log-likelihood function of an ARFIMA(p, d, q) model

CALL FARMALIK(lnl, series, d <, phi, theta, sigma, p, q, opt>) ;

The inputs to the FARMALIK subroutine are as follows:

series specifies a time series (assuming mean zero).

d specifies a fractional differencing order. This argument is required; the
value ofd should be in the open interval(−1, 1) excluding zero.

phi specifies anmp-dimensional vector containing the autoregressive coeffi-
cients, wheremp is the number of the elements in the subset of the AR
order. The default is zero.

theta specifies anmq-dimensional vector containing the moving-average coeffi-
cients, wheremq is the number of the elements in the subset of the MA
order. The default is zero.

sigma specifies a variance of the innovation series. The default is one.

p specifies the subset of the AR order. See the FARMACOV subroutine for
additional details.

q specifies the subset of the MA order. See the FARMACOV subroutine for
additional details.

FARMALIK Call � 631

opt specifies the method of computing the log-likelihood function.

opt=0 requests the conditional sum of squares function. This is the de-
fault.

opt=1 requests the exact log-likelihood function. This option requires
that the time series be stationary and invertible.

The FARMALIK subroutine returns the following value:

lnl is 3-dimensional vector.lnl[1] contains the log-likelihood function of the
model; lnl[2] contains the sum of the log determinant of the innovation
variance; andlnl[3] contains the weighted sum of squares of residuals. The
log-likelihood function is computed as−0.5× (lnl[2]+lnl[3]). If the opt=0
is specified, only the weighted sum of squares of residuals returns inlnl[1].

To compute the log-likelihood function of an ARFIMA(1, 0.3, 1) model

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

whereεt ∼ NID(0, 1.2), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmasim(yt, d, phi, theta, sigma);
call farmalik(lnl, yt, d, phi, theta, sigma);
print lnl;

The FARMALIK subroutine computes a log-likelihood function of the
ARFIMA(p, d, q) model. The exact log-likelihood function is worked by Sowell
(1992); the conditional sum of squares function is worked by Chung (1996).

The exact log-likelihood function only considers a stationary and invertible
ARFIMA(p, d, q) process withd ∈ (−0.5, 0.5)\{0} represented as

φ(B)(1−B)dyt = θ(B)εt

whereεt ∼ NID(0, σ2).

Let YT = [y1, y2, . . . , yT]′ and the log-likelihood function is as follows without a
constant term:

` = −1
2
(log |Σ|+ Y ′

T Σ−1YT)

whereΣ = [γi−j] for i, j = 1, 2, . . . , T .

The conditional sum of squares function does not require the normality assumption.
The initial observationsy0, y−1, . . . andε0, ε−1, . . . are set to zero.

632 � Chapter 20. Language Reference

Let yt be an ARFIMA(p, d, q) process represented as

φ(B)(1−B)dyt = θ(B)εt

then the conditional sum of squares function is

` = −T
2

log

(
1
T

T∑
t=1

ε2t

)

FARMASIM Call

generates an ARFIMA(p, d, q) process

CALL FARMASIM(series, d <, phi, theta, mu, sigma, n, p, q, initial,
seed>) ;

The inputs to the FARMASIM subroutine are as follows:

d specifies a fractional differencing order. This argument is required; the
value ofd should be in the open interval(−1, 1) excluding zero.

phi specifies anmp-dimensional vector containing the autoregressive coeffi-
cients, wheremp is the number of the elements in the subset of the AR
order. The default is zero.

theta specifies anmq-dimensional vector containing the moving-average coeffi-
cients, wheremq is the number of the elements in the subset of the MA
order. The default is zero.

mu specifies a mean value. The default is zero.

sigma specifies a variance of the innovation series. The default is one.

n specifies the length of the series. The value ofn should be greater than or
equal to the AR order. The default isn = 100 is used.

p specifies the subset of the AR order. See the FARMACOV subroutine for
additional details.

q specifies the subset of the MA order. See the FARMACOV subroutine for
additional details.

initial specifies the initial values of random variables. The initial value is used
for the nonstationary process. Ifinitial = a0, theny−p+1, . . . , y0 take the
same valuea0. If the initial option is not specified, the initial values are set
to zero.

seed specifies the random number seed. If it is not supplied, the system clock is
used to generate the seed. If it is negative, then the absolute value is used as
the starting seed; otherwise, subsequent calls ignore the value ofseedand
use the last seed generated internally.

The FARMASIM subroutine returns the following value:

FDIF Call � 633

series is ann vector containing the generated ARFIMA(p, d, q) process.

To generate an ARFIMA(1, 0.3, 1) process

(1− 0.5B)(1−B)0.3(yt − 10) = (1 + 0.1B)εt

whereεt ∼ NID(0, 1.2), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
mu = 10;
sigma= 1.2;
call farmasim(yt, d, phi, theta, mu, sigma, 100);
print yt;

The FARMASIM subroutine generates a time series of lengthn from an
ARFIMA(p, d, q) model. If the process is stationary and invertible, the initial
values y−p+1, . . . , y0 are produced using covariance matrices obtained from
FARMACOV. If the process is nonstationary, the time series is recursively generated
using the user-defined initial value or the zero initial value.

To generate an ARFIMA(p, d, q) process withd ∈ [0.5, 1), xt is first generated for
d′ ∈ (−0.5, 0), whered′ = d− 1 and thenyt is generated byyt = yt−1 + xt.

To generate an ARFIMA(p, d, q) process withd ∈ (−1,−0.5], a two-step approxi-
mation based on a truncation of the expansion(1 − B)d is used; the first step is to
generate an ARFIMA(0, d, 0) processxt = (1 − B)−dεt, with truncated moving-
average weights; the second step is to generateyt = φ(B)−1θ(B)xt.

FDIF Call
obtain a fractionally differenced process

CALL FDIF(out, series, d) ;

The inputs to the FDIF subroutine are as follows:

series specifies a time series withn length.

d specifies a fractional differencing order. This argument is required; the
value ofd should be in the open interval(−1, 1) excluding zero.

The FDIF subroutine returns the following value:

out is ann vector containing the fractionally differenced process.

Consider an ARFIMA(1, 0.3, 1) process

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

Let zt = (1−B)0.3yt, that is,zt follows an ARMA(1,1). To get the filtered serieszt,
you can specify

634 � Chapter 20. Language Reference

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta) n=100;
call fdif(zt, yt, d);
print zt;

FFT Function

performs the finite Fourier transform

FFT(x)

wherex is a1× n or n× 1 numeric vector.

The FFT function returns the cosine and sine coefficients for the expansion of a vector
into a sum of cosine and sine functions.

The argument of the FFT function,x, is a1× n or n× 1 vector. The value returned
is the resulting transform, annp× 2 matrix, where

np = floor
(n

2
+ 1
)

The elements of the first column of the returned matrix are the cosine coefficients;
that is, theith element of the first column is

n∑
j=1

xj cos
(

2π
n

(i− 1)(j − 1)
)

for i = 1, . . . , np, where the elements ofx are denoted asxj . The elements of the
second column of the returned matrix are the sine coefficients; that is, theith element
of the second column is

n∑
j=1

xj sin
(

2π
n

(i− 1)(j − 1)
)

for i = 1, . . . , np.

Note: For most efficient use of the FFT function,n should be a power of 2. Ifn is
a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z
algorithm is used (Monro and Branch 1976).

The FFT function can be used to compute the periodogram of a time series. In con-
junction with the inverse finite Fourier transform routineIFFT, the FFT function can
be used to efficiently compute convolutions of large vectors (Gentleman and Sande
1966; Nussbaumer 1982). An example of a valid statement follows:

a=fft(c);

FILE Statement � 635

FILE Statement

opens or points to an external file

FILE file-name <RECFM=N> <LRECL=operand>;

The inputs to the FILE statement are as follows:

file-name is a name (for defined filenames), a quoted literal, or an expres-
sion in parentheses (for filepaths).

RECFM=N specifies that the file is to be written as a pure binary file with-
out record-separator characters.

LRECL=operand specifies the record length of the output file. The default record
length is 512.

You can use the FILE statement to open a file for output, or if the file is already open,
to make it the current output file so that subsequentPUT statementswrite to it. The
FILE statement is similar in syntax and operation to theINFILE statement. The FILE
statement is described in detail inChapter 7, “File Access.”

Thefile-nameis either a predefined filename or a quoted string or character expres-
sion in parentheses referring to the filepath. There are two ways to refer to an input
or output file: by a filepath and by a filename. The filepath is the name as known to
the operating system. The filename is a SAS reference to the file established directly
through a connection made with the FILENAME statement. You can specify a file in
either way in the FILE andINFILE statements. To specify a filename as the operand,
just give the name. The name must be one already connected to a filepath by a previ-
ously issued FILENAME statement. There are, however, two special filenames that
are recognized by IML:LOG andPRINT. These refer to the standard output streams
for all SAS sessions. To specify a filepath, put it in quotes or specify an expression
yielding the filepath in parentheses.

When the filepath is specified, there is a limit of 64 characters to the operand.

Note that RECFM=U is equivalent to RECFM=N. If an output file is subsequently
read by a SAS DATA step, RECFM=N must be specified in the data step to guarantee
that it will be read properly.

Following are several valid uses of FILE statement.

file "student.dat"; /* by literal filepath */

filename out "student.dat"; /* specify filename OUT */
file out; /* refer to by filename */

file print; /* standard print output */
file log; /* output to log */

file "student.dat" recfm=n; /* for a binary file */

636 � Chapter 20. Language Reference

FIND Statement

finds observations

FIND <range> <WHERE(expression)> INTO matrix-name;

The inputs to the FIND statement are as follows:

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

matrix-name names a matrix to contain the observation numbers.

The FIND statement finds the observation numbers of records inrange that satisfy
the conditions of the WHERE clause. The FIND statement places these observation
numbers in the numeric matrix whose name follows the INTO keyword.

You can specify arangeof observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specifyrange:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations specified by number, whereoperandis one of the
following.

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

FIND Statement � 637

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the conditon:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

Following are some valid examples of the FIND statement:

find all where(name=:"Smith") into p;
find next where(age>30) into p2;

P andP2 are column vectors containing the observation numbers that satisfy the
WHERE clause in the given range. The default range is all observations.

638 � Chapter 20. Language Reference

FINISH Statement

denotes the end of a module

FINISH <module-name>;

wheremodule-nameis the name of a user-defined module.

The FINISH statement signals the end of a module and the end of module definition
mode. Optionally, the FINISH statement can take the module name as its argument.
See the description of the START statement and consultChapter 5, “Programming
Statements,”for further information on defining modules.

Some examples follow.

finish;
finish mod1;

FORCE Statement

see the description of theSAVE statement

FORWARD Function

calculates a column vector of forward rates given vectors of spot rates and times

FORWARD(times,spot–rates)

The FORWARD function returns ann× 1 vector of (per-period) forward rates.

times is ann×1 column vector of times in consistent units. Elements should
be nonnegative.

spot–rates is ann × 1 column vector of corresponding (per-period) spot rates.
Elements should be positive.

The FORWARD function transforms the given spot rates as

f1 = s1

fi =
(

(1 + si)ti

(1 + sti−1)ti−1

) 1
ti−ti−1

− 1; i = 2, . . . , n

For example, the following statements

time=T(do(1,5,1));
spot=T(do(0.05,0.09,0.01));
forward=forward(time,spot);
print forward;

GAEND Call (Experimental) � 639

produce the following output:

FORWARD

0.05
0.0700952
0.0902839
0.1105642
0.1309345

FREE Statement

free matrix storage space

FREE matrices;

FREE / <matrices>;

wherematricesare names of matrices.

The FREE statement causes the specified matrices to lose their values; the memory
is then freed for other uses. After execution of the FREE statement, the matrix does
not have a value, and it returns 0 for theNROW andNCOL functions. Any printing
attributes (assigned by theMATTRIB statement) are not released.

The FREE statement is used mostly in large applications or under tight memory con-
straints to make room for more data (matrices) in the workspace.

For example, to free the matricesa, b, andc, use the statement

free a b c;

If you want to free all matrices, specify a slash (/) after the keyword FREE. If you
want to free all matrices except a few, then list the ones you do not want to free after
the slash. For example, to free all matrices exceptd ande, use the statement

free / d e;

For more information, see the discussion of workspace storage inChapter 19,
“Further Notes.”

GAEND Call (Experimental)

end a genetic algorithm optimization and free memory resources

CALL GAEND(id);

The inputs to the GAEND call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

640 � Chapter 20. Language Reference

The GAEND call ends the genetic algorithm calculations associated withid and frees
up all associated memory.

See theGASETUP functionfor an example.

GAGETMEM Call (Experimental)

get members of the current solution population for a genetic algorithm optimiza-
tion

CALL GAGETMEM(members, values, id<, index >);

The GAGETMEM call returns the following values:

members is a matrix representing the members of the current solution population
specified by theindexparameter.

values is a matrix of objective function values, with the value at each row
corresponding to the solution inmembers.

The inputs to the GAGETMEM call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

index is a matrix of indices of the requested solution population members. If
indexis not specified the entire population is returned.

The GAGETMEM call is used to retrieve members of the solution population and
their objective function values. If theelite parameter of theGASETSEL call is
nonzero, then the firstelite members of the population will have the most optimal
objective function values of the population, and thoseelite members will be sorted
in ascending order of objective function value for a minimization problem, and in
descending order for a maximization problem.

If a single member is requested, that member will be returned as-is inmembers. If
more than one member is requested in a GAGETMEM call, each row ofmembers
will have one solution, shaped into a row vector. If solutions are not of fixed length,
then the number of columns ofmemberswill equal the number of elements of the
largest solution, and rows representing solutions with fewer elements will have the
extra elements filled in with missing values.

See theGASETUP functionfor an example.

GAINIT Call (Experimental) � 641

GAGETVAL Call (Experimental)

get current solution objective function values for a genetic algorithm optimiza-
tion

CALL GAGETVAL(values, id<, index >);

The GAGETVAL call returns the following values:

values is a matrix of objective function values for solutions in the current pop-
ulation specified byindex. If indexis not present, then values for all so-
lutions in the population are returned. Each row invaluescorresponds
to one solution.

The inputs to the GAGETVAL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

index is a matrix of indices of the requested objective function values. If
indexis not specified, then all objective function values are returned.

The GAGETVAL call is used to retrieve objective function values of the current so-
lution population. If theelite parameter of theGASETSEL callis nonzero, then the
first elite members of the population will have the most optimal objective function
values of the population, and thoseelite members will be sorted in ascending order
of objective function value for a minimization problem, or in descending order for a
maximization problem.

See theGASETUP functionfor an example.

GAINIT Call (Experimental)

create and initialize a solution population for a genetic algorithm optimization

CALL GAINIT(id, popsize <, < bounds > <, modname > >);

The inputs to the GAINIT call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

popsize is the number of solution matrices to create and initialize.

bounds is an optional parameter matrix specifying the lower and upper bounds
for each element of a solution matrix. It is only used for integer and
real fixed-length vector problem encoding.

modname is the name of a user-written module to be called from GAINIT when
generating the initial members of the solution population.

642 � Chapter 20. Language Reference

The GAINIT call creates the members and computes the objective values for an ini-
tial solution population for a genetic algorithm optimization. If the problem encod-
ing is specified as sequence in the correspondingGASETUP functioncall, and no
modnameparameter is specified, then GAINIT creates an initial population of vec-
tors of randomly ordered integer values ranging from 1 to thesizeparameter of the
GASETUP functioncall. Otherwise, the user controls how the population is created
and initialized with theboundsandmodnameparameters.

If real or integer fixed-length vector encoding is specified in the corresponding
GASETUP functioncall, then theboundsparameter may be supplied as a 2 xn ma-
trix, where the dimensionn equals thesizeparameter of theGASETUP functioncall:
the first row gives the lower bounds of the corresponding vector elements and the
second row gives the upper bounds. The solutions resulting from all IML-supplied
crossover and mutation operators will be checked to ensure they are within the upper
and lower bounds, and any solution components violating the bounds will be reset
to the bound. However, if user-written modules are provided for these operators, the
modules are expected to do the bounds checking internally. If nomodnameparam-
eter is specified, the initial population will be generated by random variation of the
solution components between the lower and upper bounds.

For all problem encodings, if themodnameparameter is specified, it is expected to
be the name of a user-written subroutine module with one parameter. The module
should generate and return an individual solution in that parameter. The GAINIT
call will call that modulepopsizetimes, once for each member of the initial solution
population. Themodnameparameter is required if theencodingparameter of the cor-
respondingGASETUP functioncall was 0 or if theboundsparameter is not specified
for real or integer fixed-length vector encoding.

See theGASETUP functionfor an example.

GAREEVAL Call (Experimental)

re-evaluate the objective function values for a solution population of a genetic
algorithm optimization

CALL GAREEVAL(id);

The inputs to the GAREEVAL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

The GAREEVAL call computes the objective values for a solution population of a
genetic algorithm optimization. Since theGAINIT call and theGAREGEN callalso
evaluate the objective function values, it is usually not necessary to call GAREEVAL.
It is provided to handle the situation of a user modifying an objective function in-
dependently, for example, adjusting a global variable to relax or tighten a penalty
constraint. In such a case, GAREEVAL should be called before the nextGAREGEN
call.

GASETCRO Call (Experimental) � 643

GAREGEN Call (Experimental)

replace the current solution population by applying selection, crossover, and mu-
tation for a genetic algorithm optimization problem

CALL GAREGEN(id);

The inputs to the GAREGEN call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

The GAREGEN call applies the genetic algorithm to create a new solution population
from the current population. As the first step, if theeliteparameter of the correspond-
ing GASETSEL callis nonzero, the bestelite members of the current population
are copied into the new population, sorted by objective value with the best objective
value first. If a crossover operator has been specified in a correspondingGASETCRO
call or a default crossover operator is in effect, the remaining members of the pop-
ulation are determined by selecting members of the current population, applying the
crossover operator to generate offspring, and mutating the offspring according to the
mutation probabilty and mutation operator. The mutation probabilty and operator are
either specified in the corresondingGASETMUT call, or if no such call was made, a
default value of 0.05 will be assigned to the mutation probabilty, and a default muta-
tion operator will be assigned based on the problem encoding (see theGASETMUT
call). The offspring are then transfered to the new population. If the no crossover
option was specified in theGASETCRO call, then only mutation is applied to the
nonelite members of the current population to form the new population. After the
new population is formed, it becomes the current solution population, and the objec-
tive function specified in theGASETOBJ callis evaluated for each member.

See theGASETUP functionfor an example.

GASETCRO Call (Experimental)

set the crossover operator for a genetic algorithm optimization

CALL GASETCRO(id, crossprob, type <, parm >);

The inputs to the GASETCRO call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

crossprob is the crossover probability, which has a range from zero to one. It
specifies the probability that selected members of the current genera-
tion will undergo crossover to produce new offspring for the next gen-
eration.

type specifies the kind of crossover operator to be used.type is used in
conjunction withparm to specify either a user-written module for the
crossover operator, or one of several other operators that IML provides,
as explained below.

644 � Chapter 20. Language Reference

parm is a matrix whose interpretation depends on the value oftype, as de-
scribed below.

The GASETCRO call enables the user to specify the crossover operator to be used in
the genetic algorithm optimization problem. The following options can be specified
by the user with thetypeparameter:

type= -1: specifies that no crossover operator is to be applied, and the new pop-
ulation will be generated by applying the mutation operator to the old
population, according to the mutation probabilty.

type= 0: specifies that a user-written module, whose name is passed in theparm
parameter, is to be used as the crossover operator. This module should
be an IML subroutine with four parameters. The module should return
the new offspring solutions in the first two parameters based on the
input parent solutions, which will be selected by the genetic algorithm
and passed into the module in the last two parameters. The module will
be called once for each crossover operation within theGAREGEN call
to create a new generation of solutions.

type= 1: specifies the simple operator, defined for fixed-length integer and real
vector encoding. To apply this operator, a positionk within the vector
of lengthn is chosen at random, such that1 ≤ k < n. Then for parents
p1andp2 the offspring are:

c1= p1[1,1:k] || p2[1,k+1:n];

c2= p2[1,1:k] || p1[1,k+1:n];

For real fixed-length vector encoding, the user may specify an addi-
tional parameter,a, with theparm parameter, wherea is a scalar and
0 < a ≤ 1. It modifies the offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k] || x2[1,k+1:n];

x1 = a * p1 + (1-a) * p2
c2 = p2[1,1:k] || x1[1,k+1:n];

Note that fora = 1, which is the default value,x2 andx1 are the same
as p2 and p1. Small values ofa reduce the difference between the
offspring and parents. For integer encoding, theparm parameter is
ignored anda is always 1.

type= 2: specifies the two-point operator, defined for fixed-length integer and
real vector encoding with lengthn ≥ 3. To apply this operator, two po-
sitions k1 and k2 within the vector are chosen at random, such that
1 ≤ k1 < k2 < n. Element values between those positions are
swapped between parents. For parentsp1andp2 the offspring are:

c1 = p1[1,1:k1] || p2[1,k1+1:k2] || p1[1,k2+1:n];

c2 = p2[1,1:k1] || p1[1,k1+1:k2] || p2[1,k2+1:n];

GASETCRO Call (Experimental) � 645

For real vector encoding, the user may specify an additional parameter,
a, in the parm field, where0 < a ≤ 1. It modifies the offspring as
follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k1] || x2[1,k1+1:k2] || p1[1,k2+1:n];

x1 = a * p1 + (1-a) * p2;
c2 = p2[1,1:k1] || x1[1,k1+1:k2] || p2[1,k2+1:n];

Note that fora = 1, which is the default value,x2 andx1 are the same
as p2 and p1. Small values ofa reduce the difference between the
offspring and parents. For integer encoding, theparm parameter is
ignored if present anda is always 1.

type= 3: specifies the arithmetic operator, defined for real and integer fixed-
length vector encoding. This operator computes offspring of parents
p1andp2as:

c1 = a * p1 + (1-a) * p2;

c2 = a * p2 + (1-a) * p1;

wherea is a random number between 0 and 1. For integer encoding,
each component is rounded off to the nearest integer. It has the advan-
tage that it will always produce feasible offspring for a convex solution
space. A disadvantage of this operator is that it will tend to produce
offspring toward the interior of the search region, so that it may be less
effective if the optimum lies on or near the search region boundary.

type= 4: specifies the heuristic operator, defined for real fixed-length vector en-
coding. This operator computes the first offspring from the two parents
p1andp2as:

c1 = a * (p2 - p1) + p2;

wherep2 is the parent with the better objective value, anda is a random
number between 0 and 1. The second offspring is computed as in the
arithmetic operator:

c2 = (1 - a) * p1 + a * p2;

This operator is unusual in that it uses the objective value. It has the
advantage of directing the search in a promising direction, and automat-
ically fine tuning the search in an area where solutions are clustered. If
upper and lower bound constraints were specified in theGAINIT call,
the offspring will be checked against the bounds, and any component
outside its bound will be set equal to that bound.

type= 5: specifies the partial match operator, defined for sequence encoding.
This operator produces offspring by transferring a subsequence from
one parent, and filling the remaining positions in a way consistent with
the position and ordering in the other parent. Start with two parents and
randomly chosen cutpoints as indicated:

646 � Chapter 20. Language Reference

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

The first step is to cross the selected segments (. indicates positions
yet to be determined):

c1 = {. . 9 3 4 1 . . .};
c2 = {. . 3 4 5 6 . . .};

Next, define a mapping according to the two selected segments:

9-3, 3-4, 4-5, 1-6

Next, fill in the positions where there is no conflict from the corre-
sponding parent:

c1 = {. 2 9 3 4 1 7 8 .};
c2 = {8 7 3 4 5 6 2 . .};

Last, fill in the remaining positions from the subsequence mapping. In
this case, for the first child1 → 6 and9 → 3, and for the second child
5 → 4, 3 → 9 and6 → 1.

c1 = {6 2 9 3 4 1 7 8 5};
c2 = {8 7 3 4 5 6 2 9 1};

This operator will tend to maintain similarity of both the absolute po-
sition and relative ordering of the sequence elements, and is useful for
a wide range of sequencing problems.

type= 6: specifies the order operator, defined for sequence encoding. This opera-
tor produces offspring by transferring a subsequence of random length
and position from one parent, and filling the remaining positions ac-
cording to the order from the other parent. For parentsp1 andp2, first
choose a subsequence:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

c1 = {. . 3 4 5 6 . . .};
c2 = {. . 9 3 4 1 . . .};

Starting at the second cutpoint, the elements ofp2 in order are (cycling
back to the beginning):

2 5 6 8 7 9 3 4 1

after removing 3, 4, 5 and 6, which have already been placed inc1, we
have:

2 8 7 9 1

Placing these back in order starting at the second cutpoint yields:

c1 = {9 1 3 4 5 6 2 8 7};

GASETCRO Call (Experimental) � 647

Applying this logic toc2yields:

c2 = {5 6 9 3 4 1 7 8 2};

This operator maintains the similarity of the relative order, or adja-
cency, of the sequence elements of the parents. It is especially ef-
fective for circular path-oriented optimizations, such as the Traveling
Salesman Problem.

type= 7: specifies the cycle operator, defined for sequence encoding. This oper-
ator produces offspring such that the position of each element value in
the offspring comes from one of the parents. For example, for parents
p1andp2,

p1 = {1 2 3 4 5 6 7 8 9};
p2 = {8 7 9 3 4 1 2 5 6};

For the first child, pick the first element from the first parent:

c1 = {1};

To maintain the condition that the position of each element value must
come from one of the parents, the position of the ’8’ value must come
from p1, because the ’8’ position inp2 is already taken by the ’1’ inc1:

c1 = {1 8 .};

Now the position of ’5’ must come fromp1, and so on until the process
returns to the first position:

c1 = {1 . 3 4 5 6 . 8 9};

At this point, choose the remaining element positions fromp2:

c1 = {1 7 3 4 5 6 2 8 9};

For the second child, starting with the first element from the second
parent, similar logic produces:

c2 = {8 2 9 3 4 1 7 5 6};

This operator is most useful when the absolute position of the elements
is of most importance to the objective value.

A GASETCRO call is required when 0 is specified for theencodingparamter in
the GASETUP call, but for fixed-length vector and sequence encoding, a default
crossover operator will be used in theGAREGEN callwhen no GASETCRO call is
made. For sequence encoding, the default is the partial match operator, unless the
Traveling Salesman option was specified in theGASETOBJ call, in which case the
order operator is the default. For integer fixed-length vector encoding, the default is
the simple operator. For real fixed-length vector encoding, the default is the heuristic
operator.

See theGASETUP functionfor an example.

648 � Chapter 20. Language Reference

GASETMUT Call (Experimental)

set the mutation operator for a genetic algorithm optimization

CALL GASETMUT(id, mutprob <, type, <, parm > >);

The inputs to the GASETMUT call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

mutprob is the probabilty for a given solution to undergo mutation, a number
between 0 and 1.

type specifies the kind of mutation operator to be used.typeis used in con-
junction withparm to specify either a user-written module for the mu-
tation operator, or one of several other operators that IML provides, as
explained below.

parm is a matrix whose interpretation depends on the value oftype, as de-
scribed below.

The GASETMUT call enables the user to specify the frequency of mutation and the
mutation operator to be used in the genetic algorithm optimization problem. If the
typeparameter is not specified, then the GASETMUT call only alters the mutation
probability, without resetting the mutation operator, and any operator set by a previ-
ous GASETMUT call remains in effect. The following mutation operators may be
specified by the user with thetypeparameter:

type= 0: specifies that a user-written module, whose name is passed in theparm
parameter, is to be used as the mutation operator. This module should
be an IML subroutine with one parameter, which receives the solution
to be mutated. The module will be called once for each mutation op-
eration, and is expected to modify the input solution according to the
desired mutation operation. Any checking of bounds specified in the
GAINIT call should be done inside the module; in this case they will
not be checked by IML.

type= 1: specifies the uniform mutation operator, defined for fixed-length real
or integer encoding, with upper and lower bounds specified in the
GAINIT call. The parm parameter is not used with this option. To
apply this operator, a positionk is randomly chosen within the solution
vectorv, andv[k] is modified to a random value between the upper and
lower bounds for elementk. This operator may prove especially useful
in early stages of the optimization, since it will tend to distribute solu-
tions widely across the search space, and avoid premature convergence
to a local optimum. However, in later stages of an optimization with
real vector encoding, when the search needs to be fine-tuned to hone in
on an optimum, the uniform operator may hinder the optimization.

GASETMUT Call (Experimental) � 649

type= 2: specifies the delta mutation operator, defined for integer and real fixed-
length vector encoding. This operator first chooses an element of the
solution at random, and then perturbs that element by a fixed amount,
delta, which is set with theparmparameter.deltahas the same dimen-
sion as the solution vectors, and each elementdelta[k] is set toparm[k],
unlessparmis a scalar, in which case all elements are set equal toparm.
For integer encoding, alldelta[k] are truncated to integers, if they are
not integer inparm. To apply the mutation, a randomly chosen element
k of the solution vectorv is modified such that

v[k] = v[k] + delta[k]; /* with probability 0.5 */
or

v[k] = v[k] - delta[k];

If there are bounds specified for the problem in theGAINIT call, then
v[k] is adjusted as necessary to fit within the bounds. This operator
gives the user the ability to control the scope of the search with the
parmmatrix. One possible strategy is to start with a largerdeltavalue,
and then reduce it with subsequent GASETMUT calls as the search
progresses and begins to converge to an optimum. This operator is
also useful if the optimum is known to be on or near a boundary, in
which casedeltacan be set large enough to always perturb the solution
element to a boundary.

type= 3: specifies the swap operator, which is defined for sequence problem en-
coding. This operator picks two random locations in the solution vec-
tor, and swaps their value. It is the default mutation operator for se-
quence encoding, except for when the Traveling Salesman option is
specified in theGASETOBJ call. The user may also specify that mul-
tiple swaps be made for each mutation with theparmparameter. The
number of swaps defaults to 1 ifparm is not specified, and is equal to
parmotherwise.

type= 4: specifies the invert operator, defined for sequence encoding. This op-
erator picks two locations at random, and then reverses the order of
elements between them. This operator is most often applied to the
Traveling Salesman Problem. Theparm parameter is not used with
this operator.

Mutation is generally useful in the application of the genetic algorithm to ensure that
a diverse population of solutions is sampled to avoid premature convergence to a local
optimum. IML allows more than one GASETMUT call to be made at any time in the
progress of the algorithm. This enables flexible adaptation of the mutation process,
either changing the mutation probability or changing the operator itself. The user
may do this to ensure a wide search at the beginning of the optimization, and then
reduce the variation later to narrow the search close to an optimum.

A GASETMUT call is required when anencodingparameter of 0 is specified in the
GASETUP call, but when no GASETMUT call is made for fixed-length vector and
sequence encoding, a default value of 0.05 will be set formutprob, and a default
mutation operator will be used in theGAREGEN call. The mutation operator will

650 � Chapter 20. Language Reference

default to the uniform operator for fixed-length vector encoding with bounds speci-
fied in theGAINIT call, the delta operator with aparm value of 1 for fixed-length
vector encoding with no bounds specified, the invert operator for sequence encoding
when the Traveling Salesman option is chosen in theGASETOBJ call, and the swap
operator for all other sequence encoded problems.

See theGASETUP functionfor an example.

GASETOBJ Call (Experimental)
set the objective function for a genetic algorithm optimization

CALL GASETOBJ(id, type <, parm >);

The inputs to the GASETOBJ call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

type specifies the type of objective function to be used.

parm is a matrix whose interpretation depends on the value oftype, as de-
scribed below.

IML enables the specification of a user-written module to be used to compute the
value of the objective function to be optimized, or a standard preset function may be
specified. This is specified with thetypeandparmparameters.

type= 0: specifies that a user-written function module is to be minimized. The
name of the module is supplied in theparmparameter. The specified
module should take a single parameter representing a given solution,
and return a scalar numeric value for the objective function.

type= 1: specifies that a user-written function module is to be maximized. The
name of the module is supplied in theparmparameter. The specified
module should take a single parameter representing a given solution,
and return a scalar numeric value for the objective function.

type= 2: specifies an objective function from the Traveling Salesman Problem,
which will be minimized. This option is only valid if sequence encod-
ing is specified in the correspondingGASETUP functioncall, and the
solution vector is to be interpreted as a circular route, with each ele-
ment representing a location. Theparmparameter should be a square
cost matrix, such thatparm[i, j] is the cost of going from locationi to
locationj. The dimension of the matrix should be the same as thesize
parameter of the correspondingGASETUP functioncall.

The specified objective function will be called once for each solution, to evaluate the
objective values for theGAREGEN call, GAINIT call, and theGAREEVAL call.
Also, the objective values for the current solution population will be re-evaluated if
GASETOBJ is called after aGAINIT call.

See theGASETUP functionfor an example.

GASETSEL Call (Experimental) � 651

GASETSEL Call (Experimental)

set the selection parameters for a genetic algorithm optimization

CALL GASETSEL(id, elite, type, parm);

The inputs to the GASETSEL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by theGASETUP function.

elite specifies the number of solution population members to carry over un-
altered to the next generation in theGAREGEN call. If nonzero, then
elite members with the best objective function values will be carried
over without crossover or mutation.

type specifies the selection method to use.

parm is a parameter used to control the selection pressure.

This module sets the selection parameters that will be used in theGAREGEN call
to select solutions for the crossover operation. IML currently allows you to choose
between two variants of the “tournament” selection method in which a group of dif-
ferent solutions is picked at random from the current solution population, and the
solution from that group with the best objective value is selected. In the first varia-
tion, chosen by settingtype to 0, the most optimal solution is always selected, and
the parm parameter is used to specify the size of the group, always two or greater.
The larger the group size, the greater the selective pressure. In the second variation,
chosen by settingtype= 1, the group size is set to 2, and the best solution is chosen
with probability specified by byparm. If parmis 1 the best solution is always picked,
and aparmvalue of 0.5 is equivalent to pure random selection. Theparmvalue must
be between 0.5 and 1. The first variation,type= 0, will always produce a selective
pressure greater than fortype= 1. Higher selective pressure will lead to faster con-
vergence of the genetic algorithm, but is more likely to give premature convergence
to a local optimum.

In order to ensure that the best solution of the current solution population is always
carried over to the next generation, anelite value of 1 should be specified. Higher
values ofelite will generally lead to faster convergence of the algorithm, but will
increase the chances of premature convergence to a local optimum. If GASETSEL
is not called, default values ofelite = 1, type= 1 andparm = 2 will be used in the
optimization.

See theGASETUP functionfor an example.

652 � Chapter 20. Language Reference

GASETUP Function (Experimental)

set up the problem encoding for a genetic algorithm optimization problem

GASETUP(encoding, size <, seed >)

The GASETUP function returns a scalar number identifying the genetic algorithm
optimization problem, to be used in subsequent calls in setting up and executing the
optimization.

The inputs to the GASETUP function are as follows:

encoding is a scalar number used to specify the form or structure of the problem
solutions to be optimized. A value of 0 is used to indicate a numeric
matrix of arbitrary dimensions, 1 to indicate a fixed-length floating
point row vector, 2 to indicate a fixed-length integer row vector, and
3 to indicate a fixed-length sequence of integers, with alternate solu-
tions distinguished by different sequence ordering.

size is a numeric scalar, whose value is the vector or sequence length, if a
fixed-lengthencodingis specified. For arbitrary matrix encoding (en-
codingvalue of 0),sizeis not used.

seed is an optional initial random number seed to be used for the initializa-
tion and the selection process. Ifseedis not specified, or its value is 0,
an initial seed will be derived from the current system time.

GASETUP is the first call that must be made to set up a genetic algorithm optimiza-
tion problem. It specifies the problem encoding, the size of a population member,
and an optional seed to use to initialize the random number generator used in the
selection process. GASETUP returns an identifying number that must be passed
to the other modules that specify genetic operators and control the execution of the
genetic algorithm. More than one optimization can be active concurrently, and op-
timization problems with different problem identifiers are completely independent.
When a satisfactory solution has been determined, the optimization problem should
be terminated with a call toGAEND to free up resources associated with the genetic
algorithm.

The following example demonstrates use of many genetic algorithm subroutines.

/* Use a genetic algorithm to explore the solution space for the
"traveling salesman" problem. First, define the objective
function to minimize:
compute the sum of distances between sequence of cities */

start EvalFitness(pop) global (dist);
fitness = j(nrow(pop),1);
do i = 1 to nrow(pop);

city1 = pop[i,1];
city2 = pop[i,ncol(pop)];
fitness[i] = dist[city1, city2];
do j = 1 to ncol(pop)-1;

city1 = pop[i,j];

GBLKVP Call � 653

city2 = pop[i,j+1];
fitness[i] = fitness[i] + dist[city1,city2];

end;
end;
return (fitness);

finish;

/* Set up parameters for the genetic algorithm */

mutationProb = 0.15; /* prob that a child will be mutated */
numElite = 2; /* copy this many to next generation */
numCities = 15; /* number of cities to visit */
numGenerations = 100; /* number of generations to evolve */
seed = 54321; /* random number seed */

/* fix population size; generate random locations for cities */
popSize = max(30,2*numCities);
locations = uniform(j(numCities,2,seed));

/* calculate distances between cities one time */
dist = j(numCities, numCities, 0);
do i = 1 to numCities;

do j = 1 to i-1;
v = locations[i,]-locations[j,];
dist[i,j] = sqrt(v[##]);
dist[j,i] = dist[i,j];

end;
end;

/* run the genetic algorithm */
id = gasetup(3, numCities, seed);
call gasetobj(id, 0, "EvalFitness");
call gasetcro(id, 1.0, 6);
call gasetmut(id, mutationProb, 3);
call gasetsel(id, numElite, 1, 0.95);
call gainit(id, popSize);

do i = 1 to numGenerations;
if mod(i,20)=0 then do;

call gagetval(value, id, 1);
print "Iteration:" i "Top value:" value;

end;
call garegen(id);

end;

/* report final sequence for cities */
call gagetmem(mem, value, id, 1);
print mem, value;
call gaend(id);

GBLKVP Call

defines a blanking viewport

654 � Chapter 20. Language Reference

CALL GBLKVP(viewport <, inside>);

The inputs to the GBLKVP subroutine are as follows:

viewport is a numeric matrix or literal defining a viewport. This rectangular
area’s boundary is specified in normalized coordinates, where you
specify the coordinates of the lower left corner and the upper right
corner of the rectangular area in the form

{ minimum-x minimum-y maximum-x maximum-y}

inside is a numeric argument that specifies whether graphics output is to
be clipped inside or outside the blanking area. The default is to clip
outside the blanking area.

The GBLKVP subroutine defines an area, called the blanking area, in which nothing
is drawn until the area is released. This routine is useful for clipping areas outside the
graph or for blanking out inner portions of the graph. Ifinsideis set to 0 (the default),
no graphics output appears outside the blanking area. Settinginsideto 1 clips inside
the blanking areas.

Note that the blanking area (as specified by the viewport argument) is defined on the
current viewport, and it is released when the viewport is changed or popped. At most
one blanking area is in effect at any time. The blanking area can also be released by
theGBLKVPD subroutineor another GBLKVP call. The coordinates in use for this
graphics command are given in normalized coordinates because it is defined relative
to the current viewport.

For example, to blank out a rectangular area with corners at the coordinates (20,20)
and (80,80), relative to the currently defined viewport, use the statement

call gblkvp({20 20, 80 80});

No graphics or text can be written outside this area until the blanking viewport is
ended.

Alternatively, if you want to clip inside of the rectangular area as above, use theinside
parameter:

call gblkvp({20 20, 80 80},1);

See also the description of the CLIP option in theRESET statement.

GDELETE Call � 655

GBLKVPD Call

deletes the blanking viewport

CALL GBLKVPD;

The GBLKVPD subroutine releases the current blanking area. It allows graphics
output to be drawn in the area previously blanked out by a call to theGBLKVP
subroutine.

To release an area previously blanked out, as in the example for theGBLKVP sub-
routine, use the following statement.

/* define blanking viewport */

call gblkvp({20 20,80 80});

more graphics statements
/* now release the blanked out area */

call gblkvpd;

/* graphics or text can now be written to the area */

continue graphics statements

See also the description of the CLIP option in theRESET statement.

GCLOSE Call

closes the graphics segment

CALL GCLOSE;

The GCLOSE subroutine closes the current graphics segment. Once a segment is
closed, no other primitives can be added to it. The next call to a graph-generating
function begins building a new graphics segment. However, the GCLOSE subroutine
does not have to be called explicitly to terminate a segment; theGOPEN subroutine
causes GCLOSE to be called.

GDELETE Call

deletes a graphics segment

CALL GDELETE(segment-name);

wheresegment-nameis a character matrix or quoted literal containing the name of
the segment.

The GDELETE subroutine searches the current catalog and deletes the first segment
found with the namesegment-name.

An example of a valid statement follows.

/* SEG_A is defined as a character matrix */
/* that contains the name of the segment to delete */

call gdelete(seg_a);

656 � Chapter 20. Language Reference

The segment can also be specified as a quoted literal:

call delete("plot_13");

GDRAW Call

draws a polyline

CALL GDRAW(x, y <, style><, color><, window><, viewport>);

The inputs to the GDRAW subroutine are as follows:

x is a vector containing thex coordinates of points used to draw a
sequence of lines.

y is a vector containing they coordinates of points used to draw a
sequence of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GDRAW subroutine draws a sequence of connected lines from points represented
by values inx andy, which must be vectors of the same length. Ifx andy haven
points, there will ben − 1 lines. The first line will be from the point(x(1), y(1)) to
(x(2), y(2)). The lines are drawn in the same color and line style. The coordinates in
use for this graphics command are world coordinates. An example using the GDRAW
subroutine follows:

/* line from (50,50) to (75,75) - x and y take */
/* default window range of 0 to 100 */

call gdraw({50 75},{50 75});
call gshow;

GENEIG Call � 657

GDRAWL Call

draws individual lines

CALL GDRAWL(xy1, xy2 <, style><, color><, window><, viewport>);

The inputs to the GDRAWL subroutine are as follows:

xy1 is a matrix of points used to draw a sequence of lines.

xy2 is a matrix of points used to draw a sequence of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GDRAWL subroutine draws a sequence of lines specified by their beginning and
ending points. The matricesxy1 andxy2 must have the same number of rows and
columns. The first two columns (other columns are ignored) ofxy1 give thex, y co-
ordinates of the beginning points of the line segment, and the first two columns ofxy2
havex, y coordinates of the corresponding end points. Ifxy1 andxy2 haven rows,n
lines are drawn. The first line is from(xy1(1, 1), xy1(1, 2)) to (xy2(1, 1), xy2(1, 2)).
The lines are drawn in the same color and line style. The coordinates in use for this
graphics command are world coordinates. An example using the GDRAWL call fol-
lows:

/* line from (25,25) to (50,50) - x and y take */
/* default window range of 0 to 100 */

call gdrawl({25 25},{50 50});
call gshow;

GENEIG Call

computes eigenvalues and eigenvectors of a generalized eigenproblem

658 � Chapter 20. Language Reference

CALL GENEIG(eigenvalues, eigenvectors, symmetric-matrix1,

symmetric-matrix2);

The inputs to the GENEIG subroutine are as follows:

eigenvalues is a returned vector containing the eigenvalues.

eigenvectors is a returned matrix containing the corresponding eigenvectors.

symmetric-matrix1 is a symmetric numeric matrix.

symmetric-matrix2 is a positive definite symmetric matrix.

The GENEIG subroutine computes eigenvalues and eigenvectors of the generalized
eigenproblem. The statement

call geneig (m,e,a,b);

computes eigenvaluesM and eigenvectorsE of the generalized eigenproblemA ∗
E = B ∗ E ∗ diag(M), whereA andB are symmetric andB is positive definite.
The vectorM contains the eigenvalues arranged in descending order, and the matrix
E contains the corresponding eigenvectors in the columns.

The following example is from Wilkinson and Reinsch (1971, p. 311).

a={10 2 3 1 1,
2 12 1 2 1,
3 1 11 1 -1,
1 2 1 9 1,
1 1 -1 1 15};

b={12 1 -1 2 1,
1 14 1 -1 1,

-1 1 16 -1 1,
2 -1 -1 12 -1,
1 1 1 -1 11};

call geneig(m,e,a,b);

The matrices produced are as follows.

M
1.49235
1.10928
0.94385
0.66366
0.43278

E
-0.07638 0.14201 0.19171 -0.08292 -0.13459
0.01709 0.14242 -0.15899 -0.15314 0.06129
-0.06666 0.12099 0.07483 0.11860 0.15790
0.08604 0.12553 -0.13746 0.18281 -0.10946
0.28943 0.00769 0.08897 -0.00356 0.04147

GINCLUDE Call � 659

GGRID Call

draws a grid

CALL GGRID(x, y <, style><, color><, window><, viewport>);

The inputs to the GGRID subroutine are as follows:

x andy are vectors of points used to draw sequences of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GGRID subroutine draws a sequence of vertical and horizontal lines specified by
thex andy vectors, respectively. The start and end of the vertical lines are implicitly
defined by the minimum and maximum of they vector. Likewise, the start and end of
the horizontal lines are defined by the minimum and maximum of thex vector. The
grid lines are drawn in the same color and line style. The coordinates in use for this
graphics command are world coordinates.

For example, use the following statements to place a grid in the lower left corner of
the screen.

x={10,20,30,40,50};
y=x;

/* The following GGRID command will place a GRID */
/* in lower left corner of the screen */
/* assuming the default window and viewport */

call ggrid(x,y);
call gshow;

GINCLUDE Call

includes a graphics segment

660 � Chapter 20. Language Reference

CALL GINCLUDE(segment-name);

wheresegment-nameis a character matrix or quoted literal specifying a graphics
segment.

The GINCLUDE subroutine includes into the current graph a previously defined
graph namedsegment-namefrom the same catalog. The included segment is defined
in the current viewport but not the current window.

The implementation of the GINCLUDE subroutine makes it possible to include
other segments to the current segment and reposition them in different viewports.
Furthermore, a segment can be included by different graphs, thus effectively reduc-
ing storage space. Examples of valid statements follow:

/* segment1 is a character variable */
/*containing the segment name */

segment1={myplot};
call ginclude(segment1);

/* specify the segment with quoted literal */
call ginclude("myseg");

GINV Function

computes the generalized inverse

GINV(matrix)

wherematrix is a numeric matrix or literal.

The GINV function creates the Moore-Penrose generalized inverse ofmatrix. This
inverse, known as the four-condition inverse, has these properties:

If G = GINV(A) then

AGA = A GAG = G (AG)′ = AG (GA)′ = GA

The generalized inverse is also known as thepseudoinverse, usually denoted byA−.
It is computed using the singular value decomposition (Wilkinson and Reinsch 1971).

See Rao and Mitra (1971) for a discussion of properties of this function.

Least-squares regression for the model

Y = Xβ + ε

can be performed by using

b=ginv(x)*y;

GINV Function � 661

as the estimate ofβ. This solution has minimumb′b among all solutions minimizing
ε′ε, whereε = Y −Xb.

Projection matrices can be formed by specifying GINV(X) ∗ X (row space) or
X∗GINV(X) (column space).

The program below demonstrates some common uses of the GINV function.

A = {1 0 1 0 0,
1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };

/* find generalized inverse */
Ainv = ginv(A);

/* find LS solution: min |Ax-b|^2 */
b = { 3, 2, 4, 2, 1, 3 };
x = Ainv*b;

/* form projection matrix onto row space.
Note P = P‘ and P*P = P */

P = Ainv*A;

/* find numerical rank of A */
rankA = round(trace(P));

reset fuzz;
print Ainv, rankA, x, P;

AINV

0.2666667 0.2666667 0.2666667 -0.066667 -0.066667 -0.066667
-0.066667 -0.066667 -0.066667 0.2666667 0.2666667 0.2666667

0.4 -0.1 -0.1 0.4 -0.1 -0.1
-0.1 0.4 -0.1 -0.1 0.4 -0.1
-0.1 -0.1 0.4 -0.1 -0.1 0.4

RANKA

4

X

2
1
1
0
2

662 � Chapter 20. Language Reference

P

0.8 -0.2 0.2 0.2 0.2
-0.2 0.8 0.2 0.2 0.2
0.2 0.2 0.8 -0.2 -0.2
0.2 0.2 -0.2 0.8 -0.2
0.2 0.2 -0.2 -0.2 0.8

If A is ann × m matrix, then, in addition to the memory allocated for the return
matrix, the GINV function temporarily allocates ann2 + nm array for perfoming its
computation.

GOPEN Call

opens a graphics segment

CALL GOPEN(<segment-name><, replace><, description>);

The inputs to the GOPEN subroutine are as follows:

segment-name is a character matrix or quoted literal specifying the name of a
graphics segment.

replace is a numeric argument.

description is a character matrix or quoted text string with a maximum length
of 40 characters.

The GOPEN subroutine starts a new graphics segment. The window and viewport are
reset to the default values ({0 0 100 100}) in both cases. Any attribute modified using
a GSET callis reset to its default value, which is set by the attribute’s corresponding
GOPTIONS value.

A nonzero value forreplaceindicates that the new segment should replace the first
found segment with the same name, and zero indicates otherwise. If you do not
specify thereplaceflag, the flag set by a previousGSTART callis used. By default,
theGSTART subroutinesets the flag to NOREPLACE.

Thedescriptionis a text string of up to 40 characters that you want to store with the
segment to describe the graph.

Two graphs cannot have the same name. If you try to create a segment, say PLOT–A,
twice, the second segment is named using a name generated by IML.

To open a new segment named COSINE, setreplaceto replace a like-named segment,
and attach a description to the segment, use the statement

call gopen(’cosine’,1,’Graph of Cosine Curve’);

GPIE Call � 663

GOTO Statement

jumps to a new statement

GOTO label;

wherelabel is a labeled statement. Execution jumps to this statement. A label is a
name followed by a colon (:).

The GOTO (or GO TO) statement directs IML to jump immediately to the statement
with the givenlabel and begin executing statements from that point. Any IML state-
ment can have a label, which is a name followed by a colon preceding any executable
statement.

GOTO statements are usually clauses of IF statements, for example,

if x>y then goto skip;
y=log(y-x);
yy=y-20;
skip: if y<0 then

do;
more statements

end;

The function of GOTO statements is usually better performed by DO groups. For
example, the statements above could be better written

if x<=y then
do;

y=log(y-x);
yy=y-20;

end;
more statements

CAUTION: You can only use the GOTO statement inside a module or a DO group.
As good programming practice, you should avoid GOTO statements when they refer
to a label above the GOTO statement; otherwise, an infinite loop is possible.

GPIE Call

draws pie slices

CALL GPIE(x, y, r <, angle1><, angle2><, color><, outline>

<, pattern><, window><, viewport>);

The inputs to the GPIE subroutine are AS FOLLOWS:

x andy are numeric scalars (or possibly vectors) defining the center (or
centers) of the pie (or pies).

r is a scalar or vector giving the radii of the pie slices.

angle1 is a scalar or vector giving the start angles. It defaults to 0.

664 � Chapter 20. Language Reference

angle2 is a scalar or vector giving the terminal angles. It defaults to 360.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

outline is an index indicating the side of the slice to draw. The default is 3.

pattern is a character matrix or quoted literal that specifies the pattern with
which to fill the interior of a closed curve.

window is a numeric matrix or literal specifying a window.
This is given in world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPIE subroutine draws one or more pie slices. The number of pie slices is
the maximum dimension of the first five vectors. The angle arguments are specifed
in degrees. The start angle (angle1) defaults to 0, and the terminal angle (angle2)
defaults to 360.Outline is an index that indicates the side of the slice to draw. The
outlinespecification can be one of the following:

<0 uses absolute value as the line style and draws no line segment from center to
arc.

0 draws no line segment from center to arc.

1 draws an arc and line segment from the center to the starting angle point.

2 draws an arc and line segment from the center to the ending angle point.

3 draws all sides of the slice. This is the default.

Color, outline, and pattern can have more than one element. The coordinates in
use for this graphics command are world coordinates. An example using the GPIE
subroutine follows:

/* draws a pie with 4 slices of equal size */
call gpie(50,50,30,{0 90 180 270},{90 180 270 0});

GPIEXY Call

converts from polar to world coordinates

GPIEXY Call � 665

CALL GPIEXY(x, y, fract-radii, angles<, center><, radius><, window>);

The inputs to the GPIEXY subroutine are as follows:

x andy are vectors of coordinates returned by GPIEXY.

fract-radii is a vector of fractions of the radius of the reference circle.

angles is the vector of angle coordinates in degrees.

center defines the reference circle.

radius defines the reference circle.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPIEXY subroutine computes the world coordinates of a sequence of points
relative to a circle. Thex andy arguments are vectors of new coordinates returned
by the GPIEXY subroutine. Together, the vectorsfract-radii andanglesdefine the
points in polar coordinates. Each pair from thefract-radii andanglesvectors yields a
corresponding pair in thex andy vectors. For example, supposefract-radii has two
elements, 0.5 and 0.3, and the corresponding two elements ofanglesare 90 and 30.
The GPIEXY subroutine returns two elements in thex vector and two elements in the
y vector. The first(x, y) pair locates a point half way from the center to the reference
circle on the vertical line through the center, and the second(x, y) pair locates a
point one-third of the way on the line segment from the center to the reference circle,
where the line segment slants 30 degrees from the horizontal. The reference circle
can be defined by an earlierGPIE callor another GPIEXY call, or it can be defined
by specifyingcenterandradius.

Graphics devices can have diverse aspect ratios; thus, a circle may appear distorted
when drawn on some devices. The SAS graphics system adjusts computations to
compensate for this distortion. Thus, for any given point, the transformation from
polar coordinates to world coordinates may need an equivalent adjustment. The
GPIEXY subroutine ensures that the same adjustment applied in theGPIE subroutine
is applied to the conversion. An example using the GPIEXY call follows.

/* add labels to a pie with 4 slices of equal size */
call gpie(50,50,30,{0 90 180 270},{90 180 270 0});
call gpiexy(x,y,1.2,{45 135 225 315},{50 50},30,{0 0 100 100});

/* adjust for label size: */
x [4,]=x[4,]-3;
x [1,]=x[1,]-4;
x [2,]=x[2,]+1;
call gscript(x,y,{’QTR1’ ’QTR2’ ’QTR3’ ’QTR4’});
call gshow;

666 � Chapter 20. Language Reference

GPOINT Call
plots points

CALL GPOINT(x, y <, symbol><, color><, height><, window>

<, viewport>);

The inputs to the GPOINT subroutine are as follows:

x is a vector containing thex coordinates of points.

y is a vector containing they coordinates of points.

symbol is a character vector or quoted literal that specifies a valid plotting
symbol or symbols.

color is a valid SAS color, wherecolor can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
numbern refers to thenth color in the color list.

height is a numeric matrix or literal specifying the character height.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPOINT subroutine marks one or more points with symbols. Thex andy vectors
define the points where the markers are to be placed. Thesymbolandcolor arguments
can have from one up to as many elements as there are well-defined points. The
coordinates in use for this graphics command are world coordinates.

In the example that follows, points on the lineY = X are generated for30 ≤ X ≤ 80
and then plotted with the GPOINT call:

x=30:80;
y=x;
call gpoint(x,y);
call gshow;

As another example, you can plot symbols at specific locations on the screen using
the GPOINT subroutine. To printi in the lower left corner andj in the upper right
corner, use the statements

call gpoint({10 80},{5 95},{i j});
call gshow;

SeeChapter 12, “Graphics Examples,”for examples using the GPOINT subroutine.

GPOLY Call � 667

GPOLY Call

draws and fills a polygon

CALL GPOLY(x, y <, style><, ocolor><, pattern><, color>

<, window><, viewport>);

The inputs to the GPOLY subroutine are as follows.

x is a vector defining thex coordinates of the corners of the polygon.

y is a vector defining they coordinates of the corners of the polygon.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

ocolor is a matrix or literal specifying a valid outline color. Theocolor
argument can be specified as a quoted text string (such as ’RED’),
the name of a character matrix containing a valid color as an ele-
ment, or a color number (such as 1). A color numbern refers to
thenth color in the color list.

pattern is a character matrix or quoted literal that specifies the pattern to
fill the interior of a closed curve.

color is a valid SAS color used in filling the polygon. Thecolorargument
can be specified as a quoted text string (such as ’RED’), the name
of a character matrix containing a valid color as an element, or a
color number (such as 1). A color numbern refers to thenth color
in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPOLY subroutine fills an area enclosed by a polygon. The polygon is defined by
the set of points given in the vectorsx andy. Thecolor argument is the color used in
shading the polygon, andocolor is the outline color. By default, the shading color and
the outline color are the same, and the interior pattern is empty. The coordinates in
use for this graphics command are world coordinates. An example using the GPOLY
subroutine follows:

xd={20 20 80 80};
yd={35 85 85 35};
call gpoly (xd,yd, , ,’X’,’red’);

668 � Chapter 20. Language Reference

GPORT Call

defines a viewport

CALL GPORT(viewport);

whereviewportis a numeric matrix or literal defining the viewport. The rectangular
area’s boundary is specified in normalized coordinates, where you specify the coor-
dinates of the lower left corner and the upper right corner of the rectangular area in
the form

{ minimum-x minimum-y maximum-x maximum-y}

The GPORT subroutine changes the current viewport. Theviewportargument de-
fines the new viewport using device coordinates (always 0 to 100). Changing the
viewport may affect the height of the character fonts; if so, you may want to modify
the HEIGHT parameter. An example of a valid statement follows:

call gport({20 20 80 80});

The default values for viewport are 0 0 100 100.

GPORTPOP Call

pops the viewport

CALL GPORTPOP;

The GPORTPOP subroutine deletes the top viewport from the stack.

GPORTSTK Call

stacks the viewport

CALL GPORTSTK(viewport);

whereviewportis a numeric matrix or literal defined in normalized coordinates in the
form

{ minimum-x minimum-y maximum-x maximum-y}

The GPORTSTK subroutine stacks the viewport defined by the matrixviewportonto
the current viewport; that is, the new viewport is defined relative to the current view-
port. The coordinates in use for this graphics command are world coordinates. An
example of a valid statement follows:

call gportstk({5 5 95 95});

GSCRIPT Call � 669

GSCALE Call

calculates round numbers for labeling axes

CALL GSCALE(scale, x, nincr<, nicenum><, fixed-end>);

The inputs to the GSCALE subroutine are as follows:

scale is a returned vector containing the scaled minimum data value, the
scaled maximum data value, and a grid increment.

x is a numeric matrix or literal.

nincr is the number of intervals desired.

nicenum is numeric and provides up to ten numbers to use for scaling. By
default,nicenumis (1,2,2.5,5).

fixed-end is a character argument and specifies which end of the scale is held
fixed. The default isX.

The GSCALE subroutine obtains simple (round) numbers with uniform grid interval
sizes to use in scaling a linear axis. The GSCALE subroutine implements algorithm
463 of Collected Algorithms from CACM. The scale values are integer multiples of
the interval size. They are returned in the first argument, a vector with three elements.
The first element is the scaled minimum data value. The second element is the scaled
maximum data value. The third element is the grid increment.

The required input parameters arex, a matrix of data values, andnincr, the number of
intervals desired. Ifnincr is positive, the scaled range includes approximatelynincr
intervals. Ifnincr is negative, the scaled range includes exactly ABS(nincr) intervals.
Thenincr parameter cannot be zero.

Thenicenumandfixed-endarguments are optional. Thenicenumargument provides
up to ten numbers, all between 1 and 10 (inclusive of the end points), to be used for
scaling. The default fornicenumis 1, 2, 2.5, and 5. The linear scale with this set of
numbers is a scale with an interval size that is the product of an integer power of 10
and 1, 2, 2.5, or 5. Changing these numbers alters the rounding of the scaled values.

Forfixed-end, U fixes the upper end;L fixes the lower end;X allows both ends to vary
from the data values. The default isX. An example using the GSCALE subroutine
follows:

/* scalemat is set to {0,1000,100} */
call gscale(scalmat, {1 1000}, 10);

GSCRIPT Call

writes multiple text strings with special fonts

670 � Chapter 20. Language Reference

CALL GSCRIPT(x, y, text<, angle><, rotate><, height><, font>

<, color><, window><, viewport>);

The inputs to the GSCRIPT subroutine are as follows:

x is a scalar or vector containing thex coordinates of the lower left
starting position of the text string’s first character.

y is a scalar or vector containing they coordinates of the lower left
starting position of the text string’s first character.

text is a character vector of text strings.

angle is the slant of each text string.

rotate is the rotation of individual characters.

height is a real number specifying the character height.

font is a character matrix or quoted literal that specifies a valid font
name.

color is a valid SAS color. Thecolor argument can be specified as a
quoted text string (such as ’RED’), the name of a character matrix
containing a valid color as an element, or a color number (such as
1). A color numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GSCRIPT subroutine writes multiple text strings with special character fonts.
Thex andy vectors describe the coordinates of the lower left starting position of the
text string’s first character. Thecolor argument can have more than one element.

Note: Hardware characters cannot always be obtained if you change the HEIGHT or
ASPECT parameters or if you use a viewport.

The coordinates in use for this graphics command are world coordinates. Examples
of valid statements follow:

call gscript(7,y,names);
call gscript(50,50,"plot of height vs weight");
call gscript(10,90,"yaxis",-90,90);

GSET Call � 671

GSET Call
sets attributes for a graphics segment

CALL GSET(attribute<, value>);

The inputs to the GSET subroutine are as follows:

attribute is a graphics attribute. Theattribute argument can be a character
matrix or quoted literal.

value is the value to which the attribute is set. Thevalueargument is
specified as a matrix or quoted literal.

The GSET subroutine enables you to change the following attributes for the current
graphics segment.

aspect a numeric matrix or literal that specifies the aspect ratio (width
relative to height) for characters.

color a valid SAS color. Thecolor argument can be specified as a quoted
text string (such as ’RED’), the name of a character matrix contain-
ing a valid color as an element, or a color number (such as 1). A
color numbern refers to thenth color in the colorlist.

font a character matrix or quoted literal that specifies a valid font name.

height a numeric matrix or literal that specifies the character height.

pattern a character matrix or quoted literal that specifies the pattern to use
to fill the interior of a closed curve.

style a numeric matrix or literal that specifies an index corresponding to
a valid line style.

thick an integer specifying line thickness.

To reset the IML default value for any one of the attributes, omit the second argu-
ment. Attributes are reset back to the default with a call to theGOPENor GSTART
subroutines. Single or double quotes can be used around this argument. For more
information on the attributes, seeChapter 12, “Graphics Examples.”

Examples of valid statements follow:

call gset(’pattern’,’m1n45’);
call gset(’font’,’simplex’);

f=’font’;
s=’simplex’;
call gset(f,s);

For example, the statement

call gset("color");

resetscolor to its default.

672 � Chapter 20. Language Reference

GSHOW Call

shows a graph

CALL GSHOW <(segment-name)>;

wheresegment-nameis a character matrix or literal specifying a graphics segment.

If you do not specifysegment-name, the GSHOW subroutine displays the current
graph. If the current graph is active at the time that the GSHOW subroutine is called,
it remains active after the call; that is, graphics primitives can still be added to the
segment. On the other hand, if you specifysegment-name, the GSHOW subroutine
closes any active graphics segment, searches the current catalog for a segment with
the given name, and then displays that graph. Examples of valid statements follow.

call gshow;
call gshow("plot_a5");

seg={myplot};
call gshow(seg);

GSORTH Call

computes the Gram-Schmidt orthonormalization

CALL GSORTH(p, t, lindep, a);

The inputs to the GSORTH subroutine are as follows:

p is anm× n column-orthonormal output matrix.

t is an upper triangularn× n output matrix.

lindep is a flag with a value of 0 if columns ofa are independent and a value
of 1 if they are dependent. Thelindepargument is an output scalar.

a is an inputm× n matrix.

The GSORTH subroutine computes the Gram-Schmidt orthonormal factorization of
them×nmatrixA, wherem is greater than or equal ton; that is, the GSORTH sub-
routine computes the column-orthonormalm × n matrixP and the upper triangular
n× n matrixT such that

A = P ∗T .

If the columns ofA are linearly independent (that is, rank(A) = n), thenP is full-
rank column-orthonormal:P′P = Iw, T is nonsingular, and the value oflindep (a
scalar) is set to 0. If the columns ofA are linearly dependent (say rank(A) = k < n)
thenn− k columns ofP are set to 0, the corresponding rows ofT are set to 0 (T is
singular), andlindep is set to 1. The pattern of zero columns inP corresponds to the
pattern of linear dependencies of the columns ofA when columns are considered in
left-to-right order.

GSTART Call � 673

The GSORTH subroutines implements an algorithm described by Golub (1969).

The GSORTH subroutine is not recommended for the construction of matrices of val-
ues of orthogonal polynomials; theORPOL functionshould be used for that purpose.

If lindep is 1, you can rearrange the columns ofP and rows ofT so that the zero
columns ofP are right-most, that is,P = (P(, 1),P(, k), 0, . . . , 0), wherek is the
column rank ofA andA = P ∗T is preserved. The following statements make this
rearrangement:

d=rank((ncol(t)-(1:ncol(t))‘)#(vecdiag(t)=0));
temp=p;
p[,d]=temp;
temp=t;
t[,d]=temp;

An example of a valid GSORTH call follows:

x={1 1 1, 1 2 4, 1 3 9};
xpx=x‘*x;
call gsorth(p, t, l, xpx);

These statements produce the output matrices

P 3 rows 3 cols (numeric)

0.193247 -0.753259 0.6286946
0.386494 -0.530521 -0.754434

0.9018193 0.3887787 0.1886084

T 3 rows 3 cols (numeric)

15.524175 39.035892 104.99753
0 2.0491877 8.4559365
0 0 0.1257389

L 1 row 1 col (numeric)

0

GSTART Call

initializes the graphics system

CALL GSTART(<catalog><, replace>);

The inputs to the GSTART subroutine are as follows:

catalog is a character matrix or quoted literal specifying the SAS catalog
for saving the graphics segments.

674 � Chapter 20. Language Reference

replace is a numeric argument.

The GSTART subroutine activates the graphics system the first time it is called. A
catalog is opened to capture the graphics segments to be generated in the session. If
you do not specify a catalog, IML uses the temporary catalog WORK.GSEG.

Thereplaceargument is a flag; a nonzero value indicates that the new segment should
replace the first found segment with the same name. Thereplaceflag set by the
GSTART subroutine is a global flag, as opposed to thereplaceflag set by theGOPEN
subroutine. When set by GSTART, this flag is applied to all subsequent segments
created for this catalog, whereas withGOPEN, the replaceflag is applied only to
the segment that is being created. The GSTART subroutine sets thereplaceflag to
0 when thereplaceargument is omitted. Thereplaceoption can be very inefficient
for a catalog with many segments. In this case, it is better to create segments with
different names (if necessary) than to use thereplaceoption.

The GSTART subroutine must be called at least once to load the graphics subsystem.
Any subsequent GSTART calls are generally to change graphics catalogs or reset the
globalreplaceflag.

The GSTART subroutine resets the defaults for all graphics attributes that can be
changed by theGSET subroutine. It does not reset GOPTIONS back to their defaults
unless the GOPTION corresponds to aGSETparameter. TheGOPEN subroutine
also resetsGSETparameters.

An example of a valid statement follows:

call gstart;

GSTOP Call

deactivates the graphics system

CALL GSTOP;

The GSTOP subroutine deactivates the graphics system. The graphics subsystem is
disabled until theGSTART subroutineis called again.

GSTRLEN Call

finds the string length

CALL GSTRLEN(length, text<, height><, font><, window>);

The inputs to the GSTRLEN subroutine are as follows:

length is a matrix of lengths specified in world coordinates.

text is a matrix of text strings.

height is a numeric matrix or literal specifying the character height.

font is a character matrix or quoted literal that specifies a valid font
name.

GTEXT and GVTEXT Calls � 675

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GSTRLEN subroutine returns in world coordinates the graphics text lengths in
a given font and for a given character height. Thelengthargument is the returned
matrix. It has the same shape as the matrixtext. Thus, if text is ann ×m matrix of
text strings, thenlengthwill be ann ×m matrix of lengths in world coordinates. If
you do not specifyfont, the default font is assumed. If you do not specifyheight, the
default height is assumed. An example using the GSTRLEN subroutine follows.

/* centers text strings about coordinate */
/* points (50, 90) assume font=simplex */

ht=2;
x=30;
y=90;
str=’Nonparametric Cluster Analysis’;
call gstrlen(len, str, ht, ’simplex’);
call gscript(x-(len/2), y, str, ,,ht,’simplex’);

GTEXT and GVTEXT Calls

place text horizontally or vertically on a graph

CALL GTEXT(x, y, text<, color><, window><, viewport>);

CALL GVTEXT(x, y, text<, color><, window><, viewport>);

The inputs to the GTEXT and GVTEXT subroutines are as follows:

x is a scalar or vector containing thex coordinates of the lower left
starting position of the text string’s first character.

y is a scalar or vector containing they coordinates of the lower left
starting position of the text string’s first character.

text is a vector of text strings

color is a valid SAS color. Thecolor argument can be specified as a
quoted text string (such as ’RED’), the name of a character matrix
containing a valid color as an element, or a color number (such as
1). A color numbern refers to thenth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

676 � Chapter 20. Language Reference

{ minimum-x minimum-y maximum-x maximum-y}

The GTEXT subroutine places text horizontally across a graph; the GVTEXT sub-
routine places text vertically on a graph. Both subroutines use hardware characters
when possible. The number of text strings drawn is the maximum dimension of the
first three vectors. Thecolor argument can have more than one element. Hardware
characters cannot always be obtained if you change the HEIGHT or ASPECT param-
eters (usingGSETor GOPTIONS) or if you use a viewport. The coordinates in use
for this graphics command are world coordinates.

Examples of the GTEXT and GVTEXT subroutines follow:

call gopen;
call gport({0 0 50 50});
call gset(’height’,4); /* shrink to a 4th of the screen */
call gtext(50,50,’Testing GTEXT: This will start in the

center of the viewportp ’);
call gshow;
call gopen;
call gvtext(.35,4.6,’VERTICAL STRING BY GVTEXT’,

’white’,{0.2 -1,1.5 6.5},{0 0,100 100});
call gshow;

GWINDOW Call

defines the data window

CALL GWINDOW(window);

wherewindow is a numeric matrix or literal specifying a window. The rectangular
area’s boundary is given in world coordinates, where you specify the lower left and
upper right corners in the form

{ minimum-x minimum-y maximum-x maximum-y}

The GWINDOW subroutine sets up the window for scaling data values in subsequent
graphics primitives. It is in effect until the next GWINDOW call or until the segment
is closed. The coordinates in use for this graphics command are world coordinates.
An example using the GWINDOW subroutine follows:

ydata={2.358,0.606,3.669,1.000,0.981,1.192,0.926,1.590,
1.806,1.962,4.028,3.148,1.836,2.845,1.013,0.414};

xdata={1.215,0.930,1.152,1.138,0.061,0.696,0.686,1.072,
1.074,0.934,0.808,1.071,1.009,1.142,1.229,0.595};

/* WD shows the actual range of the data */
wd=(min(xdata)||min(ydata))//(max(xdata)||max(ydata));
call gwindow(wd);

GXAXIS and GYAXIS Calls � 677

GXAXIS and GYAXIS Calls

draw a horizontal or vertical axis

CALL GXAXIS(starting-point, length, nincr <, nminor><, noticklab>

<, format><, height><, font><, color><, fixed-end>

<, window><, viewport>);

CALL GYAXIS(starting-point, length, nincr <, nminor><, noticklab>

<, format><, height><, font><, color><, fixed-end>

<, window><, viewport>);

The inputs to the GXAXIS and GYAXIS subroutines are as follows:

starting-point is the (x, y) starting point of the axis, specified in world coordi-
nates.

length is a numeric scalar giving the length of the axis.

nincr is a numeric scalar giving the number of major tick marks on the
axis.

nminor is an integer specifying the number of minor tick marks between
major tick marks.

noticklab is a flag that is nonzero if the tick marks are not labeled. The default
is to label tick marks.

format is a character scalar that gives a valid SAS numeric format used in
formatting the tick-mark labels. The default format is 8.2.

height is a numeric matrix or literal that specifies the character height.
This is used for the tick-mark labels.

font is a character matrix or quoted literal that specifies a valid font
name. This is used for the tick-mark labels.

color is a valid color. Thecolor argument can be specified as a quoted
text string (such as ’RED’), the name of a character matrix contain-
ing a valid color as an element, or a color number (such as 1). A
color numbern refers to thenth color in the color list.

fixed-end allows one end of the scale to be held fixed.U fixes the upper end;
L fixes the lower end;X and allows both ends to vary from the
data values. In addition, you may specifyN, which causes the axis
routines to bypass the scaling routine. The interval between tick
marks islengthdivided by (nincr−1). The default isX.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

678 � Chapter 20. Language Reference

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y}

The GXAXIS subroutine draws a horizontal axis; the GYAXIS subroutine draws a
vertical axis. The first three arguments are required.

Thestarting-pointargument is a matrix of two numbers given in world coordinates.
The matrix is the(x, y) starting point of the axis.

Thelengthargument is a scalar value giving the length of thex axis ory axis in world
coordinates along thex or y direction.

The nincr argument is a scalar value giving the number of major tick marks shown
on the axis. The first tick mark will be on the starting point as specified.

The axis routines use the same scaling algorithm as the GSCALE subroutine. For
example, if thex starting point is 10 and the length of the axis is 44, and if you call
the GSCALE subroutine with thex vector containing the two elements, 10 and 44,
the scale obtained should be the same as that obtained by the GXAXIS subroutine.
Sometimes, it may be helpful to use the GSCALE subroutine in conjunction with the
axis routines to get more precise scaling and labeling.

For example, suppose you want to draw the axis for−2 ≤ X ≤ 2 and−2 ≤ Y ≤ 2.
The code below draws these axes. Each axis is 4 units long. Note that thex axis
begins at the point(−2, 0) and they axis begins at the point(0,−2). The tick marks
can be set at each integer value, with minor tick marks in between the major tick
marks. Thenoticklaboption is turned off, so that the tick marks are not labeled.

call gport({20 20 80 80});
call gwindow({-2 -2 2 2});
call gxaxis({-2,0},4,5,2,1);
call gyaxis({0,-2},4,5,2,1);

HALF Function

computes Cholesky decomposition

HALF(matrix)

wherematrix is a numeric matrix or literal.

The HALF function is the same as theROOT function. See the description of the
ROOT functionfor Cholesky decomposition.

HANKEL Function � 679

HANKEL Function

generates a Hankel matrix

HANKEL(matrix)

wherematrix is a numeric matrix or literal.

The HANKEL function generates a Hankel matrix from a vector, or a block Hankel
matrix from a matrix. A block Hankel matrix has the property that all matrices on
the reverse diagonals are the same. The argument matrix is an(np) × p or p × (np)
matrix; the value returned is the(np)× (np) result.

The Hankel function uses the firstp × p submatrixA1 of the argument matrix as
the blocks of the first reverse diagonal. The secondp × p submatrixA2 of the argu-
ment matrix forms the second reverse diagonal. The remaining reverse diagonals are
formed accordingly. After the values in the argument matrix have all been placed, the
rest of the matrix is filled in with 0. IfA is (np) × p, then the firstp columns of the
returned matrix,R, will be the same asA. If A is p× (np), then the firstp rows ofR
will be the same asA. The HANKEL function is especially useful in time-series ap-
plications, where the covariance matrix of a set of variables representing the present
and past and a set of variables representing the present and future is often assumed to
be a block Hankel matrix. If

A = [A1|A2|A3| · · · |An]

and ifR is the matrix formed by the HANKEL function, then

R =

A1 | A2 | A3 | · · · | An

A2 | A3 | A4 | · · · | 0
A3 | A4 | A5 | · · · | 0
...

An | 0 | 0 | · · · | 0

If

A =

A1

A2
...

An

and ifR is the matrix formed by the HANKEL function, then

R =

A1 | A2 | A3 | · · · | An

A2 | A3 | A4 | · · · | 0
...

An | 0 | 0 | · · · | 0

For example, the IML code

680 � Chapter 20. Language Reference

r=hankel({1 2 3 4 5});

results in

R 5 rows 5 cols (numeric)

1 2 3 4 5
2 3 4 5 0
3 4 5 0 0
4 5 0 0 0
5 0 0 0 0

The statement

r=hankel({1 2 ,
3 4 ,
5 6 ,
7 8});

returns the matrix

R 4 rows 4 cols (numeric)

1 2 5 6
3 4 7 8
5 6 0 0
7 8 0 0

And the statement

r=hankel({1 2 3 4 ,
5 6 7 8});

returns the result

R 4 rows 4 cols (numeric)

1 2 3 4
5 6 7 8
3 4 0 0
7 8 0 0

HDIR Function

performs a horizontal direct product

HERMITE Function � 681

HDIR(matrix1, matrix2)

wherematrix1andmatrix2are numeric matrices or literals.

The HDIR function performs a direct product on all rows ofmatrix1andmatrix2and
creates a new matrix by stacking these row vectors into a matrix. This operation is
useful in constructing design matrices of interaction effects. Thematrix1andmatrix2
arguments must have the same number of rows. The result has the same number of
rows asmatrix1andmatrix2. The number of columns is equal to the product of the
number of columns inmatrix1andmatrix2.

For example, the statements

a={1 2,
2 4,
3 6};

b={0 2,
1 1,
0 -1};

c=hdir(a,b);

produce a matrix containing the values

C 3 rows 4 cols (numeric)

0 2 0 4
2 2 4 4
0 -3 0 -6

The HDIR function is useful for constructing crossed and nested effects from main
effect design matrices in ANOVA models.

HERMITE Function

reduces a matrix to Hermite normal form

HERMITE(matrix)

wherematrix is a numeric matrix or literal.

The HERMITE function uses elementary row operations to reduce a matrix to
Hermite normal form. For square matrices this normal form is upper-triangular and
idempotent.

If the argument is square and nonsingular, the result will be the identity matrix. In
general the result satisfies the following four conditions (Graybill 1969, p. 120):

• It is upper-triangular.

• It has only values of 0 and 1 on the diagonal.

• If a row has a 0 on the diagonal, then every element in that row is 0.

• If a row has a 1 on the diagonal, then every off-diagonal element is 0 in the
column in which the 1 appears.

682 � Chapter 20. Language Reference

Consider the following example (Graybill 1969, p. 288):

a={3 6 9,
1 2 5,
2 4 10};

h=hermite(a);

These statements produce

H 3 rows 3 cols (numeric)

1 2 0
0 0 0
0 0 1

If the argument is a square matrix, then the Hermite normal form can be transformed
into the row echelon form by rearranging rows in which all values are 0.

HOMOGEN Function

solves homogeneous linear systems

HOMOGEN(matrix)

wherematrix is a numeric matrix or literal.

The HOMOGEN function solves the homogeneous system of linear equationsA ∗
X = 0 for X. For at least one solution vectorX to exist, them × n matrix A,
m ≥ n, has to be of rankr < n. The HOMOGEN function computes ann× (n− r)
column orthonormal matrixX with the propertyA ∗X = 0, X′X = I. If A′A is
ill conditioned, rounding-error problems can occur in determining the correct rank
of A and in determining the correct number of solutionsX. Consider the following
example (Wilkinson and Reinsch 1971, p. 149):

a={22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,
9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2};

x=homogen(a);

These statements produce the solution

X 5 rows 2 cols (numeric)

-0.419095 0
0.4405091 0.4185481
-0.052005 0.3487901
0.6760591 0.244153
0.4129773 -0.802217

IF-THEN/ELSE Statement � 683

In addition, this function could be used to determine the rank of anm× n matrixA,
m ≥ n.

