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What’s New in SAS 9.1 SAS
High-Performance Forecasting

Overview

New features have been added to the following SAS High-Performance Forecasting
components:

• PROC HPF

Details

HPF Procedure

The HPF procedure has new options related to forecast model selection:

• HOLDOUTPCT= option

• SEASONTEST= option

• SELECT= option

The HPF procedure has new options related to forecast model initialization:

• NBACKCAST= option

The HPF procedure has new statement related to intermittent demand models:

• IDM statement

The HPF procedure has new options related to out-of-sample forecast performance
statistics:

• BACK= option

• PRINT=PERFORMANCE option

• PRINT=PERFORMANCESUMMARY option

• PRINT=PERFORMANCEOVERALL option

The HPF procedure has new options related to the processing of the data:
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• NOTSORTED option

• REPLACEBACK option

• SORTNAMES option

The HPF procedure has new options related to printed and graphical output:

• PLOT= option

• PRINT=STATES option

The HPF procedure has a new option related to message log:

• MAXERROR= option
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Chapter 1
The HPF Procedure
Overview

The HPF (High-Performance Forecasting) procedure provides a quick and automatic
way to generate forecasts for many time series or transactional data in one step. The
procedure can forecast millions of series at a time, with the series organized into
separate variables or across BY groups.

• For typical time series, you can use the following smoothing models:

– Simple
– Double
– Linear
– Damped Trend
– Seasonal
– Winters Method (additive and multiplicative)

• Additionally, transformed versions of these models are provided:

– Log
– Square Root
– Logistic
– Box-Cox

• For intermittent time series (series where a large number of values are zero-
valued), you can use an intermittent demand model such as Croston’s Method
and Average Demand Model.

Experimental graphics are now available with the HPF procedure. For more informa-
tion, see the “ODS Graphics” section on page 39.

All parameters associated with the forecast model are optimized based on the data.
Optionally, the HPF procedure can select the appropriate smoothing model for you
using holdout sample analysis based on one of several model selection criteria.

The HPF procedure writes the time series extrapolated by the forecasts, the series
summary statistics, the forecasts and confidence limits, the parameter estimates, and
the fit statistics to output data sets. The HPF procedure optionally produces printed
output for these results utilizing the Output Delivery System (ODS).

The HPF procedure can forecast both time series data, whose observations are equally
spaced by a specific time interval (e.g., monthly, weekly), or transactional data, whose
observations are not spaced with respect to any particular time interval. Internet, in-
ventory, sales, and similar data are typical examples of transactional data. For trans-
actional data, the data is accumulated based on a specified time interval to form a
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time series. The HPF procedure can also perform trend and seasonal analysis on
transactional data.

Additionally, the Time Series Forecasting System of SAS/ETS software can be used
to interactively develop forecasting models, estimate the model parameters, evaluate
the models’ ability to forecast, and display these results graphically. Refer to Chapter
33, “Overview of the Time Series Forecasting System,” (SAS/ETS User’s Guide) for
details.

Also, the EXPAND procedure can be used for the frequency conversion and transfor-
mations of time series. Refer to Chapter 16, “The EXPAND Procedure,” (SAS/ETS
User’s Guide) for details.

Getting Started

The HPF procedure is simple to use for someone who is new to forecasting, and yet
at the same time it is powerful for the experienced professional forecaster who needs
to generate a large number of forecasts automatically. It can provide results in output
data sets or in other output formats using the Output Delivery System (ODS). The
following examples are more fully illustrated in the “Examples” section on page 42.

Given an input data set that contains numerous time series variables recorded at a spe-
cific frequency, the HPF procedure can automatically forecast the series as follows:

PROC HPF DATA=<input-data-set> OUT=<output-data-set>;
ID <time-ID-variable> INTERVAL=<frequency>;
FORECAST <time-series-variables>;
RUN;

For example, suppose that the input data set SALES contains numerous sales data
recorded monthly, the variable that represents time is DATE, and the forecasts are to
be recorded in the output data set NEXTYEAR. The HPF procedure could be used as
follows:

proc hpf data=sales out=nextyear;
id date interval=month;
forecast _ALL_;

run;

The above statements automatically select the best fitting model, generate forecasts
for every numeric variable in the input data set (SALES) for the next twelve months,
and store these forecasts in the output data set (NEXTYEAR). Other output data
sets can be specified to store the parameter estimates, forecasts, statistics of fit, and
summary data.

If you want to print the forecasts using the Output Delivery System (ODS), then you
need to add PRINT=FORECASTS:
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proc hpf data=sales out=nextyear print=forecasts;
id date interval=month;
forecast _ALL_;

run;

Other results can be specified to output the parameter estimates, forecasts, statistics
of fit, and summary data using ODS.

The HPF procedure can forecast both time series data, whose observations are equally
spaced by a specific time interval (e.g., monthly, weekly), or transactional data, whose
observations are not spaced with respect to any particular time interval.

Given an input data set containing transactional variables not recorded at any specific
frequency, the HPF procedure accumulates the data to a specific time interval and
forecasts the accumulated series as follows:

PROC HPF DATA=<input-data-set> OUT=<output-data-set>;
ID <time-ID-variable> INTERVAL=<frequency>

ACCUMULATE=<accumulation>;
FORECAST <time-series-variables>;

RUN;

For example, suppose that the input data set WEBSITES contains three variables
(BOATS, CARS, PLANES), that are Internet data recorded on no particular time
interval, and the variable that represents time is TIME, which records the time of the
Web hit. The forecasts for the total daily values are to be recorded in the output data
set NEXTWEEK. The HPF procedure could be used as follows:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats cars planes;

run;

The above statements accumulate the data into a daily time series and automatically
generate forecasts for the BOATS, CARS, and PLANES variables in the input data
set (WEBSITES) for the next seven days and store the forecasts in the output data
set (NEXTWEEK).

The HPF procedure can specify a particular forecast model or select from several
candidate models based on a selection criterion. The HPF procedure also supports
transformed models and holdout sample analysis.

Using the previous WEBSITES example, suppose that you want to forecast the
BOATS variable using the best seasonal forecasting model that minimizes the mean
absolute percent error (MAPE), the CARS variable using the best nonseasonal fore-
casting model that minimizes the mean square error (MSE) using holdout sample
analysis on the last five days, and the PLANES variable using the Log Winters
Method (additive). The HPF procedure could be used as follows:
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proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=addwinters transform=log;

run;

The above statements demonstrate how each variable in the input data set can be
modeled differently and how several candidate models can be specified and selected
based on holdout sample analysis or the entire range of data.

The HPF procedure is also useful in extending independent variables in (auto) regres-
sion models where future values of the independent variable are needed to predict the
dependent variable.

Using the WEBSITES example, suppose that you want to forecast the ENGINES
variable using the BOATS, CARS, and PLANES variable as regressor variables.
Since future values of the BOATS, CARS, and PLANES are needed, the HPF pro-
cedure can be used to extend these variables in the future:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast engines / model=none;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=addwinters transform=log;

run;

proc autoreg data= nextweek;
model engines = boats cars planes;
output out=enginehits p=predicted;

run;

The above HPF procedure statements generate forecasts for BOATS, CARS, and
PLANES in the input data set (WEBSITES) for the next seven days and extend
the variable ENGINES with missing values. The output data set (NEXTWEEK)
of the PROC HPF statement is used as an input data set for the PROC AUTOREG
statement. The output data set of PROC AUTOREG contains the forecast of the vari-
able ENGINE based on the regression model with the variables BOATS, CARS, and
PLANES as regressors. See the AUTOREG procedure for details on autoregression.

The HPF procedure can also forecast intermittent time series (series where a large
number of values are zero-valued). Typical time series forecasting techniques are
less effective in forecasting intermittent time series.

For example, suppose that the input data set INVENTORY contains three variables
(TIRES, HUBCAPS, LUGBOLTS) that are demand data recorded on no particular
time interval, the variable that represents time is DATE, and the forecasts for the total
weekly values are to be recorded in the output data set NEXTMONTH. The models
requested are intermittent demand models, which can be specified as MODEL=IDM
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option. Two intermittent demand models are compared, Croston Model and Average
Demand Model. The HPF procedure could be used as follows:

proc hpf data=inventory out=nextmonth lead=4 print=forecasts;
id date interval=week accumulate=total;
forecast tires hubcaps lugbolts / model=idm;

run;

In the above example, the total demand for inventory items is accumulated on a
weekly basis and forecasts are generated that recommend future stocking levels.

Syntax

The following statements are used with the HPF procedure.

PROC HPF options;
BY variables;
FORECAST variable-list / options;
ID variable INTERVAL= interval options;
IDM options;

Functional Summary

The statements and options controlling the HPF procedure are summarized in the
following table.

Description Statement Option

Statements
specify BY-group processing BY
specify variables to forecast FORECAST
specify the time ID variable ID
specify intermittent demand model IDM

Data Set Options
specify the input data set PROC HPF DATA=
specify to output forecasts only PROC HPF NOOUTALL
specify the output data set PROC HPF OUT=
specify parameter output data set PROC HPF OUTEST=
specify forecast output data set PROC HPF OUTFOR=
specify seasonal statistics output data set PROC HPF OUTSEASON=
specify statistics output data set PROC HPF OUTSTAT=
specify summary output data set PROC HPF OUTSUM=
specify trend statistics output data set PROC HPF OUTTREND=
replace actual values held back FORECAST REPLACEBACK



10 � Chapter 1. The HPF Procedure

Description Statement Option

replace missing values FORECAST REPLACEMISSING
use forecast forecast value to append FORECAST USE=

Accumulation and Seasonality Options
specify accumulation frequency ID INTERVAL=
specify length of seasonal cycle PROC HPF SEASONALITY=
specify interval alignment ID ALIGN=
specify time ID variable values are not sorted ID NOTSORTED
specify starting time ID value ID START=
specify ending time ID value ID END=
specify accumulation statistic ID, FORECAST ACCUMULATE=
specify missing value interpretation ID, FORECAST SETMISSING=
specify zero value interpretation ID, FORECAST ZEROMISS=

Forecasting Horizon, Holdout,
Holdback Options
specify data to hold back PROC HPF BACK=
specify forecast holdout sample size FORECAST HOLDOUT=
specify forecast holdout sample percent FORECAST HOLDOUTPCT=
specify forecast horizon or lead PROC HPF LEAD=
specify horizon to start summation PROC HPF STARTSUM=

Forecasting Model and Selection
Options
specify confidence limit width FORECAST ALPHA=
specify intermittency FORECAST INTERMITTENT=
specify forecast model FORECAST MODEL=
specify median forecats FORECAST MEDIAN
specify backcast initialization FORECAST NBACKCAST=
specify seasonality test FORECAST SEASONTEST=
specify model selection criterion FORECAST SELECT=
specify model transformation FORECAST TRANSFORM=

Intermittent Demand Model Options
specify model for average demand IDM AVERAGE=
specify the base value IDM BASE=
specify model for demand intervals IDM INTERVAL=
specify model for demand sizes IDM SIZE=

Printing and Plotting Control Options
specify graphical output PROC HPF PLOT=
specify printed output PROC HPF PRINT=
specify detailed printed output PROC HPF PRINTDETAILS
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Description Statement Option

Miscellaneous Options
specify that analysis variables are processed in
sorted order

PROC HPF SORTNAMES

limits error and warning messages PROC HPF MAXERROR=

PROC HPF Statement

PROC HPF options;

The following options can be used in the PROC HPF statement.

BACK= n
specifies the number of observations before the end of the data that the multistep
forecasts are to begin. The default is BACK=0.

DATA= SAS-data-set
names the SAS data set containing the input data for the procedure to forecast. If the
DATA= option is not specified, the most recently created SAS data set is used.

LEAD= n
specifies the number of periods ahead to forecast (forecast lead or horizon). The
default is LEAD=12.

The LEAD= value is relative to the last observation in the input data set and not to the
last nonmissing observation of a particular series. Thus, if a series has missing values
at the end, the actual number of forecasts computed for that series will be greater than
the LEAD= value.

MAXERROR= number
limits the number of warning and error messages produced during the execution of
the procedure to the specified value. The default is MAXERRORS=50. This option
is particularly useful in BY-group processing where it can be used to suppress the
recurring messages.

NOOUTALL
specifies that only forecasts are written to the OUT= and OUTFOR= data sets. The
NOOUTALL option includes only the final forecast observations in the output data
sets, not the one-step forecasts for the data before the forecast period.

The OUT= and OUTFOR= data set will only contain the forecast results starting at
the next period following the last observation to the forecast horizon specified by the
LEAD= option.

OUT= SAS-data-set
names the output data set to contain the forecasts of the variables specified in the sub-
sequent FORECAST statements. If an ID variable is specified, it will also be included
in the OUT= data set. The values are accumulated based on the ACCUMULATE=
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option and forecasts are appended to these values based on the FORECAST statement
USE= option. The OUT= data set is particularly useful in extending the independent
variables when forecasting dependent series associated with (auto) regression mod-
els. If the OUT= option is not specified, a default output data set DATAn is created.
If you do not want the OUT= data set created, then use OUT=–NULL–.

OUTEST= SAS-data-set
names the output data set to contain the model parameter estimates and the associated
test statistics and probability values. The OUTEST= data set is particularly useful for
evaluating the significance of the model parameters and understanding the model
dynamics.

OUTFOR= SAS-data-set
names the output data set to contain the forecast time series components (actual,
predicted, lower confidence limit, upper confidence limit, prediction error, prediction
standard error). The OUTFOR= data set is particularly useful for displaying the
forecasts in tabular or graphical form.

OUTSEASON= SAS-data-set
names the output data set to contain the seasonal statistics. The statistics are com-
puted for each season as specified by the ID statement INTERVAL= option or the
SEASONALITY= option. The OUTSEASON= data set is particularly useful when
analyzing transactional data for seasonal variations.

OUTSTAT= SAS-data-set
names the output data set to contain the statistics of fit (or goodness-of-fit statistics).
The OUTSTAT= data set is particularly useful for evaluating how well the model
fits the series. The statistics of fit are based on the entire range of the time series
regardless of whether the HOLDOUT= option is specified.

