
SAS/GRAPH®

9.1 Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/GRAPH® 9.1 Reference,
Volumes 1 and 2. Cary, NC: SAS Institute Inc.

SAS/Graph® 9.1 Reference, Volumes 1 and 2

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

ISBN 159047-408-2

All rights reserved. Produced in the United States of America. Your use of this e-book shall be governed by the terms
established by the vendor at the time you acquire this e-book.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies

Contents

What’s New xiii

Overview xiii

Details xiv

P A R T 1 SAS/GRAPH Concepts 1

Chapter 1 Introduction to SAS/GRAPH Software 3
Overview 4

Generating Graphs 4

About this Book 16

Conventions Used in This Book 16

Information You Should Know 20

Chapter 2 SAS/GRAPH Programs 25
Overview 25

Language Elements 26

SAS Data Sets 29

Using Engines with SAS/GRAPH Software 31

Running SAS/GRAPH Programs 31

Procedure Output and the Graphics Output Area 34

Chapter 3 Device Drivers 41
Overview 41

About Device Drivers 42

Selecting a Device Driver 43

Controlling Output with Device Drivers 45

Chapter 4 SAS/GRAPH Output 47
About SAS/GRAPH Output 48

Displaying Graphics Output on Monitors or Terminals 49

Printing Graphics Output 51

Storing Graphics Output in SAS Catalogs 53

Modifying SAS/GRAPH Output 55

Transporting and Converting Graphics Output 56

About Exporting SAS/GRAPH Output 59

Exporting SAS/GRAPH Output Interactively 62

Exporting SAS/GRAPH Output with Program Statements 62

Exporting SAS/GRAPH Output Using Modified Device Entries 72

Chapter 5 SAS/GRAPH Fonts 75
Overview 75

Specifying Fonts in SAS/GRAPH Programs 75

Using Hardware Fonts 78

iv

Specifying Special Characters 81

Using SAS/GRAPH Software Fonts 82

Chapter 6 SAS/GRAPH Colors and Images 91
Using SAS/GRAPH Colors and Images 92

Specifying Colors in SAS/GRAPH Programs 92

Specifying Images in SAS/GRAPH Programs 106

Chapter 7 SAS/GRAPH Statements 121
Overview 123

AXIS Statement 124

BY Statement 141

FOOTNOTE Statement 146

GOPTIONS Statement 146

LEGEND Statement 151

NOTE Statement 164

ODS HTML Statement 164

PATTERN Statement 169

SYMBOL Statement 183

TITLE, FOOTNOTE, and NOTE Statements 210

Example 1. Ordering Axis Tick Marks with SAS Datetime Values 226

Example 2. Specifying Logarithmic Axes 229

Example 3. Rotating Plot Symbols through the Colors List 231

Example 4. Creating and Modifying Box Plots 233

Example 5. Filling the Area between Plot Lines 236

Example 6. Enhancing Titles 238

Example 7. Using BY-group Processing to Generate a Series of Charts 240

Example 8. Creating a Simple Web Page with the ODS HTML Statement 245

Example 9. Combining Graphs and Reports in a Web Page 248

Example 10. Creating a Bar Chart with Drill-down for the Web 255

See Also 260

Chapter 8 Graphics Options and Device Parameters Dictionary 261
Introduction 261

Specifying Graphics Options and Device Parameters 261

Dictionary of Graphics Options and Device Parameters 262

P A R T 2 Bringing SAS/GRAPH Output to the Web 367

Chapter 9 Introducing SAS/GRAPH Output for the Web 369
Which Device Driver or Macro Do I Use? 369

Types of Web Presentations Available 370

Selecting a Type of Web Presentation 378

Generating Web Presentations 382

Changing the Location of Online Help for Java and ActiveX 385

v

Chapter 10 Creating Interactive Output for ActiveX 387
Overview 387

When to Use the ACTIVEX Device Driver 388

Installing the ActiveX Control 389

Generating Output for ActiveX 391

Configuring Drill-Down Links with ACTIVEX 392

ActiveX Examples 393

Creating Graphs Interactively 395

Chapter 11 Creating Interactive Output for Java 397
Overview 397

When to Use the JAVA Device Driver 398

Generating Output for Java 398

Configuring Drill-Down Links for Java and ActiveX 400

Examples of Interactive Java Output 415

Chapter 12 Attributes and Parameters for Java and ActiveX 421
Specifying Parameters and Attributes for Java and ActiveX 421

Parameter Reference for Java and ActiveX 424

Chapter 13 Generating Static Graphics 439
What is a Static Graphic? 439

Creating a Static Graphic with ODS 440

ACTXIMG and JAVAIMG Device Drivers Compared to GIF, JPEG, and PNG Device
Drivers 440

Developing Web Presentations with the JAVAIMG and ACTXIMG Device Drivers 442

Developing Web Presentations with the GIF, JPEG, and PNG Device Drivers 443

Naming Conventions Used for Image Output Files 445

Enhancing Web Presentations Generated with the GIF, JPEG, or PNG Device
Driver 446

Sample Programs for Static Images 447

Chapter 14 Generating Web Animation with GIFANIM 457
Developing Web Presentations with the GIFANIM Device Driver 457

When to Use the GIFANIM Device Driver 457

Creating an Animated Sequence 458

GOPTIONs for Configuring GIFANIM Presentations 459

Sample Programs: GIFANIM 459

Chapter 15 Generating Interactive Metagraphics Output 469
Developing Web Presentations for the Metaview Applet 469

Using ODS with JAVAMETA 470

Using the META2HTM Macro 471

Adding Run-Time Controls to a Presentation 471

Enhancing Web Presentations for the Metaview Applet 474

Specifying Non-English Resource Files and Fonts 474

Metaview Applet Parameters 475

vi

META2HTM Macro Arguments 478

Sample Programs: Metaview Applet 478

Chapter 16 Managing Web Output with ODS 487
Overview of ODS Enhancements for Web Output 487

Using ODS Styles 488

Managing ODS Destinations 489

ODS and Procedures that Support RUN-Group Processing 490

Specifying Body Files for Displaying Graphs 491

Controlling Titles and Footnotes with ODS Output 492

Adding Non-Graphics Output to a Web Page 494

Linking to Output through a Table of Contents 495

Linking to Output through a Table of Pages 496

Using Frames to Display ODS Output 497

Chapter 17 Generating Web Output with the Annotate Facility 499
Overview of Generating Web Output with the Annotate Facility 499

Generating Web Output with the Annotate Facility 499

Examples 501

Chapter 18 Creating Interactive Treeview Diagrams 503
Creating Treeview Diagrams 503

Enhancing Presentations for the Treeview Applet 506

DS2TREE Macro Arguments 507

Sample Programs: Treeview Macro 507

Chapter 19 Creating Interactive Constellation Diagrams 513
Creating Constellation Diagrams 513

Enhancing Presentations for the Constellation Applet 517

DS2CONST Macro Arguments 518

Sample Programs: Constellation Macro 518

Chapter 20 Creating Critical Success Factor Diagrams 527
Using the DS2CSF Macro 527

Enhancing Presentations for the Rangeview Applet 529

DS2CSF Macro Arguments 530

Sample Programs: DS2CSF Macro 530

Chapter 21 Macro Arguments for the DS2CONST, DS2TREE, DS2CSF, and META2HTM
Macros 535
Macro Arguments 535

Chapter 22 Enhancing Web Output 567
Enhancing Web Output 567

Adding Data Tips to Web Presentations 568

Adding Drill-Down Links to Web Presentations 571

Chapter 23 Troubleshooting Web Output 579

vii

Troubleshooting Web Output 579

Checking Browser Permissions 582

Using HTML Character Entities 582

Connecting to Web Servers that Require Authentication 583

Removing CLASSPATH Environment Variables 583

Correcting Text Fonts 583

Resolving Colors in Netscape 583

Resolving Differences Between Client and Server Graphs 584

P A R T 3 The Annotate Facility 585

Chapter 24 Using Annotate Data Sets 587
Overview 587

About the Annotate Data Set 589

About Annotate Graphics 595

Creating an Annotate Data Set 599

Producing Graphics Output from Annotate Data Sets 601

Annotate Processing Details 602

Examples 604

Chapter 25 Annotate Dictionary 613
Annotate Dictionary Overview 614

Annotate Functions 615

Annotate Variables 642

Annotate Internal Coordinates 678

Annotate Macros 679

Using Annotate Macros 697

Annotate Error Messages 699

P A R T 4 SAS/GRAPH Procedures 705

Chapter 26 The GANNO Procedure 707
Overview 707

Procedure Syntax 708

Examples 710

Chapter 27 The GAREABAR Procedure 725
Overview 725

Concepts 726

Procedure Syntax 727

Examples 729

Chapter 28 The GBARLINE Procedure 739
Overview 739

Concepts 741

Procedure Syntax 749

viii

Examples 768

Chapter 29 The GCHART Procedure 773
Overview 774

Concepts 778

Procedure Syntax 785

Examples 842

References 884

Chapter 30 The GCONTOUR Procedure 885
Overview 885

Concepts 885

Procedure Syntax 888

Examples 904

References 913

Chapter 31 The GDEVICE Procedure 915
Overview 916

Concepts 916

Procedure Syntax 920

Using the GDEVICE Procedure 928

Examples 936

Chapter 32 The GFONT Procedure 939
Overview 939

Concepts 940

Procedure Syntax 942

Creating a Font 951

Examples 962

Chapter 33 The GIMPORT Procedure 969
Overview 969

Concepts 970

Procedure Syntax 972

Examples 976

References 981

Chapter 34 The GKEYMAP Procedure 983
Overview 983

Concepts 983

Procedure Syntax 988

Examples 990

Chapter 35 The GMAP Procedure 995
Overview 996

Concepts 999

Procedure Syntax 1007

ix

Using FIPS Codes and Province Codes 1033

Using Formats for Maps 1035

SAS/GRAPH Map Data Sets Reference Information 1038

Examples 1045

Chapter 36 The GOPTIONS Procedure 1075
Overview 1075

Procedure Syntax 1076

Examples 1078

Chapter 37 The GPLOT Procedure 1081
Overview 1081

Concepts 1085

Procedure Syntax 1088

Examples 1120

Chapter 38 The GPRINT Procedure 1147
Overview 1147

Concepts 1148

Procedure Syntax 1148

Examples 1153

Chapter 39 The GPROJECT Procedure 1161
Overview 1161

Concepts 1163

Procedure Syntax 1167

Using the GPROJECT Procedure 1172

Examples 1173

References 1182

Chapter 40 The GRADAR Procedure 1183
Overview 1183

Procedure Syntax 1184

Examples 1196

Chapter 41 The GREDUCE Procedure 1213
Overview 1213

Concepts 1215

Procedure Syntax 1215

Using the GREDUCE Procedure 1218

Examples 1220

References 1222

Chapter 42 The GREMOVE Procedure 1223
Overview 1223

Concepts 1224

Procedure Syntax 1226

x

Examples 1228

Chapter 43 The GREPLAY Procedure 1237
Overview 1238

Concepts 1239

Procedure Syntax 1242

Using the GREPLAY Procedure 1264

Examples 1270

Chapter 44 The GSLIDE Procedure 1277
Overview 1277

Procedure Syntax 1278

Examples 1282

Chapter 45 The GTESTIT Procedure 1285
Overview 1285

Procedure Syntax 1290

Examples 1291

Chapter 46 The G3D Procedure 1295
Overview 1295

Concepts 1297

Procedure Syntax 1300

Examples 1314

References 1325

Chapter 47 The G3GRID Procedure 1327
Overview 1327

Concepts 1329

Procedure Syntax 1331

Examples 1336

References 1346

Chapter 48 The MAPIMPORT Procedure 1347
Overview 1347

Procedure Syntax 1348

Examples 1349

P A R T 5 The Data Step Graphics Interface 1351

Chapter 49 The DATA Step Graphics Interface 1353
Overview 1354

Applications of the DATA Step Graphics Interface 1356

Using the DATA Step Graphics Interface 1357

DSGI Graphics Summary 1360

Chapter 50 DATA Step Graphics Interface Dictionary 1401

xi

Overview 1401

GASK Routines 1404

GDRAW Functions 1446

GRAPH Functions 1457

GSET Functions 1462

Return Codes for DSGI Routines and Functions 1501

See Also 1502

References 1503

P A R T 6 Appendixes 1505

Appendix 1 Summary of ActiveX and Java Support 1507
Introduction 1508

Global Statements 1508

PROC GAREABAR 1518

PROC GBARLINE 1519

PROC GCHART 1521

PROC GCONTOUR 1526

PROC GMAP 1527

PROC GPLOT 1530

PROC GRADAR 1535

PROC G3D 1537

Annotate Functions 1539

Appendix 2 Recommended Reading 1547
Recommended Reading 1547

Glossary 1549

Index 1561

xii

xiii

What’s New

Overview
It’s easier than ever to produce enhanced and detailed, informative graphics for your

Web presentations. New features in SAS/GRAPH include:
� three new procedures: GAREABAR, GBARLINE, and MAPIMPORT
� new options in the GCHART procedure for producing standard pie or donut charts

with a detailed, inner pie overlay
� new options in the GRADAR procedure for adjusting how a chart looks and for

specifying annotation
� support for the new DOCUMENT procedure for the Output Delivery System (ODS)
� the new SAS Maps Online application
� server-side rendering using the ACTXIMG and JAVAIMG devices
� client support for annotation
� client support for ODS styles
� ActiveX support for creating graphs interactively
� ActiveX support for radar charts produced with the GRADAR procedure
� the new Java Constellation Applet
� user interface enhancements for the client graphs, such as redesigned dialogs.

Note:
� This section describes the features of SAS/GRAPH that are new or enhanced since

SAS 8.2.
� z/OS is the successor to the OS/390 operating system. SAS/GRAPH 9.1 is

supported on both OS/390 and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390, unless otherwise stated.

�

xiv What’s New

Details

Procedures
The following procedures are new or enhanced:
� The GAREABAR procedure generates bar graphs in which the width of the bars

are proportional to a characteristic of the data element that is represented by the
bars. Area bar charts are supported only when you specify device=activex or
device=actximg. For more information, see Chapter 27, “The GAREABAR
Procedure,” on page 725.

� The new GBARLINE procedure enables you to create vertical bar charts that have
line plot overlays.

Note: The GBARLINE procedure is not supported for Java. �

For more information, see Chapter 28, “The GBARLINE Procedure,” on page 739.
� The new MAPIMPORT procedure enables you to import ESRI Shapefiles into SAS/

GRAPH map data sets. For more information, see Chapter 48, “The MAPIMPORT
Procedure,” on page 1347.

� The new DOCUMENT procedure for ODS enables you to re-arrange or to
duplicate reports—including graphs—without having to rerun your analysis. You
can display output to any ODS output format without executing your SAS
programs again. For more information, see the DOCUMENT procedure in SAS
Output Delivery System: User’s Guide.

� New options in the PIE statement in the GCHART procedure enable you to create
detail pie charts that have an inner pie overlay. The slices in the overlay align
with the slices in the outer pie and show detailed information about the major
components that comprise the outer slice. The new options are DETAIL=,
DETAIL_PERCENT=, DETAIL_RADIUS=, DETAIL_SLICE=,
DETAIL_THRESHOLD=, and DETAIL_VALUE=. For more information, see
Chapter 29, “The GCHART Procedure,” on page 773.

� The GRADAR procedure has the following new options:
� ANNOTATE= specifies an annotate data set.
� INBORDER requests a border around plots.
� INHEIGHT= specifies the height in percent screen units of text used inside

the frame of the chart.
� LAST= specifies that the spoke that corresponds to the category is displayed

to the left of the start angle.
� MAXNVERT= specifies the maximum number of vertices.

� MISSING accepts a missing value as a valid midpoint for the chart variable.
� NOFRAME suppresses the frame that is drawn around the chart by default.
� NOZEROREF turns off the zero reference line when negative values are

plotted.

� OTHER= specifies a new category that merges all categories that are not
selected because of the MAXNVERT= option.

� ORDERACROSS= specifies the display order for the values of the ACROSS=
variable.

� SPIDER draws lines on a radar chart that connect the spokes instead of the
default tick marks. The resulting lines look similar to a “spider web.”

What’s New xv

� STARINRADIUS= and STAROUTRADIUS= determine the diameter of the
stars.

For more information, see Chapter 40, “The GRADAR Procedure,” on page 1183.
� The LEVELS=ALL option in the GMAP procedure uses a color ramp to assign a

continuous color scheme to each response value. For more information, see
Chapter 35, “The GMAP Procedure,” on page 995.

SYMBOL Statement
The SINGULAR= option tunes the algorithm that is used to check for singularities.

Graphics Options
The following graphics options are new:

USERINPUT
determines whether user input is enabled for the device. For more information,
see “USERINPUT” on page 359.

SWFONTRENDER
specifies the method used to render software fonts. For more information, see
“SWFONTRENDER ”on page 353.

The Annotate Facility
The following macros are new:

%CENTROID
retrieves the centroids of polygons. For more information, see “%CENTROID
Macro” on page 680.

%MAPLABEL
creates an output data set that can be used with the ANNO= option in PROC
GMAP. For more information, see “%MAPLABEL Macro” on page 686.

SAS Maps Online Application
The new SAS Maps Online application enables you to download: data updates,

sample SAS/GRAPH programs that use the map data sets delivered with SAS/GRAPH,
and GIF images of maps. SAS Maps Online is located at support.sas.com/rnd/
datavisualization/mapsonline/html

Pop-up Data Tips for Web Graphics
Web graphics now support pop-up data tips . A pop-up data tip is text that is

displayed when a user moves the cursor over a portion of a Web graphic. You can add
custom data tips to the output of any SAS/GRAPH procedure that supports the HTML=
option. For more information, see “Adding Data Tips to Web Presentations” on page 568.

Server-Side Rendering
The ACTXIMG and JAVAIMG devices generate images on the server that match the

look of the client graphs. These devices are especially useful when you do not need the

xvi What’s New

interactivity that is provided by the client graphs. ACTXIMG is only available for
Windows. For more information, see “ACTXIMG and JAVAIMG Device Drivers
Compared to GIF, JPEG, and PNG Device Drivers” on page 440.

Client Support for Annotation
The Java and ActiveX clients now support annotation through the Output Delivery

System (ODS) for the G3D, GBARLINE, GCHART, GCONTOUR, GMAP, GPLOT, and
GRADAR procedures. You can specify the ANNOTATE= option in these procedures
when you are using the JAVA, JAVAIMG, ACTIVEX, and ACTXIMG device drivers. All
annotate functions are available with each device driver (except the FRAME and
IMAGE functions, which are available only with ACTIVEX and ACTXIMG). For more
information, see “Annotate Functions” on page 1539.

Client Support for ODS Styles
ODS styles now affect both table and client graph output. Sixteen new graph styles

provide a consistent look for your entire ODS output, which enhances readability and
usability. For more information, see “Using ODS Styles” on page 488.

ActiveX Control
The following are enhancements for the ActiveX Control:
� The ActiveX control now supports creating graphs interactively. You can import

data from SAS data sets, Microsoft Excel files, or Microsoft Access files.

Note: To create graphs interactively, you must have Enterprise Guide 2.0 HotFix
11 or higher installed.

� The ActiveX control now supports radar charts that are produced by using the
GRADAR procedure.

� The ActiveX control menus now enable the following additional languages:
Chinese, Japanese, Korean, and Russian. (The following languages were also
available in SAS 8.2: French, German, Hebrew, Hungarian, Italian, Polish, and
Spanish.

Java Constellation Applet and DS2CONST Macro
The new Java Constellation Applet, which you can generate by using the DS2CONST

macro, enables you to see the relationships among node link data, such as Web click
data, network flow data, and simple affinity data. You can interactively select a set of
nodes to see the relationships among the nodes. You can see all of the links coming to
the set of nodes or going out of a set of nodes. For more information, see “Creating
Constellation Diagrams” on page 513.

Java Treeview Applet and DS2TREE Macro
The new Java Treeview applet, which you can generate by using the DS2TREE

macro, shows the parent-child relationships of elements in a hierarchical structure. It
provides an optional “fish-eye” distortion that highlights the central area of interest,
and enables you to search for, hide, and display element subtrees. A Treeview diagram

What’s New xvii

is ideal for displaying data such as organizational charts or the hierarchical
relationships of the pages of a Web site. For more information, see Chapter 18,
“Creating Interactive Treeview Diagrams,” on page 503.

Java Contour Applet
The following are enhancements for the Java Contour Applet:
� a new plot style, Smooth, enables you to display flat (linearly interpolated) planes

with no outlines.

� several new parameters. For a complete list, see “Parameter Reference for Java
and ActiveX” on page 424.

Java Graph Applet
The following are enhancements in the Java Graph Applet:

� For bar charts, error bars and the CERROR= option (which sets their color) are
now enabled. Bars can be labeled by statistics by using the OUTSIDE= and
INSIDE= options. Patterns are enabled for 2-D bars, and improved support for the
VALUE= option in the AXIS statement is provided.

� For pie charts with group variables, the OTHER=, HTML=, INVISIBLE, and
EXPLODE options are available. Data tips can now be displayed for groups. The
V=EMPTY option in a PATTERN statement creates hollow pie slices. The
LABEL= option enables you to specify font height and color for donut charts.

� Scatter plots now enable the BOX, STD, and HILOC interpolations. For these
interpolations, you can use the SYMBOL statement to specify colors, font height
and width, line type, point labels, and box width.

� The Graph applet menus now enable the following additional languages: Chinese,
Japanese, Korean, and Russian. (The following languages were also available in
SAS 8.2: French, German, Hebrew, Hungarian, Italian, Polish, and Spanish.)

� The MENUREMOVE parameter can be used to disable menus and menu options
in the applet’s user interface.

User-Defined Formats
The Java and ActiveX devices now support user-defined formats, except for nested

user-defined formats. For information about defining formats, see the documentation
for the FORMAT procedure in the Base SAS Procedures Guide.

Colors
Color names can now be a maximum of 64 characters in length.

Fonts
The following fonts have been added:
� Davidb (Hebraic)
� Fsong (Chinese)

� Hebrewb

xviii What’s New

� Hei (Chinese)
� Mincho (Japanese)

PAGEFIT Attribute for PostScript
The new PAGEFIT image attribute enables you to adjust how a PostScript image fits

on the page. The PAGEFIT attribute replaces the NOFIT attribute. For more
information, see “Image Formats for Writing” on page 110.

GTITLE and GFOOTNOTE Options for the ODS Statement
The behavior of the GTITLE and GFOOTNOTE options has been changed—when

you specify NOGTITLE or NOGFOOTNOTE, the space in the graphic that would have
been used for the title or footnote is allocated to the procedure output rather than being
left empty. You need to be aware of this change if you are using annotation or mapping
coordinates. For more information, see “Controlling Where Titles and Footnotes are
Rendered” on page 492.

Enhancements in SAS/GRAPH Documentation
In addition to information about new features, the SAS/GRAPH documentation now

includes information about the following:
� COLORMAC and HLPCLR macros and expanded information about choosing color

schemes
� DSGI routine GASK (’PATREP’), and the functions GSET(’PATREP’) and

GRAPH(’PLAY’)
� map formats that are available with the GMAP procedure
� HTML generators, which are macros that generate HTML files that run one of the

SAS/GRAPH applets: DS2CONST (Constellation Applet), DS2TREE (Treeview
Applet), and DS2CSF (Rangeview Applet).

� attributes and parameters for Java and ActiveX, which were formerly documented
in the SAS Output Delivery System: User’s Guide.

Also, additional examples of Web-output programs have been added to the
documentation and the SAS/GRAPH sample library. Documentation for the JAVA2
device driver has been removed, because JAVA and JAVA2 are now functionally
equivalent.

1

P A R T1

SAS/GRAPH Concepts

Chapter 1.Introduction to SAS/GRAPH Software 3

Chapter 2.SAS/GRAPH Programs 25

Chapter 3.Device Drivers 41

Chapter 4.SAS/GRAPH Output 47

Chapter 5.SAS/GRAPH Fonts 75

Chapter 6.SAS/GRAPH Colors and Images 91

Chapter 7.SAS/GRAPH Statements 121

Chapter 8.Graphics Options and Device Parameters Dictionary 261

2

3

C H A P T E R

1
Introduction to SAS/GRAPH
Software

Overview 4

Generating Graphs 4
Charts 4

Block charts 4

Horizontal bar charts 5
Vertical bar charts 5

Pie charts, 3-D Pie charts, and Donut charts 6

Star charts 6
Two-Dimensional Plots 6

Two-dimensional scatter plots 7
Simple line plots 7

Regression plots 7

High-low plots 8
Bubble plots 8

Three-Dimensional Plots 9

Surface plots 9
Scatter plots 9

Contour plots 10
Maps 11

Block maps 11

Choropleth maps 11
Prism maps 11

Surface maps 12

Creating Text Slide and Presentation Graphics 12
Text Slides 13

Combining Output into One Slide 13
Enhancing Graphics Output (graphs and text slides) 14

SAS/GRAPH Statements 14

The Annotate Facility 14
Creating Custom Graphics 15

The DATA Step Graphics Interface 15

Graph-N-Go 15
About this Book 16

Audience 16
Prerequisites 16

Conventions Used in This Book 16

Syntax Conventions 17
Conventions for Examples and Output 19

Information You Should Know 20

Support Personnel 20
Sample Programs 21

4 Overview Chapter 1

Map Data Sets 23

Annotate Macros Data Set 23

Overview
SAS/GRAPH software is the data visualization and presentation (graphics)

component of the SAS System. As such, SAS/GRAPH software:
� organizes the presentation of your data and visually represents the relationship

between data values as two- and three-dimensional graphs, including charts, plots,
and maps.

� enhances the appearance of your output by allowing you to select text fonts, colors,
patterns, and line styles, and control the size and position of many graphics
elements.

� creates presentation graphics. SAS/GRAPH software can create text slides, display
several graphs at one time, combine graphs and text in one display, and create
automated presentations.

� generates a variety of graphics output that you can display on your screen or in a
Web browser, store in catalogs, review, or send to a hardcopy graphics output
device such as a laser printer, plotter, or slide camera.

� provides utility procedures and statements to manage the output.

This chapter describes the graphs that are produced by SAS/GRAPH software and
explains some of the parts and features of SAS/GRAPH programs.

Generating Graphs
SAS/GRAPH software produces many kinds of charts, plots, and maps in both two-

and three-dimensional versions. In addition to helping you understand the variety of
graphs that are available to you, these descriptions will also help you choose the correct
type of graph for your data and point you to the appropriate chapter.

Charts
SAS/GRAPH software uses the GCHART procedure to produce charts that

graphically represent the value of a statistic for one or more variables in a SAS data
set. See Chapter 29, “The GCHART Procedure,” on page 773 for a complete description.

Block charts
Block charts use three-dimensional blocks to graphically represent values of

statistics. Block charts are useful for emphasizing relative magnitudes and differences
among data values.

Introduction to SAS/GRAPH Software Charts 5

Horizontal bar charts
Horizontal bar charts use horizontal bars to represent statistics based on the values

of one or more variables. Horizontal bar charts can generate a table of chart statistics
and are useful for displaying exact magnitudes and emphasizing differences.

Vertical bar charts
Vertical bar charts use vertical bars to represent statistics based on the values of one

or more variables. Vertical bar charts, which generate only one statistic, are useful for
displaying exact magnitudes and emphasizing differences.

6 Two-Dimensional Plots Chapter 1

Pie charts, 3-D Pie charts, and Donut charts
Pie charts, 3-D Pie charts, and Donut charts use the angle of pie slices to graphically

represent the value of a statistic for a data range. Pie charts are useful for examining
how the values of a variable contribute to the whole and for comparing the values of
several variables.

Star charts
Star charts use the length of spines to graphically represent the value of a statistic

for a data range. Star charts are useful for analyzing where data are out of balance.

Two-Dimensional Plots
SAS/GRAPH software uses the GPLOT procedure to produce two-dimensional

graphs that plot one or more dependent variables against an independent variable
within a set of coordinate axes. GPLOT can display the data points as individual
symbols (as in a scatter plot), or use interpolation methods specified by the SYMBOL
statement to join the points, request spline interpolation or regression analysis, produce
various high-low plots, or generate several other types of plots.

GPLOT can also display data as bubble plots in which circles of different sizes
represent the values of a third variable.

Plots are useful for demonstrating the relationship between two or more variables and
frequently compare trends or data values or depict movements of data values over time.

See Chapter 37, “The GPLOT Procedure,” on page 1081 for a complete description.

Introduction to SAS/GRAPH Software Two-Dimensional Plots 7

Two-dimensional scatter plots
Two-dimensional scatter plots show the relationship of one variable to another, often

revealing concentrations or trends in the data. Typically, each variable value on the
horizontal axis can have any number of corresponding values on the vertical axis.

Simple line plots
Simple line plots show the relationship of one variable to another, often as

movements or trends in the data over a period of time. Typically, each variable value on
the horizontal axis has only one corresponding value on the vertical axis. The line
connecting data points can be smoothed using a variety of interpolation methods,
including the Lagrange and the cubic spline interpolation methods.

Regression plots
Regression plots specify that the plot is a regression analysis. You can specify one of

three types of regression equation – linear, quadratic, or cubic – and optionally display
confidence limits for mean predicted values or individual predicted values.

8 Two-Dimensional Plots Chapter 1

High-low plots
High-low plots show how several values of one variable relate to one value of another

variable. Typically, each variable value on the horizontal axis has several corresponding
values on the vertical axis. High-low plots include box, needle, and stock market plots.

Bubble plots
Bubble plots show the relative magnitude of one variable in relation to two other

variables. The values of two variables determine the position of the bubble on the plot,
and the value of a third variable determines the size of the bubble.

Introduction to SAS/GRAPH Software Three-Dimensional Plots 9

Three-Dimensional Plots
SAS/GRAPH software uses the G3D procedure to produce three-dimensional surface

and scatter plots that examine the relationship among three variables. Variable values
are plotted on a set of three coordinate axes.

See Chapter 46, “The G3D Procedure,” on page 1295 for a complete description.

Surface plots
Surface plots are three-dimensional plots that display the relationship of three

variables as a continuous surface. Surface plots examine the three-dimensional shape
of data.

Scatter plots
Scatter plots enable you to examine three-dimensional data points instead of surfaces

and to classify your data using size, color, shape, or a combination of these features.

10 Three-Dimensional Plots Chapter 1

Contour plots
SAS/GRAPH software uses the GCONTOUR procedure to examine

three-dimensional data in two dimensions. Lines or areas in a contour plot represent
levels of magnitude (z) corresponding to a position on a plane (x,y).

See Chapter 30, “The GCONTOUR Procedure,” on page 885 for a complete
description.

Contour plots are two-dimensional plots that show three-dimensional relationships.
These plots use contour lines or patterns to represent levels of magnitude of a contour
variable plotted on the horizontal and vertical axes.

When you need to interpolate or smooth data values that are used by the G3D and
GCONTOUR procedures, use the G3GRID procedure. The G3GRID procedure does not
produce graphics output but processes existing data sets to create data sets that the
G3D or GCONTOUR procedure can use to produce three-dimensional surface or contour
plots. See Chapter 47, “The G3GRID Procedure,” on page 1327 for a complete
description.

Introduction to SAS/GRAPH Software Maps 11

Maps
SAS/GRAPH software uses the GMAP procedure to produce two- and

three-dimensional maps that can show an area or represent values of response
variables for subareas.

SAS/GRAPH software includes data sets to produce geographic maps. In addition,
you can create your own map data sets.

See Chapter 35, “The GMAP Procedure,” on page 995 for a complete description.

Block maps
Block maps are three-dimensional maps that represent data values as blocks of

varying height rising from the middle of the map areas.

Choropleth maps
Choropleth maps are two-dimensional maps that display data values by filling map

areas with combinations of patterns and color that represent the data values.

Prism maps
Prism maps are three-dimensional maps that display data by raising the map areas

and filling them with combinations of patterns and colors.

12 Creating Text Slide and Presentation Graphics Chapter 1

Surface maps
Surface maps are three-dimensional maps that represent data values as spikes of

varying heights.

SAS/GRAPH software also provides several utility procedures for handling map data.
The GPROJECT procedure lets you choose how geographic maps are projected. This

is particularly important for large areas because producing a map of any large area on
the Earth involves distorting some areas in the process of projecting the spherical
surface of the Earth onto a flat plane. You can use the procedure to select the projection
method that least distorts your map.

Map areas are constructed of joined data points. Each data point represents an
observation in a SAS data set. For large maps, the amount of data can be prohibitively
expensive (in terms of computing resources or time to process); the GREDUCE
procedure enables you to reduce the number of points in the data set. The GREMOVE
procedure enables you to remove boundary lines within a map.

Creating Text Slide and Presentation Graphics
You can use SAS/GRAPH software to create slide presentations of your graphs. With

SAS/GRAPH you can

� create text slides with the GSLIDE and GPRINT procedures

� combine several graphs into one output with the GREPLAY procedure

Introduction to SAS/GRAPH Software Creating Text Slide and Presentation Graphics 13

� automatically or manually replay your graphs and text slides with the GREPLAY
procedure.

Text Slides
Use the GSLIDE procedure to create text slides in which you can specify a variety of

colors, fonts, sizes, angles, overlays, and other modifications as well as drawing lines
and boxes on the output.

See Chapter 44, “The GSLIDE Procedure,” on page 1277 for a complete description.
Text slides display text as graphics output. Text slides can be used as title slides for

presentations, or to produce certificates, signs, or other display text.

Use the GPRINT procedure to display as a graphic SAS procedure output that has
been saved in a text file. With GPRINT, you bring the text file into SAS/GRAPH and
then add titles, notes, and footnotes, and select colors for the output.

See Chapter 38, “The GPRINT Procedure,” on page 1147 for a complete description.

Combining Output into One Slide
Use the GREPLAY procedure to combine several graphs into a single output. You can

create special effects by overlaying or rotating the graphs at any angle.
Templated graphs display two or more graphs or text slides as one output by

replaying stored graphs into a template or framework. Like graphs and text slides,
templated graphs can be ordered in groups and stored in catalogs for replay as part of a
presentation.

14 Enhancing Graphics Output (graphs and text slides) Chapter 1

Figure 1.1 Templated graphs

In addition, you can use the GREPLAY procedure to create an automated or
user-controlled presentation of graphics output. The GREPLAY procedure enables you
to name, arrange, and customize the presentation of graphs that are stored in a catalog.

See Chapter 43, “The GREPLAY Procedure,” on page 1237 for a complete description.

Enhancing Graphics Output (graphs and text slides)

SAS/GRAPH Statements
You also can use global statements and graphics options in SAS/GRAPH programs.

With global statements, you can add titles and footnotes and control the appearance of
axes, symbols, patterns, and legends. With graphics options, you can control the
appearance of graphics elements by specifying default colors, fill patterns, fonts, text
height, and so on.

The Annotate Facility
The Annotate facility enables you to program graphics by using certain variables in

SAS data sets. It is often used to add text or special elements to the graphics output of
other procedures, although it also can be used to construct custom graphics output.
Text and graphics can be placed at coordinates derived from input data, as well as
coordinates expressed as explicit locations on the display.

Introduction to SAS/GRAPH Software Creating Custom Graphics 15

Figure 1.2 Annotated graphs

Creating Custom Graphics
The Annotate facility can also be used to generate custom graphics without using any

of the SAS/GRAPH graphing procedures.

The DATA Step Graphics Interface
The DATA Step Graphics Interface provides functions and calls that produce

graphics output from the DATA step, rather than from a procedure. The functions and
calls are similar in form to those specified by the ISO Graphic Kernal Standard (GKS);
however, the interface is not an implementation of the GKS. The form is similar enough
that many GKS-compliant programs may be converted easily to run as SAS/GRAPH
programs.

Graph-N-Go
To generate presentation graphs without writing any SAS/GRAPH code, you can use

Graph-N-Go (not available on mainframes). You can start Graph-N-Go in several ways:

� from the menus in any SAS window, select

Solutions Reporting Graph-N-Go

� submit either of the following from the SAS command line:

gng

graphngo

� use an Explorer window to directly open a GFORM entry. Double-click (or
right-click and choose Open) on a GFORM entry to start a Graph-N-Go session
using that entry.

Information on using the application is in Graph–N-Go help, which you can access
from the application’s main window in either of two ways:

� select

Help Using This Window

16 About this Book Chapter 1

� press F1 (this may not work in some operating environments).

You can also get help for the application by submitting the following command from
the SAS command line:

help gng

About this Book
This book provides reference information for all facilities, procedures, statements,

and options that can be used with SAS/GRAPH software. This chapter describes what
you need to know to use SAS/GRAPH software, and what conventions are used in text
and example code. To gain full benefit from using this book, you should familiarize
yourself with the information presented in this chapter, and refer to it as needed.

Audience
This book is written for users who are experienced in using SAS System software.

You should understand the concepts of programming in the SAS language, and you
should have an idea of the tasks you want to perform with SAS/GRAPH software.

Prerequisites
The following table summarizes the SAS System concepts that you need to

understand in order to use SAS/GRAPH software:

To learn how to Refer to

invoke the SAS System at your site instructions provided by the SAS Software
Consultant at your site

use base SAS software

use the DATA step to create and manipulate
SAS data sets

use the SAS Text Editor to enter and edit text

SAS Language Reference: Concepts or SAS
Language Reference: Dictionary

allocate SAS data libraries and assign librefs

create external files and assign filerefs

documentation for using the SAS System under
the operating system for the hardware at your
site

manipulate SAS data sets using SAS procedures Base SAS Procedures Guide

Conventions Used in This Book
This section explains the conventions this book uses for text, SAS language syntax,

and file and library references. The book uses the following terms in discussing syntax:

keyword is a literal that is a primary part of the SAS language. (A literal
must be spelled exactly as shown, although it can be entered in
uppercase or lowercase letters.) Keywords in this book are procedure

Introduction to SAS/GRAPH Software Syntax Conventions 17

names, statement names, macro names, routine names, and function
names.

argument is an element that follows a keyword. It is either literal, or it is
user-supplied. It has a built-in value (for example, NODISPLAY), or
it has a value assigned to it (for example, COLOR=text-color).

Arguments that you must use are required arguments. Other
arguments are optional arguments, or simply options.

value is an element that follows an equal sign. It assigns a value to an
argument. It may be a literal, or it may be a user-supplied value.

parameter is a value assigned to an argument that itself takes a value, for
example, the COLOR= parameter of the LABEL= option in a
LEGEND statement, as shown in the following statement:

legend label=(color=blue);

Syntax Conventions
Type styles have special meanings when used in the presentation of SAS/GRAPH

software syntax in this book. The following list explains the style conventions for the
syntax sections:

UPPERCASE identifies SAS keywords such as the names of statements and
procedures (for example, PROC GCHART). Also identifies
arguments and values that are literals, (for example, NOLEGEND
and LABEL=NONE).

italic identifies arguments or values that you supply. Items in italic can
represent user-supplied values that are either

� nonliteral values assigned to an argument (for example,
axis-color in COLOR=axis-color)

� nonliteral arguments (for example, VBAR chart-variable. . . ;).

In addition, an item in italics can be the generic name for a list of
arguments or parameters from which the user can choose (for
example, appearance-options).

The following symbols are used to indicate other syntax conventions:

< > (angle
brackets)

identify optional arguments. Any argument not enclosed in angle
brackets is required.

| (vertical bar) indicates that you can choose one value from a group. Values
separated by bars are mutually exclusive.

. . . (ellipsis) indicates that the argument following the ellipsis can be repeated
any number of times (plot-request <. . . plot-request-n>, for
example). If the ellipsis and the following argument are enclosed in
angle brackets, they are optional. In SAS/GRAPH software, an
ellipsis also indicates a range from which a value is selected
(LINE=1 . . . 46, for example).

The following examples illustrate the syntax conventions described in this section.
These examples contain selected syntax elements, not complete syntax.

PROC GANNO ANNOTATE=Annotate-data-set
<DATASYS>;

18 Syntax Conventions Chapter 1

� PROC GANNO is in uppercase because it is a SAS keyword, the name of a
statement. The remaining elements are arguments for the statement.

� ANNOTATE= is not enclosed in angle brackets because it is a required argument.
It is in uppercase to indicate that it is a literal and must be spelled as shown.

� Annotate-data-set is in italic because it is a value that you must supply; in this
case, the value must be a data set name.

� DATASYS is enclosed in angle brackets because it is an optional argument. It is in
uppercase to indicate that it is a literal and must be spelled as shown.

� The ending semicolon (;) is required because it is outside the angle brackets for the
option.

SYMBOL <1 . . . 99>
<COLOR=symbol-color>
<MODE=EXCLUDE|INCLUDE>
<appearance-options>;

� SYMBOL is in uppercase because it is a SAS keyword, the name of a statement.
The numbers 1 . . . 99 are in angle brackets because they are optional. The
ellipsis indicates that you choose one from the range of numbers 1 through 99.
The remaining elements are arguments for the statement.

� COLOR= is enclosed in angle brackets because it is an optional argument.

� Symbol-color is in italics because it represents a value that you specify.

� MODE= is enclosed in angle brackets because it is an optional argument.

� EXCLUDE and INCLUDE are in uppercase because they are literal values and
must be spelled exactly as shown. They are separated by a vertical bar (an or bar)
because you use one or the other but not both.

� Appearance-options is in italics because it is a generic name for a list of options
that can be used in the SYMBOL statement.

HBAR chart-variable< . . . chart-variable-n>
</ <PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP>
<statistic-options>>;

� Chart-variable is italic because it is an argument that you supply. It is required
because it is not in angle brackets.

� Chart-variable-n is enclosed in angle brackets because additional user-supplied
arguments are optional. The ellipsis before the argument indicates that it can be
repeated as many times as desired.

� PATTERNID= is a literal option. The values BY, GROUP, MIDPOINT, and
SUBGROUP are literal values that are mutually exclusive. You can use only one,
and it must be spelled as shown.

� Statistic-options is in italics because it is the generic name of a list of options that
affect the chart statistics.

When you are using an option, a statement, or a procedure whose syntax shows
arguments or values in italics, you must supply the argument or value. When the
argument or value is a font, color, or variable name, SAS/GRAPH software expects valid

Introduction to SAS/GRAPH Software Conventions for Examples and Output 19

font names, color names, and variable names. Consider the following four syntax
samples:

FONT=font

COLOR=color

COLOR=text-color

PIE chart-variable < . . . chart-variable-n>;

� Font must be a valid SAS font name. (See Chapter 5, “SAS/GRAPH Fonts,” on
page 75 for details.)

� Color and text-color must be valid SAS/GRAPH colors. (See Chapter 6, “SAS/
GRAPH Colors and Images,” on page 91 for details.)

� Chart-variable must be a valid SAS variable name. (See SAS Language Reference:
Dictionary for details.)

Conventions for Examples and Output
Most of the chapters in this book include examples that illustrate some of the

features of a procedure or its statements. Each example contains

� a description of the highlights of the example

� the program statements that produce the output

� the actual output from the example

� an explanation of the features of the example.

The output that is shown for the examples in this book was generated in an HP-UX
operating environment, using the default XCOLOR display device. If you are using a
different operating environment or display device, you may need to make some minor
adjustments to the example programs.

The dimensions of the graphics output area vary across devices and when using the
GRAPH windows. The dimensions may affect aspects of the graphics output – for
example, the appearance of axes or the position of graphics elements that use explicit
coordinates in units other than percent. You may need to adjust the dimensions of your
graphics output area or the size of graphics elements to correct any differences you see.
Most of the examples in this book used a GOPTIONS statement to set the graphics
output area to 7 inches by 5 inches, which proved to be a good dimension for generating
output displays for this book:

goptions hsize=7in vsize=5in;

These HSIZE= and VSIZE= settings are not shown in the example code and are not
necessary for generating the output, but you may want to use similar settings if your
output looks different from the output that is shown in the book.

The examples use explicit color specifications, and the example code contains the
names of colors that approximate the colors you see in this book. The colors displayed
on your device may differ from those shown in the examples because of differences in
device capabilities.

20 Information You Should Know Chapter 1

The examples in this book do not specify actual names for the file structures used for
SAS data libraries or for external files. This is because different operating environments
and different computing installations use different conventions for naming files and
directories. Instead, the examples refer to storage locations generically. For example, a
LIBNAME statement to assign the libref STORE is shown as

libname store ’SAS-data-library’;

For SAS-data-library, you should supply the complete specification for the storage
location (for example, directory or z/OS data set) of the data library, using the form
required by your operating environment.

Similarly, a FILENAME statement to assign the fileref MYFILE is shown as

filename myfile ’external-file’;

For external-file, you should supply a fully qualified filename, using the form required
for your operating environment.

If you are unsure of the requirements at your site, see your SAS Software Consultant
for more information.

Some examples explicitly specify the font and height for text, the units, and border in
procedure statements. For those examples that do not include explicit specifications,
the following graphics options were used to produce uniform output:

RESET=GLOBAL cancels all currently defined AXIS, LEGEND, FOOTNOTE, TITLE,
PATTERN, and SYMBOL definitions.

GUNIT=PCT specifies the unit specification for options is in percent, unless
explicitly specified in another SAS statement.

FTEXT=SWISSB specifies that all text uses the SWISSB font, unless explicitly
specified in another SAS statement.

HTITLE=6 specifies that the first title line is 6 percent of the height of the
graphics output area, unless explicitly specified in another SAS
statement.

HTEXT=3 specifies that text is 3 percent of the height of the graphics output
area, unless explicitly specified.

BORDER causes a border to be drawn around the graphics output area. The
border, which appears in most output, represents the boundaries of
the graphics output area, whether or not a border is drawn by the
program.

Note: The way that output is presented on your device depends on the environment
in which you are running SAS/GRAPH software. �

Information You Should Know
This section outlines information you should know before you attempt to run the

examples in this book.

Support Personnel
Most sites have personnel available to help users learn to run SAS System software.

Record the name of the SAS Software Consultant, SAS Software Representative, and

Introduction to SAS/GRAPH Software Sample Programs 21

system administrator at your site. Also record the names of anyone else you regularly
turn to for help with running SAS/GRAPH software.

Sample Programs
Most of the chapters in this book provide examples that demonstrate some of the

major features of SAS/GRAPH software. To minimize the typing you must do to run the
sample code yourself, the code is delivered to you through the SAS Sample Library.
Depending on your operating environment, there are up to three ways that you can
access the code that is in the sample library:

� if you are viewing the sample code in SAS OnlineDoc, you can copy the code out of
the OnlineDoc and paste it into the Program Editor in your SAS session. This
alternative is not available if you do not have access to a Web browser in the
operating environment where you are running your SAS session.

� in most operating environments (excluding mainframe environments), you can
access the sample code through the SAS Help facility. For example, from a SAS
window’s Help menu, you can choose SAS System Help to enter the help system.
You can then choose the link for Sample SAS Programs and Applications, which
takes you to the help page for the SAS Sample Library.

� in most operating environments (excluding Windows), the SAS Sample Library
may have been installed in your file system. If the SAS Sample Library has been
installed at your site, ask your SAS Software Consultant where it is located.

To access the sample programs through SAS System Help or through your file
system, you must understand the naming convention used for the samples. The naming
convention for SAS/GRAPH samples is Gpcxxxxx, where pc is the product code and
xxxxx is an abbreviation of the example title. For example, the code for the first
example in the GMAP Procedure chapter, Example 1 on page 1045, is stored in sample
member GMPSIMPL. The sample-library member name is sometimes displayed as a
footnote in the output’s lower-right corner.

� In SAS System Help, the sample programs are organized by product. Within each
product category, the samples are sorted alphabetically by title. Thus, to access
the code for the first example in the GMAP Procedure chapter, navigate in the
help system to the SAS Sample Library page, choose SAS/GRAPH from the list of
products, and then scroll to the listing "GMPSIMPL-Producing a Simple Block
Map."

� In your file system, the files that contain the sample code have file names that
match the sample member names. For example, in a directory-based system, the
code for sample member GMPSIMPL is located in a file named GMPSIMPL.SAS.

Note: For WebGraph samples the naming convention is GWBxxxxx. �

Note: Some of the examples include LIBNAME and FILENAME statements. You
must provide the name of the SAS data library or external file before running the
example. �

22 Sample Programs Chapter 1

Table 1.1 Product Codes for SAS/Graph Proceedures

Procedure Code

dsgi DS

ganno AN

gchart CH

gradar GD

gcontour CT

gfont FO

gimport IP

gkeymap KY

gmap MP

goptions OP

gplot PL

gprint PR

gproject PJ

greduce RD

gremove RM

greplay RE

gslide SL

gtestit IT

g3d TD

g3grid TG

Table 1.2 Product Codes for SAS/Graph Statements

Statement Code

axis AX

by BY

footnote FO

goptions ON

legend LG

note NO

pattern PN

Introduction to SAS/GRAPH Software Annotate Macros Data Set 23

Statement Code

symbol SY

title TI

Table 1.3 Product Code for SAS/Graph WebGraphs

Statement Code

WebGraph WB

Map Data Sets
To run the examples that draw maps, you need to know where the map data sets are

stored on your system. Depending on your installation, the map data set may
automatically be assigned a libref. Ask your SAS Software Consultant or system
administrator where the map data sets are stored for your site.

Annotate Macros Data Set
To run the examples using Annotate macros, you need to know where the Annotate

macro data set is stored on your system. Depending on your installation, the Annotate
macro data set may automatically be assigned a fileref. Ask your SAS Software
Consultant or system administrator where the Annotate macro data set is stored for
your site.

24

25

C H A P T E R

2
SAS/GRAPH Programs

Overview 25

Language Elements 26
SAS/GRAPH Procedures 26

SAS/GRAPH Global Statements 27

Annotate DATA Step 27
Other SAS Language Statements 27

FILENAME Statement 28

LIBNAME Statement 29
SAS Data Sets 29

Temporary and Permanent SAS Data Sets 29
Using a Library Reference to Specify a Data Set 30

Using a File Specification to Specify a Data Set 30

Data Set Requirements 31
Automatic Data Set Locking 31

Using Engines with SAS/GRAPH Software 31

Running SAS/GRAPH Programs 31
Modes of Operation 31

Running in Batch Mode 32
RUN-Group Processing 33

With global and local statements 33

With BY statements 33
With the WHERE Statement 33

Procedure Output and the Graphics Output Area 34

About the Graphics Output Area 34
External Dimensions 34

Device Resolution 35
Cells 36

Units 38

Placement of Graphic Elements in the Graphics Output Area 39
How Errors in Sizing Are Handled 40

Making Programs Portable 40

Overview
In general, SAS/GRAPH programs work like other SAS programs: the SAS/GRAPH

procedures use data from SAS data sets to produce output – in this case, graphics
output. In addition, SAS/GRAPH programs define the output environment and control
the format and destination of the graphics output. This chapter discusses SAS/GRAPH
programs and explains how they produce graphics output. It describes

� the language elements used by SAS/GRAPH programs

26 Language Elements Chapter 2

� ways of running SAS/GRAPH programs

� where and how procedure output is produced

� how to control certain attributes of the procedure output.

For information on using and managing SAS/GRAPH output, see Chapter 4, “SAS/
GRAPH Output,” on page 47; for information on using SAS/GRAPH programs to create
other kinds of graphics output, see “About Exporting SAS/GRAPH Output” on page 59.
For information on bringing SAS/GRAPH output to the Web, see Chapter 9,
“Introducing SAS/GRAPH Output for the Web,” on page 369.

Language Elements

The language elements used by SAS/GRAPH programs include SAS/GRAPH
procedures, SAS/GRAPH statements, and Annotate data sets. In addition to
SAS/GRAPH language elements, your SAS/GRAPH program may include Base SAS
statements and procedures that you use to process your data or control the destination
or format of your program output.

SAS/GRAPH Procedures
SAS/GRAPH procedures create graphics output, process data for other SAS/GRAPH

procedures to use, or manage graphics output that has been stored in a catalog. A
SAS/GRAPH procedure step typically contains these statements:

PROC statement
starts the procedure. Typically it identifies input and output data sets, and assigns
a destination for graphics output. For information on data sets and data
requirements, see “SAS Data Sets” on page 29. For information on assigning
graphics catalogs, see “Storing Graphics Output in SAS Catalogs” on page 53.

Subordinate statements
perform the work of the procedure; subordinate statements that generate graphs
are called action statements. For example, the HBAR statement in the GCHART
procedure is an action statement.

RUN statement
executes the statements in the procedure step. Use the QUIT statement to end the
procedure. See also “RUN-Group Processing” on page 33.

In addition, many SAS/GRAPH procedures can use the following statements:

BY statement
causes the procedure to produce multiple graphs, each corresponding to a BY
variable value. Each graph that is produced for a value of a BY variable is stored
as a separate catalog entry in either the default catalog, WORK.GSEG, or in the
catalog you specify with a GOUT= option in the PROC statement. See “BY
Statement” on page 141 for a complete description.

NOTE statement
adds text to the graphics output. See “TITLE, FOOTNOTE, and NOTE
Statements” on page 210 for a complete description.

You can also use other SAS language statements with SAS/GRAPH procedures. See
“Other SAS Language Statements” on page 27.

SAS/GRAPH Programs Other SAS Language Statements 27

SAS/GRAPH Global Statements
SAS/GRAPH has its own set of statements that affect only graphics output that is

generated by the SAS/GRAPH procedures and the graphics facilities Annotate and
DSGI.

SAS/GRAPH global statements define or modify the titles, footnotes, legends, axes,
symbols, and patterns that appear on your graphs, as well as controlling the
appearance of the graph, the graphics environment, the destination of the output, and
device characteristics.

You can specify these statements anywhere in your program, and they remain in
effect until explicitly changed or canceled. These are the SAS/GRAPH global statements:

AXIS
modifies the appearance, position, and range of values of axes in charts and plots.

GOPTIONS
specifies graphics options that control the appearance of graphics elements by
specifying characteristics such as default colors, fill patterns, fonts, or text height.
Graphics options can also temporarily change device settings.

LEGEND
modifies the appearance and position of legends generated by procedures that
produce charts, plots, and maps.

PATTERN
controls the color and fill of patterns that are assigned to areas in charts, maps,
and plots.

SYMBOL
specifies the shape and color of plot symbols as well the interpolation method for
plot data. It also controls the appearance of lines in contour plots.

TITLE and FOOTNOTE
add titles and footnotes to graphics output.

See Chapter 7, “SAS/GRAPH Statements,” on page 121 for complete descriptions of
these statements.

Annotate DATA Step
An Annotate DATA step generates a data set of graphics commands that can be

applied to SAS/GRAPH procedure output. See Chapter 24, “Using Annotate Data Sets,”
on page 587 for information on building and using Annotate data sets. See Chapter 25,
“Annotate Dictionary,” on page 613 for a complete description of all Annotate functions
and variables.

Other SAS Language Statements
These SAS language statements can also be used within SAS/GRAPH procedures:

FILENAME statements
identify external files or aggregate file storage locations that you want to use for
input or output. See “FILENAME Statement” on page 28 for more information.

FORMAT statement
assigns a format to a variable. SAS/GRAPH procedures use formatted values to
determine such aspects of the graph as midpoints, axis labels, tick-mark values,
and legend entries.

28 Other SAS Language Statements Chapter 2

LABEL statement
assigns a descriptive text string to a variable. Unless other text is specified in the
SAS/GRAPH program, the label appears in place of the variable name.

LIBNAME statements
identify SAS libraries that contain SAS data sets or catalogs that you want to use
with your SAS/GRAPH programs. See “LIBNAME Statement” on page 29 for more
information.

ODS statements
direct the output from certain SAS/GRAPH procedures to the Output Delivery
System.

The ODS LISTING statement directs PROC GDEVICE output to the SAS
listing file.

The ODS HTML statement is used with the GIF driver to direct graphics
output to one or more GIF files and create a variety of HTML files that can display
the GIF files in a Web browser. See “ODS HTML Statement” on page 164 for
information on using the ODS HTML statement with SAS/GRAPH procedures.

OPTIONS statement
changes the value of one or more SAS system options.

QUIT statement
executes any statements that have not executed and ends the procedure.

WHERE statement
specifies observations from SAS data sets that meet a particular condition. Using
a WHERE statement provides an easy way to graph a subset of your data.

For a complete description of these statements, see SAS Language Reference:
Dictionary.

FILENAME Statement
The FILENAME statement associates a SAS fileref with an external text file or

output device. With SAS/GRAPH software, you can use a FILENAME statement to

� point to a text file that you want to use for data input or output.

� assign the destination of a graphics stream file (GSF). This destination can be
either a single, specific file or an aggregate file storage location, such as directory
or PDS. See “About Exporting SAS/GRAPH Output” on page 59 for information on
creating graphics stream files.

You can also use the FILENAME statement to route input to and from other devices.
For details, see the SAS documentation for your operating environment.

A FILENAME statement that points to an external file has this general form:

FILENAME fileref ’external-file’;

fileref
is any SAS name.

external-file
is the physical name of the external file or aggregate file storage location you want
to reference. For details on specifying the physical names of external files, see the
SAS documentation for your operating environment.

For a complete description of the FILENAME statement, see SAS Language
Reference: Dictionary.

SAS/GRAPH Programs Temporary and Permanent SAS Data Sets 29

LIBNAME Statement
The LIBNAME statement associates a libref with a SAS data library. A SAS data

library can be either temporary or permanent. Typically, SAS data libraries used with
SAS/GRAPH software contain

� SAS files for data input and output.
� SAS catalogs that contain maps, fonts, or device entries.
� SAS catalogs that contain graphics output. These catalogs are often stored in

permanent libraries. See “Storing Graphics Output in SAS Catalogs” on page 53
for information on storing graphics output in a permanent catalog.

The LIBNAME statement has this general form:

LIBNAME libref ’SAS-data-library’;

libref
is any SAS name.

SAS-data-library
is the physical name for the SAS data library on your host system. For details on
specifying SAS-data-library, see the SAS documentation for your operating
environment.

The libref WORK is reserved; it always points to an area where temporary data sets
and catalogs are kept. The contents of WORK are deleted when you exit a SAS session.

For a complete description of the LIBNAME statement, see SAS Language Reference:
Dictionary.

SAS Data Sets
Many SAS/GRAPH procedures use SAS data sets as input or output. When a

SAS/GRAPH procedure requires an input SAS data set, you usually specify the data set
with the DATA= option in the procedure statement, as shown in this example:

proc gplot data=reflib.stocks;

If you omit the DATA= option, the procedure uses the value of the SAS system option
LAST=. The default for _LAST_= is the most recently created SAS data set (either
permanent or temporary) in the current SAS job or session.

If you do not specify a data set and no data set has been created in the current SAS
session, an error occurs and the procedure stops.

Most of the procedures that read data sets or create output data sets accept data set
options. SAS data set options appear in parentheses after the data set specification, as
shown in this example:

proc gplot data=reflib.stocks(where=(year=1997));

For more information on SAS data sets and other data processing details, see SAS
Language Reference: Concepts. For a complete discussion of SAS data set options and
SAS system options, see SAS Language Reference: Dictionary.

Temporary and Permanent SAS Data Sets
SAS data sets are stored in SAS libraries and can be temporary or permanent. You

can specify a data set in either of two methods: using a library reference, or using a file
specification. A library reference is specified without quotation marks in the form

30 Temporary and Permanent SAS Data Sets Chapter 2

libref.SAS-data-set-name. A file specification must be enclosed in single quotation
marks and uses the file naming conventions of your operating environment.

Using a Library Reference to Specify a Data Set
Typically, temporary SAS data sets are stored in the WORK data library and are

referenced with a one-level name. The WORK library is defined automatically at the
beginning of the SAS session and is automatically deleted at the end of the SAS
session. Procedures assume that SAS data sets that are specified with a one-level name
are to be read from, or written to, the WORK data library, unless you specify a USER
data library. For example, this statement specifies a temporary data set from the
WORK library:

proc gplot data=stocks;

Typically, permanent SAS data sets have a two-level name of the form
libref.SAS-data-set-name in which libref identifies a storage location on your host
system. A LIBNAME statement associates a libref with the storage location. See also
“LIBNAME Statement” on page 29. For example, these statements specify a permanent
data set:

libname reflib ’my-SAS-library’;
proc gplot data=reflib.stocks;

You can use a one-level name for permanent SAS data sets if you specify a USER
data library. In this case, the procedure assumes that data sets with one-level names
are in the USER data library instead of in the WORK data library. You can assign a
USER data library with a LIBNAME statement or the USER= SAS system option. For
example, these statements use a single-level name to specify a permanent data set that
is stored in the library identified as the USER library:

options user=’my-SAS-library’;
proc gplot data=stocks;

Using a File Specification to Specify a Data Set
To use a file specification for specifying a data set, enclose the file specification in

single quotation marks. The specification can be a filename, or a path and filename. The
specification must follow the file naming conventions of your operating environment.

For example, the following code creates a file named mydata in the default storage
location, which is the location where the SAS session was started:

data ’mydata’;

The quotes are required for a file specification; if omitted, SAS treats the specification
as a library reference. In the above example, if the quotes are omitted, SAS creates the
data set in the temporary WORK catalog and identifies it by the name WORK.MYDATA.

To create the file in a location other than the default location, the quoted file
specification must include the full path to the desired location.

You cannot use quoted file specifications for
� SAS catalog names
� MDDB and FDB references
� PROC SQL
� the _LAST_= system option.

SAS/GRAPH Programs Modes of Operation 31

Data Set Requirements
SAS/GRAPH procedures often have certain requirements for the input data sets

they use. Some procedures may expect the input data set to be sorted in a certain way
while others may require the data set to contain certain variables or types of
information. If necessary, you can use DATA steps and base SAS procedures in your
program to manipulate the data appropriately. For specific requirements, see "About
the Input Data Set" in the "Concepts" section of the procedure chapter.

Automatic Data Set Locking
All SAS/GRAPH procedures that produce graphics output automatically lock the

input data sets during processing. By locking a data set, SAS/GRAPH software
prevents another user from updating the data at the same time you are using it to
produce a graph. If data in a data set changes while you are using it to draw a graph,
unpredictable results can occur in the graph or your program may end with errors.

Using Engines with SAS/GRAPH Software
In the SAS System, procedures use engines to access data. Characteristics of these

engines vary; generally, they allow SAS procedures to access a data library in a
particular way – the expected format for the SAS data file, the type of read/write
activity that can occur in SAS data files, and so on. In most cases, you use the default
engine for the current SAS version and do not specify an engine. If you are using an
engine other than the default, the engine must

� support nonsequential access
� equate observation numbers with internal record IDs (required for the GREDUCE

procedure only)
� disallow shared update or spin a copy of the data set for input processing when a

procedure requires multiple passes over the data.

Note: The default engine for Versions 7 and 8 do not work with the GREDUCE
procedure if the input data set is compressed. �

For more information about SAS engines, see SAS Language Reference: Concepts.

Running SAS/GRAPH Programs

Modes of Operation
There are several ways to run a SAS program. You can use
� SAS windowing environment that gives you a text editor from which to submit

programs, windows for the SAS log and SAS output, and many other facilities
� interactive line mode, in which you submit programs one line at a time
� noninteractive mode, which executes a SAS program (stored in a file) in your

current terminal session

32 Running in Batch Mode Chapter 2

� batch mode, which executes a SAS program (stored in a file) in a separate session.

The mode you use determines whether the graphics output displays on your monitor.
If you use the SAS windowing environment, interactive line mode, or noninteractive
mode, the SAS/GRAPH program can display graphics output on your monitor as well as
store the output in a catalog.

If you use batch mode, the graphics output is not displayed on your monitor. In this
case, your program must send the graphics output to a hardcopy device, permanent
catalog, or a graphics stream file. See Chapter 4, “SAS/GRAPH Output,” on page 47 for
more information on the destination of graphics output.

Regardless of how you run your programs, SAS/GRAPH software uses the values
stored in the device entry or specified by graphics options in a GOPTIONSChapter 36,
“The GOPTIONS Procedure,” on page 1075 statement to determine how to handle the
graphics output.

Running in Batch Mode
When you run in batch mode, some SAS/GRAPH device drivers such as device=GIF

attempt to use fonts from the X server to annotate the graph output. This can result in
a "CANNOT OPEN XDISPLAY" warning if the DISPLAY environment variable has not
been set.

To avoid this warning message, you can run in batch mode with the -NOTERMINAL
option. Although this suppresses the warning message, it has the disadvantage of not
allowing use of the high quality fonts that are available with the X server.

A better solution is to set your DISPLAY environment variable to any available X
server. This not only removes warning messages concerning the XDISPLAY, but it also
improves the quality of text in GIF output by using fonts avilable from the X server.
The GIF driver does not open any windows on the display referenced by the DISPLAY
variable.

An alternative solution does not require a display to be set. FreeType font support
can be enabled by setting CHARREC[0] in the device entry to use a TrueType or Type1
font available on your system as follows:

libname gdevice0 ’.’;
proc gdevice c=gdevice0.devices nofs;

copy gif from=sashelp.devices newname=mygif;
mod mygif charrec=(0,1,1, ’SAS Monospace’, ’Y’);

quit;

goptions reset=all dev=mygif ftext=’Arial’;
title h=5 ’Arial’;
proc gslide border;run;quit;

SAS Monospace is available on all hosts and other fonts can be made available by
running PROC FONTREG.

proc fontreg fontpath ’directory_containing_TT_or_Type1_fonts’;run;

FreeType font support is also available with the Universal GIF driver.

options dev=sasprtc printerpath=gif;
proc gtestit pic=1;run;

SAS/GRAPH Programs RUN-Group Processing 33

RUN-Group Processing
You can use RUN-group processing with the GCHART, GMAP, GPLOT, GREPLAY,

and GSLIDE procedures to produce multiple graphs without restarting the procedure
every time.

To use RUN-group processing, you start the procedure and then submit multiple
RUN-groups. A RUN-group is a group of statements that contains at least one action
statement and ends with a RUN statement. It can contain other SAS statements such
as AXIS, BY, GOPTIONS, LEGEND, TITLE, or WHERE. As long as you do not end the
procedure, it remains active and you do not need to resubmit the PROC statement.

To end RUN-group processing, submit a QUIT or RUN CANCEL statement, or start
a new procedure.

Note: When using SAS/GRAPH with the ODS statement, it is best to use a QUIT
statement after each procedure that uses RUN-group processing, rather than relying on
a new procedure to end the processing. Running too many procedures without an
intervening QUIT statement can use up so much memory as to crash the system
(depending, of course, on how many other processes are running). Also, note that failing
to do a QUIT before doing an ODS CLOSE results in the process memory not being
freed at all. �

With global and local statements
Global statements and NOTE statements that are submitted in a RUN-group affect

all subsequent RUN-groups until you cancel the statements or exit the procedure. For
example, each of these two RUN-groups produces a plot and both plots display the title
defined in the first RUN-group:

/* first run group*/
proc gplot data=sales;

title1 ’Sales Summary’;
plot sales*model_a;

run;

/* second run group */
plot sales*model_b;

run;
quit;

With BY statements
BY statements persist in exactly the same way. Therefore, if you submit a BY

statement within a RUN-group, the BY-group processing produces a separate graph for
each value of the BY variable for the RUN-group in which you submit it and for all
subsequent RUN-groups until you cancel the BY statement or exit the procedure. Thus,
as you submit subsequent action statements, you continue to get multiple graphs (one
for each value of the BY variable). For more information, see “BY Statement” on page
141.

With the WHERE Statement
The WHERE statement enables you to graph only a subset of the data in the input

data set. If you submit a WHERE statement with a RUN-group, the WHERE definition
remains in effect for all subsequent RUN-groups until you exit the procedure or reset
the WHERE definition.

34 Procedure Output and the Graphics Output Area Chapter 2

Using a WHERE statement with RUN-group processing follows most of the same
rules as using the WHERE statement outside of RUN-group processing with these
exceptions:

� With the GMAP procedure, the WHERE variable must be in the input data set.
� With a procedure that is using an Annotate data set, the following requirements

must be met:
� The ANNOTATE= option must be included in the action statement.
� The WHERE statement must be executed before the action statement.
� The WHERE variable must occur in the Annotate data set.

Procedure Output and the Graphics Output Area
The result of most SAS/GRAPH procedures is the graphic display of data in the form

of graphics output. Graphics output is made up of commands that tell a graphics device
how to draw graphic elements. A graphics element is a visual element of graphics
output – for example, a plot line, a bar, a footnote, the outline of a map area, or a border.

To generate graphics output, your program uses a device driver that directs the
graphics output to a display device (a graphics monitor or terminal), a hardcopy device,
or a file. Despite the fact that all graphics devices do not understand the same
commands, SAS/GRAPH software can produce graphics output on many types of
graphics devices. It does so by producing output in two steps:

1 It creates a catalog entry made up of graphics commands in a generic,
device-independent format.

2 It uses a device driver to translate the commands from the generic format to
commands that a particular graphics device understands. This is called
device-dependent output.

Your program controls this process as well as the graphics environment in which the
graphics appear. This section describes this graphics environment and how you can
modify it, how SAS/GRAPH uses it, and how you can make your programs work for
different output devices.

About the Graphics Output Area
When SAS/GRAPH software produces graphics output, it draws the graphic elements

inside of an area called the graphics output area. Characteristics of the graphics output
area are determined by the values of certain device parameters within the device entry.
You can modify some of these characteristics for a single graph or an entire SAS session
by using graphics options to change the values of the device parameters. This section
describes changes you can make to the external dimensions, the resolution, the cell size,
and the type of units. For a description of the graphics options and device parameters
referred to in this section, see Chapter 8, “Graphics Options and Device Parameters
Dictionary,” on page 261.

External Dimensions
The graphics output area is contained within the device’s display area. The external

dimensions of the device’s display area are controlled by the values of the XMAX and
YMAX device parameters. XMAX sets the maximum horizontal dimension; YMAX sets
the maximum vertical dimension. The orientation of the graphics output area, that is,
whether it is landscape or portrait, is determined by whether the larger value is XMAX
(orientation is landscape) or YMAX (orientation is portrait).

SAS/GRAPH Programs About the Graphics Output Area 35

The external dimensions of the graphics output area are controlled by the values of
the HSIZE and VSIZE device parameters.

Typically, the default dimensions of the graphics output area are the same as the
dimensions of the device. This is usually true for display devices. For those devices, the
default value of HSIZE and VSIZE is 0. However, for hardcopy devices, the XMAX,
YMAX values represent the external boundaries of the output medium (such as a sheet
of paper). If these devices need a margin, HSIZE, VSIZE and HORIGIN, VORIGIN are
assigned default values and the default graphics output area is somewhat smaller than
the device’s display area. Figure 2.1 on page 35 illustrates such a device.

Figure 2.1 Default Dimensions of the PSCOLOR Device

graphics output area

HSIZE=8.0in

 display area
VSIZE=8.5in

YMAX=11.00in

YPIXELS=3300

XPIXELS=2550

XMAX=8.5in

HORIGIN=0.218in

VORIGIN=1.496in

Note that HORIGIN and VORIGIN define the left margin and bottom margin,
respectively. The right margin and top margin are calculated by the device driver as
follows:

right-margin = XMAX − (HSIZE + HORIGIN)

top-margin = YMAX −(VSIZE + VORIGIN)

You cannot specify values for right-margin and top-margin.
You can change the dimensions of the graphics output area for a SAS session or for a

single graph with the HSIZE= and VSIZE= graphics options. Changing the size of the
graphics output area does not change the dimensions of the device’s display area or
affect the resolution. The values of HSIZE= and VSIZE= cannot exceed the maximum
dimensions for the device as specified by XMAX and YMAX. Furthermore, you cannot
specify values for graphics options HSIZE= and VSIZE= that exceed the HSIZE and
VSIZE values in the device entry.

Device Resolution
The resolution of a device is the number of pixels per inch. It is determined by the

values of the device parameters XMAX, YMAX, and XPIXELS, YPIXELS, and is
calculated by dividing the number of pixels by the corresponding external dimension.
For example,

x-resolution = XPIXELS / XMAX

Therefore, the X resolution of the PSCOLOR device illustrated in Figure 2.1 on page
35 is 300dpi (dots per inch).

Ordinarily, you do not want to change the device resolution because changing it may
distort your image. However, you may want to change the size of the display area. To

36 About the Graphics Output Area Chapter 2

do so without changing the resolution, use the GOPTIONS statement to change the
values of only XPIXELS= and YPIXELS=, or the values of only XMAX= and YMAX=.
Then SAS/GRAPH will automatically calculate the correct value for the unspecified
parameters so that the device retains the default resolution.

If you do want to change the device resolution (usually for image files or graphs that
are displayed online), specify values for both XMAX= and XPIXELS= (horizontal
resolution) or both YMAX= and YPIXELS= (vertical resolution), or all four. In these
cases, SAS/GRAPH changes the dimensions and recalculates the device resolution.
Table 2.1 on page 36 summarizes the interaction of these options.

Table 2.1 Interactions of Graphics Options That Affect Resolution

If you specify values for and... then SAS/GRAPH...

XPIXELS= and YPIXELS= not XMAX= and YMAX= changes the dimensions and
recalculates the value of
XMAX= and YMAX= in order
to retain the resolution

XMAX= and YMAX= not XPIXELS= and YPIXELS= changes the dimensions and
recalculates the value of
XPIXELS= and YPIXELS= in
order to retain the resolution

XMAX= XPIXELS= changes the horizontal
dimension and recalculates the
resolution

YMAX= YPIXELS= changes the vertical dimension
and recalculates the resolution

Cells
Within the graphics output area, SAS/GRAPH software defines an invisible grid of

rows and columns. This grid is made up of character cells as shown in Figure 2.2 on
page 37.

The size and proportion of these cells affects the size and appearance of graphic
elements that are drawn using units of CELLS. The attributes of the cells are
determined by both the external dimensions of the graphics output area (controlled by
HSIZE and VSIZE) and the number of rows and columns. The number of rows is
controlled by the LROWS (if orientation is landscape) or PROWS (if orientation is
portrait) device parameter. Similarly, the number of columns is controlled by the
LCOLS (landscape) or PCOLS (portrait) device parameter.

You can change the number of rows and columns in the grid with the HPOS= and
VPOS= graphics options. HPOS= overrides the value of LCOLS or PCOLS and sets the
number of columns in the graphics output area. VPOS= overrides the value of LROWS
or PROWS and sets the number of rows in the graphics output area.

Figure 2.2 on page 37 illustrates the relationship between the graphics options or
device parameters that determine the dimensions of the graphics output area and those
that determine the number of character cells within the graphics output area.

SAS/GRAPH Programs About the Graphics Output Area 37

Figure 2.2 Rows, Columns, and Cells in the Graphics Output Area

HPOS=8
(columns in graphics output area; can also be

defined by LCOLS or PCOLS device parameter)

VPOS=6
(rows in
graphics output
area; can also
be defined by
LROWS or
PROWS device
parameter)

character
cell

VSIZE=6 in
(can also be
defined by
YMAX device
parameter)

HSIZE=8 in
(can also be defined by XMAX device parameter)

Changing only the external dimensions of the graphics output area (HSIZE= and
VSIZE=) retains the cell size but causes SAS/GRAPH to automatically recalculate the
number of rows and columns, as illustrated in Figure 2.3 on page 37.

Figure 2.3 Changing HSIZE=, VSIZE= Changes Dimensions and Recalculates
Number of Rows and Columns

(specified)

HSIZE=4IN

HPOS=8

HSIZE=6IN

VSIZE=6IN

VPOS=18

VPOS=12

VSIZE=9IN

HPOS=12
(recalculated)

(recalculated) (specified)

Changing only the number of rows and columns (HPOS and VPOS) changes the size
of the cells without altering the overall size of the output. Figure 2.4 on page 37 shows
how increasing the number of rows and columns reduces the size of the individual cells.

Figure 2.4 Changing HPOS= and VPOS= Changes Cell Size

(no change)
HSIZE=4IN

HPOS=8

HSIZE=4IN

VSIZE=6IN

VPOS=12

VPOS=10

VSIZE=6IN

HPOS=12
(specified)

(no change)(specified)

38 About the Graphics Output Area Chapter 2

Usually, you should not change the number of rows and columns from the default for
your device. However, if you must change them to make a graph fit, note that the size
of text in the graphics output will change if you specified text size using units of
CELLS. If the cells are large (that is, HPOS= and VPOS= have small values), the text
may not fit. If the cells are too small, the text may be too small to read. In this case,
you can adjust the size of the text with the HEIGHT= statement option or the HTEXT=
graphics option.

To change all the attributes of the graphics output area, specify values for all four
options, as shown in Figure 2.5 on page 38.

Figure 2.5 Changing HSIZE=, VSIZE= and HPOS=, VPOS= Changes Dimensions
and Number and Size of Cells

VSIZE=6IN

HSIZE=6INHSIZE=4IN

HPOS=8

HPOS=6
(specified)

(specified)

VPOS=10
(specified)

VSIZE=7.5IN
(specified)

VPOS=12

Table 2.2 on page 38 summarizes the interaction of the HSIZE=, VSIZE=, HPOS=,
and VPOS= graphics options.

Table 2.2 Interaction of Graphics Options Affecting Cells

If you specify values
for ...

and ... then SAS/GRAPH ...

HSIZE= and VSIZE= not HPOS= and
VPOS= (or specify
HPOS=0 and VPOS=0)

changes the external dimensions of the graphics
output area and recalculates the number of
rows and columns in order to retain cell size
and proportions.

HPOS= and VPOS= not HSIZE= and
VSIZE=

keeps the external dimensions but changes the
cell size according to the number of rows and
columns.

HSIZE= and VSIZE= HPOS= and VPOS= changes the dimensions of the graphics output
area, the number of rows and columns, and
recalculates the cell size.

Units
By default, most graphic elements are drawn using units of CELLS to determine

their size. For example, the default character height for the TITLE1 definition is two
cells; for all other text the default height is one cell.

Changing the cell size to control the size of one element, such as text, may distort
other parts of your graph. Instead, you may want to change the type of units that
SAS/GRAPH uses to control the size of the graphic elements. In addition to CELLS and
other absolute units such as inches (IN), centimeters (CM), and points (PT), you can
often use units of percent of the graphics output area (PCT). This unit specification

SAS/GRAPH Programs Placement of Graphic Elements in the Graphics Output Area 39

allows the height of the graphic elements to change in proportion to the size of the
graphics output area.

You can specify the type of unit for individual graphic elements or you can use the
GUNIT= graphics option to set the default units that will be used for most height
specifications.

Placement of Graphic Elements in the Graphics Output Area
By default, SAS/GRAPH software positions certain graphics elements in predefined

locations in the graphics output area. Figure 2.6 on page 39 shows the graphics output
area and the areas within it that are used by the following graphic elements:

� Titles are placed in the title area at the top of the graphics output area.
� Footnotes are placed in the footnote area at the bottom of the graphics output area.
� The graph itself uses the procedure output area, which is the area left after the

titles and footnotes have been drawn.
� Legends also use the procedure output area and may affect the amount of space

available for the graph. By default, space is reserved for the legend below the axis
area of a graph and above the footnote area. However, you can position the legend
in the part of the procedure output area that is reserved for the graph. For details,
see “LEGEND Statement” on page 151.

Note: Titles and footnotes can be positioned elsewhere on the graph as well, with
different effects on space allocation. See “TITLE, FOOTNOTE, and NOTE Statements”
on page 210 for details. �

Figure 2.6 Default Locations for Graphic Elements in the Graphics Output Area

optional
area for
titles and
footnotes

optional
area for
titles and
footnotes

procedure
output
area

graphics
output
area

default footnote area

default title area

Note: If the titles, footnotes, and legend are very large, they may make the
procedure output area too small for the graph. You can control the size of title and
footnote text and of most legend elements with statement options. For details, see
Chapter 7, “SAS/GRAPH Statements,” on page 121 for a description of the appropriate
statement. In addition, “GOPTIONS Statement” on page 146 lists the graphics options
that control the size of various graphic elements. See also “Making Programs Portable”
on page 40. �

40 Making Programs Portable Chapter 2

How Errors in Sizing Are Handled
Sometimes SAS/GRAPH cannot fit one or more graphic elements on the graph. This

can happen if an element is too big for the available space (for example, the title is too
long), or if you have too many elements to fit in a given space (for example, a bar chart
has too many bars). In these cases, SAS/GRAPH either

� resizes the graphics element and issues a warning explaining what it did
� issues an error message and does not attempt to produce the graph.

For example, it adjusts the size of titles to make them fit but it does not drop bars in
order to produce a readable bar chart. If you get unexpected results or no graph, check
the SAS log for notes, warnings, and errors.

Making Programs Portable
When you want to write a program that will produce the same graphics output on two

different devices, you can use features in SAS/GRAPH software to simplify the process:
� Use percent of the graphics output area (PCT) as the unit of measure when

specifying sizes of text and other graphics to make sure that text is proportional in
size across devices. A one-inch-high title may be appropriate on a standard piece
of paper, but it is almost all of the display area of a slide. To make units of
percentage the default for size specifications, use the GUNIT= graphics option:

goptions gunit=pct;

You can also specify PCT anywhere you specify a size:

axis1 label=(height=3 pct ’Year’);

See “GUNIT” on page 309 for a complete description of the GUNIT= graphics
option.

� Compare colors and patterns for the devices you will use and use the colors of the
device that has the fewest colors, With a slide camera, for example, you can choose
from over 16 million colors, but some graphics monitors display only four or eight
colors at a time.

If you want to generate a graph on both a color device and a black-and-white
device, such as a laser printer or a monochrome graphics monitor, all colors are
remapped to black, white, or scales of gray, depending on the device. However,
with the PATTERN statement, you can substitute line-patterns for colors.

� Preview the appearance of the output on a different device with the
TARGETDEVICE= graphics option. For example, to see how the output will look
on a color PostScript printer, specify

goptions targetdevice=pscolor;

41

C H A P T E R

3
Device Drivers

Overview 41

About Device Drivers 42
Types of Device Drivers 42

How Device Drivers Are Assigned 43

Selecting a Device Driver 43
Viewing the List of Available Device Drivers 44

Browsing the Contents of a Device Entry 44

Specifying a Device Driver in a SAS Session 44
Controlling Output with Device Drivers 45

Modifying Device Parameters Permanently 45
Overriding Device Parameters Temporarily 46

Graphics Options 46

Statement Options 46

Overview
SAS/GRAPH procedures that produce graphics output require a device driver to

display the output. This chapter discusses the role of device drivers in generating
SAS/GRAPH output, provides directions for selecting and specifying device drivers, and
explains how you can change the settings of device parameters.

Other tasks related to device drivers are discussed in Chapter 4, “SAS/GRAPH
Output,” on page 47 and Chapter 9, “Introducing SAS/GRAPH Output for the Web,” on
page 369 and in the SAS Help facility for SAS/GRAPH. These include

� displaying graphics output (see “Displaying Graphics Output on Monitors or
Terminals” on page 49)

� previewing on one device how output will look on another device (see “Previewing
Output” on page 52)

� sending graphics output to a printer or other hardcopy device (see “Printing
Graphics Output” on page 51)

� creating external files in other graphics formats for use with other applications
(see “About Graphics Stream Files” on page 60)

� creating graphics output that can be referenced in an HTML file and viewed with
a Web browser (see “About Graphics Stream Files” on page 60)

For a description of device catalogs and for information on creating and modifying
device drivers, see Chapter 31, “The GDEVICE Procedure,” on page 915.

42 About Device Drivers Chapter 3

About Device Drivers
To produce graphics output on a graphics output device, SAS/GRAPH software uses a

device driver. Device drivers are the components of SAS/GRAPH software that translate
the device-independent output from SAS/GRAPH procedures into the appropriate
commands to produce graphics output on particular output devices. Device drivers
contain settings that determine the default appearance of the output, such as
dimensions and orientation, cell size, colors, and hardware fonts. They can also contain
host commands that are issued before and after the driver produces output.

A device driver is composed of two parts:
� a device entry in a SAS catalog
� an executable module.

The device entry is a SAS catalog entry of type DEV. It is created and accessed with
the GDEVICE procedure and explicitly refers to the executable module. The device
entry contains device parameters whose settings can control

� the appearance of the output
� the destination to which the output is sent (native SAS/GRAPH drivers only)
� communications between the operating environment and the device
� how the device generates the output.

You can change these settings either by modifying the device parameters using the
GDEVICE procedure, or by overriding the parameter settings using graphics options in
a GOPTIONS statement. For details, see “Controlling Output with Device Drivers” on
page 45.

The executable module is a program that produces the device-specific commands from
the device-independent output of a SAS/GRAPH procedure. The executable module uses
the parameters specified in the device entry to tell it exactly how to do so.

SAS/GRAPH software provides device entries for your operating environment in the
Institute-supplied catalog, SASHELP.DEVICES.

If your site has created custom device entries, they may also be stored in
SASHELP.DEVICES, although typically custom devices are stored in the catalog
GDEVICE0.DEVICES. For more information about custom device entries, see “About
Device Catalogs” on page 916 or ask your SAS Support Consultant.

Types of Device Drivers
Most of the device drivers in SASHELP.DEVICES are SAS/GRAPH native device

drivers, which are those SAS/GRAPH drivers that produce output in the native
language of the device. For example, the PS300 driver is a "native device driver"
because it directly produces PostScript output.

A special set of interface drivers enable you to make route graphics output to the
default print device. For OpenVMS, UNIX, and z/OS operating environments, the
interface drivers use the Universal Printing subsystem to access a Universal Printer.
For Windows, the interface drivers use the Windows Print Manager subsystem to access
the printer that is defined as the default.

The interface drivers are:

SASPRTC (Color output)

SASPRTG (Grayscale output)

SASPRTM (Monochrome output)

The WINPRTx and XPRINTx series of drivers are identical to the SASPRTx drivers.

Device Drivers Selecting a Device Driver 43

For more information about Universal Printing, see the Base SAS Software section in
SAS Help and Documentation. For more information about Windows printing, see the
SAS Help facility for SAS/GRAPH.

How Device Drivers Are Assigned
Because many characteristics of the graphics output depend on parameter values

that are stored in the device entry, SAS/GRAPH procedures that produce graphics
output must know which device driver to use before they begin processing.

Usually SAS/GRAPH automatically selects a device driver for you and you are not
required to explicitly specify one. If you use the GRAPH window to display graphics
output, SAS/GRAPH selects a device driver that is appropriate for your device. The
default device driver for your site may also be selected by your SAS Installation
Representative.

If you submit a SAS procedure without specifying a device driver and your display
device does not support the GRAPH windows or you are running outside the SAS
windowing system, SAS/GRAPH prompts you for a driver name.

Whether or not a default device is assigned, you can always explicitly assign a device
driver. See “Selecting a Device Driver” on page 43 for more information.

Selecting a Device Driver
Although SAS/GRAPH software usually selects an appropriate device driver for

displaying graphics output on your display device, you may need to select a different
device driver if you want to direct your graphics output to another destination.

When you select a device driver, it must be one that is appropriate for your device.
The device driver must

� send commands to the device that the device understands. For example, if you are
using an X Windows display, the SAS/GRAPH device driver sends the appropriate
data stream that can produce graphics output on the display device.

� contain values of device parameters that are appropriate for the device. For
example, if you are using a color PostScript printer and you select a device driver
for a black and white PostScript printer, your graph will not print in color.

Occasionally the device driver you use is not the one that bears your device’s name.
This can happen when

� your graphics device uses a common graphics language (for example, PostScript).
� your graphics device emulates a different graphics device. (For example, there is

no SAS device driver for your plotter, but the plotter can be set up to emulate a
Hewlett-Packard 7550 plotter.)

In this case, you use the device driver that matches the language that your device
understands. For example, if your Hewlett-Packard LaserJet II printer has a PostScript
card installed, you would use one of the PostScript device drivers rather than HPLJS2.
Similarly, you could use an HP driver for a plotter (for example, HP7550A) when your
plotter emulates a Hewlett-Packard 7550 plotter.

You cannot force a device to act as a device with different capabilities by choosing a
different device driver.

44 Viewing the List of Available Device Drivers Chapter 3

Viewing the List of Available Device Drivers
You can view the list of device entries in SASHELP.DEVICES or in any other device

catalog in the following ways:
� use the SAS Explorer window to display the contents of the device catalog.
� use the GDEVICE procedure to open the GDEVICE DIRECTORY window, which

lists all of the device drivers in the current catalog. By default the current catalog
is SASHELP.DEVICES. To specify a catalog, include the CATALOG= option, as
shown in the following statement:

proc gdevice catalog=sashelp.devices;

See “Using the GDEVICE Windows” on page 928 for details.
� use GDEVICE procedure statements to write the list of device drivers to the

Output window:

proc gdevice catalog=sashelp.devices nofs;
list;

run;
quit;

The NOFS on page 921 option in the PROC GDEVICE statement causes the
procedure not to use the GDEVICE windows.

If you want to write the list of devices to an external file you can
� save the contents of the Output window.
� use the PRINTTO procedure to redirect the GDEVICE procedure output to

an external file. See Base SAS Procedures Guide for a description of the
PRINTTO procedure.

Once you have generated the list of available device drivers, you can search the list
until you find the description that matches your output device. The corresponding name
is the name that you specify as the device driver.

Browsing the Contents of a Device Entry
You can also use any of the viewing methods to browse the contents of a device entry.

From the GDEVICE Directory window, select the device name to open the GDEVICE
Detail window. From there you can move to the other GDEVICE windows for the entry,
using either the menus or commands. For details, see “Using the GDEVICE Windows”
on page 928.

You can display the contents of a device entry in the Output window by selecting the
entry from the Explorer window or by submitting GDEVICE statements. The following
statements list in the Output window the contents of the PSCOLOR device entry:

proc gdevice c=sashelp.devices nofs;
list pscolor;

run;
quit;

See Output 31.1 for an illustration of the device listing.

Specifying a Device Driver in a SAS Session
You can specify a device driver in these ways:

Device Drivers Modifying Device Parameters Permanently 45

� use the DEVICE= option in a GOPTIONS or OPTIONS statement. For example,

goptions device=pslepf;

For details, see “GOPTIONS Statement” on page 146.
� change the device in the System Options window. To do so, type the OPTIONS

command on the command line, and in the Graphics group, choose "Driver
settings." You can then enter a Device value. Use the window’s Help button if you
need help editing values.

� enter the device name in the DEVICE prompt window. The DEVICE prompt
window opens automatically if you submit a SAS/GRAPH program that produces
graphics output, no device has been specified, and you are running outside of the
SAS windowing system environment.

If you specify a device driver in more than one way, the most recently specified device
driver is used. The device driver stays in effect until you specify another device, submit
the graphics option RESET=GOPTIONS or RESET=ALL, or end your SAS session.

If you use the same device driver for most or all of your SAS/GRAPH programs, you
can put the GOPTIONS DEVICE= statement in an AUTOEXEC file. See the SAS
companion for your operating environment for details on setting up an AUTOEXEC file.

You can also specify a device for previewing or printing your output with the
TARGETDEVICE= graphics option. For details, see “Printing Graphics Output” on
page 51.

Controlling Output with Device Drivers
When a SAS/GRAPH procedure produces output, it first checks to see what device

driver you have specified. It then looks in the device entry for that driver to find the
current parameter settings. In general, parameter values control

� the appearance of the graphics output. Device parameters control such aspects as
the size of the graphics output, units (such as inches or points) used to draw the
output, colors displayed, and text fonts and sizes used.

� how the operating environment communicates with the device. For example, some
devices require the graphics commands to be formatted in a specific way or require
a particular communications protocol. Others may require that a set of
initialization commands precede the graphics commands.

� how the output is produced – that is, how the output is displayed or printed. Some
device parameters control the behavior of a hardcopy device, such as the paper
feed between graphs as well as the display characteristics, such as orientation.

The parameter values for device entries in SASHELP.DEVICES reflect the most
common modes of operation of the supported devices. You can control the way the
device driver produces output for your device by changing values in the device entry.
You can change device parameters either permanently or temporarily.

Modifying Device Parameters Permanently
To change a device parameter permanently, you must make the change in the device

entry itself using the GDEVICE procedure. The modifications made to a device entry
are in effect for all SAS sessions.

The new values that you specify for device parameters must be within the device’s
capabilities. For example, all devices are limited in the size of the output they can
display. Some output devices cannot display color. If you try to increase the size of the

46 Overriding Device Parameters Temporarily Chapter 3

display past the device’s capability or if you specify colors for a device that cannot
display them, you will get unpredictable results.

Note: If you run SAS/GRAPH software in a multi-user environment, you should not
change the device entries in the Institute-supplied catalog, SASHELP.DEVICES, unless
you are the system administrator or the SAS Support Consultant. �

If you need to change a device driver in SASHELP.DEVICES, copy it into a personal
catalog named DEVICES, and then modify the copy. To use the new device driver,
assign the libref GDEVICE0 to the library that contains the modified copy. See
“Creating or Modifying Device Entries” on page 934 for details.

Overriding Device Parameters Temporarily
You can temporarily override the settings of device parameters by using graphics

options in a GOPTIONS statement or by specifying options in other SAS/GRAPH
statements.

Graphics Options
To override device parameter settings with graphics options, simply submit the

options in a GOPTIONS statement. For example, the HSIZE= and VSIZE= graphics
options control the default size of the graphics output area and override the values of
the HSIZE= and VSIZE= device parameters in the current device entry. The following
GOPTIONS statement changes the dimensions of the graphics output area:

goptions hsize=6in vsize=4in;

These new values remain in effect until you change them, use the RESET= graphics
option to reset them, or end your SAS session.

The values that you specify for graphics options must be supported by your graphics
device. If you use an option that is not supported, SAS/GRAPH software ignores the
option. See “GOPTIONS Statement” on page 146 for information about specifying
graphics options.

Statement Options
You can also override parameters that control such attributes as text color and font

by using options in other SAS/GRAPH statements. For example, this TITLE statement
explicitly specifies the text color and font:

title color=blue font=zapf ’Production Quality’;

The COLOR= option overrides the default color selection from the device entry’s
colors list as well as any graphics options that affect text color. The FONT= option
overrides the device’s default font and any graphics options that affect the font. As long
as the values are supported by your graphics device, the values you specify in the
statements override the corresponding device parameters and graphics options when
the SAS program is executed.

When you specify options that override device parameter settings, this is the order of
precedence that SAS/GRAPH software uses:

1 options in a SAS/GRAPH procedure statement or AXIS, FOOTNOTE, LEGEND,
NOTE, PATTERN, SYMBOL, or TITLE statement

2 graphics options in a GOPTIONS statement
3 device parameters in a device entry
4 default hardware settings of a device.

47

C H A P T E R

4
SAS/GRAPH Output

About SAS/GRAPH Output 48

What You Can Do With SAS/GRAPH Output 48
Displaying Graphics Output on Monitors or Terminals 49

Displaying Graphs with the GRAPH Window 49

Opening and Closing the GRAPH Window 49
Sizing the GRAPH Window 50

Displaying Graphs with Direct Display 50

Printing Graphics Output 51
Printing Directly to the Device 51

Saving and Printing a Graphics File 51
Printing From a Window 52

Previewing Output 52

Storing Graphics Output in SAS Catalogs 53
Accessing Catalogs from Different Versions of SAS 53

Creating and Specifying Catalogs 54

Names and Descriptions of Catalog Entries 55
Listing and Managing Catalog Entries 55

Modifying SAS/GRAPH Output 55
Transporting and Converting Graphics Output 56

Transporting Catalogs across Operating Environments 56

Example of Transporting GRSEGs 57
Example of Transporting Color Maps and Templates 58

Example of Transporting Fonts 58

Example of Transporting Device Attributes and Device Entries 58
Converting Catalogs to a Different Version of SAS 59

About Exporting SAS/GRAPH Output 59
About Graphics Stream Files 60

About Graphics File Formats 60

Ways to Export SAS/GRAPH Output 61
Exporting SAS/GRAPH Output Interactively 62

Exporting SAS/GRAPH Output with Program Statements 62

General Information 62
Common Requirements 62

Naming the Output 63
Using the NAME= option 63

Using the default output name 63

File extensions 63
Example 63

Saving One Graph to a File 64

Example 65
Saving Multiple Graphs to One File 66

48 About SAS/GRAPH Output Chapter 4

Example 66

Saving Multiple Graphs to Multiple Files 68
Example 68

Replacing Existing External Files 70

Example 71
Other Ways to Assign the Destination 72

Using GACCESS=GSASFILE 72

Using GACCESS= to Explicitly Specify a Destination 72
Exporting SAS/GRAPH Output Using Modified Device Entries 72

73
The Metagraphics Driver Facility 73

About SAS/GRAPH Output
Most SAS/GRAPH procedures produce graphics output, which is distinct from SAS

output. Whereas SAS output is made up of text, graphics output is made up of
commands that tell a graphics device how to draw graphics.

This chapter discusses how to display, print, store, modify, and transport
SAS/GRAPH output after you have created it. For information on SAS/GRAPH
language elements and programs and on how procedure output is generated, see
Chapter 2, “SAS/GRAPH Programs,” on page 25.

What You Can Do With SAS/GRAPH Output
By default, SAS/GRAPH procedures that produce graphics output display the output

on your monitor or terminal, using either the GRAPH window or the direct display
method. For details, see “Displaying Graphics Output on Monitors or Terminals” on
page 49. SAS/GRAPH also can direct graphics output to a variety of other destinations.
Graphics output can be

� sent directly to a graphics hardcopy device, such as a printer, plotter, or slide
camera. The way you send graphics output to a hardcopy device depends on your
hardware, operating environment, and system configuration. For details, see
“Printing Graphics Output” on page 51.

� saved in a temporary or permanent SAS catalog entry for later replay. For details,
see “Storing Graphics Output in SAS Catalogs” on page 53.

� modified with the graphics editor. You can edit or create graphics output, and save
the modified graph to a catalog. For details, see “Modifying SAS/GRAPH Output”
on page 55.

� transported in catalogs from one operating environment to another. For details,
see “Transporting and Converting Graphics Output” on page 56.

� converted for use with a different version of SAS by converting the catalog
containing the graphics output. For details, see “Converting Catalogs to a
Different Version of SAS” on page 59.

� exported to external files using different graphics file formats. For example, you
can save SAS/GRAPH output in formats such as CGM or PostScript for use with
other software packages. For details, see “About Exporting SAS/GRAPH Output”
on page 59.

In addition, you can produce graphics output as GIF files and automatically generate
HTML files so that you can display your graphics output with a Web browser. For
details, see Chapter 9, “Introducing SAS/GRAPH Output for the Web,” on page 369.

SAS/GRAPH Output Displaying Graphs with the GRAPH Window 49

Regardless of the other types of output generated, SAS/GRAPH procedures always
generate a SAS catalog entry. The entry is stored in the WORK.GSEG catalog unless
you specify a different catalog with the GOUT= option in a PROC statement. To
generate only catalog entries and suppress all other forms of graphics output, use the
NODISPLAY graphics option.

Displaying Graphics Output on Monitors or Terminals

If you want to see your graphics output immediately or preview it before generating
a hardcopy, you can send it to your monitor or terminal.

Note: If you are using a terminal or PC that emulates a terminal, it must be a
graphics terminal. �

In most environments, SAS/GRAPH automatically displays graphics output in the
GRAPH window. If your environment does not support the GRAPH window,
SAS/GRAPH displays your graphs with the direct display method. See “Displaying
Graphs with Direct Display” on page 50.

You can suppress the display of graphics output with the NODISPLAY graphics
option. Suppressing a display is useful when you want to create only a catalog entry.

Displaying Graphs with the GRAPH Window
The GRAPH window, which is available in the SAS windowing environment, displays

catalog entries of type GRSEG. You can use this window to view either the graphics
output that you are currently generating or graphics output that has been stored in a
catalog. You can scroll backward and forward through the catalog entries.

Some devices allow you to use up to four graph windows: GRAPH1, GRAPH2,
GRAPH3, and GRAPH4. By default, the GRAPH1 window displays the graphs in the
default catalog, WORK.GSEG, or the catalog that you specified with the GOUT= option.

The GRAPH window acts like other SAS windows: you can resize it and move it, and
you can submit global SAS window commands from it. For details on sizing windows,
see the SAS documentation for your operating environment. For a description of SAS
window commands, see SAS Language Reference: Dictionary.

GRAPH window commands control how the graphs appear in the window. For a
description of these commands, refer to the SAS Help facility for the GRAPH window.

Opening and Closing the GRAPH Window
The GRAPH Window opens automatically when you submit a procedure that

produces graphics output, or when you select a catalog entry from the PROC GREPLAY
window or from the SAS Explorer window. You can also open the GRAPH window with
the GRAPHn command. The GRAPHn command opens the default catalog
WORK.GSEG, or a catalog you specify, or a specific entry.

The GRAPHn command has the following form:

GRAPHn <<libref.> catalog-name <.entry-name <.GRSEG>>>

n
is a number from 1 to 4 that indicates which GRAPH window to open.

libref
points to the library where the catalog is or will be stored.

50 Displaying Graphs with Direct Display Chapter 4

catalog-name
is the name of the catalog whose contents you want to view. The default is
WORK.GSEG. If the specified catalog does not contain any graphics entries, the
window opens but is empty. The catalog assignment is temporary and remains in
effect only while the GRAPH window remains open. To change the catalog,
resubmit the GRAPHn command.

entry-name
is the name of the catalog entry that you want to view. If you omit entry-name or
the entry does not exist, the last graph in the catalog is displayed. If you specify
entry-name, you must also supply the libref and catalog name.

GRSEG
is the type of catalog entry.

To close the GRAPH window, issue the END command.

Sizing the GRAPH Window
The default size of a GRAPH window depends on the display device.

CAUTION:
Resizing the GRAPH window after you have displayed a graph can distort the graphs. If you
replay a graph in a GRAPH window that is a different size from the size at which you
created the graph, the graph may be distorted. Distortion occurs if the new HSIZE
and VSIZE values do not maintain the width-to-height ratio of the original window. �

Doing any of the following may change the HSIZE and VSIZE values and
consequently the size of the GRAPH window:

� changing the device driver
� specifying a target device
� specifying dimensions with the HSIZE= and VSIZE= graphics options.

In addition, resizing the GRAPH window can reduce the number of cells available for
the output. In order to display some types of graphs in a reduced GRAPH window, you
may need to increase the number of cells either by using the HPOS= and VPOS=
graphics options or by modifying the device driver. To ensure that graphs have an
adequate number of cells, use a full-size GRAPH window when creating the graphs.You
can then reduce the window to replay the graphs. For more information on dimensions
and cell size, see “About the Graphics Output Area” on page 34.

If you create most or all of your graphs at the same size or with the same aspect
ratio, you can avoid distortion if you size the window before you draw the graphs and
then use the WSAVE command to save the position and dimensions of the window. If
you resize the GRAPH windows and do not use the WSAVE command, the new size is
not saved, even in the same SAS session.

Displaying Graphs with Direct Display
Environments that do not support the GRAPH window use the direct display

method. With this method, your display is cleared and the graph appears when you run
a graphics procedure.

If the procedure produces more than one graph, you are prompted to press ENTER
between each graph for the next one to be displayed. To return to your program, press
END or ENTER after the last graph.

You can display the graphs automatically and control the amount of time between
each graph with the GWAIT= and NOPROMPT graphics options. GWAIT= specifies the

SAS/GRAPH Output Saving and Printing a Graphics File 51

number of seconds before the next graph is drawn. NOPROMPT suppresses the delay
between the graphs displayed. In this case, SAS/GRAPH automatically returns to your
program after the last graph displays. (See Chapter 8, “Graphics Options and Device
Parameters Dictionary,” on page 261 for a complete description of these graphics
options.)

With the direct display method, you cannot scroll to other graphs in the catalog. To
redisplay graphs, you must rerun the procedure or replay the catalog entries. For
information on replaying graphs, see Chapter 43, “The GREPLAY Procedure,” on page
1237.

Printing Graphics Output
You can print your SAS/GRAPH output on hardcopy devices such as laser printers

and plotters. In addition, you can send the output to cameras or film recorders.
Regardless of the destination, there are several ways to produce hardcopy of your
SAS/GRAPH output:

� Print SAS/GRAPH program output directly to a hardcopy device.
� Print SAS/GRAPH program output by creating an external file of graphics

commands called a graphics stream file (GSF), saving it to disk, and printing the
file with host commands.

� Print the displayed graph directly from the GRAPH window or the Graphics
Editor window.

The following sections provide a general description of these methods.