If X is ann×m matrix, then, in addition to the memory allocated for the return ma-
trix, the HOMOGEN function temporarily allocates ann2 +nm array for perfoming
its computation.

I Function

creates an identity matrix

I(dimension)

wheredimensionspecifies the size of the identity matrix.

The I function creates an identity matrix withdimensionrows and columns. The
diagonal elements of an identity matrix are 1s; all other elements are 0s. The value
of dimensionmust be an integer greater than or equal to 1. Noninteger operands are
truncated to their integer part.

For example, the statement

a=I(3);

yields the result

A
1 0 0
0 1 0
0 0 1

IF-THEN/ELSE Statement

conditionally executes statements

IF expression THEN statement1;

ELSE statement2;

The inputs to the IF-THEN/ELSE statements are

expression is an expression that is evaluated for being true or false.

statement1 is a statement executed whenexpressionis true.

statement2 is a statement executed whenexpressionis false.

The IF statement contains an expression to be evaluated, the keyword THEN, and an
action to be taken when the result of the evaluation is true.

The ELSE statement optionally follows the IF statement and gives an action to be
taken when the IF expression is false. The expression to be evaluated is often a
comparison, for example,

684 � Chapter 20. Language Reference

if max(a)<20 then p=0;
else p=1;

The IF statement results in the evaluation of the condition MAX(A)<20. If the largest
value found in matrixA is less than 20,P is set to 0. Otherwise,P is set to 1. See
the description of theMAX function for details.

When the condition to be evaluated is a matrix expression, the result of the evaluation
is another matrix. If all values of the result matrix are nonzero and nonmissing, the
condition is true; if any element in the result matrix is 0 or missing, the condition is
false. This evaluation is equivalent to using theALL function.

For example, writing

if x<y then
do;

produces the same result as writing

if all(x<y) then
do;

IF statements can be nested within the clauses of other IF or ELSE statements. Any
number of nesting levels is allowed. Below is an example.

if x=y then if abs(y)=z then
do;

CAUTION: Execution of THEN clauses occurs as if you were using theALL func-
tion.

The statements

if a^=b then do;

and

if ^(a=b) then do;

are both valid, but the THEN clause in each case is only executed when all corre-
sponding elements ofA andB are unequal; that is, when none of the corresponding
elements are equal.

Evaluation of the statement

if any(a^=b) then do;

requires only one element ofA andB to be unequal for the expression to be true.

IFFT Function � 685

IFFT Function

computes the inverse finite Fourier transform

IFFT(f)

wheref is annp× 2 numeric matrix.

The IFFT function expands a set of sine and cosine coefficients into a sequence equal
to the sum of the coefficients times the sine and cosine functions. The argumentf is
annp× 2 matrix; the value returned is ann× 1 vector.

Note: If the element in the last row and second column off is exactly 0, thenn is
2np− 2; otherwise,n is 2np− 1.

The inverse finite Fourier transform of a two column matrixF, denoted by the vector
x is

xi = F1,1 + 2
np∑
j=2

(
Fj,1 cos

(
2π
n

(j − 1)(i− 1)
)

+ Fj,2 sin
(

2π
n

(j − 1)(i− 1)
))

+ qi

for i = 1, . . . , n, whereqi = (−1)iFnp,1 if n is even, orq = 0 if n is odd.

Note: For most efficient use of the IFFT function,n should be a power of 2. Ifn is
a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z
algorithm is used (Monro and Branch 1976).

IFFT(FFT(X)) returnsn timesx, wheren is the dimension ofx. If f is not the
Fourier transform of a real sequence, then the vector generated by the IFFT function
is not a true inverse Fourier transform. However, applications exist where theFFT
and IFFT functions may be used for operations on multidimensional or complex data
(Gentleman and Sande 1966; Nussbaumer 1982).

The convolution of two vectorsx (n× 1) andy (m× 1) can be accomplished using
the following statements:

a=fft(x//j(nice-nrow(x),1,0));
b=fft(y//j(nice-nrow(y),1,0));
z=(a#b)[,+];
b[,2]=-b[,2];
z=ifft(z||((a#(b[,2])))[,+]);

where NICE is a number chosen to allow efficient use of theFFTand IFFT functions
and also is greater thann+m.

Windowed spectral estimates and inverse autocorrelation function estimates can also
be readily obtained.

686 � Chapter 20. Language Reference

INDEX Statement

indexes a variable in a SAS data set

INDEX variables|NONE

wherevariablesare the names of variables for which indexes are to be built.

You can use the INDEX statement to create an index for the named variables in the
current input SAS data set. An index is created for each variable listed if it does not
already have an index. Current retrieval is set to the last variable indexed. Subsequent
I/O operations such asLIST, READ, FIND, andDELETE may use this index to
retrieve observations from the data set if IML determines that indexed retrieval will
be faster. The indices are automatically updated when a data set is edited with the
APPEND, DELETE, or REPLACEstatements. Only one index is in effect at any
given time. TheSHOWcontentscommand indicates which index is in use.

For example, the following statement creates indexes for the SAS data set CLASS in
the order of NAME and the order of SEX:

index name sex;

Current retrieval is set to use SEX. ALISTall statementwould list females before
males.

An INDEX nonestatement can be used to set retrieval back to physical order.

When a WHERE clause is being processed, IML automatically determines which
index to use, if any. The decision is based on the variables and operators involved in
the WHERE clause, and the decision criterion is based on the efficiency of retrieval.

INFILE Statement

opens a file for input

INFILE operand <options>;

The inputs to the INFILE statement are as follows:

operand is either a predefined filename or a quoted string containing the
filename or character expression in parentheses referring to the
filepath.

options are explained below.

You can use the INFILE statement to open an external file for input or, if the file is
already open, to make it the current input file so that subsequentINPUT statements
read from it.

The options available for the INFILE statement are described as follows.

LENGTH=variable
specifies a variable in which the length of a record will be stored as IML reads it in.

INPUT Statement � 687

RECFM=N
specifies that the file is to be read in as a pure binary file rather than as a file with
record separator characters. To do this, you must use the byte operand (<) on the
INPUT statementto get new records rather than using separate input statements or
the new line (/) operator.

The following options control how IML behaves when anINPUT statementtries to
read past the end of a record. The default is STOPOVER.

FLOWOVER
allows theINPUT statementto go to the next record to obtain values for the variables.

MISSOVER
tolerates attempted reading past the end of the record by assigning missing values to
variables read past the end of the record.

STOPOVER
treats going past the end of a record as an error condition, which triggers an end-of-
file condition.

Several examples of INFILE statements are given below:

filename in1 ’student.dat’; /* specify filename IN1 */
infile in1; /* infile filepath */

infile ’student.dat’; /* path by quoted literal */

infile ’student.dat’ missover; /* using options */

SeeChapter 7, “File Access,”for further information.

INPUT Statement

inputs data

INPUT <variables> <informats> <record-directives> <positionals>;

where the clauses and options are explained below.

You can use the INPUT statement to input records from the current input file, placing
the values into IML variables. TheINFILE statementsets up the current input file.
SeeChapter 7, “File Access,”, for details.

The INPUT statement contains a sequence of arguments that include the following:

variables specify the variable or variables you want to read from the cur-
rent position in the record. Each variable can be followed im-
mediately by an input format specification.

informats specify an input format. These are of the formw.d or $w. for
standard numeric and character informats, respectively, where
w is the width of the field andd is the decimal parameter, if
any. You can also use a SAS format of the formNAMEw.d,

688 � Chapter 20. Language Reference

whereNAME is the name of the format. Also, you can use a
single $ or & for list input applications. If the width is unspec-
ified, the informat uses list-input rules to determine the length
by searching for a blank (or comma) delimiter. The special for-
mat $RECORD. is used for reading the rest of the record into
one variable. For more information on formats, refer toSAS
Language Reference: Dictionary.

Record holding is always implied for RECFM=N binary files,
as if the INPUT statement has a trailing @ sign. For more
information, seeChapter 7, “File Access.”

Examples of valid INPUT statements are shown below:

input x y;
input @1 name $ @20 sex $ @(20+2) age 3.;

eight=8;
input >9 <eight number2 ib8.;

Below is an example using binary input:

file ’out2.dat’ recfm=n ;
number=499; at=1;
do i = 1 to 5;

number=number+1;
put >at number ib8.; at=at+8;

end;
closefile ’out2.dat’;

infile ’out2.dat’ recfm=n;
size=8; /* 8 bytes */
do pos=1 to 33 by size;

input >pos number ib8.;
print number;

end;

record-directives are used to advance to a new record.Record-directivesare the
following:

holding @ sign is used at the end of an INPUT statement to
instruct IML to hold the current record so
that you can continue to read from the record
with later INPUT statements. Otherwise,
IML automatically goes to the next record
for the next INPUT statement.

/ advances to the next record.

> operand specifies that the next record to be read starts
at the indicated byte position in the file (for
RECFM= N files only). Theoperandis a lit-
eral number, a variable name, or an expres-
sion in parentheses.

INSERT Function � 689

< operand instructs IML to read the indicated num-
ber of bytes as the next record. The record
directive must be specified for binary files
(RECFM=N). Theoperandis a literal num-
ber, a variable name, or an expression in
parentheses.

positionals instruct PROC IML to go to a specific column on the record.
Thepositionalsare the following:

@ operand instructs IML to go to the indicated column,
whereoperandis a literal number, a variable
name, or an expression in parentheses. For
example, @30 means to go to column 30.
The operand can also be a character operand
when pattern searching is needed. For more
information, seeChapter 7, “File Access.”

+ operand specifies to skip the indicated number of
columns. Theoperandis a literal number,
a variable name, or an expression in paren-
theses.

INSERT Function

inserts one matrix inside another

INSERT(x, y, row<, column>)

The inputs to the INSERT function are as follows:

x is the target matrix. It can be either numeric or character.

y is the matrix to be inserted into the target. It can be either numeric
or character, depending on the type of the target matrix.

row is the row where the insertion is to be made.

column is the column where the insertion is to be made.

The INSERT function returns the result of inserting the matrixy inside the matrixx
at the place specified by therow andcolumnarguments. This is done by splittingx
either horizontally or vertically before the row or column specified and concatenating
y between the two pieces. Thus, ifx ism rows byn columns,row can range from 0
tom+ 1 andcolumncan range from 0 ton+ 1. However, it is not possible to insert
in both dimensions simultaneously, so eitherrow or columnmust be 0, but not both.
Thecolumnargument is optional and defaults to 0. Also, the matrices must conform
in the dimension in which they are joined.

For example, the statements

690 � Chapter 20. Language Reference

a={1 2, 3 4};
b={5 6, 7 8};
c=insert(a, b, 2, 0);
d=insert(a, b, 0, 3);

produce the result

C 4 rows 2 cols (numeric)

1 2
5 6
7 8
3 4

D 2 rows 4 cols (numeric)

1 2 5 6
3 4 7 8

C shows the result of insertion in the middle, whileD shows insertion on an end.

INT Function
truncates a value

INT(matrix)

wherematrix is a numeric matrix or literal.

The INT function truncates the decimal portion of the value of the argument. The
integer portion of the value of the argument remains. The INT function takes the
integer value of each element of the argument matrix.

An example using the INT function follows:

c=2.8;
b=int(c);

B 1 row 1 col (numeric)

2

In the next example, notice that a value of 11 is returned. This is because of the
maximal machine precision. If the difference is less than 1E−12, the INT function
rounds up.

x={12.95 10.9999999999999,
-30.5 1e-6};

b=int(x);

B 2 rows 2 cols (numeric)

12 11
-30 0

INV Function � 691

INV Function

computes the matrix inverse

INV(matrix)

wherematrix is a square nonsingular matrix.

The INV function produces a matrix that is the inverse ofmatrix, which must be
square and nonsingular.

ForG = INV(A) the inverse has the properties

GA = AG = identity .

To solve a system of linear equationsAX = B for X, you can use the statement

x=inv(a)*b;

However, theSOLVE functionis more accurate and efficient for this task.

An example of valid usage is

A = {0 0 1 0 1,
1 0 0 1 0,
0 1 1 0 1,
1 0 0 0 1,
0 1 0 1 0};

b = {9,4,10,8,2};

/* find inverse and solve linear system */
Ainv = inv(A);
x1 = Ainv*b;

/* solve using a more efficient algorithm */
x2 = solve(A,b);

which produces the output

X1 X2

3 3
1 1
4 4
1 1
5 5

The INV function uses an LU decomposition followed by backsubstitution to solve
for the inverse, as described in Forsythe, Malcolm, and Moler (1967).

692 � Chapter 20. Language Reference

The INV function (as well as theDET and SOLVE functions) uses the following
criterion to decide whether the input matrix,A = [aij]i,j=1,...,n, is singular:

sing= 100×MACHEPS× max
1≤i,j≤n

|aij |

whereMACHEPSis the relative machine precision.

All matrix elements less than or equal tosingare now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal tosing, the
matrix is considered singular by theDET, INV, andSOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you may
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong,

• try theGINV function to compute the generalized inverse

• examine the size of the singular values returned by theSVD function. TheSVD
function can be used to compute a generalized inverse with a user-specified
singularity criterion.

If A is ann × n matrix, the INV function allocates an ann × n matrix in order to
return the inverse. It also temporarily allocates ann2 array in order to compute the
inverse.

INVUPDT Function

updates a matrix inverse

INVUPDT(matrix, vector<, scalar>)

The inputs to the INVUPDT function are as follows:

matrix is ann×n nonsingular matrix. In most applicationsmatrixwill be
symmetric positive definite.

vector is ann× 1 or 1× n vector.

scalar is a numeric scalar.

The Sherman-Morrison-Woodbury formula is

(A + UV′)−1 = A−1 −A−1U(I + V′A−1U)−1V′A−1

whereA is ann×n nonsingular matrix andU andV aren× k. The formula shows
that a rankk update toA corresponds to a rankk update ofA−1.

INVUPDT Function � 693

The INVUPDT function is used primarily to update a matrix inverse. The func-
tion implements the Sherman-Morrison-Woodbury formula for rank-one updates with
U = wX andV = X whereX is ann× 1 vector andw is a scalar.

If M = A−1, then calling the INVUPDT function as

R=invupdt(M,X,w);

computes the matrix

R = M− wMX(I + wX′MX)−1X′M.

which is equivalent to(A + wXX′)−1. If A is symmetric positive definite, then so
is R.

If w is not specified then it is given a default value of1.

A common use of the INVUPDT function is in linear regression. IfZ is a design
matrix,M = (Z′Z)−1 is the associated inverse crossproduct matrix, andv is a new
observation to be used in estimating the parameters of a linear model, then the inverse
crossproducts matrix that includes the new observation can be updated fromM by

M2=invupdt(M,v);

If w is 1, the function adds an observation to the inverse; ifw is −1, the function
removes an observation from the inverse. If weighting is used,w is the weight.

To perform the computation, the INVUPDT function uses about2n2 multiplications
and additions, wheren is the row dimension of the positive definite argument matrix.

The following program demonstrates adding or removing observations from a linear
fit and updating the inverse crossproduct matrix.

X = {0,1,1,1,2,2,3,4,4};
Y = {1,1,2,6,2,3,3,3,4};

/* find linear fit */
Z = j(nrow(X),1,1) || X; /* design matrix */
M = inv(Z‘*Z);

b = M*Z‘*Y; /* LS estimate */
resid = Y - Z*b; /* residuals */
print "Original Fit", b resid;

/* residual for observation (1,6) seems too large.
Take obs number 4 out of data set and refit. */

v = z[4,];
M = invupdt(M, v, -1); /* update inverse crossprod */

keepObs = (1:3) || (5:nrow(X));
Z = Z[keepObs,];
Y = Y[keepObs,];

694 � Chapter 20. Language Reference

b = M*Z‘*Y; /* new LS estimate */
print "After deleting observation 4", b;

/* Add a new obs (x,y) = (0,2) and refit. */
obs = {0 2};
v = 1 || obs[1]; /* new row in design matrix */
M = invupdt(M, v);

Z = Z // v;
Y = Y // obs[2];
b = M*Z‘*Y; /* new LS estimate */
print "After adding observation (0,2)", b;

The output is

Original Fit

B RESID

2.0277778 -1.027778
0.375 -1.402778

-0.402778
3.5972222
-0.777778
0.2222222
-0.152778
-0.527778
0.4722222

After deleting observation 4

B

1
0.6470588

After adding observation (0,2)

B

1.3
0.5470588

IPF Call

performs an iterative proportional fit of a contingency table

IPF Call � 695

CALL IPF(fit, status, dim, table, config<, initab><, mod>);

The inputs to the IPF subroutine are as follows:

fit is a returned matrix. The matrixfit contains an array of the estimates of
the expected number in each cell under the model specified inconfig.
This matrix conforms totable, meaning that it has the same dimensions
and order of variables.

status is a returned matrix. Thestatusargument is a row vector of length 3.
status[1] is 0 if there is convergence to the desired accuracy, otherwise
it is nonzero.status[2] is the maximum difference between estimates
of the last two iterations of the IPF algorithm.status[3] is the number
of iterations performed.

dim is an input matrix. If the problem containsv variables thendim is
1× v row vector. The valuedim[i] is the number of possible levels for
variablei in a contingency table.

table is an input matrix. Thetableargument specifies an array of the number
of observations at each level of each variable. Variables are nested
across columns and then across rows.

config is an input matrix. Theconfigargument specifies which marginal totals
to fit. Each column ofconfigspecifies a distinct marginal in the model
under consideration. Because the model is hierarchical, all subsets of
specified marginals are included in fitting.

initab is an input matrix. Theinitab argument is an array of initial values for
the iterative procedure. If you do not specify values, 1s are used. For
incomplete tables,initab is set to 1 if the cell is included in the design,
and 0 if it is not.

mod is an input matrix. Themodargument is a two-element vector specify-
ing the stopping criteria. Ifmod= {maxdev, maxit}, then the procedure
iterates until either the maximum difference between estimates of the
last two iterations is less thanmaxdev, or untilmaxititerations are com-
pleted. Default values aremaxdev=0.25 andmaxit=15.

The IPF subroutine performs an iterative proportional fit of a contingency table.
This is a standard statistical technique to obtain maximum likelihood estimates for
cells under any hierarchical log-linear model. The algorithm is described in Bishop,
Fienberg, and Holland (1975).

The matrixtablemust conform in size to the contingency table as specified indim.
In particular, if table is n × m, the product of the entries indim must equalnm.
Furthermore, there must be some integerk such that the product of the firstk entries
in dimequalsm. If you specifyinitab, then it must be the same size astable.

Adjusting a Table from Marginals

A common use of the IPF algorithm is to adjust the entries of a table in order to fit a
new set of marginals while retaining the interaction between cell entries.

696 � Chapter 20. Language Reference

Example 1: Adjusting Marital Status by Age

Bishop, Fienberg, and Holland (1975) present data from D. Friedlander showing the
distribution of women in England and Wales according to their marital status in 1957.
One year later, new official marginal estimates were announced. The problem is to
adjust the entries in the 1957 table so as to fit the new marginals while retaining the
interaction between cells. This problem may arise when you have internal cells that
are known from sampling a population, and then get margins based on a complete
census.

When you want to adjust an observed table of cell frequencies to a new set of mar-
gins, you must set theinitab parameter to be the table of observed values. The new
marginals are specified through thetable argument. The particular cell values for
table are not important, since only the marginals will be used (the proportionality
between cells is determined byinitab).

There are two easy ways to create a table that contains given margins. Recall
that a table of independent variables will have an expected cell valueAij =
(sum of rowi)(sum of colj)/(sum of all cells). Thus you could form a table with
these cell entries. Another possibility is to use a “greedy algorithm” to assign as
much of the marginals as possible to the first cell, then assign as much of the re-
maining marginals to the second cell, and so on until all of the marginals have been
distributed. Both of these approaches are encapsulated into modules in the program
below.

/* Return a table such that cell (i,j) has value
(sum of row i)(sum of col j)/(sum of all cells) */

start GetIndepTableFromMargins(bottom, side);
if bottom[+] ^= side[+] then do;

print "Marginal totals are not equal";
abort;

end;
table = side*bottom/side[+];
return (table);

finish;

/* Use a "greedy" algorithm to create a table whose
marginal totals match given marginal totals.
Margin1 is the vector of frequencies totaled down

each column. Margin1 means that
Variable 1 has NOT been summed over.

Margin2 is the vector of frequencies totaled across
each row. Margin2 means that Variable 2
has NOT been summed over.

After calling, use SHAPE to change the shape of
the returned argument. */

start GetGreedyTableFromMargins(Margin1, Margin2);
/* copy arguments so they are not corrupted */
m1 = colvec(Margin1); /* colvec is in IMLMLIB */
m2 = colvec(Margin2);
if m1[+] ^= m2[+] then do;

print "Marginal totals are not equal";

IPF Call � 697

abort;
end;
dim1 = nrow(m1);
dim2 = nrow(m2);
table = j(1,dim1*dim2,0);
/* give as much to cell (1,1) as possible,

then as much as remains to cell (1,2), etc,
until all the margins have been distributed */

idx = 1;
do i2 = 1 to dim2;

do i1 = 1 to dim1;
t = min(m1[i1],m2[i2]);
table[idx] = t;
idx = idx + 1;
m1[i1] = m1[i1]-t;
m2[i2] = m2[i2]-t;

end;
end;
return (table);

finish;

Mod = {0.01 15}; /* tighten stopping criterion */

Columns = {’ Single’ ’ Married’ ’Widow/Divorced’};
Rows = {’15 - 19’ ’20 - 24’ ’25 - 29’ ’30 - 34’

’35 - 39’ ’40 - 44’ ’45 - 49’ ’50 Or Over’};

/* Marital status has 3 levels. Age has 8 levels */
Dim = {3 8};

/* Use known distribution for start-up values */
IniTab = { 1306 83 0 ,

619 765 3 ,
263 1194 9 ,
173 1372 28 ,
171 1393 51 ,
159 1372 81 ,
208 1350 108 ,
1116 4100 2329 };

/* New marginal totals for age by marital status */
NewMarital = { 3988 11702 2634 };
NewAge = {1412,1402,1450,1541,1681,1532,1662,7644};

/* Create any table with these marginals */
Table = GetGreedyTableFromMargins(NewMarital, NewAge);
Table = shape(Table, nrow(IniTab), ncol(IniTab));

/* Consider all main effects */
Config = {1 2};

call ipf(Fit,Status,Dim,Table,Config,IniTab,Mod);

if Status[1] = 0 then

698 � Chapter 20. Language Reference

print ’Known Distribution (1957)’,
IniTab [colname=Columns rowname=Rows format=8.0],,
’Adjusted Estimates Of Distribution (1958)’,
Fit [colname=Columns rowname=Rows format=8.2];

else
print "IPF did not converge in "

(Status[3]) " iterations";

The results of this program are given below. The same results are obtained if thetable
parameter is formed using the “independent algorithm.”

Known Distribution (1957)

INITAB
Single Married Widow/Divorced

15 - 19 1306 83 0
20 - 24 619 765 3
25 - 29 263 1194 9
30 - 34 173 1372 28
35 - 39 171 1393 51
40 - 44 159 1372 81
45 - 49 208 1350 108
50 Or Over 1116 4100 2329

Adjusted Estimates Of Distribution (1958)

FIT
Single Married Widow/Divorced

15 - 19 1325.27 86.73 0.00
20 - 24 615.56 783.39 3.05
25 - 29 253.94 1187.18 8.88
30 - 34 165.13 1348.55 27.32
35 - 39 173.41 1454.71 52.87
40 - 44 147.21 1308.12 76.67
45 - 49 202.33 1352.28 107.40
50 Or Over 1105.16 4181.04 2357.81

Example 2: Adjusting Votes by Region

A similar technique can be used to standardize data from raw counts into percentages.
For example, consider data from a 1836 vote in the U.S. House of Representatives
on a resolution that the House should adopt a policy of tabling all petitions for the
abolition of slavery. Attitudes toward abolition were different among slaveholding
states that would later secede from the Union (“the South”), slaveholding states that
refused to secede (“the Border States”), and nonslaveholding states (“the North”).

The raw votes for the resolution are defined below. The data are hard to interpret
because the margins are not homogeneous.

IPF Call � 699

/* Yea Abstain Nay */
IniTab = { 61 12 60, /* North */

17 6 1, /* Border */
39 22 7 }; /* South */

Standardizing the data by specifying homogeneous margins reveals interactions and
symmetry that were not apparent in the raw data. If the margins are specified as

NewVotes = {100 100 100};
NewSection = {100,100,100};

then the program for marital status by age can be easily rewritten to adjust the votes
into a standardized form. The result is

FIT
Yea Abstain Nay

North 20.1 10.2 69.7
Border 47.4 42.8 9.8
South 32.5 47.0 20.5

Generating a Table with Given Marginals

The “greedy algorithm” presented in the Marital-Status-By-Age example can be ex-
tended in a natural way to the case where you haven 1-way marginals and want
to form ann-dimensional table. For example, a three-dimensional “greedy algo-
rithm” would allocate the vectortable as table=j(dim1*dim2*dim3,1,0);
and have three nested loops as indicated below. Afterwards thetableparameter can
be reshaped using theSHAPEfunction.

do i3 = 1 to dim3;
do i2 = 1 to dim2;

do i1 = 1 to dim1;
t = min(m1[i1],m2[i2],m3[i3]);
table[idx] = t;
idx = idx + 1;
m1[i1] = m1[i1]-t;
m2[i2] = m2[i2]-t;
m3[i3] = m3[i3]-t;

end;
end;

end;

The idea of the “greedy algorithm” can be extended to marginals that are not 1-
way. For example, the three-dimensional table below is similar to one appearing in
Christensen (1997) based on data from M. Rosenberg. The table presents data on a
person’s self-esteem for people classified according to their religion and their father’s
educational level.

700 � Chapter 20. Language Reference

Father’s Educational Level
Self- Not HS HS Some Coll Post

Religion Esteem Grad Grad Coll Grad Coll
High 575 388 100 77 51

Catholic
Low 267 153 40 37 19
High 117 102 67 87 62

Jewish
Low 48 35 18 12 13
High 359 233 109 197 90

Protestant
Low 159 173 47 82 32

Since the father’s education level is nested across columns, it is Variable 1 with levels
corresponding to not finishing high school, graduating from high school, attending
college, graduating from college, and attending graduate courses. The variable that
varies the quickest across rows is Self-Esteem, so Self-Esteem is Variable 2 with
values “High” and “Low.” The Religion variable is Variable 3 with values “Catholic,”
“Jewish,” and “Protestant.”

The program below encodes this table, uses theMARG call to compute a 2-way
marginal table by summing over the third variable and a 1-way marginal by summing
over the first two variables. Then a new table (NewTable) is created by applying
the greedy algorithm to the two marginals. Lastly, the marginals ofNewTableare
computed and compared with those oftable.

dim={5 2 3};

table={
/* Father’s Education:

NotHSGrad HSGrad Col ColGrad PostCol
Self-

Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,

/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,

/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

};

config = { 1 3,
2 0 };

call marg(locmar, marginal, dim, table, config);
print locmar, marginal, table;

/* Examine marginals: The name indicates the

IPF Call � 701

variable(s) that are NOT summed over.
The locmar variable tells where to index
into the marginal variable. */

Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];

NewTable = j(nrow(table),ncol(table),0);
/* give as much to cell (1,1,1) as possible,

then as much as remains to cell (1,1,2), etc,
until all the margins have been distributed. */

idx = 1;
do i3 = 1 to dim[3]; /* over Var3 */

do i2 = 1 to dim[2]; /* over Var2 */
do i1 = 1 to dim[1]; /* over Var1 */

/* Note Var12_Marg has Var1 varying across
the columns */

t = min(Var12_Marg[i2,i1],Var3_Marg[i3]);
NewTable[idx] = t;
idx = idx + 1;
Var12_Marg[i2,i1] = Var12_Marg[i2,i1]-t;
Var3_Marg[i3] = Var3_Marg[i3]-t;

end;
end;

end;

call marg(locmar, NewMarginal, dim, table, config);
maxDiff = abs(marginal-NewMarginal)[<>];
if maxDiff=0 then

print "Marginals are unchanged";
print NewTable;

The results of this program are shown below.

LOCMAR

1 11

MARGINAL

COL1 COL2 COL3 COL4 COL5 COL6 COL7

ROW1 1051 723 276 361 203 474 361

MARGINAL

COL8 COL9 COL10 COL11 COL12 COL13

ROW1 105 131 64 1707 561 1481

702 � Chapter 20. Language Reference

TABLE

575 388 100 77 51
267 153 40 37 19
117 102 67 87 62
48 35 18 12 13
359 233 109 197 90
159 173 47 82 32

Marginals are unchanged

NEWTABLE

1051 656 0 0 0
0 0 0 0 0
0 67 276 218 0
0 0 0 0 0
0 0 0 143 203

474 361 105 131 64

Fitting a Log-Linear Model to a Table

A second common usage of the IPF algorithm is to hypothesize that the table of
observations can be fitted by a model with known effects and to ask whether the
observed values indicate that the model hypothesis can be accepted or should be
rejected. In this usage, you normally do not specify theinitab argument to IPF (but
see the comment on structural zeros below).

Korff, Taback, and Beard (1952) reported statistics related to the outbreak of food
poisoning at a company picnic. A total of 304 people at the picnic were surveyed
to determine who had eaten either of two suspect foods: potato salad and crabmeat.
The predictor variables are whether the individual ate potato salad (Variable 1: “Yes”
or “No”) and whether the person ate crabmeat (Variable 2: “Yes” or “No”). The re-
sponse variable is whether the person was ill (Variable 3: “Ill” or “Not Ill”). The order
of the variables is determined by thedim andtablearguments to IPF. The variables
are nested across columns, then across rows.

Crabmeat: Y E S N O
Potato Salad: Yes No Yes No
Ill 120 4 22 0
Not Ill 80 31 24 23

The program below defines the variables and observations, then fits three separate
models. How well each model fits the data is determined by computing a Pearson
chi-square statisticχ2 =

∑
(O − E)2/E where the sum is over all cells,O stands

IPF Call � 703

for the observed cell count, andE stands for the fitted estimate. Other statistics, such
as the likelihood-ratio chi-square statisticG2 = −2

∑
O log(E/O), could also be

used.

The program first fits a model that excludes the three-way interaction. The model
fits well, so you can conclude that an association between illness and potato salad
does not depend on whether an individual ate crab meat. The next model excludes
the interaction between potato salad and illness. This model is rejected with a large
chi-square value, so the data supports an association between potato salad and illness.
The last model excludes the interaction between the crabmeat and the illness. This
model fits moderately well.

/* Compute a chi-square score for a table of observed
values, given a table of expected values. Compare
this score to a chi-square value with given degrees
of freedom at 95% confidence level. */

start ChiSqTest(obs, model, degFreedom);
diff = (obs - model)##2 / model;
chiSq = diff[+];
chiSqCutoff = cinv(0.95, degFreedom);
print chiSq chiSqCutoff;
if chiSq > chiSqCutoff then

print "Reject hypothesis";
else

print "No evidence to reject hypothesis";
finish;

dim={2 2 2};

/* Crabmeat: Y E S N O
Potato: Yes No Yes No */

table={ 120 4 22 0, /* Ill */
80 31 24 23 }; /* Not Ill */

crabmeat = " C R A B N O C R A B";
potato = {’YesPot’ ’NoPot’ ’YesPot’ ’NoPot’};
illness = {’Ill’, ’Not Ill’};

hypoth = "Hypothesis: no three-factor interaction";
config={1 1 2,

2 3 3};
call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato

rowname=illness format=6.2];
run ChiSqTest(table, fit, 1); /* 1 deg of freedom */

/* Test for interaction between Var 3 (Illness) and
Var 1 (Potato Salad) */

hypoth = "Hypothesis: no Illness-Potato Interaction";

704 � Chapter 20. Language Reference

config={1 2,
2 3};

call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato

rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

/* Test for interaction between Var 3 (Illness) and
Var 2 (Crabmeat) */

hypoth = "Hypothesis: no Illness-Crab Interaction";
config={1 1,

2 3};
call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato

rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

The associated output is

HYPOTH

Hypothesis: no three-factor interaction

Fitted Model:

C R A B N O C R A B
YesPot NoPot YesPot NoPot

Ill 121.08 2.92 20.92 1.08
Not Ill 78.92 32.08 25.07 21.93

CHISQ CHISQCUTOFF

1.7021335 3.8414588

No evidence to reject hypothesis

HYPOTH

Hypothesis: no interaction between Illness and Potatoes

Fitted Model:

C R A B N O C R A B
YesPot NoPot YesPot NoPot

Ill 105.53 18.47 14.67 7.33

IPF Call � 705

Not Ill 94.47 16.53 31.33 15.67

CHISQ CHISQCUTOFF

44.344643 5.9914645

Reject hypothesis

HYPOTH

Hypothesis: no interaction between Illness and Crab

Fitted Model:

C R A B N O C R A B
YesPot NoPot YesPot NoPot

Ill 115.45 2.41 26.55 1.59
Not Ill 84.55 32.59 19.45 21.41

CHISQ CHISQCUTOFF

5.0945132 5.9914645

No evidence to reject hypothesis

Additional Details

A few additional comments on the examples are in order.

Structural versus Random Zeros In the marriage-by-age example, theinitab ar-
gument contained a zero for the “15-19 and Widowed/Divorced” category.
Because theinitab parameter determines the proportionality between cells, the
fitted model will retain a zero in that category. By contrast, in the potato-crab-
illness example, thetable parameter contained a zero for number of illnesses
observed among those who did not eat either crab meat or potato salad. This is
a sampling (orrandom) zero. Some models may preserve that zero, others may
not. If your table has astructural zero(for example, the number of ovarian can-
cers observed among male patients), then you can use theinitab parameter to
preserve that zero. Refer to Bishop, Fienberg, and Holland (1975) or the doc-
umentation for the CATMOD procedure in SAS/STAT for more information
about structural zeros and incomplete tables.

The configParameter The columns of this matrix specify which interaction effects
should be included in the model. The table below gives the model and the
configuration parameter for common interactions for anI × J × K table in
three dimensions. The so-callednoncomprehensivemodels that do not include
all variables (for example,config= {1}) are not listed in the table, but are

706 � Chapter 20. Language Reference

allowed. You can also specify combinations of main and interaction effects.
For example,config = {1 3, 2 0}) specifies all main effects and the 1-
2 interaction. Bishop, Fienberg, and Holland (1975) and Christensen (1997)
explain how to compute the degrees of freedom associated with any model. For
models with structural zeros, computing the degrees of freedom is complicated.

Model Config Degrees of Freedom
No three-factor {1 1 2, (I − 1)(J − 1)(K − 1)

2 3 3}
One two-factor absent {1 2,

3 3} (I − 1)(J − 1)K
{1 2,

2 3} (I − 1)J(K − 1)
{1 1,

2 3} I(J − 1)(K − 1)
Two two-factor absent {2, 3} (I − 1)(JK − 1)

{1, 3} (J − 1)(IK − 1)
{1, 2} (K − 1)(IJ − 1)

No two-factor {1 2 3} IJK − (I + J +K) + 2
Saturated {1,2,3} IJK

The Shape of thetableParameter Since variables are nested across columns and
then across rows, any shape that conforms to thedimparameter is equivalent.

For example, the section on“Generating a Table with Given Marginals”
presents data on a person’s self-esteem for people classified according to their
religion and their father’s educational level. To save space, the educational lev-
els are subsequently denoted by labels indicating the typical number of years
spent in school: “<12,” “12,” “<16,” “16,” and “>16.”

The table would be encoded as

dim={5 2 3};

table={
/* Father’s Education:

<12 12 <16 16 >16
Self-

Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,

/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,

/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

};

The same information for the same variables in the same order could also be
encoded into ann × m table in two other ways. Recall that the product of

ITBICG Call � 707

entries indim is nm and thatm must equal the product of the firstk entries of
dim for somek. For this example, the product of the entries indim is 30, and
so the table must be6 × 5, 3 × 10, or 1 × 30. The3 × 10 table is encoded as
concatenating rows 1–2, 3–4, and 5–6 to get

table={
/* Esteem: H I G H L O W */
/* <12 ... >16 <12 ... >16 */

575 ... 51 267 ... 19, /* Catholic */
117 ... 62 48 ... 13, /* Jewish */
359 ... 90 159 ... 32 /* Protestant*/

};

The1× 30 table is encoded by concatenating all rows:

table={
/* CATHOLIC ... PROTESTANT

High Low ... High Low
<12 ... >16 <12 ... >16 ... <12 ... >16 <12 ... >16
*/
575 ... 51 267 ... 19 ... 359 ... 90 159 ... 32

};

ITBICG Call

solves a sparse linear system by biconjugate gradient iteration

CALL ITBICG(x, error, iter, A, b, <precon>, <tol>, <maxiter>, <start>,
<history>);

The ITBICG call returns the following values:

x is the solution toAx = b.

error is the final relative error of the solution.

iter is the number of iterations executed.

The inputs to the ITCBICG call are as follows:

A is the sparse coefficient matrix in the equationAx = b.

b is a column vector, the right side of the equationAx = b.

precon is the name of a preconditioning technique to use.

tol is the relative error tolerance.

maxiter is the iteration limit.

start is a starting point column vector.

history is a matrix to store the relative error at each iteration.

708 � Chapter 20. Language Reference

The ITCBICG call solves a sparse linear system by iterative methods, which in-
volve updating a trial solution over successive iterations to minimize the error. The
ITCBICG call uses a biconjugate gradient algorithm to update the solution. The al-
gorithm does not require that theA matrix be positive-definite or symmetric.

The input matrixA represents the coefficient matrix in sparse format; it is ann by
3 matrix, wheren is the number of nonzero elements. The first column contains
the nonzero values, while the second and third columns contain the row and column
locations for the nonzero elements, respectively. The algorithm continues iterating to
improve the solution until either the relative error tolerance specified intol is satisfied,
or the maximum number of iterations specified inmaxiter is reached. The relative
error is defined as

error = ‖Ax− b‖2/(‖b‖2 + ε)

where the‖ ·‖2 operator is the Euclidean norm, andε is a machine-dependent epsilon
value to prevent any division by zero. Iftol ormaxiter are not specified in the call,
then default values of10−7 will be used fortol and 100000 formaxiter.

The convergence of an iterative algorithm can often be enhanced by preconditioning
the input coefficient matrix. The preconditioning option is specified with theprecon
parameter, which can take one of the following values:

’NONE’: no preconditioning

’MILU’ : modified incomplete LU factorization

If precon is not specified, no preconditioning will be applied.

A starting trial solution can be specified with thestart parameter, otherwise the
ITBICG call will generate an all-zero starting point. You can supply a matrix to
store the relative error at each iteration with thehistory parameter. Thehistory
matrix should be dimensioned with enough elements to store the maximum number
of iterations you expect.

Your IML program should always check the returnederror anditer parameters to
verify that the desired relative error tolerance was reached. If not, your program
might continue the solution process with another ITBICG call, withstart set to the
latest result. You might also try a differentprecon option to enhance convergence.

For example, solve the system:

3 2 0 0
1.1 4 1 3.2
0 1 −10 0
0 3.2 0 3

x =

1
1
1
1

/* value row column */
A = { 3 1 1,

2 1 2,

ITBICG Call � 709

1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

-10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};
maxiter = 10;
hist = j(maxiter,1,.);
start = {1,1,1,1};
tol = 1e-10;
call itbicg(x, error, iter, A, b, ’milu’, tol, maxiter, start, hist);
print x;
print iter error;
print hist;

The results are:

X

0.2040816
0.1938776

-0.080612
0.1265306

ITER ERROR

3 3.494E-16

HIST

0.0254375
0.0080432
3.494E-16

.

.

.

.

.

.

.

710 � Chapter 20. Language Reference

ITCGRAD Call

solves a sparse symmetric positive-definite system by conjugate gradient itera-
tion

CALL ITCGRAD(x, error, iter, A, b,<precon>,<tol>,<maxiter>,<start>,
<history>);

The ITCGRAD call returns the following values:

x is the solution toAx = b.

error is the final relative error of the solution.

iter is the number of iterations executed.

The inputs to the ITCGRAD call are as follows:

A is the sparse coefficient matrix in the equationAx = b.

b is a column vector, the right side of the equationAx = b.

precon is the name of a preconditioning technique to use.

tol is the relative error tolerance.

maxiter is the iteration limit.

start is a starting point column vector.

history is a matrix to store the relative error at each iteration.

The ITCGRAD call solves a sparse symmetric positive-definite system by iterative
methods, which involve updating a trial solution over successive iterations to min-
imize the error. The ITCGRAD call uses a conjugate gradient algorithm to update
the solution. The algorithm requires that theA matrix be positive-definite and sym-
metric (the general symmetric case can be solved with anITMINRES call, and the
nonsymmetric case with theITBICG call).

The input matrixA represents the coefficient matrix in sparse symmetric format.
Only the diagonal and lower triangular nonzero elements are specified, and it is an
error to specify an element in the upper triangular portion ofA. A must be ann by
3 matrix, wheren is the number of nonzero elements specified. The first column
contains the nonzero values, while the second and third columns contain the row and
column locations for the nonzero elements, respectively. The algorithm continues
iterating to improve the solution until either the relative error tolerance specified in
tol is satisfied, or the maximum number of iterations specified inmaxiter is reached.
The relative error is defined as

error = ‖Ax− b‖2/(‖b‖2 + ε)

where the‖ ·‖2 operator is the Euclidean norm, andε is a machine-dependent epsilon
value to prevent any division by zero. Iftol ormaxiter are not specified in the call
then default values of10−7 will be used fortol and 100000 formaxiter.

ITCGRAD Call � 711

The convergence of an iterative algorithm can often be enhanced by preconditioning
the input coefficient matrix. The preconditioning option is specified with theprecon
parameter, which can take one of the following values:

’NONE’: no preconditioning

’ IC’: incomplete Cholesky factorization

’DIAG’: diagonal Jacobi preconditioner

If precon is not specified, no preconditioning will be applied.

A starting trial solution can be specified with thestart parameter, otherwise the
ITCGRAD call will generate an all-zero starting point. You can supply a matrix
to store the relative error at each iteration with thehistory parameter. Thehistory
matrix should be dimensioned with enough elements to store the maximum number
of iterations you expect.

Your IML program should always check the returnederror anditer parameters to
verify that the desired relative error tolerance was reached. If not, your program might
continue the solution process with another ITCGRAD call, withstart set to the latest
result. You might also try a differentprecon option to enhance convergence.

For example, solve the system:

3 1.1 0 0
1.1 4 1 3.2
0 1 10 0
0 3.2 0 3

x =

1
1
1
1

/* value row column */
A = { 3 1 1,

1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};

call itcgrad(x, error, iter, A, b);

print x, iter, error;

The results are

X

712 � Chapter 20. Language Reference

2.68
-6.4
0.74
7.16

ITER

4

ERROR

5.77E-15

Here is the same example, with all the inputs specified.

/* value row column */
A = { 3 1 1,

1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};
maxiter = 10;
hist = j(maxiter,1,.);
start = {1,1,1,1};
tol = 1e-10;
call itcgrad(x, error, iter, A, b, ’ic’, tol, maxiter, start, hist);
print x;
print iter error;
print hist;

The results are

X

2.68
-6.4
0.74
7.16

ITER ERROR

3 1.572E-16

ITMINRES Call � 713

HIST

0.5265479
0.063117
1.572E-16

.

.

.

.

.

.

.

ITMINRES Call

solves a sparse symmetric linear system by minimum residual iteration

CALL ITMINRES(x, error, iter, A, b,<precon>,<tol>,<maxiter>,<start>,
<history>);

The ITMINRES call returns the following values:

x is the solution toAx = b.

error is the final relative error of the solution.

iter is the number of iterations executed.

The inputs to the ITMINRES call are as follows:

A is the sparse coefficient matrix in the equationAx = b.

b is a column vector, the right side of the equationAx = b.

precon is the name of a preconditioning technique to use.

tol is the relative error tolerance.

maxiter is the iteration limit.

start is a starting point column vector.

history is a matrix to store the relative error at each iteration.

The ITMINRES call solves a sparse symmetric linear system by iterative methods,
which involve updating a trial solution over successive iterations to minimize the er-
ror. The ITMINRES call seeks to minimize the Euclidean norm of the residuals at
each iteration. The algorithm requires that theA matrix be symmetric (the nonsym-
metric case can be solved with theITBICG call).

The input matrixA represents the coefficient matrix in sparse symmetric format.
Only the diagonal and lower triangular nonzero elements are specified, and it is an
error to specify an element in the upper triangular portion ofA. A must be ann by

714 � Chapter 20. Language Reference

3 matrix, wheren is the number of nonzero elements specified. The first column
contains the nonzero values, while the second and third columns contain the row and
column locations for the nonzero elements, respectively. The algorithm continues
iterating to improve the solution until either the relative error tolerance specified in
tol is satisfied, or the maximum number of iterations specified inmaxiter is reached.
The relative error is defined as

error = ‖Ax− b‖2/(‖b‖2 + ε)

where the‖ ·‖2 operator is the Euclidean norm, andε is a machine-dependent epsilon
value to prevent any division by zero. Iftol ormaxiter are not specified in the call
then default values of10−7 will be used fortol and 100000 formaxiter.

The convergence of an iterative algorithm can often be enhanced by preconditioning
the input coefficient matrix. The preconditioning option is specified with theprecon
parameter, which can take one of the following values:

’NONE’: no preconditioning

’ IC’: incomplete Cholesky factorization

’DIAG’: diagonal Jacobi preconditioner

If precon is not specified, no preconditioning will be applied.

A starting trial solution can be specified with thestart parameter, otherwise the
ITMINRES call will generate an all-zero starting point. You can supply a matrix
to store the relative error at each iteration with thehistory parameter. Thehistory
matrix should be dimensioned with enough elements to store the maximum number
of iterations you expect.

Your IML program should always check the returnederror anditer parameters to
verify that the desired relative error tolerance was reached. If not, your program
might continue the solution process with another ITMINRES call, withstart set to
the latest result. You might also try a differentprecon option to enhance convergence.

The following example illustrates the use of ITMINRES to solve a system that is not
positive definite:

3 1.1 0 0
1.1 4 1 3.2
0 1 −10 0
0 3.2 0 3

x =

1
1
1
1

/* value row column */
A = { 3 1 1,

1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

J Function � 715

-10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};
maxiter = 10;
hist = j(maxiter,1,.);
start = {1,1,1,1};
tol = 1e-10;
call itminres(x, error, iter, A, b, ’ic’, tol, maxiter, start, hist);
print x;
print iter error;
print hist;

The results are

X
0.7647059
-1.176471
-0.217647
1.5882353

ITER ERROR

3 5.987E-17

HIST

0.4598724
0.0856374
5.987E-17

.

.

.

.

.

.

.

J Function

creates a matrix of identical values

J(nrow<, ncol<, value>>)

The inputs to the J function are as follows:

nrow is a numeric matrix or literal giving the number of rows.

ncol is a numeric matrix or literal giving the number of columns.

716 � Chapter 20. Language Reference

value is a numeric or character matrix or literal for filling the rows and
columns of the matrix.

The J function creates a matrix withnrow rows andncol columns with all elements
equal tovalue. If ncol is not specified, it defaults tonrow. If value is not specified,
it defaults to 1. TheREPEATandSHAPEfunctions can also perform this operation,
and they are more general.

Examples of the J function are as follows.

b=j(3);

B 3 rows 3 cols (numeric)

1 1 1
1 1 1
1 1 1

r=j(5,2,’xyz’);

R 5 rows 2 cols (character, size 3)

xyz xyz
xyz xyz
xyz xyz
xyz xyz
xyz xyz

JROOT Function

computes the first nonzero roots of a Bessel function of the first kind and the
derivative of the Bessel function at each root

JROOT(ν, n)

The JROOT function returns ann × 2 matrix with the calculated roots in the first
column and the derivatives in the second column.

The inputs to the JROOT function are as follows:

ν is a scalar denoting the order of the Bessel function, withν > −1.

n is a positive integer denoting the number of roots.

The JROOT function returns a matrix in which the first column contains the firstn
roots of the Bessel function; these roots are the solutions to the equation

Jν(xi) = 0, i = 1, . . . , n

KALCVF Call � 717

The second column of this matrix contains the derivativesJ ′ν(xi) of the Bessel func-
tion at each of the rootsxi. The expressionJν(x) is a solution to the differential
equation

x2d
2Jν

dx2
+ x

dJν

dx
+ (x2 − ν2)Jν = 0

One of the expressions for such a function is given by the series

Jν(x) =
(

1
2
z

)ν ∞∑
k=0

(
−1

4z
2
)k

k!Γ(ν + k + 1)

whereΓ(·) is the gamma function. Refer to Abramowitz and Stegun (1972) for more
details concerning the Bessel and gamma functions. The algorithm is a Newton
method coupled with a reasonable initial guess. For large values ofn or ν, the al-
gorithm could fail due to machine limitations. In this case, JROOT returns a matrix
with zero rows and zero columns. The values that cause the algorithm to fail are
machine dependent.

The following code provides an example:

x = jroot(1,4);
print x;

To obtain only the roots, you can use the following statement, which extracts the first
column of the returned matrix:

x = jroot(1,4)[,1];

KALCVF Call

CALL KALCVF(pred, vpred, filt, vfilt, data, lead, a, f , b, h,

var <, z0, vz0>);

The KALCVF call computes the one-step predictionzt+1|t and the filtered esti-
matezt|t, as well as their covariance matrices. The call uses forward recursions,
and you can also use it to obtaink-step estimates.

The inputs to the KALCVF subroutine are as follows:

data is aT ×Ny matrix containing data(y1, · · · ,yT)′.

lead is the number of steps to forecast after the end of the data.

a is anNz×1 vector for a time-invariant input vector in the transition
equation, or a(T + lead)Nz × 1 vector containing input vectors in
the transition equation.

f is anNz × Nz matrix for a time-invariant transition matrix in the
transition equation, or a(T + lead)Nz × Nz matrix containing
transition matrices in the transition equation.

718 � Chapter 20. Language Reference

b is anNy × 1 vector for a time-invariant input vector in the mea-
surement equation, or a(T + lead)Ny × 1 vector containing input
vectors in the measurement equation.

h is anNy×Nz matrix for a time-invariant measurement matrix in the
measurement equation, or a(T + lead)Ny ×Nz matrix containing
measurement matrices in the measurement equation.

var is an(Ny +Nz)× (Ny +Nz) matrix for a time-invariant variance
matrix for the error in the transition equation and the error in the
measurement equation, or a(T + lead)(Ny + Nz) × (Ny + Nz)
matrix containing variance matrices for the error in the transi-
tion equation and the error in the measurement equation, that is,
(η′t, ε

′
t)
′.

z0 is an optional1×Nz initial state vectorz′1|0.

vz0 is an optionalNz ×Nz covariance matrix of an initial state vector
P1|0.

The KALCVF call returns the following values:

pred is a (T + lead) × Nz matrix containing one-step predicted state
vectors(z1|0, · · · , zT+1|T , zT+2|T , · · · , zT+lead|T)′.

vpred is a(T+lead)Nz×Nz matrix containing mean square errors of pre-
dicted state vectors(P1|0, · · · ,PT+1|T ,PT+2|T , · · · ,PT+lead|T)′.

filt is a T × Nz matrix containing filtered state vectors
(z1|1, · · · , zT |T)′.

vfilt is a TNz × Nz matrix containing mean square errors of filtered
state vectors(P1|1, · · · ,PT |T)′.

The KALCVF call computes the conditional expectation of the state vectorzt given
the observations, assuming that the mean and the variance of the initial state vector are
known. The filtered value is the conditional expectation of the state vectorzt given
the observations up to timet. For k-step forecasting wherek > 0, the conditional
expectation at timet+k is computed given observations up tot. For notation,Vt and
Rt are variances ofηt andεt, respectively, andGt is a covariance ofηt andεt. A−

stands for the generalized inverse ofA. The filtered value and its covariance matrix
are denotedzt|t andPt|t, respectively. Fork > 0, zt+k|t andPt+k|t stand for the
k-step forecast ofzt+k and its mean square error. The Kalman filtering algorithm for
one-step prediction and filtering is given as follows:

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + Rt

zt|t = zt|t−1 + Pt|t−1H
′
tD

−
t ε̂t

Pt|t = Pt|t−1 −Pt|t−1H
′
tD

−
t HtPt|t−1

Kt = (FtPt|t−1H
′
t + Gt)D−

t

KALCVF Call � 719

zt+1|t = at + Ftzt|t−1 + Ktε̂t

Pt+1|t = FtPt|t−1F
′
t + Vt −KtDtK′

t

And for k-step forecasting fork > 1,

zt+k|t = at+k−1 + Ft+k−1zt+k−1|t

Pt+k|t = Ft+k−1Pt+k−1|tF
′
t+k−1 + Vt+k−1

When you use the alternative transition equation

zt = at + Ftzt−1 + ηt

the forward recursion algorithm is written

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + HtGt + G′

tH
′
t + Rt

zt|t = zt|t−1 + (Pt|t−1H
′
t + Gt)D−

t ε̂t

Pt|t = Pt|t−1 − (Pt|t−1H
′
t + Gt)D−

t (HtPt|t−1 + G′
t)

Kt = (Ft+1Pt|t−1H
′
t + Gt)D−

t

zt+1|t = at+1 + Ft+1zt|t−1 + Ktε̂t

Pt+1|t = Ft+1Pt|t−1F
′
t+1 + Vt+1 −KtDtK′

t

And for k-step forecasting(k > 1),

zt+k|t = at+k + Ft+kzt+k−1|t

Pt+k|t = Ft+kPt+k−1|tF
′
t+k + Vt+k

You can use the KALCVF call when you specify the alternative transition equation
andGt = 0.

The initial state vector and its covariance matrix of the time invariant Kalman filters
are computed under the stationarity condition

z1|0 = (I− F)−a

P1|0 = (I− F⊗ F)−vec(V)

whereF andV are the time invariant transition matrix and the covariance matrix of
transition equation noise, and vec(V) is anN2

z × 1 column vector that is constructed
by the stackingNz columns of matrixV. Note that all eigenvalues of the matrixF
are inside the unit circle when the SSM is stationary. When the preceding formula

720 � Chapter 20. Language Reference

cannot be applied, the initial state vector estimatez1|0 is set toa1 and its covariance
matrixP1|0 is given by106I. Optionally, you can specify initial values.

The KALCVF call allows missing values in observations. If there is a missing obser-
vation, the filtered state vector for the missing observation is given by the one-step
forecast.

The following program gives an example of the KALCVF call:

q=2;
p=2;
n=10;
lead=3;

total=n+lead;

seed = 25735;
x=round(10*normal(j(n,p,seed)))/10;
f=round(10*normal(j(q*total,q,seed)))/10;
a=round(10*normal(j(total*q,1,seed)))/10;
h=round(10*normal(j(p*total,q,seed)))/10;
b=round(10*normal(j(p*total,1,seed)))/10;
do i = 1 to total;
temp=round(10*normal(j(p+q,p+q,seed)))/10;
var=var//(temp*temp‘);
end;

call kalcvf(pred,vpred,filt,vfilt,x,lead,a,f,b,h,var);

/* default initial state and covariance */
call kalcvs(sm,vsm,x,a,f,b,h,var,pred,vpred);
print sm [format=9.4] vsm [format=9.4];

SM VSM

-1.5236 -0.1000 1.5813 -0.4779
0.3058 -0.1131 -0.4779 0.3963
-0.2593 0.2496 2.4629 0.2426
-0.5533 0.0332 0.2426 0.0944
-0.5813 0.1251 0.2023 -0.0228
-0.3017 0.7480 -0.0228 0.5799
1.1333 -0.2144 0.8615 -0.7653
1.5193 -0.6237 -0.7653 1.2334
-0.6641 -0.7770 1.0836 0.8706
0.5994 2.3333 0.8706 1.5252

0.3677 0.2510
0.2510 0.2051
0.3243 -0.4093

-0.4093 1.2287
0.1736 -0.0712

-0.0712 0.9048
1.3153 0.8748
0.8748 1.6575

KALCVS Call � 721

8.6650 0.1841
0.1841 4.4770

KALCVS Call

CALL KALCVS(sm, vsm, data, a, f , b, h, var, pred, vpred <,un, vun>);

The KALCVS call uses backward recursions to compute the smoothed estimate
zt|T and its covariance matrix, Pt|T , whereT is the number of observations in
the complete data set.

The inputs to the KALCVS subroutine are as follows.

data is aT ×Ny matrix containing data(y1, · · · ,yT)′.

a is anNz × 1 vector for a time-invariant input vector in the transi-
tion equation, or aTNz × 1 vector containing input vectors in the
transition equation.

f is anNz × Nz matrix for a time-invariant transition matrix in the
transition equation, or aTNz ×Nz matrix containingT transition
matrices.

b is anNy × 1 vector for a time-invariant input vector in the mea-
surement equation, or aTNy × 1 vector containing input vectors
in the measurement equation.

h is anNy × Nz matrix for a time-invariant measurement matrix in
the measurement equation, or aTNy × Nz matrix containingT
time variantHt matrices in the measurement equation.

var is an(Ny + Nz) × (Ny + Nz) covariance matrix for the errors in
the transition and the measurement equations, or aT (Ny +Nz)×
(Ny +Nz) matrix containing covariance matrices in the transition
equation and measurement equation noises, that is,(η′t, ε

′
t)
′.

pred is a T × Nz matrix containing one-step forecasts
(z1|0, · · · , zT |T−1)′.

vpred is a TNz × Nz matrix containing mean square error matrices of
predicted state vectors(P1|0, · · · ,PT |T−1)′.

un is an optional1 ×Nz vector containinguT . The returned value is
u0.

vun is an optionalNz ×Nz matrix containingUT . The returned value
is U0.

The KALCVS call returns the following values:

sm is a T × Nz matrix containing smoothed state vectors
(z1|T , · · · , zT |T)′.

vsm is aTNz ×Nz matrix containing covariance matrices of smoothed
state vectors(P1|T , · · · ,PT |T)′.

722 � Chapter 20. Language Reference

When the Kalman filtering is performed in theKALCVF call, the KALCVS call
computes smoothed state vectors and their covariance matrices. The fixed-interval
smoothing state vector at timet is obtained by the conditional expectation given all
observations.

The smoothing algorithm uses one-step forecasts and their covariance matrices,
which are given in theKALCVF call. For notation,zt|T is the smoothed value of
the state vectorzt, and the mean square error matrix is denotedPt|T . For smoothing,

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + Rt

Kt = (FtPt|t−1H
′
t + Gt)D−

t

Lt = Ft −KtHt

ut−1 = H′
tD

−
t ε̂t + L′tut

Ut−1 = H′
tD

−
t Ht + L′tUtLt

zt|T = zt|t−1 + Pt|t−1ut−1

Pt|T = Pt|t−1 −Pt|t−1Ut−1Pt|t−1

wheret = T, T − 1, . . . , 1. The initial values areuT = 0 andUT = 0.

When the SSM is specified using the alternative transition equation

zt = at + Ftzt−1 + ηt

the fixed-interval smoothing is performed using the following backward recursions:

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + Rt

Kt = Ft+1Pt|t−1H
′
tD

−
t

Lt = Ft+1 −KtHt

ut−1 = H′
tD

−
t ε̂t + L′tut

Ut−1 = H′
tD

−
t Ht + L′tUtLt

zt|T = zt|t−1 + Pt|t−1ut−1

Pt|T = Pt|t−1 −Pt|t−1Ut−1Pt|t−1

where it is assumed thatGt = 0.

You can use the KALCVS call regardless of the specification of the transition equa-
tion whenGt = 0. Harvey (1989) gives the following fixed-interval smoothing
formula, which produces the same smoothed value:

zt|T = zt|t + P∗
t (zt+1|T − zt+1|t)

Pt|T = Pt|t + P∗
t (Pt+1|T −Pt+1|t)P

∗′
t

KALDFF Call � 723

where

P∗
t = Pt|tF

′
tP

−
t+1|t

under the shifted transition equation, but

P∗
t = Pt|tF

′
t+1P

−
t+1|t

under the alternative transition equation.

The KALCVS call is accompanied by theKALCVF call, as shown in the following
code. Note that you do not need to specify UN and VUN.

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

You can also compute the smoothed estimate and its covariance matrix on an
observation-by-observation basis. When the SSM is time invariant, the following
example performs smoothing. In this situation, you should initialize UN and VUN as
matrices of value 0.

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
n = nrow(y);
nz = ncol(f);
un = j(1,nz,0);
vun = j(nz,nz,0);
do i = 1 to n;
y_i = y[n-i+1,];
pred_i = pred[n-i+1,];
vpred_i = vpred[(n-i)*nz+1:(n-i+1)*nz,];
call kalcvs(sm_i,vsm_i,y_i,a,f,b,h,var,pred_i,vpred_i,un,vun);
sm = sm_i // sm;
vsm = vsm_i // vsm;

end;

TheKALCVF call has an example program that includes the KALCVS call.

KALDFF Call

CALL KALDFF(pred, vpred, initial, s2, data, lead, int, coef, var,

intd, coefd <, n0, at, mt, qt>);

The KALDFF call computes the one-step forecast of state vectors in an SSM
using the diffuse Kalman filter. The call estimates the conditional expectation of
zt, and it also estimates the initial random vector,δ, and its covariance matrix.

The inputs to the KALDFF subroutine are as follows:

724 � Chapter 20. Language Reference

data is aT ×Ny matrix containing data(y1, · · · ,yT)′.

lead is the number of steps to forecast after the end of the data set.

int is an(Ny +Nz)×Nβ matrix for a time-invariant fixed matrix, or a
(T+ lead)(Ny +Nz)×Nβ matrix containing fixed matrices for the
time-variant model in the transition equation and the measurement
equation, that is,(W′

t,X
′
t)
′.

coef is an(Ny +Nz) ×Nz matrix for a time-invariant coefficient, or a
(T + lead)(Ny +Nz)×Nz matrix containing coefficients at each
time in the transition equation and the measurement equation, that
is, (F′

t,H
′
t)
′.

var is an(Ny +Nz)× (Ny +Nz) matrix for a time-invariant variance
matrix for the error in the transition equation and the error in the
measurement equation, or a(T + lead)(Ny + Nz) × (Ny + Nz)
matrix containing covariance matrices for the error in the transi-
tion equation and the error in the measurement equation, that is,
(η′t, ε

′
t)
′.

intd is an (Nz + Nβ) × 1 vector containing the intercept term in the
equation for the initial state vectorz0 and the mean effectβ, that
is, (a′,b′)′.

coefd is an(Nz +Nβ)×Nδ matrix containing coefficients for the initial
stateδ in the equation for the initial state vectorz0 and the mean
effectβ, that is,(A′,B′)′.

n0 is an optional scalar including an initial denominator. Ifn0 > 0,
the denominator for̂σ2

t is n0 plus the numbernt of elements of
(y1, · · · ,yt)′. If n0 ≤ 0 or n0 is not specified, the denominator
for σ̂2

t is nt. With n0 ≥ 0, the initial values,A1,M1, andQ1, are
assumed to be known and, hence,at,mt, andqt are used for input
containing the initial values. If the value ofn0 is negative orn0
is not specified, the initial values forat, mt, andqt are computed.
The value ofn0 is updated asmax(n0, 0) + nt after the KALDFF
call.

at is an optionalkNz × (Nδ + 1) matrix. If n0 ≥ 0, at con-
tains (A′

1, · · · ,A′
k)
′. However, only the first matrixA1 is used

as input. When you specify the KALDFF call,at returns
(A′

T−k+lead+1
, · · · ,A′

T+lead)
′. If n0 is negative or the matrix

A1 contains missing values,A1 is automatically computed.

mt is an optionalkNz × Nz matrix. If n0 ≥ 0, mt contains
(M1, · · · ,Mk)′. However, only the first matrixM1 is
used as input. Ifn0 is negative or the matrixM1 con-
tains missing values,mt is used for output, and it contains
(MT−k+lead+1, · · · ,MT+lead)

′. Note that the matrixM1 can
be used as an input matrix if either of the off-diagonal elements
is not missing. The missing elementM1(i, j) is replaced by the
nonmissing elementM1(j, i).

KALDFF Call � 725

qt is an optionalk(Nδ + 1) × (Nδ + 1) matrix. If n0 ≥ 0, qt con-
tains(Q1, · · · ,Qk)′. However, only the first matrixQ1 is used as
input. If n0 is negative or the matrixQ1 contains missing values,
qt is used for output and contains(QT−k+lead+1, · · · ,QT+lead)

′.
The matrixQ1 can also be used as an input matrix if either of
the off-diagonal elements is not missing since the missing element
Q1(i, j) is replaced by the nonmissing elementQ1(j, i).

The KALDFF call returns the following values:

pred is a (T + lead) × Nz matrix containing estimated predicted state
vectors(ẑ1|0, · · · , ẑT+1|T , ẑT+2|T , · · · , ẑT+lead|T)′.

vpred is a (T + lead)Nz × Nz matrix containing esti-
mated mean square errors of predicted state vectors
(P1|0, · · · ,PT+1|T ,PT+2|T , · · · ,PT+lead|T)′.

initial is anNd× (Nd +1) matrix containing an estimate and its variance
for initial stateδ, that is,(δ̂T , Σ̂δ,T).

s2 is a scalar containing the estimated varianceσ̂2
T .

The KALDFF call computes the one-step forecast of state vectors in an SSM using
the diffuse Kalman filter. The SSM for the diffuse Kalman filter is written

yt = Xtβ + Htzt + εt

zt+1 = Wtβ + Ftzt + ηt

z0 = a + Aδ

β = b + Bδ

wherezt is anNz × 1 state vector,yt is anNy × 1 observed vector, and

[
ηt

εt

]
∼ N

(
0, σ2

[
Vt Gt

G′
t Rt

])
δ ∼ N(µ, σ2Σ)

It is assumed that the noise vector(η′t, ε
′
t)
′ is independent andδ is independent of

the vector(η′t, ε
′
t)
′. The matrices,Wt, Ft, Xt, Ht, a, A, b, B, Vt, Gt, andRt,

are assumed to be known. The KALDFF call estimates the conditional expectation of
the state vectorzt given the observations. The KALDFF subroutine also produces the
estimates of the initial random vectorδ and its covariance matrix. Fork-step forecast-
ing wherek > 0, the estimated conditional expectation at timet+k is computed with
observations given up to timet. The estimatedk-step forecast and its estimated MSE
are denotedzt+k|t andPt+k|t (for k > 0). At+k(δ) andEt(δ) are last-column-deleted

726 � Chapter 20. Language Reference

submatrices ofAt+k andEt, respectively. The algorithm for one-step prediction is
given as follows:

Et = (XtB, yt −Xtb)−HtAt

Dt = HtMtH′
t + Rt

Qt+1 = Qt + E′
tD

−
t Et

=
[

St st

s′t qt

]
σ̂2

t = (qt − s′tS
−
t st)/nt

δ̂t = S−t st

Σ̂δ,t = σ̂2
t S

−
t

Kt = (FtMtH′
t + Gt)D−

t

At+1 = Wt(−B,b) + FtAt + KtEt

Mt+1 = (Ft −KtHt)MtF′
t + Vt −KtG′

t

zt+1|t = At+1(−δ̂′t, 1)′

Pt+1|t = σ̂2
t Mt+1 + At+1(δ)Σ̂δ,tA′

t+1(δ)

wherent is the number of elements of(y1, · · · ,yt)′ plusmax(n0, 0). Unless initial
values are given andn0 ≥ 0, initial values are set as follows:

A1 = W1(−B,b) + F1(−A,a)

M1 = V1

Q1 = 0

Fork-step forecasting wherek > 1,

At+k = Wt+k−1(−B,b) + Ft+k−1At+k−1

Mt+k = Ft+k−1Mt+k−1F′
t+k−1 + Vt+k−1

Dt+k = Ht+kMt+kH′
t+k + Rt+k

zt+k|t = At+k(−δ̂′t, 1)′

Pt+k|t = σ̂2
t Mt+k + At+k(δ)Σ̂δ,tA′

t+k(δ)

KALDFS Call � 727

Note that if there is a missing observation, the KALDFF call computes the one-step
forecast for the observation following the missing observation as the two-step forecast
from the previous observation.

An example of using the KALDFF call is in the documentation for theKALDFS call.

KALDFS Call

CALL KALDFS(sm, vsm, data, int, coef, var, bvec, bmat, initial, at,

mt, s2 <, un, vun>);

KALDFS computes the smoothed state vector and its mean square error ma-
trix from the one-step forecast and mean square error matrix computed by
KALDFF .

The inputs to the KALDFS subroutine are as follows:

data is aT ×Ny matrix containing data(y1, · · · ,yT)′.

int is an(Ny + Nz) × Nβ vector for a time-invariant intercept, or a
(T + lead)(Ny +Nz)×Nβ vector containing fixed matrices for the
time-variant model in the transition equation and the measurement
equation, that is,(W′

t,X
′
t)
′.

coef is an(Ny +Nz) ×Nz matrix for a time-invariant coefficient, or a
(T + lead)(Ny +Nz)×Nz matrix containing coefficients at each
time in the transition equation and the measurement equation, that
is, (F′

t,H
′
t)
′.

var is an(Ny +Nz)× (Ny +Nz) matrix for a time-invariant variance
matrix for transition equation noise and the measurement equation
noise, or a(T + lead)(Ny +Nz) × (Ny +Nz) matrix containing
covariance matrices for the transition equation and measurement
equation errors, that is,(η′t, ε

′
t)
′.

bvec is anNβ×1 constant vector for the intercept for the mean effectβ.

bmat is anNβ ×Nδ matrix for the coefficient for the mean effectβ.

initial is anNδ × (Nδ + 1) matrix containing an initial random vector
estimate and its covariance matrix, that is,(δ̂T , Σ̂δ,T).

at is aTNz × (Nδ + 1) matrix containing(A′
1, · · · ,A′

T)′.

mt is a(TNz)×Nz matrix containing(M1, · · · ,MT)′.

s2 is the estimated variance in the end of the data set,σ̂2
T .

un is an optionalNz × (Nδ + 1) matrix containinguT . The returned
value isu0.

vun is an optionalNz ×Nz matrix containingUT . The returned value
is U0.

The KALDFS call returns the following values:

728 � Chapter 20. Language Reference

sm is a T × Nz matrix containing smoothed state vectors
(z1|T , · · · , zT |T)′.

vsm is a TNz × Nz matrix containing mean square error matrices of
smoothed state vectors(P1|T , · · · ,PT |T)′.

Given the one-step forecast and mean square error matrix in theKALDFF call, the
KALDFS call computes a smoothed state vector and its mean square error matrix.
Then the KALDFS subroutine produces an estimate of the smoothed state vector at
timet, that is, the conditional expectation of the state vectorzt given all observations.
Using the notations and results from theKALDFF section, the backward recursion
algorithm for smoothing is denoted fort = T, T − 1, . . . , 1,

Et = (XtB, yt −Xtb)−HtAt

Dt = HtMtH′
t + Rt

Lt = Ft − (FtMtH′
t + Gt)D−

t Ht

ut−1 = H′
tD

−
t Et + L′tut

Ut−1 = H′
tD

−
t Ht + L′tUtLt

zt|T = (At + Mtut−1)(−δ̂′T , 1)′

Ct = At + Mtut−1

Pt|T = σ̂2
T (Mt −MtRt−1Mt) + Ct(δ)Σ̂δ,TC′

t(δ)

where the initial values areuT = 0 andUT = 0, andCt(δ) is the last-column-
deleted submatrix ofCt. Refer to De Jong (1991) for details on smoothing in the
diffuse Kalman filter.

The KALDFS call is accompanied by theKALDFF call as shown in the following
code:

ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,

n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
call kaldfs(sm,vsm,x,int,coef,var,bvec,bmat,initial,at,mt,s2);

You can also compute the smoothed estimate and its covariance matrix observation by
observation. When the SSM is time invariant, the following code performs smooth-
ing. You should initialize UN and VUN as matrices of value0.

LAV Call � 729

n = nrow(y);
ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,

n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
un = j(nz,nd+1,0);
vun = j(nz,nz,0);
do i = 1 to n;

call kaldfs(sm_i,vsm_i,y[n-i+1],int,coef,var,bvec,bmat,
initial,at,mt,s2,un,vun);

sm = sm_i // sm;
vsm = vsm_i // vsm;

end;

LAV Call

performs linear least absolute value regression by solving theL1 norm mini-
mization problem

CALL LAV(rc, xr, a, b <, <x0><, opt>>);

The LAV subroutine returns the following values:

rc is a scalar return code indicating the reason for optimization termina-
tion.

rc Termination
0 Successful
1 Successful, but approximate covariance matrix and standard

errors cannot be computed
−1 or−3 Unsuccessful: error in the input arguments
−2 Unsuccessful: matrixA is rank deficient (rank(A) < n)
−4 Unsuccessful: maximum iteration limit exceeded
−5 Unsuccessful: no solution found for ill-conditioned prob-

lem

xr specifies a vector or matrix withn columns. If the optimization process
is not successfully completed,xr is a row vector withnmissing values.
If termination is successful and theopt[3] option is not set,xr is the
vector with the optimal estimate,x∗. If termination is successful and

730 � Chapter 20. Language Reference

theopt[3] option is specified,xr is an(n+2)×nmatrix that contains the
optimal estimate,x∗, in the first row, the asymptotic standard errors in
the second row, and then×n covariance matrix of parameter estimates
in the remaining rows.

The inputs to the LAV subroutine are as follows:

a specifies anm × n matrix A with m ≥ n and full column rank,
rank(A) = n. If you want to include an intercept in the model, you
must include a column of ones in the matrixA.

b specifies them× 1 vectorb.

x0 specifies an optionaln× 1 vector that specifies the starting point of the
optimization.

opt is an optional vector used to specify options.

opt[1] specifies the maximum numbermaxiof outer iterations (this cor-
responds to the number of changes of the Huber parameterγ). The
default ismaxi = min(100, 10n). (The number of inner iterations is
restricted by an internal threshold. If the number of inner iterations ex-
ceeds this threshold, a new outer iteration is started with an increased
value ofγ.)

opt[2] specifies the amount of printed output. Higher values request
additional output and include the output of lower values.

opt[2] Termination
0 no output is printed
1 error and warning messages are printed
2 the iteration history is printed (this is the default)
3 then least-squares (L2 norm) estimates are printed if no start-

ing point is specified; theL1 norm estimates are printed;
if opt[3] is set, the estimates are printed together with the
asymptotic standard errors

4 then × n approximate covariance matrix of parameter esti-
mates is printed ifopt[3] is set

5 the residual and predicted values for allm rows (equations)
of A are printed

opt[3] specifies which estimate of the variance of the median of
nonzero residuals is to be used as a factor for the approximate co-
variance matrix of parameter estimates and for the approximate stan-
dard errors (ASE). Ifopt[3] = 0, the McKean-Schrader (1987) esti-
mate is used, and ifopt[3] > 0, the Cox-Hinkley (1974) estimate, with
v =opt[3], is used. The default isopt[3] = −1 or opt[3] = ., which
means that the covariance matrix is not computed.

LAV Call � 731

opt[4] specifies whether a computationally expensive test for necessary
and sufficient optimality of the solutionx is executed. The default is
opt[4] = 0 or opt[4] = ., which means that the convergence test is not
performed.

Missing values are not permitted in thea or b argument. Thex0 argument is ignored
if it contains any missing values. Missing values in theoptargument cause the default
value to be used.

The Least Absolute Values (LAV) subroutine is designed for solving the uncon-
strained linearL1 norm minimization problem,

min
x
L1(x) where L1(x) = ‖Ax− b‖1 =

m∑
i=1

∣∣∣∣∣∣
n∑

j=1

aijxj − bi

∣∣∣∣∣∣
for m equations withn (unknown) parametersx = (x1, . . . , xn). This is equivalent
to estimating the unknown parameter vector,x, by least absolute value regression in
the model

b = Ax + ε

whereb is the vector ofn observations,A is the design matrix, andε is a random
error term.

An algorithm by Madsen and Nielsen (1993) is used, which can be faster for large
values ofm andn than the Barrodale and Roberts (1974) algorithm. The current
version of the algorithm assumes thatA has full column rank. Also, constraints
cannot be imposed on the parameters in this version.

TheL1 norm minimization problem is more difficult to solve than the least-squares
(L2 norm) minimization problem because the objective function of theL1 norm prob-
lem is not continuously differentiable (the first derivative has jumps). A function that
is continuous but not continuously differentiable is callednonsmooth. Using PROC
NLP and the IML nonlinear optimization subroutines, you can obtain the estimates
in linear and nonlinearL1 norm estimation (even subject to linear or nonlinear con-
straints) as long as the number of parameters,n, is small. Using the nonlinear op-
timization subroutines, there are two ways to solve the nonlinearLp-norm,p ≥ 1,
problem:

• For small values ofn, you can implement the Nelder-Mead simplex algorithm
with theNLPNMS subroutineto solve the minimization problem in its original
specification. The Nelder-Mead simplex algorithm does not assume a smooth
objective function, does not take advantage of any derivatives, and therefore
does not require continuous differentiability of the objective function. See the
“NLPNMS Call” section on page 798 for details.

• Gonin and Money (1989) describe how an originalLp norm estimation prob-
lem can be modified to an equivalent optimization problem with nonlinear con-
straints which has a simple differentiable objective function. You can invoke

732 � Chapter 20. Language Reference

theNLPQN subroutine, which implements a quasi-Newton algorithm, to solve
the nonlinearly constrainedLp norm optimization problem. See the section
“NLPQN Call” on page 808 for details on theNLPQN subroutine.

Both approaches are successful only for a small number of parameters and good
initial estimates. If you cannot supply good initial estimates, the optimal results of
the corresponding nonlinear least-squares (L2 norm) estimation may provide fairly
good initial estimates.

Gonin and Money (1989, pp. 44–45) show that the nonlinearL1 norm estimation
problem

min
x

m∑
i=1

|fi(x)|

can be reformulated as a linear optimization problem with nonlinear constraints in
the following ways.

• min
x

m∑
i=1

ui subject to
fi(x)− ui ≤ 0
fi(x) + ui ≥ 0
ui ≥ 0

 i = 1, . . . ,m

is a linear optimization problem with2m nonlinear inequality constraints in
m+ n variablesui andxj .

• min
x

m∑
i=1

(yi + zi) subject to
fi(x) + yi − zi = 0
yi ≥ 0
zi ≥ 0

 i = 1, . . . ,m

is a linear optimization problem with2m nonlinear equality constraints in2m+
n variablesyi, zi, andxj .

For linear functionsfi(x) =
∑n

j=1(aijxj − bi), i = 1, . . . ,m, you obtain linearly
constrained linear optimization problems, for which the number of variables and con-
straints is on the order of the number of observations,m. The advantage that the
algorithm by Madsen and Nielsen (1993) has over the Barrodale and Roberts (1974)
algorithm is that its computational cost increases only linearly withm, and it can be
faster for large values ofm.

In addition to computing an optimal solutionx∗ that minimizesL1(x), you can also
compute approximate standard errors and the approximate covariance matrix ofx∗.
The standard errors may be used to compute confidence limits.