OUTSUM= SAS-data-set
names the output data set to contain the summary statistics and the forecast sum-
mation. The summary statistics are based on the accumulated time series when the
ACCUMULATE= or SETMISSING= options are specified. The forecast summations
are based on the LEAD=, STARTSUM=, and USE= options. The OUTSUM= data
set is particularly useful when forecasting large numbers of series and a summary of
the results are needed.

OUTTREND= SAS-data-set
names the output data set to contain the trend statistics. The statistics are computed
for each time period as specified by the ID statement INTERVAL= option. The
OUTTREND= data set is particularly useful when analyzing transactional data for
trends.

PRINT= option | (options)
specifies the printed output desired. By default, the HPF procedure produces no
printed output. The following printing options are available:

ESTIMATES prints the results of parameter estimation. (OUTEST= data set)

FORECASTS prints the forecasts. (OUTFOR= data set)
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PERFORMANCE prints the performance statistics for each forecast.

PERFORMANCESUMMARY prints the performance summary for each BY group.

PERFORMANCEOVERALL prints the performance summary for all of the BY
groups.

SEASONS prints the seasonal statistics. (OUTSEASON= data set)

STATISTICS prints the statistics of fit. (OUTSTAT= data set)

STATES prints the backcast, initial, and final states.

SUMMARY prints the summary statistics for the accumulated time series.
(OUTSUM= data set)

TRENDS prints the trend statistics. (OUTTREND= data set)

ALL Same as PRINT=(ESTIMATES FORECASTS STATISTICS
SUMMARY). PRINT=(ALL,TRENDS,SEASONS) prints all
of the options listed above.

For example, PRINT=FORECASTS prints the forecasts, PRINT=(ESTIMATES,
FORECASTS) prints the parameter estimates and the forecasts, and PRINT=ALL
prints all of the above output.

The PRINT= option produces printed output for these results utilizing the Output
Delivery System (ODS). The PRINT= option produces results similar to the data sets
listed next to the above options in parenthesis.

PRINTDETAILS
specifies that output requested with the PRINT= option be printed in greater detail.

SEASONALITY= number
specifies the length of the seasonal cycle. For example, SEASONALITY=3 means
that every group of three observations forms a seasonal cycle. The SEASONALITY=
option is applicable only for seasonal forecasting models. By default, the length of
the seasonal cycle is one (no seasonality) or the length implied by the INTERVAL=
option specified in the ID statement. For example, INTERVAL=MONTH implies
that the length of the seasonal cycle is twelve.

SORTNAMES
specifies that the variables specified in the FORECAST statements are processed in
sorted order.

STARTSUM= n
specifies the starting forecast lead (or horizon) for which to begin summation of the
forecasts specified by the LEAD= option. The STARTSUM= value must be less than
the LEAD= value. The default is STARTSUM=1, that is, the sum from the one-step
ahead forecast to the multistep forecast specified by the LEAD= option.

The prediction standard errors of the summation of forecasts takes into account the
correlation between the multistep forecasts. The DETAILS section describes the
STARTSUM= option in more detail.
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BY Statement

BY variables;

A BY statement can be used with PROC HPF to obtain separate analyses for groups
of observations defined by the BY variables.

FORECAST Statement

FORECAST variable-list / options;

The FORECAST statement lists the numeric variables in the DATA= data set whose
accumulated values represent time series to be modeled and forecast. The options
specify which forecast model is to be used or how the forecast model is selected from
several possible candidate models.

A data set variable can be specified in only one FORECAST statement. Any number
of FORECAST statements can be used. The following options can be used with the
FORECAST statement.

ACCUMULATE= option
specifies how the data set observations are accumulated within each time period
for the variables listed in the FORECAST statement. If the ACCUMULATE=
option is not specified in the FORECAST statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

ALPHA= number
specifies the significance level to use in computing the confidence limits of the fore-
cast. The ALPHA=value must be between 0 and 1. The default is ALPHA=0.05,
which produces 95% confidence intervals.

HOLDOUT= n
specifies the size of the holdout sample to be used for model selection. The holdout
sample is a subset of actual time series ending at the last nonmissing observation. If
the ACCUMULATE= option is specified, the holdout sample is based on the accu-
mulated series. If the holdout sample is not specified, the full range of the actual time
series is used for model selection.

For each candidate model specified, the holdout sample is excluded from the initial
model fit and forecasts are made within the holdout sample time range. Then, for
each candidate model specified, the statistic of fit specified by the SELECT= option
is computed using only the observations in the holdout sample. Finally, the candidate
model, which performs best in the holdout sample, based on this statistic, is selected
to forecast the actual time series.

The HOLDOUT= option is only used to select the best forecasting model from a list
of candidate models. After the best model is selected, the full range of the actual time
series is used for subsequent model fitting and forecasting. It is possible that one
model will outperform another model in the holdout sample but perform less well
when the entire range of the actual series is used.
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If MODEL=BESTALL and HOLDOUT= options are used together, the last one hun-
dred observations are used to determine whether the series is intermittent. If the series
determined not to be intermittent, holdout sample analysis will be used to select the
smoothing model.

HOLDOUTPCT= number
specifies the size of the holdout sample as a percentage of the length of the time
series. If HOLDOUT=5 and HOLDOUTPCT=10, the size of the holdout sample is
min(5, 0.1T ) where T is the length of the time series with beginning and ending
missing values removed. The default is 100 (100%).

INTERMITTENT= number
specifies a number greater than one which is used to determine whether or not a time
series is intermittent. If the average demand interval is greater than this number then
the series is assumed to be intermittent. This option is used with MODEL=BESTALL
option. The default is INTERMITTENT=1.25.

MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based
on the mean or median. By default the mean value is provided. If no transformation
is applied to the actual series using the TRANSFORM= option, the mean and median
forecast values are identical.

MODEL= model-name
specifies the forecasting model to be used to forecast the actual time series. A single
model can be specified or a group of candidate models can be specified. If a group
of models is specified, the model used to forecast the accumulated time series is
selected based on the SELECT= option and the HOLDOUT= option. The default is
MODEL=BEST. The following forecasting models are provided:

NONE No forecast. The accumulated time series is appended with missing
values in the OUT= data set. This option is particularly useful
when the results stored in the OUT= data set are subsequently used
in (auto) regression analysis where forecasts of the independent
variables are needed to forecast the dependent variable.

SIMPLE Simple (Single) Exponential Smoothing

DOUBLE Double (Brown) Exponential Smoothing

LINEAR Linear (Holt) Exponential Smoothing

DAMPTREND Damped Trend Exponential Smoothing

SEASONAL Seasonal Exponential Smoothing

WINTERS Winters Multiplicative Method

ADDWINTERS Winters Additive Method

BEST Best Candidate Smoothing Model (SIMPLE, DOUBLE, LINEAR,
DAMPTREND, SEASONAL, WINTERS, ADDWINTERS)

BESTN Best Candidate Nonseasonal Smoothing Model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND)
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BESTS Best Candidate Seasonal Smoothing Model (SEASONAL,
WINTERS, ADDWINTERS)

IDM|CROSTON Intermittent Demand Model such as Croston’s Method or Average
Demand Model. An intermittent time series is one whose values
are mostly zero.

BESTALL Best Candidate Model (IDM, BEST)

The BEST, BESTN, and BESTS options specify a group of models by which the
HOLDOUT= option and SELECT= option are used to select the model used to fore-
cast the accumulated time series based on holdout sample analysis. Transformed
versions of the above smoothing models can be specified using the TRANSFORM=
option.

The BESTALL option specifies that if the series is intermittent, an intermittent de-
mand model such as Croston’s Method or Average Demand Model (MODEL=IDM)
is selected; otherwise; the best smoothing model is selected (MODEL=BEST).
Intermittency is determined by the INTERMITTENT= option.

The documentation for Chapter 2, “Forecasting Process Details,” describes the above
smoothing models and intermittent models in greater detail.

NBACKCAST= n
specifies the number of observations used to initialize the backcast states. The default
is the entire series.

REPLACEBACK
specifies that actual values excluded by the BACK= option are replaced with one-
step-ahead forecasts in the OUT= data set.

REPLACEMISSING
specifies that embedded missing actual values are replaced with one-step-ahead fore-
casts in the OUT= data set.

SEASONTEST= option
specifies the options related to the seasonality test. This option is used with
MODEL=BEST and MODEL=BESTALL option.

The following options are provided:

SEASONTEST=NONE no test

SEASONTEST=(SIGLEVEL=number) Significance probability value.

Series with strong seasonality have small test probabilities. SEASONTEST=(SIGLEVEL=0)
always implies seasonality. SEASONTEST=(SIGLEVEL=1) always implies no
seasonality. The default is SEASONTEST=(SIGLEVEL=0.01).

SELECT= option
specifies the model selection criterion (statistic of fit) to be used to select from sev-
eral candidate models. This option would often be used in conjunction with the
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HOLDOUT= option. The default is SELECT=RMSE. The following statistics of
fit are provided:

SSE Sum of Square Error

MSE Mean Square Error

RMSE Root Mean Square Error

UMSE Unbiased Mean Square Error

URMSE Unbiased Root Mean Square Error

MAXPE Maximum Percent Error

MINPE Minimum Percent Error

MPE Mean Percent Error

MAPE Mean Absolute Percent Error

MDAPE Median Percent Error

GMAPE Geometric Mean Percent Error

MINPPE Minimum Predictive Percent Error

MAXPPE Maximum Predictive Percent Error

MSPPE Mean Predictive Percent Error

MAPPE Symmetric Mean Absolute Predictive Percent Error

MDAPPE Median Predictive Percent Error

GMAPPE Geometric Mean Predictive Percent Error

MINSPE Minimum Symmetric Percent Error

MAXSPE Maximum Symmetric Percent Error

MSPE Mean Symmetric Percent Error

SMAPE Symmetric Mean Absolute Percent Error

MDASPE Median Symmetric Percent Error

GMASPE Geometric Mean Symmetric Percent Error

MINRE Minimum Relative Error

MAXRE Maximum Relative Error

MRE Mean Relative Error

MRAE Mean Relative Absolute Error

MDRAE Median Relative Absolute Error

GMRAE Geometric Mean Relative Absolute Error

MAXERR Maximum Error

MINERR Minimum Error

ME Mean Error

MAE Mean Absolute Error

RSQUARE R-Square
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ADJRSQ Adjusted R-Square

AADJRSQ Amemiya’s Adjusted R-Square

RWRSQ Random Walk R-Square

AIC Akaike Information Criterion

SBC Schwarz Bayesian Information Criterion

APC Amemiya’s Prediction Criterion

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are assigned in the ac-
cumulated time series for variables listed in the FORECAST statement. If the
SETMISSING= option is not specified in the FORECAST statement, missing values
are set based on the SETMISSING= option of the ID statement. See the ID statement
SETMISSING= option for more details.

TRANSFORM= option
specifies the time series transformation to be applied to the actual time series. The
following transformations are provided:

NONE No transformation is applied. This option is the default.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

AUTO Automatically choose between NONE and LOG based on model
selection criteria.

When the TRANSFORM= option is specified the time series must be strictly positive.
Once the time series is transformed, the model parameters are estimated using the
transformed series. The forecasts of the transformed series are then computed, and
finally, the transformed series forecasts are inverse transformed. The inverse trans-
form produces either mean or median forecasts depending on whether the MEDIAN
option is specified.

The TRANSFORM= option is not applicable when MODEL=IDM is specified.

USE= option
specifies which forecast values are appended to the actual values in the OUT= and
OUTSUM= data sets. The following USE= options are provided:

PREDICT The predicted values are appended to the actual values. This option
is the default.

LOWER The lower confidence limit values are appended to the actual val-
ues.
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UPPER The upper confidence limit values are appended to the actual val-
ues.

Thus, the USE= option enables the OUT= and OUTSUM= data sets to be used for
worst/best/average/median case decisions.

ZEROMISS= option

specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the FORECAST
statement. If the ZEROMISS= option is not specified in the FORECAST statement,
missing values are set based on the ZEROMISS= option of the ID statement. See the
ID statement ZEROMISS= option for more details.

ID Statement

ID variable INTERVAL= interval options;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date, time,
or datetime values. In addition, the ID statement specifies the (desired) frequency
associated with the actual time series. The ID statement options also specify how
the observations are accumulated and how the time ID values are aligned to form the
actual time series. The information specified affects all variables specified in sub-
sequent FORECAST statements. If the ID statement is specified, the INTERVAL=
option must also be specified. If an ID statement is not specified, the observation
number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement.

ACCUMULATE= option
specifies how the data set observations are accumulated within each time period. The
frequency (width of each time interval) is specified by the INTERVAL= option. The
ID variable contains the time ID values. Each time ID variable value corresponds to
a specific time period. The accumulated values form the actual time series, which is
used in subsequent model fitting and forecasting.

The ACCUMULATE= option is particularly useful when there are zero or more than
one input observations coinciding with a particular time period (e.g., transactional
data). The EXPAND procedure offers additional frequency conversions and transfor-
mations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each
time period based on the ID variable and the frequency specified by the INTERVAL=
option:

NONE No accumulation occurs; the ID variable values must be
equally spaced with respect to the frequency. This is the
default option.
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TOTAL Observations are accumulated based on the total sum of
their values.

AVERAGE | AVG Observations are accumulated based on the average of
their values.

MINIMUM | MIN Observations are accumulated based on the minimum of
their values.

MEDIAN | MED Observations are accumulated based on the median of their
values.

MAXIMUM | MAX Observations are accumulated based on the maximum of
their values.

N Observations are accumulated based on the number of
nonmissing observations.

NMISS Observations are accumulated based on the number of
missing observations.

NOBS Observations are accumulated based on the number of ob-
servations.

FIRST Observations are accumulated based on the first of their
values.

LAST Observations are accumulated based on the last of their
values.

STDDEV | STD Observations are accumulated based on the standard devi-
ation of their values.

CSS Observations are accumulated based on the corrected sum
of squares of their values.

USS Observations are accumulated based on the uncorrected
sum of squares of their values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for
specifying how accumulated missing values are treated. If missing values should be
interpreted as zero, then SETMISSING=0 should be used. The DETAILS section
describes accumulation in greater detail.

ALIGN= option
controls the alignment of SAS dates used to identify output observations. The
ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE
| MID | M, and ENDING | END | E. BEGINNING is the default.