Operating Environment Information: Whatever way you choose, the exact steps for
printing graphics depend on the hardcopy device you are using and on the environment
in which you are using it. For complete information on printing graphics output in your
operating environment, see the SAS Help facility for SAS/GRAPH and the SAS
companion for your operating environment. �

Printing Directly to the Device
You can send graphics output directly to a hardcopy device by sending the graphics

commands directly to the device or to a device port.
On most systems you can use any of the following methods to print directly to a

device:
� Use a FILENAME statement, a GOPTIONS statement, and a SAS/GRAPH native

device driver. The FILENAME statement defines a fileref that points to the print
commands. The GOPTIONS statement references the fileref, assigns the device,
and specifies any additional parameters.

� Use the GDEVICE procedure to modify a SAS/GRAPH device entry to spool output
directly to a printer. See Chapter 31, “The GDEVICE Procedure,” on page 915 for
information on adding host commands to a device entry.

� Use the universal printing interface.

For detailed instructions on each of these methods, refer to the SAS Help facility for
SAS/GRAPH.

Saving and Printing a Graphics File
There are two steps to printing graphics output from an external file:

52 Printing From a Window Chapter 4

1 Save your SAS/GRAPH output in an external file. For information on creating
external files, see “About Exporting SAS/GRAPH Output” on page 59 and the SAS
Help facility for SAS/GRAPH.

2 Print the file from your host environment. The host commands vary across
operating environments and spooling utilities. See the SAS companion for your
operating environment for more information on printing.

You can perform these two steps separately or combine them by incorporating the
host printing commands into your program or device driver. In any case, you must
choose a graphics file format that is compatible with your hardcopy device. For
example, if you are using a PostScript printer, be sure to specify one of the PostScript
device drivers supplied in SASHELP.DEVICES. This technique is frequently used on
multi-user systems in which the output devices are shared.

You can use any of the following methods to create and print an external file:
� Use the FILENAME and GOPTIONS statements to create the graphics stream

file. To route the output directly to the printer, include the print commands in the
SAS/GRAPH statements. Otherwise, save the file to disk and use a host command
to spool the file to a spooler for the device.

� Use the GDEVICE procedure to modify a SAS/GRAPH device driver to save the
output to an external file and spool the output directly to a printer. See Chapter
31, “The GDEVICE Procedure,” on page 915 for information on modifying device
entries.

� Use the universal printing interface.

For detailed instructions on each of these methods, refer to the SAS Help facility for
SAS/GRAPH.

Printing From a Window
In some operating environments you can print directly from the GRAPH window or

the Graphics Editor window by using the PRINT command in conjunction with the
TARGETDEVICE= graphics option. To do this, use TARGETDEVICE= to specify the
printer driver and use DEVICE= to specify the driver for the terminal or display on
which you want to preview the output.

The driver specified by TARGETDEVICE= determines the characteristics of the
printed output and sends the graphics output to either an output device or a graphics
stream file. The driver specified by DEVICE= controls some characteristics of the
output displayed in the window. In some cases, you may need to use a FILENAME and
GOPTIONS statements to define the destination of the PRINT command.

Note: If you have not previously specified TARGETDEVICE= when you issue the
PRINT command in the window, SAS/GRAPH prompts you for a device for the printed
output. However, in this situation the output that is sent to the printer reflects the
characteristics of the display device driver. To ensure that your printed output matches
what you see on your display, always use TARGETDEVICE= with the PRINT
command. �

For details on printing directly from the GRAPH or Graphics Editor window, refer to
the SAS Help facility for SAS/GRAPH. See “TARGETDEVICE” on page 355 for a
complete description of TARGETDEVICE=.

Previewing Output
If you want to preview how a graph is going to appear on another device before you

send it to that device, you can use the TARGETDEVICE= graphics option. For example,

SAS/GRAPH Output Accessing Catalogs from Different Versions of SAS 53

to preview output on your display as it would appear on a color PostScript printer,
include TARGETDEVICE= in a GOPTIONS statement and specify the driver for the
printer:

goptions targetdevice=pscolor;

The output is displayed on your screen using
� the orientation of the target device. As a result, the graph may not cover the

entire display area of the preview device.
� the values of either the LCOLS and LROWS pair or the PROWS and PCOLS pair,

depending on the orientation of the target device.
� the default colors list of the target device.
� the values of the HSIZE and VSIZE device parameters for the target device.
� the value of the CBACK device parameter for the target device.

All other device parameter values, including the destination of the output, come from
the current device entry. Therefore, the output displayed by TARGETDEVICE= may
not be an exact replication of the actual output, but it is as close as possible.

See “TARGETDEVICE” on page 355 for a complete description of TARGETDEVICE=.

Storing Graphics Output in SAS Catalogs
When you run a SAS/GRAPH procedure that produces graphics output, a copy of the

graphics output is always stored in a SAS catalog. A catalog is a type of SAS file in
which you can store different types of information, called catalog entries. Catalog
entries of type GRSEG store graphics output. In addition, SAS/GRAPH procedures
create other types of catalog entries such as DEV, CMAP, FONT, and TEMPLATE. You
can store multiple catalog entries in one catalog.

You can use catalog entries to store graphics output that you want to display again
without having to rerun the program. Use the GRAPH window, the GREPLAY
procedure, or the SAS Explorer window to redisplay graphics output stored in catalog
entries.

SAS catalogs can be either temporary or permanent. Temporary catalogs are erased
at the end of each SAS session and cannot be retrieved. Permanent catalogs are
retained until you delete them. Therefore, they exist after the end of a SAS session and
can be used in later SAS sessions.

Unless you select another catalog, either temporary or permanent, SAS/GRAPH
procedures always store a copy of your graph in the temporary catalog WORK.GSEG,
regardless of the other forms of graphics output that you choose. By default, each graph
is appended to the catalog. The graphs in WORK.GSEG are erased when you end the
SAS session.

Accessing Catalogs from Different Versions of SAS

CAUTION:
You can read Version 6 catalogs from Version 7 and Version 8, but you cannot write to
them unless you port them. �

In some cases you have to specify an engine to read a Version 6 catalog from the
current SAS version:

� If you are running the current version and you assign a libref that points to a
library that contains only Version 6 catalogs, the correct engine is automatically

54 Creating and Specifying Catalogs Chapter 4

applied and you can view the entries. However, you cannot write to the catalog
without porting it.

� If you are running Version 7 or Version 8 and you assign a libref that points to a
library that contains both Version 6 and the current version catalogs, the
LIBNAME statement must specify the SASEB engine to view the entries in the
Version 6 catalog. Even with the engine assigned, you cannot write to the catalog
without porting it.

For more information, see “Transporting Catalogs across Operating Environments”
on page 56.

All Version 7 and Version 8 applications that support catalog entries that also existed
in Version 6 should be able to transparently read those Version 6 catalog entries. That
is, if a Version 7 or Version 8 user specifies the SASEB (Version 6 compatibility) engine
on the LIBNAME statement, the application should be able to read and process any
Version 6 data that the SASEB engine may return.

The Version 7 and Version 8 compatibility engines also support write access to
Version 6 catalogs.

Creating and Specifying Catalogs
To create or specify a catalog for graphics output, use the GOUT= option in a PROC

statement. The general form is

PROC procedure-name GOUT=<libref.> catalog-name;

procedure-name
is the graphics procedure you are running.

<libref.>catalog-name
is the name of a catalog where you want the output stored. If the specified catalog
already exists, the procedure simply adds a catalog entry to the catalog. If the
catalog does not exist, it is created.

For a temporary catalog, specify the name of the catalog and omit the libref.
(This is a one-level name.) The temporary catalog is stored in the WORK library
and erased when you end the SAS session.

For a permanent catalog, specify both a libref and a catalog name. (This is a
two-level name.) Libref must already be assigned to a SAS data library that
contains or will contain the catalog. For more information on assigning a libref,
see “LIBNAME Statement” on page 29.

When you run the procedure, the output is automatically appended to the end of the
specified catalog. If the procedure produces multiple graphics, then multiple entries are
added to the catalog.

If you want a catalog entry to replace all of the existing entries in the catalog, you
can use the following statement:

goptions goutmode=replace;

CAUTION:
Be careful using GOUTMODE=REPLACE. GOUTMODE=REPLACE replaces all existing
entries in the output catalog. You cannot retrieve previous entries once they have
been replaced. See “GOUTMODE” on page 302 for more information. �

SAS/GRAPH Output Modifying SAS/GRAPH Output 55

Names and Descriptions of Catalog Entries
SAS/GRAPH software always assigns a name and a description to each catalog entry

so you can identify it. By default, the names and descriptions are determined by the
procedure. For example, a graph produced by the GCHART procedure would be
assigned the name GCHART and a description like PIE CHART OF MONTH.

By default, SAS/GRAPH appends each new entry to the catalog. If you create more
than one graph with a procedure during a SAS session and the graphs are stored in the
same catalog, SAS/GRAPH software adds a number to the end of the name of
subsequent catalog entries. This number makes the names unique within the catalog.
For example, if you create three graphs with the GCHART procedure during the same
SAS session, the catalog entries are named GCHART, GCHART1, and GCHART2.
SAS/GRAPH software uses this naming convention whether catalog entries are being
stored in a temporary or permanent catalog.

You can supply a name and description when you create the graph by using the
NAME= and DESCRIPTION= options. If you create more than one graph of the same
name, SAS/GRAPH software increments the specified name just as it does the default
names.

Listing and Managing Catalog Entries
You can use the SAS Explorer window or the PROC GREPLAY window to display a

list of all of the entries in a catalog. To open the Explorer window for a specific catalog,
use the CAT command:

CAT libref.catalog-name

To open the PROC GREPLAY window, submit the PROC GREPLAY statement with
or without a catalog specification. For details, see Chapter 43, “The GREPLAY
Procedure,” on page 1237.

Either method lets you view individual entries once you have displayed the list. For
more information, see “Displaying Graphics Output on Monitors or Terminals” on page
49.

There are several ways to manage catalogs and catalog entries:
� The GREPLAY procedure can rename, delete, copy, or group graphics output that

is stored in either temporary or permanent catalogs.
� The CATALOG procedure can copy or move an entire catalog or selected entries

within a catalog, and can rename or delete catalog entries. For details, see Base
SAS Procedures Guide.

Modifying SAS/GRAPH Output
The graphics editor is an interactive application that you can use from any GRAPH

window to modify graphs produced with SAS/GRAPH software or imported from other
graphics software.

You can invoke the graphics editor in several ways:
� To edit a graph that you are viewing in the GRAPH window, select Edit –> Edit

current graph.
� To open a GRAPH window and invoke the graphics editor without displaying an

existing graph, select Tools –> Graphics Editor from the SAS Explorer window.
After the window appears, you can either open an existing graph or create a
graphic image by drawing graphics elements in the window.

56 Transporting and Converting Graphics Output Chapter 4

� To open a GRAPH window and edit a graph that is stored in a catalog, submit the
GRAPH command from the command line of the SAS Explorer window and add
EDIT to the end of the command. Separate the two commands with a semicolon
(;). For example, the following statement opens the GRAPH3 window, displays the
specified graph, and activates the graphics editor:

graph3 mylib.grafcat.slide1; edit

You can use the graphics editor to change graphics elements already displayed in the
graph such as text, lines, and polygons, or you can add graphics elements to the graph.
You can create, delete, or duplicate a graphics element and select, change, move, or
resize it. You can also change an element’s properties, such as its color or fill pattern, or
its values, such as the coordinates of one of its points. For instance, you can move a bar
from one side of the display area to the other, make a copy of it and place it in yet
another place, and change its fill color and pattern. You can undo and redo changes,
zoom in or out on the display, move an element to the foreground or background, and
read in or link to another graph that has already been created.

After you have made changes, you can save your modifications to a catalog and send
the modified graph to an output device, such as a printer.

For a complete description of the graphics editor, refer to the SAS Help facility for
SAS/GRAPH.

Note: Modifying your graphics output with the graphics editor does not change the
SAS programs that generated that output. �

Transporting and Converting Graphics Output
You can use the following methods to transport and convert graphics output within

the SAS System:
� Use the CPORT and CIMPORT procedures in base SAS software to transport

catalogs that contain graphics output to other operating environments that are
running the same version of SAS/GRAPH software.

� Use a LIBNAME statement and the CATALOG procedure to convert catalogs from
Version 6 to Version 7 or Version 8.

Transporting Catalogs across Operating Environments
Use the CPORT and CIMPORT procedures to transport catalogs and catalog entries

from one machine to another machine running in a different operating environment. In
addition to graphics output stored in GRSEG catalog entries, SAS/GRAPH software
produces several other files that you can transport from host environment to host
environment. These other files include

� colors maps
� templates
� fonts
� device descriptions.

To transport catalog entries that contain graphics output (catalog entries of type
GRSEG), follow these steps:

1 Use the CPORT procedure to create a transport file from the catalog entries in the
current host environment. A transport file is a sequential file that contains the
catalog in SAS transport format. To create a transport file, you must specify a
catalog to be converted and a fileref for the transport file.

SAS/GRAPH Output Transporting Catalogs across Operating Environments 57

To retain the original order of the GRSEG entries in the catalog, use SELECT=
in the PROC CPORT statement to export individual graphs in the order they were
created. Otherwise, when you use the GREPLAY procedure to list the graphics
entries in the imported catalog, the procedure will list the entries in alphabetical
order, rather than the order in which they were created.

Note: Only the GREPLAY procedure can list catalog entries in the order they
were created. All other procedures list entries in alphabetical order.

To export a catalog that contains groups of entries created using the GREPLAY
procedure, you must use SELECT= in the PROC CPORT statement to select the
names of the groups, rather than the names of individual graphs, to be included in
the transport file. If you export the entire catalog without using SELECT=, the
groups are not maintained in the catalog created when you import the transport
file in the new host environment.

When you use the CPORT procedure, messages in the SAS log identify the
catalog entries that have been placed in the transport file. If the catalog entry was
created by replaying several graphs into a template, the log messages list the
names of all of the entries that contributed to the templated graph.

2 Move the transport file to the target machine, if necessary. You must move the
transport file in binary format. If you do not move the transport file in binary
format, the CIMPORT procedure cannot read the file you create.

Operating Environment Information: Use communications software or tape to
move the transport file. Refer to the documentation for your network or standard
procedures for using tape files. �

3 Once you have moved the transport file to the target machine, import the
transport file into a catalog in the new host environment using the CIMPORT
procedure. The entries are imported in the order specified in SELECT= in the
PROC CPORT statement used to create the transport file.

The SELECT= option in the PROC CIMPORT statement does not affect the
order of the imported entries.

Note: You must use the CIMPORT procedure from the current version of the SAS
System. The CIMPORT procedure in a previous release cannot read a transport file
created by the CPORT procedure in the current version. For details on using the
CPORT and CIMPORT procedures, see the Base SAS Procedures Guide. �

Example of Transporting GRSEGs
This example shows how to port three entries from the catalog MYLIB.GRAPHS.
First, the CPORT procedure writes selected graphs from MYLIB.GRAPHS to the

transport file TRANFILE. The SELECT option names the graphs to be ported.

libname mylib ’SAS-data-library’;
filename tranfile ’external-file’;

proc cport file=tranfile
catalog=mylib.graphs
select=(GPLOT.GRSEG, GPLOT1.GRSEG, GPLOT3.GRSEG);

run;

Once the transport file has been moved to the new host environment using
communications software or tape, the CIMPORT procedure creates a new catalog called
MYLIB.GRAPHS on the new machine.

58 Transporting Catalogs across Operating Environments Chapter 4

libname mylib ’SAS-data-library’;
filename tranfile ’external-file’;

proc cimport catalog=mylib.graphs
infile=tranfile
select=(GPLOT.GRSEG, GPLOT1.GRSEG, GPLOT3.GRSEG);

run;

Example of Transporting Color Maps and Templates

To transport color maps (catalog entries of type CMAP) and templates (catalog
entries of type TEMPLATE) from one host environment to another, use the CPORT and
CIMPORT procedures. For example, you could export a color map from the
NEWLIB.CMAPS catalog using the following statements:

filename tranfile ’external-file’;
libname newlib ’SAS-data-library’;

proc cport file=tranfile catalog=newlib.cmaps select=(mymap.cmap);
run;

After moving the transport file to the new host environment, you can import the color
map using the following statements:

filename tranfile ’external-file’;
libname newlib ’SAS-data-library’;

proc cimport infile=tranfile catalog=newlib.cmaps;
run;

Example of Transporting Fonts

To transport fonts (catalog entries of type FONT) from one operating system to
another, use the CPORT and CIMPORT procedures. For example, you could export a
font from the GFONT0.FONTS catalog using the following statements:

filename tranfile ’external-file’;
libname gfont0 ’SAS-data-library’;

proc cport file=tranfile
catalog=gfont0.fonts
select=(figures.font);

run;

After moving the transport file to the new host environment, you can import the font
using the following statements:

filename tranfile ’external-file’;
libname gfont0 ’SAS-data-library’;

proc cimport infile=tranfile catalog=gfont0.fonts;
run;

Example of Transporting Device Attributes and Device Entries

To transport device entries (catalog entries of type DEV) from one operating
environment to another, use the CPORT and CIMPORT procedures. For example, you

SAS/GRAPH Output About Exporting SAS/GRAPH Output 59

could export a device entry from the GDEVICE0.DEVICES catalog using the following
statements:

filename tranfile ’external-file’;
libname gdevice0 ’SAS-data-library’;

proc cport file=tranfile
catalog=gdevice0.devices
select=(cgm.dev);

run;

After moving the transport file to the new host environment, you can import the
device entry using the following statements:

filename tranfile ’external-file’;
libname gdevice0 ’SAS-data-library’;

proc cimport infile=tranfile catalog=gdevice0.devices;
run;

Converting Catalogs to a Different Version of SAS
To convert catalogs to a different version of SAS, for example from Version 6 to

Version 8, use the LIBNAME statement and the CATALOG procedure.

Note: You will not be able to use your old catalogs without transporting them first. �

Before using PROC CATALOG, you must assign librefs to both catalogs and specify
the Version 6 Compatibility Engine (saseb) on the input catalog libname. Then use
PROC CATALOG with a COPY statement to convert a catalog from Version 6 to Version
7 or Version 8. For details on using the CATALOG procedure, see the Base SAS
Procedures Guide.

For example, the following statements can be submitted from Version 8 to assign the
Version 6 Compatibility Engine and convert a catalog from Version 6 to Version 8.

libname v6lib saseb ’SAS-data-library’;
libname v8lib ’SAS-data-library’;

proc catalog catalog=v6lib.v6cat;
copy out=v8lib.v8cat;

run;

About Exporting SAS/GRAPH Output
By default, SAS/GRAPH output is stored in SAS catalogs as catalog entries of type

GRSEG. These entries can be viewed and manipulated within the SAS System and, in
some operating environments, can be printed directly as hardcopy. However, you may
want to use your SAS/GRAPH output outside of the SAS System. For example, you
may want to

� import your graphs into other software packages
� use host system commands or applications to print or manage your graphs
� run batch processes to create and print multiple copies of your graphs
� create graphics output and HTML files that enable you to display SAS/GRAPH

output on the Web.

60 About Graphics Stream Files Chapter 4

In order to do these kinds of things with your SAS/GRAPH output, you must export
your graphs from SAS/GRAPH, using a different graphics file format, such as CGM,
GIF, or TIFF, and store them in external files.

For information on creating SAS/GRAPH output for Web publishing, see Chapter 9,
“Introducing SAS/GRAPH Output for the Web,” on page 369. For information on
SAS/GRAPH language elements and programs and on how procedure output is
generated, see Chapter 2, “SAS/GRAPH Programs,” on page 25. For information on
using and managing SAS/GRAPH output, see Chapter 4, “SAS/GRAPH Output,” on
page 47.

About Graphics Stream Files
When you export SAS/GRAPH output, you run the output through a device driver

that creates a graphics stream file or GSF. A GSF is an external file that contains
graphics commands. Typically, you select a device driver that produces the type of
graphics file format that you want, such as CGM, PS or EPS, GIF, or TIFF, although
you can select a driver that sends the output directly to a printer or other hardcopy
device without creating an external file. You can specify the exact name and location of
each file or assign a default location to which all files are sent.

Note: You can also use the Output Delivery System (ODS) or SAS/GRAPH device
drivers to generate SAS/GRAPH output as HTML and GIF files that you can view with
a Web browser. Details are discussed in Chapter 9, “Introducing SAS/GRAPH Output
for the Web,” on page 369. �

Once you have created a GSF, you can
� print the file using host commands
� view the file with an appropriate viewer or browser
� edit the file with the appropriate editing software
� import the file into other software packages.

Note: A GSF is different from a SAS/GRAPH catalog entry. A GSF is an external
file that is independent of SAS, and a catalog entry is a type of SAS file. Consequently,
you use host commands to manipulate a GSF independent of the SAS System, whereas
you must use the SAS System to manipulate SAS catalog entries. For example, to view
graphics output stored in a catalog you must use the GREPLAY procedure or the
GRAPH window. �

About Graphics File Formats
You can export your SAS/GRAPH output in many different graphics file formats.

These are some of the most common formats that SAS/GRAPH software supports:

BMP Windows bitmap

CGM Computer graphics metafile

EPS Adobe’s encapsulated PostScript language

GIF GIF format

HP-GL Hewlett Packard’s Graphics Language (plotter control language)

JPEG JPEG format

PBM Portable bitmap

SAS/GRAPH Output Ways to Export SAS/GRAPH Output 61

PDF Portable Document Format

PNG Portable Network Graphics format

PS Adobe’s PostScript language

PPM Portable pixmap

TIFF Tagged Image Format File

The type of graphics file format that you choose depends on how you are going to use
the output. If you are planning to import the graph into other software products, such
as Microsoft Excel or Word Perfect, you may prefer to create a CGM file. These
vector-based files are usually smaller than bitmapped files, and they can be edited. In
addition, they use hardware fonts and provide a clear image on high-resolution devices.

If you want to display the graph on a Web page, or import it into software that
cannot accept vector graphics like CGM, you will need to create a bitmapped file using
a format such as GIF or TIFF.

Note: The HTML and WEBFRAME drivers generate both HTML files and GIF files
specifically for use with a Web browser. For details, see Chapter 9, “Introducing SAS/
GRAPH Output for the Web,” on page 369. �

Most software packages that process graphics input can accept one or more of these
file formats. Check the documentation for the hardware or software product to which
you want to send the graph to determine what file format or formats it can use.

For a complete list of graphics file formats available with SAS/GRAPH in your
operating environment, refer to the Device Help for SAS/GRAPH in the SAS Help
facility.

Ways to Export SAS/GRAPH Output
There are several ways to send SAS/GRAPH output to an external file in a different

graphics file format. You can export graphics output in these ways:

� From the GRAPH window or the Graphics Editor window, use menu selections to
select the type of file format and specify a destination for the output that is
displayed in the window. When you export SAS/GRAPH output in this way, you
are limited to the types of file formats that the Export as Image window supports
in your operating environment. For details see “Exporting SAS/GRAPH Output
Interactively” on page 62.

Operating Environment Information: In Windows operating environments, WMF
formats cannot be exported using this method. �

� Use SAS/GRAPH program statements to direct the output to a graphics stream
file. When you use program statements to create a GSF, you explicitly specify a
SAS/GRAPH device driver. This driver can be one of the drivers supplied with
SAS/GRAPH software and stored in SASHELP.DEVICES, or a custom driver that
you have created. For details see “Exporting SAS/GRAPH Output with Program
Statements” on page 62.

� Create a custom device driver that contains all of the commands for producing a
GSF. For details see “Exporting SAS/GRAPH Output Using Modified Device
Entries” on page 72.

� Use the SAS/GRAPH web drivers or the Output Delivery System to create HTML
and GIF files. For details see Chapter 9, “Introducing SAS/GRAPH Output for the
Web,” on page 369.

62 Exporting SAS/GRAPH Output Interactively Chapter 4

Exporting SAS/GRAPH Output Interactively
You can export SAS/GRAPH output interactively from either the Graph window or

from the Graphics Editor window. To export a graph from one of these windows, follow
these steps:

1 Open the window and display the graph.
2 From the File menu select Export as Image

3 In the Export as Image window, select a file type and specify a destination or file
name.

4 Close the window by choosing Save or OK (button text depends on the operating
environment).

Because you can export only one catalog entry at a time, this method is most useful
for quickly exporting a few graphs.

Although you can use this method to create many types of graphics stream files, you
have a much larger choice of device drivers when you use SAS/GRAPH program
statements to create a GSF.

Exporting SAS/GRAPH Output with Program Statements
When you use program statements to create external files for your SAS/GRAPH

output, you use one of these processes:
� create one file that contains one graph
� create one file that contains multiple graphs
� create multiple files that each contain one graph.

You can send the graphics output to external files either at the time you run the
program that creates the graphs, or later when you replay them from the catalog in
which they are stored. For this reason, these methods are most useful for processing
large quantities of output. In addition, using program statements allows you to specify
exactly the device driver you want and is therefore a more flexible and powerful way of
exporting SAS/GRAPH output.

The following sections provide some information common to all the processes and
then describes each process in detail.

General Information

Common Requirements
Regardless of the process you use to create a GSF from a SAS/GRAPH program, you

must specify the following:
� a destination for the output. This can be an aggregate file storage location (for

example, a directory or a partitioned data set) or a specific file. Typically you
specify the destination with a FILENAME statement and one or more graphics
options. For more information, see “FILENAME Statement” on page 28.

� a device driver that creates the type of graphics output that you want.
� whether SAS/GRAPH should replace an existing file or append new records to it.

By default, SAS/GRAPH replaces an existing file with newly created output of the
same name. For details, see “Replacing Existing External Files” on page 70.

SAS/GRAPH Output General Information 63

Each requirement is explained in detail in the individual process descriptions.

Naming the Output
When you are working with both catalog entries and external files, you should

understand how both types of output are named.

Using the NAME= option
You can use the NAME= option in the SAS/GRAPH procedure to specify a name for

the catalog entry that the procedure generates. How this name is used depends on
whether the FILENAME statement points to a specific external file or to an aggregate
file storage location.

� If you specify a specific filename for the external file and also use the NAME=
option, the external file is assigned the name specified in the FILENAME
statement and NAME= controls only the name given to the created catalog entry.
When you specify the filename, you should include the appropriate file extension,
such as .CGM, .GIF, or .PS).

� If you specify an aggregate file storage location instead of a specific filename, and
also use the NAME= option, the name of the external file is built from the name of
the catalog entry, which is determined by the value of NAME=. In this case,
SAS/GRAPH supplies the appropriate file extension.

See Table 4.1 on page 64 for examples.

Using the default output name
If you omit NAME=, SAS/GRAPH uses the default naming convention to name the

catalog entry, and in some cases the external file. This convention uses up to eight
characters of the procedure name as the base name for the catalog entry. If the name
generated by the procedure duplicates an existing entry, the name is incremented, for
example, GCHART, GCHART1, GCHART2, and so forth. For details, see the
description of the NAME= option for a specific procedure.

� If you specify a specific filename for the external file and omit the NAME= option,
the external file uses the name specified in the FILENAME statement and the
catalog entry uses the default name. When you specify the filename, you should
include the appropriate file extension, such as .CGM, .GIF, or .PS.

� If you specify an aggregate file storage location instead of a specific filename, and
omit the NAME= option, both the catalog entry and the external file use the
default name and SAS/GRAPH supplies the appropriate file extension.

See Table 4.1 on page 64 for examples.

File extensions
When you send SAS/GRAPH output to an aggregate file storage location,

SAS/GRAPH generates the name of the external file by taking the catalog entry name
and adding the appropriate file extension. Most drivers provide a default extension. If a
driver does not generate an extension, SAS/GRAPH uses the default extension .GSF. To
specify a different extension from the one SAS/GRAPH provides, use the EXTENSION=
graphics option. (For details, see “EXTENSION” on page 288).

Example
illustrates how SAS/GRAPH generates names for catalog entries and external files,

depending on 1) whether the NAME= option is used, and 2) on the fileref specification.
This illustration assumes the GSLIDE procedure and DEV=GIF:

64 Saving One Graph to a File Chapter 4

Table 4.1 How SAS/GRAPH Generates Entry Names and File Names

If... And... Then

NAME=’FRED’ fileref points to a file named
’MYSLIDE.GIF’

catalog entry name: FRED

external file name:
MYSLIDE.GIF

NAME=’FRED’ fileref points to a storage
location (for example, a
directory)

catalog entry name: FRED

external file name: FRED.GIF

NAME= (not specified) fileref points to a file named
’MYSLIDE.GIF’

catalog entry name: GSLIDE

external file name:
MYSLIDE.GIF

NAME= (not specified) fileref points to a storage
location (for example, a
directory)

catalog entry name: GSLIDE

external file name:
GSLIDE.GIF

Note: When the fileref points to an aggregate file storage location, the name of the
catalog entry always determines the name of the external file. It does not matter
whether the catalog entry name is the default name or a name assigned by NAME=. �

CAUTION:
If the graph created by the program already exists in the catalog, a new catalog entry with
an incremented name will be created and a new external file may be created rather than
updating the existing file. �

You cannot replace individual entries in a catalog; therefore, to replace an entry you
must first delete the entry and then re-create it. Therefore, even though the contents of
the external file are replaced, the catalog entry is not. Each time you submit the
program, a new entry is created and the catalog entry name is incremented.

Saving One Graph to a File
The simplest way to save one graph to a file is to use the FILENAME statement, the

GSFNAME= graphics option, and the default setting GSFMODE=REPLACE to create
one graphics stream file. These steps describe the general process:

1 Use a FILENAME statement to define a fileref for the external file where you
want to send the output. The file name must be the complete physical name of the
external file and should include a file extension that indicates what type of
graphics file you are creating, for example .GIF for a GIF file.

2 Assign the fileref to the GSFNAME= graphics option.
3 Specify the device driver with the DEVICE= graphics option.
4 Use the default setting GSFMODE=REPLACE so that SAS/GRAPH produces only

one graph per file (unless BY-group processing is in effect). Because REPLACE is
the default setting, you can omit GSFMODE=.

5 Submit the SAS/GRAPH program.

Note: The GSF remains open while the SAS/GRAPH procedure is running. Be sure
to end the procedure by submitting another procedure step, DATA step, or QUIT
statement. To be really safe, you can submit a FILENAME fileref CLEAR; statement to
explicitly close the GSF.

SAS/GRAPH Output Saving One Graph to a File 65

Operating Environment Information: On certain systems, other graphics options may
be required. For more information on creating a graphics stream file, refer to the SAS
Help facility for SAS/GRAPH Device Drivers for your operating environment. �

�

Example
This example creates one GSF that contains one text slide created by a group of

TITLE and FOOTNOTE statements and the GSLIDE procedure.
Define the fileref. The FILENAME statement associates the fileref GRAFOUT with

the external file that is the destination for the GSF. The file extension .PS indicates
that the graphics output is PostScript.

filename grafout ’mygraph.ps’;

Specify graphics options for the GSF. RESET=ALL resets all global statements and
graphics options. DEVICE= specifies a PostScript device driver. GSFNAME= assigns
the fileref GRAFOUT as the destination for the GSF. GSFMODE=REPLACE (the
default) causes the contents of the external file to be replaced each time the graphics
procedure is run.

goptions reset=all
device=pscolor
gsfname=grafout
gsfmode=replace
ftext=swissb;

Produce one text slide. NAME= specifies the name that is assigned to the catalog
entry created by the procedure. If you omit NAME=, SAS/GRAPH uses the default
naming convention to name the entry.

proc gslide border name=’proposal’;
title1 h=4 ’Proposed Design Improvements:’;
title2 h=3 ’* Increase Stability’;
title3 h=3 ’* Increase Speed’;
title4 h=3 ’* Reduce Weight’;
footnote h=2 j=l ’ABC Company’;

run;
quit;

When you submit these statements, SAS/GRAPH does the following if no graphs of
the same name exist in the catalog:

� Creates one catalog entry named PROPOSAL in WORK.GSEG.
� Creates one external file that contains the output from the GSLIDE procedure and

sends a message to the LOG reporting the number of records and the name of the
file to which they were written. The file name is the one specified in the
FILENAME statement.

Because the destination is a specific file and because GSFMODE=REPLACE, each
time you run the program it replaces the contents of the external file. Therefore, this
method is particularly useful when you want to update an external file by resubmitting
an existing program.

However, if there is more than one run of a graphics procedure in this program, the
file would contain only the graphics output from the last procedure run because this
program replaces the external file each time a graphics procedure is run.

Note: Even though the contents of the external file are replaced, the catalog entry is
not. Unless you explicitly delete the existing entry named PROPOSAL, each time you

66 Saving Multiple Graphs to One File Chapter 4

submit the program, a new entry is created and the catalog entry name is incremented.
This table illustrates what happens if you submit the above program three times
without deleting the catalog entries: �

Table 4.2

Pass Catalog Entries File Name

1 PROPOSAL mygraph.ps

2 PROPOSA1 mygraph.ps

3 PROPOSA2 mygraph.ps

Note that each new catalog entry replaces the contents of the external file, in this
case, mygraph.ps. For more information, see “Replacing Existing External Files” on
page 70.

For a complete description of the graphics options used in this example, see Chapter
8, “Graphics Options and Device Parameters Dictionary,” on page 261.

Saving Multiple Graphs to One File
If your program creates multiple graphs that you want to store in one file, you follow

the same steps as those for saving one graph to one file except you specify
GSFMODE=APPEND to add each new graph to the end of the file instead of replacing
the file.

Example
This example stores several text slides in one external file. The program is the same

as the previous example except the GOPTIONS statement specifies
GSFMODE=APPEND and the GSLIDE procedure uses RUN-group processing to create
multiple slides. Each slide includes the current TITLE statement and all previously
defined TITLE and FOOTNOTE statements.

Define the fileref.

filename grafout ’mygraph.ps’;

Specify graphics options for the GSF. GSFNAME= assigns the fileref GRAFOUT as
the destination for the GSF. GSFMODE=APPEND adds each new piece of output to the
end of the external file.

goptions reset=all
device=pscolor
gsfname=grafout
gsfmode=append
ftext=swissb
rotate=landscape;

Produce four text slides. Each RUN-group generates a new catalog entry. NAME=
specifies the base name for each catalog entry created by the procedure.

proc gslide border name=’proposal’;
footnote h=2 j=l ’ABC Company’;
title1 h=4 ’Proposed Design Improvements:’;

SAS/GRAPH Output Saving Multiple Graphs to One File 67

run;
title1 h=3 ’* Increase Stability’;

run;
title1 h=3 ’* Increase Speed’;

run;
title1 h=3 ’* Reduce Weight’;

run;
quit;

When you submit these statements, SAS/GRAPH does the following if no graphs of
the same name exist in the catalog:

� Creates a new catalog entry for each graph, beginning with the name PROPOSAL.
After the first graph is created, the entry name is incremented so that subsequent
graphs are called PROPOSA1, PROPOSA2, and so forth.

� Creates one external file that contains all of the output from the GSLIDE
procedure. The file name is the one specified in the FILENAME statement. Each
time a graph is added to the file, SAS/GRAPH sends a message to the LOG
reporting the number of records and the name of the file to which they were
appended.

Note: Because the destination is a specific file and because the GSFMODE= setting
is APPEND, each time you run the program SAS/GRAPH adds the new graphs to the
external file. If you want the file to contain only the newly created graphs, delete it
before resubmitting the program. �

In addition, if you resubmit the program without deleting the original catalog entries,
SAS/GRAPH will create four new entries that will be added to the catalog entry and four
new graphs appended to the external file, both of which will contain all eight graphs.

This table illustrates what happens if you submit this program twice without
deleting the catalog entries or the external file:

Table 4.3

Pass Catalog Entries File Name File Contents

1 PROPOSAL

PROPOSA1

PROPOSA2

PROPOSA3

mygraph.ps PROPOSAL, PROPOSA1,
PROPOSA2, PROPOSA3

2 PROPOSAL

PROPOSA1

PROPOSA2

PROPOSA3

PROPOSA4

PROPOSA5

PROPOSA6

PROPOSA7

mygraph.ps PROPOSAL, PROPOSA1,
PROPOSA2, PROPOSA3,
PROPOSA4, PROPOSA5,
PROPOSA6, PROPOSA7

For more information, see “Replacing Existing External Files” on page 70.

68 Saving Multiple Graphs to Multiple Files Chapter 4

Saving Multiple Graphs to Multiple Files
When you want your SAS/GRAPH program to create multiple files that each contain

one graph, you can either
� use a FILENAME statements for each PROC statement to explicitly specify a

destination file for each graph. To do this, simply repeat as many times as
necessary the process described in “Saving One Graph to a File” on page 64.

� use one FILENAME statement to specify an aggregate file storage location as the
destination and let SAS/GRAPH automatically name and create the files for you.

These steps describe the general process:
1 Use a FILENAME statement to define a fileref for the aggregate file storage

location, such as a directory or PDS, where you want to send the output. Do not
point to a specific file.

2 Assign the fileref to the GSFNAME= graphics option.
3 Specify the device driver with the DEVICE= graphics option.
4 Use the default setting GSFMODE=REPLACE so that SAS/GRAPH produces only

one graph per file. Because REPLACE is the default setting, you can omit
GSFMODE=.

5 Submit the SAS/GRAPH program.

Although the general technique is the same, there are significant differences between
directing your graphics output to a specific file and directing it to an aggregate file
storage location. These differences are mostly concerned with how the file is named.

When the destination is an aggregate file storage location, SAS/GRAPH not only
creates the external file, it also names it. When SAS/GRAPH names an external file, it
always uses the name of the entry in the output catalog. This name is either

� the name you specify in the NAME= option in the procedure
� the default name supplied by SAS/GRAPH, such as GSLIDE.

In addition, SAS/GRAPH automatically appends the correct file extension to the
external file name. For example, if the output is named Q1SALES and the external file
is a GIF file, the file name is Q1SALES.GIF.

This technique of building the file name from the catalog entry name affects what
you do when you want to replace the contents of a file created in this way. For details,
see “Replacing Existing External Files” on page 70.

Example
This example creates four text slides and stores each one in a separate external file.

The program is similar to the previous examples except the fileref points to an
aggregate storage location instead of to a specific file.

Define the fileref. The FILENAME statement assigns an aggregate file storage
location as the destination for the files.

filename grafout ’external-file-location’; /* such as a directory */

Specify graphics options for the GSF. GSFNAME= assigns the fileref GRAFOUT as
the destination for the GSF. GSFMODE=REPLACE (the default) replaces the contents
of the external files with catalog entries of the same name.

goptions reset=all
device=pscolor
gsfname=grafout

SAS/GRAPH Output Saving Multiple Graphs to Multiple Files 69

gsfmode=replace
ftext=swissb
rotate=landscape;

Produce four text slides. Each RUN-group generates a new catalog entry. NAME=
specifies the base name for each catalog entry that is generated by the procedure. This
name is also the base name for the external files.

proc gslide border name=’proposal’;
footnote h=2 j=l ’ABC Company’;
title1 h=4 ’Proposed Design Improvements:’;

run;
title1 h=3 ’* Increase Stability’;

run;
title1 h=3 ’* Increase Speed’;

run;
title1 h=3 ’* Reduce Weight’;

run;
quit;

When you submit these statements, SAS/GRAPH does the following if no graphs of
the same name exist in the catalog:

� Creates a new catalog entry for each graph, beginning with the name PROPOSAL.
After the first graph is created, the entry name is incremented so that subsequent
graphs are called PROPOSA1, PROPOSA2, and so forth.

� Creates one external file for each catalog entry. The name of the file is the same as
the entry name plus the extension. In this case, the files are named
PROPOSAL.PS, PROPOSA1.PS, and so forth. For each file created, SAS/GRAPH
sends a message to the LOG reporting the number of records and the name of the
file to which they were written.

Note: Because you cannot replace individual entries in a catalog, each time you run
the program SAS/GRAPH creates new catalog entries and consequently new files. If
you want to replace the files, you must delete the corresponding catalog entries before
resubmitting the program. �

This table illustrates what happens if you submit this program twice without
deleting the catalog entries:

70 Replacing Existing External Files Chapter 4

Table 4.4

Pass Catalog Entries File Name

1 PROPOSAL

PROPOSA1

PROPOSA2

PROPOSA3

proposal.ps

proposa1.ps

proposa2.ps

proposa3.ps

2 PROPOSA4

PROPOSA5

PROPOSA6

PROPOSA7

proposa4.ps

proposa5.ps

proposa6.ps

proposa7.ps

Because the catalog names increment, there is never a matching file that the new
catalog can replace. Therefore, unless you delete the existing entries, the program
continues to create new files. To delete the existing entries, first run a GREPLAY
procedure with the DELETE option:

proc greplay igout=work.gseg nofs;
delete proposal proposa1 proposa2 proposa3;

Replacing Existing External Files
When you are working with aggregate file storage locations and automatic file

naming, it is important to remember that GSFMODE=REPLACE replaces a file only if
the name of the catalog entry is the same as the name of the file and you are using the
same type of driver. For example, to replace a file named Q1SALES.PS, your program
must create a catalog entry named Q1SALES, and you must also be using a PostScript
driver. If the entry named Q1SALES already exists in the catalog, SAS/GRAPH will
increment the name to Q1SALES1, and either create a new file with the incremented
name or replace an existing file whose name matches the new incremented name.

Therefore, to replace the contents of existing external files with a new set of graphs,
you must be sure that the catalog you are using does not already contain entries of the
same name. There are several ways to assure that a catalog does not contain entries
with the same names as your files:

� Use a temporary catalog, such as the default WORK.GSEG, to store the output
and start a new SAS session. Initially, the catalog is empty.

� Use a temporary or permanent catalog and use the GREPLAY procedure to do
either of the following:

� delete the entire contents of the catalog before you submit your program

� delete specified entries before you submit your program.

One additional method for replacing catalog entries is rarely recommended because it
is easy to accidentally delete catalog entries that you did not intend to delete. If you
want to replace the entire contents of the catalog and if you are running only one
procedure, you can use the graphics option GOUTMODE=REPLACE. Whenever a new
procedure starts, GOUTMODE=REPLACE replaces the entire contents of the current
catalog with the new entries; it does not replace individual entries.

SAS/GRAPH Output Replacing Existing External Files 71

Example

The following example uses the GREPLAY procedure to explicitly delete specified
catalog entries so that you can re-create them and replace the corresponding external
files. This example uses the permanent catalog MYLIB.GRAFCAT.

� The GREPLAY procedure explicitly deletes existing catalog entries that have the
same name as the entries to be created. If no entries exist, PROC GREPLAY
issues a message and the program continues.

� The GSLIDE procedure generates four text slides and stores them in the catalog
specified by GOUT=. NAME= specifies PROPOSAL as the base name for the
catalog entries created by the procedure.

Define the libref for the permanent catalog.

libname mylib ’SAS-data-library’;

Define the fileref. The FILENAME statement assigns an aggregate file storage
location as the destination for the files.

filename grafout ’external-file-location’;

Specify graphics options for the GSF. GSFNAME= assigns the fileref GRAFOUT as
the destination for the GSF. GSFMODE=REPLACE (the default) replaces the contents
of the external files with catalog entries of the same name.

goptions reset=all
device=pscolor
gsfname=grafout
gsfmode=replace
ftext=swissb
rotate=landscape;

Delete existing catalog entries of the same name. The GREPLAY procedure deletes
the specified catalog entries. These are the catalog names generated by the NAME=
option in the procedure. If the entries do not exist, PROC GREPLAY issues a message
and the program continues.

proc greplay nofs igout=mylib.grafcat;
delete proposal proposa1 proposa2 proposa3;

run;

Produce four text slides. Each RUN-group generates a new catalog entry. NAME=
specifies the base name for each catalog entry generated by the procedure. This name is
also the base name for the external files.

proc gslide border gout=mylib.grafcat name=’proposal’;
footnote h=2 j=l ’ABC Company’;

run;
title1 h=3 ’* Increase Strength’;

run;
title1 h=3 ’* Reduce Drag’;

run;
title1 h=3 ’* Increase Resistance to Sheer’;

run;
quit;

When you submit these statements, SAS/GRAPH does the following:

� deletes the specified entries from the catalog MYLIB.GRAFCAT.

72 Other Ways to Assign the Destination Chapter 4

� creates a new catalog entry in MYLIB.GRAFCAT for each slide, and increments
the entry names: PROPOSAL, PROPOSA1, PROPOSA2, and PROPOSA3.

� creates one external file for each catalog entry. The file name is built from the
catalog entry name. If a file of the same name already exists, SAS/GRAPH
replaces the contents of the file.

Other Ways to Assign the Destination
You can use the GACCESS= graphics option to assign the destination for a graphics

stream file. There are two ways to do this.

Using GACCESS=GSASFILE
This method is similar to the GSFNAME= method described in the previous sections.

� Use a FILENAME statement and assign a destination to the fileref GSASFILE.
When you use GACCESS, the fileref must be named GSASFILE. The destination
can be either a specific file or an aggregate file storage location.

� Assign GSASFILE to the GACCESS= graphics option instead of to GSFNAME=.

For example, these statements define and assign the fileref for an aggregate file
storage location:

/* define a fileref for the destination */
filename gsasfile ’external-file-location’;

/* assign the fileref and specify a device */
goptions reset=all gaccess=gsasfile device=gif;

Using GACCESS= to Explicitly Specify a Destination
You can also use GACCESS= to assign the destination and omit the FILENAME

statement. In this case, you must also include the SASGASTD output format and quote
the entire value. The destination can be either a specific file or an aggregate file storage
location.

For example, this statement assigns a specific file location as the destination for the
graphics stream file:

/* assign the fileref and specify a device */
goptions reset=all

gaccess=’sasgastd > my-graph-file.gif’
device=gif;

Exporting SAS/GRAPH Output Using Modified Device Entries

If you frequently send graphics output to the same file or device, you may want to
create a custom device entry that automatically sends your output to that destination.
This simplifies the process by eliminating several graphics options from the GOPTIONS
statement and allowing you to create the GSF by simply specifying the custom device
entry with the DEVICE= graphics option.

To modify a device entry, use the GDEVICE procedure using either code-based
statements or the GDEVICE windows. In either case, copy the original entry from the
SASHELP.DEVICES catalog to your personal catalog (typically, GDEVICE0.DEVICES).

SAS/GRAPH Output 73

Then simply change the device parameters to create an entry that produces graphics
stream files by default.

Often these device parameters correspond to the graphics options in your program.
For example, if your program uses the fileref GRAFOUT, you can enter a value of
Grafout in the Gsfname: field in the Host File Options window.

See Chapter 31, “The GDEVICE Procedure,” on page 915 for more information on
modifying device entries. Refer to the Device Help for SAS/GRAPH in the SAS Help
facility for lists of available drivers and for specific information on modifying device
entries in your operating environment.

The Metagraphics Driver Facility
You can use the SAS/GRAPH Metagraphics facility to write your own device drivers

to create files in other formats for use by other graphics software. The Metagraphics
driver facility can be used to develop driver support for virtually any device you choose.
It is device-intelligent and can support most hardware features. A user-written
program is required to translate the Metagraphics metafile into the appropriate
graphics language recognized by the hardware product.

For assistance in creating a Metagraphics driver, contact Technical Support.

74

75

C H A P T E R

5
SAS/GRAPH Fonts

Overview 75

Specifying Fonts in SAS/GRAPH Programs 75
Font Specifications 76

Default Fonts 77

Font Locations 77
Using Hardware Fonts 78

Default Hardware Fonts 78

Using a GOPTIONS Statement to Change the Default Hardware Font 79
Using the GDEVICE Procedure to Change the Default Hardware Font 79

Specifying the Full Font Name 80
Specifying Alternative Hardware Fonts 80

Specifying Special Characters 81

Using SAS/GRAPH Software Fonts 82
Rendering Fonts 82

Font Lists 82

Overview

The SAS/GRAPH software has a variety of type styles that you can use to display
text and special characters in your procedure output. These type styles are stored in
fonts that you can specify when you want to select type for the text on your graphs or
choose plot symbols.

This chapter explains how to specify a font, how to change the default hardware font,
how to produce special characters, and how to select a software font.

After the FONTREG procedure runs, the SASEMF device driver and graphs in the
ODS PDF destination can use FreeType fonts without any modification. However, you
will need to modify the GIF, JPEG, PNG, and TIFFP device drivers before these can
access FreeType fonts. For details about using FreeType fonts, refer to The FONTREG
Procedure.

Note: In some operating environments, you can access the System or TrueType fonts
that are available to the host print driver that is currently set for your printer. For
more information, see the SAS documentation for your operating environment. �

Specifying Fonts in SAS/GRAPH Programs

When you select a type style for text or plot symbols, you use statement options to
assign the font. You can assign fonts for any amount of text from a single character in a

76 Font Specifications Chapter 5

title to all the text in your output. When the SAS/GRAPH software encounters an
explicit font specification in a SAS statement, it uses the font that you specify rather
than a font that is specified in a GOPTIONS statement or the device’s hardware font.

With SAS/GRAPH you can select existing hardware or software fonts or create your
own font. Hardware fonts are fonts that exist on hardcopy output devices (such as
printers or plotters) or on a computer. PC TrueType and UNIX system fonts are
examples of hardware fonts that exist on computers. Software fonts are the fonts
delivered with SAS. The software fonts are the entries in the SASHELP.FONTS
catalogue. If you do not make a font assignment, in most cases the SAS/GRAPH
software uses the default hardware font for your device.

Note: Java and ActiveX devices do not support software fonts. �

Font Specifications
A font specification is an argument that takes a font name as its value. Font

specifications typically take the following form:

FONT=font
F=font

where font is a valid SAS name. The specified font can be

� a software font that is either

� a catalog entry that is supplied by SAS Institute (for example, CENTB),
or that is user-generated (for example, MYFONT generated by the
GFONT procedure)

� a system font that is available in your operating environment.

Note: Font names greater than eight characters in length must be
enclosed in quotation marks. �

To see a list of available software fonts, issue the FONTLIST command
from the SAS command line. See Base SAS Software Help for more
information on the FONTLIST command. The resulting window enables you
to copy a font name into the copy buffer so that you can paste the name into
your SAS program. The window’s Family box lists the software fonts that are
supplied by SAS Institute. Choose the System button to see a list of the
system fonts that are available in your operating environment. Choose the
Help button for help on using the window. See “Font Lists” on page 82 for
more information on the valid font names for Institute-supplied software
fonts.

� a hardware font that is either in the form of

� HWxxxnnn

� hardware-font-name.

See “Specifying Alternative Hardware Fonts” on page 80 for details.

For example, the following statement specifies the Century Bold font in a title:

title font=centb ’This is a Title’;

However, there are other arguments that also take font as a value. For example, the
FTEXT= option in the following GOPTIONS statement specifies the Century Bold font
for all text that does not have a more explicit font specification:

goptions ftext=centb;

SAS/GRAPH Fonts Font Locations 77

Note: In this chapter, the argument FONT= is used to represent any argument that
takes font as its value. �

Default Fonts
When a font is needed, theSAS/GRAPH software looks first for a font specification in

the statement or procedure that produces the output, and then it looks in the
GOPTIONS statement. If no font specification is found, the SAS/GRAPH software uses
one of the following:

� for TITLE1 statements, the default font is SWISS.
� for all other text, the default font is NONE. The NONE font specifies the default

hardware font for the output device.

In some cases, the device’s hardware font cannot be used and the SIMULATE font is
used instead. The SIMULATE font is a software font that simulates the device’s
hardware characters by allowing the same amount of space for the text that the
hardware characters use. The SIMULATE font is used whenever the default hardware
font is unavailable, including the following situations:

� FONT=NONE or FONT=HWxxxnnn or no font is specified, and one of the
following conditions or sets of conditions is also met:

� GOPTIONS NOCHARACTERS is specified.
� The device driver does not support hardware text.
� You request a hardware font for a different device.
� You specify an angle or rotation for the characters that the device does not

support.
� The device does not have scalable hardware characters (that is, hardware

characters can be generated only in the proportions specified with the font),
and one of the following conditions is also met:

� The values of the HPOS= and VPOS= graphics options do not match the
values displayed in the LCOLS or PCOLS field or the LROWS or
PROWS field in the Detail window of the device entry.

� The HSIZE= or VSIZE= graphics option is set to values that are not the
default.

� You replay a graph in a template that is not the same size as the full
size of the graphics output area, or you use a device driver other than
the one you used to create the graph.

� The target device and the display device have different values for the
HPOS= and VPOS= graphics options.

� You use any height specification, including the HEIGHT=, HTEXT=,
HTITLE=, and HBY= graphics options, that is not equal to 1.

You should never delete the SIMULATE font from the fonts catalog.

Note: You can change the font that is used as the SIMULATE font with the
SIMFONT= graphics option. If you use the SIMFONT= option, it is better to specify a
uniform font. Do not specify a hardware font as a substitute for SIMULATE. See
“SIMFONT” on page 351 for more information on the SIMFONT= option. �

Font Locations
SAS/GRAPH software fonts are stored in catalogs. The SAS/GRAPH software looks

only into catalogs with certain librefs and names to find fonts. By default, SAS/GRAPH

78 Using Hardware Fonts Chapter 5

searches for the font in the catalog SASHELP.FONTS, which contains
Institute-supplied fonts, key maps, and device maps.

If you want to specify fonts that you have created locally, submit a LIBNAME
statement that associates the libref GFONT0 with the location of your font catalog. If
you have specified more than one libref in the sequence GFONT0 through GFONT9,
theSAS/GRAPH software performs a sequential search of these catalogs when locating
the font that you have specified.

When you specify a font name, the SAS/GRAPH software searches for the font in the
following order:

1 If a SAS data library with the libref GFONT0 exists, then the SAS/GRAPH
software looks there for a catalog named FONTS. If GFONT0.FONTS exists, it is
checked for the specified font. If the font is not there, then the SAS/GRAPH
software looks next for a library with the libref GFONT1 and for a catalog named
FONTS in that library. The search is repeated for the sequence of librefs through
GFONT9.

2 If the SAS/GRAPH software fails to find the specified font in any FONTS catalog
in the libraries GFONT0 to GFONT9, or if it finds a GFONTn libref without a
FONTS catalog, or if it encounters an undefined libref in that sequence before
locating the specified font, then it searches for the font in SASHELP.FONTS.
(SASHELP is one of the standard librefs defined automatically whenever you start
your SAS session; you do not need to issue a LIBNAME statement to define it.)

3 If the specified font is not found in SASHELP.FONTS, then a warning is issued
and the SIMPLEX font is used. The SIMPLEX font is the default software font
and should never be deleted from the fonts catalog.

See Chapter 32, “The GFONT Procedure,” on page 939 for additional information on
specifying the libref GFONT0.

Using Hardware Fonts
There are four ways to use hardware fonts with SAS/GRAPH output:

� By using the CHARTYPE= graphics options in a GOPTIONS statement to assign
the number of a font listed in the Chartype window of your device entry as the
default hardware font. See “Using a GOPTIONS Statement to Change the Default
Hardware Font” on page 79 for details.

� By using the GDEVICE procedure to specify the number of the font you want to
use as the default hardware font. See “Using the GDEVICE Procedure to Change
the Default Hardware Font” on page 79 for details.

� By specifying the full font name as it appears on the Chartype window of the
device driver entry. See “Specifying the Full Font Name” on page 80 for details.

� By explicitly specifying a hardware font name of the type HWxxxnnn. See
“Specifying Alternative Hardware Fonts” on page 80 for details.

There are several advantages to using hardware fonts instead of software fonts.
Hardware fonts often are produced faster than software fonts and produce smaller
output files. Also, some devices, such as laser printers with resident hardware fonts,
may produce better quality output with hardware fonts than with software fonts.

Default Hardware Fonts
SAS/GRAPH software uses a device’s default hardware font to draw characters

when both of the following conditions are true:

SAS/GRAPH Fonts Default Hardware Fonts 79

� No font specification is made in the SAS/GRAPH program, or FONT=NONE is
specified.

� The hardware font can be used. See “Default Fonts” on page 77 for details on
when hardware fonts cannot be used.

Every available hardware font for a particular device has a number associated with
it. This number and the corresponding font name are listed in the Chartype window of
the device entry for your device. The default hardware font is the font whose number is
entered in the Chartype field in the Parameters window of the device entry. When
FONT=NONE or no font is specified, SAS/GRAPH software uses the font assigned to
this field.

If your device has more than one hardware font, there are two ways you can assign a
different default hardware font:

� By specifying the font with the CHARTYPE= option in a GOPTIONS statement.
See “Using a GOPTIONS Statement to Change the Default Hardware Font” on
page 79

� By using the GDEVICE procedure to modify the value of the Chartype field in the
Parameters window of your device entry. See “Using the GDEVICE Procedure to
Change the Default Hardware Font” on page 79 for more details.

If your device has only one hardware font (this is often the case), the Chartype field
has a value of 0.

Using a GOPTIONS Statement to Change the Default Hardware Font
To assign the default hardware font for your current SAS session, use the

CHARTYPE= option in a GOPTIONS statement. Assign it the actual number of the
hardware font as listed in the Chartype field in the Chartype window of the device
entry for your device.

Using the CHARTYPE= option only changes the default font for the duration of your
SAS session; using the CHARTYPE= option does not change the value of the field in the
device entry. (See “CHARTYPE” on page 269 for a complete description of the
CHARTYPE= option.)

When you specify a hardware font by using the graphics option CHARTYPE=n and
the font specification NONE, the size of the character cells is determined by the current
values for the HPOS= and VPOS= options. This means that the font is drawn using the
current cell size. As a result, the aspect ratio of the displayed font may be different and
the height of the characters, if displayed in cells, may be affected.

CAUTION:
Specifying a nonscalable hardware font with the CHARTYPE= option may cause the
SIMULATE font to be used. �

In addition, if the font selected with CHARTYPE= is not scalable and if the values of
HPOS= and VPOS= do not match the values of the Rows and Cols fields in the
Chartype window, then the SIMULATE font is substituted.

Using the GDEVICE Procedure to Change the Default Hardware Font
To change the default hardware font with the GDEVICE procedure, change the

Chartype field in the Parameters window for the device:
1 Invoke the GDEVICE procedure and select the entry for your device.
2 Go to the Chartype window and review the available fonts.

80 Specifying the Full Font Name Chapter 5

3 Note the number of the font that you want to use as the default font and go to the
Parameters window.

4 Enter the number of the font in the Chartype field.
5 Close the window and exit the procedure.

Note: If you change the number in the Chartype field in the Parameters window of
the device entry, the change is permanent and remains in effect from one SAS session
to another until you change the entry again. �

(See Chapter 31, “The GDEVICE Procedure,” on page 915 for information on viewing
device entries and changing device parameters.)

Specifying the Full Font Name
You can specify the full font name in any SAS statement where a font specification is

valid (such as for the FTEXT=font graphics option or the FONT=font specification on a
TITLE statement). For the value font, specify the full font name exactly as it appears
in the Chartype window of the device driver entry. For example, to specify the
Times-Roman font on a TITLE statement when you use the PS300 device driver, specify:

title font=’Times-Roman’ ’Testing the Times-Roman font’;

The SAS System allows up to 255 characters for the font name. The font name may
contain spaces. If the font name is longer than 40 characters, PROC GDEVICE in
fullscreen mode only displays the first 37 characters, followed by an ellipsis (...). To see
the complete font name when the name is longer than 40 characters, use PROC
GDEVICE with the NOFS (no fullscreen) option as follows:

proc gdevice c=sashelp.devices nofs;
list driver-name;

run;
quit;

When a font is quoted, the SAS System will first look at the Chartype window of the
device driver entry to see if it is a valid hardware font. If the font is not found in the
Chartype window, the SAS System will then check to see if the quoted font is a valid
SAS/GRAPH software font. If the font is not recognized as either a valid hardware font
or a valid SAS/GRAPH software font, the SIMPLEX font will be used.

Specifying Alternative Hardware Fonts
An alternative hardware font can be specified in any SAS statement where a font

specification is valid. You can use more than one hardware font in a single graph (or
even in a single statement), as long as all of the fonts that you specify exist on your
device. If you specify a hardware font, make sure that the font is available on the
device and that there is a corresponding Chartype value for the font. If you request a
hardware font that does not have a Chartype defined, SAS/GRAPH software
substitutes the SIMULATE font.

These are the three ways to specify alternative hardware fonts:
� In the font specification, explicitly assign a hardware font using the following form:

HWxxxnnn

HW identifies the font as a hardware font. The font name
must begin with the characters HW.

SAS/GRAPH Fonts Specifying Special Characters 81

xxx are the last two or three characters of the module name in
the Module field in the Detail window of your device entry.
If the module name has eight characters (SASGDPSL, for
example), use the last three characters (PSL). If the
module name has only seven characters (SASGDVT, for
example), use the last two characters (VT).

nnn is the Chartype number of the hardware font that you
want to use as listed in the Chartype window in the
device entry. This value should be a three-digit decimal
number, with leading zeros if necessary.

� In the font specification, explicitly assign a hardware font using the following form:

hardware-font-name
identifies the name of the hardware font that is listed in the Chartype
window of the device entry. Hardware-font-name must be enclosed in
quotation marks and the maximum length is 256 characters. The specified
font name will be converted internally to the HWxxxnnn name. Note that in
Annotate, the specified font name must be enclosed in both double quotes and
single quotes (see Chapter 25, “Annotate Dictionary,” on page 613 for details).

� Assign one of the fonts listed in the Chartype window of your device entry as the
default hardware font with the CHARTYPE= graphics option. You can also change
the default hardware font by modifying the value of the Chartype field in the
Parameters window of your device entry. Then you can use FONT=NONE in your
SAS/GRAPH procedure or statement to specify the new default hardware font.

When you specify FONT=HWxxxnnn or hardware-font-name, the size of the
character cells is determined by the values in the Rows and Cols fields in the Chartype
window of the device entry, and the values of the HPOS= and VPOS= options are
ignored for the font. Consequently, the font retains its original proportions. In addition,
with this method the font catalog is checked for proportional spacing information. This
information is used by the software to determine how much space to reserve for
proportional text. See Chapter 8, “Graphics Options and Device Parameters
Dictionary,” on page 261 for additional information.

Specifying Special Characters
Some fonts contain characters that are not mapped to the keyboard and cannot be

typed directly into a text string. To display these special characters, substitute a
character code or a hexadecimal value in the text string.

Character codes include the letters, numbers, punctuation marks, and symbols that
are commonly found on a keyboard. They are usually associated with symbols or
national alphabets. These codes enable you to display the character by specifying the
font and using the keyboard character in the text string.

For example, to produce the character �, assign the Greek font and specify the
character code z in the text string.

title font=greek ’z’;

Hexadecimal values are any two-digit hexadecimal numbers enclosed in quotation
marks and followed by the letter x, for example, ’3D’x. (In double-byte character sets,
the hexadecimal values contain four digits, for example, ’4E60’x.)

You display characters with hexadecimal values the same way that you display them
with character codes, that is, by specifying the font that contains the special character
and placing the hexadecimal value in the text string. For example, this TITLE

82 Using SAS/GRAPH Software Fonts Chapter 5

statement uses hexadecimal 18 to produce £ in the Zapf type style. (This example
assumes a U.S. key map).

title font=zapf ’18’x;

Note: The character code or hexadecimal value associated with any character in any
font is dependent on the key map that is currently being used. �

In addition, you can use a key map to map selected characters to your keyboard. For
example, if you want to be able to type e directly, you could create a key map that maps
e to the key that usually generates the asterisk (*) and a device map that maps e to
your output device. Then, when you press the * key, although you see * on your display,
e is produced on your graphics device. See Chapter 34, “The GKEYMAP Procedure,” on
page 983 for details.

Using SAS/GRAPH Software Fonts

Rendering Fonts
The SAS/GRAPH software includes methods of storing rendered versions of

Bitstream fonts, along with three graphics options to control how the fonts are rendered.
When your graphics output uses one of the Bitstream fonts that are provided in the

SAS/GRAPH software, SAS/GRAPH must process information contained in
corresponding FONT catalog entries to determine how to draw characters of the
specified size and typeface. The process of calculating the character shapes and sizes is
known as rendering the font. Bitstream fonts that are available in the SAS/GRAPH
software include the Century, Swiss, and Zapf families.

The SAS/GRAPH software can store rendered versions of the Bitstream fonts in
memory or in special SAS files. Using these rendered versions of the fonts can provide
a speed improvement when characters of the same size and style are used again during
the SAS session. The SAS/GRAPH software can read the rendered version of the
characters from memory or from the rendered font file rather than having to perform
the rendering calculations again each time the characters are used. If you store the
rendered fonts in files in a permanent SAS data set, the SAS/GRAPH software can use
the rendered font files again in subsequent SAS sessions.

Note: Because the rendered font files use a special utility member type, they do not
appear in the list of library members that is displayed when you issue a DIRECTORY
command for the SAS data library in which the font files are stored. �

You control whether and how rendered versions of fonts are stored using the
FONTRES=, RENDER=, and RENDERLIB= graphics options. See Chapter 8,
“Graphics Options and Device Parameters Dictionary,” on page 261 for details.

Font Lists
The fonts available with theSAS/GRAPH software are listed in the following tables.
All of the software fonts are stored in the catalog SASHELP.FONTS. For many fonts,

the last letter or letters of the font name indicates weight or spacing of the font:

B bold (thicker)

E empty (outline) versions of their counterparts

SAS/GRAPH Fonts Font Lists 83

I italic (slanted)

L light (thin)

U uniformly spaced versions of their counterparts; most of the
SAS/GRAPH fonts that do not end in U are proportionately spaced;
however, the Kanji fonts are always uniform.

X expanded (wider characters and extra space between characters).

CAUTION:
Empty and uniform versions of fonts cannot be used if you have deleted their filled or
proportionally spaced counterparts. �

If the label of a font in SASHELP.FONTS is "Depends on," it is possible to delete it.
However, empty and uniform versions of fonts are generated from their regular, bold, or
italic counterparts. Therefore, if you delete any of these fonts, you cannot use the
uniform or empty version of that font. For example, you must have the CENTB
(Century Bold) font in order to use the CENTBE (Century Bold Empty) font.

84 Font Lists Chapter 5

Figure 5.1 Roman Alphabet Text Fonts

SAS/GRAPH Fonts Font Lists 85

Figure 5.2 Roman Alphabet Text Fonts–continued

Table 5.1 Non-Roman Alphabet Fonts

Type Style Font Name
Uniform Font
Name

Arabic ARABIC

Arabic Empty ARABICE

Cyrillic CYRILLIC CYRILLIU

David DAVID

Davidb DAVIDB

Fsong FSONG FSONGU

Greek GREEK GREEKU

Greek (serif) CGREEK CGREEKU

Hebrew HEBREW

Hebrew NHEBREW*

Hebrewb HEBREWB

Hebrew Empty HEBREWE

Hei HEI HEIU

Hiragana HIRA

Hiragana NHIRA*

Kanji KANJI

86 Font Lists Chapter 5

Type Style Font Name
Uniform Font
Name

Kanji KANSJIS

Kanji Subset

Kanji 1 KAN1

Kanji 2 KAN2

Kanji 3 KAN3

Kanji 4 KAN4

Kanji 5 KAN5

Kanji 6 KAN6

Kanji 7 KAN7

Kanji 8 KAN8

Katakana KATA

Katakana NKATA*

Mincho MINCHO MINCHOE

*This font requires a special keyboard and is
host-dependent. If you are not equipped to use this
font, use the host-independent version listed
directly above.

Table 5.2 Symbol Fonts

Type Style
Font
Name

Uniform Font
Name

Cartographic CARTOG CARTOGU

Electronic ELECTRON ELECTROU

Marker MARKER

Marker
Empty

MARKERE
*

Math MATH MATHU

Music MUSIC MUSICU

Special SPECIAL SPECIALU

Weather WEATHER WEATHERU

*MARKERE is not displayed in the figures.

SAS/GRAPH Fonts Font Lists 87

Figure 5.3 Cartographic Font

Figure 5.4 Electronic Font

Note: Figure 5.5 on page 87 shows the MARKER font. The MARKERE font
produces the same symbols but in empty (outline) form. �

Figure 5.5 Marker Font

88 Font Lists Chapter 5

Figure 5.6 Math Font

Figure 5.7 Music Font

SAS/GRAPH Fonts Font Lists 89

Figure 5.8 Special Font

Figure 5.9 Weather Font

90

91

C H A P T E R

6
SAS/GRAPH Colors and Images

Using SAS/GRAPH Colors and Images 92

Specifying Colors in SAS/GRAPH Programs 92
Specifying Default Colors in a GOPTIONS Statement 92

Defining and Using a Colors List 93

Building a Colors List 93
Using a Device’s Default Colors List 94

Overriding the Default Colors List 94

Resetting the Colors List to the Default 94
Applying ODS Styles 94

Color-Naming Schemes 95
Selecting a Color-Naming Scheme 95

Hardware-Oriented Color-Naming Schemes Overview 95

RGB Color Codes 95
CMYK Color Codes 96

User-Oriented Color-Naming Schemes Overview 96

HLS Color Codes 97
HSV (or HSB) Color Codes 98

Gray-Scale Color Codes 99
SAS Color Names and RGB Values 99

CNS Color Names 99

Using the Color Utility Macros 100
Colors and Device Capabilities 103

Devices That Do Not Support User-defined Colors 103

Devices That Support User-defined Colors 104
Pen Plotters 104

Limitations 104
Specifying Images in SAS/GRAPH Programs 106

Image File Types Supported by SAS/GRAPH 106

Reading and Writing Image File Types 107
Including the FORMAT= attribute 108

Image Formats for Reading 108

Image Formats for Writing 110
Image File Types Supported Only on Certain Hosts 113

Placing a Background Image 113
Placing a Backplane Image on Graphs with Frames 115

Placing Images on the Bars of Two-Dimensional Bar Charts 116

Using Annotate to Display an Image 118
Using DSGI to Display an Image 119

Disabling and Enabling Image Output 120

92 Using SAS/GRAPH Colors and Images Chapter 6

Using SAS/GRAPH Colors and Images
SAS/GRAPH software lets you set colors or apply images to your graphics output, as

described in “Specifying Colors in SAS/GRAPH Programs” on page 92 and in
“Specifying Images in SAS/GRAPH Programs” on page 106.

Specifying Colors in SAS/GRAPH Programs
SAS/GRAPH software lets you set color
� in any procedure that generates graphics output (refer to the chapter for the

individual procedure).
� in global statements that enhance procedure output: AXIS, FOOTNOTE,

LEGEND, NOTE, PATTERN, SYMBOL, and TITLE (see Chapter 7, “SAS/GRAPH
Statements,” on page 121).

� in the options on the GOPTIONS statement that defines default colors for graphics
elements (see “Specifying Default Colors in a GOPTIONS Statement” on page 92).

� in the COLORS= option of the GOPTIONS statement to define a colors list (see
“Defining and Using a Colors List” on page 93).

� in the colors list of the current device driver. (See “Colors and Device Capabilities”
on page 103 for general information about device capabilities. See Example 1 on
page 936 for information on how you can view or modify a device’s color list.)

These specifications, alone or in combination, give SAS/GRAPH software the colors it
needs to generate graphics output. Colors can be specified using color names, such as
RED, or color codes, such as CXFF0000. Color names must not exceed 64 characters.
Color codes must not exceed eight characters. All color values must be in a valid SAS
color-naming scheme (see “Color-Naming Schemes” on page 95).

Color specifications are searched for in the following order:

1 colors specified in the procedure itself
2 colors specified in global statements
3 color options in GOPTIONS
4 the COLORS list in the GOPTIONS statement
5 the color list in the current device driver.

SAS/GRAPH will search the color specifications in the order outlined above until a
valid color is found. If no valid colors are specified, the color will be retrieved from the
color list of the current device driver.

Specifying Default Colors in a GOPTIONS Statement
The GOPTIONS statement has several graphics options that specify default colors

for graphics elements:

Option Sets default color for

CBACK= background for graphics output

CBY= BY lines in graphics output

CPATTERN= PATTERN statements

SAS/GRAPH Colors and Images Defining and Using a Colors List 93

Option Sets default color for

CSYMBOL= SYMBOL statements

CTEXT= all text and the border in graphics output

CTITLE= border, plus all titles, footnotes, and notes

SAS/GRAPH software uses these values if you do not explicitly select colors in other
statements. Refer to Chapter 8, “Graphics Options and Device Parameters Dictionary,”
on page 261 for complete information about each of these graphics options.

If you have not explicitly specified a color in a SAS statement or set a default color
for a graphic element in the graphics output, SAS/GRAPH software searches for a
colors list.

Defining and Using a Colors List
If SAS/GRAPH software does not find a color specification on a procedure or global

statement, and a default color for the graphic element is not specified in the
GOPTIONS statement, then SAS/GRAPH uses colors from the following colors list:

1 the COLORS= option on a GOPTIONS statement

2 the color list of the current device driver. (Use the GTESTIT procedureExample 2
on page 1292 to view the color list for a device driver.)

The color selected from the colors list varies depending on the procedure using the
color and the graphics element that is being drawn. Usually, the first color in the list is
used; however, certain procedures may select other colors. For example, if the CAXIS=
option is not specified in the GCONTOUR procedure’s PLOT statement, the procedure
selects the second color from the colors list to draw the axes. See the documentation for
an individual procedure for more information.

Building a Colors List

To build a colors list, use the COLORS= option on the GOPTIONS statement. This
specified colors list overrides the colors list of the current device driver. Building a
colors list is useful for selecting a subset of colors to be used in a specific order for
graphics output. For example, to ensure that the colors red, green, and blue are
available in that order, you can specify:

goptions colors=(red green blue);

Each value you specify in a color list must be either a valid color name or a valid color
code. Color names must not exceed 64 characters and color codes must not exceed eight
characters. For an explanation of SAS color names and codes, see “Color-Naming
Schemes” on page 95.

SAS provides, in the SAS Registry, a set of ordinary-language color names that you
can use for colors that are common to most Web browsers. For a list of these names,
showing both the ordinary-language name and its associated RGB value, you can run
the following code and view the output in the Log window:

proc registry list
startat=’COLORNAMES’;
run;

94 Defining and Using a Colors List Chapter 6

You can also modify entries in this list and add your own names and their associated
RGB values. For more information on viewing and modifying the list of color names,
see Using the SAS Registry to Control Color in SAS Language Reference: Concepts.

Note: The COLORS= graphics option only provides a default lookup table. Any time
you explicitly select any other colors in your SAS/GRAPH program, those colors are
used to draw the graphics elements for which you have specified them. �

For a pen plotter, SAS/GRAPH software uses the order of the colors in the COLORS=
graphics option to define the order of pens for a multiple pen plotter, or to make a pen
plotter prompt you to change the pen when a graph uses more colors than the plotter
has loaded.

Using a Device’s Default Colors List
If you do not define a colors list with the COLORS= graphics option, then

SAS/GRAPH software uses the colors list from the current device driver. This colors list
is found in the device entry of the specified device driver (for details on specifying a
device driver, refer to Chapter 36, “The GOPTIONS Procedure,” on page 1075). The
colors list will change if you select a different device driver during a SAS session and
have not specified the COLORS= graphics option.

To view and modify the device’s default colors list, use the GDEVICE procedure (for
details, refer to Chapter 31, “The GDEVICE Procedure,” on page 915).

Overriding the Default Colors List
If you do not specify colors for certain graphics elements or do not specify a colors list

with the COLORS= graphics option, then the SAS/GRAPH procedures assign colors
from the colors list of the current device driver. In some procedures, this assignment
takes up some of the 256 colors that you can specify for a graph. For example, if no
colors are specified, the G3D procedure uses the first three colors from the colors list to
draw the text, the plot axes, and the plot symbols. These colors take up three of the 256
colors that you can specify for the graph. Therefore, you can specify 253 additional
colors for your graph before a warning is issued and the colors are remapped.

To use only the colors that you explicitly specify in your SAS program, submit

goptions colors=(none);

The colors from any elements that have a color explicitly specified in your SAS
program are combined to form a color list. This color list is used to assign colors to the
elements that do not have a color explicitly specified. If no colors are explicitly specified,
black will be used. This setting is useful if you want to generate graphics output with
the maximum of 256 colors, and you do not want to use any of the default colors from
the current device driver.

Resetting the Colors List to the Default
If you have specified a colors list with the COLORS= graphics option and you want to

reset it back to the default colors list for the current device driver, then specify

goptions colors=();

Applying ODS Styles
If you are using ActiveX or Java device drivers to produce your graphic output, then

you can specify Output Delivery System (ODS) styles to be used for your output’s colors.
The ODS styles contain predefined color schemes that can be used to create

SAS/GRAPH Colors and Images Color-Naming Schemes 95

professionally styled graphic output. The ODS styles are available for both bar graphs
and pie charts. For more information on ODS Styles see “Using ODS Styles” on page
488 and SAS Output Delivery System: User’s Guide.

Color-Naming Schemes
The valid color-naming schemes are
� RGB (red green blue)
� CMYK (cyan magenta yellow black)
� HLS (hue lightness saturation)
� HSV (hue saturation brightness), also called HSB
� gray scale
� SAS color names (from the SAS Registry)
� the SAS Color Naming System (CNS).

For the CMYK color scheme, color specifications must be enclosed in quotation
marks. For the SAS color names and CNS names, quotation marks are required if the
color name contains spaces. In all other instances, quotation marks are optional.

You can freely intermix colors using different color-naming schemes in your
programs. However, depending on your device capabilities, the color that is displayed
may not be the color that you expect. See “Colors and Device Capabilities” on page 103
for information on how to tell if your device supports user-defined colors.

Selecting a Color-Naming Scheme
Each of the color-naming schemes supported by SAS/GRAPH offer their own set of

advantages and disadvantages based on how the color-naming scheme and desired color
will be implemented. RGB and CMYK are older hardware-oriented color-naming
schemes. Creating specific RGB or CMYK colors may be less intuitive than creating
colors using the user-oriented color-naming schemes: HLS, HSV, gray scale, SAS named
colors, or CNS colors. For both hardware-oriented and user-oriented color-naming
schemes, the color utility macros allow you to create colors for a specific color-naming
scheme and convert color values between color-naming schemes (see “Using the Color
Utility Macros” on page 100 for more information).

Hardware-Oriented Color-Naming Schemes Overview
The RGB color-naming scheme is usually used to define colors for a display screen.

This color-naming scheme is based on the properties of light. With this color system, a
color is defined by its red, green, and blue components. Individual amounts of each
color are added together to create the desired result. All the colors combined together
create white and the absence of all color is black.

CMYK is a special color-naming scheme used in four-color printing. Whereas the
RGB scheme is based upon the principles of light, the CMYK scheme is based upon the
principles of objects reflecting light. Cyan, magenta, and yellow absorb red, green, and
blue light, respectively. When cyan is set at maximum, for example, all the red light is
absorbed. Combining equal values of cyan, magenta, and yellow produces black, but
this color may appear brown when printed. Therefore, the black component (K) of
CMYK may be used to specify the level of blackness in the output. A lack of all colors
produces white when the output is printed on white paper.

RGB Color Codes
You can use the RGB color-naming scheme to specify a color in terms of its red,

green, and blue components. Color names are of the form CXrrggbb, where

96 Color-Naming Schemes Chapter 6

� CX indicates that this is an RGB color specification
� rr is the red component
� gg is the green component
� bb is the blue component.

The components are given as hexadecimal numbers in the range 00 through FF (0%
to 100%), where lower values are darker and higher values are brighter. This allows for
up to 256 levels of each color component (over 16 million different colors). For example,
bright red is specified as CXFF0000, white as CXFFFFFF, black as CX000000, and
green as CX00FF00.

Any combination of the color components is valid. Some combinations will match the
color produced by predefined SAS color names. See SAS Language Reference: Concepts
for information on viewing the RGB combinations that match predefined SAS color
names.

Note: When printed, RGB color values are automatically converted to the CMYK
color values so that the colors display appropriately in the output. �

CMYK Color Codes
To specify the colors from a printer’s Pantone Color Look-Up Table, you can use the

CMYK color-naming scheme to specify colors in terms of their cyan, magenta, yellow,
and black components. Color names are of the form ’ccmmyykk’, where

� cc is the cyan component
� mm is the magenta component
� yy is the yellow component
� kk is the black component.

The components are given as quoted hexadecimal numbers in the range 00 through
FF, where higher values are darker and lower values are brighter. This scheme allows
for up to 256 levels of each color component. For example, red is specified as
’00FFFF00’, green as ’FF00FF00’, process black (using cyan, magenta, and yellow ink)
as ’FFFFFF00’, and pure black (using only black ink) as ’000000FF’. For CMYK color
specifications, the quotes are required.

CMYK color specifications should only be used for devices that support four colors. If
a CMYK color is used on a three-color device, the color specification will be mapped to a
color that the device supports, but the resulting colors may not be appealing. Moreover,
different CMYK colors may map to the same device color because a four-color space
supports more colors than a three-color space.

Note: You can specify a CMY value by making the kk, the color’s black component,
zero (00). �

User-Oriented Color-Naming Schemes Overview
The HLS color-naming scheme follows the Tektronix Color Standard illustrated in

Figure 6.1 on page 98. To make the HLS color model consistent with the HSV
coordinate system, Tektronix places blue at zero degrees. With the HLS color
naming-scheme you specify the hue, lightness, and saturation levels.

With the HSV color-naming scheme, you specify the hue, saturation, and value
(brightness) levels.

The gray scale color-naming scheme allows you to specify the lightness or darkness of
gray using the word GRAY and a lightness value.

SAS/GRAPH Colors and Images Color-Naming Schemes 97

A predefined list of the SAS color names and their accompanying RGB values are
contained in the SAS Registry Editor. The SAS Registry Editor also allows you to add
your own SAS color names. With these colors, you can specify the name itself or the
RGB value associated with that color name.

With CNS, you develop your color value by selecting and combining valid lightness,
saturation, and hue terms. The CNS colors are based on the HLS color model and will
display fairly uniform transitions between color values.

Note: Invalid color values will be replaced by the next valid color value on the
foreground color list. Messages are written to the SAS log detailing the colors
substituted for invalid color values. �

HLS Color Codes
You can use the HLS color-naming scheme to specify colors in terms of hue,

lightness, and saturation components. SAS/GRAPH software uses an HLS color scheme
that is modeled directly after the Tektronix Color Standard illustrated in Figure 6.1 on
page 98. HLS color names are of the form Hhhhllss, where

� H indicates that this is an HLS color specification
� hhh is the hue component
� ll is the lightness component
� ss is the saturation component.

The components are given as hexadecimal numbers. The hue component has the
range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal).
Both the lightness and saturation components are hexadecimal and scaled to a range of
0 to 255 expressed with values of 00 through FF (0% to 100%). Thus, they provide 256
levels for each component. For example, blue is specified as H00080FF and light gray
as H000BB00. When the saturation is set to 00, the color is a shade of gray that is
determined by the lightness value. Therefore, white is defined as HxxxFF00 and black
as Hxxx0000, where xxx can be any hue.

98 Color-Naming Schemes Chapter 6

Figure 6.1 Tektronix Color Standard

HSV (or HSB) Color Codes

You can use the HSV color-naming scheme to specify colors in terms of hue,
saturation, and value (or brightness) components. HSV color names are of the form
Vhhhssvv, where

� V indicates that this is an HSV color specification

� hhh is the hue component

� ss is the saturation component

� vv is the value or brightness component.

The components are given as hexadecimal numbers. The hue component has the
range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal).
Both the saturation and value (brightness) components are hexadecimal and scaled to a
range of 0 to 255 expressed with values of 00 through FF (when the saturation is set to
00, the color is a shade of gray determined by the value). Thus, they provide 256 levels
for each component.

For example, blue is specified as V0F0FFFF, light gray as Vxxx00BB, and white as
Vxxx00FF, where xxx can be any hue. For white and black, the value component
determines the intensity of gray level.

SAS/GRAPH Colors and Images Color-Naming Schemes 99

Gray-Scale Color Codes
Gray-scale color names are of the form GRAYll. The value ll is the lightness of the

gray and is given as a hexadecimal number in the range 00 through FF. This scheme
allows for 256 levels on the gray scale. For example, GRAYFF is white, GRAY00 is
black, and GRAY4C is a dark gray.

SAS Color Names and RGB Values
The SAS Registry Editor contains valid color names and RGB values. The predefined

color names and RGB values in the SAS Registry are common to most web browsers. In
addition to viewing predefined SAS color names and RGB values, the SAS Registry
Editor also allows you to create and define your own color names and RGB values. See
SAS Language Reference: Concepts for more information.

Note: Hardware characteristics may cause some colors with different color
definitions to appear the same. Also, the same predefined color is likely to appear
different on different devices and may not appear correctly on some devices. �

CNS Color Names
You can specify a CNS color value’s lightness, saturation, and hue using the following

terms:

Table 6.1

Lightness Saturation Hue

Black Gray Blue

Very Dark Grayish Purple

Dark Moderate Red

Medium Strong Orange/Brown

Light Vivid Yellow

Very Light Green

White

CNS values should be written in the following order: lightness saturation hue. The
color names may written without space separators between words, with an underscore
to separate words, or with a space to separate words. The following list contains
examples of valid color names:

verylightmoderatepurplishblue
very_light_moderate_purplish_blue
“very light moderate purplish blue”

Color names containing spaces must be enclosed in quotation marks.

Note: The %CNS macro only accepts CNS color names where a space is used to
separate the words in the color name. See Table 6.5 on page 101 for more information �

If a CNS color name is also a color name in the SAS Registry, the SAS Registry color
value will be used. Some CNS color names and color names in the SAS Registry have

100 Color-Naming Schemes Chapter 6

different color values. To use a CNS color value when the color name is also in the SAS
Registry, place quotes around the color name.

The lightness values black and white should not be used with saturation or hue
values. If not specified, medium is the default lightness value and vivid is the default
saturation value. Gray is the only saturation value that can be used without a hue.
Unless the CNS value is black, white, or some form of gray, at least one hue value must
be used.

One or two hue values can be used in the CNS color name. When using two hue
values, the hues must be adjacent to form a color. The hues are located in the following
circular order: blue, purple, red, orange/brown, yellow, green, and then returning to
blue. When two hues are used, the resulting color is a combination of both colors. Use
the suffix “ish” to reduce the effect of a hue when two hues are combined. For example,
reddish purple is less red than red purple. If you are using a color with an “ish” suffix,
this color must precede the color without the “ish” suffix.

Using the Color Utility Macros
The %COLORMAC macro contains several subcomponent macros that can be used to

construct and convert color values for the different color-naming schemes supported by
SAS. The %HELPCLR macro provides information about the %COLORMAC
subcomponent macros. The following table shows information that will appear in your
SAS log when you call the %HELPCLR macro from the comand-line:

Table 6.2 Using the %HELPCLR macro

Use... To...

%HELPCLR; List the color utility macro names.

%HELPCLR(ALL); Display the short descriptions and examples for
each of the color utility macros.

%HELPCLR(macroname); Obtain a short description and an example of a
specific color utilities macro. Replace
macroname with the name of the color utility
macro you are interested in.

When the color utility macros are invoked, the calculated color value can be directed
to the SAS log or perform in-place substitutions in the code. The following tables list
and describe the color utility macros and provide an usage example of each macro:

Table 6.3 %CMY(cyan, magenta, yellow);

Description Usage Example

Replace cyan, magenta, yellow with numeric values to
create a RGB color value. The numeric values that are
used in place of cyan, magenta, yellow indicate the
percentage (0 to 100) of each of these colors to be included
in the RGB value.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null;
put ‘‘%CMY(100,0,100)’’;
run;

Returns the RGB value CX00FF00
which is green.

SAS/GRAPH Colors and Images Color-Naming Schemes 101

Table 6.4 %CMYK(cyan, magenta, yellow, black);

Description Usage Example

Replace cyan, magenta, yellow, black with numeric values
to create a CMYK color value. The numeric values that are
used in place of cyan, magenta, yellow, black indicate the
percentage (0 to 100) of each of these colors to be included
in the CMYK color value. See “CMYK Color Codes” on
page 96 for more information on the color value produced
by using this macro.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put %CMYK(0,46,16,31);
run;

Returns the CMYK value 0075294F
which is purple.

Note: In the PUT statement, %CMYK(cyan, magenta, yellow, black), should not be
placed in quotations. �

Table 6.5 %CNS(colorname);

Description Usage Example

Replace colorname with a color-naming scheme color name
to create a HLS color value. See “HLS Color Codes” on
page 97 for more information on HLS color values. For
more information on valid color-naming scheme color
names see “CNS Color Names” on page 99 or enter the
following into the command-line of the Program Editor:

%HELPCLR(CNS);

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put ‘‘%CNS(GRAYISH REDDISH PURPLE)’’;
run;

Returns the HLS value H04B8040
which is grayish reddish purple.

Table 6.6 %HLS(hue, lightness, saturation);

Description Usage Example

Replace hue, lightness, saturation with numeric values to
create a HLS color value. Hue should be replaced with any
value from 0 to 360. Lightness and saturation indicate a
percentage (0 to 100) to be included in the HLS color value.
See “HLS Color Codes” on page 97 for more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put ‘‘%HLS(0,50,100)’’;
run;

Returns the HLS value H00080FF
which is blue.

102 Color-Naming Schemes Chapter 6

Table 6.7 %HSV(hue, saturation, value);

Description Usage Example

Replace hue, saturation, value with numeric values to
create a HLS value from HSV components. Hue should be
replaced with any value from 0 to 360. Saturation and
value (brightness) indicate a percentage (0 to 100) to be
included in the HLS color value. See “HSV (or HSB) Color
Codes” on page 98 and “HLS Color Codes” on page 97 for
more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put ‘‘%HSV(0,100,75)’’;
run;

Returns the HSV value V000FFBF
which is dark red.

Table 6.8 %RGB(red, green, blue);

Description Usage Example

Replace red, green, blue with numeric values to create a
RGB color value from RGB color components. The numeric
values that are used in place of red, green, blue indicate the
percentage (0 to 100) of each of these colors to be included
in the RGB color value. See “RGB Color Codes” on page 95
for more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put ‘‘%RGB(100,100,0)’’;
run;

Returns the RGB value CXFFFF00
which is yellow.

Table 6.9 %HLS2RGB(hls);

Description Usage Example

Replace hls with a HLS color value to create a RGB color
value. See “HLS Color Codes” on page 97 and “RGB Color
Codes” on page 95 for more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put ‘‘%HLS2RGB(H04B8040)’’;
run;

Returns the RGB value CX9F5F8F
which is grayish reddish purple.

SAS/GRAPH Colors and Images Colors and Device Capabilities 103

Table 6.10 %RGB2HLS(rgb);

Description Usage Example

Replace rgb with a RGB color value to create a HLS color
value. See “RGB Color Codes” on page 95 and “HLS Color
Codes” on page 97 for more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put ‘‘%RGB2HLS(CX9F5F8F)’’;
run;

Returns the HLS value H04C7F40
which is grayish reddish purple.

Note: Round-trip conversions using HLS2RGB and then RGB2HLS macros or vice
versa, may produce ultimate output values that differ from the initial input values. For
example, converting CXABCDEF (a light blue) using %RGB2HLS (CXABCDEF)
produces H14ACDAD. Converting this value back to RGB using %HLS2RGB
(H14ACDAD) returns CXAACCEE. While not identical, the three colors are very
similar on the display and when printed. �

For additional information on color-naming schemes, see Effective Color Displays:
Theory and Practice by David Travis and Computer Graphics: Principles and Practice
by Foley, van Dam, Feiner, and Hughes.

Colors and Device Capabilities
Your graphics output device determines the colors that you can use. SAS/GRAPH

software translates the color that you specify to the color definition system on your
device. It then checks to see if the color is available. If the color is not available,
SAS/GRAPH software produces a message in the Log and remaps the color either to a
color that closely matches the color you specified or to the next available color in the
colors list. The remapping behavior depends on the capabilities of your device.

Graphics devices can be grouped into the following categories:
� devices that do not support user-defined colors
� devices that support user-defined colors
� pen plotters.

You can determine whether your device supports user-defined colors in two ways:
� Check the documentation for your graphics device.
� Run the GTESTIT procedure and display picture 1. The OPTS= string indicates if

the device supports user-defined colors. If the second digit of the OPTS= string is
an odd integer or d, b, or f, then the driver supports user-defined colors.

Devices That Do Not Support User-defined Colors
Devices that do not support user-defined colors are those that come with predefined

nonalterable color palettes. These devices have a palette of between 1 and 256
predefined colors, but the actual number of colors that can be displayed at one time
may be less than that.

When using devices that do not support user-defined colors, you can specify colors
using any color-naming scheme; however, any unsupported colors that you specify in
RGB, HLS, or gray-scale format are remapped to colors in your device’s default colors

104 Colors and Device Capabilities Chapter 6

list. Some devices try to match the user-defined color with the closest color in the
device’s color palette. Others merely remap the color to the next available color in the
device’s color palette. To avoid having colors remapped, use the colors in your device’s
default colors list.

Devices That Support User-defined Colors
Devices that support user-defined colors are graphics devices that allow you to

configure the colors from the device’s color palette. A device in this category may have a
palette of over 16 million colors, but it may only be able to display a subset of colors
from the color palette at any one time.

On a device that supports user-defined colors, you can use any color-naming scheme
to specify colors. If you specify a color that your device does not support, SAS/GRAPH
software remaps the color to an available color that is the closest match.

Pen Plotters
The colors you can use with a pen plotter are determined by your set of pens. You

specify the color names in the GOPTIONS statement’s COLORS= option, then place
pens with those color names in the plotter when the following message appears (the
message does not appear if you specify the NOPROMPT graphics option):

Please mount the following pens: . . .

By default, SAS/GRAPH software tries to keep a standard set of pens in the plotter’s
carousel. If colors in the standard set of pens are named in the COLORS= graphics
option, a mount request is issued for the entire standard set, even if all of them are not
used in the output. This minimizes the number of times pens must be reshuffled as a
graph is being drawn. If GOPTIONS COLORS=(NONE) is used, you are only prompted
to mount pens for the colors that are actually used in the output.

Note: You can specify any valid SAS name for a color when using a pen plotter. It
does not have to be a predefined or user-defined color name. For example, you can
specify COLOR=PEN3, and you will be prompted to mount PEN3 or SAS/GRAPH
software will assume a pen of that color is in the appropriate slot. This feature is often
helpful if you are using transparency pens or other special pens. �

Limitations
Using colors in SAS/GRAPH software is limited by the number of colors that you can

use in one graph and by the capabilities of your device. The following sections discuss
these limitations.

Maximum Number of Colors Displayable in SAS/GRAPH Software
You can use a maximum of 256 unique colors on each graph, including the
background color (specified with the CBACK= graphics option or the CBACK device
parameter). If you use more than 256 unique names in a program, SAS/GRAPH
software issues a warning and remaps the 257th and any subsequent colors to
existing color names, beginning with the first color name in the existing color list.

Note: If you specify a color using two different color-naming schemes for the
same graph (for example, WHITE and RGB white, CXFFFFFF), SAS/GRAPH
software counts them as two color specifications out of the 256 colors that you are
allowed to use on one graph. �

Maximum Number of Colors Displayable on a Device
The number of colors that you can display is limited by the type of graphics output
device that you have. If you generate a graph with more colors than the device can

SAS/GRAPH Colors and Images Colors and Device Capabilities 105

display, the colors that cannot be displayed are mapped to an existing color. You
may also receive a note in the SAS log telling you when a color is mapped to
another color in the colors list and what color will be used instead.

Although your device may support 256 colors, it may not let you use all of them
at once. The MAXCOLORS device parameter tells SAS/GRAPH software the
maximum number of colors that can be displayed at one time. MAXCOLORS is
the number of foreground colors plus the background color and has a range of two
to 256. If you use more than the number of colors set by the MAXCOLORS device
parameter, the excess colors are remapped.

Note: The MAXCOLORS device parameter defaults to the number of
displayable colors on the basic model of each graphics device supported. If your
graphics device can display more colors than the base model, use the
PENMOUNTS= graphics option to specify the number of colors that can be
displayed. Optionally, you can use PROC GDEVICE to modify the value of the
MAXCOLORS device parameter. �

For pen plotters, you use the PENMOUNTS= graphics option to indicate the
number of pen holders on the plotter. PENMOUNTS is the number of foreground
colors and has a range of one to 255. PENMOUNTS does not include the
background color. Using this graphics option does not limit the number of colors
that you can specify for a graph that is produced on a pen plotter. If you use more
colors than the plotter has pen holders, you will be prompted to change pens
unless you have also specified the NOPROMPT graphics option.

Replaying Graphs on a Device That Displays Fewer Colors
You can use the GREPLAY Procedure to display graphs previously generated.
Sometimes you may need to replay the graphs on a device that cannot display as
many colors as the device on which the graph was originally developed. Use
“CMAP” on page 270 to control some of the remapping.

When you replay graphs on devices that display fewer colors than are in the
graph, two situations may cause problems:

� Colors are specified that the device does not support.
� More colors are specified than the device can display at one time.

If you specify colors on a device that does not support those colors, the colors are
remapped to those available for that device. You may also receive a note in the
SAS log telling you when a color is mapped to another color in the colors list and
what the new color is.

The number of colors that your device can display affects the actual color
displayed. If your graphics output device can generate a maximum of 64 distinct
colors and your graph contains 256 colors, the 65th through the 256th color
specifications are remapped to the device’s available colors and may not display as
the color you specify.

You can use the TARGETDEVICE= graphics option to preview the way a graph
is going to look on a different device. You set this graphics option to the device
entry name of the device driver that will be used later. The graph is displayed as
close as possible to the way it will display when the other device is used.

Note: When you use the TARGETDEVICE= graphics option, SAS/GRAPH
software uses the colors list of the target device as the default colors list; any color
that you explicitly use is displayed when you preview the graph, although the
target device may cause the color to be mapped. Refer to “TARGETDEVICE” on
page 355 for complete information about the TARGETDEVICE= graphics option. �

Trueness of Color Displayed on a Device
The size of the color palette in your device determines the trueness of the color
that is actually produced. For example, a device with a palette of 64 colors can

106 Specifying Images in SAS/GRAPH Programs Chapter 6

only produce colors that contain a combination of four shades of red (including no
red), four shades of green (including no green), and four shades of blue (including
no blue). Consequently, ranges of color will be remapped to available colors. For
example, color specifications CX008080, CX258080, and CX3F8080 will all look the
same (no red). CX408080 through CX7F8080 will look redder; CX808080 through
CXBF0000, redder still; and CXC08080 through CXFF8080, the reddest. Larger
palettes have more color resolution but may not have more simultaneous colors.

Specifying Images in SAS/GRAPH Programs

SAS/GRAPH software enables you to display images as part of your graph. You can
place an image in the background area of a graph, in the backplane of graphs that
support frames, or on the bars of two-dimensional bar charts. You can also apply
images at specified graph-coordinate positions using the Annotate facility or the DATA
Step Graphics Interface (DSGI).

The images you add to your graphs can be SAS files or external files in a wide range
of image formats. If you wish to withold images from your graphics output, you can
specify the NOIMAGEPRINT graphics option.

Image File Types Supported by SAS/GRAPH

For displaying images in your graphs, SAS/GRAPH software supports the following
image file types:

File Type Description

BMP (Microsoft Windows Device Independent
Bitmap)

supports color-mapped and true color images
stored as uncompressed or run-length encoded.
BMP was developed by Microsoft Corporation for
storing images under Windows 3.0.

CAT (SAS Catalog IMAGE entry) supports color-mapped images as well as true
color images. The images can be optionally
compressed.

DIB (Microsoft Windows Device Independent
Bitmap)

see the description of BMP.

EMF (Microsoft NT Enhanced Metafile) supported under Windows 95, Windows 98,
Windows 2000, and Windows NT.

GIF (Graphics Interchange Format) supports only color-mapped images. GIF is
owned by CompuServe, Inc.

JPEG (Joint Photographic Experts Group) supports compression of images with the use of
JPEG File Interchange Format (JFIF) software.
JFIF software is developed by the Independent
Joint Photographic Experts Group.

PBM (Portable Bitmap Utilities) supports gray, color, RGB, and bitmap files. The
Portable Bitmap Utilities is a set of free utility
programs that were primarily developed by Jeff
Poskanzer.

SAS/GRAPH Colors and Images Reading and Writing Image File Types 107

File Type Description

PCD (Photo CD) Kodak Photo CD format which supports
multiple image resolutions.

PCL (Printer Control Language) developed by HP.

PCX (PC Paintbrush) supports bitmap, color-map, and true color
images. PCX and PC Paintbrush are owned by
Zsoft Corporation.

PNG (Portable Network Graphic) supports truecolor, gray-scale, and 8-bit images.

PS (PostScript Image File Format) the Image classes use only PostScript image
operators. A level II PS printer is required for
color images. PostScript was developed by
Adobe Systems, Inc.

TGA (Targa) supports both true color images and
color-mapped images; however, the current
release of the Image classes supports only true
color TGA files. Targa is owned by Truevision,
Inc.

TIFF (Tagged Image File Format) internally supports a number of compression
types and image types, including bitmap,
color-map, gray-scale, and true color. TIFF was
developed by Aldus Corporation and Microsoft
Corporation and is used by a wide variety of
applications.

WMF (Microsoft Windows Metafile) supported only under Microsoft Windows
operating systems.

XBM (X Window Bitmaps) supports bitmap images only. XBM is owned by
MIT X Consortium.

XPM (X Window Pixmap) is an extended version of XBM that supports
color bitmaps.

XWD (X Window Dump) supports all X visual types (bitmap, color-map,
and true color.) XWD is owned by MIT X
Consortium.

Reading and Writing Image File Types
The image file types supported by SAS/GRAPH may be supported for reading or

writing. In addition, all SAS/GRAPH supported file types can be printed. The printed
output’s appearance is dependent on the driver that is selected. See “Image Formats for
Reading” on page 108 and “Image Formats for Writing” on page 110 for more
information on specific file type capabilities and attributes.

When you are reading some images, the FORMAT= attribute is required. See
“Including the FORMAT= attribute” on page 108 for more information. Some of the file
types that require the FORMAT= attribute are only supported by certain hosts. “Image
File Types Supported Only on Certain Hosts” on page 113 contains information on these
file types, the reader and writer attributes, and the host support.

If you are using SAS/GRAPH on the z/OS platform, you must be running the UNIX
System Services Hierarchical File System (HFS) to read and write image files.

108 Reading and Writing Image File Types Chapter 6

Including the FORMAT= attribute
When you are reading images, include the FORMAT= attribute if
� you are reading a format supported only on certain hosts. See “Image File Types

Supported Only on Certain Hosts” on page 113 for more information.
� images reside in SAS catalogs.
� images are read from a system pipe.

FORMAT= is not required in other cases, but it is always more efficient to specify it.

Image Formats for Reading
The following table describes the attributes for the image readers that are supported

by SAS/GRAPH:

File Type Reader Attributes Comment

BMP FORMAT=BMP

COMPRESS=NONE

COMPRESS=RLE

is the default. Sets compression to
run-length encoded.

CAT FORMAT=CAT

DIB FORMAT=DIB is supported only by Windows NT, Window
2000, and Windows XP.

EMF FORMAT=EMF is supported only by Windows NT, Window
2000, and Windows XP.

GIF FORMAT=GIF

JFIF FORMAT=JFIF required for reading JPEG files that use
JPEG File Interchange Format (JFIF).

DCT=mode selects specific type of Discrete Cosine
Transform (DCT) to use when processing
the image; mode can be

� INT — an integer DCT

� FAST — a faster and less accurate
integer DCT

� FLOAT — a slightly more accurate
method that can be slower unless the
host has very fast floating point
hardware.

GRAYSCALE produces a gray-scale image even if the
JPEG file is in color. This is useful for
viewing on monochrome displays. The
reader runs noticeably faster in this mode.

VERSION prints the version number and copyright
messages for the Independent JPE Group’s
JFIF software to the log.

FAST enables certain recommended processing
options for fast, low quality output;
equivalent to enabling ONEPASS,
DITHER=ORDERED, COLORS=216,
NOSMOOTH, and DCT=FAST.

SAS/GRAPH Colors and Images Reading and Writing Image File Types 109

File Type Reader Attributes Comment

NOSMOOTH uses a faster, lower quality, upsampling
routine.

ONEPASS uses a one-pass color quantization instead
of the standard two-pass quantization. The
one-pass method is faster and needs less
memory, but it produces a lower-quality
image. This attribute is ignored unless you
also specify the COLORS attribute.
ONEPASS is always enabled for gray-scale
output.

COLORS=n reduces the number of colors in the image
to at most n colors; n must be in the range
2...256.