The following example is the same one used for illustrating the LAV procedure by
Lee and Gentle (1986).A andb are as follows:

A =

1 0
1 1
1 −1
1 −1
1 2
1 2

 b =

1
2
1

−1
2
4

LCP Call � 733

The following code specifies the matrix A, the vector B, and the options vector OPT.
The options vector specifies that all output is printed (opt[2] = 5), that the asymptotic
standard errors and covariance matrix are computed based on the McKean-Schrader
(1987) estimateλ of the variance of the median (opt[3] = 0), and that the convergence
test should be performed (opt[4] = 1).

a = { 0, 1, -1, -1, 2, 2 };
m = nrow(a);
a = j(m,1,1.) || a;
b = { 1, 2, 1, -1, 2, 4 };

opt= { . 5 0 1 };
call lav(rc,xr,a,b,,opt);

The first part of the printed output refers to the least-squares solution, which is used
as the starting point. The estimates of the largest and smallest nonzero eigenvalues of
A′A give only an idea of the magnitude of these values, and they can be very crude
approximations.

The second part of the printed output shows the iteration history.

The third part of the printed output shows theL1 norm solution (first row) together
with asymptotic standard errors (second row) and the asymptotic covariance matrix
of parameter estimates (the ASEs are the square roots of the diagonal elements of this
covariance matrix).

The last part of the printed output shows the predicted values and residuals, as in Lee
and Gentle (1986).

LCP Call

solves the linear complementarity problem

CALL LCP(rc, w, z, m, q <, epsilon>);

The inputs to the LCP subroutine are as follows:

m is anm×m matrix.

q is anm× 1 matrix.

epsilon is a scalar defining virtual zero. The default value ofepsilon is
1.0E−8.

rc returns one of the following scalar return codes:

0 solution found

1 no solution possible

5 solution is numerically unstable

6 subroutine could not obtain enough memory.

w andz return the solution in anm-element column vector.

734 � Chapter 20. Language Reference

The LCP subroutine solves the linear complementarity problem:

w = Mz + q

w′z = 0
w, z ≥ 0

Consider the following example:

q={1, 1};
m={1 0,

0 1};
call lcp(rc,w,z,m,q);

The result is

RC 1 row 1 col (numeric)

0

W 2 rows 1 col (numeric)

1
1

Z 2 rows 1 col (numeric)

0
0

The next example shows the relationship between quadratic programming and the lin-
ear complementarity problem. Consider the linearly constrained quadratic program:

min c′x +
1
2
x′Hx

st. Gx ≥ b (QP)
x ≥ 0

If H is positive semidefinite, then a solution to the Kuhn-Tucker conditions solves
QP. The Kuhn-Tucker conditions for QP are

c + Hx = µ+ G′λ

λ′(Gx− b) = 0
µ′x = 0
Gx ≥ b

x, µ, λ ≥ 0

LCP Call � 735

In the linear complementarity problem, let

M =
[
H −G′

G 0

]
w′ = (µ′s′)
z′ = (x′λ′)
q′ = (c′ − b)

Then the Kuhn-Tucker conditions are expressed as findingw andz that satisfy

w = Mz + q

w′z = 0
w, z ≥ 0

From the solutionw andz to this linear complementarity problem, the solution to QP
is obtained; namely,x is the primal structural variable,s = Gx − b the surpluses,
andµ andλ are the dual variables. Consider a quadratic program with the following
data:

C′ = (1245) B′ = (11)

H =

100 10 1 0
10 100 10 1
1 10 100 10
0 1 10 100

G =

[
1 2 3 4

10 20 30 40

]

This problem is solved using the LCP subroutine in PROC IML as follows:

/*---- Data for the Quadratic Program -----*/
c={1,2,3,4};
h={100 10 1 0, 10 100 10 1, 1 10 100 10, 0 1 10 100};
g={1 2 3 4, 10 20 30 40};
b={1, 1};

/*----- Express the Kuhn-Tucker Conditions as an LCP ----*/
m=h||-g‘;
m=m//(g||j(nrow(g),nrow(g),0));
q=c//-b ;

/*----- Solve for a Kuhn-Tucker Point --------*/
call lcp(rc,w,z,m,q);

/*------ Extract the Solution to the Quadratic Program ----*/
x=z[1:nrow(h)];
print rc x;

736 � Chapter 20. Language Reference

The printed solution is

RC 1 row 1 col (numeric)

0

X 4 rows 1 col (numeric)

0.0307522
0.0619692
0.0929721
0.1415983

LENGTH Function

finds the lengths of character matrix elements

LENGTH(matrix)

wherematrix is a character matrix or quoted literal.

The LENGTH function takes a character matrix as an argument and produces a nu-
meric matrix as a result. The result matrix has the same dimensions as the argument
and contains the lengths of the corresponding string elements inmatrix. The length
of a string is equal to the position of the rightmost nonblank character in the string.
If a string is entirely blank, its length value is set to 1. An example of the LENGTH
function follows:

c={’Hello’ ’My name is Jenny’};
b=length(c);

B 1 row 2 cols (numeric)

5 16

See also the description of theNLENG function.

LINK and RETURN Statements

jump to another statement

LINK label;

statements

label:statements

RETURN;

The LINK statement, like theGOTO statement, directs IML to jump to the statement
with the specified label. Unlike theGOTO statement, however, IML remembers
where the LINK statement was issued and returns to that point when aRETURN

LIST Statement � 737

statementis executed. This statement can only be used inside modules and DO
groups.

The LINK statement provides a way of calling sections of code as if they were sub-
routines. The LINK statement calls the routine. The routine begins with the label and
ends with aRETURN statement. LINK statements can be nested within other LINK
statements to any level. ARETURN statementwithout a LINK statement is executed
the same as theSTOP statement.

Any time you use a LINK statement, you may consider using aRUN statementand a
module defined using theSTART and FINISH statementsinstead.

An example using the LINK statement is shown below:

start a;
x=1;
y=2;
link sum1;
print z;
stop;
sum1:

z=x+y;
return;

finish a;
run a;

Z 1 row 1 col (numeric)

3

LIST Statement

displays observations of a data set

LIST <range> <VAR operand> <WHERE(expression)>;

The inputs to the LIST statement are as follows:

range specifies a range of observations

operand specifies a set of variables

expression is an expression evaluated to be true or false.

The LIST statement prints selected observations of a data set. If all data values for
variables in the VAR clause fit on a single line, values are displayed in columns
headed by the variable names. Each record occupies a separate line. If the data values
do not fit on a single line, values from each record are grouped into paragraphs. Each
element in the paragraph has the formname=value.

You can specify arangeof observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify arange:

738 � Chapter 20. Language Reference

ALL all observations

CURRENT the current observation (this is the default for the LIST state-
ment)

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations specified by number, whereoperandcan be one
of the following:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. Theoperandcan be
specified as one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Below are examples showing each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within therangespecifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

LIST Statement � 739

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

= : begins with a given string

= * sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

Below are several examples on using the LIST statement:

740 � Chapter 20. Language Reference

list all; /* lists whole data set */
list; /* lists current observation */
list var{name addr}; /* lists NAME and ADDR in current obs */
list all where(age>30); /* lists all obs where condition holds */
list next; /* lists next observation */
list point 24; /* lists observation 24 */
list point (10:15); /* lists observations 10 through 15 */

LMS Call

performs robust regression

CALL LMS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

The Least Median of Squares (LMS) performsrobustregression (sometimes called
resistantregression) by minimizing thehth ordered squared residual. The subroutine
is able to detect outliers and perform a least-squares regression on the remaining
observations.

The value ofh can be specified, but in most applications the default value works just
fine and the results seem to be quite stable toward different choices ofh.

In the following discussion,N is the number of observations andn is the number of
regressors. The inputs to the LMS subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values). The options vector can be a null vector.

opt[1] specifies whether an intercept is used in the model (opt[1]=0) or not
(opt[1] 6= 0). If opt[1]=0, then a column of ones is added as the last
column to the input matrixX; that is, you do not need to add this
column of ones yourself. The default isopt[1]=0.

opt[2] specifies the amount of printed output. Higher values request addi-
tional output and include the output of lower values.

opt[2]=0 prints no output except error messages.
opt[2]=1 prints all output except (1) arrays ofO(N), such as

weights, residuals, and diagnostics; (2) the history of the
optimization process; and (3) subsets that result in singular
linear systems.

opt[2]=2 additionally prints arrays ofO(N), such as weights, resid-
uals, and diagnostics; also prints the case numbers of the
observations in the best subset and some basic history of
the optimization process.

opt[2]=3 additionally prints subsets that result in singular linear
systems.

The default isopt[2]=0.

opt[3] specifies whether only LMS is computed or whether, additionally,
least-squares (LS) and weighted least-squares (WLS) regression are
computed.

LMS Call � 741

opt[3]=0 computes only LMS.
opt[3]=1 computes, in addition to LMS, weighted least-squares re-

gression on the observations withsmall LMS residuals
(wheresmall is defined by opt[8]).

opt[3]=2 computes, in addition to LMS, unweighted least-squares
regression.

opt[3]=3 adds both unweighted and weighted least-squares regres-
sion to LMS regression.

The default isopt[3]=0.

opt[4] specifies the quantileh to be minimized. This is used in the objective
function. The default isopt[4]= h =

[
N+n+1

2

]
, which corresponds

to the highest possible breakdown value. This is also the default of
the PROGRESS program. The value ofh should be in the range
N
2 + 1 ≤ h ≤ 3N

4 + n+1
4

opt[5] specifies the numberNRep of generated subsets. Each subset con-
sists ofn observations(k1, . . . , kn), where1 ≤ ki ≤ N . The total
number of subsets consisting ofn observations out ofN observa-
tions is

Ntot =
(
N

n

)
=

∏n
j=1(N − j + 1)∏n

j=1 j

wheren is the number of parameters including the intercept.

Due to computer time restrictions, not all subset combinations ofn
observations out ofN can be inspected for larger values ofN and
n. Specifying a value ofNRep < Ntot enables you to save computer
time at the expense of computing a suboptimal solution.

If opt[5] is zero or missing, the default number of subsets is taken
from the following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 106 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

742 � Chapter 20. Language Reference

If the number of cases (observations)N is smaller thanNlower, then
all possible subsets are used; otherwise,NRep subsets are chosen
randomly. This means that an exhaustive search is performed for
opt[5]=−1. If N is larger thanNupper, a note is printed in the log
file indicating how many subsets exist.

opt[6] is not used.

opt[7] specifies whether the last argumentsorbcontains a given parameter
vectorb or a given subset for which the objective function should be
evaluated.

opt[7]=0 sorbcontains a given subset index.
opt[7]=1 sorbcontains a given parameter vectorb.

The default isopt[7]=0.

opt[8] is relevant only for LS and WLS regression (opt[3] > 0). It specifies
whether the covariance matrix of parameter estimates and approxi-
mate standard errors (ASEs) are computed and printed.

opt[8]=0 does not compute covariance matrix and ASEs.
opt[8]=1 computes covariance matrix and ASEs but prints neither

of them.
opt[8]=2 computes the covariance matrix and ASEs but prints only

the ASEs.
opt[8]=3 computes and prints both the covariance matrix and the

ASEs.

The default isopt[8]=0.

y refers to anN response vectory.

x refers to anN × n matrix X of regressors. If opt[1] is zero or missing, an
interceptxn+1 ≡ 1 is added by default as the last column ofX. If the matrix
X is not specified,y is analyzed as a univariate data set.

sorb refers to ann vector containing either of the following:

• n observation numbers of a subset for which the objective function
should be evaluated; this subset can be the start for a pairwise exchange
algorithm ifopt[7] is specified.

• n given parametersb = (b1, . . . , bn) (including the intercept, if neces-
sary) for which the objective function should be evaluated.

Missing values are not permitted inx or y. Missing values inopt cause the default
value to be used.

The LMS subroutine returns the following values:

sc is a column vector containing the following scalar information, where rows
1–9 correspond to LMS regression and rows 11–14 correspond to either LS
or WLS:

LMS Call � 743

sc[1] the quantileh used in the objective function

sc[2] number of subsets generated

sc[3] number of subsets with singular linear systems

sc[4] number of nonzero weightswi

sc[5] lowest value of the objective functionFLMS attained

sc[6] preliminary LMS scale estimateSP

sc[7] final LMS scale estimateSF

sc[8] robustR2 (coefficient of determination)

sc[9] asymptotic consistency factor

If opt[3] > 0, then the following are also set:

sc[11] LS or WLS objective function (sum of squared residuals)

sc[12] LS or WLS scale estimate

sc[13] R2 value for LS or WLS

sc[14] F value for LS or WLS

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, these rows correspond to LS estimates.

coef is a matrix withn columns containing the following results in its rows:

coef[1,] LMS parameter estimates

coef[2,] indices of observations in the best subset

If opt[3] > 0, then the following are also set:

coef[3] LS or WLS parameter estimates

coef[4] approximate standard errors of LS or WLS estimates

coef[5] t-values

coef[6] p-values

coef[7] lower boundary of Wald confidence intervals

coef[8] upper boundary of Wald confidence intervals

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, to LS estimates.

wgt is a matrix withN columns containing the following results in its rows:

wgt[1] weights (=1 for small, =0 for large residuals)

wgt[2] residualsri = yi − xib
wgt[3] resistant diagnosticui (note that the resistant diagnostic cannot be

computed for a perfect fit when the objective function is zero or
nearly zero)

744 � Chapter 20. Language Reference

Example

Consider results for Brownlee’s (1965) stackloss data. The three explanatory vari-
ables correspond to measurements for a plant oxidizing ammonia to nitric acid:

• x1 air flow to the plant

• x2 cooling water inlet temperature

• x3 acid concentration

on 21 consecutive days. The response variableyi gives the permillage of ammonia
lost (stackloss). The data are also given by Rousseeuw and Leroy (1987, p. 76) and
Osborne (1985, p. 267). Rousseeuw and Leroy (1987, p. 76) cite a large number of
papers where this data set was analyzed and state that most researchers “concluded
that observations 1, 3, 4, and 21 were outliers,” and that some people also reported
observation 2 as outlier.

ForN = 21 andn = 4 (three explanatory variables including intercept), you obtain a
total of 5985 different subsets of 4 observations out of 21. If you decide not to specify
optn[5] , the LMS subroutine choosesNrep = 2000 random sample subsets. Since
there is a large number of subsets with singular linear systems, which you do not want
to print, chooseoptn[2]=2 for reduced printed output:

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

a = aa[,2:4]; b = aa[,5];
optn = j(8,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

CALL LMS(sc,coef,wgt,optn,b,a);

LMS Call � 745

LMS: The 13th ordered squared residual will be minimized.

Median and Mean

Median Mean

VAR1 58 60.428571429
VAR2 20 21.095238095
VAR3 87 86.285714286
Intercep 1 1
Response 15 17.523809524

Dispersion and Standard Deviation

Dispersion StdDev

VAR1 5.930408874 9.1682682584
VAR2 2.965204437 3.160771455
VAR3 4.4478066555 5.3585712381
Intercep 0 0
Response 5.930408874 10.171622524

The following are the results of LS regression:

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.715640 0.134858 5.31 <.0001
VAR2 1.295286 0.368024 3.52 0.0026
VAR3 -0.152123 0.156294 -0.97 0.3440
Intercep -39.919674 11.895997 -3.36 0.0038

Variable Lower WCI Upper WCI

VAR1 0.451323 0.979957
VAR2 0.573972 2.016600
VAR3 -0.458453 0.154208
Intercep -63.2354 -16.603949

Sum of Squares = 178.8299616
Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

746 � Chapter 20. Language Reference

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.018187 -0.036511 0.007144 0.287587
VAR2 -0.036511 0.135442 0.000010 -0.651794
VAR3 -0.007144 0.000011 0.024428 -1.676321
Intercep 0.287587 -0.651794 1.676321 141.514741

R-squared = 0.9135769045
F(3,17) Statistic = 59.9022259
Probability = 3.0163272E-9

These are the LMS results for the 2,000 random subsets:

Random Subsampling for LMS

Best
Subset Singular Criterion Percent

500 23 0.163262 25
1000 55 0.140519 50
1500 79 0.140519 75
2000 103 0.126467 100

Minimum Criterion= 0.1264668282
Least Median of Squares (LMS) Method

Minimizing 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

15 11 19 10

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.75 0.5 0 -39.25

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375
Final LMS Scale = 1.2076147288

LOAD Statement � 747

For LMS observations, 1, 3, 4, and 21 have scaled residuals larger than 2.5 (table not
shown) and are considered outliers. These are the corresponding WLS results:

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.797686 0.067439 11.83 <.0001
VAR2 0.577340 0.165969 3.48 0.0041
VAR3 -0.067060 0.061603 -1.09 0.2961
Intercep -37.652459 4.732051 -7.96 <.0001

Lower WCI Upper WCI

0.665507 0.929864
0.252047 0.902634

-0.187800 0.053680
-46.927108 -28.37781

Weighted Sum of Squares = 20.400800254
Degrees of Freedom = 13

RLS Scale Estimate = 1.2527139846

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.004548 -0.007921 -0.001199 0.001568
VAR2 -0.007921 0.027546 -0.000463 -0.065018
VAR3 -0.001199 -0.000463 0.003795 -0.246102
Intercep 0.001568 -0.065018 -0.246102 22.392305

Weighted R-squared = 0.9750062263
F(3,13) Statistic = 169.04317954

Probability = 1.158521E-10
There are 17 points with nonzero weight.

Average Weight = 0.8095238095

LOAD Statement

loads modules and matrices from library storage

LOAD <MODULE=(module-list)> <matrix-list>;

The inputs to the LOAD statement are as follows:

module-list is a list of modules.

matrix-list is a list of matrices

748 � Chapter 20. Language Reference

The LOAD statement loads modules or matrix values from the current library storage
into the current workspace. For example, to load three modules A, B, and C and one
matrix X, specify the statement

load module=(A B C) X;

The special operand–ALL – can be used to load all matrices or all modules. For
example, if you want to load all matrices, specify

load _all_;

If you want to load all modules, specify

load module=_all_;

To load all matrices and modules stored in the library storage, you can enter the
LOAD command without any arguments:

load;

The storage library can be specified using aRESETstoragecommand. The de-
fault library is WORK.IMLSTOR. For more information, seeChapter 14, “Storage
Features,”and the descriptions of theSTORE, REMOVE, RESET, andSHOWstate-
ments.

LOC Function

finds nonzero elements of a matrix

LOC(matrix)

wherematrix is a numeric matrix or literal.

The LOC function creates a1 × n row vector, wheren is the number of nonzero
elements in the argument. Missing values are treated as zeros. The values in the
resulting row vector are the locations of the nonzero elements in the argument (in
row-major order, like subscripting). For example, the statements

a={1 0 2 3 0};
b=loc(a);

result in the row vector

B 1 row 3 cols (numeric)

1 3 4

LOG Function � 749

since the first, third, and fourth elements ofA are nonzero. If every element of the
argument vector is 0, the result is empty; that is,B has zero rows and zero columns.

The LOC function is useful for subscripting parts of a matrix that satisfy some con-
dition.

For example, suppose you want to create a matrixY containing the rows ofX that
have a positive element in the diagonal ofX. Specify the following statements.

x={1 1 0,
0 -2 2,
0 0 3};

y=x[loc(vecdiag(x)>0),];

The result is

Y = X[{13},]

or the matrix

Y 2 rows 3 cols (numeric)

1 1 0
0 0 3

since the first and third rows ofX have positive elements on the diagonal ofX.

The next example selects all positive elements of a column vectorA:

a={0,
-1,
2,
0};

y=a[loc(a>0),];

The result is

Y = A[3,]

or the scalar

Y 1 row 1 col (numeric)

2

LOG Function

takes the natural logarithm

750 � Chapter 20. Language Reference

LOG(matrix)

wherematrix is a numeric matrix or literal.

The LOG function is the scalar function that takes the natural logarithm of each ele-
ment of the argument matrix. An example of a valid statement is shown below:

c = { 1 2 3 };
b=log(c);
print b;

B

0 0.6931472 1.0986123

LP Call

solves the linear programming problem

CALL LP(rc, x, dual, a, b <, cntl><, u><, l><, basis>);

The inputs to the LP subroutine are as follows:

a is anm × n vector specifying the technological coefficients, wherem is
less than or equal ton.

b is anm× 1 vector specifying the right-side vector.

cntl is an optional row vector with 1 to 5 elements. If CNTL=(indx, nprimal,
ndual, epsilon, infinity), then

indx is the subscript of nonzero objective coefficient.

nprimal is the maximum number of primal iterations.

ndual is the maximum number of dual iterations.

epsilon is the value of virtual zero.

infinity is the value of virtual infinity.

The default values are as follows:indx equalsn, nprimal equals 999999,
ndualequals 999999,epsilonequals 1.0E−8, andinfinity is machine depen-
dent. If you specifyndualor nprimal or both, then on return they contain
the number of iterations actually performed.

u is an optional array of dimensionn specifying upper bounds on the decision
variables. If you do not specifyu, the upper bounds are assumed to be
infinity.

l is an optional array of dimensionn specifying lower bounds on the decision
variables. Ifl is not given, then the lower bounds are assumed to be 0 for all
the decision variables. This includes the decision variable associated with
the objective value, which is specified by the value ofindx.

LP Call � 751

basis is an optional array of dimensionn specifying the current basis. This is
given by identifying which columns are explicitly in the basis and which
columns are at their upper bound, as given inu. The absolute value of the
elements in this vector is a permutation of the column indices. The columns
specified in the firstm elements ofbasisare considered the explicit basis.
The absolute value of the lastn−m elements ofbasisare the indices of the
nonbasic variables. Any of the lastn−m elements ofbasisthat are negative
indicate that that nonbasic variable is at its upper bound. On return from
the LP subroutine, thebasisvector contains the final basis encountered. If
you do not specifybasis, then the subroutine assumes that an initial basis is
in the lastm columns ofA and that no nonbasic variables are at their upper
bound.

rc returns one of the following scalar return codes:

0 solution is optimal

1 solution is primal infeasible and dual feasible

2 solution is dual infeasible and primal feasible

3 solution is neither primal nor dual feasible

4 singular basis encountered

5 solution is numerically unstable

6 subroutine could not obtain enough memory

7 number of iterations exceeded

x returns the current primal solution in a column vector of
lengthn.

dual returns the current dual solution in a row vector of length
m.

The LP subroutine solves the linear program:

max(0, . . . , 0, 1, 0, . . . , 0)x
st. Ax = b

l ≤ x ≤ u

The subroutine first inverts the initial basis. If theBASIS vector is given, then the
initial basis is them×m submatrix identified by the firstm elements inBASIS; oth-
erwise, the initial basis is defined by the lastm columns ofA. If the initial basis is
singular, the subroutine returns with RC=4. If the basis is nonsingular, then the cur-
rent dual and primal solutions are evaluated. If neither is feasible, then the subroutine
returns with RC=3. If the primal solution is feasible, then the primal algorithm iter-
ates until either a dual feasible solution is encountered or the number of NPRIMAL
iterations is exceeded. If the dual solution is feasible, then the dual algorithm iterates
until either a primal feasible solution is encountered or the number of NDUAL iter-
ations is exceeded. When a basis is identified that is both primal and dual feasible,
then the subroutine returns with RC=0.

752 � Chapter 20. Language Reference

Note that care must be taken when solving a sequence of linear programs and using
the NPRIMAL or NDUAL control parameters or both. Because the LP subroutine
resets the NPRIMAL and NDUAL parameters to reflect the number of iterations exe-
cuted, subsequent invocations of the LP subroutine will have the number of iterations
limited to the number used by the last LP subroutine executed. In these cases you
should consider resetting these parameters prior to each LP call.

Consider the following example to maximizeX1 subject to the constraintsX1+X2 ≤
10 andX1 ≥ 0. The problem is solved as follows:

/* the problem data */
obj={1 0};
coef={1 -1};
b={0, 10};

/* embed the objective function */
/* in the coefficient matrix */

a=obj//coef;
a=a||{-1, 0};

/* solve the problem */
call lp(rc,x,dual,a,b);

The result is

RC 1 row 1 col (numeric)

0

X 3 rows 1 col (numeric)

10
0

10

DUAL 1 row 2 cols (numeric)

-1 1

LTS Call

performs robust regression

CALL LTS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

A robust (resistant) regression method, defined by minimizing the sum of theh small-
est squared residuals.

The Least Trimmed Squares (LTS) subroutine performsrobustregression (sometimes
calledresistantregression). It is able to detect outliers and perform a least-squares
regression on the remaining observations. Beginning with SAS/IML Version 8.1,

LTS Call � 753

the LTS subroutine implements a new algorithm, FAST-LTS, given by Rousseeuw
and Van Driessen (1998). The new algorithm is set as the default. The algorithm
in previous versions is temporarily available, but will be phased out. Seeopt[9] for
detail.

The value ofh may be specified, but for many applications the default value works
just fine and the results seem to be quite stable toward different choices ofh.

In the following discussion,N is the number of observations andn is the number of
regressors. The inputs to the LTS subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values). The options vector can be a null vector.

opt[1] specifies whether an intercept is used in the model (opt[1]=0) or not
(opt[1] 6= 0). If opt[1]=0, then a column of ones is added as the last
column to the input matrixX; that is, you do not need to add this
column of ones yourself. The default isopt[1]=0.

opt[2] specifies the amount of printed output. Higher values request addi-
tional output and include the output of lower values.

opt[2]=0 prints no output except error messages.
opt[2]=1 prints all output except (1) arrays ofO(N), such as

weights, residuals, and diagnostics; (2) the history of the
optimization process; and (3) subsets that result in singular
linear systems.

opt[2]=2 additionally prints arrays ofO(N), such as weights, resid-
uals, and diagnostics; also prints the case numbers of the
observations in the best subset and some basic history of
the optimization process.

opt[2]=3 additionally prints subsets that result in singular linear
systems.

The default isopt[2]=0.

opt[3] specifies whether only LTS is computed or whether, additionally,
least-squares (LS) and weighted least-squares (WLS) regression are
computed:

opt[3]=0 computes only LTS.
opt[3]=1 computes, in addition to LTS, weighted least-squares re-

gression on the observations withsmall LTS residuals
(wheresmall is defined by opt[8]).

opt[3]=2 computes, in addition to LTS, unweighted least-squares
regression.

opt[3]=3 adds both unweighted and weighted least-squares regres-
sion to LTS regression.

The default isopt[3]=0.

opt[4] specifies the quantileh to be minimized. This is used in the objective
function. The default isopt[4]= h =

[
N+n+1

2

]
, which corresponds

to the highest possible breakdown value. This is also the default of

754 � Chapter 20. Language Reference

the PROGRESS program. The value ofh should be in the range
N
2 + 1 ≤ h ≤ 3N

4 + n+1
4

opt[5] specifies the numberNRep of generated subsets. Each subset con-
sists ofn observations(k1, . . . , kn), where1 ≤ ki ≤ N . The total
number of subsets consisting ofn observations out ofN observa-
tions is

Ntot =
(
N

n

)
=

∏n
j=1(N − j + 1)∏n

j=1 j

wheren is the number of parameters including the intercept.

Due to computer time restrictions, not all subset combinations ofn
observations out ofN can be inspected for larger values ofN and
n. Specifying a value ofNRep < Ntot enables you to save computer
time at the expense of computing a suboptimal solution.

If opt[5] is zero or missing:

If N > 600, the default FAST-LTS algorithm constructs up to five
disjoint random subsets with sizes as equal as possible, but not to
exceed 300. Inside each subset, the algorithm chooses500/5 = 100
subset combinations ofn observations.

For the default FAST-LTS algorithm withN < 600 or the previous
algorithm (before V8.1), the number of subsets is taken from the
following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 106 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

If the number of cases (observations)N is smaller thanNlower, then
all possible subsets are used; otherwise, fixed 500 subsets for FAST-
LTS orNRep subsets for algorithm before V8.1 are chosen randomly.
This means that an exhaustive search is performed foropt[5]=−1. If
N is larger thanNupper, a note is printed in the log file indicating
how many subsets exist.

opt[6] is not used.

LTS Call � 755

opt[7] specifies whether the last argumentsorbcontains a given parameter
vectorb or a given subset for which the objective function should be
evaluated.

opt[7]=0 sorbcontains a given subset index.
opt[7]=1 sorbcontains a given parameter vectorb.

The default isopt[7]=0.

opt[8] is relevant only for LS and WLS regression (opt[3] > 0). It specifies
whether the covariance matrix of parameter estimates and approxi-
mate standard errors (ASEs) are computed and printed.

opt[8]=0 does not compute covariance matrix and ASEs.
opt[8]=1 computes covariance matrix and ASEs but prints neither

of them.
opt[8]=2 computes the covariance matrix and ASEs but prints only

the ASEs.
opt[8]=3 computes and prints both the covariance matrix and the

ASEs.

The default isopt[8]=0.

opt[9] is relevant only for LTS. Ifopt[9]=0, the algorithm FAST-LTS of
Rousseeuw and Van Driessen (1998) is used. Ifopt[9] = 1, the
algorithm of Rousseeuw and Leroy (1987) is used. The default is
opt[9]=0.

y refers to anN response vectory.

x refers to anN × n matrix X of regressors. If opt[1] is zero or missing, an
interceptxn+1 ≡ 1 is added by default as the last column ofX. If the matrix
X is not specified,y is analyzed as a univariate data set.

sorb refers to ann vector containing either of the following:

• n observation numbers of a subset for which the objective function
should be evaluated; this subset can be the start for a pairwise exchange
algorithm ifopt[7] is specified.

• n given parametersb = (b1, . . . , bn) (including the intercept, if neces-
sary) for which the objective function should be evaluated.

Missing values are not permitted inx or y. Missing values inopt cause the default
value to be used.

The LTS subroutine returns the following values:

sc is a column vector containing the following scalar information, where rows
1–9 correspond to LTS regression and rows 11–14 correspond to either LS
or WLS:

756 � Chapter 20. Language Reference

sc[1] the quantileh used in the objective function

sc[2] number of subsets generated

sc[3] number of subsets with singular linear systems

sc[4] number of nonzero weightswi

sc[5] lowest value of the objective functionFLTS attained

sc[6] preliminary LTS scale estimateSP

sc[7] final LTS scale estimateSF

sc[8] robustR2 (coefficient of determination)

sc[9] asymptotic consistency factor

If opt[3] > 0, then the following are also set:

sc[11] LS or WLS objective function (sum of squared residuals)

sc[12] LS or WLS scale estimate

sc[13] R2 value for LS or WLS

sc[14] F value for LS or WLS

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, these rows correspond to LS estimates.

coef is a matrix withn columns containing the following results in its rows:

coef[1,] LTS parameter estimates

coef[2,] indices of observations in the best subset

If opt[3] > 0, then the following are also set:

coef[3] LS or WLS parameter estimates

coef[4] approximate standard errors of LS or WLS estimates

coef[5] t-values

coef[6] p-values

coef[7] lower boundary of Wald confidence intervals

coef[8] upper boundary of Wald confidence intervals

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, to LS estimates.

wgt is a matrix withN columns containing the following results in its rows:

wgt[1] weights (=1 for small, =0 for large residuals)

wgt[2] residualsri = yi − xib
wgt[3] resistant diagnosticui (note that the resistant diagnostic cannot be

computed for a perfect fit when the objective function is zero or
nearly zero)

LTS Call � 757

Example

Consider Brownlee’s (1965) stackloss data used in the example for the LMS subrou-
tine.

ForN = 21 andn = 4 (three explanatory variables including intercept), you obtain
a total of 5,985 different subsets of 4 observations out of 21. If you decide not to
specifyoptn[5] , the FAST-LTS algorithm chooses500 random sample subsets:

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

a = aa[,2:4]; b = aa[,5];
optn = j(8,1,.);
optn[2]= 1; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

CALL LTS(sc,coef,wgt,optn,b,a);

The preceding program produces the following output:

Least Trimmed Squares (LTS) Method
Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %
Random Selection of 523 Subsets
Among 523 subsets 23 is/are singular.

The best half of the entire data set obtained after full
iteration consists of the cases:

758 � Chapter 20. Language Reference

5 6 7 8 9 10 11
12 15 16 17 18 19

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.7409210642 0.3915267228 0.0111345398 -37.32332647

LTS Objective Function = 0.474940583
Preliminary LTS Scale = 0.9888435617
Robust R Squared = 0.973976868
Final LTS Scale = 1.0360272594

For LTS observations, 1, 2, 3, 4, 13, and 21 have scaled residuals larger than 2.5 (table
not shown) and are considered outliers. These are the corresponding WLS results:

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.756940 0.078607 9.63 <.0001
VAR2 0.453530 0.136050 3.33 0.0067
VAR3 -0.05211 0.054637 -0.95 0.3607
Intercep -34.0575 3.828818 -8.90 <.0001

Lower WCI Upper WCI

0.602872 0.911008
0.186876 0.720184
-0.15919 0.054977
-41.5618 -26.5531

Weighted Sum of Squares = 10.273044977
Degrees of Freedom = 11

RLS Scale Estimate = 0.9663918355

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.0061791 -0.005776 -0.002300 -0.034290
VAR2 -0.005776 0.0185096 0.0002582 -0.069740

LUPDT Call � 759

VAR3 -0.002300 0.0002582 0.0029852 -0.131487
Intercep -0.034290 -0.069740 -0.131487 14.659852

Weighted R-squared = 0.9622869127
F(3,11) Statistic = 93.558645037

Probability = 4.1136826E-8
There are 15 points with nonzero weight.

Average Weight = 0.7142857143

See the entry for theLMS subroutinefor details.

LUPDT Call

provides updating and downdating for rank deficient linear least squares solu-
tions, complete orthogonal factorization, and Moore-Penrose inverses

CALL LUPDT(lup, bup, sup, l, z <, b, y <, ssq>>);

The LUPDT subroutine returns the following values:

lup is ann × n lower triangular matrixL that is updated or downdated by
using theq rows inZ.

bup is ann × p matrixB of right-hand sides that is updated or downdated
by using theq rows inY. If b is not specified,bup is not accessible.

sup is ap vector of square roots of residual sum of squares that is updated
or downdated by using theq rows inY. If ssqis not specified,sup is
not accessible.

The inputs to the LUPDT subroutine are as follows:

l specifies ann×n lower triangular matrixL to be updated or downdated
by q row vectorsz stored in theq×nmatrixZ. Only the lower triangle
of l is used; the upper triangle may contain any information.

z is aq × n matrixZ used rowwise to update or downdate the matrixL.

b specifies an optionaln × p matrix B of right-hand sides that have to
be updated or downdated simultaneously withL. If b is specified, the
argumenty must be specified.

y specifies an optionalq × p matrixY used rowwise to update or down-
date the right-hand-side matrixB.

ssq specifies an optionalp × 1 vector that, ifb is specified, specifies the
square root of the error sum of squares that should be updated or down-
dated simultaneously withL andb.

The relevant formula for the LUPDT call is̃LL̃′ = LL′ + ZZ′. See theexamplein
the documentation for the RZLIND call.

760 � Chapter 20. Language Reference

MAD Function

finds the univariate (scaled) median-absolute-deviation

MAD((x <, spt >))

where

x is ann× p input data matrix.

spt is an optional string argument with the following values:

"MAD" for computing the MAD (which is the default)

"NMAD" for computing the normalized version of MAD

"SN" for computingSn

"QN" for computingQn

The MAD function treats the input matrixx as univariate data by append-
ing each row to the previous row to make a single row vector with elements
x11, . . . , x1p, x21, . . . , x2p, . . . , xn1, . . . , xnp. In the following description, the
notationxi means theith element ofx when thought of as a row vector.

The MAD function can be used for computing one of the following three robust scale
estimates:

• Median Absolute Deviation (MAD) or normalized form of MAD:

MADn = b ∗medn
i |xi −medn

j xj |

whereb = 1 is the unscaled default andb = 1.4826 is used for the scaled
version (consistency with the Gaussian distribution).

• Sn, which is a more efficient alternative to MAD:

Sn = cn ∗medi medj 6=i |xi − xj |

where the outer median is a low median (order statistic of rank
[

n+1
2

]
) and the

inner median is a high median (order statistic of rank
[

n
2 + 1

]
), and wherecn

is a scalar depending on sample sizen.

• Qn is another efficient alternative to MAD. It is based on thekth order statistic
of the

(
n
2

)
inter-point distances:

Qn = dn ∗ {|xi − xj |; i < j}(k) with k ≈
(
n

2

)
/4

wheredn is a scalar similar to but different fromcn. See Rousseeuw and Croux
(1993) for more details.

MARG Call � 761

The scalarscn anddn are defined as follows:

cn = 1.1926∗

.743 for n=2
1.851 for n=3
.954 for n=4
1.351 for n=5
.993 for n=6
1.198 for n=7
1.005 for n=8
1.131 for n=9
n/(n− 0.9) odd n
1.0 otherwise

dn = 2.2219∗

.399 for n=2

.994 for n=3

.512 for n=4

.844 for n=5

.611 for n=6

.857 for n=7

.669 for n=8

.872 for n=9
n/(n+ 1.4) uneven n
n/(n+ 3.8) even n

Example

This example uses the univariate data set of Barnett and Lewis (1978) that is used
above to illustrate the univariate LMS and LTS estimates:

b = { 3, 4, 7, 8, 10, 949, 951 };

rmad1 = mad(b);
rmad2 = mad(b,"mad");
rmad3 = mad(b,"nmad");
rmad4 = mad(b,"sn");
rmad5 = mad(b,"qn");
print "Default MAD=" rmad1,

"Common MAD =" rmad2,
"MAD*1.4826 =" rmad3,
"Robust S_n =" rmad4,
"Robust Q_n =" rmad5;

This program produces the following:

Default MAD= 4
Common MAD = 4
MAD*1.4826 = 5.9304089
Robust S_n = 7.143674
Robust Q_n = 5.7125049

MARG Call

evaluates marginal totals in a multiway contingency table

CALL MARG(locmar, marginal, dim, table, config);

The inputs to the MARG subroutine are as follows:

locmar is a returned matrix containing a vector of indices to each new set
of marginal totals under the model specified byconfig. A marginal
total is exhibited for each level of the specified marginal. These
indices help locate particular totals.

762 � Chapter 20. Language Reference

marginal is a return vector of marginal totals.

dim is an input matrix. If the problem containsv variables thendim is
1× v row vector. The valuedim[i] is the number of possible levels
for variablei in a contingency table.

table is an input matrix. Thetable argument specifies an array of the
number of observations at each level of each variable. Variables
are nested across columns and then across rows.

config is an input matrix. Theconfigargument specifies which marginal
totals to evaluate. Each column ofconfig specifies a distinct
marginal in the model under consideration.

The matrixtablemust conform in size to the contingency table specified indim. In
particular, if table is n ×m, the product of the entries in thedim vector must equal
nm. In addition, there must be some integerk such that the product of the firstk
entries indimequalsm. See the description of the IPF function for more information
on specifyingtable.

For example, consider the three-dimensional table discussed in theIPF call, based
on data appearing in Christensen (1997). The table presents data on a person’s self-
esteem for people classified according to their religion and their father’s educational
level.

Father’s Educational Level
Self- Not HS HS Some Coll Post

Religion Esteem Grad Grad Coll Grad Coll
High 575 388 100 77 51

Catholic
Low 267 153 40 37 19
High 117 102 67 87 62

Jewish
Low 48 35 18 12 13
High 359 233 109 197 90

Protestant
Low 159 173 47 82 32

As explained in theIPF documentation, the father’s education level is Variable 1,
self-esteem is Variable 2, and religion is Variable 3.

The program below encodes this table, uses the MARG call to compute a 2-way
marginal table by summing over the third variable and a 1-way marginal by summing
over the first two variables.

dim={5 2 3};

table={
/* Father’s Education:

MARG Call � 763

NotHSGrad HSGrad Col ColGrad PostCol
Self-

Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,

/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,

/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

};

config = { 1 3,
2 0 };

call marg(locmar, marginal, dim, table, config);
print locmar, marginal;

/* Examine marginals: The name indicates the
variable(s) that are NOT summed over.
The locmar variable tells where to index
into the marginal variable. */

Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];

The results of this program are below.

LOCMAR

1 11

MARGINAL

COL1 COL2 COL3 COL4 COL5 COL6 COL7

ROW1 1051 723 276 361 203 474 361

MARGINAL

COL8 COL9 COL10 COL11 COL12 COL13

ROW1 105 131 64 1707 561 1481

VAR12_MARG

1051 723 276 361 203
474 361 105 131 64

764 � Chapter 20. Language Reference

VAR3_MARG

1707
561

1481

The first marginal total is contained in locations 1 through 10 of themarginalvector.
It represents the results of summingtableover the religion variable. The first entry
of marginal is the number of subjects with high self-esteem whose fathers did not
graduate from high school (1051 = 575 + 117 + 359). The second entry is the
number of subjects with high self-esteem whose fathers were high school graduates
(723 = 388 + 102 + 233). The tenth entry is the number of subjects with low self-
esteem whose fathers had some post-collegiate education (64 = 19 + 13 + 32).

The second marginal is contained in locations 11 through 13 of themarginalvector. It
represents the results of summingtableover the education and self-esteem variables.
The eleventh entry of themarginal vector is the number of Catholics in the study.
The thirteenth entry is the number of Protestants.

MATTRIB Statement

associates printing attributes with matrices

MATTRIB name <ROWNAME=row-name>

<COLNAME=column-name><LABEL= label><FORMAT=format>;

The inputs to the MATTRIB subroutine are as follows:

name is a character matrix or quoted literal giving the name of a matrix.

row-name is a character matrix or quoted literal specifying row names.

column-name is a character matrix or quoted literal specifying column names.

label is a character matrix or quoted literal associating a label with the
matrix. Thelabel argument has a maximum length of 256 charac-
ters.

format is a valid SAS format.

The MATTRIB statement associates printing attributes with matrices. Each matrix
can be associated with a ROWNAME= matrix and a COLNAME= matrix, which is
used whenever the matrix is printed to label the rows and columns, respectively. The
statement is written as the keyword MATTRIB followed by a list of one or more
names and attribute associations. It is not necessary to specify all attributes. The
attribute associations are applied to the previousname. Thus, the following statement
gives a row name RA and a column name CA toA, and a column name CB toB:

mattrib a rowname=ra colname=ca b colname=cb;

MAX Function � 765

You cannot group names; although the following statement is valid, it does not asso-
ciate anything withA.

mattrib a b rowname=n;

The values of the associated matrices are not looked up until they are needed. Thus,
they need not have values at the time the MATTRIB statement is specified. They can
be specified later when the object matrix is printed. The attributes continue to bind
with the matrix until reassigned with another MATTRIB statement. To eliminate an
attribute, specify EMPTY as the name, for example, ROWNAME=EMPTY. Labels
can be up to 40 characters long. Longer labels are truncated. Use theSHOWnames
statementto view current matrix attributes.

An example using the MATTRIB statement follows:

rows=’xr1’:’xr5’;
print rows;

ROWS
xr1 xr2 xr3 xr4 xr5

cols=’cl1’:’cl5’;
print cols;

COLS
cl1 cl2 cl3 cl4 cl5

x={1 1 1 1,2 2 2 2,3 3 3 3};
mattrib x rowname=(rows [1:3])

colname=(cols [1:4])
label={’matrix,x’}
format=5.2;

print x;

matrix,x
cl1 cl2 cl3 cl4

xr1 1.00 1.00 1.00 1.00
xr2 2.00 2.00 2.00 2.00
xr3 3.00 3.00 3.00 3.00

MAX Function

finds the maximum value of matrix

766 � Chapter 20. Language Reference

MAX(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric or character matrix or literal.

The MAX function produces a single numeric value (or a character string value)
that is the largest element (or highest character string value) in all arguments. There
can be as many as 15 argument matrices. The function checks for missing numeric
values and does not include them in the result. If all arguments are missing, then the
machine’s most negative representable number is the result.

If you want to find the elementwise maximums of the corresponding elements of two
matrices, use the maximum operator (<>).

For character arguments, the size of the result is the size of the largest of all argu-
ments.

An example using the MAX function follows:

c = { 1 -123 13 56 128 -81 12 };
b=max(c);
print b;

B

128

MAXQFORM Call

computes the subsets of a matrix system that maximize the quadratic form

CALL MAXQFORM(rc, maxq, V , b <, best>);

If V and b are an n × n matrix and ann × 1 vector, respectively, then
the MAXQFORM function computes the subsets of componentss such that
b′[s]V−1[s, s]b[s] is maximized.

The MAXQFORM subroutine returns the following values:

rc is one of the following scalar return codes:

0 normal return
1 error: the number of elements ofb is too large to process
2 error:V is not positive semidefinite

maxq is anm× (n+ 2) matrix, wherem is the total number of subsets com-
puted andn is the number of elements inb. The value ofm depends
on the value ofbestand is equal to2n − 1 if best is not specified.
Each row ofmaxqcontains information for a selected subset ofV and
b. The first element of the row is the number of components in the

MAXQFORM Call � 767

subset. The second element is the value of the quadratic form. The
following elements of the row are either 0 or 1, to indicate whether the
corresponding components ofV andb are included in the subset.

The inputs to the MAXQFORM subroutine are as follows:

V specifies ann× n positive semidefinite matrix. Often this is generated
as a crossproduct matrix,X′X, whereX is ak × n matrix.

b specifies ann× 1 vector. Often this arises asX′y, whereX is ak × n
matrix, andy is ak × 1 vector.

best specifies an optional scalar. Ifbestis specified with the valuep, then
thep subsets with the largest value for the quadratic form are returned
for each subset size.

The leaps and bounds algorithm by Furnival and Wilson (1974) computes the maxi-
mum value of quadratic forms for subsets of components. Many statistics computed
as a quadratic form can then be used as the criterion for the method of subset selec-
tion. These include the regression sum of squares, Wald statistics, and score statistics.

Consider the following fitness data, which consists of observations with values for age
measured in years, weight measured in kilograms, time to run 1.5 miles measured
in minutes, heart rate while resting, heart rate while running, maximum heart rate
recorded while running, and oxygen intake rate while running measured in milliliters
per kilogram of body weight per minute.

fit = {
44 89.47 11.37 62 178 182 44.609,
40 75.07 10.07 62 185 185 45.313,
44 85.84 8.65 45 156 168 54.297,
42 68.15 8.17 40 166 172 59.571,
38 89.02 9.22 55 178 180 49.874,
47 77.45 11.63 58 176 176 44.811,
40 75.98 11.95 70 176 180 45.681,
43 81.19 10.85 64 162 170 49.091,
44 81.42 13.08 63 174 176 39.442,
38 81.87 8.63 48 170 186 60.055,
44 73.03 10.13 45 168 168 50.541,
45 87.66 14.03 56 186 192 37.388,
45 66.45 11.12 51 176 176 44.754,
47 79.15 10.60 47 162 164 47.273,
54 83.12 10.33 50 166 170 51.855,
49 81.42 8.95 44 180 185 49.156,
51 69.63 10.95 57 168 172 40.836,
51 77.91 10.00 48 162 168 46.672,
48 91.63 10.25 48 162 164 46.774,
49 73.37 10.08 67 168 168 50.388,
57 73.37 12.63 58 174 176 39.407,
54 79.38 11.17 62 156 165 46.080,

768 � Chapter 20. Language Reference

52 76.32 9.63 48 164 166 45.441,
50 70.87 8.92 48 146 155 54.625,
51 67.25 11.08 48 172 172 45.118,
54 91.63 12.88 44 168 172 39.203,
51 73.71 10.47 59 186 188 45.790,
57 59.08 9.93 49 148 155 50.545,
49 76.32 9.40 56 186 188 48.673,
48 61.24 11.50 52 170 176 47.920,
52 82.78 10.50 53 170 172 47.467 };

Use the following IML statement to center the data.

fit = fit - j(31,1,1) * fit[:,];

Now compute the crossproduct matrices, as follows:

x = fit[,1:6];
y = fit[,7];
xpx = x‘*x;
xpy = x‘*y;

The following statements compute the best three regression sums of squares for each
size of regressor set:

call maxqform(rc, maxq, xpx, xpy, 3);
print maxq;

MCD Call

finds the minimum covariance determinant estimator

CALL MCD(sc, coef, dist, opt, x);

The MCD call is the robust (resistent) estimation of multivariate location and scatter,
defined by minimizing the determinant of the covariance matrix computed fromh
points. The algorithm for the MCD subroutine is based on the FAST-MCD algorithm
given by Rousseeuw and Van Driessen (1999).

The MCD subroutine computes the minimum covariance determinant estimator.
These robust locations and covariance matrices can be used to detect multivariate
outliers and leverage points. For this purpose, the MCD subroutine provides a table
of robust distances.

In the following discussion,N is the number of observations andn is the number of
regressors. The inputs to the MCD subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values):

MCD Call � 769

opt[1] specifies the amount of printed output. Higher option values re-
quest additional output and include the output of lower values.

opt[1]=0 prints no output except error messages.
opt[1]=1 prints most of the output.
opt[1]=2 additionally prints case numbers of the observations in

the best subset and some basic history of the optimiza-
tion process.

opt[1]=3 additionally prints how many subsets result in singular
linear systems.

The default isopt[1]=0.

opt[2] specifies whether the classical, initial, and final robust covariance
matrices are printed. The default isopt[2]=0. Note that the final
robust covariance matrix is always returned incoef.

opt[3] specifies whether the classical, initial, and final robust correlation
matrices are printed or returned:

opt[3]=0 does not return or print.
opt[3]=1 prints the robust correlation matrix.
opt[3]=2 returns the final robust correlation matrix incoef.
opt[3]=3 prints and returns the final robust correlation matrix.

opt[4] specifies the quantileh used in the objective function. The default
is opt[4]= h = [N+n+1

2]. If the value ofh is specified outside the
rangeN

2 +1 ≤ h ≤ 3N
4 + n+1

4 , it is reset to the closest boundary
of this region.

opt[5] specifies the numberNRep of subset generations. This option is
the same as described for the LTS subroutines. Due to computer
time restrictions, not all subset combinations can be inspected for
larger values ofN andn.

Whenopt[5] is zero or missing:

If N > 600, construct up to five disjoint random subsets with
sizes as equal as possible, but not to exceed 300. Inside each sub-
set, choose500/5 = 100 subset combinations ofn observations.

If N < 600, the number of subsets is taken from the following
table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0

n 11 12 13 14 15
Nlower 0 0 0 0 0

770 � Chapter 20. Language Reference

If the number of cases (observations)N is smaller thanNlower,
then all possible subsets are used; otherwise, 500 subsets are cho-
sen randomly. This means that an exhaustive search is performed
for opt[5]=−1. If N is larger thanNupper, a note is printed in the
log file indicating how many subsets exist.

x refers to anN × n matrixX of regressors.

Missing values are not permitted inx. Missing values inopt cause the default value
to be used.

The MCD subroutine returns the following values:

sc is a column vector containing the following scalar information:

sc[1] the quantileh used in the objective function

sc[2] number of subsets generated

sc[3] number of subsets with singular linear systems

sc[4] number of nonzero weightswi

sc[5] lowest value of the objective functionFMCD attained (smallest
determinant)

sc[6] Mahalanobis-like distance used in the computation of the lowest
value of the objective functionFMCD

sc[7] the cutoff value used for the outlier decision

coef is a matrix withn columns containing the following results in its rows:

coef[1] location of ellipsoid center

coef[2] eigenvalues of final robust scatter matrix

coef[3:2+n] the final robust scatter matrix foropt[2]=1 or
opt[2]=3

coef[2+n+1:2+2n] the final robust correlation matrix foropt[3]=1 or
opt[3]=3

dist is a matrix withN columns containing the following results in its rows:

dist[1] Mahalanobis distances

dist[2] robust distances based on the final estimates

dist[3] weights (=1 for small, =0 for large robust distances)

MCD Call � 771

Example

Consider Brownlee’s (1965) stackloss data used in the example for the MVE subrou-
tine.

ForN = 21 andn = 4 (three explanatory variables including intercept), you obtain
a total of 5,985 different subsets of 4 observations out of 21. If you decide not to
specifyoptn[5] , the MCD algorithm chooses500 random sample subsets:

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */

CALL MCD(sc,xmcd,dist,optn,a);

The first part of the output of this program is a summary of the MCD algorithm and
the finalh points selected:

Fast MCD by Rousseeuw and Van Driessen

Number of Variables 3
Number of Observations 21
Default Value for h 12
Specified Value for h 12
Breakdown Value 42.86
- Highest Possible Breakdown Value -

772 � Chapter 20. Language Reference

The best half of the entire data set obtained after full
iteration consists of the cases:

4 5 6 7 8 9 10 11 12 13 14 20

The second part of the output is the MCD estimators of the location, scatter matrix,
and correlation matrix:

MCD Location Estimate

VAR1 VAR2 VAR3

59.5 20.833333333 87.333333333
Average of 12 Selected Points

MCD Scatter Matrix Estimate

VAR1 VAR2 VAR3

VAR1 5.1818181818 4.8181818182 4.7272727273
VAR2 4.8181818182 7.6060606061 5.0606060606
VAR3 4.7272727273 5.0606060606 19.151515152

Determinant = 238.07387929
Covariance Matrix of 12 Selected Points

MCD Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.7674714142 0.4745347313
VAR2 0.7674714142 1 0.4192963398
VAR3 0.4745347313 0.4192963398 1

The MCD scatter matrix is multiplied by a factor to make it
consistent when all the data come from a single Gaussian
distribution.

Consistent Scatter Matrix

VAR1 VAR2 VAR3

VAR1 8.6578437815 8.0502757968 7.8983838007
VAR2 8.0502757968 12.708297013 8.4553211199
VAR3 7.8983838007 8.4553211199 31.998580526

Determinant = 397.77668436

The final output presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is, lever-
age points when explainingy with these three regressor variables):

MIN Function � 773

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 12.173282 0
2 2.324745 12.255677 0
3 1.593712 9.263990 0
4 1.271898 1.401368 1.000000
5 0.303357 1.420020 1.000000
6 0.772895 1.291188 1.000000
7 1.852661 1.460370 1.000000
8 1.852661 1.460370 1.000000
9 1.360622 2.120590 1.000000

10 1.745997 1.809708 1.000000
11 1.465702 1.362278 1.000000
12 1.841504 1.667437 1.000000
13 1.482649 1.416724 1.000000
14 1.778785 1.988240 1.000000
15 1.690241 5.874858 0
16 1.291934 5.606157 0
17 2.700016 6.133319 0
18 1.503155 5.760432 0
19 1.593221 6.156248 0
20 0.807054 2.172300 1.000000
21 2.176761 7.622769 0

Robust distances are based on reweighted estimates.

The cutoff value is the square root of the 0.975 quantile of
the chi square distribution with 3 degrees of freedom.

Points whose robust distance exceeds 3.0575159206 have received
a zero weight in the last column above.

There were 9 such points in the data.
These may include boundary cases.

Only points whose robust distance is substantially larger
than the cutoff should be considered outliers.

MIN Function

finds the smallest element of a matrix

MIN(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric or character matrix or literal.

The MIN function produces a single numeric value (or a character string value) that
is the smallest element (lowest character string value) in all arguments. There can be
as many as 15 argument matrices. The function checks for missing numeric values

774 � Chapter 20. Language Reference

and excludes them from the result. If all arguments are missing, then the machine’s
largest representable number is the result.

If you want to find the elementwise minimums of the corresponding elements of two
matrices, use the element minimum operator (><).

For character arguments, the size of the result is the size of the largest of all argu-
ments.

An example using the MIN function is shown below.

c = { 1 -123 13 56 128 -81 12 };
b=min(c);
print b;

B

-123

MOD Function

computes the modulo (remainder)

MOD(value, divisor)

The inputs to the MOD function are as follows:

value is a numeric matrix or literal giving the dividend.

divisor is a numeric matrix or literal giving the divisor.

The MOD function is the scalar function returning the remainder of the division of
elements of the first argument by elements of the second argument.

Unlike the MOD function in base SAS, the IML MOD function does not perform
any numerical “fuzzing” to return an exact zero when the result would otherwise be
very small. Thus the results of the IML MOD function is more similar to the MODZ
function in base SAS.

An example of a valid statement follows:

c = { -7 14 20 -81 23 };
b=mod(c,4);
print b;

B

-3 2 0 -1 3

MVE Call

finds the minimum volume ellipsoid estimator

MVE Call � 775

CALL MVE(sc, coef, dist, opt, x <, s >);

The MVE call is the robust (resistent) estimation of multivariate location and scatter,
defined by minimizing the volume of an ellipsoid containingh points.

The MVE subroutine computes the minimum volume ellipsoid estimator. These ro-
bust locations and covariance matrices can be used to detect multivariate outliers and
leverage points. For this purpose, the MVE subroutine provides a table of robust
distances.

In the following discussion,N is the number of observations andn is the number of
regressors. The inputs to the MVE subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values):

opt[1] specifies the amount of printed output. Higher option values re-
quest additional output and include the output of lower values.

opt[1]=0 prints no output except error messages.
opt[1]=1 prints most of the output.
opt[1]=2 additionally prints case numbers of the observations in

the best subset and some basic history of the optimiza-
tion process.

opt[1]=3 additionally prints how many subsets result in singular
linear systems.

The default isopt[1]=0.

opt[2] specifies whether the classical, initial, and final robust covariance
matrices are printed. The default isopt[2]=0. Note that the final
robust covariance matrix is always returned incoef.

opt[3] specifies whether the classical, initial, and final robust correlation
matrices are printed or returned:

opt[3]=0 does not return or print.
opt[3]=1 prints the robust correlation matrix.
opt[3]=2 returns the final robust correlation matrix incoef.
opt[3]=3 prints and returns the final robust correlation matrix.

opt[4] specifies the quantileh used in the objective function. The default
is opt[5]= h =

[
N+n+1

2

]
. If the value ofh is specified outside

the rangeN
2 + 1 ≤ h ≤ 3N

4 + n+1
4 , it is reset to the closest

boundary of this region.

opt[5] specifies the numberNRep of subset generations. This option is
the same as described previously for the LMS and LTS subrou-
tines. Due to computer time restrictions, not all subset combina-
tions can be inspected for larger values ofN andn. If opt[5] is
zero or missing, the default number of subsets is taken from the
following table.

776 � Chapter 20. Language Reference

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 106 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

If the number of cases (observations)N is smaller thanNlower,
then all possible subsets are used; otherwise,NRep subsets are
chosen randomly. This means that an exhaustive search is per-
formed for opt[5]=−1. If N is larger thanNupper, a note is
printed in the log file indicating how many subsets exist.

x refers to anN × n matrixX of regressors.

s refers to ann+ 1 vector containingn+ 1 observation numbers of a subset
for which the objective function should be evaluated, wheren is the number
of parameters. In other words, the MVE algorithm computes the minimum
volume of the ellipsoid containing the observation numbers contained ins.

Missing values are not permitted inx. Missing values inopt cause the default value
to be used.

The MVE subroutine returns the following values:

sc is a column vector containing the following scalar information:

sc[1] the quantileh used in the objective function

sc[2] number of subsets generated

sc[3] number of subsets with singular linear systems

sc[4] number of nonzero weightswi

sc[5] lowest value of the objective functionFMVE attained (volume of
smallest ellipsoid found)

sc[6] Mahalanobis-like distance used in the computation of the lowest
value of the objective functionFMVE

sc[7] the cutoff value used for the outlier decision

coef is a matrix withn columns containing the following results in its rows:

MVE Call � 777

coef[1] location of ellipsoid center

coef[2] eigenvalues of final robust scatter matrix

coef[3:2+n] the final robust scatter matrix foropt[2]=1 or
opt[2]=3

coef[2+n+1:2+2n] the final robust correlation matrix foropt[3]=1 or
opt[3]=3

dist is a matrix withN columns containing the following results in its rows:

dist[1] Mahalanobis distances

dist[2] robust distances based on the final estimates

dist[3] weights (=1 for small, =0 for large robust distances)

Example

Consider results for Brownlee’s (1965) stackloss data. The three explanatory vari-
ables correspond to measurements for a plant oxidizing ammonia to nitric acid on 21
consecutive days:

• x1 air flow to the plant

• x2 cooling water inlet temperature

• x3 acid concentration

The response variableyi gives the permillage of ammonia lost (stackloss). These data
are also given by Rousseeuw and Leroy (1987, p. 76).

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

778 � Chapter 20. Language Reference

Rousseeuw and Leroy (1987, p. 76) cite a large number of papers where this data
set was analyzed and state that most researchers “concluded that observations 1, 3, 4,
and 21 were outliers”; some people also reported observation 2 as an outlier.

By default, subroutine MVE chooses only 2,000 randomly selected subsets in its
search. There are in total 5,985 subsets of 4 cases out of 21 cases:

a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */

CALL MVE(sc,xmve,dist,optn,a);

The first part of the output shows the classical scatter and correlation matrix:

Minimum Volume Ellipsoid (MVE) Estimation
Consider Ellipsoids Containing 12 Cases.

Classical Covariance Matrix

VAR1 VAR2 VAR3

VAR1 84.057142857 22.657142857 24.571428571
VAR2 22.657142857 9.9904761905 6.6214285714
VAR3 24.571428571 6.6214285714 28.714285714

Classical Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.781852333 0.5001428749
VAR2 0.781852333 1 0.3909395378
VAR3 0.5001428749 0.3909395378 1

Classical Mean

VAR1 60.428571429
VAR2 21.095238095
VAR3 86.285714286

There are 5985 subsets of 4 cases out of 21 cases.
All 5985 subsets will be considered.

The second part of the output shows the results of the optimization (complete subset
sampling):

MVE Call � 779

Complete Enumeration for MVE

Best
Subset Singular Criterion Percent

1497 22 253.312431 25
2993 46 224.084073 50
4489 77 165.830053 75
5985 156 165.634363 100

Minimum Criterion= 165.63436284

Among 5985 subsets 156 are singular.

Observations of Best Subset

7 10 14 20

Initial MVE Location
Estimates

VAR1 58.5
VAR2 20.25
VAR3 87

Initial MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 34.829014749 28.413143611 62.32560534
VAR2 28.413143611 38.036950318 58.659393261
VAR3 62.32560534 58.659393261 267.63348175

The third part of the output shows the optimization results after local improvement:

Final MVE Estimates (Using Local Improvement)

Number of Points with Nonzero Weight=17

Robust MVE Location
Estimates

VAR1 56.705882353
VAR2 20.235294118
VAR3 85.529411765

780 � Chapter 20. Language Reference

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 23.470588235 7.5735294118 16.102941176
VAR2 7.5735294118 6.3161764706 5.3676470588
VAR3 16.102941176 5.3676470588 32.389705882

Eigenvalues of Robust
Scatter Matrix

VAR1 46.597431018
VAR2 12.155938483
VAR3 3.423101087

Robust Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.6220269501 0.5840361335
VAR2 0.6220269501 1 0.375278187
VAR3 0.5840361335 0.375278187 1

The final output presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is lever-
age points when explainingy with these three regressor variables):

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 5.528395 0
2 2.324745 5.637357 0
3 1.593712 4.197235 0
4 1.271898 1.588734 1.000000
5 0.303357 1.189335 1.000000
6 0.772895 1.308038 1.000000
7 1.852661 1.715924 1.000000
8 1.852661 1.715924 1.000000
9 1.360622 1.226680 1.000000
10 1.745997 1.936256 1.000000
11 1.465702 1.493509 1.000000
12 1.841504 1.913079 1.000000
13 1.482649 1.659943 1.000000
14 1.778785 1.689210 1.000000
15 1.690241 2.230109 1.000000
16 1.291934 1.767582 1.000000
17 2.700016 2.431021 1.000000
18 1.503155 1.523316 1.000000
19 1.593221 1.710165 1.000000
20 0.807054 0.675124 1.000000

NCOL Function � 781

21 2.176761 3.657281 0

Distribution of Robust Distances

MinRes 1st Qu. Median

0.6751244996 1.5084120761 1.7159242054

Mean 3rd Qu. MaxRes

2.2282960174 2.0831826658 5.6373573538

Cutoff Value = 3.0575159206

The cutoff value is the square root of
the 0.975 quantile of the chi square
distribution with 3 degrees of freedom.

There are 4 points with large robust distances receiving
zero weights. These may include boundary cases.
Only points whose robust distances are substantially larger
than the cutoff value should be considered outliers.

NAME Function
lists the names of arguments

NAME(arguments);

whereargumentsare the names of existing matrices.

The NAME function returns the names of the arguments in a column vector. In the
following example,N is a 3 × 1 character matrix of element size 8 containing the
character values A, B, and C:

n=name(a,b,c);

The main use of the NAME function is with macros when you want to use an argu-
ment for both its name and its value.

NCOL Function
finds the number of columns of a matrix

NCOL(matrix)

wherematrix is a numeric or character matrix.

The NCOL function returns a single numeric value that is the number of columns in
matrix. If the matrix has not been given a value, the NCOL function returns a value
of 0.

For example, to let B contain the number of columns of matrixS, use the statement

b=ncol(s);

782 � Chapter 20. Language Reference

NLENG Function

finds the size of an element

NLENG(matrix)

wherematrix is a numeric or character matrix.

The NLENG function returns a single numeric value that is the size in bytes of each
element inmatrix. All matrix elements have the same size. If the matrix does not have
a value, then the NLENG function returns a value of 0. This function is different from
the LENGTH function, which returns the size of each element of a character matrix,
omitting the trailing blanks.

The following statement returns the value 7:

a=nleng({"ab " "ijklm ",
"x" " "});

Nonlinear Optimization and Related Subroutines

Table 20.1. Nonlinear Optimization and Related Subroutines
Optimization Subroutines
Conjugate Gradient Optimization Method

CALL NLPCG (rc, xr, "fun", x0 <, opt, blc, tc, par, "ptit", "grd">);

Double Dogleg Optimization Method
CALL NLPDD (rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);

Nelder-Mead Simplex Optimization Method
CALL NLPNMS (rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "nlc">);

Newton-Raphson Optimization Method
CALL NLPNRA (rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

Newton-Raphson Ridge Optimization Method
CALL NLPNRR (rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

(Dual) Quasi-Newton Optimization Method
CALL NLPQN (rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "nlc", "jacnlc">);

Quadratic Optimization Method
CALL NLPQUA (rc, xr, quad, x0 <,opt, blc, tc, par, "ptit", lin>);

Trust-Region Optimization Method
CALL NLPTR (rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

Nonlinear Optimization and Related Subroutines � 783

Least-Squares Subroutines
Hybrid Quasi-Newton Least-Squares Methods

CALL NLPHQN (rc, xr, "fun", x0, opt <,blc, tc, par, "ptit", "jac">);

Levenberg-Marquardt Least-Squares Method
CALL NLPLM (rc, xr, "fun", x0, opt <,blc, tc, par, "ptit", "jac">);

Supplementary Subroutines
Approximate Derivatives by Finite Differences

CALL NLPFDD (f, g, h, "fun", x0 <,par, "grd">);

Feasible Point Subject to Constraints
CALL NLPFEA (xr, x0, blc <,par>);

Note: The names of the optional arguments can be used as keywords. For example,
the following statements are equivalent:

call nlpnrr(rc,xr,"fun",x0,,,ter,,,"grad");
call nlpnrr(rc,xr,"fun",x0) tc=ter grd="grad";

All the optimization subroutines require at least two input arguments.

• TheNLPQUA subroutinerequires thequadmatrix argument, which specifies
the symmetric matrixG of the quadratic problem. The input can be dense or
sparse. Other optimization subroutines require thefunmodule argument, which
specifies an IML module that defines the objective function or functions. For
least-squares subroutines, the FUN module must return a column vector of
lengthm that corresponds to the values of them functionsf1(x), . . . , fm(x),
each evaluated at the pointx = (x1, . . . , xn). For other subroutines, the FUN
module must return the value of the objective functionf = f(x) evaluated at
the pointx.

• The argumentx0 specifies a row vector that defines the number of parame-
tersn. If x0 is a feasible point, it represents a starting point for the iterative
optimization process. Otherwise, a linear programming algorithm is called at
the start of each optimization subroutine to replace the inputx0 by a feasible
starting point.

The other arguments that can be used as input are described in the following list. As
indicated inTable 20.1, not all input arguments apply to each subroutine.

Note that you can specify optional arguments with thekeyword=argumentsyntax.

784 � Chapter 20. Language Reference

• Theopt argument indicates an options vector that specifies details of the opti-
mization process, such as particular updating techniques and whether the ob-
jective function is to be maximized instead of minimized. See“Options Vector”
for details.

• The blc argument specifies a constraint matrix that defines lower and upper
bounds for then parameters as well as general linear equality and inequality
constraints. For details, see“Parameter Constraints.”

• The tc argument specifies a vector of thresholds corresponding to the termina-
tion criteria tested in each iteration. See“Termination Criteria”for details.

• Thepar argument specifies a vector of control parameters that can be used to
modify the algorithms if the default settings do not complete the optimization
process successfully. For details, see“Control Parameters Vector.”

• The"ptit" module argument specifies an IML module that replaces the subrou-
tine used to print the iteration history and test the termination criteria. If the
"ptit" module is specified, the matrix specified by thetc argument has no effect.
See“Termination Criteria”for details.

• The "grd" module argument specifies an IML module that computes the gra-
dient vector,g = ∇f , at a given input pointx. See“Objective Function and
Derivatives”for details.

• The"hes"module argument specifies an IML module that computes then× n
Hessian matrix,G = ∇2f , at a given input pointx. See“Objective Function
and Derivatives”for details.

• The"jac" module argument specifies an IML module that computes them×n
Jacobian matrix,J = (∇fi), of them least-squares functions at a given input
pointx. See“Objective Function and Derivatives”for details.

• The "nlc" module argument specifies an IML module that allows the com-
putation of general equality and inequality constraints. This is the method
by which nonlinear constraints must be specified. For details, see“Parameter
Constraints.”

• The "jacnlc" module argument specifies an IML module that computes the
Jacobian matrix of first-order derivatives of the equality and inequality con-
straints specified by the NLC module. For details, see“Parameter Constraints”.

• The lin argument specifies the linear part of the quadratic optimization prob-
lem. See“NLPQUA Call” for details.

The modules that can be used as input arguments for the subroutines ("fun", "grd",
"hes", "jac", "ptit", "nlc", and "jacnlc") allow only a single input parameterx =
(x1, . . . , xn). You can provide more input parameters for these modules by using the
GLOBAL clause. See“Using the GLOBAL Clause”for an example.

All the optimization subroutines return the following results:

• The scalar return coderc indicates the reason for the termination of the opti-
mization process. A return coderc > 0 indicates successful termination cor-
responding to one of the specified termination criteria. A return coderc < 0

NLPCG Call � 785

indicates unsuccessful termination, that is, that the resultxr is unreliable. See
“Definition of Return Codes”for more details.

• The row vectorxr, which has lengthn, the number of parameters, contains the
optimal point whenrc > 0.

NLPCG Call
nonlinear optimization by conjugate gradient method

CALL NLPCG(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPCG subroutine requires function and gradient calls; it does not need second-
order derivatives. The gradient vector contains the first derivatives of the objective
functionf with respect to the parametersx1, . . . , xn, as follows:

g(x) = ∇f(x) =
(
∂f

∂xj

)
If you do not specify an IML module with the"grd" argument, the first-order deriva-
tives are approximated by finite difference formulas using only function calls. The
NLPCG algorithm can require many function and gradient calls, but it requires less
memory than other subroutines for unconstrained optimization. In general, many it-
erations are needed to obtain a precise solution, but each iteration is computationally
inexpensive. You can specify one of four update formulas for generating the conju-
gate directions with the fourth element of theopt input argument.

Value of opt[4] Update Method
1 Automatic restart method of Powell (1977) and Beale (1972).

This is the default.
2 Fletcher-Reeves update (Fletcher 1987)
3 Polak-Ribiere update (Fletcher 1987)
4 Conjugate-descent update of Fletcher (1987)

The NLPCG subroutine is useful for optimization problems with largen. For the
unconstrained or boundary constrained case, the NLPCG method needs only ordern
bytes of working memory, whereas the other optimization methods require ordern2

bytes of working memory. Duringn successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line search is done along the search
direction to find an approximate optimum of the objective function. The default line-
search method uses quadratic interpolation and cubic extrapolation to obtain a step
sizeα that satisfies the Goldstein conditions. One of the Goldstein conditions can be
violated if the feasible region defines an upper limit for the step size. You can specify
other line-search algorithms with the fifth element of theoptargument.

For an example of the NLPCG subroutine, see“Constrained Betts Function”.

786 � Chapter 20. Language Reference

NLPDD Call

nonlinear optimization by double dogleg method

CALL NLPDD(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The double dogleg optimization method combines the ideas of the quasi-Newton and
trust-region methods. In each iteration, the algorithm computes the step,s(k), as

a linear combination of the steepest descent or ascent search direction,s
(k)
1 , and a

quasi-Newton search direction,s(k)
2 , as follows:

s(k) = α1s
(k)
1 + α2s

(k)
2 .

The steps(k) must remain within a specified trust-region radius (refer to Fletcher
1987). Hence, the NLPDD subroutine uses the dual quasi-Newton update but does
not perform a line search. You can specify one of two update formulas with the fourth
element of theopt input argument.

Value of opt[4] Update Method
1 Dual BFGS update of the Cholesky factor of the Hessian matrix.

This is the default.
2 Dual DFP update of the Cholesky factor of the Hessian matrix

The double dogleg optimization technique works well for medium to moderately
large optimization problems, in which the objective function and the gradient are
much faster to compute than the Hessian. The implementation is based on Dennis
and Mei (1979) and Gay (1983), but it is extended for boundary and linear con-
straints. The NLPDD subroutine generally needs more iterations than the techniques
that require second-order derivatives (NLPTR, NLPNRA, andNLPNRR), but each
of the NLPDD iterations is computationally inexpensive. Furthermore, the NLPDD
subroutine needs only gradient calls to update the Cholesky factor of an approximate
Hessian.

In addition to the standard iteration history, the NLPDD routine prints the following
information:

• The headinglambdarefers to the parameterλ of the double dogleg step. A
value of 0 corresponds to the full (quasi-) Newton step.

• The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero.

The following statements invoke the NLPDD subroutine to solve the constrained
Betts optimization problem (see“Constrained Betts Function”).

NLPDD Call � 787

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 1};
call nlpdd(rc,xres,"F_BETTS",x,optn,con);

The preceding statements produce the following iteration history.

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2 Radius 1

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 0 -99.54678
2 0 3 0 -99.59120
3 0 5 0 -99.90252
4 0 6 1 -99.96000
5 0 7 1 -99.96000
6 0 8 1 -99.96000

Objective Max Abs Slope of
Function Gradient Search

Iter Change Element Lambda Direction

1 1.0092 0.1346 6.012 -1.805
2 0.0444 0.1279 0 -0.0228
3 0.3113 0.0624 0 -0.209
4 0.0575 0.00432 0 -0.0975
5 4.66E-6 0.000079 0 -458E-8
6 1.559E-9 0 0 -16E-10

788 � Chapter 20. Language Reference

Optimization Results

Iterations 6 Function Calls 9
Gradient Calls 8 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -1.56621E-9 Radius 1

GCONV convergence criterion satisfied.

NLPFDD Call

approximates derivatives by finite differences method

CALL NLPFDD(f, g, h, "fun", x0, <,par, "grd">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPFDD subroutine can be used for the following tasks:

• If the module"fun" returns a scalar, the NLPFDD subroutine computes the
function valuef, the gradient vectorg, and the Hessian matrixh, all evaluated
at the pointx0.

• If the module"fun" returns a column vector ofm function values, the sub-
routine assumes that a least-squares function is specified, and it computes the
function vectorf, the Jacobian matrixJ, and the crossproduct of the Jacobian
matrixJ′J at the pointx0. Note that in this case, you must set the first element
of thepar argument tom.

If any of the results cannot be computed, the subroutine returns a missing value for
that result.

You can specify the following input arguments with the NLPFDD subroutine:

• The "fun" argument refers to an IML module that returns either a scalar value
or a column vector of lengthm. This module returns the value of the objec-
tive function or, for least-squares problems, the values of them functions that
comprise the objective function.

• The x0 argument is a vector of lengthn that defines the point at which the
functions and derivatives should be computed.

• Thepar argument is a vector that defines options and control parameters. Note
that thepar argument in the NLPFDD call is different from the one used in the
optimization subroutines.

• The "grd" argument is optional and refers to an IML module that returns a
vector defining the gradient of the function atx0. If the "fun" argument returns
a vector of values instead of a scalar, the"grd" argument is ignored.

NLPFDD Call � 789

If the "fun" module returns a scalar, the subroutine returns the following values:

• f is the value of the function at the pointx0.

• g is a vector containing the value of the gradient at the pointx0. If you specify
the"grd" argument, the gradient is computed from that module. Otherwise, the
approximate gradient is computed by a finite difference approximation using
calls of the function module in a neighborhood ofx0.

• h is a matrix containing a finite difference approximation of the value of the
Hessian at the pointx0. If you specify the"grd" argument, the Hessian is
computed by calls of that module in a neighborhood ofx0. Otherwise, it is
computed by calls of the function module in a neighborhood ofx0.

If the "fun" module returns a vector, the subroutine returns the following values:

• f is a vector containing the values of them functions comprising the objective
function at the pointx0.

• g is them × n Jacobian matrixJ, which contains the first-order derivatives of
the functions with respect to the parameters, evaluated atx0. It is computed by
finite difference approximations in a neighborhood ofx0.

• h is then × n crossproduct of the Jacobian matrix,JTJ. It is computed by
finite difference approximations in a neighborhood ofx0.

Thepar argument is a vector of length 3.

• par[1] corresponds to theopt[1] argument in the optimization subroutines. This
argument is relevant only to least-squares optimization methods, in which case
it specifies the number of functions returned by the module"fun". If par[1] is
missing or is smaller than 1, it is set to 1.

• par[2] corresponds to theopt[8] argument in the optimization subroutines. It
determines what type of approximation is to be used and how the finite differ-
ence interval,h, is to be computed. See“Finite Difference Approximations of
Derivatives”for details.

• par[3] corresponds to thepar[8] argument in the optimization subroutines. It
specifies the number of accurate digits in evaluating the objective function. The
default is− log10(ε), whereε is the machine precision.

If you specify a missing value in thepar argument, the default value is used.

The NLPFDD subroutine is particularly useful for checking your analytical derivative
specifications of the"grd", "hes", and"jac" modules. You can compare the results
of the modules with the finite difference approximations of the derivatives off at the
pointx0 to verify your specifications.