END= option
specifies a SAS date, datetime, or time value that represents the end of the data. If the
last time ID variable value is less than the END= value, the series is extended with
missing values. If the last time ID variable value is greater than the END= value,
the series is truncated. For example, END=“&sysdate”D uses the automatic macro
variable SYSDATE to extend or truncate the series to the current date. This option
and the START= option can be used to ensure that data associated with each BY
group contains the same number of observations.
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INTERVAL= interval
specifies the frequency of the input time series. For example, if the input data set
consists of quarterly observations, then INTERVAL=QTR should be used. If the
SEASONALITY= option is not specified, the length of the seasonal cycle is implied
from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal
cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL=
option determines the time periods for the accumulation of observations.

The basic intervals are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH,
TENDAY, WEEK, WEEKDAY, DAY, HOUR, MINUTE, SECOND. Refer to
SAS/ETS User’s Guide chapter on Date Interval, Foremats, and Functions for the
intervals that can be specified.

NOTSORTED
specifies that the time ID values are not in sorted order. The HPF procedure will sort
the data with respect to the time ID prior to analysis.

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are assigned in the accu-
mulated time series. If a number is specified, missing values are set to number. If a
missing value indicates an unknown value, this option should not be used. If a miss-
ing value indicates no value, a SETMISSING=0 should be used. You would typically
use SETMISSING=0 for transactional data because no recorded data usually implies
no activity. The following options can also be used to determine how missing values
are assigned:

MISSING Missing values are set to missing. This is the default op-
tion.

AVERAGE | AVG Missing values are set to the accumulated average value.

MINIMUM | MIN Missing values are set to the accumulated minimum value.

MEDIAN | MED Missing values are set to the accumulated median value.

MAXIMUM | MAX Missing values are set to the accumulated maximum value.

FIRST Missing values are set to the accumulated first nonmissing
value.

LAST Missing values are set to the accumulated last nonmissing
value.

PREVIOUS | PREV Missing values are set to the previous accumulated non-
missing value. Missing values at the beginning of the ac-
cumulated series remain missing.

NEXT Missing values are set to the next accumulated nonmissing
value. Missing values at the end of the accumulated series
remain missing.

If SETMISSING=MISSING is specified and the MODEL= option specifies a
smoothing model, the missing observations are smoothed over. If MODEL=IDM
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is specified, missing values are assumed to be periods of no demand, that is,
SETMISSING=MISSING is equivalent to SETMISSING=0.

START= option
specifies a SAS date, datetime, or time value that represents the beginning of the
data. If the first time ID variable value is greater than the START= value, the series
is prepended with missing values. If the first time ID variable value is less than the
START= value, the series is truncated. This option and the END= option can be
used to ensure that data associated with each by group contains the same number of
observations.

ZEROMISS= option
specifies how beginning and/or ending zero values (either actual or accumulated) are
interpreted in the accumulated time series. The following options can also be used to
determine how beginning and/or ending zero values are assigned:

NONE Beginning and/or ending zeros unchanged. This is the de-
fault.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.

If the accumulated series is all missing and/or zero the series is not changed.

IDM Statement

IDM options;

The IDM statement is used to specify an intermittent demand model. An intermit-
tent demand series can be analyzed in two ways: individually modeling both demand
interval and size component or jointly modeling these components using the aver-
age demand component (demand size divided by demand interval). The IDM state-
ment specifies the two smoothing models to be used to forecast the demand interval
component (INTERVAL= option) and the demand size component (SIZE= option),
or specifies the single smoothing model to be used to forecast the average demand
component (AVERAGE= option). Therefore, two smoothing models (INTERVAL=
and SIZE= options) must be specified or one smoothing model (AVERAGE= option)
must be specified. Only one statement can be specified.

The following examples illustrate typical uses of the IDM statement:

/* default specification */
idm;

/* demand interval model only specification */
idm interval=(transform=log);

/* demand size model only specification */
idm size=(method=linear);
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/* Croston’s Method */
idm interval=(method=simple)

size =(method=simple);

/* Log Croston’s Method */
idm interval=(method=simple transform=log)

size =(method=simple transform=log);

/* average demand model specification */
idm average=(method=bestn);

The default specification uses both the INTERVAL= option and SIZE= option de-
faults for the decomposed (Croston’s) demand model and the AVERAGE= option
defaults for the average demand model.

The following example illustrates how to automatically choose the decomposed de-
mand model using MAPE as the model selection criterion:

idm interval=(method=simple transform=auto select=mape)
size =(method=simple transform=auto select=mape);

forecast sales / model=idm select=mape;

The preceding fits two forecast models (simple and log simple exponential smooth-
ing) to both the demand interval and size components. The forecast model that results
in the lowest in-sample MAPE for each component is used to forecast the component.

The following example illustrates how to automatically choose the average demand
model using MAPE as the model selection criterion:

idm average=(method=simple transform=auto select=mape);
forecast sales / model=idm;

The preceding fits two forecast models (simple and log simple exponential smooth-
ing) to the average demand component. The forecast model that results in the lowest
in-sample MAPE is used to forecast the component.

Combining the above two examples, the following example illustrates how to auto-
matically choose between the decomposed demand model and the average demand
model using MAPE as the model selection criterion:

idm interval=(method=simple transform=auto select=mape)
size =(method=simple transform=auto select=mape)
average =(method=simple transform=auto select=mape);

forecast sales / model=idm select=mape;

The preceding automatically selects between the decomposed demand model and the
average demand model as described previously. The forecast model that results in the
lowest in-sample MAPE is used to forecast the series.
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The following options can be specified in the IDM statement:

INTERVAL=(smoothing-model-options)
specifies the smoothing model used to forecast the demand interval component. See
smoothing model specification options described below.

SIZE=(smoothing-model-options)
specifies the smoothing model used to forecast the demand size component. See
smoothing model specification options described below.

AVERAGE=(smoothing-model-options)
specifies the smoothing model used to forecast the demand average component. See
smoothing model specification options described below.

BASE=AUTO | number
specifies the base value of the time series used to determine the demand series com-
ponents. The demand series components are determined based on the departures from
this base value. If a base value is specified, this value is used to determine the demand
series components. If BASE=AUTO is specified, the time series properties are used to
automatically adjust the time series. For the common definition of Croston’s Method
use BASE=0 which defines departures based on zero. The default is BASE=0.

Given a time series, yt, and base value, b, the time series is adjusted by the base value
to create the base adjusted time series, xt = yt − b. Demands are assumed to occur
when the base adjusted series is nonzero (or when the time series, yt, departs from
the base value, b).

When BASE=AUTO, the base value is automatically determined by the time series
median, minimum, and maximum value and the INTERMITTENT= option value of
the FORECAST statement.

Smoothing Model Specification Options for IDM Statement

The smoothing model options describe how to forecast the demand interval, size, and
average demand components (INTERVAL= option, SIZE= option, and AVERAGE=
option).

If the smoothing model options are not specified, the following are the defaults for
the demand interval, size, and average components.

interval=(transform=auto method=bestn
levelrest=(0.0001 0.9999)
trendrest=(0.0001 0.9999)
damprest =(0.0001 0.9999) select=rmse bounds=(1,.));

size =(transform=auto method=bestn
levelrest=(0.0001 0.9999)
trendrest=(0.0001 0.9999)
damprest =(0.0001 0.9999) select=rmse);

average =(transform=auto method=bestn
levelrest=(0.0001 0.9999)
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trendrest=(0.0001 0.9999)
damprest =(0.0001 0.9999) select=rmse);

The above smoothing model options provide the typical automation in intermittent
demand model selection.

The following describes the smoothing model options:

TRANSFORM= option
specifies the time series transformation to be applied to the demand component. The
following transformations are provided:

NONE No transformation is applied.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

AUTO Automatically choose between NONE and LOG based on model
selection criteria. This option is the default.

When the TRANSFORM= option is specified, the demand component must be
strictly positive. Once the demand component is transformed, the model parameters
are estimated using the transformed component. The forecasts of the transformed
component are then computed, and finally, the transformed component forecasts are
inverse transformed. The inverse transform produces either mean or median forecasts
depending on whether the MEDIAN option is specified.

MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based
on the mean or median. By default the mean value is provided. If no transformation
is applied to the actual series using the TRANSFORM= option, the mean and median
component forecast values are identical.

METHOD= method-name
specifies the forecasting model to be used to forecast the demand component. A sin-
gle model can be specified or a group of candidate models can be specified. If a
group of models is specified, the model used to forecast the accumulated time series
is selected based on the SELECT= option of the IDM statement and the HOLDOUT=
option of the FORECAST statement. The default is METHOD=BESTN. The follow-
ing forecasting models are provided:

SIMPLE Simple (Single) Exponential Smoothing

DOUBLE Double (Brown) Exponential Smoothing

LINEAR Linear (Holt) Exponential Smoothing

DAMPTREND Damped Trend Exponential Smoothing
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BESTN Best Candidate Nonseasonal Smoothing Model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND)

NOSTABLE
specifies that the smoothing model parameters are not restricted to the additive in-
vertible region of the parameter space. By default, the smoothing model parameters
are restricted to be inside the additive invertible region of the parameter space.

LEVELPARM= number
specifies the level weight parameter initial value. See the smoothing model parameter
specifications options below.

LEVELREST=(number,number)
specifies the level weight parameter restrictions. See the smoothing model parameter
specifications options below.

TRENDPARM= number
specifies the trend weight parameter initial value. See the smoothing model parameter
specifications options below.

TRENDREST=(number,number)
specifies the trend weight parameter restrictions. See the smoothing model parameter
specifications options below.

DAMPPARM= number
specifies the damping weight parameter initial value. See the smoothing model pa-
rameter specifications options below.

DAMPREST=(number,number)
specifies the damping weight parameter restrictions. See the smoothing model pa-
rameter specifications options below.

NOEST
specifies that the smoothing model parameters are fixed values. To use this option,
all of the smoothing model parameters must be explicitly specified. By default, the
smoothing model parameters are optimized.

BOUNDS=(number,number)
Specifies the component forecast bound. See the smoothing model forecast bounds
below.

SELECT= option
specifies the model selection criterion (statistic of fit) to be used to select from
several candidate models. This option would often be used in conjunction with
the HOLDOUT= option specified in the FORECAST statement. The default is
SELECT=RMSE. The statistics of fit provided are the same as those provided in
the FORECAST statement.
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Smoothing Model Parameter Specification Options

The parameter options are used to specify smoothing model parameters. If the pa-
rameter restrictions are not specified the default is (0.0001 0.9999), which implies
that the parameters are restricted between 0.0001 and 0.9999. Parameters and their
restrictions are required to be greater than or equal to -1 and less than or equal to
2. Missing values indicate no lower and/or upper restriction. If the parameter initial
values are not specified, the optimizer uses a grid search to find an appropriate initial
value.

Smoothing Model Forecast Bounds Options

Specifies the demand component forecast bounds. The forecast bounds restrict the
component forecasts. The default for demand interval forecasts is BOUNDS=1. The
lower bound for the demand interval forecast must be greater than one. The default
for demand size forecasts is BOUNDS=(.,.) or no bounds. The demand size forecasts
bounds are applied after the forecast is adjusted by the base value.
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Details

The HPF procedure can be used to perform trend and seasonal analysis on trans-
actional data. For trend analysis, various sample statistics are computed for each
time period defined by the time ID variable and INTERVAL= option. For sea-
sonal analysis, various sample statistics are computed for each season defined by
the INTERVAL= or the SEASONALITY= option. For example, suppose the trans-
actional data ranges from June 1990 to January 2000, then the trend statistics are
computed for every month: June 1990, July 1990, ..., January 2000. The seasonal
statistics are computed for each season: January, February, ..., December.

The HPF procedure can be used to forecast time series data as well as transactional
data. If the data is transactional, then the procedure must first accumulate the data into
a time series before it can be forecast. The procedure uses the following sequential
steps to produce forecasts, with the options that control the step listed to the right:

1. Accumulation ACCUMULATE= option

2. Missing Value Interpretation SETMISSING= option

3. Diagnostic Tests INTERMITTENT= and SEASONTEST= options

4. Model Selection MODEL=, HOLDOUT=, HOLDOUTPCT=, and SELECT= options

5. Transformations TRANSFORM= option

6. Parameter Estimation MODEL= option

7. Forecasting MODEL= and LEAD= options

8. Inverse Transformation TRANSFORM= and MEDIAN options

9. Statistics of Fit SELECT= option

10. Summation of Forecasts LEAD= and STARTSUM= options

Each of the above steps is described below.

Accumulation

If the ACCUMULATE= option is specified, data set observations are accumulated
within each time period. The frequency (width of each time interval) is specified by
the INTERVAL= option. The ID variable contains the time ID values. Each time ID
value corresponds to a specific time period. Accumulation is particularly useful when
the input data set contains transactional data, whose observations are not spaced with
respect to any particular time interval. The accumulated values form the actual time
series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20
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If the INTERVAL=MONTH is specified, all of the above observations fall within
three time periods of March 1999, April 1999, and May 1999. The observations are
accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the
ID variable values are not equally spaced with respect to the specified frequency
(MONTH).

If the ACCUMULATE=TOTAL option is specified:

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified:

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified:

O1MAR1999 10
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MEDIAN option is specified:

O1MAR1999 20
01APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified:

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified:

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified:
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O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified:

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the above examples, even though the data set observations con-
tained no missing values, the accumulated time series may have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. The forecast-
ing models used by the HPF procedure can effectively handle missing values (see
the “Missing Value Modeling Issues” section on page 31). But sometimes missing
values are known, such as when missing values are created from accumulation and
no observations should be interpreted as no (zero) value. In the former case, the
SETMISSING= option can be used to interpret how missing values are treated. The
SETMISSING=0 option should be used when missing observations are to be treated
as no (zero) values. In other cases, missing values should be interpreted as global
values, such as minimum or maximum values of the accumulated series. The accu-
mulated and interpreted time series is used in subsequent analyses.

Diagnostic Tests

The INTERMITTENT= option set the thresholds for categorizing a series as inter-
mittent or non-intermittent. The SEASONTEST= option set the thresholds for cate-
gorizing a series as seasonal or non-seasonal.