SCALE_RATIO=n scales the output image by a factor of 1/n.
Currently the scale factor must be 1/1, 1/2,
1/4, or 1/8. This is useful when processing a
large image and only a smaller version is
needed, as the reader is much faster when
scaling down the output.

DITHER=mode selects the specific type of dithering to use
color quantization; mode can be

� FS — Floyd-Steinberg dithering

� ORDERED — ordered dithering

� NONE — no dithering.

PBM FORMAT=PBM

PCD FORMAT=PCD specifies photo CD format. FORMAT=PCD
RES= specifies the image resolution to be
read. Photo CD images have multiple
resolution images in each image. Values
are:

BASE/64 64x96

BASE/16 128x192

BASE/4 256x384

BASE 512x768 (default)

4BASE 1024x1536

16BASE 2048x3072.

PCX FORMAT=PCX is not supported for writing.

PNG FORMAT=PNG

TGA FORMAT=TGA

TIFF FORMAT=TIFF

XBM FORMAT=XBM

110 Reading and Writing Image File Types Chapter 6

File Type Reader Attributes Comment

XPM FORMAT=XPM is supported only under the X Windows
System under UNIX.

XWD FORMAT=XWD

Image Formats for Writing
The following table describes the attributes for the image writers that are supported

by SAS/GRAPH:

File Type Writer Attributes Comment

BMP FORMAT=BMP

CAT FORMAT=CAT

COMPRESS=G3FAX sets compression to FAX CCITT Group 3
for monochrome black-and-white images
(depth of 1) only.

COMPRESS=G4FAX sets compression to FAX CCITT Group4 for
monochrome black-and-white images
(depth of 1) only.

DESC= enables description for catalog description

DIB FORMAT=DIB is supported only by Windows NT, Window
2000, and Windows XP.

EMF FORMAT=EMF is supported only by Windows 95, Windows
98, Windows 2000, and Windows NT.

GIF FORMAT=GIF

JFIF FORMAT=JFIF is required for writing JPEG files that use
JPEG File Interchange Format (JFIF).

DCT=mode selects specific type of Discrete Cosine
Transform (DCT) to use when processing
the image; mode can be

� INT — an integer DCT

� FAST — a faster and less accurate
integer DCT

� FLOAT — a slightly more accurate
method that can be slower unless the
host has very fast floating point
hardware.

GRAYSCALE produces a gray-scale image even if the
JPEG file is in color. This is useful for
viewing on monochrome displays. The
writer runs noticeably faster in this mode.

VERSION prints the version number and copyright
messages for the Independent JPE Group’s
JFIF software to the log.

SAS/GRAPH Colors and Images Reading and Writing Image File Types 111

File Type Writer Attributes Comment

FAST enables certain recommended processing
options for fast, low quality output;
equivalent to enabling ONEPASS,
DITHER=ORDERED, COLORS=216,
NOSMOOTH, and DCT=FAST.

NOSMOOTH uses a faster, lower quality, upsampling
routine.

ONEPASS uses a one-pass color quantization instead
of the standard two-pass quantization. The
one-pass method is faster and needs less
memory, but it produces a lower-quality
image. This attribute is ignored unless you
also specify the COLORS attribute.
ONEPASS is always enabled for gray-scale
output.

COLORS=n reduces the number of colors in the image
to at most n colors; n must be in the range
2...256.

SCALE_RATIO=n scales the output image by a factor of 1/n.
Currently the scale factor must be 1/1, 1/2,
1/4, or 1/8. This is useful when processing a
large image and only a smaller version is
needed, as the writer is much faster when
scaling down the output.

DITHER=mode selects the specific type of dithering to use
color quantization; mode can be

� FS — Floyd-Steinberg dithering

� ORDERED — ordered dithering

� NONE — no dithering.

PBM FORMAT=PBM

COMPRESS=NONE creates a text PBM file.

COMPRESS=BINARY |
RAW

if either of these values is specified, creates
a PBM file of reduced size by packing the
pixels as binary data (when FORMAT=PBM
is specified, output is produced by default
as if one of these values is specified).

PCL FORMAT=PCL

DPI=num specifies the number of dots per inch to use
to calculate the visual size of the image on
the PostScript page in the output file. The
default is 300. For example, a 600-pixel by
600-pixel image appears as a 2-inch by
2-inch image on the PostScript page if you
use the default setting.

EPS does not reset the printer margins; use to
embed an image into another PCL
document

112 Reading and Writing Image File Types Chapter 6

File Type Writer Attributes Comment

PNG FORMAT=PNG

PS FORMAT=PS

COMPRESS=NONE is the default for color images.

COMPRESS=RLE sets compression to run-length encoded;
default for gray-scale images.

DPI=num specifies the number of dots per inch to use
to calculate the visual size of the image on
the PostScript page in the output file. The
default is 300. For example, a 600-pixel by
600-pixel image appears as a 2-inch by
2-inch image on the PostScript page if you
use the default setting.

EPS does not reset the printer margins; used to
embed an image in another PCL document.

PREVIEW specifies whether a scaled-down, 1–bit,
black-and-white preview image is written
into the encapsulation header. The preview
image enables this file to be written by
software (such as SAS) that doesn’t support
a real PostScript writer.

PREWIDTH=x

PREHEIGHT=y

sets the size of the preview image in pixels
if PREVIEW is specified (default: 25% of
original size).

XSCALE directly sets width scaling in points (1/72
inch). Default: calculate it.

YSCALE directly sets height scaling in points (1/72
inch). Default: calculate it.

PAGEX sets output page width in points (1/72 inch).
Default: 612 (a typical 8.5–inch page).

PAGEY sets output page height in points (1/72
inch). Default: 792 (a typical 11–inch page).

NOFIT turns off the default of scaling an oversized
image down to fit the page. Must be used
with XSCALE and YSCALE. Although this
option is still supported in this release, the
PAGEFIT option will replace it.

PAGEFIT 0 = Image size is not adjusted
(equivalent of NOFIT).

1 = Image size is adjusted only if the
image exceeds the page size (default).

2 = Image size is always adjusted to fill
the page.

This option replaces the NOFIT option.

TIFF FORMAT=TIFF

COMPRESS=NONE is the default

SAS/GRAPH Colors and Images Placing a Background Image 113

File Type Writer Attributes Comment

COMPRESS=G3FAX sets compression to FAX CCITT Group 3
for monochrome black-and-white (depth of
1) images only.

COMPRESS=G4FAX sets compression to FAX CCITT Group 4
for monochrome black-and-white (depth of
1) images only.

WMF FORMAT=WMF is supported only under Windows operating
systems.

XBM FORMAT=XBM is supported for writing only from
interactive windows under UNIX.

XPM FORMAT=XPM is supported only under the X Windows
System under UNIX.

Image File Types Supported Only on Certain Hosts
Some file types are only supported by certain hosts. You must include a FORMAT=

attribute when you are reading or writing the following image file types shown in the
following table:

File Type Reader Attributes Writer Attributes Host

DIB FORMAT=DIB FORMAT=DIB Windows NT, Window
2000, and Windows XP

EMF FORMAT=EMF FORMAT=EMF Windows NT, Window
2000, and Windows XP

WMF FORMAT=WMF Windows operating
systems

XBM FORMAT=XBM interactive windows
under UNIX

XPM FORMAT=XPM FORMAT=XPM X Windows System
under UNIX

Placing a Background Image
Any SAS/GRAPH procedure that produces a picture can place an image on the

graph’s background area. To place an image on the graph background, use the IBACK=
option on a GOPTIONS statement. On IBACK=, specify either the full path to the
image file in quotation marks, or a fileref that has been defined to point to the image
file as follows:

goptions iback=’external-image-file’;

“Image File Types Supported by SAS/GRAPH” on page 106 shows the image file
formats that you can use. “Disabling and Enabling Image Output” on page 120 shows
how to suppress the image output without removing the imaging code from your

114 Placing a Background Image Chapter 6

SAS/GRAPH program; for example, you might want to suppress the image when
printing the graph.

By default, the image is tiled on the background, which means that the image is
copied as many times as needed to fill the background area. You can specify
IMAGESTYLE=FIT on the GOPTIONS statement to stretch the image so that a single
image fits within the entire background area:

goptions iback=’external-image-file’
imagestyle=fit;

After fitting the image, you can tile subsequent images by resetting the GOPTIONS
statement or by specifying IMAGESTYLE=TILE. The following graphs illustrate the
use of tiled versus stretched images.

The following example displays an image behind a pie chart. Because the
IMAGESTYLE option is not used, the image is tiled in the background area.

goptions reset=all ctitle=cx90d0d9 ftitle=swissb
ctext=white htext=0.85 htitle=2.5 ftext=swissb
colors=(cx00cccc cxcd0369 cx5b768d

cx594f4a cx008080 cxff8f71)
iback=’external-image-file’;

title ’Projected Automobile Sales’;
data sales;

length month $ 9;
input month amount;
datalines;

January 200
February 145
March 220
April 180
May 155
June 250
;
proc gchart;

pie month / freq=amount value=inside
noheading coutline=black;

run;
quit;

The preceding program generates the following graph, which illustrates the tiling of
an image to fill an area.

SAS/GRAPH Colors and Images Placing a Backplane Image on Graphs with Frames 115

Figure 6.2 Pie Chart with a Tiled Image in the Background

Adding the IMAGESTYLE=FIT goption to the preceding program generates the
following graphics output, where a single instance of the image is stretched to fit the
background of the graph:

Figure 6.3 Pie Chart with a Stretched Image in the Background

Placing a Backplane Image on Graphs with Frames
Procedures GCHART, GPLOT, GRADAR, and GSLIDE support frames, which are the

backplanes behind the graphs. Each of these procedures enables you to place an image
on the backplane.

To place an image on the backplane of a graph that supports frames, specify the
IFRAME= option on the procedure that generates the graph. On the IFRAME= option,
specify either the full path to the image file in quotation marks, or a fileref that has
been defined to point to the image file as follows:

iframe=fileref | ’external-image-file’

“Image File Types Supported by SAS/GRAPH” on page 106 shows the image file
formats that you can use. “Disabling and Enabling Image Output” on page 120 shows
how to suppress the image output without removing the imaging code from your

116 Placing Images on the Bars of Two-Dimensional Bar Charts Chapter 6

SAS/GRAPH program; for example, you might want to suppress the image when
printing the graph.

By default, the image is tiled on the backplane, which means that the image is copied
as many times as needed to fill the backplane.

To stretch a single instance of the image to fill the backplane, specify
IMAGESTYLE=FIT as follows:

iframe=fileref | ’external-image-file’
imagestyle=fit;

To switch from a single fitted image back to a series of tiled images, you can specify
IMAGESTYLE=TILE.

The following example displays an image on the backplane of a horizontal bar chart.
Because the IMAGESTYLE= option is not used, the image is tiled by default.

goptions reset=all ctitle=cx000080 ftitle=swissb
ctext=black htext=0.85 htitle=2.5 ftext=swissb
cback=cxf7e1c2;

title ’Projected Automobile Sales’;
data sales;

length month $ 9;
input month amount;
datalines;

January 200
February 145
March 220
April 180
May 155
June 250
;
pattern1 value=solid color=cxcd0369;
axis1 width=1.5 major=(width=1.5)

label=(h=1 ’Number of Cars’) noplane;
axis2 width=1.5 major=(width=1.5)

label=(h=1 ’Month’) noplane;

proc gchart;
hbar3d month / freq=amount

nostats
axis=axis1
maxis=axis2
iframe=’external-image-file’
coutline=black;

run;
quit;

Placing Images on the Bars of Two-Dimensional Bar Charts
Using the PATTERN statement, you can place images on the two-dimensional bars of

graphs that are generated by the GCHART procedure’s HBAR or VBAR statements. To
place an image on a two-dimensional bar, use the IMAGE= option on a PATTERN
statement. On the IMAGE= option, specify the image file as follows:

pattern image=fileref | ’external-image-file’;

SAS/GRAPH Colors and Images Placing Images on the Bars of Two-Dimensional Bar Charts 117

“Image File Types Supported by SAS/GRAPH” on page 106 shows the image file
formats that you can use. “Disabling and Enabling Image Output” on page 120 shows
how to suppress the image output without removing the imaging code from your
SAS/GRAPH program; for example, you might want to suppress the image when
printing the graph.

By default, the image is tiled on the bar, which means that the image is copied as
many times as needed to fill the bar area. You can specify IMAGESTYLE=FIT on the
PATTERN statement to stretch a single instance of the image to fit the dimensions of
the bar, as follows:

pattern image=’external-image-file’
imagestyle=fit;

After fitting the image, you can tile subsequent images by resetting the PATTERN
statement or by specifying IMAGESTYLE=TILE.

Note: Images are only supported on the bars that are generated by the HBAR and
VBAR statements. If an image is specified on a PATTERN statement that is used with
another type of chart, then the PATTERN statement is ignored and default pattern
rotation is affected. For example, if you submit a PIE statement when an image has
been specified on PATTERN, the default fill pattern is used for the pie slices; however,
rather than rotating that pattern through the colors list, each slice in the pie displays
the fill pattern in the same color. �

The following example generates a bar chart that shows the sales for different
automobile manufacturers. The bars that represent the sales figures for each
manufacturer display a model vehicle for that manufacturer. Because
IMAGESTYLE=FIT is not specified, each image is tiled on the bar that displays it.

goptions reset=all ctitle=cx000080 ftitle=swissb
ctext=black htext=0.85 htitle=2.5
ftext=swissb cback=cxf7e1c2;

title ’Projected Automobile Sales’;
data sales;

length Month $ 9 Manufacturer $ 10;
input Month amount Manufacturer;
datalines;

January 100 Nissan
February 80 Nissan
March 210 Nissan
April 201 Nissan
January 400 Dodge
February 90 Dodge
March 220 Dodge
April 202 Dodge
January 300 Cheverolet
February 70 Cheverolet
March 230 Cheverolet
April 203 Cheverolet
January 200 Ford
February 100 Ford
March 240 Ford
April 204 Ford
;
run;
pattern1 image=’external-image-file’; /* corvette image */
pattern2 image=’external-image-file’; /* viper image */

118 Using Annotate to Display an Image Chapter 6

pattern3 image=’external-image-file’; /* mustang image */
pattern4 image=’external-image-file’; /* nissan image */

axis1 label=(h=1 ’Number of Cars’);

proc gchart;
vbar month / freq=amount

coutline=black
subgroup=Manufacturer
axis=axis1
cframe=olive;

run;
quit;

Using Annotate to Display an Image
The Annotate facility enables you to display an image at the coordinate location that

you specify with the X and Y variables. To display an image, specify the file
specification for the image file in quotation marks on the IMGPATH variable, set the
image coordinates with the X and Y variables, and then call the IMAGE function, as
shown in the following example. One corner of the image is located by the current X
and Y position, and the opposite corner is located by the X and Y variables that are
associated with the IMGPATH variable.

x=10; y=5; function=’move’; output;
x=35; y=15; imgpath=’external-image-file’;
style = ’fit’;
function=’image’; output;

The code above draws an image from (10,5) to (35,15).
By default, the image is tiled, which means that it is copied as many times as needed

to fill the area. To stretch the image so that a single image fits within the area, set the
STYLE variable equal to ’fit’, as shown in the code above.

“Image File Types Supported by SAS/GRAPH” on page 106 shows the image file
formats that you can use. “Disabling and Enabling Image Output” on page 120 shows
how to suppress the image output without removing the imaging code from your
SAS/GRAPH program; for example, you might want to suppress the image when
printing the graph.

Here is a complete example:

goptions reset=all cback=olive;
data wrldtotl;

length company $ 10;
input company $ 1-10 mean 12-15;
datalines;

Nissan 550
Cheverolet 571
Ford 137
Dodge 273
Honda 546
Saturn 430
;
run;

data wrldanno;
length function style color $ 8 text $ 20 image $ 50;

SAS/GRAPH Colors and Images Using DSGI to Display an Image 119

retain line 0 xsys ysys ’2’ hsys ’3’ x 8;
set wrldtotl end=end;

function=’move’; x=x+8; y=20; output;
if company=’Nissan’ then

imgpath=’external-image-file’; /* Nissan image */
else if company=’Cheverolet’ then

imgpath=’external-image-file’; /* Corvette image */
else if company=’Ford’ then

imgpath=’external-image-file’; /* Mustang image */
else if company=’Dodge’ then

imgpath=’external-image-file’; /* Viper image */
else if company=’Honda’ then

imgpath=’external-image-file’; /* Honda image */
else if company=’Saturn’ then

imgpath=’external-image-file’; /* Saturn image */
function=’image’; y=y+(mean); x=x+9;
output;
function=’label’; y=0; x=x-4; size=3.5;
position=’E’; style=’swiss’;
color=’blue’; text=company; output;
function=’move’; y=y+(mean)-3; output;
function=’label’; x=x-1; text=left(put(mean,3.));
position=’5’; style=’swiss’; size=7; color=’red’; output;
if end then do;

function=’move’; x=10; y=20; output;
function=’draw’; x=90; y=20; line=1;
size=.5; color=’blue’; output;

function=’label’; x=50; y=95; text=’Projected Sales’;
xsys=’3’; ysys=’3’; position=’5’; style=’swissb’;
size=7; color=’ ’; output;
x=92; y=5; size=3; style=’swiss’; output;

function=’frame’; color=’blue’; when=’b’;
style=’empty’; output;

end;
run;
proc ganno annotate=wrldanno

datasys;
run;
quit;

Using DSGI to Display an Image

Using the DATA Step Graphics Interface (DSGI), you can display an image in a
designated position. To display an image, specify the file specification for the image file
in quotation marks on the GDRAW(’IMAGE’,...) function as follows:

rc=gdraw(’image’, ’external-image-file’, 20, 20, 40, 40, ’fit’);

The code above displays the image in the screen coordinates (20, 20) to (40, 40). The
last parameter indicates how to display the image. The following keywords are
available:

fit fits the image within the specified area. This stretches the image, if
necessary.

120 Disabling and Enabling Image Output Chapter 6

tile tiles the image within the specified area. This copies the image as
many times as needed to fit the area.

“Image File Types Supported by SAS/GRAPH” on page 106 shows the image file
formats that you can use. “Disabling and Enabling Image Output” on page 120 shows
how to suppress the image output without removing the imaging code from your
SAS/GRAPH program; for example, you might want to suppress the image when
printing the graph.

Here is a complete example:

goptions reset=all;
title ’DGSI with image’;
footnote ’ dsgi with image option’;
data image;

rc=ginit();
rc=graph(’clear’);
rc=gdraw(’image’,’external-image-file’,

5, 5, 90, 90,’fit’);
rc=graph(’update’);
rc=gterm();

run;
quit;

Disabling and Enabling Image Output
The NOIMAGEPRINT graphics option disables image output as follows:

goptions noimageprint;

NOIMAGEPRINT can be useful for printing output without images. To enable image
output, reset the GOPTIONS statement or specify the IMAGEPRINT graphics option.

121

C H A P T E R

7
SAS/GRAPH Statements

Overview 123

AXIS Statement 124
Description 124

Syntax 125

Options 126
Text Description Suboptions 135

Using Text Description Suboptions 139

Tick Mark Description Suboptions 139
Using the AXIS Statement 140

Assigning AXIS Definitions 140
BY Statement 141

Description 141

Syntax 141
Required Arguments 142

Options 142

Preparing Data for BY-Group Processing 142
Controlling BY Lines 143

Suppressing the BY line 143
Suppressing the name of the BY variable 143

Controlling the appearance of the BY line 143

Naming the Catalog Entries 143
Using the BY Statement 143

With the GCHART Procedure 144

With the GMAP Procedure 144
With the GPLOT Procedure 144

With the RUN Groups 144
With the Annotate Facility 145

With TITLE, FOOTNOTE, and NOTE Statements 145

With PATTERN and SYMBOL Definitions 145
FOOTNOTE Statement 146

GOPTIONS Statement 146

Description 146
Syntax 146

Options 150
Using the GOPTIONS Statement 150

Graphics Option Processing 150

LEGEND Statement 151
Description 151

Syntax 151

Options 152
Text Description Suboptions 158

122 Contents Chapter 7

Using Text Description Suboptions 161

Using the LEGEND Statement 161
Positioning the Legend 162

Positioning the Legend on the Graphics Output Area 162

Using POSITION= and OFFSET= 162
Using ORIGIN= 163

Relating Legends to Other Graphic Elements 163

Interactions Between POSITION= and MODE= 163
Creating Drop Shadows and Block Effects 163

NOTE Statement 164
ODS HTML Statement 164

Description 164

Syntax 164
Required Arguments 165

Using the ODS HTML Statement 168

Specifying a Destination for ODS HTML Output 168
About Anchors 168

PATTERN Statement 169
Description 169

Syntax 169

Options 170
Using the PATTERN Statement 176

Altering or Canceling PATTERN Statements 177

About Default Patterns 177
How Default Patterns and Outlines Are Generated 178

Things That Affect Default Patterns 178
Working with PATTERN Statements 179

Explicitly Specifying Patterns 179

Generating Multiple Pattern Definitions 179
Selecting an Appropriate Pattern 180

Controlling Outline Colors 180

The Effect of the CPATTERN= Graphics Option 180
Specifying Version 6 Patterns 181

Specifying Device-Dependent Hardware Patterns 181
GDDM Drivers 181

TEK42xx Series Terminal Drivers 181

HPLJxxxx Drivers 181
Metagraphics Drivers 181

Understanding Pattern Sequences 182

Generating Pattern Sequences 182
Repeating Pattern Sequences 183

SYMBOL Statement 183
Description 183

Syntax 184

Options 184
Using the SYMBOL Statement 202

Altering or Canceling SYMBOL Statements 203

Controlling Consecutive SYMBOL Statements 203
Setting Definitions for PROC GPLOT 204

Specifying Plot Symbols 205
Specifying a Default Interpolation Method 205

Sorting Data with Spline Interpolation 205

Using Color 206
Specifying Colors with SYMBOL Statements 206

SAS/GRAPH Statements Overview 123

Specifying Color with CSYMBOL= 207

Specifying Line Types 207
Using Generated Symbol Sequences 208

Default Symbol Sequences 209

Symbol Sequences Generated from SYMBOL Statements 209
TITLE, FOOTNOTE, and NOTE Statements 210

Description 211

Syntax 212
Options 212

Using TITLE and FOOTNOTE Statements 224
Using the NOTE Statement 224

Using Multiple Options 224

Setting Defaults 225
Using Options That Can Reset Other Options 225

Substituting BY Line Values in a Text String 226

Example 1. Ordering Axis Tick Marks with SAS Datetime Values 226
Example 2. Specifying Logarithmic Axes 229

Example 3. Rotating Plot Symbols through the Colors List 231
Example 4. Creating and Modifying Box Plots 233

Example 5. Filling the Area between Plot Lines 236

Example 6. Enhancing Titles 238
Example 7. Using BY-group Processing to Generate a Series of Charts 240

Example 8. Creating a Simple Web Page with the ODS HTML Statement 245

Example 9. Combining Graphs and Reports in a Web Page 248
Example 10. Creating a Bar Chart with Drill-down for the Web 255

Details 259
Building an HREF value 259

Creating an image map 259

Referencing SAS/GRAPH output 260
See Also 260

Overview

SAS/GRAPH programs can use some of the SAS language statements that you
typically use with the base SAS procedures or with the DATA step, such as LABEL,
WHERE, and FORMAT. These statements are described in the SAS Language
Reference: Dictionary.

In addition, SAS/GRAPH has its own set of statements that affect only graphics
output generated by the SAS/GRAPH procedures and the graphics facilities Annotate
and DSGI. Most of these statements are global statements. That is, they can be
specified anywhere in your program and remain in effect until explicitly changed or
canceled. These are the SAS/PH global statements:

AXIS
modifies the appearance, position, and range of values of axes in charts and plots.

FOOTNOTE
adds footnotes to graphics output. This statement is like the TITLE statement and
is described in that section.

GOPTIONS
submits graphics options that control the appearance of graphics elements by
specifying characteristics such as default colors, fill patterns, fonts, or text height.
Graphics options can also temporarily change device settings.

124 AXIS Statement Chapter 7

LEGEND
modifies the appearance and position of legends generated by procedures that
produce charts, plots, and maps.

NOTE
adds text to the graphics output. This statement is an exception because it is not
global but local, meaning that it must be submitted within a procedure.
Otherwise, NOTE is like the TITLE statement and is described in that section.

PATTERN
controls the color and fill of patterns assigned to areas in charts, maps, and plots.

SYMBOL
specifies the shape and color of plot symbols as well the interpolation method for
plot data. It also controls the appearance of lines in contour plots.

TITLE
add titles to graphics output. The section describing the TITLE statement includes
the FOOTNOTE and NOTE statements.

These statements are described in this chapter, which also includes two Base
language statements that have a special effect when used with SAS/GRAPH procedures:

BY
processes data according to the values of a classification (BY) variable and
produces a separate graph for each BY-group value.

ODS HTML
generates one or more files written in Hyper Text Markup Language (HTML). If
you use it with SAS/GRAPH procedures, you can specify one of the device drivers
GIF, ACTIVEX, or JAVA (ACTIVEX and JAVA are only available with GCHART,
GCONTOUR, GMAP, GPLOT, and G3D). With the GIF device driver, the graphics
output is stored in GIF files. With the ACTIVEX device driver, graphics output is
stored as XML input to ActiveX controls. With the JAVA device driver, graphics
output is stored as XML input to Java applets. The HTML files that are generated
reference the graphics output. When viewed with a Web browser, the HTML files
can display graphics and non-graphics output together on the same Web page.

AXIS Statement
The AXIS statement controls the location, values, and appearance of the axes in plots

and charts.

Used by:
GBARLINE, GCHART, GCONTOUR, GPLOT, and GRADAR procedures

Global

Description
AXIS statements specify the characteristics of an axis, including:
� the way the axis is scaled
� how the data values are ordered
� the location and appearance of the axis line and the tick marks
� the text and appearance of the axis label and major tick mark values.

AXIS definitions are used only when they are explicitly assigned by an option in a
procedure that produces graphs with axes.

SAS/GRAPH Statements AXIS Statement 125

Figure 7.1 on page 125 illustrates the terms associated with the various parts of axes.

Figure 7.1 Parts of Axes

Syntax
AXIS<1...99><options>;

option(s) can be one or more options from any or all of the following categories:
� axis scale options:

INTERVAL=EVEN | UNEVEN | PARTIAL
LOGBASE=base | E | PI
LOGSTYLE=EXPAND | POWER
ORDER=(value-list)

� appearance options:
COLOR=axis-color
LENGTH=axis-length <units >
NOBRACKETS

126 AXIS Statement Chapter 7

NOPLANE
OFFSET=(<n1 ><,n2 >)<units > | (<n1<units>><,n2<units >>)
ORIGIN=<(x><,y >)<units> | (<x<units >><,y<units>>)
STYLE=line-type
WIDTH=thickness-factor

� tick mark options:
MAJOR=(tick-mark-suboption(s))| NONE
MINOR=(tick-mark-suboption(s))| NONE

� text options:
LABEL=(text-argument(s))| NONE
REFLABEL=(text-argument(s))| NONE
SPLIT="split-char"
VALUE=(text-argument(s))| NONE

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points

If you omit units, a unit specification is searched for in this order:
1 GUNIT= in a GOPTIONS statement
2 the default unit, CELLS.

COLOR=axis-color
C=axis-color

specifies the color for all axis components (the axis line, all tick marks, and all
text) unless you include a more explicit AXIS statement color specification. Any of
these color specifications override COLOR= for the specified item:

Table 7.1

Option Items Affected

AXIS statement:

LABEL=(COLOR=color)

REFLABEL=(COLOR=color)

VALUE=(COLOR=color)

axis label

reference-line labels

major tick mark values

calling procedure:

CTEXT=

CAXIS=

all axis text (AXIS label and major tick mark
value descriptions)

axis line and major and minor tick marks

If you omit all color options, the AXIS statement looks for a color specification
in this order:

SAS/GRAPH Statements AXIS Statement 127

1 the CTEXT= graphics option in a GOPTIONS statement.

2 If CTEXT= is not used, the color of all axis components is the first color in
the colors list, except for PROC GCONTOUR, which uses the second color.

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226 .

INTERVAL=EVEN | UNEVEN | PARTIAL
The INTERVAL option affects the LOGBASE option on the AXIS statement.
Specifying the option INTERVAL=UNEVEN and LOGBASE=10, permits
non-base10 values to be specified for the ORDER option, while retaining a
logarithmic scale for the axis.

LABEL=(text-argument(s)) | NONE
modifies an axis label. Text-argument(s) defines the appearance or the text of an
axis label, or both. NONE suppresses the axis label. Text-argument(s) can be one
or more of these:

’text-string’
provides up to 256 characters of label text. By default, the text of the axis
label is either the variable name or a previously assigned variable label.
Enclose each string in quotes. Separate multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

ANGLE=degrees

COLOR=text-color

FONT=font | NONE

HEIGHT=text-height <units >

JUSTIFY=LEFT | CENTER | RIGHT

ROTATE=degrees
See “Text Description Suboptions” on page 135 for a complete description.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226, “Example 2. Specifying Logarithmic Axes” on page 229 , and
“Example 7. Using BY-group Processing to Generate a Series of Charts” on page
240

Not supported by: Java (partial), ActiveX (partial)

LENGTH=axis length <units >
specifies the length of the axis in number of units. If you request a length that
cannot fit the display, an error message is issued and no graph is drawn.

This option is not supported by the GRADAR Procedure.

Featured in: “Example 2. Specifying Logarithmic Axes” on page 229 and
“Example 9. Combining Graphs and Reports in a Web Page” on page 248 .

Not supported by: Java, ActiveX

LOGBASE=base | E | PI
scales the axis values logarithmically according to the value specified. Base must
be greater than 1. How the values are displayed on the axis depends on the
LOGSTYLE= option. For example, LOGBASE=E with the default
LOGSTYLE=EXPAND generates an axis like the one in Figure 7.2 on page 128.

128 AXIS Statement Chapter 7

Figure 7.2 Axis Generated with LOGBASE=E and LOGSTYLE=EXPAND

NUMNUM
e ** 4e ** 4

e ** 3e ** 3

e ** 2e ** 2

e ** 1e ** 1

e ** 0e ** 0

This option is not supported by the GRADAR Procedure.
Featured in: “Example 2. Specifying Logarithmic Axes” on page 229.
Not supported by: Java

LOGSTYLE=EXPAND | POWER
specifies whether the values displayed on the logarithmic axis are the values of the
base or the values of the power. LOGSTYLE= is meaningful only when you use
LOGBASE=.

LOGSTYLE=EXPAND specifies that the values displayed are the values of the
base raised to successive powers and that the minor tick marks are logarithmically
placed. For example, if the base is 10, the values displayed are 10, 100, 1000,
10000, and so on. The default is LOGSTYLE=EXPAND. This statement generates
an axis like the one in part (a) of Figure 7.3 on page 128:

axis logbase=10 logstyle=expand;

LOGSTYLE=POWER specifies that the values displayed are the powers to
which the base is raised (for example, 1, 2, 3, 4, 5, and so on). For example, this
statement generates an axis like the one in part (b) of Figure 7.3 on page 128:

axis logbase=10 logstyle=power;

Figure 7.3 Axes Generated with the LOGSTYLE=option

NUMNUM
100000100000

1000010000

10001000

100100

1010

a.a.

NUM LOG 10NUM LOG 10
5

4

3

2

1

b.b.

If you use ORDER= with a logarithmic axis, the values specified by ORDER=
must match the style specified by LOGSTYLE=. For example, if you specify a
logarithmic axis with a base of 2 and you want to display the first five expanded
values, use this statement:

SAS/GRAPH Statements AXIS Statement 129

axis logbase=2 logstyle=expand
order=(2 4 8 16 32);

If you use LOGSTYLE=POWER, the values in ORDER= must represent the
powers to which the base is raised, as in this example:

axis logbase=2 logstyle=power order=(1 2 3 4 5);

If the values that are specified by ORDER= do not match the type of values
specified by LOGSTYLE=, the request for a logarithmic axis is ignored.

This option is not supported by the GRADAR Procedure.

Featured in: “Example 2. Specifying Logarithmic Axes” on page 229 .

Not supported by: Java

MAJOR=(tick-mark-suboption(s))| NONE
modifies the major tick marks. Tick-mark-suboption(s) defines the color, size, and
number of the major tick marks. NONE suppresses all major tick marks, although
the values represented by those tick marks are still displayed.
Tick-mark-suboption can be

COLOR=tick-color

HEIGHT=tick-height <units >

NUMBER=number-of-ticks

WIDTH=thickness-factor
See “Tick Mark Description Suboptions” on page 139 for complete descriptions.

List all suboptions and their values within the parentheses.
AXIS definitions assigned to the group axis of a bar chart by the GAXIS= option

ignore MAJOR= because the axis does not use tick marks.

Note: By default, tickmarks are now placed at three intervals on the spokes of
a GRADAR chart. They are placed at the minimum value, maximum value, and at
one value in between. The tick marks on the 12 o’clock spoke are also labeled by
default.

HEIGHT is not supported by Java or ActiveX. WIDTH is not supported by
Java. �

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226 , “Example 2. Specifying Logarithmic Axes” on page 229, and
“Example 7. Using BY-group Processing to Generate a Series of Charts” on page
240.

Not supported by: Java (partial), ActiveX (partial).

MINOR=(tick-mark-suboption(s))| NONE
modifies the minor tick marks that appear between major tick marks.
Tick-mark-suboption(s) defines the color, number, or size of the minor tick marks.
NONE suppresses all minor tick marks. Tick-mark-suboption can be

COLOR=tick-color

HEIGHT=tick-height <units >

NUMBER=number-of-ticks

WIDTH=thickness-factor
See “Tick Mark Description Suboptions” on page 139 for complete descriptions.

List all suboptions and their values within the parentheses.
AXIS definitions assigned to the group axis of a bar chart by the GAXIS= option

ignore MINOR= because the axis does not use tick marks.
This option is not supported by the GRADAR Procedure.
HEIGHT is not supported by Java or ActiveX.

130 AXIS Statement Chapter 7

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226, “Example 2. Specifying Logarithmic Axes” on page 229, and
“Example 7. Using BY-group Processing to Generate a Series of Charts” on page
240.

Not supported by: Java (partial), ActiveX (partial)

NOBRACKETS
suppresses the printing of group brackets drawn around the values on the group
axis in a bar chart. NOBRACKETS applies only to the group axis of bar charts.

This option is not supported by the GRADAR Procedure.
See also: GROUP= on page 805 and GAXIS= on page 805.
Not supported by: Java, ActiveX

NOPLANE
removes either the horizontal or vertical 3D axis plane in bar charts produced by
the HBAR3D and VBAR3D statements. NOPLANE affects only the axis to which
the AXIS statement applies.

To remove selected axis elements such as lines, values or labels, use specific
AXIS statement options. To remove all axis elements except the 3D planes use the
NOAXIS option in the procedure. To remove the backplane, use the NOFRAME
option in the procedure.

This option is not supported by the GRADAR Procedure.
Featured in: “Example 7. Using BY-group Processing to Generate a Series of

Charts” on page 240.

OFFSET=(<n1><,n2>)<units > | (<n1<units>><,n2<units>>)
specifies the distance from the first and last major tick marks or bars to the ends
of the axis line.

The value of (n1)is the distance from the beginning (origin) of the axis line to
the first tick mark or middle of the first bar, and the value of (n2)is the distance
from the end of the axis line to the last tick mark or middle of the last bar.

On a horizontal axis, the (n1) offset is measured from the left end of the axis
line and the (n2) offset is measured from the right end. On a vertical axis, the (n1)
offset is measured up from the bottom of the axis line and the (n2) offset is
measured down from the top of the line.

To specify the same offset for both n1 and n2, use one value, with or without a
following comma. For example, either option sets both n1 and n2 to 4 centimeters:

offset=(4 cm)
offset=(4 cm,)

To specify different offsets, use two values, with or without a comma separating
them. For example,

offset=(4 cm, 2 cm)

To specify only the second offset, use only one value preceded by a comma. This
option offsets the last major tick mark or bar 3 centimeters from the right-hand
end of the axis line:

offset=(,3 cm)

You can specify units for the n1,n2 pair or for the individual offset values.
This option is not by the GRADAR Procedure .

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226.

Not supported by: Java

ORDER=(value-list)

SAS/GRAPH Statements AXIS Statement 131

specifies the order in which data values appear on the axis. The values specified
by ORDER= are the major tick mark values. You can modify the appearance of
these values with the VALUE= option.

The way you specify value-list depends on the type of variable:
� For numeric variables, value-list is either an explicit list of values or a

starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>
n TO n <BY increment>
n<...n> TO n <BY increment > <n <...n > >
If a numeric variable has an associated format, the specified values must

be the unformatted values.
Values must be listed in either ascending or descending order. By default

the increment value is 1. You can use a negative integer for increment to
specify a value list in descending order. In all forms, multiple n values can be
separated by blanks or commas. Here are some examples:

order=(2 4 6)
order=(6,4,2)
order=(2 to 10 by 2)
order=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the
highest value displayed on the axis is the last incremental value below the
ending value for the range. For example, this value list produces a maximum
axis value of 9:

order=(0 to 10 by 3)

� For character variables, value-list is a list of unique character values enclosed
in quotes and separated by blanks:

’value-1’ <...’value-n’>
If a character variable has an associated format, the specified values must

be the formatted values for PROC GCHART and the unformatted values for
PROC GPLOT.

Character values can be specified in any order, but the character strings
must match exactly the variable values in case and spelling. For example,

order=(’Paris’ ’London’ ’Tokyo’)

Observations can be inadvertently excluded if entries in the value-list are
misspelled or if the case does not match exactly.

� For date and time values, value-list can have the following forms:
’SAS-value’i <...’SAS-value’i>
’SAS-value’i TO ’SAS-value’i <BY interval>

’SAS-value’i
is any SAS date, time, or datetime value described for the SAS
functions INTCK and INTNX. Enclose the value in quotes and
specify one of the following for i:

D date

T time

DT datetime

interval

132 AXIS Statement Chapter 7

is one of the valid arguments for the INTCK or INTNX functions.
These are the default intervals:

DAY default interval for date

SECOND default interval for time

DTSECOND default interval for datetime

These value lists use SAS date and time values:

order=(’25MAY98’d ’04JUL98’d ’07SEP98’d)
order=(’01JUL97’d to ’01AUG97’d)
order=(’01JUL97’d to ’01JAN98’d by week)
order=(’9:25’t to ’11:25’t by minute)
order=(’04JUN97:12:00:00’dt to

’10JUN9712:00:00’dt by dtday)

With SAS date and time values, use a FORMAT statement so that the tick
mark values have an understandable form. For more information on SAS
date and time values, see the SAS Language Reference: Dictionary.

With any type of value-list, specifying values that are not distributed uniformly
or are not in ascending or descending order, generates a warning message in the
SAS log. The specified values are spaced evenly along the axis even if the values
are not distributed uniformly.

Using ORDER= to restrict the values displayed on the axis may result in
clipping. For example, if the data range is 1 to 10 and you specify ORDER=(3 TO
5), only the data values from 3 to 5 appear on the plot or chart. For charts, the
omitted values are still included in the statistic calculation.

Note: Values out of range do not always produce a warning message in the
SAS log. �

CAUTION:
The ORDER= option does not calculate midpoint values; as a result it is not
interchangeable with the MIDPOINTS= option in the GCHART procedure. �

You can use ORDER= to specify the order in which the midpoints are displayed
on a chart, but do not use it to calculate midpoint values. Be sure that the values
you specify match the midpoint values that are calculated either by default by the
GCHART procedure or by the MIDPOINTS= option. For details, see the
description of MIDPOINTS= for the appropriate statement in Chapter 29, “The
GCHART Procedure,” on page 773.

ORDER= overrides the suboption NUMBER= described in “Tick Mark
Description Suboptions” on page 139.

ORDER= is not valid with the ASCENDING, DESCENDING and NOZEROS
options used with the bar chart statements in the GCHART procedure.

This option is not supported by the GRADAR procedure.

Note: The Java applet supports ORDER= for numeric axes, but does not
support ORDER= for categorical, character, midpoint, or group axes.

The ActiveX control supports only simple order lists. Non-uniform interval
values, such as dates, are not supported. Only max and min values are supported
with a default interval of one day. �

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226, “Example 5. Filling the Area between Plot Lines” on page 236, and
“Example 7. Using BY-group Processing to Generate a Series of Charts” on page
240

SAS/GRAPH Statements AXIS Statement 133

Not supported by: Java (partial), ActiveX (partial)

ORIGIN=(<x><,y>)<units> | (<x<units>><,y<units>>)
specifies the x coordinate and the y coordinate of the origin of the axis. The origin
of the horizontal axis is the left end of the axis, and the origin of the vertical axis
is the bottom of the axis. ORIGIN= explicitly positions the axis anywhere on the
graphics output area.

If you specify only one value, with or without a comma following it, only the x
coordinate is set to that value. For example, this specification sets x to 4
centimeters:

origin=(4 cm,)

If you specify two values, with or without a comma separating them, the first
value sets the x coordinate and the second value sets the y coordinate, as in this
example:

origin=(2 pct, 4 pct)

If you specify one value preceded by a comma, only the y coordinate is set to
that value, as shown here:

origin=(,3 pct)

You can specify units for the x,y pair or for the individual coordinates.
This option is not supported by the GRADAR Procedure.

Not supported by: Java, ActiveX

REFLABEL=(text-argument(s)) | NONE
creates and defines the appearance of a reference-line label. Text-argument(s)
defines the appearance or the text of the label, or both. NONE suppresses the
reference-line label. Text-argument(s) can be one or more of these:

’text-string’
provides up to 256 characters of label text. By default, a reference line does
not have a label. Enclose each string in quotes. Separate multiple strings
with blank spaces; the strings are applied to the reference lines consecutively
along the axis, from the plot origin to the end of the axis.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

ANGLE=degrees
AUTOREF
COLOR=text-color

FONT=font | NONE
HEIGHT=text-height <units >
JUSTIFY=LEFT | CENTER | RIGHT
POSITION=TOP| MIDDLE| BOTTOM
ROTATE=degrees

T=n
See “Text Description Suboptions” on page 135 for a complete description.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

REFLABEL is not supported by the GRADAR Procedure.
Not supported by: Java, ActiveX.

134 AXIS Statement Chapter 7

SPLIT="split-char"
specifies the split character that the AXIS statement uses to break axis values into
multiple lines. Split-char can be any character value that can be specified in a SAS
character variable. The split character must be embedded in the variable values in
the data set or in an associated format. When the AXIS statement encounters the
split character, it automatically breaks the value at that point and continues on
the next line. For example, suppose the data set contains the value Berlin,
Germany, and you specify SPLIT=",". The value would appear on the axis as

Berlin
Germany

Note that the split character itself is not displayed.
Axis values specified with VALUE= do not use the split character. For example,

suppose you specify this statement:

axis1 spilt="," value=(t1=’December, 1999’);

The value will appear on the axis on one line as December, 1999. However,
any other axis values containing a comma would honor the split character.

This option is not supported by the GRADAR Procedure.

Featured in: Example 7 on page 856

Not supported by: Java, ActiveX

STYLE=line-type
specifies a line type for the axis line. Valid values for line-type are 0 through 46. If
you specify STYLE=0, the axis line is not drawn. The default is 1, a solid line.

Note: In order for the axis line to be altered by the STYLE= option, the
NOFRAME option must also be set. If only the STYLE=option is set, the axis
frame will be modified.

Note: This option overrides the LineStyle attribute in graph styles. For more
information on graph styles, see SAS Output Delivery System: User’s Guide . �

�

Note: See also: Figure 7.22 on page 208 for examples of the available line
types. �

VALUE=(text-argument(s))| NONE
modifies the major tick mark values. That is, this option modifies the text that
labels the major tick marks on the axis. Text-argument(s) defines the appearance
or the text of a major tick mark value, or both. NONE suppresses the major tick
mark values, although the major tick marks are still displayed. Text-argument(s)
can be one or more of these:

’text-string’
provides up to 256 characters of text for the major tick mark value. By
default, the value is either the variable value or an associated format value.
Enclose each string in quotes and separate multiple strings with blanks.

Specified text strings are assigned to major tick marks in order. If you
specify only one text string, only the first tick mark value changes, and all
the other tick mark values display the default. If you specify multiple strings,
the first string is the value of the first major tick mark, the second string is
the value of the second major tick mark, and so forth. For example, to change
default tick mark values 1, 2, and 3 to First, Second, and Third, use this
option:

value=(’First’ ’Second’ ’Third’)

SAS/GRAPH Statements AXIS Statement 135

Note: Although VALUE= changes the text displayed at a major tick mark,
it does not affect the actual value represented by the tick mark. To change
the tick mark values, use ORDER=. Also note that with client-side rendering
using Java or ActiveX, it is necessary to use ORDER= to ensure that the
same number of tick marks are displayed as with server-rendered graphics.
For example, specify ORDER=(1 to 12) to ensure that tick marks for all
twelve months are displayed on the client.

To change the value of midpoints in bar charts produced with the
GCHART procedure, use the MIDPOINTS= option in the procedure. �

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

ANGLE=degrees
COLOR=text-color
FONT=font | NONE
HEIGHT=text-height <units >
JUSTIFY=LEFT | CENTER | RIGHT
ROTATE=degrees
TICK=n.
For a complete description, see “Text Description Suboptions” on page 135.
Place text description suboptions before the text strings they modify.

Suboptions not followed by a text string affect the default values. To specify
and describe the text for individual values or to produce multi-line text, use
the TICK= suboption.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

Note: If an end-user viewing a graph in the Java applet or ActiveX control
zooms in on a particular part of a graph for which VALUE= is specified, the values
are not readjusted in coordination with the zooming. �
Featured in: “Example 2. Specifying Logarithmic Axes” on page 229, “Example

7. Using BY-group Processing to Generate a Series of Charts” on page 240, and
“Example 9. Combining Graphs and Reports in a Web Page” on page 248.

Not supported by: Java (partial), ActiveX (partial)

WIDTH=thickness-factor
specifies the thickness of the axis line. Thickness increases directly with the value
of thickness-factor. By default, WIDTH=1.

Note: In order for the axis line to be altered by the WIDTH= option, the
NOFRAME option must also be set. If only the WIDTH=option is set, the axis
frame will be modified.

Java does not support WIDTH. ACTIVEX ignores the WIDTH option for the
vertical axis of an AXIS statement with GPLOT and GCONTOUR. �
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”

on page 226.
Not supported by: Java, ActiveX (partial)

Text Description Suboptions
Text description suboptions are used by the LABEL=, REFLABEL=, and VALUE=

options to change the color, height, justification, font, and angle of either default text or

136 AXIS Statement Chapter 7

specified text strings. See LABEL= on page 127, REFLABEL= on page 133, and
VALUE= on page 134.

ANGLE=degrees
A=degrees

specifies the angle of the baseline with respect to the horizontal. A positive value
for degrees moves the baseline counterclockwise; a negative value moves it
clockwise. By default, ANGLE=0 (horizontal) unless the text is automatically
angled or rotated to avoid overlapping. For an illustration of the effect of
ANGLE=, see Figure 7.24 on page 213.

Note: Changing the angle of a vertical axis-label can result in the label being
positioned above the graph when using client-side rendering with Java or
ActiveX. �

See also: the ROTATE= suboption on page 138

Featured in: Example 7 on page 856 .

Not supported by: Java (partial)

AUTOREF
automatically labels each reference line on an axis with the response value at the
reference line’s position. AUTOREF is only used with the REFLABEL= option.
The automatic labels are applied only to reference lines that do not have specific
labels assigned to them. For example, the following option uses the response-axis
value as the label for every reference line except the second reference line, which
is assigned the label two:

reflabel=(autoref t=2 "two")

Note, however, that if at the same time you also request automatic labeling with
a PLOT or BUBBLE statement (using the AUTOHREF or AUTOVREF option),
then the automatic labeling of the PLOT or BUBBLE statement can write on top
of your custom label specified with t he AXIS statement. You must ensure that
your custom labels specified with the AXIS statement are not at the same position
as automatic labels requested with a different statement.

Not supported by: Java, ActiveX, GIF

COLOR=text-color
C=text-color

specifies the color for the text. If you omit the COLOR= suboption, a color
specification is searched for in this order:

1 the CTEXT= option for the procedure

2 the CTEXT= option in a GOPTIONS statement

3 the default, the first color in the colors list.

FONT=font | NONE
F=font | NONE

specifies the font for the text. See Chapter 5, “SAS/GRAPH Fonts,” on page 75 for
details on specifying font. If you omit FONT=, a font specification is searched for
in this order:

1 the FTEXT= option in a GOPTIONS statement

2 the default hardware font, NONE.

Not supported by: Java (partial)

HEIGHT=text-height <units >
H=text-height <units >

SAS/GRAPH Statements AXIS Statement 137

specifies the height of the text characters in number of units. By default,
HEIGHT=1 CELL. If you omit HEIGHT=, a text height specification is searched
for in this order:

1 the HTEXT= option in a GOPTIONS statement

2 the default value, 1.

JUSTIFY=LEFT | CENTER | RIGHT
J=L | C | R

specifies the alignment of the text. The default depends on the option with which
it is used and the text it applies to.

� With the LABEL= option:

� for a left vertical axis label, the default is JUSTIFY=RIGHT

� for a right vertical axis label, the default is JUSTIFY=LEFT

� for a horizontal axis label, the default is JUSTIFY=CENTER.

�

With the REFLABEL= option:

� for a vertical axis, the default is JUSTIFY=CENTER. RIGHT places the
text string on the right end of the line, CENTER in the middle of the
line, and LEFT to the left of the line.

� for a horizontal axis label, the default is JUSTIFY=RIGHT. RIGHT
places the text string just to the right of the line, CENTER is centered
on top of the line, and LEFT places the text string just to the left of the
line.

� With the VALUE= option:

� for numeric variables on a vertical axis, the default is JUSTIFY=RIGHT

� for character variables on a vertical axis, the default is JUSTIFY=LEFT

� for all variables on a horizontal axis, the default is JUSTIFY=CENTER.

Note: With client-side output using Java and ActiveX, text justification is
relative to the text string, not the tick mark. For example, left justification means
that the left end of the text string is justified with respect to the drawing location,
as well as other strings in a multiline label—which may be to the right of a tick
mark. �

You can use JUSTIFY= to print multiple lines of text by repeating JUSTIFY=
before the text string for each line. You can also use JUSTIFY= to specify
multi-line text at specified major tick marks. For example, this statement
produces an axis label and major tick mark values like those shown in Figure 7.4
on page 138.

axis label=(’Current’ justify=c
’Sales Projections’)

value=(tick=1 ’JAN’ justify=c ’1997’
tick=2 ’FEB’ justify=c ’1997’
tick=3 ’MAR’ justify=c ’1997’
tick=4 ’APR’ justify=c ’1997’
tick=5 ’MAY’ justify=c ’1997’);

138 AXIS Statement Chapter 7

Figure 7.4 The JUSTIFY= suboption

CurrentCurrent
 Sales ProjectionsSales Projections

 JAN JAN FEB FEB MAR MAR APR APR MAYMAY
 1997 1997 1997 1997 1997 1997 1997 1997 19971997

Specify additional suboptions before any string.

See also: the suboption TICK= on page 138.

Not supported by: Java

POSITION=TOP | MIDDLE | BOTTOM
specifies the position of a reference-line label relative to the reference line. The
default is TOP for both vertical and horizontal reference lines. POSITION= is only
available on the REFLABEL= option.

� For horizontal reference lines, TOP places the label just above the reference
line, MIDDLE places the label on the reference line, and BOTTOM places the
label just under the reference line.

� For vertical reference lines, TOP places the label at the top end of the
reference line, MIDDLE places the label in the middle of the line, and
BOTTOM places the label at the bottom end of the line.

Not supported by: Java, ActiveX

ROTATE=degrees
R=degrees

specifies the angle at which each character of text is rotated with respect to the
baseline of the text string. A positive value for degree rotates the character
counterclockwise; a negative value moves it clockwise. By default, ROTATE=0
(parallel to the baseline) unless the text is automatically angled or rotated to avoid
overlapping. For an illustration of the effect of ROTATE=, see Figure 7.31 on page
222.

See also: the suboption ANGLE= on page 136

Not supported by: Java (partial)

TICK=n
T=n

specifies the n reference line or tick mark value. Used only with REFLABEL= or
with VALUE=. If neither one is specified, then T= is ignored.

� With REFLABEL=, T= specifies the nth reference line. It is used to limit
modifications to individual reference lines when there are multiple reference
lines on an axis. For example, the following option changes the color of only
the third reference line’s label and leaves all other reference-line labels
unchanged:

reflabel=(autoref t=3 color=red)

Suboptions that precede T= affect all the reference-line labels on an axis.
Suboptions that follow T= affect only the specified line’s label. For example,
the following option assigns the color green to all the reference-line labels on
an axis, but left-justifies only the third reference line’s label:

reflabel(c=green "one" "two" t=3 j=left "three")

SAS/GRAPH Statements AXIS Statement 139

For the options to be applied to a text string, they must precede the quoted
string. In the following option, the j=left is ignored because it follows the
string:

reflabel(c=green "one" "two" t=3 "three" j=left)

�

Note: Client-side rendering with the Java applet or ActiveX control does not
support the REFLABEL option.

With VALUE=, TICK= specifies the nth major tick mark value. It is used to
designate the tick mark value whose text and appearance you want to modify.
For example, the following option changes the color of only the third tick
mark value and leaves all others unchanged:

value=(tick=3 color=red)

Suboptions that precede TICK= affect all the major tick mark values.
Suboptions that follow TICK= affect only the specified value. For example,
the following option makes all the major tick mark values 4 units high and
colors all of them blue except for the third one, which is red:

value=(height=4 color=blue tick=3 color=red)

Not supported by: Java, ActiveX

Using Text Description Suboptions
Text description suboptions affect all the strings that follow them unless the

suboption is changed or turned off. If the value of a suboption is changed, the new
value affects all the text strings that follow it. Consider this example:

label=(font=swiss height=4 ’Weight’
justify=right height=3 ’(in tons)’)

FONT=SWISS applies to both Weight and (in tons). HEIGHT=4 affects Weight,
but is respecified as HEIGHT=3 for (in tons). JUSTIFY=RIGHT affects only (in
tons).

Tick Mark Description Suboptions
Tick mark description suboptions are used by MAJOR= and MINOR= to change the

color, height, width, and number of the tick marks to which they apply. See MAJOR=
and MINOR=.

COLOR=tick-mark-color
C=tick-mark color

colors the tick marks. If you omit the COLOR= suboption, a color specification is
searched for in this order:

1 the COLOR= option in the AXIS statement
2 the CAXIS= option for the procedure
3 the default, the first color in the colors list.

HEIGHT=tick-height <units>
H=tick-height <units>

specifies the height of the tick mark. The defaults for the HEIGHT= suboption
depend on the option with which it is used:

� With MAJOR= the default height .5 CELLS.
� With MINOR= the default height .25 CELLS.

140 Using the AXIS Statement Chapter 7

If you specify a negative number, tick marks are drawn inside the axis.
Not supported by: Java, ActiveX

NUMBER=number-of-ticks
N=number-of-ticks

specifies the number of tick marks to be drawn. With MAJOR=, number-of-ticks
must be greater than 1. With MINOR=, number-of-ticks must be greater than 0.

With MAJOR=, the NUMBER= suboption can be overridden by a major tick
mark specification in the procedure, which in turn can be overridden by ORDER=.

With MINOR=, the NUMBER= suboption can be overridden by a minor tick
mark specification in the procedure.

NUMBER= is not valid with logarithmic axes.

WIDTH=thickness-factor
W=thickness-factor

specifies the thickness of the tick mark, where thickness-factor is a number.
Thickness increases directly with thickness-factor. By default, WIDTH=1.
Not supported by: Java (partial)

Using the AXIS Statement
AXIS statements can be defined anywhere in your SAS program. They are global and

remain in effect until redefined, canceled, or until the end of your SAS session. AXIS
statements are not applied automatically, and must be explicitly assigned by an option
in the procedure that uses them.

You can define up to 99 different AXIS statements. If you define two AXIS
statements of the same number, the most recently defined one replaces the previously
defined statement of the same number. An AXIS statement without a number is treated
as an AXIS1 statement.

Cancel individual AXIS statements by defining an AXIS statement of the same
number without options (a null statement):

axis4;

Canceling one AXIS statement does not affect any other AXIS definitions. To cancel
all current AXIS statements, use the RESET= option in a GOPTIONS statement:

goptions reset=axis;

Specifying RESET=GLOBAL or RESET=ALL cancels all current AXIS definitions as
well as other settings.

To display a list of current AXIS definitions in the LOG window, use the GOPTIONS
procedure with the AXIS option:

proc goptions axis nolist;
run;

Assigning AXIS Definitions
AXIS definitions must always be explicitly assigned by the appropriate option in the

statement that generates the graph. The following table lists the procedures and
statements that generate axes, the type of axis, and the statement option that assigns
an AXIS definitions to that axis:

SAS/GRAPH Statements BY Statement 141

Procedure

Statement that
generates an
axis Type of axis

Option that assigns an AXIS
definition

GCHART HBAR | VBAR group axis midpoint
axis response axis

GAXIS= MAXIS= RAXIS=

GCONTOUR PLOT horizontal axis
vertical axis

HAXIS= VAXIS=

GPLOT PLOT horizontal axis
vertical axis

HAXIS= VAXIS=

GRADAR CHART star axis STARAXIS=

Some types of axes cannot use certain AXIS statement options:

� group and midpoint axes ignore LOGBASE=, MAJOR=, and MINOR=

� midpoint, horizontal and vertical axes ignore NOBRACKETS.

BY Statement

The BY statement processes data and orders output according to the BY group.

Used by:
GCHART, GCONTOUR, GMAP, GPLOT, GREDUCE, G3D, G3GRID procedures

Description

The BY statement divides the observations from an input data set into groups for
processing. Each set of contiguous observations with the same value for a specified
variable is called a BY group. A variable that defines BY groups is called a BY variable
and is the variable that is specified in the BY statement. When you use a BY
statement, the graphics procedure

� processes each group of observations independently

� generates a separate graph or output for each BY group

� automatically adds a heading called a BY line to each graph identifying the BY
group represented in the graph

� adds BY statement information below the Description field of the catalog entry.

By default, the procedure expects the observations in the input data set to be sorted
in ascending order of the BY variable values.

Note: The BY statement in SAS/GRAPH is essentially the same as the BY
statement in base SAS, but the effect on the output is different when it is used with
SAS/GRAPH procedures. �

Syntax
BY<DESCENDING>variable

<...<DESCENDING>variable-n>
<NOTSORTED>;

142 Preparing Data for BY-Group Processing Chapter 7

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. By default, the procedure expects observations in the data
set to be sorted in ascending order by all the variables that you specify or to be
indexed appropriately.

Options

DESCENDING
indicates that the data set is sorted in descending order by the specified variable.
The option affects only the variable that immediately follows the option name, and
must be repeated before every variable that is not sorted in ascending order. For
example, this BY statement indicates that observations in the input data set are
arranged in descending order of VAR1 values and ascending order of VAR2 values:

by descending var1 var2;

This BY statement indicates that the input data set is sorted in descending
order of both VAR1 and VAR2 values:

by descending var1 descending var2;

NOTSORTED
specifies that observations with the same BY value are grouped together, but are
not necessarily sorted in alphabetical or numeric order. The observations can be
grouped in another way, for example, in chronological order.

NOTSORTED can appear anywhere in the BY statement and affects all
variables specified in the statement. NOTSORTED overrides DESCENDING if
both appear in the same BY statement.

The requirement for ordering or indexing observations according to the values
of BY variables is suspended when you use the NOTSORTED option. In fact, the
procedure does not use an index if you specify NOTSORTED. For NOTSORTED,
the procedure defines a BY group as a set of contiguous observations that have the
same values for all BY variables. If observations with the same value for the BY
variables are not contiguous, the procedure treats each new value it encounters as
the first observation in a new BY group and will create a graph for that value,
even if it is only one observation.

Preparing Data for BY-Group Processing
Unless you specify the NOTSORTED option, observations in the input data set must

be in ascending numeric or alphabetic order. To prepare the data set, either sort it with
the SORT procedure using the same BY statement that you plan to use in the target
SAS/GRAPH procedure or create an appropriate index on the BY variables.

If the procedure encounters an observation is out of the proper order, it issues an
error message.

If you need to group data in some other order, such as chronological order, you can
still use BY-group processing. To do so, process the data so that observations are
arranged in contiguous groups that have the same BY-variable values and specify the
NOTSORTED option in the BY statement.

For an example of sorting the input data set, see “Example 7. Using BY-group
Processing to Generate a Series of Charts” on page 240 .

SAS/GRAPH Statements Using the BY Statement 143

Controlling BY Lines
By default, the BY statement prints a BY line above each graph that contains the

variable name followed by an equal sign and the variable value. For example, if you
specify BY SITE in the procedure, the default heading when the value of SITE is
London would be SITE=London.

Suppressing the BY line
To suppress the entire BY line, use the NOBYLINE option in an OPTION statement

or specify HBY=0 in the GOPTIONS statement. See “Example 7. Using BY-group
Processing to Generate a Series of Charts” on page 240.

Suppressing the name of the BY variable
To suppress the variable name and the equal sign in the heading and leave only the

BY value, use the LABEL statement to assign a null label (’00’X) to the BY variable.
For example, this statement assigns a null label to the SITE variable:

label site=’00’x;

See also GCHLEGNDExample 12 on page 877.

Controlling the appearance of the BY line
To control the color, font, and height of the BY lines, use the following graphics

options in a GOPTIONS statement:

CBY=BY-line-color
specifies the color for BY lines.

FBY=font
specifies the font for BY lines.

HBY=n<units>
specifies the height for BY lines.

See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261
for a complete description of each option.

Naming the Catalog Entries
The catalog entries generated with BY-group processing always use incremental

naming. This means that the first entry created by the procedure uses the base name
and subsequent entries increment that name. The base name is either the default entry
name for the procedure (for example, GPLOT) or the name specified with the NAME=
option in the action statement. Incrementing the base name automatically appends a
number to each subsequent entry (for example, GPLOT1, GPLOT2, and so forth). See
also “Names and Descriptions of Catalog Entries” on page 55 and “Using the default
output name” on page 63. For an example of incremented catalog names, see “Example
9. Combining Graphs and Reports in a Web Page” on page 248.

Using the BY Statement
This section describes the following:

144 Using the BY Statement Chapter 7

� the effect of BY-group processing on the GCHART, GMAP, and GPLOT procedures
� the interaction between BY-group and RUN-group processing
� the requirements for using BY-group processing with the Annotate facility
� how to include BY information in titles, notes, and footnotes
� how patterns and symbols are assigned to BY-groups
� the effect of using BY-group processing with the ODS HTML statement.

For additional information on any of these topics, refer to the appropriate chapter.

With the GCHART Procedure
When you use BY-group processing with the GCHART procedure, you can do the

following:
� With the BLOCK, HBAR, and VBAR statements, you can use the

PATTERNID=BY option to assign patterns according to BY groups. With
PATTERNID=BY, each BY group uses a different PATTERN definition, but all
bars or blocks within a BY group use the same pattern.

� With the BLOCK statement, you can use the BLOCKMAX= option to produce the
same block-height scaling in all block charts in a BY group.

� With the HBAR or VBAR statement, you can use the RAXIS= option to produce the
same response axis scaling in all horizontal or vertical bar charts in a BY group.

With the PIE and STAR statements, the effect of a BY statement is similar to that of
the GROUP= option, except that the GROUP= option allows you to put more than one
graph on a single page while the BY statement does not. Do not use a BY variable as
the group variable in STAR or PIE statements.

With the GMAP Procedure
By default, BY-group processing affects both the map data set and the response data

set. This means that you get separate, individual output for each map area common to
both data sets. For example, if the map data set REGION contains six states and the
response data set contains the same six states, and you specify BY STATE in the GMAP
procedure, you get six graphs with one state on each graph.

If you use the ALL option in the PROC GMAP statement and you also use the BY
statement, you get one output for each map area in the response data set, but that
output displays all the map areas in the map data set. Only one map area per output
contains response data information; the others are empty. For example, if you create a
block map using the data sets REGION and SALES, specify BY STATE, and include the
ALL option in the PROC GMAP statement, you get six graphs with six states on each
graph. One state per graph has a block; the remaining five are empty.

With the GPLOT Procedure
You can use the UNIFORM option in the PROC GPLOT statement to produce the

same axis scaling for all graphs in a BY group. By default, the range of the axes may
vary from graph to graph, but UNIFORM forces the scaling to be the same for all
graphs generated by the procedure.

With the RUN Groups
If you use the BY statement with a procedure that processes data and supports

RUN-group processing (the GCHART, GMAP, and GPLOT procedures), then each time
you submit an action statement or a RUN statement you get a separate graph for each

SAS/GRAPH Statements Using the BY Statement 145

value of the BY variable. For example, each of these two RUN-groups produces a
separate plot for every value of the BY variable SITE:

/* first run group*/
proc gplot data=sales;

title1 ’Sales Summary’;
by site;
plot sales*model_a;

run;

/* second run group */
plot sales*model_b;

run;
quit;

The BY statement stays in effect for every subsequent RUN group until you submit
another BY statement or exit the procedure. Variables in subsequent BY statements
replace any previous BY variables.

You can also turn off BY-group processing by submitting a null BY statement (BY;) in
a RUN group, but when you do this, the null BY statement turns off BY-group
processing and the RUN group generates a graph.

For more information, see “RUN-Group Processing” on page 33.

With the Annotate Facility
If a procedure that is using BY-group processing also specifies annotation with the

ANNOTATE= option in the PROC statement, the same annotation is applied to every
graph generated by the procedure.

If you specify annotation with the ANNOTATE= option in the action statements for a
procedure, the BY-group processing is applied to the Annotate data set. In this way,
you can customize the annotation for the output from each BY group by including the
BY variable in the Annotate data set and by using each BY-variable value as a
condition for the annotation to be applied to the output for that value.

With TITLE, FOOTNOTE, and NOTE Statements
TITLE, FOOTNOTE, and NOTE statements can automatically include the BY

variable name, BY variable values, or BY lines in the text they produce. To insert BY
variable information into the text strings used by these statements, use the #BYVAR,
#BYVAL, and #BYLINE substitution options. For details, see the description of the
text-string argument on page 222. For an example, see “Example 7. Using BY-group
Processing to Generate a Series of Charts” on page 240.

With PATTERN and SYMBOL Definitions
Procedures that use SYMBOL or PATTERN definitions, assign the symbols or

patterns in order to each BY group. For example, if the BY variable REGION has four
values – East, North, South, and West – the patterns are assigned to the BY-groups in
this order:

PATTERN1 is assigned to East,
PATTERN2 is assigned to North,
PATTERN3 is assigned to South,
PATTERN4 is assigned to West.

If you create sets of graphs from several data sets containing the variable REGION,
and if you want the same pattern assigned to the same region each time, you must be

146 FOOTNOTE Statement Chapter 7

sure that REGION always has the same four values. Otherwise, the patterns may not
be the same across graphs. For example, if the value North is missing from the data,
the patterns are assigned as follows:

PATTERN1 is assigned to East,
PATTERN2 is assigned to South,
PATTERN3 is assigned to West.

In this case, South is assigned pattern 2 instead of pattern 3 and West is assigned
pattern 3 instead of pattern 4. To avoid this, include the value North for the variable
REGION, but assign it a missing value for all other variables.

FOOTNOTE Statement
See “TITLE, FOOTNOTE, and NOTE Statements” on page 210.

GOPTIONS Statement
The GOPTIONS statement temporarily sets default values for many graphics

attributes and device parameters used by SAS/GRAPH procedures.

Used by:
all statements and procedures in a SAS session

Description
The GOPTIONS statement specifies values for graphics options. Graphics options

control characteristics of the graph, such as size, colors, type fonts, fill patterns, and
symbols. In addition, they affect the settings of device parameters, which are defined in
the device entry. Device parameters control such characteristics as the appearance of
the display, the type of output produced, and the destination of the output.

The GOPTIONS statement allows you to change these settings temporarily, either for
a single graph or for the duration of your SAS session. You can use the GOPTIONS
statement to

� override default values for graphics options that control either graphics attributes
or device parameters for a single graph or for an entire SAS session

� reset individual graphics options or all graphics options to their default values
� cancel definitions for AXIS, FOOTNOTE, PATTERN, SYMBOL, and TITLE

statements.

To change device parameters permanently, you must use the GDEVICE procedure to
modify the appropriate device entry or to create a new one. See Chapter 31, “The
GDEVICE Procedure,” on page 915 for details.

To review the current settings of all graphics options, use the GOPTIONS procedure.
See Chapter 36, “The GOPTIONS Procedure,” on page 1075 for details.

Syntax
GOPTIONS<options-list>;

options-list can be one or more options from any or all of the following categories:
� reset option

SAS/GRAPH Statements GOPTIONS Statement 147

RESET=ALL | GLOBAL | statement-name | (statement-name(s))
� options that affect the appearance of the display area and the graphics output

ASPECT=scaling-factor
AUTOSIZE=ON | OFF | DEFAULT
BORDER | NOBORDER
CELL | NOCELL
GSIZE=lines
HORIGIN=horizontal-offset <IN | CM>
HPOS=columns
HSIZE=horizontal-size <IN | CM>
IBACK= fileref | ’external-file’
IMAGESTYLE = TILE | FIT
IMAGEPRINT | NOIMAGEPRINT
ROTATE=LANDSCAPE | PORTRAIT
ROTATE | NOROTATE
SWAP | NOSWAP
TARGETDEVICE=target-device-entry
VORIGIN=vertical-offset <IN | CM>
VPOS=rows
VSIZE=vertical-size <IN | CM>
XMAX=width <IN | CM>
XPIXELS=width-in-pixels
YMAX=height <IN | CM>
YPIXELS=height-in-pixels

� options that affect color
CBACK=background-color
CBY=BY-line-color
COLORS=<(colors-list | NONE)>
CPATTERN=pattern-color
CSYMBOL=symbol-color
CTEXT=text-color
CTITLE=title-color
PENMOUNTS=active-pen-mounts
PENSORT | NOPENSORT

� options that control font selection or text appearance
CHARTYPE=hardware-font-chartype
FASTTEXT | NOFASTTEXT
FBY=BY-line-font
FCACHE=number-fonts-open
FONTRES=NORMAL | PRESENTATION
FTEXT=text-font
FTITLE=title-font
FTRACK=LOOSE | NONE | NORMAL | TIGHT | TOUCH | V5
HBY=BY-line-height <units>
HTEXT=text-height <units>

148 GOPTIONS Statement Chapter 7

HTITLE=title-height <units>
RENDER=APPEND | DISK | MEMORY | NONE | READ
RENDERLIB=libref
SIMFONT=software-font

� options that set defaults for procedures and global statements
GUNIT=units
INTERPOL=interpolation-method
OFFSHADOW=(x <units>, y <units> | (x,y) <units>
V6COMP | NOV6COMP

� image animation options
DELAY=delay-time
DISPOSAL=NONE | BACKGROUND | PREVIOUS | UNSPECIFIED
INTERLACED | NONINTERLACED
ITERATION=iteration-count
TRANSPARENCY | NOTRANSPARENCY

� options that affect how your SAS/GRAPH program runs
DISPLAY | NODISPLAY
ERASE | NOERASE
GWAIT=seconds
GRAPHRC | NOGRAPHRC
IMAGEPRINT | NOIMAGEPRINT
PCLIP | NOPCLIP
POLYGONCLIP | NOPOLYGONCLIP

� options that control how output is sent to devices or files
ADMGDF | NOADMGDF
DEVADDR=device-address
DEVICE=device-entry
DEVMAP=device-map-name | NONE
EXTENSION=’file-type’
FILECLOSE=DRIVERTERM | GRAPHEND
FILEONLY | NOFILEONLY
GACCESS=output-format | ’output-format > destination’
GEND=’string’ <...’string-n’>
GEPILOG=’string’ <...’string-n’>
GOUTMODE=APPEND | REPLACE
GPROLOG=’string’ <...’string-n’>
GPROTOCOL=module-name
GSFLEN=record-length
GSFMODE=APPEND | PORT | REPLACE
GSFNAME=fileref
GSFPROMPT | NOGSFPROMPT
GSTART=’string’ <...’string-n’>
HANDSHAKE=HARDWARE | NONE | SOFTWARE | XONXOFF
KEYMAP=map-name | NONE
POSTGEPILOG=’string’

SAS/GRAPH Statements GOPTIONS Statement 149

POSTGPROLOG=’string’
PREGEPILOG=’string’
PREGPROLOG=’string’
PROMPTCHARS=’prompt-chars-hex-string’X

� options that specify hardware capabilities of the device
CHARACTERS | NOCHARACTERS
CIRCLEARC | NOCIRCLEARC
DASH | NODASH
DASHSCALE=scaling-factor
FILL | NOFILL
FILLINC=0...9999
LFACTOR=line-thickness-factor
PIEFILL | NOPIEFILL
POLYGONFILL | NOPOLYGONFILL
SYMBOL | NOSYMBOL

� options that control printer hardware features
AUTOCOPY | NOAUTOCOPY
AUTOFEED | NOAUTOFEED
BINDING=DEFAULTEDGE | LONGEDGE | SHORTEDGE
COLLATE | NOCOLLATE
DUPLEX | NODUPLEX
GCOPIES=(<current-copies><,max-copies>)
PAPERDEST=bin
PAPERFEED=feed-increment <IN | CM>
PAPERLIMIT=width <IN | CM>
PAPERSIZE=’size-name’ | (width,height)
PAPERSOURCE=tray
PAPERTYPE=’type-name’
PPDFILE=fileref | ’external-file’
REPAINT=redraw-factor
REVERSE | NOREVERSE
SPEED=pen-speed
UCC=’control-characters-hex-string’X

� options that interact with the operating environment
DRVINIT=’system-command(s)’
DRVTERM=’system-command(s)’
PREGRAPH=’system-command(s)’
POSTGRAPH=’system-command(s)’
PROMPT | NOPROMPT

� options for mainframe systems
GCLASS=SYSOUT-class
GDDMCOPY=FSCOPY | GSCOPY
GDDMNICKNAME=nickname
GDDMTOKEN=token
GDEST=destination

150 Using the GOPTIONS Statement Chapter 7

GFORMS=’forms-code’
GWRITER=’writer-name’
TRANTAB=table | user-defined-table

Options
See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261

for a complete description of all graphics options used by the GOPTIONS statement.

Using the GOPTIONS Statement
GOPTIONS statements are global and can be located anywhere in your SAS

program. However, for the graphics options to affect the output from a procedure, the
GOPTIONS statement must execute before the procedure.

With the exception of RESET=, graphics options can be listed in any order in a
GOPTIONS statement. RESET= should be the first option in the GOPTIONS statement.

A graphics option remains in effect until you either specify the option in another
GOPTIONS statement, or use RESET= to reset the values, or end the SAS session.
When a session ends, the values of the graphics options return to their default values.

Graphics options are additive; that is, the value of a graphics option remains in effect
until the graphics option is explicitly changed or reset or until you end your SAS
session. Graphics options remain in effect even after you submit additional GOPTIONS
statements specifying different options.

To reset an individual option to its default value, submit the option without a value
(a null graphics option.) You can use a comma (but it is not required) to separate a null
graphics option from the next one. For example, this GOPTIONS statement sets the
values for background color, text height, and text font:

goptions cback=blue htext=6 pct ftext=zapf;

To reset only the background color specification to the default and keep the
remaining values, use this GOPTIONS statement:

goptions cback=;

To reset all graphic options to their default values, specify RESET=GOPTIONS:

goptions reset=goptions;

Alternatively, you can use RESET=ALL, but it also cancels any global statement
definitions in addition to resetting all graphics options to default values.

Graphics Option Processing
You can control many graphics attributes through statement options, graphics

options, device parameters, or a combination of these. SAS/GRAPH searches these
places to determine the value to use, stopping at the first place that gives it an explicit
value:

1 statement options
2 the value of the corresponding graphics option
3 the value of a device parameter found in the catalog entry for your device driver.

Note: Not every graphics attribute can be set in all three places. See the statement
and procedure chapters for the options that can be used with each. �

SAS/GRAPH Statements LEGEND Statement 151

Some graphics options are supported for specific devices or operating environments
only. See the SAS Help facility for SAS/GRAPH or the SAS companion for your
operating environment for more information.

LEGEND Statement
The LEGEND statement controls the location and appearance of legends on

two-dimensional plots, contour plots, maps, and charts.

Used by:
GCHART, GCONTOUR, GMAP, GPLOT procedures

Global

Description
LEGEND statements specify the characteristics of a legend but do not create

legends. These characteristics are
� the position and appearance of the legend box
� the text and appearance of the legend label
� the appearance of the legend entries, including the size and shape of the legend

values
� the text of the labels for the legend values.

LEGEND definitions are not automatically applied when a procedure generates a
legend. Instead, they must be explicitly assigned with a LEGEND= option in the
appropriate procedure statement.

illustrates the terms associated with the various parts of a legend.

Figure 7.5 Parts of a Legend

Tools

legend
entry

Repairs

legend
value

PartsDepartment

legend
label

offset
origin legend

frame
border of graph

legend value
description

Syntax
LEGEND<1...99><options>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ACROSS=number-of-columns
CBLOCK=block-color
CBORDER=frame-color
CFRAME=background-color

CSHADOW=shadow-color
DOWN=number-of-rows
FRAME

152 LEGEND Statement Chapter 7

FWIDTH=thickness-factor
SHAPE=BAR(width,height) <units> | LINE(length) <units> |

SYMBOL(width,height) <units>
� position-options

MODE=PROTECT | RESERVE | SHARE
OFFSET=(<x ><,y >)<units > | (<x <units >><,y <units >>)
ORIGIN=(<x ><,y >)<units > | (<x <units >><,y <units >>)
POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER | RIGHT>

<INSIDE | OUTSIDE>)
� text-options

LABEL=(text-argument(s)) | NONE
ORDER=(value-list)
VALUE=(text-argument(s)) | NONE

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PT points

PCT percentage of the graphics output area

Note: The Java applet does not support CM, IN, or PT. �

If you omit units, a unit specification is searched for in this order:
1 GUNIT= in a GOPTIONS statement
2 the default unit, CELLS.

ACROSS=number-of-columns
specifies the number of columns to use for legend entries.
Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML

Statement” on page 245.

CBLOCK=block-color
generates and colors a three-dimensional block effect behind the legend. The size
and position of the block are controlled by the graphics option OFFSHADOW=(x,y).

CBLOCK= and CSHADOW= are mutually exclusive. If both are present,
SAS/GRAPH software uses the last one specified. CBLOCK= is usually used in
conjunction with the FRAME, CFRAME=, or CBORDER= options.

The Java client treats the CBLOCK option like CSHADOW.
See also: the OFFSHADOW=“OFFSHADOW” on page 325 graphics option and

“Creating Drop Shadows and Block Effects” on page 163.
Not supported by: Java

CBORDER=frame-color
draws a colored frame around the legend. This option overrides the FRAME
option. CBORDER= can be used in conjunction with the CFRAME= option.

CFRAME=background-color

SAS/GRAPH Statements LEGEND Statement 153

specifies the background color of the legend. This option overrides the FRAME
option. If both CFRAME= and FRAME= are specified, only the solid background
produced by CFRAME= is displayed. CFRAME= can be used in conjunction with
the CBORDER= option.

CSHADOW=shadow-color
generates and colors a drop shadow behind the legend. The size and position of
the shadow is controlled by the graphics option OFFSHADOW=(x,y).

CSHADOW= and CBLOCK= are mutually exclusive. If both are present,
SAS/GRAPH uses the last one specified. CSHADOW= is usually specified in
conjunction with the FRAME, CFRAME=, or CBORDER= options.

See also: the OFFSHADOW=“OFFSHADOW” on page 325 graphics option and
“Creating Drop Shadows and Block Effects” on page 163.

DOWN=number-of-rows
specifies the number of rows to use for legend entries.

FRAME
draws a frame around the legend. The color of the frame is the first color in the
colors list.

FWIDTH=thickness-factor
specifies the thickness of the frame, where thickness-factor is a number. The
thickness of the line increases directly with thickness-factor. By default,
FWIDTH=1.

Not supported by: Java, ActiveX

LABEL=(text-argument(s)) | NONE
modifies a legend label. Text-argument(s) defines the appearance or the text of a
legend label, or both. NONE suppresses the legend label. By default, the text of
the legend label is either the variable name or a previously assigned variable label
(except in the case of GPLOT with OVERLAY, in which case the default label is
“PLOT”). Text-argument(s) can be one or more of these:

‘text-string’
provides up to 256 characters of label text. Enclose each string in quotes.
Separate multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

COLOR=text-color

FONT=font | NONE

HEIGHT=text-height <units>

JUSTIFY=LEFT | CENTER | RIGHT

POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER |
RIGHT>)

Note: The Java applet does not support the POSITION suboption—it
draws legend labels at the top-left of the legend. And, it does not support
multiple values for the JUSTIFY suboption (only the first is honored). The
ActiveX control supports POSITION= but does not support multiple values
for the JUSTIFY suboption (only the first is honored). �

See “Text Description Suboptions” on page 158 for complete descriptions.
Specify as many text strings and text description suboptions as you want, but

enclose them all in one set of parentheses.

154 LEGEND Statement Chapter 7

Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on
page 231 and “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245

Not supported by: Java (partial), ActiveX (partial)

MODE=PROTECT | RESERVE | SHARE
specifies whether or not the legend is drawn in the procedure output area or
whether legend elements can overlay other graphics elements. MODE= can take
one of these values:

PROTECT draws the legend in the procedure output area, but a blanking
area surrounds the legend, preventing other graphics elements
from being displayed in the legend. (A blanking area is a
protected area in which no other graphics elements are
displayed.)

RESERVE takes space for the legend from the procedure output area,
thereby reducing the amount of space available for the graph.
If MODE=RESERVE is specified in conjunction with
OFFSET=, the legend may push the graph off the graphics
output area. RESERVE is valid only when
POSITION=OUTSIDE. If POSITION=INSIDE is specified, a
warning is issued and MODE= is changed to PROTECT.

SHARE draws the legend in the procedure output area. If the legend is
positioned over elements of the graph itself, both graphics
elements and legend elements are displayed.

By default, MODE=RESERVE unless POSITION=INSIDE, in which case the
default changes to MODE=PROTECT.

See also: “Positioning the Legend” on page 162

Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245.

Not supported by: Java, ActiveX

OFFSET=(<x><,y>)<units> | (<x <units>><,y <units>>)
specifies the distance to move the entire legend; x is the number of units to move
the legend right (positive numbers) or left (negative numbers), and y is the number
of units to move the legend up (positive numbers) or down (negative numbers).

To set only the x offset, specify one value, with or without a following comma:

offset=(4 cm,)

To set both the x and y offset, specify two values, with or without a comma
separating them:

offset=(2 pct, 4 pct)

To set only the y offset, specify one value preceded by a comma:

offset=(,-3 pct)

OFFSET= is usually used in conjunction with POSITION= to adjust the position
of the legend. Moves are relative to the location specified by POSITION=, with
OFFSET=(0,0) representing the initial position. You can also apply OFFSET= to
the default legend position.

OFFSET= is unnecessary with ORIGIN= since ORIGIN= explicitly positions the
legend and requires no further adjustment. However, if you specify both options,
the values of OFFSET= are added to the values of ORIGIN=, and the LEGEND is
positioned accordingly.

SAS/GRAPH Statements LEGEND Statement 155

See also: “Positioning the Legend” on page 162 and the option POSITION= on
page 155

Not supported by: Java, ActiveX

ORDER=(value-list)
selects or orders the legend values that appear in the legend. The way you specify
value-list depends on the type of variable that generates the legend:

� For numeric variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment> <n <...n>>

If a numeric variable has an associated format, the specified values must
be the unformatted values.

� For character variables, value-list is a list of unique character values enclosed
in quotes and separated by blanks:

’value-1’ <...’value-n’>

If a character variable has an associated format, the specified values must
be the formatted values.

For a complete description of value-list, see the option ORDER= on page 130 in
the AXIS statement.

Even though ORDER= controls whether a legend value is displayed and where
it appears, the VALUE= option controls the text that the legend value displays.

Not supported by: ActiveX, Java

ORIGIN=(<x><,y>)<units> | (<x <units >><,y <units>>)
specifies the x coordinate and the y coordinate of the lower-left corner of the legend
box. ORIGIN= explicitly positions the legend anywhere on the graphics output
area. It is possible to run a legend off the page or overlay the graph.

To set only the x coordinate, specify one value, with or without a following
comma:

origin=(4 cm,)

To set both the x and y coordinates, specify two values, with or without a comma
separating them:

origin=(2 pct, 4 pct)

To set only the y coordinate, specify one value preceded by a comma:

origin=(,3 pct)

ORIGIN= overrides the POSITION= option if both are used. Although using the
OFFSET= option with the ORIGIN= option is unnecessary, if OFFSET= is also
specified, it is applied after the ORIGIN= request has been processed.

See also: “Positioning the Legend” on page 162

Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245 .

Not supported by: Java, ActiveX

POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER | RIGHT>
<OUTSIDE | INSIDE>)

positions the legend on the graph. Value for POSITION= are

156 LEGEND Statement Chapter 7

OUTSIDE or
INSIDE

specifies the location of the legend in relation to the axis area.

BOTTOM or
MIDDLE or
TOP

specifies the vertical position.

LEFT or
CENTER or
RIGHT

specifies the horizontal position.

By default, POSITION=(BOTTOM CENTER OUTSIDE). You can change one or
more settings. If you supply only one value the parentheses are not required. If
you specify two or three values and omit the parentheses, SAS/GRAPH accepts the
first value and ignores the others.

Once you assign the initial legend position, you can adjust it with the OFFSET=
option.

The ORIGIN= options overrides POSITION=. The value of the MODE= option
can affect the behavior of POSITION=.

Note: The Java applet defaults to BOTTOM-CENTER and supports all
possible combinations of BOTTOM | MIDDLE | TOP with LEFT | CENTER |
RIGHT except for MIDDLE-CENTER (which would overwrite the map.) The Java
applet does not support INSIDE for positioning. �
See also: information on positioning the Legend in the SAS/GRAPH Reference,

Volumes 1 and 2, the options OFFSET= on page 154, andMODE= on page 154.
Not supported by: Java (partial)

SHAPE=BAR(width<units>,height<units>) <units> | LINE(length) <units> |
SYMBOL(width<units>,height<units>) <units>

specifies the size and shape of the legend values displayed in each legend entry.
The value you specify for SHAPE= depends on which procedure generates the
legend.

BAR(width,height)<units>
is used with the GCHART and GMAP procedures, the GPLOT procedure if
you use the AREAS= option, and the GCONTOUR procedure if you use the
PATTERN option. Each legend value is a bar of the specified width and
height. By default, width is 5, height is 0.8, and units are CELLS. You can
specify units for the width,height pair or for the individual coordinates.
Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on

page 231 and “Example 8. Creating a Simple Web Page with the ODS
HTML Statement” on page 245.

LINE(length) <units>
is used with the GPLOT and GCONTOUR procedures. Each legend value is a
line of the length you specify. Plotting symbols are omitted from the legend
values. By default, length is 5 and units are CELLS. You can specify units for
length.

SYMBOL(width<units>,height<units>) <units>
is used with the GPLOT procedure. Each legend value (not each symbol) is
the width and height you specify. For example, this specification produces
legend values like the ones in Figure 7.6 on page 157(a):

shape=symbol(.5,.5)

This specification produces legend values like the ones in Figure 7.6 on
page 157(b):

SAS/GRAPH Statements LEGEND Statement 157

shape=symbol(2,.5)

Figure 7.6 Legend Values Produced with SHAPE= SYMBOL

a. b.

CICITYTY
MinnMinn

PhoenixPhoenix

RaleighRaleigh

CICITYTY
MinnMinn

PhoenixPhoenix

RaleighRaleigh

By default, width is 5, height is 1, and units are CELLS. You can specify
units for the width,height pair or for the individual coordinates.

Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on
page 231.

Not supported by: Java, ActiveX

VALUE=(text-argument(s))| NONE
modifies the legend value descriptions. Text-argument(s) defines the appearance or
the text of the value descriptions. By default, value descriptions are the values of
the variable that generates the legend or an associated format value. Numeric
values are right justified and character values are left justified.

NONE suppresses the value descriptions although the legend values (bars,
lines, and so on) are still displayed. (NONE is not supported by Java or ActiveX).
Text-argument(s) can be one or more of these:

‘text-string’
provides up to 256 characters of text for the value description. Enclose each
string in quotes. Separate multiple strings with blanks.

Specified text strings are assigned to the legend values in order. If you
submit only one string, only the first legend entry uses the value of that
string. If you specify multiple strings, the first string is the text for the first
entry; the second string is the text for the second entry; and so forth. For
example, this specification produces legend entries like those shown in Figure
7.7 on page 157:

value=(’1986’ ’1987’ ’1988’)

Figure 7.7 Specifying Value Descriptions with the VALUE= Option

Year 1986 1987 1988

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

158 LEGEND Statement Chapter 7

COLOR=text-color

FONT=font | NONE

HEIGHT=text-height <units >

JUSTIFY=LEFT | CENTER | RIGHT

TICK=n (not supported by Java or ActiveX)
See “Text Description Suboptions” on page 158 for complete descriptions.
Place text description suboptions before the text strings they modify.

Suboptions not followed by a text string affect the default values. To specify
and describe the text for individual values or to produce multi-line text, use
the TICK= suboption.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

To order or select legend entries, use the ORDER= option.

See also: “Text Description Suboptions” on page 158 and the option ORDER= on
page 155

Not supported by: Java (partial), ActiveX (partial)

Text Description Suboptions
Text description suboptions are used by the LABEL= and VALUE= options to change

the color, height, justification, font, and angle of either default text or specified text
strings. See LABEL= on page 153 and VALUE= on page 157.

COLOR=text-color
C=text-color

specifies the color of the text. If you omit COLOR=, a color specification is
searched for in this order:

1 the CTEXT= option for the procedure

2 the CTEXT= option in a GOPTIONS statement

3 the default, the first color in the colors list.

FONT=font | NONE
F=font | NONE

specifies the font for the text. See Chapter 5, “SAS/GRAPH Fonts,” on page 75for
information on specifying fonts. If you omit FONT=, a font specification is
searched for in this order:

1 the FTEXT= option in a GOPTIONS statement

2 the default hardware font, NONE.

HEIGHT=text-height <units>
H=text-height <units>

specifies the height of the text characters in the number of units. By default,
HEIGHT=1 CELL. If you omit HEIGHT=, a text height specification is searched
for in this order:

1 the HTEXT= option in a GOPTIONS statement

2 the default value, 1.

JUSTIFY=LEFT | CENTER | RIGHT
J=L | C | R

specifies the alignment of the text. The default for character variables is
JUSTIFY=LEFT. The default for numeric variables is JUSTIFY=RIGHT.
Associating a character format with a numeric variable does not change the
default justification of the variable.

SAS/GRAPH Statements LEGEND Statement 159

You can use JUSTIFY= to print multiple lines of text by repeating JUSTIFY=
before the text string for each line. For example, this statement produces a legend
label and value descriptions like those shown in Figure 7.8 on page 159:

legend label=(justify=c ’Distribution’
justify=c ’Centers’)

value=(tick=1 justify=c ’Portland,’
justify=c ’Maine’

tick=2 justify=c ’Paris,’
justify=c ’France’

tick=3 justify=c ’Sydney,’
justify=c ’Australia’);

Figure 7.8 Specifying Multiple Lines of Text with the JUSTIFY= Suboption

Distribution
Centers

Portland,
Main

Paris,
France

Sydney,
Australia

Specify additional suboptions before any string.
See also: the suboption TICK= on page 160.

POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER | RIGHT>)
places the legend label in relation to the legend entries. The POSITION=
suboption is used only with the LABEL= option. By default, POSITION=LEFT.

The parentheses are not required if only one value is supplied. If you specify
two or three values and omit the parentheses, SAS/GRAPH accepts the first value
and ignores the others.

Figure 7.9 on page 160 shows some of the ways POSITION= affects a multi-line
legend label in which the entries are stacked in a column (ACROSS=1). This
figure uses a label specification such as

label=(’multi-’
justify=left ’line’
justify=left ’label’
position=left)

In this specification, POSITION= specifies the default value, LEFT, which is
represented by the first legend in the figure. The value of POSITION= is indicated
above each legend. The default justification is used unless you also use the
JUSTIFY= suboption.

160 LEGEND Statement Chapter 7

Figure 7.9 Using the POSITION= Suboption with Multi-line Legend Labels

POSITION=LEFT
(default)

POSITION=(TOP)
JUSTIFY=CENTER

multi-
line
label + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=(TOP LEFT)

multi- + + + ONE
line ● ● ● TWO
label x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=(MIDDLE LEFT)

 + + + ONE
multi- ● ● ● TWO
line x x x THREE
label # # # FOUR
 $ $ $ FIVE

POSITION=(BOTTOM LEFT)

 + + + ONE
 ● ● ● TWO
multi- x x x THREE
line # # # FOUR
label $ $ $ FIVE

multi-
line
label

 + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=TOP
JUSTIFY=LEFT

 + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

multi-
line
label

multi-
line

label

 + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=TOP
JUSTIFY=RIGHT

In addition, specifying POSITION=RIGHT mirrors the effect of POSITION=LEFT,
and specifying POSITION=BOTTOM mirrors the effect of POSITION=TOP.
Not supported by: Java

TICK=n
T=n

specifies the nth legend entry. The TICK= suboption is used only with the
VALUE= option to designate the legend entry whose text and appearance you
want to modify. For example, to change the text of the third legend entry to
Minneapolis, specify

value=(tick=3 ’Minneapolis’)

The characteristics of all other value descriptions remain unchanged.
If you use TICK= when you designate text for one legend entry, you must also

use it when you designate text for any additional legend entries. For example, this
option changes the text of both the second and third legend entries:

SAS/GRAPH Statements Using the LEGEND Statement 161

value=(tick=2 ’Paris’ tick=3 ’Sydney’)

If you omitted TICK=3, the text of the second legend entry would be
ParisSydney.

Text description suboptions that precede TICK= affect all the value descriptions
for the legend unless the same suboption (with a different value) follows a TICK=
specification. Text description suboptions that follow TICK= affect only the
specified legend entry. For example, suppose you specify this option for a legend
with three entries:

value=(color=red font=swiss tick=2 color=blue)

The text of all three entries would use the Swiss font; the first and third entries
would be red and only the second entry would be blue.

Using Text Description Suboptions
Text description suboptions affect all the strings that follow them unless the

suboption is changed or turned off. If the value of a suboption is changed, the new
value affects all the text strings that follow it. Consider this example:

label=(font=swiss height=4 ’Weight’
justify=right height=3 ’(in tons)’)

FONT=SWISS applies to both Weight and (in tons). HEIGHT=4 affects Weight,
but is respecified as HEIGHT=3 for (in tons). JUSTIFY=RIGHT affects only (in
tons).

Using the LEGEND Statement
LEGEND statements can be located anywhere in your SAS program. They are global

and remain in effect until canceled or until you end your SAS session. LEGEND
statements are not applied automatically, and must be explicitly assigned by an option
in the procedure that uses them.

You can define up to 99 different LEGEND statements. If you define two LEGEND
statements of the same number, the most recently defined one replaces the previously
defined statement of the same number. A LEGEND statement without a number is
treated as a LEGEND1 statement.

Cancel individual LEGEND statements by defining a LEGEND statement of the
same number without options (a null statement):

legend4;

Canceling one LEGEND statement does not affect any other LEGEND definitions. To
cancel all current LEGEND statements, use RESET= in a GOPTIONS statement:

goptions reset=legend;

Specifying RESET=GLOBAL or RESET=ALL cancels all current LEGEND
definitions as well as other settings.

To display a list of current LEGEND definitions in the LOG window, use the
GOPTIONS procedure with the LEGEND option:

proc goptions legend nolist;
run;

162 Positioning the Legend Chapter 7

Positioning the Legend
By default, the legend shares the procedure output area with the procedure output,

such as a map or bar chart. (See “Placement of Graphic Elements in the Graphics
Output Area” on page 39.) However, several LEGEND statement options allow you to
position a legend anywhere on the graphics output area and even to overlay the
procedure output. This section describes these options and their effect on each other.

Positioning the Legend on the Graphics Output Area
There are two ways you can position the legend on the graphics output area:
� Describe the general location of the legend with the POSITION= option. If

necessary, fine-tune the position with the OFFSET= option.
� Position the legend explicitly with the ORIGIN=option.

Using POSITION= and OFFSET=
The values of the POSITION= option affect the legend in two ways:
� OUTSIDE and INSIDE determine whether the legend is located outside or inside

the axis area.
� BOTTOM or MIDDLE or TOP (vertical position) and LEFT or CENTER or RIGHT

(horizontal position) determine where the legend is located in relation to its
OUTSIDE or INSIDE position.

Figure 7.10 on page 162 shows the legend positions inside the axis area.

Figure 7.10 Legend Positions Inside the Axis Area

axis
legend
positions

Figure 7.11 on page 162 shows legend positions outside the axis area.

Figure 7.11 Legend Positions Outside the Axis Area

axis area

legend
positions

axis frame

The default combination is POSITION=(BOTTOM CENTER OUTSIDE). The
combination (OUTSIDE MIDDLE CENTER) is not valid.

SAS/GRAPH Statements Creating Drop Shadows and Block Effects 163

Use OFFSET=(x,y) to adjust the position of the legend specified by POSITION=. The
x value shifts the legend either left or right and the y value shifts the legend either up
or down.

The offset values are always applied after the POSITION= request. For example, if
POSITION=(TOP RIGHT OUTSIDE), the legend is located in the upper right corner of
the graphics output area. If OFFSET=(0,0) is specified, the legend does not move. If
OFFSET=(-5,-8)CM, the legend moves 5 centimeters to the left and 8 centimeters down.

Using ORIGIN=
Use ORIGIN=(x,y) to specify the coordinates of the exact location of the lower left

corner of the legend box. Because ORIGIN=(0,0) is the lower left corner of the graphics
output area, the values of x and y must be positive. If you specify negative values, a
warning is issued and the default value is used.

Relating Legends to Other Graphic Elements
By default, the legend is inside the procedure output area and the space it occupies

reduces the size of the graph itself. To control the way the legend relates to the other
elements of the graph, use the MODE= option. These are values for MODE=:

� RESERVE reserve space for the legend outside the axis area and move the graph
to make room for the legend. This is the default setting and is valid only when
POSITION=OUTSIDE.

� PROTECT prevents the legend from being overwritten by the procedure output.
PROTECT blanks out graphics elements, allowing only legend elements to be
displayed in the legend’s space.

� SHARE displays both graphics elements and legend elements in the same space.
This setting is usually used when the legend is positioned inside the axis area.
SHARE is useful when the graph has a space that the legend can fit into. For an
example, see “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245.

Interactions Between POSITION= and MODE=
You cannot specify both POSITION=INSIDE and MODE=RESERVE because

MODE=RESERVE assumes the legend is outside the axis area, and
POSITION=INSIDE positions the legend inside the axis area. Therefore, when you
specify POSITION=INSIDE, change the value of MODE= to SHARE or PROTECT.
Otherwise, SAS/GRAPH issues a warning and automatically changes the value of
MODE= to PROTECT.

Creating Drop Shadows and Block Effects
To produce a drop shadow or a three-dimensional block effect behind the legend use

the CSHADOW= or CBLOCK= option in the LEGEND statement in conjunction with
the graphics option OFFSHADOW=(x,y).

The value of x determines how far the shadow or block extends to the right (positive
numbers) or to the left (negative numbers) of the legend. The value of y determines how
far the shadow or block extends above (positive numbers) or below (negative numbers)
the legend. If OFFSHADOW=(0,0) is specified, the shadow or block is not visible.

By default, OFFSHADOW=(0.0625, -0.0625) IN; that is, the shadow or block extends
1/16th of an inch to the right and 1/16th of an inch below the legend.

164 NOTE Statement Chapter 7

NOTE Statement
See “TITLE, FOOTNOTE, and NOTE Statements” on page 210.

ODS HTML Statement
The ODS HTML statement opens or closes the HTML destination.

Used by:
GANNO, GAREABAR, GBARLINE, GCHART, GCONTOUR, GFONT, GIMPORT,
GMAP, GPLOT, GPRINT, GRADAR, GREPLAY, GSLIDE, GTESTIT, G3D,
G3GRID procedures

Requirements:
If the HTML destination is open, the BODY= argument is required.

Operating Environment Information: On mainframes, either GPATH= or PATH=
is also required. �

Description
This section describes the ODS HTML statement as it relates to SAS/GRAPH

procedures.
The ODS HTML statement opens or closes the HTML destination. If the destination

is open, it produces output that is written in Hyper Text Markup Language (HTML). If
DEVICE=GIF, graphics output is produced as GIF files, and the HTML files display the
GIF files that are created by the SAS/GRAPH procedures. If DEVICE=JAVAMETA,
graphics output is produced as metagraphics data, which provides graphs that are exact
replicas of their corresponding GRSEG graphs but that are interactive in a Web page.
Procedures GCHART, GCONTOUR, GMAP, GPLOT, and G3D can also be used with the
JAVA and ACTIVEX drivers, both of which generate JavaScript in the output HTML
file. If DEVICE=JAVA, then a Java-enabled browser can use the script to render graphs
as a SAS/GRAPH Applet for Java. If DEVICE=ACTIVEX, then an ActiveX-enabled
browser can use the script to render graphs as a SAS/GRAPH Control for ActiveX.

Syntax
ODS HTML HTML-file-specification(s) | action

<ANCHOR=’string’>
<ARCHIVE=’string’>
<ATTRIBUTES=(’attribute-name1’=’attribute-value-1’ ...
’attribute-name-n’=’attribute-value=n’)>
<CODEBASE=file-location <(URL=’Uniform-Resource-Locator’)>>
<BASE=’base-text’>
<GFOOTNOTE | NOGFOOTNOTE>
<GPATH=graphics-location <(URL=’Uniform-Resource-Locator’ | NONE)>>
<GTITLE | NOGTITLE>
<HEADTEXT=’HTML-for-document-head’>
<METATEXT=’HTML-for-document-head’>
<NEWFILE=starting-point>
<PARAMETERS=(’parameter-name1’=’parameter-value-1’ ...
’parameter-name-n’=’parameter-value=n’)>
<PATH=file-location <(URL=’Uniform-Resource-Locator’ | NONE)>>

SAS/GRAPH Statements ODS HTML Statement 165

<RECORD_SEPARATOR=’string’ | NONE>
<STYLE=style-definition>
<TRANTAB=’translation-table’>;

� action can be one of
CLOSE
EXCLUDE
SELECT
SHOW

Note: For information on EXCLUDE, SELECT, and SHOW, see SAS Output
Delivery System: User’s Guide. �

� HTML-file-specification(s) can be one or more of
BODY=file-specification
CONTENTS=file-specification
FRAME=file-specification
PAGE=file-specification

Note: BODY= is required. If you use FRAME=, you must also use
CONTENTS= or PAGE=. �

Required Arguments
One of these arguments is required.

CLOSE
closes the HTML destination and closes any HTML files that are currently open.
Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML

Statement” on page 245.

EXCLUDE
excludes output objects from the HTML destination.

SELECT
selects output objects to send to the HTML destination.

SHOW
writes to the SAS log the current selection or exclusion list for the HTML
destination.

HTML-file-specification
opens the HTML destination and specifies the HTML file or files to write to. You
can open up to four HTML files; the file designated by BODY= is required.
Whenever you open one of these files, it remains open until you either

� close the HTML destination with ODS HTML CLOSE
� open a different file for the same HTML file specification.

HTML-file-specification can be one or more of the following arguments. Values
for file-specification follow the arguments.

BODY=file-specification
FILE=file-specification

identifies the file that contains the HTML version of the procedure output.
With SAS/GRAPH, the body file contains references to the graphs. If

166 ODS HTML Statement Chapter 7

DEVICE=GIF, the graphs are stored in separate GIF files. When you view
the body file on a browser, the graphs are automatically displayed.

Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245 and “Example 10. Creating a Bar Chart with
Drill-down for the Web” on page 255.