In the unconstrained Rosenbrock problem (see“Unconstrained Rosenbrock
Function”), the objective function is

f(x) = 50(x2 − x2
1)

2 +
1
2
(1− x1)2

790 � Chapter 20. Language Reference

Then the gradient and the Hessian, evaluated at the pointx = (2, 7), are

g′ =

 ∂f
∂x1

∂f
∂x2

 =
[

200x3
1 − 200x1x2 + x1 − 1
−100x2

1 + 100x2

]
=
[
−1199

300

]

H =

 ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

 =
[

600x2
1 − 200x2 + 1 −200x1

−200x1 100

]
=
[

1001 −400
−400 100

]

The following statements define the Rosenbrock function and use the NLPFDD call
to compute the gradient and the Hessian.

start F_ROSEN(x);
y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;
x = {2 7};
CALL NLPFDD(crit,grad,hess,"F_ROSEN",x);
print grad;
print hess;

GRAD

-1199 300.00001

HESS

1000.9998 -400.0018
-400.0018 99.999993

If the Rosenbrock problem is considered from a least-squares perspective, the two
functions are

f1(x) = 10(x2 − x2
1)

f2(x) = 1− x1

Then the Jacobian and the crossproduct of the Jacobian, evaluated at the pointx =
(2, 7), are

J =

 ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

 =
[
−20x1 10
−1 0

]
=
[
−40 10
−1 0

]

JTJ =
[

400x2
1 + 1 −200x1

−200x1 100

]
=
[

1601 −400
−400 100

]

NLPFEA Call � 791

The following statements define the Rosenbrock problem in a least-squares frame-
work and use the NLPFDD call to compute the Jacobian and the crossproduct matrix.
Since the value of the PARMS variable, which is used for thepar argument, is 2, the
NLPFDD subroutine allocates memory for a least-squares problem with two func-
tions,f1(x) andf2(x).

start F_ROSEN(x);
y = j(2,1,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;
x = {2 7};
parms = 2;
CALL NLPFDD(fun,jac,crpj,"F_ROSEN",x,parms);
print jac;
print crpj;

The finite difference approximations for Jacobian follow.

JAC

-40 10
-1 0

CRPJ

1601 -400
-400 100

NLPFEA Call

computes feasible points subject to constraints

CALL NLPFEA(xr, x0, blc <,par>);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPFEA subroutine tries to compute a point that is feasible subject to a set of
boundary and linear constraints. You can specify boundary and linear constraints
that define an empty feasible region, in which case the subroutine will return missing
values.

You can specify the following input arguments with the NLPFEA subroutine:

• x0 is a row vector defining the coordinates of a point that is not necessarily
feasible for a set of linear and boundary constraints.

792 � Chapter 20. Language Reference

• blc is anm×nmatrix defining a set ofm boundary and linear constraints. See
“Parameter Constraints”for details.

• par is a vector of length two. The argument is different from the one used
in the optimization subroutines. The first element sets the LCEPS parameter,
which controls how precisely the returned point must satisfy the constraints.
The second element sets the LCSING parameter, which specifies the criterion
for deciding when constraints are considered linearly dependent. For details,
see“Control Parameters Vector.”

The NLPFEA subroutine returns thexr argument. The result is a vector containing
either then coordinates of a feasible point, which indicates that the subroutine was
successful, or missing values, which indicates that the subroutine could not find a
feasible point.

The following statements call the NLPFEA subroutine with the constraints from the
Betts problem (see“Constrained Betts Function”) and an initial infeasible pointx0 =
(−17,−61). The subroutine returns the feasible point(2,−50) as the vector XFEAS.

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-17. -61};
call nlpfea(xfeas,x,con);

NLPHQN Call

calculates hybrid quasi-Newton least squares

CALL NLPHQN(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "jac">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPHQN subroutine uses one of the Fletcher and Xu (1987) hybrid quasi-
Newton methods. Refer also to Al-Baali and Fletcher (1985, 1986). In each iteration,
the subroutine uses a criterion to decide whether a Gauss-Newton or a dual quasi-
Newton search direction is appropriate. You can choose one of three criteria (HY1,
HY2, or HY3) proposed by Fletcher and Xu (1987) with the sixth element of the
opt vector. The default is HY2. The subroutine computes the crossproduct Jacobian
(for the Gauss-Newton step), updates the Cholesky factor of an approximate Hessian
(for the quasi-Newton step), and performs a line search to compute an approximate
minimum along the search direction. The default line-search technique used by the
NLPHQN method is designed for least-squares problems (refer to Lindström and
Wedin 1984, and Al-Baali and Fletcher 1986), but you can specify a different line-
search algorithm with the fifth element of theopt argument. See“Options Vector”
for details.

You can specify two update formulas with the fourth element of theopt argument as
indicated in the following table.

NLPHQN Call � 793

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.

The NLPHQN subroutine needs approximately the same amount of working memory
as theNLPLM subroutine, and in most applications, the latter seems to be superior.
Hence, the NLPHQN method is recommended only when theNLPLM methoden-
counters problems.

Note: In least-squares subroutines, you must set the first element of theoptvector to
m, the number of functions.

In addition to the standard iteration history, the NLPHQN subroutine prints the fol-
lowing information:

• Under the headingIter, an asterisk (*) printed after the iteration number indi-
cates that, on the basis of the Fletcher and Xu (1987) criterion, the subroutine
used a Gauss-Newton search direction instead of a quasi-Newton search direc-
tion.

• The headingalphais the step size,α, computed with the line-search algorithm.

• The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The following statements use the NLPHQN call to solve the unconstrained
Rosenbrock problem (see“Unconstrained Rosenbrock Function”).

title ’Test of NLPHQN subroutine: No Derivatives’;
start F_ROSEN(x);

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;

x = {-1.2 1.};
optn = {2 2};
call nlphqn(rc,xr,"F_ROSEN",x,optn);

The iteration history for the subroutine follows.

794 � Chapter 20. Language Reference

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799999
2 X2 1.000000 -44.000000

Value of Objective Function = 12.1

Hybrid Quasi-Newton LS Minimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Version HY2 of Fletcher & Xu (1987)

Gradient Computed by Finite Differences
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.7999987

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 3 0 7.22423
2* 0 5 0 0.97090
3* 0 7 0 0.81911
4 0 9 0 0.69103
5 0 19 0 0.47345
6* 0 21 0 0.35906
7* 0 22 0 0.23342
8* 0 24 0 0.14799
9* 0 26 0 0.00948
10* 0 28 0 1.98834E-6
11* 0 30 0 7.0768E-10
12* 0 32 0 2.0246E-21

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 4.8758 56.9322 0.0616 -628.8
2* 6.2533 2.3017 0.266 -14.448
3* 0.1518 3.7839 0.119 -1.942
4 0.1281 5.5103 2.000 -0.144
5 0.2176 8.8638 11.854 -0.194
6* 0.1144 9.8734 0.253 -0.947
7* 0.1256 10.1490 0.398 -0.718
8* 0.0854 11.6248 1.346 -0.467
9* 0.1385 2.6275 1.443 -0.296
10* 0.00947 0.00609 0.938 -0.0190
11* 1.988E-6 0.000748 1.003 -398E-8

NLPLM Call � 795

12* 7.08E-10 1.82E-10 1.000 -14E-10

Optimization Results

Iterations 12 Function Calls 33
Jacobian Calls 13 Gradient Calls 19
Active Constraints 0 Objective Function 2.024612E-21
Max Abs Gradient Element 1.816863E-10 Slope of Search Direction -1.415366E-9

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 1.816863E-10
2 X2 1.000000 -1.22069E-10

Value of Objective Function = 2.024612E-21

NLPLM Call

calculates Levenberg-Marquardt least squares

CALL NLPLM(rc, xr, "fun", x0, opt, blc, tc, par, "ptit", "jac">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPLM subroutine uses the Levenberg-Marquardt method, which is an effi-
cient modification of the trust-region method for nonlinear least-squares problems
and is implemented as in Moré (1978). This is the recommended algorithm for
small to medium least-squares problems. Large least-squares problems can often be
processed more efficiently with other subroutines, such as theNLPCGandNLPQN
methods. In each iteration, the NLPLM subroutine solves a quadratically-constrained
quadratic minimization problem that restricts the step to the boundary or interior of
ann-dimensional elliptical trust region.

Them functionsf1(x), . . . , fm(x) are computed by the module specified with the
"fun" module argument. Them×n Jacobian matrix,J, contains the first-order deriva-
tives of them functions with respect to then parameters, as follows:

J(x) = (∇f1, . . . ,∇fm) =
(
∂fi

∂xj

)
You can specifyJ with the "jac" module argument; otherwise, the subroutine will
compute it with finite difference approximations. In each iteration, the subroutine

796 � Chapter 20. Language Reference

computes the crossproduct of the Jacobian matrix,JTJ, to be used as an approximate
Hessian.

Note: In least-squares subroutines, you must set the first element of theoptvector to
m, the number of functions.

In addition to the standard iteration history, the NLPLM subroutine also prints the
following information:

• Under the headingIter, an asterisk (*) printed after the iteration number in-
dicates that the computed Hessian approximation was singular and had to be
ridged with a positive value.

• The headinglambdarepresents the Lagrange multiplier,λ. This has a value
of zero when the optimum of the quadratic function approximation is inside
the trust region, in which case a trust-region-scaled Newton step is performed.
It is greater than zero when the optimum is at the boundary of the trust re-
gion, in which case the scaled Newton step is too long to fit in the trust region
and a quadratically-constrained optimization is done. Large values indicate
optimization difficulties, and as in Gay (1983), a negative value indicates the
special case of an indefinite Hessian matrix.

• The headingrho refers toρ, the ratio between the achieved and predicted dif-
ference in function values. Values that are much smaller than one indicate
optimization difficulties. Values close to or larger than one indicate that the
trust region radius can be increased.

The iteration history for the solution of the unconstrained Rosenbrock problem fol-
lows. See the sectionUnconstrained Rosenbrock Functionfor the statements that
generate this output.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799999
2 X2 1.000000 -44.000000

Value of Objective Function = 12.1

Levenberg-Marquardt Optimization

Scaling Update of More (1978)
Gradient Computed by Finite Differences
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Functions (Observations) 2

NLPLM Call � 797

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.7999987 Radius 2626.5613171

Actual

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 4 0 2.18185
2 0 6 0 1.59370
3 0 7 0 1.32848
4 0 8 0 1.03891
5 0 9 0 0.78943
6 0 10 0 0.58838
7 0 11 0 0.34224
8 0 12 0 0.19630
9 0 13 0 0.11626

10 0 14 0 0.0000396
11 0 15 0 2.4652E-30

Ratio
Between
Actual

Objective Max Abs and
Function Gradient Predicted

Iter Change Element Lambda Change

1 9.9181 17.4704 0.00804 0.964
2 0.5881 3.7015 0.0190 0.988
3 0.2652 7.0843 0.00830 0.678
4 0.2896 6.3092 0.00753 0.593
5 0.2495 7.2617 0.00634 0.486
6 0.2011 7.8837 0.00462 0.393
7 0.2461 6.6815 0.00307 0.524
8 0.1459 8.3857 0.00147 0.469
9 0.0800 9.3086 0.00016 0.409

10 0.1162 0.1781 0 1.000
11 0.000040 4.44E-14 0 1.000

Optimization Results

Iterations 11 Function Calls 16
Jacobian Calls 12 Active Constraints 0
Objective Function 2.46519E-30 Max Abs Gradient Element 4.440892E-14
Lambda 0 Actual Over Pred Change 1
Radius 0.0178062912

ABSGCONV convergence criterion satisfied.

798 � Chapter 20. Language Reference

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 -4.44089E-14
2 X2 1.000000 2.220446E-14

Value of Objective Function = 2.46519E-30

NLPNMS Call

nonlinear optimization by Nelder-Mead simplex method

CALL NLPNMS(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "nlc">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The Nelder-Mead simplex method is one of the subroutines that can solve optimiza-
tion problems with nonlinear constraints. It does not use any derivatives, and it does
not assume that the objective function has continuous derivatives. However, the ob-
jective function must be continuous. The NLPNMS technique uses a large number of
function calls, and it may be unable to generate precise results whenn > 40.

The NLPNMS subroutine uses the following simplex algorithms:

• For unconstrained or only boundary-constrained problems, the original Nelder-
Mead simplex algorithm is implemented and extended to boundary constraints.
This algorithm does not compute the objective for infeasible points, and it is
invoked if the"nlc" module argument is not specified and theblc argument
contains at most two rows (corresponding to lower and upper bounds).

• For linearly or nonlinearly constrained problems, a slightly modified ver-
sion of Powell’s (1992) Constrained Optimization BY Linear Approximations
(COBYLA) implementation is used. This algorithm is invoked if the"nlc"
module argument is specified or if at least one linear constraint is specified
with theblc argument.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear
constraints, but in the unconstrained or boundary-constrained cases, it can be faster.
It changes the shape of the simplex by adapting the nonlinearities of the objective
function; this contributes to an increased speed of convergence.

NLPNMS Call � 799

Powell’s COBYLA Algorithm

Powell’s COBYLA algorithm is a sequential trust-region algorithm that tries to main-
tain a regularly-shaped simplex throughout the iterations. The algorithm uses a
monotone-decreasing radius,ρ, of a spheric trust region. The modification imple-
mented in the NLPNMS call permits an increase of the trust-region radiusρ in special
situations. A sequence of iterations is performed with a constant trust-region radius
ρ until the computed function reduction is much less than the predicted reduction.
Then, the trust-region radiusρ is reduced. The trust-region radius is increased only
if the computed function reduction is relatively close to the predicted reduction and
if the simplex is well-shaped. The start radius,ρbeg, can be specified with the second
element of thepar argument, and the final radius,ρend, can be specified with the ninth
element of thetc argument. Convergence to small values ofρend, or high-precision
convergence, may require many calls of the function and constraint modules and may
result in numerical problems. The main reasons for the slow convergence of the
COBYLA algorithm are as follows:

• Linear approximations of the objective and constraint functions are used lo-
cally.

• Maintaining the regularly-shaped simplex and not adapting its shape to non-
linearities yields very small simplexes for highly nonlinear functions, such as
fourth-order polynomials.

To allocate memory for the vector returned by the"nlc" module argument, you must
specify the total number of nonlinear constraints with the tenth element of theopt
argument. If any of the constraints are equality constraints, the number of equal-
ity constraints must be specified by the eleventh element of theopt argument. See
“Parameter Constraints”for details.

For more information on the special sets of termination criteria used by the NLPNMS
algorithms, see“Termination Criteria.”

In addition to the standard iteration history, the NLPNMS subroutine prints the fol-
lowing information. For unconstrained or boundary-constrained problems, the sub-
routine also prints

• difcrit, which, in this subroutine, refers to the difference between the largest
and smallest function values of then+ 1 simplex vertices

• std, which is the standard deviation of the function values of the simplex ver-
tices

• deltax, which is the vertex length of a restarted simplex. If there are conver-
gence problems, the algorithm restarts the iteration process with a simplex of
smaller vertex length.

• size, which is the averageL1 distance of the simplex vertex with the smallest
function value to the other simplex vertices

For linearly and nonlinearly constrained problems, the subroutine prints the follow-
ing:

800 � Chapter 20. Language Reference

• conmaxis the maximum constraint violation.

• meritf is the value of the merit function,Φ.

• difmerit is the difference between adjacent values of the merit function.

• ρ is the trust-region radius.

The following code uses the NLPNMS call to solve the Rosen-Suzuki problem (see
“Rosen-Suzuki Problem”), which has three nonlinear constraints:

start F_HS43(x);
f = x*x‘ + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);

finish F_HS43;
start C_HS43(x);

c = j(3,1,0.);
c[1] = 8 - x*x‘ - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x‘ - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]

- 2.*x[1] + x[2] + x[4];
return(c);

finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpnms(rc,xres,"F_HS43",x,optn,,,,,"C_HS43");

Part of the output produced by the preceding code follows.

Optimization Start
Parameter Estimates

N Parameter Estimate

1 X1 1.000000
2 X2 1.000000
3 X3 1.000000
4 X4 1.000000

Value of Objective Function = -19

Values of Nonlinear Constraints

Constraint Residual

[1] 4.0000
[2] 6.0000
[3] 1.0000

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

NLPNMS Call � 801

Minimum Iterations 0
Maximum Iterations 1000
Maximum Function Calls 3000
Iterations Reducing Constraint Violation 0
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0.0001
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion -1.34078E154
Initial Simplex Size (INSTEP) 0.5
Singularity Tolerance (SINGULAR) 1E-8

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -29.5 Maximum Constraint Violation 4.5

Maximum
Function Objective Constraint

Iter Restarts Calls Function Violation

1 0 12 -52.80342 4.3411
2 0 17 -39.51475 0.0227
3 0 53 -44.02098 0.00949
4 0 62 -44.00214 0.000833
5 0 72 -44.00009 0.000033
6 0 79 -44.00000 1.783E-6
7 0 90 -44.00000 1.363E-7
8 0 94 -44.00000 1.543E-8

Between
Actual

Merit and
Merit Function Predicted

Iter Function Change Change

1 -42.3031 12.803 1.000
2 -39.3797 -2.923 0.250
3 -43.9727 4.593 0.0625
4 -43.9977 0.0249 0.0156
5 -43.9999 0.00226 0.0039
6 -44.0000 0.00007 0.0010
7 -44.0000 1.74E-6 0.0002
8 -44.0000 5.33E-7 0.0001

802 � Chapter 20. Language Reference

Optimization Results

Iterations 8 Function Calls 95
Restarts 0 Objective Function -44.00000003
Maximum Constraint Violation 1.543059E-8 Merit Function -43.99999999
Actual Over Pred Change 0.0001

ABSXCONV convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results
Parameter Estimates

N Parameter Estimate

1 X1 -0.000034167
2 X2 1.000004
3 X3 2.000023
4 X4 -0.999971

Value of Objective Function = -44.00000003

Values of Nonlinear Constraints

Constraint Residual

[1] -1.54E-8 *?*
[2] 1.0000
[3] -1.5E-8 *?*

NLPNRA Call

nonlinear optimization by Newton-Raphson method

CALL NLPNRA(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPNRA algorithm uses a pure Newton step at each iteration when both the
Hessian is positive definite and the Newton step successfully reduces the value of the
objective function. Otherwise, it performs a combination of ridging and line-search
to compute successful steps. If the Hessian is not positive definite, a multiple of the
identity matrix is added to the Hessian matrix to make it positive definite (refer to
Eskow & Schnabel 1991).

NLPNRA Call � 803

The subroutine uses the gradientg(k) = ∇f(x(k)) and the Hessian matrix

G(k) = ∇2f(x(k)), and it requires continuous first- and second-order derivatives of
the objective function inside the feasible region. If second-order derivatives are com-
puted efficiently and precisely, the NLPNRA method does not need many function,
gradient, and Hessian calls, and it may perform well for medium to large problems.

Note that using only function calls to compute finite difference approximations for
second-order derivatives can be computationally very expensive and may contain sig-
nificant rounding errors. If you use the"grd" input argument to specify a module that
computes first-order derivatives analytically, you can reduce drastically the compu-
tation time for numerical second-order derivatives. The computation of the finite
difference approximation for the Hessian matrix generally uses onlyn calls of the
module that specifies the gradient.

In each iteration, a line search is done along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation. You can specify other line-search al-
gorithms with the fifth element of theoptargument. See“Options Vector”for details.

In unconstrained and boundary constrained cases, the NLPNRA algorithm can take
advantage of diagonal or sparse Hessian matrices that are specified by the input ar-
gument"hes". To use sparse Hessian storage, the value of the ninth element of the
opt argument must specify the number of nonzero Hessian elements returned by the
Hessian module. See“Objective Function and Derivatives”for more details.

In addition to the standard iteration history, the NLPNRA subroutine prints the fol-
lowing information:

• The headingalphais the step size,α, computed with the line-search algorithm.

• The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The following statements invoke the NLPNRA subroutine to solve the constrained
Betts optimization problem (see“Constrained Betts Function”). The iteration history
follows.

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpnra(rc,xres,"F_BETTS",x,optn,con);
quit;

804 � Chapter 20. Language Reference

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint
1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Optimization with Line Search

Without Parameter Scaling
Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences
Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 0 -98.81551
2* 0 3 0 -99.40840
3* 0 4 1 -99.87504
4 0 5 1 -99.96000
5 0 6 1 -99.96000

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 0.2779 1.8000 0.100 -2.925
2* 0.5929 1.2713 0.294 -2.365
3* 0.4666 0.5829 0.542 -1.181
4 0.0850 0.000039 1.000 -0.170
5 3.9E-10 9.537E-7 1.000 -76E-11

Optimization Results

Iterations 5 Function Calls 7
Hessian Calls 6 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -7.64376E-10 Ridge 0

NLPNRR Call � 805

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 -0.000000196 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPNRR Call

nonlinear optimization by Newton-Raphson ridge method

CALL NLPNRR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPNRR algorithm uses a pure Newton step when both the Hessian is positive
definite and the Newton step successfully reduces the value of the objective function.
Otherwise, a multiple of the identity matrix is added to the Hessian matrix.

The subroutine uses the gradientg(k) = ∇f(x(k)) and the Hessian matrix

G(k) = ∇2f(x(k)), and it requires continuous first- and second-order derivatives of
the objective function inside the feasible region.

Note that using only function calls to compute finite difference approximations for
second-order derivatives can be computationally very expensive and may contain sig-
nificant rounding errors. If you use the"grd" input argument to specify a module that
computes first-order derivatives analytically, you can reduce drastically the compu-
tation time for numerical second-order derivatives. The computation of the finite
difference approximation for the Hessian matrix generally uses onlyn calls of the
module that specifies the gradient.

The NLPNRR method performs well for small to medium-sized problems, and it
does not need many function, gradient, and Hessian calls. However, if the gradient is
not specified analytically by using the"grd" module argument, or if the computation

806 � Chapter 20. Language Reference

of the Hessian module specified with the"hes" argument is computationally expen-
sive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be more
efficient.

In addition to the standard iteration history, the NLPNRR subroutine prints the fol-
lowing information:

• The headingridge refers to the value of the nonnegative ridge parameter. A
value of zero indicates that a Newton step is performed. A value greater than
zero indicates either that the Hessian approximation is zero or that the Newton
step fails to reduce the optimization criterion. A large value can indicate opti-
mization difficulties.

• The headingrho refers toρ, the ratio of the achieved difference in function
values and the predicted difference, based on the quadratic function approxi-
mation. A value that is much smaller than one indicates possible optimization
difficulties.

The following statements invoke the NLPNRR subroutine to solve the constrained
Betts optimization problem (see“Constrained Betts Function”). The iteration history
follows.

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpnrr(rc,xres,"F_BETTS",x,optn,con);
quit;

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

NLPNRR Call � 807

Newton-Raphson Ridge Optimization

Without Parameter Scaling
Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

\end{jverbatim}

\begin{kverbatim}

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 1 -99.87337
2 0 3 1 -99.96000
3 0 4 1 -99.96000

Ratio
Actual

Objective Max Abs and
Function Gradient Predicted

Iter Change Element Ridge Change

1 1.3358 0.5887 0 0.706
2 0.0866 0.000040 0 1.000
3 4.07E-10 0 0 1.014

Optimization Results

Iterations 3 Function Calls 5
Hessian Calls 4 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.0135158294

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

808 � Chapter 20. Language Reference

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 0.000000134 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPQN Call

nonlinear optimization by quasi-Newton method

CALL NLPQN(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit",

"grd", "nlc", "jacnlc">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPQN subroutine uses (dual) quasi-Newton optimization techniques, and it
is one of the two subroutines available that can solve problems with nonlinear con-
straints. These techniques work well for medium to moderately large optimization
problems where the objective function and the gradient are much faster to compute
than the Hessian matrix. The NLPQN subroutine does not need to compute second-
order derivatives, but it generally requires more iterations than the techniques that
compute second-order derivatives.

The two categories of problems solved by the NLPQN subroutine are uncon-
strained or linearly constrained problems and nonlinearly constrained problems.
Unconstrained or linearly constrained problems do not use the"nlc" or "jacnlc" mod-
ule arguments, whereas nonlinearly constrained problems use the arguments to spec-
ify the nonlinear constraints and the Jacobian matrix of their first-order derivatives,
respectively.

The type of optimization problem specified determines the algorithm that the sub-
routine invokes. The algorithms are very different, and they use different sets of
termination criteria. For more details, see“Termination Criteria.”

Unconstrained or Linearly Constrained QN Optimization

The NLPQN subroutine invokes this algorithm if you do not specify the"nlc" ar-
gument. Using the fourth element of theopt argument, you can specify two update
formulas for either the original quasi-Newton algorithm or the dual quasi-Newton
algorithm, as indicated in the following table:

NLPQN Call � 809

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.
3 Original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) up-

date of the inverse Hessian matrix.
4 Original Davidon, Fletcher, and Powell (DFP) update of the in-

verse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation to obtain a step size that satisfies the
Goldstein conditions. One of the Goldstein conditions can be violated if the feasible
region defines an upper limit of the step size. Violating the left-side Goldstein con-
dition can affect the positive definiteness of the quasi-Newton update. In these cases,
either the update is skipped or the iterations are restarted with an identity matrix re-
sulting in the steepest descent or ascent search direction. You can specify line-search
algorithms different from the default method with the fifth element of theopt argu-
ment.

Note: In Release 6.08, the DBFGS and DDFP updates were implemented with the
NLPDQN subroutine. In Release 6.09 and in later releases, these updates are speci-
fied with the NLPQN subroutine, and the NLPDQN subroutine is not permitted.

The following statements invoke the NLPQN subroutine to solve the Rosenbrock
problem (see“Unconstrained Rosenbrock Function”):

start F_ROSEN(x);
y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;
x = {-1.2 1.};
optn = {0 2 . 2};
call nlpqn(rc,xr,"F_ROSEN",x,optn);

Since OPTN[4] = 2, the DDFP update is performed. The gradient is approximated
by finite differences since no module is specified that computes the first-order deriva-
tives. Part of the iteration history follows. In addition to the standard iteration history,
the NLPQN subroutine prints the following information for unconstrained or linearly
constrained problems:

• The headingalphais the step size,α, computed with the line-search algorithm.

• The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly

810 � Chapter 20. Language Reference

smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799989
2 X2 1.000000 -43.999999

Value of Objective Function = 12.1

Dual Quasi-Newton Optimization

Dual Davidon - Fletcher - Powell Update (DDFP)
Gradient Computed by Finite Differences

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.79998927

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 4 0 2.06405
2 0 7 0 1.92035
3 0 10 0 1.78089
4 0 13 0 1.33331
5 0 17 0 1.13400
6 0 22 0 0.93915
7 0 24 0 0.84821
8 0 30 0 0.54334
9 0 32 0 0.46593

10 0 37 0 0.35322
12 0 41 0 0.20282
12 0 41 0 0.20282
13 0 46 0 0.11714
14 0 51 0 0.07149
15 0 53 0 0.04746
16 0 58 0 0.02759
17 0 60 0 0.01625
18 0 62 0 0.00475
19 0 66 0 0.00167
20 0 70 0 0.0005952
21 0 72 0 0.0000771
23 0 78 0 2.39914E-8
23 0 78 0 2.39914E-8
24 0 80 0 5.0936E-11

NLPQN Call � 811

25 0 119 0 3.9538E-11

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 10.0359 0.7917 0.0340 -628.8
2 0.1437 8.6301 6.557 -0.0363
3 0.1395 11.0943 8.193 -0.0288
4 0.4476 7.6069 33.376 -0.0269
5 0.1993 0.9386 15.438 -0.0260
6 0.1948 3.5290 11.537 -0.0233
7 0.0909 4.8308 8.124 -0.0193
8 0.3049 4.1770 35.143 -0.0186
9 0.0774 0.9479 8.708 -0.0178

10 0.1127 2.5981 10.964 -0.0147
11 0.0894 3.3028 13.590 -0.0121
12 0.0610 0.6451 10.000 -0.0116
13 0.0857 1.6603 11.395 -0.0102
14 0.0456 2.4050 11.559 -0.0074
15 0.0240 0.5628 6.868 -0.0071
16 0.0199 1.3282 5.365 -0.0055
17 0.0113 1.9246 5.882 -0.0035
18 0.0115 0.6357 8.068 -0.0032
19 0.00307 0.4810 2.336 -0.0022
20 0.00108 0.6043 3.287 -0.0006
21 0.000518 0.0289 2.329 -0.0004
22 0.000075 0.0365 1.772 -0.0001
23 1.897E-6 0.00158 1.159 -331E-8
24 2.394E-8 0.000016 0.967 -46E-9
25 1.14E-11 7.962E-7 1.061 -19E-13

Optimization Results

Iterations 25 Function Calls 120
Gradient Calls 107 Active Constraints 0
Objective Function 3.953804E-11 Max Abs Gradient Element 7.9622469E-7
Slope of Search Direction -1.88032E-12

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.999991 -0.000000796
2 X2 0.999982 0.000000430

Value of Objective Function = 3.953804E-11

812 � Chapter 20. Language Reference

Nonlinearly Constrained QN Optimization

The algorithm used for nonlinearly constrained quasi-Newton optimization is an effi-
cient modification of Powell’s (1978, 1982) Variable Metric Constrained WatchDog
(VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Harwell
library. Both the VMCWD and VF02AD algorithms use Fletcher’s VE02AD algo-
rithm, which is also part of the Harwell library, for positive definite quadratic pro-
gramming. ThisNLPQN implementation uses a quadratic programming subroutine
that updates and downdates the Cholesky factor when the active set changes (refer to
Gill, Murray, Saunders, and Wright 1984). The nonlinearNLPQN algorithm is not
a feasible point algorithm, and the value of the objective function is not required to
decrease monotonically. Instead, the algorithm tries to reduce a linear combination
of objective function and constraint violations.

The following are similarities and differences between this algorithm and Powell’s
VMCWD algorithm:

• You can use the sixth element of theoptargument to modify the algorithm used
by theNLPQN subroutine. If you specifyopt[6] = 2, which is the default, the
evaluation of the Lagrange vectorµ is performed the same way as described
in Powell (1982b). Note, however, that the VMCWD program seems to have a
bug in the implementation of formula (4.4) in Powell (1982b). If you specify
opt[6] = 1, the original update ofµ used in the VF02AD algorithm in Powell
(1978a) is performed.

• Instead of updating an approximate Hessian matrix, this algorithm uses the dual
BFGS or dual DFP update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

• The Cholesky factor is loaded into the quadratic programming subroutine,
which ensures positive definiteness of the problem. During the quadratic pro-
gramming step, the Cholesky factor of the projected Hessian matrixZT

k GZk is
updated simultaneously withQT decomposition when the active set changes.
Refer to Gill, Murray, Saunders, and Wright (1984) for more information.

• The line-search strategy is very similar to that of Powell’s algorithm, but this
algorithm does not call for derivatives during the line search. For that rea-
son, this algorithm generally needs fewer derivative calls than function calls,
whereas the VMCWD algorithm always requires the same number of deriva-
tive calls as function calls. Also, Powell’s line-search method sometimes uses
steps that are too long during the early iterations. In those cases, you can use
the second element of thepar argument to restrict the step lengthα in the first
five iterations. See“Control Parameters Vector”for more details.

• The watchdog strategy is also similar to that of Powell’s algorithm. However,
this algorithm does not return automatically after a fixed number of iterations
to a previous, more optimal point. A return to such a point is further delayed if

NLPQN Call � 813

the observed function reduction is close to the expected function reduction of
the quadratic model.

• Although Powell’s termination criterion, the FTOL2 criterion, can still be used,
the NLPQN implementation uses, by default, two other termination criteria
(GTOL and ABSGTOL).

This algorithm is automatically invoked if the"nlc" argument is specified. The mod-
ule specified with the"nlc" argument must return a vector of lengthnc, wherenc is
the total number of constraints. Lettingnec be the number of equality constraints,
the constraints must be of the following form:

ci(x) = 0, i = 1, . . . , nec
ci(x) ≥ 0, i = nec+ 1, . . . , nc

The firstnec elements of the returned vector contain theci for the equality constraints,
and the remaining elements contain theci for the inequality constraints.

Note: You must specify the total number of constraints with the tenth element of the
optargument, and if there are any equality constraints, you must specify that number,
nec, with the eleventh element of theoptargument.

The nonlinearNLPQN algorithm requires the Jacobian matrix of the first-order
derivatives of thenc constraints returned by the module specified by the"nlc" ar-
gument. You can provide these derivatives by specifying a module with the"jacnlc"
argument. This module must return the Jacobian matrixJ of first-order partial deriva-
tives. That is,J is annc× n matrix such that the entry in theith row andjth column
is given by

J(i, j) =
∂ci
∂xj

If you specify an"nlc" module without specifying a"jacnlc" argument, finite differ-
ence approximations of the first-order derivatives of the constraints are used. You can
use the ninth element of thepar argument to specify the number of accurate digits
used in evaluating the constraints.

You can specify two update formulas with the fourth element of theopt argument as
indicated in the following table:

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.

This algorithm uses its own line-search technique. None of the options and parame-
ters that control the line search in the other algorithms apply in the nonlinearNLPQN

814 � Chapter 20. Language Reference

algorithm, with the exception of the second element of thepar vector, which can be
used to restrict the length of the step size in the first five iterations.

SeeExample 11.8for an example where you need to specify a value for the second
element of thepar argument. The values of the fourth, fifth, and sixth elements of the
par vector, which control the processing of linear and boundary constraints, are valid
only for the quadratic programming subroutine used in each iteration of theNLPQN
call. For a simple example of theNLPQN subroutine, see“Rosen-Suzuki Problem”.

NLPQUA Call

nonlinear optimization by quadratic method

CALL NLPQUA(rc, xr, quad, x0 <,opt, blc, tc, par, "ptit", lin>);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPQUA subroutine uses a fast algorithm for maximizing or minimizing the
quadratic objective function

1
2
xTGx+ gTx+ con

subject to boundary constraints and general linear equality and inequality constraints.
The algorithm is memory-consuming for problems with general linear constraints.

The matrixG must be symmetric but not necessarily positive definite (or negative
definite for maximization problems). The constant termcon affects only the value of
the objective function, not its derivatives or the optimal pointx∗.

The algorithm is an active-set method in which the update of active boundary and
linear constraints is done separately. TheQT decomposition of the matrixAk of
active linear constraints is updated iteratively (refer to Gill, Murray, Saunders, and
Wright, 1984). Ifnf is the number of free parameters (that is,nminus the number of
active boundary constraints), andna is the number of active linear constraints, thenQ
is annf × nf orthogonal matrix containing null spaceZ in its firstnf − na columns
and range spaceY in its lastna columns. The matrixT is anna × na triangular
matrix of the formtij = 0 for i < n − j. The Cholesky factor of the projected
Hessian matrixZT

k GZk is updated simultaneously with theQT decomposition when
the active set changes.

The objective function is specified by the input argumentsquadandlin, as follows:

• The quadargument specifies the symmetricn × n Hessian matrix,G, of the
quadratic term. The input can be in dense or sparse form. In dense form, alln2

entries of thequadmatrix must be specified. Ifn ≤ 3, the dense specification
must be used. The sparse specification can be useful whenG has many zero
elements. You can specify annn× 3 matrix in which each row represents one
of thenn nonzero elements ofG. The first column specifies the row location

NLPQUA Call � 815

in G, the second column specifies the column location, and the third column
specifies the value of the nonzero element.

• The lin argument specifies the linear part of the quadratic optimization prob-
lem. It must be a vector of lengthn or n + 1. If lin is a vector of lengthn, it
specifies the vectorg of the linear term, and the constant termcon is considered
zero. If lin is a vector of lengthn+1, then the firstn elements of the argument
specify the vectorg and the last element specifies the constant termcon of the
objective function.

As in the other optimization subroutines, you can use theblc argument to specify
boundary and general linear constraints, and you must provide a starting pointx0 to
determine the number of parameters. Ifx0 is not feasible, a feasible initial point is
computed by linear programming, and the elements ofx0can be missing values.

Assuming nonnegativity constraintsx ≥ 0, the quadratic optimization problem
solved with the LCP call, which solves the linear complementarity problem. Refer to
SAS/IML Software: Usage and Reference, Version 6, First Editionfor details.

Choosing a sparse (or dense) input form of thequadargument does not mean that
the algorithm used in the NLPQUA subroutine is necessarily sparse (or dense). If the
following conditions are satisfied, the NLPQUA algorithm will store and process the
matrixG as sparse:

• No general linear constraints are specified.

• The memory needed for the sparse storage ofG is less than 80% of the memory
needed for dense storage.

• G is not a diagonal matrix. IfG is diagonal, it is stored and processed as a
diagonal matrix.

The sparse NLPQUA algorithm uses a modified form of minimum degree Cholesky
factorization (George and Liu 1981).

In addition to the standard iteration history, the NLPNRA subroutine prints the fol-
lowing information:

• The headingalphais the step size,α, computed with the line-search algorithm.

• The headingsloperefers togT s, the slope of the search direction at the current
parameter iteratex(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The Betts problem (see“Constrained Betts Function”) can be expressed as a quadratic
problem in the following way:

x =
[
x1

x2

]
, G =

[
0.02 0
0 2

]
, g =

[
0
0

]
, con= −100

816 � Chapter 20. Language Reference

Then

1
2
xTGx− gTx+ con= 0.5[0.02x2

1 + 2x2
2]− 100 = 0.01x2

1 + x2
2 − 100

The following statements use the NLPQUA subroutine to solve the Betts problem:

lin = { 0. 0. -100};
quad = { 0.02 0.0 ,

0.0 2.0 };
c = { 2. -50. . .,

50. 50. . .,
10. -1. 1. 10.};

x = { -1. -1.};
optn = {0 2};
CALL NLPQUA(rc,xres,quad,x,optn,c,,,,lin);

Thequadargument specifies theG matrix, and thelin argument specifies theg vec-
tor with the value ofcon appended as the last element. The matrix C specifies the
boundary constraints and the general linear constraint.

The iteration history follows.

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Null Space Method of Quadratic Problem

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1
Using Sparse Hessian _

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

NLPTR Call � 817

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 1 -99.87349
2 0 3 1 -99.96000

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 1.3359 0.5882 0.706 -2.925
2 0.0865 0 1.000 -0.173

Optimization Results

Iterations 2 Function Calls 4
Gradient Calls 3 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -0.173010381

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 0 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPTR Call

nonlinear optimization by trust region method

818 � Chapter 20. Language Reference

CALL NLPTR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

See“Nonlinear Optimization and Related Subroutines”for a listing of all NLP sub-
routines. SeeChapter 11, “Nonlinear Optimization Examples,”for a description of
the inputs to and outputs of all NLP subroutines.

The NLPTR subroutine is a trust-region method that uses the gradient
g(k) = ∇f(x(k)) and Hessian matrixG(k) = ∇2f(x(k)). It requires that the
objective functionf = f(x) has continuous first- and second-order derivatives inside
the feasible region.

Then×n Hessian matrixG contains the second derivatives of the objective function
f with respect to the parametersx1, . . . , xn, as follows:

G(x) = ∇2f(x) =
(

∂2f

∂xj∂xk

)
The trust-region method works by optimizing a quadratic approximation to the non-
linear objective function within a hyperelliptic trust region. This trust region has a
radius,∆, that constrains the step size corresponding to the quality of the quadratic
approximation. The method is implemented using Dennis, Gay, and Welsch (1981),
Gay (1983), and Moré and Sorensen (1983).

Note that finite difference approximations for second-order derivatives using only
function calls are computationally very expensive. If you specify first-order deriva-
tives analytically with the"grd" module argument, you can drastically reduce the
computation time for numerical second-order derivatives. Computing the finite dif-
ference approximation for the Hessian matrixG generally uses onlyn calls of the
module that computes the gradient analytically.

The NLPTR method performs well for small- to medium-sized problems and does
not need many function, gradient, and Hessian calls. However, if the gradient is
not specified analytically by using the"grd" argument or if the computation of the
Hessian module, as specified by the"hes"module argument, is computationally ex-
pensive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be
more efficient.

In addition to the standard iteration history, the NLPTR subroutine prints the follow-
ing information:

• Under the headingIter, an asterisk (*) printed after the iteration number in-
dicates that the computed Hessian approximation was singular and had to be
ridged with a positive value.

• The headinglambdarepresents the Lagrange multiplier,λ. This has a value
of zero when the optimum of the quadratic function approximation is inside
the trust region, in which case a trust-region-scaled Newton step is performed.
It is greater than zero when the optimum is at the boundary of the trust re-
gion, in which case the scaled Newton step is too long to fit in the trust region
and a quadratically-constrained optimization is done. Large values indicate
optimization difficulties, and as in Gay (1983), a negative value indicates the
special case of an indefinite Hessian matrix.

NROW Function � 819

• The headingradius refers to∆, the radius of the trust region. Small values
of the radius combined with large values ofλ in subsequent iterations indicate
optimization problems.

For an example of the use of the NLPTR subroutine, see“Unconstrained Rosenbrock
Function”.

NORMAL Function

generates a pseudo-random normal deviate

NORMAL(seed)

whereseedis a numeric matrix or literal. Theseedargument can be any integer value
up to231 − 1.

The NORMAL function is a scalar function that returns a pseudo-random number
having a normal distribution with a mean of 0 and a standard deviation of 1. The
NORMAL function returns a matrix with the same dimensions as the argument. The
first argument on the first call is used for the seed (or if that is 0, the system clock
is used for the seed). This function is synonymous with the DATA step function
RANNOR. The Box-Muller transformation of theUNIFORM function deviates is
used to generate the numbers.

seed = 123456;
c = j(10,1,seed);
b = normal(c);
print b;

B

-0.109483
-0.348785
1.1202546
-2.513766
1.3630022

NROW Function

finds the number of rows of a matrix

NROW(matrix)

wherematrix is a numeric or character matrix.

The NROW function returns a single numeric value that is the number of rows in
matrix. If the matrix has not been given a value, the NROW function returns a value
of 0.

For example, to let J contain the number of rows of the matrixS, use the statement

j=nrow(s);

820 � Chapter 20. Language Reference

NUM Function

produces a numeric representation of a character matrix

NUM(matrix)

wherematrix is a character matrix or a quoted literal.

The NUM function takes as an argument a character matrix with elements that are
character numerics; and produces a numeric matrix with dimensions that are the
same as the dimensions of the argument and with elements that are the numeric rep-
resentations (double-precision floating-point) of the corresponding elements of the
argument.

An example using the NUM function is shown below:

c={’1’ ’2’ ’3’};
j=num(c);

C 1 row 3 cols (character, size 1)

1 2 3

J 1 row 3 cols (numeric)
1 2 3

See also the description of theCHAR function, which does the reverse conversion.

ODE Call

performs numerical integration of vector differential equations of the form

dy
dt

= f(t,y(t)) with y(0) = c

CALL ODE(r, "dername", c, t, h <, J="jacobian"><, EPS=eps><,
"data">);

The ODE subroutine returns the following values:

r is a numeric matrix that contains the results of the integration over con-
nected subintervals. The number of columns inr is equal to the number
of subintervals of integration as defined by the argumentt. In case of
any error in the integration on any subinterval, partial results will not
be reported inr.

The inputs to the ODE subroutine are as follows:

"dername" specifies the name of an IML module used to evaluate the integrand.

c specifies an initial value vector for the variabley.

ODE Call � 821

t specifies a sorted vector that describes the limits of integration over
connected subintervals. The simplest form of the vectort contains only
the limits of the integration on one interval. The first component oft
should contain the initial value, and the second component should be
the final value of the independent variable. For more advanced usage
of the ODE subroutine, the vectort can contain more than two compo-
nents. The components of the vector must be sorted in ascending order.
Two consecutive components of the vectort are interpreted as a subin-
terval. The ODE call reports the final result of integration at the right
endpoint of each subinterval. This information is vital iff(·) has inter-
nal points of discontinuity. To produce accurate solutions, it is essential
that you provide the location of these points in the variablet, since the
continuity of the forcing function is vital to the internal control of error.

h specifies a numeric vector that contains three components: the min-
imum allowable step size,hmin; the maximum allowable step size,
hmax; and the initial step size to start the integration process,hinit.

"jacobian" optionally specifies the name of an IML module that is used to evaluate
the Jacobian analytically. The Jacobian is the matrixJ , with

Jij =
∂fi

∂yj

If the "jacobian" module is not specified, the ODE call uses a finite
difference method to approximate the Jacobian. The keyword for this
option is J.

eps specifies a scalar indicating the required accuracy. It has a default value
of 1E−4. The keyword for this option is EPS.

data (scalar, optional, character, input) a valid predefined SAS Dataset name
that is used to save the successful independent and dependent variables
of the integration at each step.

The ODE subroutine is an adaptive, variable order, variable step-size, stiff integrator
based on implicit backward-difference methods. Refer to Aiken (1985), Bickart and
Picel (1973), Donelson and Hansen (1971), Gaffney (1984), and Shampine (1978).
The integrator is an implicit predictor-corrector method that locally attempts to main-
tain the prescribed precisionepsrelative to

d = max
0≤t≤T

(‖y(t)‖∞, 1)

As you can see from the expression, this quantity is dynamically updated during the
integration process and can help you to understand the validity of the results reported
by the subroutine.

Consider the differential equation

dy

dt
= −ty with y = 0.5 at t = 0

822 � Chapter 20. Language Reference

The following statements attempt to find the solution att = 1:

/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = { 0 1};
h = { 1E-12 1 1E-5};
call ode(r,"FUN",c,t,h);
print r[format=E21.14];

In this case, the integration is carried out over(0, 1) to give the value ofy at t = 1.
The optional parameterepshas not been specified, so it is internally set to 1E−4.
Also, the optional parameter"jacobian" has not been specified, so finite difference
methods are used to estimate the Jacobian. The accuracy of the answer can be in-
creased by specifyingeps. For example, seteps=1E−7 as follows.

/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = {0 1};
h = {1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;

print r[format =E21.14];

Compare this value to0.5e−0.5 = 3.03265329856310E−01 and observe that the
result is correct through the sixth decimal digit and has an error relative to 1 that is
O(1E−7).

If the solution was desired at 1 and 2 with an accuracy of 1E−7, you would use the
following statements:

/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = { 0 1 2};

ODE Call � 823

h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;

print r[format=E21.14];

Note that R contains the solution att = 1 in the first column and att = 2 in the
second column.

Now consider the smoothness of the forcing functionf(·). For the purpose of esti-
mating errors, adaptive methods require some degree of smoothness in the function
f(·). If this smoothness is not present inf(·) over the interior and including the left
endpoint of the subinterval, the reported result will not have the desired accuracy. The
functionf(·) must be at least continuous. If the function does not meet this require-
ment, you should specify the discontinuity as an intermediate point. For example,
consider the differential equation

dy

dt
=
{
t if t < 1
0.5t2 if t ≥ 1

To find the solution att = 2, use the following statements:

/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = .5*t*t;
return(v);

finish;

/* Call ODE */
c = 0;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps = 1E-12;
print r[format =E21.14];

In the preceding case, the integration is carried out over a single interval,(0, 2). The
optional parameterepsis specified to be 1E−12. The optional parameterjacobianis
not specified, so finite difference methods are used to estimate the Jacobian.

Note that the value of R does not have the required accuracy (it should contain a 12
decimal-place representation of 5/3), although no error message is produced. The
reason is that the function is not continuous at the pointt = 1. Even the lowest-order
method cannot produce a local reliable error estimate near the point of discontinuity.
To avoid this problem, you can create subintervals so that the integration is carried
out first over(0, 1) and then over(1, 2). The following code implements this method:

/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = .5*t*t;

824 � Chapter 20. Language Reference

return(v);
finish;

/* Call ODE */
c = 0;
t = { 0 1 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];

The variable R contains the solutions at botht = 1 andt = 2, and the errors are of
the specified order. Although there is no interest in the solution at the pointt = 1, the
advantage of specifying subintervals with no discontinuities is that the functionf(·)
is infinitely differentiable in each subinterval.

When f(·) is continuous, the ODE subroutine can compute the integration to the
specified precision, even if the function is defined piecewise. Consider the differential
equation

dy

dt
=
{
t if t < 1
t2 if t ≥ 1

The following code finds the solution att = 2: Since the functionf(·) is continuous,
the requirements for error control are satisfied.

/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = t*t;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];

This example compares the ODE call to an eigenvalue decomposition for stiff-linear
systems. In the problem

dy
dt

= Ay with y(0) = c

whereA is a symmetric constant matrix, the solution can be written in terms of the
eigenvalue decomposition, as follows:

y(t) = UeDtU′c

ODE Call � 825

whereU is the matrix of eigenvectors andD is a diagonal matrix with the eigenvalues
on its diagonal.

The following statements produce two solutions, one using the ODE call and the
other using the eigenvalue decomposition:

/* Define the integrand */
start fun(t,x) global(a,count);

count = count+1;
v = a*x;
return(v);

finish;

/* Define the Jacobian */
start jac(t,x) global(a);

v = a;
return(v);

finish;

a = {-1000 -1 -2 -3,
-1 -2 3 -1,
-2 3 -4 -3,
-3 -1 -3 -5 };

/* Call ODE */
count = 0;
t = { 0 1 2};
h = {1E-12 1 1E-5};
eps = 1E-9;
c = {1, 0, 0, 0 };
call ode(z,"FUN",c,t,h) eps=eps j="JAC";
print z[format=E21.14];

print count;

/* Do the eigenvalue decomposition */
start eval(t) global(d,u,c);

v = u*diag(exp(d*t))*u‘*c;
return(v);

finish;

call eigen(d,u,a);
free z1;
do i = 1 to nrow(t)*ncol(t)-1;
z1 = z1 || (eval(t[i+1]));

end;
print z1[format=E21.14];

The question now is whether this is anO(1E−9) result. Note that for this problem

d = max
0≤t≤T

(‖y(t)‖∞, 1) = 1

826 � Chapter 20. Language Reference

with the 1E−6 result, the ODE call should attempt to maintain an accuracy of 1E−9
relative to 1. Therefore, the 1E−6 result should have almost three correct decimal
places. Att = 2, the first component ofZ is 6.58597048842310E−06, while its
more accurate value is 6.58580950203220E−06, showing anO(1E−10) error.

The ODE subroutine may fail for problems with unusual qualitative properties, such
as finite escape time in the interval of integration (that is, the solution goes towards
infinity at some finite time). In such cases, try testing with different subintervals and
different levels of accuracy to gain some qualitative information about the behavior
of the solution of the differential equation.

OPSCAL Function

rescales qualitative data to be a least-squares fit to qualitative data

OPSCAL(mlevel, quanti<, qualit>)

The inputs to the OPSCAL function are as follows:

mlevel specifies a scalar that has one of two values. Whenmlevelis 1 the
qualit matrix is at the nominal measurement level; whenmlevelis
2 it is at the ordinal measurement level.

quanti specifies anm × n matrix of quantitative information assumed to
be at the interval level of measurement.

qualit specifies anm × n matrix of qualitative information whose level
of measurement is specified bymlevel. Whenqualit is omitted,
mlevelmust be 2. When omitted, a temporaryqualit is constructed
that contains the integers from 1 ton in the first row, fromn + 1
to 2n in the second row, from2n+ 1 to 3n in the third row, and so
forth, up to the integers(m−1)n tomn in the last(mth) row. Note
that you cannot specifyqualit as a character matrix.

The result of the OPSCAL function is the optimal scaling transformation of the qual-
itative (nominal or ordinal) data inqualit. The optimal scaling transformation result

• is a least-squares fit to the quantitative data inquanti

• preserves the qualitative measurement level ofqualit

Whenqualit is at the nominal level of measurement, the optimal scaling transfor-
mation result is a least-squares fit toquanti, given the restriction that the category
structure ofqualit must be preserved. If elementi of qualit is in categoryc, then ele-
menti of the optimum scaling transformation result is the mean of all those elements
of quantithat correspond to elements ofqualit that are in categoryc.

For example, consider these statements:

quanti={5 4 6 7 4 6 2 4 8 6};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(1,quanti,qualit);

OPSCAL Function � 827

The resulting vectorOS has the following values:

OS 1 row 10 cols (numeric)

5 5 6 7 3 5 3
: 5 8 5

The optimal scaling transformation result is said to preserve the nominal measure-
ment level ofqualit because wherever there was aqualit categoryc, there is now a
result category labelv. The transformation is least squares because the result element
v is the mean of appropriate elements ofquanti. This is Young’s (1981) discrete-
nominal transformation.

Whenqualit is at the ordinal level of measurement, the optimal scaling transformation
result is a least-squares fit toquanti, given the restriction that the ordinal structure of
qualit must be preserved. This is done by determining blocks of elements ofqualit so
that if elementi of qualit is in blockb, then elementi of the result is the mean of all
thosequantielements corresponding to blockb elements ofqualit so that the means
are (weakly) in the same order as the elements ofqualit. For example, consider these
statements:

quanti={5 4 6 7 4 6 2 4 8 6};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(2,quanti,qualit);

The resulting vectorOS has the following values:

OS 1 row 10 cols (numeric)

5 5 4 7 4 6 4
: 6 6 5

This transformation preserves the ordinal measurement level ofqualit because the
elements ofqualit and the result are (weakly) in the same order. It is least-squares
because the result elements are the means of appropriate elements ofquanti. By
comparing this result to the nominal one, you see that categories whose means are
incorrectly ordered have been merged together to form correctly ordered blocks. This
is known as Kruskal’s (1964) least-squares monotonic transformation. Consider the
following statements:

quanti={5 3 6 7 5 7 8 6 7 8};
os=opscal(2,quanti);

These statements imply that

qualit={ 1 2 3 4 5 6 7 8 9 10} ;

which means that the resulting vector has the values

828 � Chapter 20. Language Reference

OS 1 row 10 cols (numeric)

4 4 6 6 6 7 7
: 7 7 8

ORPOL Function
generates orthogonal polynomials on a discrete set of points

ORPOL(x<, maxdegree<, weights>>)

The inputs to the ORPOL function are as follows:

x is ann × 1 vector of values on which the polynomials are to be
defined.

maxdegree specifies the maximum degree polynomial to be computed. If
maxdegreeis omitted, the default value ismin(n, 19). If weightsis
specified,maxdegree mustalso be specified.

weights specifies ann×1 vector of nonnegative weights associated with the
points inx. If you specifyweights, you mustalso specifymaxde-
gree. If maxdegreeis not specified or is specified incorrectly, the
default weights (all weights are 1) are used.

The ORPOL matrix function generates orthogonal polynomials evaluated at then
points contained inx using the algorithm of Emerson (1968). The result is a
column-orthonormal matrixP with n rows andmaxdegree+1 columns such that
P′diag(weights)P = I. The result of evaluating the polynomial of degreej − 1
at theith element ofx is stored inP[i, j].

The maximum number of nonzero orthogonal polynomials (r) that can be computed
from the vector and the weights is the number of distinct values in the vector, ignoring
any value associated with a zero weight.

The polynomial of maximum degree has degree ofr − 1. If the value ofmaxdegree
exceedsr− 1, then columnsr+ 1, r+ 2,. . . ,maxdegree+1 of the result are set to 0.
In this case,

P′diag(weights)P =
[
I(r) 0
0 0

]
The statement below results in a matrix with three orthogonal columns:

x = T(1:5);
P = orpol(x,2);

P

0.4472136 -0.632456 0.5345225
0.4472136 -0.316228 -0.267261
0.4472136 0 -0.534522
0.4472136 0.3162278 -0.267261
0.4472136 0.6324555 0.5345225

ORPOL Function � 829

The first column is a polynomial of degree 0 (a constant polynomial) evaluated at
each point ofx. The second column is a polynomial of degree 1 evaluated at each
point ofx. The third column is a polynomial of degree 2 evaluated at each point ofx.

Normalization of the Polynomials

The columns ofP are orthonormal with respect to the inner product

〈f, g〉 =
n∑

i=1

f(xi)g(xi)wi

as the following code shows.

start InnerProduct(f,g,w);
h = f#g#w;
return (h[+]);

finish;

/* Verify orthonormal */
reset fuzz; /* print tiny numbers as zero */
w = j(ncol(x),1,1); /* default weight is all ones */
do i = 1 to 3;

do j = 1 to i;
InnerProd = InnerProduct(P[,i], P[,j], w);
print i j InnerProd;

end;
end;

Some reference books on orthogonal polynominals do not normalize the columns of
the matrix that represents the orthogonal polynominals. For example, a textbook may
give

textbookPoly = { 1 -2 2 -1 1,
1 -1 -1 2 -4,
1 0 -2 0 6,
1 1 -1 -2 -4,
1 2 2 1 1 };

as a fourth-degree polynomial evaluated on evenly spaced data. To compare this rep-
resentation to the normalized representation that ORPOL produces, use the following
program:

/* Normalize the columns of textbook representation */
normalPoly = textbookPoly;
do i = 1 to ncol(normalPoly);

v = normalPoly[,i];
norm = sqrt(v[##]);
normalPoly[,i] = v / norm;

end;

/* Compare the normalized matrix with ORPOL */

830 � Chapter 20. Language Reference

x = T(1:5); /* Any evenly spaced data gives the same answer */
imlPoly = orpol(x, 4);

diff = imlPoly - normalPoly;
maxDiff = abs(diff)[<>];
reset fuzz; /* print tiny numbers as zero */
print maxDiff;

MAXDIFF

0

Polynomial Regression

A typical use for orthogonal polynomials is to fit a polynomial to a set of data. Given
a set of points(xi, yi), i = 1, . . . ,m, the classical theory of orthogonal polynomials
says that the best approximating polynomial of degreed is given by

fd =
d+1∑
i=1

ciPi

whereci = 〈y, Pi〉/〈Pi, Pi〉 and wherePi is the ith column of the matrixP re-
turned by ORPOL. But the matrix is orthonormal with respect to the inner product,
so〈Pi, Pi〉 = 1 for all i. Thus you can easily compute a regression onto the span of
polynomials.

In the program below, the weight vector is used to overweight or underweight par-
ticular data points. The researcher has reasons to doubt the accuracy of the first
measurement. The last data point is also underweighted because it is a leverage point
and is believed to be an outlier. The second data point was measured twice and is
overweighted. (Rerunning the program with a weight vector of all ones, and examin-
ing the new values of thefit variable is a good way to understand the effect of the
weight vector.)

x = {0.1, 2, 3, 5, 8, 10, 20};
y = {0.5, 1, 0.1, -1, -0.5, -0.8, 0.1};

/* The second measurement was taken twice.
The first and last data points are underweighted
because of uncertainty in the measurements. */

w = {0.5, 2, 1, 1, 1, 1, 0.2};
maxDegree = 4;
P = orpol(x,maxDegree,w);

/* The best fit by a polynomial of degree k is
Sum c_i P_i where c_i = <f,P_i> */

c = j(1,maxDegree+1);
do i = 1 to maxDegree+1;

c[i] = InnerProduct(y,P[,i],w);
end;

ORPOL Function � 831

FitResults = j(maxDegree+1,2);
do k = 1 to maxDegree+1;

fit = P[,1:k] * c[1:k];
resid = y - fit;
FitResults[k,1] = k-1; /* degree of polynomial */
FitResults[k,2] = resid[##]; /* sum of square errors */

end;
print FitResults[colname={"Degree" "SSE"}];

The results of this program are given below.

FITRESULTS
Degree SSE

0 3.1733014
1 4.6716722
2 1.3345326
3 1.3758639
4 0.8644558

Testing Linear Hypotheses

ORPOL can also be used to test linear hypotheses. Suppose you have an experimental
design withk factor levels. (The factor levels may be equally or unequally spaced.)
At the ith level, you recordnk observation,i = 1 . . . k. If n1 = n2 = . . . = nk,
then the design is said to bebalanced, otherwise it isunbalanced. You want to
fit a polynomial model to the data and then ask how much variation in the data is
explained by the linear component, how much variation is explained by the quadratic
component after the linear component is taken into acount, and so on for the cubic,
quartic, and higher-level components.

To be completely concrete, suppose you have four factor levels (1, 4, 6, and 10) and
that you record seven measurements at first level, two measurements at the second
level, three measurements at the third level, and four measurements at the fourth level.
This is an example of an unbalanced and unequally spaced factor-level design. The
program below uses orthogonal polynomials to compute the Type I sum of squares
for the linear hypothesis. (The program works equally well for balanced designs and
for equally spaced factor-levels.)

The program calls ORPOL to generate the orthogonal polynomial matrixP, and uses
it to form the Type I hypothesis matrixL. The program then uses theDESIGNfunc-
tion to generateX, the design matrix associated with the experiment. The program
then computesb, the estimated parameters of the linear model.

SinceL was expressed in terms of the orthogonal polynomial matrixP, the compu-
tations involved in forming the Type I sum of squares are considerably simplified.

/* unequally spaced and unbalanced factor levels */
levels = {
1,1,1,1,1,1,1,

832 � Chapter 20. Language Reference

4,4,
6,6,6,
10,10,10,10};

/* data for y. Make sure the data is sorted
according to the factor levels */

y = {
2.804823, 0.920085, 1.396577, -0.083318,
3.238294, 0.375768, 1.513658, /* level 1 */
3.913391, 3.405821, /* level 4 */
6.031891, 5.262201, 5.749861, /* level 6 */
10.685005, 9.195842, 9.255719, 9.204497 /* level 10 */
};

a = {1,4,6,10}; /* spacing */
trials = {7,2,3,4}; /* sample sizes */
maxDegree = 3; /* model with Intercept,a,a##2,a##3 */

P = orpol(a,maxDegree,trials);

/* Test linear hypotheses:
How much variation is explained by the
i_th polynomial component after components
0..(i-1) have been taken into account? */

/* the columns of L are the coefficients of the
orthogonal polynomial contrasts */

L = diag(trials)*P;

/* form design matrix */
x = design(levels);

/* compute b, the estimated parameters of the
linear model. b will be the mean of the y’s
at each level.
b = ginv(x’*x) * x‘ * y
but since x is the output from DESIGN, then
x‘*x = diag(trials) and so
ginv(x‘*x) = diag(1/trials) */

b = diag(1/trials)*x‘*y;

/* (L‘*b)[i] is the best linear unbiased estimated
(BLUE) of the corresponding orthogonal polynomial
contrast */

blue = L‘*b;

/* the variance of (L‘*b) is
var(L‘*b) = L‘*ginv(x‘*x)*L

=[P‘*diag(trials)]*diag(1/trials)*[diag(trials)*P]
= P‘*diag(trials)*P
= Identity (by definition of P)

so therefore the standardized square of
(L‘*b) is computed as

ORPOL Function � 833

SS1[i] = (blue[i]*blue[i])/var(L‘*b)[i,i])
= (blue[i])##2 */

SS1 = blue # blue;
rowNames = {’Intercept’ ’Linear’ ’Quadratic’ ’Cubic’};
print SS1[rowname=rowNames format=11.7 label="Type I SS"];

The resulting output is

Type I SS

Intercept 331.8783538
Linear 173.4756050
Quadratic 0.4612604
Cubic 0.0752106

which indicates that most of the variation in the data can be explained by a first-degree
polynomial.

Generating Families of Orthogonal Polynomials

There are classical families of orthogonal polynomials (for example, Legendre,
Laguerre, Hermite, and Chebyshev) that arise in the study of differential equations
and mathematical physics. These “named” familes are orthogonal on particular in-
tervals(a, b) with respect to the inner product

∫ a
b f(x)g(x)w(x) dx. The functions

returned by ORPOL aredifferentfrom these named families because ORPOL uses a
different inner product. There are no IML functions that can automatically generate
these families, however, you can write an IML program to generate them.

Each named polynomial family{pj}, j ≥ 0 satisfies a three-term recurrence relation
of the form

pj = (Aj + xBj)pj−1 − Cjpj−2

where the constantsAj , Bj , andCj are relatively simple functions ofj. To generate
these “named” familes, use the three-term recurrence relation for the family. The
recurrence relations are found in references such as Abramowitz and Stegun (1972)
or Thisted (1988).

For example, the so-called Legendre polynomials (representedPj for the polynomial
of degreej) are defined on(−1, 1) with the weight functionw(x) = 1. They are
standardized by requiring thatPj(1) = 1 for all j ≥ 0. ThusP0(x) = 1. The linear
polynomialP1(x) = a+ bx is orthogonal toP0 so that∫ 1

−1
P1(x)P0(x) dx =

∫ 1

−1
a+ bx dx = 0

which impliesa = 0. The standardizationP1(1) = 1 implies thatP1(x) = x.
The remaining Legendre polynomials can be computed by looking up the three-term
recurrence relation:Aj = 0, Bj = (2j − 1)/j, andCj = (j − 1)j. The program
below computes Legendre polynomials evaluated at a set of points.

834 � Chapter 20. Language Reference

maxDegree = 6;

/* evaluate polynomials at these points */
x = T(do(-1,1,0.05));

/* define the standard Legendre Polynomials
Using the 3-term recurrence with
A[j]=0, B[j]=(2j-1)/j, and C[j]=(j-1)/j
and the standardization P_j(1)=1
which implies P_0(x)=1, P_1(x)=x. */

legendre = j(nrow(x), maxDegree+1);
legendre[,1] = 1; /* P_0 */
legendre[,2] = x; /* P_1 */

do j = 2 to maxDegree;
legendre[,j+1] = (2*j-1)/j # x # legendre[,j] -

(j-1)/j # legendre[,j-1];
end;

ORTVEC Call

provides columnwise orthogonalization by the Gram-Schmidt process and step-
wise QR decomposition by the Gram-Schmidt process

CALL ORTVEC(w, r, ρ, lindep, v <, q>);

The ORTVEC subroutine returns the following values:

w If the Gram-Schmidt process converges (lindep=0), w is them × 1
vectorw orthonormal to the columns ofQ, which is assumed to have
n ≤ m (nearly) orthonormal columns. If the Gram-Schmidt process
does not converge (lindep=1), w is a vector of missing values. For
stepwise QR decomposition,w is the(n + 1)th orthogonal column of
the matrixQ. If there is no matrixQ, that is, if theq argument is not
specified,w is the normalized value of the vectorv,

w =
v√
v′v

r If the Gram-Schmidt process converges (lindep=0),r specifies then×1
vectorr of Fourier coefficients. If the Gram-Schmidt process does not
converge (lindep=1), r is a vector of missing values. If theq argument
is not specified,r is a vector with zero dimension. For stepwise QR
decomposition,r contains then upper triangular elements of the(n +
1)th column ofR.

ρ If the Gram-Schmidt process converges (lindep=0),ρ specifies the dis-
tance fromw to the range ofQ. Even if the Gram-Schmidt process
converges, ifρ is sufficiently small, the vectorv may be linearly de-
pendent on the columns ofQ. If the Gram-Schmidt process does not
converge (lindep=1), ρ is set to 0. For stepwise QR decomposition,ρ

contains the diagonal element of the(n+ 1)th column ofR.

ORTVEC Call � 835

lindep returns a value of 1 if the Gram-Schmidt process does not converge in
10 iterations. In most cases, iflindep=1, the input vectorv is linearly
dependent on then columns of the input matrixQ. In that case,ρ is
set to 0, and the resultsw andr contain missing values. Iflindep=0,
the Gram-Schmidt process did converge, and the resultsw, r, andρ are
computed.

The inputs to the ORTVEC subroutine are as follows:

v specifies anm×1 vectorv that is to be orthogonalized to then columns
of Q. For stepwise QR decomposition of a matrix,v is the(n + 1)th

matrix column before its orthogonalization.

q specifies an optionalm × n matrix Q that is assumed to haven ≤ m
(nearly) orthonormal columns. Thus, then×n matrixQ′Q should ap-
proximate the identity matrix. The column orthonormality assumption
is not tested in the ORTVEC call. If it is violated, the results are not
predictable. The argumentq can be omitted or can have zero rows and
columns. For stepwise QR decomposition of a matrix,q contains the
first n matrix columns that are already orthogonal.

The relevant formula for the ORTVEC subroutine is

v = Qr + ρw

Assuming that them×nmatrixQ hasn (nearly) orthonormal columns, the ORTVEC
subroutine orthogonalizes the vectorv to the columns ofQ. The vectorr is the array
of Fourier coefficients, andρ is the distance fromw to the range ofQ.

There are two special cases:

• If m > n, ORTVEC normalizes the resultw, so thatw′w = 1.

• If m = n, the output vectorw is the null vector.

The casem < n is not possible sinceQ is assumed to haven (nearly) orthonormal
columns.

To initialize a stepwise QR decomposition, ORTVEC can be called to normalizev
only, that is, to computew = v/

√
v′v andρ =

√
v′v only. There are two ways of

using the ORTVEC call for this reason:

• Omit the last argumentq, as incall ortvec(w,r,rho,lindep,v); .

• Provide a matrixQ with zero rows and columns, for example, by using the
free q; command.

In both cases,r is a column vector with zero rows.

The ORTVEC subroutine is useful for the following applications:

836 � Chapter 20. Language Reference

• performing stepwise QR decomposition. ComputeQ andR, so thatA = QR,
whereQ is column orthonormal,Q′Q = I, andR is upper triangular. Thejth
step is applied to thejth column,v, of A, and it computes thejth columnw
of Q and thejth column,(r ρ 0)′, of R.

• computing them× (m−n) null space matrix,Q2, corresponding to anm×n
range space matrix,Q1 (m > n), by the following stepwise process: setv =
ei (whereei is theith unit vector) and try to make it orthogonal to all column
vectors ofQ1 and the already generatedQ2, if the subroutine is successful,
appendw to Q2; otherwise, tryv = ei+1.

The 4 × 3 matrix Q contains the unit vectorse1, e3, ande4. The column vector
v is pairwise linearly independent with the three columns ofQ. As expected, the
ORTVEC call computes the vectorw as the unit vectore2 with u = (1, 1, 1) and
ρ = 1.

q = { 1 0 0,
0 0 0,
0 1 0,
0 0 1 };

v = { 1, 1, 1, 1 };
call ortvec(w,u,rho,lindep,v,q);
print rho u w;

You can perform the QR decomposition of the linearly independent columns of an
m× n matrixA with the following statements:

a = { . . . enter matrix A here . . . };
nind = 0; ndep = 0; dmax = 0.;
n = ncol(a); m = nrow(a);
free q;
do j = 1 to n;

v = a[,j];
call ortvec(w,u,rho,lindep,v,q);
aro = abs(rho);
if aro > dmax then dmax = aro;
if aro <= 1.e-10 * dmax then lindep = 1;
if lindep = 0 then do;

nind = nind + 1;
q = q || w;
if nind = n then r = r || (u // rho);
else r = r || (u // rho // j(n-nind,1,0.));

end;
else do;

print "Column " j " is linearly dependent.";
ndep = ndep + 1; ind[ndep] = j;

end;
end;

Next, process the remaining columns ofA:

PAUSE Statement � 837

do j = 1 to ndep;
k = ind[ndep-j+1];
v = a[,k];
call ortvec(w,u,rho,lindep,v,q);
if lindep = 0 then do;

nind = nind + 1;
q = q || w;
if nind = n then r = r || (u // rho);
else r = r || (u // rho // j(n-nind,1,0.));

end;
end;

Now compute the null space in the last columns ofQ:

do i = 1 to m;
if nind < m then do;

v = j(m,1,0.); v[i] = 1.;
call ortvec(w,u,rho,lindep,v,q);
aro = abs(rho);
if aro > dmax then dmax = aro;
if aro <= 1.e-10 * dmax then lindep = 1;
if lindep = 0 then do;

nind = nind + 1;
q = q || w;

end;
else print "Unit vector" i "linearly dependent.";

end;
end;
if nind < m then do;

print "This is theoretically not possible.";
end;

PAUSE Statement

interrupts module execution

PAUSE <expression> <*>;

The inputs to the PAUSE statement are as follows:

expression is a character matrix or quoted literal giving a message to print.

* suppresses any messages.

The PAUSE statement stops execution of a module, saves the calling chain so that
execution can resume later (by aRESUME statement), prints a pause message that
you can specify, and puts you in immediate mode so you can enter more statements.

You can specify an operand in the PAUSE statement to supply a message to be printed
for the pause prompt. If no operand is specified, the default message,

paused in module XXX

838 � Chapter 20. Language Reference

is printed, whereXXX is the name of the module containing the pause. If you want to
suppress all messages in a PAUSE statement, use an asterisk as the operand:

pause *;

The PAUSE statement should only be specified in modules. It generates a warning if
executed in immediate mode.

When an error occurs while executing inside a module, IML automatically behaves
as though a PAUSE statement was issued. PROC IML prints a note saying

paused in module

and IML puts you in immediate mode within the module environment, where you
can correct the error. You can then resume execution from the statement following
the one where the error occurred by issuing aRESUMEcommand.

IML supports pause processing of both subroutine and function modules. See also
the description of theSHOW statementusing the PAUSE option.

PGRAF Call

produces scatter plots

CALL PGRAF(xy <, id><, xlabel><, ylabel><, title>);

The inputs to the PGRAF subroutine are as follows:

xy is ann× 2 matrix of (x, y) points.

id is ann × 1 character matrix of labels for each point. The PGRAF
subroutine uses up to 8 characters per point. Ifid is a scalar (1 ×
1), then the same label is used for all of the points. The label is
centered over the actual point location. If you do not specifyid, x

is the default character for labeling the points.

xlabel is a character scalar or quoted literal that labels thex axis (centered
below thex axis).

ylabel is a character scalar or quoted literal that labels they axis (printed
vertically to the left of they axis).

title is a character scalar or quoted literal printed above the graph.

The PGRAF subroutine produces a scatter plot suitable for display on a line printer
or similar device.

The statements below specify a plotting symbol, axis labels, and a title to produce the
plot shown.

POLYROOT Function � 839

xy={1 2, 3 3, 5 4, 6 2};
call pgraf(xy,’*’,’X’,’Y’,’Plot of X vs Y’);

Plot of X vs Y
|

4 + *
|
|
|

Y |
3 + *

|
|
|
|

2 + * *
--+------+------+------+------+------+-

1.0 2.0 3.0 4.0 5.0 6.0

X

POLYROOT Function

finds zeros of a real polynomial

POLYROOT(vector)

wherevectoris ann × 1 (or 1 × n) vector containing the coefficients of an (n − 1)
degree polynomial with the coefficients arranged in order of decreasing powers. The
POLYROOT function returns the arrayr, which is an(n− 1)× 2 matrix containing
the roots of the polynomial. The first column ofr contains the real part of the com-
plex roots and the second column contains the imaginary part. If a root is real, the
imaginary part will be 0.

The POLYROOT function finds the real and complex roots of a polynomial with real
coefficients.

The POLYROOT function uses an algorithm proposed by Jenkins and Traub (1970)
to find the roots of the polynomial. The algorithm is not guaranteed to find all roots of
the polynomial. An appropriate warning message is issued when one or more roots
cannot be found. The POLYROOT algorithm produces roots within the precision
allowed by the hardware. Ifr is given as a root of the polynomialP (x), then1 +
P (R) = 1 based on the roundoff error of the computer that is employed.

For example, to find the roots of the polynomial

P (x) = 0.2567x4 + 0.1570x3 + 0.0821x2 − 0.3357x+ 1

use the following IML code to produce the result shown.

p={0.2567 0.1570 0.0821 -0.3357 1};
r=polyroot(p);

840 � Chapter 20. Language Reference

R 4 rows 2 cols (numeric)

0.8383029 0.8514519
0.8383029 -0.851452
-1.144107 1.1914525
-1.144107 -1.191452

The polynomial has two conjugate pairs of roots that, within machine precision, are
given byr = 0.8383029± 0.8514519i andr = −1.144107± 1.1914525i.

PRINT Statement

prints matrix values

PRINT <matrices> <(expression)> <"message">

<pointer-controls> <[options]>;

The inputs to the PRINT statement are as follows:

matrices are the names of matrices.

(expression) is an expression in parentheses that is evaluated. The result of the
evaluation is printed. The evaluation of a subscripted matrix used
as an expression results in printing the submatrix.

"message" is a message in quotes.

pointer-controls control the pointer for printing. For example, using a comma (,)
skips a single line and using a slash (/) skips to a new page.

[options] are described below.

The PRINT statement prints the specified matrices or message. The options below
can appear in the PRINT statement. They are specified in brackets after the matrix
name to which they apply.

COLNAME=matrix
specifies the name of a character matrix whose firstncol elements are to be used for
the column labels of the matrix to be printed, wherencol is the number of columns in
the matrix. (You can also use theRESETautonamestatementto automatically label
columns as COL1, COL2, and so on.)

FORMAT=format
specifies a valid SAS or user-defined format to use in printing the values of the matrix,
for example,

print x[format=5.3];

LABEL= label
specifies the name of a scalar character matrix or literal to use as a label when printing
the matrix. For example,

PRINT Statement � 841

print x[label="Net Pay"];

ROWNAME=matrix
specifies the name of a character matrix whose firstnrow elements are to be used for
the row labels of the matrix to be printed, wherenrow is the number of rows in the
matrix and where the scan to find the firstnrow elements goes across row 1, then
across row 2, and so forth through rown. (You can also use theRESETautoname
statementto automatically label rows as ROW1, ROW2, and so on.)

reset autoname;

For example, you can use the statement below to print a matrix calledX in format
12.2 with columns labeled AMOUNT and NET PAY, and rows labeled DIV A and
DIV B:

x={45.125 50.500,
75.375 90.825};

r={"DIV A" "DIV B"};
c={"AMOUNT" "NET PAY"};

print x[rowname=r colname=c format=12.2];

The output is

X AMOUNT NET PAY

DIV A 45.13 50.50
DIV B 75.38 90.83

To permanently associate the above options with a matrix name, refer to the descrip-
tion of theMATTRIB statement.

If there is not enough room to print all the matrices across the page, then one or
more matrices are printed out in the next group. If there is not enough room to print
all the columns of a matrix across the page, then the columns are folded, with the
continuation lines identified by a colon(:).

The spacing between adjacent matrices can be controlled by the SPACES= option
of the RESET statement. The FW= option of theRESET statementcan be used to
control the number of print positions used to print each numeric element. For more
print-related options, including the PRINTADV option, see the description of the
RESET statement. The example below shows how to print part of a matrix:

y=1:10;
/* prints first five elements of y*/

print (y[1:5]) [format=5.1];

842 � Chapter 20. Language Reference

PRODUCT Function

multiplies matrices of polynomials

PRODUCT(a, b <, dim>)

The inputs to the PRODUCT function are as follows:

a is anm × (ns) numeric matrix. The firstm × n submatrix contains the
constant terms of the polynomials, the secondm × n submatrix contains
the first order terms, and so on.

b is ann× (pt) matrix. The firstn× p submatrix contains the constant terms
of the polynomials, the secondn × p submatrix contains the first order
terms, and so on.

dim is a1 × 1 matrix, with valuep > 0. The value of this matrix is used to set
p above. If omitted, the value ofp is set to 1.

The PRODUCT function multiplies matrices of polynomials. The value returned is
them× (p(s+ t− 1)) matrix of the polynomial products. The firstm× p submatrix
contains the constant terms, the secondm×p submatrix contains the first order terms,
and so on.

Note: The PRODUCT function can be used to multiply the matrix operators em-
ployed in a multivariate time-series model of the form

Φ1(B)Φ2(B)Yt = Θ1(B)Θ2(B)εt

whereΦ1(B), Φ2(B), Θ1(B), andΘ2(B) are matrix polynomial operators whose
first matrix coefficients are identity matrices. OftenΦ2(B) and Θ2(B) represent
seasonal components that are isolated in the modeling process but multiplied with
the other operators when forming predictors or estimating parameters. The RATIO
function is often employed in a time series context as well.

For example, the statement

r=product({1 2 3 4,
5 6 7 8},

{1 2 3,
4 5 6}, 1);

produces the result

R 2 rows 4 cols (numeric)

9 31 41 33
29 79 105 69

PUSH Call � 843

PURGE Statement

removes observations marked for deletion and renumbers records

PURGE;

The PURGE data processing statement is used to remove observations marked for
deletion and to renumber the remaining observations. This closes the gaps created
by deleted records. Execution of this statement may be time consuming because it
involves rewriting the entire data set.

CAUTION: Any indexes associated with the data set are lost after a purge.

IML does not do an automatic purge for you at quit time.