Model Selection

When more than one candidate model is specified, forecasts for each candidate model
are compared using the model selection criterion specified by the SELECT= option.
The selection criterion is computed using the multistep forecasts in the holdout sam-
ple range if the HOLDOUT= or HOLDOUTPCT= options are specified, or the one-
step ahead forecasts for the full range of the time series if the HOLDOUT= and
HOLDOUTPCT= options are not specified. The candidate model with the best se-
lection criterion is selected to forecast the time series.
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Transformations

If the TRANSFORM= option is specified, the time series is transformed prior to
model parameter estimation and forecasting. Only strictly positive series can be
transformed. An error is generated when the TRANSFORM= option is used with
a nonpositive series.

Parameter Estimation

All parameters associated with the model are optimized based on the data with the
default parameter restrictions imposed. If the TRANSFORM= option is specified,
the transformed time series data are used to estimate the model parameters.

Missing Value Modeling Issues

The treatment of missing values varies with the forecasting model. For the smoothing
models, missing values after the start of the series are replaced with one-step-ahead
predicted values, and the predicted values are applied to the smoothing equations. See
Chapter 2, “Forecasting Process Details,” for greater detail on how missing values
are treated in the smoothing models. For MODEL=IDM, specified missing values
are assumed to be periods of no demand.

The treatment of missing values can also be specified by the user with the
SETMISSING= option, which changes the missing values prior to modeling.

Even though all of the observed data are nonmissing, using the ACCUMULATE=
option can create missing values in the accumulated series.

Forecasting

Once the model parameters are estimated, one-step ahead forecasts are generated for
the full range of the actual (optionally transformed) time series data, and multistep
forecasts are generated from the end of the observed time series to the future time
period after the last observation specified by the LEAD= option. If there are missing
values at the end of the time series, the forecast horizon will be greater than that
specified by the LEAD= option.

Inverse Transformations

If the TRANSFORM= option is specified, the forecasts of the transformed time series
are inverse transformed. By default, the mean (expected) forecasts are generated. If
the MEDIAN option is specified, the median forecasts are generated.
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Statistics of Fit

The statistics of fit (or goodness-of-fit statistics) are computed by comparing the ac-
tual time series data and the generated forecasts. If the TRANSFORM= option was
specified, the statistics of fit are based on the inverse transformed forecasts.

Forecast Summation

The multistep forecasts generated by the above steps are summed from the
STARTSUM= number to the LEAD= number. For example, if STARTSUM=4 and
LEAD=6, the 4-step through 6-step ahead forecasts are summed. The predictions
are simply summed. However, the prediction error variance of this sum is computed
taking into account the correlation between the individual predictions. The upper
and lower confidence limits for the sum of the predictions is then computed based on
the prediction error variance of the sum.

The forecast summation is particularly useful when it is desirable to model in one
frequency yet the forecast of interest is another frequency. For example, if a time
series has a monthly frequency (INTERVAL=MONTH) and you want a forecast for
the third and fourth future months, a forecast summation for the third and fourth
month can be obtained by specifying STARTSUM=3 and LEAD=4.

Variance-related computations are only computed when no transformation is speci-
fied (TRANSFORM=NONE).

Comparison to the Time Series Forecasting System

With the exception of Model Selection, the techniques used in the HPF procedure are
identical to the Time Series Forecasting System of SAS/ETS software. For Model
Parameter Estimation, the default parameter restrictions are imposed.

Data Set Output

The HPF procedure can create the OUT=, OUTEST=, OUTFOR=, OUTSTAT=,
OUTSUM=, OUTSEASON=, and OUTTREND= data sets. In general, these data
sets will contain the variables listed in the BY statement. In general, if a forecasting
step related to an output data step fails, the values of this step are not recorded or
are set to missing in the related output data set, and appropriate error and/or warning
messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, and FORECAST
statements. If the ID statement is specified, the ID variable values are aligned
and extended based on the ALIGN= and INTERVAL= options. The values of
the variables specified in the FORECAST statements are accumulated based on
the ACCUMULATE= option and missing values are interpreted based on the
SETMISSING= option. If the REPLACEMISSING option is specified, missing val-
ues embedded missing values are replaced by the one step-ahead forecasts.
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These variable values are then extrapolated based on their forecasts or extended with
missing values when the MODEL=NONE option is specified. If USE=LOWER
is specified, the variable is extrapolated with the lower confidence limits; if
USE=UPPER, the variable is extrapolated using the upper confidence limits; oth-
erwise, the variable values are extrapolated with the predicted values. If the
TRANSFORM= option is specified, the predicted values will contain either mean
or median forecasts depending on whether or not the MEDIAN option is specified.

If any of the forecasting steps fail for particular variable, the variable values are ex-
tended by missing values.

OUTEST= Data Set

The OUTEST= data set contains the variables specified in the BY statement as well
as the variables listed below. For variables listed in FORECAST statements where the
option MODEL=NONE is specified, no observations are recorded for these variables.
For variables listed in FORECAST statements where the option MODEL=NONE is
not specified, the following variables contain observations related to the parameter
estimation step:

–NAME– Variable name

–MODEL– Forecasting Model

–TRANSFORM– Transformation

–PARM– Parameter Name

–EST– Parameter Estimate

–STDERR– Standard Errors

–TVALUE– t-Values

–PVALUE– Probability Values

If the parameter estimation step fails for a particular variable, no observations are
recorded.

OUTFOR= Data Set

The OUTFOR= data set contains the variables specified in the BY statement as well
as the variables listed below. For variables listed in FORECAST statements where the
option MODEL=NONE is specified, no observations are recorded for these variables.
For variables listed in FORECAST statements where the option MODEL=NONE is
not specified, the following variables contain observations related to the forecasting
step:

–NAME– Variable name

–TIMEID– Time ID values

PREDICT Predicted Values

STD Prediction Standard Errors
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LOWER Lower Confidence Limits

UPPER Upper Confidence Limits

ERROR Prediction Errors

If the forecasting step fails for a particular variable, no observations are recorded.
If the TRANSFORM= option is specified, the values in the variables listed above
are the inverse transform forecasts. If the MEDIAN option is specified, the median
forecasts are stored; otherwise, the mean forecasts are stored.

OUTSTAT= Data Set

The OUTSTAT= data set contains the variables specified in the BY statement as well
as the variables listed below. For variables listed in FORECAST statements where the
option MODEL=NONE is specified, no observations are recorded for these variables.
For variables listed in FORECAST statements where the option MODEL=NONE is
not specified, the following variables contain observations related to the statistics of
fit step:

–NAME– Variable name

SSE Sum of Square Error

MSE Mean Square Error

UMSE Unbiased Mean Square Error

RMSE Root Mean Square Error

URMSE Unbiased Root Mean Square Error

MAPE Mean Absolute Percent Error

MAE Mean Absolute Error

RSQUARE R-Square

ADJRSQ Adjusted R-Square

AADJRSQ Amemiya’s Adjusted R-Square

RWRSQ Random Walk R-Square

AIC Akaike Information Criterion

SBC Schwarz Bayesian Information Criterion

APC Amemiya’s Prediction Criterion

MAXERR Maximum Error

MINERR Minimum Error

MINPE Maximum Percent Error

MAXPE Minimum Percent Error

ME Mean Error

MPE Mean Percent Error



OUTSUM= Data Set � 35

If the statistics of fit step fails for particular variable, no observations are recorded.
If the TRANSFORM= option is specified, the values in the variables listed above
are computed based on the inverse transform forecasts. If the MEDIAN option is
specified, the median forecasts are the basis; otherwise, the mean forecasts are the
basis.

OUTSUM= Data Set

The OUTSUM= data set contains the variables specified in the BY statement as well
as the variables listed below. The OUTSUM= data set records the summary statis-
tics for each variable specified in a FORECAST statement. For variables listed in
FORECAST statements where the option MODEL=NONE is specified, the values
related to forecasts are set to missing. For variables listed in FORECAST statements
where the option MODEL=NONE is not specified, the forecast values are set based
on the USE= option.

Variables related to summary statistics are based on the ACCUMULATE= and
SETMISSING= options:

–NAME– Variable name

–STATUS– Forecasting Status. Nonzero values imply that no forecast was gen-
erated for the series.

NOBS Number of Observations

N Number of Nonmissing Observations

NMISS Number of Missing Observations

MIN Minimum Value

MAX Maximum Value

MEAN Mean Value

STDDEV Standard Deviation

Variables related to forecast summation are based on the LEAD= and STARTSUM=
options:

PREDICT Forecast Summation Predicted Values

STD Forecast Summation Prediction Standard Errors

LOWER Forecast Summation Lower Confidence Limits

UPPER Forecast Summation Upper Confidence Limits

Variance-related computations are only computed when no transformation is speci-
fied (TRANSFORM=NONE).

Variables related to multistep forecast based on the LEAD= and USE= options:
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–LEADn– Multistep Forecast (n ranges from one to LEAD=number). If
USE=LOWER, this variable will contain the lower confidence limits;
if USE=UPPER, this variable will contain the upper confidence limits;
otherwise, this variable will contain the predicted values.

If the forecast step fails for a particular variable, the variables related to forecasting
are set to missing. The OUTSUM= data set contains both a summary of the (accu-
mulated) time series and optionally its forecasts for all series.

OUTSEASON= Data Set

The OUTSEASON= data set contains the variables specified in the BY statement as
well as the variables listed below. The OUTSEASON= data set records the seasonal
statistics for each variable specified in a FORECAST statement.

Variables related to seasonal statistics are based on the INTERVAL= or
SEASONALITY= options:

–NAME– Variable name

–TIMEID– Time ID values

–SEASON– Seasonal index

NOBS Number of Observations

N Number of Nonmissing Observations

NMISS Number of Missing Observations

MIN Minimum Value

MAX Maximum Value

RANGE Range Value

SUM Summation Value

MEAN Mean Value

STDDEV Standard Deviation

CSS Corrected Sum of Squares

USS Uncorrected Sum of Squares

MEDIAN Median Value

The above statistics are computed for each season.
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OUTTREND= Data Set

The OUTTREND= data set contains the variables specified in the BY statement as
well as the variables listed below. The OUTTREND= data set records the trend statis-
tics for each variable specified in a FORECAST statement.

Variables related to trend statistics are based on the INTERVAL= and
SEASONALITY= options:

–NAME– Variable name

–TIMEID– Time ID values

–SEASON– Seasonal index

NOBS Number of Observations

N Number of Nonmissing Observations

NMISS Number of Missing Observations

MIN Minimum Value

MAX Maximum Value

RANGE Range Value

SUM Summation Value

MEAN Mean Value

STDDEV Standard Deviation

CSS Corrected Sum of Squares

USS Uncorrected Sum of Squares

MEDIAN Median Value

The above statistics are computed for each time period.

Printed Output

The HPF procedure optionally produces printed output for these results utilizing the
Output Delivery System (ODS). By default, the procedure produces no printed out-
put. All output is controlled by the PRINT= and PRINTDETAILS options associated
with the PROC HPF statement. In general, if a forecasting step related to printed out-
put fails, the values of this step are not printed and appropriate error and/or warning
messages are recorded in the log. The printed output is similar to the output data set
and these similarities are described below.

PRINT=SUMMARY

prints the summary statistics and forecast summaries similar to the OUTSUM= data
set.
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PRINT=ESTIMATES

prints the parameter estimates similar to the OUTEST= data set.

PRINT=FORECASTS

prints the forecasts similar to the OUTFOR= data set. For MODEL=IDM, a table
containing demand series is also printed.

If the MODEL=IDM option is specified, the demand series predictions table is also
printed. This table is based on the demand index (when demands occurred).

PRINT=PERFORMANCE

prints the performance statistics.

PRINT=PERFORMANCESUMMARY

prints the performance summary for each BY group.

PRINT=PERFORMANCEOVERALL

prints the performance summary for all BY groups.

PRINT=STATES

prints the backcast, initial, and final smoothed states.

PRINT=SEASONS

prints the seasonal statistics similar to the OUTSEASON= data set.

PRINT=STATISTICS

prints the statistics of fit similar to the OUTSTAT= data set.

PRINT=TRENDS

Prints the trend statistics similar to the OUTTREND= data set.

PRINTDETAILS

The PRINTDETAILS option is the opposite of the NOOUTALL option.

Specifically, if PRINT=FORECASTS and the PRINTDETAILS options are specified,
the one-step ahead forecasts, throughout the range of the data, are printed as well as
the information related to a specific forecasting model such as the smoothing states. If
the PRINTDETAILS option is not specified, only the multistep forecasts are printed.
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ODS Table Names

The table below relates the PRINT= options to ODS tables:

Table 1.1. ODS Tables Produced in PROC HPF

ODS Table Name Description Option

ODS Tables Created by the PRINT=SUMMARY option
DescStats Descriptive Statistics
DemandSummary Demand Summary MODEL=IDM option only
ForecastSummary Forecast Summary
ForecastSummmation Forecast Summation

ODS Tables Created by the PRINT=ESTIMATES option
ModelSelection Model Selection
ParameterEstimates Parameter Estimates

ODS Tables Created by the PRINT=FORECASTS option
Forecasts Forecast
Demands Demands MODEL=IDM option only

ODS Tables Created by the PRINT=PERFORMANCE option
Performance Performance Statistics

ODS Tables Created by the PRINT=PERFORMANCESUMMARY option
PerformanceSummary Performance Summary

ODS Tables Created by the PRINT=PERFORMANCEOVERALL option
PerformanceSummary Performance Overall

ODS Tables Created by the PRINT=SEASONS option
SeasonStatistics Seasonal Statistics

ODS Tables Created by the PRINT=STATES option
SmoothedStates Smoothed States
DemandStates Demand States MODEL=IDM option only

ODS Tables Created by the PRINT=STATISTICS option
FitStatistics Statistics of Fit

ODS Tables Created by the PRINT=TRENDS option
TrendStatistics Trend Statistics

The ODS table ForecastSummary is related to all time series within a BY group. The
other tables are related to a single series within a BY group.

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the HPF procedure.
These graphics are experimental in this release, meaning that both the graphical re-
sults and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement. In ad-
dition, you can specify the PLOT= option in the HPF statement according to the
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following syntax. For more information on the ODS GRAPHICS statement, refer to
Chapter 9, “Statistical Graphics Using ODS” (SAS/ETS User’s Guide).