CONTENTS=file-specification
identifies the file that contains a table of contents to the ODS output that is
produced while the HTML destination is open. The contents file contains
links to the body file(s).

The text of links to graphics output is taken from the description field of
the GRSEG catalog entry. Use the DESCRIPTION= option in the procedure
to change the link text.

You can display a contents file alone or in conjunction with a frame file. If
you display a contents file directly (without using a frame file), selecting a
link opens the associated body file, and the contents file is no longer
displayed. If you display a contents file with a frame file, the contents file
always remains available in the left frame, and selecting a link opens the
associated body file in the right frame.

FRAME=file-specification
identifies a file that points to the body file and to either the table of contents
file or the page file, or both. If you specify FRAME=, you must also specify
either CONTENTS= or PAGE= or both.

When you open the frame file in the browser, it displays the Table of
Contents or the Table of Pages or both in the left frame, and the body file in
the right frame.

PAGE=file-specification
identifies the file that contains a table of pages to the ODS output that is
produced while the HTML destination is open.The pages file contains links to
the body file(s). ODS produces a new page of output whenever a procedure
explicitly specifies for a new page. The SAS system option PAGESIZE= has
no effect on pages in HTML output.

File-specification identifies the file or SAS catalog to write to and can be one of
the following:

� fileref (<URL=’Uniform-Resource-Locator’> <NO_BOTTOM_MATTER>
<NO_TOP_MATTER> <DYNAMIC>)

� external-file (<URL=’Uniform-Resource-Locator’> <NO_BOTTOM_MATTER>
<NO_TOP_MATTER> <DYNAMIC>)

� entry.HTML (<URL=’Uniform-Resource-Locator’> <NO_BOTTOM_MATTER>
<NO_TOP_MATTER> <DYNAMIC>)

where

external-file
is the physical name of an external file to write to. For information on
specifying external files, see the SAS companion for your operating
environment.

fileref
is a fileref that has been assigned to an external file. The fileref must refer to
a single file; it cannot point to an aggregate file storage location. Use a
FILENAME statement to assign a fileref. See also “FILENAME Statement”
on page 28.

SAS/GRAPH Statements ODS HTML Statement 167

entry.HTML
specifies an entry in a SAS catalog to write to.You must also specify a library
and catalog. See the discussion on PATH=“ODS HTML Statement” on page
164.

URL=’Uniform-Resource-Locator’
provides a URL for file-specification. ODS uses this URL instead of the file
name in all the links and references that it creates that point to the file.

This option is useful for building HTML files that may be moved from one
location to another. If the links from the contents and page files are
constructed with a simple URL (one name), they work as long as the
contents, page, and body files are all in the same location.

NO_BOTTOM_MATTER
NOBOT

omits the bottom matter for the file. By default, when you close a file that
was open for HTML output of any kind, ODS writes some HTML to the
bottom of the file. This HTML ends the file so that it can be viewed cleanly in
a browser.

If you wish to leave a file in a state that you can append to, use
NO_BOTTOM_MATTER on the BODY= option on the ODS HTML statement
that opens the file. This option, in conjunction with NO_TOP_MATTER
makes it possible for you to add output to a file that already exists and to put
your own HTML code in the file between pieces of output.

To use NO_BOTTOM_MATTER, you must use a fileref for file-specification.
The FILENAME statement that defines the fileref must include the
host-specific option that opens the file for appending.

When you are opening a file that ODS has previously written to, you must
use ANCHOR= to specify a new base name for the anchors to avoid
duplicating anchors that already exist in the file. See the discussion “About
Anchors” on page 168.

NO_TOP_MATTER
NOTOP

omits the opening matter for the file. By default, when you open a file for
HTML output of any kind, ODS writes some HTML to the top of the file.

If you wish to append ODS output to an existing file, you must open the file
with NO_TOP_MATTER on the BODY= option on the ODS HTML statement
that opens the file. This option, in conjunction with NO_BOTTOM_MATTER
makes it possible for you to add output to a file that already exists and to put
your own HTML code in the file between pieces of output.

To use NO_TOP_MATTER, you must use a fileref for file-specification. The
FILENAME statement that defines the fileref must include the host-specific
option that opens the file for appending.

When you are opening a file that ODS has previously written to, you must
use ANCHOR= to specify a new base name for the anchors to avoid
duplicating anchors that already exist in the file. See the discussion“About
Anchors” on page 168.

DYNAMIC
enables you to send HTML output directly to a web server instead of writing
it to a file. This option sets the value of the HTMLContentType= attribute.

By default, if you do not specify DYNAMIC, ODS sets the value of
HTMLContentType= for writing to a file.

Note: If you specify the DYNAMIC suboption with any file specification in
the ODS HTML statement, you must specify it for all the file specifications in
the statement. �

168 Using the ODS HTML Statement Chapter 7

Note: Regardless of how you specify the file, you may need to include the extension
.HTML or .HTM on the file name. Some browsers require one of these extensions in
order to read the file. �

Note: For additional information, refer to the Output Delivery System. �

Using the ODS HTML Statement
While the ODS HTML destination is open, you can submit as many ODS HTML

statements as you like, and you can place them anywhere in your SAS/GRAPH
program. This enables you to open new files, change anchor names, or specify a new
location for graphics output whenever you like. At the end of your ODS HTML
processing step, submit ODS HTML CLOSE to close the destination and all open files.

Specifying a Destination for ODS HTML Output
When you use the ODS HTML statement for SAS/GRAPH, you must do the following:
� assign a body file with the ODS HTML BODY= option
� specify DEVICE=GIF (or TARGET=GIF) in a GOPTIONS statement to create the

GIF files. By default with ODS processing, the GIF files are stored in the current
directory. To specify a destination for all the HTML and GIF files, use the PATH=
option. To store the GIF files in a different location than the HTML files, use the
GPATH= option to specify a location for the GIF files, and PATH= to specify the
location of the HTML files. In both cases,the destination must be an aggregate
storage location. With procedures GCHART, GCONTOUR, GMAP, GPLOT, and
G3D, you can also use DEVICE=ACTIVEX to create graphs as ActiveX controls, or
DEVICE=JAVA to create graphs as Java applets. The controls or applets are
defined within the body file.

Note: For more information, see SAS Output Delivery System: User’s Guide. �

For more information about the output files generated for use with the Web, see
“Types of Web Presentations Available” on page 370.

About Anchors
ODS HTML automatically creates an anchor for every piece of output generated by

the SAS procedures. An anchor specifies a particular location within an HTML file. In
SAS/GRAPH, an anchor usually defines a link target such as a graph whose location is
defined in an IMG element.

Note: For additional information, refer to the Output Delivery System �

In order for the links from the contents, page, or frame file to work, each piece of
output in the body files must have a unique anchor to link to. The anchor for the first
piece of output in a body file acts as the anchor for that file. These anchors are used by
the frame and contents files, if they are created, to identify the targets for the links that
ODS HTML automatically generates.

By default, the first anchor is named IDX and all subsequent anchors generated
while the HTML destinations remain open increment that name. Anchor values
increment while the ODS HTML destinations remain open unless you use ANCHOR=
to assign a new value. Anchor values continue to increment when you open new body
files, start new procedures, or produce different types of output.

SAS/GRAPH Statements PATTERN Statement 169

Controlling the anchor name is useful when you create a graph with drill-down
capability. In this case, you must create a variable that contains the names of the
anchors that are the targets for the different areas of the graph that the user may click
on.

PATTERN Statement
The PATTERN statement defines the characteristics of patterns used in graphs.

Used by:
GCHART, GCONTOUR, GMAP, GPLOT procedures; SYMBOL statement;
Annotate facility

Global
Assigned by default

Description
PATTERN statements create PATTERN definitions that define the color and type of

area fill for patterns used in graphs. These are the procedures and the graphics areas
that they create that use PATTERN definitions:

GCHART color, fill pattern, or image for the bars in 2D bar charts; color and
fill pattern for the segments of 3D bar charts, pie charts, and star
charts.

GCONTOUR contour levels in contour plots

GMAP map areas in choropleth, block, and prism maps; blocks in block
maps

GPLOT areas beneath or between plotted lines.

In addition, the SYMBOL statement and certain Annotate facility functions and
macros can use pattern specifications. For details see the “SYMBOL Statement” on
page 183 and Chapter 24, “Using Annotate Data Sets,” on page 587.

You can use the PATTERN statement to control the fill and color of a pattern, and
whether the pattern is repeated. There are three types of patterns:

� bar and block patterns
� map and plot patterns
� pie and star patterns

Pattern fills can be solid or empty, or composed of parallel or crosshatched lines. For
two-dimensional bar charts, the PATTERN statement can specify images to fill
horizontal or vertical bars. In addition, you can specify device-dependent hardware
patterns for rectangle, polygon, and pie fills on devices that support hardware patterns.

If you do not create PATTERN definitions, SAS/GRAPH software generates them as
needed and assigns them to your graphs by default. Generally, the default behavior is
to rotate a solid pattern through the current colors list. For details, see “About Default
Patterns” on page 177.

Syntax
PATTERN<1...255>

<COLOR=pattern-color>
<REPEAT=number-of-times>

170 PATTERN Statement Chapter 7

<VALUE=bar/block-pattern
| map/plot-pattern
| pie/star-pattern
| hardware-pattern>;

� bar/block-pattern can be one of these:

EMPTY

SOLID

style <density>

� map/plot-pattern can be one of these:

MEMPTY

MSOLID

Mdensity <style <angle>>

� pie/star-pattern can be one of these:

PEMPTY

PSOLID

Pdensity <style <angle>>

� hardware-pattern has this form:

HWxxxnnn

Options

COLOR=pattern-color
C=pattern-color

specifies the color of the fill. Pattern-color is any SAS/GRAPH color name. See
Chapter 6, “SAS/GRAPH Colors and Images,” on page 91 .

Note: ActiveX assigns colors in a different order from Java, so the same data
can appear differently with those two drivers. �

Using COLOR= with a null value cancels the color specified in a previous
PATTERN statement of the same number without affecting the values of other
options.

COLOR= overrides the CPATTERN= graphics option.
The CFILL= option in the PIE and STAR statements overrides COLOR=. For

details, see “Controlling Slice Patterns and Colors” on page 831.

CAUTION:
Omitting COLOR= in a PATTERN statement may cause the PATTERN statement to
generate multiple PATTERN definitions. �

If no color is specified for a PATTERN statement, that is, if neither COLOR=
nor CPATTERN= is used, the PATTERN statement rotates the specified fill
through each color in the colors list before the next PATTERN statement is used.
For details, see “Understanding Pattern Sequences” on page 182.

See also: “Working with PATTERN Statements” on page 179.

Featured in: “Example 7. Using BY-group Processing to Generate a Series of
Charts” on page 240.

Not supported by: Java (partial), ActiveX (partial)

SAS/GRAPH Statements PATTERN Statement 171

IMAGE= fileref | ’external-file’
specifies an image file that will be used to fill one or more bars of a
two-dimensional bar chart, as generated by the HBAR and VBAR statements of
the GCHART procedure. The format of the external file specification varies across
operating environments. See also the IMAGESTYLE= option.

Note: When you specify an image file to fill a bar, the bar is not outlined. �

Note: If an image is specified on a PATTERN statement that is used with
another type of chart, then the PATTERN statement is ignored and default pattern
rotation is affected. For example, if you submit a PIE statement when an image
has been specified in a PATTERN statement, the default fill pattern is used for the
pie slices, with each slice in the pie displaying the fill pattern in the same color.

In the Java applet, IMAGE= only works on 2–dimensional rectangular bars.
The Java applet does not support images on arbitrary polygons. �
See also: For related information, see “Placing Images on the Bars of

Two-Dimensional Bar Charts” on page 116.
Not supported by: Java (partial), ActiveX (partial)

IMAGESTYLE = TILE | FIT
specifies how the image specified in the IMAGE= option is to be applied to fill a
bar in a two-dimensional bar chart. The TILE value, which is the default, copies
the image as needed to fill the bar. The FIT value stretches a single instance of
the image to fill the bar.
See also: For related information, see “Placing Images on the Bars of

Two-Dimensional Bar Charts” on page 116.
Not supported by: Java (partial), ActiveX (partial)

REPEAT=number-of-times
R=number-of-times

specifies the number of times that a PATTERN definition is applied before the next
PATTERN definition is used. By default, REPEAT=1.

The behavior of REPEAT= depends on the color specification:
� If you use both COLOR= and REPEAT= in a PATTERN statement, the

pattern is repeated the specified number of times in the specified color. The
fill can be either the default solid or a fill specified with VALUE=.

� If you use CPATTERN= in a GOPTIONS statement to specify a single
pattern color, and use REPEAT= either alone or with VALUE= in a
PATTERN statement, the resulting hatch pattern is repeated the specified
number of times.

� If you omit both COLOR= and CPATTERN=, and use REPEAT= either alone
(generates default solids) or with VALUE= in a PATTERN statement, the
resulting pattern is rotated through each color in the colors list, and then the
entire group generated by this cycle is repeated the number of times specified
in REPEAT=. Thus, the total number of patterns produced depends on the
number of colors in the current colors list.

Using REPEAT= with a null value cancels the repetition specified in a previous
PATTERN statement of the same number without affecting the values of other
options.
See also: “Understanding Pattern Sequences” on page 182.
Not supported by: Java (partial), ActiveX (partial)

VALUE=bar/block-pattern
V=bar/block-pattern

specifies patterns for:

172 PATTERN Statement Chapter 7

� bar charts produced by the HBAR, HBAR3D, VBAR, and VBAR3D
statements in the GCHART procedure including 2D and 3D bar shapes.

� the front surface of blocks in block charts produced by the BLOCK statement
in the GCHART procedure.

� the blocks in block maps produced by the BLOCK statement in the GMAP
procedure. (The map area from which the block rises takes a map pattern as
described on the option VALUE= on page 173). See also “About Block Maps
and Patterns” on page 1016.

Values for bar/block-pattern are

EMPTY
E

an empty pattern. Neither the Java applet nor the ActiveX
control supports EMPTY.

SOLID
S

a solid pattern (the only valid value for 3D charts).

style<density> a shaded pattern.

Note: style<density> is not supported by the Java or
ActiveX clients. �

Style specifies the direction of the lines:

L left-slanting lines.

R right-slanting lines.

X crosshatched lines.

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5
produces the heaviest shading.

Figure 7.12 on page 172 shows all of the patterns available for bars and blocks.

Figure 7.12 Bar and Block Patterns

If no valid patterns are available, default bar and block fill patterns are selected
in this order:

1 SOLID

SAS/GRAPH Statements PATTERN Statement 173

2 X1– X5
3 L1– L5
4 R1– R5
Each fill is used once with every color in the colors list unless a pattern color is

specified. The entire sequence is repeated as many times as required to provide
the necessary number of patterns.

Note: If the V6COMP graphics option is in effect, or if color is limited to a
single color with the CPATTERN= or COLORS= graphics options, the order is X1–
X5, L1– L5, R1– R5, S, and E. �
Not supported by: Java (partial), ActiveX (partial)

VALUE=map/plot-pattern
V=map/plot-pattern

specifies patterns for:
� contour levels in contour plots produced by the GCONTOUR procedure
� map area surfaces in block, choropleth, and prism maps produced by the

BLOCK, CHORO, AND PRISM statements in the GMAP procedure.
� areas under curves in plots produced by the AREAS= option in the PLOT

statement in the GPLOT procedure.

Values for map/plot-pattern are

MEMPTY
ME

an empty pattern. EMPTY or E are also valid aliases, except
when used with the map areas in block maps created by the
GMAP procedure.

MSOLID
MS

a solid pattern. SOLID or S are also valid aliases, except when
used with the map areas in block maps created by the GMAP
procedure.

Mdensity<style<angle>> a shaded pattern.

Note: Mdensity<style<angle>> is not supported by the Java
or ActiveX clients. �

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5
produces the heaviest shading.

Style specifies the type of the pattern lines:

N parallel lines (the default).

X crosshatched lines.

Angle specifies the angle of the pattern lines:

0...360 the degrees at which the parallel lines are
drawn, measured from the horizontal. By
default, angle is 0 (lines are horizontal).

Figure 7.13 on page 174 shows some typical map and plot patterns.

174 PATTERN Statement Chapter 7

Figure 7.13 Map and Plot Patterns

90o

45o

0o

135o

M3N0 M3X0

M3N90 M3X90

M3X135M3N135

M3N45 M3X45

If no valid patterns are available, default map and plot fill patterns are selected
in this order:

1 MSOLID

2 M2N0

3 M2N90

4 M2X45

5 M4N0

6 M4N90

7 M4X90
Each fill is used once with every color in the colors list unless a pattern color is

specified. The entire sequence is repeated as many times as required to provide
the necessary number of patterns.

Note: If the V6COMP graphics option is in effect, or if color is limited to a
single color with the CPATTERN= or COLORS= graphics options, MSOLID is not
used and the default fill list starts with M2N0. �

Not supported by: Java (partial), ActiveX (partial)

VALUE=pie/star-pattern
V=pie/star-pattern

specifies patterns for pie and star charts produced by the PIE and STAR
statements in the GCHART procedure. Values for pie/star-pattern are

PEMPTY
PE

an empty pattern. EMPTY or E are also valid aliases.

PSOLID
PS

a solid pattern. SOLID or S are also valid aliases.

Pdensity<style<angle>> a shaded pattern.

SAS/GRAPH Statements PATTERN Statement 175

Note: Pdensity<style<angle>> is not supported by the Java
or ActiveX clients. �

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5
produces the heaviest shading.

Style specifies the type of the pattern lines:

N parallel lines (the default).

X crosshatched lines.

Angle specifies the angle of the pattern lines:

0...360 the angle of the lines, measured in degrees
from perpendicular to the radius of the
slice. By default, angle is 0.

The FILL= option in the PIE and STAR statements in the GCHART procedure
overrides VALUE=.

Figure 7.14 on page 175 shows some typical pie and star patterns.

Figure 7.14 Pie and Star Patterns

90o

45o

0o

135o

P3N0

P3N45

P3X0

P3X45

P3N90 P3X90

P3X135P3N135

If no valid patterns are available, default pie and star fill patterns are selected
in this order:

1 PSOLID
2 P2N0
3 P2N90

176 Using the PATTERN Statement Chapter 7

4 P2X45
5 P4N0

6 P4N90
7 P4X90
Each fill is used once with every color in the colors list unless a pattern color is

specified. The entire sequence is repeated as many times as required to provide
the necessary number of patterns.

Note: If the V6COMP graphics option is in effect, or if color is limited to a
single color with the CPATTERN= or COLORS= graphic options, PSOLID is not
used and the default fill list starts with P2N0. �

Note: If you use hatch patterns and request a legend instead of slice labels, the
patterns in the slices are oriented to be visually equivalent to the legend. �

Not supported by: Java (partial), ActiveX (partial)

VALUE=HWxxxnnn
specifies a hardware pattern where

HW identifies the pattern as a hardware pattern. The pattern name
must begin with the characters HW.

xxx the last two or three characters of the module name in the
Module field in the Detail window of your device entry. If the
module name has eight characters (SASGDPSL, for example),
use the last three characters (PSL). If the module name has
only seven characters (SASGDVT, for example), use the last
two characters (VT).

nnn the number the driver uses to identify the device-dependent
pattern. Patterns and associated pattern numbers vary from
device to device. See the documentation for your device for
valid pattern numbers. For a brief description of some device
specific pattern values, see “Specifying Device-Dependent
Hardware Patterns” on page 181.

If you specify a hardware pattern for a device that does not support hardware
patterns, or if you specify an invalid pattern number, a solid rectangle, polygon, or
pie fill is substituted. A solid fill will also be used in place of a hardware pattern
in certain types of clipped polygons. See the PCLIP and POLYGONCLIP options
in Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261
for more information on using hardware patterns with clipped polygons.

See also: “Specifying Device-Dependent Hardware Patterns” on page 181.
Not supported by: Java (partial), ActiveX (partial)

Using the PATTERN Statement
PATTERN statements can be located anywhere in your SAS program. They are global

and remain in effect until redefined, canceled, or until the end of your SAS session.
You can define up to 255 different PATTERN statements. A PATTERN statement

without a number is treated as a PATTERN1 statement.
PATTERN statements generate one or more PATTERN definitions, depending on how

the COLOR=, VALUE=, and IMAGE= options are used. For information on PATTERN
definitions, see “Working with PATTERN Statements” on page 179, as well as the

SAS/GRAPH Statements About Default Patterns 177

description of COLOR= on page 170, VALUE= on page 173, and IMAGE= on page 171
options.

PATTERN definitions are generated in the order in which the statements are
numbered, regardless of gaps in the numbering or the statement’s position in the
program. Although it is common practice, you do not have to start with PATTERN1,
and you do not have to use sequential statement numbers.

PATTERN definitions are applied automatically to all areas of the graphics output
that require patterns. When assigning PATTERN definitions, SAS/GRAPH starts with
the lowest-numbered definition with an appropriate fill specification or with no fill
specification. It continues to use the specified patterns until all valid PATTERN
definitions have been used. Then, if more patterns are required, SAS/GRAPH returns
to the default pattern rotation, but continues to outline the areas in the same color as
the fill.

Altering or Canceling PATTERN Statements
PATTERN statements are additive. If you define a PATTERN statement and later

submit another PATTERN statement with the same number, the new PATTERN
statement redefines or cancels only the options that are included in the new statement.
Options not included in the new statement are not changed and remain in effect. For
example, assume you define PATTERN4 as

pattern4 value=x3 color=red repeat=2;

This statement cancels only REPEAT= without affecting the rest of the definition:

pattern4 repeat=;

Add or change options in the same way. This statement changes the color of the
pattern from red to blue:

pattern4 color=blue;

After all these modifications, PATTERN4 has these characteristics:

pattern4 value=x3 color=blue;

Cancel individual PATTERN statements by defining a PATTERN statement of the
same number without options (a null statement):

pattern4;

Canceling one PATTERN statement does not affect any other PATTERN definitions.
To cancel all current PATTERN statements, use the RESET= option in a GOPTIONS
statement:

goptions reset=pattern;

Specifying RESET=GLOBAL or RESET=ALL cancels all current PATTERN
definitions as well as other settings.

To display a list of current PATTERN definitions in the LOG window, use the
GOPTIONS procedure with the PATTERN option:

proc goptions pattern nolist;
run;

About Default Patterns
When a procedure produces a graph that needs one or more patterns, SAS/GRAPH

either

178 About Default Patterns Chapter 7

� automatically generates the appropriate default patterns and outlines to fill the
areas, or

� uses patterns, colors, and outlines that are defined by PATTERN statements,
graphics options, and procedure options.

In order to understand how SAS/GRAPH generates and assigns patterns defined
with PATTERN statements it is helpful to understand how it generates and assigns
default patterns. The following sections describe the default pattern behavior for all
procedures. See “Working with PATTERN Statements” on page 179 for details about
defining patterns.

How Default Patterns and Outlines Are Generated
In general, SAS/GRAPH uses default patterns when no PATTERN statements are

defined. Typically, the default pattern that SAS/GRAPH uses is a solid fill that it
rotates once through the colors list, skipping the foreground color. By default,
SAS/GRAPH also outlines all areas in the foreground color. (Typically, the foreground
color is the first color in the device’s colors list.)

Specifically, SAS/GRAPH uses default patterns and outlines when you
� do not specify any PATTERN statements, and
� do not use the CPATTERN= graphics option, and
� do not use the COLORS= graphics options (that is, you use the device’s default

colors list and it has more than one color), and
� do not use the COUTLINE= option in the action statement.

If all of these conditions are true, then SAS/GRAPH
� selects the first default fill for the appropriate pattern, which is always solid, and

rotates it once through the colors list, generating one solid pattern for each color.
If the first color in the device’s colors list is black (or white), SAS/GRAPH skips
that color and begins generating patterns with the next color.

Note: The one exception to the default solid pattern is the map area pattern in
a block map produced by the GMAP procedure, which uses a hatch fill by default.
By default the map areas and their outlines use the first color in the colors list,
regardless of whether the list is the default device list or one specified with
COLORS= in the GOPTIONS statement. �

� uses the foreground color to outline every patterned area.

For example, the default colors list for the PSCOLOR device contains BLACK, RED,
GREEN, BLUE, CYAN, MAGENTA, YELLOW, and GRAY. Therefore, for this device,
the first five default patterns are solid red, solid green, solid blue, solid cyan, and solid
magenta. These patterns are all outlined in black, the first color in the colors list.

If a procedure needs additional patterns, SAS/GRAPH selects the next default
pattern fill appropriate to the graph and rotates it through the colors list, skipping the
foreground color as before. SAS/GRAPH continues in this fashion until it has generated
enough patterns for the chart.

Things That Affect Default Patterns
Changing any of these conditions may change or override the default behavior:
� If you specify a colors list with the COLORS= option in a GOPTIONS statement

and the list contains more than one color, SAS/GRAPH rotates the default fills,
beginning with SOLID, through that list. In this case, it uses every color, even if
the foreground color is black (or white). The default outline color remains the
foreground color.

SAS/GRAPH Statements Working with PATTERN Statements 179

� If you specify either COLORS=(one-color) or the CPATTERN= graphics option, the
default fill changes from SOLID to the appropriate list of hatch patterns.
SAS/GRAPH uses the specified color to generate one pattern definition for each
hatch pattern in the list. The default outline color remains the foreground color.

� Whenever you specify PATTERN statements, whether or not the procedure can use
them, the default outline color for all patterns changes from foreground to SAME.
Therefore, when a procedure runs out of specified patterns and returns to the
default pattern rotation, the outline color is SAME, not foreground.

For a description of these graphics options, see Chapter 8, “Graphics Options and
Device Parameters Dictionary,” on page 261.

Working with PATTERN Statements
With PATTERN statements, you can specify
� the type of fill (VALUE=)
� the color of the fill (COLOR=)
� the images used to fill the bars in a 2D chart (IMAGE=)
� how many times to apply the statement before using the next one (REPEAT=).

See “Placing Images on the Bars of Two-Dimensional Bar Charts” on page 116 for
information on filling the bars of two–dimensional bar charts with images using the
PATTERN statement.

You can also use procedure options to specify the pattern outline color and the
CPATTERN= graphics option to specify a default color for all patterns.

Whether you use PATTERN statement options alone or with each other affects the
number and kind of patterns your PATTERN statements generate. Depending on the
options you use, you can explicitly specify every pattern used by your graphs or you can
let the PATTERN statement generate a series of pattern definitions using either the
colors list or the list of default fills.

Explicitly Specifying Patterns
To explicitly specify all the patterns in your graph, you need to do one of the

following for every pattern your graph requires:
� Provide a PATTERN statement that uses the COLOR= option to specify the

pattern color, for example

pattern1 color=red;

By default, the fill type SOLID.
� Provide a PATTERN statement that uses both the COLOR= option and the

VALUE= option to specify the fill, for example

pattern1 color=blue value=r3;

Including COLOR= in the PATTERN statement is the simplest way to assure that
you get exactly the patterns you want. When you use the COLOR= option, the
PATTERN statement generates exactly one PATTERN definition for that statement. If
you also use the REPEAT= option, the PATTERN definition is repeated the specified
number of times.

Generating Multiple Pattern Definitions
You can also use PATTERN statements to generate multiple PATTERN definitions.

To do this use the VALUE= option to specify the type of fill you want but omit the
COLOR= option – for example

180 Working with PATTERN Statements Chapter 7

pattern1 value=r3;

In this case, the PATTERN statement rotates the R3 fill through all the colors in the
colors list. For more information on pattern rotation, see “Understanding Pattern
Sequences” on page 182.

Selecting an Appropriate Pattern
The type of fill you specify depends on the type of graph you are producing:

With... Use...

bar and block charts (PROC
GCHART), block maps (PROC GMAP)

VALUE= bar/block-pattern on page
171

contour plots (PROC GCONTOUR),
map area surfaces (PROC GMAP)

VALUE=map/plot-pattern on page 173

pie and star charts (PROC GCHART) VALUE=pie/star-pattern on page 174

Note: If you specify a fill that is inappropriate for the type of graph you are
generating (for example, if you specify VALUE=L1 in a PATTERN statement for a
choropleth map), SAS/GRAPH ignores the PATTERN statement and continues
searching for a valid pattern. If it does not find a definition with a valid fill
specification, it uses default patterns instead. �

Controlling Outline Colors
Whenever you use PATTERN statements, the default outline color is the same as the

fill color, for example, a blue bar has a blue outline. The effect is the same as specifying
COUTLINE=SAME. Even when the procedure runs out of user-defined patterns and
generates default patterns, the outlines continue to match the interior fill color.

To change the outline color of any pattern, whether default or user-defined, use the
COUTLINE= option in the action statement that generates the chart.

The Effect of the CPATTERN= Graphics Option
Although the CPATTERN= graphics option is used most often with default patterns,

it does affect the PATTERN statement. With default patterns (no PATTERN statements
specified) it

� specifies the color for all patterns
� causes default patterns to use hatched fills instead of the default SOLID.

In conjunction with the PATTERN statement it does the following:
� With a PATTERN statement that only specifies a fill (VALUE=), CPATTERN=

determines the color of that fill. For example, these statements produce two green,
hatched patterns:

goptions cpattern=green;
pattern1 value=x3;
pattern2 value=x1;

� With a PATTERN statement that only specifies a color (COLOR=), the COLOR=
option overrides the CPATTERN= color, but CPATTERN= causes the fill to be

SAS/GRAPH Statements Specifying Device-Dependent Hardware Patterns 181

hatched, not the default SOLID. For example, these statements produce one red,
hatched pattern:

goptions cpattern=green;
pattern1 color=red;

See also the description of CPATTERN=“CPATTERN” on page 274.

Specifying Version 6 Patterns
If you specify the V6COMP graphics option, SAS/GRAPH generates patterns by

rotating the appropriate Version 6 default patterns through all the colors in the colors
list. With V6COMP, all patterns are outlined in the same color as the fill.

Specifying Device-Dependent Hardware Patterns
You can specify device-dependent hardware patterns with the types of device drivers

described in this section.

GDDM Drivers
GDDM drivers include several sets of hardware patterns. These patterns include both

predefined and user-defined (device-dependent) fill patterns. When you use a hardware
pattern with a GDDM driver, specify the name of the device-dependent pattern set you
want the driver to use. This name will be stored in the GPROLOG string in the device
entry for the driver. Specify the name of the pattern set in either of these ways:

� Use the GPROLOG= graphics option to assign the pattern set name to the
GPROLOG string.

� Enter the pattern set name in the Gprolog window of the device entry for the
GDDM device driver.

If you do not specify a pattern set name, the device uses a predefined pattern.
Values for nnn for predefined patterns are 1 through 16. Values for nnn for

device-dependent patterns are 65 through 128.
Information regarding both types of fill patterns can be found in GDDM Application

Programming Guide. For additional information on specifying hardware patterns with
GDDM drivers, see also the GDDM Base Programming Reference.

TEK42xx Series Terminal Drivers
TEK42xx series terminal drivers support the predefined fill patterns found in the

Technical Reference Guide for each terminal. These drivers can also support
user-defined fill patterns. Values for nnn for these drivers are numbers less than 175.

HPLJxxxx Drivers
HPLJxxxx drivers for the HP LaserJet support the predefined shading levels and

predefined fill patterns for rectangle fill only. These patterns are documented in the
appropriate HP LaserJet technical manual. Values for nnn for shading levels are 001
through 008. Values for fill patterns are 009 through 014.

Metagraphics Drivers
Metagraphics drivers can use the hardware patterns supported by the device for

which they are written. When you specify hardware patterns for a metagraphics driver,
values of nnn can range from 0 through 999.

182 Understanding Pattern Sequences Chapter 7

Understanding Pattern Sequences
Pattern sequences are sets of PATTERN definitions that SAS/GRAPH automatically

generates when a PATTERN statement specifies a fill but not a color. In this case, the
specified fill is used once with every color in the colors list. If REPEAT= is also used,
the resulting PATTERN definitions are repeated the specified number of times.

Generating Pattern Sequences
SAS/GRAPH generates pattern sequences when a PATTERN statement uses

VALUE= to specify a fill and all of the following conditions are also true:

� the COLOR= option is not used in the PATTERN statement

� the CPATTERN= graphics option is not used

� the colors list, either default or user-specified, contains more than one color.

In this case, the PATTERN statement rotates the fill specified by VALUE= through
every color in the colors list, generating one PATTERN definition for every color in the
list. After every color has been used once, SAS/GRAPH goes to the next PATTERN
statement. For example, suppose you specified the following colors list and PATTERN
statements for bar/block patterns:

goptions colors=(blue red green) ctext=black;
pattern1 color=red value=x3;
pattern2 value=r3;
pattern3 color=blue value=l3;

Here, PATTERN1 generates the first PATTERN definition. PATTERN2 omits COLOR=,
so the specified fill is rotated through all three colors in the colors list before the
PATTERN3 statement is used. This table shows the color and fill of the PATTERN
definitions that would be generated if nine patterns were required:

Definition
Number Source

Characteristics:
Color Fill

1 PATTERN1 red x3

2 PATTERN2 blue r3

3 PATTERN2 red r3

4 PATTERN2 green r3

5 PATTERN3 blue l3

6 first default blue solid

7 first default red solid

8 first default green solid

9 second default blue x1

Notice that after all the PATTERN statements are exhausted, the procedure begins
using the default bar and block patterns, beginning with SOLID. Each fill from the
default list is rotated through all three colors in the colors list before the next default
fill is used.

SAS/GRAPH Statements SYMBOL Statement 183

Repeating Pattern Sequences
If you use REPEAT= but not COLOR=, the sequence generated by cycling the

definition through the colors list is repeated the number of times specified by
REPEAT=. For example, these statements illustrate the effect of REPEAT= on
PATTERN statements both with and without explicit color specifications:

goptions colors=(red blue green);
pattern1 color=gold repeat=2;
pattern2 value=x1 repeat=2;

Here, PATTERN1 is used twice and PATTERN2 cycles through the list of three colors
and then repeats this cycle a second time:

Sequence Number Source Characteristics: Color Fill

1 PATTERN1 gold solid (first default)

2 PATTERN1 gold solid (first default)

3 PATTERN2 red x1

4 PATTERN2 blue x1

5 PATTERN2 green x1

6 PATTERN2 red x1

7 PATTERN2 blue x1

8 PATTERN2 green x1

SYMBOL Statement

The SYMBOL statement defines the characteristics of symbols that display the data
plotted by a PLOT statement used by PROC GBARLINE, PROC GCONTOUR, and
PROC GPLOT.

Used by:
GBARLINE, GCONTOUR, GPLOT procedures

Global
Assigned by default

Description
SYMBOL statements create SYMBOL definitions, which are used by the GPLOT and

GCONTOUR procedures. For the GPLOT procedure, SYMBOL definitions control

� the appearance of plot symbols and plot lines, including bars, boxes, confidence
limit lines, and area fills

� interpolation methods

� how plots handle data out of range.

For the GCONTOUR procedure, SYMBOL definitions control

� the appearance and text of contour labels

� the appearance of contour lines.

184 SYMBOL Statement Chapter 7

If you create SYMBOL definitions, they are automatically applied to a graph by the
procedure. If you do not create SYMBOL definitions, these procedures generate default
definitions and apply them as needed to your plots.

Syntax
SYMBOL<1...255>

<COLOR=symbol-color>
<MODE=EXCLUDE | INCLUDE>
<REPEAT=number-of-times>
<STEP=distance<units>>
<appearance-option(s)>
<interpolation-option>
<SINGULAR=n>;

appearance-options can be one or more of these:
BWIDTH=box-width
CI=line-color
CO=color
CV=value-color
FONT=font
HEIGHT=symbol-height<units>
LINE=line-type
POINTLABEL<=(label-description(s)) | NONE>
VALUE=special-symbol | text-string | NONE
WIDTH=thickness-factor

interpolation-option can be one of these:
� general methods

INTERPOL=JOIN
INTERPOL=map/plot-pattern
INTERPOL=NEEDLE
INTERPOL=NONE
INTERPOL=STEP<placement><J><S>

� high-low interpolation methods
INTERPOL=BOX<option(s)><00...25>
INTERPOL=HILO<C><option(s)>
INTERPOL=STD<1 | 2 | 3><variance><option(s)>

� regression interpolation methods
INTERPOL=R<type><0><CLM | CLI<50...99>>

� spline interpolation methods
INTERPOL=L<degree><P><S>
INTERPOL=SM<nn><P><S>
INTERPOL=SPLINE<P><S>

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

SAS/GRAPH Statements SYMBOL Statement 185

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points.

If you omit units, a unit specification is searched for in this order:
1 the GUNIT= option in a GOPTIONS statement
2 the default unit, CELLS.

BWIDTH=box-width
specifies the width of the box generated by either the INTERPOL=BOX or
INTERPOL=HILOB option. Box-width can be any number greater than 0. By
default, the value of box-width is the same as the value of the WIDTH= option,
whose default value is 1. Therefore, if you specify a value for WIDTH= and omit
BWDITH=, the width of the box changes accordingly.
Featured in: “Example 4. Creating and Modifying Box Plots” on page 233.

CI=line-color
specifies a color for an interpolation line (GPLOT) or a contour line (GCONTOUR).
If you omit CI= but specify CV=, CI= assumes the value of CV=. In this case, CI=
and CV= specify the same color, which is the same as specifying COLOR= alone.

If you omit CI=, the color specification is searched for in this order:
1 the CV= option
2 the COLOR= option
3 the CSYMBOL= option in a GOPTIONS statement
4 each color in the colors list sequentially before the next SYMBOL definition is

used.
See also: “Using Color” on page 206
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”

on page 226

CO=color
specifies a color for

� outlines of filled areas generated by the INTERPOL=map/plot-pattern option
� confidence limit lines generated by the INTERPOL=R series option
� staffs, boxes, and bars generated by the high-low interpolation methods:

INTERPOL=HILO, INTERPOL=BOX, and INTERPOL=STD.

If you omit the CO= option, the search order for a color specification depends on
the interpolation method being used.
See also: “Using Color” on page 206
Featured in: “Example 5. Filling the Area between Plot Lines” on page 236 and

“Example 4. Creating and Modifying Box Plots” on page 233.

COLOR=symbol-color
C=symbol-color

specifies a color for the entire definition, unless it is followed by a more explicit
specification. For the GPLOT procedure, this includes plot symbols, the plot line,
confidence limit lines, and outlines. For the GCONTOUR procedure, this includes
contour lines and labels.

Using the COLOR= option is exactly the same as specifying the same color for
both the CI= and CV= options.

186 SYMBOL Statement Chapter 7

If COLOR= precedes CI= or CV= in the same statement, CI= or CV= is used
instead.

If you do not use COLOR= or CI=, CV=, and CO=, the color specification is
searched for in this order:

1 the CSYMBOL= option in a GOPTIONS statement
2 each color in the colors list sequentially before the next SYMBOL definition is

used.
If you do not use a SYMBOL statement to specify a color for each symbol, but

you do specify a colors list in a GOPTIONS statement, then Java and ActiveX
assign colors to symbols differently than does the SAS server. To ensure
consistency on all devices, you should specify the desired color of each symbol. The
SAS server restarts at the first color in the colors list and rotates through all of
the colors in the color list for the first default symbol before going to the next
symbol in the default symbol list where it again rotates through all of the colors in
the color list before picking up the next symbol.

Note: Neither the Java applet nor the ActiveX control supports using COLOR=
with PROC GCONTOUR. �
See also: “Using Color” on page 206
Not supported by: Java (partial), ActiveX (partial)

CV=value-color
specifies a color for

� plot symbols in the GPLOT procedure
� the filled areas generated by the INTERPOL=map/plot-pattern option
� contour labels in the GCONTOUR procedure.

If you omit CV= but specify CI=, CV= assumes the value of CI=. In this case,
CV= and CI= specify the same color, which is the same as specifying COLOR=
alone.

If you omit CV=, the color specification is searched for in this order:
1 the CI= option
2 the COLOR= option
3 the CSYMBOL= option in a GOPTIONS statement
4 each color in the colors list sequentially before the next SYMBOL definition is

used.

Note: Neither the Java applet nor the ActiveX control supports using CV= with
PROC GCONTOUR. �
See also: “Using Color” on page 206
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”

on page 226, “Example 5. Filling the Area between Plot Lines” on page 236, and
“Example 4. Creating and Modifying Box Plots” on page 233.

Not supported by: Java (partial), ActiveX (partial)

FONT=font
F=font

specifies the font for the plot symbol (GPLOT) or contour-label text (GCONTOUR)
specified by VALUE=. The font specification can be

� the name of a software font. For example, FONT=MARKER specifies a
software font that is stored in the catalog SASHELP.FONTS.

� a hardware font specification of the form HWxxxnnn or hardware-font-name:

HWxxxnnn

SAS/GRAPH Statements SYMBOL Statement 187

HW identifies the font as a hardware font, xxx are the last two or three
characters of the module name as listed in the Module field in the device
entry’s Detail window, and nnn is the Chartype number of the hardware
font as listed in the device entry’s Chartype window (for example,
FONT=HWDMX001).

hardware-font-name
specifies the name of a hardware font as shown in the device entry’s
Chartype window (for example, FONT="Palatino-Italic"). The name
must be enclosed in double quotation marks.

By default, no font is specified. The symbol specified by VALUE= is taken from
the special symbol table shown in Figure 7.21 on page 202. To use symbols from
the special symbol table, omit FONT=.

You can use FONT= to specify a symbol font, such as Marker, that contains a
symbol that you want to use in your plot. In this case, the string specified by
VALUE= is the character code for the symbol. For example, this definition
specifies a heart:

symbol font=marker value=N;

You can also use FONT= to specify a text font, such as Swiss. In this case, the
string specified by VALUE= appears in the plot:

symbol font=swiss value=star;

Here, the word "star" is displayed in the plot.
To cancel a font specification and return to the default special symbol table,

enter a null value:

symbol font=, value=star;

See also: the VALUE= on page 199 option , “Specifying Plot Symbols” on page
205, and Chapter 5, “SAS/GRAPH Fonts,” on page 75.

Featured in: Example 2 on page 906
Not supported by: Java, ActiveX

HEIGHT=symbol-height<units>
H=symbol-height<units>

specifies the height in number of units of plot symbols (GPLOT) or contour labels
(GCONTOUR).

Note: HEIGHT= affects only the height of the symbols and labels on the plot;
it does not affect the height of any symbols that may appear in a legend.

The HEIGHT option overrides the MarkerSize attribute in graph styles. For
more information on graph styles, see SAS Output Delivery System: User’s
Guide. �

Note: With client-side rendering using Java, the minimum height is 2 pixels;
with ActiveX a symbol may be so small as to be invisible.

Neither the Java applet nor the ActiveX control supports HEIGHT= with PROC
GCONTOUR. �
See also: the option SHAPE= on page 156 in the LEGEND statement
Featured in: “Example 4. Creating and Modifying Box Plots” on page 233,

“Example 3. Rotating Plot Symbols through the Colors List” on page 231, and
Example 2 on page 906.

Not supported by: Java (partial), ActiveX (partial)

INTERPOL=BOX<option(s)><00...25>
I=BOX<option(s)><00...25>

188 SYMBOL Statement Chapter 7

produces box and whisker plots. The bottom and top edges of the box are located
at the sample 25th and 75th percentiles. The center horizontal line is drawn at
the 50th percentile (median). By default, INTERPOL=BOX, in which case the
vertical lines, or whiskers, are drawn from the box to the most extreme point
within 1.5 interquartile ranges. (An interquartile range is the distance between
the 25th and the 75th sample percentiles.) Any value more extreme than this is
marked with a plot symbol.

Values for option(s) are one or more of these:

F fills the box with the color specified by CV= and outlines the
box with the color specified by CO=

J joins the median points of the boxes with a line

T draws tops and bottoms on the whiskers.
In addition, you can specify a percentile to control the length of the whiskers

within the range 00 through 25. These are examples of percentile specifications
and their effect:

00 high/low extremes. INTERPOL=BOX00 is not the same as the
default, INTERPOL=BOX.

01 1st percentile low, 99th high

05 5th percentile low, 95th high

10 10th percentile low, 90th high

25 25th percentile low, 75th high; since the box extends from the
25th to the 75th percentile, no whiskers are produced.

Figure 7.15 on page 188 shows the type of plot INTERPOL=BOX produces.

Figure 7.15 Box Plot

Y

5050

4040

3030

2020

1010

0

A B C

X

Note: If you use HAXIS= or VAXIS= in the PLOT statement or ORDER= in an
AXIS definition to restrict the range of axis values, by default any observations
that fall outside the axis range are excluded from the interpolation calculation.
See the MODE= option on page 197 �

You cannot use the GPLOT procedure PLOT statement option AREAS= with
INTERPOL=BOX.

To increase the thickness of all box plot lines, including the box, whiskers, join
line, and top and bottom ticks, use the WIDTH= option.

SAS/GRAPH Statements SYMBOL Statement 189

To increase the width of the box itself, use the BWIDTH= option. By default the
value of BWIDTH= is the same as the value of WIDTH=. Therefore, if you specify
a value for WIDTH= and omit BWIDTH=, the width of the box changes.

For a scatter effect with the box, use a multiple plot request, as in this example:

symbol1 i=none v=star color=green;
symbol2 i=box v=none color=blue;
proc gplot data=test;

plot (y y)*x / overlay;

This option cannot be used in a symbol definition that is named in the GPLOT
procedure, when that procedure is generating output for the Web using a Java
device driver. This applies only when the PLOT statement is used with the
OVERLAY option, or when the PLOT2 statement is used, with or without the
OVERLAY option.
Featured in: “Example 4. Creating and Modifying Box Plots” on page 233.
Not supported by: Java (partial)

INTERPOL=HILO<C><option>
I=HILO<C><option>

specifies that a solid vertical line connect the minimum and maximum Y values for
each X value. The data should have at least two values of Y for every value of X;
otherwise, the single value is displayed without the vertical line.

By default, for each X value, the mean Y value is marked with a tick. This is
shown in Figure 7.16 on page 190.

To specify high, low, close stock market data, include this option:

C draws tick marks at the close value instead of at the mean
value. Specifying C assumes that there are three values of Y
(HIGH, LOW, and CLOSE) for every value of X. If more or
fewer than three Y values are specified, the mean is ticked.
The Y values can be in any order in the input data set.

In addition, you can specify one of these values for option:

B connects the minimum and maximum Y values with bars
instead of lines. Use the BWIDTH= option to increase the
width of the bars.

J joins the mean values or the close values (if HILOC is
specified) with a line. This point is not marked with a tick
mark. You cannot use the PLOT statement option AREAS=
with INTERPOL=HILOJ.

T adds tops and bottoms to each line.

BJ connects maximum and minimum values with a bar and joins
the mean or close values.

TJ adds tops and bottoms to the lines and joins the mean or close
values.

Figure 7.16 on page 190 shows the type of plot INTERPOL=HILO produces.
Plot symbols in the form of dots have been added to this figure.

190 SYMBOL Statement Chapter 7

Figure 7.16 High-Low Plot

Y

5050

4040

3030

2020

1010

0

A B C

X

To increase the thickness of all lines generated by the INTERPOL=HILO option,
use the WIDTH= option.

Note: If you use HAXIS= or VAXIS= in the PLOT statement or ORDER= in an
AXIS definition to restrict the range of axis values, by default any observations
that fall outside the axis range are excluded from the interpolation calculation.
See the option MODE= on page 197. �

This option cannot be used in a symbol definition that is named in the GPLOT
procedure, when that procedure is generating output for the Web using a Java
device driver. This applies only when the PLOT statement is used with the
OVERLAY option, or when the PLOT2 statement is used, with or without the
OVERLAY option.
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”

on page 226.
Not supported by: Java (partial)

INTERPOL=JOIN
I=JOIN

connects data points with straight lines. Points are connected in the order they
occur in the input data set. Therefore, the data should be sorted by the
independent (horizontal axis) variable.

If the data contain missing values, the observations are omitted. However, the
plot line is not broken at missing values unless the SKIPMISS option is used.
See also: the SKIPMISS on page 1112 option and “Missing Values” on page 1087.

INTERPOL=L<degree><P><S>
I=L<degree><P><S>

specifies a Lagrange interpolation to smooth the plot line. Specify one of these
values for degree:

1 | 3 | 5 specifies the degree of the Lagrange interpolation polynomial.
By default, degree is 1.

In addition, you can specify one or both of these:

P specifies a parametric interpolation

S sorts a data set by the independent variable before plotting its
data.

The Lagrange methods are useful chiefly when data consist of tabulated, precise
values. A polynomial of the specified degree (1, 3, or 5) is fitted through the
nearest 2, 4, or 6 points. In general, the first derivative is not continuous. If the

SAS/GRAPH Statements SYMBOL Statement 191

values of the horizontal variable are not strictly increasing, the corresponding
parametric method (L1P, L3P, or L5P) is used.

Specifying INTERPOL=L1P, INTERPOL=L3P, or INTERPOL=L5P results in a
parametric Lagrange interpolation of degree 1, 3, or 5, respectively. Both the
horizontal and vertical variables are processed with the Lagrange method and a
parametric interpolation of degree 1, 3, or 5, using the distance between points as
a parameter.

INTERPOL=map/plot-pattern
I=map/plot-pattern

specifies that a pattern fill the polygon that has been defined by the data points.
Values for map/plot-pattern are

MEMPTY
ME

an empty pattern. EMPTY and E are valid aliases.
The Java applet does not support this option.

MSOLID
MS

a solid pattern. SOLID and S are valid aliases

Mdensity<style<angle>>
a shaded pattern. (The Java applet does not support this option.)

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5 produces the
heaviest.

Style specifies the direction of pattern lines:

N parallel lines (the default)

X crosshatched lines.
Angle specifies the starting angle for parallel or crosshatched lines:

0...360 the degree at which the parallel lines are drawn. By
default, angle is 0 (lines are parallel to the horizontal
axis).

The INTERPOL=map/plot-pattern option only works if the data are structured
so that the data points and, consequently, the plot lines form an enclosed area.
The plot lines should not cross each other.
See also: the “PATTERN Statement” on page 169
Featured in: “Example 5. Filling the Area between Plot Lines” on page 236
Not supported by: Java (partial)

INTERPOL=NEEDLE
I=NEEDLE

draws a vertical line from each data point to a horizontal line at the 0 value on the
vertical axis or the minimum value on the vertical axis if it is greater than 0. The
horizontal line is drawn automatically.

Figure 7.17 on page 192 shows the type of plot INTERPOL=NEEDLE produces.
Plot symbols are not displayed in this figure.

192 SYMBOL Statement Chapter 7

Figure 7.17 Needle Plot

1 1 2 2 3 3 4 4 5 5 6

 X

Y

2020

1010

0

1010

2020

You cannot use the PLOT statement option AREAS= with
INTERPOL=NEEDLE.

INTERPOL=NONE
I=NONE

suppresses any interpolation and, if VALUE= is not specified, also suppresses plot
points. If no interpolation method is specified in a SYMBOL statement and if the
graphics option INTERPOL= is not used, INTERPOL=NONE is the default.

You cannot use the PLOT statement option AREAS= with INTERPOL=NONE.

INTERPOL=R<type><0><CLM | CLI<50...99>>
I=R<type><0><CLM | CLI<50...99>>

specifies that a plot is a regression analysis. By default, regression lines are not
forced through plot origins and confidence limits are not displayed.

Type specifies the type of regression. Specify one of these values for type:

L requests linear regression representing the regression equation

Y= � 0 + � 1 X

Q requests quadratic regression representing the regression
equation

Y= � 0 + � 1 X + � 2 X2

C requests cubic regression representing the regression equation

Y= � 0 + � 1 X+ � 2 X 2 + � 3 X3

Note: When least-square solutions for the parameters are
not unique, the SAS/GRAPH server defaults to a quadratic
equation for the interpolation whereas the Java client and
ActiveX client might pick a cubic solution to use. �

By default, type is L. The regression line is drawn in the line type specified in
the LINE= option. By default, the type of the regression line is 1.

Note: You must specify type if you use either 0, or CLI, or CLM. �
To force the regression line through a (0,0) origin, specify:

0 eliminates the � 0 parameter, or intercept, from the regression
equation. If the origin is at (0,0), also forces the regression line
through the origin. For example, if you specify 0 for a linear
regression, the plot line represents the equation

Y= �1 X

SAS/GRAPH Statements SYMBOL Statement 193

Note: To force the regression line through the origin (0,0)
when the data ranges do not place the origin at (0,0), use the
GPLOT procedure options HZERO and VZERO (ignored if the
data contain negative values), or use HAXIS and VAXIS to
specify axes ranges from 0 to maximum data value. If the data
ranges contain negative values and HAXIS and VAXIS specify
ranges starting at 0, only values within the displayed range are
used in the interpolation calculations. �

To display confidence limits, specify one of these:

CLM displays confidence limits for mean predicted values

CLI displays confidence limits for individual predicted values.
You can specify confidence levels from 50% to 99%. By default, the confidence

level is 95%. Include a confidence level specification only if you use CLM or CLI.
The line type used for the confidence limit lines is determined by adding 1 to

the values of LINE=. By default, the line type of confidence limit lines is 2.
Figure 7.18 on page 193 shows the type of plot INTERPOL=RCCLM95 produces

(cubic regression analysis with 95% confidence limits).

Figure 7.18 Plot of Regression Analysis and Confidence Limits

*
*

*
*

*
*

**
*

**

*

*

*
*

40 40 60 60 80 80 100 100 120 120 140 140 160160

 X

Y

3030

2020

1010

0

Featured in: Example 4 on page 1126.
Not supported by: Java (partial)

INTERPOL=SM<nn><P><S>
I=SM<nn><P><S>

specifies that a smooth line is fit to data using a spline routine. INTERPOL=SM is
a method for smoothing noisy data. The points on the plot do not necessarily fall
on the line.

The relative importance of plot values versus smoothness is controlled by nn.
Values for nn are

0...99 produces a cubic spline that minimizes a linear combination of
the sum of squares of the residuals of fit and the integral of the
square of the second derivative (Reinsch 1967)*. The greater
the nn value, the smoother the fitted curve. By default, the
value of nn is 0.

* Reinsch, C.H. (1967), “Smoothing by Spline Functions,” Numerische Mathematik, 10, 177–183.

194 SYMBOL Statement Chapter 7

In addition, specify one or both of these:

P specifies a parametric cubic spline

S sorts data by the independent variable before plotting.

Not supported by: Java

INTERPOL=SPLINE<P><S>
I=SPLINE<P><S>

specifies that the interpolation for the plot line use a spline routine.
INTERPOL=SPLINE produces the smoothest line and is the most efficient of the
nontrivial spline interpolation methods.

Spline interpolation smoothes a plot line using a cubic spline method with
continuous second derivatives (Pizer 1975)**This method uses a piecewise
third-degree polynomial for each set of two adjacent points. The polynomial passes
through the plotted points and matches the first and second derivatives of
neighboring segments at the points.

Specify one or both of these:

P specifies a parametric spline interpolation method. This
interpolation uses a parametric spline method with continuous
second derivatives. Using the method described earlier for the
spline interpolation, a parametric spline is fitted to both the
horizontal and vertical values. The parameter used is the
distance between points

� � ��� � ���

If two points are so close together that the computations
overflow, the second point is not used.

S sorts a data set by the independent variable before plotting its
data.

Note: When points on the graph are out of range of the axis values, the curve is
clipped. If an end point is out of range, no curve is drawn. Out-of-range conditions
may be caused by restricting the range of axis values with the HAXIS= or VAXIS=
option in the PLOT statement or the ORDER= option in an AXIS definition.

Note: When points on the graph are close together and a spline interpolation is
used, the Java applet is unable to draw some line types correctly. �

�

INTERPOL=STD<1 | 2 | 3><variance><option(s)>
I=STD<1 | 2 | 3><variance><option(s)>

specifies that a solid line connect the mean Y value with ± 1, 2, or 3 standard
deviations for each X.

Note: By default, 2 standard deviations are used. �

** Pizer, Stephen M. (1975), Numerical Computing and Mathematical Analysis, Chicago: Science Research Associates, Inc.,
Chapter 4.

SAS/GRAPH Statements SYMBOL Statement 195

The sample variance is computed about each mean, and from it, the standard
deviation sy is computed. Variance can be one or both of these:

M computes �� ,

P computes sample variances using a pooled estimate, as in a
one-way ANOVA model.

In addition, specify one of these values for option(s):

B connects the minimum and maximum Y values with bars
instead of lines.

J connects the means from bar to bar with a line.

T adds tops and bottoms to each line.

BJ connects maximum and minimum values with a bar and joins
the mean values.

TJ adds tops and bottoms to the lines and joins the mean values.
Figure 7.19 on page 195 shows the type of plot INTERPOL=STD produces. A

horizontal tick is drawn at the mean. Plot symbols in the form of dots have been
added to this figure.

Figure 7.19 Plot of Standard Deviations

●
●
●

●
●

●

●

●

●

●

●

●

●

Y

6060

5050

4040

3030

2020

1010

0

A A B B C

 X

Note: By default, the vertical axis ranges from the minimum to the maximum
Y value in the data. If the requested number of standard deviations from the
mean covers a range of values that exceeds the maximum or is less than the
minimum, the STD lines are cut off at the minimum and maximum Y values.
When this cutoff occurs, rescale the axis using VAXIS= in the PLOT statement or
ORDER= in an AXIS definition so that the STD lines are shown. �

If you restrict the range of axis values by using HAXIS= or VAXIS= in a PLOT
statement or ORDER= in an AXIS definition, by default any observations that fall
outside the axis range are excluded from the interpolation calculation. See the
MODE= on page 197 option.

To increase the thickness of all lines generated by the INTERPOL=STD option,
use the WIDTH= option.

You cannot use the PLOT statement option AREAS= with INTERPOL=STD.
This option cannot be used in a symbol definition that is named in the GPLOT

procedure, when that procedure is generating output for the Web using a Java
device driver. This applies only when the PLOT statement is used with the

196 SYMBOL Statement Chapter 7

OVERLAY option, or when the PLOT2 statement is used, with or without the
OVERLAY option.
Not supported by: Java (partial)

INTERPOL=STEP<placement><J><S>
I=STEP<placement><J><S>

specifies that the data are plotted with a step function. By default, the data point
is on the left of the step, the steps are not joined with a vertical line, and the data
are not sorted before processing.

Specify one of these values for placement:

L displays the data point on the left of the step.

R displays the data point on the right of the step.

C displays the data point in the center of the step.

Note: When a step is retraced in order to locate its center
point, both the server and Java treat this as effectively not
drawing that part of the step at all. ActiveX, however, draws
each part of the step—resulting in a somewhat differently
appearing graph. �

In addition, specify one or both of these:

J produces steps joined with a vertical line.

S sorts unordered data by the independent variable before
plotting.

Figure 7.20 on page 196 shows the type of plot INTERPOL=STEPJR produces.
Plot symbols in the form of dots have been added to this figure.

Figure 7.20 Step Plot

●●

●

●

●

●

●

Y
100100

7575

5050

2525

0

1 1 2 2 3 3 4 4 5 5 6 6 7

 X

LINE=line-type
L=line-type

specifies the line type of the plot line in the GPLOT procedure, or the contour line
in the GCONTOUR procedure:

1 a solid line.

2...46 a dashed line.
Line types are shown in Figure 7.22 on page 208. By default, LINE=1.

Note: This option overrides the LineStyle attribute in graph styles. For more
information on graph styles, see SAS Output Delivery System: User’s Guide.

SAS/GRAPH Statements SYMBOL Statement 197

Neither the Java applet nor ActiveX control supports client-side rendering for
GCONTOUR. �
Not supported by: Java (partial), ActiveX (partial)

MODE=EXCLUDE | INCLUDE
specifies that interpolation calculations exclude or include data values that are
outside the range of plot axes. By default, MODE=EXCLUDE, which excludes
values outside the axis range from any calculations.

If you control the range of values displayed on an axis by using HAXIS= and
VAXIS= in the GPLOT procedure, or ORDER= in an AXIS definition, any data
points that lie outside of the range of the axes are discarded before the
calculations are done for interpolation lines. This has a particularly noticeable
effect on the high-low interpolation methods, which include INTERPOL=HILO,
INTERPOL=BOX, and INTERPOL=STD. Regression analysis also represents only
part of the original data.
See also: “Values Out of Range” on page 1087.

POINTLABEL<=(label-description(s)) | NONE>
labels plot points. The labels always use the format that is assigned to the
variable(s) whose values are used for the labels. POINTLABEL without any
specified descriptions labels points with the Y value. NONE suppresses the point
labels. Label-description(s) can be used to change the variable whose values are
used to label points, and/or to change features of the label text, such as the color,
font, or size of the text.

Note: If you do not specify a color on a SYMBOL statement, the symbol
definition is rotated through the colors list before the next SYMBOL statement is
used. Thus, if your plot contains multiple plot lines and you want to limit your
POINTLABEL specification to a single line, you must specify a color on the
SYMBOL statement that contains the POINTLABEL description. �

Label-description(s) can be one or more of these:

COLOR=text-color
C=text-color

specifies the color of the label text. The default is the first color from the
colors list.

FONT=font | NONE
F=font | NONE

specifies the font for the text. See Chapter 5, “SAS/GRAPH Fonts,” on page
75 for details on specifying font. If you omit FONT=, a font specification is
searched for in this order:

1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font, NONE.

HEIGHT=text-height <units >
H=text-height <units >

specifies the height of the text characters in number of units. By default,
HEIGHT=1 CELL. If you omit HEIGHT=, a text height specification is
searched for in this order:

1 the HTEXT= option in a GOPTIONS statement
2 the default value, 1.

JUSTIFY=CENTER | LEFT | RIGHT
J=C | L | R

specifies the horizontal alignment of the label text. The default is CENTER.
The location of the point label is relative to the location of the corresponding
data point.

198 SYMBOL Statement Chapter 7

POSITION=TOP | MIDDLE | BOTTOM
specifies the vertical placement of the label text. The default is TOP. The
location of the point label is relative to the location of the corresponding data
point.

“#var” | “#x:#y <$char>” | “#y:#x <$char>”
specifies the variable(s) whose values will label the plot points. The variable
specification must be enclosed in either single or double quotation marks. The
first specified variable must be prefixed with a pound sign (#). If a second
variable is specified, it must be prefixed with a colon and a pound sign (:#).
Optionally, when you specify both the X and Y variables, you can specify the
character to display as the delimiter between variable values in the plot label.

By default if POINTLABEL is specified without naming a label variable,
the Y values label the plot points. You can change the default by using “#var”
to specify a different variable whose values should label the points. For
example, you might specify the name of the X variable. The following option
specifies the variable SALES as the variable whose values will label plot
points:

POINTLABEL=("#sales")

Alternatively, you can label the plot points with the values of the X and Y
variables, in either order. The order that you specify X and Y in the variable
specification determines the order that the values are displayed in the label.
The following option specifies variables HEIGHT and WEIGHT; in the label,
the value for HEIGHT will be displayed, followed by the value for WEIGHT:

POINTLABEL=("#height:#weight")

The variables that you specify must be the plot’s X and Y variables.
Specifying any other variables will cause unexpected labeling.

By default when you specify both the X and Y variables, a colon (:) displays
in the label to separate the values in each label. To change the character that
displays as the delimiter, use the $ syntax to specify an alternative character.
The following option specifies a vertical bar (|) as the delimiter in the label:

POINTLABEL=("#height:#weight $|")

The $ syntax must be within the same quotation marks as the variable
specification. The $ specification can precede or follow the variable
specification, but it must be separated from the variable specification by at
least one space.

Note: Specifying a delimiting character with the $ only changes the
character that displays in the label. It does not change the syntax of the
variable specification, which requires a colon and pound sign (:#) to precede
the second variable. �

Note: There is a sixteen character length limit for each variable. A
maximum character length limit of thirty-three characters is possible. This
can be composed of X and Y variables, any other valid data set variable, and
a separator as required. �

Specify as many label-description suboptions as you want. Enclose them all
within a single set of parentheses, and separate each suboption from the others by
at least one space.

Not supported by: Java (partial), ActiveX (partial)

REPEAT=number-of-times
R=number-of-times

SAS/GRAPH Statements SYMBOL Statement 199

specifies the number of times that a SYMBOL definition is applied before the next
SYMBOL definition is used. By default, REPEAT=1.

The behavior of REPEAT= depends on whether any of the SYMBOL color options
(CI=, CV=, CO=, and COLOR=) or the CSYMBOL= graphics option also is used:

� If any SYMBOL color option also is used in the SYMBOL definition, that
SYMBOL definition is repeated the specified number of times in the specified
color.

� If no SYMBOL color option is used but the CSYMBOL= graphics option is
currently in effect, the SYMBOL definition is repeated the specified number
of times in the specified color.

� If no SYMBOL statement color options are used and the CSYMBOL=
graphics option is not used, the SYMBOL definition is cycled through each
color in the colors list, and then the entire group generated by this cycle
repeats the number of times specified by REPEAT=. Thus, the total number
of iterations of the SYMBOL definition depends on the number of colors in
the current colors list.

Neither the Java applet nor ActiveX control supports client-side rendering
for GCONTOUR.

See also: “Using the SYMBOL Statement” on page 202.
Not supported by: Java (partial), ActiveX (partial)

SINGULAR=n
tunes the algorithm used to check for singularities. The default value is machine
dependent but is approximately 1E-7 on most machines. This option is rarely
needed.

STEP=distance<units>
specifies the minimum distance between labels on contour lines. The value of
distance must be greater than zero. By default, STEP=65PCT.

Note: If you specify units of PCT or CELLS, STEP= calculates the distance
between the labels based on the width of the graphics output area, not the height.
For example, if you specify STEP=50PCT and if the graphics output area is 9
inches wide, the distance specified is 4.5 inches. A value less than 10 percent is
ignored and 10 percent is used instead. �

When you use STEP=, specify the minimum distance that you want between
labels. The option then calculates how many labels it can fit on the contour line,
taking into account the length of the labels and the minimum distance you
specified. Once it has calculated how many labels it can fit while retaining the
minimum distance between them, it places the labels, evenly spaced, along the
line. Consequently, the space between labels may be greater than what you
specify, although it will never be less.

In general, to increase the number of labels from the default, reduce the value
of distance.

If the procedure cannot write the label at a particular location on the contour,
for example because the contour line makes a sharp turn, the label may be placed
farther along the line or omitted. If labels are omitted, a note appears in the log.
Specifying a low value for the GCONTOUR procedure’s TOLANGLE= option may
also cause labels to be omitted, since this forces the procedure to select smoother
labeling locations, which may not be available on some contours.
Featured in: Example 2 on page 906.
Not supported by: Java, ActiveX

VALUE=special-symbol | text-string | NONE
V=special-symbol | text-string | NONE

200 SYMBOL Statement Chapter 7

� specifies a plot symbol for the data points (GPLOT and GBARLINE). If you
omit the SYMBOL statement, plot points are generated using the default plot
symbol. The default symbol is a square if you use the ActiveX or Java devices
and a PLUS sign for other devices. If you specify a SYMBOL statement, but
do not specify the VALUE= option, plot symbols are suppressed.

Note: For ActiveX output, the VALUE= option is not supported when
INTERPOL=HILO or INTERPOL=STD. You can use the OVERLAY option
with GPLOT to get symbols to appear on the data points. �

� specifies contour-label text in a contour plot (GCONTOUR). By default with
the AUTOLABEL option, GCONTOUR labels contour lines with the contour
variable’s value at that contour level.

� VALUE=NONE suppresses plot symbols at the data points, or labels on the
contour lines. You can set the VALUE=NONE option independent of the
INTERPOL= option.

Values for special-symbol are the names and characters shown in Figure 7.21 on
page 202. The special symbol table can be used only if the FONT= option is not
used or a null value is specified:

font=,

Note: To specify a single quotation mark, you must enclose it in double
quotation marks: �

value="’"

To specify a double quotation mark, you must enclose it in single quotation
marks:

value=’"’

In some operating environments, punctuation characters may require single
quotes.

If you use VALUE=text-string to specify a plot symbol, you must also use the
FONT= option to specify a symbol font or a text font. If you specify a symbol font,
the characters in the string are character codes for the symbols in the font. If you
specify a text font, the characters in the string are displayed. If you specify a text
string containing quotes or blanks, enclose the string in single quotes.

For example, if you specify this statement, the plot symbol is the word "plus"
instead of the symbol +:

symbol font=swiss value=plus;

Java and ActiveX support the following characters from the marker font for
special-symbol:

Character Aliases

Marker Cone, Pyramid, Default

Square Cube

Star

Circle Sphere, Dot, Balloon

Plus Cross

Flag Y

SAS/GRAPH Statements SYMBOL Statement 201

Character Aliases

X

Prism Z

Spade “

Heart #

Diamond $

Club %

Hexagon Paw

Cylinder Hash

Note: If you do not use a SYMBOL statement to specify a color for each
symbol, but you do specify a colors list in a GOPTIONS statement, then Java and
ActiveX assign colors to symbols differently than does the SAS server. To ensure
consistency on all devices, you should specify the desired color of each symbol.The
SAS server restarts at the first color in the colors list and rotates through all of
the colors in the color list for the first default symbol before going to the next
symbol in the default symbol list where it again rotates through all of the colors in
the color list before picking up the next symbol. �

Note: The VALUE option overrides the MarkerSymbol attribute in graph
styles. For more information on graph styles, see SAS Output Delivery System:
User’s Guide. �
See also: the option FONT= on page 186 and “Specifying Plot Symbols” on page

205.
Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on

page 231, “Example 4. Creating and Modifying Box Plots” on page 233, and
Example 2 on page 906.

Not supported by: Java (partial), ActiveX (partial)

WIDTH=thickness-factor
W=thickness-factor

specifies the thickness of interpolated lines (GPLOT) or contour lines
(GCONTOUR), where thickness-factor is a number. The thickness of the line
increases directly with thickness-factor. By default, WIDTH=1.

WIDTH= also affects all the lines in box plots (INTERPOL=BOX), high-low
plots with bars (INTERPOL=HILOB), and standard deviation plots
(INTERPOL=STD). It also affects the outlines of the area generated by the
AREAS= option in the PLOT statement of the GPLOT procedure.

Note: By default, the value specified by WIDTH= is used as the default value
for the BWIDTH= option. For example, specifying WIDTH=6 also sets BWIDTH=
to 6 unless you explicitly assign a value to BWIDTH=.

Java and ActiveX do not provide the same measure of control for width as SAS/
GRAPH on the server. Measurements are translated to pixels rather than a
percentage. �
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”

on page 226 and “Example 4. Creating and Modifying Box Plots” on page 233.
Not supported by: Java (partial) and ActiveX (partial)

202 Using the SYMBOL Statement Chapter 7

Figure 7.21 Special Symbols for Plotting Data Points

Note: The words or special characters in the VALUE= column are entered exactly as
shown. �

Using the SYMBOL Statement
A SYMBOL statement specifies one or more options that indicate the color and other

attributes used by the GPLOT procedure or the GCONTOUR procedure. For GPLOT,
the main attributes include the plot symbol, interpolation method, and type of plot line.
For GCONTOUR, the main attributes include the type of contour lines used and the
text used to label those lines.

Note: SYMBOL statements can only be applied to contour plots when the
AUTOLABEL option is specified on GCONTOUR. �

You can define up to 99 different SYMBOL statements. A SYMBOL statement
without a number is treated as a SYMBOL1 statement.

SYMBOL definitions can be defined anywhere in your SAS program. They are global
and remain in effect until canceled or until you end your SAS session. Once defined,
SYMBOL definitions can be

� assigned by default by GPLOT or explicitly selected with the plot request
� used by GCONTOUR to control the labels and attributes of contour lines.

SYMBOL statements generate one or more symbol definitions, depending on how
color is used and whether a plot symbol or type of contour line is specified. For more

SAS/GRAPH Statements Controlling Consecutive SYMBOL Statements 203

information, see “Controlling Consecutive SYMBOL Statements” on page 203 and
“Using Generated Symbol Sequences” on page 208.

Although it is common practice, you do not have to start with SYMBOL1, and you do
not have to use sequential statement numbers. When assigning SYMBOL definitions,
SAS/GRAPH software starts with the lowest-numbered definition and works upward,
ignoring gaps in the numbering.

Altering or Canceling SYMBOL Statements
SYMBOL statements are additive. If you define a SYMBOL statement and later

submit another SYMBOL statement with the same number, the new SYMBOL
statement defines or cancels only the options that are included in the new statement.
Options that are not included in the new statement are not changed and remain in
effect.

Assume you define SYMBOL4 as:

symbol4 value=star cv=red height=4;

The following statement cancels only HEIGHT= without affecting the rest of the
definition:

symbol4 height=;

Add or change options in the same way. This statement adds an interpolation
method to SYMBOL4:

symbol4 interpol=join;

This statement changes the color of the plot symbol from red to blue:

symbol4 cv=blue;

After all these modifications, SYMBOL4 has these characteristics:

symbol4 value=star cv=blue interpol=join;

Cancel individual SYMBOL statements by defining a SYMBOL statement of the
same number without options (a null statement):

symbol4;

Canceling one SYMBOL statement does not affect any other SYMBOL definitions. To
cancel all current SYMBOL statements, use RESET= in a GOPTIONS statement:

goptions reset=symbol;

Specifying RESET=GLOBAL or RESET=ALL cancels all current SYMBOL
definitions as well as other settings.

To display current SYMBOL definitions in the LOG window, use the GOPTIONS
procedure with the SYMBOL option:

proc goptions symbol nolist;
run;

Controlling Consecutive SYMBOL Statements
If you specify consecutively numbered SYMBOL statements and you want

SAS/GRAPH to use each definition only once, use color specifications to ensure each
SYMBOL statement generates only one symbol definition. You can

� specify colors on each SYMBOL statement, using the COLOR=, CI=, CV=, or CO=
options. This method lets you explicitly assign colors for each definition. For
example, these statements generate two definitions:

204 Setting Definitions for PROC GPLOT Chapter 7

symbol1 value=star color=green;
symbol2 value=square color=yellow;

� specify a default color for all SYMBOL statements using the CSYMBOL= option
on the GOPTIONS statement. This method makes it easy to specify the same color
for each definition when you do not need more explicit color specifications.

� limit the colors list to a single color using the COLORS= option on the GOPTIONS
statement. This method makes it easy to specify the same color for each definition
when you want the color to apply to other definitions also, such as PATTERN
definitions.

For more information on specifying colors for symbol definitions, see “Using Color” on
page 206.

If you do not use color to limit a SYMBOL statement to a single symbol definition,
SAS/GRAPH generates multiple symbol definitions from that statement by rotating the
current definition through the colors list (for more details, see “Using Generated Symbol
Sequences” on page 208). Because SAS/GRAPH uses symbol definitions in the order
they are generated, this means that the nth symbol definition applied to a graph does
not necessarily correspond to the SYMBOLn statement.

For example, assuming no color is specified on the CSYMBOL= graphics option,
these statements generate four definitions:

goptions colors=(red blue green);
symbol1 value=star;
symbol2 value=square color=yellow;

Because no color is specified on SYMBOL1, SAS/GRAPH rotates the symbol
definition through the colors list, which has three colors. Thus, SYMBOL1 defines the
first three applied symbol definitions, and SYMBOL2 defines the 4th:

Sequence Number Source Characteristics: Color Symbol

1 SYMBOL1 red star

2 SYMBOL1 blue star

3 SYMBOL1 green star

4 SYMBOL2 yellow square

In this case, if a graph needs only three symbols, the SYMBOL2 definition is not used.
To make the nth applied symbol definition correspond to the SYMBOLn statement,

limit each SYMBOL statement to a single color, using one of the techniques listed at
the beginning of this section.

Setting Definitions for PROC GPLOT

The following topics apply only for SYMBOL statements used with PROC GPLOT:

� specifying plot symbols

� specifying default interpolation methods

� sorting data with spline interpolation.

SAS/GRAPH Statements Setting Definitions for PROC GPLOT 205

Specifying Plot Symbols
The VALUE= option specifies the plot symbols that PROC GPLOT uses to mark the

data points on a plot. Plot symbols can be
� special symbols from Figure 7.21 on page 202
� characters from symbol fonts
� text strings.

By default, the plot symbol is the + symbol. To specify a special symbol, use VALUE=
to specify a name or a character from Figure 7.21 on page 202:

symbol1 value=hash color=green;
symbol2 value=) color=blue;

This example uses color to ensure each SYMBOL statement generates only one
definition. You can omit color specifications to let SAS/GRAPH rotate symbol definitions
through the colors list. For details, see “Using Generated Symbol Sequences” on page
208.

To use plot symbols other than those in Figure 7.21 on page 202, use the FONT=
option to specify a font for the plot symbol. If the font is a symbol font, such as Marker,
the string specified with the VALUE= option is the character code for the symbol to be
displayed. If the font is a text font, the string specified with VALUE= is displayed as
the plot symbol. (See VALUE= on page 199 and FONT= on page 186.)

This table illustrates some of the ways you can define a plot symbol:

Definition
Plot
Symbol

symbol1 value=plus;

symbol2 value=+;

symbol3 font=swiss value=plus;

symbol4 font=marker value=U;

symbol5value="’";

Specifying a Default Interpolation Method
The INTERPOL= option in a GOPTIONS statement specifies a default interpolation

method to be used with all SYMBOL definitions. This default interpolation method is in
effect unless you specify a different interpolation in a SYMBOL statement. If the
GOPTIONS statement does not specify an interpolation method, the default for each
SYMBOL statement is NONE.

Sorting Data with Spline Interpolation
If you want the GPLOT procedure to sort by the horizontal axis variable before

plotting, add the letter S to the end of any of the spline interpolation methods
(INTERPOL=L, INTERPOL=SM, and INTERPOL=SPLINE). For example, suppose you
want to overlay three plots (Y1*X1, Y2*X2, and Y3*X3) and for each plot, you want the
X variable sorted in ascending order. Use these statements:

symbol1 i=splines c=red;
symbol2 i=splines c=blue;

206 Using Color Chapter 7

symbol3 i=splines c=green;

proc gplot;
plot y1*x1 y2*x2 y3*x3 / overlay;

run;

Using Color
Generally, there are two ways to explicitly specify color for SYMBOL statements:

� specify colors on the SYMBOL statements

� specify a color on the CSYMBOL= graphics option.

You can also let SAS/GRAPH rotate symbol definitions through the colors list. For
details, see “Using Generated Symbol Sequences” on page 208.

Specifying Colors with SYMBOL Statements
The SYMBOL statement has these options for specifying color:

� The CV= option specifies color for plot symbols in GPLOT, or for contour labels in
GCONTOUR.

� The CO= option specifies color for confidence limit lines and area outlines in
GPLOT.

� The CI= option specifies color for plot lines in GPLOT, or contour lines in
GCONTOUR.

� The COLOR= option specifies color for the entire symbol. For GPLOT, this
includes plot symbols, plot lines, and outlines. For GCONTOUR, this includes
contour lines and labels.

CV= and CI= have the same effect as using COLOR= when they are used in these
ways:

� Only CV= or CI= option is used. (The option that is not used is assigned the value
of the option used.)

� Both CV= and CI= specify the same color.

In general, CI=, CV=, and CO= color specific areas of the symbol. Use these options
to produce symbols and plot lines of different colors without having to overlay multiple
plot pairs. For example, if you request regression analysis with confidence limits, use
this statement to assign red to the plot symbol, blue to the regression lines, and green
to the confidence limit lines:

symbol cv=red ci=blue co=green;

The COLOR= option colors the entire symbol or those portions of it not colored by
one of the other color options. If COLOR= precedes CI= or CV=, the CI= or CV=
specification is used instead. If none of the SYMBOL color options is used, color
specifications are searched for in this order:

1 the CSYMBOL= option in a GOPTIONS statement

2 each color in the colors list sequentially before the next SYMBOL definition is used.

CAUTION:
If no color options are used, the SYMBOL definition cycles through each color in the colors
list. �

SAS/GRAPH Statements Specifying Line Types 207

If the SYMBOL color options and the CSYMBOL= graphics option are not used, the
SYMBOL definition cycles through each color in the colors list before the next definition
is used. For details, see “Using Generated Symbol Sequences” on page 208.

Specifying Color with CSYMBOL=
The CSYMBOL= option on the GOPTIONS statement specifies the default color to be

used by all SYMBOL definitions:

goptions csymbol=green;
symbol1 value=star;
symbol2 value=square;

In this example, both SYMBOL statements use green.
CSYMBOL= is overridden by any of the SYMBOL statement color options. See

“Using Color” on page 206 for details.
If more SYMBOL definitions are needed, SAS/GRAPH returns to generating default

symbol sequences.

Specifying Line Types
To specify the type of line for plot or contour lines, use the LINE= option to specify a

number from 1 through 46. Figure 7.22 on page 208 shows the line types represented
by these numbers. By default, the line type is 1 for plot and contour lines, and 2 for
confidence limit lines.

208 Using Generated Symbol Sequences Chapter 7

Figure 7.22 Line Types

Note: These line types are also used by other statements and procedures. Some
options accept a line type of 0, which produces no line. �

Using Generated Symbol Sequences
Symbol sequences are sets of SYMBOL definitions that are automatically generated

by SAS/GRAPH software if any of these conditions is true:

� no valid SYMBOL definition is available. In this case, default symbol sequences
are generated by rotating symbol definitions through the color specified on the
GOPTIONS statement’s CSYMBOL= option. If a CSYMBOL= color is not in effect,
the definitions are rotated through the colors list.

� a SYMBOL statement specifies color but not a plot symbol for the GPLOT
procedure, or a line type for the GCONTOUR procedure (assuming GCONTOUR
does not specify the needed line types). In this case, a default plot symbol or line
type is used with the specified color and only one definition is generated.

� a SYMBOL statement specifies a plot symbol for GPLOT or a line type for
GCONTOUR, but no color options. In this case, the specified plot symbol or line
type is used once with the color specified by the CSYMBOL= graphics option. If a

SAS/GRAPH Statements Using Generated Symbol Sequences 209

CSYMBOL= color is not in effect, the specified plot symbol or line type is rotated
through the colors list.

If REPEAT= is also used, the resulting SYMBOL definition is repeated the specified
number of times.

Default Symbol Sequences
Default symbol sequences are generated by rotating symbol definitions through the

current colors list.
� Definitions used for GPLOT rotate plot symbols through the colors list; the first

default plot symbol is a plus sign (+).
� Definitions used for GCONTOUR rotate line types; the first default line type is a

solid line (line type 1).

Each time a default definition is required, SAS/GRAPH takes the first default plot
symbol or line type and uses it with the first color in the colors list. If more than one
definition is required, it uses the same plot symbol or line type with the next color in
the colors list and continues until all the colors have been used once. If more definitions
are needed, SAS/GRAPH selects the second default plot symbol or line type and rotates
it through the colors list. It continues in this fashion, selecting default plot symbols or
line types and cycling them through the colors list until all the required definitions are
generated.

If a color has been specified with the CSYMBOL= option on the GOPTIONS
statement, each default plot symbol or line type is used once with the specified color,
and the colors in the colors list are ignored.

Symbol Sequences Generated from SYMBOL Statements
If a SYMBOL statement does not specify color, and if the CSYMBOL= graphics

option is not used, the symbol definition is rotated through every color in the colors list
before the next SYMBOL definition is used:

goptions colors=(blue red green);
symbol1 cv=red i=join;
symbol2 i=spline v=dot;
symbol3 cv=green v=star;

Here, the SYMBOL1 statement generates the first SYMBOL definition. The
SYMBOL2 statement does not include color, so the first default plot symbol is rotated
through all colors in the colors list before the SYMBOL3 statement is used. This table
shows the colors and symbols that would be used if nine symbol definitions were
required for PROC GPLOT:

Sequence
Number Source

Characteristics:
Color Symbol Interpolation

1 SYMBOL1 cv=red first default join

2 SYMBOL2 color=blue dot spline

3 SYMBOL2 color=red dot spline

4 SYMBOL2 color=green dot spline

5 SYMBOL3 cv=green star NONE

6 first default color=blue first default default

7 first default color=red first default default

210 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

Sequence
Number Source

Characteristics:
Color Symbol Interpolation

8 first default color=green first default default

9 second
default

color=blue second
default

default

Notice that after the SYMBOL statements are exhausted, the procedure begins using
the default definitions (sequences 6 through 9). Each plot symbol from the default list is
rotated through all colors in the colors list before the next plot symbol is used. Also,
SYMBOL1 does not specify a plot symbol, so the default sequencing provides the first
default symbol (a + sign). When sequencing resumes in sequence number 6, it starts at
the beginning again, selecting the first default plot symbol and rotating it through the
colors list.

If you use REPEAT= but no color, the sequence generated by cycling the definition
through the colors list is repeated the number of times specified by REPEAT=. For
example, these statements define a colors list and illustrate the effect of REPEAT= on
SYMBOL statements both with and without explicit color specifications:

goptions colors=(blue red green);
symbol1 color=gold repeat=2;
symbol2 value=star color=cyan;
symbol3 value=square repeat=2;

Here, SYMBOL1 is used twice, SYMBOL2 is used once, and SYMBOL3 rotates
through the list of three colors and then repeats this cycle a second time:

Sequence
Number Source

Characteristics:
Color Symbol Interpolation

1 SYMBOL1 gold first default default

2 SYMBOL1 gold first default default

3 SYMBOL2 cyan star default

4 SYMBOL3 blue square default

5 SYMBOL3 red square default

6 SYMBOL3 green square default

7 SYMBOL3 blue square default

8 SYMBOL3 red square default

9 SYMBOL3 green square default

TITLE, FOOTNOTE, and NOTE Statements

The TITLE, FOOTNOTE, and NOTE statements control the content, appearance,
and placement of text.

Used by:

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 211

GBARLINE, GCHART, GCONTOUR, GFONT, GMAP, GPLOT, GPRINT,
GRADAR, GSLIDE, G3D procedures

Global: TITLE and FOOTNOTE

Description
TITLE, FOOTNOTE, and NOTE statements add text to maps, plots, charts, and text

slides. With these statements you can

� control the content, appearance, and placement of the text, including color, size,
font, and alignment

� underline or draw boxes around the text

� draw straight lines on the output.

Figure 7.23 on page 211 shows the default appearance and placement of titles,
footnotes, and notes on the graphics output area.

Figure 7.23 Default Placement of Titles, Footnotes, and Notes

(T h i s i s t h e T i t l e A r e a)

(T h i s i s t h e F o o t n o t e A r e a)
D e f a u l t p o s i t i o n f o r F O O T N O T E 1

 D e f a u l t p o s i t i o n f o r t h e N O T E s t a t e m e n t .
 B y d e f a u l t t h e t e x t i s l e f t j u s t i f i e d a t
 t h e t o p l e f t o f t h e p r o c e d u r e o u t p u t a r e a .

Titles are centered at the top of the graphics output in the title area. They are
positioned in numeric order with the lowest-numbered TITLE at the top of the title
area and the highest-numbered TITLE at the bottom of the title area.

TITLE statements have these default characteristics:

� TITLE1 is twice the height of all other titles and uses the SWISS font.

� All other TITLE statements are one unit high and use the default hardware font.

Footnotes are positioned similarly in the footnote area at the bottom of the graphics
output area, with the lowest numbered FOOTNOTE at the top of the footnote area.
Unless otherwise specified, they use the default hardware font and are one unit high.

Space for the title area and the footnote area is taken from the procedure output
area. The more titles and footnotes you specify and the bigger they are, the smaller the
procedure output area will be.

Notes are positioned at the top of the procedure output area and are left justified.
The statements appear one below another in the order they appear in the program.
Unless otherwise specified, they use the default hardware font and are one unit high.

For more information on titles, footnotes, and notes in the graphics output area, see
“Placement of Graphic Elements in the Graphics Output Area” on page 39.

212 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

Syntax
TITLE<1...10><text-argument(s)>;

FOOTNOTE<1...10><text-argument(s)>;

NOTE<text-arguments(s)>;

text-argument(s) can be one or more of these:
’text-string’
text-options (text options must precede text-string.)

text-options can be one or more of the following, in any order:
� appearance options

COLOR=color
FONT=font
HEIGHT=text-height<units>

� placement and spacing options
JUSTIFY=LEFT | CENTER | RIGHT
LSPACE=line-space<units>
MOVE=(x,y)<units>

� baseline angling and character rotation options
ANGLE=degrees
LANGLE=degrees
ROTATE=degrees

� boxing, underlining, and line drawing options
BCOLOR=background-color
BLANK=YES
BOX=1...4
BSPACE=box-space<units>
DRAW=(x,y...,x-n,y-n)<units>
UNDERLIN=0...3

� linking option
LINK= ’url’

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PT points

PCT percentage of the graphics output area

If you omit units, a unit specification is searched for in this order:
1 the GUNIT= option in a GOPTIONS statement
2 the default unit, CELLS.

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 213

ANGLE=degrees
A=degrees

specifies the angle of the baseline of the entire text string with respect to the
horizontal. A positive degrees value will angle the baseline counterclockwise; a
negative value will angle it clockwise. By default, ANGLE=0 (horizontal).

Angled titles or footnotes may require more vertical space and, consequently,
may increase the size of the title area or the footnote area, thereby reducing the
vertical space in the procedure output area.

Using the BOX= option with angled text does not produce angled boxes; the box
is sized to accommodate the angled note.

Using the ANGLE= option after one text string and before another can reset
some options to their default values. See “Using Options That Can Reset Other
Options” on page 225.

ANGLE= has the same effect on the text as LANGLE=, except when you specify
an angle of 90 degrees or -90 degrees. In these angle specifications, the procedure
output area is shrunk from the left or right to accommodate the angled title or
footnote. The result depends on the statement in which you use the option:

� With the TITLE statement:

Figure 7.24 on page 213 shows how ANGLE=90 degrees or ANGLE=-90
degrees positions and rotates title text.

ANGLE=90
positions the title at the left edge of the graphics output area, angled 90
degrees (counterclockwise) and centered vertically.

ANGLE=-90
positions the title at the right edge of the graphics output area, angled
-90 degrees (clockwise) and centered vertically.

Figure 7.24 Positioning Titles with the ANGLE= Option

T
itl

e
w

ith
 A

N
G

LE
=

90

T
itle w

ith A
N

G
LE

=−90

� With the FOOTNOTE statement:

Figure 7.25 on page 214 shows how ANGLE=90 degrees or ANGLE=-90
degrees positions and rotates footnote text.

ANGLE=90
positions the footnote at the right edge of the graphics output area,
angled 90 degrees (counterclockwise) and centered vertically.

214 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

ANGLE=-90
positions the footnote at the left edge of the graphics output area, angled
-90 (clockwise) and centered vertically.

Figure 7.25 Positioning Footnotes with the ANGLE=Option

F
ootnote w

ith A
N

G
LE

=−90 F
oo

tn
ot

e
w

ith
 A

N
G

LE
=

90

� With the NOTE statement:

Figure 7.26 on page 214 shows how ANGLE= 90 degrees or -90 degrees
positions and rotates note text.

ANGLE=90
positions the note at the bottom of the left egde of the graphics output
area, angled 90 degrees (counterclockwise) and reading from bottom to
top.

ANGLE=-90
positions the note at the top of the right edge of the graphics output
area, angled -90 (clockwise) and reading from top to bottom.

Figure 7.26 Positioning Notes with the ANGLE= Option

N
ot

e
w

ith
 A

N
G

LE
=

90

N
ote w

ith A
N

G
LE

=−90

Footnote

Title

See also: the options LANGLE= on page 219 and ROTATE= on page 222

Featured in: “Example 6. Enhancing Titles” on page 238

Not supported by: Java, ActiveX

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 215

BCOLOR=background-color
BC=background-color

specifies the background color of a box produced by the BOX= option. If you omit
BOX=, BCOLOR= is ignored. By default, the background color of the box is the
same as the background color for the entire graph. The color of the frame of the
box is determined by the color specification used in BOX=.

Note: BCOLOR= may be reset by ANGLE= or JUSTIFY=, or by MOVE= with
absolute coordinates. See “Using Options That Can Reset Other Options” on page
225 for details. �

See also: the option BOX= on page 215.

Featured in: “Example 6. Enhancing Titles” on page 238.

BLANK=YES
BL=YES

protects the box and its contents from being overwritten by any subsequent
graphics elements by blanking out the area where the box is displayed. BLANK=
enables you to overlay graphics elements with boxed text. It is ignored if you omit
BOX=. Because titles and footnotes are written from the highest numbered to the
lowest numbered, the BLANK= option only blanks out titles and footnotes of a
lower number.

Note: BLANK= may be reset by ANGLE= or JUSTIFY=, or by MOVE= with
absolute coordinates. See “Using Options That Can Reset Other Options” on page
225 for details. �

See also: the option BOX= on page 215.

Featured in: “Example 6. Enhancing Titles” on page 238.

Not supported by: Java, ActiveX

BOX=1...4
BO=1...4

draws a box around one line of text. A value of 1 produces the thinnest box lines; 4
produces the thickest. Boxing angled text does not produce an angled box; the box
is sized to include the angled text.

The color of the box is either:

� the color specified by the COLOR= option in the statement

� the default text color.

COLOR= affects only the frame of the box. To color the background of the box,
use BCOLOR=.

You can include more than one text string in the box as long as no text break
occurs between the strings; that is, you cannot use JUSTIFY= to create multiple
lines of text within a box.

To draw a box around multiple lines of text, you can either

� Use MOVE= with relative coordinates to position the lines of text where you
want them and enclose them with BOX=. For example, this statement
produces the boxed note shown in Figure 7.27 on page 216:

note font=swiss justify=center box=3
’Office Hours’ move=(40pct,-12pct) ’9-5’;

� Use the DRAW= option to draw the box and do not use BOX=.

216 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

Figure 7.27 Using the BOX= Option and the MOVE= Option to Box Multiple Lines
of Text

Note: BOX= may be reset by ANGLE= or JUSTIFY=, or by MOVE= with
absolute coordinates. See “Using Options That Can Reset Other Options” on page
225 for details. �

See also: the options BCOLOR= on page 215, BLANK= on page 215, and
BSPACE= on page 216.

Featured in: “Example 6. Enhancing Titles” on page 238

Not supported by: Java, ActiveX

BSPACE=box-space<units>
BS=box-space<units>

specifies the amount of space between the boxed text and the box. The space above
the text is measured from the font maximum, and the space below the text is
measured from the font minimum. By default, BSPACE=1. If BOX= is not used,
BSPACE= is ignored.

The spacing is uniform around the box. For example, BSPACE=.5IN leaves
one-half inch of space between the text and the top, bottom, and sides of the box.

Note: BSPACE= may be reset by ANGLE= or JUSTIFY=, or by MOVE= with
absolute coordinates. See “Using Options That Can Reset Other Options” on page
225 for details. �

See also: the option BOX= on page 215.

Not supported by: Java, ActiveX

COLOR=color
C=color

specifies the color for the following text, box, or line. COLOR= affects all text,
lines, and boxes that follow it and stays in effect until another COLOR=
specification is encountered.

Change colors as often as you like. For example, this statement produces a title
with red text in a box with a blue frame and a cream background:

title color=red ’Total Sales’ color=blue
box=3 bcolor=cream;

Although BCOLOR= controls the background color of the box, the frame color is
controlled with the COLOR= that precedes BOX=.

If you omit COLOR=, a color specification is searched for in this order:

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 217

1 the CTITLE= option in a GOPTIONS statement
2 the CTEXT= option in a GOPTIONS statement
3 the default, the first color in the colors list.

See also: the option BCOLOR= on page 215.
“Controlling Titles and Footnotes with ODS Output” on page 492

DRAW=(x,y...,x-n,y-n)<units>
D=(x,y...,x-n, y-n)<units>

draws lines anywhere on the graphics output area using x and y as absolute or
relative coordinates. The following table shows the specifications for absolute and
relative coordinates:

Absolute Coordinates Relative Coordinates

x<units> ±x<units>

y<units> ±y<units>

The coordinate position (0,0) is the lower-left corner of the graphics output area.
Specify at least two coordinate pairs. Commas between coordinates are optional;
blanks can be used instead. DRAW= does not affect the positioning of text.

The starting point for lines specified with relative coordinates begins at the end
of the most recently drawn text or line in the current statement. If no text or line
has been drawn in the current statement, a warning is issued and the relative
draw is measured from where a zero-length text string would have ended, given
the normal placement for the statement.

You can mix relative and absolute coordinates. For example,
DRAW=(+0,+0,+0,1IN) draws a vertical line from the end of the text to one inch
from the bottom of the graphics output area.
Not supported by: Java, ActiveX

FONT=font
F=font

specifies the font for the subsequent text. See Chapter 5, “SAS/GRAPH Fonts,” on
page 75 for details on specifying SAS/GRAPH fonts. If you omit this option, a font
specification is searched for in this order:

� for a TITLE1 statement
1 the FTITLE= option in a GOPTIONS statement
2 the FTEXT= option in a GOPTIONS statement
3 the default font, SWISS (COMPLEX in Release 6.06 and earlier).

� for all other TITLE statements and the FOOTNOTE and NOTE statements:
1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font, NONE.

Note: Font names greater than eight characters in length must be enclosed in
quotation marks. �

Note: If the TITLE or FOOTNOTE is being output through an ODS markup
destination and the corresponding NOGTITLE or NOGFOOTNOTE option is
specified, then the bold and italic FONT attributes are on by default. However, if
you specify different attributes with the FONT= option, the bold and italic
attributes are turned off. �

See also: “Controlling Titles and Footnotes with ODS Output” on page 492

218 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

Featured in: “Example 6. Enhancing Titles” on page 238.

HEIGHT=text-height<units>
H=text-height<units>

specifies the height of text characters in number of units. By default, HEIGHT=1.
Height is measured from the font minimum to the capline. Ascenders may extend
above the capline, depending on the font.

If your text line is too long to be displayed in the height specified in HEIGHT=,
the height specification is reduced so that the text can be displayed. A note in the
SAS log tells you what percentage of the specified size was used.

If you omit HEIGHT=, a text height specification is searched for in this order:

� for a TITLE1 statement:

1 the HTITLE= option in a GOPTIONS statement
2 the HTEXT= option in a GOPTIONS statement

3 the default value, 2.

By default, a TITLE1 title is twice the height of all other titles.

� for all other TITLE statements and the FOOTNOTE and NOTE statements:

1 the HTEXT= option in a GOPTIONS statement

2 the default value, 1.

Note: The Java applet and ActiveX control allow you to control the relative
height of text with the HEIGHT= option, but not the absolute height in terms of
specific units. �
See also: “Controlling Titles and Footnotes with ODS Output” on page 492

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values”
on page 226 and “Example 6. Enhancing Titles” on page 238.

Not supported by: Java (partial), ActiveX (partial)

JUSTIFY=LEFT | CENTER | RIGHT
J=L | C | R

specifies the alignment of the text string. The default depends on the statement
with which you use JUSTIFY=:

� for a FOOTNOTE statement the default is CENTER

� for a NOTE statement the default is LEFT

� for a TITLE statement the default is CENTER.

All the text strings following JUSTIFY= are treated as a single string and are
displayed as one line that is left-, right-, or center-aligned.

You can change the justification within a single line of text. For example, this
NOTE statement displays a date on the left side of the output and the page
number on the same line on the right:

note ’June 28, 1997’ justify=right ’Page 3’;

In addition, you can use JUSTIFY= to produce multiple lines of text by
repeating JUSTIFY= with the same value before the text string for each line.
Multiple lines of text with the same justification are blocked together. For example,
this TITLE statement produces a three-line title with each line right-justified:

title justify=right ’First Line’
justify=right ’Second Line’
justify=right ’Third Line’;

You can get the same effect with three TITLE statements, each specifying
JUSTIFY=RIGHT. If you produce a block of text by specifying the same

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 219

justification for multiple text strings, and then change the justification for an
additional text string, that text is placed on the same line as the first string
specified in the statement.

Note: Using JUSTIFY= after one text string and before another can reset some
options to their default values. See “Using Options That Can Reset Other Options”
on page 225 for details. �
Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on

page 231.

LANGLE=degrees
LA=degrees

specifies the angle of the baseline of the entire text string(s) with respect to the
horizontal. A positive value for degrees moves the baseline counterclockwise; a
negative value moves it clockwise. By default, LANGLE=0 (horizontal).

Angled titles or footnotes may require more vertical space and consequently
may increase the size of the title area or the footnote area, thereby reducing the
vertical space in the procedure output area.

Using BOX= with angled text does not produce an angled box; the box is sized
to accommodate the angled note.

Unlike ANGLE=, LANGLE= does not reset any other options. Therefore,
LANGLE= is easier to use because you do not need to repeat options after a text
break.

LANGLE= has the same effect on the text as ANGLE=, except when an angle of
90 degrees or -90 degrees is specified. The result depends on the statement in
which you use the option:

� With the TITLE statement:
Figure 7.28 on page 219 shows how LANGLE=90 degrees and

LANGLE=-90 degrees positions and rotates titles.

LANGLE=90
angles the title 90 degrees (counterclockwise) so that it reads from
bottom to top. The title is centered horizontally and positioned at the
top of the picture.

LANGLE=-90
angles the title -90 degrees (clockwise) so that it reads from top to
bottom. The title is centered horizontally and positioned at the top of
the picture.

Figure 7.28 Positioning Titles with the LANGLE= Option

T
itl

e
w

ith
 L

A
N

G
LE

=
90

T
itle w

ith LA
N

G
LE

=−90

220 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

� With the FOOTNOTE statement:
Figure 7.29 on page 220 shows how LANGLE=90 degrees and

LANGLE=-90 degrees positions and rotates footnotes.

LANGLE=90
angles the footnote 90 degrees (counterclockwise) so that it reads from
bottom to top. The footnote is centered horizontally and positioned as
the bottom of the picture.

LANGLE=-90
angles the footnote -90 degrees (clockwise) so that it reads from top to
bottom. The footnote is centered horizontally and positioned at the
bottom of the picture.

Figure 7.29 Positioning Footnotes with the LANGLE= Option
F

oo
tn

ot
e

w
ith

 L
A

N
G

LE
=

90
F

ootnote w
ith LA

N
G

LE
=−90

� With the NOTE statement:
Figure 7.30 on page 220 shows how LANGLE=90 degrees and

LANGLE=-90 degrees positions and rotates notes.

LANGLE=90
positions the note at the top of the left edge of the procedure output area,
angled 90 degrees (counterclockwise) so that it reads from bottom to top.

LANGLE=-90
positions the note at the top of the left edge of the procedure output
area, angled –90 degrees (clockwise) so that it reads from top to bottom.

Figure 7.30 Positioning Notes with the LANGLE= Option

Title

Footnote

N
ot

e
LA

N
G

LE
=9

0

Title

Footnote

N
ote LA

N
G

LE
=−90

See also: the option ANGLE= on page 213.
Not supported by: Java, ActiveX

LINK= ’url’
specifies a uniform resource locator (url) that a title or footnote links to.

The text-string that you use to specify the url can contain occurrences of the
variables #BYVAL, #BYVAR, and #BYLINE, as described in text-string on page
222.

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 221

Note: If the title or footnote is being output through an ODS markup
destination (such as HTML) and the corresponding ODS option NOGTITLE or
NOGFOOTNOTE is specified, then the title or footnote is rendered in the body of
the HTML file rather than in the graphic itself. Specifying NOGTITLE or
NOGFOOTNOTE results in increasing the amount of space allowed for the
procedure output area, which can result in increasing the size of the graph. Space
that would have been used for the title or footnote is devoted instead to the graph.
You might need to be aware of this possible difference if you are using annotate or
map coordinates. �
See also: “Controlling Where Titles and Footnotes are Rendered” on page 492

LSPACE=line-space <units>
LS=line-space <units>

specifies the amount of spacing above lines of note and title text and the amount of
spacing below lines of footnote text. For notes and titles, the spacing is measured
from the capline of the current line to the font minimum of the line above. For
footnotes, the spacing is measured from the font minimum of the current line to
the capline of the line below. By default, LSPACE=1.

Note: LSPACE= may be reset by ANGLE= or JUSTIFY=, or by MOVE= with
absolute coordinates. See “Using Options That Can Reset Other Options” on page
225 for details. �

Not supported by: Java, ActiveX

MOVE=(x,y) <units>
M=(x,y) <units>

positions subsequent text or lines anywhere on the graphics output area using x
and y as absolute or relative coordinates. The following table shows the
specifications for absolute and relative coordinates:

Absolute Coordinates Relative Coordinates

x<units> ±x<units>

y<units> ±y<units>

Commas between coordinates are optional; you can use blanks instead.
The starting point for lines specified with relative coordinates begins with the

end of the most recently drawn text or line in the current statement. If no text or
line has been drawn in the current statement, a warning is issued and the relative
move is measured from where a zero-length text string would have ended, given
the normal placement for the statement. You can mix relative and absolute
coordinates.