In the example that follows, a data set named A is created. Then, you begin an
IML session and edit A. You delete the fifth observation, list the data set, and is-
sue a PURGE statement to delete the fifth observation and renumber the remaining
observations.

data a;
do i=1 to 10;

output;
end;

run;

proc iml;
edit a;
delete point 5;
list all;
purge;
list all;

PUSH Call

pushes SAS statements into the command input stream

CALL PUSH(argument1<, argument2,. . ., argument15>);

whereargumentis a character matrix or quoted literal containing valid SAS state-
ments.

The PUSH subroutine pushes character arguments containing valid SAS statements
(usually SAS/IML statements or global statements) to the input command stream.
You can specify up to 15 arguments. Any statements pushed to the input command
queue get executed when the module is put in a hold state. This is usually induced by
one of the following:

• an execution error within a module

• an interrupt

• a pause command

844 � Chapter 20. Language Reference

The string pushed is read before any other lines of input. If you call the PUSH
subroutine several times, the strings pushed each time are ahead of the less recently
pushed strings. If you would rather place the lines after others in the input stream,
then use theQUEUEcommand instead.

The strings you push do not appear on the log.

CAUTION: Do not push too much code at one time.

Pushing too much code at one time, or getting into infinite loops of pushing, causes
problems that may result in exiting the SAS system.

For details, seeChapter 15, “Using SAS/IML Software to Generate IML
Statements.”

An example using the PUSH subroutine is shown below:

start;
code=’reset pagesize=25;’;
call push(code,’resume;’);
pause;

/* show that pagesize was set to 25 during */
/* a PAUSE state of a module */

show options;
finish;
run;

PUT Statement

writes data to an external file

PUT <operand> <record-directives> <positionals> <format>;

The inputs to the PUT statement are as follows:

operand specifies the value you want to output to the current position
in the record. Theoperandcan be either a variable name, a
literal value, or an expression in parentheses. Theoperandcan
be followed immediately by an output format specification.

record-directives start new records. There are three types:

holding@ at the end of a PUT statement, instructs IML
to put a hold on the current record so that
IML can write more to the record with later
PUT statements. Otherwise, IML automati-
cally begins the next record for the next PUT
statement.

/ writes out the current record and begins
forming a new record.

PV Function � 845

> operand specifies that the next record written will
start at the indicated byte position in the file
(for RECFM=N files only). Theoperandis
a literal number, a variable name, or an ex-
pression in parentheses, for example,

put >3 x 3.2;

positionals specify the column on the record to which the PUT statement
should go. There are two types of positionals:

@ operand specifies to go to the indicated column,
whereoperandis a literal number, a variable
name, or an expression in parentheses. For
example, @30 means to go to column 30.

+ operand specifies that the indicated number of
columns are to be skipped, whereoperand
is a literal number, a variable name, or an
expression in parentheses.

format specifies a valid SAS or user-defined output format. These are
of the formw.d or $w. for standard numeric and character
formats, respectively, wherew is the width of the field andd
is the decimal parameter, if any. They can also be a named
format of the formNAMEw.d, whereNAMEis the name of the
format. If the width is unspecified, then a default width is used;
this is 9 for numeric variables.

The PUT statement writes to the file specified in the previously executed FILE state-
ment, putting the values from IML variables. The statement is described in detail in
Chapter 7, “File Access.”

The PUT statement is a sequence of positionals and record directives, variables, and
formats. An example using the PUT statement is shown below:

/* output variable A in column 1 using SAS format 6.4. */
/* Skip 3 columns and output X using format 8.4 */

put @1 a 6.4 +3 x 8.4;

PV Function

calculates the present value of a vector of cash-flows and returns a scalar

PV(times,flows,freq,rates)

The PV function returns a scalar containing the present value of the cash-flows based
on the specified frequency and rates.

846 � Chapter 20. Language Reference

times is ann× 1 column vector of times. Elements should be nonnegative.

flows is ann× 1 column vector of cash-flows.

freq is a scalar that represents the base of the rates to be used for discounting
the cash-flows. If positive, it represents discrete compounding as the
reciprocal of the number of compoundings per period. If zero, it rep-
resents continuous compounding. If -1, the rates represent per-period
discount factors. No other negative values are allowed.

rates is ann× 1 column vector of rates to be used for discounting the cash-
flows. Elements should be positive.

A general present value relationship can be written as

P =
K∑

k=1

c(k)D(tk)

whereP is the present value of the asset,{c(k)}k = 1, . . . ,K is the sequence of
cash-flows from the asset,tk is the time to thek-th cash-flow in periods from the
present, andD(t) is the discount function for timet.
With per-unit-time-period discount factorsdt:

D(t) = dt
t

With continuous compounding:

D(t) = e−rtt

With discrete compounding:

D(t) = (1 + fr)−t/f

wheref > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period.

The following code presents an example of the PV function.

timesn=T(do(1,100,1));
flows=repeat(10,100);
freq=50;
rate=repeat(0.10,100);
pv=pv(timesn,flows,freq,rate);
print pv;

The result is

PV
266.4717

QR Call � 847

QR Call

produces the QR decomposition of a matrix by Householder transformations

CALL QR(q, r, piv, lindep, a <, ord><, b>);

The QR subroutine returns the following values:

q specifies an orthogonal matrixQ that is the product of the Householder
transformations applied to them×nmatrixA, if the b argument is not
specified. In this case, themin(m,n) Householder transformations are
applied, andq is anm×mmatrix. If theb argument is specified,q is the
m×pmatrixQ′B that has the transposed Householder transformations
Q′ applied on thep columns of the argument matrixB.

r specifies amin(m,n) × n upper triangular matrixR that is the upper
part of them × n upper triangular matrix̃R of the QR decomposi-
tion of the matrixA. The matrixR̃ of the QR decomposition can be
obtained by vertical concatenation (using the IML operator //) of the
(m−min(m,n))× n zero matrix to the result matrixR.

piv specifies ann × 1 vector of permutations of the columns ofA; that
is, on return, the QR decomposition is computed, not ofA, but of the
permuted matrix whose columns are[Apiv[1] · · ·Apiv[n]]. The vector
piv corresponds to ann× n permutation matrixΠ.

lindep is the number of linearly dependent columns in matrixA detected
by applying themin(m,n) Householder transformations in the order
specified by the argument vectorpiv.

The inputs to the QR subroutine are as follows:

a specifies anm× n matrixA that is to be decomposed into the product
of the orthogonal matrixQ and the upper triangular matrix̃R.

ord specifies an optionaln×1 vector that specifies the order of Householder
transformations applied to matrixA, as follows:

ord[j] > 0 Columnj of A is aninitial column, meaning it has to
be processed at the start in increasing order oford[j].

ord[j] = 0 Columnj of A is allowed to be permuted in order of
decreasing residual Euclidean norm (pivoting).

ord[j] < 0 Columnj of A is afinal column, meaning it has to
be processed at the end in decreasing order oford[j].

The default isord[j] = j, in which case the Householder transforma-
tions are done in the same order that the columns are stored in matrix
A (without pivoting).

b specifies an optionalm × p matrix B that is to be multiplied by the
transposedm×m matrixQ′. If b is specified, the resultq contains the
m×pmatrixQ′B. If b is not specified, the resultq contains them×m
matrixQ.

848 � Chapter 20. Language Reference

The QR subroutine decomposes anm × n matrix A into the product of anm ×m
orthogonal matrixQ and anm× n upper triangular matrix̃R, so that

AΠ = QR̃, Q′Q = QQ′ = Im

by means ofmin(m,n) Householder transformations.

Them × m orthogonal matrixQ is computed only if the last argumentb is not
specified, as follows:

call qr(q,r,piv,lindep,a,ord);

In many applications, the number of rows,m, is very large. In these cases, the explicit
computation of them×m matrixQ can require too much memory or time.

In the usual case wherem > n,

A =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 Q =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

R̃ =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0
0 0 0

 R =

 ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

Q = [Q1 Q2] , R̃ =
[

R
0

]
whereR is the result returned by the QR subroutine.

Then columns of matrixQ1 provide an orthonormal basis for then columns ofA
and are called therange spaceof A. Since them−n columns ofQ2 are orthogonal to
then columns ofA, Q′

2A = 0, they provide an orthonormal basis for the orthogonal
complement of the columns ofA and are called thenull spaceof A.

In the case wherem < n,

A =

 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

R̃ = R =

 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗

QR Call � 849

Specifying the argumentord as ann vector lets you specify a special order of the
columns in matrixA on which the Householder transformations are applied. When
you specify theord argument, the columns ofA can be divided into the following
groups:

• ord[j] > 0: Columnj of A is aninitial column, meaning it has to be processed
at the start in increasing order oford[j]. This specification defines the firstnl
columns ofA that are to be processed.

• ord[j] = 0: Columnj of A is a pivot column, meaning it is to be processed
in order of decreasing residual Euclidean norms. Thepivot columnsof A are
processed after thenl initial columnsand before thenu final columns.

• ord[j] < 0: Columnj of A is afinal column, meaning it has to be processed
at the end in decreasing order oford[j]. This specification defines the lastnu
columns ofA that are to be processed. Ifn > m, some of these columns will
not be processed at all.

There are two special cases:

• If you do not specify theord argument, the default valuesord[j] = j are used.
In this case, Householder transformations are done in the same order in which
the columns are stored inA (without pivoting).

• If you set all components oford to zero, the Householder transformations are
done in order of decreasing Euclidean norms of the columns ofA.

The resultingn×1 vectorpiv specifies the permutation of the columns ofA on which
the Householder transformations are applied; that is, on return, the QR decomposition
is computed, not ofA, but of the matrix with columns that are permuted in the order
Apiv[1], . . . ,Apiv[n].

To check the QR decomposition, use the following statements to compute the three
residual sum of squares, represented by the variables SS0, SS1, and SS2, which
should be close to zero:

m = nrow(a); n = ncol(a);
call qr(q,r,piv,lindep,a,ord);
ss0 = ssq(a[,piv] - q[,1:n] * r);
ss1 = ssq(q * q‘ - i(m));
ss2 = ssq(q‘ * q - i(m));

If the QR subroutine detects linearly dependent columns while processing matrixA,
the column order given in the result vectorpiv can differ from an explicitly specified
order in the argument vectorord. If a column ofA is found to be linearly dependent
on columns already processed, this column is swapped to the end of matrixA. The
order of columns in the result matrixR corresponds to the order of columns processed
in A. The swapping of a linearly dependent column ofA to the end of the matrix
corresponds to the swapping of the same column inR and leads to a zero row at the
end of the upper triangular matrixR.

850 � Chapter 20. Language Reference

The scalar resultlindep counts the number of linearly dependent columns that are
detected in constructing the firstmin(m,n) Householder transformations in the order
specified by the argument vectorord. The test of linear dependence depends on the
size of the singularity criterion used; currently it is specified as 1E−8.

Solving the linear systemRx = Q′b with an upper triangular matrixR whose
columns are permuted corresponding to the result vectorpiv leads to a solutionx
with permuted components. You can reorder the components ofx by using the index
vectorpiv at the left-hand side of an expression, as follows:

call qr(qtb,r,piv,lindep,a,ord,b);
x[piv] = inv(r) * qtb[1:n,1:p];

The following example solves the full-rank linear least-squares problem. Specify the
argumentb as anm× p matrixB, as follows:

call qr(q,r,piv,lindep,a,ord,b);

When you specify theb argument, the QR call computes the matrixQ′B (instead
of Q) as the resultq. Now you can compute thep least-squares solutionsxk of an
overdetermined linear system with anm × n,m > n coefficient matrixA, rank(A)
= n, andp right-hand sidesbk stored as the columns of them× p matrixB:

min
xk

‖Axk − bk‖2, k = 1, . . . , p

where‖ ·‖ is the Euclidean vector norm. This is accomplished by solving thep upper
triangular systems with back-substitution:

xk = Π′R−1Q′
1bk, k = 1, . . . , p

For most applications,m, the number of rows ofA, is much larger thann, the number
of columns ofA, orp, the number of right-hand sides. In these cases, you are advised
not to compute the largem × m matrix Q (which can consume too much memory
and time) if you can solve your problem by computing only the smallerm×pmatrix
Q′B implicitly. For an example, use the first five columns of the6× 6 Hilbert matrix
A.

a= { 36 -630 3360 -7560 7560 -2772,
-630 14700 -88200 211680 -220500 83160,
3360 -88200 564480 -1411200 1512000 -582120,

-7560 211680 -1411200 3628800 -3969000 1552320,
7560 -220500 1512000 -3969000 4410000 -1746360,

-2772 83160 -582120 1552320 -1746360 698544 };
b= { 463, -13860, 97020, -258720, 291060, -116424};
n = 5; aa = a[,1:n];
call qr(qtb,r,piv,lindep,aa,,b);
if lindep=0 then x=inv(r)*qtb[1:n];
print x;

QUAD Call � 851

Note that you are using only the firstn rows,Q′
1B, of QTB. TheIF-THEN statement

of the preceding code may be replaced by the more efficientTRISOLV function, as
follows:

if lindep=0 then x=trisolv(1,r,qtb[1:n],piv);
print x;

Both cases produce the following output:

X
1

0.5
0.3333333

0.25
0.2

For information on solving rank-deficient linear least-squares problems, see the
RZLIND call.

QUAD Call

performs numerical integration of scalar functions in one dimension over infi-
nite, connected semi-infinite, and connected finite intervals

CALL QUAD(r, "fun", points <, EPS=eps><, PEAK=peak>

<, SCALE=scale><, MSG=msg><, CYCLES=cycles>);

The QUAD subroutine returns the following value:

r is a numeric vector containing the results of the integration. The size of
r is equal to the number of subintervals defined by the argumentpoints.
Should the numerical integration fail on a particular subinterval, the
corresponding element ofr is set to missing.

The inputs to theQUAD are as follows:

"fun" specifies the name of an IML module used to evaluate the integrand.

points specifies a sorted vector that provides the limits of integration over con-
nected subintervals. The simplest form of the vector provides the limits
of the integration on one interval. The first element ofpointsshould
contain the left limit. The second element should be the right limit. A
missing value of.M in the left limit is interpreted as−∞, and a miss-
ing value of.P is interpreted as+∞. For more advanced usage of the
QUAD call, pointscan contain more than two elements. The elements
of the vector must be sorted in an ascending order. Each two consecu-
tive elements inpointsdefines a subinterval, and the subroutine reports

852 � Chapter 20. Language Reference

the integration over each specified subinterval. The use of subintervals
is important because the presence of internal points of discontinuity in
the integrand will hinder the algorithm.

eps is an optional scalar specifying the desired relative accuracy. It has a
default value of 1E−7. You can specifyepswith the keyword EPS.

peak is an optional scalar that is the approximate location of a maximum of
the integrand. By default, it has a location of 0 for infinite intervals, a
location that is one unit away from the finite boundary for semi-infinite
intervals, and a centered location for bounded intervals. You can spec-
ify peakwith the keyword PEAK.

scale is an optional scalar that is the approximate estimate of any scale in the
integrand along the independent variable (see the examples). It has a
default value of 1. You can specifyscalewith the keyword SCALE.

msg is an optional character scalar that restricts the number of messages
produced by the QUAD subroutine. Ifmsg= "NO" then it does not
produce any warning messages. You can specifymsgwith the keyword
MSG.

cycles is an optional integer indicating the number of refinements allowed to
achieve the required accuracy. It has a default value of 8. You can
specifycycleswith the keyword CYCLES.

If the dimensions of any optional argument are0× 0, the QUAD call uses its default
value.

The QUAD subroutine quad is a numerical integrator based on adaptive Romberg-
type integration techniques. Refer to Rice (1973), Sikorsky (1982), Sikorsky and
Stenger (1984), and Stenger (1973a, 1973b, 1978). Many adaptive numerical inte-
gration methods (Ralston and Rabinowitz 1978) start at one end of the interval and
proceed towards the other end, working on subintervals while locally maintaining a
certain prescribed precision. This is not the case with the QUAD call. The QUAD
call is an adaptive global-type integrator that produces a quick, rough estimate of the
integration result and then refines the estimate until achieving the prescribed accu-
racy. This gives the subroutine an advantage over Gauss-Hermite and Gauss-Laguerre
quadratures (Ralston and Rabinowitz 1978, Squire 1987), particularly for infinite and
semi-infinite intervals, because those methods perform only a single evaluation.

Consider the integration∫ ∞

0
e−t dt

The following statements evaluate this integral:

/* Define the integrand */
start fun(t);

v = exp(-t);
return(v);

QUAD Call � 853

finish;

/* Call QUAD */
a = { 0 .P };
call quad(z,"fun",a);
print z[format=E21.14];

The integration is carried out over the interval(0,∞), as specified by the variable
A. Note that the missing value in the second element of A is interpreted as∞. The
values ofeps=1E−7, peak=1, scale=1, andcycles=8 are used by default.

The following code performs the integration over two subintervals, as specified by
the variable A:

/* Define the integrand */
start fun(t);

v = exp(-t);
return(v);

finish;

/* Call QUAD */
a = { 0 3 .P };
call quad(z,"fun",a);
print z[format=E21.14];

Note that the elements of A are in ascending order. The integration is carried out
over (0, 3) and(3,∞), and the corresponding results are shown in the output. The
values ofeps=1E−7, peak=1, scale=1, andcycles=8 are used by default. To obtain
the results of integration over(0,∞), use the SUM function on the elements of the
vectorZ, as follows:

b = sum(z);
print b[format=E21.14];

The purpose of thepeakand scaleoptions is to enable you to avoid analytically
changing the variable of the integration in order to produce a well-conditioned inte-
grand that permits the numerical evaluation of the integration.

Consider the integration∫ ∞

0
e−10000t dt

The following statements evaluate this integral:

/* Define the integrand */
start fun(t);

v = exp(-10000*t);
return(v);

finish;

854 � Chapter 20. Language Reference

/* Call QUAD */
a = { 0 .P };
/* Either syntax can be used */
/* call quad(z,"fun",a,1E-10,0.0001); or */
call quad(z,"fun",a) eps=1E-10 peak=0.0001 ;
print z[format=E21.14];

Only one interval exists. The integration is carried out over(0,∞). The default
values ofscale=1 andcycles=8 are used.

If you do not specify apeakvalue, the integration cannot be evaluated to the desired
accuracy, a message is printed to the LOG, and a missing value is returned. Note that
peakcan still be set to 1E−7 and the integration will be successful. The evaluation of
the integrand atpeakmust be nonzero for the computation to continue. You should
adjust the value ofpeakto get a nonzero evaluation atpeakbefore trying to adjust
scale. Reducingscaledecreases the initial step size and may lead to an increase in
the number of function evaluations per step at a linear rate.

Consider the integration∫ ∞

infty
e−100000(t−3)2 dt

The following statements evaluate this integral:

/* Define the integrand */
start fun(t);

v = exp(-100000*(t-3)*(t-3));
return(v);

finish;
/* Call QUAD */
a = { .M .P };
call quad(z,"fun",a) eps=1E-10 peak=3 scale=0.001 ;
print z[format=E21.14];

Only one interval exists. The integration is carried out over(−∞,∞). The default
value ofcycles=8 has been used.

If you use the default value ofscale, the integral cannot be evaluated to the desired
accuracy, and a missing value is returned. The variablesscaleand cyclescan be
used to allow an increase in the number of possible function evaluations; the number
of possible function evaluations will increase linearly with the reciprocal ofscale,
but it will potentially increase in an exponential manner whencyclesis increased.
Increasing the number of function evaluations increases execution time.

When you perform double integration, you must separate the variables between the
iterated integrals. There should be a clear distinction between the variables of the
one-dimensional integration at hand and the parameters to be passed to the integrand.

QUAD Call � 855

Posting the correct limits of integration is also an important issue. For example,
consider the binormal probability, given by

probbnrm(a, b, ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dy dx

The inner integral is

g(x, b, ρ) =
1

2π
√

1− ρ2

∫ b

−∞
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dy

with parametersx andρ, and the limits of integration are from−∞ to b. The outer
integral is then

probbnrm(a, b, ρ) =
∫ a

−∞
g(x, b, ρ) dx

with the limits from−∞ to a.

You can write the equation in the form of a function with the parametersa, b, ρ as
arguments. The following statements provide an example of this technique:

start norpdf2(t) global(yv,rho,omrho2,count);

/*---*/
/* This function is the density function and requires */
/* the variable T (passed in the argument) */
/* and a list of parameters, YV, RHO, OMRHO2, COUNT */
/* (defined in the GLOBAL clause) */
/*---*/

count = count+1;
q=(t#t-2#rho#t#yv+yv#yv)/omrho2;
p=exp(-q/2);
return(p);

finish;

start marginal(v) global(yy,yv,eps);
/*--*/
/* The inner integral */
/* The limits of integration from .M to YY */
/* YV is passed as a parameter to the inner integral*/
/*--*/

interval = .M || yy;
if (v < -12) then return(0);
yv = v;
call quad(pm,"NORPDF2",interval) eps=eps;
return(pm);

finish;

856 � Chapter 20. Language Reference

start norcdf2(a,b,rrho) global(yy,rho,omrho2,eps);
/*--*/
/* Post some global parameters */
/* YY, RHO, OMRHO2 */
/* EPS will be set from IML */
/* RHO and B cannot be arguments in the GLOBAL */
/* list at the same time */
/*--*/

rho = rrho;
yy = b;
omrho2 = 1-rho#rho;
/*--*/
/* The outer integral */
/* The limits of integration */
/*--*/
interval= .M || a;

/*--*/
/*Note that EPS the keyword = EPS the variable */
/*--*/
call quad(p,"MARGINAL",interval) eps=eps;

/*--------------------------*/
/* PER will be reset here */
/*--------------------------*/
per = 1/(8#atan(1)#sqrt(omrho2)) * p;
return(per);

finish;

/*----------------------------------*/
/*First set up the global constants */
/*----------------------------------*/
count = 0;
eps = 1E-11;

/*------------------------------------*/
/* Do the work and print the results */
/*------------------------------------*/
p = norcdf2(2,1,0.1);
print p[format=E21.14];
print count;

The variable COUNT contains the number of times the NORPDF2 module is called.
Note that the value computed by the NORCDF2 module is very close to that returned
by the PROBBNRM function, as computed by the following statements:

/*--*/
/* Calculate the value with the PROBBNRM function */
/*--*/
pp = probbnrm(2,1,0.1);
print pp[format=E21.14];

QUEUE Call � 857

Note the following:

• The iterated inner integral cannot have a left endpoint of−∞. For large values
of v, the inner integral does not contribute to the answer but still needs to
be calculated to the required relative accuracy. Therefore, either cut off the
function (whenv ≤ −12), as in the MARGINAL module in the preceding
code, or have the intervals start from a reasonable cutoff value. In addition, the
QUAD call stops if the integrands appear to be identically 0 (probably caused
by underflow) over the interval of integration.

• This method of integration (iterated, one-dimensional integrals) is extremely
conservative and requires unnecessary function evaluations. In this example,
the QUAD call for the inner integration lacks information about the final value
that the QUAD call for the outer integration is trying to refine. The lack of com-
munication between the two QUAD routines can cause useless computations
to be performed in the inner integration.

To illustrate this idea, let the relative error be 1E−11 and let the answer de-
livered by the outer integral be 0.8, as in this example. Any computation of
the inner execution of the QUAD call that yields 0.8E−11 or less will not con-
tribute to the final answer of the QUAD call for the outer integral. However,
the inner integral lacks this information, and for a given value of the parameter
yv, it attempts to compute an answer with much more precision than is neces-
sary. The lack of communication between the two QUAD subroutines prevents
the introduction of better cut-offs. Although this method can be inefficient, the
final calculations are accurate.

QUEUE Call

queues SAS statements into the command input stream

CALL QUEUE(argument1<, argument2,. . ., argument15>);

whereargumentis a character matrix or quoted literal containing valid SAS state-
ments.

The QUEUE subroutine places character arguments containing valid SAS statements
(usually SAS/IML statements or global statements) at the end of the input command
stream. You can specify up to 15 arguments. The string queued is read after other
lines of input already on the queue. If you want to push the lines in front of other
lines already in the queue, use thePUSH subroutineinstead. Any statements queued
to the input command queue get executed when the module is put in a hold state. This
is usually induced by one of the following:

• an execution error within a module

• an interrupt

• a pause command.

The strings you queue do not appear on the log.

858 � Chapter 20. Language Reference

CAUTION: Do not queue too much code at one time.

Queuing too much code at one time, or getting into infinite loops of queuing, causes
problems that may result in exiting the SAS System.

For more examples, consultChapter 15, “Using SAS/IML Software to Generate IML
Statements.”

An example using the QUEUE subroutine follows:

start mod(x);
code=’x=0;’;
call queue (code,’resume;’);
pause;

finish;
x=1;
run mod(x);
print(x);

produces

X

0

QUIT Statement

exits from IML

QUIT;

Use the QUIT statement to exit IML. If a DATA or PROC statement is encountered,
QUIT is implied. The QUIT statement is executed immediately; therefore, you can-
not use QUIT as an executable statement, that is, as part of a module or conditional
clause. (See the description of theABORT statement.)

PROC IML closes all open data sets and files when a QUIT statement is encountered.
Workspace and symbol spaces are freed up. If you need to use any matrix values or
any module definitions in a later session, you must store them in a storage library
before you quit.

RANDGEN Call

generates random numbers from a specified distribution

CALL RANDGEN(result, distname<, parm1><, parm2><, parm3>);

The inputs to the RANDGEN call are as follows:

result is a preallocated matrix that is to be filled with random samples from
the specified distribution.

distname is the name of the distribution that is to be sampled.

RANDGEN Call � 859

parm1 is a distribution shape parameter.

parm2 is a distribution shape parameter.

parm3 is a distribution shape parameter.

The RANDGEN call generates random numbers using the same numerical method
as the RAND function in base SAS, with the efficiency optimized for IML. You can
initialize the random number stream used by RANDGEN with the RANDSEED call.
Theresult parameter must be preallocated to receive the number of samples that you
want to generate.

The following distributions may be sampled.

Bernoulli Distribution

The random samplex is from the probability density function:

f(x) =

1 for p = 0, x = 0
px(1− p)1−x for 0 < p < 1, x = 0, 1
1 for p = 1, x = 1

x is in the range:x = 0, 1

p is the success probability, with range:0 ≤ p ≤ 1

Beta Distribution

The random samplex is from the probability density function:

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1

x is in the range:0 < x < 1

a andb are shape parameters, with range:a > 0 andb > 0

Binomial Distribution

The random samplex is from the probability density function:

f(x) =

1 for p = 0, x = 0(
n
x

)
px(1− p)1−x for 0 < p < 1, x = 0, . . . , n

1 for p = 1, x = 1

x is in the range:x = 0, 1, . . . , n

p is a success probability, with range:0 ≤ p ≤ 1

n specifies the number of independent trials, with range:n = 1, 2, . . .

860 � Chapter 20. Language Reference

Cauchy Distribution

The random samplex is from the probability density function:

f(x) =
1

π(1 + x2)

x is in the range:−∞ < x <∞

Chi-Square Distribution

The random samplex is from the probability density function:

f(x) =
2−df/2

Γ(df
2)

xdf/2−1e−x/2

x is in the range:x > 0

df is degrees of freedom, with range:df > 0

Erlang Distribution

The random samplex is from the probability density function:

f(x) =
1

Γ(a)
xa−1e−x

Range:x > 0

a is an integer shape parameter, with range:a = 1, 2, . . .

Exponential Distribution

The random samplex is from the probability density function:

f(x) = e−x

x is in the range:x > 0

F Distribution (Fn,d)

The random samplex is from the probability density function:

f(x) =
Γ(n+d

2)n
n
2 d

d
2x

n
2
−1

Γ(n
2)Γ(d

2)(d+ nx)
n+d

2

x is in the range:x > 0

n andd are degrees of freedom, with range:n > 0 andd > 0

RANDGEN Call � 861

Gamma Distribution

The random samplex is from the probability density function:

f(x) =
xa−1

Γ(a)
e−x

x is in the range:x > 0

a is a shape parameter:a > 0

Geometric Distribution

The random samplex is from the probability density function:

f(x) =
{

(1− p)x−1p for 0 < p < 1, x = 1, 2, . . .
1 for p = 1, x = 1

x is in the range:x = 1, 2, . . .

p is the success probabililty, with range:0 < p ≤ 1

Hypergeometric Distribution

The random samplex is from the probability density function:

f(x) =

(
R
x

)(
N −R
n− x

)
(
N
n

)

x is in the range:x = max(0, (n− (N −R))), . . . ,min(n,R)

N is the population size, with range:N = 1, 2, . . .

R is the size of the category of interest, with range:R = 0, 1, . . . , N

n is the sample size, with range:n = 0, 1, . . . , N

Lognormal Distribution

The random samplex is from the probability density function:

f(x) =
e− ln2(x)/2

x
√

2π

x is in the range:x ≥ 0

862 � Chapter 20. Language Reference

Negative Binomial Distribution

The random samplex is from the probability density function:

f(x) =

(
x+ k − 1
k − 1

)
(1− p)xpk for 0 < p < 1, x = 0, 1, . . .

1 for p = 1, x = 0

x is in the range:x = 0, 1, . . .

p is the success probability with range:0 < p ≤ 1

k is an integer number that counts the number of successes, with range:k = 1, 2, . . .

Normal Distribution

The random samplex is from the probability density function:

f(x) =
1

λ
√

2π
exp

(
−(x− θ)2

2λ2

)

x is in the range:−∞ < x <∞

θ is the mean, with range:−∞ < θ <∞. This parameter is optional and defaults to
0.

λ is the standard deviation, with range:λ > 0. This parameter is optional and defaults
to 1.

Poisson Distribution

The random samplex is from the probability density function:

f(x) =
mxe−m

x!

x is in the range:x = 0, 1, . . .

m is the mean, with rangem > 0

T Distribution

The random samplex is from the probability density function:

f(x) =
Γ
(

df+1
2

)
√
dfπ Γ

(
df
2

) (1 +
x2

df

)− df+1
2

x is in the range:−∞ < x <∞

df is the degrees of freedom, with the range:df > 0

RANDGEN Call � 863

Table Distribution

The random samplei is from the probability density function:

f(i) =
{
pi for i = 1, 2, . . . , n
1−

∑n
j=1 pj for i = n+ 1

wherep is a vector of probabilities, such that0 ≤ p ≤ 1, andn is the largest integer
such thatn ≤ size ofp and

n∑
j=1

pj ≤ 1

Triangle Distribution

The random samplex is from the probability density function:

f(x) =

{
2x
h for 0 ≤ x ≤ h
2(1−x)
1−h for h < x ≤ 1

x is in the range:0 ≤ x ≤ 1

h is the horizontal location of the peak of the triangle, with range:0 ≤ h ≤ 1

Uniform Distribution

The random samplex is from the probability density function:

f(x) = 1

x is in the range:0 < x < 1

Weibull Distribution

The random samplex is from the probability density function:

f(x) =
a

ba
xa−1e−(x

b)
a

x is in the range:x ≥ 0

a andb are shape parameters, with rangea > 0 andb > 0

The following table describes how parameters of the RANDGEN call correspond to
the distribution parameters.

864 � Chapter 20. Language Reference

Table 20.2. Parameter Assignments for Distributions

distribution distname parm1 parm2 parm3
Bernoulli ’BERNOULLI’ p
Beta ’BETA’ a b
Binomial ’BINOMIAL’ p n
Cauchy ’CAUCHY’
Chi-Square ’CHISQUARE’ df
Erlang ’ERLANG’ a
Exponential ’EXPONENTIAL’
Fn,d ’F’ n d
Gamma ’GAMMA’ a
Geometric ’GEOMETRIC’ p
Hypergeometric ’HYPERGEOMETRIC’ N R n
Lognormal ’LOGNORMAL’
Negative Binomial ’NEGBINOMIAL’ p k
Normal ’NORMAL’ θ λ
Poisson ’POISSON’ m
T ’T’ df
Table ’TABLE’ p
Triangle ’TRIANGLE’ h
Uniform ’UNIFORM’
Weibull ’WEIBULL’ a b

In practice,distnamecan be in lowercase or uppercase, and you only need to specify
enough letters to distinguish one distribution from the others. For example,

/* generate 10 samples from a Bernoulli distribution */
r = j(10,1,.);
call randgen(r,’ber’,p);

Except for the normal distribution, you must specify the parameters listed for each
distribution above or IML will report an error. For the normal distribution, default
values ofθ = 0 andλ = 1 are used if none are supplied.

The following example illustrates the use of the RANDGEN call.

call randseed(12345);

/* get four random observations from each distribution */
x = j(1,4,.);
/* each row of m comes from a different distribution */
m = j(20,4,.);
call randgen(x,’BERN’,0.75);
m[1,] = x;
call randgen(x,’BETA’,3,0.1);
m[2,] = x;
call randgen(x,’BINOM’,10,0.75);
m[3,] = x;

RANDGEN Call � 865

call randgen(x,’CAUCHY’);
m[4,] = x;
call randgen(x,’CHISQ’,22);
m[5,] = x;
call randgen(x,’ERLANG’, 7);
m[6,] = x;
call randgen(x,’EXPO’);
m[7,] = x;
call randgen(x,’F’,12,322);
m[8,] = x;
call randgen(x,’GAMMA’,7.25);
m[9,] = x;
call randgen(x,’GEOM’,0.02);
m[10,] = x;
call randgen(x,’HYPER’,10,3,5);
m[11,] = x;
call randgen(x,’LOGN’);
m[12,] = x;
call randgen(x,’NEGB’,0.8,5);
m[13,] = x;
call randgen(x,’NORMAL’); /* default parameters */
m[14,] = x;
call randgen(x,’POISSON’,6.1);
m[15,] = x;
call randgen(x,’T’,4);
m[16,] = x;
p = {0.1 0.2 0.25 0.1 0.15 0.1 0.1};
call randgen(x,’TABLE’,p);
m[17,] = x;
call randgen(x,’TRIANGLE’,0.7);
m[18,] = x;
call randgen(x,’UNIFORM’);
m[19,] = x;
call randgen(x,’WEIB’,0.25,2.1);
m[20,] = x;
print m;

The output is

M

1 0 1 0
1 0.9999234 0.9842784 0.9997739
7 8 5 10

-1.209834 3.9732282 -0.048339 -1.337284
30.300691 20.653151 27.301922 26.878221
10.636299 4.6455449 7.5284821 2.5558646
0.2449632 2.7656037 4.2254588 0.2866158
0.7035829 1.2676112 0.9806787 1.4811389

8.475216 8.8723256 8.2993617 8.0409742
109 4 33 30

1 1 2 1
0.7784513 0.9792472 0.6018993 0.3643607

866 � Chapter 20. Language Reference

3 2 0 2
0.0053637 1.4026784 -0.271338 -0.416685

5 11 8 4
1.3237918 0.0505162 -0.660845 -0.634447

2 3 2 3
0.5270875 0.6909336 0.8607548 0.5450831
0.4064393 0.7464901 0.3463207 0.2615394
0.4183405 0.9981923 16.812803 0.0001131

RANDSEED Call

sets initial random seed for RANDGEN call

CALL RANDSEED(seed<, reinit>);

The inputs to the RANDSEED call are as follows:

seed is a number to be used to initialize the RANDGEN random number
generator.

reinit indicates whether to allow the random number stream to be reinitialized
after the first initialization, within the same IML session.

The RANDSEED call creates an initial random seed for subsequent RANDGEN
calls. If RANDSEED is not called, an initial seed will be generated from the sys-
tem clock. This call is normally used when it is desirable to reproduce the same
random number stream in different IML sessions. The optionalreinit parameter con-
trols whether the seed will be reinitialized within the same IML session. If it is set
to one, identical seeds will produce the same random number sequence, otherwise a
second call to RANDSEED within the same IML session is ignored. Normally you
should not specifyreinit, or you should set it to zero to ensure that you are working
with an independent random number stream within your IML session.

RANK Function

ranks elements of a matrix

RANK(matrix)

wherematrix is a numeric matrix or literal.

The RANK function creates a new matrix containing elements that are the ranks of the
corresponding elements ofmatrix. The ranks of tied values are assigned arbitrarily
rather than averaged. (See the description of theRANKTIE function.)

For example, the statements

x={2 2 1 0 5};
y=rank(x);

produce the vector

RANK Function � 867

Y

3 4 2 1 5

The RANK function can be used to sort a vectorx:

b=x;
x[,rank(x)]=b;

X

0 1 2 2 5

You can also sort a matrix using theSORTsubroutine.

The RANK function can also be used to find anti-ranks ofx:

r=rank(x);
i=r;
i[,r]=1:ncol(x);

I

4 3 1 2 5

While the RANK function only ranks the elements of numerical matrices, you can
rank the elements of a character matrix using theUNIQUE function as demonstrated
below:

/* Create RANK-like functionality for character matrices */
start rankc(x);

/* the unique function returns a sorted list */
s = unique(x);
idx = j(nrow(x), ncol(x));
ctr = 1; /* there may be duplicate values in x */
do i = 1 to ncol(s); /* for each unique value */

t = loc(x = s[i]);
nDups = ncol(t);
idx[t] = ctr : ctr+nDups-1;
ctr = ctr + nDups;

end;
return (idx);

finish;

/* call the RANKC module */
x = { every good boy does fine and good and well every day};
r = rankc(x);
sortedx=x;
sortedx[r] = x;
print r, x, sortedx;

/* note that ranking is in ASCII order, where capital

868 � Chapter 20. Language Reference

letters precede lower case letters. To get case-insensitive
behavior, trasform matrix before comparison */

x = {’a’ ’b’ ’X’ ’Y’ };
asciiOrder = rankc(x);
alphaOrder = rankc(upcase(x));
print x, asciiOrder, alphaOrder;

IML does not have a function that directly computes the rank of a matrix. You can
use the following technique to compute the rank of matrix A:

rank=round(trace(ginv(a)*a));

RANKTIE Function

ranks matrix elements using tie-averaging

RANKTIE(matrix)

wherematrix is a numeric matrix or literal.

The RANKTIE function creates a new matrix containing elements that are the ranks
of the corresponding elements ofmatrix. The ranks of tied values are averaged.

For example, the statements

x={2 2 1 0 5};
y=ranktie(x);

produce the vector

Y

3.5 3.5 2 1 5

The RANKTIE function differs from theRANK function in that RANKTIE averages
the ranks of tied values, whereasRANK breaks ties arbitrarily.

While the RANK function only ranks the elements of numerical matrices, you can
rank the elements of a character matrix using theUNIQUE function as demonstrated
below:

/* Create RANKTIE-like functionality for character matrices */
start ranktiec(x);

s = unique(x);
idx = j(nrow(x), ncol(x));
ctr = 1; /* there may be duplicate values in x */
do i = 1 to ncol(s); /* for each unique value */

t = loc(x = s[i]);
nDups = ncol(t);
idx[t] = ctr+(nDups-1)/2; /* =(ctr:ctr+nDups-1)[:] */
ctr = ctr + nDups;

end;

RATES Function � 869

return (idx);
finish;

/* call the RANKTIEC module */
x = { every good boy does fine and good and well every day};
rt = ranktiec(x);
print x, rt;

RATES Function

calculates a column vector of (per-period, e.g per-year) interest rates converted
from one base to another

RATES(rates,oldfreq,newfreq)

The RATES function returns ann×1 vector of interest rates converted from one base
to another.

rates is an n × 1 column vector of rates corresponding to the old base.
Elements should be positive.

oldfreq is a scalar that represents the old base. If positive, it represents discrete
compounding as the reciprocal of the number of compoundings per
period. If zero, it represents continuous compounding. If -1, the rates
represent discount factors. No other negative values are allowed.

newfreq is a scalar that represents the new base. If positive, it represents discrete
compounding as the reciprocal of the number of compoundings per
period. If zero, it represents continuous compounding. If -1, the rates
represent discount factors. No other negative values are allowed.

Let D(t) be the discount function, which is the present value of a unit amount to
be receivedt periods from now. The discount function can be expressed in three
different ways:

with per-period discount factorsdt:

D(t) = dt
t

with continuous compounding:

D(t) = e−rtt

with discrete compounding:

D(t) = (1 + fr)−t/f

where0 < f < 1 is the frequency, the reciprocal of the number of compoundings per
period. The RATES function converts between these three representations.

For example, the following code uses the RATES function:

870 � Chapter 20. Language Reference

rates=T(do(0.1,0.3,0.1));
oldfreq=0;
newfreq=0;
rates=rates(rates,oldfreq,newfreq);
print rates;

The output is

RATES
0.1
0.2
0.3

RATIO Function

divides matrix polynomials

returns a matrix containing the terms ofΦ(B)−1Θ(B) considered as a matrix of
rational functions inB that have been expanded as power series

RATIO(ar, ma, terms<, dim>)

The inputs to the RATIO function are as follows:

ar is ann× (ns) matrix representing a matrix polynomial generating function,
Φ(B), in the variableB. The firstn × n submatrix represents the constant
term and must be nonsingular, the secondn×n submatrix represents the first
order coefficients, and so on.

ma is ann× (mt) matrix representing a matrix polynomial generating function,
Θ(B), in the variableB. The firstn ×m submatrix represents the constant
term, the secondn×m submatrix represents the first order term, and so on.

terms is a scalar containing the number of terms to be computed, denoted byr in
the discussion below. This value must be positive.

dim is a scalar containing the value ofm above. The default value is 1.

The RATIO function multiplies a matrix of polynomials by the inverse of another
matrix of polynomials. It is useful for expressing univariate and multivariate ARMA
models in pure moving-average or pure autoregressive forms.

The value returned is ann × (mr) matrix containing the terms ofΦ(B)−1Θ(B)
considered as a matrix of rational functions inB that have been expanded as power
series.

Note: The RATIO function can be used to consolidate the matrix operators employed
in a multivariate time-series model of the form

Φ(B)Yt = Θ(B)εt

RDODT and RUPDT Calls � 871

whereΦ(B) andΘ(B) are matrix polynomial operators whose first matrix coeffi-
cients are identity matrices. The RATIO function can be used to compute a truncated
form of Ψ(B) = Φ(B)−1Θ(B) for the equivalent infinite order model

Yt = Ψ(B)εt .

The RATIO function can also be employed for simple scalar polynomial division,
giving a truncated form ofθ(x)/φ(x) for two scalar polynomialsθ(x) andφ(x).

The cumulative sum of the elements of a column vectorx can be obtained using

ratio({ 1 -1} ,x,ncol(x));

Consider the following example for multivariate ARMA(1,1):

ar={1 0 -.5 2,
0 1 3 -.8};

ma={1 0 .9 .7,
0 1 2 -.4};

psi=ratio(ar,ma,4,2);

The matrix produced is

PSI
1 0 1.4 -1.3 2.7 -1.45 11.35

: -9.165

0 1 -1 0.4 -5 4.22 -12.1
: 7.726

RDODT and RUPDT Calls

downdate and update QR and Cholesky decompositions

CALL RDODT(def, rup, bup, sup, r, z <, b, y <, ssq>>);

CALL RUPDT(rup, bup, sup, r, z <, b, y <, ssq>>);

The RDODT and RUPDT subroutines return the values:

def is only used for downdating, and it specifies whether the downdating of
matrix R by using theq rows in argumentz has been successful. The
resultdef=2 means that the downdating ofR by at least one row ofZ
leads to a singular matrix and cannot be completed successfully (since
the result of downdating is not unique). In that case, the resultsrup,
bup, andsupcontain missing values only. The resultdef=1 means that
the residual sum of squares,ssq, could not be downdated successfully
and the resultsupcontains missing values only. The resultdef=0 means
that the downdating ofR by Z was completed successfully.

872 � Chapter 20. Language Reference

rup is then× n upper triangular matrixR that has been updated or down-
dated by using theq rows inZ.

bup is then × p matrix B of right-hand sides that has been updated or
downdated by using theq rows in argumenty. If the argumentb is not
specified,bup is not computed.

sup is ap vector of square roots of residual sum of squares that is updated
or downdated by using theq rows of argumenty. If ssqis not specified,
supis not computed.

The inputs to the RDODT andRUPDTsubroutines are as follows:

r specifies ann×n upper triangular matrixR to be updated or downdated
by theq rows in Z. Only the upper triangle ofR is used; the lower
triangle can contain any information.

z specifies aq × n matrix Z used rowwise to update or downdate the
matrixR.

b specifies an optionaln × p matrix B of right-hand sides that have to
be updated or downdated simultaneously withR. If b is specified, the
argumenty must also be specified.

y specifies an optionalq × p matrixY used rowwise to update or down-
date the right-hand side matrixB. If b is specified, the argumenty must
also be specified.

ssq is an optionalp vector that, ifb is specified, specifies the square root of
the error sum of squares that should be updated or downdated simulta-
neously withR andB.

The upper triangular matrixR of the QR decomposition of anm× n matrixA,

A = QR, whereQ′Q = QQ′ = Im

is recomputed efficiently in two cases:

• update: An n vectorz is added to matrixA.

• downdate: An n vectorz is deleted from matrixA.

Computing the whole QR decomposition of matrixA by Householder transforma-
tions requires4mn2 − 4n3/3 floating point operations, whereas updating or down-
dating the QR decomposition (by Givens rotations) of one row vectorz requires only
2n2 floating point operations.

If the QR decomposition is used to solve the full-rank linear least-squares problem

min
x
‖Ax− b‖2 = ssq

RDODT and RUPDT Calls � 873

by solving the nonsingular upper triangular system

x = R−1Q′b

then theRUPDT and RDODT subroutines can be used to update or downdate the
p-transformed right-hand sidesQ′B and the residual sum-of-squaresp vector ssq
provided that for eachn vectorz added to or deleted fromA there is also ap vector
y added to or deleted from them× p right-hand-side matrixB.

If the argumentsz andy of the subroutinesRUPDTand RDODT containq > 1 row
vectors for whichR (andQ′B, and eventuallyssq) is to be updated or downdated,
the process is performed stepwise by processing the rowszk (andyk), k = 1, . . . , q,
in the order in which they are stored.

The QR decomposition of anm× n matrixA,m ≥ n, rank(A) = n,

A = QR, whereQ′Q = QQ′ = Im

corresponds to the Cholesky factorization

C = R′R, whereC = A′A

of the positive definiten × n crossproduct matrixC = A′A. In the case where
m ≥ n and rank(A) = n, the upper triangular matrixR computed by the QR
decomposition (with positive diagonal elements) is the same as the one computed by
Cholesky factorization except for numerical error,

A′A = (QR)′(QR) = R′R

Adding a row vectorz to matrix A corresponds to the rank-1 modification of the
crossproduct matrixC

C̃ = C + z′z, whereC̃ = Ã′Ã

and the(m+ 1)× n matrix Ã contains all rows ofA with the rowz added.

Deleting a row vectorz from matrixA corresponds to the rank-1 modification

C∗ = C− z′z, whereC∗ = A∗′A∗

and the(m− 1)× n matrixA∗ contains all rows ofA with the rowz deleted. Thus,
you can also use the subroutinesRUPDT and RDODT to update or downdate the
Cholesky factorR of a positive definite crossproduct matrixC of A.

The process of downdating an upper triangular matrixR (and eventually a residual
sum-of-squares vectorssq) is not always successful. First of all, the downdated ma-
trix R could be rank deficient. Even if the downdated matrixR is of full rank, the

874 � Chapter 20. Language Reference

process of downdating can be ill conditioned and does not work well if the down-
dated matrix is close (by rounding errors) to a rank-deficient one. In these cases, the
downdated matrixR is not unique and cannot be computed by subroutine RDODT. If
R cannot be computed,defreturns 2, and the resultsrup, bup, andsupreturn missing
values.

The downdating of the residual sum-of-squares vectorssqcan be a problem, too. In
practice, the downdate formula

ssqnew =
√

ssqold− ssqdod

cannot always be computed because, due to rounding errors, the radicand can be
negative. In this case, the result vectorsupreturns missing values, anddefreturns 1.

You can use various methods to compute thep columnsxk of then × p matrix X
that minimize thep linear least-squares problems with anm × n coefficient matrix
A, m ≥ n, rank(A) = n, andp right-hand-side vectorsbk (stored columnwise in
them× p matrixB). The first of the following methods solves thenormal equations
and cannot be applied to the example with the6 × 5 Hilbert matrix since too much
rounding error is introduced. Therefore, use the following simple example:

a = { 1 3 ,
2 2 ,
3 1 };

b = { 1, 1, 1};
m = nrow(a);
n = ncol(a);
p = 1;

• Cholesky Decomposition of Crossproduct Matrix:

aa = a‘ * a; ab = a‘ * b;
r = root(aa);
x = trisolv(2,r,ab);
x = trisolv(1,r,x);

• QR Decomposition by Householder Transformations:

call qr(qtb,r,piv,lindep,a, ,b);
x = trisolv(1,r[,piv],qtb[1:n,]);

• Stepwise Update by Givens Rotations:

r = j(n,n,0.); qtb = j(n,p,0.); ssq = j(1,p,0.);
do i = 1 to m;

z = a[i,];
y = b[i,];
call rupdt(rup,bup,sup,r,z,qtb,y,ssq);
r = rup;
qtb = bup;
ssq = sup;

end;
x = trisolv(1,r,qtb);

READ Statement � 875

Or equivalently:

r = j(n,n,0.);
qtb = j(n,p,0.);
ssq = j(1,p,0.);
call rupdt(rup,bup,sup,r,a,qtb,b,ssq);
x = trisolv(1,rup,bup);

• Singular Value Decomposition:

call svd(u,d,v,a);
d = diag(1 / d);
x = v * d * u‘ * b;

For the preceding3× 2 example matrixA, each method obtains the unique LS esti-
mator:

ss = ssq(a * x - b);
print ss x;

To compute the (transposed) matrixQ, you can use the following specification:

r = shape(0,n,n);
y = i(m);
qt = shape(0,n,m);
call rupdt(rup,qtup,sup,r,a,qt,y);

READ Statement

reads observations from a data set

READ <range> <VAR operand> <WHERE(expression)>

<INTO name <[ROWNAME= row-name

COLNAME=column-name]>> ;

The inputs to the READ function are as follows:

range specifies a range of observations.

operand selects a set of variables.

expression is evaluated for being true or false.

name is the name of the target matrix.

row-name is a character matrix or quoted literal giving descriptive row labels.

column-name is a character matrix or quoted literal giving descriptive column
labels.

876 � Chapter 20. Language Reference

The clauses and options are explained below.

Use the READ statement to read variables or records from the current SAS data set
into column matrices of the VAR clause or into the single matrix of the INTO clause.
When the INTO clause is used, each variable in the VAR clause becomes a column
of the target matrix, and all variables in the VAR clause must be of the same type. If
you specify no VAR clause, the default variables for the INTO clause are all numeric
variables. Read all character variables into a target matrix by using VAR–CHAR–.

You can specify arangeof observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify a range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations specified by number, whereoperandcan be one
of the following.

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. Theoperandin the
VAR clause can be one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables.

Examples showing each possible way you can use the VAR clause follow.

READ Statement � 877

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within therangespecifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

878 � Chapter 20. Language Reference

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

You can specify ROWNAME= and COLNAME= matrices as part of the INTO clause.
The COLNAME= matrix specifies the name of a new character matrix to be created.
This COLNAME= matrix is created in addition to the target matrix of the INTO
clause and contains variable names from the input data set corresponding to columns
of the target matrix. The COLNAME= matrix has dimension1×nvar, wherenvar is
the number of variables contributing to the target matrix.

The ROWNAME= option specifies the name of a character variable in the input data
set. The values of this variable are put in a character matrix with the same name as
the variable. This matrix has the dimensionnobs×1, wherenobsis the number of
observations in the range of the READ statement.

Therange, VAR, WHERE, and INTO clauses are all optional and can be specified in
any order.

Row and column names created via a READ statement are permanently associated
with the INTO matrix. You do not need to use aMATTRIB statementto get this
association.

For example, to read all observations from the data set variables NAME and AGE, use
a READ statement with the VAR clause and the keyword ALL for therangeoperand.
This creates two IML variables with the same names as the data set variables.

read all var{name age};

To read all variables for the 23rd observation only, use the statement

read point 23;

To read the data set variables NAME and ADDR for all observations with a STATE
value ofNJ, use the statement

read all var{name addr} where(state="NJ");

SeeChapter 6, “Working with SAS Data Sets,”for further information.

REMOVE Function

discards elements from a matrix

REMOVE(matrix, indices)

The inputs to the REMOVE function are as follows:

matrix is a numeric or character matrix or literal.

indices refers to a matrix containing the indices of elements that are re-
moved frommatrix.

REMOVE Statement � 879

The REMOVE function returns as a row vector elements of the first argument, with
elements corresponding to the indices in the second argument discarded and the gaps
removed. The first argument is indexed in row-major order, as in subscripting, and
the indices must be in the range 1 to the number of elements in the first argument.
Non-integer indices are truncated to their integer part. You can repeat the indices,
and you can give them in any order. If all elements are removed, the result is a null
matrix (zero rows and zero columns).

Thus, the statement

a=remove({ 5 6, 7 8} , 3);

removes the third element, producing the result shown:

A
5 6 8

The statement

a=remove({ 5 6 7 8} , { 3 2 3 1});

causes all but the fourth element to be removed, giving the result shown:

A
8

REMOVE Statement

removes matrices from storage

REMOVE <MODULE=(module-list) <matrix-list>>;

The inputs to the REMOVE statement are as follows:

module-list specifies a module or modules to remove from storage.

matrix-list specifies a matrix or matrices to remove from storage.

The REMOVE statement removes matrices or modules or both from the current li-
brary storage. For example, the statement below removes the three modules A, B,
and C and the matrix X:

remove module=(A B C) X;

The special operand–ALL – can be used to remove all matrices or all modules or
both. For example, the following statement removes everything:

remove _all_ module=_all_;

SeeChapter 14, “Storage Features,”and also the descriptions of theLOAD, STORE,
RESET, andSHOWstatements for related information.

880 � Chapter 20. Language Reference

RENAME Call

renames a SAS data set

CALL RENAME(<libname,> member-name, new-name);

The inputs to the RENAME subroutine are as follows:

libname is a character matrix or quoted literal containing the name of the
SAS data library.

member-name is a character matrix or quoted literal containing the current name
of the data set.

new-name is a character matrix or quoted literal containing the new data set
name.

The RENAME subroutine renames a SAS data set in the specified library. All of
the arguments can directly be specified in quotes, although quotes are not required.
If a one-word data set name is specified, the libname specified by theRESETdeflib
statementis used. Examples of valid statements follow:

call rename(’a’,’b’);
call rename(a,b);
call rename(work,a,b);

REPEAT Function

creates a new matrix of repeated values

REPEAT(matrix, nrow, ncol)

The inputs to the REPEAT function are as follows:

matrix is a numeric matrix or literal.

nrow gives the number of timesmatrix is repeated across rows.

ncol gives the number of timesmatrix is repeated across columns.

The REPEAT function creates a new matrix by repeating the values of the argu-
ment matrixnrow*ncol times,ncol times across the rows, andnrow times down the
columns. Thematrixargument can be numeric or character. For example, the follow-
ing statements result in the matrixY, repeating theX matrix twice down and three
times across:

x={ 1 2 ,
3 4} ;

y=repeat(x,2,3);

Y
1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

REPLACE Statement � 881

REPLACE Statement

replaces values in observations and updates observations

REPLACE <range> <VAR operand> <WHERE(expression)>;

The inputs to the REPLACE statement are as follows:

range specifies a range of observations.

operand selects a set of variables.

expression is evaluated for being true or false.

The REPLACE statement replaces the values of observations in a SAS data set
with current values of IML matrices with the same name. Use therange, VAR,
and WHERE arguments to limit replacement to specific variables and observa-
tions. Replacement matrices should be the same type as the data set variables. The
REPLACE statement uses matrix elements in row order replacing the value in theith
observation with theith matrix element. If there are more observations inrangethan
matrix elements, the REPLACE statement continues to use the last matrix element.

For example, the statements below cause all occurrences ofILL to be replaced byIL
for the variable STATE:

state="IL";
replace all var{state} where(state="ILL");

You can specify arangeof observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify a range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the nextnumberof observations

AFTER all observations after the current one

POINToperand observations by number, whereoperandcan be one of the fol-
lowing:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}

record numbers

the name of a matrix point p

containing record numbers

an expression in parenthesespoint (p+1)

882 � Chapter 20. Language Reference

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. Thevariablesargument
can have the following values:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described below:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

Examples showing each possible way you can use the VAR clause follow.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

RESET Statement � 883

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data setvariables,
and the expression on the right-hand side refers to matrix values.

The code statement below replaces all variables in the current observation:

replace;

RESET Statement

sets processing options

RESET <options>;

where theoptionsare described below.

The RESET statement sets processing options. The options described below are cur-
rently implemented options. Note that the prefix NO turns off the feature where
indicated. For options that take operands, the operand should be a literal, a name of
a matrix containing the value, or an expression in parentheses. TheSHOWoptions
statementdisplays the current settings of all of the options.

AUTONAME
NOAUTONAME

specifies whether rows are automatically labeled ROW1, ROW2, and so on, and
columns are labeled COL1, COL2, and so on, when a matrix is printed. Row-name
and column-name attributes specified in thePRINT statementor associated via the
MATTRIB statementoverride the default labels. The AUTONAME option causes
the SPACES option to be reset to 4. The default is NOAUTONAME.

CENTER
NOCENTER

884 � Chapter 20. Language Reference

specifies whether output from thePRINT statementis centered on the page. The
default is CENTER.

CLIP
NOCLIP

specifies whether SAS/IML graphs are automatically clipped outside the viewport;
that is, any data falling outside the current viewport is not displayed. NOCLIP is the
default.

DEFLIB=operand
specifies the default libname for SAS data sets when no other libname is given. This
defaults to USER if a USER libname is set up, or WORK if not. The libname operand
can be specified with or without quotes.

DETAILS
NODETAILS

specifies whether additional information is printed from a variety of operations, such
as when files are opened and closed. The default is NODETAILS.

FLOW
NOFLOW

specifies whether operations are shown as executed. It is used for debugging only.
The default is NOFLOW.

FUZZ <=number>
NOFUZZ

specifies whether very small numbers are printed as zero rather than in scientific no-
tation. If the absolute value of the number is less than the value specified innumber,
it will be printed as 0. Thenumberargument is optional, and the default value varies
across hosts but is typically around 1E−12. The default is NOFUZZ.

FW=number
sets the field width for printing numeric values. The default field width is 9.

LINESIZE=n
specifies the linesize for printing. The default value is usually 78.

LOG
NOLOG

specifies whether output is routed to the log file rather than to the print file. On the
log, the results are interleaved with the statements and messages. The NOLOG option
routes output to the OUTPUT window in the SAS windowing environment and to the
listing file in batch mode. The default is NOLOG.

NAME
NONAME

specifies whether the matrix name or label is printed with the value for thePRINT
statement. The default is NAME.

PAGESIZE=n
specifies the pagesize for printing. The default value is usually 21.

RETURN Statement � 885

PRINT
NOPRINT

specifies whether the final results from assignment statements are printed automati-
cally. NOPRINT is the default.

PRINTADV=n
inserts blank lines into the log before printing out the value of a matrix. The default,
PRINTADV=2, causes two blank lines to be inserted.

PRINTALL
NOPRINTALL

specifies whether the intermediate and final results are printed automatically. The
default is NOPRINTALL.

SPACES=n
specifies the number of spaces between adjacent matrices printed across the page.
The default value is 1, except when AUTONAME is on. Then, the default value is 4.

STORAGE=<libname.>memname;
specifies the file to be the current library storage forSTOREandLOAD statements.
The default library storage is WORK.IMLSTOR. Thelibnameargument is optional
and defaults to SASUSER. It can be specified with or without quotes.

RESUME Statement

resumes execution

RESUME;

The RESUME statement enables you to continue execution from the line in the mod-
ule where the most recentPAUSE statementwas executed. PROC IML issues an
automatic pause when an error occurs inside a module. If a module was paused due
to an error, the RESUME statement resumes execution immediately after the state-
ment that caused the error. TheSHOWpausestatementdisplays the current state of
all paused modules.

RETURN Statement

returns to caller

RETURN <(operand)>;

whereoperandis the value of the function returned. Useoperandonly in function
modules.

The RETURN statement causes IML to return to the calling point in a program. If a
LINK statementhas been issued, IML returns to the statement following theLINK .
If no LINK statementwas issued, the RETURN statement exits a module. If not in
a module, execution is stopped (as with aSTOP statement), and IML looks for more
statements to parse.

886 � Chapter 20. Language Reference

The RETURN statement with anoperandis used in function modules that return a
value. Theoperandcan be a variable name or an expression. It is evaluated, and the
value is returned.

See the description of theLINK statement. Also, seeChapter 5, “Programming
Statements,”for details.

If you use aLINK statement, you need a RETURN statement at the place where you
want to go back to the statement afterLINK .

If you are writing a function, use a RETURN to return the value of the function. An
example is shown below.

start sum1(a,b);
sum=a+b;
return(sum);

finish;

ROOT Function

performs the Cholesky decomposition of a matrix

ROOT(matrix)

wherematrix is a symmetric positive-definite matrix.

The ROOT function performs the Cholesky decomposition of a matrix (for example,
A) such that

U′U = A

whereU is upper triangular. The matrixA must be symmetric and positive definite.

For example, the statements

xpx={25 0 5, 0 4 6, 5 6 59};
U=root(xpx);

produce the result shown below:

U

5 0 1
0 2 3
0 0 7

If you need to solve a linear system and you already have a Cholesky decomposition
of your matrix, then use theTRISOLV functionas illustrated below.

ROWCAT Function � 887

b = {5, 2, 53};
/* want to solve xpx * t = b.

First solve U‘ z = b,
then solve U t = z */

z = trisolv(2,U,b);
t = trisolv(1,U,z);

The solution is

T

0
-1

1

The ROOT function performs most of its computations in the memory allocated for
returning the Cholesky decomposition.

ROWCAT Function

concatenates rows without using blank compression

ROWCAT(matrix<, rows<, columns>>);

The inputs to the ROWCAT function are as follows:

matrix is a character matrix or quoted literal.

rows select the rows ofmatrix.

columns select the columns ofmatrix.

The ROWCAT function takes a character matrix or submatrix as its argument and
creates a new matrix with one column whose elements are the concatenation of all
row elements into a single string. If the argument hasn rows andm columns, the
result willhaven rows and 1 column. The element length of the result will bem
times the element length of the argument. The optional rows and columns arguments
may be used to select which rows and columns are concatenated.

For example, the statements

b={"ABC" "D " "EF ",
" GH" " I " " JK"};

a=rowcat(b);

produce the2× 1 matrix:

A 2 rows 1 col (character, size 9)

ABCD EF
GH I JK

888 � Chapter 20. Language Reference

Quotes (") are needed only if you want to embed blanks or special characters or to
maintain uppercase and lowercase distinctions.

The form

ROWCAT(matrix, rows, columns)

returns the same result as

ROWCAT(matrix[rows, columns])

The form

ROWCAT(matrix, rows)

returns the same result as

ROWCAT(matrix[rows,])

ROWCATC Function

concatenates rows using blank compression

ROWCATC(matrix<, rows<, columns>>);

The inputs to the ROWCATC function are as follows:

matrix is a character matrix or quoted literal.

rows select the rows ofmatrix.

columns select the columns ofmatrix.

The ROWCATC function works the same way as theROWCAT functionexcept that
blanks in element strings are moved to the end of the concatenation. For example,
the statements

b={"ABC" "D " "EF ",
" GH" " I " " JK"};

a=rowcatc(b);

produce the matrixA as shown:

A 2 rows 1 col (character, size 9)

ABCDEF
GHIJK

Quotes (") are needed only if you want to embed blanks or special characters or to
maintain uppercase and lowercase distinctions.

RZLIND Call � 889

RUN Statement

executes statements in a module

RUN <name> <(arguments)>;

The inputs to the RUN statement are as follows:

name is the name of a user-defined module or an IML built-in subroutine.

arguments are arguments to the subroutine. Arguments can be both local and
global.

The RUN statement executes a user-defined module or invokes PROC IML’s built-in
subroutines.

The resolution order for the RUN statement is

1. A user-defined module

2. An IML built-in function or subroutine

This resolution order need only be considered if you have defined a module that has
the same name as an IML built-in subroutine. If a RUN statement cannot be resolved
at resolution time, a warning is produced. If the RUN statement is still unresolved
when executed and a storage library is open at the time, IML attempts to load a
module from that storage. If no module is found, then the program is interrupted and
an error message is generated. By default, the RUN statement tries to run the module
named MAIN.

You will usually want to supply both a name and arguments, as follows.

run myf1(a,b,c);

SeeChapter 5, “Programming Statements,”for further details.

RUPDT Call

update QR and Cholesky decompositions

CALL RUPDT(rup, bup, sup, r, z <, b, y <, ssq>>);

See the entry for theRDODT subroutinefor details.

RZLIND Call

computes rank deficient linear least-squares solutions, complete orthogonal fac-
torization, and Moore-Penrose inverses

890 � Chapter 20. Language Reference

CALL RZLIND(lindep, rup, bup, r <, sing><, b>);

The RZLIND subroutine returns the following values:

lindep is a scalar giving the number of linear dependencies that are recognized
in R (number of zeroed rows inrup[n,n]).

rup is the updatedn × n upper triangular matrixR containing zero rows
corresponding to zero recognized diagonal elements in the originalR.

bup is then×pmatrixB of right-hand sides that is updated simultaneously
with R. If b is not specified,bup is not accessible.

The inputs to the RZLIND subroutine are as follows:

r specifies then× n upper triangular matrixR. Only the upper triangle
of r is used; the lower triangle may contain any information.

sing is an optional scalar specifying a relative singularity criterion for the
diagonal elements ofR. The diagonal elementrii is considered zero if
rii ≤ sing‖ri‖, where‖ri‖ is the Euclidean norm of columnri of R.
If the value provided forsing is not positive, the default valuesing=
1000ε is used, whereε is the relative machine precision.

b specifies the optionaln × p matrix B of right-hand sides that have to
be updated or downdated simultaneously withR.

The singularity test used in the RZLIND subroutine is a relative test using the
Euclidean norms of the columnsri of R. The diagonal elementrii is considered
as nearly zero (and theith row is zeroed out) if the following test is true:

rii ≤ sing‖ri‖, where‖ri‖ =
√

r′iri

Providing an argumentsing≤ 0 is the same as omitting the argumentsing in the
RZLIND call. In this case, the default issing= 1000ε, whereε is the relative machine
precision. IfR is computed by the QR decompositionA = QR, then the Euclidean
norm of columni of R is the same (except for rounding errors) as the Euclidean norm
of columni of A.

Consider the following possible application of the RZLIND subroutine. Assume that
you want to compute the upper triangular Cholesky factorR of then × n positive
semidefinite matrixA′A,

A′A = R′R whereA ∈ Rm×n, rank(A) = r, r ≤ n ≤ m

The Cholesky factorR of a positive definite matrixA′A is unique (with the exception
of the sign of its rows). However, the Cholesky factor of a positive semidefinite
(singular) matrixA′A can have many different forms.

In the following example,A is a 12 × 8 matrix with linearly dependent columns
a1 = a2 + a3 + a4 anda1 = a5 + a6 + a7 with r = 6, n = 8, andm = 12.

RZLIND Call � 891

a = {1 1 0 0 1 0 0,
1 1 0 0 1 0 0,
1 1 0 0 0 1 0,
1 1 0 0 0 0 1,
1 0 1 0 1 0 0,
1 0 1 0 0 1 0,
1 0 1 0 0 1 0,
1 0 1 0 0 0 1,
1 0 0 1 1 0 0,
1 0 0 1 0 1 0,
1 0 0 1 0 0 1,
1 0 0 1 0 0 1};

a = a || uniform(j(12,1,1));
aa = a‘ * a;
m = nrow(a); n = ncol(a);

Applying theROOT functionto the coefficient matrixA′A of the normal equations,

r1 = root(aa);
ss1 = ssq(aa - r1‘ * r1);
print ss1 r1 [format=best6.];

generates an upper triangular matrixR1 where linearly dependent rows are zeroed
out, and you can verify thatA′A = R′

1R1.

Applying the QR subroutine with column pivoting on the original matrixA yields a
different result, but you can also verifyA′A = R′

2R2 after pivoting the rows and
columns ofA′A:

ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
ss2 = ssq(aa[pivqr,pivqr] - r2‘ * r2);
print ss2 r2 [format=best6.];

Using theRUPDT subroutinefor stepwise updating ofR by them rows ofA will
finally result in an upper triangular matrixR3 with n − r nearly zero diagonal ele-
ments. However, other elements in rows with nearly zero diagonal elements can have
significant values. The following statements verify thatA′A = R′

3R3,

r3 = shape(0,n,n);
call rupdt(rup,bup,sup,r3,a);
r3 = rup;
ss3 = ssq(aa - r3‘ * r3);
print ss3 r3 [format=best6.];

The resultR3 of the RUPDT subroutinecan be transformed into the resultR1 of
theROOT functionby left applications of Givens rotations to zero out the remaining
significant elements of rows withsmall diagonal elements. Applying the RZLIND
subroutine on the upper triangular resultR3 of theRUPDT subroutinewill generate
a Cholesky factorR4 with zero rows corresponding to diagonal elements that are
small, giving the same result as theROOT function(except for the sign of rows) if its
singularity criterion recognizes the same linear dependencies.

892 � Chapter 20. Language Reference

call rzlind(lind,r4,bup,r3);
ss4 = ssq(aa - r4‘ * r4);
print ss4 r4 [format=best6.];

Consider the rank-deficient linear least-squares problem:

min
x
‖Ax− b‖2 whereA ∈ Rm×n, rank(A) = r, r ≤ n ≤ m

For r = n, the optimal solution,̂x, is unique; however, forr < n, the rank-deficient
linear least-squares problem has many optimal solutions, each of which has the same
least-squares residual sum of squares:

ss= (Ax̂− b)′(Ax̂− b)

The solution of the full-rank problem,r = n, is illustrated in theQR call. The
following list shows several solutions to the singular problem. This example uses the
12× 8 matrix from the preceding section and generates a new column vectorb. The
vectorb and the matrixA are shown in the output.

b = uniform(j(12,1,1));
ab = a‘ * b;
print b a [format=best6.];

Each entry in the following list solves the rank-deficient linear least-squares problem.
Note that while each method minimizes the residual sum of squares, not all of the
given solutions are of minimum Euclidean length.

• Use the singular value decomposition ofA, given byA = UDV′. Take the
reciprocals of significant singular values and set the small values ofD to zero.

call svd(u,d,v,a);
t = 1e-12 * d[1];
do i=1 to n;

if d[i] < t then d[i] = 0.;
else d[i] = 1. / d[i];

end;
x1 = v * diag(d) * u‘ * b;
len1 = x1‘ * x1;
ss1 = ssq(a * x1 - b);
x1 = x1‘;
print ss1 len1, x1 [format=best6.];

The solution̂x1 obtained by singular value decomposition,x̂1 = VD−U′b/4,
is of minimum Euclidean length.

• Use QR decomposition with column pivoting:

AΠ = QR =
[

Y Z
] [R1 R2

0 0

]
= Y

[
R1 R2

]

RZLIND Call � 893

Set the right partR2 to zero and invert the upper triangular matrixR1 to obtain
a generalized inverseR− and an optimal solution̂x2:

R− =
[

R−1
1

0

]
x̂2 = ΠR−Y′b

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr];
x2 = shape(0,n,1);
x2[pivqr] = trisolv(1,r,qtb[1:nr]) // j(lindqr,1,0.);
len2 = x2‘ * x2;
ss2 = ssq(a * x2 - b);
x2 = x2‘;
print ss2 len2, x2 [format=best6.];

Note that the residual sum of squares is minimal, but the solutionx̂2 is not of
minimum Euclidean length.

• Use the resultR1 of theROOT functionon page 891 to obtain the vectorpiv
indicating the zero rows in the upper triangular matrixR1:

r1 = root(aa);
nr = n - lind;
piv = shape(0,n,1);
j1 = 1; j2 = nr + 1;
do i=1 to n;

if r1[i,i] ^= 0 then do;
piv[j1] = i; j1 = j1 + 1;

end;
else do;

piv[j2] = i; j2 = j2 + 1;
end;

end;

Now computêx3 by solving the equation̂x3 = R−1R−′A′b.

r = r1[piv[1:nr],piv[1:nr]];
x = trisolv(2,r,ab[piv[1:nr]]);
x = trisolv(1,r,x);
x3 = shape(0,n,1);
x3[piv] = x // j(lind,1,0.);
len3 = x3‘ * x3;
ss3 = ssq(a * x3 - b);
x3 = x3‘;
print ss3 len3, x3 [format=best6.];

Note that the residual sum of squares is minimal, but the solutionx̂3 is not of
minimum Euclidean length.

• Use the resultR3 of theRUPDT callon page 891 and the vectorpiv (obtained
in the previous solution), which indicates the zero rows of upper triangular
matricesR1 andR3. After zeroing out the rows ofR3 belonging to small
diagonal pivots, solve the system̂x4 = R−1Y′b.

894 � Chapter 20. Language Reference

r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
qtb = bup[piv[1:nr]];
x = trisolv(1,r4[piv[1:nr],piv[1:nr]],qtb);
x4 = shape(0,n,1);
x4[piv] = x // j(lind,1,0.);
len4 = x4‘ * x4;
ss4 = ssq(a * x4 - b);
x4 = x4‘;
print ss4 len4, x4 [format=best6.];

Since the matricesR4 andR1 are the same (except for the signs of rows), the
solutionx̂4 is the same aŝx3.

• Use the resultR4 of the RZLIND call in the previous solution, which is the
result of the first step ofcomplete QR decomposition, and perform the second
step of complete QR decomposition. The rows of matrixR4 can be permuted
to the upper trapezoidal form[

R̂ T
0 0

]
,

whereR̂ is nonsingular and upper triangular andT is rectangular. Next, per-
form the second step of complete QR decomposition with the lower triangular
matrix[

R̂′

T′

]
= Ȳ

[
R̄
0

]
,

which leads to the upper triangular matrix̄R.

r = r4[piv[1:nr],]‘;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb);
x5 = q * (y // j(lind,1,0.));
len5 = x5‘ * x5;
ss5 = ssq(a * x5 - b);
x5 = x5‘;
print ss5 len5, x5 [format=best6.];

The solution x̂5 obtained by complete QR decomposition has minimum
Euclidean length.

• Perform both steps of complete QR decomposition. The first step performs the
pivoted QR decomposition ofA,

AΠ = QR = Y
[

R
0

]
= Y

[
R̂T
0

]

RZLIND Call � 895

whereR̂ is nonsingular and upper triangular andT is rectangular. The second
step performs a QR decomposition as described in the previous method. This
results in

AΠ = Y
[

R̄′ 0
0 0

]
Ȳ′

whereR̄′ is lower triangular.

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,]‘;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb[1:nr]);
x6 = shape(0,n,1);
x6[pivqr] = q * (y // j(lindqr,1,0.));
len6 = x6‘ * x6;
ss6 = ssq(a * x6 - b);
x6 = x6‘;
print ss6 len6, x6 [format=best6.];

The solution x̂6 obtained by complete QR decomposition has minimum
Euclidean length.

• Perform complete QR decomposition with the QR andLUPDT calls:

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr]‘; z = r2[1:nr,nr+1:n]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
x7 = shape(0,n,1);
x7[pivqr] = rd‘ * qtb[1:nr,];
len7 = x7‘ * x7;
ss7 = ssq(a * x7 - b);
x7 = x7‘;
print ss7 len7, x7 [format=best6.];

The solution x̂7 obtained by complete QR decomposition has minimum
Euclidean length.

• Perform complete QR decomposition with theRUPDT, RZLIND, andLUPDT
calls:

r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]‘;
z = r4[piv[1:nr],piv[nr+1:n]]‘;

896 � Chapter 20. Language Reference

call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
x8 = shape(0,n,1);
x8 = rd‘ * qtb[piv[1:nr],];
len8 = x8‘ * x8;
ss8 = ssq(a * x8 - b);
x8 = x8‘;
print ss8 len8, x8 [format=best6.];

The solution x̂8 obtained by complete QR decomposition has minimum
Euclidean length. The same result can be obtained with theAPPCORTor
COMPORTcall.

You can use various methods to compute the Moore-Penrose inverseA− of a rectan-
gular matrixA using orthogonal methods. The entries in the following list find the
Moore-Penrose inverse of the matrixA shown on page 892.

• Use theGINV operator. TheGINV operator in IML uses the singular decom-
positionA = UDV′. The resultA− = VD−U′ should be identical to the
result given by the next solution.

ga = ginv(a);
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss1 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss1, ga [format=best6.];

• Use singular value decomposition. The singular decompositionA = UDV′

with U′U = Im, D = diag(di), andV′V = VV′ = In, can be used to
computeA− = VD†U′, with D† = diag(d†i) and

d†i =
{

0 wheredi ≤ ε
1/di otherwise

The resultA− should be the same as that given by theGINV operator if the
singularity criterionε is selected correspondingly. Since you cannot specify the
criterion ε for theGINV operator, the singular value decomposition approach
can be important for applications where theGINV operator uses an unsuitable
ε criterion. The slight discrepancy between the values of SS1 and SS2 is due
to rounding that occurs in the statement that computes the matrix GA.

call svd(u,d,v,a);
do i=1 to n;

if d[i] <= 1e-10 * d[1] then d[i] = 0.;
else d[i] = 1. / d[i];

end;
ga = v * diag(d) * u‘;
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;

RZLIND Call � 897

ss2 = ssq(t1 - t2) + ssq(t3 - t4) +
ssq(t1 * a - a) + ssq(t3 * ga - ga);

print ss2;

• Use complete QR decomposition. The complete QR decomposition

A = Y
[

R̄′ 0
0 0

]
Ȳ′Π′

whereR̄′ is lower triangular, yields the Moore-Penrose inverse

A− = ΠȲ
[

R̄−′ 0
0 0

]
Y′

ord = j(n,1,0);
call qr(q1,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
q1 = q1[,1:nr]; r = r2[1:nr,]‘;
call qr(q2,r5,piv2,lin2,r);
tt = trisolv(4,r5‘,q1‘);
ga = shape(0,n,m);
ga[pivqr,] = q2 * (tt // shape(0,n-nr,m));
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss3 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss3;

• Use complete QR decomposition with QR andLUPDT:

ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
r = r2[1:nr,1:nr]‘; z = r2[1:nr,nr+1:n]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga[pivqr,] = rd‘ * q[,1:nr]‘;
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss4 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss4;

• Use complete QR decomposition withRUPDTandLUPDT:

r3 = shape(0,n,n);
y = i(m); qtb = shape(0,n,m);
call rupdt(rup,bup,sup,r3,a,qtb,y);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]‘;

898 � Chapter 20. Language Reference

z = r4[piv[1:nr],piv[nr+1:n]]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga = rd‘ * qtb[piv[1:nr],];
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss5 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss5;

SAVE Statement

saves data

SAVE;

The SAVE statement forces out any data residing in output buffers for all active output
data sets and files to ensure that the data are written to disk. This is equivalent to
closing and then reopening the files.

SEQ, SEQSCALE, and SEQSHIFT Calls

perform discrete sequential tests

CALL SEQ(prob, domain <, <TSCALE= tscale><, <EPS=eps>

<, <DEN=den>>>>);

CALL SEQSCALE(prob, gscale, domain, level<, <IGUESS=iguess>

<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

CALL SEQSHIFT(prob, shift, domain, plevel<, <IGUESS=iguess>

<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

The SEQSHIFT subroutine returns the following values:

prob is an(m+1)×nmatrix. The[i, j] entry in the array contains the prob-
ability at the[i, j] entry of the argumentdomain. Also, the probability
at infinity at every levelj is returned in the last entry ([m + 1, j]) of
columnj. Upon a successful completion of any routine, this variable
is always returned.

gscale is a numeric variable that returns from the routine SEQSCALE and
contains the scaling of the current geometry defined bydomain that
would yield a given significance levellevel.

shift is a numeric variable that returns from the routine SEQSHIFT and con-
tains the shift of current geometry defined bydomainthat would yield
a given power levelplevel.