PLOT= option | (options)
specifies the graphical output desired. By default, the HPF procedure produces no
graphical output. The following printing options are available:

ERRORS plots prediction error time series graphics.

ACF plots prediction error autocorrelation function graphics.

PACF plots prediction error partial autocorrelation function graphics.

IACF plots prediction error inverse autocorrelation function graphics.

WN plots white noise graphics.

MODELS plots model graphics.

FORECASTS plots forecast graphics.

MODELFORECASTSONLY plots forecast graphics with confidence limits in the
data range.

FORECASTSONLY plots the forecast in the forecast horzion only.

LEVELS plots smoothed level component graphics.

SEASONS plots smoothed seasonal component graphics.

TRENDS plots smoothed trend (slope) component graphics.

ALL Same as specifying all of the above PLOT= options.

For example, PLOT=FORECASTS plots the forecasts for each series. The PLOT=
option produces printed output for these results utilizing the Output Delivery System
(ODS). The PLOT= statement is experimental for this release of SAS.

ODS Graph Names

PROC HPF assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed in Table 1.2.

To request these graphs, you must specify the ODS GRAPHICS statement. In addi-
tion, you can specify the PLOT= option in the HPF statement. For more information
on the ODS GRAPHICS statement, refer to Chapter 9, “Statistical Graphics Using
ODS” (SAS/ETS User’s Guide).

Table 1.2. ODS Graphics Produced by PROC HPF

ODS Graph Name Plot Description Statement PLOT= Option
DemandErrorsPlot Average Demand

Errors
PROC HPF PLOT=ERRORS

DemandForecastsPlot Average Demand
Forecasts

PROC HPF PLOT=FORECASTS

DemandIntervalHistogram Demand Interval
Histogram

PROC HPF PLOT=MODELS

DemandIntervalPlot Demand Interval
Forecast Plot

PROC HPF PLOT=MODELS
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Table 1.2. (continued)

ODS Graph Name Plot Description Statement Option
DemandSizeHistogram Demand Size

Histogram
PROC HPF PLOT=MODELS

DemandSizePlot Demand Size Forecast
Plot

PROC HPF PLOT=MODELS

ErrorACFNORMPlot Standardized autocor-
relation of Prediction
Errors

PROC HPF PLOT=ACF

ErrorACFPlot Autocorrelation of
Prediction Errors

PROC HPF PLOT=ACF

ErrorHistogram Prediction Error
Histogram

PROC HPF PLOT=ERRORS

ErrorIACFNORMPlot Standardized inverse
autocorrelation of
Prediction Errors

PROC HPF PLOT=IACF

ErrorIACFPlot Inverse autocorrelation
of Prediction Errors

PROC HPF PLOT=IACF

ErrorPACFNORMPlot Standardized partial
autocorrelation of
Prediction Errors

PROC HPF PLOT=PACF

ErrorPACFPlot Partial autocorrelation
of Prediction Errors

PROC HPF PLOT=PACF

ErrorPlot Plot of Prediction
Errors

PROC HPF PLOT=ERRORS

ErrorWhiteNoiseLogProbPlot White noise log proba-
bility plot of Prediction
Errors

PROC HPF PLOT=WN

ErrorWhiteNoiseProbPlot White noise probabi-
lity plot of Prediction
Errors

PROC HPF PLOT=WN

ForecastsOnlyPlot Forecasts Only Plot PROC HPF PLOT=FORECASTONLY
ForecastsPlot Forecasts Plot PROC HPF PLOT=FORECAST
LevelStatePlot Smoothed Level State

Plot
PROC HPF PLOT=LEVELS

ModelForecastsPlot Model and Forecasts
Plot

PROC HPF PLOT=MODELFORECAST

ModelPlot Model Plot PROC HPF PLOT=MODELS
SeasonStatePlot Smoothed Season

State Plot
PROC HPF PLOT=SEASONS

StockingAveragePlot Stocking Average Plot PROC HPF PLOT=FORECASTS
StockingLevelPlot Stocking Level Plot PROC HPF PLOT=FORECASTS
TrendStatePlot Smoothed Trend State

Plot
PROC HPF PLOT=TRENDS
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Examples

Example 1.1. Automatic Forecasting of Time Series Data

This example illustrates how the HPF procedure can be used for the automatic fore-
casting of time series data. Retail sales data is used for this illustration.

The following DATA step creates a data set from data recorded monthly at numerous
points of sales. The data set, SALES, will contain a variable DATE that represents
time and a variable for each sales item. Each value of the DATE variable is recorded
in ascending order and the values of each of the other variables represent a single
time series:

data sales;
format date date9.;
input date date9. shoes socks laces dresses coats shirts ties

belts hats blouses;
datalines;
... data lines omitted ...
;

run;

The following HPF procedure statements automatically forecast each of the monthly
time series.

proc hpf data=sales out=nextyear;
id date interval=month;
forecast _ALL_;

run;

The above statements automatically select the best fitting model and generate fore-
casts for every numeric variable in the input data set (SALES) for the next twelve
months, and stores these forecasts in the output data set (NEXTYEAR).

The following GPLOT procedure statements plot the forecasts related to shoe sales:

title1 "Shoe Department Sales";
axis2 label=(a=-90 r=90 "items" );
symbol1 v = dot i = join l = 1;
symbol2 v = star i = join l = 2;
symbol3 v = circle i = join l = 2;

proc gplot data=nextyear;
plot shoes * date = 1

socks * date = 2
laces * date = 3 / overlay
haxis= ’01JAN1994’d to ’01DEC2000’d by year
href= ’01JAN1999’d
vaxis=axis2;

run;
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The GPLOT procedure results are shown in Figure 1.1. The historical data is shown
left the horizontal reference line and the forecasts for the next twelve monthly periods
is shown to the right.

Figure 1.1. Retail Sales Forecast Plots

The following HPF procedure statements are identical to the statements above with
the exception that the PRINT=FORECASTS option is specified:

proc hpf data=sales out=nextyear print=forecasts;
id date interval=month;
forecast _ALL_;

run;

In addition to automatically forecasting each of the monthly time series, the above
statements print the forecasts using the Output Delivery System (ODS), which is par-
tially shown in Output 1.1.1. This output shows the predictions, prediction standard
errors and the upper and lower confidence limits for the next twelve monthly periods.
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Output 1.1.1. Forecast Tables
Forecasts for Variable shoes

Standard
Obs Time Forecasts Error 95% Confidence Limits

62 FEB1999 7548.0041 607.5238 6357.2792 8738.7289
63 MAR1999 7177.1472 699.4400 5806.2701 8548.0244
64 APR1999 5497.5595 780.7609 3967.2964 7027.8227
65 MAY1999 4838.2001 854.5169 3163.3778 6513.0224
66 JUN1999 6728.4521 922.5244 4920.3375 8536.5668
67 JUL1999 6786.1094 985.9738 4853.6362 8718.5826
68 AUG1999 5853.9650 1045.6953 3804.4399 7903.4900
69 SEP1999 7517.0144 1102.2949 5356.5561 9677.4728
70 OCT1999 7100.2489 1156.2315 4834.0769 9366.4210
71 NOV1999 7224.6449 1207.8618 4857.2793 9592.0106
72 DEC1999 6357.1556 1257.4701 3892.5594 8821.7518
73 JAN2000 6492.2657 1305.2871 3933.9500 9050.5815

Example 1.2. Automatic Forecasting of Transactional Data

This example illustrates how the HPF procedure can be used to automatically forecast
transactional data. Internet data is used for this illustration.

The following DATA step creates a data set from data recorded at several Internet Web
sites. The data set, WEBSITES, will contain a variable TIME that represents time
and the variables ENGINE, BOATS, CARS, and PLANES that represent Internet
Web site data. Each value of the TIME variable is recorded in ascending order, and
the values of each of the other variables represent a transactional data series.

data websites;
format time datetime.;
input time datetime. boats cars planes engines;
datalines;
... data lines omitted ...
;

run;

The following HPF procedure statements automatically forecast each of the transac-
tional data series:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats cars planes;

run;

The above statements accumulate the data into a daily time series and automatically
generate forecasts for the BOATS, CARS, and PLANES variables in the input data
set (WEBSITES) for the next week and stores the forecasts in the output data set
(NEXTWEEK).

The following GPLOT procedure statements plot the forecasts related to the Internet
data:



Example 1.3. Specifying the Forecasting Model � 45

title1 "Website Data";
axis2 label=(a=-90 r=90 "Websites" );
symbol1 v = dot i = join l = 1;
symbol2 v = star i = join l = 2;
symbol3 v = circle i = join l = 2;

proc gplot data=nextweek;
plot boats * time = 1

cars * time = 2
planes * time = 3 / overlay
haxis= ’13MAR2000:00:00:00’dt to

’18APR2000:00:00:00’dt by dtweek
href= ’11APR2000:00:00:00’dt
vaxis=axis2;

run;

The GPLOT procedure results are shown in Figure 1.2. The historical data is shown to
the left of the horizontal reference line and the forecasts for the next twelve monthly
periods are shown to the right.

Figure 1.2. Internet Data Forecast Plots

Example 1.3. Specifying the Forecasting Model

In the previous example, the HPF procedure was used to automatically select the
appropriate forecasting model using the root mean square error (RMSE) as the default
selection criterion. This example illustrates how the HPF procedure can be used to
more narrowly specify the possible candidate models. Internet data from the previous
example are used for this illustration.
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In this example, we will forecast the BOATS variable using the best seasonal fore-
casting model (BESTS) that minimizes the mean absolute percent error (MAPE), the
CARS variable using the best nonseasonal forecasting model (BESTN) that mini-
mizes the mean square error (MSE) using holdout sample analysis, and the PLANES
variable using Log Winters (additive). The following HPF procedure statements fore-
cast each of the transactional data series based on these requirements:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=addwinters transform=log;

run;

Example 1.4. Extending the Independent Variables for
Multivariate Forecasts

In the previous example, the HPF procedure was used to forecast several transac-
tional series variables using univariate models. This example illustrates how the HPF
procedure can be used to extend the independent variables associated with a multi-
ple regression forecasting problem. Specifically, PROC HPF is used to extend the
independent variables for use in forecasting a regression model.

In this example, we will accumulate and forecast the BOATS, CARS, and PLANES
variables as illustrated in the previous example. In addition, we will accumulate the
ENGINES variable to form a time series that is then extended with missing values
within the forecast horizon with the specification of MODEL=NONE.

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast engines / model=none;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=winters transform=log;

run;

The following AUTOREG procedure statements are used to forecast the ENGINES
variable by regressing on the independent variables (BOATS, CARS, and PLANES).

proc autoreg data= nextweek;
model engines = boats cars planes / noprint;
output out=enginehits p=predicted;

run;

The output data set (NEXTWEEK) of the PROC HPF statement is used as an in-
put data set for the PROC AUTOREG statement. The output data set of PROC
AUTOREG contains the forecast of the variable ENGINES based on the regres-
sion model with the variables BOATS, CARS, and PLANES as regressors. See
the AUTOREG procedure for details on autoregression models.
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The following GPLOT procedure statements plot the forecasts related to the
ENGINES variable:

proc gplot data=enginehits;
plot boats * time = 1

cars * time = 2
planes * time = 3
predicted * time = 4 / overlay
haxis= ’13MAR2000:00:00:00’dt to

’18APR2000:00:00:00’dt by dtweek
href= ’11APR2000:00:00:00’dt
vaxis=axis2;

run;

The GPLOT procedure results are shown in Figure 1.3. The historical data is shown
left the horizontal reference line and the forecasts for the next four weekly periods is
shown to the right.

Figure 1.3. Internet Data Forecast Plots

Example 1.5. Forecasting Intermittent Time Series Data
This example illustrates how the HPF procedure can be used to forecast intermittent
time series data. Inventory demand is used for this illustration.

The following DATA step creates a data set from inventory data recorded at no par-
ticular frequency. The data set, INVENTORY, will contain a variable DATE that
represents time and the demand variables (TIRES, HUBCAPS, and LUGBOLTS),
which represent inventory items. Each value of the DATE variable is recorded in as-
cending order, and the values of each of the other variables represent a transactional
data series.
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data inventory;
format date date9.;
input date date9. tires hubcaps lugbolts;
datalines;
... data lines omitted ...
;

run;

The following HPF procedure statements forecast each of the transactional data series
using and intermittent demand model:

proc hpf data=inventory out=nextmonth lead=4 print=forecasts;
id date interval=week accumulate=total;
forecast tires hubcaps lugbolts / model=idm;

run;

The above statements accumulate the data into a weekly time series, and generate
forecasts for the TIRES, HUBCAPS, and LUGBOLTS variables in the input data set
(INVENTORY) for the four weekly periods, and store the forecasts in the output data
set (NEXTMONTH). The PRINT=FORECAST option produces the results partially
shown in Output 1.5.1. The first table records the demand series and predictions. The
second table represents forecasts or recommended stocking levels.
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Output 1.5.1. Forecast Tables
Demands for Variable tires

Demand Demand Intervals Demand Size
Index Time Actual Predicted Actual Predicted

1 Sun, 31 Aug 1997 14 14.0000 6.00000 4.42151
2 Sun, 26 Oct 1997 8 14.0000 4.00000 4.74216
3 Sun, 1 Mar 1998 18 12.8920 2.00000 4.59140
4 Sun, 26 Apr 1998 8 13.8353 2.00000 4.06498
5 Sun, 31 May 1998 5 12.7577 2.00000 3.64550
6 Sun, 27 Sep 1998 17 11.3251 6.00000 3.31123
7 Sun, 3 Jan 1999 14 12.3731 . 3.85743

Error = (Interval Actual)*(Predict) - (Size Actual)

Demands for Variable tires

Estimate of Mean Demand per Period
Demand 95% Confidence

Index Time Predict Std Limits Error

1 Sun, 31 Aug 1997 0.31582 0.11634 0.08780 0.54384 -1.578494
2 Sun, 26 Oct 1997 0.33873 0.11634 0.11071 0.56674 -1.290193
3 Sun, 1 Mar 1998 0.35614 0.11634 0.12813 0.58416 4.410578
4 Sun, 26 Apr 1998 0.29381 0.11634 0.06579 0.52183 0.350503
5 Sun, 31 May 1998 0.28575 0.11634 0.05773 0.51377 -0.571254
6 Sun, 27 Sep 1998 0.29238 0.11634 0.06436 0.52040 -1.029543
7 Sun, 3 Jan 1999 0.27553 0.11634 0.04751 0.50355 .