MOVE= overrides a JUSTIFY= specified for the same text string.
If a NOTE, FOOTNOTE, or TITLE statement uses MOVE= to position the text

so that the statement does not use its default position, the text of the next NOTE,
FOOTNOTE, or TITLE statement occupies the unused position and no blank lines
are displayed.

Note: If you specify MOVE= with at least one absolute coordinate and if the
option follows one text string and precedes another, some options can be reset to
their default values. See “Using Options That Can Reset Other Options” on page
225 for details. �
Featured in: “Example 2. Specifying Logarithmic Axes” on page 229 and

“Example 6. Enhancing Titles” on page 238

222 TITLE, FOOTNOTE, and NOTE Statements Chapter 7

Not supported by: Java, ActiveX

ROTATE=degrees
R=degrees

specifies the angle at which each character of text is rotated with respect to the
baseline of the text string. The angle is measured from the current text baseline
angle, which is specified by ANGLE= or LANGLE=. By default, the baseline is
horizontal. A positive value for degrees rotates the character counterclockwise; a
negative value rotates it clockwise. By default, ROTATE=0 (parallel to the
baseline).

Figure 7.31 on page 222 shows how characters are positioned when
ROTATE=90 is used with the default (horizontal) baseline.

Figure 7.31 Tilting Characters with the ROTATE= Option
R O T A T E

See also: the option ANGLE= on page 213.
Featured in: “Example 6. Enhancing Titles” on page 238.
Not supported by: Java, ActiveX

text-string(s)
is one or more strings up to 200 characters. You must enclose text strings in single
or double quotation marks. The text appears exactly as you type it in the
statement, including uppercase and lowercase characters and blanks.

To use single quotation marks or apostrophes within the title, you can either
� use a pair of single quotation marks together:

footnote ’All’’s Well That Ends Well’;

� enclose the text in double quotation marks:

footnote "All’s Well That Ends Well";

Because FOOTNOTE, NOTE, and TITLE statements concatenate all text
strings, the strings must contain the correct spacing. With a series of strings, add
blanks at the beginning of a text string rather than at the end, as in this example:

note color=red ’Sales:’ color=blue ’ 2000’;

With some fonts, you produce certain characters by specifying a hexadecimal
value. A trailing x identifies a string as a hexadecimal value. For example, this
statement* produces the title Profits Increase £ 3,000:

title font=swiss ’Profits Increase ’ ’18’x ’3,000’;

For more information see “Specifying Special Characters” on page 81.
In addition, you can embed one or more of the following in the string:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for
#BYLINE in the text string, and displays the BY line in the footnote, note, or
title produced by the statement.

* This statement assumes you are using a U.S. key map.

SAS/GRAPH Statements TITLE, FOOTNOTE, and NOTE Statements 223

#BYVALn | #BYVAL(BY-variable-name)
substitutes the current value of the specified BY variable for #BYVAL in the
text string and displays the value in the footnote, note, or title produced by
the statement. Specify the variable with one of these:

n specifies which variable in the BY statement #BYVAL
should use. The value of n indicates the position of the
variable in the BY statement. For example, #BYVAL2
specifies the second variable in the BY statement.

BY-variable-
name

names the BY variable. For example, #BYVAL(YEAR)
specifies the BY variable, YEAR. Variable-name is not
case sensitive.

Featured in: “Example 7. Using BY-group Processing to Generate a Series of
Charts” on page 240 and “Example 9. Combining Graphs and Reports in a
Web Page” on page 248.

#BYVARn | #BYVAR(BY-variable-name)
substitutes the name of the BY-variable or label associated with the variable
(whatever the BY line would normally display) for #BYVAR in the text string
and displays the name or label in the footnote, note, or title produced by the
statement. Specify the variable with one of these:

n specifies which variable in the BY statement #BYVAR
should use. The value of n indicates the position of the
variable in the BY statement. For example, #BYVAR2
specifies the second variable in the BY statement.

BY-variable-
name

names the BY variable. For example, #BYVAR(SITES)
specifies the BY variable, SITES. Variable-name is not
case sensitive.

A BY variable name displayed in a title, note, or footnote is always in
uppercase. If a label is used, it appears as specified in the LABEL statement.

For more information , see “Substituting BY Line Values in a Text String”
on page 226 .

UNDERLIN=0...3
U=0...3

underlines subsequent text. Values of 1, 2 and 3 underline with an increasingly
thicker line. UNDERLIN=0 halts underlining for subsequent text.

Underlines follow the text baseline. If you use an LANGLE= or ANGLE= option
for the line of text, the underline is drawn at the same angle as the text.
Underlines do not break up to follow rotated characters. See the option ROTATE=
on page 222.

To make the text and the underline the same color, specify a COLOR= before the
UNDERLIN= that precedes the text string. To make the text a different color,
specify COLOR= after the UNDERLIN=.

Note: UNDERLIN= may be reset by ANGLE= or JUSTIFY=, option, or by the
MOVE= option with absolute coordinates. See “Using Options That Can Reset
Other Options” on page 225 for details.

Note: The Java applet and ActiveX control underline text when UNDERLIN=
is specified, but they do not vary the thickness of the line. �

�

Featured in: “Example 6. Enhancing Titles” on page 238
Not supported by: Java (partial), ActiveX (partial)

224 Using TITLE and FOOTNOTE Statements Chapter 7

Using TITLE and FOOTNOTE Statements
You can define TITLE and FOOTNOTE statements anywhere in your SAS program.

They are global and remain in effect until you cancel them or until you end your SAS
session. All currently defined FOOTNOTE and TITLE statements are automatically
displayed.

You can define up to ten TITLE statements and ten FOOTNOTE statements in your
SAS session. A TITLE or FOOTNOTE statement without a number is treated as a
TITLE1 or FOOTNOTE1 statement. You do not have to start with TITLE1 and you do
not have to use sequential statement numbers. Skipping a number in the sequence
leaves a blank line.

You can use as many text strings and options as you want, but place the options
before the text strings they modify. See “Using Multiple Options” on page 224.

The most recently specified TITLE or FOOTNOTE statement of any number
completely replaces any other TITLE or FOOTNOTE statement of that number. In
addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For
example, if you define TITLE1, TITLE2, and TITLE3, resubmitting the TITLE2
statement cancels TITLE3.

To cancel individual TITLE or FOOTNOTE statements, define a TITLE or
FOOTNOTE statement of the same number without options (a null statement):

title4;

But remember that this will cancel all other existing statements of a higher number.
To cancel all current TITLE or FOOTNOTE statements, use the RESET= graphics

option in a GOPTIONS statement:

goptions reset=footnote;

Specifying RESET=GLOBAL or RESET=ALL also cancels all current TITLE and
FOOTNOTE statements as well as other settings.

Using the NOTE Statement
NOTE statements are local, not global, and they must be defined within a procedure

or RUN-group with which they are used. They remain in effect for the duration of the
procedure that includes NOTE statements in any of its RUN-groups or until you end
your SAS session. All notes defined in the current RUN group, as well as those defined
in previous RUN-groups, are displayed in the output as long as the procedure remains
active.

You can use as many text strings and options as you want, but place the options
before the text strings they modify. See “Using Multiple Options” on page 224.

Using Multiple Options
In each statement you can use as many text strings and options as you want, but you

must place the options before the text strings they modify. Most options affect all text
strings that follow them in the same statement, unless the option is explicitly reset to
another value. In general, TITLE, FOOTNOTE, and NOTE statement options stay in
effect until one of these events occurs:

� the end of the statement is reached
� a new specification is made for that option.

For example, this statement specifies that one part of the note be red and another
part blue, but the height for all the text is 4:

SAS/GRAPH Statements Using Options That Can Reset Other Options 225

note height=4 color=red ’Red Tide’
color=blue ’ Effects on Coastal Fishing’;

Setting Defaults
You can set default characteristics for titles (including TITLE1 definitions), footnotes,

and notes by using the following graphics options in a GOPTIONS statement:

CTITLE=color
sets the default color for all titles, footnotes, and notes; overridden by the
COLOR= option in a TITLE, FOOTNOTE, or NOTE statement.

CTEXT=text-color
sets the default color for all text; overridden by CTITLE= for titles, footnotes, and
notes.

FTITLE=title-font
sets the default font for TITLE1 definitions; overridden by FONT= in the TITLE1
statement.

FTEXT=text-font
sets the default font for all text, including the TITLE1 statement if FTITLE= is not
used; overridden by the FONT= option a TITLE, FOOTNOTE, or NOTE statement.

HTITLE=height<units>
sets the default height for TITLE1 definitions; overridden by the HEIGHT= option
in the TITLE1 statement.

HTEXT=n<units>
sets the default height for all text, including the TITLE1 statement if HTITLE= is
not used; overridden by the HEIGHT= option a TITLE, FOOTNOTE, or NOTE
statement.

See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261
for a complete description of each option.

Using Options That Can Reset Other Options
The ANGLE=, MOVE=, and JUSTIFY= options affect the position of the text and

cause text breaks. (To cause a text break, MOVE= must have at least one absolute
coordinate.) When a statement contains multiple text strings, the resulting text break
can cause the following options to reset to their default values:

� BCOLOR=

� BLANK=

� BOX=

� BSPACE=

� LSPACE=

� UNDERLIN=.

Note: The LANGLE= option does not cause a text break. �

If in a TITLE, FOOTNOTE, or NOTE statement, before the first text string, you use
an option that can be reset (such as UNDERLIN=) and before the second string you use
an option that resets it (such as JUSTIFY=), the first option does not affect the second

226 Substituting BY Line Values in a Text String Chapter 7

string. In order for the first option to affect the second string, repeat the option and
position it after the resetting option and before the text string.

For example, this statement produces a two-line title in which only the first line is
underlined:

title underlin=2 ’Line 1’ justify=left ’Line 2’;

To underline Line 2, repeat UNDERLIN= before the second text string and after
JUSTIFY=:

title underlin=2 ’Line 1’ justify=left
underlin=2 ’Line 2’;

Substituting BY Line Values in a Text String
To use the #BYVAR and #BYVAL options, insert the option in the text string at the

position you want the substitution text to appear. Both #BYVAR and #BYVAL
specifications must be followed by a delimiting character, either a space or other
nonalphanumeric character, such as the quote that ends the text string. If not, the
specification is completely ignored and its text remains intact and is displayed with the
rest of the string. To allow a #BYVAR or #BYVAL substitution to be followed
immediately by other text, with no delimiter, use a trailing dot (as with macro
variables). The trailing dot is not displayed in the resolved text. If you want a period to
be displayed as the last character in the resolved text, use two dots after the #BYVAR
or #BYVAL substitution.

If you use a #BYVAR or #BYVAL specification for a variable that is not named in the
BY statement (such as #BYVAL2 when there is only one BY-variable or #BYVAL(ABC)
when ABC is not a BY-variable or does not exist), or if there is no BY statement at all,
the substitution for #BYVAR or #BYVAL does not occur. No error or warning message is
issued and the option specification is displayed with the rest of the string. The graph
will continue to display a BY line at the top of the page unless you suppress it by using
the NOBYLINE option in an OPTION statement.

For more information, see “BY Statement” on page 141.

Note: This feature is not available in the Data Step Graphics Interface or in the
Annotate facility since BY lines are not created in a DATA step. �

Example 1. Ordering Axis Tick Marks with SAS Datetime Values
Features:

AXIS statement options:
COLOR=
LABEL=
MAJOR=
MINOR=
OFFSET=
ORDER=

FOOTNOTE statement option:
HEIGHT=

SYMBOL statement options:
CI=

SAS/GRAPH Statements Example 1. Ordering Axis Tick Marks with SAS Datetime Values 227

CV=

INTERPOL=

WIDTH=

GOPTIONS statement options:

FTITLE=

GUNIT=

HTEXT=

HTITLE=

Sample library member: GAXTMDV1

This example uses SAS datetime values with an AXIS statement’s ORDER= option to
set the major tick marks on the horizontal axis. It adjusts the position of the first and
last major tick marks.

The example also uses HILOCTJ interpolation in a SYMBOL statement to join
minimum and maximum values. The default unit specification for heights in the graph
are percent of the graphics output area as specified by GUNIT= in the GOPTIONS
statement. The GOPTIONS statement also specifies the default fonts for TITLE1 and
for other text.

Set the graphics environment. GUNIT= specifies the units in percent of the graphics
output area. HTITLE= specifies the height for TITLE1 text. HTEXT= specifies the
height for all other text. FTITLE= specifies SWISSB as the font for TITLE1.

goptions reset=global gunit=pct border
cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6
htext=4;

Create the data set. DOWHLC contains the high, low, and close values of the Dow
Jones Industrial index for each business day for a month.

data dowhlc;
input date date9. high low close;
format date date9.;
datalines;

228 Example 1. Ordering Axis Tick Marks with SAS Datetime Values Chapter 7

02JAN1997 6511.38 6318.96 6442.49
03JAN1997 6586.42 6437.10 6544.09
...more data lines...
30JAN1997 6621.82 6481.75 6600.66
31JAN1997 6621.82 6481.75 6600.66
;

Prepare the data for a high-low plot. DOWHLC2 generates three records for each
date, storing each date’s high, low, and close values in variable DOW.

data dowhlc2;
set dowhlc;
drop high low close;
dow=high; output;
dow=low; output;
dow=close; output;

Define titles and footnote. HEIGHT=3 in the FOOTNOTE statement overrides the
height specified by HTEXT= in the GOPTIONS statement.

title1 ’Dow Jones High-Low-Close’;
title2 ’January, 1997’;
footnote height=3 justify=right ’GAXTMDV1

Define symbol characteristics. INTERPOL=HILOCTJ specifies that the minimum and
maximum values of DOW are joined by a vertical line with a horizontal tick mark at
each end. The close values are joined by straight lines. CV= colors the vertical lines,
and CI= colors the line that joins the close values. WIDTH= controls the thickness of
the line that joins the close points.

symbol interpol=hiloctj
cv=blue
ci=red
width=2;

Define characteristics of the horizontal axis. ORDER= uses a SAS date value to set
the major tick marks. OFFSET= moves the first and last tick marks to make room for
the tick mark value. COLOR= makes all axis elements red. MAJOR= and MINOR=
modify the size and color of the major and minor tick marks.

axis1 order=(’30DEC96’d to ’03FEB97’d by week)
offset=(3,3)
color=blue
label=none
major=(height=3 width=2)
minor=(number=6 color=red height=2 width=1)
width=3;

Define characteristics of the vertical axis. LABEL=NONE suppresses the AXIS label.
The COLOR= suboption in MINOR= overrides the COLOR= option.

axis2 color=blue
label=none
major=(height=3)
minor=(number=4 color=red height=1)
offset=(2,2);

Generate the plot and assign AXIS definitions. HAXIS= assigns AXIS1 to the
horizontal axis, and VAXIS= assigns AXIS2 to the vertical axis.

SAS/GRAPH Statements Example 2. Specifying Logarithmic Axes 229

proc gplot data=dowhlc2;
plot dow*date / haxis=axis1

vaxis=axis2;
run;
quit;

Example 2. Specifying Logarithmic Axes
Features:

AXIS statement options:
LABEL=
LENGTH=
LOGBASE=
LOGSTYLE=
MAJOR=
MINOR=
VALUE=

TITLE statement option:
MOVE=

GOPTIONS statement options:
GUNIT=
VPOS=

Sample library member: GAXSPLA1

This example illustrates the AXIS statement options LOGBASE= and LOGSTYLE=.
The horizontal axis represents pH level. The vertical axis, which represents the

230 Example 2. Specifying Logarithmic Axes Chapter 7

concentration of the hydroxide ion expressed as moles per liter, is scaled logarithmically.
In addition, this example shows how the TICK= parameter of the VALUE= option
modifies individual tick marks.

The example uses the MOVE= option in a TITLE statement to position the title’s
subscript and superscript text.

Assign the libref and set the graphics environment. GUNIT= specifies units of percent
of the graphics output area. VPOS= specifies a resolution for the vertical axis.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red) vpos=250
ftitle=swissb ftext=swiss htitle=5
htext=3;

Create the data set. CONCENTR contains the pH values and the concentration
amount.

data concentr;
input ph conc;
datalines;

1 1E-1
2 1E-2
...more data lines...
13 1E-13
14 1E-14
;

Define title and footnote. MOVE= positions subscript 3 and superscript +. Each new
position is relative to the last position specified by MOVE=.

title1 ’Relationship of pH to H’
move=(-0,-3) h=4 ’3’
move=(+0,+3) h=5 ’O’
move=(+0,+3) h=4 ’+’
move=(-0,-3) h=5 ’ Concentration’;

footnote j=r ’GAXSPLA1 ’;

Define symbol characteristics.

symbol interpol=join color=blue;

Define characteristics for horizontal axis. LABEL= uses the JUSTIFY= suboption to
create a descriptive two-line label that replaces the variable name PH. MINOR=NONE
removes all minor tick marks. LENGTH= uses the units specified by the GUNIT=
graphics option to control the length of the horizontal axis.

axis1 label=(h=4 ’Scale of pH Values’
justify=left color=red
h=3 ’More acid’
justify=right color=blue
’More alkaline’)

minor=none
length=60
width=3;

Define characteristics for vertical axis. LOGBASE=10 scales the vertical axis
logarithmically, using a base of 10. Each major tick mark represents a power of 10.
LOGSTYLE=EXPAND displays minor tick marks in logarithmic progression. LABEL=
uses the ANGLE= suboption to place the label parallel to the vertical axis. VALUE=
displays the major tick mark values as 10 plus an exponent. The HEIGHT= suboption

SAS/GRAPH Statements Example 3. Rotating Plot Symbols through the Colors List 231

for each TICK= specification affects only the text following it. Units of CM override the
default PCT specified by GUNIT=.

axis2 logbase=10
logstyle=expand
color=red
label=(angle=90 h=4 color=black

’Concentration (Moles/Liter)’)
value=(tick=1 ’10’ height=1.5 ’-14’

tick=2 ’10’ height=1.5 ’-13’
tick=3 ’10’ height=1.5 ’-12’
tick=4 ’10’ height=1.5 ’-11’
tick=5 ’10’ height=1.5 ’-10’
tick=6 ’10’ height=1.5 ’-9’
tick=7 ’10’ height=1.5 ’-8’
tick=8 ’10’ height=1.5 ’-7’
tick=9 ’10’ height=1.5 ’-6’
tick=10 ’10’ height=1.5 ’-5’
tick=11 ’10’ height=1.5 ’-4’
tick=12 ’10’ height=1.5 ’-3’
tick=13 ’10’ height=1.5 ’-2’
tick=14 ’10’ height=1.5 ’-1’)

major=(height=.75 cm)
minor=(color=blue height=.5 cm);

Generate the plot and assign AXIS definitions. AXIS1 modifies the horizontal axis
and AXIS2 modifies the vertical axis.

proc gplot data=concentr;
plot conc*ph / haxis=axis1

vaxis=axis2;
run;
quit;

Example 3. Rotating Plot Symbols through the Colors List
Features:
GOPTIONS statement options:

COLORS=
HSIZE=
VSIZE=

LEGEND statement options:
LABEL=
SHAPE=

SYMBOL statement options:
HEIGHT=
VALUE=

TITLE statement option:
JUSTIFY=

Sample library member: GSYRPSC1

232 Example 3. Rotating Plot Symbols through the Colors List Chapter 7

This example specifies a plot symbol on a SYMBOL statement and rotates the symbol
through the colors list. Temperature values in the data are represented by the same
plot symbol in a different color. The example also shows how default symbol sequencing
provides a default plot symbol if a plot needs more plot symbols than are defined.

The example uses the GOPTIONS statement to specify the colors for the color
rotation. It also uses a LEGEND statement to specify a two-line legend label, and to
align the label with the legend values.

Set the graphics environment. COLORS= specifies the colors list. This list is used by
the SYMBOL statement. HSIZE= and VSIZE= specify the external dimensions of the
graph. Units of IN override the default PCT specified by GUNIT=.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swissb htitle=4 htext=3
hsize=5in vsize=5in;

Create the data set. BACTERIA contains information about the number and size of
bacterial divisions at various temperatures.

data bacteria;
input temp div mass life @@;
datalines;

10 3 10 1 20 22 46 0 30 23 20 9 40 42 16 16 50 33 20 6
10 1 11 2 20 01 44 2 30 21 31 10 40 41 14 12 50 31 21 7
10 4 14 3 20 13 32 4 30 24 34 9 40 43 22 14 50 34 24 2
...more data lines...
10 3 02 2 20 09 32 5 30 26 32 9 40 39 22 15 50 36 22 5
10 2 05 3 20 07 35 4 30 24 35 15 40 37 25 14 50 24 35 4
10 3 08 1 20 05 38 6 30 23 28 9 40 35 28 16 50 33 28 6

SAS/GRAPH Statements Example 4. Creating and Modifying Box Plots 233

;

proc sort data=bacteria;
by temp;

run;

Define title and footnote. JUSTIFY= breaks the title into two lines.

title1 ’Effect of Temperature on the Number’
justify=center ’and Size of Bacterial

Divisions’;
footnote1 h=3 j=r ’GSYRPSC1’;

Define symbol characteristics. HEIGHT= specifies a height for the plot symbols.
VALUE= specifies a dot for the plot symbol. Because no color is specified, the symbol is
rotated through the colors list. Because the plot needs a fifth symbol, the default plus
sign is rotated into the colors list to provide that symbol.

symbol1 height=2
value=dot;

Define axis characteristics.

axis1 label=(’Size (in Angstroms)’) length=70;
axis2 label=(’Divisions’);

Define legend characteristics. LABEL= specifies text for the legend label. J=L
specifies a new line and left-justifies the second string under the first. POSITION=
aligns the top label line with the first (and in this case only) value row. SHAPE=
specifies a width and height for legend values.

legend1 label=(position=(top left)
’Temperature’ j=l ’(Celsius)’)

shape=symbol(4,2);

Generate the plot.

proc gplot data=bacteria;
plot div*mass=temp / frame

haxis=axis1
vaxis=axis2
legend=legend1;

run;
quit;

Example 4. Creating and Modifying Box Plots
Features:
SYMBOL statement options:

BWIDTH=
CO=
CV=
HEIGHT=
INTERPOL=
VALUE=

Sample library member: GSYCMBP1

234 Example 4. Creating and Modifying Box Plots Chapter 7

This example shows how to create box plots and how to specify SYMBOL definitions
so data outside the box-plot range can be represented with data points. It also shows
how to change a box plot’s percentile range to see if the new range encompasses the
data.

The first plot in the example uses a SYMBOL definition with INTERPOL=BOXT20
to specify a box plot with whisker tops at the 80th percentile and whisker bottoms at
the 20th percentile. Data points that are outside this percentile range are represented
with squares.

As illustrated in the following output, the example then changes the SYMBOL
definition to INTERPOL=BOXT10, which expands the whisker range to the 90th
percentile for tops and the 10th percentile for bottoms. There are no data points outside
the new percentile range.

SAS/GRAPH Statements Example 4. Creating and Modifying Box Plots 235

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6
htext=4;

Create the data set. GRADES contains codes to identify each class section, and the
grades scored by students in each section.

data grades;
input section $ grade @@;
datalines;

A 74 A 89 A 91 A 76 A 87 A 93 A 93 A 96 A 55
B 72 B 72 B 84 B 81 B 97 B 78 B 88 B 90 B 74
C 62 C 74 C 71 C 87 C 68 C 78 C 80 C 85 C 82
;

Define title and footnote.

title1 ’Comparison of Grades by Section’;
footnote1 j=r h=3 ’GSYCMBP1(a) ’;

Define symbol characteristics. INTERPOL=BOXT20 specifies a box plot with tops and
bottoms on its whiskers, and the high and low bounds at the 80th and 20th percentiles.
CO= colors the boxes and whiskers. BWIDTH= affects the width of the boxes. VALUE=
specifies the plot symbol that marks the data points outside the range of the box plot.
CV= colors the plot symbols. HEIGHT= specifies a symbol size.

symbol interpol=boxt20
co=blue
bwidth=6
value=square
cv=red
height=4;

Define axis characteristics.

axis1 label=none
value=(t=1 ’Monday’ j=c ’section’

t=2 ’Wednesday’ j=c ’section’
t=3 ’Friday’ j=c ’section’)

offset=(5,5)
length=50;

Generate the first plot.

proc gplot data=grades;
plot grade*section / haxis=axis1

vaxis=50 to 100 by 10;
run;

Change the footnote.

footnote j=r h=3 ’GSYCMBP1(b) ’;

Change symbol characteristics. INTERPOL=BOXT10 changes the high and low
bounds to the 90th percentile at the top and the 10th percentile on the bottom. All
other symbol characteristics remain unchanged.

symbol interpol=boxt10 width=2;

236 Example 5. Filling the Area between Plot Lines Chapter 7

Generate the second plot.

plot grade*section / haxis=axis1
vaxis=50 to 100 by 10;

run;
quit;

Example 5. Filling the Area between Plot Lines

Features:

AXIS statement option:

ORDER=

SYMBOL statement options:

CO=

CV=

INTERPOL=

Sample library member: GSYFAPL1

This example shows how to fill the area between two plot lines by concatenating two
data sets into one to form a polygon with the data points. It uses a SYMBOL statement
to specify a pattern to fill the polygon and to determine the color of the area fill and the
outline around the area.

The example plots yearly highs and lows for the Dow Jones Industrial Average. It
separates the dependent variables HIGH and LOW to produce an upper plot line and a
lower plot line. The dependent variable is named VALUE and the independent variable
is named YEAR. When concatenated into one data set, AREA, the data sets form the
polygon.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swissb htitle=6 htext=3;

SAS/GRAPH Statements Example 5. Filling the Area between Plot Lines 237

Create the data set. STOCKS contains yearly highs and lows for the Dow Jones
Industrial Average, and the dates of the high and low values each year.

data stocks;
input year @7 hdate date9. @17 high

@26 ldate date9. @36 low;
format hdate ldate date9.;
datalines;

1955 30DEC1955 488.40 17JAN1955 388.20
1956 06APR1956 521.05 23JAN1956 462.35
...more data lines...
1994 31JAN1994 3978.36 04APR1994 3593.35
1995 13DEC1995 5216.47 30JAN1995 3832.08
;

Restructure the data so that it defines a closed area. Create the temporary data sets
HIGH and LOW.

data high(keep=year value)
low(keep=year value);
set stocks;
value=high; output high;
value=low; output low;

run;

Reverse order of the observations in LOW.

proc sort data=low;
by descending year;

Concatenate HIGH and LOW to create data set AREA.

data area;
set high low;

Define titles and footnote.

title1 ’Dow Jones Industrial Average’;
title2 h=4 ’Highs and Lows From 1955 to 1995’;
footnote j=l ’ Source: 1997 World Almanac’

j=r ’GSYFAPL1 ’;

Define symbol characteristics. INTERPOL= specifies a map/plot pattern to fill the
polygon formed by the data points. The pattern consists of medium-density parallel
lines at 90 degrees. CV= colors the pattern fill. CO= colors the outline of the area. (If
CO= were not used, the outline would be the color of the area.)

symbol interpol=m3n90
cv=red
co=blue;

Define axis characteristics. ORDER= places the major tick marks at 5-year intervals.

axis1 order=(1955 to 1995 by 5)
label=none
major=(height=2)
minor=(number=4 height=1)
offset=(2,2)
width=3;

axis2 order=(0 to 5500 by 500)
label=none

238 Example 6. Enhancing Titles Chapter 7

major=(height=1.5) offset=(0,0)
minor=(number=1 height=1);

Generate the plot using data set AREA.

proc gplot data=area;
plot value*year / haxis=axis1

vaxis=axis2
vref=(1000 3000 5000);

run;
quit;

Example 6. Enhancing Titles
Features:
GOPTIONS statement options:

FTITLE=
FTEXT=
GUNIT=
HTITLE=
HTEXT=

TITLE statement options:
ANGLE=
BCOLOR=
BLANK=
BOX=
COLOR=
FONT=
HEIGHT=
MOVE=
ROTATE=
UNDERLIN=

Sample library member: GTIENTI1

SAS/GRAPH Statements Example 6. Enhancing Titles 239

This example illustrates some the ways you can format title text. The same options
can be used to format footnotes. The GOPTIONS statement in the example determines
the font and heights used for the first title line and all remaining text in the display.
GOPTIONS also determines that percentages of the graphics output area are used as
the unit of measure for heights in the graph.

Assign the libref and set the graphics environment. FTITLE= assigns the font that is
used by the TITLE1 statement. FTEXT= assigns the font for all other text. HTITLE=
makes the height of TITLE1 7 percent of the graphics output area, the units defined by
the GUNIT= option. HTEXT= makes the height of all other text 5 percent of the
graphics output area.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=zapfb ftext=swissb htext=5;

Define title1. TITLE1 uses the default font and height defined in the GOPTIONS
statement.

title1 ’This is TITLE1’;

Define TITLE3. Because TITLE2 is not assigned, the output displays a blank line.
UNDERLIN= underlines both text strings.

title3 underlin=1
’TITLE3 Is’
color=red
’ Underlined’;

Define TITLE5. ANGLE= tilts the line of text clockwise 90 degrees and places it at
the right edge of the output.

title5 color=red
angle=-90
’TITLE5 is Angled -90’;

Define TITLE7. ROTATE= rotates each character in the text string at the specified
angle. HEIGHT= overrides HTEXT= in the GOPTIONS statement.

title7 height=4
color=red
rotate=25
’TITLE7 is Rotated’;

Define TITLE8. BOX= draws a green box around the text.

title8 color=green
box=1
’TITLE8 is Boxed’;

Define TITLE9. BLANK= prevents the boxed title from being overwritten by
TITLE10. The first COLOR= specifies the color of the box border, and BCOLOR=
specifies the color of the box background. The second COLOR= specifies the text color.

title9 color=red
box=3
blank=yes
bcolor=red
color=blue
angle=-25
’TITLE9 is Angled in a Red Box’;

240 Example 7. Using BY-group Processing to Generate a Series of Charts Chapter 7

Define TITLE10. In this statement, BOX= draws a box around the first text string.
BOX= is turned off by the MOVE= that uses absolute coordinates and causes a text
break.

title10 color=red
box=1
bcolor=blue
move=(5,20)
font=script
’TITLE10 is in Script and ’
move=(10,12)
height=3
’is Partially Boxed, Positioned with
Explicit Moves,’
move=(15,8)
’and Overlaid by TITLE9’;

Define footnote.

footnote h=3 justify=right ’GTIENTI1 ’;

Display titles and footnote. All existing titles and footnotes are automatically
displayed by the procedure.

proc gslide;
run;
quit;

Example 7. Using BY-group Processing to Generate a Series of Charts
Features:

AXIS statement options:
LABEL=
MAJOR=
MINOR=
NOPLANE
ORDER=
STYLE=

VALUE=
BY statement
GOPTIONS statement options:

HSIZE=
VSIZE=

OPTIONS statement option:
NOBYLINE

PATTERN statement option:
COLOR=

TITLE statement:
#BYVAL

Sample library member: GBYGMSC1

SAS/GRAPH Statements Example 7. Using BY-group Processing to Generate a Series of Charts 241

This example uses a BY statement with the GCHART procedure to produce a
separate 3D vertical bar chart for each value of the BY variable TYPE. The three charts,
which are shown in Display 7.1 on page 243,Display 7.2 on page 244 , and Display 7.3
on page 245 following the code, show leading grain producers for 1995 and 1996.

The program suppresses the default BY lines and instead uses #BYVAL in the TITLE
statement text string to include the BY variable value in the title for each chart.

The AXIS1 statement that is assigned to the vertical (response) axis is automatically
applied to all three graphs generated by the BY statement. This AXIS statement
removes all the elements of the response axis except the label. The same AXIS
statement also includes an ORDER= option. Because this option is applied to all the
graphs, it ensures that they all use the same scale of response values.

Because no subgroups are specified and the PATTERNID= option is omitted, the
color specified in the single PATTERN statement is used by all the bars.

Set the graphics environment. HSIZE= and VSIZE= set the horizontal and vertical
size of the graphics output area.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=5
htext=4 hsize=5in vsize=5in;

Create the data set GRAINLDR. GRAINLDR contains data about grain production in
five countries for 1995 and 1996. The quantities in AMOUNT are in thousands of
metric tons. MEGTONS converts these quantities to millions of metric tons.

data grainldr;
length country $ 3 type $ 5;
input year country $ type $ amount;
megtons=amount/1000;
datalines;

1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
...more data lines...
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

Create a format for the values of COUNTRY.

proc format;
value $country ’BRZ’ = ’Brazil’

’CHN’ = ’China’
’IND’ = ’India’
’INS’ = ’Indonesia’
’USA’ = ’United States’;

run;

Suppress the default BY-line and define a title that includes the BY-value. #BYVAL
inserts the value of the BY variable COUNTRY into the title of each report.

options nobyline;
title1 ’Leading #byval(type) Producers’

j=c ’1995 and 1996’;
footnote1 j=r h=3 ’GBYGMSC1 ’;

Specify a color for the bars.

242 Example 7. Using BY-group Processing to Generate a Series of Charts Chapter 7

pattern1 color=green;

Define the axis characteristics for the response axes. ORDER= specifies the range of
values for the response axes. ANGLE=90 in the LABEL= option rotates the label 90
degrees. All the other options remove axis elements. MAJOR=, MINOR=, and VALUE=
remove the tick marks and values. STYLE=0 removes the line. NOPLANE removes the
3D plane.

axis1 order=(0 to 550 by 100)
label=(angle=90 ’Millions of Metric Tons’)
major=none
minor=none
value=none
style=0
noplane;

Define midpoint axis characteristics. SPLIT= defines the character that causes an
automatic line break in the axis values.

axis2 label=none
split=’ ’;

Sort data according to values of BY variable. The data must be sorted before running
PROC GCHART with the BY statement.

proc sort data=grainldr out=temp;
by type;

run;

Generate the vertical bar charts using a BY statement. The BY statement produces a
chart for each value of SITE. The FORMAT statement assigns the $COUNTRY. format
to the chart variable. Assigning AXIS1 to RAXIS= causes all three charts to have the
same response axis.

proc gchart data=temp (where=(megtons gt 31))
by type;
format country $country.;
vbar3d country / sumvar=megtons

outside=sum
descending
shape=hexagon
width=8
coutline=black
cframe=grayaa
maxis=axis2
raxis=axis1 name=’GBYGMSC1’;

run;
quit;

SAS/GRAPH Statements Example 7. Using BY-group Processing to Generate a Series of Charts 243

Display 7.1 Output for BY Value Corn

244 Example 7. Using BY-group Processing to Generate a Series of Charts Chapter 7

Display 7.2 Output for BY Value Rice

SAS/GRAPH Statements Example 8. Creating a Simple Web Page with the ODS HTML Statement 245

Display 7.3 Output for BY Value Wheat

Example 8. Creating a Simple Web Page with the ODS HTML Statement
Features:

ODS HTML statement options:

BODY=
PATH=

CLOSE
GOPTIONS statement options:

COLORS=

DEVICE=
TRANSPARENCY

NOBORDER (default)
LEGEND statement options:

ACROSS=

LABEL=
MODE=

ORIGIN=
SHAPE=

WHERE statement

Sample library member: GONCSWB1

246 Example 8. Creating a Simple Web Page with the ODS HTML Statement Chapter 7

Display 7.4 Displaying a Map in a Web Page

This example illustrates the simplest way to use the ODS HTML statement to create
an HTML file and a GIF file that you can display in a Web browser. It generates one
body file that displays one piece of SAS/GRAPH output – a map of average per capita
income for four states.

This example also illustrates default pattern behavior with maps and explicit
placement of the legend on the graph. It shows how the default solid map pattern
rotates through every color in a colors list defined in the GOPTIONS statement. By
default, the outline color is the first color in the list, in this case, BLACK.

And it shows how to use a LEGEND statement to arrange and position a legend so it
fits well with the graph’s layout.

Assign the Web-server path. FILENAME assigns the fileref ODSOUT, which is a
destination for the HTML and GIF files produced by the example program. To assign
that location as the HTML destination for program output, ODSOUT is specified later
in the program on the ODS HTML statement’s PATH= option. ODSOUT must point to
a Web-server location if procedure output is to be viewed on the Web.

filename odsout ’path-to-Web-server-space’;

Close the ODS Listing destination for procedure output, and set the graphics
environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. Thus, the graphics output is not displayed in the
GRAPH window, although it is written to the graphics catalog and to the GIF files.
COLORS= on the GOPTIONS statement defines a list of four colors for the graph.

ods listing close;
goptions reset=global gunit=pct cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create the data set INCOME. INCOME contains state codes for four states and the
average income of each state.

SAS/GRAPH Statements Example 8. Creating a Simple Web Page with the ODS HTML Statement 247

data income;
input state income;
datalines;

04 19001
35 17106
40 17744
48 19857
;

Assign graphics options for producing the ODS HTML output. DEVICE=GIF causes
the ODS HTML statement to generate the graphics output as GIF files.
TRANSPARENCY causes the graphics output to use the Web-page background as the
background of the graph. Because the default setting NOBORDER is used, the edge of
the graph is not visible on the Web page.

goptions device=gif transparency noborder;

Open the ODS HTML destination. BODY= names the file for storing HTML output.
PATH= specifies the ODSOUT fileref as the destination for all the HTML and GIF files.

ods html body=’income_body.html’
path=odsout;

Define titles and a footnote for the map. By default, any defined titles and footnotes
are included in the graphics output (GIF file).

title ’1994 Personal Income Per Capita’;
title2 f=swissb ’(Arizona, New Mexico, Texas, and Oklahoma)’;
footnote1 h=3 j=r ’GMAP ’;

Define legend characteristics. ACROSS= defines the number of columns in the legend.
ORIGIN= specifies an exact location for the legend. MODE= allows the legend to share
the output area. LABEL= specifies a legend label and left-justifies it above the legend
values. SHAPE= specifies a size and shape for the legend values.

legend across=2
origin=(10,20)
mode=share
label=(position=top

justify=left
’Average Income’)

shape=bar(4,4);

Generate the prism map. Because the NAME= option is omitted, SAS/GRAPH
assigns the default name GMAP to the GRSEG entry in the graphics catalog. This is
the name that is assigned to the GIF file created by the ODS HTML statement.

proc gmap map=maps.us data=income;
format income dollar6.0;
id state;
prism income / discrete

legend=legend;
run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination. You must
close the HTML destination before you can view the output with a browser. ODS
LISTING opens the Listing destination so that the destination is again available for
displaying output during this SAS session.

248 Example 9. Combining Graphs and Reports in a Web Page Chapter 7

ods html close;
ods listing;

Example 9. Combining Graphs and Reports in a Web Page
Features:
AXIS statement options:

LENGTH=
VALUE=

BY statement
GOPTIONS statement options:

BORDER
DEVICE=
TRANSPARENCY

ODS HTML statement options:
BODY=
CONTENTS=
FRAME=
PATH=
NOGTITLE

OPTIONS statement option:
NOBYLINE

TITLE statement option:
#BYVAL

Sample library member: GONCGRW1
This example generates several graphs of sales data that can be accessed from a

single Web page. The graphs are two bar charts of summary sales data and three pie
charts that break the data down by site. Each bar chart and an accompanying report is
stored in a separate body file.

The three pie charts are generated with BY-group processing and are stored in one
body file. The program suppresses the default BY lines and instead includes the BY
variable value in the title for each chart. The SAS/GRAPH titles are displayed in the
HTML output instead of in the graphics output.

The Web page contains two frames, one that displays a Table of Contents for all the
graphs, and one that serves as the display area. Links to each piece of output appear in
the table of contents, which is displayed in the left frame. Initially the frame file
displays the first body file, which contains a bar chart and a report, as shown in the
following figure.

SAS/GRAPH Statements Example 9. Combining Graphs and Reports in a Web Page 249

Display 7.5 Browser View of Bar Chart and Quarterly Sales Report

Notice that the chart title is displayed outside the graph as part of the HTML file.
Select the link to Total Department Sales to display the second bar chart, as shown in

the following figure.

250 Example 9. Combining Graphs and Reports in a Web Page Chapter 7

Display 7.6 Browser View of Bar Chart and Department Sales Report

Selecting any link for Department Sales displays the corresponding pie chart as
shown in the following figure.

Display 7.7 Browser View of Pie Charts of Site Sales

Because the pie charts are stored in one file, you can easily see all three by scrolling
through the file.

SAS/GRAPH Statements Example 9. Combining Graphs and Reports in a Web Page 251

Additional features include AXIS statements that specify the same length for both
midpoint axes, so that the bar charts are the same width even though they have a
different number of bars.

Assign the Web-server path. FILENAME assigns the fileref ODSOUT, which specifies
a destination for the HTML and GIF files produced by the example program. To assign
that location as the HTML destination for program output, ODSOUT is specified later
in the program on the ODS HTML statement’s PATH= option. ODSOUT must point to
a Web-server location if procedure output is to be viewed on the Web.

filename odsout ’path-to-Web-server-space’;

Close the ODS Listing destination for procedure output, and set the graphics
environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. On the GOPTIONS statement, HSIZE= and VSIZE=
set the horizontal and vertical size of the graphics output area. DEVICE=GIF causes
the ODS HTML statement to generate the graphics output as GIF files.
TRANSPARENCY causes the graphics output to use the Web-page background as the
background of the graph. BORDER is used so that the border around the graphics
output area will be compatible with the borders that are created for nongraphics output.

ods listing close;
goptions reset=global gunit=pct border

colors=(blue green red) ctext=black
hsize=5in vsize=5in ftitle=zapfb
ftext=swiss htitle=6 htext=4
device=gif transparency;

Create the data set TOTALS. The data set contains quarterly sales data for three
manufacturing sites for one year.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;

Parts Sydney 1 4043.97
Parts Atlanta 1 6225.26
Parts Paris 1 3543.97
Repairs Sydney 1 5592.82
Repairs Atlanta 1 9210.21
Repairs Paris 1 8591.98
Tools Sydney 1 1775.74
Tools Atlanta 1 2424.19
Tools Paris 1 5914.25
Parts Sydney 2 3723.44
Parts Atlanta 2 11595.07
Parts Paris 2 9558.29
Repairs Sydney 2 5505.31
Repairs Atlanta 2 4589.59
Repairs Paris 2 7538.56
Tools Sydney 2 2945.17
Tools Atlanta 2 1903.99
Tools Paris 2 7868.34
Parts Sydney 3 8437.96
Parts Atlanta 3 6847.91
Parts Paris 3 6789.85
Repairs Sydney 3 4426.46
Repairs Atlanta 3 5011.66

252 Example 9. Combining Graphs and Reports in a Web Page Chapter 7

Repairs Paris 3 6510.38
Tools Sydney 3 3767.10
Tools Atlanta 3 3048.52
Tools Paris 3 9017.96
Parts Sydney 4 6065.57
Parts Atlanta 4 9388.51
Parts Paris 4 8509.08
Repairs Sydney 4 3012.99
Repairs Atlanta 4 2088.30
Repairs Paris 4 5530.37
Tools Sydney 4 3817.36
Tools Atlanta 4 4354.18
Tools Paris 4 6511.70
;

Open the ODS HTML destination. FRAME= names the HTML file that integrates
the contents and body files. CONTENTS= names the HTML file that contains the table
of contents to the HTML procedure output. BODY= names the file for storing the
HTML output. The contents file links to each of the body files written to the HTML
destination. PATH= specifies the ODSOUT fileref as the HTML destination for all the
HTML and GIF files. NOGTITLE suppresses the graphics titles from the SAS/GRAPH
output and displays them through the HTML page.

ods html frame=’sales_frame.html’
contents=’sales_contents.html’
body=’sales_body1.html’
path=odsout
nogtitle;

Define title and footnote. TITLE1 uses the font and height specified by FTITLE= and
HTITLE= in the GOPTIONS statement.

title1 ’Total Sales By Quarter’;
footnote j=r h=3 ’salesqtr ’;

Define axis characteristics for the first bar chart. In AXIS2, LENGTH= specifies the
length of the midpoint axis.

axis1 order=(0 to 60000 by 20000)
minor=(number=1)
label=none;

axis2 label=none length=70pct
value=(’1Q’ ’2Q’ ’3Q’ ’4Q’);

Suppress the legend label and define the size of the legend values.

legend1 label=none shape=bar(4,4);

Generate the vertical bar chart of quarterly sales. NAME= specifies the name of the
catalog entry. Because the PATH= destination is a file storage location and not a
specific file name, the name SALESQTR.GIF is assigned to the GIF file, matching the
named assigned to the GRSEG on NAME=. DES= specifies the description that is
stored in the graphics catalog and used in the Table of Contents.

proc gchart data=totals;
format sales dollar8.;
vbar3d quarter / discrete

sumvar=sales
shape=cylinder

SAS/GRAPH Statements Example 9. Combining Graphs and Reports in a Web Page 253

subgroup=site
cframe=grayaa
caxis=black
width=12
space=4
legend=legend1
maxis=axis2
raxis=axis1
des=’Total Quarterly Sales’
name=’salesqtr’;

run;
quit;

Sort the data set for the report of quarterly sales. The data must be sorted in order of
the BY variable before running PROC REPORT with BY-group processing.

proc sort data=totals out=qtrsort;
by quarter site;

run;

Reset the footnote and suppress the BY-line. We suppress the by-line because
otherwise #BYVAL inserts the value of the BY variable into the title of each report.

footnote1;
options nobyline;

Generate a report of quarterly sales. Because the HTML body file that references the
GCHART procedure output is still open, the report is stored in that file. The chart and
report are shown in Display 7.5 on page 249.

title1 ’Sales for Quarter #byval(quarter)’;
proc report data=qtrsort nowindows;

by quarter;
column quarter site dept sales;
define quarter / noprint group;
define site / display group;
define dept / display group;
define sales / display sum format=dollar8.;
compute after quarter;

site=’Total’;
endcomp;
break after site / summarize style=rowheader;
break after quarter / summarize style=rowheader;

run;

Open a new body file for the second bar chart and report. Assigning a new body file
closes SALES_BODY1.HTML. The contents and frame files, which remain open, will
contain links to all body files.

ods html body=’sales_body2.html’ path=odsout;

Define title and footnote for second bar chart.

title1 ’Total Sales By Department’;
footnote1 j=r h=3 ’salesdep ’;

Define axis characteristics. These AXIS statements replace the ones defined earlier.
As before, LENGTH= defines the length of the midpoint axis.

254 Example 9. Combining Graphs and Reports in a Web Page Chapter 7

axis1 label=none
minor=(number=1);
order=(0 to 100000 by 20000)

axis2 label=none length=70pct;

Generate the vertical bar chart of departmental sales.

proc gchart data=totals;
format sales dollar8.;
vbar3d dept / shape=cylinder

subgroup=site
cframe=grayaa
width=12
space=4
sumvar=sales
legend=legend1
maxis=axis2
raxis=axis1
caxis=black
des=’Total Department Sales’
name=’salesdep’;

run;
quit;

Sort the data set for the report of department sales. The data must be sorted in order
of the BY variable before running PROC REPORT with BY-group processing.

proc sort data=totals out=deptsort;
by dept site;

run;

Reset the footnote, define a report title, and generate the report of department sales.
#BYVAL inserts the value of the BY variable into the title of each report. The chart and
report are shown in Display 7.5 on page 249.

footnote1;
title1 ’Sales for #byval(dept)’;
proc report data=deptsort nowindows;

by dept;
column dept site quarter sales;
define dept / noprint group;
define site / display group;
define quarter / display group;
define sales / display sum format=dollar8.;
compute after dept;

site=’Total’;
endcomp;
break after site / summarize style=rowheader;
break after dept / summarize style=rowheader;

run;

Open a new body file for the pie charts. Assigning a new file as the body file closes
SALES_BODY2.HTML. The contents and frame files remain open. GTITLE displays
the titles in the graph.

ods html body=’sales_body3.html’ gtitle path=odsout;

Sort data set in order of the BY variable before running the GCHART procedure with
BY-group processing.

SAS/GRAPH Statements Example 10. Creating a Bar Chart with Drill-down for the Web 255

proc sort data=totals out=sitesort;
by site;

run;

Define title and footnote. #BYVAL inserts the value of the BY variable SITE into the
title for each output.

title ’Departmental Sales for #byval(site)’;
footnote j=r h=3 ’salespie ’;

Generate a pie chart for each site. All the procedure output is stored in one body file.
Because BY-group processing generates multiple graphs from one PIE3D statement, the
name assigned by NAME= is incremented to provide a unique name for each piece of
output.

proc gchart data=sitesort;
format sales dollar8.;
by site;
pie3d dept / noheading

coutline=black
sumvar=sales
des=’Department Sales’
name=’salespie’;

run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination.

ods html close;
ods listing;

Example 10. Creating a Bar Chart with Drill-down for the Web
Features:
GOPTIONS statement option:

RESET=
ODS HTML statement options:

BODY=
NOGTITLE
PATH=

Sample library member: GONDDCW1
This example shows you how to create a drill-down graph in which the user can

select an area of the graph in order to display additional information about the data.
The program creates one vertical bar chart of total sales for each site and three reports
that break down the sales figures for each site by department and quarter. The
following figure shows the bar chart of sales.

256 Example 10. Creating a Bar Chart with Drill-down for the Web Chapter 7

Display 7.8 Vertical Bar Chart of Total Sales

Display 7.9 on page 256 shows the PROC REPORT output that appears when you
click on the bar for Atlanta.

Display 7.9 PROC REPORT Output Displayed in a Web Browser

For additional information about this program, see “Details” on page 259.
Assign the Web-server path. FILENAME assigns the fileref ODSOUT, which specifies

a destination for the HTML and GIF files produced by the example program. To assign
that location as the HTML destination for program output, ODSOUT is specified later

SAS/GRAPH Statements Example 10. Creating a Bar Chart with Drill-down for the Web 257

in the program on the ODS HTML statement’s PATH= option. ODSOUT must point to
a Web-server location if procedure output is to be viewed on the Web.

filename odsout ’path-to-Web-server-space’;

Close the ODS Listing destination for procedure output, and set the graphics
environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. On the GOPTIONS statement, DEVICE=GIF causes
the ODS HTML statement to generate the graphics output as GIF files.
TRANSPARENCY causes the graphics output to use the Web-page background as the
background of the graph.

ods listing close;
goptions reset=global gunit=pct

colors=(black blue green red)
hsize=7 in vsize=5 in ftitle=zapfb
ftext=swiss htitle=6 htext=4
device=gif transparency noborder;

Add the HTML variable to TOTALS and create the NEWTOTAL data set. The HTML
variable SITEDRILL contains the targets for the values of the variable SITE. Each
HREF value specifies the HTML body file and the name of the anchor within the body
file that identifies the target graph.

data newtotal;
set totals;
length sitedrill $40;

if site=’Atlanta’ then
sitedrill=’HREF="report_deptsales.html#IDX1"’;

else if site=’Paris’ then
sitedrill=’HREF="report_deptsales.html#IDX2"’;

else if site=’Sydney’ then
sitedrill=’HREF="report_deptsales.html#IDX3"’;

run;

Open the ODS HTML destination. BODY= names the file for storing HTML output.
PATH= specifies the ODSOUT fileref as the HTML destination for all the HTML and
GIF files. NOGTITLE suppresses the graph titles from the SAS/GRAPH output and
displays them in the HTML.

ods html path=odsout
body=’report_body.html’
nogtitle;

Define title and footnote.

title1 ’Total Sales for All Sites’;
footnote1 h=3 j=l ’click on bars’ j=r ’REPORT3D ’;

Assign a pattern color for the bars. Each bar in the graph uses the same PATTERN
definition.

pattern color=cyan;

Define axis characteristics. The VBAR3D statement assigns AXIS1 to the response
axis and AXIS2 to the midpoint axis.

axis1 order=(0 to 100000 by 20000)
minor=(number=1)

258 Example 10. Creating a Bar Chart with Drill-down for the Web Chapter 7

label=none;
axis2 label=none offset=(9,9);

Generate the vertical bar chart of total sales for each site. HTML= specifies
SITEDRILL as the variable that contains the name of the target. Specifying HTML=
causes SAS/GRAPH to add an image map to the HTML body file. NAME= specifies the
name of the catalog entry.

proc gchart data=newtotal;
format sales dollar8.;
vbar3d site / discrete

width=15
sumvar=sales
inside=sum
html=sitedrill
coutline=black
cframe=blue
maxis=axis2
raxis=axis1
name=’report3d ’;

run;
quit;

Open the file for the PROC REPORT output. Assigning a new body file closes
REPORT_BODY.HTML.

ods html body=’report_deptsales.html’ path=odsout;

Sort the data set NEWTOTAL. The data must be sorted in order of the BY variable
before running PROC REPORT with BY-group processing.

proc sort data=newtotal;
by site dept quarter;

run;
quit;

Clear the footnote.

goptions reset=footnote1;

Suppress the default BY-line and define a title that includes the BY-value. #BYVAL
inserts the value of the BY variable SITE into the title of each report.

options nobyline;
title1 ’Sales Report for #byval(site)’;

Print a report of departmental sales for each site.

proc report data=newtotal nowindows;
by site;
column site dept quarter sales;
define site / noprint group;
define dept / display group;
define quarter / display group;
define sales / display sum format=dollar8.;
compute after site;

dept=’Total’;
endcomp;
break after site / summarize style=rowheader page;

run;

SAS/GRAPH Statements Creating an image map 259

quit;

Close the ODS HTML destination, and open the ODS Listing destination.

ods html close;
ods listing;

Details
This section provides additional information about the pieces of this program and

how they work together to generate SAS/GRAPH output with drill-down functionality.
It describes

� how an HREF value is built

� how the HTML= option creates an image map in the HTML file

� how the HTML file references the SAS/GRAPH output.

Building an HREF value
In the DATA step, the variable SITEDRILL is assigned a string that defines the link

target for a data value. For example,

if site=’Atlanta’ then
sitedrill=’HREF="report_deptsales.html#IDX1"’;

The link target is specified by the HTML HREF attribute. The HREF value tells the
Web page where to link to when a user selects the region associated with the value
Atlanta.

For example, clicking on the first bar in the chart links to the target defined by
report_deptsales.html#IDX1. This target is composed of a filename and an anchor.
The file, report_deptsales.html, is generated by the PROC REPORT step. IDX1 is
the anchor that identifies the section of the file that contains the report for the first BY
group, Atlanta.

Because anchor names increment, in order to assign them accurately you must know
how many pieces of output your program generates and in what order. For example,
this table lists in order the pieces of output generated by this example and their default
anchor names:

Procedure Output Anchor name

GCHART report3d.gif IDX

REPORT Atlanta report IDX1

REPORT Paris report IDX2

REPORT Sydney report IDX3

Creating an image map
The HTML= option in the GCHART procedure is assigned the variable with the

target information – in this case, SITEDRILL.

html=sitedrill

260 Referencing SAS/GRAPH output Chapter 7

This option causes SAS/GRAPH to generate in the HTML body file the MAP and
AREA elements that compose the image map. It loads the HREF attribute value from
SITEDRILL into the AREA element. This image map, which is named gqcke00k_map,
is stored in report_body.html (ODS generates unique map names each time you run
the program, so the next time this program runs, the map name will be different):

<MAP NAME="gqcke00k_map">
<AREA SHAPE="POLY"

HREF="report_deptsales.html#IDX3"
COORDS="423,409,423,242,510,242,510,409" >

<AREA SHAPE="POLY"
HREF="report_deptsales.html#IDX2"
COORDS="314,409,314,139,401,139,401,409" >

<AREA SHAPE="POLY"
HREF="report_deptsales.html#IDX1"
COORDS="205,409,205,199,292,199,292,409" >

</MAP>

The AREA element defines the regions within the graph that you can select to link to
other locations. It includes attributes that define the shape of the region (SHAPE=) and
position of the region (COORDS=) as well as the link target (HREF=).

The value assigned to the HREF= attribute is contained in the variable assigned to
HTML=, in this case SITEDRILL.

Referencing SAS/GRAPH output
In the GOPTIONS statement, DEVICE=GIF causes SAS/GRAPH to create GIF files

from the SAS/GRAPH output. It also adds to the open body file an IMG element that
points to the GIF file. In this case, SAS/GRAPH adds the following IMG element to
report_body.html:

The IMG element tells the Web page to get the image from the file report3d.gif. It
also tells the Web page to use the image map #report3d_map to define the hot spots of
the bar chart.

See Also

� For more information on the BY, LABEL, OPTIONS, and WHERE statements in
base SAS software, see SAS Language Reference: Dictionary.

261

C H A P T E R

8
Graphics Options and Device
Parameters Dictionary

Introduction 261

Specifying Graphics Options and Device Parameters 261
Specifying Units of Measurement 262

Dictionary of Graphics Options and Device Parameters 262

Introduction

This chapter provides a detailed description of all of the graphics options and device
parameters used with SAS/GRAPH software. These include

� all graphics options used by the GOPTIONS statement

� all device parameters that can be specified as options in the ADD and MODIFY
statements in the GDEVICE procedure

� all device parameters that appear as fields in the GDEVICE windows.

The descriptions provide the syntax, defaults, and required information for each
option and parameter.

The graphics options and device parameters are intermixed and listed alphabetically.
When the graphics option and device parameter have the same name, they are
discussed in the same dictionary entry and the description uses only that name and
does not distinguish between the option and the parameter except where the distinction
is necessary.

For a list of all the graphics options, see “GOPTIONS Statement” on page 146. For a
list of all the device parameters, see “ADD Statement” on page 921.

If the syntax for the graphics option and the device parameter is different, both
forms are shown. If the syntax is the same, one form is shown.

Specifying Graphics Options and Device Parameters

Use a GOPTIONS statement to specify the graphics options. Some graphics options
can also be specified in an OPTIONS statement. Use the GDEVICE procedure to
specify the device parameters. (See “GOPTIONS Statement” on page 146 and Chapter
31, “The GDEVICE Procedure,” on page 915 for details.)

Note: The syntax for device parameters is the syntax for specifying parameters
when using the GDEVICE procedure statements. With the GDEVICE windows, simply
enter values into fields in the windows. �

262 Specifying Units of Measurement Chapter 8

Note: The values that you specify for any option or parameter must be valid for the
device. If you specify a value that exceeds the device’s capabilities, SAS/GRAPH
software reverts to values that can be used with the device. �

Specifying Units of Measurement
When the syntax of an option includes units, use one of these unless the syntax

specifies otherwise:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points (there are approximately 72 points in an inch).

If you omit units, a unit specification is searched for in this order:
1 the value of GUNIT= in a GOPTIONS statement
2 the default unit, CELLS.

Dictionary of Graphics Options and Device Parameters

ADMGDF
Specifies whether to write an ADMGDF or GDF file when the GSFNAME= and GSFMODE= graphics
options are used with a GDDM device driver.

Used in: GOPTIONS statement
Default: NOADMGDF
Restriction: GDDM device drivers on IBM mainframe systems only

Syntax
ADMGDF | NOADMGDF

ADMGDF
instructs the GDDM device driver to write out an ADMGDF file.

NOADMGDF
instructs the GDDM device driver to write out a GDF file.

ASPECT
Sets the aspect ratio for graphics elements.

Graphics Options and Device Parameters Dictionary AUTOCOPY 263

Used in: GOPTIONS statement GDEVICE procedure GDEVICE Detail window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
ASPECT=scaling-factor

scaling-factor
is a nonnegative integer or real number that determines the ratio of width to height
for graphics elements. If you specify ASPECT=1, each graphics element has equal
horizontal and vertical scaling factors; ASPECT=2 scales the graphics element twice
as wide as its height; and so on. If ASPECT= is not specified or is set to 0 or null,
SAS/GRAPH uses the aspect ratio of the hardware device.

Details
The aspect ratio affects many graphics characteristics, such as the shape of software
characters and the roundness of pie charts. Some graphics drivers do not produce
correct output if the aspect ratio is anything other than the default. When you use a
device that uses local scaling (that is, the device itself can scale the output, for example,
some plotters), use ASPECT= to tell SAS/GRAPH the scaling factor. If you change
ASPECT, you can use the GTESTIT procedure to run a sample graphics output to
inspect the effects of the changes.

Note: You may get more reliable results if you use the default aspect ratio and use
the HSIZE= and VSIZE= graphics options to set the dimensions. �

AUTOCOPY

Specifies whether to generate hardcopy automatically.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Defaults: GOPTIONS: NOAUTOCOPY; GDEVICE: AUTOCOPY=N
Restrictions: device dependent; not supported by Java or ActiveX

Syntax
GOPTIONS: AUTOCOPY | NOAUTOCOPY

GDEVICE: AUTOCOPY=Y | N

AUTOCOPY
AUTOCOPY=Y

prints a copy of the graph automatically.

NOAUTOCOPY
AUTOCOPY=N

264 AUTOFEED Chapter 8

suppresses printing a copy of the graph. A blank Autocopy field in the Parameters
window is the same as AUTOCOPY=N.

Details
AUTOCOPY is used only for older terminals that have printers attached directly to the
device.

AUTOFEED

Specifies whether devices with continuous paper or automatic paper feed should roll or feed the
paper automatically for the next graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Defaults: GOPTIONS: AUTOFEED (if a device is specified); GDEVICE: AUTOFEED=Y

Restrictions: device dependent; not supported by Java or ActiveX

See also: PPDFILE

Syntax
GOPTIONS: AUTOFEED | NOAUTOFEED

GDEVICE: AUTOFEED=Y | N

AUTOFEED
AUTOFEED=Y

causes the device to feed new paper automatically for the next graph. A blank
Autofeed field in the Parameters window is the same as AUTOFEED=Y.

NOAUTOFEED
AUTOFEED=N

suppresses the automatic paper feed.

Details
For PostScript devices, if AUTOFEED is unaltered, the PostScript file is unchanged. If
you specify NOAUTOFEED and do not select a PPD file with the PPDFILE option, a
PostScript Level 1 manualfeed command is added to the driver output. If you specify
NOAUTOFEED and select a PPD that contains a manualfeed option, the procedure
code for that manualfeed option is sent. If there is no manualfeed option in the PPD, no
manualfeed code is sent. See “PPDFILE” on page 337.

AUTOSIZE

Controls whether to change the size of the character cells in order to preserve the number of rows
and columns specified in the device entry.

Graphics Options and Device Parameters Dictionary BINDING 265

Used in: GOPTIONS statement

Default: device dependent

Restriction: not supported by Java or ActiveX
See also: DEVOPTS

Syntax
AUTOSIZE=ON | OFF | DEFAULT

ON
changes the cell size in order to preserve the number of rows and columns.

OFF
preserves the device’s original cell size and temporarily changes the number of rows
and columns.

DEFAULT
uses the default setting (ON or OFF) that is controlled by DEVOPTS bit 50 (see
“DEVOPTS” on page 281).

Details
AUTOSIZE is useful when you change the size of the graphics display area using one or
more of the options PAPERSIZE, XPIXELS, YPIXELS, XMAX, or YMAX. It lets you
control image text size without using PROC GDEVICE. Typically, AUTOSIZE is on for
most image drivers and off for all other types of drivers.

Note: If you use HSIZE of VSIZE, the character cell size changes regardless of the
AUTOSIZE setting. �

BINDING

Specifies which edge of the document is the binding edge.

Used in: GOPTIONS statement OPTIONS statement

Default: DEFAULTEDGE

Restrictions: PostScript and PCL printers only. PostScript printers require a PPD file.
Not supported by Java or ActiveX.

See also: DUPLEX, PPDFILE

Syntax
BINDING=DEFAULTEDGE | LONGEDGE | SHORTEDGE

Details
BINDING controls how the page is flipped when DUPLEX is in effect. It does not

change the orientation of the graph. DEFAULTEDGE refers to the hardware’s

266 BORDER Chapter 8

factory-default setting. LONGEDGE and SHORTEDGE refer to the paper’s long and
short edges.

For PostScript printers, a PPD file must also be specified, using the PPDFILE=
option. The PPD file contains the command that SAS/GRAPH needs to request the
appropriate binding method on the printer being used. If a PPD file is not specified,
BINDING= is ignored because SAS/GRAPH will lack the command needed to request
the binding method.

BORDER

Specifies whether to draw a border around the graphics output area.

Used in: GOPTIONS statement
Default: NOBORDER

Syntax
BORDER | NOBORDER

Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245 and “Example 9. Combining Graphs and Reports in a Web
Page” on page 248

Details
The placement of the border on the display is defined by the HSIZE= and VSIZE=
graphics options, if used. Otherwise the placement is defined by the XMAX and YMAX
device parameters.

CBACK

Specifies the background color of the graphics output.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gcolors window
Default: as specified in the Gcolors window

Syntax
CBACK=background-color

background-color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information about specifying colors.

Graphics Options and Device Parameters Dictionary CELL 267

Details
The CBACK= option is valid on all devices but may be ignored by some (for example,
plotters). Specify the default in the Gcolors window of the device entry.

Note: This option overrides the Background and Foreground style attributes in the
graph styles. For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide. �

If you explicitly specify a background color with the CBACK= option, the background
color you select should contrast with the foreground colors.

If the IBACK= option is in effect, an image will appear in the background in place of
the color specified with the CBACK= option.

CBY

Selects the color of the BY lines that appear in the graphics output.

Used in: GOPTIONS statement
Default: (1) CTEXT= graphics option, if used; (2) first color in current colors list
Restriction: not supported by Java or ActiveX

Syntax
CBY=BY-line-color

BY-line-color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information about specifying colors.

Details
When you use a BY statement with a SAS/GRAPH procedure to process a data set in
subgroups, each graph produced by that procedure is headed by a BY line that displays
the BY variables and their values that define the current subgroup.

CELL

Controls whether to use cell alignment.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: CELL | NOCELL

268 CHARACTERS Chapter 8

GDEVICE: CELL=Y | N

CELL
CELL=Y

causes the device to use cell alignment, in which case SAS/GRAPH attempts to place
hardware (or simulated hardware) characters inside character cells. This restriction
on the location of characters means that in some cases the SAS/GRAPH procedure
may generate axes that do not occupy the entire procedure output area or may be
unable to create the requested graph. A blank Cell field in the Parameters window
is the same as CELL=Y.

NOCELL
CELL=N

suppresses cell alignment, causing the procedure to use the entire procedure output
area and place axis and tick mark labels without regard to cell alignment.

Details
Specify N in the device entry or use NOCELL in a GOPTIONS statement if you want to
preview a graph on a cell-aligned display but intend to produce the final graph on a
device that is not cell-aligned, such as a pen plotter.

CHARACTERS

Specifies whether the device’s hardware font is used when no font or FONT=NONE is specified in a
SAS statement.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Defaults: GOPTIONS: CHARACTERS; GDEVICE: CHARACTERS=Y

Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: CHARACTERS | NOCHARACTERS

GDEVICE: CHARACTERS=Y | N

CHARACTERS
CHARACTERS=Y

causes SAS/GRAPH to use the device’s default hardware font when you do not
specify a font in a SAS program. A blank Characters field in the Parameters
window is the same as CHARACTERS=Y.

NOCHARACTERS
CHARACTERS=N

causes SAS/GRAPH to draw the characters using the SIMULATE font and
suppresses the use of all hardware fonts, regardless of values you specify in other
SAS statements.

Graphics Options and Device Parameters Dictionary CHARTYPE 269

Details
The hardware font is not used if you changed the HPOS= and VPOS= graphics options
from the default, or if you used the HEIGHT= option in a SAS statement and the device
does not have scalable characters.

CHARREC

Specifies a hardware font for a device by associating a CHARTYPE number with a hardware font.
Also defines a default size to use with that font.

Used in: GDEVICE procedure
Default: device dependent

Syntax
CHARREC=(charrec-list(s))

charrec-list
a list of values that correspond to the fields in the Chartype window. Charrec-list has
this form:

type, rows, cols, ’font’, ’Y’ | ’N’

type is the CHARTYPE number and can be an integer from 0 to 9999.
(See “CHARTYPE” on page 269 for more information.)

rows is the number of rows of text in the font that will fit on the
display. (See “ROWS” on page 350 for more information.)

cols is the number of columns of text in the font that will fit on the
display. (See “COLS” on page 274 for more information.)

font is a character string enclosed in quotation marks that contains
the name of the corresponding hardware font on the device. (See
“FONT NAME” on page 292 for more information.)

Y represents a scalable font. A scalable font can be displayed at any
size. (See “SCALABLE” on page 351 for more information.)

N represents a nonscalable font. A nonscalable font can be displayed
only at a fixed size. (See “SCALABLE” on page 351 for more
information.)

For example, these values assign the device’s Helvetica font to be the first
hardware font in the CHARTYPE window of the driver entry:

charrec=(1, 100, 75, ’helvetica’, ’y’)

CHARTYPE

Selects the number of the default hardware character set.

270 CIRCLEARC Chapter 8

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
CHARTYPE=hardware-font-chartype

hardware-font-chartype
is a nonnegative integer from 0 to 999. Hardware-font-chartype refers to the actual
number for the hardware font you want to use as listed in the Chartype window of
the device entry for the selected device driver. By default, CHARTYPE is 0, which is
the default hardware font for the device.

CIRCLEARC

Specifies whether SAS/GRAPH should use the device’s hardware circle-drawing capability, if
available.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: CIRCLEARC | NOCIRCLEARC

GDEVICE: CIRCLEARC=Y | N

CIRCLEARC
CIRCLEARC=Y

causes SAS/GRAPH to use the built-in hardware circle- and arc-drawing capability of
the device. A blank Circlearc field in the Parameters window is the same as
CIRCLEARC=Y.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
device drivers do not try to use the capability if the device does not have it.

NOCIRCLEARC
CIRCLEARC=N

causes SAS/GRAPH to use software move and draw commands to draw circles and
arcs.

CMAP

Specifies a color map for the device.

Graphics Options and Device Parameters Dictionary COLLATE 271

Used in: GDEVICE procedure; GDEVICE Colormap window

Syntax
CMAP=(’from-color : to-color’ < ...,’from-color-n : to-color-n’>)

from-color
specifies the name you want to assign to the color designated by the color value. In
the Colormap window, enter this value in the From field.

to-color
specifies any SAS/GRAPH color name up to eight characters long. In the Colormap
window, enter this value in the To field. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information on specifying colors.

Details
Once you have defined the color mapping, you use the new color name in any color
option. For example, if your device entry maps the color name DAFFODIL to the SAS
color value PAOY, you can specify the following:

pattern1 color=daffodil;

and the driver will map this to the color value PAOY.

COLLATE

Specifies whether to collate the output, if collation is supported by the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: NOCOLLATE

Restriction: hardware dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: GPROLOG, PPDFILE

Syntax
COLLATE | NOCOLLATE

Details
A limited number of printers can collate output, which means to separate each copy

of printed output when you print multiple copies of output.

For PostScript printers, if a device’s PPD file has Collate defined as "True", the
COLLATE option is supported.

For PCL printers that support collation, use the GPROLOG= option to specify a
Printer Job Language (PJL) command to enable the collation. For information on the

272 COLORS Chapter 8

appropriate PJL command, consult the Printer Commands section of your printer’s user
manual.

COLORS

Specifies the foreground colors used to produce your graphics output if you do not specify colors
explicitly in program statements.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gcolors window
Default: device dependent

Syntax
GOPTIONS: COLORS=<(colors-list | NONE)>

GDEVICE: COLORS=(<colors-list>)

colors-list
specifies one or more SAS color names. If you specify more than one color, separate
each name with a blank. See Chapter 6, “SAS/GRAPH Colors and Images,” on page
91 for information on specifying colors and using a colors list.

To change some of the colors in the colors list and retain others, you can use a null
value for colors you do not want to change. For example, to change COLORS=(RED
GREEN BLUE) to COLORS=(WHITE GREEN BROWN), you can specify
COLORS=(WHITE,,BROWN).

NONE
tells SAS/GRAPH to use only the colors that you explicitly specify in program
statements and to ignore the device’s default colors list.

Note: If you specify COLORS=(NONE) and omit a color specification for a
graphics element, such as patterns, SAS/GRAPH selects at random one of the colors
already specified in your program. �

Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on page
231

Details
The order of the colors in the list is important when you use default colors. For
example, the colors used for titles, axes, and surfaces in the G3D procedure are
assigned by default according to their position in the colors list.

Note: Colors may be assigned to graph elements in different orders by different
devices such as Java and ActiveX. �

If you omit or reset COLORS=, SAS/GRAPH uses the default colors list for the
current device. To explicitly reset the colors list to the device default, specify either

goptions colors=;
goptions colors=();

Graphics Options and Device Parameters Dictionary COLORTYPE 273

If you use default patterns with a colors list specified by COLORS=, the patterns
rotate through every color in the list. If the colors list contains only one color, for
example COLORS=(BLUE), the solid pattern is skipped and the patterns rotate
through only the appropriate default hatch patterns for the graph.

Note: By default, if black is the first color in a device’s colors list, default pattern
rotation skips black as a pattern color, but uses black as the area-outline color. Thus,
the outline color is never the same as an area’s fill color. Using COLORS= to change
the colors list changes this default pattern behavior. When COLORS= is used, all colors
in the specified colors list are used in color rotation, and the outline color is the first
color in the specified colors list. Thus, the outline color will match any area using the
first color as its fill. �

See “PATTERN Statement” on page 169 for more information on pattern rotation.

COLORTBL

An eight-character field in the Gcolors window that is not currently implemented. SAS/GRAPH
ignores any value entered into this field.

COLORTYPE

Specifies the color space used by the user-written part of the Metagraphics device driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Default: NAME

Syntax
COLORTYPE=NAME | RGB | HLS | GRAY | CMY | CMYK | HSV | HSB

NAME SAS predefined color names.

RGB red-green-blue (RGB) color specifications.

HLS hue-lightness-saturation (HLS) color specifications.

GRAY gray-scale level.

CMY cyan-magenta-yellow color specifications.

CMYK cyan-magenta-yellow-black color specifications.

HSV | HSB hue-saturation-value color specifications. These specifications are
also referred to as hue-saturation-brightness (HSB).

See Chapter 6, “SAS/GRAPH Colors and Images,” on page 91 for a description of
these color types.

274 COLS Chapter 8

Details
Use the COLORTYPE device parameter also to specify the color-naming scheme that is
used for devices that support more than one color-naming scheme.

For information about Metagraphics drivers, contact Technical Support.

COLS

Sets the number of columns that the hardware font uses.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option

Default: 0

See also: CHARREC

Syntax
See “CHARREC” on page 269 for syntax.

Details
If you are using a device driver from SASHELP.DEVICES, this parameter is already set
for hardware fonts that have been defined for your installation. If you are adding to or
modifying the hardware fonts available for a particular device driver, specify a positive
value for the COLS device parameter. If COLS is greater than 0, it overrides the values
of the LCOLS and PCOLS device parameters. For scalable fonts, you can specify 1 for
COLS, and the actual number of columns will be computed based on the current text
width.

CPATTERN

Selects the default color for PATTERN definitions when a color has not been specified.

Used in: GOPTIONS statement

Default: first color in current colors list

Restriction: not supported by Java or ActiveX

Syntax
CPATTERN=pattern-color

pattern-color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information about specifying colors.

Graphics Options and Device Parameters Dictionary CTEXT 275

Details
CPATTERN= is overridden by any color specification in a PATTERN statement. For
details on how CPATTERN= affects the PATTERN statement, see “The Effect of the
CPATTERN= Graphics Option” on page 180.

If you specify CPATTERN=, the solid pattern is skipped and the patterns rotate
through only the appropriate default hatch patterns for the graph. See “PATTERN
Statement” on page 169 for more information on pattern rotation.

CSYMBOL

Specifies the default color for SYMBOL definitions when a color has not been specified.

Used in: GOPTIONS statement

Default: first color in current colors list
Restriction: not supported by Java or ActiveX

Syntax
CSYMBOL=symbol-color

symbol-color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information about specifying colors.

Details
CSYMBOL= is overridden by any color specification in a SYMBOL statement. See
“SYMBOL Statement” on page 183.

CTEXT

Selects the default color for all text and the border.

Used in: GOPTIONS statement

Default: black for Java and ActiveX devices; for other devices, the first color in current
colors list

See also: CTITLE
Restriction: partially supported by Java

Syntax
CTEXT=text-color

276 CTITLE Chapter 8

text-color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information about specifying colors.

Details
The CTITLE= graphics option overrides CTEXT= for all titles, notes, and footnotes, as
well as the border. Any other color specifications for text in SAS statements also
override the value of CTEXT=.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Controlling
Titles and Footnotes with ODS Output” on page 492 for more information. �

CTITLE

Selects the default color for all titles, footnotes, and notes, and the border.

Used in: GOPTIONS statement
Default: (1) color specified by CTEXT=, if used; (2) black for Java and ActiveX devices;
for other devices, the first color in current colors list
See also: CTEXT

Syntax
CTITLE=title-color

title-color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for information about specifying colors.

Details
Any color specification in a TITLE, FOOTNOTE, or NOTE statement overrides the value
of CTITLE= for the text. The border, however, still uses the color specified in CTITLE=.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Controlling
Titles and Footnotes with ODS Output” on page 492 for more information. �

DASH

Specifies whether to use the device’s hardware dashed-line capability, if available.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Graphics Options and Device Parameters Dictionary DASHLINE 277

Default: device dependent
Restriction: not supported by Java or ActiveX
See also: DASHLINE

Syntax
GOPTIONS: DASH | NODASH

GDEVICE: DASH=Y | N

DASH
DASH=Y

causes SAS/GRAPH to use the built-in hardware dashed-line drawing capability of
the device when generating graphics output. A blank Dash field in the Parameters
window is the same as DASH=Y.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
device drivers do not try to use the capability if the device does not have it.

NODASH
DASH=N

causes SAS/GRAPH to draw the dashed lines.

DASHLINE

Specifies which dashed lines should be generated by hardware means if possible.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
See also: DASH

Syntax
DASHLINE=’dashed-line-hex-string’X

dashed-line-hex-string
is a hexadecimal string 16 characters long that must be completely filled. Each bit in
the string corresponds to a line type. See Figure 7.22 on page 208 for line types that
correspond to each bit.

To use line type 1, turn on bit 1; to use line type 2, turn on bit 2; and so on. For
example, in the following option the first byte is ’1000’; only bit 1 is on and only line
type 1 is selected:

dashline=’8000000000000000’x

To turn on both bits 1 and 2, specify

dashline=’c000000000000000’x

Bit 1 should always be on because it corresponds to a solid line.

278 DASHSCALE Chapter 8

Details
If the DASH device parameter is N in the device entry or if NODASH is used in a
GOPTIONS statement, SAS/GRAPH ignores the hexadecimal string in the DASHLINE
device parameter.

DASHSCALE

Scales the lengths of the dashes in a dashed line.

Used in: GOPTIONS statement

Default: DASHSCALE=1

Restriction: not supported by Java or ActiveX

Syntax
DASHSCALE=scaling-factor

scaling-factor
can be any number greater than 0. For example, GOPTIONS DASHSCALE=.5
reduces any existing dash length by one-half.

Details
Only dashes or spaces with lengths greater than one pixel are scaled. Dots are not
scaled because their length is effectively zero. DASHSCALE= always uses software line
styles instead of the device’s hardware dashed line capabilities.

DELAY

Controls the amount of time between graphs in the animation sequence.

Used in: GOPTIONS statement

Default: 0

Restriction: GIFANIM driver only; not supported by all browsers

Syntax
DELAY=delay-time

delay-time
specifies the length of time between graphs in units of 0.01 seconds. For example, to
specify a delay of .03 seconds, specify DELAY=3.

Graphics Options and Device Parameters Dictionary DEVICE 279

Details
SAS/GRAPH puts the DELAY= value into the image file. Based on this value, the
browser determines how to display the series of graphs.

DESCRIPTION

Provides a description of the device entry.

Alias: DES

Used in: GDEVICE procedure GDEVICE Detail window

Default: none

Syntax
DESCRIPTION=’text-string’

text-string
is a string up to 256 characters long. This is a comment field and does not affect the
graphics output.

DEVADDR

Specifies the location of the device to which the output of device drivers is sent.

Used in: GOPTIONS statement

Default: host dependent

Restriction: IBM mainframe systems only

Syntax
DEVADDR=device-address

DEVICE

Specifies the device driver to which SAS/GRAPH sends the procedure output. The device driver
controls both the form and destination of the output.

Alias: DEV

Used in: GOPTIONS statement OPTIONS statement

280 DEVMAP Chapter 8

Default: device dependent

Syntax
DEVICE=device-entry

device-entry
specifies the name of a device entry that is stored in a device catalog.

Details
A device driver can direct graphics output to a hardware device, such as a terminal or a
printer, or can create an external file in another graphics file format, such as TIF, GIF,
or PostScript. Some device drivers also generate both graphics files and HTML files
that can be viewed with a Web browser.

Usually a device driver is assigned by default. If a default driver is not assigned or if
you specify RESET=ALL in a GOPTIONS statement, and you do not specify a device
driver, SAS/GRAPH prompts you to enter a driver name when you execute a procedure
that produces graphics output. If you are producing a graph to the screen and the
Graph window is active, SAS/GRAPH selects the display driver for you automatically.

For a description of device drivers and for more information on selecting a device
entry and changing device parameters, see Chapter 3, “Device Drivers,” on page 41.

For information on using device drivers to display and print graphics output, see
Chapter 4, “SAS/GRAPH Output,” on page 47.

For information on using device drivers to export graphics output to external files,
see “About Exporting SAS/GRAPH Output” on page 59. For information on using device
drivers to create output for the Web, see “Generating Web Presentations” on page 382.

DEVMAP

Specifies the device map to be used when hardware fonts are used.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
DEVMAP=device-map-name | NONE

device-map-name
is a string up to eight characters long that is the name of the device map entry. See
Chapter 34, “The GKEYMAP Procedure,” on page 983 for details.

NONE
specifies that you do not want to use a device map. This may cause text to be
displayed incorrectly or not at all.

Graphics Options and Device Parameters Dictionary DEVOPTS 281

Details
Device maps usually are used only when national characters appear in the text and you
want them to display properly.

DEVOPTS

Specifies the hardware capabilities of the device.

Used in: GDEVICE procedure; GDEVICE Parameters window

Default: device dependent

Syntax
DEVOPTS=’hardware-capabilities-hex-string’X

hardware-capabilities-hex-string
is a hexadecimal string 16 characters long that must be completely filled. The
following table lists the hardware capabilities of each bit:

Table 8.1 Device Capabilities Represented in the DEVOPTS String

Bit On Capability

0 hardware circle generation

1 hardware pie fill supported

2 scalable hardware characters

3 device is a CRT-type (See TYPE device parameter)

4 translate table needed for non-ASCII hosts

5 hardware polygon fill available

6 hardware characters cell-aligned

7 user-definable colors supported

8 hardware polygons with multiple boundaries supported

9 not used

10 not used

11 adjustable hardware line width

12 double-byte font (non-US) supported

13 hardware repaint supported

14 hardware characters supported

15 no hard limit on x coordinate

16 no hard limit on y coordinate

17 not used

282 DEVOPTS Chapter 8

Bit On Capability

18 ability to justify proportional text

19 driver can produce dependent catalog entries

20 device cannot draw in default background color

21 flush device buffer when filled

22 colors defined using HLS

23 colors defined using RGB

24 not used

25 polyline supported

26 polymarker supported

27 graphics clipping supported

28 not used

29 linkable device driver

30 pick CHARTYPE by name in CHARREC entries

31 device dependent pattern support

32 treat SCALABLE=Y CHARREC as metric

33 size CHARTYPE as HW from CHARREC entries

34 device supports rotated arcs

35 device supports target fonts

36 device supports drawing images

37 device supports multiple color maps

38 image rotation direction

39 device requires sublib for image rotation

40 device is a 24 bit truecolor machine

41 device supports setting font attributes

42 use scan line font rendering

43 device can scale images

44 text clipping supported

45 static color device

46 driver does prolog processing

47 driver does epilog processing

48 driver output only uses a file

49 driver output requires a directory or PDS

50 autosize text to fit rows and columns

51 default binding is SHORTEDGE

52 driver supports duplex printing

53 device does right edge binding

Graphics Options and Device Parameters Dictionary DEVTYPE 283

Bit On Capability

54 ActiveX device

55 Java device

Details

Each capability in the table corresponds to a bit in the value of the DEVOPTS device
parameter. For example, if your device can generate hardware pie fills, the second bit
in the first byte of the DEVOPTS string should be turned on if you want the driver to
use that capability. If your device is capable of generating only hardware circles and pie
fills, specify a value of ’C000000000000000’X as your DEVOPTS value (the first byte is
’1100’ so the first 2 bits of the first byte are set to 1). Many of the hardware capabilities
specified in the DEVOPTS string are overridden by graphics options or other device
parameters.

CAUTION:
Do not modify the DEVOPTS device parameter unless you are building a Metagraphics
driver. If you want to prevent an Institute-supplied driver from using certain hardware
capabilities, change the specific device parameter or use the corresponding graphics
option. �

If the DEVOPTS string indicates that a capability is available, the driver uses it
unless it is explicitly disabled by another device parameter or graphics option. If the
DEVOPTS string indicates that the capability is not available, it is not used by the
driver, even if the corresponding device parameter or graphics option indicates that it
should be used. For example, if the DEVOPTS value indicates that the device can do a
hardware pie fill, the driver uses the hardware pie fill capability unless the PIEFILL
device parameter is set to N or NOPIEFILL has been specified in a GOPTIONS
statement. However, if the DEVOPTS device parameter indicates that the device
cannot do a hardware pie fill, the driver does not attempt to use one, even if the
PIEFILL device parameter is set to Y or PIEFILL is used in a GOPTIONS statement.

DEVTYPE

Specifies the information required by SAS/GRAPH routines to determine the nature of the output
device.

Used in: GDEVICE procedure; GDEVICE Host File Options window

Default: device dependent

Syntax

DEVTYPE=device-type

device-type
is a string eight characters long containing either blanks or some token name that is
interpreted by the host. Device-type can be:

284 DISPLAY Chapter 8

GTERM
indicates that the output device is a graphics device that will be receiving graphics
data; most device drivers use this value.

G3270
indicates that the output device is an IBM 3270 graphics data stream. If your
device is an IBM 3270 type of device, DEVTYPE= must be G3270.

Note: GTERM and G3270 are SAS/GRAPH device types. Other valid values depend
on your operating environment. DEVTYPE supports any of the device-type values
supported on the FILENAME statement. Refer to the SAS Help facility for the device
types the FILENAME statement supports in your operating environment. In most
cases, this field should not be changed. �

DISPLAY

Specifies whether output is displayed on the graphics device but does not affect whether a graph
is placed in a catalog.

Used in: GOPTIONS statement

Default: DISPLAY

Restriction: not supported by Java or ActiveX

Syntax
DISPLAY | NODISPLAY

Details
In most cases, NODISPLAY suppresses all output except the catalog entry written to

the catalog selected in the GOUT= option. Therefore, you usually specify NODISPLAY
when you want to generate a graph in a catalog but do not want to display the graph on
your monitor or terminal while the catalog entry is being produced.

DISPOSAL

Specifies what happens to the graphic after it is displayed.

Used in: GOPTIONS statement

Default: NONE

Restriction: GIFANIM driver only

Syntax
DISPOSAL=NONE | BACKGROUND | PREVIOUS | UNSPECIFIED

Graphics Options and Device Parameters Dictionary DRVQRY 285

NONE
causes the graphic to be left in place after displaying. This is the default.

BACKGROUND
causes the background color to be returned and the graph erased after displaying.

PREVIOUS
causes the graphic area to be restored with what was displayed in the area previously.

UNSPECIFIED
indicates that no action is necessary.

Details
In Version 6, the ERASE | NOERASE graphics option performed this function for the
GIFANIM driver.

DRVINIT

Specifies host commands to be executed before driver initialization.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX

Syntax
DRVINIT1=’system-command(s)’

DRVINIT2=’system-command(s)’

system-command(s)
specifies a character string that is a valid system command and can be in upper- or
lowercase letters. You can include more than one command in the string if you
separate the commands with a command delimiter, which is host-specific; for
example, some operating environments use a semicolon. The length of the entire
string cannot exceed 72 characters.

Details
The DRVINIT command is executed before the driver is initialized. DRVINIT is
typically used with FILECLOSE=DRIVERTERM to allocate a host file needed by the
device driver.

DRVQRY

Specifies whether the device can be queried for information about the current device configuration.

Used in: GDEVICE procedure GDEVICE Detail window

286 DRVTERM Chapter 8

Default: device dependent

Syntax
DRVQRY | NODRVQRY

Details
Generally, this setting is device dependent and you should not change it.

DRVTERM

Specifies host commands to be executed after the driver terminates.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX

Syntax
DRVTERM1=’system-command(s)’

DRVTERM2=’system-command(s)’

system-command(s)
specifies a character string that is a valid system command and can be in upper- or
lowercase letters. You can include more than one command in the string if you
separate the commands with a command delimiter, which is host-specific; for
example, some operating environments use a semicolon. The length of the entire
string cannot exceed 72 characters.

Details
The DRVTERM command is executed after the driver terminates. DRVTERM is
typically used with FILECLOSE=DRIVERTERM to de-allocate a host file and execute
utility programs that send the data to the graphics device. For example, DRVTERM
might specify commands to send the file to a host print queue.

DUPLEX

Specifies whether to use duplex printing if available on the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: NODUPLEX

Restriction: duplex printers only

Graphics Options and Device Parameters Dictionary ERASE 287

See also: BINDING, GSFMODE, PPDFILE

Syntax
DUPLEX | NODUPLEX

Details
When DUPLEX is on, the driver sets up the printer for duplex operation. Before

producing the first graph, set GSFMODE=REPLACE on the GOPTIONS statement, and
DUPLEX on an OPTIONS or GOPTIONS statement. You can also use the BINDING=
option in conjunction with DUPLEX. Before producing the second graph, set
GSFMODE=APPEND on the GOPTIONS statement so that the driver knows to place
succeeding graphs on the next available side of paper.

If DUPLEX is in effect, the page’s inside (binding) margin is set equal to the current
HORIGIN setting, and the outside margin is set equal to

XMAX − HSIZE − HORIGIN

In terms of even- and odd-numbered pages, this means the following:

odd-numbered
pages

HORIGIN determines the left margin, and XMAX-HSIZE-HORIGIN
determines the right margin

even-numbered
pages

XMAX-HSIZE-HORIGIN determines the left margin, and HORIGIN
determines the right margin

For PostScript printers, if you do not use the PPDFILE= option to specify a PPD
(PostScript Printer Description) file, a generic PostScript Level 1 duplex command is
added to the driver output. If PPDFILE= is used, the duplex command is obtained from
the PPD file.

ERASE

Specifies whether to erase graph after display.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Defaults: GOPTIONS: NOERASE; GDEVICE: ERASE=N
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: ERASE | NOERASE

GDEVICE: ERASE=Y | N

ERASE
ERASE=Y

288 EXTENSION Chapter 8

causes the graph to be erased when you press RETURN after the graph has been
displayed.

NOERASE
ERASE=N

causes the graph to remain on the display when you press RETURN after the graph
has been displayed. A blank Erase field in the Parameters window is the same as
ERASE=N.

Details
ERASE is useful for those devices that overlay the graphics area and the message area
– that is, those devices that have separate dialog and graphics areas. On other devices,
the graph is erased.

EXTENSION

Specifies the file extension for an external graphics file.

Used in: GOPTIONS statement
Default: device dependent
Restriction: not supported by Java or ActiveX
See also: GACCESS, GSFNAME

Syntax
EXTENSION=’file-type’

file-type
a string up to eight characters long that is a file extension, such as GIF or CGM, that
you want to append to an external file.

Details
The extension specified on EXTENSION= is used when the output destination is a
storage location. The extension is ignored when the output destination is a file. To
specify the output destination, you can use a FILENAME statement, or the graphics
options GACCESS= or GSFNAME=.

Assuming the output destination is a storage location,
� if EXTENSION=’.’, no extension is added to the file name
� if EXTENSION=’ ’or EXTENSION= is not used, the driver’s default extension is

added to the file name
� if the driver has no default extension, SAS/GRAPH uses the default extension

.GSF.

FASTTEXT

Specifies whether to use integer-based font processing for faster font rendering.

Graphics Options and Device Parameters Dictionary FCACHE 289

Used in: GOPTIONS statement
Default: FASTTEXT
Restriction: not supported by Java or ActiveX

Syntax
FASTTEXT | NOFASTTEXT

FBY

Selects the font for BY lines.

Used in: GOPTIONS statement
Default: (1) font specified by FTEXT=, if used; (2) default hardware font
Restriction: not supported by Java or ActiveX
See also: “BY Statement” on page 141

Syntax
FBY=BY-line-font

BY-line-font
specifies the font for all BY-lines on the graphics output. See Chapter 5, “SAS/
GRAPH Fonts,” on page 75 for information about specifying fonts.

Details
When you use a BY statement with a SAS/GRAPH procedure to process a data set in
subgroups, each graph produced by that procedure is headed by a BY line that displays
the BY variables and their values that define the current subgroup.

FCACHE

Specifies the number of software fonts to keep open at one time.

Used in: GOPTIONS statement
Default: FCACHE=3
Restriction: not supported by Java or ActiveX

Syntax
FCACHE=number-fonts-open

290 FILECLOSE Chapter 8

number-fonts-open
specifies the number of software fonts to keep open. Number-fonts-open must be
greater than or equal to zero.

Details
Each font requires from 4K to 10K memory. Graphs that use many fonts may run
faster if you set the value of number-fonts-open to a higher number. However, graphs
that use multiple fonts may require too much memory on some computer systems if all
the fonts are kept open. In such cases, set the value of number-fonts-open to a lower
number to conserve memory.

FILECLOSE

Controls when the graphics stream file (GSF) is closed when you are using the device driver to
send graphics output to a hardcopy device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window

Default: DRIVERTERM (if a device is specified)

Restriction: not supported by Java or ActiveX

See also: “About Exporting SAS/GRAPH Output” on page 59

Syntax
FILECLOSE=DRIVERTERM | GRAPHEND

DRIVERTERM
DRIVER

closes the GSF and makes it available to the device after all graphs have been
produced and the procedure or driver terminates. A host command may be needed to
actually send the GSF to the device. Host commands may be specified with the
DRVINIT or DRVTERM parameters or entered in the Host File Options window of
the device entry.

If multiple graphs are produced by a procedure, this specification creates one large
file. Specifying DRIVERTERM is appropriate for batch processing because it is
slightly more efficient to allocate the file only once.

GRAPHEND
GRAPH

closes the GSF after each separate graph is produced and releases it to the device
before sending another. This method creates smaller files if multiple graphs are
produced by a procedure. You can specify a command that sends the graph to the
device with the POSTGRAPH parameter or use the Host File Options window.

Specifying GRAPHEND is appropriate for drivers that are used interactively, or
for devices that require only one graph per physical file.

Graphics Options and Device Parameters Dictionary FILL 291

FILEONLY

Specifies whether a file or a storage location is the default destination for graphics output.

Used in: GOPTIONS statement
Default: device dependent
Restriction: FILEONLY ignored if the device requires the output destination to be a
storage location; not supported by Java or ActiveX
See also: DEVOPTS, GSFNAME

Syntax
FILEONLY | NOFILEONLY

FILEONLY
specifies that a file rather than a storage location is the default destination for
graphics output.

NOFILEONLY
specifies that a storage location is the default destination for graphics output, unless
a file of the same name exists.

Details
Most devices use FILEONLY as the default. However, devices that require the output
destination to be a storage location use NOFILEONLY as the default. For example, the
HTML and WEBFRAME devices require a storage location because they produce two
types of output (HTML files and GIF image files) that cannot be written to the same file.

To determine what the default is for a particular device, look at the settings for
DEVOPTS bits 48 and 49.

For more information, see “Exporting SAS/GRAPH Output with Program
Statements” on page 62.

FILL

Specifies whether to use the device’s hardware rectangle-fill capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: not supported by Java or ActiveX
Default: device dependent

Syntax
GOPTIONS: FILL | NOFILL

GDEVICE: FILL=Y | N

292 FILLINC Chapter 8

FILL
FILL=Y

causes SAS/GRAPH to use the built-in hardware rectangle-filling capability of the
device. A blank Fill field in the Parameters window is the same as FILL=Y.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOFILL
FILL=N

causes SAS/GRAPH to use software fills to fill rectangles.

FILLINC
Specifies the number of pixels to move before drawing the next line in a software fill of a solid
area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: not supported by Java or ActiveX
See also: FILL, PIEFILL, POLYGONFILL

Syntax
FILLINC= 0...9999

Details
In order for FILLINC to have any effect, a software fill must be used. To force a

software fill, use the options NOFILL, NOPIEFILL, and NOPOLYGONFILL in a
GOPTIONS statement.

If FILLINC is set to 0 or 1, adjacent lines are used (solid fill with no gaps). If
FILLINC is set to 2, a pixel-width line is skipped before drawing the next line of a fill.

This option can be useful for keeping plotters from over saturating a solid area and
for speeding the plotting. Some inks spread on paper. The type of paper used also can
affect ink spread.

FONT NAME
Specifies the hardware font associated with CHARTYPE.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option
Required if adding or modifying a CHARREC
See also: CHARREC

Syntax
See “CHARREC” on page 269 for syntax.

Graphics Options and Device Parameters Dictionary FORMAT 293

Details
Use FONT NAME if you are adding to or modifying the hardware fonts available for a
particular device driver. The fonts that you specify must be valid for the output device.
If you are using an Institute-supplied device entry, this parameter already is set for
most available hardware fonts.

FONTRES

Controls the resolution of software fonts.

Used in: GOPTIONS statement
Default: NORMAL
Restriction: not supported by Java or ActiveX
See also: FASTTEXT, FCACHE, RENDER, RENDERLIB, SWFONTRENDER

Syntax
FONTRES=NORMAL | PRESENTATION

NORMAL
renders fonts in memory using integer rendering routines, which improves character
drawing speed for most host systems. NORMAL has the same effect as specifying the
default values for these graphics options.

render=memory
renderlib=saswork
fasttext
fcache=0

PRESENTATION
disables the storage or use of rendered versions of Bitstream fonts, but produces the
fonts at their highest resolution. FONTRES=PRESENTATION has the same effect
as specifying these graphics options:

render=none
renderlib=saswork
nofasttext
fcache=3

FORMAT

Sets the file format of the metacode file produced by the Institute-supplied part of the
Metagraphics device driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: CHARACTER
Restriction: Used only with user-supplied Metagraphics drivers.

294 FTEXT Chapter 8

Syntax
FORMAT=CHARACTER | BINARY

Details
A blank field defaults to CHARACTER. For information about Metagraphics drivers,

contact Technical Support.

FTEXT

Selects the default font for all text.

Used in: GOPTIONS statement
Default: Default hardware font (except the first title)
Restriction: partially supported by Java or ActiveX
See also: FTITLE

Syntax
FTEXT=text-font

text-font
specifies the font for all text on the graphics output. See Chapter 5, “SAS/GRAPH
Fonts,” on page 75 for information about specifying fonts.

Featured in: “Example 6. Enhancing Titles” on page 238

Details
The FTITLE= graphics option overrides FTEXT= for the first title. Not all fonts are
supported by the ActiveX and Java devices.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Controlling
Titles and Footnotes with ODS Output” on page 492 for more information. �

FTITLE

Selects the default font for the first TITLE line.

Used in: GOPTIONS statement
Default: (1) font specified by FTEXT=, if used; (2) SWISS font

Graphics Options and Device Parameters Dictionary FTRACK 295

See also: FTEXT

Syntax
FTITLE=title-font

title-font
specifies the font for the TITLE1 statement. See Chapter 5, “SAS/GRAPH Fonts,” on
page 75 for information about specifying fonts.

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values” on
page 226 and “Example 6. Enhancing Titles” on page 238

Details
Note: When you use ODS to send graphics to an HTML destination, and titles and

footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Controlling
Titles and Footnotes with ODS Output” on page 492 for more information. �

FTRACK

Controls the amount of space between letters in the Institute-supplied Bitstream fonts (Brush,
Century, Swiss, and Zapf).

Used in: GOPTIONS statement

Default: TIGHT

Restriction: not supported by Java or ActiveX

Syntax
FTRACK=LOOSE | NONE | NORMAL | TIGHT | TOUCH | V5

LOOSE
leaves the most visible space between characters and produces a longer string.

NONE
spacing depends on the size of the font. NONE might produce a shorter or longer
string than LOOSE for the same font at different point sizes, because some sizes add
space between the characters while others remove it.

NORMAL
is the recommended setting.

TIGHT
reduces the space between characters.

296 GACCESS Chapter 8

TOUCH
leaves the least visible space between characters.

V5
places a fixed amount of space between the characters and does not adjust for the
shape of the character; that is, it does not support kerning. This spacing is
compatible with Version 5 Bitstream fonts.

Details
The spacing you specify with FTRACK= affects all Bitstream text in a graph. For
example, you cannot produce TIGHT Century type and LOOSE Zapf type
simultaneously. This option has no effect on other font types.

Because the value of FTRACK= is stored with the graph, the spacing that you specify
when the graph is created is always used when the graph is replayed.

GACCESS

Specifies the format or the destination or both of graphics data written to a device or graphics
stream file (GSF).

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
GACCESS=output-format | ’output-format destination’

output-format
specifies the format or the destination (the SAS log or a fileref) of the graphics data.
Output-format varies according to the operating environment. These values can be
specified in all operating environments:

SASGASTD
specifies that a continuous stream of data is written. SASGASTD is the default for
most devices and is typically appropriate when the output file will be sent directly
to a device. If you specify GACCESS=SASGASTD, use the GSFNAME= and
GSFMODE= graphics options or device parameters to direct your graphics output
to a GSF.

SASGAEDT
specifies that the file be host-specific editable format. Some hosts allow editing by
inserting characters at the end of each record. SASGAEDT is typically used when
the output file is to be edited later. If you specify GACCESS=SASGAEDT, use the
GSFNAME= and GSFMODE= graphics options or device parameters to direct your
graphics output to a GSF.

SASGAFIX
specifies that fixed-length records be written. (The record length is controlled by
the value of the GSFLEN= graphics option or device parameter or the sixth byte of

Graphics Options and Device Parameters Dictionary GCLASS 297

the PROMPTCHARS value.) The records are padded with blanks where necessary.
SASGAFIX is typically used when the output file will be transferred to a computer
that requires fixed-length records. If you specify GACCESS=SASGAFIX, use the
GSFNAME= and GSFMODE= graphics options or device parameters to direct your
graphics output to a GSF.

Note: The value of the GPROTOCOL= graphics option or device parameter can
greatly affect the length of the records; for example, if GPROTOCOL=SASGPLCL,
the length of the records is doubled. �

SASGALOG
specifies that records are to be written to the SAS log.

GSASFILE
specifies that the records are to be written to the destination whose fileref is
GSASFILE. The fileref can point to a specific external file or to an aggregate file
location. See “FILENAME Statement” on page 28 for more information on
specifying a fileref.

’output-format destination’
specifies the destination in addition to one of these output format values: SASGASTD,
SASGAEDT, or SASGAFIX. Destination is the physical name of an external file or
aggregate file location, or of a device. For details on specifying the physical name of a
destination, see the SAS documentation for your operating environment.

This form is not available in all operating environments. See “About Graphics
Stream Files” on page 60 for more information on creating graphics stream files.

Note: In the Gaccess field of the Host File Options window, you can specify a
destination without an output format, in which case the format defaults to
SASGASTD. When you specify a value in the Gaccess field, you do not need to quote
it. �

Operating Environment Information: Depending on your operating environment, you
may be able to specify other values for GACCESS=. See the SAS companion for your
operating environment for additional values. �

GCLASS

Specifies the output class for IBM printers

Used in: GOPTIONS statement

Default: GCLASS=G

Restriction: used only with IBM3287 and IBM3268 device drivers on z/OS systems only

Syntax
GCLASS=SYSOUT-class

Details
Specifies the SYSOUT class to which the IBM3287 and IBM3268 device driver

output is written.

298 GCOPIES Chapter 8

GCOPIES

Sets the current and maximum number of copies to print.