SEQ, SEQSCALE, and SEQSHIFT Calls � 899

The inputs to the SEQSHIFT subroutine are as follows:

domain specifies anm×nmatrix containing the boundary points separating the
intervals of continuation/stopping of the sequential test. Each column
k contains the boundary points at levelk sorted in an ascending order,
with .M and .P representing−∞ and+∞, respectively. They must
start on the first row, and any remaining entries must be filled with a
missing value. Elements that follow the missing value in any column
will be ignored. The number of columnsn is equal to the number of
stages present in the sequential test. The row dimensionm must be
even, and it is equal to the maximum number of boundary points in a
level. In fact,domainis the tabular form of the finite boundary points.
Entries indomainwith absolute values that exceed a standardized value
of 8 at any level will be internally reset to a standardized value of8 or
−8, depending on the sign of the entry. This is reflected in the results
returned for the probabilities and the densities.

tscale specifies an optionaln − 1 vector that describes the time intervals be-
tween two consecutive stages. In the absence oftscale, these time inter-
vals will be internally set to1. The IML keyword fortscaleis TSCALE.

eps specifies an optional numeric parameter for controlling the absolute
precision of the computation. In the absence ofeps, the precision will
be internally set to 1E−7. The IML keyword forepsis EPS.

den specifies an optional character string to describe the name of anm× n
matrix. The[i, j] entry in the matrix returns the density of the distribu-
tion at the[i, j] entry of the matrix specified by thedomainargument.
The IML keyword fordenis DEN.

iguess specifies an optional numeric parameter that contains an initial guess
for the variablegscalein the SEQSCALE subroutine or for the variable
meanin the SEQSHIFT subroutine. In general, very good estimates
for these initial guesses can be provided by an iterative process, and
these estimates become extremely valuable near convergence. The IML
keyword foriguessis IGUESS.

level specifies a numeric parameter in the SEQSCALE subroutine that con-
tains the required significance level to be achieved through scaling the
domain(see the description of SEQSCALE).

plevel specifies a numeric parameter in the SEQSHIFT subroutine that pro-
vides the required power level to be achieved through shifting thedo-
main(see the description of SEQSHIFT).

SEQ Call

To compute the probability from a sequential test, you must specify a matrix con-
taining the boundaries. With the optional additional information concerning the time
intervals and the target accuracy, or their default values, the SEQ subroutine returns
the matrix that contains the probability and optionally returns the density from a

900 � Chapter 20. Language Reference

sequential test evaluated at each given point of the boundary. LetCj denote the con-

tinuation set at each levelj. Cj is defined to be the union at thejth level of all the
intervals bounded from below by the points with even indices0, 2, 4, . . . and from
above by the points with odd indices1, 3,

The SEQ call computes, withµ = 0, the densities

fj(s, µ) =
∫

Cj−1

φ(s− y, µ, tj−1)fj−1(y, µ) dy, for j = 2, 3, . . .

with

f1(s, µ) =
1√
2π

exp
[
−(s− µ)2

2

]
and

φ(s, µ, t) =
1√
2πt

exp
[
−(s− µ)2

2t

]
with the associated probability at any pointa at levelj to be

Pj(a, µ) =
∫

Cj−1

Φ(a− y, µ, tj)fj−1(y, µ) dy, for j = 2, 3, . . .

with

Φ(b, µ, t) =
∫ b

−∞
φ(s, µ, t) ds

The notationτ denotes the vector of time intervalst1, . . . , tn−1, andPj(g, µ, τ) de-
notes the probability of continuation at thejth level for a given domaing, a given
meanµ, and a given time vectorτ . The variance at thejth level can be calculated
from τ .

σ2
1 = 1

σ2
j+1 = σ2

j + τj , for j = 1, 2, . . .

It is important to understand the limitations that are imposed internally on the domain
by the numerical method. Any elementgij will always be limited within a symmetric
interval with standardized values not to exceed8. That is,

gij = max[min(gij , 8σj),−8σj]

SEQ, SEQSCALE, and SEQSHIFT Calls � 901

SEQSCALE Call

Given a domaing, an optional time vectorτ , and a probability levelps, the
SEQSCALE subroutine finds the amount of scalings that would solve the problem

Pn(gs, 0) = ps

The result for the amount of scalings is returned as the second argument of the
SEQSCALE subroutine,scale. Note that because of the complexity of the problem,
the SEQSCALE subroutine will not attempt to scale a domain with multiple intervals
of continuation.

For a significance level ofα, setps = 1− α.

SEQSHIFT Call

Given a geometryg, an optional time vectorτ , and a power level1 − β, the
SEQSHIFT subroutine finds the meanµ that solvesµ ≥ 0 such thatPn(g, µ) = β.

Actually, a simple transformation of the variables in the sequential problem yields
the following result:

Pj(gµ, 0) = Pj(g, µ), for j = 1, 2, . . . , n

wheregµ is given bygµ
ij = gij − µj.

Many options are available with the NLP family of optimization routines, which are
described in Chapter 4, “Nonlinear Optimization Subroutines.”

Consider the following continuation intervals:

C1 = {−6, 2}
C2 = {−6, 3}
C3 = {−6, 4, 5, 6}
C4 = {−6, 4}

The following IML program computes the probability from the sequential test at each
boundary point specified in the geometry.

/* function to insert in m the geometry column a at level k*/
start table(m,a,k);

if ncol(m) = 0 & nrow(m) = 0 then m = j(nrow(a),k,.);
if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
m[1:nrow(a),k] = a;

finish;

call table(m,{-6,2},1);
call table(m,{-6,3},2);
call table(m,{-6,4,5,6},3);
call table(m,{-6,4},4);

902 � Chapter 20. Language Reference

call seq(prob,m) eps = 1.e-8 den="density";
print m;
print prob;
print density;

The following output displays the values returned form, probandden, respectively.

The probability at the levelk = 3 at the pointx = 6 is prob[4, 3] = 0.96651, while
the density at the same point isdensity[4, 3] = 0.0000524.

Consider the continuation intervals

C1 = {−20, 2}
C2 = {−20, 20}
C3 = {−3, 3}

Note that the continuation at level 2 can be effectively considered infinite, and it does
not numerically affect the results of the computation at level 3. The following IML
program verifies this by using thetscaleparameter to compute this problem.

reset nocenter;
/* function to insert in m the geometry column a at level k*/
start table(m,a,k);

if ncol(m) = 0 & nrow(m) = 0 then m = j(nrow(a),k,.);
if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
m[1:nrow(a),k] = a;

finish;

call table(m,{-20,2},1);
call table(m,{-20,20},2);
call table(m,{-3,3},3);

/**************************************/
/* TSCALE has the default value of 1 */
/**************************************/
call seq(prob1,m) eps = 1.e-8 den="density";
print m[format=f5.] prob1[format=e12.5];

call table(mm,{-20,2},1);
call table(mm,{-3,3},2);

/* We can show a 2-step separation between the levels */
/* while dropping the intermediate level at 2 */

tscale = { 2 };
call seq(prob2,mm) eps = 1.e-8 den="density" TSCALE=tscale;
print mm[format=f5.] prob2[format=e12.5];

The values returned for the variablesm and prob1 as well asmm and prob2 are
shown in the output.

Some internal limitations are imposed on the geometry. Consider the three-level case
with geometrym in the preceding code. Since thetscalevariable is not specified, it is

SEQ, SEQSCALE, and SEQSHIFT Calls � 903

set to its default value,(1, 1). The variance at thejth level isσ2
j = j for j = 1, 2, 3.

The first level has a lower boundary point of−20, as represented by the value of
m[1, 1]. Since the absolute standardized value is larger than 8, this point is replaced
internally by the value−8. Hence, the densities and the probabilities reported for
the first level at this point are not for the given value−20; instead, they are for the
internal value of−8. For practical purposes, this limitation is not severe since the
absolute error introduced is of the order of10−16.

The computations performed by the first call of the SEQ subroutine can be simplified
since the second level is large enough to be considered infinite. The matrix MM
contains the first and third columns of the matrix M. However, in order to specify the
two-step separation between the levels, you must specifytscale=2.

This example verifies some of the results published in Table 3 of Pocock (1982). That
is, the following IML program verifies for the given domain that the significance level
is 0.05 and that the power is1− β under the alternative hypothesis:

/***/
/* first check whether the numbers yield */
/* 0.95 for the alpha level */
/***/

bm ={-3.663 -2.884 -2.573 -2.375 -2.037,
-2.988 -2.537 -2.407 -2.346 -2.156,
-2.598 -2.390 -2.390 -2.390 -2.310,
-2.446 -2.404 -2.404 -2.404 -2.396};

bplevel = { 0.5 0.25 0.1 0.05};
level = 0.95; /* this the required alpha value */
sigma = diag(sqrt(1:5)); /* global sigma matrix */

do i = 1 to 4;
m = bm[i,];
plevel = bplevel[i];
geom = (m//(-m))*sigma;

/***************************/
/* Try the null hypothesis */
/***************************/

call seq(prob,geom) eps = 1.e-10;
palpha = (prob[2,]-prob[1,])[5];

/**********************************/
/* Try the alternative hypothesis */
/**********************************/

call seqshift(prob,mean,geom,plevel);
beta = (prob[2,] -prob[1,])[5];
p = prob[3,]-prob[2,]+prob[1,];

904 � Chapter 20. Language Reference

/**********************************/
/* Number of patients per group */
/**********************************/

tn = 4*mean##2;
maxn = 5*tn;

/*************************************/
/* compute the average sample number */
/*************************************/

asn = tn *(5 - (4:0) * p‘);
summary = summary // (palpha || level || beta ||

plevel || tn || maxn ||asn);
end;
print summary[format=10.5];

Note that the variablesepsandtscalehave been internally set to their default values.
The following values are returned for the matrix SUMMARY:

These values compare well with the values shown in Table 3 of Pocock (1982).
Differences are of the order of10−5.

This example shows how to verify the results in Table 1 of Wang and Tsiatis (1987).
For a givenδ, the following program findsΓ that yields a symmetric continuation
interval given by

−Γjδ ≤ Cj ≤ Γjδ

with a given significance level ofα:

start func(delta,k) global(level);
m = ((1:k))##delta;
mm = (-m//m);
/*******************************/
/* meet the significance level */
/* by scaling */
/*******************************/
call seqscale(prob,scale,mm,level);
return(scale);

finish;

/*********************************/
/* alpha levels of 0.05 and 0.01 */
/*********************************/

blevel = {0.95 0.99};
do i = 1 to 2;

level = blevel[i];
free summary;
do delta = 0 to .7 by .1;

free row;

SEQ, SEQSCALE, and SEQSHIFT Calls � 905

do k=2 to 5;
x = func(delta,k);
row = row || x;

end;
summary = summary //row;

end;
print summary[format=10.5];

end;

The value of SUMMARY for the 0.95 level is as follows.

The value for SUMMARY for the 0.99 level is as follows.

Note that sinceepsandtscaleare not specified, they are internally set to their default
values.

This example verifies the results in Table 2 of Pocock (1977). The following program
findsΓ that yields a symmetric continuation interval given by

−Γ
√
j ≤ Cj ≤ Γ

√
j

for five groups. The overall significance level isα (the probabilitypalpha = 1− α),
and the power is1− β.

%let nl = 5;
start func(plevel) global(level,scale,mean,palpha,beta,tn,asn);

m = sqrt((1: &nl));
mm = -m //m;
/*******************************/
/* meet the significance level */
/* by scaling */
/*******************************/

call seqscale(prob,scale,mm,level);
palpha = (prob[2,]-prob[1,])[&nl];
mm = mm *scale;

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,mm,plevel);
return(mean);

finish;

/****************/
/* alpha = 0.95 */
/****************/

level = 9.50000E-01;
bplevel = { 0.5 .25 .1 0.05 0.01};
free summary;
do i = 1 to 5;

906 � Chapter 20. Language Reference

summary = summary || func(bplevel[i]);
end;
print summary[format=10.5];

The value returned for SUMMARY are shown in the following table, and the entries
agree with Table 2 of Pocock (1977).

This example illustrates how to find the optimal boundary of theδ-class of Wang and
Tsiatis (1987). Theδ-class boundary has the form

−Γjδ ≤ Cj ≤ Γjδ

The δ-class boundary is optimal if it minimizes the average sample number while
satisfying the required significance levelα and the required power1 − β. You can
use the following program to verify some of the results published in Tables 2 and 3
of Wang and Tsiatis (1987):

%let nl=5;
start func(delta) global(level,plevel,mean,

scale,alpha,beta,tn,asn);

m = ((1: &nl))##delta;
mm = (-m//m);

/*******************************/
/* meet the significance level */
/*******************************/

call seqscale(prob,scale,mm,level);
alpha = (prob[2,]-prob[1,])[&nl];
mm = mm *scale;

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,mm,plevel);
beta = (prob[2,]-prob[1,])[&nl];

/*************************************/
/* compute the average sample number */
/*************************************/

p = prob[3,]-prob[2,]+prob[1];
tn = 4*mean##2; /* number per group */
asn = tn *(&nl - p *(%eval(&nl-1):0)‘);
return(asn);

finish;

/**/
/* set up the global variables needed by func */

SEQ, SEQSCALE, and SEQSHIFT Calls � 907

/**/

level = 0.95;
plevel = 0.01;

/***/
/* set up the controlling options of the */
/* optimization routine */
/***/

opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epsd;

/*****************************/
/* provide the initial guess */
/* and let nlpdd do the work */
/*****************************/

delta = 0.5;
call nlpdd(rc,rx,"func",delta) opt=opt tc=tc par=par;

The following output displays the results.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.500000 -8.09752

Value of Objective Function = 35.232023082

Double Dogleg Optimization
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Number of Parameter Estimates 1

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Criterion = 35.232
Max Abs Gradient Element 8.098 Radius = 1.000

908 � Chapter 20. Language Reference

Function Active Objective
Iter Restart Calls Constraints Function

1 0 3 0 34.8914
2* 0 4 0 34.8774
3* 0 5 0 34.8774

Iter difcrit maxgrad lambda slope

1 0.3406 1.644 49.273 -0.830
2* 0.0140 0.0440 0 -0.0144
3* 0.00001 0.00013 0 -1E-5

Optimization Results

Iterations 3 Function Calls 6
Gradient Calls 5 Active Constraints 0
Criterion 34.877417 Max Grad Element 0.000126832
Slope -0.0000100034 Radius 1

NOTE: FCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

N Parameter Estimate Gradient

1 X1 0.586554 -0.0001268

Value of Objective Function = 34.877416815

The optimal function value of 34.88 agrees with the entry in Table 2 of Wang and
Tsiatis (1987) for five groups,α = 0.05, and1 − β = 0.99. Note that the variables
epsandtscaleare internally set to their default values. For more information on the
NLPDD subroutine, see the section“NLPDD Call” on page 786. For details on the
opt, tc, andpar arguments in theNLPDD call, see the“Options Vector”section on
page 343, the“Termination Criteria”section on page 349, and the section“Control
Parameters Vector”on page 356, respectively.

You can replicate other values in Table 2 of Wang and Tsiatis (1987) by changing
the values of the variables NL and PLEVEL. You can obtain values from Table 3 by
changing the value of the variable LEVEL to 0.99 and specifying NL and PLEVEL
accordingly.

This example illustrates how to find the boundaries that minimize ASN given the
required significance level and the required power. It replicates some of the results
published in Table 3 of Pocock (1982). The IML program computes the domain that

SEQ, SEQSCALE, and SEQSHIFT Calls � 909

• minimizes the ASN

• yields a given significance level of0.05

• yields a given power1− β under the alternative hypothesis

The last two nonlinear conditions on the optimization process can be incorporated
as a penalty applied on the error in these nonlinear conditions. The following IML
program does the computations for a power of 0.9.

%let nl=5;
start func(m) global(level,plevel,sigma,epss,

geometry,stgeom,gscale,mean,alpha,beta,tn,asn);
m = abs(m);
mm = (-m // m)*sigma;
/*******************************/
/* meet the significance level */
/*******************************/

call seqscale(prob,gscale,mm,level) iguess=gscale eps=epss;
stgeom = gscale*m;
geometry= mm*gscale;

alpha = (prob[2,]-prob[1,])[&nl];

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,geometry,plevel) iguess=mean eps=epss;
beta = (prob[2,]-prob[1,])[&nl];
p = prob[3,] - prob[2,]+prob[1,];

/*************************************/
/* compute the average sample number */
/*************************************/

tn = 4*mean##2; /* number per group */
asn = tn *(&nl - p *(%eval(&nl-1):0)‘);
return(asn);

finish;

/**/
/* set up the global variables needed by func */
/**/
epss = 1.e-8;
epso = 1.e-5;
level = 9.50000E-01;
plevel = 0.05;
sigma = diag(sqrt(1:5));

/***/
/* set up the controlling options of the */
/* optimization routine */

910 � Chapter 20. Language Reference

/***/

opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epso;

/************************************/
/* provide the constraint matrix */
/* we need monotonically increasing */
/* significance levels */
/************************************/

con = { ,
. ,
1 -1 . . . 1 0 ,
. 1 -1 . . 1 0 ,
. . 1 -1 . 1 0 ,
. . . 1 -1 1 0 };

/*****************************/
/* provide the initial guess */
/* and let nlp do the work */
/*****************************/

m = { 1 1 1 1 1 };
call nlpdd(rc,rx,"func",m) opt=opt blc = con tc=tc par=par;
print stgeom;

Note that whileepshas been set toeps=10−8, tscalehas been internally set to its
default value. You may choose to run the IML program with and without the specifi-
cation of the keyword IGUESS to see the effect on the execution time.

Note the following about the optimization process:

• Different levels of precision are imposed on different modules. In this ex-
ample,epss, which is used as the precision for the sequential tests, is 1E−8.
The absolute and relative function criteria for the objective function are set to
par[7]=1E−5 andtc[7]=1E−4, respectively. Since finite differences are used
to compute the first and second derivatives, the sequential test should be more
precise than the optimization routine. Otherwise, the finite difference estima-
tion is worthless. Optimally, if the precision of the function evaluation isO(ε),
the first- and second-order derivatives should be estimated with perturbations
O(ε

1
2) andO(ε

1
3), respectively. For example, if all three precision levels are

set to 1E−5, the optimization process does not work properly.

• Line search techniques that do not depend on the computation of the derivative
are preferable.

• The amount of printed information from the optimization routines is controlled
by opt[2] and can be set to any value between 0 and 3, with larger numbers
representing more printed output.

SETDIF Function � 911

SEQSCALE Call

perform discrete sequential tests

CALL SEQSCALE(prob, gscale, domain, level<, <IGUESS=iguess>

<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

See the entry for theSEQsubroutine for details.

SEQSHIFT Call

perform discrete sequential tests

CALL SEQSHIFT(prob, shift, domain, plevel<, <IGUESS=iguess>

<, <TSCALE= tscale><, <EPS=eps><, <DEN=den>>>>>);

See the entry for theSEQsubroutine for details.

SETDIF Function

compares elements of two matrices

SETDIF(matrix1, matrix2)

The inputs to the SETDIF function are as follows:

matrix1 is a reference matrix. Elements ofmatrix1not found inmatrix2are
returned in a vector. It can be either numeric or character.

matrix2 is the comparison matrix. Elements ofmatrix1 not found inma-
trix2 are returned in a vector. It can be either numeric or character,
depending on the type ofmatrix1.

The SETDIF function returns as a row vector the sorted set (without duplicates) of
all element values present inmatrix1but not inmatrix2. If the resulting set is empty,
the SETDIF function returns a null matrix (with zero rows and zero columns). The
argument matrices and result can be either both character or both numeric. For char-
acter matrices, the element length of the result is the same as the element length of
the matrix1. Shorter elements in the second argument are padded on the right with
blanks for comparison purposes.

For example, the statements

a={1 2 4 5};
b={3 4};
c=setdif(a,b);

produce the result

C 1 row 3 cols (numeric)

1 2 5

912 � Chapter 20. Language Reference

SETIN Statement

makes a data set current for input

SETIN SAS-data-set <NOBS name> <POINT operand>;

The inputs to the SETIN statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information
on specifying SAS data sets, see the chapter on data sets inSAS
Language Reference: Concepts.

name is the name of a variable to contain the number of observations in
the data set.

operand specifies the current observation.

The SETIN statement chooses the specified data set from among the data sets already
opened for input by theEDIT or USEstatement. This data set becomes the current
input data set for subsequent data management statements. The NOBS option is not
required. If specified, the NOBS option returns the number of observations in the data
set in the scalar variablename. The POINT option makes the specified observation
the current one. It positions the data set to a particular observation. TheSHOW
datasetscommand lists data sets already opened for input.

In the example that follows, if the data set WORK.A has 20 observations, the variable
SIZE is set to 20. Also, the current observation is set to 10.

setin work.a nobs size point 10;
list; /* lists observation 10 */

SETOUT Statement

makes a data set current for output

SETOUT SAS-data-set <NOBS name> <POINT operand>;

The inputs to the SETOUT statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, see the chapter on SAS data sets inSAS
Language Reference: Concepts.

name is the name of a variable to contain the number of observations in
the data set.

operand specifies the observation to be made the current observation.

The SETOUT statement chooses the specified data set from among those data sets
already opened for output by theEDIT or CREATEstatement. This data set becomes
the current output data set for subsequent data management statements. If specified,

SHAPE Function � 913

the NOBS option returns the number of observations currently in the data set in the
scalar variablename. The POINT option makes the specified observation the current
one.

In the example that follows, the data set WORK.A is made the current output data set
and the fifth observation is made the current observation. The number of observations
in WORK.A is returned in the variable SIZE.

setout work.a nobs size point 5;

SHAPE Function

reshapes and repeats values

SHAPE(matrix<, nrow<, ncol<, pad-value>>>)

The inputs to the SHAPE function are as follows:

matrix is a numeric or character matrix or literal.

nrow gives the number of rows of the new matrix.

ncol gives the number of columns of the new matrix.

pad-value is a fill value.

The SHAPE function shapes a new matrix from a matrix with different dimensions;
nrow specifies the number of rows, andncol specifies the number of columns in the
new matrix. The operator works for both numeric and character operands. The three
ways of using the function are outlined below:

• If only nrow is specified, the number of columns is determined as the number
of elements in the object matrix divided bynrow. The number of elements
must be exactly divisible; otherwise, a conformability error is diagnosed.

• If both nrow andncol are specified, but notpad-value, the result is obtained
moving along the rows until the desired number of elements is obtained. The
operation cycles back to the beginning of the object matrix to get more ele-
ments, if needed.

• If pad-valueis specified, the operation moves the elements of the object matrix
first and then fills in any extra positions in the result with thepad-value.

If nrow or ncol is specified as 0, the number of rows or columns, respectively, be-
comes the number of values divided byncolor nrow.

For example, the statement

r=shape(12,3,4);

produces the result shown:

914 � Chapter 20. Language Reference

R 3 rows 4 cols (numeric)

12 12 12 12
12 12 12 12
12 12 12 12

The next statement

r=shape(77,1,5);

produces the result matrix by moving along the rows until the desired number of
elements is obtained, cycling back as necessary:

R 1 row 5 cols (numeric)

77 77 77 77 77

The statement below

r=shape({1 2, 3 4, 5 6},2);

hasnrowspecified and converts the3× 2 matrix into a2× 3 matrix.

R 2 rows 3 cols (numeric)

1 2 3
4 5 6

The statement

r=shape({99 31},3,3);

demonstrates the cycling back and repetition of elements in row-major order until the
number of elements desired is obtained.

R 3 rows 3 cols (numeric)

99 31 99
31 99 31
99 31 99

SHOW Statement

prints system information

SOLVE Function � 915

SHOW operands;

whereoperandsare any of the valid operands to the SHOW statement. These are
given below.

The SHOW statement prints system information. The followingoperandsare avail-
able:

ALL shows all the information included by OPTIONS, SPACE,
DATASETS, FILES, and MODULES.

ALLNAMES behaves like NAMES, but also shows names without values.

CONTENTS shows the names and attributes of the variables in the current SAS
data set.

DATASETS shows all open SAS data sets.

FILES shows all open files.

MEMORY returns the size of the largest chunk of main memory available.

MODULES shows all modules that exist in the current IML environment. A
module already referenced but not yet defined is listed as unde-
fined.

name shows attributes of the specified matrix. If the name of a matrix
is one of the SHOW keywords, then both the information for the
keyword and the matrix are shown.

NAMES shows attributes of all matrices having values. Attributes include
number of rows, number of columns, data type, and size.

OPTIONS shows current settings of all IML options (see theRESET state-
ment).

PAUSE shows the status of all paused modules that are pending resume.

SPACE shows the workspace and symbolspace size and their current usage.

STORAGE shows the modules and matrices in the current IML library storage.

WINDOWS shows all active windows opened byWINDOW statements.

An example of a valid statement follows:

show all;

SOLVE Function

solves a system of linear equations

SOLVE(A, B)

The inputs to the SOLVE function are as follows:

A is ann× n nonsingular matrix.

916 � Chapter 20. Language Reference

B is ann× p matrix.

The SOLVE function solves the set of linear equationsAX = B for X. A must be
square and nonsingular.

X = SOLVE(A,B) is equivalent to using the INV function asX = INV(A) ∗ B.
However, the SOLVE function is recommended over the INV function because it is
more efficient and more accurate. An example follows:

x=solve(a,b);

The solution method used is discussed in Forsythe, Malcolm, and Moler (1967).

The SOLVE function (as well as theDET and INV functions) uses the following
criterion to decide whether the input matrix,A = [aij]i,j=1,...,n, is singular:

sing= 100×MACHEPS× max
1≤i,j≤n

|aij |

whereMACHEPSis the relative machine precision.

All matrix elements less than or equal tosingare now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal tosing, the
matrix is considered singular by theDET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you may
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong,

• try theGINV function to compute the generalized inverse.

• examine the size of the singular values returned by theSVD function. TheSVD
function can be used to compute a generalized inverse with a user-specified
singularity criterion.

If A is ann × n matrix, the SOLVE function temporarily allocates ann2 array in
addition to the memory allocated for the return matrix.

SOLVELIN Call

solves a sparse symmetric linear system by direct decomposition

CALL SOLVELIN(x, status, A, b, method);

The SOLVELIN call returns the following values:

SOLVELIN Call � 917

x is the solution toAx = b.

status is the final status of the solution.

The inputs to the SOLVELIN call are as follows:

A is the sparse coefficient matrix in the equationAx = b.

b is the right side of the equationAx = b.

method is the name of the decomposition to be used.

The SOLVELIN call uses direct decomposition to solve sparse symmetric linear sys-
tems. The input matrixA represents the coefficient matrix in sparse format; it is ann
by 3 matrix, wheren is the number of nonzero elements. The first column contains
the nonzero values, while the second and third columns contain the row and column
locations for the nonzero elements, respectively. SinceA is assumed to be symmetric,
only the elements on and below the diagonal should be specified, and it is an error to
specify elements above the diagonal.

The solution to the system is returned inx. Your program should also check the
returnedstatus to make sure that a solution was found.

status = 0 indicates success.

status = 1 indicates the matrix A is not positive-definite.

status = 2 indicates the system ran out of memory.

If the SOLVELIN call is unable to solve your system, you can try one of the iterative
method callsITCGRAD, ITBICG, or ITMINRES.

Two different factorization methods are available from the call, Cholesky and
Symbolic LDL, specified as ’CHOL’ or ’LDL’ with themethod parameter. Both
these factorizations are applicable only to positive-definite symmetric systems; if
your system is

not positive-definite or not symmetric, you can use anITBICG call or ITMINRES
call.

The following is an example of using SOLVELIN to solve the system:

3 1.1 0 0
1.1 4 1 3.2
0 1 10 0
0 3.2 0 3

x =

1
1
1
1

/* value row column */
A = { 3 1 1,

1.1 2 1,
4 2 2,

918 � Chapter 20. Language Reference

1 3 2,
3.2 4 2,

10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};

call solvelin(x, status, A, b, ’LDL’);

print status x;

The results are:

STATUS X

0 2.68
-6.4
0.74
7.16

SORT Call

sort a matrix by specified columns

CALL SORT(matrix, by<, descend >)

The inputs to the SORT call are as follows:

matrix is the input matrix, which is sorted in place by the call.

by is either a numeric matrix of column numbers, or a character matrix
containing the names of columns corresponding to column labels as-
signed tomatrixby aMATTRIB statementor READ statement.

descend is an optional matrix, indicating which columns, if any, should be de-
scending order. Anyby columns not specified as descending will be
ascending. Ifdescend= by, then allby columns will be descending;
if descendis skipped or is a null matrix, then allby columns will be
ascending.

The SORT call is used to sort a matrix, rearranging its rows according to the columns
and order determined by theby and descendinputs. Because the sort is done in
place, very little additional memory space is required. The SORT call will not be
as fast as theSORTNDX callfor matrices with large rows. After a matrix has been
sorted, the unique combinations of values in thebycolumns can be obtained from the
UNIQUEBY function.

For example,

SORT Statement � 919

m = { 1 1 0,
2 2 0,
1 1 1,
2 2 2};

call sort(m, {1 3}, {3});

results in

M

1 1 1
1 1 0
2 2 2
2 2 0

SORT Statement

sorts a SAS data set

SORT <DATA=>SAS-data-set <OUT=SAS-data-set>

BY <DESCENDING> variables;

where you can use the following clauses with the SORT statement:

DATA=SAS-data-set names the SAS data set to be sorted. It can be specified
with a one-word name (for example, A) or a two-word
name (for example, SASUSER.A). For more information
on specifying SAS data sets, see the chapter on SAS data
sets inSAS Language Reference: Concepts. Note that the
DATA= portion of the specification is optional.

OUT=SAS-data-set specifies a name for the output data set. If this clause is
omitted, the DATA= data set is sorted and the sorted ver-
sion replaces the original data set.

BY variables specifies the variables to be sorted. A BY clausemustbe
used with the SORT statement.

DESCENDING specifies the variables are to be sorted in descending order.

The SORT statement sorts the observations in a SAS data set by one or more vari-
ables, stores the resulting sorted observations in a new SAS data set, or replaces the
original. As opposed to all other IML data processing statements, it ismandatorythat
the data set to be sorted be closed prior to the execution of the SORT statement.

The SORT statement first arranges the observations in the order of the first variable
in the BY clause; then it sorts the observations with a given value of the first variable
by the second variable, and so forth. Every variable in the BY clause can be preceded
by the keyword DESCENDING to denote that the variable that follows is to be sorted
in descending order. Note that the SORT statement in IML always retains the same
relative positions of the observations with identical BY variable values.

For example, the IML statement

920 � Chapter 20. Language Reference

sort class out=sclass by descending age height;

sorts the SAS data set CLASS by the variables AGE and HEIGHT, where AGE is
sorted in descending order, and all observations with the same AGE value are sorted
by HEIGHT in ascending order. The output data set SCLASS contains the sorted
observations. When a data set is sorted in place (without the OUT= clause) any
indexes associated with the data set become invalid and are automatically deleted.

Note that all the clauses of the SORT statement must be specified in the order given
above.

SORTNDX Call

creates an index to re-order a matrix by specifed columns

CALL SORTNDX(index, matrix, by<, descend >)

The SORTNDX call returns the following value:

index is a vector such thatindex[i] is the row index of theith element of
matrix when sorted according toby anddescend. Consequently,ma-
trix[index,] is the sorted matrix.

The inputs to the SORTNDX call are as follows:

matrix is the input matrix, which is not modified by the call.

by is either a numeric matrix of column numbers, or a character matrix
containing the names of columns corresponding to column labels as-
signed tomatrixby aMATTRIB statementor READ statement.

descend is an optional matrix, indicating which columns, if any, should be de-
scending order. Anyby columns not specified as descending will be
ascending. Ifdescend= by, then allby columns will be descending;
if descendis skipped or is a null matrix, then allby columns will be
ascending.

The SORTNDX call can be used to process the rows of a matrix in different sorted
order, without having to actually modify it.

For example,

m = { 1 1 0,
2 0 0,
1 3 1,
2 2 2 };

call SORTNDX(ndx, m, {1 3}, {3});

results in

SPLINE and SPLINEC Calls � 921

NDX

3
1
4
2

The matrix can be physically sorted with (see also theSORT call):

call SORTNDX(ndx, m, by);
m = m[ndx,];

The SORTNDX call can be used with theUNIQUEBY functionto extract the unique
combinations of values in thebycolumns.

SOUND Call

produces a tone

CALL SOUND(freq<, dur>);

The inputs to the SOUND subroutine are as follows:

freq is a numeric matrix or literal giving the frequency in hertz.

dur is a numeric matrix or literal giving the duration in seconds. Note that the
dur argument differs from that in the DATA step.

The SOUND subroutine generates a tone usingfreq for frequency (in hertz) anddur
for duration (in seconds). Matrices may be specified for frequency and duration to
produce multiple tones, but if both arguments are nonscalar, then the number of el-
ements must match. The duration argument is optional and defaults to 0.25 (one
quarter second).

For example, the following statements produce tones from an ascending musical
scale, all with a duration of 0.2 seconds:

notes=400#(2##do(0, 1, 1/12));
call sound(notes,0.2);

SPLINE and SPLINEC Calls

provide cubic spline fits

CALL SPLINE(fitted, data<, smooth><, delta><, nout>

<, type><, slope>);

922 � Chapter 20. Language Reference

CALL SPLINEC(fitted, coeff, endSlopes, data<, smooth><, delta>

<, nout><, type><, slope>);

The SPLINE subroutine is the same as SPLINEC but does not return the matrix of
spline coefficients needed to call SPLINEV, nor does it return the slopes at the end-
points of the curve.

The SPLINEC subroutine returns the following values:

fitted is ann× 2 matrix of fitted values.

coeff is ann × 5 (or n × 9) matrix of spline coefficients. The matrix con-
tains the cubic polynomial coefficients for the spline for each interval.
Column 1 is the left endpoint of thex-interval for the regular (nonpara-
metric) spline or the left endpoint of the parameter for the parametric
spline. Columns2 − 5 are the constant, linear, quadratic, and cubic
coefficients, respectively, for thex-component. If a parametric spline
is used, then columns6− 9 are the constant, linear, quadratic, and cu-
bic coefficients, respectively, for they-component. The coefficients for
each interval are with respect to the variablex− xi wherexi is the left
endpoint of the interval andx is the point of interest. The matrixcoeff
can be processed to yield the integral or the derivative of the spline.
This, in turn, can be used with the SPLINEV function to evaluate the
resulting curves. The SPLINEC call returnscoeff.

endSlopes is a1× 2 matrix containing the slopes of the two ends of the curve ex-
pressed as angles in degrees. The SPLINEC call returns theendSlopes
argument.

The inputs to the SPLINEC subroutine are as follows:

data specifies an×2 (orn×3) matrix of(x, y) points on which the spline is
to be fit. The optional third column is used to specify a weight for each
data point. Ifsmooth> 0, the weight column is used in calculations. A
weight≤ 0 causes the data point to be ignored in calculations.

smooth is an optional scalar specifying the degree of smoothing to be used. If
smoothis omitted or set equal to 0, then a cubic interpolating spline is
fit to the data. Ifsmooth> 0, then a cubic spline is used. Larger values
of smoothgenerate more smoothing.

delta is an optional scalar specifying the resolution constant. Ifdeltais spec-
ified, the fitted points are spaced by the amountdelta on the scale of
the first column ofdata if a regular spline is used or on the scale of the
curve length if a parametric spline is used. If bothnoutanddeltaare
specified,nout is used anddelta is ignored.

nout is an optional scalar specifying the number of fitted points to be com-
puted. The default isnout=200. If nout is specified, thennoutequally
spaced points are returned. Thenoutargument overrides thedeltaar-
gument.

SPLINE and SPLINEC Calls � 923

type is an optional1× 1 (or 1× 2) character matrix or quoted literal giving
the type of spline to be used. The first element oftypeshould be one of
the following:

• periodic , which requests periodic endpoints

• zero , which sets second derivatives at endpoints to 0

The typeargument controls the endpoint constraints unless theslope
argument is specified. Ifperiodic is specified, the response values
at the beginning and end of column 2 ofdatamust be the same unless
the smoothing spline is being used. If the values are not the same, an
error message is printed and no spline is fit. The default value iszero .
The second element oftypeshould be one of the following.

• nonparametric , which requests a nonparametric spline

• parametric , which requests a parametric spline

If parametric is specified, a parameter sequence{ti} is formed as
follows: t1 = 0 and

ti = ti−1 +
√

(xi − xi−1)2 + (yi − yi−1)2

Splines are then fit to both the first and second columns ofdata. The
resulting splined values are paired to form the output. Changing the
relative scaling of the first two columns ofdata changes the output
because the sequence{ti} assumes Euclidean distance.

Note that if the points are not arranged in strictly ascending order by
the first columns ofdata, then a parametric method must be used. An
error message results if the nonparametric spline is requested.

slope is an optional1×2 matrix of endpoint slopes given as angles in degrees.
If a parametric spline is used, the angle values are used modulo 360. If
a nonparametric spline is used, the tangent of the angles is used to set
the slopes (that is, the effective angles range from−90 to 90 degrees).

Refer to Stoer and Bulirsch (1980), Reinsch (1967), and Pizer (1975) for descriptions
of the methods used to fit the spline. For simplicity, the explanation below assumes
that thedatamatrix does not contain a weighting column.

Nonparametric splines can be used to fit data for which you believe there is a func-
tional relationship between the X and Y variables. The unique values of X (stored in
the first column ofdata) form a partition{a = x1 < x2 < · · · < xn = b} of the
interval[a, b]. You can use a spline to interpolate the data (produce a curve that passes
through each data point) provided that there is a single Y value for each X value. The
spline is created by constructing cubic polynomials on each subinterval[xi, xi+1] so
that the value of the cubic polynomials and their first two derivatives coincide at each
xi.

An interpolating spline is not uniquely determined by the set of Y values. To achieve
a unique interpolant,S, you must specify two constraints on the endpoints of the

924 � Chapter 20. Language Reference

interval[a, b]. You can achieve uniqueness by specifying one of the following condi-
tions:

• S′′(a) = 0, S′′(b) = 0. The second derivative at both endpoints is zero. This is
the default condition, but can be explicitly set usingtype=’zero’ .

• Periodic conditions. If your data is periodic so thatx1 can be identified with
xn, and ify1 = yn, then the interpolating spline already satisfiesS(a) = S(b).
Settingtype=’periodic’ further requires thatS′(a) = S′(b) andS′′(a) =
S′′(b).

• Fixed slopes at endpoints. Settingslope= {y′1, y′n} requires thatS′(a) = y′1
andS′(b) = y′n.

The following code gives three examples of computing an interpolating spline for
data. Note that the first and last Y values are the same, so you can ask for a periodic
spline.

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };

/* Compute three spline interpolants of the data */
/* (1) a cubic spline with type=zero (the default) */
call spline(fitted,data);

/* (2) A periodic spline */
call spline(periodicFitted,data) type=’periodic’;

/* (3) A spline with specific slopes at endpoints */
call spline(slopeFitted,data) slope={45 30};

You can also use a spline to smooth data. In general, a smoothing spline will not pass
through any data pair exactly. A very small value of thesmoothsmoothing parameter
will approximate an interpolating polynomial for data in which each unique X value
is assigned the mean of the Y values corresponding to that X value. As thesmooth
parameter gets very large, the spline will approximate a linear regression.

The following code computes two smoothing splines for the same data as above. The
spline coefficients are passed to the SPLINEV function which evaluates the smooth-
ing spline at the original X values. Note that the smoothing spline does not pass
through the original Y values. Note also that the smoothing parameter for the periodic
spline is smaller, so the periodic spline has more “wiggles” than the corresponding
spline with the larger smoothing parameter.

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };

/* Compute spline smoothers of the data. */
call splinec(fitted,coeff,endSlopes,data) smooth=1;

/* Evaluate the smoother at the original X positions */
smoothFit = splinev(coeff, data[,1]);

SPLINE and SPLINEC Calls � 925

/* Compute periodic spline smoother of the data. */
call splinec(fitted,coeff,endSlopesP,data)

smooth=0.1 type=’periodic’;

/* Evaluate the smoother at the original X positions */
smoothPeriodicFit = splinev(coeff, data[,1]);

/* Compare the two fits. Verify that the periodic
spline has identical slopes at the end points. */

print smoothFit smoothPeriodicFit, endSlopesP;

SMOOTHFIT SMOOTHPERIODICFIT

0 4.4761214 0 4.7536432
1 4.002489 1 3.5603915
2 4.2424509 2 4.3820561
3 4.8254655 3 4.47148
4 5.7817386 4 5.8811872
5 6.3661254 5 6.8331581
6 6.0606327 6 6.1180839
7 5.2449764 7 4.7536432

ENDSLOPESP

-58.37255 -58.37255

A parametric spline can be used to interpolate or smooth data for which there does
not seem to be a functional relationship between the X and Y variables. A partition
{ti} is formed as explained in the documentation for thetypeparameter. Splines are
then used to fit the X and Y values independently.

The following program fits a parametric curve to data that is shaped like an “S.” The
variablefitted is returned as anumParam×2 matrix that contains the ordered pairs
corresponding to the parametric spline. These ordered pairs correspond tonumParam
evenly-spaced points in the domain of the parametert.

The purpose of the SPLINEV function is to evaluate (orscore) an interpolating or
smoothing spline at an arbitrary set of points. The following program shows how to
construct the parameters corresponding to the original data using the formula speci-
fied in the documentation for thetypeargument. These parameters are used to con-
struct the evenly-spaced parameters corresponding to the data in thefittedmatrix.

data = {3 7, 2 7, 1 6, 1 5, 2 4, 3 3, 3 2, 2 1, 1 1};

/* Compute parametric spline interpolant */
numParam = 20;
call splinec(fitted,coeff,endSlopes,data)

nout=numParam type={’zero’ ’parametric’};

/* Form the parameters mapped onto the data */
/* Evaluating the splines at t would return data */

926 � Chapter 20. Language Reference

t = j(nrow(data),1,0); /* first parameter is zero */
do i = 2 to nrow(t);

t[i] = t[i-1] + sqrt((data[i,1]-data[i-1,1])##2 +
(data[i,2]-data[i-1,2])##2);

end;

/* construct numParam evenly-spaced parameters
between 0 and t[nrow(t)] */

params = do(0, t[nrow(t)], t[nrow(t)]/(numParam-1))‘;

/* evaluate the parametric spline at these points */
xy = splinev(coeff, params);
print params fitted xy;

The output from this program is

PARAMS FITTED XY

0 3 7 3 7
0.6897753 2.3002449 7.0492667 2.3002449 7.0492667
1.3795506 1.6566257 6.8416091 1.6566257 6.8416091
2.0693259 1.1581077 6.3289203 1.1581077 6.3289203
2.7591012 0.9203935 5.6475064 0.9203935 5.6475064
3.4488765 1.0128845 4.9690782 1.0128845 4.9690782
4.1386518 1.4207621 4.4372889 1.4207621 4.4372889
4.8284271 2 4 2 4
5.5182024 2.5792379 3.5627111 2.5792379 3.5627111
6.2079777 2.9871155 3.0309218 2.9871155 3.0309218

6.897753 3.0796065 2.3524936 3.0796065 2.3524936
7.5875283 2.8418923 1.6710797 2.8418923 1.6710797
8.2773036 2.3433743 1.1583909 2.3433743 1.1583909
8.9670789 1.6997551 0.9507333 1.6997551 0.9507333
9.6568542 1 1 1 1

Attempting to evaluate a spline outside of its domain of definition will result in a
missing value. For example, the following code defines a spline on the interval[0, 7].
Attempting to evaluate the spline at points outside of this interval (−1 or 20) results
in missing values.

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
call splinec(fitted,coeff,endSlopes,data) slope={45 45};
v = splinev(coeff,{-1 1 2 3 3.5 4 20});
print v;

V

-1 .
1 3
2 5
3 4

SPLINE and SPLINEC Calls � 927

3.5 4.7073171
4 6

20 .

One use of splines is to estimate the integral of a function that is known only by its
value at a discrete set of points. Many people are familiar with elementary methods of
numerical integration such as the Left-Hand Rule, the Trapezoid Rule, and Simpson’s
Rule. In the Left-Hand Rule, the integral of discrete data is estimated by the exact
integral of a piecewise constant function between the data. In the Trapezoid Rule, the
integral is estimated by the exact integral of a piecewise linear function connecting the
data. In Simpson’s Rule, the integral is estimated as the exact integral of a piecewise
quadratic function between the data points.

Since a cubic spline is a sequence of cubic polynomials, it is possible to compute the
exact integral of the cubic spline and use this as an estimate for the integral of the
discrete data. The next example takes a function defined by discrete data and finds
the integral and the first moment of the function.

The implementation of the integrand function (fcheck) uses a useful trick to eval-
uate a spline at a single point. Note that if you pass in a scalar argument to the
SPLINEV function, you will get back a vector that represents the evaluation of the
spline along evenly spaced points. To get around this, the function evaluates the
spline at the vectorx // x and then takes the entry in the first row, second column.
This number is the value of the spline evaluated atx.

x = { 0, 2, 5, 7, 8, 10 };
y = x + 0.1*sin(x);
a = x || y;
call splinec(fit,coeff,endSlopes,a);

start fcheck(x) global(coeff,pow);
/* The first column of v contains the points of evaluation

while the second column contains the evaluation. */
v = x##pow # splinev(coeff,x //x)[1,2];
return(v);

finish;

/* use QUAD to integrate */
start moment(po) global(coeff,pow);

pow = po;
call quad(z,’fcheck’,coeff[,1]) eps = 1.e-10;
v1 = sum(z);
return(v1);

finish;

mass = moment(0); /* to compute the mass */
mass = mass //

(moment(1)/mass) // /* to compute the mean */
(moment(2)/mass) ; /* to compute the meansquare */

print mass;

/* Check the computation using Gauss-Legendre integration: this
is good for moments up to maxng. */

gauss = {

928 � Chapter 20. Language Reference

-9.3246951420315205e-01
-6.6120938646626448e-01
-2.3861918608319743e-01

2.3861918608319713e-01
6.6120938646626459e-01
9.3246951420315183e-01,
1.713244923791701e-01
3.607615730481388e-01
4.679139345726905e-01
4.679139345726904e-01
3.607615730481389e-01
1.713244923791707e-01 };

ngauss = ncol(gauss);
maxng = 2*ngauss-4;

start moment1(pow) global(coeff,gauss,ngauss,maxng);
if pow < maxng then do;

nrow = nrow(coeff);
ncol = ncol(coeff);
left = coeff[1:nrow-1,1];
right = coeff[2:nrow,1];
mid = 0.5*(left+right);
interv = 0.5*(right - left);
/* scale the weights on each interval */
wgts = shape(interv*gauss[2,],1);
/* scale the points on each interval */
pts = shape(interv*gauss[1,] + mid * repeat(1,1,ngauss),1) ;
/* evaluate the function */
eval = splinev(coeff,pts)[,2]‘;
mat = sum (wgts#pts##pow#eval);

end;
return(mat);

finish;

mass = moment1(0); /* to compute the mass */
mass = mass // (moment1(1)/mass) // (moment1(2)/mass) ;
print mass; /* should agree with earlier result */

The program prints the following results:

MASS

50.204224
6.658133

49.953307

MASS

50.204224
6.658133

49.953307

SPOT Function � 929

SPLINEV Function

provides cubic spline evaluations

SPLINEV(coeff<, delta<, nout>>)

The SPLINEV function returns a two-column matrix containing the points of evalua-
tion in the first column and the corresponding fitted values of the spline in the second
column.

The inputs to the SPLINEV function are as follows:

coeff is ann × 5 (or n × 9) matrix of spline coefficients, as returned by the
SPLINEC Call. Thecoeffargument should not contain missing values.

delta is an optional vector specifying evaluation points. Ifdelta is a scalar,
the spline will be evaluated at equally spaced pointsdeltaapart. Ifdelta
is a vector arranged in ascending order, the spline will be evaluated at
each of these values. Evaluation at a point outside the support of the
spline results in a missing value in the output. If you specify thedelta
argument, you cannot specify thenoutargument.

nout is an optional scalar specifying the number of fitted points desired. The
default isnout=200. If you specify thenoutargument, you cannot spec-
ify the deltaargument.

See the section“SPLINE and SPLINEC Calls”on page 921 for details and examples.

SPOT Function

calculates a column vector of spot rates given vectors of forward rates and times

SPOT(times,forward–rates)

The SPOT function returns ann× 1 vector of (per-period) spot rates.

times is ann × 1 column vector of times in consistent units. Elements
should be nonnegative.

forward–rates is ann×1 column vector of corresponding (per-period) forward rates.
Elements should be positive.

The SPOT function transforms the given spot rates as

s1 = f1

si =
(
Πj=i

j=1(1 + fj)tj−tj−1

) 1
ti − 1; i = 2, . . . , n

where, by convention,t0 = 0.

For example, the following code

930 � Chapter 20. Language Reference

time=T(do(1,5,1));
forward=T(do(0.05,0.09,0.01));
spot=spot(time,forward);
print spot;

produces the following output:

SPOT

0.05
0.0549882
0.0599686
0.0649413
0.0699065

SQRSYM Function

converts a symmetric matrix to a square matrix

SQRSYM(matrix)

wherematrix is a symmetric numeric matrix.

The SQRSYM function takes a matrix such as those generated by theSYMSQR
functionand transforms it back into a square matrix. The elements of the argument
are unpacked into the lower triangle of the result and reflected across the diagonal
into the upper triangle.

For example, the following statement

sqr=sqrsym(symsqr({1 2, 3 4}));

which is the same as

sqr=sqrsym({ 1, 3, 4});

produces the result

SQR 2 rows 2 cols (numeric)

1 3
3 4

SQRT Function

calculates the square root

START and FINISH Statements � 931

SQRT(matrix)

wherematrix is a numeric matrix or literal.

The SQRT function is the scalar function returning the positive square roots of each
element of the argument. An example of a valid statement follows.

a = { 1 2 3 4 };
c=sqrt(a);
print c;

C

1 1.4142136 1.7320508 2

SSQ Function

calculates the sum of squares of all elements

SSQ(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric matrix or literal.

The SSQ function returns as a single numeric value the (uncorrected) sum of squares
for all the elements of all arguments. You can specify as many as 15 numeric argu-
ment matrices.

The SSQ function checks for missing arguments and does not include them in the
accumulation. If all arguments are missing, the result is 0.

An example of a valid statement follows:

a={1 2 3, 4 5 6};
x=ssq(a);

START and FINISH Statements

define a module

START <name> <(arguments)> <GLOBAL(arguments)>;

module statements;

FINISH <name>;

The inputs to the START and FINISH statements are as follows:

name is the name of a user-defined module.

arguments are names of variable arguments to the module. Arguments
can be either input variables or output (returned) variables.
Arguments listed in the GLOBAL clause are treated as global
variables. Otherwise, the arguments are local.

module statements are statements making up the body of the module.

932 � Chapter 20. Language Reference

The START statement instructs IML to enter a module-collect mode to collect the
statements of a module rather than execute them immediately. The FINISH statement
signals the end of a module. Optionally, the FINISH statement can take the module
name as its argument. When nonameargument is given in the START statement, the
module name MAIN is used by default. If an error occurs during module compilation,
the module is not defined. SeeChapter 5, “Programming Statements,”for details.

The example below defines a module named MYMOD that has two local variables
(A and B) and two global variables (X and Y). The module creates the variable Y
from the arguments A, B, and X.

start mymod(a,b) global(x,y);
y=a*x+b;

finish;

STOP Statement

stops execution of statements

STOP;

The STOP statement stops the IML program, and no further matrix statements are
executed. However, IML continues to execute if more statements are entered. See
also the descriptions of theRETURNandABORT statements.

If IML execution was interrupted by aPAUSE statementor by a break, the STOP
statement clears all the paused states and returns to immediate mode.

IML supports STOP processing of both regular and function modules.

STORAGE Function

lists names of matrices and modules in storage

STORAGE();

The STORAGE function returns a matrix of the names of all of the matrices and
modules in the current storage library. The result is a character vector with each
matrix or module name occupying a row. Matrices are listed before modules. The
SHOWstoragecommand separately lists all of the modules and matrices in storage.

For example, the following statements reset the current library storage to MYLIB and
then print a list of the modules and matrices in storage:

reset storage="MYLIB";

Then issue the command below to get the resulting matrix:

a=storage();
print a;

SUBSTR Function � 933

STORE Statement

stores matrices and modules in library storage

STORE <MODULE=(module-list)> <matrix-list>;

The inputs to the STORE statement are as follows.

module-list is a list of module names.

matrix-list is a list of matrix names.

The STORE statement stores matrices or modules in the storage library. For example,
the following statement stores the modules A, B, and C and the matrix X:

store module=(A B C) X;

The special operand–ALL – can be used to store all matrices or all modules. For
example, the following statement stores all matrices and modules:

store _all_ module=_all_;

The storage library can be specified using theRESETstoragecommand and defaults
to WORK.IMLSTOR. TheSHOWstoragecommand lists the current contents of the
storage library. The following statement stores all matrices:

store;

See Chapter 14, “Storage Features,”and also the descriptions of theLOAD,
REMOVE, RESET, andSHOWstatements for related information.

SUBSTR Function

takes substrings of matrix elements

SUBSTR(matrix, position<, length>)

The inputs to the SUBSTR function are as follows:

matrix is a character matrix or quoted literal.

position is a numeric matrix or scalar giving the starting position.

length is a numeric matrix or scalar giving the length of the substring.

The SUBSTR function takes a character matrix as an argument along with starting
positions and lengths and produces a character matrix with the same dimensions as
the argument. Elements of the result matrix are substrings of the corresponding argu-
ment elements. Each substring is constructed using the startingpositionsupplied. If
a lengthis supplied, this length is the length of the substring. If nolengthis supplied,
the remainder of the argument string is the substring.

934 � Chapter 20. Language Reference

Thepositionandlengtharguments can be scalars or numeric matrices. Ifpositionor
lengthis a matrix, its dimensions must be the same as the dimensions of the argument
matrix or submatrix. If either one is a matrix, its values are applied to the substringing
of the corresponding elements of thematrix. If lengthis supplied, the element length
of the result is MAX(length); otherwise, the element length of the result is

NLENG(matrix)−MIN(position) + 1 .

The statements

B={abc def ghi, jkl mno pqr};
a=substr(b,3,2);

return the matrix

A 2 rows 3 cols (character, size 2)

C F I
L O R

The element size of the result is 2; the elements are padded with blanks.

SUM Function

sums all elements

SUM(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric matrix or literal.

The SUM function returns as a single numeric value the sum of all the elements in
all arguments. There can be as many as 15 argument matrices. The SUM function
checks for missing values and does not include them in the accumulation. It returns
0 if all values are missing.

For example, the statements

a={2 1, 0 -1};
b=sum(a);

return the scalar

B 1 row 1 col (numeric)

2

SUMMARY Statement

computes summary statistics for SAS data sets

SUMMARY Statement � 935

SUMMARY <CLASS operand> <VAR operand> <WEIGHT operand>

<STAT operand> <OPT operand> <WHERE(expression)>;

where theoperandsused by most clauses take either a matrix name, a matrix literal,
or an expression yielding a matrix name or value. A discussion of the clauses and
operandsfollows.

The SUMMARY statement computes statistics for numeric variables for an entire
data set or a subset of observations in the data set. The statistics can be stratified by
the use of class variables. The computed statistics are displayed in tabular form and
optionally can be saved in matrices. Like most other IML data processing statements,
the SUMMARY statement works on the current data set.

The following options are available with the SUMMARY statement:

CLASS operand
specifies the variables in the current input SAS data set to be used to group the sum-
maries. Theoperandis a character matrix containing the names of the variables, for
example,

summary class { age sex} ;

Both numeric and character variables can be used as class variables.

VAR operand

calculates statistics for a set of numeric variables from the current input data set. The
operandis a character matrix containing the names of the variables. Also, the special
keyword–NUM– can be used as a VAR operand to specify all numeric variables. If
the VAR clause is missing, the SUMMARY statement produces only the number of
observations in each class group.

WEIGHT operand
specifies a character value containing the name of a numeric variable in the current
data set whose values are to be used to weight each observation. Only one variable
can be specified.

STAT operand
computes the statistics specified. Theoperandis a character matrix containing the
names of statistics. For example, to get the mean and standard deviation, specify

summary stat{mean std};

Below is a list of the keywords that can be specified as the STAToperand:

CSS computes the corrected sum of squares.

MAX computes the maximum value.

MEAN computes the mean.

MIN computes the minimum value.

936 � Chapter 20. Language Reference

N computes the number of observations in the subgroup used in the
computation of the various statistics for the corresponding analysis
variable.

NMISS computes the number of observations in the subgroup having miss-
ing values for the analysis variable.

STD computes the standard deviation.

SUM computes the sum.

SUMWGT computes the sum of the WEIGHT variable values if WEIGHT is
specified; otherwise, IML computes the number of observations
used in the computation of statistics.

USS computes the uncorrected sum of squares.

VAR computes the variance.

When the STAT clause is omitted, the SUMMARY statement computes these statis-
tics for each variable in the VAR clause:

• MAX

• MEAN

• MIN

• STD.

Note that NOBS, the number of observations in each CLASS group, is always given.

OPT operand
sets the PRINT or NOPRINT and SAVE or NOSAVE options. The NOPRINT option
suppresses the printing of the results from the SUMMARY statement. The SAVE op-
tion requests that the SUMMARY statement save the resultant statistics in matrices.
Theoperandis a character matrix containing one or more of the options.

When the SAVE option is set, the SUMMARY statement creates a class vector for
each class variable, a statistic matrix for each analysis variable, and a column vector
named–NOBS–. The class vectors are named by the corresponding class variable
and have an equal number of rows. There are as many rows as there are subgroups
defined by the interaction of all class variables. The statistic matrices are named by
the corresponding analysis variable. Each column of the statistic matrix corresponds
to a statistic requested, and each row corresponds to the statistics of the subgroup
defined by the class variables. If no class variable has been specified, each statistic
matrix has one row, containing the statistics of the entire population. The–NOBS–
vector contains the number of observations for each subgroup.

The default is PRINT NOSAVE.

WHERE expression
conditionally selects observations, within therangespecification, according to con-
ditions given inexpression. The general form of the WHERE clause is

SUMMARY Statement � 937

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause, using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

SeeChapter 6, “Working with SAS Data Sets,”for an example using the SUMMARY
statement.

938 � Chapter 20. Language Reference

SVD Call

computes the singular value decomposition

CALL SVD(u, q, v, a);

In the SVD subroutine:

a is the input matrix that is decomposed as described below.

u, q, andv are the returned decomposition matrices.

The SVD subroutine decomposes a realm× n matrixA (wherem is greater than or
equal ton) into the form

A = U ∗ diag(Q) ∗V′

where

U′U = V′V = VV′ = In

andQ contains the singular values ofA. U ism× n, Q is n× 1, andV is n× n.

Whenm is greater than or equal ton, U consists of the orthonormal eigenvectors of
AA′, andV consists of the orthonormal eigenvectors ofA′A. Q contains the square
roots of the eigenvalues ofA′A andAA′, except for some zeros.

If m is less thann, a corresponding decomposition is done whereU andV switch
roles:

A = U ∗ diag(Q) ∗V′

but

U′U = UU′ = V′V = Iw .

The singular values are sorted in descending order.

For information about the method used in the SVD subroutine, refer to Wilkinson
and Reinsch (1971). Consider the following example (Wilkinson and Reinsch 1971,
p. 149):

a={22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,

9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2};

call svd(u,q,v,a);
reset fuzz; /* print small numbers as zero */
zero = ssq(a - u*diag(q)*v‘);

SWEEP Function � 939

The matrix is rank-3 with exact singular values
√

1248, 20,
√

384, 0, and0. Because
of the repeated singular values, the last two columns of theU matrix are not uniquely
determined. A valid result is

U 8 rows 5 cols (numeric)

0.7071068 0.1581139 -0.176777 -0.212785 -0.560643
0.5303301 0.1581139 0.3535534 0.0801354 0.3127085
0.1767767 -0.790569 0.1767767 0.486821 -0.155628

0 0.1581139 0.7071068 0.1118328 -0.175184
0.3535534 -0.158114 0 -0.082888 0.348706
0.1767767 0.1581139 -0.53033 0.5984857 0.1586763

0 0.4743416 0.1767767 0.4882498 0.1463314
0.1767767 -0.158114 0 -0.308798 0.6039844

Q 5 rows 1 col (numeric)

35.327043
20

19.595918
1.113E-15
5.079E-16

V 5 rows 5 cols (numeric)

0.8006408 0.3162278 -0.288675 -0.419095 0
0.4803845 -0.632456 0 0.4405091 0.4185481
0.1601282 0.3162278 0.8660254 -0.052005 0.3487901

0 0.6324555 -0.288675 0.6760591 0.244153
0.3202563 0 0.2886751 0.4129773 -0.802217

The SVD routine performs most of its computations in the memory allocated for
returning the singular value decomposition.

SWEEP Function

sweeps a matrix

SWEEP(matrix, index-vector)

The inputs to the SWEEP function are as follows:

matrix is a numeric matrix or literal.

index-vector is a numeric vector indicating the pivots.

The SWEEP function sweepsmatrix on the pivots indicated inindex-vectorto pro-
duce a new matrix. The values of the index vector must be less than or equal to the
number of rows or the number of columns inmatrix, whichever is smaller.

940 � Chapter 20. Language Reference

For example, suppose thatA is partitioned into[
R S
T U

]
such thatR is q × q andU is (m− q)× (n− q). Let

I = [1 2 3 . . . q]

Then, the statement

B=sweep(A,I);

becomes[
R−1 R−1S

−TR−1 U−TR−1S

]
.

The index vector can be omitted. In this case, the function sweeps the matrix on all
pivots on the main diagonal 1:MIN(nrow,ncol).

The SWEEP function has sequential and reversibility properties when the submatrix
swept is positive definite:

• SWEEP(SWEEP(A,1),2)=SWEEP(A,{ 1 2 })

• SWEEP(SWEEP(A,I),I)=A

See Beaton (1964) for more information about these properties.

To use the SWEEP function for regression, suppose the matrixA contains[
X′X X′Y
Y′X Y′Y

]
whereX′X is k × k.

ThenB = SWEEP(A, 1 . . . k) contains[
(X′X)−1 (X′X)−1X′Y

−Y′X(X′X)−1 Y′(I−X(X′X)−1X′)Y

]
The partitions ofB form the beta values, SSE, and a matrix proportional to the co-
variance of the beta values for the least-squares estimates ofB in the linear model

Y = XB + ε .

If any pivot becomes very close to zero (less than or equal to 1E−12), the row and
column for that pivot are zeroed. See Goodnight (1979) for more information.

An example of using the SWEEP function for regression follows:

SWEEP Function � 941

x = { 1 1 1,
1 2 4,
1 3 9,
1 4 16,
1 5 25,
1 6 36,
1 7 49,
1 8 64 };

y = { 3.929,
5.308,
7.239,
9.638,

12.866,
17.069,
23.191,
31.443 };

n = nrow(x); /* number of observations */
k = ncol(x); /* number of variables */
xy = x||y; /* augment design matrix */
A = xy‘ * xy; /* form cross products */
S = sweep(A, 1:k);

beta = S[1:k,4]; /* parameter estimates */
sse = S[4,4]; /* sum of squared errors */
mse = sse / (n-k); /* mean squared error */
cov = S[1:k, 1:k] # mse; /* covariance of estimates */
print cov, beta, sse;

COV

0.9323716 -0.436247 0.0427693
-0.436247 0.2423596 -0.025662
0.0427693 -0.025662 0.0028513

BETA

5.0693393
-1.109935
0.5396369

SSE

2.395083

The SWEEP function performs most of its computations in the memory allocated for
the result matrix.

942 � Chapter 20. Language Reference

SYMSQR Function

converts a square matrix to a symmetric matrix

SYMSQR(matrix)

wherematrix is a square numeric matrix.

The SYMSQR function takes a square numeric matrix (sizen×n) and compacts the
elements from the lower triangle into a column vector (n(n+1)/2 rows). The matrix
is not checked for actual symmetry.

Therefore, the statement

sym=symsqr({1 2, 3 4});

sets

SYM 3 rows 1 col (numeric)

1
3
4

Note that the 2 is lost since it is only present in the upper triangle.

T Function

transposes a matrix

T(matrix)

wherematrix is a numeric or character matrix or literal.

The T (transpose) function returns the transpose of its argument. It is equivalent to
the transpose operator as written with a transpose postfix operator (‘), but since some
keyboards do not support the backquote character, this function is provided as an
alternate.

For example, the statements

x={1 2, 3 4};
y=t(x);

result in the matrix

Y 2 rows 2 cols (numeric)

1 3
2 4

TOEPLITZ Function � 943

TEIGEN Call

computes the eigenvalues and eigenvectors of square matrices

The TEIGEN subroutine is an alias for theEIGEN subroutine.

TEIGVAL Function

compute eigenvalues of square matrices

The TEIGVAL function is an alias for theEIGVAL function.

TEIGVEC Function

compute eigenvectors of square matrices

The TEIGVEC function is an alias for theEIGVEC function.

TOEPLITZ Function

generates a Toeplitz or block-Toeplitz matrix

TOEPLITZ(a)

wherea is either a vector or a numeric matrix.

The TOEPLITZ function generates a Toeplitz matrix from a vector, or a block
Toeplitz matrix from a matrix. A block Toeplitz matrix has the property that all
matrices on the diagonals are the same. The argumenta is an(np) × p or p × (np)
matrix; the value returned is the(np)× (np) result.

The TOEPLITZ function uses the firstp × p submatrix,A1, of the argument matrix
as the blocks of the main diagonal. The secondp× p submatrix,A2, of the argument
matrix forms one secondary diagonal, with the transposeA′

2 forming the other. The
remaining diagonals are formed accordingly. If the firstp × p submatrix of the ar-
gument matrix is symmetric, the result is also symmetric. IfA is (np) × p, the first
p columns of the returned matrix,R, will be the same asA. If A is p × (np), the
first p rows ofR will be the same asA. The TOEPLITZ function is especially useful
in time-series applications, where the covariance matrix of a set of variables with its
lagged set of variables is often assumed to be a block Toeplitz matrix.

If

A = [A1|A2|A3| · · · |An]

and ifR is the matrix formed by the TOEPLITZ function, then

R =

A1 | A2 | A3 | · · · | An

A′
2 | A1 | A2 | · · · | An−1

A′
3 | A′

2 | A1 | · · · | An−2
...

A′
n | A′

n−1 | A′
n−2 | · · · | A1

944 � Chapter 20. Language Reference

If

A =

A1

A2
...

An

and ifR is the matrix formed by the TOEPLITZ function, then

R =

A1 | A′

2 | A′
3 | · · · | A′

n

A2 | A1 | A′
2 | · · · | A′

n−1
...

An | An−1 | An−2 | · · · | A1

Three examples follow.

r=toeplitz(1:5);

R 5 rows 5 cols (numeric)

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

r=toeplitz({1 2 ,
3 4 ,
5 6 ,
7 8});

R 4 rows 4 cols (numeric)

1 2 5 7
3 4 6 8
5 6 1 2
7 8 3 4

r=toeplitz({1 2 3 4 ,
5 6 7 8});

R 4 rows 4 cols (numeric)

1 2 3 4
5 6 7 8
3 7 1 2
4 8 5 6

TPSPLINE Call � 945

TPSPLINE Call

computes thin-plate smoothing splines

CALL TPSPLINE(fitted, coeff, adiag, gcv, x, y <, lambda>);

The TSPLINE subroutine computes thin-plate smoothing spline (TPSS) fits to ap-
proximate smooth multivariate functions that are observed with noise. The general-
ized cross validation (GCV) function is used to select the smoothing parameter.

The TPSPLINE subroutine returns the following values:

fitted is ann × 1 vector of fitted values of the TPSS fit evaluated at the
design pointsx. Then is the number of observations. The final
TPSS fit depends on the optionallambda.

coeff is a vector of spline coefficients. The vector contains the coef-
ficients for basis functions in the null space and the representer of
evaluation functions at unique design points. (Refer to Wahba 1990
for more detail on reproducing kernel Hilbert space and representer
of evaluation functions.) The length ofcoeffvector depends on the
number of unique design points and the number of variables in the
spline model. In general, letnuobsandk be the number of unique
rows and the number of columns ofx respectively. The length of
coeffequals tok + nuobs+ 1. Thecoeffvector can be used as an
input of TPSPLNEVto evaluate the resulting TPSS fit at new data
points.

adiag is ann×1 vector of diagonal elements of the “hat” matrix. See the
“Details” section.

gcv If lambdais not specified, thengcv is the minimum value of the
GCV function. Iflambdais specified, thengcvis a vector (or scalar
if lambdais a scalar) of GCV values evaluated at thelambdapoints.
It provides users both with the ability to study the GCV curves
by plotting gcv againstlambda, and with the chance to identify a
possible local minimum.

The inputs to the TPSPLINE subroutine are as follows:

x is ann× k matrix of design points on which the TPSS is to be fit.
Thek is the number of variables in the spline model. The columns
of x need to be linearly independent and contain no constant col-
umn.

y is then× 1 vector of observations.

lambda is a optionalq × 1 vector containingλ values inlog10(nλ) scale.
This option gives users the power to control how they want the
TPSPLINE subroutine to function. Iflambdais not specified (or
lambdais specified andq > 1) the GCV function is used to choose
the “best”λ and the returningfittedvalues are based on theλ that

946 � Chapter 20. Language Reference

minimizes the GCV function. Iflambdais specified andq = 1, no
minimization of the GCV function is involved and thefitted, coeff
andadiagvalues are all based on the TPSS fit using this particular
lambda. This gives users the freedom to choose theλ that they
think appropriate.

Aside from the values returned, the TPSPLINE subroutine also prints other useful
information such as the number of unique observations, the dimensions of the null
space, the number of parameters in the model, a GCV estimate ofλ, the smoothing
penalty, the residual sum of square, the trace of(I − A(λ)), an estimate ofσ2, and
the sum of squares for replication.

Note: No missing values are allowed within the input arguments. Also, you
should use caution if you want to specify smalllambda values. Since the true
λ = (10log10 lambda)/n, a very small value forlambdacan causeλ to be smaller
than the magnitude of machine error and usually the returnedgcvvalues from such
aλ cannot be trusted. Finally, when using TPSPLINE be aware that TPSS is a com-
putationally intensive method. Therefore a large data set (that is, a large number of
unique design points) will take a lot of computer memory and time.

For convenience, we illustrate the TPSS method with a two-dimensional independent
variableX = (x1,x2). More details can be found in Wahba (1990), or in Bates,et
al. (1987).

Assume that the data is from the model

yi = f(xi) + εi,

where(xi, yi), i = 1, . . . , n are the observations. The functionf is unknown and you
assume that it is reasonably smooth. The error termsεi, i = 1, . . . , n are independent
zero-mean random variables.

You will measure the smoothness off by the integral over the entire plane of the
square of the partial derivatives off of total order 2, that is

J2(f) =
∫ ∞

−∞

∫ ∞

−∞

[
∂2f

∂x1
2

]2

+ 2
[

∂2f

∂x1∂x2

]2

+
[
∂2f

∂x2
2

]2

dx1dx2.

Using this as a smoothness penalty, the thin-plate smoothing spline estimatefλ of f
is the minimizer of

Sλ(f) =
1
n

n∑
i=1

(yi − f(xi))2 + λJ2(f).

Duchon (1976) derived that the minimizerfλ can be represented as

fλ(x) =
3∑

i=1

βiφi(x) +
n∑

i=1

δiE2(x− xi),

TPSPLNEV Call � 947

where(φ1(x), φ2(x), φ3(x)) = (1,x1,x2) andE2(s) = 1
23π

‖s‖2ln(‖s‖).

Let matrixK have entries(K)ij = E2(xi − xj) and matrixT have entries(T)ij =
φj(xi). Then the minimization problem can be rewritten as finding coefficientsβ and
δ to minimize

Sλ(β, δ) =
1
n
‖y −Tβ −Kδ‖2 + λδTKδ.

The final TPSS fits can be viewed as a type of generalized ridge regression estimator.
The λ is called the smoothing parameter, which controls the balance between the
goodness of fit and the smoothness of the final estimate. The smoothing parameter
can be chosen by minimizing the Generalized Cross Validation function (GCV). If
you write

ŷ = A(λ)y,

and call theA(λ) as the “hat” matrix, the GCV functionV (λ) is defined as

V (λ) =
(1/n)‖(I−A(λ)y‖2

[(1/n)tr(I−A(λ))]2
.

The returned values from this function call will provide theŷ asfitted, the(β, δ) as
coeff, anddiag(A(λ)) asadiag.

To evaluate the TPSS fitfλ(x) at new data points, you can use the TPSPLNEV call.

SupposeXnew, am × k matrix, contains them new data points at which you want
to evaluatefλ. Let (Tnew

ij) = φj(xnew
i) and(Knew

ij) = E2(xnew
i − xj) be theijth

elements ofTnew andKnew respectively. The prediction at new data pointsXnew

is

ypred= Tnewβ +Knewδ.

Therefore, using the coefficient(β, δ) obtained from TPSPLINE call, theypredcan
be easily evaluated.

An example is given in the documentation for theTPSPLNEV call.

TPSPLNEV Call

evaluates the thin-plate smoothing spline at new data points

It can be used only after theTPSPLINE call.

CALL TPSPLNEV(pred, xpred, x, coeff);

The TPSPLNEV subroutine returns the following value:

pred is anm×1 vector of the predicated values of the TPSS fit evaluated
atm new data points.

948 � Chapter 20. Language Reference

The inputs to the TPSPLNEV subroutine are as follows:

xpred is anm × k matrix of data points at which thefλ is evaluated,
wherem is the number of new data points andk is the number of
variables in the spline model.

x is ann × k matrix of design points that is used as an input of
TPSPLINE call.

coeff is the coefficient vector returned from theTPSPLINE call.

See the previous section on theTPSPLINE callfor details about the TSPLNEV sub-
routine.

As an example, consider the following data set, which consists of two independent
variables. The plot of the raw data can be found in the first panel ofFigure 20.1.

x={ -1.0 -1.0, -1.0 -1.0, -.5 -1.0, -.5 -1.0,
.0 -1.0, .0 -1.0, .5 -1.0, .5 -1.0,

1.0 -1.0, 1.0 -1.0, -1.0 -.5, -1.0 -.5,
-.5 -.5, -.5 -.5, .0 -.5, .0 -.5,

.5 -.5, .5 -.5, 1.0 -.5, 1.0 -.5,
-1.0 .0, -1.0 .0, -.5 .0, -.5 .0,

.0 .0, .0 .0, .5 .0, .5 .0,
1.0 .0, 1.0 .0, -1.0 .5, -1.0 .5,
-.5 .5, -.5 .5, .0 .5, .0 .5,

.5 .5, .5 .5, 1.0 .5, 1.0 .5,
-1.0 1.0, -1.0 1.0, -.5 1.0, -.5 1.0,

.0 1.0, .0 1.0, .5 1.0, .5 1.0,
1.0 1.0, 1.0 1.0 };

y={15.54483570, 15.76312613, 18.67397826, 18.49722167,
19.66086310, 19.80231311, 18.59838649, 18.51904737,
15.86842815, 16.03913832, 10.92383867, 11.14066546,
14.81392847, 14.82830425, 16.56449698, 16.44307297,
14.90792284, 15.05653924, 10.91956264, 10.94227538,
9.614920104, 9.646480938, 14.03133439, 14.03122345,
15.77400253, 16.00412514, 13.99627680, 14.02826553,
9.557001644, 9.584670472, 11.20625177, 11.08651907,
14.83723493, 14.99369172, 16.55494349, 16.51294369,
14.98448603, 14.71816070, 11.14575565, 11.17168689,
15.82595514, 15.96022497, 18.64014953, 18.56095997,
19.54375504, 19.80902641, 18.56884576, 18.61010439,
15.86586951, 15.90136745 };

Now generate a sequence ofλ from −3.8 to −3.3 so that we can study the GCV
function within this range.

lambda=T(do(-3.8,-3.3,0.1));

Use the following IML statement to do the thin-plate smoothing spline fit and return-
ing the fitted values on those design points.

TPSPLNEV Call � 949

call tpspline(fit,coef,adiag,gcv, x, y,lambda);

The output from this call follows.

SUMMARY OF TPSPLINE CALL

Number of observations 50
Number of unique design points 25
Dimension of polynomial Space 3
Number of Parameters 28

GCV Estimate of Lambda 0.00000668
Smoothing Penalty 2558.14323
Residual Sum of Squares 0.24611
Trace of (I-A) 25.40680
Sigma^2 estimate 0.00969
Sum of Squares for Replication 0.24223

After this TPSPLINE call, you obtained the fitted value. The fitted surface is plotted
in the second panel ofFigure 20.1. Also in Figure 20.1, panel 4, you plot the GCV
function values againstlambda. From panel 2, you see that because of the spare
design points, the fitted surface is a little bit rough. In order to study the TPSS fit
fλ(x) more closely, you use the following IML statements to generate a more dense
grid on[−1, 1]× [−1, 1].

do i1=-1 to 1 by 0.1;
do i2=-1 to 1 by 0.1;

x1=x1||i1;
x2=x2||i2;

end;
end;
x1=t(x1);
x2=t(x2);
xpred=x1||x2;

Now you can use the function TPSPLNEV to evaluatefλ(x) on this dense grid.

call tpsplnev(pred, xpred, x, coef);

The final fitted surface is plotted inFigure 20.1, panel 3.

950 � Chapter 20. Language Reference

Figure 20.1. Plots of Fitted Surface

TRACE Function

sums diagonal elements

TRACE(matrix)

wherematrix is a numeric matrix or literal.

The TRACE function produces a single numeric value that is the sum of the diagonal
elements ofmatrix. For example, the statement

a=trace({5 2, 1 3});

produces the result

A 1 row 1 col (numeric)

8

TRISOLV Function � 951

TRISOLV Function

solves linear systems with triangular matrices

TRISOLV(code, r, b <, piv>)

The TRISOLV function returns the following value:

x is then × p matrix X containingp solutions of thep linear systems
specified bycode, r, andb.

The inputs to the TRISOLV function are as follows:

code specifies which of the following forms of triangular linear system has
to be solved:

code=1 solveRx = b, R upper triangular

code=2 solveR′x = b, R upper triangular

code=3 solveR′x = b, R lower triangular

code=4 solveRx = b, R lower triangular

r specifies then × n nonsingular upper (code=1,2) or lower (code=3,4)
triangular coefficient matrixR. Only the upper or lower triangle of ar-
gument matrixr is used; the other triangle can contain any information.

b specifies then× p matrix,B, of p right-hand sidesbk.

piv specifies an optionaln vector that relates the order of the columns of
matrix R to the order of the columns of an original coefficient matrix
A for which matrixR has been computed as a factor. For example,
the vectorpiv can be the result of the QR decomposition of a matrixA
whose columns were permuted in the orderApiv[1], . . . ,Apiv[n].