Error = (Interval Actual)*(Predict) - (Size Actual)

Forecasts for Variable tires

Standard
Obs Time Forecasts Error 95% Confidence Limits

84 Sun, 3 Jan 1999 0.27553 0.11634 0.04751 0.50355
85 Sun, 10 Jan 1999 0.27553 0.11634 0.04751 0.50355
86 Sun, 17 Jan 1999 0.27553 0.11634 0.04751 0.50355
87 Sun, 24 Jan 1999 0.27553 0.11634 0.04751 0.50355

Example 1.6. Illustration of ODS Graphics (Experimental)

This example illustrates the use of experimental ODS graphics.

The following statements utilize the SASHELP.AIR data set to automatically fore-
cast the time series of international airline travel.

The graphical displays are requested by specifying the experimental ODS
GRAPHICS statement and the experimental PLOT= option in the PROC HPF
statement. In this case, all plots are requested. Output 1.6.1 through Output 1.6.4
show a selection of the plots created.

For general information about ODS graphics, refer to Chapter 9, “Statistical Graphics
Using ODS” (SAS/ETS User’s Guide). For specific information about the graphics
available in the HPF procedure, see the “ODS Graphics” section on page 39.
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ods html;
ods graphics on;

proc hpf data=sashelp.air out=_null_ lead=20 back=20 print=all plot=all;
id date interval=month;
forecast air / model=best transform=auto select=mape;

run;

ods graphics off;
ods html close;

Output 1.6.1. Smoothed Trend Plot (Experimental)
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Output 1.6.2. Prediction Error Plot (Experimental)

Output 1.6.3. Prediction Error Standardized ACF Plot (Experimental)
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Output 1.6.4. Forecast Plot (Experimental)

References
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Chapter 2
Forecasting Process Details

This chapter provides computational details on several aspects of the SAS High
Performance Forecasting.

Forecasting Process Summary

This section summarizes the forecasting process.

Parameter Estimation

Computational details for the forecasting models are provided in the following sec-
tions "Smoothing Models" and "Intermittent Models." The results of the parame-
ter estimation process are printed in the Parameter Estimates table or stored in the
OUTEST= data set.

Model Evaluation

Model evaluation is based on the one-step-ahead prediction errors for observations
within the period of evaluation. The one-step-ahead predictions are generated from
the model specification and parameter estimates. The predictions are inverse trans-
formed (median or mean) and adjustments are removed. The prediction errors (the
difference of the dependent series and the predictions) are used to compute the statis-
tics of fit, which are described in section "Statistics of Fit." The results generated
by the evaluation process are printed in the Statistics of Fit table or stored in the
OUTSTAT= data set.

Forecasting

The forecasting process is similar to the model evaluation process described in the
preceding section, except that k-step-ahead predictions are made from the end of
the data through the specified forecast horizon, and prediction standard errors and
confidence limits are calculated. The forecasts and confidence limits are printed in
the Forecast table or stored in the OUTFOR= data set.

Smoothing Models

This section details the computations performed for the exponential smoothing and
Winters method forecasting models.
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Smoothing Model Calculations

The descriptions and properties of various smoothing methods can be found in
Gardner (1985), Chatfield (1978), and Bowerman and O’Connell (1979). The fol-
lowing section summarizes the smoothing model computations.

Given a time series {Yt : 1 ≤ t ≤ n}, the underlying model assumed by the smooth-
ing models has the following (additive seasonal) form:

Yt = µt + βtt + sp(t) + εt

where

µt represents the time-varying mean term.

βt represents the time-varying slope.

sp(t) represents the time-varying seasonal contribution for one of the p
seasons

εt are disturbances.

For smoothing models without trend terms, βt = 0; and for smoothing models with-
out seasonal terms, sp(t) = 0. Each smoothing model is described in the following
sections.

At each time t, the smoothing models estimate the time-varying components de-
scribed above with the smoothing state. After initialization, the smoothing state is
updated for each observation using the smoothing equations. The smoothing state at
the last nonmissing observation is used for predictions.

Smoothing State and Smoothing Equations

Depending on the smoothing model, the smoothing state at time t will consist of the
following:

Lt is a smoothed level that estimates µt.

Tt is a smoothed trend that estimates βt.

St−j , j = 0, . . ., p − 1, are seasonal factors that estimate sp(t).

The smoothing process starts with an initial estimate of the smoothing state, which is
subsequently updated for each observation using the smoothing equations.

The smoothing equations determine how the smoothing state changes as time pro-
gresses. Knowledge of the smoothing state at time t − 1 and that of the time-series
value at time t uniquely determine the smoothing state at time t. The smoothing
weights determine the contribution of the previous smoothing state to the current
smoothing state. The smoothing equations for each smoothing model are listed in the
following sections.
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Smoothing State Initialization

Given a time series {Yt : 1 ≤ t ≤ n}, the smoothing process first computes the
smoothing state for time t = 1. However, this computation requires an initial esti-
mate of the smoothing state at time t = 0, even though no data exists at or before
time t = 0.

An appropriate choice for the initial smoothing state is made by backcasting from
time t = n to t = 1 to obtain a prediction at t = 0. The initialization for the back-
cast is obtained by regression with constant and linear terms and seasonal dummies
(additive or multiplicative) as appropriate for the smoothing model. For models with
linear or seasonal terms, the estimates obtained by the regression are used for initial
smoothed trend and seasonal factors; however, the initial smoothed level for back-
casting is always set to the last observation, Yn.

The smoothing state at time t = 0 obtained from the backcast is used to initialize the
smoothing process from time t = 1 to t = n (refer to Chatfield and Yar 1988).

For models with seasonal terms, the smoothing state is normalized so that the sea-
sonal factors St−j for j = 0, . . ., p − 1 sum to zero for models that assume additive
seasonality and average to one for models (such as Winters method) that assume
multiplicative seasonality.

Missing Values

When a missing value is encountered at time t, the smoothed values are updated
using the error-correction form of the smoothing equations with the one-step-ahead
prediction error, et, set to zero. The missing value is estimated using the one-step-
ahead prediction at time t − 1, that is Ŷt−1(1) (refer to Aldrin 1989). The error-
correction forms of each of the smoothing models are listed in the following sections.

Predictions and Prediction Errors

Predictions are made based on the last known smoothing state. Predictions made at
time t for k steps ahead are denoted Ŷt(k) and the associated prediction errors are
denoted et(k) = Yt+k − Ŷt(k). The prediction equation for each smoothing model
is listed in the following sections.

The one-step-ahead predictions refer to predictions made at time t − 1 for one time
unit into the future, that is, Ŷt−1(1), and the one-step-ahead prediction errors are
more simply denoted et = et−1(1) = Yt − Ŷt−1(1). The one-step-ahead prediction
errors are also the model residuals, and the sum of squares of the one-step-ahead
prediction errors is the objective function used in smoothing weight optimization.

The variance of the prediction errors are used to calculate the confidence limits (refer
to Sweet 1985, McKenzie 1986, Yar and Chatfield 1990, and Chatfield and Yar 1991).
The equations for the variance of the prediction errors for each smoothing model are
listed in the following sections.

Note: var(εt) is estimated by the mean square of the one-step-ahead prediction er-
rors.
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Smoothing Weights

Depending on the smoothing model, the smoothing weights consist of the following:

α is a level smoothing weight.

γ is a trend smoothing weight.

δ is a seasonal smoothing weight.

φ is a trend damping weight.

Larger smoothing weights (less damping) permit the more recent data to have a
greater influence on the predictions. Smaller smoothing weights (more damping)
give less weight to recent data.

Specifying the Smoothing Weights

Typically the smoothing weights are chosen to be from zero to one. (This is intuitive
because the weights associated with the past smoothing state and the value of cur-
rent observation would normally sum to one.) However, each smoothing model (ex-
cept Winters Method – Multiplicative Version) has an ARIMA equivalent. Weights
chosen to be within the ARIMA additive-invertible region will guarantee stable pre-
dictions (refer to Archibald 1990 and Gardner 1985). The ARIMA equivalent and
the additive-invertible region for each smoothing model are listed in the following
sections.

Optimizing the Smoothing Weights

Smoothing weights are determined so as to minimize the sum of squared one-step-
ahead prediction errors. The optimization is initialized by choosing from a predeter-
mined grid the initial smoothing weights that result in the smallest sum of squared,
one-step-ahead prediction errors. The optimization process is highly dependent on
this initialization. It is possible that the optimization process will fail due to the in-
ability to obtain stable initial values for the smoothing weights (refer to Greene 1993
and Judge et al 1980), and it is possible for the optimization to result in a local min-
ima.

The optimization process can result in weights to be chosen outside both the zero-
to-one range and the ARIMA additive-invertible region. By restricting weight opti-
mization to additive-invertible region, you can obtain a local minimum with stable
predictions. Likewise, weight optimization can be restricted to the zero-to-one range
or other ranges.

Standard Errors

The standard errors associated with the smoothing weights are calculated from the
Hessian matrix of the sum of squared, one-step-ahead prediction errors with respect
to the smoothing weights used in the optimization process.
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Weights Near Zero or One

Sometimes the optimization process results in weights near zero or one.

For Simple or Double (Brown) Exponential Smoothing, a level weight near zero im-
plies that simple differencing of the time series may be appropriate.

For Linear (Holt) Exponential Smoothing, a level weight near zero implies that the
smoothed trend is constant and that an ARIMA model with deterministic trend may
be a more appropriate model.

For Damped-Trend Linear Exponential Smoothing, a damping weight near one im-
plies that Linear (Holt) Exponential Smoothing may be a more appropriate model.

For Winters Method and Seasonal Exponential Smoothing, a seasonal weight near
one implies that a nonseasonal model may be more appropriate and a seasonal weight
near zero implies that deterministic seasonal factors may be present.

Equations for the Smoothing Models

Simple Exponential Smoothing

The model equation for simple exponential smoothing is

Yt = µt + εt

The smoothing equation is

Lt = αYt + (1 − α)Lt−1

The error-correction form of the smoothing equation is

Lt = Lt−1 + αet

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt

The ARIMA model equivalency to simple exponential smoothing is the
ARIMA(0,1,1) model

(1 − B)Yt = (1 − θB)εt

θ = 1 − α
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The moving-average form of the equation is

Yt = εt +
∞∑

j=1

αεt−j

For simple exponential smoothing, the additive-invertible region is

{0 < α < 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


1 +

k−1∑
j=1

α2


 = var(εt)(1 + (k − 1)α2)

Double (Brown) Exponential Smoothing

The model equation for double exponential smoothing is

Yt = µt + βtt + εt

The smoothing equations are

Lt = αYt + (1 − α)Lt−1

Tt = α(Lt − Lt−1) + (1 − α)Tt−1

This method may be equivalently described in terms of two successive applications
of simple exponential smoothing:

S [1]
t = αYt + (1 − α)S [1]

t−1

S [2]
t = αS [1]

t + (1 − α)S [2]
t−1

where S [1]
t are the smoothed values of Yt, and S [2]

t are the smoothed values of S [1]
t .

The prediction equation then takes the form:

Ŷt(k) = (2 + αk/(1 − α))S [1]
t − (1 + αk/(1 − α))S [2]

t

The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet
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Tt = Tt−1 + α2et

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt + ((k − 1) + 1/α)Tt

The ARIMA model equivalency to double exponential smoothing is the
ARIMA(0,2,2) model

(1 − B)2Yt = (1 − θB)2εt

θ = 1 − α

The moving-average form of the equation is

Yt = εt +
∞∑

j=1

(2α + (j − 1)α2)εt−j

For double exponential smoothing, the additive-invertible region is

{0 < α < 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


1 +

k−1∑
j=1

(2α + (j − 1)α2)2




Linear (Holt) Exponential Smoothing

The model equation for linear exponential smoothing is

Yt = µt + βtt + εt

The smoothing equations are

Lt = αYt + (1 − α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1
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The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet

Tt = Tt−1 + αγet

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt + kTt

The ARIMA model equivalency to linear exponential smoothing is the
ARIMA(0,2,2) model

(1 − B)2Yt = (1 − θ1B − θ2B
2)εt

θ1 = 2 − α − αγ

θ2 = α − 1

The moving-average form of the equation is

Yt = εt +
∞∑

j=1

(α + jαγ)εt−j

For linear exponential smoothing, the additive-invertible region is

{0 < α < 2}

{0 < γ < 4/α − 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


1 +

k−1∑
j=1

(α + jαγ)2
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Damped-Trend Linear Exponential Smoothing

The model equation for damped-trend linear exponential smoothing is

Yt = µt + βtt + εt

The smoothing equations are

Lt = αYt + (1 − α)(Lt−1 + φTt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)φTt−1

The error-correction form of the smoothing equations is

Lt = Lt−1 + φTt−1 + αet

Tt = φTt−1 + αγet

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt +
k∑

i=1

φiTt

The ARIMA model equivalency to damped-trend linear exponential smoothing is the
ARIMA(1,1,2) model

(1 − φB)(1 − B)Yt = (1 − θ1B − θ2B
2)εt

θ1 = 1 + φ − α − αγφ

θ2 = (α − 1)φ

The moving-average form of the equation (assuming |φ| < 1) is

Yt = εt +
∞∑

j=1

(α + αγφ(φj − 1)/(φ − 1))εt−j

For damped-trend linear exponential smoothing, the additive-invertible region is

{0 < α < 2}
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{0 < φγ < 4/α − 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


1 +

k−1∑
j=1

(α + αγφ(φj − 1)/(φ − 1))2




Seasonal Exponential Smoothing

The model equation for seasonal exponential smoothing is

Yt = µt + sp(t) + εt

The smoothing equations are

Lt = α(Yt − St−p) + (1 − α)Lt−1

St = δ(Yt − Lt) + (1 − δ)St−p

The error-correction form of the smoothing equations is

Lt = Lt−1 + αet

St = St−p + δ(1 − α)et

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt + St−p+k

The ARIMA model equivalency to seasonal exponential smoothing is the
ARIMA(0,1,p+1)(0,1,0)p model

(1 − B)(1 − Bp)Yt = (1 − θ1B − θ2B
p − θ3B

p+1)εt

θ1 = 1 − α

θ2 = 1 − δ(1 − α)

θ3 = (1 − α)(δ − 1)
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The moving-average form of the equation is

Yt = εt +
∞∑

j=1

ψjεt−j

ψj =
{

α for j mod p �=0
α + δ(1 − α) for j mod p = 0

For seasonal exponential smoothing, the additive-invertible region is

{max(−pα, 0) < δ(1 − α) < (2 − α)}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


1 +

k−1∑
j=1

ψ2
j




Winters Method – Additive Version

The model equation for the additive version of Winters method is

Yt = µt + βtt + sp(t) + εt

The smoothing equations are

Lt = α(Yt − St−p) + (1 − α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1

St = δ(Yt − Lt) + (1 − δ)St−p

The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet

Tt = Tt−1 + αγet

St = St−p + δ(1 − α)et

(Note: For missing values, et = 0.)
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The k-step prediction equation is

Ŷt(k) = Lt + kTt + St−p+k

The ARIMA model equivalency to the additive version of Winters method is the
ARIMA(0,1,p+1)(0,1,0)p model

(1 − B)(1 − Bp)Yt =

[
1 −

p+1∑
i=1

θiB
i

]
εt

θj =




1 − α − αγ j = 1
−αγ 2 ≤ j ≤ p − 1
1 − αγ − δ(1 − α) j = p
(1 − α)(δ − 1) j = p + 1

The moving-average form of the equation is

Yt = εt +
∞∑

j=1

ψjεt−j

ψj =
{

α + jαγ for j mod p �=0
α + jαγ + δ(1 − α), for j mod p = 0

For the additive version of Winters method (see Archibald 1990), the additive-
invertible region is

{max(−pα, 0) < δ(1 − α) < (2 − α)}

{0 < αγ < 2 − α − δ(1 − α)(1 − cos(ϑ)}

where ϑ is the smallest nonnegative solution to the equations listed in Archibald
(1990).