Used in: GOPTIONS statements; GDEVICE Parameters window; GDEVICE procedure;
OPTIONS statement
Defaults: GOPTIONS: GCOPIES=(0,20) GDEVICE: GCOPIES=0
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: GCOPIES=(<current-copies>< ,max-copies>)

GDEVICE: GCOPIES=current-copies

current-copies
is a nonnegative integer ranging from 0 through 255, but it cannot exceed the
max-copies value specified. A value of 0 or 1 produces a single copy.

max-copies
is a nonnegative integer ranging from 1 through 255.

If you do not specify GCOPIES, a default number of copies is searched for in this
order:

1 the number of copies specified on an OPTIONS COPIES setting
2 0 current copies, and 20 maximum copies.

Details
Not all devices have the capability to print multiple copies. See the Gcopies field in the
Parameters window for your device to determine its capabilities.

GDDMCOPY

Instructs the driver to issue either an FSCOPY or GSCOPY call to GDDM when AUTOCOPY is in
effect.

Used in: GOPTIONS statement
Default: FSCOPY
Restriction: GDDM device drivers on IBM mainframe systems only
See also: AUTOCOPY

Syntax
GDDMCOPY=FSCOPY | GSCOPY

Graphics Options and Device Parameters Dictionary GDEST 299

FSCOPY
used when sending output to an IEEE attached plotter.

GSCOPY
used when creating an ADMPRINT file for output on 3287-type printers.

GDDMNICKNAME

Selects a GDDM nickname for the device to which output is sent.

Alias: GDDMN
Used in: GOPTIONS statement
Restriction: GDDM device drivers on IBM mainframe systems only

Syntax
GDDMNICKNAME=nickname

Details
Refer to the SAS Help facility for details on using GDDM drivers and options.

GDDMTOKEN

Selects a GDDM token for the device to which output is sent.

Alias: GDDMT
Used in: GOPTIONS statement
Restriction: GDDM device drivers on IBM mainframe systems only

Syntax
GDDMTOKEN=token

Details
Refer to the SAS Help facility for details on using GDDM drivers and options.

GDEST

Specifies the JES SYSOUT destination for IBM printers.

Used in: GOPTIONS statement
Default: LOCAL

300 GEND Chapter 8

Restriction: used only with IBM3287 and IBM3268 device drivers on z/OS systems

Syntax
GDEST=destination

GEND

Appends an ASCII string to every graphics data record that is sent to a device or file.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gend window
Restriction: not supported by Java or ActiveX
See also: GSTART

Syntax
GEND=’string’ <...’string-n’>

’string’
can be either of the following:

’hex-string’X
’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GEND= option. In this case, you
can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the GEND window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GEND is useful if you are creating a file and want to insert a carriage return at the end
of every record. You can also use GEND in conjunction with the GSTART= graphics
option or device parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS GEND=
option rather than the GDEVICE Gend window because it is easier to code the string as
text with GEND= than it is to convert the string to its ASCII representation, which is
required to enter the string in the GDEVICE Gend window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEND that can be used by all hosts is to
use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEND is the recommended method. �

Graphics Options and Device Parameters Dictionary GFORMS 301

GEPILOG

Sends a string to a device or file after all graphics commands are sent.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gepilog window

Restriction: not supported by Java or ActiveX

See also: PREGEPILOG, POSTGEPILOG

Syntax
GEPILOG=’string’ <...’string-n’>

’string’
can be either of the following:

’hex-string’X

’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GEPILOG= option. In this case,
you can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the Gepilog window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GEPILOG can be used in conjunction with the GPROLOG= graphics option or device
parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS GEPILOG=
option rather than the Gepilog window because it is easier to code the string as text
with GEPILOG= than it is to convert the string to its ASCII representation, which is
required to enter the string in the Gepilog window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEPILOG that can be used by all hosts is
to use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEPILOG is the recommended method. �

GFORMS

Specifies the JES form name for IBM printers.

Used in: GOPTIONS statement

Default: STD

302 GOUTMODE Chapter 8

Restriction: used only with IBM3287 and IBM3268 device drivers on z/OS systems only

Syntax
GFORMS=’forms-code’

GOUTMODE

Appends to or replaces the graphics output catalog.

Used in: GOPTIONS statement
Default: APPEND
Restriction: not supported by Java or ActiveX

Syntax
GOUTMODE=APPEND | REPLACE

APPEND
adds each new graph to the end of the current catalog.

REPLACE
replaces the contents of the catalog with the graph or graphs produced by a single
procedure.

CAUTION:
If you specify REPLACE, the entire contents of the catalog are replaced, not just graphs of
the same name. Graphs are added to the catalog for the duration of the procedure,
but when the procedure ends and a new procedure begins, the contents of the catalog
are deleted and the new graph or graphs are added. �

GPROLOG

Sends a string to device or file before graphics commands are sent.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gprolog window
Restriction: not supported by Java or ActiveX
See also: PREGPROLOG, POSTGPROLOG

Syntax
GPROLOG=’string’ < ...’string-n’>

Graphics Options and Device Parameters Dictionary GPROTOCOL 303

’string’
can be either of the following:

’hex-string’X

’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GPROLOG= option. In this case,
you can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the GPROLOG window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GPROLOG can be used in conjunction with the GEPILOG= graphics option or device
parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS
GPROLOG= option rather than the GDEVICE Gprolog window because it is easier to
code the string as text with GPROLOG= than it is to convert the string to its ASCII
representation, which is required to enter the string in the GDEVICE Gprolog window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEND that can be used by all hosts is to
use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEND is the recommended method. �

GPROTOCOL

Specifies the protocol module to use when routing output directly to a printer or creating a
graphics stream file (GSF) to send to a device attached to your host by a protocol converter.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window

Restriction: not supported by Java or ActiveX

Default: host dependent

Syntax
GPROTOCOL=module-name

module-name can be one of these
SASGPADE*

SASGPAGL*

304 GPROTOCOL Chapter 8

SASGPASC

SASGPAXI*

SASGPCAB*

SASGPCHK*

SASGPDAT*

SASGPDCA*

SASGPHEX

SASGPHYD*

SASGPIDA*

SASGPIDX*

SASGPIMP*

SASGPIOC*

SASGPISI*

SASGPI24*

SASGPLCL*

SASGPNET*

SASGPMIC*

SASGPRTM*

SASGPSCS*

SASGPSTD

SASGPSTE*

SASGPTCX*

SASGPVAT*

SASGP497*

SASGP71

*Valid only for IBM mainframe systems.

Details
GPROTOCOL= specifies whether the graphics data generated by the SAS/GRAPH
device driver should be altered and how the data should be altered. Unless you are
using a protocol converter on an IBM mainframe, most devices do not require that the
data be altered, and ordinarily, you do not have to change the default of GPROTOCOL.

On IBM hosts, the protocol module converts the graphics output to a format that can
be processed by protocol converters. On other hosts, it can be used to produce a file in
ASCII hexadecimal format.

Refer to the SAS Help facility for descriptions of these protocol modules.

Operating Environment Information: GPROTOCOL is valid only in certain operating
environments. �

Graphics Options and Device Parameters Dictionary GSFLEN 305

GRAPHRC

Specifies whether to return a step code at graphics procedure termination.

Used in: GOPTIONS statement
Restriction: not supported by Java or ActiveX
Default: GRAPHRC

Syntax
GRAPHRC | NOGRAPHRC

GRAPHRC
allows a return code at procedure termination. If the return code is not 0, the entire
job may terminate.

NOGRAPHRC
always returns a step code of 0, even if the SAS/GRAPH program produced errors.
As a result, the entire job’s return code is unaffected by errors in any graphics
procedure. NOGRAPHRC also overrides the ERRABEND system option.

Details
You typically use this option when you are running multiple jobs in a batch
environment. It is useful primarily in an z/OS batch environment.

GSFLEN

Controls the length of records written to the graphics stream file (GSF).

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: device dependent
Restriction: not supported by Java or ActiveX
See also: PROMPTCHARS

Syntax
GSFLEN=record-length

record-length
must be a nonnegative integer up to five digits long (0...99999). GSFLEN= specifies
the length of the records written by the driver to a GSF or to the device.

If GSFLEN is 0, SAS/GRAPH uses the sixth byte of the PROMPTCHARS string to
determine the length of the records. If the sixth byte of the PROMPTCHARS string
is 00, the device driver sets the record length.

306 GSFMODE Chapter 8

If you specify GACCESS=SASGAFIX and omit GSFLEN=, SAS/GRAPH uses the
default length for the device.

Some values of the GPROTOCOL device parameter cause each byte in the data
stream to be expanded to two bytes. This expansion is done after the length of the
record is set by GSFLEN. If you are specifying a value for GPROTOCOL that does
this (for example, SASGPHEX, SASGPLCL, or SASGPAGL), specify a value for
GSFLEN that is half of the actual record length desired. For example, a value of 64
produces a 128-byte record after expansion by the GPROTOCOL module.

GSFMODE

Specifies the disposition of records written to a graphics stream file (GSF) or to a device or
communications port by the device driver.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window

Default: REPLACE

Restriction: not supported by Java or ActiveX

See also: GACCESS, GSFNAME

Syntax
GSFMODE=APPEND | PORT | REPLACE

APPEND
adds the records to the end of a GSF designated by the GACCESS= or GSFNAME=
graphics option or device parameter. If the file does not already exist, it is created.

The destination can be either a specific file or an aggregate file storage location.
If the destination of the GSF is a specific file and you specify APPEND,

SAS/GRAPH will add the new records to an existing GSF of the same name.
If the destination of the GSF is a file location and not a specific file, SAS/GRAPH

will add the records to an external file whose name matches the name of the newly
created catalog entry. For more information on how SAS/GRAPH names catalog
entries, see “Exporting SAS/GRAPH Output with Program Statements” on page 62.

Note: Some viewers of bitmapped output can view only one graph, even though
multiple graphs are stored in the file. Therefore it may appear that a file contains
only one graph when in fact it contains multiple graphs. �

PORT
sends the records to a device or communications port. The GACCESS= graphics
option or device parameter should point to the desired port or device.

REPLACE
replaces the existing contents of a GSF designated by the GACCESS= or
GSFNAME= graphics option or device parameter. If the file does not exist, it is
created. REPLACE is always the default, regardless of the destination of the GSF.

If the destination of the GSF is a specific file and you specify REPLACE,
SAS/GRAPH will replace an existing GSF with the contents of a newly created GSF
of the same name.

Graphics Options and Device Parameters Dictionary GSFNAME 307

If the destination of the GSF is a file location and not a specific file, SAS/GRAPH
will replace an external file whose name matches the name of the newly created
catalog entry. For more information on how SAS/GRAPH names catalog entries, see
“Exporting SAS/GRAPH Output with Program Statements” on page 62.

Details

When you create a GSF, the GSFNAME= or GACCESS= graphics option or device
parameter controls where the output goes, and GSFMODE= controls how the driver
writes graphics output records. If the output is to go to a file, specify APPEND or
REPLACE. If the output is to go directly to a device or to a communications port,
specify PORT. See “About Graphics Stream Files” on page 60 for more information on
creating a graphics stream file.

GSFNAME

Specifies the fileref of the file or aggregate file location to which graphics stream file records are
written.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window

Restriction: Not valid for IBM32xx, linkable, Metagraphics, Java, or ActiveX drivers.

See also: GACCESS, GSFMODE

Syntax

GSFNAME=fileref

fileref
specifies a fileref that points to the destination for the graphics stream file (GSF)
output. Fileref must be a valid SAS fileref up to eight characters long and must be
assigned with a FILENAME statement prior to running a SAS/GRAPH procedure
that uses that fileref. The destination specified by the FILENAME statement can be
either a specific file or an aggregate file location. See “FILENAME Statement” on
page 28 for additional information on the FILENAME statement.

Details

Whether the resulting graphs are stored as one file or many files depends on both the
type of destination and the setting of the GSFMODE= option.

If you specify a fileref with GSFNAME= and forget the FILENAME statement that
defines the fileref, and if a destination is specified by the GACCESS= graphics option or
device parameter, SAS/GRAPH assigns that destination to the fileref and sends the
graphics output there. See also “GACCESS” on page 296.

See “About Graphics Stream Files” on page 60 for more information on creating
graphics stream files.

308 GSFPROMPT Chapter 8

GSFPROMPT

Specifies whether to write prompt messages to the graphics stream file (GSF).

Used in: GOPTIONS statement
Default: NOGSFPROMPT
Restriction: not supported by Java or ActiveX

Syntax
GSFPROMPT | NOGSFPROMPT

Details
When the GSF is processed by another program, that program can display the

prompt messages. The default, NOGSFPROMPT, is compatible with Release 6.06.

Although the prompt messages appear if the graphics device is in eavesdrop mode,
they do not wait for user response. If GSFPROMPT is on, the prompt messages are
sent with the GSF to the device, regardless of the status of the graphics options
PROMPT, GACCESS=, GSFMODE=, or GSFNAME=.

GSIZE

Sets the number of lines of display used for graphics for devices whose displays can be divided
into graphics and text areas.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: not supported by Java or ActiveX
Default: device dependent

Syntax
GSIZE=lines

lines
specifies the number of lines to be used for graphics. Lines is a nonnegative integer
up to three digits long (0...999), and can be larger or smaller than the total number of
lines that can be displayed at one time. If the number is larger, scroll the graph to
see it all. If GSIZE is 0, all lines are used for text.

GSTART

Prefixes every record of graphics data sent to a device or file with a string of characters.

Graphics Options and Device Parameters Dictionary GUNIT 309

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gstart window

Default: none

Restriction: not supported by Java or ActiveX

See also: GEND

Syntax
GSTART=’string <...’string-n’>

’string’
can be either of the following:

’hex-string’X

’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GSTART= option. In this case,
you can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the GSTART window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GSTART is useful when sending a file to a device that requires each record be prefixed
with some character. You can use GSTART= in conjunction with the GEND= graphics
option or device parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS GSTART=
option rather than the GDEVICE Gstart window because it is easier to code the string
as text with GSTART= than it is to convert the string to its ASCII representation,
which is required to enter the string in the GDEVICE Gstart window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEND that can be used by all hosts is to
use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEND is the recommended method. �

GUNIT

Specifies the default unit of measure to use with height specifications.

Used in: GOPTIONS statement

Default: CELLS

Restriction: partially supported by Java or ActiveX

310 GWAIT Chapter 8

Syntax
GUNIT=units

units must be one of

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points (there are approximately 72 points in an inch).

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values” on
page 226 and “Example 3. Rotating Plot Symbols through the Colors List” on page
231

Details
Used with options in the AXIS, FOOTNOTE, LEGEND, NOTE, SYMBOL, and TITLE
statements and in some graphics options. If you specify a value but do not specify an
explicit unit, the value of the GUNIT= graphics option is used.

GWAIT

Specifies the time between each graph displayed in a series.

Used in: GOPTIONS statement
Default: GWAIT=0
Restriction: not supported by Java or ActiveX

Syntax
GWAIT=seconds

seconds
specifies the number of seconds between graphs. Seconds can be any reasonable
positive integer. By default, GWAIT=0, which means that you must press the
RETURN key between each display in a series of graphs.

Details
GWAIT= enables you to view a series of graphs without having to press the ENTER key
(or the RETURN or END key, depending on your device) between each display. For
example, if you specify GWAIT=5, five seconds elapse between the display of each graph
in a series. If you use the NOPROMPT graphics option, the GWAIT= graphics option is
disabled.

Graphics Options and Device Parameters Dictionary HANDSHAKE 311

GWRITER

Specifies the name of the external writer used with IBM printers.

Used in: GOPTIONS statement
Default: SASWTR
Restriction: Used only with IBM3287 and IBM3268 device drivers on z/OS systems

Syntax
GWRITER=’writer-name’

HANDSHAKE

Specifies the type of flow control used to regulate the flow of data to a hardcopy device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: host dependent
Restriction: not supported by Java or ActiveX

Syntax
HANDSHAKE=HARDWARE | NONE | SOFTWARE | XONXOFF

HARDWARE
HARD

specifies that SAS/GRAPH instruct the device to use the hardware CTS and RTS
signals. (This is not appropriate for some devices.)

NONE
specifies that SAS/GRAPH send data without providing flow control. Specify NONE
only if the hardware or interface program you are using provides its own flow control.

SOFTWARE
SOFT

specifies that SAS/GRAPH use programmed flow control with plotters in eavesdrop
mode.

XONXOFF
X

specifies that SAS/GRAPH instruct the device to use ASCII characters DC1 and DC3.
(This is not appropriate for some devices.)

Details
HANDSHAKE regulates flow of control by specifying how and if a device can signal to
the host to temporarily halt transmission and then resume it. Flow control is important

312 HBY Chapter 8

because it is possible to send commands to a hardcopy device faster than they can be
executed.

HANDSHAKE can be used when you are using a protocol converter, interface
program, or host computer that can perform XONXOFF or hardware handshaking. You
also can use this option if you are routing output through flow-control programs of your
own, as in a multiple-machine personal computer environment where the graphics
plotter is a shared resource. SAS/GRAPH software sends output to a server (the file
transfer does not require flow control). The server queues incoming graphs and sends
them to the plotter. The server, rather than SAS/GRAPH software, is responsible for
handling flow control.

If you do not use HANDSHAKE, the value in the driver entry is used.
If you use HANDSHAKE=XONXOFF or HANDSHAKE=HARDWARE, SAS/GRAPH

does not actually do the handshaking. It tells the device which type of handshake is
being used. The protocol converter, interface program, or host computer actually does
the handshake.

Note: If you are creating a graphics stream file using a driver for a plotter and you
specify HANDSHAKE=SOFTWARE, the software that you use to send the file to the
plotter must be able to perform a software handshake. You will probably want to
specify one of the alternative values if you route output to a file. �

HBY

Specifies the height of BY lines generated when you use BY-group processing.

Used in: GOPTIONS statement

Default: 1 cell unless HTEXT= is used

Restriction: not supported by Java or ActiveX

See also: “BY Statement” on page 141

Syntax

HBY=BY-line-height <units>

BY-line-height <units>
specifies the height of BY-line text; by default BY-line-height is 1. If you specify
HBY=0, the BY headings are suppressed. For a description of units, see “Specifying
Units of Measurement” on page 262.

Note: If a value for units is not specified, the current units associated with the
GUNIT graphics option are used. �

Details

When you use a BY statement with a SAS/GRAPH procedure to process a data set in
subgroups, each graph produced by that procedure is headed by a BY line that displays
the BY variables and their values that define the current subgroup.

Graphics Options and Device Parameters Dictionary HEADERFILE 313

HEADER

Specifies the command that executes a user-supplied program to create HEADER records for the
driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

See also: HEADERFILE

Syntax

HEADER=’command’

command
specifies a command that runs a user-written program that creates the file of
HEADER records. Command is a string up to 40 characters long.

Details

For information about Metagraphics drivers, contact Technical Support.

HEADERFILE

Specifies the fileref for the file from which the Metagraphics driver reads HEADER records.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

See also: HEADER

Syntax

HEADERFILE=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must have been
previously assigned with a FILENAME statement or a host command before running
the Metagraphics driver. See “FILENAME Statement” on page 28 for details.

Details

For information about Metagraphics drivers, contact Technical Support.

314 HORIGIN Chapter 8

HORIGIN

Sets the horizontal offset from the lower-left corner of the display area to the lower-left corner of
the graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: not supported by Java or ActiveX

See also: VORIGIN

Syntax
HORIGIN=horizontal-offset <IN | CM | PT>

horizontal-offset <IN | CM | PT>
must be a nonnegative number and may be followed by a unit specification, either IN
for inches (default), or CM for centimeters, or PT for points. If you do not specify
HORIGIN, a default offset is searched for in this order:

1 the left margin specification on an OPTIONS LEFTMARGIN setting

2 HORIGIN setting in the device catalog.

Details
The display area is defined by the XMAX and YMAX device parameters. By default, the
origin of the graphics output area is the lower-left corner of the display area; the
graphics output is offset from the lower-left corner of the display area by the values of
HORIGIN and VORIGIN. HORIGIN + HSIZE cannot exceed XMAX. See “About the
Graphics Output Area” on page 34 for details.

HOSTSPEC

Stores FILENAME statement options in the device entry.

Used in: GDEVICE procedure; GDEVICE Host File Options window

Syntax
HOSTSPEC=’text-string’

text-string
specifies FILENAME statement options that are valid for the operating environment.
Text-string accepts characters in upper or lower case. See the SAS documentation for
your operating environment for details.

Graphics Options and Device Parameters Dictionary HSIZE 315

Details
HOSTSPEC may be used when the driver dynamically allocates a graphics stream file
or spool file. It can specify the attributes of the file, such as record format or record
length. It cannot be used with Metagraphics drivers.

HPOS

Specifies the number of columns in the graphics output area.

Used in: GOPTIONS statement

Default: device dependent: the value of the LCOLS or PCOLS device parameter

Restriction: not supported by Java or ActiveX

See also: PCOLS, LCOLS, VPOS

Syntax
HPOS=columns

columns
specifies the number of columns in the graphics output area, which is equivalent to
the number of hardware characters that can be displayed horizontally. Specifying
HPOS=0 causes the device driver to use the default hardware character cell width for
the device.

Details
The HPOS= graphics option overrides the values of the LCOLS or PCOLS device
parameters and temporarily sets the number of columns in the graphics output area.
HPOS= does not affect the width of the graphics output area but merely divides it into
columns. Therefore, you can use HPOS= to control cell width.

The values specified in the HPOS= and VPOS= graphics options determine the size
of a character cell for the graphics output area and consequently the size of many
graphics elements, such as hardware text. The larger the size of the HPOS= and
VPOS= values, the smaller the size of each character cell.

See “Procedure Output and the Graphics Output Area” on page 34 for more
information.

HSIZE

Sets the horizontal size of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: partially supported by Java or ActiveX

See also: VSIZE, XMAX

316 HTEXT Chapter 8

Syntax
HSIZE=horizontal-size <IN | CM | PT>

horizontal-size <IN | CM | PT>
specifies the width of the graphics output area; horizontal-size must be a positive
number and may be followed by a unit specification, either IN for inches (default), or
CM for centimeters, or PT for points.

If you do not specify HSIZE=, a default size is searched for in this order:
1 the horizontal size is calculated as

XMAX − LEFTMARGIN − RIGHTMARGIN

Note that LEFTMARGIN and RIGHTMARGIN are used in the OPTIONS
statement.

2 HSIZE setting in the device catalog.

Featured in: “Example 3. Rotating Plot Symbols through the Colors List” on page
231

HTEXT

Specifies the default height of the text in the graphics output.

Used in: GOPTIONS statement
Default: 1 cell
Restriction: partially supported by Java

Syntax
HTEXT=text-height <units>

text-height <units>
specifies the height of the text; by default text-height is 1. For a description of units,
see “Specifying Units of Measurement” on page 262.

Note: If a value for units is not specified, the current units associated with the
GUNIT graphics option are used. �

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values” on
page 226

Details
HTEXT= is overridden by the HTITLE= graphics option for the first TITLE line.

Graphics Options and Device Parameters Dictionary IBACK 317

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Controlling
Titles and Footnotes with ODS Output” on page 492 for more information. �

HTITLE

Selects the default height used for the first TITLE line.

Used in: GOPTIONS statement
Default: 2 cells unless HTEXT= is used

Syntax
HTITLE=title-height <units>

title-height <units>
specifies the height of the text in the TITLE1 statement. By default, title-height is 2.
For a description of units, see “Specifying Units of Measurement” on page 262.

Note: If a value for units is not specified, the current units associated with the
GUNIT graphics option are used. �

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Datetime Values” on
page 226

Details
If you omit HTITLE=, TITLE1 uses the height specified by the HTEXT= graphics
option, if used.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Controlling
Titles and Footnotes with ODS Output” on page 492 for more information. �

IBACK

Specifies an image file to display in a graph’s background area.

Restriction: partially supported by Java
See also: CBACK, IMAGESTYLE

Syntax
IBACK=fileref | ’external-file’ | ’URL’

318 ID Chapter 8

fileref
specifies a fileref that points to the image file you want to use. Fileref must be a valid
SAS fileref up to eight characters long and must have been previously assigned with
a FILENAME statement.

external-file
specifies the complete file name of the image file you want to use. The format of
external-file varies across operating environments.

URL
specifies the URL of the image file that you want to use.

Details
The image can be used with any procedures that produce a picture or support the

CBACK= option. The IBACK option is supported by the Graph applet and the Map
applet, but it is not supported by the Contour applet. See Chapter 9, “Introducing SAS/
GRAPH Output for the Web,” on page 369 for information about these applets.

This option overrides the BackGroundImage and Image styles attribute in the graph
styles. For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide.

ID

Specifies the description string used by the Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
ID=’description’

description
is a character string up to 70 characters long. If this field is blank, the name and
description of the graph as specified in the PROC GREPLAY window of the
GREPLAY procedure are used.

Details
For information about Metagraphics drivers, contact Technical Support.

IMAGEPRINT

Enables or disables image output

Used in: GOPTIONS statement

Graphics Options and Device Parameters Dictionary INTERACTIVE 319

Default: IMAGEPRINT
Restriction: not supported by Java or ActiveX

Syntax
IMAGEPRINT | NOIMAGEPRINT

IMAGEPRINT
default value specifies that any images are to be included in graphics output.

NOIMAGEPRINT
specifies that images are to be withheld from graphics output.

IMAGESTYLE

Specifies the way to display the image file that is specified on the IBACK= option.

Default: TILE
Restriction: not supported by Java

Syntax
IMAGESTYLE= TILE | FIT

TILE
tile the image within the specified area. This copies the images as many times as
needed to fit the area.

FIT
fit the image within the background area. This stretches the image, if necessary.

Details
Note: This option overrides the BackGroundImage and Image styles attribute in the

graph styles. For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide. �

INTERACTIVE

Sets level of interactivity for Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: USER
Restriction: Used only with user-supplied Metagraphics drivers.

320 INTERLACED Chapter 8

Syntax
INTERACTIVE=USER | GRAPH | PROC

USER
specifies that the user-written part of the driver be executed outside of SAS/GRAPH.

PROC
specifies that the user-written part of the Metagraphics driver be invoked after the
procedure is complete.

GRAPH
specifies that the user-written part be invoked for each graph.

Details
For information about Metagraphics drivers, contact Technical Support.

INTERLACED
Specifies whether images are to be displayed as they are received in the browser.

Used in: GOPTIONS statement
Default: NONINTERLACED
Restriction: driver dependent, GIF series of drivers only

Syntax
INTERLACED | NONINTERLACED

Details
With interlacing it is possible to get a rough picture of what a large image will look

like before it is completely drawn in your browser. Your browser may allow you to set
an option that will determine how images are displayed.

INTERPOL
Sets the default interpolation value for the SYMBOL statement.

Used in: GOPTIONS statement
Restriction: not supported by Java or ActiveX

Syntax
INTERPOL=interpolation-method

Graphics Options and Device Parameters Dictionary KEYMAP 321

interpolation-method
specifies the default interpolation to be used when the INTERPOL= option is not
specified in the SYMBOL statement. See “SYMBOL Statement” on page 183 for the
complete syntax of all interpolation methods.

ITERATION

Specifies the number of times to repeat the animation loop.

Used in: GOPTIONS statement
Default: 0
Restriction: GIFANIM driver only

Syntax
ITERATION=iteration-count

iteration-count
specifies the number of times that your complete GIF animation loop is repeated. It
is assumed that the animation is always played once; this option specifies how many
times the animation is repeated. Iteration-count can be a number from 0...65535. A
value of 0 causes the animation to loop continuously.

Details
In Version 6, the GCOPIES graphics option controlled iteration for the GIFANIM driver.

KEYMAP

Selects the keymap to use.

Used in: GOPTIONS statement
Default: installation dependent
Restriction: not supported by Java or ActiveX

Syntax
KEYMAP=key-map-name | NONE

key-map-name
specifies the name of a keymap. See Chapter 34, “The GKEYMAP Procedure,” on
page 983 for details.

322 LCOLS Chapter 8

NONE
suppresses the keymap assigned by default to a non-U.S. keyboard. If you specify
KEYMAP=NONE, text may display incorrectly or not at all.

Details
Non-default key maps usually are used only with non-U.S. keyboards.

LCOLS

Sets the number of columns in the graphics output area for landscape orientation.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent
See also: HPOS, LROWS, PCOLS

Syntax
LCOLS=landscape-columns

landscape-columns
must be a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The HPOS= graphics option overrides the value of LCOLS.
See “Procedure Output and the Graphics Output Area” on page 34 for more

information.

LFACTOR

Selects the default hardware line thickness.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: Used only with devices that can draw hardware lines of varying
thicknesses. Not supported by Java or ActiveX.

Syntax
LFACTOR=line-thickness-factor

Graphics Options and Device Parameters Dictionary MAXCOLORS 323

line-thickness-factor
can range from 0 through 9999. A value of 0 for LFACTOR is the same as a factor of
1. Lines are drawn line-thickness-factor times as thick as normal.

Details
LFACTOR is useful when you are printing graphics output on a plotter. Depending on
the orientation and type of device, some plotters may require LFACTOR=10 to get the
same thickness of lines as on the display of some devices.

LROWS

Sets the number of rows in the graphics output area for landscape orientation.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent
See also: LCOLS, PROWS, VPOS

Syntax
LROWS=landscape-rows

landscape-rows
is a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The VPOS= graphics option overrides the value of LROWS.
See “Procedure Output and the Graphics Output Area” on page 34 for more

information.

MAXCOLORS

Sets the total number of colors that can be displayed at once.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
See also: PENMOUNTS

Syntax
MAXCOLORS=number-of-colors

324 MAXPOLY Chapter 8

number-of-colors
must be an integer in the range 2 through 256. The total number of colors includes
the foreground colors plus the background color.

Details
The PENMOUNTS= graphics option overrides the value of MAXCOLORS.

MAXPOLY

Sets the maximum number of vertices for hardware-drawn polygons.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device dependent

Syntax
MAXPOLY=number-of-vertices

number-of-vertices
is a nonnegative integer up to four digits long. A value of 0 means that there is no
limit to the number of vertices that can be specified in the hardware’s
polygon-drawing command. The maximum value of MAXPOLY depends on the
number of vertices your device can process.

MODEL

Specifies the model number of the output device.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent

Syntax
MODEL=model-number

model-number
is a nonnegative integer up to five digits long that is the Institute-designated model
number for the corresponding device. It is not the same as a manufacturer’s model
number.

Details
Do not change this field in Institute-supplied drivers or in drivers that you copy from
Institute-supplied drivers.

Graphics Options and Device Parameters Dictionary OFFSHADOW 325

MODULE

Specifies the name of the corresponding executable driver module for the device.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent

Syntax
MODULE=driver-module

driver-module
is a literal string up to eight characters long. All standard driver modules begin with
the characters SASGD.

Details
Do not change this field in Institute-supplied drivers or in drivers that you copy from
Institute-supplied drivers.

NAK

Specifies the negative response for software handshaking for Metagraphics drivers.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
NAK=’negative-handshake-response’X

negative-handshake-response
is a hexadecimal string up to 16 characters long.

Details
For information about Metagraphics drivers, contact Technical Support.

OFFSHADOW

Controls the width and depth of the drop shadow in legend frames.

Used in: GOPTIONS statement

326 PAPERDEST Chapter 8

Default: (0.0625, − 0.0625) IN
Restriction: not supported by Java or ActiveX

Syntax
OFFSHADOW=(x <units>, y <units>) | (x,y) <units>

x,y
specify the width (x) and depth (y) of the drop shadow generated by the LEGEND
statement.

If a value for units is not specified, the current units associated with the GUNIT
graphics option are used. For a description of units, see “Specifying Units of
Measurement” on page 262.

Details
The values specified by OFFSHADOW= are used with the CSHADOW= and CBLOCK=
options in a LEGEND statement. For details, see “LEGEND Statement” on page 151.

PAPERDEST

Specifies which output bin the printer should use if multiple bins are available on the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: 1 (the upper output bin)
Restrictions: hardware dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: PAPERSOURCE, PPDFILE

Syntax
PAPERDEST=bin

bin
specifies the name or number of the output bin. Values for bin depend on the type of
printer and can be one of the following:

bin the name or number of the output bin – for example,
PAPERDEST=4, PAPERDEST=BIN2, PAPERDEST=SIDE

’long bin name’ a character string that is the name of the output bin – for
example, PAPERDEST=’Top Output Bin’. Names with blanks or
special characters must be quoted.

For PostScript printers, the value for bin must correspond to an OutputBin value
in the PPD file.

For PCL printers, consult the printer’s documentation for valid bin values. If a
numeric value exceeds the maximum bin value allowed for the printer, a warning

Graphics Options and Device Parameters Dictionary PAPERLIMIT 327

message is issued . For string values, the string is checked against a list of strings
that are valid for the driver (for example, ’UPPER’, ’LOWER’, or
’OPTIONALOUTBINn’, where n is the bin number). If the string is not valid for the
driver, a warning message is issued.

PAPERFEED

Specifies the increment of paper that is ejected when a graph is completed.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Default: PAPERFEED=0.0 IN
Restriction: device dependent; not supported by Java or ActiveX

Syntax
PAPERFEED=feed-increment <IN | CM>

feed-increment <IN | CM>
must be a nonnegative number and may be followed by a unit specification, either IN
for inches (default) or CM for centimeters.

Details
PAPERFEED does not control the total length of the ejection. If you specify
PAPERFEED=1, the driver ejects paper in 1-inch increments until the total amount of
paper ejected is at least half an inch greater than the size of the graph last printed. If
you specify PAPERFEED=8.5 IN, the paper is ejected in increments of 8.5 inches,
measuring from the origin of the first graph.

PAPERFEED is provided mainly for plotters that use fanfold or roll paper. If you are
using fanfold paper, specify a value for PAPERFEED that is equal to the distance
between the perforations.

PAPERLIMIT

Sets the width of the paper used with plotters.

Used in: GOPTIONS statement
Default: maximum dimensions specified in the device driver
Restriction: ZETA plotters and KMW rasterizers

Syntax
PAPERLIMIT=width <IN | CM>

328 PAPERSIZE Chapter 8

width <IN | CM>
specifies the paper width in IN for inches (default) or CM for centimeters. If
PAPERLIMIT= is not specified, the maximum dimensions of the graph are restricted
by the hardware limits of the graphics device.

Details
If you want to use a driver with a device that has a larger plotting area than the device
for which the driver is intended (for example, using the ZETA887 driver with a ZETA
836 plotter), the PAPERLIMIT= graphics option can be used to override the size limit of
the driver.

PAPERSIZE

Specifies the name of a paper size.

Used in: GOPTIONS statement; OPTIONS statement

Default: device dependent

Restriction: hardware dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX

See also: PAPERSOURCE, PPDFILE

Syntax
PAPERSIZE=’size-name’

size-name
specifies the name of a paper size, such as LETTER, LEGAL, or A4.

If you do not specify PAPERSIZE=, the PAPERSIZE= setting on an OPTIONS
statement is used. If no OPTIONS statement sets a paper size, the value for paper
size is device dependent:

� The universal printing devices use the size specified in the Page Setup dialog.

� All other printer devices use the LETTER paper size.

Details
Typically, you might use PAPERSIZE= with the Output Delivery System (ODS). For
some printers, PAPERSIZE= overrides the PAPERSOURCE= selection.

For PostScript devices, the name must match the name of a paper size in the PPD
file. Refer to the PPD file for a list of valid names. Size-name is case-insensitive and
can contain a subset of the full name. For example, if the name in the PPD file is
*PageSize A4/A4, you can specify PAPERSIZE=’A4’. If a PPD file is not specified,
PAPERSIZE= is ignored.

For PCL devices, the device driver searches the SAS Registry for supported paper
size values. To see the supported list of sizes, submit the following statements:

proc registry listhelp
startat=’options\papersize’;

run;

Graphics Options and Device Parameters Dictionary PAPERTYPE 329

For more information about the SAS Registry, refer to the SAS Help facility.

PAPERSOURCE
Specifies which paper tray the printer should use if multiple trays are available on the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: device dependent
Restriction: hardware dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: PAPERDEST, PAPERSIZE, PPDFILE

Syntax
PAPERSOURCE=tray

tray
specifies the name or number of the paper tray. Values for tray depend on the type of
printer and can be one of the following:

tray the name or number of the paper tray, for example,
PAPERSOURCE=3, PAPERSOURCE=TRAY3,
PAPERSOURCE=Upper

’long tray name’ a character string that is the name of the paper tray, for example,
PAPERSOURCE=’Optional Output Tray’. Names with blanks or
special characters must be quoted.

Details
On some printers, if PAPERSIZE= is also specified, it overrides the setting on
PAPERSOURCE=.

For PostScript printers, a tray number, such as PAPERSOURCE=’tray3’, must
correspond to an InputSlot value in the PPD file.

For PCL printers, consult the printer’s documentation for valid tray values. If a
numeric value exceeds the maximum tray value allowed for the printer, a warning
message is issued . For string values, the string is checked against a list of strings that
are valid for the driver:

� ’AUTO’
� ’HCI’ or ’HCIn’, where n is a number from 2 to 21
� ’MANUAL’
� ’MANUAL_ENVELOPE’
� ’TRAYn’, where n is 1, 2, or 3.

If the string is not valid for the driver, a warning message is issued.

PAPERTYPE
Specifies the name of a paper type.

330 PATH Chapter 8

Used in: GOPTIONS statement; OPTIONS statement
Default: PLAIN
Restriction: hardware dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: PPDFILE

Syntax
PAPERTYPE=’type-name’

type-name
specifies the name of a paper type. Valid values depend on the type of printer.

For PostScript devices, type-name must match the name of a paper type in the
PPD file, such as TRANSPARENCY or PLAIN. Refer to the PPD file for a list of valid
names. Type-name is case-insensitive and can contain a subset of the full name. For
example, if the name in the PPD file is *MediaType Plain/Paper you can specify
PAPERTYPE=’PLAIN/PAPER’.

For PCL devices, type-name specifies the name of a paper type that is available on
the current printer, such as GLOSSY, PLAIN, SPECIAL, or TRANSPARENCY.
Consult your printer’s user manual for the complete list of available paper types on
your printer.

Details
For PostScript devices, if a PPD file is not specified, PAPERTYPE= is ignored.

PATH

Sets the increment of the angle for hardware text rotation.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: PATH=0
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
PATH=angle-increment

angle-increment
is an integer in the range 0 to 360 that specifies the angle at which to rotate the text
baseline. A value of 0 means that the device uses its default orientation. Specify 0 if
your device does not perform string angling in hardware.

Details
For information about Metagraphics drivers, contact Technical Support.

Graphics Options and Device Parameters Dictionary PCLIP 331

PCLIP

Specifies whether a clipped polygon is stored in its clipped or unclipped form.

Used in: GOPTIONS statement
Default: NOPCLIP
Restriction: not supported by Java or ActiveX
See also: POLYGONCLIP

Syntax
PCLIP |NOPCLIP

PCLIP
stores clipped polygons with the graph in the default catalog WORK.GSEG, or in the
catalog you specify.

NOPCLIP
stores the unclipped form of the polygon and causes the polygon to be clipped when
replayed.

Details
The effects of this option are only seen when you use the graphics editor to edit a graph.

When a procedure produces a graph with intersecting polygons or blanking areas, it
clips portions of the polygons to prevent the ones behind from showing through. When
the graph is created and stored in a catalog, if PCLIP is in effect, the clipped form of
the polygon is stored with it. If NOPCLIP is specified, the complete polygon is stored in
the catalog and the graph is clipped each time it is replayed.

For example, suppose you create a block map like the one in Figure 8.1 on page 331.

Figure 8.1 Intersecting Polygons

The block clips the boundary of the map area polygon. If you specify PCLIP, the map
area polygon is stored in its clipped form, as shown in Figure 8.2 on page 332.

332 PCOLS Chapter 8

Figure 8.2 Clipped Polygon with PCLIP Option

NOPCLIP stores the map area in its unclipped form, as shown in Figure 8.3 on page
332.

Figure 8.3 Polygon with NOPCLIP Option

In this case, when the graph is recalled from the catalog, the map area polygon must
be clipped before it is displayed with the block. If you plan to edit the graph with the
graphics editor, specify NOPCLIP so polygons retain their original form.

PCOLS

Sets the number of columns in the graphics output area for portrait orientation.

Used in: GDEVICE procedure; GDEVICE Detail window

Default: device dependent
See also: HPOS, LCOLS, PROWS

Syntax
PCOLS=portrait-columns

portrait-columns
must be a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The HPOS= graphics option overrides the value of PCOLS.
See “Procedure Output and the Graphics Output Area” on page 34 for more

information.

Graphics Options and Device Parameters Dictionary PENSORT 333

PENMOUNTS

Specifies the number of active pens or colors.

Used in: GOPTIONS statement
Default: device dependent
Restriction: not supported by Java or ActiveX
See also: MAXCOLORS

Syntax
PENMOUNTS=active-pen-mounts

active-pen-mounts
specifies the number of pens for a plotter with multiple pens. After the specified
number of pens have been used, you are prompted to change the pens.

Details
For devices that are not pen plotters, PENMOUNTS= can be used to indicate the
number of colors that can be displayed at one time. In this case, PENMOUNTS=
performs the same function as the MAXCOLORS device parameter except that the
value specified for MAXCOLORS includes the background color and PENMOUNTS only
refers to foreground colors. Thus, PENMOUNTS=4 implies MAXCOLORS=5.

PENMOUNTS= overrides the value of the MAXCOLORS device parameter. You can
specify MAXCOLORS= in a GOPTIONS statement as a synonym for PENMOUNTS=.

PENSORT

Specifies whether plotters draw graphics elements in order of color.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: not supported by Java or ActiveX
Default: device dependent

Syntax
GOPTIONS: PENSORT | NOPENSORT

GDEVICE: PENSORT=Y | N

PENSORT
PENSORT=Y

causes the plotter to draw all graphics elements of one color at one time. For
example, it draws all the red elements in the output, then all the blue elements, and

334 PIEFILL Chapter 8

so forth. This specification is compatible with previous releases. Use it for plotters
with real pens.

NOPENSORT
PENSORT=N

causes the plotter to draw each element as it is encountered, regardless of its color.
For example, the plotter might draw a red circle, then a blue line, and then a red
line, and so forth. This method is best for electrostatic printers implemented with
Metagraphics drivers of TYPE=PLOTTER. In addition, NOPENSORT enables you to
specify non-standard color names.

PIEFILL

Specifies whether to use the device’s hardware pie-fill capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: device dependent

Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: PIEFILL | NOPIEFILL

GDEVICE: PIEFILL=Y | N

PIEFILL
PIEFILL=Y

causes SAS/GRAPH to use the built-in hardware capability of the device, if available,
to fill pies and pie sections. A blank Piefill field in the Parameters window is the
same as PIEFILL=Y.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOPIEFILL
PIEFILL=N

causes SAS/GRAPH to fill pies and pie sections using software pie fills.

POLYGONCLIP

Specifies the type of clipping used when two polygons overlap.

Used in: GOPTIONS statement

Default: device dependent

Restriction: not supported by Java or ActiveX

See also: PCLIP

Graphics Options and Device Parameters Dictionary POLYGONFILL 335

Syntax
POLYGONCLIP | NOPOLYGONCLIP

POLYGONCLIP
specifies polygon clipping, which enables a clipped polygon to be filled with a
hardware pattern. POLYGONCLIP affects only graphs that have blanking areas or
intersecting polygons.

NOPOLYGONCLIP
specifies line clipping; a polygon that has been line-clipped cannot use a hardware
pattern.

Details
Clipping is the process of removing part of one polygon when two polygons intersect.
For example, in a block map, a block may overlap the boundary of its map area. In this
case, the polygon that makes up the map area is clipped so that you do not see the
boundary line behind the block. (See Figure 8.1 on page 331 for an illustration of a
clipped polygon.) The type of clipping used by a graph affects whether a clipped area
can use hardware patterns.

POLYGONCLIP is affected by the PCLIP graphics option:

POLYGONCLIP with PCLIP or NOPCLIP
all areas can use hardware patterns

NOPOLYGONCLIP with NOPCLIP
all areas use only software patterns

NOPOLYGONCLIP with PCLIP
areas may use either hardware or software patterns depending on the nature of
the clipped polygons.

Under some conditions the polygons may not be clipped correctly. Specifying both
POLYGONCLIP and NOPCLIP will produce the correct graph.

POLYGONFILL

Specifies whether to use the device’s hardware polygon-fill capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: POLYGONFILL | NOPOLYGONFILL

GDEVICE: POLYFILL=Y | N

336 POSTGEPILOG Chapter 8

POLYGONFILL
POLYFILL=Y

causes SAS/GRAPH to use the built-in hardware capability of the device to fill
polygons. A blank Polyfill field in the Parameters window is the same as
POLYGONFILL.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOPOLYGONFILL
POLYFILL=N

causes SAS/GRAPH to use software fills to fill polygons.

POSTGEPILOG

Specifies data to send immediately after the data that is stored in the Gepilog field of the device
entry is sent.

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GEPILOG, PREGEPILOG

Syntax
POSTGEPILOG=’string’

’string’
can be either of the following:

’hex-string’X
’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

POSTGPROLOG

Specifies the data to send immediately after the data that is stored in the Gprolog field of the
device entry is sent.

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GPROLOG, PREGPROLOG

Syntax
POSTGPROLOG=’string’

Graphics Options and Device Parameters Dictionary PPDFILE 337

’string’
can be either of the following:

’hex-string’X

’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

POSTGRAPH

Specifies host commands to be executed after the graph is produced.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window

Restriction: not supported by Java or ActiveX

See also: FILECLOSE

Syntax
POSTGRAPH1=’system-command(s)’

POSTGRAPH2=’system-command(s)’

system-command(s)
specifies one or more valid system commands. The string can contain upper- or
lowercase characters. Separate multiple commands with a command delimiter, which
is host-specific; for example, some operating environments use a semicolon. The total
length of the string cannot exceed 72 characters. The commands are executed right
after the graph is produced.

Details
If you want to use a host command to send output to the device after each graph
executes, use the POSTGRAPH parameter with FILECLOSE=GRAPHEND.

PPDFILE

Specifies the location of an external file containing PostScript Printer Description (PPD)
information.

Used in: GOPTIONS statement

Restriction: PostScript printers only

See also: BINDING, COLLATE, DUPLEX, PAPERDEST, PAPERSIZE,
PAPERSOURCE, PAPERTYPE, REVERSE

338 PREGEPILOG Chapter 8

Syntax

PPDFILE=fileref | ’external-file’

fileref
specifies a fileref that points to the PPD file you want to use. Fileref must be a valid
SAS fileref up to eight characters long and must have been previously assigned with
a FILENAME statement. See “FILENAME Statement” on page 28 for additional
information.

external-file
specifies the complete filename of the PPD file you want to use. The format of
external-file varies across operating environments. For details, see the SAS
documentation for your operating environment.

Details

A PostScript Printer Description (PPD) file is a text file that contains commands
required to access features of the device. These files are available from Adobe. Also,
many printer manufacturers provide the appropriate PPD file for their PostScript
printers.

PREGEPILOG

Specifies data to send immediately before the data that is stored in the Gepilog field of the device
entry is sent.

Used in: GOPTIONS statement

Default: Null string

Restriction: not supported by Java or ActiveX

See also: GEPILOG, POSTGEPILOG

Syntax

PREGEPILOG=’string’

’string’
can be either of the following:

’hex-string’X

’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

Graphics Options and Device Parameters Dictionary PREGRAPH 339

PREGPROLOG

Specifies the data to send immediately before the data that is stored in the Gprolog field of the
device entry is sent.

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GPROLOG, POSTGPROLOG

Syntax
PREGPROLOG=’string’

’string’
can be either of the following:

’hex-string’X
’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

PREGRAPH

Specifies host commands to be executed before the graph is produced.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX
See also: FILECLOSE

Syntax
PREGRAPH1=’system-command(s)’

PREGRAPH2=’system-command(s)’

system-command(s)
specifies one or more valid system commands. The string can contain upper- or
lowercase characters. Separate multiple commands with a command delimiter, which
is host-specific; for example, some operating environments use a semicolon. The total
length of the string cannot exceed 72 characters. The commands are executed
immediately before the graph is produced.

Details
The PREGRAPH parameter should be used with FILECLOSE=GRAPHEND.

340 PROCESS Chapter 8

PROCESS

Specifies the command that translates the metafile into commands for the device.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

See also: INTERACTIVE

Syntax
PROCESS=’command’

command
specifies the command that translates the metafile produced by the Metagraphics
driver into commands for the device. The command runs your program to produce
the output. Command is a string up to 40 characters long.

Details
PROCESS is required if the value of the INTERACTIVE device parameter is PROC or
GRAPH.

For information about Metagraphics drivers, contact Technical Support.

PROCESSINPUT

Specifies the fileref for the file that contains input for the user-written part of the Metagraphics
driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
PROCESSINPUT=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must be assigned with
a FILENAME statement or a host command before running the Metagraphics driver.
See “FILENAME Statement” on page 28 for additional information.

Details
For information about Metagraphics drivers, contact Technical Support.

Graphics Options and Device Parameters Dictionary PROMPT 341

PROCESSOUTPUT

Specifies the fileref for the file that receives output from the user-written part of the Metagraphics
driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

Syntax

PROCESSOUTPUT=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must be assigned with
a FILENAME statement or a host command before running the Metagraphics driver.
See “FILENAME Statement” on page 28 for additional information.

Details

For information about Metagraphics drivers, contact Technical Support.

PROMPT

Specifies whether prompts are issued.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Restriction: not supported by Java or ActiveX

Default: device dependent

Syntax

GOPTIONS: PROMPT | NOPROMPT

GDEVICE: PROMPT=0...7

PROMPT
causes all prompts to be displayed.

NOPROMPT
suppresses all prompts. NOPROMPT overrides the GWAIT= graphics option.

PROMPT=0...7
in the GDEVICE procedure, specifies the level of prompting:

342 PROMPTCHARS Chapter 8

0 provides no prompting

1 issues startup messages only. Startup messages are messages such as PLEASE
PRESS RETURN TO CONTINUE.

2 signals end of graph if device is a video display or sends message to change paper if
device is a plotter.

3 combines the effects of 1 and 2.

4 sends a message to mount pens if the device is a plotter.

5 combines the effects of 4 and 1.

6 combines the effects of 4 and 2.

7 sends all prom

Note: If you specify either 0 for the PROMPT device parameter or NOPROMPT
in a GOPTIONS statement for a display device, the display clears immediately after
the graph is drawn. �

In the GDEVICE Parameters window, the PROMPT parameter consists of four fields
that describe the type of prompt:

start up
issues a message to turn the device on (if the device is a hardcopy device) or the
message PLEASE PRESS RETURN AFTER EACH BELL TO CONTINUE.

end of graph
signals, usually by a bell, when the graph is complete (valid for video displays only).

mount pens
issues a message to mount pens in a certain order and (for certain devices only) to
ask for pen priming strokes for plotters.

change paper
prompts the user to change the paper (valid for plotters only).

Enter an X for each prompt that you want to be given. If no Xs appear in these
fields, no prompt messages are issued, and the device does not wait for you to respond
between graphs.

PROMPTCHARS

Selects the prompt characters to be used by SAS/GRAPH device drivers.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: host dependent

Restriction: not supported by Java or ActiveX

See also: GSFLEN, HANDSHAKE

Graphics Options and Device Parameters Dictionary PROMPTCHARS 343

Syntax
PROMPTCHARS=’prompt-chars-hex-string’X

prompt-chars-hex-string
is an 8-byte hexadecimal string that is specified as 16 hexadecimal characters. In
GDEVICE procedure statements, enclose the string in single quotation marks,
followed by an X. In the Parameters window, enter the hexadecimal string without
either quotation marks or a trailing X.

Note: Bytes 1, 4, and 5 are the safest for you to change because you are most
likely to know the correct value for them. Check with Technical Support before
changing any of the other bytes. �

The following list describes each byte in the string:

byte 1
is the ASCII code of the system prompt character (for software handshaking). The
system prompt character is the last character that the host sends before waiting
for a response from the plotter. For example, 11 means the host sends an XON or
DC1 character as a prompt. If the host does not send a special character for a
prompt, set this byte to 00.

byte 2
is the ASCII code of the echo-terminator character (for software handshaking).
This character is sent at the beginning of each record.

byte 3
prevents splitting commands across records if the value is 01. If you are creating a
graphics stream file to send to a device at a later time, and there is the possibility
that extra characters will be added between records during transmission, setting
the third byte to 01 reduces the likelihood that the extra characters will be
interpreted as graphics commands and cause stray lines or other device
characters. If the third byte is set to 00, the driver makes the records as long as
possible and splits device commands across records if necessary. Setting the third
byte to 00 is more efficient but is more likely to result in device errors if output is
written to a file and later transmitted to the device.

byte 4
is the line-end character (for software handshaking). It indicates that more data
can be sent. This character is almost always a carriage-return character, 0D.

byte 5
specifies turnaround delay in tenths of a second (for software handshaking). The
turnaround delay is the amount of time the device waits after receiving the
prompt character before sending the line-end character. For example, a value of 05
represents a half-second delay.

byte 6
sets default record length using a hexadecimal value 00–FF. This byte sets the
length of the records sent to the device or to a file. If this byte is set to 00 (the
default), SAS/GRAPH uses the longest record length possible for the device. To
specify an alternate length, set the sixth byte to the hexadecimal value for the
desired length. For example, to generate records of length 80, specify 50 for the
sixth byte. If the GSFLEN device parameter or graphics option is specified, its
value overrides the value of the sixth prompt character.

344 PROWS Chapter 8

Some values of the GPROTOCOL device parameter cause each byte in the data
stream to be expanded to two bytes. This expansion is done after the length of the
record is set by PROMPTCHARS. If you are specifying a value for GPROTOCOL
that does this (for example, SASGPHEX, SASGPLCL, or SASGPAGL), specify a
value for the sixth byte of PROMPTCHARS that is half of the actual record length
desired. For example, a hexadecimal value of 40 (64 decimal) produces a 128-byte
record after expansion by the GPROTOCOL module.

bytes 7 and 8
are unused and should be set to 0000.

Details
PROMPTCHARS is most commonly used to specify parameters used in software
handshaking (see “HANDSHAKE” on page 311), but it also can be used to control the
length of records written by most drivers. You also can use the GSFLEN= graphics
option for this purpose.

PROWS

Sets the number of rows in the graphics output area for portrait orientation.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent
See also: LROWS, PCOLS, VPOS

Syntax
PROWS=portrait-rows

portrait-rows
is a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The VPOS= graphics option overrides the value of PROWS.
See “Procedure Output and the Graphics Output Area” on page 34 for more

information.

QMSG

Specifies whether log messages are held until after the graphics output is displayed.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent

Graphics Options and Device Parameters Dictionary RECTFILL 345

Syntax
GOPTIONS: QMSG | NOQMSG

GDEVICE: QMSG=Y | N

QMSG QMSG=Y
queues driver messages while the device is in graphics mode (default for video
devices).

NOQMSG QMSG=N
prevents the queuing of messages (default for plotters, cameras, and printers).

Details
Message queuing is desirable on display devices that do not have a separate dialog and
graphics area. If messages are not queued, they are written to the log as the graphics
output is being generated. This behavior may cause problems on some devices.

A blank Queued messages field in the Parameters window can mean either Y or N,
depending on the device.

RECTFILL

Specifies which rectangle fills should be performed by hardware.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
See also: FILL

Syntax
RECTFILL=’rectangle-fill-hex-string’X

rectangle-fill-hex-string
is a hexadecimal string that is 16 characters long. In GDEVICE procedure
statements, enclose the string in single quotation marks, followed by an X. In the
Parameters window, enter the hexadecimal string without either quotation marks or
a trailing X.

The following table shows which bit position (left-to-right) within the hexadecimal
string controls each fill pattern.

Bit Fill pattern Bit Fill pattern

1 R1 9 L4

2 R2 10 L5

3 R3 11 X1

346 RENDER Chapter 8

Bit Fill pattern Bit Fill pattern

4 R4 12 X2

5 R5 13 X3

6 L1 14 X4

7 L2 15 X5

8 L3 16 S

For example, if you want the driver to use only the L1 and R1 fills in hardware,
the first and sixth bits of the first byte of the hexadecimal string should be turned on,
which corresponds to a value of ’8400000000000000’X (’84’X is equivalent to ’1 0 0 0 0
1 0 0’ in binary). If a particular hardware rectangle fill is not available or not to be
used (as indicated by the value of RECTFILL), the fill is generated by the software.

See “PATTERN Statement” on page 169 for an illustration of the fill patterns.

Details
Note: Not all devices support this capability. If FILL=N is specified or the NOFILL

option is used in a GOPTIONS statement, RECTFILL is ignored. �

RENDER

Controls the creation and disposition of rendered Bitstream fonts.

Used in: GOPTIONS statement

Default: MEMORY

Restriction: not supported by Java or ActiveX

See also: RENDERLIB

Syntax
RENDER=APPEND | DISK | MEMORY | NONE | READ

APPEND
creates files to store rendered versions of Bitstream fonts if the files do not already
exist, reads previously rendered characters from the font files, and appends rendered
versions of new characters to the font files when the SAS/GRAPH procedure
terminates.

DISK
creates files to store rendered versions of Bitstream fonts if the files do not already
exist, reads previously rendered characters from the font files, and appends rendered
versions of new characters to the font files as they are encountered. This method is
slower on some hosts, but it may work in memory-constrained conditions where the
other rendering methods fail.

Graphics Options and Device Parameters Dictionary REPAINT 347

MEMORY
renders all fonts in memory without creating any font files on disk. Font files are not
used even if they already exist. New characters are not written to existing font files
when SAS/GRAPH procedures terminate.

This is the default and should be the fastest method on hosts that support virtual
memory.

NONE
disables the font rendering features.

READ
reads existing rendered font files but does not create new font files or write new
characters to existing font files. This is useful only when font files already exist in
the rendered font library.

Details
The memory capacity and input/output characteristics of your host system determine
which value for the RENDER= option provides the best performance.

RENDERLIB

Specifies the SAS data library in which rendered font files are stored.

Used in: GOPTIONS statement

Default: WORK

Restriction: not supported by Java or ActiveX

See also: RENDER

Syntax
RENDERLIB=libref

libref
specifies a previously defined libref that identifies the SAS library. The default
library is WORK. See “LIBNAME Statement” on page 29 for more information on
assigning a libref.

REPAINT

Specifies how many times to redraw the graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: device dependent

Restriction: not supported by Java or ActiveX

348 RESET Chapter 8

Syntax
REPAINT=redraw-factor

redraw-factor
is a nonnegative integer up to three digits long (0...999).

Details
Use this option with printers that produce light images after only one pass. This option
also is useful for producing transparencies; multiple passes make the colors more solid
or more intense.

Not all devices have this capability.

RESET

Resets graphics options to their defaults and/or cancels global statements.

Used in: GOPTIONS statement

Syntax
RESET=ALL | GLOBAL | statement-name | (statement-name(s))

ALL
sets all graphics options to defaults and cancels all global statements.

GLOBAL
cancels all global statements (AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL,
and TITLE). Options in the GOPTIONS statement are unaffected.

statement-name
resets or cancels only the specified global statements. For example,
RESET=PATTERN cancels all PATTERN statements only. To cancel several
statements at one time, enclose the statement names in parentheses. For example,
RESET=(TITLE FOOTNOTE AXIS).

Note: RESET=GOPTIONS sets all graphics options to defaults but does not
cancel any global statements. �

Featured in: “Example 10. Creating a Bar Chart with Drill-down for the Web” on
page 255

Details
RESET=ALL or RESET=GOPTIONS must be the first option specified in the
GOPTIONS statement; otherwise, the graphics options that precede RESET= in the
GOPTIONS statement are reset. Other options can follow the RESET= graphics option
in the statement.

Graphics Options and Device Parameters Dictionary ROTATE 349

REVERSE

Specifies whether to print the output in reverse order, if reverse printing is supported by the device.

Used in: GOPTIONS statement

Default: NOREVERSE

Restrictions: hardware dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX

See also: PPDFILE

Syntax
REVERSE | NOREVERSE

Details
The purpose of REVERSE is to control the stacking order of printer output,

depending on how the printer stacks paper. On some printers, reverse implies using the
alternate output bin (back of the printer).

For PCL devices, REVERSE sends output to the LOWER out bin, which is the
face-up output bin.

For PostScript devices, if the PPD file has an “OutputOrder” entry and one of its
entries is “Reverse,” the device supports reverse order printing and the appropriate
PostScript code to activate reverse will be used. If the PPD file does not have an
“OutputOrder” entry but does have a “PageStackOrder” entry and corresponding
OutputBin value, then reverse order printing is supported indirectly, using the PPD
file’s PageStackOrder/OutputBin entries.

Note: Some PostScript devices implement Reverse as the default output mode for
one of the output bins. In this case, selecting either the “reverse” output bin or
specifying REVERSE mode produces identical results. �

ROTATE

Specifies whether and how to rotate the graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: ROTATE=LANDSCAPE | PORTRAIT ROTATE | NOROTATE

GDEVICE: ROTATE=LANDSCAPE | PORTRAIT

350 ROTATION Chapter 8

ROTATE | NOROTATE
specifies whether to rotate the graph 90 degrees from its default orientation.

ROTATE=LANDSCAPE
specifies landscape orientation (the graph is wider than it is high).

ROTATE=PORTRAIT
specifies portrait orientation (the graph is higher than it is wide).

If you do not specify a rotation, a default is searched for in this order:
1 the ORIENTATION setting on an OPTIONS statement
2 device-dependent default.

ROTATION

Sets the increment of the angle by which the device can rotate any given letter in a string of text
in a Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: ROTATION=0
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
ROTATION=angle-increment

angle-increment
specifies the increment of the angle at which to rotate individual characters, for
example, every 5 degrees, every 45 degrees, and so on. Angle-increment is an integer
in the range 0 to 360. A value of 0 means that the device uses its default character
rotation. Specify 0 if your device does not perform hardware character rotation.

Details
For information about Metagraphics drivers, contact Technical Support.

ROWS

Specifies the number of rows the hardware font uses in graphics output.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option
Default: 0
See also: CHARREC

Syntax
See “CHARREC” on page 269 for syntax.

Graphics Options and Device Parameters Dictionary SIMFONT 351

Details
If you are using a device driver from SASHELP.DEVICES, this parameter already is set
for hardware fonts that have been defined for your installation. For scalable fonts, you
can specify 1 for ROWS, and the actual number of rows will be computed based on the
current text width. If you are adding to or modifying hardware fonts available for a
particular device driver, specify a positive value for the ROWS device parameter. If
ROWS is greater than 0, it overrides the values of the LROWS and PROWS device
parameters.

SCALABLE

Specifies whether a font is scalable.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option
Default: device dependent
See also: CHARTYPE

Syntax
See “CHARREC” on page 269 for syntax.

Details
A hardware font is scalable if it can be used with any combination of rows and columns.
Use the SCALABLE device parameter if you are adding to or modifying the fonts
available for a particular device driver. If you are using a device driver from
SASHELP.DEVICES, this parameter already is set for hardware fonts that have been
defined for your installation.

SIMFONT

Specifies a software font to use if the default hardware font cannot be used.

Used in: GOPTIONS statement
Default: SIMULATE
Restriction: not supported by Java or ActiveX

Syntax
SIMFONT=software-font

software-font
specifies a software font to use instead of the default hardware font. By default, this
is the SIMULATE font, which is stored in the SASHELP.FONTS catalog.

352 SPEED Chapter 8

Details
SAS/GRAPH substitutes the software font specified by the SIMFONT= option for the
default hardware font in these cases:

� when you use the NOCHARACTERS option in a GOPTIONS statement
� when you specify a non-default value for the HPOS= or VPOS= graphics option

and your device does not have scalable hardware characters
� when you replay a graph using a device driver other than the one used to create

the graph
� when you specify an angle or rotation for your hardware text that the device is not

capable of producing
� when you specify a hardware font that is not supported by your device.

See Chapter 5, “SAS/GRAPH Fonts,” on page 75 for details.

SPEED

Selects pen speed for plotters with variable speed selection.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
SPEED=pen-speed

pen-speed
specifies a percentage (1 through 100) of the maximum pen speed for the device. For
example, SPEED=50 slows the drawing speed by half. In general, slowing the
drawing speed produces better results.

By default, the value of SPEED is the normal speed for the device.

SWAP

Specifies whether to reverse BLACK and WHITE in the graphics output.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Defaults: GOPTIONS: NOSWAP; GDEVICE: SWAP=N
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: SWAP | NOSWAP

Graphics Options and Device Parameters Dictionary SWFONTRENDER 353

GDEVICE: SWAP=Y | N

SWAP
SWAP=Y

swaps BLACK for WHITE and vice versa.

NOSWAP
SWAP=N

does not swap the colors. A blank Swap field in the Parameters window is the same
as SWAP=N.

Details
SWAP does not affect the background color and only affects BLACK and WHITE
foreground colors specified as predefined SAS color names. SWAP ignores BLACK and
WHITE specified in HLS, RGB, or gray-scale format. This option is useful when you
want to preview a graph on a video device and send the final copy to a printer that uses
a white background.

goptions reset=all cback=blue ctitle=black swap;
title1 h=8 ’swap test’;
title2 h=8 ’another title’;
proc gslide border;
run;

SWFONTRENDER

Specifies the method used to render software fonts.

Used in: GOPTIONS statement
Default: device dependent
Restriction: not supported by Java or ActiveX

Syntax
SWFONTRENDER = POLYGON | SCANLINE

SWFONTRENDER = POLYGON
uses polygon rendering

SWFONTRENDER = SCANLINE
uses scanline rendering

Details
SWFONTRENDER determines the method used to render software text to a vector
graphics file. In some graphics formats, SCANLINE rendering may produce better
quality output when displayed to the screen, but the text may become unrecognizable if
the output is resized, or it may be distorted if the output is replayed on a device with a

354 SYMBOL Chapter 8

different resolution than the original device. If the software text is rendered as a
POLYGON, resizing the graph will not distort the text.

SYMBOL

Specifies whether to use the device’s hardware symbol-drawing capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: device dependent

Restriction: not supported by Java or ActiveX

See also: SYMBOLS

Syntax
GOPTIONS: SYMBOL | NOSYMBOL

GDEVICE: SYMBOL=Y | N

SYMBOL
SYMBOL=Y

causes SAS/GRAPH to use the built-in symbol-drawing capability of the device, if
available. A blank Symbol field in the Parameters window is the same as
SYMBOL=Y.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOSYMBOL
SYMBOL=N

causes SAS/GRAPH to draw the symbols using software fonts.

SYMBOLS

Specifies which symbols can be generated by hardware.

Used in: GDEVICE procedure; GDEVICE Parameters window

Default: device dependent

See also: “SYMBOL Statement” on page 183

Syntax
SYMBOLS=’hardware-symbols-hex-string’X

Graphics Options and Device Parameters Dictionary TARGETDEVICE 355

hardware-symbols-hex-string
is a hexadecimal string that is 16 characters long and must be completely filled. This
table shows which bit position (left-to-right) within the hexadecimal string controls
each hardware symbol.

For example, if you want the driver to do only the PLUS and X symbols in
hardware, the first and second bits of the first byte of the hexadecimal string should
be turned on, which would correspond to a value of ’C000000000000000’X (’C0’X is
equivalent to ’1 1 0 0 0 0 0 0’ in binary).

Details
These are not the only symbols that can be generated for graphics output but are the
symbols that can be drawn by the hardware. SAS/GRAPH can draw other symbols.

Note: Not all devices are capable of drawing every symbol. If a particular hardware
symbol is not available or not to be used (as indicated by the value of SYMBOLS), the
symbol is generated by the software. If the value of the SYMBOL device parameter in
the device entry is N or the NOSYMBOL graphics option is used, the value of
SYMBOLS is ignored. �

TARGETDEVICE

Displays the output as it would appear on a different device. Also, specifies the device driver for
the PRINT command.

356 TRAILER Chapter 8

Alias: TARGET
Used in: GOPTIONS statement
Restriction: not supported by Java or ActiveX

Syntax
TARGETDEVICE=target-device-entry

target-device-entry
specifies the name of a device entry in a catalog.

Details
Use TARGETDEVICE= to specify a device driver when you want to:

� preview graphics output on your monitor as it would appear on a different output
device. For details, see “Previewing Output” on page 52.

� print output from the Graph window or the Graphics Editor window with the
PRINT command. For details, see “Printing Graphics Output” on page 51.

� specify a device driver for graphics output created by the ODS HTML statement.

TRAILER

Specifies the command that creates TRAILER records for the Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers
See also: TRAILERFILE

Syntax
TRAILER=’command’

command
specifies a command that runs a user-written program that creates the TRAILER
file. Command is a string up to 40 characters long.

Details
For information about Metagraphics drivers, contact Technical Support.

TRAILERFILE

Specifies the fileref of the file from which the Metagraphics driver reads TRAILER records.

Used in: GDEVICE procedure GDEVICE Metagraphics window

Graphics Options and Device Parameters Dictionary TRANTAB 357

Restriction: Used only with user-supplied Metagraphics drivers

See also: TRAILER

Syntax
TRAILERFILE=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must have been
previously assigned with a FILENAME statement or a host command before running
the Metagraphics driver. See “FILENAME Statement” on page 28 for additional
information on the FILENAME statement.

Details
For information about Metagraphics drivers, contact Technical Support.

TRANSPARENCY

Specifies whether the background of the image should appear to be transparent when the image is
displayed in the browser.

Used in: GOPTIONS statement

Default: NOTRANSPARENCY

Restriction: GIF series of drivers only

Syntax
TRANSPARENCY | NOTRANSPARENCY

Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 245

Details
When the image is displayed and TRANSPARENCY is in effect, the browser’s
background color replaces the driver’s background color, causing the image to appear
transparent.

TRANTAB

Selects a translate table for your system that performs ASCII-to-EBCDIC translation.

358 TYPE Chapter 8

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: host dependent
Restriction: not supported by Java or ActiveX

Syntax
TRANTAB=table | user-defined-table

table
specifies a translate table stored as a SAS/GRAPH catalog entry. Table can be one of
the following:

SASGTAB0 (default translate table for your operating environment)
GTABVTAM
GTABTCAM

user-defined-table
specifies the name of a user-created translate table.

Details
TRANTAB is set by the SAS Installation Representative and is needed when an
EBCDIC host sends data to an ASCII graphics device. See the SAS/GRAPH installation
instructions for details. You can also create your own translate table using the
TRANTAB procedure. For a description of the TRANTAB Procedure, see Base SAS
Procedures Guide.

TYPE

Specifies the type of output device to which graphics commands are sent.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device dependent

Syntax
TYPE=CAMERA | CRT | EXPORT | PLOTTER | PRINTER

CAMERA
specifies a film-recording device.

CRT
specifies a monitor or terminal.

EXPORT
identifies the list in which the device appears under SAS/ASSIST software. This is
used for drivers that produce output to be exported to other software applications,
such as CGM or HPGL.

Graphics Options and Device Parameters Dictionary USERINPUT 359

PLOTTER
specifies a pen plotter.

PRINTER
specifies a printer

Details
You should not modify this value for Institute-supplied device drivers.

UCC

Sets the user-defined control characters for the device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: device dependent; not supported by Java or ActiveX

Syntax
UCC=’control-characters-hex-string’X

control-characters-hex-string
is a hexadecimal string that can be up 32 bytes (64 characters) long. You only need
to specify up to the last non-zero byte; the remaining bytes will be set to zero.

Details
Not all devices support this feature, and the meaning of each byte of the string varies
from device to device.

UCC values for specific devices are listed in the SAS Help facility for SAS/GRAPH.
Typically the UCC byte position is indicated by a bracketed value. For example, UCC[2]
refers to the second byte of the string. Refer to the Help for the UCC device parameter
for details.

USERINPUT

Determines whether user input is enabled for the device.

Used in: GOPTIONS statement
Default: NOUSERINPUT

Restrictions: GIFANIM driver only; not supported by all browsers

Syntax
USERINPUT | NOUSERINPUT

360 VORIGIN Chapter 8

USERINPUT
enables user input

NOUSERINPUT
disables user input

Details
When user input is enabled, processing of the animation is suspended until a carriage
return, mouse click, or some other application-dependent event occurs. The user input
feature works with the delay time setting so that processing continues when user input
occurs or the delay time has elapsed, whichever comes first.

VORIGIN

Sets the vertical offset from the lower-left corner of the display area to the lower-left corner of the
graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Restriction: not supported by Java or ActiveX
See also: HORIGIN

Syntax
VORIGIN=vertical-offset <IN | CM | PT>

vertical-offset <IN | CM | PT>
must be a nonnegative number and may be followed by a unit specification, either IN
for inches (default), or CM for centimeters, or PT for points. If you do not specify
VORIGIN, a default offset is searched for in this order:

1 the bottom margin specification on an OPTIONS BOTTOMMARGIN setting
2 VORIGIN setting in the device catalog.

Details
The display area is defined by the XMAX and YMAX device parameters. By default, the
origin of the graphics output area is the lower-left corner of the display area; the
graphics output is offset from the lower-left corner of the display area by the values of
HORIGIN and VORIGIN. VORIGIN + VSIZE cannot exceed YMAX. See “About the
Graphics Output Area” on page 34 for details.

VPOS

Sets the number of rows in the graphics output area.

Graphics Options and Device Parameters Dictionary VSIZE 361

Used in: GOPTIONS statement
Default: device dependent: the value of the LROWS or PROWS device parameter
Restriction: not supported by Java or ActiveX
See also: HPOS, LROWS, PROWS

Syntax
VPOS=rows

rows
specifies the number of rows in the graphics output area, which is equivalent to the
number of hardware characters that can be displayed vertically. Specifying VPOS=0
causes the device driver to use the default hardware character cell height for the
device.

Details
The VPOS= graphics option overrides the values of the LROWS or PROWS device
parameters and temporarily sets the number of columns in the graphics output area.
VPOS= does not affect the height of the graphics output area but merely divides it into
rows. Therefore, you can use VPOS= to control cell height.

The values specified in the HPOS= and VPOS= graphics options determine the size
of a character cell for the graphics output area and consequently the size of many
graphics elements, such as hardware text. The larger the size of the HPOS= and
VPOS= values, the smaller the size of each character cell.

See “Procedure Output and the Graphics Output Area” on page 34 for more
information.

VSIZE

Sets the vertical size of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Restriction: partially supported by Java or ActiveX
See also: HSIZE, YMAX

Syntax
VSIZE=vertical-size <IN | CM | PT>

vertical-size <IN | CM | PT>
specifies the height of the graphics output area; vertical-size must be a positive
number and may be followed by a unit specification, either IN for inches (default), or
CM for centimeters, or PT for points. If you do not specify VSIZE=, a default size is
searched for in this order:

1 the vertical size is calculated as

362 V6COMP Chapter 8

YMAX − BOTTOMMARGIN − TOPMARGIN

Note that BOTTOMMARGIN and TOPMARGIN are used in the OPTIONS
statement.

2 VSIZE setting in the device catalog.

V6COMP

Allows programs that are run in the current version of SAS to run with selected Version 6 defaults.

Used in: GOPTIONS statement

Default: NOV6COMP

Restriction: partially supported by Java or ActiveX

Syntax
V6COMP | NOV6COMP

V6COMP
causes SAS/GRAPH programs to use these Version 6 behaviors:

� By default, patterns are hatched patterns, not solid, and the default outline
color matches the pattern color.

� By default, the GCHART and GPLOT procedures do not draw a frame around
the axis area.

NOV6COMP
causes SAS/GRAPH programs to use all the features of the current SAS version.

Details
V6COMP performs the necessary conversions so that, for selected defaults, you get the
same results in the current SAS version that you did in Version 6.

Note: V6COMP does not convert Version 6 catalogs to catalogs with the current SAS
catalog format. �

XMAX

Specifies the width of the addressable graphics display area; affects the horizontal resolution of
the device and the horizontal dimension of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: Ignored by default display drivers, universal printing drivers, Java, and
ActiveX

See also: HSIZE, PAPERSIZE, XPIXELS

Graphics Options and Device Parameters Dictionary XMAX 363

Syntax
XMAX=width <IN | CM | PT>

width
is a positive number that may be followed by a unit specification, either IN for inches
(default), or CM for centimeters, or PT for points. If you do not specify XMAX, a
default width is searched for in this order:

1 the width specification on an OPTIONS PAPERSIZE setting

2 XMAX in the device entry catalog.
If XMAX=0, default behavior is used. If both XMAX and PAPERSIZE have been

specified on GOPTIONS, the last request is used.

Details
Like the XPIXELS device parameter, XMAX controls the width of the display area, but
the width is in inches, centimeters, or points rather than pixels. Typically, you might
use XMAX to change the width of the display area for a hardcopy device.

SAS/GRAPH uses the value of XMAX in calculating the horizontal resolution of the
device:

x-resolution = XPIXELS / XMAX

However, changing XMAX does not necessarily change the resolution:

� If you use the GOPTIONS statement to change only the value of XMAX= and do
not change XPIXELS=, SAS/GRAPH retains the default resolution of the device
and recalculates XPIXELS, temporarily changing the width.

� If you specify values for both XMAX= and XPIXELS=, SAS/GRAPH recalculates
the resolution of the device using both of the specified values. The new resolution
may or may not be different. For example, both of these pairs of values produce
the same resolution, 300dpi:

XPIXELS=1500 and XMAX=5

XPIXELS=1800 and XMAX=6

XMAX also affects the value of HSIZE, which controls the horizontal dimension of
the graphics output area.

� If you change the value of XMAX and do not change HSIZE=, SAS/GRAPH
calculates a new value for HSIZE=, using this formula:

HSIZE = XMAX − margins

Note: The margins quantity, here, is not a device parameter. It represents the
value of the left margin plus the right margin. The left margin is the value of
HORIGIN. The right margin is whatever is left over when you subtract HSIZE
and HORIGIN from XMAX. The value of margins is always based on the original
XMAX and HSIZE values that are stored in the device entry. �

� If you specify values for both XMAX= and HSIZE=, SAS/GRAPH uses the specified
values plus the value of device parameter HORIGIN. Anything left over is added
to the right margin. For example, if XMAX=6IN and HSIZE=4IN and
HORIGIN=.5IN, the right margin will be 1.5in. If HSIZE= is larger than XMAX=,
HSIZE= is ignored.

364 XPIXELS Chapter 8

To permanently change the value of the XMAX device parameter in the device entry,
use the GDEVICE procedure. This can change the resolution.

To temporarily change the size of the display and the resolution of the device for the
current graph or for the duration of your SAS session, use XMAX= and XPIXELS= in
the GOPTIONS statement.

To reset the value of XMAX to the default, specify XMAX=0. To return to the default
resolution for the device, specify both XMAX=0 and XPIXELS=0.

See “Procedure Output and the Graphics Output Area” on page 34 for more
information.

XPIXELS

Specifies the width of the addressable display area in pixels and in conjunction with XMAX
determines the horizontal resolution for the device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Default: device dependent
See also: XMAX
Restriction: Ignored by default display drivers and universal printing drivers; partially
supported by Java or ActiveX

Syntax
XPIXELS=width-in-pixels

width-in-pixels
is a positive integer up to eight digits long (0...99999999).

Details
Like the XMAX device parameter, XPIXELS controls the width of the display area, but
the width is in pixels rather than inches, centimeters, or points. Typically, you might
use XPIXELS to change the width of the display area for an image format device.

Note: This option overrides the OutputWidth style attribute in the graph styles. For
more information on graph styles, refer to the TEMPLATE procedure documentation in
SAS Output Delivery System: User’s Guide. �

The value of XPIXELS is used in calculating the resolution of the device:

x-resolution = XPIXELS / XMAX

However, changing XPIXELS does not necessarily change the device resolution:
� If you use the GOPTIONS statement to change only the value of XPIXELS= and

do not change XMAX=, SAS/GRAPH retains the default resolution of the device
and recalculates XMAX, temporarily changing the width of the display. If HSIZE=
is also not specified, SAS/GRAPH uses the new XMAX value to calculate a new
HSIZE value, using this formula:

HSIZE = XMAX − margins

Graphics Options and Device Parameters Dictionary YMAX 365

Note: Margins are not device parameters, but represent the value of HORIGIN
(the left margin) plus the right margin. The right margin is whatever is left over
when you subtract HSIZE and HORIGIN from XMAX. The values of margins is
always based on the original XMAX and HSIZE values that are stored in the
device entry. �

If HSIZE= is specified and its value is larger than XMAX, HSIZE= is ignored.

� If you use the GDEVICE procedure to permanently change the value of the
XPIXELS device parameter in the device entry, SAS/GRAPH automatically
recalculates the resolution of the device is using the value of XMAX device
parameter.

� If you change the values of both XMAX= and XPIXELS=, SAS/GRAPH recalculates
the resolution of the device using both of the specified values.

Note: When SAS/GRAPH recalculates the resolution, the resolution does not
necessarily change. For example, both of these pairs of values produce the same
resolution, 300dpi:

XPIXELS=1500 and XMAX=5
XPIXELS=1800 and XMAX=6

�

To reset the value of XPIXELS to the default, specify XPIXELS=0. To return to the
default resolution for the device, specify both XPIXELS=0 and XMAX=0.

YMAX

Specifies the height of the addressable graphics display area; affects the vertical resolution of the
device and the vertical dimension of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: ignored by default display drivers and universal printing drivers; not
supported by Java or ActiveX

See also: PAPERSIZE, VSIZE, YPIXELS

Syntax
YMAX=height <IN | CM | PT>

height
is a positive number that may be followed by a unit specification, either IN for inches
(default), or CM for centimeters, or PT for points. If you do not specify YMAX, a
default height is searched for in this order:

1 the height specification on an OPTIONS PAPERSIZE setting

2 YMAX in the device entry catalog.
If YMAX=0, default behavior is used. If both YMAX and PAPERSIZE have been

specified on GOPTIONS, the last request is used.

366 YPIXELS Chapter 8

Details
See “XMAX” on page 362.

YPIXELS

Specifies the height of the addressable display area in pixels and in conjunction with YMAX
determines the horizontal resolution for the device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Default: device dependent
See also: YMAX
Restriction: ignored by default display drivers and universal printing drivers; partially
supported by Java or ActiveX

Syntax
YPIXELS=height-in-pixels

height-in-pixels
is a positive integer up to eight digits long (0...99999999).

Details
See “XPIXELS” on page 364.

Note: This option overrides the OutputHeight style attribute in the graph styles.
For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide. �

367

P A R T2

Bringing SAS/GRAPH Output to the Web

Chapter 9.Introducing SAS/GRAPH Output for the Web 369

Chapter 10.Creating Interactive Output for ActiveX 387

Chapter 11.Creating Interactive Output for Java 397

Chapter 12.Attributes and Parameters for Java and ActiveX 421

Chapter 13.Generating Static Graphics 439

Chapter 14.Generating Web Animation with GIFANIM 457

Chapter 15.Generating Interactive Metagraphics Output 469

Chapter 16.Managing Web Output with ODS 487

Chapter 17.Generating Web Output with the Annotate Facility 499

Chapter 18.Creating Interactive Treeview Diagrams 503

Chapter 19.Creating Interactive Constellation Diagrams 513

Chapter 20.Creating Critical Success Factor Diagrams 527

Chapter 21.Macro Arguments for the DS2CONST, DS2TREE, DS2CSF, and
META2HTM Macros 535

Chapter 22.Enhancing Web Output 567

Chapter 23.Troubleshooting Web Output 579

368

369

C H A P T E R

9
Introducing SAS/GRAPH Output
for the Web

Which Device Driver or Macro Do I Use? 369

Types of Web Presentations Available 370
Presentations That Use The ActiveX Control 370

Presentations That Use Java Applets 371

Graph, Map, and Contour Applets 372
Treeview Applet 372

Constellation Applet 373

Rangeview Applet 374
Metaview Applet 375

Presentations that Use Static Images 376
ACTXIMG Presentations 377

JAVAIMG Presentations 377

GIF, JPEG, and PNG Presentations 377
Animated GIF Presentations 378

Selecting a Type of Web Presentation 378

How is the graphical output produced? 378
What features are supported for each type of presentation? 379

What does your audience need to view the presentation? 380
Recommendations 381

Generating Web Presentations 382

Using ODS with a SAS/GRAPH Procedure 382
Using DS2TREE, DS2CONST, and DS2CSF Macros 383

Using META2HTM with a SAS/GRAPH Procedure 384

Changing the Location of Online Help for Java and ActiveX 385

Which Device Driver or Macro Do I Use?
Generating a web presentation that includes graphics requires that you use a device

driver or macro that generates web output. Determining which device driver or macro
to use requires that you consider issues such as

� What type of graph do I need?
� What procedure, if any, generates the graph that I need?
� In which operating environments do I need to generate the presentation?
� In which operating environments do I need to deliver the presentation?
� Will my audience need to install additional software to view the presentation?
� What interactive features do I want in my presentation?

The following topics describe the types of web presentations that are available, help
you decide which type you need, and tell you how to generate the presentation and

370 Types of Web Presentations Available Chapter 9

deliver it to your audience. The primary purpose of these topics is to help you
determine which device driver or macro you need to use.

� “Types of Web Presentations Available” on page 370 describes each type of web
presentation, their features, and which device driver or macro you need to use to
create that type of presentation.

� “Selecting a Type of Web Presentation” on page 378 guides you through the
process of determining which device driver or macro to use. If the type of
presentation you need to generate can be generated with multiple device drivers,
then additional factors determine which driver to use.

� “Generating Web Presentations” on page 382 summarizes the methods by which
each type of web presentation is created.

Types of Web Presentations Available

Delivering information via the web frequently requires a web presentation that
includes not only tables but graphics as well. SAS/GRAPH provides three basic ways to
display presentations that include graphics. Presentations can be displayed

by an ActiveX control
The ActiveX control displays the output of SAS/GRAPH procedures. It enables
such features as pop-up data tips, drill-down links, and interactive menus. The
ActiveX control also enables you to use Output Delivery System (ODS) styles. For
more information, see “Presentations That Use The ActiveX Control” on page 370.

by a Java applet
Java applets display the output of SAS/GRAPH procedures and macros.
Depending on the applet, it may enable such features as data tips, drill-down
links, or interactive features available through a pop-up menu. For more
information, see “Presentations That Use Java Applets” on page 371.

as a static graph
You can also generate graphs that do not have any interactive features but do
have interactive capabilities such as data tips or drill-down links. Static graphs
can be generated as GIF, JPEG, or PNG files. For more information, see
“Presentations that Use Static Images” on page 376.

For additional information about SAS/GRAPH output for the Web, including samples,
refer to

http://support.sas.com/rnd/datavisualization

Presentations That Use The ActiveX Control
The SAS/GRAPH ActiveX control displays the output of SAS/GRAPH procedures and

enables extensive interactive features via a pop-up menu. The pop-up menus enable
you to rotate, and zoom, and to control the properties of graphs such as its colors,
legends, and axes.

You can use ODS styles with presentations created for the ActiveX control, and you
can also enable pop-up data tips and drill-down links.

Display 9.1 on page 371 shows output from the GCHART procedure as displayed by
the ActiveX control. (You can open the pop-up menu for the ActiveX control by
positioning your cursor over the graph and pressing the right mouse button.)

Introducing SAS/GRAPH Output for the Web Presentations That Use Java Applets 371

Display 9.1 Sample ActiveX Presentation

The ActiveX control can be viewed only in the Windows operating environment with
Microsoft’s Internet Explorer on a PC with the ActiveX control installed.

The ActiveX control displays output from the G3D, GAREABAR, GBARLINE,
GCHART, GCONTOUR, GPLOT, GMAP, and GRADAR procedures.

To create a graph to be displayed by ActiveX, specify DEVICE=ACTIVEX on your
GOPTIONS statement. See “Using ODS with a SAS/GRAPH Procedure” on page 382
and Chapter 10, “Creating Interactive Output for ActiveX,” on page 387 for more
information.

Presentations That Use Java Applets
If you want to deliver your presentation to more operating environments than just

Windows, you can use one of the following Java applets:

Graph, Map, and Contour applets
These applets display the output of SAS/GRAPH procedures and offer many
interactive features. The Graph and Map applets also enable you to use ODS
styles.

Treeview, Constellation, and Rangeview applets
These applets generate hierarchical treeview diagrams, constellation diagrams,
and critical success factor diagrams, respectively, and are generated with the
DS2TREE, DS2CONST, and DS2CSF macros.

Metaview applet
The Metaview applet displays the output of SAS/GRAPH procedures, and it
enables pop-up data tips, drill-down links, and zooming.

372 Presentations That Use Java Applets Chapter 9

Graph, Map, and Contour Applets
Like the ActiveX control, the Graph, Map, and Contour applets display the output of

SAS/GRAPH procedures and enable extensive interactive features. The Graph and Map
applets support ODS styles. The Graph, Map, and Contour applets enable data tips and
drill-down links, and they provide pop-up menus which enable the user to pan, rotate,
and zoom the graph, and to change properties such as the graph’s colors, legends, and
axes.

Display 9.2 on page 372 shows PROC GCHART output displayed by the Java Graph
applet with a Properties dialog box. You can open the pop-up menu for these applets by
positioning your cursor over the graph and pressing the right mouse button.

Display 9.2 Sample Java Presentation

These applets display the output of the following SAS/GRAPH procedures:

Graph Applet G3D Scatter Plots, GCHART, GPLOT

Contour Applet G3D Surface Plots, GCONTOUR

Map Applet GMAP

To create a graph to be displayed by one of these applets, specify DEVICE=JAVA on
your GOPTIONS statement. For more information, see “Using ODS with a SAS/
GRAPH Procedure” on page 382 and Chapter 11, “Creating Interactive Output for
Java,” on page 397.

Treeview Applet
This applet displays a treeview diagram, which shows the parent-child relationships

in a tree structure. In a treeview diagram, each child node has exactly one parent, and
each parent node has zero or more children. In other words, the relationships in a
treeview diagram are one-to-many. A treeview diagram is ideal for displaying such data
as organizational charts or the hierarchical relationships of the pages of a Web site.

Introducing SAS/GRAPH Output for the Web Presentations That Use Java Applets 373

By default, the Treeview applet zooms in on the portion of the tree that is in the
center of the display, as if you were looking through a fish-eye lens. Nodes in the center
of the display are spread apart and shown with more detail, including node labels.
Nodes near the periphery of the display are compressed and shown with less detail.
Initially, the Treeview applet places the root node in the center of the display. You can
click and drag the diagram to change the portion of the diagram that is in the center of
the display.

The Treeview applet supports a pop-up menu that enables you to search for nodes,
select or hide subtrees, and so on. You can add hotspots that link to Web pages when
the user clicks on a node.

For example, Display 9.3 on page 373 shows a treeview diagram (with the pop-up
menu opened) displaying the structure of an XML Document Type Definition.

To generate a treeview diagram, use the DS2TREE macro. For more information, see
Chapter 18, “Creating Interactive Treeview Diagrams,” on page 503.

Display 9.3 Sample Treeview Diagram

Constellation Applet
The Constellation applet displays a general node-link diagram. Each node can be

linked to one or more other nodes. Unlike the Treeview applet, the Constellation applet
does not require a hierarchical relationship between the nodes. (Although it can be
used to display hierarchical relationships, the Constellation applet does not
automatically place the root node at the center of the display.)

The Constellation applet supports node and link properties, which determine the
color and size of the nodes and the color and thickness of the link joining the nodes.
These properties indicate the relative strength of the relationship between the nodes.

Like the Treeview applet, by default, the Constellation applet zooms in on the portion
of the diagram that is in the center of the display, as if you were looking through a

374 Presentations That Use Java Applets Chapter 9

fish-eye lens. Nodes in the center of the display are spread apart and shown with more
detail, including node labels. Nodes near the periphery of the display are compressed
and shown with less detail. You can click and drag the diagram to change the portion of
the diagram that is in the center of the display.

The Constellation applet has a pop-up menu that supports several functions such as
highlighting specific links and searching for specific nodes. You can add hotspots that
link to Web pages when the user clicks on a node.

Display 9.4 on page 374 shows a constellation diagram (with the Mouse Help menu
displayed).

To generate the Constellation applet, use the DS2CONST macro. For more
information, see Chapter 19, “Creating Interactive Constellation Diagrams,” on page
513.

Display 9.4 Sample Constellation Diagram

Rangeview Applet
The Rangeview applet displays critical success factor diagrams. Critical success

factor diagrams display the value of a variable in a SAS data set in relation to a range
of values. You can generate the Rangeview applet with the DS2CSF macro. Display 9.5
on page 375 shows two forms of output from the macro—one an analog dial and the
other a digital display.

Introducing SAS/GRAPH Output for the Web Presentations That Use Java Applets 375

Display 9.5 Sample Rangeview Applet

The DS2CSF macro generates an HTML file that invokes the Rangeview applet, and
passes to the applet the information to be displayed on the dial.

For more information, see Chapter 20, “Creating Critical Success Factor Diagrams,”
on page 527.

Metaview Applet
The Metaview applet displays the output of SAS/GRAPH procedures and enables

interactive features that are not available with static images such as GIFs or JPEGs. It
enables zooming and scrolling and supports pop-up menus with customized
user-selectable links. When you generate a graph with the Metaview applet, you can
specify background colors and text fonts, and enable drill-down links to HTML files,
metagraphics files, and sets of metacodes.

Display 9.6 on page 376 shows the slider control on the bottom-left that the
Metaview applet provides to enable a user to select which diagram to display.

376 Presentations that Use Static Images Chapter 9

Display 9.6 Sample Metaview Applet

The Metaview applet displays output from the G3D, GANNO, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GPRINT, GRADAR, GREPLAY, and GSLIDE procedures.
To create a graph to be displayed by the Metaview applet, specify DEVICE=JAVAMETA
on your GOPTIONS statement.

For additional information, see Chapter 15, “Generating Interactive Metagraphics
Output,” on page 469.

Presentations that Use Static Images
If you do not need any interactive features in your presentations, then you can

specify one of the following device drivers to generate a presentation that uses a GIF,
JPEG, or PNG file.

ACTXIMG or JAVAIMG
create a web presentation that uses a static PNG image instead of an interactive
applet. The images are identical to the images generated with the ACTIVEX and
JAVA device drivers.

GIF, JPEG, or PNG
create web presentations that use static GIF, JPEG, or PNG images. These images
are identical to the images generated by the server. (See “Resolving Differences
Between Client and Server Graphs” on page 584.)

GIFANIM
generates a series of images that are displayed in sequence from a single GIF file.

To generate a web presentation that uses one of these drivers, specify the driver name
with the DEVICE= option in your GOPTIONS statement. All of these device drivers
generate output from SAS/GRAPH procedures.

For more information, refer to the following topics:
� “ACTXIMG Presentations” on page 377
� “JAVAIMG Presentations” on page 377

Introducing SAS/GRAPH Output for the Web Presentations that Use Static Images 377

� “GIF, JPEG, and PNG Presentations” on page 377

� “Animated GIF Presentations” on page 378

� “Using ODS with a SAS/GRAPH Procedure” on page 382

� Chapter 13, “Generating Static Graphics,” on page 439.

ACTXIMG Presentations
You can use ODS and the ACTXIMG device driver to create a presentation that uses

a PNG file that is identical in appearance to the image produced with the ACTIVEX
device driver.

A presentation generated with the ACTXIMG driver supports data tips and
drill-down links for GCHART, GBARLINE, and GPLOT (except for high-low plots)
output. You can also use ODS styles with the ACTXIMG driver.

To render your output (create the PNG file), the ActiveX control must be installed on
the PC where your SAS session is running. Because of this requirement, ACTXIMG
presentations can be generated only on PCs. When you specify the ACTXIMG device
driver, the output is rendered when your web presentation is generated, and the user
does not need to have the ActiveX control installed to view it.

Note: The ACTXIMG device cannot be used with the ODS PDF, PCL, PS, or
PRINTER destinations on 64-bit machines. SAS uses the JAVAIMG device instead. �

You can use ODS and the ACTXIMG device driver to generate presentations with the
same procedures that are supported by the ACTIVEX driver: G3D, GAREABAR,
GBARLINE, GCHART, GCONTOUR, GPLOT, GMAP, and GRADAR.

JAVAIMG Presentations
You can use ODS and the JAVAIMG device driver to create a presentation that uses

a PNG file that is identical in appearance to the image produced with the JAVA device
driver. You can use ODS styles to change the appearance of presentations generated
with the JAVAIMG device driver.

Note: The Contour applet does not support ODS styles. �

The appropriate Java applet (Graph, Map, or Contour applet) is required to render
your output (create the PNG file). The appropriate Java applet must be installed on the
machine where your SAS session is running. When you specify the JAVAIMG device
driver, the output is rendered when your web presentation is generated, and the user
does not need to have any Java applet files installed to view it.

You can use ODS and the JAVAIMG device driver to generate presentations with the
same procedures that are supported by the JAVA driver: G3D, GCHART, GCONTOUR,
GPLOT, and GMAP.

GIF, JPEG, and PNG Presentations
Web presentations generated with the GIF, JPEG, or PNG device drivers use image

files that are identical in appearance to the server (GRSEG) images. (See “Resolving
Differences Between Client and Server Graphs” on page 584.) You can add pop-up data
tips that are displayed when the cursor is over a portion of the image, and you can add
hotspots that link to other Web pages.

You can use ODS and the GIF, JPEG, or PNG device drivers to generate
presentations to display output from the G3D, GANNO, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GPRINT, GRADAR, GREPLAY, and GSLIDE procedures.

378 Selecting a Type of Web Presentation Chapter 9

To create a web presentation that uses an image identical to the server image,
specify DEVICE=GIF, JPEG, or PNG in your GOPTIONS statement.

Animated GIF Presentations
An animated presentation is a series of static images that are displayed

automatically one after the other. Specify DEVICE=GIFANIM in your GOPTIONS
statement to generate a web presentation that displays a series of images from a single
GIF file. You can control the rate at which the successive images are presented.

You can generate animated GIF presentations from the G3D, GANNO, GBARLINE,
GCHART, GCONTOUR, GPLOT, GMAP, GPRINT, GRADAR, GREPLAY, and GSLIDE
procedures.

For more information, see Chapter 14, “Generating Web Animation with GIFANIM,”
on page 457.

Selecting a Type of Web Presentation
The type of web presentation that you choose to generate depends on several factors

such as the type of graphs you need, the style of your presentation, the operating
environment in which you want to generate your presentation, and the operating
environments in which you plan to deliver your web presentation.

To determine which type of web presentation you need, consider the following
questions:

How is your graphical output produced?
The structure of your data and the information that you need to generate from
this data determine the type of graph that you need to produce. The type of graph
that you need determines which procedure or macro you need to use to produce
your graph. Which procedure or macro, if any, you need to use may determine
which device drivers you can use.

What features are supported for each type of presentation?
Each type of web presentation enables different features such as data tips,
drill-down links, and pop-up menus. Whether you need extensive interactive
capabilities or just data tips can determine which device driver you need to use.
Also, some device drivers support ODS styles, which may be important in your
presentation.

What do you need to deliver the presentation?
Which device or macro you use to generate your web presentation determines
whether the presentation can be viewed on multiple platforms and whether it
requires any software except a supported browser.

How is the graphical output produced?
Which type of graph you need to produce is determined by the structure of your data

and the information that you need to convey to your audience. For example, treeview
diagrams and bar charts convey very different types of information. If you need to
create a web presentation that includes graphics that are produced by one of the
SAS/GRAPH procedures, then you need to use one of the device drivers that supports
that procedure. Assuming that you know which type of graph you need, then you can
determine which device drivers or macros you can use.

Table 9.1 on page 379 lists the procedures that are supported by each device driver
and the diagrams that are produced by each macro.

Introducing SAS/GRAPH Output for the Web What features are supported for each type of presentation? 379

Note: To generate a web presentation using the ACTXIMG device driver, the
ActiveX control must be installed on the PC on which your SAS session is running. �

Table 9.1 How is the graphical output produced?

Driver or Macro How Output is Produced

ACTXIMG G3D, GAREABAR, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GRADAR

JAVAIMG G3D, GCHART, GCONTOUR, GPLOT, GMAP

ACTIVEX G3D, GAREABAR, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GRADAR

JAVA G3D, GCHART, GCONTOUR, GMAP, GPLOT

GIF, JPEG, PNG G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GPRINT, GRADAR, GREPLAY,
GSLIDE

GIFANIM G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GPRINT, GRADAR, GREPLAY,
GSLIDE

JAVAMETA G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GPRINT, GRADAR, GREPLAY,
GSLIDE

DS2TREE, DS2CONST, DS2CSF These macros create treeview diagrams, constellation
diagrams, or critical success factor diagrams,
respectively, without involving a SAS/GRAPH
procedure.

For example, if you need a radar chart, you can use the ACTXIMG, ACTIVEX, or
JAVAMETA driver (as well as other drivers). Which device driver you choose depends
on what additional features (such as interactive capabilities) you need and on how you
plan to deliver your web presentation.

If you need to graph hierarchical relationships, consider using the DS2TREE macro
to generate a treeview diagram. If you need to show relationships that are not
hierarchical or if you need to show the relative affinity of the relationships, then
consider using the DS2CONST macro to generate a constellation diagram. If you need a
critical success factor diagram, then you will need to use the DS2CSF macro.

What features are supported for each type of presentation?
The following table shows, for each type of Web presentation, what features are

available to a viewer when viewing the presentation in a browser. You can see from the
table that presentations that involve a Web executable, such as Java applets or the
ActiveX control, enable interactive manipulation via pop-up menus. Presentations that
use GIF, JPEG, and PNG files provide static images with no interactivity besides
pop-up data tips and drill-down links.

After you have determined which device drivers or macros you can use, you then
need to determine which extra features you need in your web presentation. For
example, you may not want or need to give your audience the ability to subset the
graph’s data or change the graph from a bar chart to a pie chart.

380 What does your audience need to view the presentation? Chapter 9

The following table shows which features are supported for each device driver or
macro.

Table 9.2 What features are supported for each type of presentation?

Driver or Macro Features Supported

ACTXIMG ODS styles, pop-up data tips and drill-down links (for
selected output), static graphics with no interactivity

JAVAIMG ODS styles, static graphics with no interactivity

ACTIVEX ODS styles, pop-up data tips, drill-down links,
interactivity via pop-up menus

JAVA ODS styles, pop-up data tips, drill-down links,
interactivity via pop-up menus

GIF, JPEG, PNG Pop-up data tips, drill-down links, static graphics with
no interactivity

GIFANIM Slide show of static images with no interactivity

JAVAMETA Pop-up data tips, drill-down links, some interactivity
such as zooming and slide shows

DS2TREE, DS2CONST Pop-up data tips, drill-down links, interactivity via
pop-up menus

DS2CSF Single drill-down link for the graph

Data tips and drill-down links for ACTXIMG are supported for output from
GCHART, GPLOT (except for high-low plots), GBARLINE, and GRADAR.

The pop-up menus available with the JAVA and ACTIVEX device drivers typically
enable your audience to change many aspects of the graph such as changing chart
types, subsetting data, changing the variable used as the response variable, turning
data tips on or off, or changing the colors used the graph. Static graphs do not offer any
of these interactive features. Web presentations that use the JAVAMETA driver may
enable a zoom control, and page selection and slide show controls for presentations that
include multiple images.

What does your audience need to view the presentation?
To view your web presentation, your audience must view the presentation through

one of the supported browsers. For a list of supported browsers, refer to the SAS Web
site Install Center at

http://support.sas.com/documentation/installcenter

Select the System Requirements link for the appropriate operating system environment
and search for the section on viewing HTML pages created for Java and ActiveX.

It is recommended that graphs be displayed on a device that has at least 16-bit color
(that is, more than 8-bit, 256 colors).

Depending on how the presentation is generated, there may be additional
requirements. The following table shows, for each type of Web presentation, what is
required on a viewer’s machine besides a supported browser.

Introducing SAS/GRAPH Output for the Web Recommendations 381

Table 9.3 What does your audience need to view the presentation besides the
browser?

Driver or Macro Additional Requirements

ACTXIMG None

JAVAIMG None

ACTIVEX The presentation must be viewed on a Windows system
with the SAS ActiveX control installed locally.

JAVA The Java applet files must be installed locally or on a
server accessible by the client machine, and Java 1.4
plug-in must be installed on each client machine. On
Windows systems, the user is prompted to install the
plug-in if it is not already installed. On other systems,
the plug-in can be installed from the Sun Microsystems
site (http://www.sun.com) or from one of the SAS Third
Party Software Components CDs.