For code=1 andcode=3, the solution is obtained by backward elimination. For
code=2 andcode=4, the solution is obtained by forward substitution.

If TRISOLV recognizes the upper or lower triangular matrixR as a singular matrix
(that is, one that contains at least one zero diagonal element), it exits with an error
message.

R = { 1 0 0 0,
3 2 0 0,
1 -3 5 0,
2 7 9 -1 };

b = {1, 1, 4, -6 };
x = trisolv(4, R, b);
print x;

952 � Chapter 20. Language Reference

X

1
-1

0
1

Also see the example in theQR callsection.

TSBAYSEA Call

performs Bayesian seasonal adjustment modeling

CALL TSBAYSEA(trend, season, series, adjust, abic, data

<,order, sorder, rigid, npred, opt, cntl, print>);

The inputs to the TSBAYSEA subroutine are as follows:

data specifies aT × 1 (or 1× T) data vector.

order specifies the order of trend differencing. The default isorder=2.

sorder specifies the order of seasonal differencing. The default issorder=1.

rigid specifies the rigidity of the seasonal pattern. The default isrigid=1.

npred specifies the length of the forecast beyond the available observations. The
default isnpred=0.

opt specifies the options vector.

opt[1] specifies the number of seasonal periods (speriod). By default,
opt[1]=12.

opt[2] specifies the year when the series starts (year). If opt[2]=0, there
will be no trading day adjustment. By default,opt[2]=0.

opt[3] specifies the month when the series starts (month). If opt[2]=0,
this option is ignored. By default,opt[3]=1.

opt[4] specifies the upper limit value for outlier determination (rlim).
Outliers are considered as missing values. If this value is less
than or equal to 0, TSBAYSEA assumes that the input data does
not contain outliers. The default isrlim=0. See the“Missing
Values”section on page 288.

opt[5] refers to the number of time periods processed at one time (span).
The default isopt[5]=4.

opt[6] specifies the number of time periods to be shifted (shift). By de-
fault, opt[6]=1.

opt[7] controls the transformation of the original series (logt). If
opt[7]=1, log transformation is requested. No transformation
(opt[7]=0) is the default.

cntl specifies control values for the TSBAYSEA subroutine. These values will
be automatically set. Be careful if you change these values.

TSBAYSEA Call � 953

cntl[1] controls the adaptivity of the trading day adjustment component
(wtrd). The default iscntl[1]=1.0.

cntl[2] controls the sum of seasonal components within a period (zer-
sum). The larger the value ofcntl[2], the closer to zero this sum
is. By default,cntl[2]=1.0.

cntl[3] controls the leap year effect (delta). The default iscntl[3]=7.0.
cntl[4] specifies the prior variance of the initial trend (alpha). The de-

fault iscntl[4]=0.01.
cntl[5] specifies the prior variance of the initial seasonal component

(beta). The default iscntl[5]=0.01. [.03in]
cntl[6] specifies the prior variance of the initial sum of seasonal compo-

nents (gamma). The default iscntl[6]=0.01.

print requests the power spectrum and the estimated and forecast values of time
series components. Ifprint=2, the spectra of irregular, differenced trend
and seasonal series are printed, together with estimates and forecast values.
If print=1, only the estimates and forecast values of time series components
are printed.

If print=0, printed output is suppressed. The default isprint=0.

The TSBAYSEA subroutine returns the following values:

trend refers to the estimate and forecast of the trend component.

season refers to the estimate and forecast of the seasonal component.

series refers to the smoothed and forecast values of the time series.

adjust refers to the seasonally adjusted series.

abic refers to the value of ABIC from the final estimates.

Bayesian seasonal adjustments are performed with the TSBAYSEA subroutine. The
smoothness of the trend and seasonal components is controlled by the prior dis-
tribution. The Akaike Bayesian Information Criterion (ABIC) is defined to com-
pare with alternative models. The basic TSBAYSEA procedure processes the block
of data in which the length is SPAN*SPERIOD, while the first block of data con-
sists of length (2*SPAN-1)*SPERIOD. The block of data is shifted successively by
SHIFT*SPERIOD.

The TSBAYSEA call decomposes the seriesyt into the following form:

yt = Tt + St + εt

whereTt is a trend component,St denotes a seasonal component, andεt is an irregular
component. To estimate the seasonal and trend components, some constraints are
imposed such that the sum of squares of∇kTt,∇l

LSt, and
∑L−1

i=0 St−i is small, where
∇ and∇L are difference operators. Then the solution can be obtained by minimizing

N∑
t=1

{
(yt − Tt − St)2 + d2

[
s2(∇kTt)2 + (∇l

LSt)2 + z2(St + · · ·+ St−L+1)2
]}

954 � Chapter 20. Language Reference

where d measures the smoothness of the trend and seasonality,s measures the
smoothness of the trend, andz is a smoothness constant for the sum of the sea-
sonal variability. The value ofd is estimated while the constants,s andz, are chosen
a priori. The value ofs is equal to 1

RIGID , and the constantz is determined as
ZERSUM*RIGID/SPERIOD1/2. The larger the constant RIGID, the more rigid the
seasonal pattern is. See the section,Bayesian Constrained Least Squares, for more
information.

To analyze the monthly data with rigidity 0.5, you can specify

call tsbaysea(trend,season,series,adj,abic) data=z order=2
sorder=1 rigid=0.5 npred=10 print=2;

or

call tsbaysea(trend,season,series,adj,abic,z,2,1,0.5,10,,,2);

The TREND, SEASON, and SERIES components contain 10-period-ahead forecast
values as well as the smoothed estimates. The detailed result is also printed since the
PRINT=2 option is specified.

TSDECOMP Call

analyzes nonstationary time series by using smoothness priors modeling

CALL TSDECOMP(comp, est, aic, data, <,xdata, order, sorder,

nar, npred, init, opt, icmp, print>);

The inputs to the TSDECOMP subroutine are as follows:

data specifies aT × 1 (or 1× T) data vector.

xdata specifies aT ×K explanatory data matrix.

order specifies the order of trend differencing (0, 1, 2, or 3). The default is 2.

sorder specifies the order of seasonal differencing (0, 1, or 2). The default is 1.

nar specifies the order of the AR process. The default is 0.

npred specifies the length of the forecast beyond the available observations. The
default is 0.

init specifies the initial values of parameters. The initial values are specified
as variances for trend difference equation, AR process, seasonal difference
equation, regression equation, and partial AR coefficients. The correspond-
ing default variance values are 0.005, 0.8, 1E−5, and 1E−5. The default
partial AR coefficient values are determined as

ψi = 0.88× (−0.6)i−1 i = 1, 2, . . . ,nar

opt specifies the options vector.

TSDECOMP Call � 955

opt[1] specifies the mean deletion option. The mean of the original se-
ries is subtracted from the series ifopt[1]=−1. By default, the
original series is processed (opt[1]=0). When regressors are spec-
ified, only theopt[1]=0 option is allowed.

opt[2] specifies the trading day adjustment. The default isopt[2]=0.
opt[3] specifies the year (≥ 1900) when the series starts. Ifopt[3]=0,

there is no trading day adjustment. By default,opt[3]=0.
opt[4] specifies the number of seasons within a period (speriod). By

default,opt[4]=12.
opt[5] controls the transformation of the original series. Ifopt[5]=1, log

transformation is requested. By default, there is no transforma-
tion (opt[5]=0).

opt[6] specifies the maximum number of iterations allowed. The default
is opt[6] = 200.

opt[7] specifies the update technique for the quasi-Newton optimization
technique. Ifopt[7]=1 is specified, the dual Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) update method is used. Ifopt[7]=2
is specified, the dual Davidon, Fletcher, and Powell (DFP) update
method is used. The default isopt[7]=1.

opt[8] specifies the line search technique for the quasi-Newton opti-
mization method. The default isopt[8] = 2.

opt[8]=1 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and extrapolation.

opt[8]=2 specifies a line search method that requires more ob-
jective function calls than gradient calls for cubic in-
terpolation and extrapolation.

opt[8]=3 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and extrapolation.

opt[8]=4 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and stepwise extrapolation.

opt[8]=5 specifies a line search method that is a modified ver-
sion ofopt[8]=4.

opt[8]=6 specifies the golden section line search method that
uses only function values for linear approximation.

opt[8]=7 specifies the bisection line search method that uses
only function values for linear approximation.

opt[8]=8 specifies the Armijo line search method that uses only
function values for linear approximation.

opt[9] specifies the upper bound of the variance estimates. If you specify
opt[9]=value, the variances are estimated with the constraint that
σ ≤ value. When you specify theopt[9]=0 option, the upper
bound is not imposed. The default isopt[9]=0.

opt[10] specifies the length of data used in backward filtering for the
Kalman filter initialization. The default value ofopt[10] is 100

956 � Chapter 20. Language Reference

if the number of observations is greater than 100; otherwise, the
default value is the number of observations.

icmp specifies which component is calculated.

icmp=1 requests the estimate and forecast of trend component.

icmp=2 requests the estimate and forecast of seasonal component.

icmp=3 requests the estimate and forecast of AR component.

icmp=4 requests the trading day adjustment component.

icmp=5 requests the regression component.

icmp=6 requests the time-varying regression coefficients.

You can calculate multiple components by specifying a vector. For exam-
ple, you can specifyicmp={1 2 3 5}.

print specifies the print option. By default, printed output is suppressed
(print=0). If you specifyprint=1, the subroutine prints the final estimates.
The iteration history is printed if you specifyprint=2.

The TSDECOMP subroutine returns the following values:

comp refers to the estimate and forecast of the trend component.

est refers to the parameter estimates including coefficients of the AR process.

aic refers to the AIC statistic obtained from the final estimates.

The TSDECOMP subroutine analyzes nonstationary time series by using smooth-
ness priors modeling (see the“Smoothness Priors Modeling”section on page 270 for
more details). The likelihood function is maximized with respect to hyperparame-
ters. The Kalman filter algorithm is used for filtering, smoothing, and forecasting.
The TSDECOMP call decomposes the time seriesyt as follows:

yt = Tt + St + TDt + ut +Rt + εt

whereTt represents the trend component,St denotes the seasonal component,TDt

represents the trading day adjustment component,ut denotes the autoregressive pro-
cess component,Rt denotes regression effect components, andεt represents the ir-
regular term with zero mean and constant variance.

The trend components are constrained as follows:

∇kTt = w1t, w1t ∼ N(0, τ2
1)

When you specify the ORDER=0 option, the trend component is not estimated. The
maximum order of differencing is 3 (k = 0, . . . , 3).

TSMLOCAR Call � 957

The seasonal components are denoted as a stochastically perturbed equation:

(
1 +

L−1∑
i=1

Bi

)l

St = w2t, w2t ∼ N(0, τ2
2)

When you specify SORDER=0, the seasonal component is not estimated. The maxi-
mum value ofl is 2 (l = 0, 1, or 2).

The stationary autoregressive (AR) process is denoted as a stochastically perturbed
equation:

ut =
p∑

i=1

αiut−i + w3t, w3t ∼ N(0, τ2
3)

wherep is the order of AR process. When NAR=0 is specified, the AR process
component is not estimated.

The time-varying regression coefficients are estimated if you include exogenous vari-
ables:

Rt = Xtβt

whereXt containsm regressors except the constant term andβ′t = (β1t, . . . , βmt).
The time-varying coefficientsβt follow the random walk process:

βjt = βjt−1 + vjt, vjt ∼ N(0, σ2
j)

whereβjt is an element of the coefficient vectorβt.

The trading day adjustment componentTDt is deterministically restricted. See the
section,State Space and Kalman Filter Method, for more information.

You can estimate the time-varying coefficient model as follows:

call tsdecomp COMP=beta ORDER=0 SORDER=0 NAR=0
DATA=y XDATA=x ICMP=6;

The output matrix BETA contains time-varying regression coefficients.

TSMLOCAR Call

analyzes nonstationary or locally stationary time series by using the minimum
AIC procedure

958 � Chapter 20. Language Reference

CALL TSMLOCAR(arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

The inputs to the TSMLOCAR subroutine are as follows:

data specifies aT × 1 (or 1× T) data vector.

maxlag specifies the maximum lag of the AR process. This value should be less
than half the length of locally stationary spans. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=−1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean value of the input series is 0. The default is
opt[1]=0.

opt[2] specifies the number (J) of basic spans. By default,opt[2]=1.

opt[3] specifies the minimum AIC option. Ifopt[3]=0, themaximum lag
AR process is estimated. Ifopt[3]=1, the minimum AIC proce-
dure is performed. The default isopt[3]=1.

missing specifies the missing value option. By default, only the first contiguous ob-
servations with no missing values are used (missing=0). Themissing=1 op-
tion ignores observations with missing values. If you specify themissing=2
option, the missing values are replaced with the sample mean.print] spec-
ifies the print option. By default, printed output is suppressed (print=0).
The print=1 option prints the AR estimation result, while theprint=2 op-
tion plots the power spectral density as well as the AR estimates.

The TSMLOCAR subroutine returns the following values:

arcoef refers to annar× 1 AR coefficient vector of the final model if the intercept
estimate is not included. Ifopt[1]=1, the first element of thearcoefvector
is an intercept estimate.

ev refers to the error variance.

nar is the selected AR order of the final model. Ifopt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input series, which corresponds to the
first observation of the final model.

finish refers to the ending position of the input series, which corresponds to the
last observation of the final model.

The TSMLOCAR subroutine analyzes nonstationary (or locally stationary) time se-
ries by using the minimum AIC procedure. The data of lengthT is divided intoJ
locally stationary subseries, which consist ofT

J observations. See the“Nonstationary
Time Series”section on page 274 for details.

TSMLOMAR Call � 959

TSMLOMAR Call

analyzes nonstationary or locally stationary multivariate time series by using the
minimum AIC procedure

CALL TSMLOMAR(arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

The inputs to the TSMLOMAR subroutine are as follows:

data specifies aT ×M data matrix, whereT is the number of observations and
M is the number of variables to be analyzed.

maxlag specifies the maximum lag of the vector AR (VAR) process. This value
should be less than12M of the length of locally stationary spans. The default
is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=−1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean values of input series are zeroes. The default is
opt[1]=0.

opt[2] specifies the number (J) of basic spans. By default,opt[2]=1.

opt[3] specifies the minimum AIC option. Ifopt[3]=0, themaximum lag
VAR process is estimated. Ifopt[3]=1, a minimum AIC proce-
dure is used. The default isopt[3]=1.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the AR estimates, minimum AIC, min-
imum AIC order, and innovation variance matrix.

The TSMLOMAR subroutine returns the following values.

arcoef refers to anM × (M ∗nar) VAR coefficient vector of the final model if the
intercept vector is not included. Ifopt[1]=1, the first column of thearcoef
matrix is an intercept estimate vector.

ev refers to the error variance matrix.

nar is the selected VAR order of the final model. Ifopt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input seriesdata, which corresponds to
the first observation of the final model.

960 � Chapter 20. Language Reference

finish refers to the ending position of the input seriesdata, which corresponds to
the last observation of the final model.

The TSMLOMAR subroutine analyzes nonstationary (or locally stationary) multi-
variate time series by using the minimum AIC procedure. The data of lengthT is
divided intoJ locally stationary subseries. See “Nonstationary Time Series” in the
“Nonstationary Time Series”section on page 274 for details.

TSMULMAR Call

estimates VAR processes by using the minimum AIC procedure

CALL TSMULMAR(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

The inputs to the TSMULMAR subroutine are as follows:

data specifies aT ×M data matrix, whereT is the number of observations and
M is the number of variables to be analyzed.

maxlag specifies the maximum lag of the VAR process. This value should be less
than 1

2M of the length of input data. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=−1. An M × 1 intercept vector is estimated
if opt[1]=1. If opt[1]=0, the original input data is processed as-
suming that the mean value of the input data is 0. The default is
opt[1]=0.

opt[2] specifies the minimum AIC option. Ifopt[2]=0, themaximum lag
AR process is estimated. Ifopt[2]=1, the minimum AIC proce-
dure is used, while theopt[2]=2 option specifies the VAR order
selection method based on the AIC. The default isopt[2]=1.

opt[3] specifies instantaneous response modeling ifopt[3]=1. The de-
fault is opt[3]=0. See the section“Multivariate Time Series
Analysis”on page 277 for more information.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the final estimation result, while the
print=2 option prints intermediate and final results.

The TSMULMAR subroutine returns the following values:

TSPEARS Call � 961

arcoef refers to anM × (M ∗ nar) AR coefficient matrix if the intercept is not
included. Ifopt[1]=1, the first column of thearcoefmatrix is an intercept
vector estimate.

ev refers to the error variance matrix.

nar is the selected VAR order of the minimum AIC procedure. Ifopt[2]=0,
nar=maxlag. aic] refers to the minimum AIC value.

The TSMULMAR subroutine estimates the VAR process by using the minimum
AIC method. The widely used VAR order selection method is added to the original
TIMSAC program, which considers only the possibilities of zero coefficients at the
beginning and end of the model. The TSMULMAR subroutine can also estimate the
instantaneous response model. See the“Multivariate Time Series Analysis”section
on page 277 for details.

TSPEARS Call

analyzes periodic AR models with the minimum AIC procedure

CALL TSPEARS(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

The inputs to the TSPEARS subroutine are as follows:

data specifies aT × 1 (or 1× T) data matrix.

maxlag specifies the maximum lag of the periodic AR process. This value should
be less than1

2J of the input series. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted ifopt[1]=−1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean values of input series are zeroes. The default is
opt[1]=0.

opt[2] specifies the number of instants per period. By default,opt[2]=1.

opt[3] specifies the minimum AIC option. Ifopt[3]=0, themaximum lag
AR process is estimated. Ifopt[3]=1, the minimum AIC proce-
dure is used. The default isopt[3]=1.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the periodic AR estimates and inter-
mediate process.

962 � Chapter 20. Language Reference

The TSPEARS subroutine returns the following values:

arcoef refers to a periodic AR coefficient matrix of the periodic AR model. If
opt[1]=1, the first column of thearcoefmatrix is an intercept estimate vec-
tor.

ev refers to the error variance.

nar refers to the selected AR order vector of the periodic AR model.

aic refers to the minimum AIC values of the periodic AR model.

The TSPEARS subroutine analyzes the periodic AR model by using the minimum
AIC procedure. The data of lengthT are divided intod periods. There areJ instants
in one period. See the“Multivariate Time Series Analysis”section on page 277 for
details.

TSPRED Call

provides predicted values of univariate and multivariate ARMA processes when
the ARMA coefficients are input

CALL TSPRED(forecast, impulse, mse, data, coef, nar, nma

<,ev, npred, start, constant>);

The inputs to the TSPRED subroutine are as follows:

data specifies aT × M data matrix if the intercept is not included, whereT
denotes the length of the time series andM is the number of variables to
be analyzed. If the univariate time series is analyzed, the input data should
be a column vector.

coef refers to theM(P +Q)×M ARMA coefficient matrix, whereP is an AR
order andQ is an MA order. If the intercept term is included (constant=1),
the first row of the coefficient matrix is considered as the intercept term and
the coefficient matrix is anM(P +Q+1)×M matrix. If there are missing
values in thecoefmatrix, these are converted to zero.

nar specifies the order of the AR process. If the subset AR process is requested,
nar should be a row or column vector. The default isnar=0.

nma specifies the order of the MA process. If the subset MA process is re-
quested,nmashould be a vector. The default isnma=0.

ev specifies the error variance matrix. If theev matrix is not provided, the
prediction error covariance will not be computed.

npred specifies the maximum length of multistep forecasting. The default is
npred=0.

start specifies the position where the multistep forecast starts. The default is
start=T .

TSROOT Call � 963

constant specifies the intercept option. No intercept estimate is included ifcon-
stant=0; otherwise, the intercept estimate is included in the first row of the
coefficient matrix. Ifconstant=−1, the coefficient matrix is estimated by
using mean deleted series. By default,constant=0.

The TSPRED subroutine returns the following values:

forecast refers to predicted values.

impulse refers to the impulse response function.

mse refers to the mean square error ofs-step-ahead forecast. A scalar missing
value is returned if the error variance (ev) is not provided.

TSROOT Call

calculates AR and MA coefficients from the characteristic roots of the model or
calculates the characteristic roots of the model from the AR and MA coefficients

CALL TSROOT(matout, matin, nar, nma, <,qcoef, print>);

The inputs to the TSROOT subroutine are as follows:

matin refers to the(nar + nma) × 2 characteristic root matrix if the polynomial
(ARMA) coefficients are requested (qcoef=1), where the first column of
the matin matrix contains the real part of the root and the second column
of thematinmatrix contains the imaginary part of the root. When the char-
acteristic roots are requested (qcoef=0), the firstnar rows are complex AR
coefficients and the lastnmarows are complex MA coefficients. The de-
fault isqcoef=0.

nar specifies the order of the AR process. If you specify the subset AR model,
the inputnar should be a row or column vector.

nma specifies the order of the MA process. If you specify the subset MA model,
the inputnmashould be a row or column vector.

qcoef requests the ARMA coefficients when the characteristic roots are provided
(qcoef=1). By default, the characteristic roots of the polynomial are calcu-
lated (qcoef=0).

print specifies the print option ifprint=1. By default, printed output is suppressed
(print=0).

The TSROOT subroutine returns the following values

matout refers to the characteristic root matrix ifqcoef=0; otherwise, thematout
matrix contains the AR and MA coefficients.

964 � Chapter 20. Language Reference

TSTVCAR Call

analyzes time series that are nonstationary in the covariance function

CALL TSTVCAR(arcoef, variance, est, aic, data

<,nar, init, opt, outlier, print>);

The inputs to the TSTVCAR subroutine are as follows:

data specifies aT × 1 (or 1× T) data vector.

nar specifies the order of the AR process. The default isnar=8.

init specifies the initial values of the parameter estimates. The default is (1E−4,
0.3, 1E−5, 0).

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original se-
ries is subtracted from the series ifopt[1]=−1. By default, the
original series is processed (opt[1]=0).

opt[2] specifies the filtering period (nfilter). The number of state vectors
is determined by T

nfilter . The default isopt[2]=10.

opt[3] specifies the numerical differentiation method. Ifopt[3]=1, the
one-sided (forward) differencing method is used. The two-sided
(or central) differencing method is used ifopt[3]=2. The default
is opt[3]=1.

outlier specifies the vector of outlier observations. The value should be less than
or equal to the maximum number of observations. The default isoutlier=0.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the final estimates. The iteration his-
tory is printed ifprint=2.

The TSTVCAR subroutine returns the following values:

arcoef refers to the time-varying AR coefficients.

variance refers to the time-varying error variances. See the“Smoothness Priors
Modeling” section on page 270 for details.

est refers to the parameter estimates.

aic refers to the value of AIC from the final estimates.

Nonstationary time series modeling usually deals with nonstationarity in the mean.
The TSTVCAR subroutine analyzes the model that is nonstationary in the covariance.
Smoothness priors are imposed on each time-varying AR coefficient and frequency
response function. See the“Nonstationary Time Series”section on page 274 for
details.

TSUNIMAR Call � 965

TSUNIMAR Call

determines the order of an AR process with the minimum AIC procedure and
estimates the AR coefficients

CALL TSUNIMAR(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

The inputs to the TSUNIMAR subroutine are as follows:

data specifies aT × 1 (or 1×T) data vector, whereT is the number of observa-
tions.

maxlag specifies the maximum lag of the AR process. This value should be less
than half the number of observations. The default ismaxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original
data is deleted ifopt[1]=−1. An intercept term is estimated if
opt[1]=1. If opt[1]=0, the original input data is processed assum-
ing that the mean value of the input data is 0. The default is
opt[1]=0.

opt[2] specifies the minimum AIC option. Ifopt[2]=0, themaximum lag
AR process is estimated. The minimum AIC option,opt[2]=1, is
the default.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). Themissing=1
option ignores observations with missing values. If you specify themiss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). Theprint=1 option prints the final estimation result, while the
print=2 option prints intermediate and final results.

The TSUNIMAR subroutine returns the following values.

arcoef refers to annar× 1 AR coefficient vector if the intercept is not included. If
opt[1]=1, the first element of thearcoefvector is an intercept estimate.

ev refers to the error variance.

nar refers to the selected AR order by minimum AIC procedure. If
opt[2]=0, nar = maximum lag.

aic refers to the minimum AIC value.

The TSUNIMAR subroutine determines the order of the AR process by using the
minimum AIC procedure and estimates the AR coefficients. All AR coefficient esti-
mates up to maximum lag are printed if you specify the print option. See the section,
Least Squares and Householder Transformation, for more information.

966 � Chapter 20. Language Reference

TYPE Function

determines the type of a matrix

TYPE(matrix)

wherematrix is a numeric or character matrix or literal.

The TYPE function returns a single character value; it isN if the type of the matrix
is numeric; it isC if the type of the matrix is character; it isU if the matrix does not
have a value. Examples of valid statements follow.

The statements

a={tom};
r=type(a);

set R toC. The statements

free a;
r=type(a);

set R toU. The statements

a={1 2 3};
r=type(a);

set R toN.

UNIFORM Function

generates pseudo-random uniform deviates

UNIFORM(seed)

whereseedis a numeric matrix or literal. Theseedcan be any integer value up to
231 − 1.

The UNIFORM function returns one or more pseudo-random numbers with a uniform
distribution over the interval 0 to 1. The UNIFORM function returns a matrix with
the same dimensions as the argument. The first argument on the first call is used for
the seed, or if that argument is 0, the system clock is used for the seed. The function
is equivalent to the DATA step function RANUNI. An example of a valid statement
follows:

seed = 123456;
c = j(5,1,seed);
b = uniform(c);
print b;

B

UNIQUE Function � 967

0.73902
0.2724794
0.7095326
0.3191636

0.367853

UNION Function

performs unions of sets

UNION(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric or character matrix or quoted literal.

The UNION function returns as a row vector the sorted set (without duplicates) which
is the union of the element values present in its arguments. There can be up to 15
arguments, which can be either all character or all numeric. For character arguments,
the element length of the result is the longest element length of the arguments. Shorter
character elements are padded on the right with blanks. This function is identical to
theUNIQUE function. For example, the statements

a={1 2 4 5};
b={3 4};
c=union(a,b);

set

C 1 row 5 cols (numeric)

1 2 3 4 5

The UNION function can be used to sort elements of a matrix when there are no
duplicates by calling UNION with a single argument.

UNIQUE Function

sorts and removes duplicates

UNIQUE(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric or character matrix or quoted literal.

The UNIQUE function returns as a row vector the sorted set (without duplicates)
of all the element values present in its arguments. The arguments can be either all
numeric or all character, and there can be up to 15 arguments specified. This function
is identical to theUNION function, the description of which includes an example.

968 � Chapter 20. Language Reference

UNIQUEBY Function
returns the locations of the unique by-group combinations for a sorted or in-
dexed matrix

UNIQUEBY(matrix, by, index)

The inputs to the UNIQUEBY function are as follows:

matrix is the input matrix, which must be sorted or indexed according to the
bycolumns.

by is either a numeric matrix of column numbers, or a character matrix
containing the names of columns corresponding to column labels as-
signed tomatrixby aMATTRIB statementor READ statement.

index is a vector such thatindex[i] is the row index of theith element of
matrix when sorted according toby. Consequently,matrix[index,] is
the sorted matrix.indexcan be computed for a matrix and a given set
of by columns with theSORTNDX call. If the matrix is known to be
sorted according to theby columns already, thenindexshould be just
1:nrow(matrix)

The UNIQUEBY function returns a column vector, whoseith row gives the row in
indexwhose value is the row inmatrixof theith unique combination of values in the
bycolumns. This means that if

unique_rows = uniqueby(matrix, by, index);

is executed, then

unique = matrix[index[unique_rows], by];

gives the values of the uniquebycombinations. In addition,

n = nrow(unique);

gives the number of unique values, and

size = unique_rows[i+1] - unique_rows[i];

gives the number of rows in theith by combination, except for the last combination,
which is given by

size_last = nrow(matrix) - unique_rows[nrow(unique_rows)] + 1;

If matrix is already sorted according to theby columns (see theSORT call), then
UNIQUEBY can be called with 1:nrow(matrix) for the indexargument:

unique_loc = uniqueby(matrix, by, 1:nrow(matrix));

USE Statement � 969

USE Statement

opens a SAS data set for reading

USE SAS-data-set <VAR operand> <WHERE(expression)>

<NOBS name>;

The inputs to the USE statement are as follows:

SAS-data-set can be specified with a one-word name (for example, A) or a two-
word name (for example, SASUSER.A). For more information on
specifying SAS data sets, see the chapter on SAS data sets inSAS
Language Reference: Concepts.

operand selects a set of variables.

expression is evaluated for being true or false.

name is the name of a variable to contain the number of observations.

If the data set has not already been opened, the USE statement opens the data set
for read access. The USE statement also makes the data set the current input data
set so that subsequent statements act on it. The USE statement optionally can define
selection criteria that are used to control access.

The VAR clause specifies a set of variables to use, whereoperandcan be any of the
following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the following keywords:

–ALL – for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples show each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within therangespecifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

970 � Chapter 20. Language Reference

WHERE(variable comparison-op operand)

In the statement above,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled similar to a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds ifall the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds ifany of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause using the AND (&)
and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

whereclausecan be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

The VAR and WHERE clauses are optional, and you can specify them in any order.
If a data set is already open, all the options that the data set was first opened with are
still in effect. To override any old options, the new USE statement must explicitly
specify the new options. Examples of valid statements follow.

VALUE Function � 971

use class;
use class var{name sex age};
use class var{name sex age} where(age>10);

VALSET Call

performs indirect assignment

CALL VALSET(char-scalar, argument);

The inputs to the VALSET subroutine are as follows:

char-scalar is a character scalar containing the name of a matrix.

argument is a value to which the matrix is set.

The VALSET subroutine expects a single character string argument containing the
name of a matrix. It looks up the matrix and moves the value of the second argu-
ment to this matrix. For example, the following statements find that the value of the
argumentB is A and then assign the value 99 toA, the indirect result:

b="A";
call valset(b,99);

The previous value of the indirect result is freed. The following statement setsB to
99, but the value ofA is unaffected by this statement:

b=99;

VALUE Function

assigns values by indirect reference

VALUE(char-scalar)

wherechar-scalaris a character scalar containing the name of a matrix.

The VALUE function expects a single character string argument containing the name
of a matrix. It looks up the matrix and moves its value to the result. For example, the
statements

a={1 2 3};
b="A";
c=value(b);

find that the value of the argumentB is A and then look upA and copy the value 1
2 3 toC.

C 1 row 3 cols (numeric)

1 2 3

972 � Chapter 20. Language Reference

VARMACOV Call

computes the theoretical cross-covariance matrices for a stationary
VARMA(p, q) model

CALL VARMACOV(cov, phi, theta, sigma <, p, q, lag>);

The inputs to the VARMACOV subroutine are as follows:

phi specifies akmp × k matrix, Φ, containing the autoregressive coefficient
matrices, wheremp is the number of elements in the subset of the AR order
andk ≥ 2 is the number of variables. All the roots of|Φ(B)| = 0 should
be greater than one in absolute value, whereΦ(B) is the finite order matrix
polynomial in the backshift operatorB, such thatBjyt = yt−j . You must
specify eitherphi or theta.

theta specifies akmq × k matrix containing the moving-average coefficient ma-
trices, wheremq is the number of the elements in the subset of the MA
order. You must specify eitherphi or theta.

sigma specifies ak×k symmetric positive-definite covariance matrix of the inno-
vation series. Ifsigmais not specified, then an identity matrix is used.

p specifies the subset of the AR order. The quantitymp is defined as

mp = nrow(phi)/ncol(phi)

wherenrow(phi) is the number of rows of the matrixphi andncol(phi) is
the number of columns of the matrixphi.

If you do not specifyp, the default subset isp= {1, 2, . . . ,mp}.
For example, consider a 4-dimensional vector time series, andphi is a
4 × 4 matrix. If you specifyp=1 (the default, sincemp = 4/4 = 1), the
VARMACOV subroutine computes the theoretical cross-covariance matri-
ces of VAR(1) asyt = Φyt−1 + εt.

If you specify p=2, the VARMACOV subroutine computes the cross-
covariance matrices of VAR(2) asyt = Φyt−2 + εt.

Let phi = [Φ′
1, Φ′

2]
′ be an8 × 4 matrix. If you specifyp= {1, 3},

the VARMACOV subroutine computes the cross-covariance matrices of
VAR(3) as yt = Φ1yt−1 + Φ2yt−3 + εt. If you do not specifyp,
the VARMACOV subroutine computes the cross-covariance matrices of
VAR(2) asyt = Φ1yt−1 + Φ2yt−2 + εt.

q specifies the subset of the MA order. The quantitymq is defined as

mq = nrow(theta)/ncol(theta)

wherenrow(theta)is the number of rows of matrixthetaandncol(theta)is
the number of columns of matrixtheta.

If you do not specifyq, the default subset isq= {1, 2, . . . ,mq}.
The usage ofq is the same as that ofp.

VARMALIK Call � 973

lag specifies the length of lags, which must be a positive number. Iflag = h,
the VARMACOV computes the cross-covariance matrices from lag zero to
lagh. By default,lag = 12.

The VARMACOV subroutine returns the following value:

cov is a k(lag + 1) × k matrix that contains the theoretical cross-covariance
matrices of the VARMA(p, q) model.

To compute the cross-covariance matrices of a bivariate (k = 2) VARMA(1,1) model

yt = Φyt−1 + εt −Θεt−1

where

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
Σ =

[
1.0 0.5
0.5 1.25

]
you can specify

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmacov(cov, phi, theta, sigma) lag=5;

VARMALIK Call

computes the log-likelihood function for a VARMA(p, q) model

CALL VARMALIK(lnl, series, phi, theta, sigma <, p, q, opt>);

The inputs to the VARMALIK subroutine are as follows:

series specifies ann× k matrix containing the vector time series (assuming mean
zero), wheren is the number of observations andk ≥ 2 is the number of
variables.

phi specifies akmp × k matrix containing the autoregressive coefficient matri-
ces, wheremp is the number of the elements in the subset of the AR order.
You must specify eitherphi or theta.

theta specifies akmq × k matrix containing the moving-average coefficient ma-
trices, wheremq is the number of the elements in the subset of the MA
order. You must specify eitherphi or theta.

sigma specifies ak × k covariance matrix of the innovation series. If you do not
specifysigma, an identity matrix wis used.

p specifies the subset of the AR order. See the VARMACOV subroutine.

q specifies the subset of the MA order. See the VARMACOV subroutine.

974 � Chapter 20. Language Reference

opt specifies the method of computing the log-likelihood function:

opt=0 requests the multivariate innovations algorithm. This algorithm
requires that the time series is stationary and does not contain
missing observations.

opt=1 requests the conditional log-likelihood function. This algorithm
requires that the number of the observations in the time series
must be greater thanp+q and that the series does not contain
missing observations.

opt=2 requests the Kalman filtering algorithm. This is the default and is
used if the required conditions inopt=0 andopt=1 are not satis-
fied.

The VARMALIK subroutine returns the following value:

lnl is a 3 × 1 matrix containing the log-likelihood function, the sum of log
determinant of the innovation variance, and the weighted sum of squares of
residuals. The log-likelihood function is computed as−0.5× (the sum of
last two terms).

The optionsopt=0andopt=2are equivalent for stationary time series without missing
values. Settingopt=0 is useful for a small number of the observations and a high
order ofp andq; opt=1 is useful for a high order ofp andq; opt=2 is useful for a low
order ofp andq, or for missing values in the observations.

To compute the log-likelihood function of a bivariate (k = 2) VARMA(1,1) model

yt = Φyt−1 + εt −Θεt−1

where

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
Σ =

[
1.0 0.5
0.5 1.25

]
you can specify

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmasim(yt, phi, theta) sigma=sigma;
call varmalik(lnl, yt, phi, theta, sigma);

VARMASIM Call

generates a VARMA(p,q) time series

VARMASIM Call � 975

CALL VARMASIM(series, phi, theta, mu, sigma, n <, p, q, initial, seed>);

The inputs to the VARMASIM subroutine are as follows:

phi specifies akmp × k matrix containing the autoregressive coefficient matri-
ces, wheremp is the number of the elements in the subset of the AR order
andk ≥ 2 is the number of variables. You must specify eitherphi or theta.

theta specifies akmq × k matrix containing the moving-average coefficient ma-
trices, wheremq is the number of the elements in the subset of the MA
order. You must specify eitherphi or theta.

mu specifies ak× 1 (or 1×k) mean vector of the series. Ifmuis not specified,
a zero vector is used.

sigma specifies ak× k covariance matrix of the innovation series. Ifsigmais not
specified, an identity matrix is used.

n specifies the length of the series. Ifn is not specified,n = 100 is used.

p specifies the subset of the AR order. See the VARMACOV subroutine.

q specifies the subset of the MA order. See the VARMACOV subroutine.

initial specifies the initial values of random variables. Ifinitial = a0, then
y−p+1, . . . ,y0 andε−q+1, . . . , ε0 all take the same valuea0. If the ini-
tial option is not specified, the initial values are estimated for the stationary
vector time series; the initial values are assumed as zero for the nonstation-
ary vector time series.

seed specifies the random number seed. See the VNORMAL subroutine.

The VARMASIM subroutine returns the following value:

series is ann×kmatrix containing the generated VARMA(p, q) time series. When
either theinitial option is specified or zero initial values are used, these
initial values are not included inseries.

To generate a bivariate (k = 2) stationary VARMA(1,1) time series

yt − µ = Φ(yt−1 − µ) + εt −Θεt−1

where

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
µ =

[
10
20

]
Σ =

[
1.0 0.5
0.5 1.25

]
you can specify

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
mu = { 10, 20 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmasim(yt, phi, theta, mu, sigma, 100);

976 � Chapter 20. Language Reference

To generate a bivariate (k = 2) nonstationary VARMA(1,1) time series with the same
µ, Σ, andΘ in the previous example and the AR coefficient

Φ =
[

1.0 0
0 0.3

]
you can specify

phi = { 1.0 0.0, 0.0 0.3 };
call varmasim(yt, phi, theta, mu, sigma, 100) initial=3;

VECDIAG Function

creates a vector from a diagonal

VECDIAG(square-matrix)

wheresquare-matrixis a square numeric matrix.

The VECDIAG function creates a column vector whose elements are the main diag-
onal elements ofsquare-matrix. For example, the statements

a={2 1, 0 -1};
c=vecdiag(a);

produce the column vector

C 2 rows 1 col (numeric)

2
-1

VNORMAL Call

generates a multivariate normal random series

CALL VNORMAL(series, mu, sigma, n <, seed>);

The inputs to the VNORMAL subroutine are as follows:

mu specifies ak × 1 (or 1 × k) mean vector, wherek ≥ 2 is the number of
variables. You must specify eithermu or sigma. If mu is not specified, a
zero vector is used.

sigma specifies ak×k symmetric positive-definite covariance matrix. By default,
sigmais an identity matrix with dimensionk. You must specify eithermu
or sigma. If sigmais not specified, an identity matrix is used.

n specifies the length of the series. Ifn is not specified,n = 100 is used.

seed specifies the random number seed. If it is not supplied, the system clock is
used to generate the seed. If it is negative, then the absolute value is used as
the starting seed; otherwise, subsequent calls ignore the value ofseedand
use the last seed generated internally.

VTSROOT Call � 977

The VNORMAL subroutine returns the following value:

series is ann× k matrix that contains the generated normal random series.

To generate a bivariate (k = 2) normal random series with meanµ and covariance
matrixΣ, where

µ =
[

10
20

]
and Σ =

[
1.0 0.5
0.5 1.25

]
you can specify

mu = { 10, 20 };
sigma= { 1.0 0.5, 0.5 1.25};
call vnormal(et, mu, sigma, 100);

VTSROOT Call

calculates the characteristic roots of the model from AR and MA characteristic
functions

CALL VTSROOT(root, phi, theta<, p, q>);

The inputs to the VTSROOT subroutine are as follows:

phi specifies akmp × k matrix containing the autoregressive coefficient matri-
ces, wheremp is the number of the elements in the subset of the AR order
andk ≥ 2 is the number of variables. You must specify eitherphi or theta.

theta specifies akmq × k matrix containing the moving-average coefficient ma-
trices, wheremq is the number of the elements in the subset of the MA
order. You must specify eitherphi or theta.

p specifies the subset of the AR order. See the VARMACOV subroutine.

q specifies the subset of the MA order. See the VARMACOV subroutine.

The VTSROOT subroutine returns the following value:

root is a k(pmax + qmax) × 5 matrix, wherepmax is the maximum order of
the AR characteristic function andqmax is the maximum order of the MA
characteristic function. The firstkpmax rows refer to the results of the AR
characteristic function; the lastkqmax rows refer to the results of the MA
characteristic function.

The first column contains the real parts,x, of eigenvalues of companion ma-
trix associated with the AR(pmax) or MA(qmax) characteristic function; the
second column contains the imaginary parts,y, of the eigenvalues; the third
column contains the moduli of the eigenvalues,

√
x2 + y2; the fourth col-

umn contains the arguments (arctan(y/x)) of the eigenvalues, measured in
radians from the positive real axis. The fifth column contains the arguments
expressed in degrees rather than radians.

978 � Chapter 20. Language Reference

To compute the roots of the characteristic functions,Φ(B) = I − ΦB andΘ(B) =
I −ΘB, whereI is an identity matrix with dimension 2 and

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
you can specify

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
call vtsroot(root, phi, theta);

WAVFT Call

computes fast wavelet transform

CALL WAVFT(decomp, data, opt <, levels>);

The Fast Wavelet Transform (WAVFT) subroutine computes a specified discrete
wavelet transform of the input data, using the algorithm of Mallat (1989). This trans-
form decomposes the input data into sets of detail and scaling coefficients defined at
a number of scales or “levels.”

The input data are used as scaling coefficients at the top level in the decomposition.
The fast wavelet transform then recursively computes a set of detail and a set of
scaling coefficients at the next lower level by respectively applying “low pass” and
“high pass” conjugate mirror filters to the scaling coefficients at the current level. The
number of coefficients in each of these new sets is approximately half the number of
scaling coefficients at the level above them. Depending on the filters being used, a
number of additional scaling coefficients, known as boundary coefficients, may be
involved. These boundary coefficients are obtained by extending the sequence of
interior scaling coefficients using a specified method.

Details of the discrete wavelet transform and the fast wavelet transformation algo-
rithm are available in many references, including Mallat (1989), Daubechies (1997),
and Ogden (1997).

The inputs to the WAVFT subroutine are as follows:

data specifies the data to transform. This data must be either a row or column
vector.

opt refers to an options vector with the following components:

opt[1] specifies the boundary handling used in computing the wavelet
transform. At each level of the wavelet decomposition, neces-
sary boundary scaling coefficients are obtained by extending the
interior scaling coefficients at that level as follows:

opt[1]=0 specifies extension by zero.
opt[1]=1 specifies periodic extension.

WAVFT Call � 979

opt[1]=2 specifies polynomial extension.
opt[1]=3 specifies extension by reflection.
opt[1]=4 specifies extension by anti-symmetric reflection.

opt[2] specifies the polynomial degree that is used for polynomial ex-
tension. The value ofopt[2] is ignored ifopt[1] 6= 2.

opt[2]=0 specifies constant extension.
opt[2]=1 specifies linear extension.
opt[2]=2 specifies quadratic extension.

opt[3] specifies the wavelet family.

opt[3]=1 specifies the Daubechies Extremal phase family
(Daubechies, 1992).

opt[3]=2 specifies the Daubechies Least Asymmetric family
(also known as the Symmlet family) (Daubechies,
1992).

opt[4] specifies the wavelet family member. Valid values are

opt[4]=1 through 10, if opt[3]=1
opt[4]=4 through 10, if opt[3]=2

Some examples of wavelet specifications are

opt={1 . 1 1}; specifies the first member (more commonly known as the
Haar system) of the Daubechies extremal phase family
with periodic boundary handling.

opt={2 1 2 5}; specifies the fifth member of the Symmlet family with
linear extension boundary handling.

levels is an optional scalar argument that specifies the number of levels from the
top level to be computed in the decomposition. If you do not specify this
argument, then the decomposition terminates at level 0. Usually, you will
not need to specify this optional argument. You use this option to avoid
unneeded computations in situations where you are interested in only the
higher level detail and scaling coefficients.

The WAVFT subroutine returns

decomp a row vector that encapsulates the specified wavelet transform. The infor-
mation that is encoded in this vector includes:

• the options specified for computing the transform.

• the number of detail coefficients at each level of the decomposition.

• all detail coefficients.

• the scaling coefficients at the bottom level of the decomposition.

• boundary scaling coefficients at all levels of the decomposition.

980 � Chapter 20. Language Reference

Note: decompis a private representation of the specified wavelet transform and is
not intended to be interpreted in its raw form. Rather, you should use this vector
as an input argument to theWAVIFT, WAVPRINT, WAVGET, and WAVTHRSH
subroutines

The following program shows an example of using wavelet calls to estimate and
reconstruct a piecewise constant function:

/* define a piecewise constant step function */
start blocky(t);

/* positions (p) and magnitudes (h) of jumps */
p = {0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81};
h = {4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 2.1 -4.2};

y=j(1, ncol(t), 0);
do i=1 to ncol(p);

diff=((t-p[i])>=0);
y=y+h[i]*diff;

end;
return (y);

finish blocky;

n=2##8;
x=1:n;
x=(x-1)/n;
y=blocky(x);

optn = { 2, /* polynominal extension at boundry */
1, /* using linear polynominal */
1, /* Daubechies Extremal phase */
3 /* family member 3 */
};

call wavft(decomp, y, optn);
call wavprint(decomp,1); /* print summary information */

/* perform permanent thresholding */
threshOpt = { 2, /* soft thresholding */

2, /* global threshold */
., /* ignored */

-1 /* apply to all levels */
};

call wavthrsh(decomp, threshOpt);

/* request detail coefficients at level 4 */
call wavget(detail4,decomp,2,4);

/* reconstruct function using wavelets */
call wavift(estimate,decomp);

errorSS=ssq(y-estimate);
print errorSS;

WAVGET Call � 981

Decomposition Summary

Decomposition Name DECOMP
Wavelet Family Daubechies Extremal Phase
Family Member 3
Boundary Treatment Recursive Linear Extension
Number of Data Points 256
Start Level 0

ERRORSS

1.746E-25

WAVGET Call

extracts wavelet information

CALL WAVGET(result, decomp, request <, options>);

The WAVGET subroutine is used to return information that is encoded in a wavelet
decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed using a call to
theWAVFT subroutine.

request specifies a scalar indicating what information is to be returned.

You can specify different optional arguments depending on the value of
request:

request=1 requests the number of points in the input data vector.

result returns as a scalar containing this number.

request=2 requests the detail coefficients at a specified level. Valid syntax
is

CALL WAVGET(result, decomp, 2, level <, opt>);
where the argument

level is the level at which the detail coefficients are re-
quested.

opt is an optional vector which specifies the thresholding
to be applied to the returned detail coefficients. See
the WAVIFT subroutine call for details. If you omit
this argument, no thresholding is applied.

result returns as a column vector containing the specified
detail coefficients.

request=3 requests the scaling coefficients at a specified level. Valid syn-
tax is

982 � Chapter 20. Language Reference

CALL WAVGET(result, decomp, 3, level <, opt>);
where the argument

level is the level at which the scaling coefficients are re-
quested.

opt is an optional vector that specifies the thresholding
to be applied. See theWAVIFT subroutine call for a
description of this vector. The scaling coefficients at
the requested level are obtained by using the inverse
wavelet transform, after applying the specified thresh-
olding. If you omit this argument, no thresholding is
applied.

result returns as a column vector containing the specified
scaling coefficients.

request=4 requests the thresholding status of the detail coefficients inde-
comp.

result returns as a scalar whose value is

0, if the detail coefficients have not been thresh-
olded

1, otherwise

request=5 requests the wavelet options vector that you specified in the
WAVFT subroutine call to computedecomp.

result returns as a column vector with 4 elements containing
the specified options vector. See theWAVFT subrou-
tine call for the interpretation of the vector entries.

request=6 requests the index of the top level indecomp.

result returns as a scalar containing this number.

request=7 requests the index of the lowest level indecomp.

result returns as a scalar containing this number.

request=8 requests a vector evaluating the father wavelet used indecomp,
at an equally spaced grid spanning the support of the father
wavelet. The number of points in the grid is specified as a power
of 2 times the support width of the father wavelet. For wavelets
in the Daubechies extremal phase and least asymmetric fami-
lies, the support width of the father wavelet is2m−1, wherem
is the family member. Valid syntax is

CALL WAVGET(result, decomp, 8 <, power>);
where the optional argument

power is the exponent of 2 determining the number of grid
points used.powerdefaults to8 if you do not specify
this argument.

WAVIFT Call � 983

result returns as a column vector containing the specified
evaluation of the father wavelet.

An example is available in the documentation for theWAVFT subroutine.

WAVIFT Call

computes inverse fast wavelet transform

CALL WAVIFT(result, decomp <, opt <, level>>);

The Inverse Fast Wavelet Transform (WAVIFT) subroutine computes the inverse
wavelet transform of a wavelet decomposition computed using theWAVFT subrou-
tine. Details of this algorithm are available in many references, including Mallat
(1989), Daubechies (1992), and Ogden (1997).

The inverse transform yields an exact reconstruction of the original input data, pro-
vided that no smoothing is specified. Alternatively, a smooth reconstruction of the in-
put data can be obtained by thresholding the detail coefficients in the decomposition
prior to applying the inverse transformation. Thresholding, also known as shrinkage,

replaces the detail coefficientd(i)
j at leveli by δTi(d

(i)
j), where theδT (x) is a shrink-

age function andTi is the threshold value used at leveli. The SAS/IML wavelet
subroutines support hard and soft shrinkage functions (Donoho and Johnstone, 1994)
and the nonnegative garrote shrinkage function (Breiman, 1995). These functions are
defined as follows:

δhard
T (x) =

{
0 |x| ≤ T
x |x| > T

δsoft
T (x) =

0 |x| ≤ T
x− T x > T
x+ T x < −T

δ
garrote
T (x) =

{
0 |x| ≤ T
x− T 2/x |x| > T

You can specify several methods for choosing the threshold values. Methods in which
the thresholdTi varies with the leveli are called adaptive. Methods where the same
threshold is used at all levels are called global.

The inputs to the WAVIFT subroutine are as follows:

decomp specifies a wavelet decomposition that has been computed using a call to
theWAVFT subroutine.

opt refers to an options vector that specifies the thresholding algorithm. If this
optional argument is not specified, then no thresholding is applied.

The options vector has the following components:

984 � Chapter 20. Language Reference

opt[1] specifies the thresholding policy.

opt[1]=0 specifies that no thresholding be done. Ifopt[1]=0 then
all other entries in the options vector are ignored.

opt[1]=1 specifies hard thresholding.
opt[1]=2 specifies soft thresholding.
opt[1]=3 specifies garrote thresholding.

opt[2] specifies the method for selecting the threshold.

opt[2]=0 specifies a global user supplied threshold.
opt[2]=1 specifies a global threshold chosen using the minimax

criterion of Donoho and Johnstone (1994).
opt[2]=2 specifies a global threshold defined using the universal

criterion of Donoho and Johnstone (1994).
opt[2]=3 specifies an adaptive method where the thresholds at

each leveli are chosen to minimize an approximation of
theL2 risk in estimating the true data values using the
reconstruction with thresholded coefficients (Donoho
and Johnstone, 1995).

opt[2]=4 specifies a hybrid method of Donoho and Johnstone
(1995). The universal threshold as specified byopt[2]=2
is used at levels where most of the detail coefficients are
essentially zero. The risk minimization method as spec-
ified byopt[2]=4 is used at all other levels.

opt[3] specifies the value of the global user supplied threshold ifopt[2]=1.
It is ignored ifopt[2] 6= 1.

opt[4] specifies the number of levels starting at the highest detail coeffi-
cient level at which thresholding is to be applied. If this value is
negative or missing, thresholding is applied at all levels indecomp.

Some common examples of threshold options specifications are:

opt={1 3 . -1}; specifies hard thresholding with a minimax threshold ap-
plied at all levels in the decomposition. This threshold is
named “RiskShrink” in Donoho and Johnstone (1994).

opt={2 2 . -1}; specifies soft thresholding with a universal threshold ap-
plied at all levels in the decomposition. This threshold is
named “VisuShrink” in Donoho and Johnstone (1994).

opt={2 4 . -1}; specifies soft thresholding with level dependent thresh-
olds which minimize the Stein Unbiased Estimate of
Risk (SURE). This threshold is named “SureShrink” in
Donoho and Johnstone (1995).

level is an optional scalar argument that specifies the level at which the recon-
structed data is to be returned. If this argument is not specified then the
reconstructed data is returned at the top level defined indecomp.

The WAVIFT subroutine returns

WAVPRINT Call � 985

result a vector obtained by inverting, after thresholding the detail coefficients, the
discrete wavelet transform encoded indecomp. The row or column orienta-
tion of resultis the same as that of the input data specified in the correspond-
ing WAVFT subroutine call. If you specify the optionallevelargument,result
contains the reconstruction at the specified level, otherwise the reconstruction
corresponds to the top level in the decomposition.

An example is available in the documentation for theWAVFT subroutine.

WAVPRINT Call

displays wavelet information

CALL WAVPRINT(decomp, request <, options>);

The WAVPRINT subroutine is used to display the information that is encoded in a
wavelet decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed using a call to
theWAVFT subroutine.

request specifies a scalar indicating what information is to be displayed.

You can specify different optional arguments depending on the value of
request:

request=1 displays information about the wavelet family used to perform
the wavelet transform. No additional arguments need to be
specified.

request=2 displays the detail coefficients by level. Valid syntax is

CALL WAVPRINT(decomp, 2 <, lower <, upper>>
);
where the argument

lower is optional and specifies the lowest level to be dis-
played. The default value oflower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value ofupperis the highest de-
tail level indecomp.

request=3 displays the scaling coefficients by level. Valid syntax is

CALL WAVPRINT(decomp,3 < , lower <, upper>>
);
where the argument

lower is optional and specifies the lowest level to be dis-
played. The default value oflower is the lowest level
in decomp.

986 � Chapter 20. Language Reference

upper is optional and specifies the upper level to be dis-
played. The default value ofupper is the top level
in decomp.

request=4 displays thresholded detail coefficients by level. Valid syntax is

CALL WAVPRINT(decomp, 4, opt<, lower <, upper>>);
where the argument

opt is a required options vector that specifies the thresh-
olding algorithm used. See theWAVIFT subroutine
call for a description of this options vector.

lower is optional and specifies the lowest level to be dis-
played. The default value oflower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value ofupperis the highest de-
tail level indecomp.

An example is available in the documentation for theWAVFT subroutine.

WAVTHRSH Call

thresholds wavelet detail coefficients

CALL WAVTHRSH(decomp, opt);

The Wavelet Threshold (WAVTHRSH) subroutine thresholds the detail coefficients
in a wavelet decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed using a call to
theWAVFT subroutine.

opt refers to an options vector that specifies the thresholding algorithm used.
See theWAVIFT subroutine call for a description of this options vector.

On return, the detail coefficients encoded indecompare replaced by their thresh-
olded values. Note that this action is not reversible. If you want to retain the original
detail coefficients, you should not use the WAVTHRSH subroutine to do threshold-
ing. Rather, you should supply the thresholding argument where appropriate in the
WAVIFT, WAVGET, andWAVPRINT subroutine calls.

An example is available in the documentation for theWAVFT subroutine.

WINDOW Statement � 987

WINDOW Statement

opens a display window

WINDOW <CLOSE=>window-name <window-options>

<GROUP=group-name field-specs>

< . . .GROUP=group-name field-specs>;

where the arguments and options are described below.

The WINDOW statement defines a window on the display and can include a num-
ber of fields. TheDISPLAY statementactually writes values to the window. The
following fields can be specified in the WINDOW statement:

window-name
specifies a name 1 to 8 characters long for the window. This name is displayed in the
upper-left border of the window.

CLOSE=window-name
closes the window.

window-options
control the size, position, and other attributes of the window. The attributes can
also be changed interactively with window commands such as WGROW, WDEF,
WSHRINK, and COLOR. A description of the window options follows.

GROUP=group-name
starts a repeating sequence of groups of fields defined for the window. Thegroup-
namespecification is a name 1 to 8 characters long used to identify a group of fields
in a laterDISPLAY statement.

field-specs
are a sequence of field specifications made up of positionals, field operands, formats,
and options. These are described in the next section.

The following window options can be specified in the WINDOW statement:

CMNDLINE=name
specifies the name of a variable in which the command line entered by the user will
be stored.

COLOR=operand
specifies the background color for the window. Theoperandis either a quoted char-
acter literal, a name, or an operand. The valid values are "WHITE", "BLACK",
"GREEN", "MAGENTA", "RED", "YELLOW", "CYAN", "GRAY", and "BLUE".
The default value is BLACK.

COLUMNS=operand
specifies the starting number of columns for the window. Theoperandis either a
literal number, a variable name, or an expression in parentheses. The default value is
78 columns.

988 � Chapter 20. Language Reference

ICOLUMN=operand
specifies the initial starting column position of the window on the display. The
operandis either a literal number or a variable name. The default value is column 1.

IROW=operand
specifies the initial starting row position of the window on the display. Theoperand
is either a literal number or a variable name. The default value is row 1.

MSGLINE=operand
specifies the message to be displayed on the standard message line when the window
is made active. Theoperandis almost always the name of a variable, but a character
literal can be used.

ROWS=operand
determines the starting number of rows of the window. Theoperandis either a literal
number, the name of a variable containing the number, or an expression in parentheses
yielding the number. The default value is 23 rows.

Both the WINDOW andDISPLAY statementsallow field specifications, which have
the general form:

<positionals> field-operand <format> <field-options>

In the preceding statement,

positionals are directives determining the position on the screen to begin the
field. There are four kinds of positionals; any number of positionals
are allowed for each field operand.

operand specifies the row position; that is, it moves the current position to
column 1 of the specified line. Theoperandis either a number, a
name, or an expression in parentheses.

/ specifies that the current position move to column 1 of the next
row.

@ operand specifies the column position. Theoperandis either a number, a
name, or an expression in parentheses. The @ directive should
come after the # position if # is specified.

+ operand specifies a skip of columns. Theoperandis either a number, a
name, or an expression in parentheses.

field-operand is a character literal in quotes or the name of a variable that speci-
fies what is to go in the field.

format is the format used for display, the value, and the informat applied to
entered values. If no format is specified, then the standard numeric
or character format is used.

field-options specify the attributes of the field as follows:

PROTECT=YES
P=YES

specifies that the field is protected; that is, you cannot enter values
in the field. If the field operand is a literal, it is already protected.

XSECT Function � 989

COLOR=operand
specifies the color of the field. Theoperandis a literal charac-
ter value in quotes, a variable name, or an expression in parenthe-
ses. The colors available are "WHITE", "BLACK", "GREEN",
"MAGENTA", "RED", "YELLOW", "CYAN", "GRAY", and
"BLUE". Note that the color specification is different from that of
the corresponding DATA step value because it is an operand rather
than a name without quotes. The default value is "BLUE".

XMULT Function

performs accurate matrix multiplication

XMULT(matrix1, matrix2)

wherematrix1andmatrix2are numeric matrices.

The XMULT function computes the matrix product like the matrix multiplication
operator (*) except XMULT uses extended precision to accumulate sums of products.
You should use the XMULT function only when you need great accuracy.

The following program gives an example of using the XMULT function:

a=1e13;
b=1e13;
c=100*a;
a=a+1;
x=c || a || b || c;
y=c || a || (-b) || (-c);

z=xmult(x,y‘); /* correct answer */
print z [format=16.0];

wrong = x * y‘; /* loss of precision */
print wrong [format=16.0];

Z

20000000000001

WRONG

19997367730176

XSECT Function

intersects sets

990 � Chapter 20. Language Reference

XSECT(matrix1<, matrix2,. . ., matrix15>)

wherematrix is a numeric or character matrix or quoted literal.

The XSECT function returns as a row vector the sorted set (without duplicates) of
the element values that are present in all of its arguments. This set is the intersection
of the sets of values in its argument matrices. When the intersection is empty, the
XSECT function returns a null matrix (zero rows and zero columns). There can be up
to 15 arguments, which must all be either character or numeric. For characters, the
element length of the result is the same as the shortest of the element lengths of the
arguments. For comparison purposes, shorter elements are padded on the right with
blanks.

For example, the statements

a={1 2 4 5};
b={3 4};
c=xsect(a,b);

return the result shown:

C 1 row 1 col (numeric)

4

YIELD Function

calculates yield-to-maturity of a cash-flow stream and returns a scalar

YIELD(times,flows,freq,value)

The YIELD function returns a scalar containing yield-to-maturity of a cash-flow
stream based on frequency and value specified.

times is ann-dimensional column vector of times. Elements should be non-
negative.

flows is ann-dimensional column vector of cash-flows.

freq is a scalar that represents the base of the rates to be used for discount-
ing the cash-flows. If positive, it represents discrete compounding as
the reciprocal of the number of compoundings. If zero, it represents
continuous compounding. No negative values are allowed.

value is a scalar that is the discounted present value of the cash-flows.

The present value relationship can be written as

P =
K∑

k=1

c(k)D(tk)

Base SAS Functions Accessible from SAS/IML � 991

whereP is the present value of the asset,{c(k)}k = 1, ..K is the sequence of
cash-flows from the asset,tk is the time to thek-th cash-flow in periods from the
present, andD(t) is the discount function for timet.

With continuous compounding:

D(t) = e−yt

With discrete compounding:

D(t) = (1 + fy)−t/f

wheref > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period, andy is the yield-to-maturity. The YIELD function solves fory.

For example, the following code

timesn=T(do(1,100,1));
flows=repeat(10,100);
freq=50;
value=682.31027;
yield=yield(timesn,flows,freq,value);
print yield;

produces the following output:

YIELD
0.0100001

Base SAS Functions Accessible from SAS/IML

The following base SAS functions are either not available from IML, or behave dif-
ferently from the base function of the same name.

Function Comment
CALL CATS return variable must be preinitialized
MAD conflicts with built-in function of the same name
MEDIAN conflicts with IMLMLIB function of the same name
MOD base function performs “fuzzing”; IML does not
CALL PRXNEXT return variables must be preinitialized
CALL PRXPOSN return variables must be preinitialized
CALL PRXSUBSTR return variables must be preinitialized
CALL RXCHANGE return variables must be preinitialized
CALL RXMATCH return variables must be preinitialized
CALL RXSUBSTR return variables must be preinitialized
CALL SCAN return variables must be preinitialized
CALL SCANQ return variable must be preinitialized
VVALUE not applicable: interrogates DATA step variables
VVALUEX not applicable: interrogates DATA step variables
VNEXT not applicable: interrogates DATA step variables

992 � Chapter 20. Language Reference

There are some base functions that are not supported by SAS/IML. For example, the
DATA step permits N-literals (strings that end with ’N’) to be interpreted as the name
of a variable, but IML does not.

The following base SAS functions can be called from SAS/IML. The functions are
documented in theSAS Language Reference: Dictionary. In some cases, SAS/IML
may not accept all variations in the syntax. For example, SAS/IML does not accept
the OF keyword as a way to generate an argument list in the RANGE function.

The functions displayed in italics are documented elsewhere in this user’s guide.
These functions operate on matrices as well as on scalar values, as do many of the
mathematical and statistical functions.

Bitwise Logical Operation Functions

BAND returns the bitwise logical AND of two arguments
BLSHIFT performs a bitwise logical left shift of an argument by a specified

amount
BNOT returns the bitwise logical NOT of an argument
BOR returns the bitwise logical OR of two arguments
BRSHIFT performs a bitwise logical right shift of an argument by a specified

amount
BXOR returns the bitwise logical EXCLUSIVE OR of two arguments

Character and Formatting Functions

ANYALNUM searches a character string for an alphanumeric character and re-
turns the first position at which it is found

ANYALPHA searches a character string for an alphabetic character and returns
the first position at which it is found

ANYCNTRL searches a character string for a control character and returns the
first position at which it is found

ANYDIGIT searches a character string for a digit and returns the first position
at which it is found

ANYFIRST searches a character string for a character that is valid as the first
character in a SAS variable name under VALIDVARNAME=V7,
and returns the first position at which that character is found

ANYGRAPH searches a character string for a graphical character and returns the
first position at which it is found

ANYLOWER searches a character string for a lowercase letter and returns the
first position at which it is found

ANYNAME searches a character string for a character that is valid in a SAS
variable name under VALIDVARNAME=V7, and returns the first
position at which that character is found

ANYPRINT searches a character string for a printable character and returns the
first position at which it is found

Character and Formatting Functions � 993

ANYPUNCT searches a character string for a punctuation character and returns
the first position at which it is found

ANYSPACE searches a character string for a white-space character (blank, hor-
izontal and vertical tab, carriage return, line feed, form feed) and
returns the first position at which it is found

ANYUPPER searches a character string for an uppercase letter and returns the
first position at which it is found

ANYXDIGIT searches a character string for a hexidecimal character that repre-
sents a digit and returns the first position at which that character is
found

BYTE returns one character in the ASCII or EBCDIC collating sequence
CAT concatenates character strings without removing leading or trailing

blanks
CATS concatenates character strings and removes leading and trailing

blanks
CALL CATS concatenates character strings and removes leading and trailing

blanks
CATT concatenates character strings and removes trailing blanks
CALL CATT concatenates character strings and removes trailing blanks
CATX concatenates character strings, removes leading and trailing

blanks, and inserts separators
CALL CATX concatenates character strings, removes leading and trailing

blanks, and inserts separators.
COLLATE returns an ASCII or EBCDIC collating sequence character string
COMPARE returns the position of the left-most character by which two strings

differ, or returns 0 if there is no difference
COMPBL removes multiple blanks from a character string
CALL COMPCOST sets the costs of operations for later use by the COMPGED func-

tion
COMPGED compares two strings by computing the generalized edit distance
COMPLEV compares two strings by computing the Levenshtein edit distance
COMPRESS removes specific characters from a character string
COUNT counts the number of times that a specific substring of characters

appears within a character string that you specify
COUNTC counts the number of specific characters that either appear or do

not appear within a character string that you specify
FIND searches for a specific substring of characters within a character

string that you specify
FINDC searches for specific characters that either appear or do not appear

within a character string that you specify
INDEX searches a character expression for a string of characters
INDEXC searches a character expression for specific characters
INDEXW searches a character expression for a specified string as a word
INPUTC applies a character informat at run time
INPUTN applies a numeric informat at run time
LEFT left aligns a character expression
LENGTH returns the length of a character string
LENGTHC returns the length of a character string, including trailing blanks

994 � Chapter 20. Language Reference

LENGTHM returns the amount of memory (in bytes) that is allocated for a
character string

LENGTHN returns the length of a nonblank character string, excluding trailing
blanks, and returns 0 for a blank character string

LOWCASE converts all letters in an argument to lowercase
NLITERAL converts a character string that you specify to a SAS name literal

(N-literal)
NOTALNUM searches a character string for a nonalphanumeric character and

returns the first position at which it is found
NOTALPHA searches a character string for a nonalphabetic character and re-

turns the first position at which it is found
NOTCNTRL searches a character string for a character that is not a control char-

acter and returns the first position at which it is found
NOTDIGIT searches a character string for any character that is not a digit and

returns the first position at which that character is found
NOTFIRST searches a character string for an invalid first character in a SAS

variable name under VALIDVARNAME=V7, and returns the first
position at which that character is found

NOTGRAPH searches a character string for a nongraphical character and returns
the first position at which it is found

NOTLOWER searches a character string for a character that is not a lowercase
letter and returns the first position at which that character is found

NOTNAME searches a character string for an invalid character in a SAS vari-
able name under VALIDVARNAME=V7, and returns the first po-
sition at which that character is found

NOTPRINT searches a character string for a nonprintable character and returns
the first position at which it is found

NOTPUNCT searches a character string for a character that is not a punctuation
character and returns the first position at which it is found

NOTSPACE searches a character string for a character that is not a white-space
character (blank, horizontal and vertical tab, carriage return, line
feed, form feed) and returns the first position at which it is found

NOTUPPER searches a character string for a character that is not an uppercase
letter and returns the first position at which that character is found

NOTXDIGIT searches a character string for a character that is not a hexidecimal
digit and returns the first position at which that character is found

NVALID checks a character string for validity for use as a SAS variable
name in a SAS statement

PUTC applies a character format at run time
PUTN applies a numeric format at run time
REPEAT repeats a character expression
REVERSE reverses a character expression
RIGHT right aligns a character expression
SCAN selects a given word from a character expression
CALL SCAN returns the position and length of a given word from a character

expression
SCANQ returns thenth word from a character expression, ignoring delim-

iters that are inside quotation marks

Character String Matching Functions and Subroutines � 995

CALL SCANQ returns the position and length of a given word from a character
expression, and ignores delimiters that are inside quotation marks

ROUNDEX encodes a string to facilitate searching
SPEDIS determines the likelihood of two words matching, expressed as the

asymmetric spelling distance between the two words
STRIP returns a character string with all leading and trailing blanks re-

moved
SUBPAD returns a substring that has a length you specify, using blank

padding if necessary
SUBSTRN returns a substring, allowing a result with a length of zero
SUBSTR extracts substrings of character expressions
TRANSLATE replaces specific characters in a character expression
TRANWRD replaces or removes all occurrences of a word in a character string
TRIM removes trailing blanks from character expressions and returns one

blank if the expression is missing
TRIMN removes trailing blanks from character expressions and returns a

null string (zero blanks) if the expression is missing
UPCASE converts all letters in an argument to uppercase
VERIFY returns the position of the first character that is unique to an

expression

Character String Matching Functions and Subroutines

CALL RXCHANGE changes one or more substrings that match a pattern
CALL RXFREE frees memory allocated by other regular expression (RX) functions

and CALL routines
RXMATCH finds the beginning of a substring that matches a pattern
RXPARSE parses a pattern
CALL RXSUBSTR finds the position, length, and score of a substring that matches a

pattern
CALL PRXCHANGE performs a pattern matching substitution
CALL PRXDEBUG enables Perl regular expressions in a DATA step to send debug

output to the SAS log
CALL PRXFREE frees unneeded memory that was allocated for a Perl regular ex-

pression
PRXMATCH searches for a pattern match and returns the position at which the

pattern is found
CALL PRXNEXT returns the position and length of a substring that matches a pattern

and iterates over multiple matches within one string
PRXPAREN returns the last bracket match for which there is a match in a pattern
PRXPARSE compiles a Perl regular expression that can be used for pattern

matching of a character value
CALL PRXPOSN returns the start position and length for a capture buffer
CALL PRXSUBSTR returns the position and length of a substring that matches a pattern

996 � Chapter 20. Language Reference

Date and Time Functions

DATDIF returns the number of days between two dates
DATE returns the current date as a SAS date value
DATEJUL converts a Julian date to a SAS date value
DATEPART extracts the date from a SAS datetime value
DATETIME returns the current date and time of day as a SAS datetime value
DAY returns the day of the month from a SAS date value
DHMS returns a SAS datetime value from date, hour, minute, and seconds
HMS returns a SAS time value from hour, minute, and seconds
HOUR returns the hour from a SAS time or datetime value
INTCK returns the integer number of time intervals in a given time span
INTNX advances a date, time, or datetime value by a given interval, and

returns a date, time, or datetime value
JULDATE returns the Julian date from a SAS date value
JULDATE7 returns a seven-digit Julian date from a SAS date value
MDY returns a SAS date value from month, day, and year values
MINUTE returns the minute from a SAS time or datetime value
MONTH returns the month from a SAS date value
QTR returns the quarter of the year from a SAS date value
SECOND returns the second from a SAS time or datetime value
TIME returns the current time of day
TIMEPART extracts a time value from a SAS datetime value
TODAY returns the current date as a SAS date value
WEEKDAY returns the day of the week from a SAS date value
YEAR returns the year from a SAS date value
YRDIF returns the difference in years between two dates
YYQ returns a SAS date value from the year and quarter

Descriptive Statistics Functions and Subroutines

CSS returns the corrected sum of squares
CV returns the coefficient of variation
IQR returns the interquartile range
KURTOSIS returns the kurtosis
LARGEST returns thekth largest nonmissing value
MAX returns the largest value
MAD returns the median absolute deviation from the median
MEDIAN computes median values
MEAN returns the arithmetic mean (average)
MIN returns the smallest value
N returns the number of nonmissing values
NMISS returns the number of missing values
ORDINAL returns any specified order statistic
PCTL computes percentiles
RANGE returns the range of values
SKEWNESS returns the skewness

External Files Functions � 997

SMALLEST returns thekth smallest nonmissing value
SUM returns the sum of the nonmissing arguments
STD returns the standard deviation
CALL STDIZE standardizes the values of one or more variables
STDERR returns the standard error of the mean
USS returns the uncorrected sum of squares
VAR returns the variance

Double-byte Character String Functions

Many of the base SAS character functions have analogous companion functions that
take double-byte character strings (DBCS) as arguments. These functions (for exam-
ple, KCOMPARE, KCVT, KINDEX, and KSUBSTR) are accessible from SAS/IML.
See theSAS Language Reference: Dictionaryfor a complete list of DBCS functions.

External Files Functions

DROPNOTE deletes a note marker from a SAS data set or an external file and
returns a value

FAPPEND appends the current record to the end of an external file and returns
a value

FCLOSE closes an external file, directory, or directory member, and returns
a value

FCOL returns the current column position in the File Data Buffer (FDB)
FDELETE deletes an external file or an empty directory
FEXIST verifies the existence of an external file associated with a fileref

and returns a value
FGET copies data from the File Data Buffer (FDB) into a variable and

returns a value
FILEEXIST verifies the existence of an external file by its physical name and

returns a value
FILENAME assigns or deassigns a fileref for an external file, directory, or out-

put device and returns a value
FILEREF verifies that a fileref has been assigned for the current SAS session

and returns a value
FINFO returns the value of a file information item
FNOTE identifies the last record that was read and returns a value that

FPOINT can use
FOPEN opens an external file and returns a file identifier value
FOPTNAME returns the name of an item of information about a file
FOPTNUM returns the number of information items that are available for an

external file
FPOINT positions the read pointer on the next record to be read and returns

a value
FPOS sets the position of the column pointer in the File Data Buffer

(FDB) and returns a value
FPUT moves data to the File Data Buffer (FDB) of an external file, start-

ing at the FDB’s current column position, and returns a value

998 � Chapter 20. Language Reference

FREAD reads a record from an external file into the File Data Buffer (FDB)
and returns a value

FREWIND positions the file pointer to the start of the file and returns a value
FRLEN returns the size of the last record read, or, if the file is opened for

output, returns the current record size
FSEP sets the token delimiters for the FGET function and returns a value
FWRITE writes a record to an external file and returns a value
MOPEN opens a file by directory identifier and member name, and returns

the file identifier or a 0
PATHNAME returns the physical name of a SAS data library or of an external

file, or returns a blank
SYSMSG returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC returns a system error number

File I/O Functions

ATTRC returns the value of a character attribute for a SAS data set
ATTRN returns the value of a numeric attribute for the specified SAS data

set
CEXIST verifies the existence of a SAS catalog or SAS catalog entry and

returns a value
CLOSE closes a SAS data set and returns a value
CUROBS returns the observation number of the current observation
DROPNOTE deletes a note marker from a SAS data set or an external file and

returns a value
DSNAME returns the SAS data set name that is associated with a data set

identifier
EXIST verifies the existence of a SAS data library member
FETCH reads the next nondeleted observation from a SAS data set into the

Data Set Data Vector (DDV) and returns a value
FETCHOBS reads a specified observation from a SAS data set into the Data Set

Data Vector (DDV) and returns a value
GETVARC returns the value of a SAS data set character variable
GETVARN returns the value of a SAS data set numeric variable
LIBNAME assigns or deassigns a libref for a SAS data library and returns a

value
LIBREF verifies that a libref has been assigned and returns a value
NOTE returns an observation ID for the current observation of a SAS data

set
OPEN opens a SAS data set and returns a value
PATHNAME returns the physical name of a SAS data library or of an external

file, or returns a blank
POINT locates an observation identified by the NOTE function and returns

a value
REWIND positions the data set pointer at the beginning of a SAS data set

and returns a value

Macro Functions and Subroutines � 999

SYSMSG returns the text of error messages or warning messages from the
last data set or external file function execution

SYSRC returns a system error number
VARFMT returns the format assigned to a SAS data set variable
VARINFMT returns the informat assigned to a SAS data set variable
VARLABEL returns the label assigned to a SAS data set variable
VARLEN returns the length of a SAS data set variable
VARNAME returns the name of a SAS data set variable
VARNUM returns the number of a variable’s position in a SAS data set
VARTYPE returns the data type of a SAS data set variable

Financial Functions

COMPOUND returns compound interest parameters
CONVX returns the convexity for an enumerated cashflow
CONVXP returns the convexity for a periodic cashflow stream
DACCDB returns the accumulated declining balance depreciation
DACCDBSL returns the accumulated declining balance with conversion to a

straight-line depreciation
DACCSL returns the accumulated straight-line depreciation
DACCSYD returns the accumulated sum-of-years-digits depreciation
DACCTAB returns the accumulated depreciation from specified tables
DEPDB returns the declining balance depreciation
DEPDBSL returns the declining balance with conversion to a straight-line

depreciation
DEPSL returns the straight-line depreciation
DEPSYD returns the sum-of-years-digits depreciation
DEPTAB returns the depreciation from specified tables
DUR returns the modified duration for an enumerated cashflow
INTRR returns the internal rate of return as a decimal
IRR returns the internal rate of return as a percentage
MORT returns amortization parameters
NETPV returns the net present value as a decimal
NPV returns the net present value as a percentage
PVP returns the present value for a periodic cashflow stream
SAVING returns the future value of a periodic saving
YIELDP returns the yield-to-maturity for a periodic cashflow stream

Macro Functions and Subroutines

CALL RESOLVE resolves the value of a text expression at execution time
CALL SYMGET returns the character value of a macro variable
CALL SYMGETN returns the numeric value of a macro variable
CALL SYMPUT sets the character value of a macro variable
CALL SYMPUTN sets the numeric value of a macro variable
CALL SYMPUTX assigns a value to a macro variable and removes both leading and

trailing blanks

1000 � Chapter 20. Language Reference

Mathematical Functions and Subroutines

CALL ALLPERM generates all permutations of the values of several variables.
ABS returns the absolute value
AIRY returns the Airy function
BETA returns the value of the beta function.
CNONCT returns the noncentrality parameter from a chi-squared distribution
COMB returns the number of combinations ofn items takenr at a time
CONSTANT returns some machine and mathematical constants
DAIRY returns the derivative of the Airy function
DEVIANCE returns the deviance from a specified distribution
DIGAMMA returns the DIGAMMA function
ERF returns the normal error function
ERFC returns the complementary normal error function
EXP returns the exponential function
FACT returns the factorial of an integer
FNONCT returns the noncentrality parameter of an F distribution
GAMMA returns the gamma function
IBESSEL returns a modified Bessel function
JBESSEL returns a Bessel function
LOGBETA returns the logarithm of the beta function.
LGAMMA returns the natural logarithm of the gamma function
LOG returns the natural (basee) logarithm
LOG2 returns the logarithm base 2
LOG10 returns the logarithm base 10
MOD returns the remainder value
CALL RANPERK randomly permutes the values of the arguments, and returns a per-

mutation ofk out ofn values
CALL RANPERM randomly permutes the values of the arguments
PERM returns the number of permutations ofn items takenr at a time
SIGN returns the sign of a value
SQRT returns the square root of a value
TNONCT returns the value of the noncentrality parameter from the

student’st distribution
TRIGAMMA returns the value of the TRIGAMMA function

Probability Functions

CDF computes cumulative distribution functions
LOGPDF computes the logarithm of a probability function
LOGSDF computes the logarithm of a survival function
PDF computes probability density functions
POISSON returns the probability from a Poisson distribution
PROBBETA returns the probability from a beta distribution
PROBBNML returns the probability from a binomial distribution
PROBBNRM returns the probability from the bivariate normal distribution
PROBCHI returns the probability from a chi-squared distribution

State and ZIP Code Functions � 1001

PROBF returns the probability from an F distribution
PROBGAM returns the probability from a gamma distribution
PROBHYPR returns the probability from a hypergeometric distribution
PROBMC returns a probability or a quantile from various distributions for

multiple comparisons of means
PROBNEGB returns the probability from a negative binomial distribution
PROBNORM returns the probability from the standard normal distribution
PROBT returns the probability from at distribution
SDF computes a survival function

Quantile Functions

BETAINV returns a quantile from the beta distribution
CINV returns a quantile from the chi-squared distribution
FINV returns a quantile from the F distribution
GAMINV returns a quantile from the gamma distribution
PROBIT returns a quantile from the standard normal distribution
TINV returns a quantile from thet distribution

Random Number Functions and Subroutines

NORMAL returns a random variate from a normal distribution
RANBIN returns a random variate from a binomial distribution
RANCAU returns a random variate from a Cauchy distribution
RAND returns a random variate from a specified distribution
RANEXP returns a random variate from an exponential distribution
RANGAM returns a random variate from a gamma distribution
RANNOR returns a random variate from a normal distribution
RANPOI returns a random variate from a Poisson distribution
RANTBL returns a random variate from a tabled probability
RANTRI returns a random variate from a triangular distribution
RANUNI returns a random variate from a uniform distribution
CALL STREAMINIT specifies a seed value to use for subsequent random number gen-

eration by the RAND function.
UNIFORM returns a random variate from a uniform distribution

State and ZIP Code Functions

FIPNAME converts FIPS codes to uppercase state names
FIPNAMEL converts FIPS codes to mixed-case state names
FIPSTATE converts FIPS codes to two-character postal codes
STFIPS converts state postal codes to FIPS state codes
STNAME converts state postal codes to uppercase state names
STNAMEL converts state postal codes to mixed-case state names
ZIPFIPS converts ZIP codes to FIPS state codes
ZIPNAME converts ZIP codes to uppercase state names

1002 � Chapter 20. Language Reference

ZIPNAMEL converts ZIP codes to mixed-case state names
ZIPSTATE converts ZIP codes to state postal codes

Trigonometric and Hyperbolic Functions

ARCOS returns the arccosine
ARSIN returns the arcsine
ATAN returns the arctangent
COS returns the cosine
COSH returns the hyperbolic cosine
SIN returns the sine
SINH returns the hyperbolic sine
TAN returns the tangent
TANH returns the hyperbolic tangent

Truncation Functions

CEIL returns the smallest integer≥ the argument
CEILZ returns the smallest integer that is greater than or equal to the ar-

gument, using zero fuzzing
FLOOR returns the largest integer≤ the argument
FLOORZ returns the largest integer that is less than or equal to the argument,

using zero fuzzing
FUZZ returns the nearest integer if the argument is within 1E-12
INT returns the integer portion of a value
INTZ returns the integer portion of the argument, using zero fuzzing
MODZ returns the remainder from the division of the first argument by the

second argument, using zero fuzzing
ROUND rounds a value to the nearest round-off unit
ROUNDE rounds the first argument to the nearest multiple of the second ar-

gument, and returns an even multiple when the first argument is
halfway between the two nearest multiples

ROUNDZ rounds the first argument to the nearest multiple of the second ar-
gument, with zero fuzzing

TRUNC returns a truncated numeric value of a specified length

Web Tools

HTMLDECODE decodes a string containing HTML numeric character refer-
ences or HTML character entity references and returns the de-
coded string

HTMLENCODE encodes characters using HTML character entity references
and returns the encoded string

URLDECODE returns a string that was decoded using the URL escape syntax
URLENCODE returns a string that was encoded using the URL escape syntax

References � 1003

References
Abramowitz, M. and Stegun, I.A. (1972),Handbook of Mathematical Functions,

New York: Dover Publications, Inc.