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


1 +

k−1∑
j=1

ψ2
j
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Winters Method – Multiplicative Version

In order to use the multiplicative version of Winters method, the time series and all
predictions must be strictly positive.

The model equation for the multiplicative version of Winters method is

Yt = (µt + βtt)sp(t) + εt

The smoothing equations are

Lt = α(Yt/St−p) + (1 − α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1

St = δ(Yt/Lt) + (1 − δ)St−p

The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet/St−p

Tt = Tt−1 + αγet/St−p

St = St−p + δ(1 − α)et/Lt

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = (Lt + kTt)St−p+k

The multiplicative version of Winters method does not have an ARIMA equivalent;
however, when the seasonal variation is small, the ARIMA additive-invertible region
of the additive version of Winters method described in the preceding section can
approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)


 ∞∑

i=0

p−1∑
j=0

(ψj+ipSt+k/St+k−j)2




where ψj are as described for the additive version of Winters method, and ψj = 0 for
j ≥ k.
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Intermittent Models
This section details the computations performed for the intermittent forecasting mod-
els.

Intermittent Time Series

Intermittent time series have a large number of values that are zero. These types of
series commonly occur in Internet, inventory, sales, and other data where the demand
for a particular item is intermittent. Typically, when the value of the series associ-
ated with a particular time period is nonzero, demand occurs; and, when the value
is zero (or missing), no demand occurs. Since it is entirely possible that the number
of time periods for which no demand occurs is large, many of the series values will
be zero. Typical time series models (for example, smoothing models) are inadequate
in the case of intermittent time series because many of the series values are zero.
Since these models are based on weighted-summations of past values, they bias fore-
casts away from zero. Unlike the smoothing models that provide forecasts for future
time periods, intermittent forecasting models provide recommended stocking levels
or estimated demand per period that are used to satisfy future demand.

Intermittent Series Decomposition and Analysis

An intermittent time series (demand series) can be decomposed into two components:
a demand interval series and a demand size series. Both of these component series
are indexed based on when a demand occurred (demand index) rather than each time
period (time index). The demand interval series is constructed based on the number
of time periods between demands. The demand size series is constructed based on
the size (or value) of the demands excluding zero (or base) demand values. Using
these two component series, the average demand series is computed by dividing the
size component values by the interval component values.

When a demand occurs is subjective; but typically depends on a base value. Typically,
the base value is zero (default), but it can be any constant value and can be automati-
cally determined based on the characteristics of the demand series.

Given a time series yt, for t = 1 to T , where t is the time index, suppose that there
are N nonzero demands occurring at times t = ti, where ti−1 < ti, for i = 1 to
N . The time series is dissected into the demand interval series and the demand size
series as follows:

(Demand Interval Series) qi = ti − ti−1 for i = 2 to N
(Demand Size Series) di = yti − base for i = 1 to N
(Average Demand Series) ai = di/qi for i = 2 to N

For the beginning of the demand series, q1 is assigned to t1, which assumes that
a demand just occurred prior to the first recorded observation. For the end of the
demand series, qN+1 is assigned to (T + 1 − tN ), which assumes that demand will
occur just after the last recorded observation. The next future demand size, dN+1, is
always set to missing.
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After decomposition, descriptive (summary) statistics can be computed to gain a
greater understanding of the demand series including those statistics based on the
season index.

For statistical analysis and model fitting, qi and ai for i = 2 to N and di for i = 1 to
N are used. For forecasting, qi for i = 1 to N + 1, ai for i = 1 to N , di for i = 1 to
N are used.

Croston’s Method

Croston’s Method models and forecasts each component independently, then com-
bines the two forecasts. The following provides a description of how Croston’s
Method is used in SAS High Performance Forecasting. More detailed information
on this method can be found in Croston (1972) and Willemain, Smart, and Shocker
(1994). The following description of Croston’s Method is based on the perspective
of a person familiar with typical time series modeling techniques such as smoothing
models.

By treating each component of the demand series as a time series based on the de-
mand index, optimal smoothing parameters can be estimated and predictions for
each component can be computed using nonseasonal exponential smoothing meth-
ods (simple, double, linear, damped-trend) as well as their transformed versions (log,
square-root, logistic, Box-Cox).

For example, the following simple smoothing equations are used to generate predic-
tions for demand size and interval components:

(Smoothed demand interval series) Lq
i = Lq

i−1 + αq(qi−1 − Lq
i−1)

(Smoothed demand size series) Ld
i = Ld

i−1 + αd(di−1 − Ld
i−1)

The demand interval parameter, αq, and demand size parameter, αd, and the starting,
intermediate, and final smoothing level states, Lq

i and Ld
i , are estimated from the data

using simple exponential smoothing parameter estimation. For the starting state at
i = 1, Lq

1 = max(q1, L
q
0) where Lq

0 is the final backcast level state. For i > 1,
the one-step-ahead prediction for demand interval qi is q̂i = Lq

i−1. For i > 0, the

one-step-ahead prediction for demand size di is d̂i = Ld
i−1.

Other (transformed) nonseasonal exponential smoothing methods can be used in a
similar fashion. For linear smoothing, Lq

1 = max(q1 − T q
0 , Lq

0) where T q
0 is the final

backcast trend state. For damp-trend smoothing, Lq
1 = max(q1 − φqT

q
0 , Lq

0) where
φq is the damping parameter and T q

0 is the final backcast trend state. For double
smoothing, Lq

1 = max(q1 − T q
0 /αq, L

q
0) where αq is the weight parameter and T q

0 is
the final backcast trend state.

Using these predictions based on the demand index, predictions of the average de-
mand per period can be estimated. Predicted demand per period is also known as
“stocking level,” assuming that disturbances affecting qi are independent of di. (This
assumption is quite significant.)
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(Estimated demand per period) y∗i = d̂i/q̂i

E[y∗i ] = E[di]/E[qi] = E[zi−1]/E[pi−1] = µd/µq

(Variance) V ar(y∗i ) = (d̂i/q̂i)2(V ar(di)/d̂2
i + V ar(qi)/q̂2

i )

where µd, d̄, and sd are the mean, sample average, and standard deviation of the non-
zero demands, and µq, q̄, and sq are the mean, sample average, and standard deviation
of the number of time periods between demands.

For the beginning of the series, the denominator of y∗1 is assigned qi or the starting
smoothing state p0, whichever is greater. For the end of the series, the denominator
of y∗N+1 is assigned qN+1 = (T +1− tN ) or the final smoothing state pN , whichever
is greater.

Once the average demand per period has been estimated, a stocking level can be
recommended:

(Recommended stocking level) ŷt = y∗i when ti =< t < ti+1

(Variance) V ar(ŷt) = V ar(y∗i ) when ti =< t < ti+1

Since the predicted demand per period will be different than typical time series fore-
casts, the usual way of computing statistics of fit should also be different. The statis-
tics of fit are based on the difference between the recommended stocking levels be-
tween demands and the demands:

(Accumulated recommended stocks) st =
∑t

i=0(ŷt − y∗i )
(Estimate − Demand) eti = d̂iqi − di when time ti+1 has demand

Croston’s Method produces the same forecasts as simple exponential smoothing
when demand occurs in every time period, qi = 1 for all i, but different (lower)
prediction error variances. Croston’s Method is recommended for intermittent time
series only.

Average Demand Method

Similar to Croston’s Method, the Average Demand Method is used to forecast in-
termittent time series; however, the Average Demand Method forecasts the average
demand series directly, whereas Croston’s Method forecasts average demand series
indirectly using the inverse decomposition of the demand interval and size series
forecasts.

By treating the average demand series as a time series based on the demand index,
optimal smoothing parameters can be estimated and predictions for average demand
can be computed using nonseasonal exponential smoothing methods (simple, double,
linear, damped-trend) as well as their transformed versions (log, square-root, logistic,
Box-Cox).

For example, the following simple smoothing equations are used to generate predic-
tions for the average demand series:
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(Smoothed Average Demand Series) La
i = La

i−1 + αa(ai−1 − La
i−1)

The average demand level parameter, αa, and the starting, intermediate, and final
smoothing level states, La

i , are estimated from the data using simple exponential
smoothing parameter estimation. For the starting state at i = 1, La

1 = max(a1, L
a
0)

where La
0 is the final backcast level state. For i > 1, the one-step-ahead prediction

for ai is âi = La
i−1.

Other (transformed) nonseasonal exponential smoothing methods can be used in a
similar fashion. For linear smoothing, La

1 = max(a1 − T a
0 , La

0) where T a
0 is the final

backcast trend state. For damp-trend smoothing, La
1 = max(a1 − φaT

a
0 , La

0) where
φa is the damping parameter and T a

0 is the final backcast trend state. For double
smoothing, La

1 = max(a1 −T a
0 /αa, L

a
0) where αa is the weight parameter and T a

0 is
the final backcast trend state.

Using these predictions based on the demand index, predictions of the average de-
mand per period are provided directly, unlike Croston’s Method where the average
demand is predicted using a ratio of predictions of the demand interval and size com-
ponents.

(Estimated demand per period) y∗i = âi + base
E[y∗i ] = E[ai]

(Variance) see the exponential smoothing models

For the beginning of the series, â1 is derived from the starting level smoothing state
and starting trend smoothing state (if applicable).

Once the average demand per period has been estimated, a stocking level can be
recommended similar to Croston’s Method.

The Average Demand Method produces the same forecasts as exponential smooth-
ing when demand occurs in every time period, qi = 1 for all i, but different (lower)
prediction error variances. The Average Demand Method is recommended for inter-
mittent time series only.

Time Indexed Holdout Samples versus Demand Indexed
Holdout Samples

Holdout samples are typically specified based on the time index. For example, “hold-
out the last six months data.” For a demand series, the demand indexed holdout refers
to the “demands that have occurred in the last six months.” If there are four demands
in the last six months, the demand indexed holdout is four for a time indexed holdout
of six. If there are no demands in the time indexed holdout, the demand indexed hold-
out is zero and in-sample analysis is used. For intermittent demand model selection,
demand indexed-based holdouts are used for model selection.
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Automatic Intermittent Demand Model Selection

The exponential smoothing method to be used to forecast the intermittent demand
series can be specified, or it can be selected automatically using a model selection
criterion and either in-sample or holdout sample analysis. The exponential smoothing
method for each demand series component (interval, size, and average) can be auto-
matically selected as well as the choice between Croston’s Method and the Average
Demand Method.

For Croston’s Method, the exponential smoothing methods used to forecast the de-
mand interval and size components are automatically selected independently. For the
Average Demand Method, the exponential smoothing methods used to forecast the
average demand component are automatically selected, again independently. Based
on the model selection criterion, the selection is based on how well the method fits
(in sample) or predicts (holdout sample) the demand series component by treating
the demand index as a time index. The following equations describe the component
prediction errors associated with each of the demand series components that are used
in component model selection:

(Demand Interval Series) eq
i = qi − q̂i for i = 2 to N

(Demand Size Series) ed
i = di − d̂i for i = 1 to N

(Average Demand Series) ea
i = ai − âi for i = 2 to N

Once the exponential smoothing methods are selected for each demand series com-
ponent, the predictions for either Croston’s Method, (d̂i/q̂i), the Average Demand
Method, âi, or both are computed based on the selected method for each component.

When choosing between Croston’s Method and the Average Demand Method, the
model is selected by considering how well the model predicts average demand with
respect to the time. The following equations describe the average prediction errors
associated with the predicted average demand that are used in model selection:

(Croston’s Method) ec
i = (di/qi) − (d̂i/q̂i) for i = 2 to N

(Average Demand Method) ea
i = ai − âi for i = 2 to N

Series Transformations

For forecasting models, transforming the time series may aid in improving forecasting
accuracy.

There are four transformations available, for strictly positive series only. Let yt > 0
be the original time series, and let wt be the transformed series. The transformations
are defined as follows:

Log is the logarithmic transformation

wt = ln(yt)
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Logistic is the logistic transformation

wt = ln(cyt/(1 − cyt))

where the scaling factor c is

c = (1 − e−6)10−ceil(log10(max(yt)))

and ceil(x) is the smallest integer greater than or equal to x.

Square Root is the square root transformation

wt =
√

yt

Box Cox is the Box-Cox transformation

wt =




yλ
t −1
λ , λ �=0

ln(yt), λ = 0

Parameter estimation is performed using the transformed series. The transformed
model predictions and confidence limits are then obtained from the transformed time-
series and these parameter estimates.