GIF, JPEG, PNG None

GIFANIM None

JAVAMETA The Java applet files must be installed locally or on a
server accessible by the client machine. The Java
plug-in is not required on the client machine; the
Metaview applet works with the Java Virtual Machine
that is built into the supported browsers.

DS2TREE, DS2CONST, DS2CSF The Java applet files must be installed locally or on a
server accessible by the client machine, and Java 1.4
plug-in must be installed on each client machine. On
Windows systems, the user is prompted to install the
plug-in if it is not already installed. On other systems,
the plug-in can be installed from the Sun Microsystems
site (http://www.sun.com) or from one of the SAS Third
Party Software Components CDs.

Presentations generated with the ACTIVEX driver can be viewed only on Windows
PCs, and the ActiveX control must be installed locally on each PC.

Presentations generated with the JAVAMETA driver can be viewed in any supported
browser and offer limited interactivity, but do not require that a Java plug-in be
installed.

Recommendations
If you will be delivering your presentation on Windows only, you want to use ODS

styles, and you want your audience to be able to interact with the graph, then you can
use the ACTIVEX device driver. If you will be delivering your presentation to other
operating environments, but you still want to use ODS styles and extensive interactive
features, then you can use the JAVA device driver. However, the ACTIVEX and JAVA
device drivers require that your audience install the ActiveX control and Java plug-in,
respectively.

If you want the look of the ACTIVEX or JAVA driver, but do not need the interactive
capability or do not want to require that your audience install the ActiveX control or
the Java plug-in, then use the ACTXIMG or JAVAIMG device drivers.

382 Generating Web Presentations Chapter 9

If you need data tips, drill-down capability, limited interactivity such as zoom, and
want your graphs to look like the GRSEG produced by the server, but you do not want
to require that your audience install the Java plug-in or the ActiveX control, then you
can use the JAVAMETA device driver.

If you need only data tips and drill-down capability and prefer that your graphs look
like the GRSEG produced by the server (see “Resolving Differences Between Client and
Server Graphs” on page 584), then you can use the GIF, JPEG, or PNG device driver.

Generating Web Presentations
As shown in Figure 9.1 on page 382, there are three basic methods in which you can

generate a web presentation:
� using ODS with a SAS/GRAPH procedure.
� using the META2HTM macro with a SAS/GRAPH procedure.
� using the DS2TREE, DS2CONST, or DS2CSF macro.

Figure 9.1 Methods for Creating Web Presentations

SAS Data Set

SAS/GRAPH Procedures

ODS META2HTM DS2TREE
DS2CONST

DS2CSF

Using ODS with a SAS/GRAPH Procedure
The recommended method for getting procedure output on the Web is with ODS. By

using ODS in a program with one or more SAS/GRAPH procedures, you can create an
HTML file and its associated SAS/GRAPH (or tabular) output.

At a minimum, to use ODS with SAS/GRAPH you must do the following:
1 Use a GOPTIONS statement to specify a device driver with the

DEVICE=device-driver option, where device-driver is one of the following:
ACTIVEX or ACTXIMG
JAVA or JAVAIMG
GIF, JPEG, or PNG
GIFANIM
JAVAMETA

Note: When you specify DEVICE=JAVAIMG on z/OS, you must specify the SAS
system option FILESYSTEM=HFS. HFS file space is needed to run the Java JRE
1.4. �

2 Close the ODS LISTING destination. If you do not close this destination,
SAS/GRAPH creates a duplicate copy of your graph in your current directory.

3 Open an HTML output file using an ODS statement such as ODS HTML or ODS
MARKUP. At a minimum, you must use the FILE= (alias BODY=) option to

Introducing SAS/GRAPH Output for the Web Using DS2TREE, DS2CONST, and DS2CSF Macros 383

specify a body file. For device drivers that generate image output files, use the
PATH= option to ensure that all output files are stored in the same location.

4 Run a graphics procedure. Be sure to include RUN and QUIT statements.
5 Close the HTML destination.
6 Open the LISTING destination if needed.

Figure 9.2 on page 383 shows the basic structure of a SAS program for generating
Web output with ODS and a SAS/GRAPH procedure.

Figure 9.2 Using ODS with SAS/GRAPH Procedures

ODS HTML CLOSE

SAS procedure

ODS HTML

DATA step

GOPTIONS goptions device=device-driver ;

DATA mydata;
;

ods listing close;
ods html
 file="output-file.htm "
 path="url-or-fileref "
 gpath="file-or-url-or-fileref "
 style=banker;

proc gchart data=mydata;
 vbar x / sumvar=y;
run;
quit;

ods html close;
ods listing

When you use ODS, you can use ODS styles to control the appearance of a Web
presentation created from SAS procedures with the following device drivers: ACTIVEX,
JAVA, ACTXIMG, and JAVAIMG. For more information on ODS styles, see “Using ODS
Styles” on page 488.

Using DS2TREE, DS2CONST, and DS2CSF Macros
The following macros generate a Web presentation from a SAS data set:
� DS2TREE generates treeview diagrams
� DS2CONST generates constellation diagrams
� DS2CSF generates critical success factor diagrams.

To use these macros, simply define your data, then call one of these macros using the
appropriate options. For these macros, you do not use ODS or call a SAS/GRAPH
procedure. For additional information, refer to Chapter 18, “Creating Interactive

384 Using META2HTM with a SAS/GRAPH Procedure Chapter 9

Treeview Diagrams,” on page 503, Chapter 19, “Creating Interactive Constellation
Diagrams,” on page 513, and Chapter 20, “Creating Critical Success Factor Diagrams,”
on page 527.

Using META2HTM with a SAS/GRAPH Procedure
The META2HTM macro offers an alternative to ODS for creating a Web presentation

from a SAS/GRAPH procedure and the JAVAMETA device driver. At a minimum, to use
the META2HTM macro you must do the following:

1 Use a GOPTIONS statement to specify the JAVAMETA device driver.

2 Define the fileref _WEBOUT. When you specify DEVICE=JAVAMETA, the output
of a SAS/GRAPH procedure is directed to the file specified by _WEBOUT.

filename _webout "output-file.htm";

3 Call the META2HTM macro with the appropriate options to capture the
metagraphics information.

4 Run a graphics procedure.

5 Call the META2HTM macro with the appropriate options to finish capturing the
metagraphics information.

Figure 9.3 on page 384 shows the structure of a simple program that generate a
Javameta applet to display the output of the GCHART procedure.

Figure 9.3 Using the META2HTM Macro

META2HTM off

SAS procedure

META2HTML on

DATA step

GOPTIONS goptions device=javameta;

DATA mydata;
;

%META2HTM (capture= on,
 htmlref=_webout,
 openmode=replace,
 archive=metafile.zip);

proc gchart data=mydata;
 vbar x / sumvar=y;
run;
quit;

%META2HTM (capture=off,
 htmlref=_webout,
 openmode=append);

FILENAME FILENAME _webout "output_file.htm";

Introducing SAS/GRAPH Output for the Web Changing the Location of Online Help for Java and ActiveX 385

The META2HTM macro directs the procedure to create its output as metacodes, and
generates an HTML page that invokes the Metaview Applet to display the metacodes.
For more information, see “Using the META2HTM Macro” on page 471.

Changing the Location of Online Help for Java and ActiveX

Online help is available for the ActiveX control and the Java applets. The online help
explains the use of the interactive features that are available for each control or applet.
To display the online help, position your cursor over the graph, press the right mouse
button to open the pop-up menu, and select Help.

By default, the pop-up menus access help files on the SAS Website. If your audience
does not have Internet access or if you want to customize the help files for your specific
needs, you may want to change the location that is accessed by the Help selection. For
the ActiveX control and the Graph, Map, and Contour applets, you can download the
help files to a local machine and use the HELPLOCATION parameter to point to these
local files. For the Constellation and Treeview applets, there is currently no way to
change the help location.

You can copy the help files for the ActiveX Control from the SAS Client-Side
Components CD Volume 1. The help files for the Java applets are on the SAS Mid-Tier
Components CD. You can download and modify these files as needed for your audience.
Save the files in a location that is accessible to your audience. Then, in your SAS
program, specify the applet parameter HELPLOCATION to point to the location of the
help. For example:

ods html file="ncpop.htm"
parameters=("HELPLOCATION"="http://www.b.com/help/");

For more information on specifying applet parameters, see “Specifying Applet
Parameters Using the ODS PARAMETERS= Statement” on page 477.

386

387

C H A P T E R

10
Creating Interactive Output for
ActiveX

Overview 387

When to Use the ACTIVEX Device Driver 388
Installing the ActiveX Control 389

Manually Installing the ActiveX Control 389

Configuring Your Program to Prompt Users to Install the ActiveX Control 389
Prompting for Installation of the ActiveX Control 390

Uninstalling the ActiveX Control 390

Generating Output for ActiveX 391
About Languages and Special Fonts in ActiveX 392

Configuring Drill-Down Links with ACTIVEX 392
ActiveX Examples 393

Embedding ActiveX Graphs in Word Files 393

Generating an Interactive Contour Plot in ActiveX 394
Creating Graphs Interactively 395

Creating Graphs 395

Inserting the ActiveX Control into Microsoft Word Documents 395

Overview

In the Windows operating environment, in the Internet Explorer Web browser, the
SAS/GRAPH Control for ActiveX provides a high degree of graphical interactivity.
Interactive features include the ability to change graph types (a two-dimensional bar
chart can be changed to a three-dimensional bar chart, for example), display data
values at the point of the cursor, rotate and zoom, reassign variable roles, and modify
axes, legends, colors, and text fonts.

If your Web audience has SAS installed locally, the control runs automatically when
the HTML output file is displayed on a Web browser that uses ActiveX device drivers.
Members of your Web audience that do not have the SAS system installed locally, and
who have not already installed the ActiveX Control, can be prompted to install the
control at display time, as described in “Installing the ActiveX Control” on page 389.

You can enhance your ActiveX presentations by

� adding drill-down links (see “Configuring Drill-Down Links with ACTIVEX” on
page 392)

� specifying graph styles in ODS (see “Using ODS Styles” on page 488)

� configuring interactive features (see “Specifying Parameters and Attributes for
Java and ActiveX” on page 421)

� enhancing HTML output“Overview of ODS Enhancements for Web Output” on
page 487.

388 When to Use the ACTIVEX Device Driver Chapter 10

In addition to HTML output, you can use the ActiveX Control to display interactive
graphs in Microsoft Word, in Object Linked Embedded (OLE) documents, and in
applications written in Visual Basic, C++, and JavaScript.

The following table lists the procedures and statements whose output can be
displayed in the SAS/GRAPH Control for ActiveX.

Table 10.1 Procedures and Statements that Generate Output for the ActiveX
Control

Procedure Statements

GCHART HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D,
DONUT

GPLOT PLOT, BUBBLE, BUBBLE2, PLOT2

GCONTOUR PLOT

GMAP CHORO, BLOCK, PRISM

G3D PLOT, SCATTER

GBARLINE BAR, PLOT

GAREABAR HBAR, HBAR3D, VBAR, VBAR3D

GRADAR CHART

Note: The ActiveX Control does not enable 8-bit grayscale images. Be sure to
specify 24-bit images for backgrounds and chart elements. �

Note: Note that using PROC GMAP to generate a highly detailed map might create
a large HTML output file, which might cause problems on certain Web browsers. If this
is the case, you can use PROC GREDUCE to remove some of the complexity and
produce a more usable map. �

When to Use the ACTIVEX Device Driver
If your Web audience uses the Windows operating environment and the Internet

Explorer Web browser, the ActiveX Control might be preferable over a Java applet from
a performance standpoint.

In general, the interactive features of the ActiveX Control are comparable to those
that are provided in Java through the Java applets. Some features differ, as you can
see in the comparison table that is presented in the “Parameter Reference for Java and
ActiveX” on page 424. Also, the JAVA device driver does not display output generated
with the GAREABAR, GBARLINE, or GRADAR procedures.

Unlike the JAVA device driver, you can use the ACTIVEX device driver to embed
interactive graphics in Microsoft Word documents. Simply use the ODS RTF statement,
as shown in “Embedding ActiveX Graphs in Word Files” on page 393. You can also copy
the ActiveX window out of Internet Explorer and paste that material into a Microsoft
Word document.

If you want to use an ODS style to enhance the appearance of your graph, but you do
not need interactivity, then use the ACTXIMG device driver, as described in
“Developing Web Presentations with the JAVAIMG and ACTXIMG Device Drivers” on
page 442. You can use the ACTXIMG device driver only on Windows systems. Although
you do not need it when viewing the output, to produce the output file you must install
it on computers that use ActiveX device drivers.

Creating Interactive Output for ActiveX Configuring Your Program to Prompt Users to Install the ActiveX Control 389

Note that you can generate output for the ActiveX Control even if you are not
working in the Windows operating environment. For example, you can generate HTML
output for ActiveX in the Unix operating environment, even though you cannot run
Internet Explorer in that environment. Moving the output file into Windows will
display the output as if it was generated in that operating environment.

When you use the ACTIVEX device driver with an ODS statement that does not
enable interactive output, the output is automatically changed to the PNG image that
is generated with the ACTXIMG device driver. For example, the ODS PDF statement
generates output for the Adobe Acrobat Reader in Portable Document Format (PDF).
This format does not enable embedded ActiveX applications. Specifying the ACTIVEX
device driver with the ODS PDF statement generates a PDF output file that contains a
static image in PNG format.

The ACTXIMG device driver can produce an image map in the HTML to enable data
tips and drill-down functionality from the image.

Installing the ActiveX Control
You can install theSAS/GRAPH Control for ActiveX manually, as described in

“Manually Installing the ActiveX Control” on page 389, or your presentation can prompt
the Web user through the installation process, as described in “Configuring Your
Program to Prompt Users to Install the ActiveX Control” on page 389 and “Prompting
for Installation of the ActiveX Control” on page 390.

Manually Installing the ActiveX Control
Follow these steps to manually install the ActiveX Control on a Web browser that

uses ActiveX device drivers.

1 Obtain the installation program, in one of the following ways:

� Installing SAS/GRAPH software.
� Copying the program from the SAS Client-Side CD-ROM, which is provided

with SAS/GRAPH software.

� Downloading the program from the SAS Web site, at

http://www.sas.com/apps/demosdownloads/setupintro.jsp

and selecting the SAS/GRAPH Software link.

2 Run the installation program (sasgraph.exe). You will have an opportunity to
change the default storage location, which is as follows:

C:\Program Files\SAS Institute\Shared Files\Graph\Vx

Where x is the version number. Installation requires seven megabytes of disk
space.

Configuring Your Program to Prompt Users to Install the ActiveX
Control

You can set up your SAS/GRAPH program so that the resulting presentation will
prompt users to install the ActiveX Control. Note that no files are installed without
permission. Users can refuse installation by refusing the licensing agreement at the

390 Prompting for Installation of the ActiveX Control Chapter 10

beginning of the installation process. Also note that the installation program will not
run if the control has already been installed.

To be able to access the installation program, Web users must be able to access its
storage location. You might need to copy the program to another location to ensure
availability.

If you are using ODS to generate your HTML output file, then you can reference the
installation program when you open the HTML output file. For example:

ods html body="myGraph.html"
codebase="http://www.ourco.com/sasweb/graph/sasgraph.exe#version=9,1,0,304";

If the program is not stored on a Web ActiveX device driver, then you can use a file
specification as the value of the CODEBASE attribute. For example:

ods html body="myGraph.html"
(codebase="/grsrc/sasgraph.exe#version=9,1,0,304");

Prompting for Installation of the ActiveX Control
You can edit an existing ACTIVEX presentation so that it will prompt users to install

the SAS/GRAPH Control for ActiveX. If the control is already present, then the
component setup program will not run.

Follow these steps to add the installation capability to your ACTIVEX presentation:

1 In a text editor, open the initial HTML file of your Web presentation.

2 In the OBJECT tag, insert the CODEBASE= attribute. The attribute references
the location of the installation program. The following CODEBASE value
references a public directory:

CODEBASE="file://grsrc/sasgraph.exe"

If the installation program is stored on a Web ActiveX device driver, use an HTTP
reference:

CODEBASE="http://www.ourco.com/sasweb/graph/sasgraph.exe#version=9,1,0,304"

3 Save the HTML file and close the editor.

Now displaying the HTML file gives users who need it the option of installing the
control in the default location on their local computers.

Note that if you want to install the control in a non-default location, you need to
install the control manually, as described in “Manually Installing the ActiveX Control”
on page 389.

Uninstalling the ActiveX Control
If you installed the ActiveX Control as a stand-alone component, then you can use

the following steps to uninstall the ActiveX Control.

1 Open the Control Panel window by selecting

Start Settings Control Panel

2 Select

Add/Remove Programs

3 Select

SAS Graph Component

Creating Interactive Output for ActiveX Generating Output for ActiveX 391

4 Select the Add/Remove button.

Because several different products can install the ActiveX Control, you might need to
repeat the install process.

Generating Output for ActiveX
The SAS/GRAPH Control for ActiveX displays interactive charts, maps, and plots.

The following table lists the various ways that you can deliver ActiveX output to your
audience.

Table 10.2 Primary Delivery Choices for ActiveX Output

Application ODS Statement Output File

Internet Explorer ODS HTML HTML

Microsoft Word ODS RTF Rich text format

Adobe Acrobat Reader ODS PDF Portable document format

Ghostview, etc. ODS PSL PostScript Format

Table 10.1 on page 388 lists the SAS/GRAPH procedures that generate output for
ActiveX.

Follow these steps to generate a default Web presentation that runs the SAS/GRAPH
Control for ActiveX.

1 Close the ODS listing destination to conserve resources:

ods listing close;

2 Open an output file in ODS and optionally specify an ODS style:

ods html file="your_file.htm"
style="banker";

3 Specify the ACTIVEX device driver and set other graphics options:

goptions reset=all
device=activex
border;

For information on graph styles, see “Using ODS Styles” on page 488.
4 Specify a data set and run a procedure or procedures that are used by the

ACTIVEX device driver (see Table 10.1 on page 388):

proc gchart data=sashelp.class;
vbar height / group=age;

run;
quit;

5 Close the HTML output file and reopen the ODS listing destination:

ods html close;
ods listing;

The preceding program structure assumes that your Web audience has installed the
ActiveX Control in advance. For information on prompting new users to start the
installation process, see “Configuring Your Program to Prompt Users to Install the

392 About Languages and Special Fonts in ActiveX Chapter 10

ActiveX Control” on page 389. For further troubleshooting information, see
“Troubleshooting Web Output” on page 579. For information on enhancing the default
Web presentation, see “Configuring Drill-Down Links with ACTIVEX” on page 392 and
“Overview of ODS Enhancements for Web Output” on page 487.

About Languages and Special Fonts in ActiveX
For international audiences, the ActiveX Control has a graphical user interface that

can appear in the following languages: Chinese (simplified), Danish, English, French,
German, Hebrew, Hungarian, Italian, Japanese, Korean, Polish, Russian, and Spanish.
To display a translated graphical user interface, in general, Web-based ActiveX device
drivers must use a language-specific operating environment and Web browser. This
requires the all-languages version of the JRE. For further information, contact your
SAS support consultant.

In the LABEL and SYMBOL statements, the Java applets enable the following
markers: B, C (up triangle), M (club), N (heart), O (spade), P (diamond), U (square),
and V (star). For a full list of the marker font that applies to these letters, see Figure
5.5 on page 87. Also enabled are the following symbols: D (diamond), H (circle), L (up
triangle). For a full list of the special font, see Figure 5.8 on page 89.

Configuring Drill-Down Links with ACTIVEX

ActiveX parameters are used to implement drill-down functionality and to configure
interactive features. The purpose and syntax of these parameters are defined in
“Parameter Reference for Java and ActiveX” on page 424.

In the ODS HTML statement, ActiveX parameters are specified with the
PARAMETERS= option, as described in “Specifying Parameters and Attributes for Java
and ActiveX” on page 421.

The SAS/GRAPH Control for ActiveX enables three drill-down modes for charts and
maps. Drill-down functionality is not enabled for contour plots. The three drill-down
modes are URL, HTML, and Script. These modes are implemented in ActiveX in the
same way that they are implemented in Java. For information on implementing these
drill-down modes, see “Configuring Drill-Down Links for Java and ActiveX” on page
400. To convert the Java examples to ActiveX, simply change the GOPTIONS
statement from DEVICE=JAVA to DEVICE=ACTIVEX.

The following table lists the procedures and statements whose output can be used in
ActiveX presentations with drill-down functionality.

Table 10.3 Statements Enabled for Drill-Down Functionality in ActiveX

Procedure Statements

GCHART HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D,
DONUT

GPLOT PLOT, BUBBLE, BUBBLE2, PLOT2

Creating Interactive Output for ActiveX Embedding ActiveX Graphs in Word Files 393

GMAP CHORO, BLOCK, PRISM

G3D PLOT, SCATTER

ActiveX Examples

Embedding ActiveX Graphs in Word Files
The following example demonstrates how the ODS RTF statement can be combined

with the ACTIVEX device driver to generate interactive graphics inside Microsoft Word
files. The example also shows how user-defined formats can be used to enhance the
appearance of graph labels and the headings of PROC PRINT tabular output.

The following example is available in the SAS Sample library under the name
GWBAXRTF.

ods rtf file=’c:\Public\graph\9.1\gwbaxrtf.rtf’ style=torn;
goptions dev=activex;
PROC FORMAT;

value agefmt 0-10=’0 to 10’
11-12=’Pre-Teen’
13-15=’Mid-Teen’
16=’late-Teen’;

value $sexfmt ’m’=’Male’
’f’=’Female’;

value weightfmt 0-99.9=’0-99 lbs’
100-119=’100-119 lbs’
120-149=’120-149 lbs’
150-999=’150 lbs or more’;

run;
data class; set sashelp.class;

format age agefmt. sex $sexfmt. weight weightfmt.;
label sex=’Gender’;
label height=’Average Height (inches)’;
input name sex age height weight;

datalines;
Alfred m 14 69 112.5
Barbara f 13 65.3 98
Henry m 14 63.5 102.5
Jane f 12 59.8 84.5
John m 12 59 99.5
Joyce f 11 51.3 50.5
Mary f 15 66.5 112
Philip m 16 72 150
Robert m 12 64.8 128
Susan f 11 57.5 85
William m 15 66.5 112
;
run;
Title "RTF Output with ActiveX Control";
Title2 "Physical Statistics";
proc gchart data=class;

394 Generating an Interactive Contour Plot in ActiveX Chapter 10

hbar weight / sumvar=height type=mean group=sex discrete;
run;
quit;

Title2 "Formatted Classroom Data";
Proc print data=class; id name; run;
ods rtf close;

Generating an Interactive Contour Plot in ActiveX
The following example displays a contour plot of water depth on a small island

known as an atoll. The ActiveX Control lets you manipulate many of the aspects of the
plot using the menu that is displayed with the right mouse button.

Of note in this example is the way that PROC G3GRID is used to generate a
rectangular grid of points.

This example, including the full data set, is available in the SAS Sample Library
under the name GWBAXCON.

ods html file="your_web_path/your_HTML_file.htm";

goptions device=activex
xpixels=500 ypixels=350
border cback=white
gunit=pct htext=3;

data atoll;
input vdist hdist depth;

datalines;
10 0.25 2.77
20 0.25 2.77
30 0.25 2.77
40 0.25 2.77
50 0.25 2.77
60 0.25 2.77
70 0.25 2.77
80 0.25 2.77
90 0.25 2.77
100 0.25 2.77
/* for the full data set, see GWBAXCON */
62 133.75 5.00
64 135 5.00
64 136.25 5.00
60 138.75 5.08
62 138.75 5.08
;
run;

/* Prepare the data to be a rectangular grid */
/* of points. */

proc g3grid data=atoll out=atollgrid;
grid vdist*hdist=depth / naxis1=50 naxis2=50;

run;

Creating Interactive Output for ActiveX Inserting the ActiveX Control into Microsoft Word Documents 395

title ’Pacific Atoll’;

axis1 order=(0 to 150 by 25) c=cx002288 width=3
minor=(n=4) label=(’Meters’);

axis2 order=(0to 100 by 25) c=cx002288 width=3
minor=(n=4) label=(’Meters’);

legend1 frame
label=(position=top j=c ’Depth (in meters)’)
shape=line(7);

proc gcontour data=atollgrid;
plot vdist*hdist=depth /
levels = 1 2 2.5 3 3.5 4 4.5 5 7 9
clevels = CXFF0000 CXF07275 CXEC9592

CXE9A2B2 CXE5BFC6 CXBFA0CF
CX9981D8 CX7362E1 CX4D43EA
CX0000FF

legend=legend1
haxis=axis1
vaxis=axis2
des=’Atoll’;

run;
quit;

Creating Graphs Interactively
If you have Enterprise Guide 2.0 with HotFix 11 or higher installed, you can

interactively create graphs within any Windows OLE application, such as Word or
Excel, without installing SAS and the SAS/GRAPH procedures. You can drag-and-drop
SAS data sets or import data from Microsoft Excel or Access. You can even create your
own original data in a table format and pick a standard chart type to view that data.

Creating Graphs
Follow these steps to create graphs interactively.

1 Install Enterprise Guide 2.0 with HotFix 11 or higher.
2 Insert the control for this functionality into your Windows application or embed it

in a Web page.
3 Assign the data and select a chart type. You can use SAS, Excel, or Access data.
4 Use any of the available default styles or customize them. If this is a Windows

application, you can then either save or print the document from the application.

Inserting the ActiveX Control into Microsoft Word Documents
You can easily incorporate this functionality into a Microsoft Word document. Follow

these steps to insert it into the document in the same way that you would insert any
other object.

396 Inserting the ActiveX Control into Microsoft Word Documents Chapter 10

1 In Microsoft Word or Excel, position your cursor where you want your graph, then
select

Insert Object

2 Select SAS/GRAPH V9 in the Object window. The control for this functionality is
inserted into your Word document. Although you see a graph, the control does not
yet contain any real data.

3 You can add data to the control in any of the following ways.
� Drag a SAS, Excel, or Access data file from Windows Explorer and drop it

into the control.

� Open a data file by selecting Data Options from the pop-up menu for the
control. In the Data Options window, select Open Data and use the Open
window to navigate to your data.

� Create new data by selecting Data Options from the pop-up menu for the
control. Select Open Data in the Data Options window. The control contains
default data that enables it to display a graph. To change one of the default
variable names, select the column title and enter a new name. To change one
of the default variable values, select the cell and enter a new value.

4 Change the orientation of the bar by selecting

Chart Type Horizontal Bar

from the pop-up menu.

5 Change the graph style by selecting Style Editor from the pop-up menu. In the
Style Editor window you can change the style or color scheme that applies to the
graph, or both. You can also isolate changes to chart elements, lines, text, or any
combination of these. Experiment with the Style Editor. For example, change the
style that is assigned in the Style name field.

6 To save the current graph as an image, select Save As from the pop-up menu.

7 To print the current graph, select Print from the pop-up menu.

397

C H A P T E R

11
Creating Interactive Output for
Java

Overview 397

When to Use the JAVA Device Driver 398
Generating Output for Java 398

About Languages and Special Fonts in Java 400

Configuring Drill-Down Links for Java and ActiveX 400
Setting the Drill-Down Mode 401

Configuring the Local Drill-Down Mode 401

Understanding Default Behavior in Local Mode 402
Customizing Drill-Down Levels 405

Configuring the Script Drill-Down Mode 407
Working with the Array of Arguments 408

Generating a JavaScript 409

Configuring the URL Drill-Down Mode 409
Configuring the HTML Drill-Down Mode 410

Variables as Substitution Strings 410

Drill-Down Tags as Substitution Strings 411
Understanding Variable Roles 411

Using Drill-Down Tags 412
Configuring the Drill-down Response 413

Removing Blank Spaces from Data Values 414

Disabling the Drill-Down Functionality 414
Examples of Interactive Java Output 415

Local Drill-Down Mode 415

Script Drill-Down Mode 416
URL Drill-Down Mode 417

HTML Drill-Down Mode 419

Overview

The JAVA device driver generates interactive presentations that run in the Graph,
Map, and Contour applets. These applets enable users to interact with the output of
the GCHART, GPLOT, G3D, GMAP, and GCONTOUR procedures.

The Java applets enable the Web user to display data values, to change the type of
the graph, to pan, rotate, and zoom, and to change colors, fonts, axes, legends, and
variable roles.

You can enhance Java graphs by setting applet parameters and specifying Output
Delivery System (ODS) options. Applet parameters let you configure drill-down and
override default values in the user interface. Information on parameters is provided in
Chapter 12, “Attributes and Parameters for Java and ActiveX,” on page 421.

398 When to Use the JAVA Device Driver Chapter 11

You can use ODS to enhance the appearance of Java charts using graph styles, as
described in “Using ODS Styles” on page 488. You can also use ODS to generate other
HTML enhancements, as described in “Overview of ODS Enhancements for Web
Output” on page 487.

To generate a Web presentation that runs the Graph, Map, or Contour applet, you
generally specify the JAVA device driver in a GOPTIONS statement, open an output file
in ODS, specify an ODS style to set the appearance of the output, generate one or more
graphs, and close the HTML output file, as described in “Generating Output for Java”
on page 398.

You can generate the same graphs as static pictures using DEVICE=JAVAIMG. This
does not require that the Web user install the applets or JRE. For details, see
“ACTXIMG and JAVAIMG Device Drivers” on page 440.

When to Use the JAVA Device Driver
The JAVA device driver generates output for the Graph, Map, and Contour applets.

These applets provided unprecedented levels of interactivity in all popular Web
browsers.

If you need to generate interactive output in the Windows operating environment
with the procedures GAREABAR, GBARLINE, or GRADAR, then use the ACTIVEX
device driver, as described in Chapter 10, “Creating Interactive Output for ActiveX,” on
page 387. ActiveX output can also appear in Microsoft Word documents or other OLE
applications.

If you want to use an ODS style but do not need interactivity, then use the JAVAIMG
device driver, as described in “Developing Web Presentations with the JAVAIMG and
ACTXIMG Device Drivers” on page 442.

Generating Output for Java
To develop a SAS/GRAPH program that generates output for the Graph Applet or

Map Applet, follow these steps:
1 Reset graphics options and specify a device driver.

goptions reset=all;
goptions device=java;

2 To conserve resources, close the default ODS output destination.

ods listing close;

3 Open an output file by specifying an ODS statement and a fully qualified path.
Use the STYLE= option to specify an ODS style (see “Using ODS Styles” on page
488). Use the PARAMETERS= option to configure the applet (see “Specifying
Parameters and Attributes for Java and ActiveX” on page 421). Use other ODS
options to enhance the HTML (see “Overview of ODS Enhancements for Web
Output” on page 487).

ods html
file="/dept/web-server1/sales/q393/eastregion.html"
style=gears
parameters=("tips"="none")
headtext="Georgia Peaches, Inc."
nogtitle;

Creating Interactive Output for Java Generating Output for Java 399

To run an applet, your audience must be able access the appropriate Java
archive files. Two archives are referenced by default: one is the Java plug-in from
Sun Microsystems, and the other is the SAS Java archive.

In the ODS output file, the location of the Java plug-in from Sun Microsystems
is specified in the CODEBASE attribute of the OBJECT tag. If you need to change
this default value, then use the ATTRIBUTES= option of the ODS statement, as
described in “Specifying Parameters and Attributes for Java and ActiveX” on page
421. On Windows systems, the user is prompted to install the plug-in if it is not
already installed. On other systems, the plug-in can be installed from the Sun
Microsystems site (http://www.sun.com) or from one of the SAS Third Party
Software Components CDs.

The location of the SAS Java archive is specified in the CODEBASE parameter
in the body of the APPLET tag. The default CODEBASE is specified by the
APPLETLOC= system option. If the default value of this system option specifies a
widely-accessible URL, then you need not change this value. If you need to specify
a different location, then you can change the value of the system option. Another
alternative is to override the APPLETLOC= system option by specifying a value
for the ODS statement option CODEBASE=, as described in “Specifying
Parameters and Attributes for Java and ActiveX” on page 421.

Note: When specifying a location for the SAS Java archive, you can use an
HTTP address, or you can use a UNC path, such as //sasjava, with forward slashes
instead of backward slashes. �

4 Provide data using a LIBNAME statement or a DATA step.

data regsales;
length Region State $ 8;
format Sales dollar8.;
input Region State Sales;
datalines;

West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

5 Generate your initial graphics output.

title1 ’Regional Sales’;
proc gchart data=regsales;

vbar3d state / sumvar=sales
run;
quit;

The procedure does not require any additional statements to generate output that
runs in an applet.

6 Close the HTML output file and reopen the ODS listing destination.

ods html close;
ods listing;

Running your program starts the applet and displays the initial graph.

400 About Languages and Special Fonts in Java Chapter 11

If the browser display differs from what you would see in SAS without ODS, then
ensure that your SAS/GRAPH procedure is fully enabled in the applet. Refer to
Appendix 1, “Summary of ActiveX and Java Support,” on page 1507 for details.

Note: Using PROC GMAP to generate a highly detailed map might create a large
HTML output file, which might cause problems on certain browsers. If this is the case,
you can run PROC GREDUCE to remove some of the complexity and produce a more
usable map. �

For further information on troubleshooting Web output, see “Troubleshooting Web
Output” on page 579.

About Languages and Special Fonts in Java
For international audiences, the Java applets have graphical user interfaces that can

appear in the following languages: Chinese (simplified), Czech, Danish, English,
French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish,
Russian, Spanish, and Swedish. To display a translated graphical user interface, in
general, Web-based Java device drivers must use a language-specific operating
environment and Web browser. This requires the all-langauges version of the JRE. For
further information, contact your SAS support consultant.

In the LABEL and SYMBOL statements, the Java applets enable the following
markers: B, C (up triangle), M (club), N (heart), O (spade), P (diamond), U (square),
and V (star). For a full list of the marker font that applies to these letters, see Figure
5.5 on page 87. Also enabled are the following symbols: D (diamond), H (circle), L (up
triangle). For a full list of the special font, see Figure 5.8 on page 89.

Configuring Drill-Down Links for Java and ActiveX

The JAVA and ACTIVEX device drivers enable the following drill-down modes for
presentations that run in the Graph applet, Map applet, and in the ActiveX Control
(see Chapter 10, “Creating Interactive Output for ActiveX,” on page 387).

Local mode (Graph applet only)
responds to drill-down actions by dynamically generating and displaying new
graphs. The data in the initial graph is subset based on the graph element that
was selected in the drill-down action. In the drill-down graph, you can select again
to generate another graph, as long as the data can still be subset, or as long as you
have configured your own levels of drill-down. To configure a graph at a given
level of drill-down, you specify the applet parameter DDLEVELn. The value of
this parameter determines the graph type, data subset, variable roles, and colors.
Local is the default drill-down mode for the Graph applet. For details, see
“Configuring the Local Drill-Down Mode” on page 401.

Script mode
calls a JavaScript method that you specify in your SAS/GRAPH program, and
passes to that method information on the selected graph element or map region.
The JavaScript method determines the browser’s response to the drill-down action.
This drill-down mode is the default for the Map Applet and the ActiveX Control.
See “Configuring the Script Drill-Down Mode” on page 407.

Note: Although scripting of applets using JavaScript is available, support is not
provided if you customize the samples in this document or in the Sample Library. �

Creating Interactive Output for Java Configuring the Local Drill-Down Mode 401

URL mode
displays URLs that are provided by link variables. The link variables are
identified to the graphics procedure with the HTML= option. The drill-down
functionality of the URL mode is similar to the drill-down functionality that is
provided by the GIF, JPEG, and PNG device drivers, with the addition of the
improved rendering and the availability of graph styles in ODS. See “Configuring
the URL Drill-Down Mode” on page 409.

HTML mode
generates drill-down URLs based on a substitution pattern that you specify in
your SAS/GRAPH program. The Graph Applet, Map Applet, or the ActiveX
Control completes the URL by inserting the specified data from the graph element
that was selected in the drill-down action. See “Configuring the HTML Drill-Down
Mode” on page 410.

Any mode (Graph applet and ActiveX control)
attempts to implement each of the four drill-down modes in succession until a
valid Web destination is found. The order of the attempts is Local (Graph applet
only), Script, URL, and HTML.

The Graph applet has selectable drill-down modes. You can select these modes from the
applet menu.

Note: If the HTML= option is specified in the procedure that generates the initial
graph, then the URL drill-down mode is automatically set. �

The drill-down modes are specified as applet parameters, in the PARAMETERS=
option of an ODS statement. Definitions of applet parameters are provided in
“Parameter Reference for Java and ActiveX” on page 424.

Setting the Drill-Down Mode
To enable a given drill-down mode, specify a value for the applet parameter

DRILLDOWNMODE. Like all other applet parameters, the DRILLDOWNMODE
parameter is specified in an ODS statement. Use the following syntax to set the
DRILLDOWNMODE parameter in the ODS statement:

ODS HTML

PARAMETERS=("DRILLDOWNMODE"="LOCAL" | "HTML" | "SCRIPT" |
"URL" | "ANY");

The Local drill-down mode is enabled by default.
If the graphics procedure that generates the initial graph specifies the HTML=

option, then the value of the DRILLDOWNMODE parameter is automatically set to
URL. Any different mode that is specified in ODS is overridden.

Configuring the Local Drill-Down Mode
For the Graph applet only, you can specify the applet parameter DDLEVELn to

configure the Local drill-down mode. At any drill-down level you can specify the graph
type, colors, and variable roles. Variable roles define how variables are applied to the
axes of the graph, as described in “Understanding Variable Roles” on page 411.

An example of Local drill-down configuration would be to specify that the second-level
drill-down graph is a pie chart, with non-default group and subgroup variables.

402 Configuring the Local Drill-Down Mode Chapter 11

Understanding Default Behavior in Local Mode
To understand how you can configure the Local drill-down mode, it is best to learn

how the Graph applet generates drill-down graphs by default.
The following code generates the graph shown in Display 11.1 on page 403.

filename odsout ’C:\vbarweb.htm’;
data sales;

length Region $ 4 State $ 2;
format Sales dollar8.;
input Region State Sales Year Qtr;
datalines;

West CA 13636 1999 1
West OR 18988 1999 1
/* see ‘‘Local Drill-Down Mode’’ on page 415 for the full data set */
East NC 12184 1998 2
East MA 12760 1998 2 ;
goptions reset=all device=java;
ods listing close;
ods html file=odsout

style=gears;
title1 ’Company Sales, Mid Year’;
proc gchart data=sales;

vbar3d region / sumvar=sales
group=year subgroup=state;

run; quit;
ods html close;
ods listing;

Creating Interactive Output for Java Configuring the Local Drill-Down Mode 403

Display 11.1 Graph Applet, Top-Level Graph

In a Web browser, selecting a bar in the graph causes the Graph applet to generate a
new three-dimensional vertical bar chart. By default, the Graph applet retains the type
and style of the initial graph in all the drill-down graphs in that presentation. In this
example, all of the drill-down graphs will be three-dimensional vertical bar charts using
the ODS graph style GEARS.

Selecting the bar on the far left in the initial graph generates the first-level graph
shown in Display 11.2 on page 404.

404 Configuring the Local Drill-Down Mode Chapter 11

Display 11.2 Graph Applet, Local Drill-Down Mode, Level 1

The first-level drill-down graph retains the dependent variable SALES. The subset of
data that the Graph Applet uses to generate the drill-down graph is defined by the
drill-down action. The bar on the far left of the initial graph depicts part of the east
region, so the drill-down graph shows east region sales only.

To differentiate the east region data, the Graph Applet makes the variable YEAR the
independent variable. In the initial graph, the YEAR variable was a subgroup variable.

In the drill-down graph, the variable STATE is now the sole subgroup variable.
Subsetting repeats if you click on an element in the first-level drill-down graph. For

example, selecting the bar on the far left (labeled 1998) displays the following
second-level drill-down graph.

Creating Interactive Output for Java Configuring the Local Drill-Down Mode 405

Display 11.3 Graph Applet, Local Drill-Down Mode, Level 2

The second-level drill-down graph shows 1998 sales figures for the east region states
MA and NC. The dependent axis is unchanged and the STATE variable becomes the
sole variable that is represented on the independent axis.

The second-level drill-down graph is the last that can be generated out of this data
set, because no other variables can appear as independent variables.

The preceding example shows how the Graph applet generates drill-down graphs in
the default configuration of the Local drill-down mode. The Graph applet retains the
dependent variable and subsets the data based on the drill-down selection. At each
level of drill-down, the applet promotes a new variable into the independent role. This
succession can recur until the data cannot be subset any further. The succession uses all
independent variables first, followed by all group and subgroup variables. Variables that
are assigned to multiple roles are used in the order in which they appear in the data set.

Now that you see how the Graph applet generates Local-mode drill-win graphs by
default, you can move on to configuring the drill-down graphs on your own, as described
in “Customizing Drill-Down Levels” on page 405.

To see the SAS/GRAPH code that was used to generate this example, see “Local
Drill-Down Mode” on page 415. You can use that example to experiment with different
drill-down configurations.

Customizing Drill-Down Levels

The DDLEVELn parameter lets you configure the graphs that are generated at
specified drill-down levels. The DDLEVELn parameter is specified as follows in the
ODS statement:

ODS HTML

PARAMETERS=("DDLEVELn"="string");

n
represents the number of the drill-down level that is being configured.

406 Configuring the Local Drill-Down Mode Chapter 11

string
specifies the graph type, the variable roles in the new graph, the color of the
elements in the new graph, and the variable that is to be subset to create the
elements in the new graph.

The syntax of the string argument is as follows:

{CHART} {chart_type} {tag_1} {variable_1...} {...tag_n} {variable_n} | {subset_tag_1...}
<{...subset_tag_n}>

{CHART} {chart_type}
identifies the type or style of the graph. This tag is case-sensitive: it must always
be specified in uppercase. The values of the tag (chart types) are not
case-sensitive. To use the same chart type as the preceding drill-down level, do not
specify the CHART tag. Available chart types are as follows:

HBAR
generates a two-dimensional horizontal bar chart.

HBAR3D
generates a three-dimensional horizontal bar chart.

VBAR
generates a two-dimensional vertical bar chart.

VBAR3D
generates a three-dimensional vertical bar chart.

PIE
generates a two-dimensional pie chart.

PIE3D
generates a three-dimensional pie chart.

SCATTER
generates a scatter plot that is similar in appearance to Figure 46.13 on page
1319.

LINE
generates a line or needle plot that is similar in appearance to Figure 7.17 on
page 192.

BOX
generates a box plot that is similar in appearance to Figure 7.15 on page 188.

HILO
generates a high-low plot that is similar in appearance to Figure 7.16 on page
190.

{tag_1} {variable_1...} {...tag_n} {variable_n}
associates drill-down tags with data set variables, to specify roles for variables in
the new graph, and to optionally determine the color of the elements in the new
graph. For definitions of the drill-down tags, see “Using Drill-Down Tags” on page
412.

{subset_tag_1...} <{...subset_tag_n}>
specifies one or more variable roles from the original graph whose values will be
used to subset the data in the preceding graph. For example, if you specify
G_GROUPV, then the data that will be used to draw the new graph will consist
only of data that is associated with the group variable in the preceding graph. For
example, if the group variable in the preceding graph was REGION, and if the
value of that variable in the selected graph element was East, then the drill-down

Creating Interactive Output for Java Configuring the Script Drill-Down Mode 407

graph would be drawn only with the observations where the REGION variable had
the value of East.

At least one of the following tags must be specified as the subset variable:
G_INDEPV, G_GROUPV, G_SUBGRV, or G_DEPTHV. For definitions of these
tags, see “Using Drill-Down Tags” on page 412.

Specifying multiple subset variables means that two or more values must match
the value in the selected graph element for that observation to be used in the new
graph. For example, assume that you specify {G_INDEPV}{G_SUBGRV} as the
subset variables, and that the selected graph element has an independent variable
of YEAR and a subgroup variable of STATE. Also assume that the values for these
variables in the selected graph element were 2000 and NC. The observations that
would be used in the drill-down graph would include those with YEAR=2000 and
STATE=NC.

The following example shows how the DDLEVENn parameter can be used to specify
the default behavior for the first drill-down level.

ods html file=odsout
parameters=("drilldownmode"="local"

"ddlevel1"="{chart}{vbar3d}
{g_dep}{sales}
{g_indep}{year} |
{g_indepv}");

As the example shows, the value of the DDLEVELn parameter is divided into two
halves, which are separated by a vertical bar character. The drill-down graph is
configured in the syntax that appears before the vertical bar character (|). After the
vertical bar, drill-down tags specify how the data from the previous level of drill-down is
to be subset for use in the current drill-down graph.

In the preceding example, the first drill-down level (DDLEVEL1) is configured as a
three-dimensional vertical bar chart. The dependent variable is SALES and the
independent variable is YEAR. The G_INDEPV tag specifies that the data is to be
subset based on the independent variable in the previous graph that was selected by
the Web user. In our example, the independent variable in the initial graph is
REGION. If the Web user selects a graph element that describes the WEST region, then
the data will be subset such that the drill-down graph will contain only those
observations for which the value of the REGION variable is WEST.

If you do not specify a role for a variable, then that variable does not appear in the
drill-down graph. If you do not specify variables for the G_DEP and G_INDEP tags,
then the Graph Applet uses the independent and dependent variables of the graph in
the preceding drill-down level.

You can explicitly remove a variable role (such as group or subgroup) from the
drill-down graph by specifying a $ character as the drill-down value, as in

{G_GROUP} {$}

Web users can make this change in the Graph Applet menus by selecting the None
option from the list of variables that can be applied to a given variable role. Note that
you cannot assign a $ to the G_INDEP and G_DEP variables, because they must
always be present in the drill-down graph.

Configuring the Script Drill-Down Mode
You can use the parameters DRILLDOWNMODE, DRILLFUNC, PATTERNSTRIP,

and DRILLTARGET to configure the Script drill-down mode for the Graph Applet, Map
Applet, or ActiveX Control. The Script drill-down mode enables you to execute a

408 Configuring the Script Drill-Down Mode Chapter 11

JavaScript callback method in response to drill-down actions. You use PUT statements
to write the callback method into the HTML output file. Some experience with
JavaScript is therefore required.

The syntax used to implement the Script drill-down mode is specified in the ODS
statement as follows:

ODS HTML

PARAMETERS=("DRILLDOWNMODE"="SCRIPT" "DRILLFUNC"="method");

The applet parameter DRILLDOWNMODE (see “Setting the Drill-Down Mode” on page
401) establishes the Script drill-down mode. The DRILLFUNC parameter specifies the
name of the JavaScript callback method that will be executed in response to drill-down
actions.

In response to a drill-down action, the applet or control generates an array of
arguments that is to be passed into the callback method. The array contains all of the
data that is associated with the selected graph element. The callback method can make
use of any of the data in the array as it generates its output. As the callback method
terminates, it may return an object. The applet or control ignores this object.

To invoke the callback method, the applet or control issues
netscape.javascript.JSObject.call(), in the following form:

PUBLIC OBJECT CALL(STRING method-name, OBJECT argument-array-name[])

The method-name argument is the name of the callback method that you define in
JavaScript in your program. The applet or control supplies the argument-array-name.

Working with the Array of Arguments
Understanding the structure of the array of arguments is important for you to be

able to access those elements in your callback method. The elements in the array
represent all of the variables and values that are represented by the graph element
that was selected in the drill-down action. The data is labeled in the array using
drill-down tags. The tags identify variable roles or labels and values. For details, see
“Using Drill-Down Tags” on page 412 and “Understanding Variable Roles” on page 411.

The first element in the array of arguments is the name of the applet or control. The
second element in the array is the name of a file. The name of that file is derived from
the variable roles in the graph at the preceding drill-down level, using the following
substitution string:

{&G_INDEPV,f}
{&G_GROUPV,f}
{&G_SUBGRV,f}.html

The filename is a concatenation of the formatted values of the independent, group, and
subgroup variables in the graph at the preceding drill-down level.

Note: The file name and file type are provided as a convenience. If you use this file
name and file type, then it is up to you to create the actual file and to provide its
content. �

The remaining elements in the array consist of drill-down tags, and the data that is
associated with those tags in the graph element that was selected in the drill-down
action. Each variable is represented by triplet pairs of arguments in the array, in the
following sequence:

tag variable_name

tagV variable_value

tagV,F formatted_value

Creating Interactive Output for Java Configuring the URL Drill-Down Mode 409

Thus, each data value in the selected graph element is represented by six arguments in
the array.

For example, assume that the graph shown in Display 11.1 on page 403 is configured
for Script drill-down mode. Selecting the east region sales figures for the state of North
Carolina generates the following array:

[appletName East1998NC.html
G_DEP Sales G_DEPV 10000 G_DEPV,F $10,000
G_INDEP Region G_INDEPV East G_INDEPV,F East
G_GROUP Year G_GROUPV 1998 G_GROUPV,F 1998
G_SUBGR State G_SUBGRV NC G_SUBGRV,F NC]

The output filename is East1998NC.html. The remaining triplet pairs would capture
the roles and values of the variables that make up the selected graph element. Note
that all variable names are case-sensitive as they appear in the array. For example, the
value Region is capitalized. This would be the case only if the variable name was
defined as Region in the DATA step.

Generating a JavaScript
To implement Script drill-down mode, you use PUT statements in a DATA step to

write a JavaScript callback method into the HTML output file. To see an example that
shows you how to use PUT statements to generate JavaScript, see “Script Drill-Down
Mode” on page 416.

For information on writing JavaScript, refer to the many JavaScript tutorials that
are available on the Internet.

Configuring the URL Drill-Down Mode
You can use the parameters DRILLDOWNMODE and DRILLTARGET to configure

the URL drill-down mode for the Graph Applet, Map Applet, or ActiveX Control.
The URL drill-down mode uses the HTML= option to name a link variable that

provides drill-down URLs. This mode is implemented in a manner that is similar to the
type of drill-down that is available for the GIF, JPEG, and PNG device drivers, except
that in this case, the applet or control associates drill-down URLs with graph elements
without using an image map.

To configure the URL drill-down mode, you need to:

1 Specify the device driver. Choose JAVA or ACTIVEX. Set any other global options.

goptions reset=global device=java;

2 Close the ODS listing destination to conserve resources.

ods listing close;

3 Open an HTML output file in ODS and specify URL drill-down mode.

ods html file=’C:\web\UrlDrill.htm’ style=watercolor;

Note that you need not specify the applet parameter DRILLDOWN=URL. This
drill-down mode is invoked by default when you specify the statement option
HTML= (as shown in step 5).

4 Specify drill-down URLs by adding a link variable to your data set. See “Adding
Links with the HTML= and HTML_LEGEND= Options” on page 574.

5 Specify a SAS/GRAPH procedure to generate the graph. Specify the statement
option HTML= to identify the link variable. Note that you cannot use the
HTML_LEGEND= option for this purpose with these device drivers.

410 Configuring the HTML Drill-Down Mode Chapter 11

proc gchart data=regsales;
vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

6 Close the HTML output file and reopen the ODS listing destination.

ods html close;
ods listing;

To see an example program that implements the URL drill-down mode, see “URL
Drill-Down Mode” on page 417.

Configuring the HTML Drill-Down Mode
You can use the parameters DRILLDOWNMODE, DRILLPATTERN,

PATTERNSTRIP, and DRILLTARGET to configure the HTML drill-down mode for the
Graph applet, Map applet, and the ActiveX Control.

In the HTML drill-down mode, the applet or control responds to drill-down actions by
constructing a uniform resource locator (URL) using the data in the selected graph
element. The applet then passes the URL to the Web browser for display.

The applet parameter DRILLDOWNMODE (see “Setting the Drill-Down Mode” on
page 401) establishes the HTML drill-down mode. The PATTERNSTRIP parameter (see
“Removing Blank Spaces from Data Values” on page 414) can be used to selectively
remove blank spaces from data values before those values are applied to the URL. The
DRILLTARGET parameter (see “Configuring the Drill-down Response” on page 413)
enables you to specify where you want the drill-down graph to appear in the browser.

The DRILLPATTERN parameter is specified as follows in the ODS statement:

ODS HTML

PARAMETERS=("DRILLDOWNMODE"="HTML"
"DRILLPATTERN"="URL-with-substitution-strings");

An example of this statement might look like this:

ods html file=statepop.htm
parameters=("DRILLDOWNMODE"="HTML"

"DRILLPATTERN"=’http://www.state.{&statename}.us’);

In the preceding example, the value of the data set variable STATENAME completes
the drill-down URL.

When ODS is configured as shown above, the applet or control dynamically generates
URLs in response to drill-down actions. The applet or control replaces the substitution
strings with data values from the graph element that was selected in the drill-down
action. The URL-with-substitution-strings can include multiple substitution strings.
Substitution strings can include combinations of variable names, variable roles or
labels, and drill-down tags. For details, see “Variables as Substitution Strings” on page
410 and “Drill-Down Tags as Substitution Strings” on page 411. All substitution strings
are enclosed in brackets ({ and }) and begin with an ampersand character (&).

Variables as Substitution Strings
When you specify a variable name as a substitution string in the HTML drill-down

mode, the applet or control replaces the entire string with the value of the variable as it
is specified in the selected graph element. The syntax of the substitution string is as
follows:

Creating Interactive Output for Java Understanding Variable Roles 411

{&variable_name}

Because JavaScript is case-sensitive, the name of the variable must be specified exactly
as it is specified in the data set.

An example of a variable name substitution string might look like this:

http://ourweb.com/uspop/{&statename}/poptable.htm

The substitution string above could be used in a Web presentation that begins with a
map of the United States. In response to a drill-down action in HTML mode, the value
of the STATENAME variable for the selected state would be substituted into the URL.
The resulting URL would point to a Web page that contains a table of population
information for the selected state.

Drill-Down Tags as Substitution Strings
In the HTML drill-down mode, you can specify variable roles or labels as substitution

strings, using drill-down tags, as described in “Understanding Variable Roles” on page
411 and “Using Drill-Down Tags” on page 412. The syntax of these substitution strings
is as follows:

{&drill-down-tag}

The drill-down-tag specifies a variable role or label in the initial graph. The applet or
control replaces the substitution string by deriving a variable name from the role or
label, and applying the value of that variable to the URL. The value is taken from the
data that is associated with the selected graph element.

For example, assume that a Web presentation was configured for HTML drill-down
mode using the following value of the DRILLPATTERN parameter:

http://ourweb.com/regstaff/{&G_INDEPV}/stafflist.htm

Now assume that a Web user selects an element in the graph. If the independent
variable for that graph was the variable REGION, and if the value of the REGION
variable in the selected graph element was East, then the applet would display the
following URL:

http://ourweb.com/regstaff/East/stafflist.htm

The default value for the DRILLPATTERN parameter is as follows:

{&G_INDEPV,f}{&G_GROUPV,f}{&G_SUBGRV,f}.html

The URL that results from this specification points to an HTML file in the same
directory as the top-level HTML file. The name of the file consists of a concatenation of
formatted values for the first independent, group, and subgroup variables that are
defined in the data set.

To see an example program that uses the HTML drill-down mode, see “HTML
Drill-Down Mode” on page 419.

Understanding Variable Roles
The assignment of roles to variables determines the appearance of the resulting

graph. The assignment of roles takes place in the SAS/GRAPH statement that
generates the graph. One variable is always assigned the role of independent variable,
and another is always assigned the role of dependent variable. Once the initial graph
has been displayed in the applet or control, Web users can change the variable roles
using menu options.

Variable roles are used to configure the Local, HTML, and Script drill-down modes.
The roles are assigned with parameters, using the PARAMETERS= option on the ODS

412 Using Drill-Down Tags Chapter 11

statement. In the specification of a parameter, the assignment of roles is done with
drill-down tags (see “Using Drill-Down Tags” on page 412).

Using Drill-Down Tags
You can use the following tags to specify drill-down behavior for the Graph applet,

Map applet, or ActiveX control. The following table defines the drill-down tags and
explains the types of graphs to which the tags can be applied.

Table 11.1 Drill-Down Tags Used by the Graph Applet, Map Applet, and ActiveX
Control

Tag Name Tells the Applet to...
Definition of the Value
That Follows the Tag Applied in

G_COLOR Use new colors for the
graph elements

Name of the new color
variable

Scatter plots

G_COLORV Use the color variable
from the preceding
level

None Scatter plots

G_DEP Use a new dependent
variable

Name of the new
dependent variable

All charts

G_DEPV Use the dependent
variable from the
previous level

None All charts

G_DEPTH Use a new depth
variable

Name of the new
depth variable

Vertical bar charts
and scatter plots

G_DEPTHV Use the depth variable
that was used in the
previous level

None Vertical bar charts
and scatter plots

G_GROUP Use a new group
variable

Name of the new
group variable

Bar charts

G_GROUPV Use the group variable
that was used in the
previous level

None Bar charts

G_INDEP Use a new
independent variable

Name of the new
independent variable

Charts and maps

G_INDEPV Use the independent
variable that was used
in the previous level

None Charts and maps

G_LABEL Use a new label Name of the new label
(mapID) variable

Maps

G_LABELV Use the same label
that was used in the
previous level

None Maps

Creating Interactive Output for Java Configuring the Drill-down Response 413

Tag Name Tells the Applet to...
Definition of the Value
That Follows the Tag Applied in

G_SUBGR Use a new subgroup
variable

Name of the new
subgroup variable

Bar charts and scatter
plots

G_SUBGRV Use the same
subgroup variable that
was used in the
previous level

None Bar charts and scatter
plots

When you specify a variable name after a tag, that name must be specified exactly the
way it appears in the data set, because variable names are case-sensitive in JavaScript.
To find out how a variable was defined in the data set, use the CONTENTS procedure.

You can explicitly remove a tag by specifying a $ for its value, which is the same as
setting it to None using the menu of the applet or control. This removes from the graph
the data and axis label that would otherwise be included in the graph. Note that you
cannot set the values of the G_INDEP and G_DEP tags to None because they are
always represented in the graph.

For Script drill-down mode only, you can specify that data values are to be formatted
or not formatted. By default, the values of the variables are not formatted. If the
characters ,f are appended to the end of the tag, then those values will be presented in
formatted form. For example, the following tag specifies that the values of the
independent variable cost are to appear in formatted form:

{g_inep,f}{cost}

The format is applied using the FORMAT statement in the DATA step or graphics
procedure that generated the data for the graph. Formatted values are specified in the
statement that generated the original graph. For example, assume that the
DOLLAR5.2 format was specified for the cost variable. If the value of the cost
variable is 10, its unformatted value would be 10, and its formatted value would be
$10.00. Formatted values are used for axis labels, legends, and data tips that are
displayed when the mouse is positioned over a graph element.

You may also append ,n to tags that reference variables whose values are URLs.
Normally, the substitution string is URL-encoded for browsers that do not support
embedded white space in URL strings. Use ,n to prevent this encoding. Note that using
,n is not the same as using the applet parameter PATTERNSTRIP, which removes
blank spaces from data values before those values are applied to substitution strings.

No intervening white space should be added between the primary tag and the
appended ,f or ,n characters.

Configuring the Drill-down Response
In the HTML and URL drill-down modes, you can specify the parameter

DRILLTARGET to specify where you want the Web browser to display drill-down
graphs. By default, the applet or control displays drill-down graphs in a new Web
browser window.

Specify the DRILLTARGET parameter as follows using the PARAMETERS= option
in the ODS statement:

ODS HTML

PARAMETERS=("DRILLTARGET"=

"_BLANK" | "_SELF" | "_PARENT" | "_TOP" | any_named_target)

414 Removing Blank Spaces from Data Values Chapter 11

_BLANK
displays the drill-down graph in a newly opened, unnamed browser window.

_SELF
displays the drill-down graph in the same frame or window as the initial graph.
This is the default behavior in most browsers.

_PARENT
displays the drill-down graph in the parent frame in a frameset. If no frames are
defined, this value is the same as _SELF.

_TOP
displays the drill-down graph in the full browser window, thereby replacing any
frames that were defined in that window.

any_named_target
displays the drill-down graph in the appropriately named frame or browser
window.

Note: If a Netscape browser is configured to launch with a blank page (using
_BLANK) in a new browser window, that page will not receive the access authorizations
that existed in the previous window. If the Netscape setting is changed to launch
Netscape with the "Last page visited," then the page does receive the access
authorizations. �

Removing Blank Spaces from Data Values
The drill-down modes Script (see “Configuring the Script Drill-Down Mode” on page

407) and HTML (see “Configuring the HTML Drill-Down Mode” on page 410) make use
of substitution strings to generate a response to drill-down actions. The substitution
strings are replaced with data values. Blank spaces in those data values can produce
unexpected results. To remove blank spaces from data values when those values are to
be used in a substitution string, specify the PATTERNSTRIP parameter as follows in
the ODS statement:

ODS HTML FILE=fileref-or-external-file
PARAMETERS=("DRILLDOWNMODE"="SCRIPT | URL"

"PATTERNSTRIP"="NONE | YES | COMPRESS");

NONE
is the default value. Any blank spaces in the data value are inserted into the
substitution string.

YES
strips all blank spaces from the end of the data value, but retains blank spaces
elsewhere.

COMPRESS
removes all blank spaces from the data value, wherever they occur.

Disabling the Drill-Down Functionality
For the Graph applet, you can specify the DISABLEDRILLDOWN parameter to

disable the drill-down functionality. Specify the DRILLDOWNMODE parameter as
follows in the ODS statement:

ODS HTML
PARAMETERS=("DISABLEDRILLDOWN"="TRUE");

Creating Interactive Output for Java Local Drill-Down Mode 415

Specifying this parameter disables the default Local drill-down mode.

Examples of Interactive Java Output

Local Drill-Down Mode
The following example generates an HTML output file that runs the Graph applet.

The applet automatically generates and displays drill-down graphs based on the
element in the graph that was selected with a click of the left mouse button. In the
example, note how variable roles are assigned in the VBAR3D statement.

This example is available in the Sample Library under the name GWBJALOC.
For further information, see “Configuring the Local Drill-Down Mode” on page 401.

filename odsout ’your-path-and-filename.htm’;

data sales;
length Region $ 4 State $ 2;
format Sales dollar8.;
input Region State Sales Year Qtr;
datalines;

West CA 13636 1999 1
West OR 18988 1999 1
West CA 14523 1999 2
West OR 18988 1999 2
East MA 18038 1999 1
East NC 13611 1999 1
East MA 11084 1999 2
East NC 19660 1999 2
West CA 12536 1998 1
West OR 17888 1998 1
West CA 15623 1998 2
West OR 17963 1998 2
East NC 17638 1998 1
East MA 12811 1998 1
East NC 12184 1998 2
East MA 12760 1998 2 ;

goptions reset=all device=java;

ods listing close;

ods html file=odsout
style=gears;

title1 ’Company Sales, Mid Year’;

proc gchart data=sales;
vbar3d region / sumvar=sales
group=year subgroup=state;

run; quit;

416 Script Drill-Down Mode Chapter 11

ods html close;
ods listing;

Script Drill-Down Mode
The following example shows you how to implement the Script drill-down mode in the

Graph applet or Map applet. The program generates a map of the United States that
responds to drill-down actions by displaying abbreviated state names. In the example,
note how PUT statements are used to insert JavaScript into the ODS output file.

This example is available in the Sample Library under the name GWBSCDRL.
For further information, see “Configuring the Script Drill-Down Mode” on page 407.

/* Change the next two lines to run this program. */
filename odsout ’html-output-file’ ;
libname maps ’map-data-library’;

/* Create a data set that contains the US states. */
proc sql;
create table work.mydata as
select unique state from maps.us;
quit;

/* Add state abbreviations to the new data set. */
data work.mydata;
length Statename $2;
set work.mydata;
Statename=trim(left(upcase(fipstate(state))));

run;

/* Specify the JAVA driver and the graph size. */
goptions reset=all device=java

xpixels=325 ypixels=225 ;

/* Specify the HTML output file, the script */
/* drill-down mode, and the callback method. */
ods html file=odsout

parameters=("DRILLDOWNMODE"="Script"
"DRILLFUNC"="MapDrill");

/* Specify a map title and generate the map. */
title1 "State Abbreviations";
proc gmap map=maps.us data=work.mydata all;

id state;
choro statename / nolegend;

run;
quit;

/* Close the HTML destination and */
/* open the listing destination. */
ods html close;
ods listing;

/* Create the MapDrill script that is specified on */

Creating Interactive Output for Java URL Drill-Down Mode 417

/* the ODS HTML statement’s DRILLFUNC parameter. */
/* Write the script to the same file that contains */
/* the HTML output from the GMAP procedure. */
data _null_ ;
file odsout mod; /* Modify the file rather than replacing it. */
put ’ ’ ;
put ’<SCRIPT LANGUAGE="JavaScript">’ ;
put ’function MapDrill(appletref)’ ;
put ’{’ ;
put ’ ’ ;
put ’/* Open an alert box to show the abbreviated state name. */ ’ ;
put ’for(i = 2; i < MapDrill.arguments.length; i += 2)’ ;
put ’ {’ ;
put ’ if (MapDrill.arguments[i] == "G_DEPV,f")’;
put ’ alert(MapDrill.arguments[i+1]);’ ;
put ’ }’ ;
put ’ ’ ;
put ’}’ ;
put ’</SCRIPT>’;
run ;

URL Drill-Down Mode
The following example demonstrates URL drill-down mode.
This example is available in the SAS sample library under the name GWBURLDR.
For further information, see “Configuring the URL Drill-Down Mode” on page 409.

/* Enter the web-output-path. */
filename urldrill ’web-output-path’;
filename sales ’web-output-path\sales.html’;
filename central ’web-output-path\central.html’;
filename south ’web-output-path\south.html’;
filename west ’web-output-path\west.html’;

/* Close the ODS listing destination to conserve resources. */
ods listing close;

/* Specify the device driver. */
goptions reset=global device=java;

/* Create the data set REGSALES. */
data regsales;

length Region State $ 8;
format Sales dollar8.;
input Region State Sales;

/* Initialize the link variable. */
length rpt $40;

/* Assign values to the link variable. */
if Region=’Central’ then

rpt=’href="central.html"’;
else if Region=’South’ then

418 URL Drill-Down Mode Chapter 11

rpt=’href="south.html"’;
else if Region=’West’ then

rpt=’href="west.html"’;

datalines;
West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

/* Open the HTML output file and specify the URL drill-down mode. */
ods html body=sales

path=urldrill
style=money
parameters=("drilldown"="url";

/* Create a chart that uses the link variable. */
title1 ’Company Sales’;
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;
quit;

/* Create an HTML file for central sales drill-down. */
ods html body=central path=urldrill style=money;

/* Generate the first drill-down report. */
title1 ’Central Sales’;
proc print data=regsales noobs;

var state sales;
where region=’Central’;

run;

/* Create an HTML file for southern sales drill-down. */
ods html body=south path=urldrill style=money;

/* Generate the second drill-down report. */
title1 ’Southern Sales’;
proc print data=regsales noobs;

var state sales;
where region=’South’;

run;

/* Create an HTML file for western sales drill-down. */
ods html body=west path=urldrill style=money;

Creating Interactive Output for Java HTML Drill-Down Mode 419

/* Generate the third drill-down report. */
title1 ’Western Sales’;
proc print data=regsales noobs;

var state sales;
where region=’West’;

run;
quit;

/* Close the HTML destination and open the listing destination. */
ods html close;
ods listing;

HTML Drill-Down Mode
The following example generates an HTML output file that displays the Map applet.

The applet is configured for HTML drill-down mode, where drill-down URLs are
dynamically generated based on the data in the graph element that was selected in the
drill-down action. In the example, note how the value of the STATENAME variable is
used to complete drill-down URLs.

This sample is available in the SAS Sample Library under the name GWBJAMAP.
For further information, see “Configuring the HTML Drill-Down Mode” on page 410.

/* Close the ODS listing destination to conserve resources. */
ods listing close;

/* Specify a path and name for the HTML output file. */
ods html

file="your_web_path/your_HTML_file.htm"
parameters=("DRILLDOWNMODE"="HTML")
parameters=("DRILLPATTERN"=’http://www.state.{&statename}.us’)
parameters=("BACKCOLOR"="FFFFFF");

/* Specify the Java driver and set up customizations. */
goptions reset=all device=java cback=white

border gunit=pct htext=3
xpixels=500 ypixels=350

/* Specify colors for map regions. */
colors=(
cxa5c09d,cxff358f,cx0431f8,cxffff00,cxd3a4ef,cxff8287,
cxd3a4ef,cxffc2d3,cx0431f8,cxffffc4,cx00edcf,cxcd7384,
cxf0eded,cx999797,cxa5c09d,cx008080,cxfabc46,cxff358f,
cx3f769a,cxff8600,cx45ab90,cxca4db0,cxf6d3a5,cx274776,
cxff72b0,cxb0c1f4,cx7dff88,cx4a97ed,cxed5662,cxffff81,
cx922e83,cxa5c09d,cxff358f,cx0431f8,cxffff00,cxd3a4ef,
cxff8287,cx5d55b3,cxffc2d3,cx0431f8,cxffffc4,cx00edcf,
cxcd7384,cxf0eded,cxca4db0,cx5d55b3,cx008080,cxfabc46,
cxd3a4ef,cx3f769a,cx5d55b3);

/* Create data for the graph. */
proc sql;

create table work.mydata as
select unique state from maps.us;

420 HTML Drill-Down Mode Chapter 11

quit;
run;

data work.mydata;
length statename $1020;
set work.mydata;

/* Place the state name in the data set. */
statename=trim(left(lowcase(fipstate(state))));

run;

title1
"Click on a state to go to that state’s home page";

/* Generate the graph. */
proc gmap map=maps.us

data=work.mydata all;
id state;
choro statename / levels=1 discrete

coutline=black
nolegend
des=’US Government Web Sites’
name=’usgov’;

run; quit;

/* Close the HTML output file and open the listing destination. */
ods html close;
ods listing;

421

C H A P T E R

12
Attributes and Parameters for
Java and ActiveX

Specifying Parameters and Attributes for Java and ActiveX 421

Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options) 422
Specifying the Location of the ActiveX Control 422

Specifying the Location of the Java Applets 423

Specifying the CODEBASE= URL 423
Specifying the Location of the Java Plug-In (CODEBASE= Attribute) 424

Parameter Reference for Java and ActiveX 424

Parameter Definitions 427

Specifying Parameters and Attributes for Java and ActiveX
You can specify attributes and parameters in ODS to override default values in Java

and ActiveX. No attributes or parameters are required. SAS provides workable defaults
in most cases.

Attributes can be any HTML name/value pair that is valid inside the initial
(opening) OBJECT tag. Parameters are values that appear in the body of the OBJECT
tag, to configure the appearance or functionality of a Java applet or the ActiveX control.

Attributes and parameters are specified as options of one of the available ODS
statements, such as ODS HTML:

ODS HTML

<ATTRIBUTES=(‘attr-name’=‘attr-value’)>

<PARAMETERS=(‘param-name’=‘param-value’)>

<other-options>;

The preceding syntax applies to all applicable ODS statements, such as HTMLCSS,
MARKUP, PDF, PS, and RTF.

You can specify more than one name/value pair (separated by blank spaces) inside
the parenthesis of an ATTRIBUTES= or PARAMETERS= option. You can also specify
multiple ATTRIBUTES= and PARAMETERS= options in a single ODS statement.
These options can be specified in any order in the ODS statement.

Most examples in the following topics specify parameters:
� “Examples of Interactive Java Output” on page 415
� “ActiveX Examples” on page 393

For information on other ODS statement options, see the SAS Output Delivery
System: User’s Guide.

In HTML output that runs an applet or a control, all values of the ATTRIBUTES=
option appear in the opening OBJECT tag. For example, a SAS/GRAPH program can
specify the WIDTH attribute:

422 Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options) Chapter 12

ods html file=‘C:\sashtml\piechart.htm’
attributes=(’width’=’720’);

In the HTML output file, the WIDTH attribute appears inside the beginning OBJECT
tag:

<OBJECT height=480 width=720>
/* parameters and graph info here */
</OBJECT>

Valid attribute names are those that are enabled for the OBJECT tag in HTML.
Valid attributes must also be specified as required by Java or ActiveX device drivers
that run in the operating environment.

All of the name/value pairs that are specified in the ODS statement option
PARAMETERS= appear in the body of the OBJECT tag. For example, the
BACKIMAGE parameter provides a path to an image that the applet or control displays
behind the graphical output in the browser window.

Valid parameter values for the ActiveX control, Graph applet, Map applet, and
Contour applet are defined in “Parameter Reference for Java and ActiveX” on page 424.
Parameters for other applets, such as Metaview, are provided in the sections that apply
to those applets, as in “Metaview Applet Parameters” on page 475.

Specifying the Location of Control and Applet Files (CODEBASE= and
ARCHIVE= Options)

When you generate Web presentations with the Java and ActiveX device drivers,
SAS generates HTML pages that automatically look for the Java archive files or the
ActiveX control file in the default installation location. If you install the ActiveX control
.exe file or the Java archive .jar files in a location other than the default or if you
want to publish Output Delivery System (ODS) output containing the SAS/GRAPH
control or the applets in a Web server, then you may need to specify the location of the
.exe file or the .jar files when you generate your Web presentation.

You can use the CODEBASE= option to specify the location of the ActiveX control or
the Java applets. You can use the ARCHIVE= option to specify the name of the Java
archive file.

Note: The ActiveX control must be installed locally on each PC where the web
presentation will be viewed. �

Specifying the Location of the ActiveX Control

If you use the ActiveX device driver with ODS to generate output containing an
ActiveX control, then specify the location and version of the .exe file with the
CODEBASE= option on the ODS statement. Specify the directory and filename of the
.exe file. (The default filename is sasgraph.exe.) The CODEBASE location may be
specified as a path name or as a URL. (See “Specifying the CODEBASE= URL” on page
423 for more information.) If you have installed previous versions of the ActiveX
control, then you also need to specify the version that you want to use. For example, if
your .exe file is in /sasweb/graph) you would specify

ods html file="/path/to/mygraph.html"
codebase="/sasweb/graph/sasgraph.exe#version=9,1,0,304";

Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options) 423

If you use the DS2GRAF macro to generate output containing an ActiveX control,
then specify the location and version of the .exe file with the CODEBASE= macro
argument. Use the %STR function to enclose the argument value. For example:

%ds2graf(codebase=%str(http://web_server_name/sasweb/graph/sasgraph.
exe#version=9,1,0,304),htmlfile=your_path_and_filename.htm
...

Specifying the Location of the Java Applets

By default, the location of the SAS Java archive files is specified by the
APPLETLOC= system option. This value is the default value of the CODEBASE=
parameter. If the default location is accessible by users who will be viewing your Web
presentation, and the SAS Java archive is installed at that location, then you do not
need to change the value of the CODEBASE= parameter.

If you use the Java device driver with ODS to generate output containing a SAS/
GRAPH applet, then specify the path to the .jar file with the CODEBASE= option on
the ODS statement. Specify only the directory of the .jar file. The CODEBASE
location may be specified as a path name or as a URL. (See “Specifying the
CODEBASE= URL” on page 423 for more information.) For example, if your .jar file is
in /sasweb/graph), you would specify

ods html file="/path/to/mygraph.html"
codebase="/sasweb/graph";

The ARCHIVE= option specifies the file name of the .jar file. You do not need to
specify the ARCHIVE= option on the ODS statement unless you have renamed the
.jar files.

For applets generated with macros, specify the CODEBASE= argument for the
macro. For example:

%ds2const(codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm
...

);

For the DS2GRAF, DS2CSF, and META2HTM macros, you must also specify the
ARCHIVE= macro argument. For example:

%meta2htm(htmlfref=_webout,openmode=replace,
codebase=http://web_server_name/sasweb/graph

archive=metafile.zip);

For the DS2TREE and DS2CONST macros, you do not need to specify the
ARCHIVE= argument unless you have renamed the .jar files.

Specifying the CODEBASE= URL

If the value that you specify for CODEBASE= is a URL, it can be a full URL (for
example, http://your_server/sasweb/graph), or it can be relative to your Web server
(/sasweb/graph). If you are publishing HTML only on Web servers where the control or
the applets are installed in a common location, it is generally recommended that you use
the shorter, relative URL. A relative URL will allow you to move the HTML to any Web
server without modifying the HTML (assuming the control or the applets are installed
on that server). If you are creating HTML to be viewed directly via a file: URL, sent

424 Specifying the Location of the Java Plug-In (CODEBASE= Attribute) Chapter 12

by e-mail or copied to Web servers without the control or the applets installed, then you
should use a full URL to point to the applet .jar files at a known location.

Specifying the Location of the Java Plug-In (CODEBASE= Attribute)
The CODEBASE= attribute on the ODS statement specifies the location of the Java

plug-in from Sun Microsystems. By default, SAS points to the Web site of the Java
plug-in from Sun Microsystems. If necessary, you can change the location of the Java
plug-in by specifying the CODEBASE= attribute on the ODS statement. For example:

ods html file=’c:\myfile.htm’
attributes=(’codebase’=’http://www.ourco.com/ourPlugin/j2re--1_4_1--windows-i586.exe’);

On Windows systems, the user is prompted to install the plug-in if it is not already
installed. On other systems, the plug-in can be installed from the Sun Microsystems site
(http://www.sun.com) or from one of the SAS Third Party Software Components CDs.

Parameter Reference for Java and ActiveX
The following table lists the parameters that you can specify in programs that use

the JAVA and ACTIVEX device drivers. Output from the JAVA device driver runs in the
Graph applet, Map applet, or Contour applet. Output from the ACTIVEX device driver
runs in theSAS/GRAPH Control for ActiveX.

For information on parameters for other applets, see the sections that apply to those
applets, such as “Metaview Applet Parameters” on page 475.

Parameter definitions appear after the following table.

Table 12.1 Parameters Enabled for Java and ActiveX

Parameter
ActiveX Graph

Applet
Map Applet Contour

Applet

AMBIENT on page 427 ♦ ♦

BACKCOLOR on page 427 ♦

BACKDROPCOLOR on page 427 ♦

BACKIMAGE on page 427 ♦ ♦ ♦ ♦

CLIPTIPS on page 427 ♦

COLORNAMELIST on page 427 ♦

COLORNAMES on page 427 ♦ ♦

COLORSCHEME on page 428 ♦ ♦

DDLEVELn on page 428 ♦ ♦ ♦

DIRECT on page 428 ♦ ♦

DRAWIMAGE on page 428 ♦ ♦ ♦

DRAWMISSING on page 428 ♦

DRAWSIDES on page 428 ♦

DRILLDOWNFUNCTION on page
428

♦ ♦ ♦

Parameter Reference for Java and ActiveX 425

Parameter
ActiveX Graph

Applet
Map Applet Contour

Applet

DRILLDOWNMODE on page 429 ♦ ♦ ♦

DRILLPATTERN on page 429 ♦ ♦ ♦

DRILLTARGET on page 429 ♦ ♦ ♦

DUPLICATEVALUES on page 429 ♦

FILLPOLYGONEDGES on page 430 ♦

FREQNAME on page 430 ♦

G_COLOR on page 430 ♦ ♦ ♦

G_COLORV on page 430 ♦ ♦ ♦

G_DEP on page 430 ♦ ♦ ♦

G_DEPTH on page 430 ♦ ♦ ♦

G_DEPTHV on page 430 ♦ ♦ ♦

G_DEPV on page 430 ♦ ♦ ♦

G_GROUP on page 431 ♦ ♦ ♦

G_GROUPV on page 431 ♦ ♦ ♦

G_INDEP on page 431 ♦ ♦ ♦

G_INDEPV on page 431 ♦ ♦ ♦

G_LABEL on page 431 ♦

G_LABELV on page 431 ♦

G_SUBGR on page 431 ♦ ♦ ♦

G_SUBGRV on page 431 ♦ ♦ ♦

GRADIENTBACKGROUND on page
431

♦ ♦ ♦ ♦

GRADIENTENDCOLOR on page 431 ♦ ♦ ♦ ♦

GRADIENTSTARTCOLOR on page
431

♦ ♦ ♦ ♦

HELPLOCATION on page 432 ♦ ♦ ♦ ♦

HONORASPECT on page 432 ♦

IMAGEPOSX on page 432 ♦ ♦ ♦

IMAGEPOSY on page 432 ♦ ♦ ♦

LEGENDFIT on page 432 ♦

LEGENDFONT on page 432 ♦

LEGENDFONTSIZE on page 432 ♦

LEGENDHEIGHTPERCENT on page
432

♦

LEGENDPERCENT on page 432 ♦

LEVELOFDETAIL on page 432 ♦

LEGENDWIDTHPERCENT on page
432

♦

426 Parameter Reference for Java and ActiveX Chapter 12

Parameter
ActiveX Graph

Applet
Map Applet Contour

Applet

LIGHTING on page 433 ♦

LOADFUNC on page 433 ♦

LOCALE on page 433 ♦ ♦ ♦

LODCOUNT on page 433 ♦

MENUREMOVE on page 433 ♦

MINLEGENDFONTSIZE on page
433

♦

MISSINGCOLOR on page 434 ♦

NAME on page 434 ♦ ♦ ♦

NAVIGATERENDERMODE on page
434

♦ ♦

NOJSOOBJECT on page 434 ♦

OUTLINECOLOR on page 434 ♦ ♦ ♦

OUTLINES on page 434 ♦

OVERFLOWCOLOR on page 434 ♦ ♦

PATTERNSTRIP on page 434 ♦ ♦ ♦

PROJECTION on page 434 ♦

PROJECTIONRATIO on page 434 ♦

RENDERMODE on page 435 ♦

RENDEROPTIMIZE on page 435 ♦

RENDERQUALITY on page 435 ♦ ♦

SHOWBACKDROP on page 435 ♦

SHOWLEGEND on page 436 ♦

SIMPLEDEPTHSORT on page 436 ♦

SIMPLETHRESHOLD on page 436 ♦

STACKED on page 436 ♦

STACKPERCENT on page 436 ♦

SURFACESIDECOLOR on page 436 ♦

TIPBACKCOLOR on page 436 ♦

TIPBORDERCOLOR on page 436 ♦

TIPS on page 437 ♦ ♦ ♦ ♦

TIPMODE on page 437 ♦ ♦ ♦ ♦

TIPSTEMSIZE on page 437 ♦

TIPTEXTCOLOR on page 437 ♦

UNDERFLOWCOLOR on page 437 ♦

USERFMTn on page 437 ♦

VIEW2D on page 437 ♦ ♦ ♦

Parameter Definitions 427

Parameter
ActiveX Graph

Applet
Map Applet Contour

Applet

VIEWPOINT on page 438 ♦

XBINS on page 437 ♦

YBINS on page 437 ♦

Parameter Definitions

AMBIENT=light-level
specifies the intensity of non-directional ambient light in relation to direct light.
Valid values range from 0.0 to 1.0. The default value is 0.4. The sum of direct
light (see the DIRECT parameter) and ambient light can never exceed 1.0. Direct
light is given priority. If you specify a sum of these two values that is greater than
one, the ambient value will be reduced so that the sum of the two values equals
one. This parameter is valid in the ActiveX control and for the Contour applet.

BACKCOLOR=color
specifies the background color of the applet. The default value is the default
window color of the operating system. This parameter is valid only in the Contour
applet.

BACKDROPCOLOR=color
specifies the color of all walls in the applet, including the floor. The default value
is white. This parameter is valid only in the Contour applet.

BACKIMAGE=image-URL
specifies the URL of the image that is applied to the background of the applet
image area. By default, no image is used and the background is drawn in a single
solid color. The way that the image will be applied to the background is specified
with the DRAWIMAGE parameter. For the ActiveX control, the background image
must be in GIF, JPEG, or BMP format. For the Graph, Map, or Contour applet,
the URL must be absolute and not relative.

CLIPTIPS=TRUE | FALSE
indicates whether data tips should be clipped. The default value of TRUE does not
display data tips when the cursor is outside of the plot area. A value of FALSE
displays data tips when the cursor is outside of the plot area. The data tips
window hugs the boundary and displays the value of the element that is closest to
the cursor along that edge of the plot. This parameter is valid only in the Contour
applet.

COLORNAMELIST=string
specifies which of two named color lists has priority when searching for named
colors. The default is to search the list of HTML 3.2 colors first, followed by the
SAS name list. Specifying SAS as the string reverses this priority, giving SAS
names higher priority. This parameter is valid only in the Contour applet.

COLORNAMES=name1=value1,name2=value2, ... nameN=valueN
specifies the color names and associated 6-digit hexadecimal RGB values that will
be displayed in the Standard Colors list box in the Color Edit dialog box. In the
parameter value, no white space is allowed. The color name can be any valid
string, and is displayed as specified in the list box. This parameter is valid in the
Graph, Map, and Contour applets.

428 Parameter Definitions Chapter 12

COLORSCHEME=scheme-name
specifies the name of the color scheme that is applied to the graph. By default, no
color scheme is applied to the graph. This parameter is valid in the ActiveX
control and the Graph applet.

DDLEVELnconfiguration-string
configures the drill-down graph that is generated at the drill-down level that is
specified by the letter n. The drill-down graph is configured using drill-down tags
such as G_INDEPV. For details, see “Using Drill-Down Tags” on page 412. This
parameter is valid in the ActiveX control and in the Graph and Map applets.

DIRECT=light-level
specifies the intensity of direct light (from a light source) in relation to the
ambient (non-directional) light. Valid values range from 0.0 to 1.0. The default
value is 0.6. The sum of direct light and ambient light (see the AMBIENT
parameter) cannot exceed 1.0. Direct light is given priority. If you specify a sum of
these two values that is greater than one, the level of ambient light will be
reduced so that the sum of the two values equals one. This parameter is valid in
the ActiveX control and the Contour applet.

DRAWIMAGE=background-image-application
specifies how the image specified in the BACKIMAGE parameter is applied to the
background of the applet window. This parameter is valid for the Graph, Map, and
Contour applets. Here are the valid values:

CENTER
centers a single instance of the image in the background, without resizing the
image.

POSITION
places a single instance of the image at the location supplied by the
IMAGEPOSX and IMAGEPOSY parameters, without resizing. If these
parameters are not specified, then the image is positioned at the top left
corner of the applet window.

SCALE
fills the entire background of the applet window with a single instance of the
specified image, which is resized as necessary.

TILE
fills the entire background of the applet window using multiple instances of
the specified image, without resizing that image. The images are arranged in
rows and columns.

DRAWMISSING=TRUE | FALSE
specifies whether missing values should be drawn. By default, missing values are
not drawn. Missing values are drawn only when this parameter is set to TRUE
and the Styles menu option is set to Block, Smooth, or Surface. This parameter is
valid only in the Contour applet.

DRAWSIDES=TRUE | FALSE
specifies that sides should be drawn when the value of the STACKED parameter is
TRUE and when the Styles menu option is set to Surface, Areas, or
LinesAndAreas. The default value is FALSE. To override this parameter, you can
specify an ODS style definition. This parameter is valid in the Contour applet.

DRILLDOWNFUNCTION=function-name
DRILLFUNC=function-name

specifies the name of the JavaScript function that is called in Script drill-down
mode. This parameter is valid in the ActiveX control and in the Graph and Map
applets.

Parameter Definitions 429

DRILLDOWNMODE=HTML | LOCAL | SCRIPT | URL
specifies the drill-down mode. This parameter is valid in the ActiveX control and
in the Graph and Map applets. Here are the valid values:

HTML
uses a substitution string to dynamically generate a URL based on the
selected chart elements, then passes the URL to the browser.

Local mode (Graph applet only)
constructs and displays a new graph based on the data in the previous level
of a drill-down graph.

Script mode
invokes the JavaScript function specified in the DRILLDOWNFUNCTION
parameter, and passes into the function data from the selected graph element.

URL mode
provides static drill-down, using an image map in the HTML file. The image
map is generated using the IMAGEMAP= and HTML= options in
SAS/GRAPH.

The default drill-down mode is Local for the Graph applet. The Map applet and
the ActiveX control do not enable user-selectable drill-down modes.

DRILLPATTERN=substitution-string
specifies how to construct the drill-down URL when the drill-down mode is HTML.
The substitution string is constructed with drill-down tags, which are expressed in
parameters such as G_DEPV, as described in “Using Drill-Down Tags” on page 412.
This parameter is valid in the ActiveX control and in the Graph and Map applets.

DRILLTARGET=target
specifies where the drill-down destination is displayed in the browser. The default
target is _BLANK, which is an HTML reserved word that displays the drill-down
destination in a new browser window. The target can be specified as another
reserved target name or as the name of a window or frame in your Web
presentation. This parameter is valid in the ActiveX control and in the Graph and
Map applets.

DUPLICATEVALUES=string
determines how the applet will handle data values for grid positions that already
have a data value. This parameter is valid in the Contour applet. Specify one of
the following values:

COUNT
stores at each grid location the number of values found for that location.

FIRST
stores the first value found.

LAST
stores the last value found.

MAX
stores the maximum value found.

MEAN
stores the mean (average) of all values found. This is the default value.

MIN
stores the maximum value found.

430 Parameter Definitions Chapter 12

NMISS
stores the number of missing values found.

RANGE
stores the range of values found. The range is computed as the maximum
value minus the minimum value.

SUM
stores the sum of all values found.

FILLPOLYGONEDGES=ALWAYS | NEVER | OS/2
specifies whether to adjust rendering to fix a temporary vendor rendering defect. If
you use Netscape on OS/2, then polygon edges do not always fill in correctly. If the
value of this parameter equals the os.name Java system property, then the
Contour applet sets the default value of this parameter to OS/2, which lets
drawPolygon correctly fill in (render) the polygon edges, yet this extra drawing
effort slows performance. If you set this parameter to the value of the parameter
of the name of the operating system returned in os.name, then the adjusted
rendering is performed when the applet runs on that operating system because the
applet notifies the Java console. When you set the value to ALWAYS, the adjusted
rendering is always performed, regardless of the operating system on which the
applet is running. Similarly, if you set the value to NEVER, the adjusted
rendering is never performed on any operating system. This parameter is valid
only in the Contour applet.

FREQNAME=variable-name
specifies a name for a new variable that contains the frequency count when a
frequency chart is produced. By default, the name assigned to this variable is
“Frequency”. This parameter may be overidden if you specify an ODS style
definition. This parameter is valid in the Graph applet.

G_COLOR=variable-name
specifies a new color variable for the current drill-down level. This parameter is
valid in the ActiveX control and in the Graph and Map applets.

G_COLORV=variable-name
specifies that the current color variable is the same variable that was used to
configure the previous drill-down level. This parameter is valid in the ActiveX
control and in the Graph and Map applets.

G_DEP=variable-name
specifies a new dependent variable for the current drill-down level. This
parameter is valid in the ActiveX control and in the Graph and Map applets.

G_DEPV=variable-name
specifies that the drill-down graph at the specified drill-down level is to use the
same dependent variable that was used in the previous drill-down level. This
parameter is valid in the ActiveX control and in the Graph and Map applets.

G_DEPTH=variable-name
specifies a new depth variable for the current drill-down level. Drill-down graphs
that use this variable can be vertical bar charts or scatter plots. This parameter is
valid in the ActiveX control and in the Graph and Map applets.

G_DEPTHV=variable-name
specifies that the depth variable for the current drill-down level is the same depth
variable that was used in the previous drill-down level. Drill-down graphs that
use this variable can be vertical bar charts or scatter plots. This parameter is
valid in the ActiveX control and in the Graph and Map applets.

Parameter Definitions 431

G_GROUP=variable-name
specifies a new group variable for the current drill-down level. Drill-down graphs
that use this variable can be bar charts. This parameter is valid in the ActiveX
control and in the Graph and Map applets.

G_GROUPV=variable-name
specifies that this group variable should be the same group variable that was used
at the previous drill-down level. Drill-down graphs that use this variable can be
bar charts. This parameter is valid in the ActiveX control and in the Graph and
Map applets.

G_LABEL=variable-name
specifies a new label variable for the current drill-down level. Drill-down graphs
that use this variable can be maps. This parameter is valid in the ActiveX control
and in the Graph and Map applets.

G_LABELV=variable-name
specifies that this label variable should be the same label variable that was used
at the previous drill-down level. Drill-down graphs that use this variable can be
maps. This parameter is valid in the ActiveX control and in the Graph and Map
applets.

G_INDEP=variable-name
specifies a new independent variable for the current drill-down level. Drill-down
graphs that use this variable can be charts and maps. This parameter is valid in
the ActiveX control and in the Graph and Map applets.

G_INDEPV=variable-name
specifies that an independent variable at the current drill-down level is the same
variable that was used at the previous drill-down level. Drill-down graphs that
use this variable can be charts and maps. This parameter is valid in the ActiveX
control and in the Graph and Map applets.

G_SUBGR=variable-name
specifies a new subgroup variable for the current drill-down level. Drill-down
graphs that use this variable can be bar charts and scatter plots. This parameter
is valid in the ActiveX control and in the Graph and Map applets.

G_SUBGRV=variable-name
specifies that a subgroup variable at this drill-down level is the same subgroup
variable that was used at the previous drill-down level. Drill-down graphs that
use this variable can be bar charts and scatter plots. This parameter is valid in
the ActiveX control and in the Graph and Map applets.

GRADIENTBACKGROUND=TRUE | FALSE | VERTICAL | HORIZONTAL
specifies that the background of the window is or is not using a color gradient. To
override this parameter, you can specify an ODS style definition. This parameter
is valid in the ActiveX control and in the Graph, Map, and Contour applets. TRUE
and FALSE are valid only for the Graph and Map applets. VERTICAL and
HORIZONTAL specify the orientation of the color gradient and are only valid for
the Contour applet. This parameter is ignored in the Contour applet if you specify
the BACKIMAGE parameter. Use GRADIENTSTARTCOLOR and
GRADIENTENDCOLOR to define the colors used to draw the background.

GRADIENTENDCOLOR=color
GRADIENTSTARTCOLOR=color

specify the start color and the end color when two colors are blended in a gradient
across a wall, background, or graph element. The color can be an HTML 3.2 color
name or a 6-digit hexadecimal RGB value. This parameter may be overidden if

432 Parameter Definitions Chapter 12

you specify an ODS style definition. This parameter is valid in the ActiveX control
and in the Graph, Map, and Contour applets.

HELPLOCATION=URL
specifies a non-default location for application-specific help that replaces the
default help. The default help location is the SAS Web site. This parameter is
valid in the ActiveX control and in the Graph, Map, and Contour applets.

HONORASPECT=TRUE | FALSE
specifies whether the aspect of the data being displayed is or is not honored. The
default value FALSE scales the shortest axis (x or y). This parameter is valid in
the Contour applet. Note that certain annotations, such as pies, may display
differently in the applet than in SAS when the value is FALSE.

IMAGEPOSX=horizontal-pixels
IMAGEPOSY=vertical-pixels

specify the location of the upper-left corner of the background image that is named
in the BACKIMAGE parameter. These parameters are ignored unless the value of
the DRAWIMAGE parameter is POSITION. Positive pixel values are measured
from the top-left corner of the applet window. Negative pixel values are measured
from the bottom-right corner of the applet window. These parameters are valid in
the ActiveX control and in the Graph, Map, and Contour applets.

LEGENDFIT=TRUE | FALSE
specifies the default size of the font to be used in the legend. Only positive values
are valid. This parameter is valid only in the Contour applet.

LEGENDFONT=font
specifies which font to use in the legend. Except for the case, the font name must
match the name of a Java font available in the browser. This parameter is valid
only in the Contour applet.

LEGENDFONTSIZE=font-size
specifies whether the legend should fit within the height of the contour plot area.
By default the legend occupies as much of the applet height as is feasible. If
TRUE, the height of the legend is restricted to the height of the contour plot
within the legend. When you set this parameter, any value specified for
LEGENDHEIGHTPERCENT is ignored. This parameter is valid only in the
Contour applet.

LEGENDHEIGHTPERCENT=percentage
restricts the height of the legend to a specified percentage of the height of the
Contour applet. A vertical margin is always maintained. Valid values are greater
than 0 and less than 100 percent, with the default value being 20. This parameter
is valid only in the Contour applet.

LEGENDPERCENT=percentage
specifies how much of the Contour applet space (width) to use as the legend area.
Valid values are 0 to 80 percent. The default value is 20. This parameter is valid
only in the Contour applet.

LEGENDWIDTHPERCENT=percentage
restricts the width of the legend to a specified percentage of the width of the
Contour applet. A horizontal margin is always maintained. Valid values are
greater than 0 and up to 80 percent, which the default value being 20. This
parameter is valid only in the Contour applet.

LEVELOFDETAIL=TRUE | FALSE
specifies whether the level-of-detail processing should be used when drawing plots.
The default value is TRUE, which allows level-of-detail processing. See also the
LODCOUNT parameter. This parameter is valid only in the Contour applet.

Parameter Definitions 433

LIGHTING=HEADLIGHT | OVERHEAD | NORTHEAST | SOUTHEAST
specifies the position of the light source relative to the position of the graph. The
default value is HEADLIGHT, which directs two light sources at the graph from
the front-center of the screen. This parameter is valid in the Contour applet.

LOADFUNC=Java-method
specifies the name of a JavaScript method in the HTML output file that loads
values and specifications. This parameter is valid in the Graph applet. This
parameter should not be specified if you are using ODS.

LOCALE=xx_yy<_variant>
specifies the language and country to use when displaying locale-sensitive text.
This parameter is valid in the Graph, Map and Contour applets. Here are the
values for this parameter, which are java.util locale specifiers:

xx
represents the required two-digit ISO-639 language code, as defined at
http://www.loc.gov/standards/iso639–2/.

yy
represents the required two-digit ISO-3166 country code, as defined at
http://www.niso.org/standards/resources/3166.html.

<_variant>
represents the optional variant code, which depends on the browser and
operating environment. If a variant is specified, the initial underscore
character is required.

LODCOUNT=number-of-cell(s)
specifies the number of cells to use as the level-of-detail threshold. The default
value is 2000. When the number of cells involved in drawing a plot in the applet
exceeds this value and level-of-detail processing is on, then some cells are ignored
when rendering the plot representation. See also the LEVELOFDETAIL
parameter. This parameter is valid only in the Contour applet.

MENUREMOVE=menu-item(s)
disables items in the Graph applet menu. Here is the syntax of menu-item(s):

menu1-item<.menu2-item... .menuN-item, menu–item2, ...menu-itemN>

In the menu-item(s) value, periods (“.”) separate menu levels in menu paths. In
menu paths, the menu item that is disabled is the last item in the path. Commas
separate menu items and menu paths in a series. Menu items are specified using
the text that is displayed by the applet, with blank spaces removed. For example,
the menu item Graph Properties would be specified as GRAPHPROPERTIES. To
apply the MENUREMOVE parameter, first generate the graph without the
MENUREMOVE parameter. Then note the menu paths of the items that you wish
to disable. This parameter is valid in the Graph applet.

MINLEGENDFONTSIZE=font
specifies the minimum font to be used when attempting to fit the legend in the
available applet area. Only positive integers are valid values. This parameter is
valid only in the Contour applet.

434 Parameter Definitions Chapter 12

MISSINGCOLOR=color
specifies an HTML 3.2 color name or 6-digit hexadecimal RGB value that is to be
used to draw missing values. The default color is black. This parameter is valid in
the Contour applet.

NAME=applet-name
specifies the name for this instance of the applet. Use this parameter only if you
have more than one instance of the APPLET tag in your HTML file, and if you
have included your own scripts or DHTML that communicates with or acts on a
particular instance of the applet. This parameter may be overidden if you specify
an ODS style definition. This parameter is valid in the Graph, Map, and Contour
applets.

NAVIGATERENDERMODE=NONE | POINT | SOLID | WIREFRAME
specifies how to render the graph during pan, rotate, and zoom. The default value
is WIREFRAME. This parameter is valid when the RENDERQUALITY parameter
is set to CUSTOM. This parameter may be overidden if you specify an ODS style
definition. This parameter is valid in the Contour applet.

NOJSOOBJECT
specifies that no JavaScript callback options can be created or used within the
applet. This parameter may be overidden if you specify an ODS style definition.
This parameter is valid in the Graph applet.

OUTLINECOLOR=color
specifies the HTML 3.2 color name or 6-digit hexadecimal RGB value for the
outlines of graph elements. This parameter is valid in the ActiveX control and in
the Graph and Contour applets.

OUTLINES=TRUE | FALSE
specifies whether outlines should be drawn for the current contour style. Outlines
are drawn when this parameter is TRUE and the Styles menu option is set to
Area, Block, or Surface. This parameter is valid only in the Contour applet.

OVERFLOWCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB color for colors
that are assigned to data values that exceed the maximum range of colors that
have been defined in the color palette. The default value is CYAN. This parameter
is valid in the ActiveX control and in the Contour applet.

PATTERNSTRIP=TRUE | FALSE
removes preceding and trailing white space from drill-down substitution patterns
before the substituted text is added into a dynamically generated drill-down URL.
The default value is FALSE. This parameter is valid in the ActiveX control and in
the Graph and Map applets.

PROJECTION=ORTHOGRAPHIC | PERSPECTIVE
specifies the type of projection that is used to draw contours. The default value is
ORTHOGRAPHIC. This parameter is valid in the Contour applet.

PROJECTIONRATIO=plot-size-ratio
specifies the ratio of the plot area (applet size minus legend reserve) to the longest
dimension of the plot. For example, specifying a value of 2.0 means that the area
that contains the contour plot is twice the size of the longest plot dimension. This
guarantees that the plot will be surrounded by a space that measures half the
length of the longest projection (not including axes). The default value is 1.5.
Values must be greater than or equal to 1.0. This parameter is valid in the
Contour applet.

Parameter Definitions 435

RENDERMODE=string
specifies how to render the contours when you are not navigating (panning,
rotating, or zooming) the Contour applet. This parameter is valid only in the
Contour applet. In some cases, changing the representation can provide additional
information about the image, such as more clearly displaying cell boundaries.
Here are the valid values for the polygon representations that determine how the
Contour applet image can be drawn:

POINT
draws polygons using only single-pixel points at the polygon vertices.

SOLID
draws filled polygons. This is the default value and the normal
representation.

WIREFRAME
draws polygons using only lines to represent their edges.

RENDEROPTIMIZE=ALWAYS| NAVIGATION | NEVER | ONNAVIGATION
sets the default for rendering optimization for the Contour applet. This parameter
is valid only in the Contour applet. To correctly render images, the applet must
first sort the polygons that comprise the image. Some polygons require additional
sorting steps to ensure that they are correctly drawn. In many cases, these
additional steps are unnecessary because they only slow applet performance and
do not add to image quality. This parameter lets you specify if and when the
applet should attempt to optimize or reduce the number of sorting operations to be
performed. The RENDEROPTIMIZE parameter is ignored unless you set the
RENDERQUALITY parameter to CUSTOM. The default value depends on the
value of the RENDERQUALITY parameter.

When the RENDERQUALITY parameter is set to BESTQUALITY, the default
value for the RENDEROPTIMIZE parameter is NEVER.

When the RENDERQUALITY parameter is set to FASTERNAVIGATION, the
default value for the RENDEROPTIMIZE parameter is ONNAVIGATION.

When the RENDERQUALITY parameter is set to BESTPERFORMANCE, the
default value for the RENDEROPTIMIZE parameter is ALWAYS.

RENDERQUALITY=value
specifies how two available rendering algorithms, one slower and one faster, are
applied to the graph. This parameter may be overidden if you specify an ODS
style definition. This parameter is valid for the Map and Contour applets. Here
are the valid values:

BESTPERFORMANCE | PERFORMANCE
always uses the faster, less complex rendering algorithm.

BESTQUALITY | QUALITY
always uses the slower, more complex rendering algorithm.

FASTERNAVIGATION | NAVIGATION
uses the faster, less complex rendering algorithm during pan, rotate, and
zoom, and uses the more complex algorithm otherwise. This is the default
value.

CUSTOM (Contour applet only)
lets the user select individual elements that control speed and quality
directly, rather than as a group when rendering an image.

SHOWBACKDROP=TRUE | FALSE
specifies whether all walls (including the floor) should be displayed. This
parameter overrides any ODS settings and is valid only in the Contour applet.

436 Parameter Definitions Chapter 12

SHOWLEGEND=TRUE | FALSE
specifies whether the legend should be displayed. This parameter overrides any
ODS settings and is valid only in the Contour applet.