Aiken, R.C. (1985),Stiff Computation, New York: Oxford University Press, Inc.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least
Squares,”Journal of the Operations Research Society, 36, 405–421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least
Squares,”Journal of Optimization Theory Application, 48, 359–377.

Ansley, C. (1979), “An Algorithm for the Exact Likelihood of a Mixed
Autoregressive-Moving Average Process,”Biometrika, 66, 59–65.

Ansley, C.F. (1980), “Computation of the Theoretical Autocovariance Function for a
Vector ARMA Process,”Journal of Statistical Computation and Simulation, 12,
15–24.

Ansley, C.F. and Kohn, R. (1986), “A Note on Reparameterizing a Vector
Autoregressive Moving Average Model to Enforce Stationary,”Journal of
Statistical Computation and Simulation, 24, 99–106.

Barnett, V. and Lewis, T. (1978),Outliers in Statistical Data, New York: John Wiley
& Sons, Inc.

Barrodale, I. and Roberts, F.D.K. (1974), “Algorithm 478: Solution of an
Overdetermined System of Equations in theL1-Norm,” Communications ACM,
17, 319–320.

Bates, D., Lindstrom, M., Wahba, G. and Yandell, B. (1987), “GCVPACK-Routines
for Generalized Cross Validation,”Communications in Statistics: Simulation and
Computation, 16, 263–297.

Beale, E.M.L. (1972), “A Derivation of Conjugate Gradients,” inNumerical Methods
for Nonlinear Optimization, ed. F. A. Lootsma (ed.), London: Academic Press.

Bickart, T.A. and Picel, Z. (1973), “High Order Stiffly Stable Composit Multistep
Methods for Numerical Integration of Stiff Differential Equations,” inBIT, 13,
272–286.

Bishop, Y.M., Fienberg, S.E., and Holland, P.W. (1975),Discrete Multivariate
Analysis: Theory and Practice, Cambridge, MA: MIT Press.

Box, G.E.P. and Jenkins, G.M. (1976),Time Series Analysis: Forecasting and
Control, Oakland, CA: Holden-Day.

Brockwell, P.J. and Davis, R.A. (1991),Time Series: Theory and Methods, Second
Edition, New York: Springer-Verlag.

Brownlee, K.A. (1965), Statistical Theory and Methodology in Science and
Engineering, New York: John Wiley & Sons, Inc.

Charnes, A., Frome, E.L., and Yu, P.L. (1976), “The Equivalence of Generalized
Least Squares and Maximum Likelihood Estimation in the Exponential Family,”
Journal of the American Statistical Association, 71, 169–172.

1004 � Chapter 20. Language Reference

Christensen, Ronald (1997).Log-Linear Models and Logistic Regression, 2nd ed.,
New York: Springer-Verlag.

Cox, D.R. and Hinkley, D.V. (1974),Theoretical Statistics, London: Chapman and
Hall.

Daubechies, I. (1992),Ten Lectures on Wavelets,Volume 61, CBMS-NSF Regional
Conference Series in Applied Mathematics, Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Davies, L. (1992), “The Asymptotics of Rousseeuw’s Minimum Volume Ellipsoid
Estimator,”The Annals of Statistics, 20, 1828–1843.

De Jong, P. (1991), “Stable Algorithms for the State Space Model,”Journal of Time
Series Analysis, 12, 143–157.

Dennis, J.E., Gay, D.M., and Welsch, R.E. (1981), “An Adaptive Nonlinear Least-
Squares Algorithm,”ACM Transactions on Mathematical Software, 7, 348–368.

Dennis, J.E. and Mei, H.H.W. (1979), “Two New Unconstrained Optimization
Algorithms which Use Function and Gradient Values,”Journal of Optimization
Theory Applications, 28, 453–482.

Donelson, J. and Hansen, E. (1971), “Cyclic Composite Predictor-Corrector
Methods,”SIAM Journal on Numerical Analysis, 8, 137–157.

Donoho, D.L., and Johnstone, I.M. (1994), “Ideal Spatial Adaptation via Wavelet
Shrinkage,”Biometrika, 81, 425–455.

Donoho, D.L., and Johnstone, I.M. (1995), “Adapting to Unknown Smoothness
via Wavelet Shrinkage,”Journal of the American Statistical Association, 90,
1200–1224.

Duchon, J. (1976), “Fonctions-Spline et Esperances Conditionnelles de Champs
Guassiens,”Ann. Sci. Univ. Clermont Ferrand II Math, 14, 19–27.

Emerson, Phillip L. (1968), “Numerical construction of orthogonal polynomials from
a general recurrence formula,”Biometrics24, 695–701.

Eskow, E. and Schnabel, R.B. (1991), “Algorithm 695: Software for a New Modified
Cholesky Factorization,”ACM Transactions on Mathematical Software, 17,
306–312.

Fletcher, R. (1987),Practical Methods of Optimization, Second Edition, Chichester,
England: John Wiley & Sons, Ltd.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,”
Journal of Numerical Analysis, 7, 371–389.

Forsythe, G.E., Malcom, M.A., and Moler, C.B. (1967),Computer Solution of Linear
Algebraic Systems, Chapter 17, Englewood Cliffs, NJ: Prentice-Hall, Inc.

Furnival, G.M. and Wilson, R.W. (1974), “Regression by Leaps and Bounds,”
Technometrics, 16, 499–511.

Gaffney, P.W. (1984), “A Performanace Evaluation of Some FORTRAN Subroutines
for the Solution of Stiff Oscillatory Ordinary Differential Equations,”Association
for Computing Machinery, Transactions on Mathematical Software, 10, 58–72.

References � 1005

Gay, D.M. (1983), “Subroutines for Unconstrained Minimization,”ACM
Transactions on Mathematical Software, 9, 503–524.

Gentleman, W.M. and Sande, G. (1966), “Fast Fourier Transforms for Fun and
Profit,” AFIPS Proceedings of the Fall Joint Computer Conference, 19, 563–578.

George, J.A. and Liu, J.W. (1981),Computer Solutions of Large Sparse Positive
Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Gill, E.P., Murray, W., Saunders, M.A., and Wright, M.H. (1984), “Procedures
for Optimization Problems with a Mixture of Bounds and General Linear
Constraints,”ACM Transactions on Mathematical Software, 10, 282–298.

Golub, G.H. (1969), “Matrix Decompositions and Statistical Calculations” in
Statistical Computation, ed. R.C. Milton and J.A. Nelder, New York: Academic
Press.

Golub, G.H., and Van Loan, C.F. (1989),Matrix Computations, Second Edition,
Baltimore: Johns Hopkins University Press.

Gonin, R. and Money, A.H. (1989),NonlinearLp-norm Estimation, New York: M.
Dekker, Inc.

Goodnight, J.H. (1979) “A Tutorial on the SWEEP Operator,”The American
Statistician, 33, 149–158.

Graybill, F.A. (1969), Introduction to Matrices with Applications in Statistics,
Belmont, CA: Wadsworth, Inc.

Grizzle, J.E., Starmer, C.F., and Koch, G.G. (1969), “Analysis of Categorical Data
by Linear Models,”Biometrics, 25, 489–504.

Hadley, G. (1963),Linear Programming, Reading, MA: Addison-Wesley Publishing
Company, Inc.

Harvey, A.C. (1989),Forecasting, Structural Time Series Models and the Kalman
Filter, Cambridge: Cambridge University Press.

Jenkins, M.A. and Traub, J.F. (1970), “ A Three-Stage Algorithm for Real
Polynomials Using Quadratic Iteration,”SIAM Journal of Numerical Analysis,
7, 545–566.

Jenrich, R.I. and Moor,e R.H. (1975), “Maximum Likelihood Estimation by Means of
Nonlinear Least Squares,”American Statistical Association, 1975 Proceedings of
the Statistical Computing Section, 57–65.

Kaiser, H.F. and Caffrey, J. (1965), “Alpha Factor Analysis,”Psychometrika, 30,
1–14.

Kastenbaum, M.A. and Lamphiear, D.E. (1959), “Calculation of Chi-Square to Test
the No Three-Factor Interaction Hypothesis,”Biometrics, 15, 107–122.

Kohn, R. and Ansley, C.F. (1982), “A Note on Obtaining the Theoretical
Autocovariances of an ARMA Process,”Journal of Statistical Computation and
Simulation, 15, 273–283.

1006 � Chapter 20. Language Reference

Kruskal, J.B. (1964), “Nonmetric Multidimensional Scaling,”Psychometrika, 29, 1-
27, 115–129.

Nelder, J.A. and Wedderburn, R.W.M. (1972), “Generalized Linear Models,”Journal
of the Royal Statistical Society, A.3, 370.

Lee, W. and Gentle, J.E. (1986), “The LAV Procedure,”SUGI Supplememtal Library
User’s Guide, Cary, NC: SAS Institute, Chapter 21, 257–260.

Lindström, P. and Wedin, P.A. (1984), “A New Linesearch Algorithm for Nonlinear
Least-Squares Problems,”Mathematical Programming, 29, 268–296.

Madsen, K. and Nielsen, H.B. (1993), “A Finite Smoothing Algorithm for LinearL1

Estimation,”SIAM Journal on Optimization, 3, 223–235.

Mallat, S. (1989), “Multiresolution Approximation and Wavelets,”Transactions of
the American Mathematical Society, 315, 69–88.

McKean, J.W. and Schrader, R.M. (1987), “Least Absolute Errors Analysis of
Variance,”Statistical Data Analysis - Based onL1 Norm and Related Methods,
ed. Y. Dodge, Amsterdam: North Holland, 297–305.

McLeod, I. (1975), “Derivation of the Theoretical Autocovariance Function of
Autoregressive-Moving Average Time Series,”Applied Statistics, 24, 255–256.

Mittnik, S. (1990), “Computation of Theoretical Autocovariance Matrices of
Multivariate Autoregressive Moving Average Time Series,”Journal of Royal
Statistical Society, B, 52, 151–155.

Monro, D.M. and Branch, J.L. (1976), “Algorithm AS 117. The Chirp Discrete
Fourier Transform and General Length,”Applied Statistics, 26, 351–361.

Moré, J.J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Lecture Notes in Mathematics 630, ed. G.A. Watson, New York:
Springer-Verlag, 105–116.

Moré, J.J. and Sorensen, D.C. (1983), “Computing a Trust-Region Step,”SIAM
Journal on Scientific and Statistical Computing, 4, 553–572.

Nussbaumer, H.J. (1982),Fast Fourier Transform and Convolution Algorithms,
Second Edition, New York: Springer-Verlag.

Ogden, R.T. (1997),Essential Wavelets for Statistical Applications and Data
Analysis,Boston: Birkhäuser.

Pizer, S.M. (1975),Numerical Computing and Mathematical Analysis, Chicago, IL:
Science Research Associates, Inc.

Pocock, S.J. (1977), “Group Sequential Methods in the Design and Analysis of
Clinical Trials,” Biometrika, 64, 191–199.

Pocock, S.J. (1982), “Interim Analyses for Randomized Clinical Trials: The group
Sequential Approach,”Biometrics, 38, 153–162.

Powell, J.M.D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

References � 1007

Powell, J.M.D. (1978a), “A Fast Algorithm for Nonlinearly Constraint Optimization
Calculations,”Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics
630, ed. G.A. Watson, New York: Springer-Verlag, 144–175.

Powell, J.M.D. (1982b), “VMCWD: A Fortran Subroutine for Constrained
Optimization,”DAMTP 1982/NA4, Cambridge, England.

Ralston, A. and Rabinowitz, P. (1978),A First Course in Numerical Analysis, New
York: McGraw-Hill, Inc.

Rao, C.R. and Mitra, S.K. (1971),Generalized Inverse of Matrices and Its
Applications, New York: John Wiley & Sons, Inc.

Reinsch, Christian H. (1967), “Smoothing by Spline Functions,”Numerische
Mahematik, 10, 177–183.

Reinsel, G.C. (1997),Elements of Multivariate Time Series Analysis, Second Edition,
New York: Springer-Verlag.

Rice, S.O. (1973), “Efficient Evaluation of Integrals of Analytic Functions by the
Trapezoidal Rule,”Bell System Technical Journal, 52:5, 702–722.

Rousseeuw, P.J. (1984), “Least Median of Squares Regression,”Journal of the
American Statistical Association, 79, 871–880.

Rousseeuw, P.J. (1985), “Multivariate Estimation with High Breakdown Point,” in
Mathematical Statistics and Applications, ed. by W. Grossmann, G. Pflug, I.
Vincze, and W. Wertz, Dordrecht: Reidel Publishing Company, 283–297.

Rousseeuw, P.J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,”Journal of the American Statistical Association, 88, 1273–1283.

Rousseeuw, P.J. and Hubert, M. (1997), “Recent Developments in PROGRESS,”L1-
Statistical Procedures and Related Topics, ed. by Y. Dodge, IMS Lecture Notes
- Monograph Series, No. 31, 201–214.

Rousseeuw, P.J. and Leroy, A.M. (1987),Robust Regression and Outlier Detection,
New York: John Wiley & Sons, Inc.

Rousseeuw, P.J. and Van Driessen, K. (1998), “Computing LTS Regression for Large
Data Sets,” Technical Report, University of Antwerp, submitted.

Rousseeuw, P.J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum
Covariance Determinant Estimator,”Technometrics, 41, 212–223.

Rousseeuw, P.J. and Van Zomeren, B.C. (1990), “Unmasking Multivariate Outliers
and Leverage Points,”Journal of the American Statistical Association, 85,
633–639.

Schatzoff, M., Tsao, R., and Fienberg, S. (1968), “Efficient Calculation of All
Possible Regressions,” Technometrics, 4.

Shampine, L. (1978), “Stability Properties of Adams Codes,”Association for
Computing Machinery, Transactions on Mathematical Software, 4, 323–329.

Singleton, R.C. (1969), “An Algorithm for Computing the Mixed Radix Fast Fourier
Transform,”IEEE Transactions on Audio and Electoacoustics, AU-17, 93–103.

1008 � Chapter 20. Language Reference

Sikorsky, K. (1982), “Optimal Quadrature Algorithms inHP Spaces,”Numerische
Mathematik, 39, 405–410.

Sikorsky, K. and Stenger, F. (1984), “Optimal Quadratures inHP Spaces,”
Association for Computing Machinery, Transactions on Mathematical Software,
3, 140–151.

Squire, W. (1987), “Comparison of Gauss-Hermite and Midpoint Quadrature
with the Application of the Voigt Function,”Numerical Integration: Recent
Developments, eds. P. Keast and G. Fairweather, Boston: Reidel, 111–112.

Stenger, F. (1973a), “Integration Formulas Based on the Trapezoidal Formula,”
Jornal of the Institute of Mathematics and Its Applications, 12, 103–114.

Stenger, F. (1973b), “Remarks on Integration Formulas Based on the Trapezoidal
Formula,” Jornal of the Institute of Mathematics and Its Applications, 19,
145–147.

Stenger, F. (1978), “Optimal Convergence of minimum Norm Approximations in
HP ,” Numerische Mathematik, 29, 345–362.

Stoer, J. and Bulirsch, R. (1980),Introduction to Numerical Analysis, New York:
Springer-Verlag.

Thisted, Ronald A. (1988),Elements of Statistical Computing: Numerical
Computation, London: Chapman and Hall.

Wahba, G. (1990),Spline Models for Observational Data, Philadelphia: Society for
Industrial and Applied Mathematics.

Wang, S. and Tsiatis, A. (1987), “Approximately Optimal One Parameter Boundaries
for Group Sequential Trials,”Biometrics, 43, 193–199.

Wilkinson, J.H. and Reinsch, C., eds., (1971),Handbook for Automatic Computation:
Linear Algebra, Volume 2, New York: Springer-Verlag.

Woodfield, Terry J. (1988), “Simulating Stationary Gaussian ARMA Time Series,”
Computer Science and Statistics: Proceedings of the 20th Symposium on the
Interface, 612–617.

Young, F.W. (1981), “Quantitative Analysis of Qualitative Data,”Psychometrika, 46,
357–388.

Chapter 21
Module Library

Chapter Contents

OVERVIEW .1011
Contents of IMLMLIB .1011
IMLMLIB and the STORAGE library .1011
Accessing the IML Source Code. .1012
Order of Resolution. .1012
Error Diagnostics .1013

MODULES REFERENCE .1013
COLVEC Function .1013
CORR Function .1014
EXPMATRIX Function .1014
GBXWHSKR Call .1015
GPROBCNT Call .1015
GXYPLOT Call .1015
MEDIAN Function .1016
QUADREG Call .1016
QUARTILE Function .1017
REGRESS Call .1017
ROWVEC Function .1017
RSUBSTR Function. .1018
STANDARD Function. .1018
TABPRT Call .1019

1010 � Chapter 21. Module Library

Chapter 21
Module Library

Overview

IMLMLIB is a library of modules written in the IML language. These modules can
be used as though they were built-in functions of IML.

The library contains both functions and subroutines. You can invoke functions in
assignment statements or expressions. You can invoke subroutines using CALL or
RUN statements. IML automatically loads, resolves, and executes a module when
you use it.

Contents of IMLMLIB

The library contains the following modules. Many of them are derived from the
examples in the IML sample library. Each module is described in detail at the end of
this chapter.

COLVEC converts a matrix into a column vector

CORR computes correlation coefficients

EXPMATRIX computes the exponential of a matrix

GBXWHSKR draws box and whisker diagram

GPROBCNT draws probability contours forx-y data

GXYPLOT draws scatter plots ofx-y data

MEDIAN returns the median of numeric data

QUADREG performs quadratic regression

QUARTILE computes quartiles

REGRESS performs regression analysis

ROWVEC converts a matrix into a row vector

RSUBSTR replaces substrings

STANDARD standardizes numeric data

TABPRT prints matrices in tabular format

IMLMLIB and the STORAGE library

IML enables you to store and load matrices and modules in your own STORAGE
library (refer to the chapter on storage features inSAS/IML Software: Usage and
Reference, Version 6, First Edition). The IMLMLIB library is different from this

1012 � Chapter 21. Module Library

STORAGE library. IMLMLIB contains predefined modules that can be loaded only
by IML.

The STORAGE library, on the other hand, is under the control of the user. You
can store and load both matrices and modules. The STORE, LOAD, REMOVE, and
RESET STORAGE commands apply only to the STORAGE library. You cannot store
additional modules in IMLMLIB.

You can use the SHOW command to obtain information about the IMLMLIB and
STORAGE libraries.

• SHOW OPTIONS displays the current settings of both STORAGE and
IMLMLIB libraries and their open status.

• SHOW STORAGE displays the contents of the STORAGE library.

• SHOW IMLMLIB displays the contents of the IMLMLIB library.

• SHOW MODULES displays the names of the modules existing in the current
environment. These include modules loaded from the STORAGE library or the
IMLMLIB library and modules defined in the current session.

Accessing the IML Source Code

The IMLMLIB library is a catalog residing in the SASHELP directory. The catalog
contains one entry of type IMOD for each module. Each entry is a module stored in
its compiled form.

The IML source code defining the modules is available in the catalog SASHELP.IML.
There is an entry of type SOURCE for each module. You can view the source code
in the program editor window under DMS using the COPY command and specifying
the four-level name:

SASHELP.IML.modulename.SOURCE

The source code is generally followed by examples of its use.

The source code can be edited for customization or enhancements, and can be in-
cluded in other IML applications. The modules also illustrate a variety of IML fea-
tures that can be used to solve more complex problems.

Order of Resolution

SAS/IML resolves functions and subroutines in the following order:

• Functions

1. IML’s built-in functions

2. User-defined IML modules existing in the current environment

3. STORAGE library, if open

4. SAS DATA step functions

5. IMLMLIB library

COLVEC Function � 1013

• CALL Statement

1. IML’s built-in calls

2. User-defined IML modules existing in the current enviornment

3. STORAGE library, if open

4. SAS DATA step call

5. IMLMLIB library

• RUN Statement

1. User-defined IML modules existing in the current environment

2. STORAGE library, if open

3. IML’s built-in calls

4. SAS DATA step call

5. IMLMLIB library

Error Diagnostics

When an error occurs in any IML module, IML pauses in the module and prints
error diagnostics with a full traceback that can help in locating the problem. In the
case of loaded modules, however, the traceback includes line offsets instead of the
absolute SAS LOG line numbers. The offsets can be used to track the problem into
the actual source code that originally defined the module. The START statement at
the beginning of the module definition is always at offset=1.

Note that offsets apply only to loaded modules. For modules explicitly defined in any
given session, absolute line numbers are printed in the traceback.

Modules Reference

COLVEC Function

converts a matrix into a column vector

COLVEC(matrix)

wherematrix is anyn×m matrix.

The COLVEC function returns annm× 1 vector. It converts a matrix into a column
vector in row-major order. The returned vector has 1 column andnm rows. The first
n elements in the vector correspond to the first row of the input matrix, the nextn
elements correspond to the second row, and so on.

1014 � Chapter 21. Module Library

CORR Function

computes correlation coefficients

CORR(matrix)

wherematrix is anyn×m matrix,m is the number of variables, andn is the number
of data points.

The CORR function returns anm×mmatrix of correlation coefficients. It computes
the correlation between variables for any multivariate numeric data.

EXPMATRIX Function

computes the exponential of a matrix

EXPMATRIX(matrix)

wherematrix is anyn× n matrix.

Given a matrixA, the EXPMATRIX function returns ann×n matrix approximating
eA =

∑∞
k=0

Ak

k! . The function uses a Padé approximation algorithm as presented in
Golub and Van Loan (1989), p. 558.

Note that this module does not exponentiate each entry of a matrix; for that, use the
EXP function.

The following example demonstrates the EXPMATRIX function. For the matrix used

in the example,etA is the matrix

(
et tet

0 et

)
.

A = { 1 1, 0 1 };
t = 3;
X = ExpMatrix(t*A);
ExactAnswer = (exp(t) || t*exp(t)) //

(0 || exp(t));
print X, ExactAnswer;

The output from this code is

X

20.085537 60.256611
0 20.085537

EXACTANSWER

20.085537 60.256611
0 20.085537

GXYPLOT Call � 1015

GBXWHSKR Call

draws box and whisker diagrams

RUN GBXWHSKR(matrix);

wherematrix is anyn×m matrix.

The GBXWHSKR module draws a box-and-whisker plot for univariate numeric data
contained in the specifiedmatrix. The box outlines the quartile range, and the min-
imum, median, and maximum points are labeled on the plot. You cannot produce
graphics until you invoke the CALL GSTART statement. The plot created by the
GBXWHSKR module remains open for further additions until you specify the CALL
GCLOSE statement, which terminates the current graphics segment. The module
source code can be edited for changes, such as adding viewports, text, or colors.

GPROBCNT Call

draws probability contours

RUN GPROBCNT(x, y <, p >);

The inputs to the GPROBCNT subroutine are as follows:

x is anyn×m matrix ofx-values.

y is a correspondingn×m matrix ofy-values.

p is an optional probability value matrix.

The GPROBCNT module draws one contour curve corresponding to each value in the
matrixp, which must contain entries between zero and one. If you do not specify the
matrixp, contours for the probability values of 0.5, 0.8 and 0.9 are drawn. You cannot
produce graphics until you invoke the CALL GSTART statement. The contour plot
remains open for further additions until you specify the CALL GCLOSE statement,
which terminates the current graphics segment. Note that this module cannot be used
for general contour plots of three-dimensional data.

GXYPLOT Call

draws a scatter plot of anyx-y data

RUN GXYPLOT(x, y);

The inputs to the GXYPLOT subroutine are as follows:

x is anyn×m matrix ofx-values.

y is a correspondingn×m matrix ofy-values.

The GXYPLOT module draws a simple scatter plot of any numericx-y data. Axes
with labeled tickmarks are drawn as well. You cannot produce graphics until you
invoke the CALL GSTART statement. The plot remains open for further additions

1016 � Chapter 21. Module Library

(such as a title and axis labels) until you specify the CALL GCLOSE staement, which
terminates the current graphics segment. The module uses the GPOINT, GXAXIS,
and GYAXIS calls to plot the points. The module source code can be edited to specify
many of the options available for these calls.

MEDIAN Function

returns the median of numeric data

MEDIAN(matrix)

wherematrix is anyn×m matrix.

The MEDIAN function returns the median value for each column in thematrix. It
computes the median of univariate numeric data contained in the specifiedmatrix.
When the number of data points is odd, it returns the middle element from the sorted
order. When the number of data points is even, it returns the mean of the middle two
elements. Missing values are ignored. If all values in a column are missing, the return
value for that column is missing.

QUADREG Call

performs quadratic response surface regression

RUN QUADREG(xopt, yopt, type, parms, x, y);

The inputs to the GPROBCNT subroutine are as follows:

xopt is a returned value containingm× 1 critical factor values.

yopt is a returned value containing the critical response value.

type is a returned character string containing the solution type (maximum or
minimum).

parms is a returned value containing the parameter estimates for the quadratic
model.

x is ann ×m factor matrix, wherem is the number of factor variables
andn is the number of data points.

y is ann× 1 response vector.

The QUADREG module fits a regression model with a complete quadratic set of
regressions across several factors. The estimated model parameters are divided into
a vector of linear coefficients and a matrix of quadratic coefficients to obtain critical
factor values that optimize the response. It further determines the type of the optima
(maximum, minimum, or saddlepoint) by computing the eigenvalues of the estimated
parameters.

ROWVEC Function � 1017

QUARTILE Function

computes quartiles for any univariate numeric data

QUARTILE(matrix)

wherematrix is anyn×m matrix.

The QUARTILE function returns a5×1 column vector for each column in thematrix.
The column vector contains the minimum, lower quartile, median, upper quartile,
and maximum values for the numeric data in the specifiedmatrix. Missing values are
ignored. If all values in a column are missing, the return values for that column are
missing.

REGRESS Call

performs regression analysis

RUN REGRESS(x, y, name, <tval>, <l1>, <l2>, <l3>);

The inputs to the REGRESS subroutine are as follows:

x is ann×m numeric matrix, wherem is the number of variables andn
is the number of data points.

y is ann× 1 response vector.

name is anm× 1 matrix of variable names.

tval is an optionalt-value.

l1, l2, l3 are optional1 ×m vectors that specify linear combinations of coeffi-
cients for hypothesis testing.

The REGRESS module does regression analysis and prints results. The design matrix
is given byx, andy is the response vector. Thenamevector identifies each of the
variables. If you specify at-value, the module prints a table of observed and predicted
values, residuals, hat diagonal, and confidence limits for the mean and predicted val-
ues. If you also specify linear combinations withl1, l2, andl3, the module performs
the hypothesis testH : l′b = 0, whereb is the vector of parameter estimates.

ROWVEC Function

converts a matrix into a row vector

ROWVEC(matrix)

wherematrix is anyn×m matrix.

The ROWVEC function returns a1 × nm vector. The specifiedmatrix is converted
into a row vector in row-major order. The returned vector has 1 row andnm columns.
The firstn elements in the vector correpond to the first row of the input matrix, the
nextn elements correspond to the second row, and so on.

1018 � Chapter 21. Module Library

RSUBSTR Function

replaces substrings in each entry of a given matrix

RSUBSTR(x, p, l, r)

The inputs to the RSUBSTR subroutine are as follows:

x is anym× n character matrix.

p is anm× n matrix or a scalar that determines the starting positions for
substrings to be replaced.

l is anm× n matrix or a scalar that determines the lengths of substrings
to be replaced.

r is anm× n matrix or a scalar that specifies the replacement strings.

The RSUBSTR function returns anm×nmatrix with substrings replaced. It replaces
or substitutes substrings of the input matrix with new strings. Ifl is zero, the replace-
ment string inr is simply inserted into the input matrixx at the position indicated by
p.

For example, the following statements replace the first two characters of each entry
in the matrix X with the the corresponding entry in the matrix R:

proc iml;
x = {abc def ghi,jkl mno pqr};
r = {z y x, w v u};
p = 1;
l = 2;
c=rsubstr(x,p,l,r);
print x;
print c;

STANDARD Function

standardizes numeric data

STANDARD(matrix)

wherematrix is anyn×mmatrix,n is the number of data points andm is the number
of variables.

The STANDARD function returns a standardizedn×m matrix. It standardizes each
column of the input matrix, so that the mean of each column is zero and the standard
deviation for each column is one.

TABPRT Call � 1019

TABPRT Call

prints matrices in tabular format

RUN TABPRT(matrix);

wherematrix is anyn×m matrix.

The TABPRT module prints any numeric or character matrix in table format. The reg-
ular PRINT command output is often difficult to read, especially for large matrices,
where individual rows may wrap around. The module source code can be edited for
further cosmetic changes, such as alternative format or field width, or for assigning
specific row and column labels.

1020 � Chapter 21. Module Library

Subject Index

A
ABORT statement

exiting IML, 575
ABS statement

absolute value,575
ADDITION operator

adds corresponding matrix elements,560
ALL statement

checking for nonzero elements,575
ANY function

checking for nonzero elements,576
APPEND statement

SAS data sets,578
APPLY function,580
ARMACOV call

autocovariance sequence,581
ARMALIK call

log-likelihood and residuals,583
ARMASIM function

simulating univariate ARMA series,584

B
Basic time series analysis

autocovarince function of ARMA model,240
example,238
generating an ARMA process,240
log-likelihood function of ARMA model,240
overview,238

Bessel function
finding nonzero roots and derivatives of,716,

717
Biconjugate Gradient Algorithm,527, 532, 707
BLOCK function

forming block-diagonal matrices,586
Box-and-whisker plots,1015
BRANKS function

computing bivariate ranks,586
BTRAN function

computing the block transpose,587
BYTE function

translating numbers to ordinal characters,588

C
CALL statement

calling a subroutine or function,589
CHANGE call

replacing text in an array,590
CHAR function

character representation of a numeric matrix,
590

Character Functionality,552
CHOOSE function

choosing and changing elements,591
CLOSE statement

closing SAS data sets,592
CLOSEFILE statement

closing a file,593
COMPARISON operator

compare matrix elements,561
CONCAT function

performing elementwise string concatenation,
596

CONCATENATION operator, horizontal
concatenates matrices horizontally,562

CONCATENATION operator, vertical
concatenates matrices vertically,563

Conjugate Gradient Algorithm,527, 529, 710
CONTENTS function

obtaining the variables in SAS data sets,597
Control Statements,557
CONVEXIT function

calculating convexity of noncontingent
cash-flows,598

Correlation coefficient computation,1014
COVLAG function

computing autocovariance estimates,598
CREATE statement

creating new SAS data sets,599
CSHAPE function

reshaping and repeating character values,601
CUSUM function

calculating cumulative sums,603
CVEXHULL function

finding a convex hull,604

D
Dataset and File Functionality,557
DATASETS function

obtaining names of SAS data sets,604
DELETE call

deleting SAS data sets,605
DELETE statement

marking observations for deletion,606
DESIGN function

creating a design matrix,608
DESIGNF function

creating a full-rank design matrix,608

1022 � Subject Index

DET function
computing determinants of a square matrix,609

DIAG function
creating a diagonal matrix,610

DIRECT PRODUCT operator
takes the direct product of two matrices,565

DISPLAY statement
displaying fields in display windows,611

DIVISION operator
performs elementwise division,565

DO and END statements
grouping statements as a unit,612

DO DATA statement
repeating a loop until,614

DO function
producing an arithmetic series,611

DO statement
DATA clause,614
UNTIL clause,615
WHILE clause,615

DO statement, iterative
iteratively executing a DO group,613

DO UNTIL statement
conditionally executing statements iteratively,

615
DO WHILE statement

conditionally executing statements iteratively,
615

DURATION function
calculating modified duration of noncontingent

cash-flows,616

E
ECHELON function

reducing a matrix to row-echelon normal form,
617

EDIT statement
opening a SAS data set for editing,618

EIGEN call
computing eigenvalues and eigenvectors,620

Eigenvalue Decomposition
compared with ODE call,824

EIGVAL function
computing eigenvalues,625

EIGVEC function
computing right eigenvectors,625

ELEMENT MAXIMUM operator
selects the larger of two elements,566

ELEMENT MINIMUM operator
selects the smaller of two elements,566

END statement
ending a DO loop or DO statement,626

EXECUTE call
executing SAS statements immediately,626

EXP function
calculating the exponential,627

Exponential of a matrix,1014

F
FARMACOV call

generating an ARFIMA(p, d, q) process,627
FARMAFIT call

estimation of an ARFIMA(p, d, q) model,629
FARMALIK call

generating an ARFIMA(p, d, q) model,630
FARMASIM call

generating an ARFIMA(p, d, q) process,632
FDIF call

obtaining a fractionally differenced process,633
FFT function

performing the finite Fourier transform,634
FILE statement

opening or pointing to an external file,635
FIND statement

finding observations,636
FINISH statement

denoting the end of a module,638
Forward rates,638
Fractionally integrated time series analysis

ARFIMA modeling,315
autocovariance function,315
example,313
fractional differencing,315
generating a fractional time series,315
log-likelihood function,315
overview,312

FREE statement
freeing matrix storage space,639

G
GAEND call

ending a genetic algorithm optimization,639
GAGETMEM call

getting current members of the solution popula-
tion for a genetic algorithm optimization,
640

GAGETVAL call
getting current solution objective function values

for a genetic algorithm optimization,641
GAINIT call

creating an initial solution population for a ge-
netic algorithm optimization,641

GAREEVAL call
re-evaluting the objective function values for a

solution population of a genetic algorithm
optimization,642

GAREGEN call
regenerating a solution population by application

of selection and genetic operators,643
GASETCRO call

setting the crossover operator for a genetic algo-
rithm optimization,643

GASETMUT call
setting the mutation operator for a genetic algo-

rithm optimization,648
GASETOBJ call

Subject Index � 1023

setting the objective function for a genetic algo-
rithm optimization,650

GASETSEL call
setting the selection parameters for a genetic al-

gorithm optimization,651
GASETUP function

setting up a genetic algorithm optimization prob-
lem,652

GBLKVP call
defining a blanking viewport,653

GBLKVPD call
deleting the blanking viewport,655

GCLOSE call
closing the graphics segment,655

GDELETE call
deleting a graphics segment,655

GDRAW call
drawing a polyline,656

GDRAWL call
drawing individual lines,657

GENEIG call
generalized eigenproblems,657

Genetic Algorithm Functionality,559
GGRID call

drawing a grid,659
GINCLUDE call

including graphics segments,659
GINV function

computing generalized inverses,660
GOPEN call

opening graphics segments,662
GOTO statement

jumping to a new statement,663
GPIE call

drawing pie slices,663
GPIEXY call

converting coordinates,664
GPOINT call

ploting points,666
GPOLY call

drawing and filling a polygon,667
GPORT call

defining a viewport,668
GPORTPOP call

popping viewports,668
GPORTSTK call

stacking viewports,668
Graphics and Window Functions,558
GSCALE call

calculating round numbers for labeling axes,669
GSCRIPT call

writing multiple text strings,669
GSET call

setting attributes for graphics segments,671
GSHOW cal

showing a graph,672
GSORTH call

computing the Gram-Schmidt orthonormaliza-
tion, 672

GSTART call
initializing the graphics system,673

GSTOP call
deactivating the graphics system,674

GSTRLEN call
finding the string length,674

GTEXT and GVTEXT calls
placing text on a graph,675

GWINDOW call
defining the data window,676

GXAXIS and GYAXIS calls
drawing an axis,677

H
HALF function

computing Cholesky decomposition,678
HANKEL function

generating a Hankel matrix,679
HDIR function

performing a horizontal direct product,680
HERMITE function

reducing a matrix to Hermite normal form,681
HOMOGEN function

solving homogeneous linear systems,682

I
I function

creating an identity matrix,683
IF-THEN/ELSE statement

conditionally executing statements,683
IFFT function

computing the inverse finite Fourier transform,
685

IMLMLIB Module Library
modules reference,1013, 1016–1018
overview,1011, 1012

INDEX CREATION operator
creates an index vector,567

INDEX statement
indexing a variable in a SAS data set,686

INFILE statement
opening a file for input,686

INPUT statement
inputing data,687

INSERT function
inserting one matrix inside another,689

INT function
truncating a value,690

INV function
computing a matrix inverse,691

Inverses
Moore-Penrose inverse,595, 889, 896, 897

INVUPDT function
updating a matrix inverse,692

IPF call
performing an iterative proportional fit,694

ISM TIMSAC packages,288–290
ITBICG call

1024 � Subject Index

solving a sparse linear system with the biconju-
gate gradient iteration method,707

ITCGRAD call
solving a sparse symmetric positive-definite sys-

tem with the conjugate gradient iteration
method,710

ITMINRES call
solving a sparse symmetric linear system with

the minimum residual gradient iteration
method,713

J
J function

createing a matrix of identical values,715

K
Kalman filter subroutines

covariance filtering and prediction,297
diffuse covariance filtering and prediction,298
diffuse fixed-interval smoothing,298
examples,298
fixed-interval smoothing,298
one-step forecast for SSM,723, 725, 727
one-step predictions,717, 718, 721
overview,296
smoothed estimate,721–723
smoothed state vectors,727, 728
syntax,717

KRONECKER product
takes the direct product of two matrices,565

L
LABEL

quadratic form maximization,766
LCP call

solving the linear complementarity problem,733
Least absolute value regression,729, 731, 732
LENGTH function

finding the lengths of character matrix elements,
736

Linear Algebra Functionality,555
Linear least squares

full-rank example,850, 851
QR decomposition,872
rank deficient solutions,889, 892–895

LINK and RETURN statements
jumping to another statement,736

LIST statement
displaying observations of a data set,737

LMS call
performing robust regression,740

LOAD statement
loading modules and matrices,747

LOC function
finding nonzero elements of a matrix,748

LOG function
takeing the natural logarithm,749

LOGICAL operator
perform elementwise logical comparisons,568

LP call
solving the linear programming problem,750

LTS call
performs robust regression,752

LUPDT call,759

M
MAD function

univariate median-absolute-deviation,760
MARG call

evaluating marginal totals,761
Matrix decomposition

Cholesky decomposition,889, 891
complete orthogonal decomposition,577, 593–

595
downdating and updating,871–873, 875, 889
QR decomposition,834–837, 847–851

Matrix Inquiry Functions,551
Matrix Reshaping Functions,552
Matrix Sorting And By-Group Processing Calls,552
MATTRIB statement

associating printing attributes with matrices,764
MAX function

finding the maximum value of matrix,765
MCD call, 768
Median computation,1016
MIN function

finding the smallest element of a matrix,773
Minimum Residual Algorithm,527, 531, 713
MOD function

computing the modulo (remainder),774
MULTIPLICATION operator, elementwise

performs elementwise multiplication,569
MULTIPLICATION operator, matrix

performs matrix multiplication,570
MVE call, 774

N
NAME function

listing the names of arguments,781
NCOL function

finding the number of columns of a matrix,781
NLENG function

finding the size of an element,782
Nonlinear optimization subroutines

advanced examples,360
conjugate gradient optimization,785
control parameters vector,356–358
double dogleg optimization,786, 788
feasible point computation,791
finite difference approximations,338–340, 788,

789, 791
global vs. local optima,331
hybrid quasi-Newton optimization,792, 793,

795
Kuhn-Tucker conditions,332
least-squares methods,792, 793, 795, 798
Levenberg-Marquardt optimization,795, 798

Subject Index � 1025

Nelder-Mead simplex optimization,798, 799,
802

Newton-Raphson optimization,802, 803, 805
Newton-Raphson ridge optimization,805, 808
objective function and derivatives,333–338
options vector,343–345, 347–349
parameter constraints,341–343
printing optimization history,359, 360
quadratic optimization,814, 815, 817
quasi-Newton optimization,808, 809, 812–814
return codes,333
termination criteria,349–354, 356
trust-region optimization,817, 819

NORMAL function
generating a pseudo-random normal deviate,819

NROW function
finding the number of rows of a matrix,819

NUM function
producing a numeric representation of a charac-

ter matrix,820
Numerical Analysis Functionality,554
Numerical integration,851–854, 856, 857

adaptive Romberg method,852
of differential equations,820, 821, 823–826
specifying subintervals,851
two-dimensional integration,854

O
OPSCAL Function,826
Optimization Subroutines,556
ORPOL function

generating orthogonal polynomials,828
Orthogonal factorization,889, 891
Orthogonalization

by ORTVEC call,834–837

P
PAUSE statement

interrupting module execution,837
PGRAF call

producing scatter plots,838
POLYROOT function

finding zeros of a real polynomial,839
POWER operator, elementwise

raises each element to a power,571
POWER operator, matrix

raises a matrix to a power,571
PRINT statement

printing matrix values,840
Printing matrices,1019
Probability contour plot,1015
PRODUCT function

multiplying matrices of polynomials,842
PURGE statement

removing observations marked for deletion,843
PUSH call,843
PUT statement

writing data to an external file,844
PV function

calculating present value,845

Q
Quadratic form maximization,767, 768
Quartile computation,1017
QUEUE call

queueing SAS statements,857
QUIT statement

exiting from IML, 858

R
RANDGEN call

generating random numbers,858
Random Number Generation Functionality,552
RANDSEED call

generating random numbers,866
RANK function

ranking elements of a matrix,866
RANKTIE function

ranking matrix elements using tie-averaging,868
RATES function

converting interest rates,869
RATIO function

dividing matrix polynomials,870
READ statement

reading observations from a data set,875
Reduction Functions,551
Regression,1017

best subsets,768
least absolute value,729, 731, 732
response surface,1016

REMOVE function
discarding elements from a matrix,878

REMOVE statement
removing matrices from storage,879

RENAME call
renaming SAS data sets,880

REPEAT function
creating a new matrix of repeated values,880

REPLACE statement
replacing values,881

RESET statement
setting processing options,883

Reshaping matrices,1013, 1017
Response surface regression,1016
RESUME statement

resuming execution,885
RETURN statement

returning to caller,885
ROOT function

performing the Cholesky decomposition of a ma-
trix, 886

ROWCAT function
concatenating rows without blank compression,

887
ROWCATC function

concatenating rows with blank compression,888
RUN statement

executing statements in a module,889

1026 � Subject Index

S
SAVE statement

saving data,898
Scalar Functions,551
Scatter plots,1015
Sequential tests,898, 899, 901–911

group sequential methods,905, 906
minimizing average sample number (ASN),

908–911
randomized clinical trials,908–911
scaling,901
shifting,901

Set Functions,556
SETDIF function

comparing elements of two matrices,911
SETIN statement

making a data set current for input,912
SETOUT statement

making a data set current for output,912
SHAPE function

reshaping and repeating values,913
SHOW statement

printing system information,914
SIGN REVERSE operator

reverses the signs of elements,572
SOLVE function

solving a system of linear equations,915
SOLVELIN call

solving a sparse symmetric linear system by di-
rect decomposition,916

SORT call
sorting a matrix,918

SORT statement
sorting a SAS data set,919

SORTNDX call
creating a sorted index for a matrix,920

SOUND call
producing a tone,921

Sparse Matrix Algorithms,527, 707, 710, 713
preconditioners,527, 916

Splines,921, 923, 927–929
integration of splines,927

SPOT function
calculating spot rates,929

SQRSYM function
converting to a square matrix,930

SQRT function
calculating the square root,930

SSQ function
calculating the sum of squares,931

Standardizing numeric data,1018
START and FINISH statements

defining a module,931
Statistical Functionality,552
STOP statement

stopping execution of statements,932
STORAGE function

listing names of matrices and modules,932
STORE statement

storing matrices and modules,933
SUBSCRIPTS

select submatrices,573
SUBSTR function

taking substrings of matrix elements,933
Substring replacement,1018
SUBTRACTION operator

subtracts corresponding matrix elements,574
SUM function

summing all elements,934
SUMMARY statement

computing summary statistics,934
SVD call

computing the singular value decomposition,
938

SWEEP function
sweeping a matrix,939

SYMSQR function
converting to a symmetric matrix,942

T
T function

transposing a matrix,942
TEIGEN call

computing eigenvalues and eigenvectors,943
TEIGVAL functions

computing eigenvalues,943
TEIGVEC functions

computing eigenvectors,943
Time series analysis and control

AR model selection,242, 965
ARMA model prediction,263, 264, 962
Bayesian constrained least squares,285
Bayesian constrained least-squares,283, 284
Bayesian seasonal adjustment,260, 271, 273,

952, 953
instantaneous response model,246, 247, 292–

294
ISM TIMSAC packages,288–290
least-squares and Householder transformation,

282, 283
locally stationary multivariate time series,959,

960
locally stationary time series,957, 958
minimum AIC method,242, 245–247, 267, 269,

270
missing values,288
multivariate time series,263, 264, 277–279, 962
nonstationary covariance function analysis,964
nonstationary data analysis,249, 250, 252–255,

257–260
nonstationary time series,274–277, 954, 956,

957
overview,240
periodic AR model,961, 962
roots of AR and MA equations,265, 266, 963
smoothness priors modeling,270, 271, 954, 956,

957
spectral analysis,279–282

Subject Index � 1027

state space and Kalman filter method,285–287
VAR model,245–247, 291–293, 960, 961

Time Series Functionality,553
TOEPLITZ function

generating a Toeplitz matrix,943
TPSPLINE call

computing thin-plate smoothing splines,945
TPSPLNEV call

evaluating thin-plate smoothing splines,947
TRACE function

summing diagonal elements,950
TRANSPOSE operator

transposes a matrix,574
Triangular linear systems,951
TYPE function

determining matrix types,966

U
UNIFORM function

generating pseudo-random uniform deviates,
966

UNION function
performing unions of sets,967

UNIQUE function
sorting and removing duplicates,967

UNIQUEBY function
processing BY groups in a matrix,968

USE statement
opening SAS data sets,969

V
VALSET call

performing indirect assignments,971
VALUE function

assigning values,971
VARMACOV Call

computing cross-covariance matrices,972
VARMALIK Call

computing log-likelihood function,973
VARMASIM Call

generating VARMA(p,q) time series,974
VECDIAG function

creating vectors,976
Vector time series analysis

cross-covariance matrix,312
example,309, 310
generating a multivariate normal,312
generating a multivariate time series,312
log-likelihood function,312
overview,308
roots of VARMA charcteristic function,312

VNORMAL Call
generating multivariate normal random series,

976
VTSROOT Call

calculating characteristic roots,977

W
Wavelet Analysis Calls,559

WAVFT call
computing fast wavelet transform,978

WAVGET call
extracting wavelet information,981

WAVIFT call
computing inverse fast wavelet transform,983

WAVPRINT call
printing wavelet information,985

WAVTHRSH call
thresholding wavelet detail coefficients,986

WINDOW statement
opening a display window,987

X
XMULT function

performing accurate matrix multiplication,989
XSECT function

intersecting sets,989

Y
YIELD function

calculating yield-to-maturity of a cash-flow
streams,990

1028 � Subject Index

Syntax Index

A
ABORT statement,575
ABS statement,575
ADDITION operator,560
ALL statement,575
ANY function, 576
APPCORT call,577
APPEND statement,578
APPLY function,580
ARMACOV call, 581
ARMALIK call, 583
ARMASIM function, 584

B
Basic time series subroutines

ARMACOV subroutine,240
ARMALIK subroutine,240
ARMASIM function, 240
example,238
overview,238
syntax,240

BLOCK function,586
BRANKS function,586
BTRAN function,587
BYTE function,588

C
CALL statement,589
CHANGE call,590
CHAR function,590
CHOOSE function,591
CLOSE statement,592
CLOSEFILE statement,593
COLVEC function,1013
COMPARISON operator,561
COMPORT call,593–595
CONCAT function,596
CONCATENATION operator, horizontal,562
CONCATENATION operator, vertical,563
CONTENTS function,597
CONVEXIT function,598
CORR function,1014
COVLAG function,598
CREATE statement,599
CSHAPE function,601
CUSUM function,603
CVEXHULL function, 604

D
DATASETS function,604
DELETE call,605
DELETE statement,606
DESIGN function,608
DESIGNF function,608
DET function,609
DIAG function,610
DIRECT PRODUCT operator,565
DISPLAY statement,611
DIVISION operator,565
DO and END statements,612
DO DATA statement,614
DO function,611
DO statement, iterative,613
DO UNTIL statement,615
DO WHILE statement,615
DURATION function,616

E
ECHELON function,617
EDIT statement,618
EIGEN call,620
EIGVAL function, 625
EIGVEC function,625
ELEMENT MAXIMUM operator,566
ELEMENT MINIMUM operator,566
END statement,626
EXECUTE call,626
EXP function,627
EXPMATRIX function,1014

F
FARMACOV call, 627
FARMAFIT call, 629
FARMALIK call, 630
FARMASIM call, 632
FDIF call,633
FFT function,634
FILE statement,635
FIND statement,636
FINISH statement,638
FORWARD function,638
Fractional time series subroutines

syntax,315
Fractionally integrated time series subroutines

example,313
FARMACOV subroutine,315

1030 � Syntax Index

FARMAFIT subroutine,315
FARMALIK subroutine,315
FARMASIM subroutine,315
FDIF subroutine,315
overview,312

FREE statement,639

G
GAEND call,639
GAGETMEM call,640
GAGETVAL call, 641
GAINIT call, 641
GAREEVAL call, 642
GAREGEN call,643
GASETCRO call,643
GASETMUT call,648
GASETOBJ call,650
GASETSEL call,651
GASETUP function,652
GBLKVP call, 653
GBLKVPD call, 655
GBXWHSKR call,1015
GCLOSE call,655
GDELETE call,655
GDRAW call,656
GDRAWL call, 657
GENEIG call,657
GGRID call,659
GINCLUDE call,659
GINV function,660
GOPEN call,662
GOTO statement,663
GPIE call,663
GPIEXY call,664
GPOINT call,666
GPOLY call,667
GPORT call,668
GPORTPOP call,668
GPORTSTK call,668
GPROBCNT call,1015
GSCALE call,669
GSCRIPT call,669
GSET call,671
GSHOW call,672
GSORTH call,672
GSTART call,673
GSTOP call,674
GSTRLEN call,674
GTEXT and GVTEXT calls,675
GWINDOW call,676
GXAXIS and GYAXIS calls,677
GXYPLOT call,1015

H
HALF function,678
HANKEL function, 679
HDIR function,680
HERMITE function,681
HOMOGEN function,682

I
I function,683
IF-THEN/ELSE statement,683
IFFT function,685
IML, 1
IMLMLIB Module Library

modules reference,1013, 1016–1018
overview,1011, 1012

INDEX CREATION operator,567
INDEX statement,686
INFILE statement,686
INPUT statement,687
INSERT function,689
INT function,690
INV function, 691
INVUPDT function,692
IPF call,694
ITBICG call, 707
ITCGRAD call,710
ITMINRES call,713

J
J function,715
JROOT function,716, 717

K
KALCVF call, 299, 303, 305, 306, 717, 718, 721
KALCVS call, 303, 721–723
KALDFF call, 306, 723, 725, 727
KALDFS call, 727, 728
Kalman filter subroutines

examples,298
KALCVF subroutine,297
KALCVS subroutine,298
KALDFF subroutine,298
KALDFS subroutine,298
overview,296
syntax,297, 717

KRONECKER product,565

L
LAV call, 729, 731, 732
LCP call,733
LENGTH function,736
LINK and RETURN statements,736
LIST statement,737
LMS call, 740
LOAD statement,747
LOC function,748
LOG function,749
LOGICAL operator,568
LP call,750
LTS call,752
LUPDT call,759

M
MAD function, 760
MARG call, 761
MATIML, 1

Syntax Index � 1031

MATTRIB statement,764
MAX function, 765
MAXQFORM call, 766–768
MCD call, 768
MEDIAN function, 1016
MIN function, 773
MOD function,774
MULTIPLICATION operator, elementwise,569
MULTIPLICATION operator, matrix,570
MVE call, 774

N
NAME function,781
NCOL function,781
NLENG function,782
Nonlinear optimization subroutines

advanced examples,360
details,331
introductory examples,323
NLPCG Call,366
NLPCG call,785
NLPDD Call,371, 373, 390, 786, 788
NLPDD call,786
NLPFDD Call,379, 789, 791
NLPFDD call,788, 789
NLPFEA call,791
NLPHQN Call,793, 795
NLPHQN call,792
NLPLM Call, 381, 795, 798
NLPLM call, 795
NLPNMS Call,799, 802
NLPNMS call,798, 799
NLPNRA Call,803, 805
NLPNRA call,802
NLPNRR Call,367, 808
NLPNRR call,805
NLPQN Call,375, 376, 393, 809, 812–814
NLPQN call,808
NLPQUA Call,815, 817
NLPQUA call,814
NLPTR Call,362, 378, 819
NLPTR call,817
overview,321
syntax,782

NORMAL function,819
NROW function,819
NUM function,820

O
ODE call,820, 821, 823–826
OPSCAL function,826
ORPOL function,828
ORTVEC call,834–837

P
PAUSE statement,837
PGRAF call,838
POLYROOT function,839
POWER operator, elementwise,571

POWER operator, matrix,571
PRINT statement,840
PROC IML Statement,9, 537
PRODUCT function,842
PURGE statement,843
PUSH call,843
PUT statement,844
PV function,845

Q
QR call,847–851
QUAD call, 851–854, 856, 857
QUADREG call,1016
QUARTILE function,1017
QUEUE call,857
QUIT statement,858

R
RANDGEN call,858
RANDSEED call,866
RANK function,866
RANKTIE function,868
RATES function,869
RATIO function,870
RDODT call,871–873, 875
READ statement,875
REGRESS call,1017
REMOVE function,878
REMOVE statement,879
RENAME call,880
REPEAT function,880
REPLACE statement,881
RESET statement,883
RESUME statement,885
RETURN statement,885
ROOT function,886
ROWCAT function,887
ROWCATC function,888
ROWVEC function,1017
RSUBSTR function,1018
RUN statement,889
RUPDT call,871–873, 875, 889
RZLIND call, 889, 891–897

S
SAS/IML, 1
SAVE statement,898
SEQ call,898, 899, 901–911
SEQSCALE call,898, 899, 901–911
SEQSHIFT call,898, 899, 901–911
SETDIF function,911
SETIN statement,912
SETOUT statement,912
SHAPE function,913
SHOW statement,914
SIGN REVERSE operator,572
SOLVE function,915
SOLVELIN call, 916
SORT call,918

1032 � Syntax Index

SORT statement,919
SORTNDX call,920
SOUND call,921
SPLINE call,921, 923, 927, 928
SPLINEC call,921, 923, 927, 928
SPLINEV function,923, 927–929
SPOT function,929
SQRSYM function,930
SQRT function,930
SSQ function,931
STANDARD function,1018
START and FINISH statements,931
STOP statement,932
STORAGE function,932
STORE statement,933
SUBSCRIPTS,573
SUBSTR function,933
SUBTRACTION operator,574
SUM function,934
SUMMARY statement,934
SVD call,938
SWEEP function,939
SYMSIZE= option,9, 537
SYMSQR function,942

T
T function,942
TABPRT call,1019
TEIGEN call,943
TEIGVAL functions,943
TEIGVEC functions,943
TIMSAC subroutines

advanced examples,290
details,267
introductory examples,242
overview,240
syntax,267
TSBAYSEA subroutine,260, 952, 953
TSDECOMP subroutine,259, 954, 956, 957
TSMLOCAR subroutine,249, 957, 958
TSMLOMAR subroutine,257, 959, 960
TSMULMAR subroutine, 245–247, 291–294,

960, 961
TSPEARS subroutine,961, 962
TSPRED subroutine,263, 264, 293, 962
TSROOT subroutine,265, 266, 963
TSTVCAR subroutine,964
TSUNIMAR subroutine,965

TOEPLITZ function,943
TPSPLINE call,945
TPSPLNEV call,947
TRACE function,950
TRANSPOSE operator,574
TRISOLV function,951
TYPE function,966

U
UNIFORM function,966
UNION function,967

UNIQUE function,967
UNIQUEBY function,968
USE statement,969

V
VALSET call, 971
VALUE function, 971
VARMACOV Call, 972
VARMALIK Call, 973
VARMASIM Call, 974
VECDIAG function,976
Vector time series subroutines

example,309, 310
overview,308
syntax,312
VARMACOV subroutine,312
VARMALIK subroutine,312
VARMASIM subroutine,312
VNORMAL subroutine,312
VTSROOT subroutine,312

VNORMAL Call, 976
VTSROOT Call,977

W
WAVFT call, 978
WAVGET call, 981
WAVIFT call, 983
WAVPRINT call, 985
WAVTHRSH call,986
WINDOW statement,987
WORKSIZE= option,9, 537

X
XMULT function, 989
XSECT function,989

Y
YIELD function, 990

Your Turn

If you have comments or suggestions about SAS/IML 9.1 User’s Guide, please send
them to us on a photocopy of this page or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	What's New in SAS/IML 9 and 9.1
	Overview
	Iterative Methods for Large Sparse Systems of Linear Equations
	Direct Algorithms for Large Sparse Systems of Linear Equations: Cholesky Factorization
	Genetic Algorithms
	New Functions and Calls
	BY Group Processing for Matrices
	SORT and SORTNDX Calls
	RANDSEED and RANDGEN Calls

	New Programming Feature
	Subscripting by Row or Column Names

	Chapter 1. Introduction to SAS/IML Software
	Overview
	SAS/IML Software: An Overview
	An Introductory Interactive Session
	PROC IML Statement

	Chapter 2. Understanding the Language
	Defining a Matrix
	Matrix Names and Literals
	Matrix Names
	Matrix Literals

	Creating Matrices from Matrix Literals
	Scalar Literals
	Numeric Literals
	Character Literals
	Repetition Factors
	Reassigning Values
	Assignment Statements

	Types of Statements
	Control Statements
	Functions
	CALL Statements and Subroutines
	Commands

	Missing Values
	Summary

	Chapter 3. Tutorial: A Module for Linear Regression
	Overview
	Solving a System of Equations

	A Module for Linear Regression
	Plotting Regression Results
	Summary

	Chapter 4. Working with Matrices
	Overview
	Entering Data as Matrix Literals
	Scalars
	Matrices with Multiple Elements

	Using Assignment Statements
	Simple Assignment Statements
	Matrix-generating Functions
	Index Vectors

	Using Matrix Expressions
	Operators
	Compound Expressions
	Elementwise Binary Operators
	Subscripts
	Subscript Reduction Operators

	Displaying Matrices with Row and Column Headings
	Using the AUTONAME Option
	Using the ROWNAME= and COLNAME= Options
	Using the MATTRIB Statement

	More on Missing Values

	Chapter 5. Programming Statements
	Overview
	IF-THEN/ELSE Statements
	DO Groups
	Iterative Execution

	Jumping
	Modules
	Defining and Executing a Module
	Nesting Modules
	Understanding Symbol Tables
	Modules with No Arguments
	Modules with Arguments
	More about Argument Passing
	Module Storage

	Stopping Execution
	PAUSE Statement
	STOP Statement
	ABORT Statement

	Summary

	Chapter 6. Working with SAS Data Sets
	Overview
	Opening a SAS Data Set
	Making a SAS Data Set Current
	Displaying SAS Data Set Information
	Referring to a SAS Data Set
	Listing Observations
	Specifying a Range of Observations
	Selecting a Set of Variables
	Selecting Observations

	Reading Observations from a SAS Data Set
	Using the READ Statement with the VAR Clause
	Using the READ Statement with the VAR and INTO Clauses
	Using the READ Statement with the WHERE Clause

	Editing a SAS Data Set
	Updating Observations
	Deleting Observations

	Creating a SAS Data Set from a Matrix
	Using the CREATE Statement with the FROM Option
	Using the CREATE Statement with the VAR Clause

	Understanding the End-of-File Condition
	Producing Summary Statistics
	Sorting a SAS Data Set
	Indexing a SAS Data Set
	Data Set Maintenance Functions
	Summary of Commands
	Similarities and Differences with the SAS DATA Step
	Summary

	Chapter 7. File Access
	Overview
	Referring to an External File
	Types of External Files

	Reading from an External File
	Using the INFILE Statement
	Using the INPUT Statement

	Writing to an External File
	Using the FILE Statement
	Using the PUT Statement
	Examples

	Listing Your External Files
	Closing an External File
	Summary

	Chapter 8. General Statistics Examples
	Overview
	General Statistics Examples
	Example 8.1. Correlation
	Example 8.2. Newton's Method for Solving Nonlinear Systems of Equations
	Example 8.3. Regression
	Example 8.4. Alpha Factor Analysis
	Example 8.5. Categorical Linear Models
	Example 8.6. Regression of Subsets of Variables
	Example 8.7. Response Surface Methodology
	Example 8.8. Logistic and Probit Regression for Binary Response Models
	Example 8.9. Linear Programming
	Example 8.10. Quadratic Programming
	Example 8.11. Regression Quantiles
	Example 8.12. Simulations of a Univariate ARMA Process
	Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors
	Example 8.14. Iterative Proportional Fitting
	Example 8.15. Full-Screen Nonlinear Regression

	Chapter 9. Robust Regression Examples
	Overview
	Flow Chart for LMS, LTS, MCD, and MVE

	Using LMS and LTS
	Example 9.1. Substantial Leverage Points
	Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS
	Example 9.3. Univariate (Location) Problem

	Using MVE and MCD
	Example 9.4. Brainlog Data
	Example 9.5. Stackloss Data

	Combining Robust Residual and Robust Distance
	Example 9.6. Hawkins-Bradu-Kass Data
	Example 9.7. Stackloss Data

	References

	Chapter 10. Time Series Analysis and Examples
	Overview
	Basic Time Series Subroutines
	Getting Started
	Syntax

	Time Series Analysis and Control Subroutines
	Getting Started
	Minimum AIC Model Selection
	Nonstationary Data Analysis
	Seasonal Adjustment
	Miscellaneous Time Series Analysis Tools

	Syntax
	Details
	Minimum AIC Procedure
	Smoothness Priors Modeling
	Bayesian Seasonal Adjustment
	Nonstationary Time Series
	Multivariate Time Series Analysis
	Spectral Analysis
	Computational Details
	Missing Values
	ISM TIMSAC Packages

	Example 10.1. VAR Estimation and Variance Decomposition

	Kalman Filter Subroutines
	Getting Started
	Syntax
	Example 10.2. Kalman Filtering: Likelihood Function Evaluation
	Example 10.3. Kalman Filtering: Estimating an SSM Using the EM Algorithm
	Example 10.4. Diffuse Kalman Filtering

	Vector Time Series Analysis Subroutines
	Getting Started
	Stationary VAR Process
	Nonstationary VAR Process

	Syntax

	Fractionally Integrated Time Series Analysis
	Getting Started
	Syntax

	References

	Chapter 11. Nonlinear Optimization Examples
	Overview
	Getting Started
	Details
	Global Versus Local Optima
	Kuhn-Tucker Conditions
	Definition of Return Codes
	Objective Function and Derivatives
	Finite Difference Approximations of Derivatives
	Parameter Constraints
	Options Vector
	Termination Criteria
	Control Parameters Vector
	Printing the Optimization History

	Nonlinear Optimization Examples
	Example 11.1. Chemical Equilibrium
	Example 11.2. Network Flow and Delay
	Example 11.3. Compartmental Analysis
	Example 11.4. MLEs for Two-Parameter Weibull Distribution
	Example 11.5. Profile-Likelihood-Based Confidence Intervals
	Example 11.6. Survival Curve for Interval Censored Data
	Example 11.7. A Two-Equation Maximum Likelihood Problem
	Example 11.8. Time-Optimal Heat Conduction

	References

	Chapter 12. Graphics Examples
	Overview
	An Introductory Graph
	 Details
	Graphics Segments
	Segment Attributes
	Coordinate Systems
	Windows and Viewports
	Clipping Your Graphs
	Common Arguments

	Graphics Examples
	Example 12.1. Scatter Plot Matrix
	Example 12.2. Train Schedule
	Example 12.3. Fisher's Iris Data

	Chapter 13. Window and Display Features
	Overview
	Creating a Display Window for Data Entry
	Using the WINDOW Statement
	Window Options
	Field Specifications

	Using the DISPLAY Statement
	Group Specifications
	Group Options

	Details about Windows
	The Number and Position of Windows
	Windows and the Display Surface
	Deciding Where to Define Fields
	Groups of Fields
	Field Attributes
	Display Execution
	Field Formatting and Inputting
	Display-only Windows
	Opening Windows
	Closing Windows
	Repeating Fields
	Example

	Chapter 14. Storage Features
	Overview
	 Storage Catalogs
	Catalog Management
	Restoring Matrices and Modules
	Removing Matrices and Modules
	Specifying the Storage Catalog
	Listing Storage Entries
	Storing Matrices and Modules

	Chapter 15. Using SAS/IML Software to Generate IML Statements
	Overview
	Generating and Executing Statements
	Executing a String Immediately
	Feeding an Interactive Program
	Calling the Operating System
	Calling the SAS Windowing Environment
	Executing Any Command in an EXECUTE Call
	Making Operands More Flexible
	Interrupt Control
	Specific Error Control
	General Error Control
	Macro Interface
	IML Line Pushing Contrasted with Using the Macro Facility
	Example 15.1. Full-Screen Editing

	Summary

	Chapter 16. Wavelet Analysis
	Overview
	Some Brief Mathematical Preliminaries

	Getting Started
	Creating the Wavelet Decomposition
	Wavelet Coefficient Plots
	Multiresolution Approximation Plots
	Multiresolution Decomposition Plots
	Wavelet Scalograms
	Reconstructing the Signal from the Wavelet Decomposition

	Details
	Using Symbolic Names
	Obtaining Help for the Wavelet Macros and Modules

	References

	Chapter 17. Genetic Algorithms
	Overview
	Formulating a Genetic Algorithm Optimization
	Choosing the Problem Encoding
	Setting the Objective Function
	Controlling the Selection Process
	Using Crossover and Mutation Operators

	Executing a Genetic Algorithm
	Setting Up the IML Program
	Incorporating Local Optimization
	Handling Constraints
	Example 17.1. Genetic Algorithm with Local Optimization
	Example 17.2. Real-Valued Objective Optimization with Constant Bounds
	Example 17.3. Integer Programming Knapsack Problem
	Example 17.4. Optimization with Linear Constraints Using Repair Strategy

	References

	Chapter 18. Sparse Matrix Algorithms
	Overview
	Iterative Methods
	Input Data Description
	Example: Conjugate Gradient Algorithm
	Example: Minimum Residual Algorithm
	Example: Biconjugate Gradient Algorithm

	Symbolic LDL and Cholesky Factorizations
	References

	Chapter 19. Further Notes
	Memory and Workspace
	Accuracy
	Error Diagnostics
	Efficiency
	Missing Values
	Principles of Operation
	Operation-Level Execution

	Chapter 20. Language Reference
	Overview
	Operators
	Addition Operator: +
	Comparison Operators: < > = <= >= =
	Concatenation Operator, Horizontal: ||
	Concatenation Operator, Vertical: //
	Direct Product Operator: @
	Division Operator: /
	Element Maximum Operator: <>
	Element Minimum Operator: ><
	Index Creation Operator: :
	Logical Operators: & |
	Multiplication Operator, Elementwise: #
	Multiplication Operator, Matrix: *
	Power Operator, Elementwise: ##
	Power Operator, Matrix: **
	Sign Reverse Operator: –
	Subscripts: []
	Subtraction Operator: –
	Transpose Operator: `

	Statements, Functions, and Subroutines
	ABORT Statement
	ABS Function
	ALL Function
	ANY Function
	APPCORT Call
	APPEND Statement
	APPLY Function
	ARMACOV Call
	ARMALIK Call
	ARMASIM Function
	BLOCK Function
	BRANKS Function
	BTRAN Function
	BYTE Function
	CALL Statement
	CHANGE Call
	CHAR Function
	CHOOSE Function
	CLOSE Statement
	CLOSEFILE Statement
	COMPORT Call
	CONCAT Function
	CONTENTS Function
	CONVEXIT Function
	COVLAG Function
	CREATE Statement
	CSHAPE Function
	CUSUM Function
	CVEXHULL Function
	DATASETS Function
	DELETE Call
	DELETE Statement
	DESIGN Function
	DESIGNF Function
	DET Function
	DIAG Function
	DISPLAY Statement
	DO Function
	DO and END Statements
	DO Statement, Iterative
	DO DATA Statement
	DO Statement with an UNTIL Clause
	DO Statement with a WHILE Clause
	DURATION Function
	ECHELON Function
	EDIT Statement
	EIGEN Call
	EIGVAL Function
	EIGVEC Function
	END Statement
	EXECUTE Call
	EXP Function
	FARMACOV Call
	FARMAFIT Call
	FARMALIK Call
	FARMASIM Call
	FDIF Call
	FFT Function
	FILE Statement
	FIND Statement
	FINISH Statement
	FORCE Statement
	FORWARD Function
	FREE Statement
	GAEND Call (Experimental)
	GAGETMEM Call (Experimental)
	GAGETVAL Call (Experimental)
	GAINIT Call (Experimental)
	GAREEVAL Call (Experimental)
	GAREGEN Call (Experimental)
	GASETCRO Call (Experimental)
	GASETMUT Call (Experimental)
	GASETOBJ Call (Experimental)
	GASETSEL Call (Experimental)
	GASETUP Function (Experimental)
	GBLKVP Call
	GBLKVPD Call
	GCLOSE Call
	GDELETE Call
	GDRAW Call
	GDRAWL Call
	GENEIG Call
	GGRID Call
	GINCLUDE Call
	GINV Function
	GOPEN Call
	GOTO Statement
	GPIE Call
	GPIEXY Call
	GPOINT Call
	GPOLY Call
	GPORT Call
	GPORTPOP Call
	GPORTSTK Call
	GSCALE Call
	GSCRIPT Call
	GSET Call
	GSHOW Call
	GSORTH Call
	GSTART Call
	GSTOP Call
	GSTRLEN Call
	GTEXT and GVTEXT Calls
	GWINDOW Call
	GXAXIS and GYAXIS Calls
	HALF Function
	HANKEL Function
	HDIR Function
	HERMITE Function
	HOMOGEN Function
	I Function
	IF-THEN/ELSE Statement
	IFFT Function
	INDEX Statement
	INFILE Statement
	INPUT Statement
	INSERT Function
	INT Function
	INV Function
	INVUPDT Function
	IPF Call
	ITBICG Call
	ITCGRAD Call
	ITMINRES Call
	J Function
	JROOT Function
	KALCVF Call
	KALCVS Call
	KALDFF Call
	KALDFS Call
	LAV Call
	LCP Call
	LENGTH Function
	LINK and RETURN Statements
	LIST Statement
	LMS Call
	LOAD Statement
	LOC Function
	LOG Function
	LP Call
	LTS Call
	LUPDT Call
	MAD Function
	MARG Call
	MATTRIB Statement
	MAX Function
	MAXQFORM Call
	MCD Call
	MIN Function
	MOD Function
	MVE Call
	NAME Function
	NCOL Function
	NLENG Function
	Nonlinear Optimization and Related Subroutines
	NLPCG Call
	NLPDD Call
	NLPFDD Call
	NLPFEA Call
	NLPHQN Call
	NLPLM Call
	NLPNMS Call
	NLPNRA Call
	NLPNRR Call
	NLPQN Call
	NLPQUA Call
	NLPTR Call
	NORMAL Function
	NROW Function
	NUM Function
	ODE Call
	OPSCAL Function
	ORPOL Function
	ORTVEC Call
	PAUSE Statement
	PGRAF Call
	POLYROOT Function
	PRINT Statement
	PRODUCT Function
	PURGE Statement
	PUSH Call
	PUT Statement
	PV Function
	QR Call
	QUAD Call
	QUEUE Call
	QUIT Statement
	RANDGEN Call
	RANDSEED Call
	RANK Function
	RANKTIE Function
	RATES Function
	RATIO Function
	RDODT and RUPDT Calls
	READ Statement
	REMOVE Function
	REMOVE Statement
	RENAME Call
	REPEAT Function
	REPLACE Statement
	RESET Statement
	RESUME Statement
	RETURN Statement
	ROOT Function
	ROWCAT Function
	ROWCATC Function
	RUN Statement
	RUPDT Call
	RZLIND Call
	SAVE Statement
	SEQ, SEQSCALE, and SEQSHIFT Calls
	SEQSCALE Call
	SEQSHIFT Call
	SETDIF Function
	SETIN Statement
	SETOUT Statement
	SHAPE Function
	SHOW Statement
	SOLVE Function
	SOLVELIN Call
	SORT Call
	SORT Statement
	SORTNDX Call
	SOUND Call
	SPLINE and SPLINEC Calls
	SPLINEV Function
	SPOT Function
	SQRSYM Function
	SQRT Function
	SSQ Function
	START and FINISH Statements
	STOP Statement
	STORAGE Function
	STORE Statement
	SUBSTR Function
	SUM Function
	SUMMARY Statement
	SVD Call
	SWEEP Function
	SYMSQR Function
	T Function
	TEIGEN Call
	TEIGVAL Function
	TEIGVEC Function
	TOEPLITZ Function
	TPSPLINE Call
	TPSPLNEV Call
	TRACE Function
	TRISOLV Function
	TSBAYSEA Call
	TSDECOMP Call
	TSMLOCAR Call
	TSMLOMAR Call
	TSMULMAR Call
	TSPEARS Call
	TSPRED Call
	TSROOT Call
	TSTVCAR Call
	TSUNIMAR Call
	TYPE Function
	UNIFORM Function
	UNION Function
	UNIQUE Function
	UNIQUEBY Function
	USE Statement
	VALSET Call
	VALUE Function
	VARMACOV Call
	VARMALIK Call
	VARMASIM Call
	VECDIAG Function
	VNORMAL Call
	VTSROOT Call
	WAVFT Call
	WAVGET Call
	WAVIFT Call
	WAVPRINT Call
	WAVTHRSH Call
	WINDOW Statement
	XMULT Function
	XSECT Function
	YIELD Function

	Base SAS Functions Accessible from SAS/IML
	Bitwise Logical Operation Functions
	Character and Formatting Functions
	Character String Matching Functions and Subroutines
	Date and Time Functions
	Descriptive Statistics Functions and Subroutines
	Double-byte Character String Functions
	External Files Functions
	File I/O Functions
	Financial Functions
	Macro Functions and Subroutines
	Mathematical Functions and Subroutines
	Probability Functions
	Quantile Functions
	Random Number Functions and Subroutines
	State and ZIP Code Functions
	Trigonometric and Hyperbolic Functions
	Truncation Functions
	Web Tools

	References

	Chapter 21. Module Library
	Overview
	Contents of IMLMLIB
	IMLMLIB and the STORAGE library
	Accessing the IML Source Code
	Order of Resolution
	Error Diagnostics

	Modules Reference
	COLVEC Function
	CORR Function
	EXPMATRIX Function
	GBXWHSKR Call
	GPROBCNT Call
	GXYPLOT Call
	MEDIAN Function
	QUADREG Call
	QUARTILE Function
	REGRESS Call
	ROWVEC Function
	RSUBSTR Function
	STANDARD Function
	TABPRT Call

	Subject Index
	Syntax Index