The transformed model predictions ŵt are used to obtain either the minimum mean
absolute error (MMAE) or minimum mean squared error (MMSE) predictions ŷt,
depending on the setting of the forecast options. The model is then evaluated based
on the residuals of the original time series and these predictions. The transformed
model confidence limits are inverse-transformed to obtain the forecast confidence
limits.

Predictions for Transformed Models

Since the transformations described in the previous section are monotonic, applying
the inverse-transformation to the transformed model predictions results in the me-
dian of the conditional probability density function at each point in time. This is the
minimum mean absolute error (MMAE) prediction.

If wt = F(yt) is the transform with inverse-transform yt = F−1(wt), then

median(ŷt) = F−1(E [wt]) = F−1(ŵt)

The minimum mean squared error (MMSE) predictions are the mean of the condi-
tional probability density function at each point in time. Assuming that the prediction
errors are normally distributed with variance σ2

t , the MMSE predictions for each of
the transformations are as follows:

Log is the conditional expectation of inverse-logarithmic transforma-
tion.

ŷt = E[ewt ] = exp
(
ŵt + σ2

t /2
)
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Logistic is the conditional expectation of inverse-logistic transformation.

ŷt = E

[
1

c(1 + exp(−wt))

]

where the scaling factor c = (1 − 10−6)10−ceil(log10(max(yt))).

Square Root is the conditional expectation of the inverse-square root transfor-
mation.

ŷt = E
[
w2

t

]
= ŵ2

t + σ2
t

Box Cox is the conditional expectation of the inverse Box-Cox transforma-
tion.

ŷt =




E
[
(λwt + 1)1/λ

]
, λ �=0

E [ewt ] = exp(ŵt + 1
2σ2

t ), λ = 0

The expectations of the inverse logistic and Box-Cox ( λ �=0 ) transformations do not
generally have explicit solutions and are computed using numerical integration.

Series Diagnostic Tests

This section describes the diagnostic tests that are used to determine the kinds of
forecasting models appropriate for a series.

The series diagnostics are a set of heuristics that provide recommendations on
whether or not the forecasting model should contain a log transform, trend terms,
and seasonal terms or whether or not the time series is intermittent. These recom-
mendations are used by the automatic model selection process to restrict the model
search to a subset of the model selection list.

The tests that are used by the series diagnostics will not always produce the correct
classification of the series. They are intended to accelerate the process of searching
for a good forecasting model for the series, but you should not rely on them if finding
the very best model is important to you.

The series diagnostics tests are intended as a heuristic tool only, and no statistical
validity is claimed for them. These tests may be modified and enhanced in future
releases of the SAS High Performance Forecasting. The testing strategy is as follows:

1. Intermittent test. Compute the average time interval bewteeen demands. If
the time average time interval is greater than a preset limit, an intermittent
forecasting model is used.

2. Seasonality test. The resultant series is tested for seasonality. A seasonal
dummy model with AR(1) errors is fit and the joint significance of the seasonal
dummy estimates is tested. If the seasonal dummies are significant, the AIC
statistic for this model is compared to the AIC for and AR(1) model without
seasonal dummies. nonseasonal model, a seasonal forecasting model is used.
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Statistics of Fit

This section explains the goodness-of-fit statistics reported to measure how well dif-
ferent models fit the data. The statistics of fit for the various forecasting models can
be printed or stored in a data set.

The various statistics of fit reported are as follows. In these formula, n is the number
of nonmissing observations and k is the number of fitted parameters in the model.

Number of Nonmissing Observations.
The number of nonmissing observations used to fit the model.

Number of Observations.
The total number of observations used to fit the model, including both missing
and nonmissing observations.

Number of Missing Actuals.
The number of missing actual values.

Number of Missing Predicted Values.
The number of missing predicted values.

Number of Model Parameters.
The number of parameters fit to the data. For combined forecast, this is the number
of forecast components.

Total Sum of Squares (Uncorrected).
The total sum of squares for the series, SST, uncorrected for the mean:

∑n
t=1 y2

t .

Total Sum of Squares (Corrected).
The total sum of squares for the series, SST, corrected for the mean:∑n

t=1 (yt − y)2, where y is the series mean.

Sum of Square Errors.
The sum of the squared prediction errors, SSE. SSE =

∑n
t=1 (yt − ŷt)2, where ŷ

is the one-step predicted value.

Mean Square Error.
The mean squared prediction error, MSE, calculated from the one-step-ahead fore-
casts. MSE = 1

nSSE . This formula enables you to evaluate small holdout sam-
ples.

Root Mean Square Error.
The root mean square error (RMSE),

√
MSE .

Mean Absolute Percent Error.
The mean absolute percent prediction error (MAPE), 100

n

∑n
t=1 |(yt − ŷt)/yt|.

The summation ignores observations where yt = 0.
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Mean Absolute Error.
The mean absolute prediction error, 1

n

∑n
t=1 |yt − ŷt|.

R-Square.
The R2 statistic, R2 = 1 − SSE/SST . If the model fits the series badly, the
model error sum of squares, SSE, may be larger than SST and the R2 statistic will
be negative.

Adjusted R-Square.
The adjusted R2 statistic, 1 − (n−1

n−k )(1 − R2).

Amemiya’s Adjusted R-Square.
Amemiya’s adjusted R2, 1 − (n+k

n−k )(1 − R2).

Random Walk R-Square.
The random walk R2 statistic (Harvey’s R2 statistic using the ran-
dom walk model for comparison), 1 − (n−1

n )SSE/RWSSE , where
RWSSE =

∑n
t=2 (yt − yt−1 − µ)2, and µ = 1

n−1

∑n
t=2 (yt − yt−1).

Akaike’s Information Criterion.
Akaike’s information criterion (AIC), n ln(SSE/n) + 2k.

Schwarz Bayesian Information Criterion.
Schwarz Bayesian information criterion (SBC or BIC),
n ln(SSE/n) + k ln(n).

Amemiya’s Prediction Criterion.
Amemiya’s prediction criterion, 1

nSST (n+k
n−k )(1 − R2) = (n+k

n−k ) 1
nSSE .

Maximum Error.
The largest prediction error.

Minimum Error.
The smallest prediction error.

Maximum Percent Error.
The largest percent prediction error, 100 max((yt − ŷt)/yt). The summation ig-
nores observations where yt = 0.

Minimum Percent Error.
The smallest percent prediction error, 100 min((yt − ŷt)/yt). The summation
ignores observations where yt = 0.

Mean Error.
The mean prediction error, 1

n

∑n
t=1 (yt − ŷt).

Mean Percent Error.
The mean percent prediction error, 100

n

∑n
t=1

(yt−ŷt)
yt

. The summation ignores
observations where yt = 0.
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Subject Index

A
additive-invertible region

smoothing weights, 58
adjusted R-square

statistics of fit, 76
AIC,

See Akaike’s information criterion
Akaike’s information criterion

AIC, 76
statistics of fit, 76

Amemiya’s prediction criterion
statistics of fit, 76

Amemiya’s R-square
statistics of fit, 76

B
BIC,

See Schwarz Bayesian information criterion
boundaries

smoothing weights, 58
Box Cox

transformations, 72
Box Cox transformation,

See transformations
Brown smoothing model,

See double exponential smoothing
BY groups

HPF procedure, 14

C
calculations

smoothing models, 56
corrected sum of squares

statistics of fit, 75
Croston’s,

See intermittent models

D
damped-trend exponential smoothing, 63

smoothing models, 63
diagnostic tests, 74
double exponential smoothing, 60

Brown smoothing model, 60
smoothing models, 60

E
error sum of squares

statistics of fit, 75

exponential smoothing,
See smoothing models

F
forecasting, 55
forecasting models

intermittent models, 68
smoothing models, 55

G
goodness-of-fit statistics,

See statistics of fit

H
Holt smoothing model,

See linear exponential smoothing
Holt-Winters Method,

See Winters Method
HPF procedure

BY groups, 14
ODS graph names, 40

I
initializations

smoothing models, 57
intermittent models

Croston’s Method, 68
forecasting models, 68

L
linear exponential smoothing, 61

Holt smoothing model, 61
smoothing models, 61

log
transformations, 72

log test, 74
log transformation,

See transformations
logistic

transformations, 72

M
mean absolute error

statistics of fit, 76
mean absolute percent error

statistics of fit, 75
mean percent error

statistics of fit, 76
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mean prediction error
statistics of fit, 76

mean square error
statistics of fit, 75

missing values
smoothing models, 57

MMAE, 73
MMSE, 73
model evaluation, 55

N
nonmissing observations

statistics of fit, 75
number of observations

statistics of fit, 75

O
ODS graph names

HPF procedure, 40
optimizations

smoothing weights, 58

P
parameter estimation, 55
predictions

smoothing models, 57

R
R-square statistic

statistics of fit, 76
random walk R-square

statistics of fit, 76
root mean square error

statistics of fit, 75

S
SBC,

See Schwarz Bayesian information criterion
Schwarz Bayesian information criterion

BIC, 76
SBC, 76
statistics of fit, 76

seasonal exponential smoothing, 64
smoothing models, 64

seasonality test, 74
series diagnostics, 74
simple exponential smoothing, 59

smoothing models, 59
smoothing equations, 56

smoothing models, 56
smoothing models

calculations, 56
damped-trend exponential smoothing, 63
double exponential smoothing, 60
exponential smoothing, 55
forecasting models, 55
initializations, 57
linear exponential smoothing, 61
missing values, 57

predictions, 57
seasonal exponential smoothing, 64
simple exponential smoothing, 59
smoothing equations, 56
smoothing state, 56
smoothing weights, 58
standard errors, 58
underlying model, 56
Winters Method, 65, 67

smoothing state, 56
smoothing models, 56

smoothing weights, 58
additive-invertible region, 58
boundaries, 58
optimizations, 58
smoothing models, 58
specifications, 58
weights, 58

specifications
smoothing weights, 58

square root
transformations, 72

square root transformation,
See transformations

standard errors
smoothing models, 58

statistics of fit, 75
adjusted R-square, 76
Akaike’s information criterion, 76
Amemiya’s prediction criterion, 76
Amemiya’s R-square, 76
corrected sum of squares, 75
error sum of squares, 75
goodness-of-fit statistics, 75
mean absolute error, 76
mean absolute percent error, 75
mean percent error, 76
mean prediction error, 76
mean square error, 75
nonmissing observations, 75
number of observations, 75
R-square statistic, 76
random walk R-square, 76
root mean square error, 75
Schwarz Bayesian information criterion, 76
uncorrected sum of squares, 75

T
transformations

Box Cox, 72
Box Cox transformation, 72
log, 72
log transformation, 72
logistic, 72
square root, 72
square root transformation, 72

U
uncorrected sum of squares
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statistics of fit, 75
underlying model

smoothing models, 56

W
weights,

See smoothing weights
Winters Method, 65, 67

Holt-Winters Method, 65
smoothing models, 65, 67
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Syntax Index

A
ACCUMULATE= option

FORECAST statement (HPF), 14
ID statement (HPF), 19

ALIGN= option
ID statement (HPF), 20

ALPHA= option
FORECAST statement (HPF), 14

AVERAGE= option
IDM statement (HPF), 24

B
BACK= option

PROC HPF statement, 11
BASE= option

IDM statement (HPF), 24
BOUNDS= option

IDM statement (HPF), 26
BY statement

HPF procedure, 14

D
DAMPPARM= option

IDM statement (HPF), 26
DAMPREST= option

IDM statement (HPF), 26
DATA= option

PROC HPF statement, 11

E
END= option

ID statement (HPF), 20

F
FORECAST statement

HPF procedure, 14

H
HOLDOUT= option

FORECAST statement (HPF), 14
HOLDOUTPCT= option

FORECAST statement (HPF), 15
HPF, 5
HPF procedure, 9

syntax, 9

I
ID statement

HPF procedure, 19
IDM statement

HPF procedure, 22
INTERMITTENT= option

FORECAST statement (HPF), 15
INTERVAL= option

ID statement (HPF), 21
IDM statement (HPF), 24

L
LEAD= option

PROC HPF statement, 11
LEVELPARM= option

IDM statement (HPF), 26
LEVELREST= option

IDM statement (HPF), 26

M
MAXERROR= option

PROC HPF statement, 11
MEDIAN option

FORECAST statement (HPF), 15
IDM statement (HPF), 25

METHOD= option
IDM statement (HPF), 25

MODEL= option
FORECAST statement (HPF), 15

N
NBACKCAST= option

FORECAST statement (HPF), 16
NOEST option

IDM statement (HPF), 26
NOOUTALL option

PROC HPF statement, 11
NOSTABLE option

IDM statement (HPF), 26
NOTSORTED option

ID statement (HPF), 21

O
OUT= option

PROC HPF statement, 11
OUTEST= option

PROC HPF statement, 12
OUTFOR= option
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PROC HPF statement, 12
OUTSEASON= option

PROC HPF statement, 12
OUTSTAT= option

PROC HPF statement, 12
OUTSUM= option

PROC HPF statement, 12
OUTTREND= option

PROC HPF statement, 12

P
PLOT= option

PROC HPF statement, 40
PRINT= option

PROC HPF statement, 12
PRINTDETAILS option

PROC HPF statement, 13
PROC HPF statement, 11

R
REPLACEBACK option

FORECAST statement (HPF), 16
REPLACEMISSING option

FORECAST statement (HPF), 16

S
SEASONALITY= option

PROC HPF statement, 13
SEASONTEST= option

FORECAST statement (HPF), 16
SELECT= option

FORECAST statement (HPF), 16
IDM statement (HPF), 26

SETMISSING= option
FORECAST statement (HPF), 18
ID statement (HPF), 21

SIZE= option
IDM statement (HPF), 24

SORTNAMES option
PROC HPF statement, 13

START= option
ID statement (HPF), 22
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Your Turn 

If you have comments or suggestions about SAS� High-Performance Forecasting 
9.1 User’s Guide, please send them to us on a photocopy of this page or send us 
electronic mail. 

For comments about this book, please return the photocopy to 

SAS Publishing 
SAS Campus Drive 
Cary, NC 27513 
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to 

SAS Institute Inc. 
Technical Support Division 
SAS Campus Drive 
Cary, NC 27513 
E-mail: suggest@sas.com