SIMPLEDEPTHSORT=TRUE | FALSE
the default value TRUE indicates that the simpler polygon sorting algorithm is
used when rendering the plot. This parameter is valid in the Contour applet.

SIMPLETHRESHOLD=number-of-elements | NEVER
specifies an integer for the threshold that is used to determine if the graph should
be rendered using simple geometry. For bar charts, simple geometry means that
graphical elements are represented as lines. For plots, simple geometry means
that graphical elements are represented as plus signs (+).

If the graph contains a number of elements that is greater than the
SIMPLETHRESHOLD value, simple geometry is used and the Shape menu is
made unavailable. The default value is 500. You can also specify the value
NEVER, in which case simple geometry is never used and the Shape menu is
always available.

Note that if you select and display a subset of the graph, and if the number of
elements in the resulting graph drops below the value of the
SIMPLETHRESHOLD parameter, regular markers are drawn and the Shape
menu is made available.

This parameter is valid in the Graph applet.

STACKED=TRUE | FALSE
specifies whether the contours should displayed in stacked form, where height is
added to the contour plot based on the contour level. This parameter takes effect
only when the Style menu option is set to Areas or LinesAndAreas. The default
value of this parameter is FALSE. See also the DRAWSIDES parameter. This
parameter is valid in the Contour applet.

STACKPERCENT=height-percentage
specifies the maximum stacking height as a percentage of the longest axis. The
default value is 30. This parameter is valid in the Contour applet.

SURFACESIDECOLOR=color
specifies the color of the sides of a contour plot when that plot uses multiple colors.
The value of the parameter is ignored when drawing a surface plot in a single
color. The default color is the color of the minimum data value. The value must be
an HTML 3.2 color name or a 6-digit hexadecimal RGB value. This parameter is
valid in the Contour applet.

TIPBACKCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the
background of the data tips. The default value is YELLOW. This parameter is
valid in the Contour applet.

TIPBORDERCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the
border of the data tips. The default value is BLACK. This parameter is valid in
the Contour applet.

Parameter Definitions 437

TIPS=NONE | STATIONARY | TRUE | FALSE
specifies whether to display data tips. NONE and STATIONARY are valid values
only for the Graph and Map applets, and TRUE and FALSE are valid only for the
Contour applet. Specifying the default value of STATIONARY or TRUE enables
displays data tips, and NONE and FALSE disables this. This parameter is valid in
the ActiveX control and in the Graph, Map, and Contour applets.

TIPMODE=STANDARD | HTML | TABULAR
specifies which of two types of data tips are to be displayed. One set of data tips is
specified with the TIPS parameter on page 437. The other set of data tips is
specified with the HTML= statement option. Specify TIPMODE=HTML to display
only the data tips that are indicated by the HTML= statement option. Specify
TIPMODE=TABULAR to display only the data tips that are indicated by the value
of the TIPS parameter. Specify TIPMODE=STANDARD to display both sets of
data tips. The default value is STANDARD. To display data tips with the HTML=
statement option, the syntax of that option is HTML=“ALT=‘text’ | variable-name”.
For further information on data tips, see “Adding Data Tips to Web Presentations”
on page 568.

TIPSTEMSIZE=line-length
specifies the length in pixels of the line that connects the data tips to the graph
element that makes use of that data. The default value is 20. This parameter is
valid in the Contour applet.

TIPTEXTCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the text
in the data tips. The default value is BLACK. This parameter is valid in the
Contour applet.

UNDERFLOWCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the color
that is assigned to data values that are smaller than the minimum range of colors
that have been defined in the color palette. The default value is WHITE. This
parameter is valid in the Contour applet.

USERFMTn=string(s)
defines the user format specification. The syntax is the same as that of the
VALUE and PICTURE statements for PROC FORMAT. You can specify multiple
USERFMTn parameters by replacing n with the appropriate number from 1 to n,
where n is the number of format parameters to be defined. For example, to define
a simple YESNO format, specify the parameter <PARAM NAME="USERFMT1"
VALUE="VALUE YESNO 1=‘Yes’ 2=‘No’ ">. This parameter is valid only in the
Contour applet.

VIEW2D=TRUE | FALSE
indicates whether the view point should be locked to two dimensions. The default
value is TRUE for the Contour applet and FALSE for the Graph applet and ActiveX
control. This parameter might be overidden if you specify an ODS style definition.

XBINS=bin-number-or–values
YBINS=bin-number-or-values

configures the bins uses to generate a contour plot. Specifying a single integer
uses that number of bins. The single integer must be greater than 2. Specifying
multiple values uses multiple bins with those values. Multiple values are real
numbers that are separated by semicolons, as follows:

ods html file=filename.html
parameters=("XBINS"="-1;0;2.5;3.5;4"

"YBINS"="1;2;3;4;5;6");

438 Parameter Definitions Chapter 12

These parameters are enabled in the Contour applet.

VIEWPOINT=2D| SE | SOUTHEAST
defines the initial viewpoint for the Contour applet. The value SE or SOUTHEAST
set the initial viewpoint to Southeast, a three-dimensional viewpoint. The value
2D sets the value to be two-dimensional. The default value is 2D for PROC
GCONTOUR output and SOUTHEAST for PROC G3D. Setting this parameter
unlocks the 2D view (see VIEW2D). This parameter is valid only in the Contour
applet.

439

C H A P T E R

13
Generating Static Graphics

What is a Static Graphic? 439

Creating a Static Graphic with ODS 440
ACTXIMG and JAVAIMG Device Drivers Compared to GIF, JPEG, and PNG Device Drivers 440

GIF, JPEG, and PNG Device Drivers 440

ACTXIMG and JAVAIMG Device Drivers 440
Output From Different Device Drivers Compared 441

Developing Web Presentations with the JAVAIMG and ACTXIMG Device Drivers 442

Using JAVAIMG in z/OS 443
When to Use the JAVAIMG or ACTXIMG Device Driver 443

Developing Web Presentations with the GIF, JPEG, and PNG Device Drivers 443
When to Use the GIF, JPEG, and PNG Device Drivers 444

Generating One or More GIF, JPEG, PNG Output Files Without ODS 444

Generating an HTML Output File with ODS and the GIF, PNG, or JPEG Device Driver 445
Naming Conventions Used for Image Output Files 445

Enhancing Web Presentations Generated with the GIF, JPEG, or PNG Device Driver 446

Generating Drill-Down Web Presentations with the GIF, JPEG, or PNG Device Driver 447
Sample Programs for Static Images 447

Using ODS with the ACTXIMG Device Driver 447
Generating GIF Output Using ODS 450

GIF Output with Hotspot Links 452

What is a Static Graphic?

By static graphic, we mean a graphic in the form of a GIF, JPEG, or PNG file.
Whereas a user can interact with the graphics presented by the SAS graph applets and
the ActiveX Control (such as by hiding nodes or zooming in on a portion on the graph),
the only thing a user can do with a static graphic is to look at it because its appearance
is permanently fixed once it is created. To generate a static graphic, run a SAS
procedure with a GOPTIONS statement with DEVICE= specified as one of the following:

ACTXIMG

JAVAIMG

GIF

JPEG

PNG

By default, GIF images are created with dimensions of 800 x 600 pixels. Use the
following variants of the GIF driver to create different size GIF images:

GIF160 160 x 120

440 Creating a Static Graphic with ODS Chapter 13

GIF260 260 x 195

GIF373 373 x 280

GIF570 570 x 430

GIF733 733 x 550

Creating a Static Graphic with ODS
You can use a GOPTIONS statement with a device type of GIF, JPEG, or PNG to

create a static image file from one or more SAS/GRAPH procedures. SAS first creates a
GRSEG entry in your Work catalog, and then creates an image file of the specified type
that is identical to the GRSEG entry.

Use ODS with the following arguments to create the HTML file that embeds the
image:

FILE= The filename of the output HTML file (BODY= is a synonym for
FILE=).

PATH= The location (URL or fileref) of the HTML file and static graphic file.

GPATH= The location of the image file that is created.

Note: You must specify GPATH only if you specify FILE= as a
complete path and file name, and you don’t specify PATH=.

If you specify FILE= as just a filename (and extension), and you
specify PATH=, then both the HTML file and the image file are
written to the same location (as specified by PATH.) �

STYLE= The style to be applied, if DEVICE=ACTXIMG or
DEVICE=JAVAIMG. The STYLE argument is optional.

For samples, see “Sample Programs for Static Images” on page 447.

ACTXIMG and JAVAIMG Device Drivers Compared to GIF, JPEG, and PNG
Device Drivers

GIF, JPEG, and PNG Device Drivers
When you specify GOPTIONS DEVICE=GIF, JPEG, or PNG with a SAS/GRAPH

procedure, the image file that is created is identical in appearance to the corresponding
GRSEG entry as it appears in the Graph window of SAS.

If you use the Output Delivery System (ODS), then you can add data tips that are
displayed when the cursor is over a portion of the image. (See “Data Tips in GIF, JPEG,
and PNG Files” on page 568.) You can also add hotspots to images to link to other
images or to other URLs. (See “Links in GIF, JPEG, and PNG Files” on page 571.)

ACTXIMG and JAVAIMG Device Drivers
If you specify GOPTIONS DEVICE=ACTXIMG or DEVICE=JAVAIMG, then a PNG

file is created by either a SAS/GRAPH control for ActiveX or by a Java applet and may

Generating Static Graphics Output From Different Device Drivers Compared 441

not be identical in appearance to the image in the GRSEG catalog, but can be enhanced
with ODS stylesheet properties.

When you specify DEVICE=ACTXIMG, you can add links to the output of any
SAS/GRAPH procedure that supports the HTML= or HTML_LEGEND= option. For
further details, see “Links in GIF, JPEG, and PNG Files” on page 571 . You can also
provide pop-up data tips to display when the cursor is over an image created with the
ACTXIMG device driver (see “Data Tips in ACTXIMG and JAVAIMG Images” on page
568). When you specify DEVICE=JAVAIMG, SAS does not create an image map for
hotspot links.

Output From Different Device Drivers Compared
The following example uses the JAVAIMG device driver to generate the image. The

resulting Web presentation has the visual impact of an interactive presentation, but
with smaller files that require no Java access or ActiveX Control installation and are
not interactive. In this example, the ODS style GEARS specifies a color-coordinated
background and background image, along with coordinated text fonts and sizes in the
axis labels. The code for this example, which is available in the SAS Sample Library
under the name GWBJAIMG, is as follows:

ods listing close;
ods html file=’temp.html’ style=gears;
goptions device=javaimg;

proc gchart data=sashelp.class;
vbar height / group=sex name=’test’ ;
run;
quit;

ods html close;

Display 13.1 A Bar Chart Using the JAVAIMG Device Driver

442 Developing Web Presentations with the JAVAIMG and ACTXIMG Device Drivers Chapter 13

The following images shows the same bar chart created with the GIF device driver.
You can generate this image by specifying GOPTIONS DEVICE=GIF. The graphs
generated by specifying DEVICE=JPEG or DEVICE=PNG are very similar to this and
differ mostly in the physical file size.

Display 13.2 A Bar Chart Using the GIF Device Driver

Developing Web Presentations with the JAVAIMG and ACTXIMG Device
Drivers

The JAVAIMG and ACTXIMG device drivers enable you to generate Web
presentations that display one or more graphs in PNG format. The resulting PNG files
can be viewed in any browser—neither Java nor ActiveX is required to view them.

The PNG files are identical in appearance to the graphs created with DEVICE=JAVA
or DEVICE=ACTIVEX as they are initially displayed in a browser by a SAS Java
applet or SAS ActiveX Control respectively. However, unlike these latter graphs which
are interactive and can be manipulated by a user viewing them in a browser, PNG files
are static and their appearance can not be changed after they are created.

When you run a program that specifies the ACTXIMG device driver, the ActiveX
Control runs in the background to generate the PNG image files. Your computer must
therefore be running in the Windows 32-bit operating environment with the ActiveX
Control installed in advance. For installation information, see “Installing the ActiveX
Control” on page 389. SAS/GRAPH procedures that can be used with the ACTXIMG
device driver are the same as those that can be used with the ActiveX Control, as listed
in Table 10.1 on page 388. The procedures that can be used with the JAVAIMG device
driver are listed in “Graph, Map, and Contour Applets” on page 372.

Use ODS to specify graph styles for charts and to format the HTML output file when
you specify either DEVICE=JAVAIMG or ACTXIMG. For an example that uses the

Generating Static Graphics Developing Web Presentations with the GIF, JPEG, and PNG Device Drivers 443

ACTXIMG device driver, see “Using ODS with the ACTXIMG Device Driver” on page
447.

Note that using PROC GMAP to generate a highly detailed map might create a large
HTML output file, which might cause problems on certain browsers. Running PROC
GREDUCE may help to remove some of the complexity and produce a more usable map.

Using JAVAIMG in z/OS
If you are running SAS in the z/OS operating environment with DEVICE=JAVAIMG,

then you must specify filesystem=HFS because HFS file space is needed to write the
image files. You may also need to increase the amount of memory that is allotted for
your session so that SAS can run Java in the background. The suggested region size is
200 megabytes. For a batch job, add either REGION=200M or REGION=204800K to
the JOB card. For a TSO session, specify SIZE(204800). For more information, refer to
your JCL reference manual.

When to Use the JAVAIMG or ACTXIMG Device Driver
The PNG images that are generated by the ACTXIMG and JAVAIMG device drivers

can differ in appearance from those that are generated by the GIF, JPEG, and PNG
drivers. (Although it also creates a PNG file, the PNG driver does not use the ActiveX
or Java routines that the ACTXIMG and JAVAIMG device drivers use.) Colors, fonts,
shading, and lines are visibly different. Specifying one of the graph styles in ODS
results in further differences because colors, fonts, and images have been coordinated in
advance.

If you don’t need interactivity such as zoom, the JAVAIMG and ACTXIMG device
drivers provide several advantages over the interactive presentations that are
generated with JAVA and ACTIVEX. Because PNG image files are generated, the Web
clients are not required to access the Java run-time environment or install the ActiveX
Control to display the graphs. Also, Web performance improves because the PNG image
files are smaller in size than the HTML files that run an applet or the ActiveX Control.

Note: The ACTXIMG device cannot be used with the ODS PDF, PCL, PS, or
PRINTER destinations on 64-bit machines. SAS uses the JAVAIMG device instead. �

Note: When SAS is installed on a server, the ACTXIMG and JAVAIMG drivers are
limited by the display capabilities of the server on which they run—for example, the
number of colors that the server is capable of. Consequently, the PNG output might not
look as good as what you get from the client-side drivers (JAVA and ACTIVEX). Thus, it
is better to use JAVA/ACTIVEX if the server’s display settings are less than optimal. �

Developing Web Presentations with the GIF, JPEG, and PNG Device
Drivers

You can use the GIF, JPEG, and PNG drivers with ODS to generate an HTML file to
display multiple images. For details, see “Generating an HTML Output File with ODS
and the GIF, PNG, or JPEG Device Driver” on page 445. For information on using these
drivers without ODS, see “Generating One or More GIF, JPEG, PNG Output Files
Without ODS” on page 444.

444 When to Use the GIF, JPEG, and PNG Device Drivers Chapter 13

Enhancements that are available to GIF, PNG, and JPEG Web presentations include
formatting of the HTML output file using ODS, as described in “Overview of ODS
Enhancements for Web Output” on page 487, and adding drill-down or pop-up data-tip
functionality. Drill-down functionality can be enabled in two ways. The elements of the
graph can be hotspots, or the elements of an Annotate data set can be hotspots. For
details, see “Generating Drill-Down Web Presentations with the GIF, JPEG, or PNG
Device Driver” on page 447.

When to Use the GIF, JPEG, and PNG Device Drivers

The GIF, JPEG, and PNG device drivers are best suited to Web presentations with
interactivity that is limited to drill-down functionality and that is implemented in an
automatically generated image map in the HTML output file. If you need more
interactivity, or if you want to compute responses to drill-down actions when the graph
is viewed, then generate a presentation that runs in a Java applet or in the ActiveX
Control.

If you do not need drill-down functionality, use the ACTXIMG or JAVAIMG device
driver to generate a Web presentation with the best available image quality. These
device drivers use an applet or the ActiveX Control to generate PNG image output files.
The images can exhibit the color blending, transparency, anti-aliasing, and shading that
are available in the graph styles, as described in “Developing Web Presentations with
the JAVAIMG and ACTXIMG Device Drivers” on page 442.

Generating One or More GIF, JPEG, PNG Output Files Without ODS

To generate just one GIF, JPEG, or PNG image file, specify a fileref, filename, and
storage location in a FILENAME statement, as follows:

filename fileref "your_path/your_file.image_extension";

The fileref can be up to eight characters in length.
The following code shows how an actual FILENAME statement might look for one

output image:

filename mygif1 "C:\mysas\images\barchart.gif";

To generate multiple images in a single program, specify a fileref for the path only, as
follows:

filename fileref "your_path";

As shown in this example:

filename imageout "C:\mysas\images";

When you generate multiple image output files, SAS/GRAPH automatically
generates the names of the image files, as described in “Naming Conventions Used for
Image Output Files” on page 445.

After assigning a fileref, all you need to add to generate an image output file are
values for the graphics options DEVICE= and GSFNAME=, as follows:

goptions device=device_driver
gsfname=fileref;

The value of the GSFNAME= option is the name of your previously defined fileref,
whether that fileref references a filename or a directory.

Generating Static Graphics Naming Conventions Used for Image Output Files 445

When you have specified a storage location and your DEVICE= and GSFNAME=
graphics options, then you can run the procedure that generates the graph. The output
will be stored in the specified format in the specified output location.

Generating an HTML Output File with ODS and the GIF, PNG, or JPEG
Device Driver

Follow these steps to generate a complete Web presentation that consists of an
HTML output file and one or more images:

1 To conserve resources, close the ODS listing destination (the Output window,
which is open by default). Then reset graphics options as follows:

ods listing close;
goptions reset=all;

2 Enter your DATA step, if necessary.
3 Specify your ODS HTML statement, with the following options:

ods html
path=’C:/Public/graph’ (url=none)/* HTML output directory */
body=’webgif1.htm’ /* HTML filename */
gpath=’C:/Public/graph’; /* image file output location */

Specifying URL=NONE tells ODS to reference the image file simply by name
without prefixing the full path (assuming that the image file is in the same
directory as the HTML file).

Note: With the GIF, JPEG, or PNG device driver, footnotes and titles are
stored in the image file by default. To move footnotes and titles out of the image
file and into the HTML file, specify the ODS HTML options NOGTITLE or
NOGFOOTNOTE or both. �

4 Specify your device driver:

goptions device=gif;

5 Run procedures to generate graphs. Each procedure ends with a RUN statement.
6 Close the HTML output file and reopen the ODS listing destination:

ods html close;
ods listing;

Reopening the listing destination establishes standard operating conditions for
later programs that you run in the same SAS session.

Note: Using this technique, however, you can not create hotspots for links on your
graphics or for data tips. �

Naming Conventions Used for Image Output Files
When you use the GIF, JPEG, or PNG device drivers to generate output for the Web

using ODS, the graphs are saved as GRSEG catalog entries and as image format files.
If you do not specify filenames, then SAS generates them based on the names of the
catalog entries.

For example, you can use a procedure’s NAME= option to assign a name of up to
eight characters to the catalog entry. If you assign the name MYGRAPH to the catalog

446 Enhancing Web Presentations Generated with the GIF, JPEG, or PNG Device Driver Chapter 13

entry, then SAS/GRAPH names the GIF image file MYGRAPH.GIF. If you do not use
the NAME= option, then SAS/GRAPH names the entry with the first eight characters of
the procedure name (for example, GCHART), in which case SAS/GRAPH names the
GIF file GCHART.GIF. For more information on catalog entry names, see “Names and
Descriptions of Catalog Entries” on page 55.

By default, SAS/GRAPH does not replace existing GRSEG entries when a procedure
creates a new entry of the same name. Rather, it increments the duplicate name to
make it unique. For example, if you use a procedure’s NAME= option to name an entry
MYGRAPH and an entry named MYGRAPH already exists in the output catalog,
SAS/GRAPH names the new entry MYGRAPH1, and then names the GIF file
MYGRAPH1.GIF. Catalog entry names are limited to eight characters, so if the
duplicate name has eight characters, SAS/GRAPH replaces the final character with the
added number.

To replace an existing catalog entry, your program can first use the GREPLAY
procedure to delete the existing catalog or catalog entries (although doing so is not
required). For example, assume that the output catalog is the default, WORK.GSEG,
and assume that you use BY-group processing on the GCHART procedure to run a
program that generates three catalog entries that are named GCHART, GCHART1, and
GCHART2 by default. To run the same program again in the same session, and to
ensure that the catalog entries receive the same names, you can first run the following
GREPLAY procedure to delete the three existing catalog entries, otherwise the new
entries will be named gchart3, gchart4, and gchart5:

proc greplay igout=work.gseg nofs;
delete gchart gchart1 gchart2;

run; quit;

To delete all of the catalog entries, use:

proc greplay igout=work.gseg nofs;
delete _all_;

run;
quit;

Enhancing Web Presentations Generated with the GIF, JPEG, or PNG
Device Driver

This section shows you how to enhance the appearance and functionality of Web
presentations that are generated with a GIF, JPEG, or PNG device driver. For
information on the default configurations of these Web presentations, see “Developing
Web Presentations with the GIF, JPEG, and PNG Device Drivers” on page 443.

The available enhancements are as follows:
� Add drill-down links to graph elements or legend elements or both. See

“Generating Drill-Down Web Presentations with the GIF, JPEG, or PNG Device
Driver” on page 447.

� Format your HTML output file using ODS. See “Overview of ODS Enhancements
for Web Output” on page 487.

� Add drill-down links to graphical elements specified in an Annotate data set. See
“Generating Web Links with the Annotate Facility” on page 500.

Generating Static Graphics Using ODS with the ACTXIMG Device Driver 447

Generating Drill-Down Web Presentations with the GIF, JPEG, or PNG
Device Driver

Using the GIF, JPEG, or PNG device driver, you can generate a complete drill-down
Web presentation with selectable elements in the graph or legend. To enable the
drill-down functionality, the graphics procedure must support the HTML= or the
HTML_LEGEND= option.

Follow these steps to generate a drill-down graph with the GIF, JPEG, or PNG device
driver.

1 To save resources, close the ODS listing destination.

ods listing close;

2 Set graphics options.

goptions reset=all device=gif;

3 Initialize one or two link variables and add values to those variables. The link
variables provide the drill-down URLs that will appear in the image map of the
HTML output file, as described in “GIF Output with Hotspot Links” on page 452.

4 Generate an HTML output file using ODS.

ods html file="mygif1.htm"
gpath="C:\mypath\web"

5 Generate the graph as an image output file. In the statement that generates the
graph (such as VBAR3D), assign the name of a link variable as the values of the
HTML= option or the HTML_LEGEND= option or both. (See “Links in GIF, JPEG,
and PNG Files” on page 571.)

6 If necesary, create the HTML pages to be linked to.
7 Close the HTML output file and open the ODS listing destination.

ods html close;
ods listing;

Run the program and display the HTML output file in the SAS Results window or in
a Web browser. Selecting an element in the graph points the Web browser to the
associated drill-down URL.

Sample Programs for Static Images
The following sample programs create a Web presentation with a static image:
� “Using ODS with the ACTXIMG Device Driver” on page 447
� “Generating GIF Output Using ODS” on page 450
� “GIF Output with Hotspot Links” on page 452

Using ODS with the ACTXIMG Device Driver
The following sample program uses ODS HTML to create an HTML file that

references four PNG files created by a SAS procedure when DEVICE=ACTXIMG.
Because the ACTXIMG device driver invokes an ActiveX Control, you can only run this
example in a Windows environment.

The GCHART procedure in this example includes a BY statement to display the
results of each of the four quarters of the year. Consequently, the procedure produces

448 Using ODS with the ACTXIMG Device Driver Chapter 13

four separate PNG files, only the first of which is shown here. A user would have to
scroll down the page in the browser to see all the PNG images displayed.

Display 13.3 Using ODS with the ACTXIMG Device Driver

The following is the complete SAS code to generate PNG files from a SAS/GRAPH
procedure using GOPTIONS DEVICE=ACTXIMG. You should notice the following:

� PROC GREPLAY is used to delete any old GRSEGs that were created. This is not
necessary, but otherwise SAS creates new GRSEGs each time the procedure is run
rather than replacing the old, and from them creates new PNG files, incrementing
the suffix number for each new PNG file.

� The FILE= option of the ODS HTML statement specifies the path and filename of
the HTML file to be created. If you want to run this example, then change the
value of the option to the location where you want to store the file.

Note: You can specify the complete path and filename with the FILE= option (or
the BODY= option, which is the same), or you can specify the path separately
using the PATH= option, and just the filename with the FILE= or BODY= option.
See the section “ODS HTML Statement” in the SAS Output Delivery System:
User’s Guide.

� The GPATH= option of the ODS HTML statement specifies the directory where the
PNG files are to be created. If you want to run this example, then change the
value of the option to the location where you want to store the file.

� Specifying that GOPTIONS DEVICE=ACTXIMG causes the GCHART procedure
to produce PNG output.

data prdsummary;
input Year Quarter Country $ Product $ Actual dollar10.2;
label Actual=’Actual Sales’;

Generating Static Graphics Using ODS with the ACTXIMG Device Driver 449

format Actual dollar11.;
datalines;

1993 1 CANADA BED $4,337.00
1993 1 CANADA CHAIR $5,115.00
1993 1 CANADA DESK $6,644.00
1993 1 GERMANY BED $5,026.00
1993 1 GERMANY CHAIR $6,276.00
1993 1 GERMANY DESK $4,330.00
1993 2 CANADA BED $2,437.00
1993 2 CANADA CHAIR $3,115.00
1993 2 CANADA DESK $5,654.00
1993 2 GERMANY BED $3,026.00
1993 2 GERMANY CHAIR $2,276.00
1993 2 GERMANY DESK $3,320.00
1993 3 CANADA BED $6,337.00
1993 3 CANADA CHAIR $7,145.00
1993 3 CANADA DESK $7,614.00
1993 3 GERMANY BED $5,026.00
1993 3 GERMANY CHAIR $3,276.00
1993 3 GERMANY DESK $6,340.00
1993 4 CANADA BED $9,337.00
1993 4 CANADA CHAIR $2,115.00
1993 4 CANADA DESK $3,646.00
1993 4 GERMANY BED $6,026.00
1993 4 GERMANY CHAIR $7,276.00
1993 4 GERMANY DESK $8,350.00
1994 1 CANADA BED $3,327.00
1994 1 CANADA CHAIR $5,345.00
1994 1 CANADA DESK $7,624.00
1994 1 GERMANY BED $4,026.00
1994 1 GERMANY CHAIR $3,276.00
1994 1 GERMANY DESK $3,340.00
1994 2 CANADA BED $5,356.00
1994 2 CANADA CHAIR $3,115.00
1994 2 CANADA DESK $7,623.00
1994 2 GERMANY BED $8,026.00
1994 2 GERMANY CHAIR $5,276.00
1994 2 GERMANY DESK $7,321.00
1994 3 CANADA BED $4,321.00
1994 3 CANADA CHAIR $3,115.00
1994 3 CANADA DESK $5,658.00
1994 3 GERMANY BED $6,026.00
1994 3 GERMANY CHAIR $5,276.00
1994 3 GERMANY DESK $6,398.00
1994 4 CANADA BED $5,357.00
1994 4 CANADA CHAIR $4,166.00
1994 4 CANADA DESK $7,662.00
1994 4 GERMANY BED $4,026.00
1994 4 GERMANY CHAIR $5,246.00
1994 4 GERMANY DESK $3,329.00
;
/* delete previously created grsegs before creating new ones */

proc greplay igout=work.gseg nofs;
delete _all_;

450 Generating GIF Output Using ODS Chapter 13

/* could also specify: delete _1993, _19931, etc. */
run;
quit;

ods listing close;
/* gpath specifies the directory where PNGs are created */

ods html file=’u:\public_html\Web_output\ods_actximg.htm’
gpath=’u:\public_html\Web_output\’
style=torn;

goptions reset=all device=actximg;

title1 ’1993 Sales’;
proc gchart data=prdsummary(where=(year=1993));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=CXb0c1f4 name=’_1993’;
by quarter;

run;
quit;

ods html close;
ods listing;

Generating GIF Output Using ODS
The following sample program uses ODS to create an HTML file that references four

GIF files created by a SAS procedure when DEVICE=GIF. The GIFs are displayed one
after the other in the HTML page, so that a user would have to scroll to see all the
graphs.

The GCHART procedure in this example includes a BY statement to display the
results of each of the four quarters of the year. Consequently, the procedure produces
four separate GIF files, only the first of which is shown here. A user would have to
scroll the page in the browser to see all the GIF images displayed.

Generating Static Graphics Generating GIF Output Using ODS 451

Display 13.4 Generating GIF Output Using ODS

The following is the complete SAS code to generate GIF files from a SAS/GRAPH
procedure. You should notice the following:

� PROC GREPLAY is used to delete the GRSEGs that are already created. This is
not necessary, but otherwise SAS creates new GRSEGs each time the procedure is
run, rather than overwriting the old, and from the new GRSEGs creates new GIF
files, incrementing the suffix number for each new GIF.

� The FILE= option of the ODS HTML statement specifies the path and filename of
the HTML file to be created. If you want to run this example, then change the
value to the directory where you want to store the HTML file.

Note: You can specify the complete path and filename with FILE= (or BODY=,
which is a synonym), or you can specify the path separately using PATH=, and just
the filename with FILE= (or BODY=) See the SAS Output Delivery System: User’s
Guide for information on the ODS HTML statement.

� The GPATH= option of the ODS HTML statement specifies the directory where the
GIF files are to be created. If you want to run this example, then change the value
of the option to the location where you want to store the file.

� The statement GOPTIONS DEVICE=GIF causes the GCHART procedure to
produce GIF output.

data prdsummary;
input Year Quarter Country $ Product $ Actual dollar10.2;
label Actual = ’Actual Sales’;
format Actual dollar11.;
datalines;

1993 1 CANADA BED $4,337.00
1993 1 CANADA CHAIR $5,115.00
1993 1 CANADA DESK $6,644.00

452 GIF Output with Hotspot Links Chapter 13

1993 1 GERMANY BED $5,026.00
1993 1 GERMANY CHAIR $6,276.00
1993 2 GERMANY CHAIR $2,276.00
... more data lines ...
1994 4 CANADA CHAIR $4,166.00
1994 4 CANADA DESK $7,662.00
1994 4 GERMANY BED $4,026.00
1994 4 GERMANY CHAIR $5,246.00
1994 4 GERMANY DESK $3,329.00
;
/* delete previously created grsegs before creating new ones */

proc greplay igout=work.gseg nofs;
delete _all_;

run;
quit;

ods listing close;
/* "file=" specifies the html file to be created */
/* Change the value of file= to the directory where you want */
/* to store the HTML file */
/* Change file= to the directory where you want to store the HTML file */
/* "gpath=" specifies the directory where GIFs are created */
/* Change the value of gpath= to the directory that you are using */

ods html file=’u:\public_html\Web_output\ods_gif.htm’
gpath=’u:\public_html\Web_output\’;

goptions reset=all device=gif
border
ftext="Helvetica" ftitle="Helvetica";

title1 ’1993 Sales’;
proc gchart data=prdsummary(where=(year=1993));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=CXb0c1f4 name=’1993_’;
by quarter;

run;
quit;
ods html close;
ods listing;

GIF Output with Hotspot Links
This example shows you how to generate Web output with drill-down functionality

using the GIF device driver (see also “Generating Drill-Down Web Presentations with
the GIF, JPEG, or PNG Device Driver” on page 447).

In the program, the DEVICE=GIF specification generates image output files and the
ODS HTML statement generates an HTML output file. The HTML= option identifies a
link variable that provides drill-down URLs. The values of the link variables are added
to the data set with IF/THEN statements. ODS inserts the drill-down URLs into an
image map that it generates in the HTML output file.

When you display the HTML output file in a Web browser and select one of the three
blocks in the chart, you see a table of the data for that block.

Generating Static Graphics GIF Output with Hotspot Links 453

Display 13.5 Three-Dimensional Vertical Bar Chart with Drill-Down Links

Here is the example code, which is available in the SAS Sample Library under the
name GWBDRILL:

/* Close the listing destination */
ods listing close;

/* Set graphic options. */
goptions reset=global gunit=pct

transparency noborder

454 GIF Output with Hotspot Links Chapter 13

htitle=6 htext=3
device=gif;

/* Create the data set REGSALES. */
data regsales;

length Region State $ 8;
format Sales dollar8.;
input Region State Sales;

/* Initialize the link variable. */
length rpt $40;

/* Assign values to the link variable. */
if Region=’Central’ then

rpt=’href="central.html"’;
else if Region=’South’ then

rpt=’href="south.html"’;
else if Region=’West’ then

rpt=’href="west.html"’;

datalines;
West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

/* Remove the comments below to open the HTML destination for ODS output. */
/* Specify the filename in BODY= and the output path in PATH=. */

/* ods html body=’your-filename.htm’
path=’your-web-path’; */

/* Create a chart that uses the link variable. */
title1 ’Company Sales’;
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;
quit;

/* Remove the comments below, and specify the filename and */
/* path to open an HTML file that will contain the report. */

/* ods html body=’your-filename.htm’ */
/* path=’your-web-path’; */

title1 ’Central Sales’;

Generating Static Graphics GIF Output with Hotspot Links 455

proc print data=regsales noobs;
var state sales;
where region=’Central’;

run;
quit;

title1 ’Southern Sales’;
/* Remove the comments below, and specify the filename and */
/* path to open an HTML file that will contain the report. */

/* ods html body=’your-filename2.htm’ */
/* path=’your-web-path’; */

proc print data=regsales noobs;
var state sales;
where region=’South’;

run;
quit;

title1 ’Western Sales’;
/* Remove the comments below, and specify the filename and */
/* path to open an HTML file that will contain the report. */

/* ods html body=’your-filename3.htm’ */
/* path=’your-web-path’; */;

proc print data=regsales noobs;
var state sales;
where region=’West’;

run;
quit;

/* Close the HTML output file and */
/* open the listing destination. */
ods html close;
ods listing;

456

457

C H A P T E R

14
Generating Web Animation with
GIFANIM

Developing Web Presentations with the GIFANIM Device Driver 457

When to Use the GIFANIM Device Driver 457
Creating an Animated Sequence 458

Preparing the Header 458

Preparing the Body 458
Preparing the Trailer 458

GOPTIONs for Configuring GIFANIM Presentations 459

Sample Programs: GIFANIM 459
Sample Animated GIF, with HTML from PUT Statements 460

Results Shown in a Browser 460
SAS Code 460

HTML File 463

Generating an Animated Web Presentation with the GIFANIM Device Driver 463

Developing Web Presentations with the GIFANIM Device Driver
The GIFANIM device driver enables you to create sequences of images that are

displayed automatically from a single GIF file. These animated sequences are
commonly referred to as slide shows. The display sequence repeats until the Web user
selects Stop in the Web browser or displays another Web page.

You can customize GIFANIM Web presentations by specifying the display time of
individual images, the number of loops before stopping, and the size of the images.
Graphics options are used to configure GIFANIM presentations, as described in “
GOPTIONs for Configuring GIFANIM Presentations” on page 459.

When to Use the GIFANIM Device Driver
The GIFANIM device driver is useful for slide shows or animations that do not need

to be controlled by the Web user. Infinite looping is appropriate for unattended kiosk
displays. To enable the Web user to specify the display rate, change the size of the
animation, drill down for additional information, and utilize the optimal rendering
capabilities of the SAS/GRAPH Java library, use the JAVAMETA device driver. This
device driver generates Web presentations that run in the Metaview Applet, as
described in “Developing Web Presentations for the Metaview Applet” on page 469.

458 Creating an Animated Sequence Chapter 14

Creating an Animated Sequence

To create an animated sequence with the GIFANIM device driver, you need to ensure
that the resulting data stream is constructed properly. The GIFANIM data stream has
three parts: header, body, and trailer.

To see an example of a program that uses the GIFANIM device driver, see “Sample
Programs: GIFANIM” on page 459.

Preparing the Header
When creating a new animated GIF data stream, you must issue GOPTIONS

GSFMODE=REPLACE; prior to the invocation of the first SAS/GRAPH procedure. The
driver will then construct a new data stream by writing a valid GIF header and
inserting graphical data from the first procedure.

Preparing the Body
After the first procedure has been executed, you must construct the body of the GIF

animation. You can think of the body as all of the graphic images between the first and
the last images in the sequence. Set GOPTIONS GSFMODE=APPEND to suppress the
header information and to begin appending graphic data to the current data stream.
The GOPTIONS GSFMODE=APPEND statement must appear after the first and before
second SAS/GRAPH procedures.

Note: If you use BY-group processing on the first graphics procedure to generate
multiple graphs, then the output is automatically appended to the same GIF file. Thus,
you do not need to specify GSFMODE=APPEND for that first procedure. If you do not
use a second graphics procedure to append additional graphs to the GIF file, you do not
need to set the GSFMODE= option in the body section of your program. �

Preparing the Trailer
The final step in the GIF animation process is to mark the end of the animation by

appending a GIF trailer (’3B’x) to the data stream. The way to do this depends on
whether or not the last procedure uses BY-group processing.

� Without BY-group processing, set GOPTIONS GEPILOG=’3B’X before the last
SAS/GRAPH procedure.

� With BY-group processing, do not assign a value to GEPILOG; otherwise your GIF
animation sequence will be incomplete. Because a GEPILOG is written after each
graph in a BY-group, the GIF decoder will interpret the first ’3B’x as the end of
the animation. Instead, you should use a DATA step to add the trailer to the data
stream:

data _null_;
file out recfm=n mod;
put ’3B’x;

run;

In the preceding example, OUT is the fileref of the GIF output file.

After the animation is complete, issue a GOPTIONS RESET=ALL statement to
prepare for succeeding SAS jobs.

Sample Programs: GIFANIM 459

GOPTIONs for Configuring GIFANIM Presentations
You can specify the following options in the GOPTIONS statement to configure Web

presentations that were generated with the GIFANIM device driver.

ITERATION=iteration-count
specifies the number of times to repeat the animation loop, or that the loop repeats
continuously. The default value of 0 continues the animation indefinitely (until the
Web user selects Stop or displays another Web page in the Web browser).
Specifying a number greater than 0 repeats the animated sequence for the
specified number of iterations, and then continuously displays the last image in
the sequence, unless the DISPOSAL= graphics option specifies otherwise.

GSFMODE=REPLACE | APPEND
specifies whether the graphics output should replace the contents of an existing
file or be appended to it. In this case, the value of REPLACE specifies that the
device driver is to write a GIF header. Use the GSFMODE= option to specify when
to write the GIF header. Specify REPLACE before you generate the first GIF
image, then specify APPEND in a second statement before you generate the rest of
the images.

DELAY=delay-time
specifies the amount of time that each image is displayed, in hundredths of a
second. For example, a value of 1 specifies a delay of 0.01 seconds. The default
value is 0.

DISPOSAL=NONE | BACKGROUND | PREVIOUS | UNSPECIFIED
specifies how the image sequence is to be displayed.

NONE
superimposes the images in the sequence, without removing any of them
from the screen. This is the default value.

BACKGROUND
restores the background color before displaying the next image.

PREVIOUS
replaces the current image with the previous image before displaying the
next image.

UNSPECIFIED
takes no further action before displaying the next image.

XPIXELS=horizontal-size
YPIXELS=vertical-size

specify the size of the images in the sequence.

USERINPUT | NOUSERINPUT
allows or does not allow user input during image animation if user input is
supported by the browser displaying the animation.

TRANSPARENCY | NOTRANSPARENCY
specifies whether the background of the image should be replaced by the
background color of the Web browser.

Sample Programs: GIFANIM
The following sample programs generate animated GIFs:

460 Sample Animated GIF, with HTML from PUT Statements Chapter 14

� “Sample Animated GIF, with HTML from PUT Statements” on page 460

� “Generating an Animated Web Presentation with the GIFANIM Device Driver” on
page 463

Sample Animated GIF, with HTML from PUT Statements
The following sample program generates an animated GIF from a SAS data set and

two invocations of PROC GCHART, each of which contains a BY statement.

� “Results Shown in a Browser” on page 460

� “SAS Code” on page 460

� “HTML File” on page 463

Results Shown in a Browser
The following picture shows only the first picture of the animated GIF. After a

specified time lapse, the chart for each quarter of each of the two years is displayed in
turn.

SAS Code
The following is the complete SAS code to generate the animated GIF and an HTML

file that references it. You should notice the following:

� The GSFNAME= option of the GOPTIONS statement specifies the name of the
GIF to be created. In this example, the value of GSFNAME is specified in an
associated FILENAME statement. If you want to run this example, then change
the value of the FILENAME statement to something that makes sense for you.

� The following statement

goptions gsfmode=append;

Sample Animated GIF, with HTML from PUT Statements 461

is included before the second invocation of PROC GCHART so that the output is
appended to the same GIF file.

� A FILE statement specifies the complete path and file name of the HTML file to be
created by the PUT statements. If you want to run this example, then change the
value to something that makes sense for you

data prdsummary;
input Year Quarter Country $ Product $ Actual dollar10.2;
label Actual = ’Actual Sales’;
format Actual dollar11.;
datalines;

1993 1 CANADA BED $4,337.00
1993 1 CANADA CHAIR $5,115.00
1993 1 CANADA DESK $6,644.00
1993 1 GERMANY BED $5,026.00
1993 1 GERMANY CHAIR $6,276.00
1993 1 GERMANY DESK $4,330.00
1993 2 CANADA BED $2,437.00
1993 2 CANADA CHAIR $3,115.00
1993 2 CANADA DESK $5,654.00
1993 2 GERMANY BED $3,026.00
1993 2 GERMANY CHAIR $2,276.00
1993 2 GERMANY DESK $3,320.00
1993 3 CANADA BED $6,337.00
1993 3 CANADA CHAIR $7,145.00
1993 3 CANADA DESK $7,614.00
1993 3 GERMANY BED $5,026.00
1993 3 GERMANY CHAIR $3,276.00
1993 3 GERMANY DESK $6,340.00
1993 4 CANADA BED $9,337.00
1993 4 CANADA CHAIR $2,115.00
1993 4 CANADA DESK $3,646.00
1993 4 GERMANY BED $6,026.00
1993 4 GERMANY CHAIR $7,276.00
1993 4 GERMANY DESK $8,350.00
1994 1 CANADA BED $3,327.00
1994 1 CANADA CHAIR $5,345.00
1994 1 CANADA DESK $7,624.00
1994 1 GERMANY BED $4,026.00
1994 1 GERMANY CHAIR $3,276.00
1994 1 GERMANY DESK $3,340.00
1994 2 CANADA BED $5,356.00
1994 2 CANADA CHAIR $3,115.00
1994 2 CANADA DESK $7,623.00
1994 2 GERMANY BED $8,026.00
1994 2 GERMANY CHAIR $5,276.00
1994 2 GERMANY DESK $7,321.00
1994 3 CANADA BED $4,321.00
1994 3 CANADA CHAIR $3,115.00
1994 3 CANADA DESK $5,658.00
1994 3 GERMANY BED $6,026.00
1994 3 GERMANY CHAIR $5,276.00
1994 3 GERMANY DESK $6,398.00

462 Sample Animated GIF, with HTML from PUT Statements Chapter 14

1994 4 CANADA BED $5,357.00
1994 4 CANADA CHAIR $4,166.00
1994 4 CANADA DESK $7,662.00
1994 4 GERMANY BED $4,026.00
1994 4 GERMANY CHAIR $5,246.00
1994 4 GERMANY DESK $3,329.00
;
/* delete previously created gsegs before creating new ones */
/* (SAS creates gsegs before creating gifs from them */

proc greplay igout=work.gseg nofs;
delete _all_;
/* could also specify: delete _1993, _19931, etc. */

run; quit;

/* use filename to specify output folder for gif files */
filename myimages ’u:\public_html\Web_output\gifanim.gif’;
goptions reset=all device=gifanim gsfname=myimages

gsfmode=replace /* not necessary when using "BY" */
delay=150 /* set delay between images */

border
ftext="Helvetica" ftitle="Helvetica";

title1 ’1993 Sales’;
proc gchart data=prdsummary(where=(year=1993));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=CXb0c1f4;
by quarter;

run;
quit;
goptions gsfmode=append;
title1 ’1994 Sales’;
proc gchart data=prdsummary(where=(year=1994));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=CXb0c1f4;
by quarter;

run;
quit;
data _null_ ;

file ’u:\public_html\Web_output\gifanim.htm’ ;
put ’<HTML>’;
put ’<HEAD>’;
put ’<TITLE> GIFANIM </TITLE>’;
put ’</HEAD>’;
put ’<BODY>’;
put ’’;

put ’</BODY>’;
put ’</HTML>’;
run;

Generating an Animated Web Presentation with the GIFANIM Device Driver 463

HTML File
The following is the HTML file that is generated by the PUT statements. Of course,

instead of embedding PUT statements in a SAS program, you can hand-create your own
HTML file using whatever editor you prefer.

<HTML>
<HEAD>
<TITLE> GIFANIM </TITLE>
</HEAD>
<BODY>

</BODY>
</HTML>

Generating an Animated Web Presentation with the GIFANIM Device
Driver

This example uses the GIFANIM device driver to generate an output file in GIF
format. A simple HTML file is also created, using PUT statements. The HTML file
enables you to display the GIF file in a Web browser. The browser displays a
continuous loop of ten maps of the state of North Carolina, one of which is shown in the
following illustration. Successive maps illustrate population growth by changing the
color of each county as the population of that county changes over time.

The GIFANIM device driver does not provide a pull-down menu or other interactive
controls, but it does provide a simple means of translating multiple SAS/GRAPH
images into a single automated loop. The resulting GIF output is easily displayed in
your own HTML files.

To change the amount of time that each image is displayed, you can change the value
of the DELAY= goption.

464 Generating an Animated Web Presentation with the GIFANIM Device Driver Chapter 14

The SAS code for this example is in the SAS Sample Library and is named
GWBANIMA.

/** Designate a GIF file for the GMAP output. **/

filename animmap ’your_web_path/your_gif.gif’;

/** Designate an HTML output file. Use the path **/
/** name that you specified for animmap. **/

filename htmlfile ’your_web_path/your_htm.htm’;

/** Define a macro variable that points to the **/
/** GMAP output. Use the path and file names **/
/** names that you specified for animmap. No **/
/** quotes are needed here. **/

%let mapsrc=your_web_path/your_gif.gif;
goptions reset=all dev=gifanim gsfmode=replace

gsfname=animmap xpixels=792 ypixels=600
transparency iteration=0 delay=150
disposal=background ftext=’Swiss’
htext=1.5;

/* Create the HTML file that will display the */
/* GIF animation. */

data _null_;
file htmlfile;

source=quote("&mapsrc");
put ’<HTML>’;
put ’<BODY>’;
put ’<BLOCKQUOTE>’;
put ’<img src=’ source

’ alt="NC Population Growth"’
’ width="792" height="600"></P>’;

put ’</BLOCKQUOTE>’;
put ’</BODY>’;
put ’</HTML>’;

/** Generate the data for the PROC GMAP **/
/** statements. **/

data NCPop;
length Name $ 32;
input State County P1990 P1980 P1970 P1960

P1950 / P1940 P1930 P1920 P1910 P1900 /
AreaLand AreaWater / X Y / Name &;

SquareMiles = AreaLand * 0.000386102158496;
Pop1900 = P1900 / SquareMiles;
Pop1910 = P1910 / SquareMiles;
Pop1920 = P1920 / SquareMiles;
Pop1930 = P1930 / SquareMiles;
Pop1940 = P1940 / SquareMiles;
Pop1950 = P1950 / SquareMiles;

Generating an Animated Web Presentation with the GIFANIM Device Driver 465

Pop1960 = P1960 / SquareMiles;
Pop1970 = P1970 / SquareMiles;
Pop1980 = P1980 / SquareMiles;
Pop1990 = P1990 / SquareMiles;
label

Pop1900 = ’1900 Population Per Square Mile’
Pop1910 = ’1910 Population Per Square Mile’
Pop1920 = ’1920 Population Per Square Mile’
Pop1930 = ’1930 Population Per Square Mile’
Pop1940 = ’1940 Population Per Square Mile’
Pop1950 = ’1950 Population Per Square Mile’
Pop1960 = ’1960 Population Per Square Mile’
Pop1970 = ’1970 Population Per Square Mile’
Pop1980 = ’1980 Population Per Square Mile’
Pop1990 = ’1990 Population Per Square Mile’;

format P1990 P1980 P1970 P1960 P1950 P1940 P1930
P1920 P1910 P1900 comma8.;

label P1990 = ’1990 Population’
P1980 = ’1980 Population’
P1970 = ’1970 Population’
P1960 = ’1960 Population’
P1950 = ’1950 Population’
P1940 = ’1940 Population’
P1930 = ’1930 Population’
P1920 = ’1920 Population’
P1910 = ’1910 Population’
P1900 = ’1900 Population’;

datalines;
37 1 108213 99319 96362 85674 71220

57427 42140 32718 28712 25665
1115485 10649
-79.398440 36.043667
Alamance County

37 3 27544 24999 19466 15625 14554
13454 12922 12212 11592 10960
674244 7682
-81.176957 35.921840
Alexander County

/** See sample GWBANGIF for the full data set. **/
37 199 15419 14934 12629 14008 16306

17202 14486 15093 12072 11464
809243 1752
-82.310012 35.902682
Yancey County

;
run;

/** Extract the NC data from the Counties map **/
/** data in the MAPS library. **/

data NCC;
set Maps.Counties;
where State = 37 and Density <= 3;

run;

466 Generating an Animated Web Presentation with the GIFANIM Device Driver Chapter 14

proc gproject data=NCC out=NCCounty;
id State County;

run;

/** Produce a color ramp in temp.sas and use **/
/** the file to generate PATTERN statements. **/

data _null_;
file ’temp.sas’;
r = 224; rinc = -r/100;
g = 176; ginc = -g/100;
b = 160; binc = -b/100;
do i = 1 to 99;

put ’pattern’ i ’ v=s c=cx’ r hex2. g hex2.
b hex2. ’;’;

r + rinc;
g + ginc;
b + binc;

end;
run;

%inc ’temp.sas’;

/** Create an Annotate data set to **/
/** produce a legend for the map. **/

data a;
length color function style $ 8 text $ 20;
retain xsys ysys ’3’ when ’A’ style ’S’;
r = 224; rinc = -r/100;
g = 176; ginc = -g/100;
b = 160; binc = -b/100;
x = 25; xinc = 0.5;
do i = 1 to 99;

color = ’cx’ ||
put(r, hex2.) ||
put(g, hex2.) ||
put(b, hex2.);

function = ’MOVE’;
y = 5;
output;
function = ’BAR’;
x + xinc;
y = 10;
output;
r + rinc;
g + ginc;
b + binc;

end;
function = ’LABEL’;
Style = "’Swiss’";
Text = ’800 people/square mile’;
Position = ’6’;

Generating an Animated Web Presentation with the GIFANIM Device Driver 467

x + xinc;
y = 7.5;
output;
Text = ’1’;
Position = ’4’;
x = 24.5;
y = 7.5;
output;

run;

/* Set the title, footnote, and legend. */

title f=’Swiss’ h=2
’North Carolina Population 1900-1990’;

footnote ’Source: US Census Bureau’;

legend1 frame label=(position=(top center));

/** Generate the multiple images that **/
/** make up the GIF animation. **/

proc gmap map=NCCounty data=NCPop anno=a;
id State County;
title2 f=’Swiss’ h=3 ’1900’;
choro Pop1900 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

/* Suppress header information and begin */
/* appending additional images. */

goption gsfmode=append;

title2 f=’Swiss’ h=3 ’1910’;
choro Pop1910 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1920’;
choro Pop1920 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1930’;
choro Pop1930 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1940’;
choro Pop1940 /

468 Generating an Animated Web Presentation with the GIFANIM Device Driver Chapter 14

midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1950’;
choro Pop1950 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1960’;
choro Pop1960 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1970’;
choro Pop1970 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

title2 f=’Swiss’ h=3 ’1980’;
choro Pop1980 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;

/* Mark the end of the animation by */
/* appending a GIF trailer to the data */
/* stream. */

goptions gepilog=’3B’x;

/* Generate the final image. */

title2 f=’Swiss’ h=3 ’1990’;
choro Pop1990 /
midpoints=8 to 792 by 8 coutline=black
nolegend;

run;
quit;

469

C H A P T E R

15
Generating Interactive
Metagraphics Output

Developing Web Presentations for the Metaview Applet 469

Using ODS with JAVAMETA 470
Using the META2HTM Macro 471

Adding Run-Time Controls to a Presentation 471

Page-Selection Slider Control 472
Slide-Show Control 473

Zoom Control 473

Enhancing Web Presentations for the Metaview Applet 474
Specifying Non-English Resource Files and Fonts 474

Metaview Applet Parameters 475
Specifying Applet Parameters Using the ODS PARAMETERS= Statement 477

META2HTM Macro Arguments 478

Sample Programs: Metaview Applet 478
Metacode Output with HTML from ODS 478

SAS Code 479

Producing a Web Presentation with the META2HTM Macro 481
SAS Code 482

Embedding Multiple Instances of the Metaview Applet on the Same HTML Page with
META2HTM 483

SAS Code 484

Developing Web Presentations for the Metaview Applet

The JAVAMETA device driver generates graphs that are stored in metagraphics
format and displayed by the Metaview Applet to create interactive Web presentations.
Most procedures that generate GRSEG catalog entries are also capable of generating
metagraphics output. (For a list of these procedures, see “Metaview Applet” on page
375.) The metacodes that make up the metagraphics format can be stored in
metagraphics files, or the metacodes can be embedded directly in the HTML output file.
Metacodes are simple ASCII codes that look like the following:

37 8 106 97 118 97 109 101 116 97 30 0 10 1 13 5
0 0 0 50 8 32 32 32 32 32 32 32 32 51 18 57

46 48 48 46 48 48 77 48 68 48 56 48 49 50 48 48

You can use a GOPTIONS statement with a device type of JAVAMETA to create
metacode output from one or more SAS/GRAPH procedures. At run time, HTML code
passes the metacodes as a parameter to the Metaview Java applet.

The Metaview applet runs with the Java Virtual Machine that is included with Web
browser. Unlike the other SAS/GRAPH applets (such as Graph, Constellation, and

470 Using ODS with JAVAMETA Chapter 15

Treeview applets) the Metaview applet does not require installation of a Java Plug-in
on the client machine.

Interactive features of the Metaview Applet include pan and zoom. Compared to
raster images (GIF, JPEG, PNG), the Metaview applet offers faster data tips and the
advantage of zooming that increases the graph’s resolution rather than degrading it.
You can add data tips, specify resource files for language translation, specify
background colors and text fonts, and drill down to HTML files, metagraphics files, and
sets of metacodes. You can also provide a list of selectable drill-down URLs in the
pop-up menu. For information on these enhancements, see “Enhancing Web
Presentations for the Metaview Applet” on page 474.

Two methods for generating Metaview applet presentations are
� using ODS with JAVAMETA device driver
� using the META2HTM macro.

To see examples of programs that generate a Web presentation for the Metaview
Applet, see “Sample Programs: Metaview Applet” on page 478.

Using ODS with JAVAMETA
The following steps use ODS to develop a Web presentation for the Metaview Applet.

The presentation displays a single graph. The metacodes for that graph are embedded
in the body of the HTML output file.

1 Specify the JAVAMETA device driver.

goptions reset=all device=javameta;

2 Close the ODS listing destination (the Output and Graph windows) to conserve
resources.

ods listing close;

3 Open an HTML output file by using an ODS statement and specifying a filename.

ods html file="C:\metaVbar.htm";

If you need to specify a Java archive location other than the location that is
specified as the value of the APPLETLOC= system option, you can use the
CODEBASE= option.

ods html file="C:\metaVbar.htm"
codebase="http://ourweb/sasJava";

You can enhance your Web presentation by specifying other applet parameters, as
described in “Metaview Applet Parameters” on page 475.

4 Generate the metacodes and embed those metacodes in the body of the HTML
output file.

proc gchart data=sashelp.class;
vbar height / group=age;

run; quit;

5 Close the HTML file and reopen the listing destination.

ods html close;
ods listing;

Run the program to generate the HTML output file. The applet may run in the SAS
Results window, or you can display the HTML output file in a Web browser.

Generating Interactive Metagraphics Output Adding Run-Time Controls to a Presentation 471

Using the META2HTM Macro
As an alternative to using ODS statements, you can use the META2HTM macro to

generate Web presentations that run in the Metaview Applet.
To use the META2HTM macro, set up your data, call the macro with the arguments

that you need, run your graphics procedures, then run the META2HTM macro again.
Macro arguments for META2HTM enable you to format the HTML output file and

configure applet enhancements. For information on the arguments of the META2HTM
macro, see “META2HTM Macro Arguments” on page 478.

Note that there is no need to compile the Annotate macros in order to access the
META2HTM macro.

Adding Run-Time Controls to a Presentation
One thing that distinguishes the Metaview applet is the run-time controls that it

provides to users. The following table shows some of the controls that the Metaview
applet can present.

Page-selection slider control

Slide-show control

Zoom control

The following picture shows a graphic in which all three controls are present. You
can also use parameters to suppress the display of any of the controls.

472 Page-Selection Slider Control Chapter 15

Page-Selection Slider Control
Metacodes (that are passed with the METACODES parameter to the Metaview

applet) can contain multiple graphs when they are the output of a SAS/GRAPH
procedure containing a BY statement, or when they are the output (concatenated
together) of multiple SAS/GRAPH procedures. Because ODS only passes a single graph
at a time with the METACODES parameter to the Metaview applet, the recommended
way to enable a page-selection slider control at run time is by using the META2HTM
macro.

The following code fragment uses the META2HTM macro. Notice that two instances
of PROC GCHART are invoked in between the first call to META2HTM with
CAPTURE=ON and the final call to META2HTM with CAPTURE=OFF. Notice also
that in the final call to META2HTM the parameter OPENMODE=APPEND so that the
metacodes from the second process are appended to those from the first (with embedded
delimiters between graphs). In fact, because both GCHART procedures include a BY
QUARTER statement, each procedure produces four graphs, for a total of eight graphs
in all.

filename _webout ’path_and_filename.htm’;

%meta2htm(capture=on,
htmlfref=_webout,
openmode=replace,
/* Specify codebase if metafile.zip not in same directory */
/* as html file. */
codebase=http://web_server_name/sasweb/graph
archive=metafile.zip,
hspace=1,
vspace=2);

Generating Interactive Metagraphics Output Zoom Control 473

goptions reset=all device=javameta
border
ftext="Helvetica" ftitle="Helvetica";

title1 ’1993 Sales’;
proc gchart data=prdsummary(where=(year=1993));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=CXb0c1f4;
by quarter;

run;
quit;

title1 ’1994 Sales’;
proc gchart data=prdsummary(where=(year=1994));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=CXb0c1f4;
by quarter;

run;
quit;
%meta2htm(capture=off,

htmlfref=_webout,
openmode=append);

quit;

Slide-Show Control
Metacodes (that are passed with the METACODES parameter to the Metaview

applet) can contain multiple graphs when they are the output of a SAS/GRAPH
procedure containing a BY statement, or when they are the output (concatenated
together) of multiple SAS/GRAPH procedures. To suppress the slide-show control, do
one of the following:

ODS Specify SLIDECONTROLENABLED=FALSE in the ODS statement,
which should look like this:

ods html file="filename.htm"
parameters=("SLIDECONTROLENABLED=FALSE");

META2HTM Specify SLIDECTL=N. For example:

%meta2htm(capture=on,
htmlfref=_webout,
openmode=replace,
slidectl=n,
...);

Zoom Control
Unless you choose to suppress it, the Metaview applet always displays a zoom control

which allows a user to zoom in on and out of the image. To suppress the zoom control,
do one of the following:

ODS Specify ZOOMCONTROLENABLED=FALSE in the ODS statement,
which should look like this:

474 Enhancing Web Presentations for the Metaview Applet Chapter 15

ods html file="filename.htm"
parameters=("ZOOMCONTROLENABLED=FALSE");

META2HTM Specify ZOOMCTL=N. For example:

%meta2htm(capture=on,
htmlfref=_webout,
openmode=replace,
zoomctl=n,
...);

Enhancing Web Presentations for the Metaview Applet
The JAVAMETA device driver is used to generate interactive Web presentations that

run in the Metaview Applet. The Metaview Applet displays and provides interactivity
for graphs that have been generated in metagraphics format. This format can be
generated by most SAS/GRAPH procedures (For a list , see “Metaview Applet” on page
375), as well as some other such as PROC GANTT.

Programming for the default configuration of the Metaview Applet consists of
specifying the JAVAMETA device driver, generating an HTML output file, and
generating a graph. For information on programming for this default configuration, see
“Developing Web Presentations for the Metaview Applet” on page 469.

You can enhance the default configuration as follows:
� Specify a non-English resource file and font for Java 1.02 presentations. See

“Specifying Non-English Resource Files and Fonts” on page 474.
� Display and configure a zoom control. See the applet parameters that begin with

ZOOM, in “Metaview Applet Parameters” on page 475.
� Replace the default applet help with application-specific help. Set the applet

parameter HELPLOCATION to point to your help files.
� Set the background color by setting the applet parameter BACKGROUNDCOLOR.
� Disable embedded controls that otherwise appear automatically in presentations

that include multiple graphs. See the parameters
SLIDESHOWCONTROLENABLED and PAGECONTROLENABLED.

Note that you can combine almost all of the available enhancements, including
different drill-down modes.

Note that the META2HTM macro enables you to generate enhanced Web
presentations by specifying selected macro arguments, as described in “Using the
META2HTM Macro” on page 471.

To learn how to specify applet parameters, see “Specifying Applet Parameters Using
the ODS PARAMETERS= Statement” on page 477. Reference information on applet
parameters is provided in “Metaview Applet Parameters” on page 475.

Specifying Non-English Resource Files and Fonts
The Metaview Applet supports Java 1.02, which is good in that it runs in most

browsers. Unfortunately, Java 1.02 does not support the use of resource files and fonts,
which would enable the automated use of translated text and localized formats as
supported by Java 1.2. To overcome this limitation, the Metaview Applet enables you to
name a resource file and a resource font by specifying applet parameters. In this
resource file you can hard-code translated versions of the text that the Metaview Applet
uses.

Generating Interactive Metagraphics Output Metaview Applet Parameters 475

Follow these steps to manually translate the text in the Metaview Applet:

1 Specify the LOGRESOURCES parameter in your SAS job, generate the HTML,
and view it in a browser. (See “Metaview Applet Parameters” on page 475.) The
Metaview Applet will then write its tag/value pairs to the Java console.

2 Copy the tag/value pairs that you want to translate out of the Java console and
paste them into your resources file. Then translate those values to your language.
You do not need to translate all of the tag/value pairs. The defaults will be used
where translations are not provided.

3 Store your resources file in a location that can be accessed by your Web audience.

4 In the SAS program, remove the LOGRESOURCES parameter specification. Then
specify the RESOURCES parameter. The value of that parameter is the URL of
your resources file.

Note that you do not have to specify the RESOURCES parameter if you name
the resource file MVAResources.properties and store that file in the same location
as the HTML output file.

5 If your resources file requires a non-English text font, then specify that font as the
value of the parameter RESOURCESFONTNAME. To display this font, your Web
audience must have this font installed.

6 Run your program and test your Web output.

For information on specifying applet parameters, see “Specifying Applet Parameters
Using the ODS PARAMETERS= Statement” on page 477. For reference information on
the Metaview Applet parameters, see “Metaview Applet Parameters” on page 475.

Metaview Applet Parameters

The following parameters may be specified for the Metaview Applet. For information
on how to specify these parameters, see “Specifying Applet Parameters Using the ODS
PARAMETERS= Statement” on page 477.

BACKGROUNDCOLOR=color
specifies the background for the applet as an RGB color in hexadecimal. White is
0xffffff. Red is 0xff0000. If not specified, the background color is 0xd3d3d3 (gray).

DATATIPHIGHLIGHTCOLOR=color
specifies a 6-digit hexadecimal RGB color that is displayed as the outline of the
graph element that is displaying its data tip information. The default color is red.
This parameter is valid only if the DATATIPSTYLE parameter is set to the value
HIGHLIGHT.

DATATIPSTYLE= HIGHLIGHT | STICK | STICK_FIXED
specifies the style of the data tip pop-up window. Values can be:

HIGHLIGHT
causes the data tip to appear above the segment with no connecting line. The
border of the graph element is highlighted.

STICK
connects the data tip pop-up window to the graph element with a line. The
pop-up window is positioned over the cursor. While the cursor remains in the
element, moving the cursor moves the pop-up window and the connecting line.

476 Metaview Applet Parameters Chapter 15

STICK_FIXED
connects a stationary data tip pop-up window to the graph element with a
line drawn into the middle of the graph element.

DEFAULTTARGET=target-name
specifies where the browser will display drill-down URLs by default. The value of
this parameter can be an HTML target such as _BLANK or the name of a window
or frame in the Web presentation. The default value is _BLANK, which displays
drill-down URLs in a new browser window. The value of the DEFAULTTARGET
parameter is superseded by the optional drill-down tag TARGET.

HELPLOCATION=URL
specifies a location for application-specific help that replaces the default help that
is provided for the Metaview Applet. The default help location is the SAS web site.

LOGRESOURCES=TRUE | FALSE
specifying a value of TRUE logs tag/value pairs in the key definition file. The
default value is FALSE. The tag value pairs are copied out of the key definition file
and modified to create a resource file. The resource file is identified with the
RESOURCES parameter, which enables the Metaview Applet text to be translated
to another language. See also the RESOURCESFONTNAME parameter.

METACODES=codes-or-file-specification
identifies a text file that contains metagraphics codes, or it provides inline
metagraphics codes. The file specification is an absolute or relative URL address.

METACODES1-METACODESn=codes-or-file-specification
identifies additional metacode specifications when you need to identify more than
one file or more than one set of inline metagraphics codes.

METACODESLABEL=menu-label
METACODES1LABEL-METACODESnLABEL=menu-label

names the text labels that are used to identify the graphs specified in the
METACODES and METACODESn parameters. If specified, there should be as
many METACODESLABEL parameters as there are METACODESn parameters.
Always specify METACODESLABEL parameters in sequential order
(METACODESLABEL, METACODES1LABEL, METACODES2LABEL, and so on).
The applet displays the labels in an embedded graph-selection control.

PAGECONTROLENABLED=TRUE | FALSE
enables or disables the display of a scroll control in the Metaview Applet. The
applet displays the control by default, when more than one graph is contained in
the metacodes set. Specify FALSE to disable the scroll control.

RESOURCES=text-URL
specifies the relative or absolute URL of an ASCII-formatted resources file. This
file enables the translation of the English text that is provided in the Metaview
Applet. The resource file is provided so that the Metaview Applet, which is Java
1.02 compliant, can provide translation capabilities that are similar to the
resource files that are enabled in Java 1.2. Note that you do not have to specify
the RESOURCES parameter if you provide a resource file with the name
MVAResources.properties in the same directory as the HTML output file. The
Metaview Applet looks for this file by default and uses it if it is found. Specifying
a value for the RESOURCES parameter overrides this default applet behavior.
For information on creating a resources file, see “Specifying Non-English Resource
Files and Fonts” on page 474. See also the parameters LOGRESOURCES and
RESOURCESFONTNAME.

Generating Interactive Metagraphics Output Specifying Applet Parameters Using the ODS PARAMETERS= Statement 477

RESOURCESFONTNAME=font-name
specifies the name of the font family that is used to display the resource values in
a user-defined resource file. This allows the Metaview Applet, which is Java 1.02
compliant, to emulate the language translation capabilities of Java 1.2. The applet
first tries to use the specified font-name, then it tries to use the SansSerif font,
then it tries to use the Serif font, then it uses the first font that is returned by the
Java.Awt.Toolkit. The first font that is found is the font that is used. See also the
parameters LOGRESOURCES and RESOURCES.

SLIDESHOWCONTROLENABLED=TRUE | FALSE
displays the embedded slide-show control when the current set of metagraphics
codes contains more than one graph. The default is TRUE. Displaying the
slide-show control allows you to start and stop a loop that displays each graph for
a specified amount of time. You can change the amount of time that each graph is
displayed. Specifying a value of FALSE prevents the display of the slide-show
control.

ZOOMCONTROLENABLED=TRUE | FALSE
displays the embedded zoom control under the graph. The default is TRUE.
Specifying a value of FALSE disables the display of the zoom control.

ZOOMCONTROLMIN=minimum-percentage
specifies a new lower limit for the zoom feature. The default value is 25 percent of
initial size. Valid values range from 1 to 99.

ZOOMCONTROLMAX=maximum-percentage
specifies a new upper limit for the zoom feature. The default value is 500 percent
of initial size. Valid values range from 100 to 25000.

Specifying Applet Parameters Using the ODS PARAMETERS= Statement
You can control the initial appearance of your Web output and configure aspects of

the applet’s user interface by specifying applet parameters. The applet parameters are
generally specified as follows in the PARAMETERS= option of the ODS statement.

ODS HTML FILE=HTML-output-file-specification
PARAMETERS=(

"parameter-name1"="parameter-value1"...
"parameter-nameN"="parameter-valueN");

An example might look like this:

ods html file="ncpop.htm"
parameters=("DATATIPSTYLE"="STICK"

"HELPLOCATION"="http://www.mysite.com/myjavametahelp.htm"
"ZOOMCONTROLENABLED"="FALSE");

You can specify any number of parameters in a single PARAMETERS= statement.
The parameters can be specified in any order. Blank spaces separate multiple
parameter specifications. You can also use multiple PARAMETERS= statements within
a given ODS statement. The quotation marks and parentheses are required. Additional
quotation marks are required in the specification of certain parameter values.

478 META2HTM Macro Arguments Chapter 15

META2HTM Macro Arguments
The META2HTM macro generates Web presentations that run in the Metaview

Applet. This applet displays and provides interactive features for graphs that have been
stored in metagraphics format. The macro is provided as an alternative to using ODS to
generate the requisite HTML files. For information on programming for the Metaview
Applet, see “Developing Web Presentations for the Metaview Applet” on page 469.

The syntax of the META2HTM macro is as follows:

%META2HTM(argument1=value1, argument2=value2, ...);

The macro arguments are divided into the following categories:
� “Arguments for the APPLET Tag” on page 536

(the ARCHIVE and CODEBASE arguments are required)
� “META2HTM Arguments for Saving the HTML File” on page 564
� “Arguments for Page Formatting” on page 552
� “Arguments for Stylesheets” on page 554
� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 556
� “Arguments for Character Transcoding” on page 561
� “META2HTM Arguments for Applet Behavior” on page 565.

Sample Programs: Metaview Applet
The following sample programs use DEVICE=JAVAMETA to generate metcodes to be

displayed by the Metaview applet:
� “Metacode Output with HTML from ODS” on page 478
� “Producing a Web Presentation with the META2HTM Macro” on page 481
� “Embedding Multiple Instances of the Metaview Applet on the Same HTML Page

with META2HTM” on page 483.

Metacode Output with HTML from ODS
The following sample program uses ODS to create an HTML file, and GOPTIONS

DEVICE=JAVAMETA with two instances of PROC GCHART to create graphical output
in the form of metacodes. Because both instances of PROC GCHART contain a BY
statement, the HTML file created by ODS contains multiple invocations of the
applet—one invocation for each value of the BY statement for each procedure (eight
invocations in all). The metacodes produced by PROC GCHART are passed to the
applet as a parameter.

When you use DEVICE=JAVAMETA with ODS, only one graph can be passed to an
instance of the Metaview applet at a time. ODS generates a separate invocation of the
Metaview applet for each SAS/GRAPH procedure that it runs. And, if a procedure
includes BY GROUP processing, then it generates another separate invocation of the
Metaview applet for each BY-group chart. In sum, Metaview applet presentations
generated by ODS never contain a slider page control or drop-down list graph control to
allow a user to select which graph is to be displayed. Although an HTML page generated
by ODS can contain multiple instances of the Metaview applet, each instance can
display one picture only, and a user must scroll the HTML page to see all the pictures.

Each GCHART procedure in this example includes a BY statement to display the
results of each of the four quarters of the year. Consequently, ODS generates eight

Generating Interactive Metagraphics Output Metacode Output with HTML from ODS 479

separate invocations of the Metaview applet, only the first of which is shown here. A
user would have to scroll the page in the browser to see all four quarters displayed.
Notice the slider control at the bottom of the image. Because the image is displayed by
the Metaview, the run-time option is available to the user to control the magnification
of the chart.

SAS Code
The following is the complete SAS code to generate a Web presentation. You should

notice the following:
� PROC GREPLAY is used to delete the GSEGS that are created. This is not

necessary, but otherwise SAS creates new GSEGS each time the procedure is run,
rather than overwriting the old ones.

� The HTML file is created using ODS HTML.
� The FILE= option of the ODS statement specifies the path and file name of the

HTML file to be created. If you run this example, then change the value of the
option to something that makes sense for you.

� The statement GOPTIONS DEVICE=JAVAMETA causes PROC GCHART to
produce metacodes which are embedded in the HTML file produced by ODS and
passed to the Metaview applet as parameters.

data prdsummary;
input Year Quarter Country $8. Product $6. Actual dollar10.2;
label Actual = ’Actual Sales’;
format Actual dollar11.;
datalines;

1993 1 CANADA BED $4,337.00
1993 1 CANADA CHAIR $5,115.00
1993 1 CANADA DESK $6,644.00
1993 1 GERMANY BED $5,026.00
1993 1 GERMANY CHAIR $6,276.00
1993 1 GERMANY DESK $4,330.00

480 Metacode Output with HTML from ODS Chapter 15

1993 2 CANADA BED $2,437.00
1993 2 CANADA CHAIR $3,115.00
1993 2 CANADA DESK $5,654.00
1993 2 GERMANY BED $3,026.00
1993 2 GERMANY CHAIR $2,276.00
1993 2 GERMANY DESK $3,320.00
1993 3 CANADA BED $6,337.00
1993 3 CANADA CHAIR $7,145.00
1993 3 CANADA DESK $7,614.00
1993 3 GERMANY BED $5,026.00
1993 3 GERMANY CHAIR $3,276.00
1993 3 GERMANY DESK $6,340.00
1993 4 CANADA BED $9,337.00
1993 4 CANADA CHAIR $2,115.00
1993 4 CANADA DESK $3,646.00
1993 4 GERMANY BED $6,026.00
1993 4 GERMANY CHAIR $7,276.00
1993 4 GERMANY DESK $8,350.00
1994 1 CANADA BED $3,327.00
1994 1 CANADA CHAIR $5,345.00
1994 1 CANADA DESK $7,624.00
1994 1 GERMANY BED $4,026.00
1994 1 GERMANY CHAIR $3,276.00
1994 1 GERMANY DESK $3,340.00
1994 2 CANADA BED $5,356.00
1994 2 CANADA CHAIR $3,115.00
1994 2 CANADA DESK $7,623.00
1994 2 GERMANY BED $8,026.00
1994 2 GERMANY CHAIR $5,276.00
1994 2 GERMANY DESK $7,321.00
1994 3 CANADA BED $4,321.00
1994 3 CANADA CHAIR $3,115.00
1994 3 CANADA DESK $5,658.00
1994 3 GERMANY BED $6,026.00
1994 3 GERMANY CHAIR $5,276.00
1994 3 GERMANY DESK $6,398.00
1994 4 CANADA BED $5,357.00
1994 4 CANADA CHAIR $4,166.00
1994 4 CANADA DESK $7,662.00
1994 4 GERMANY BED $4,026.00
1994 4 GERMANY CHAIR $5,246.00
1994 4 GERMANY DESK $3,329.00
;
/* Delete previously created gsegs before creating new ones. */

proc greplay igout=work.gseg nofs;
delete _all_;
/* Could also specify: delete gchart, gchart1, etc. */

run; quit;

ods html file=’u:\public\Web_output\ods_javameta_exp.htm’;
goptions reset=all device=javameta

border
ftext="Helvetica" ftitle="Helvetica";

Generating Interactive Metagraphics Output Producing a Web Presentation with the META2HTM Macro 481

title1 ’1993 Sales’;
proc gchart data=prdsummary(where=(year=1993));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=blue;
by quarter;

run;
quit;

title1 ’1994 Sales’;
proc gchart data=prdsummary(where=(year=1994));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=blue;
by quarter;

run;
quit;

ods html close;

Producing a Web Presentation with the META2HTM Macro
The following sample program uses the META2HTM macro to create an HTML file,

and GOPTIONS DEVICE=JAVAMETA with PROC GCHART to create graphical output
in the form of metacodes. When you use the META2HTM macro, the metacodes
produced by a SAS/GRAPH procedure are embedded in the HTML file. This enables
you to display multiple charts with one invocation of the Metaview applet.

The sample codes contains one invocation of PROC GCHART with a BY statement to
produce charts for each quarter of the year. However, each of the four charts is
displayed in sequence on a single output area of the same HTML page (no scrolling is
necessary). The Metaview applet provides a slider control, which allows a user to select
which quarter to display.

482 Producing a Web Presentation with the META2HTM Macro Chapter 15

SAS Code
The following is the complete SAS code to generate a web presentation. You should

notice the following:
� The statement FILENAME _WEBOUT specifies the name of the HTML file to be

produced by the META2HTM macro. When GOPTIONS DEVICE=JAVAMETA, the
output of a SAS/GRAPH procedure is directed to the file specified by _WEBOUT.
Because the META2HTM macro produces an HTML file, the metacodes produced
by the SAS/GRAPH procedure are embedded in the HTML file. If you run this
sample, change the value of _WEBOUT to something that makes sense for you.

� The META2HTM macro is invoked twice—once before the SAS/GRAPH procedure
in order to specify parameters for the procedure, and a second time after the
procedure to close the HTML file created.

data prdsummary;
input Year Quarter Country $8. Product $6. Actual dollar10.2;
label Actual = ’Actual Sales’;
format Actual dollar11.;
datalines;

1993 1 CANADA BED $4,337.00
1993 1 CANADA CHAIR $5,115.00
1993 1 CANADA DESK $6,644.00
1993 1 GERMANY BED $5,026.00
1993 1 GERMANY CHAIR $6,276.00
...more data lines...
1994 4 CANADA CHAIR $4,166.00
1994 4 CANADA DESK $7,662.00
1994 4 GERMANY BED $4,026.00
1994 4 GERMANY CHAIR $5,246.00
1994 4 GERMANY DESK $3,329.00
;
run;

/* When goptions device=javameta, the procedure output goes to _webout. */
/* In this case the metacodes are embedded in the html file. */
filename _webout ’u:\public\Web_output\meta2htm_javameta_sample1.htm’;

%meta2htm(capture=on,
htmlfref=_webout,
openmode=replace,
/* Specify codebase if metafile.zip is not in same */
/* directory as the html file. */
codebase=http://web_server_name/sasweb/graph
archive=metafile.zip,
slidectl=n,
/* don’t advance pictures automatically like a slideshow */
hspace=1,
vspace=2);

goptions reset=all device=javameta
border
ftext="Helvetica" ftitle="Helvetica";

title1 ’1993 Sales’;

Generating Interactive Metagraphics Output Embedding Multiple Instances of the Metaview Applet 483

proc gchart data=prdsummary(where=(year=1993));
hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=blue;
by quarter;

run;
quit;

%meta2htm(capture=off,
htmlfref=_webout,
openmode=append);

quit;

Embedding Multiple Instances of the Metaview Applet on the Same
HTML Page with META2HTM

Using the META2HTM macro, you can embed multiple instances of the Metaview
applet in a single HTML page, and for each instance you can display the output of a
different SAS/GRAPH procedure, as illustrated in the current example.

The sample code contains two invocations of PROC GCHART, each invocation with a
BY statement, to produce a total of eight charts (four quarters per year times two
years). The Metaview applet is invoked twice, and each time provides a slider control,
which enables a user to select which quarter to display for that particular year.

484 Embedding Multiple Instances of the Metaview Applet Chapter 15

SAS Code
The following is the complete SAS code to generate a Web presentation. You should

notice the following:

� The statement FILENAME _WEBOUT specifies the name of the metacode file to
be produced by PROC GCHART. When GOPTIONS DEVICE=JAVAMETA, the
output of a SAS/GRAPH procedure is directed to the file specified by _WEBOUT. If
you run this sample, change the value of _WEBOUT to something that makes
sense for you.

� When the META2HTM macro is invoked prior to the second occurrence of PROC
GCHART, it is invoked with the parameter OPENMODE=APPEND, so that the
second invocation of the Metaview applet is included in the same HTML file as the
first one.

data prdsummary;
input Year Quarter Country $8. Product $6. Actual dollar10.2;
label Actual = ’Actual Sales’;
format Actual dollar11.;
datalines;

1993 1 CANADA BED $4,337.00
1993 1 CANADA CHAIR $5,115.00
1993 1 CANADA DESK $6,644.00
1993 1 GERMANY BED $5,026.00
1993 2 GERMANY BED $3,026.00
...more data lines...
1994 4 CANADA CHAIR $4,166.00
1994 4 CANADA DESK $7,662.00
1994 4 GERMANY BED $4,026.00
1994 4 GERMANY CHAIR $5,246.00
1994 4 GERMANY DESK $3,329.00
;

Generating Interactive Metagraphics Output Embedding Multiple Instances of the Metaview Applet 485

/* When goptions device=javameta, the output of the procedure */
/* goes to _webout. */
/* In this case, the metcodes output is embedded in the html */
/* file produced by meta2htm. */
filename _webout ’u:\public\Web_output\meta2htm_javameta_sample2.htm’;

%meta2htm(capture=on,
htmlfref=_webout,
openmode=replace,
/* Specify codebase if metafile.zip is not in same directory as the */
/* html file. */
codebase=http://web_server_name/sasweb/graph
archive=metafile.zip,
pagepart=head,
slidectl=n,
/* don’t advance pictures automatically like a slideshow */
hspace=1,
vspace=2);

goptions reset=all device=javameta
border
ftext="Helvetica" ftitle="Helvetica";

title1 ’1993 Sales’;
proc gchart data=prdsummary(where=(year=1993));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=blue;
by quarter;

run;
quit;

%meta2htm(capture=off,
htmlfref=_webout,
openmode=append,
pagepart=body);

%meta2htm(capture=on,
htmlfref=_webout,
archive=metafile.zip,
openmode=append,
slidectl=n,
/* don’t advance pictures automatically like a slideshow */
pagepart=body);

title1 ’1994 Sales’;
proc gchart data=prdsummary(where=(year=1994));

hbar3d country / sumvar=actual subgroup=product sum
shape=hexagon caxis=black cframe=blue;
by quarter;

run;
quit;

%meta2htm(capture=off,

486 Embedding Multiple Instances of the Metaview Applet Chapter 15

htmlfref=_webout,
openmode=append,

pagepart=foot);

quit;

487

C H A P T E R

16
Managing Web Output with ODS

Overview of ODS Enhancements for Web Output 487

Using ODS Styles 488
Managing ODS Destinations 489

ODS and Procedures that Support RUN-Group Processing 490

Specifying Body Files for Displaying Graphs 491
Controlling Titles and Footnotes with ODS Output 492

Controlling Where Titles and Footnotes are Rendered 492

Controlling the Text Font, Size, and Color 493
Using Graphics Options with ODS 493

Adding Non-Graphics Output to a Web Page 494
Linking to Output through a Table of Contents 495

Linking to Output through a Table of Pages 496

Using Frames to Display ODS Output 497

Overview of ODS Enhancements for Web Output

Using ODS with SAS/GRAPH has numerous advantages over generating HTML
output by other means. With ODS, you can

� specify parameters for presentations that run in the Java applets or in the
SAS/GRAPH Control for ActiveX.

� use ODS styles to enhance the appearance of your graphs with images, color
gradients and blends, transparency, and shading (see “Using ODS Styles” on page
488).

� name the body file(s) for storing the ODS output (see “Specifying Body Files for
Displaying Graphs” on page 491).

� determine whether titles and footnotes are written as part of the graphs or as part
of the HTML files (see “Controlling Titles and Footnotes with ODS Output” on
page 492).

� combine graphics and non-graphics output in your Web page (see “Adding
Non-Graphics Output to a Web Page” on page 494).

� generate a Table of Contents to link to the output (see “Linking to Output through
a Table of Contents” on page 495).

� generate a Table of Pages to link to the output (see “Linking to Output through a
Table of Pages” on page 496).

� use HTML frames to display the Table of Contents or Table of Pages (see “Using
Frames to Display ODS Output” on page 497).

At a minimum, to use ODS with SAS/GRAPH, you must do all of the following:

488 Using ODS Styles Chapter 16

1 Use a GOPTIONS statement to specify a device driver with the DEVICE=
graphics option.

2 Open an HTML output file using an ODS statement such as ODS HTML or ODS
MARKUP. At a minimum, you must use the BODY= (alias FILE=) option to specify
a body file. For device drivers that generate image output files, use the PATH= or
GPATH= option to ensure that all output files are stored in the same location.

3 Run a graphics procedure.
4 Close the HTML destination.

There are many ODS statements that enable many types of output. There are also a
number of ODS options other than the ones that are discussed here that can be used to
configure HTML output. For further information, refer to the SAS Output Delivery
System: User’s Guide.

Using ODS Styles
You can use ODS styles to enhance the appearance of your graphical output. The

styles provide a consistent look and visual theme, using color schemes, image files,
enhanced fonts, transparency, shading, and other appearance enhancements, such as
anti-aliasing. SAS provides a number of styles, and you can create your own, as
described in the PROC TEMPLATE information in the SAS Output Delivery System:
User’s Guide.

Display 16.1 Example of the Sketch Style

Note: ODS graph styles are available only with the Java and ActiveX devices and
are not supported by the Contour Applet. �

Managing Web Output with ODS Managing ODS Destinations 489

To use a style, specify the STYLE= option in an ODS statement that generates
HTML output. To modify or create a new style, use the DEFINE STYLE statement in
the TEMPLATE procedure.

Predefined graph styles have been developed for particular industries, businesses, or
visual themes. Here are a few examples of style names:

Analysis
Astronomy
Banker
Blockprint
Curve
Education
Electronics
Money
Science
Statistical
Watercolor

To view the list of all styles available, run the following code:

proc template;
list styles;

run;

For more information on viewing the style definitions that are shipped with SAS
software, see SAS Output Delivery System: User’s Guide.

ODS styles act as a “graphical stylesheet” for standardization purposes. The visual
enhancements that you can make with styles allow you tailor the appearance of your
graphs to the needs of your presentation and your audience.

Note: Certain ODS styles map textures onto graph elements. For the Java devices,
these textures can be applied to 2D rectangles only. Therefore, styles with textures
cannot be applied to three-dimensional bar and pie charts in Java graphs. �

For troubleshooting information on graph styles, see Table 23.1 on page 579.

Managing ODS Destinations
ODS supports multiple destinations for procedure output. When using ODS with

SAS/GRAPH, you manage two of those locations: the listing destination, which is the
destination that receives traditional SAS output, and the HTML destination, which
receives the HTML and image files needed for Web output.

ODS destinations can be open or closed. When a destination is open, ODS can send
output to it, and when a destination is closed, ODS cannot send output to it. An open
destination always uses system resources.

By default, the listing destination is open and the HTML destination is closed.
Specifying an ODS statement that generates HTML output opens the HTML
destination, but it has no effect on the listing destination, which remains open unless
you explicitly close it.

When using SAS/GRAPH procedures with ODS, you should conserve system
resources by closing the listing destination before issuing the ODS statement. After
generating ODS output, you must close the HTML destination before you can view that
output. A typical ODS session with SAS/GRAPH should be structured like this:

490 ODS and Procedures that Support RUN-Group Processing Chapter 16

/* specify the output location */
filename odsout ’path-to-Web-server’;
goptions device=gif;

/* close the listing destination */
ods listing close;

/* open the html destination */
ods html path=odsout body=’myfile.html’;

/* SAS/GRAPH program code */

/* close the html destination */
ods html close;

/* open the listing destination */
ods listing;

If both the listing destination and the HTML destination are open when you use the
GIF device driver to generate graphics for the Web, the following output is generated:

HTML Destination Listing Destination

The GIF driver creates a GIF file for each graph.
Each file’s name corresponds to the name of the
GRSEG entry for the same graph.

The GIF driver creates a GIF file named
sasgraph.gif and writes or appends to it
(depending on the GSFMODE= setting) each
time it generates a graph.

All the HTML files specified on the ODS
statement are created. Only the GIF files that
are created in the HTML destination are
referenced in the HTML files.

Output in the Listing destination is superfluous for Web use for the following reasons:

� The file sasgraph.gif is not referenced in an HTML file.

� Previewing GRSEG entries in the GRAPH window is not a reliable way to
proofread the graphs for use with the Web because the GRAPH window and a Web
browser render graphs differently.

Note: For more information on ODS destinations, see SAS Output Delivery System:
User’s Guide. �

ODS and Procedures that Support RUN-Group Processing

When you use ODS, it is wise to specify a QUIT statement at the end of every
procedure that supports RUN-group processing. If you end every procedure step
explicitly, rather than waiting for the next PROC or DATA step to end it for you, then
the QUIT statement will cause the selection list to clear, and you will be less likely to
encounter unexpected results.

Managing Web Output with ODS Specifying Body Files for Displaying Graphs 491

Specifying Body Files for Displaying Graphs

When you use ODS with SAS/GRAPH, you specify a body file to reference the
graphics output. A body file is simply an HTML file that is created by ODS to contain
non-graphics output, and to reference graphics output so that it displays as if it were
part of the HTML file. You can use many body files during the SAS session, although
only one at a time can be open. The following table shows a body file that references
charts that were generated by PROC GCHART.

Display 16.2 Displaying a Body File in a Browser

To open a body file, use the ODS statement option BODY=. The following code
creates a body file named sales.html, which is created in the output location specified on
the FILENAME statement.

filename odsout ’path-to-Web-server’;
goptions device=gif;
ods html body=’sales.html’ path=odsout;

The body file remains open and all graphics and non-graphics output is written to it
until the HTML destination is closed or another body file is opened.

To direct output to multiple body files, use an ODS statement with the BODY=
option each time you want to close the current body file and open another:

filename odsout ’path-to-Web-server’;
goptions device=gif;

ods html body=’sales.html’ path=odsout;

/* code whose output goes to sales.html */

492 Controlling Titles and Footnotes with ODS Output Chapter 16

ods html body=’costs.html’ path=odsout;

/* code whose output goes to costs.html */

ods html close;

Using the PATH= option puts all output files in one location. Using PATH= and
GPATH= puts the image output files in a different location.

If you use BY-group processing on a graphics procedure, a separate graph is
generated for each value of the BY variable. In that case, all the graphs will be
referenced in the same body file, unless you use the ODS statement’s NEWFILE=
option. For example, you might use NEWFILE=OUTPUT:

/* use newfile= to open a new */
/* body file for each graph */

filename odsout ’path-to-Web-server’;
goptions device=gif;
ods html body=’sales.html’ path=odsout

newfile=output;

NEWFILE=OUTPUT opens a new body file for each new graph that is generated,
whether the graphs are generated with BY-group processing or by multiple procedure
runs. The new body files are named by appending consecutive numbers to the name
you specify in the BODY= option. In the example above, the initial body file is named
sales.html, and the additional body files that are created will be named sales1.html,
sales2.html, and so on.

To determine the appearance of output on the Web page, the body file uses table
definitions and style definitions. This document shows output with the default
definitions. Other definitions are available with the STYLE= option. You can also
create your own style definitions. For information on table definitions and style
definitions, see SAS Output Delivery System: User’s Guide.

Controlling Titles and Footnotes with ODS Output

When you use ODS to send your graphs to an HTML destination, you can choose
whether titles and footnotes are rendered as part of the HTML body file, as they are
with tabular output, or the graphical image that appears in the Web page.

Where titles and footnotes are rendered determines how you control their font, size,
and color.

Controlling Where Titles and Footnotes are Rendered
Where titles and footnotes are rendered depends on the device driver that you are

using and on the setting of the ODS statement options GTITLE and GFOOTNOTE.
For the JAVA, JAVAIMG, ACTIVEX, and ACTXIMG device drivers, titles and

footnotes are always rendered as part of the HTML body file. The GTITLE and
GFOOTNOTE options are ignored for these drivers.

For all other devices, the GTITLE and GFOOTNOTE options determine where the
titles and footnotes are rendered. The default settings, GTITLE and GFOOTNOTE,
render titles and footnotes as part of the graphic image. If you want titles and footnotes
to appear within the HTML body file and not as part of the graphical image, you must
specify the NOGTITLE or NOGFOOTNOTE option, as in the following example.

Managing Web Output with ODS Controlling the Text Font, Size, and Color 493

/* direct titles and footnotes */
/* to the HTML body file */
filename odsout ’path-to-Web-server’;
goptions device=gif;
ods html body=’sales.html’ path=odsout

nogtitle nogfootnote;

If the title or footnote is being output through an ODS markup destination (such as
HTML) and the corresponding ODS option NOGTITLE or NOGFOOTNOTE is specified,
then the title or footnote is rendered in the body of the HTML file rather than in the
graphic itself. Specifying NOGTITLE or NOGFOOTNOTE results in increasing the
amount of space allowed for the procedure output area, which can result in increasing
the size of the graph. Space that would have been used for the title or footnote is
devoted instead to the graph. You might need to be aware of this possible difference if
you are using annotate or map coordinates.

Controlling the Text Font, Size, and Color
When you use ODS to send graphics to an HTML destination, and titles and footnotes

are rendered as part of the HTML body file instead of the graphic image, then SAS
looks for information about how to format titles and footnotes in the following order:

1 SAS looks for options on the TITLE and FOOTNOTE statement. For example, you
can specify BOLD, ITALIC, FONT=, or HEIGHT= options on these statements.

2 SAS looks for global options such as CTEXT and FTITLE on the GOPTIONS
statement. For more information, see “Using Graphics Options with ODS” on page
493.

3 SAS looks for information specified in the style being used. If you did not specify a
style on the ODS statement, then SAS uses information specified in the default
style.

When titles and footnotes are rendered as part of the graphic image, SAS looks first
for options on the TITLE and FOOTNOTE statement and then for options on the
GOPTIONS statement. When titles and footnotes are rendered as part of the graphic
image, you do not need to specify the ODS USEGOPT statement.

When titles and footnotes are rendered as part of the body of the HTML file, font sizes
that are specified as a percentage are interpreted as a percentage of the size specified
by the current style. When titles and footnotes are rendered as part of the image, fonts
sizes that are specified as a percentage are interpreted as a percentage of graphics
output area. For more information about specifying fonts and font sizes, refer to

� “FTEXT” on page 294 and “FTITLE” on page 294
� “HTEXT” on page 316 and “HTITLE” on page 317
� “GUNIT” on page 309
� “TITLE, FOOTNOTE, and NOTE Statements” on page 210.

Using Graphics Options with ODS
When you use ODS to send graphics to an HTML destination, and titles and

footnotes are rendered as part of the HTML body file instead of the graphic image, ODS
will not recognize the settings for the following graphics options unless you also specify
the ODS USEGOPT statement:

� CTEXT=

� CTITLE=

494 Adding Non-Graphics Output to a Web Page Chapter 16

� FTEXT=
� FTITLE=
� HTEXT=
� HTITLE=

For example, the following code generates two graphs. The title for the first graph uses
the text color and font as defined by the current style (ASTRONOMY). The title for the
second graph uses the font size and color specified by the HTITLE and CTEXT options.

ods html file="C:\Public\myout1.htm" style=astronomy;
goptions reset=all dev=activex htitle=8 ctext="black";

ods nousegopt;
title ’My title’;
footnote ’My footnote’;
proc gchart data=sashelp.class;

pie age / discrete legend;
run;

ods usegopt;
pie sex / legend;

run;

quit;
ods nousegopt;
ods html close;

While ODS USEGOPT is in effect, the settings for these graphics options will affect
all of the titles and footnotes rendered by ODS. To turn off the use of these graphics
option settings for nongraphic output, specify the ODS NOUSEGOPT statement.

The default setting is ODS NOUSEGOPT.

Adding Non-Graphics Output to a Web Page
When you open a body file in ODS, all graphics and non-graphics output is

referenced in that body file until the HTML destination is closed or another body file is
opened. Thus, you do not have to do anything special to combine graphics and
non-graphics output. Simply open a body file and run the procedures whose output you
want to combine:

filename odsout ’path-to-Web-server’;
goptions device=java;

/* close the listing destination */
ods listing close;

/* open html destination and a body file */
ods html

body=’sales.html’
style=money
path=odsout;

/* generate graphics and */
/* non-graphics output */

Managing Web Output with ODS Linking to Output through a Table of Contents 495

/* using the current data set and style */
proc gchart;

vbar3d state / sumvar=sales;
run;
quit;

proc print noobs;
run;

/* close the html destination, */
ods html close;
/* open the listing destination */
ods listing;

In this example, the GCHART procedure output is referenced in the body file, and
then the PRINT procedure output is written below it. The two outputs appear together
on the same Web page when file sales.html is viewed in a browser.

For a more complete example, see “Example 9. Combining Graphs and Reports in a
Web Page” on page 248.

Linking to Output through a Table of Contents
With ODS, you can create a contents file to link to the graphics and non-graphics

output generated during a SAS session. A contents file is simply a file that uses a Table
of Contents to link to the output. You can use multiple contents files during the SAS
session, although only one at a time can be open.

Display 16.3 Displaying a Contents File in a Browser

To create a contents file, specify a name for the file in the ODS statement option
CONTENTS=.

The following code creates a contents file named salesCon.html, which is created in
the output location specified in the FILENAME statement.

filename odsout ’path-to-Web-server’;
goptions device=gif;

496 Linking to Output through a Table of Pages Chapter 16

ods html body=’sales.html’ path=odsout
contents=’salesCon.html’;

The contents file remains open and links are written to it for all graphics and
non-graphics output that is generated by the SAS program until one of the following
occurs:

� The HTML destination is closed.

� Another contents file is opened.

To open a new contents file, specify another ODS statement and use CONTENTS=
option to specify the new filename.

For graphics procedures, use the ODS DESCRIPTION= option to specify the text to
be displayed for the links to that procedure’s output. If you don’t use the
DESCRIPTION= option, the procedure’s default description text is used.

To use the Table of Contents, view the contents file in the browser. When you select a
link from the Table of Contents, the browser goes to the target output referenced by
that link. To use the Table of Contents again, you must use the browser’s Back button
or some other mechanism to return to the contents page. If your browser supports
HTML frames, you can keep the Table of Contents visible and its links accessible at all
times by displaying the contents page in a frame (see “Using Frames to Display ODS
Output” on page 497).

Linking to Output through a Table of Pages

With ODS, you can create a page file to link to the graphics and non-graphics output
generated during a SAS session. A page file is simply a file that uses a Table of Pages
(page references) to link to output. You can use multiple page files during the SAS
session, although only one at a time can be open.

Display 16.4 Displaying a Page File in a Browser

Managing Web Output with ODS Using Frames to Display ODS Output 497

To create a page file, specify a name for the file in the ODS statement option PAGE=.
The following code creates a page file named salePage.html, which is created in the

output location specified in the FILENAME statement.

filename odsout ’path-to-Web-server’;
goptions device=gif;
ods html body=’sales.html’ path=odsout

page=’salePage.html’;

The page file remains open and links are written to it for all graphics and
non-graphics output that is generated by the SAS program until one of the following
occurs:

� The HTML destination is closed.
� Another page file is opened.

To open a new page file, specify another ODS statement and use the PAGE= option to
specify the new file name.

To use the Table of Pages, view the page file in the browser. When you select a link
from the Table of Pages, the browser goes to the target output referenced by that link.
To use the Table of Pages again, you must use the browser’s Back button or some other
mechanism to return to the page file. If your browser supports HTML frames, you can
keep the Table of Pages visible and its links accessible at all times by displaying the
page file in a frame.

Using Frames to Display ODS Output
With ODS, you can create a frame file to display a Table of Contents, a Table of Pages,

or both. A frame file is simply a file that uses two frames: one to reference a contents
file, a page file, or both and a second to display output that is selected from the table of
contents or pages. To use a frame file, your browser must support HTML frames.
Display 16.5 on page 497 shows a frame file that is displaying a Table of Contents.

Display 16.5 Displaying a Frame File in a Browser

498 Using Frames to Display ODS Output Chapter 16

To create a frame file, specify a name for the file on the ODS statement op[tion
FRAME=. You must also use the options the CONTENTS= or PAGE= options, or both
to provide a table to display in the left frame.

The following code creates a frame file named saleFram.html, which is created in the
output location specified in the FILENAME statement.

filename odsout ’path-to-Web-server’;
goptions device=gif;
ods html body=’sales.html’ path=odsout

contents=’saleCon.html’
frame=’saleFram.html’;

To use the frame file, view the frame file in the browser. When you select a link from
the Table of Contents or Table of Pages, the content of the right frame changes to
display the output that is the target of the selected link, but the links from the contents
or pages remain accessible in the left frame.

499

C H A P T E R

17
Generating Web Output with the
Annotate Facility

Overview of Generating Web Output with the Annotate Facility 499

Generating Web Output with the Annotate Facility 499
When to Use PROC GANNO to Generate Web Output 500

When to Apply Annotate Data Sets to Web Output 500

Generating Web Links with the Annotate Facility 500
Examples 501

Overview of Generating Web Output with the Annotate Facility
You can use the Annotate facility to enhance your Web presentation, or you can

generate an entire Web presentation using Annotate and the GANNO procedure. In
either case you can use the Annotate facility to generate drill-down presentations with
the GIF, JPEG, or PNG device driver.

Note that your graph may conceal your annotations unless your annotations are
specified with the option WHEN=AFTER. Specifying this option causes the annotations
to be displayed after the graph, so that they will not be occluded. This is particularly
important for interactive presentations, where the back wall of the graph may be made
visible by default.

Note also that annotations disappear when the Web user selects another graph type.
The annotations reappear when the Web user selects the Refresh button in the Web
browser.

To learn how to use Annotate data sets to generate drill-down Web presentations, see
“Generating Web Output with the Annotate Facility” on page 499.

Reference information on generating and applying Annotate data sets is provided in
Chapter 25, “Annotate Dictionary,” on page 613. Usage information is provided in
Chapter 24, “Using Annotate Data Sets,” on page 587. For information on the GANNO
procedure, see Chapter 26, “The GANNO Procedure,” on page 707.

Generating Web Output with the Annotate Facility
You can use the Annotate facility to generate drill-down Web presentations in two

ways: you can use PROC GANNO and an Annotate data set as the sole basis of a
drill-down presentation, or you can apply an Annotate data set to add drill-down
functionality to a Web presentation that is generated with the GIF, JPEG, or PNG
device driver.

500 When to Use PROC GANNO to Generate Web Output Chapter 17

When to Use PROC GANNO to Generate Web Output
You can use ODS, the GANNO procedure, an Annotate data set, and a device driver

to generate a Web presentation with drill-down links. This method of generating a
drill-down presentation is preferred if you do not need to use an image from another
SAS/GRAPH procedure in your Web presentation. For example, you could use PROC
GANNO to generate an HTML output file that showed a JPEG image, with
accompanying text, and a selectable label containing the text “Click Here”. Larger
presentations with multiple drill-down links are also entirely feasible.

To generate a drill-down graph with PROC GANNO, see “Generating Web Links with
the Annotate Facility” on page 500.

When to Apply Annotate Data Sets to Web Output
You can use Annotate data sets to add drill-down links to Web presentations

generated by any procedure that uses the ANNOTATE= option. The Web presentation
must be generated with the GIF, JPEG, or PNG device driver.

Using an Annotate data set to add drill-down links is preferable in the following
circumstances:

� When you cannot add drill-down functionality by other means. Some SAS/GRAPH
statements do not support the HTML= option, which SAS/GRAPH needs to
generate an image map in the HTML output file. If the procedure does support the
ANNOTATE= option, then you can use that procedure as the basis of a drill-down
Web presentation.

� When you do not want Web users to drill down by selecting graph elements. For
example, if you did not want your Web users to drill down by selecting the bars in
a bar chart, you could define graphics elements with drill-down links using the
Annotate facility.

To use the Annotate facility to add drill-down links to a Web presentation, see
“Generating Web Links with the Annotate Facility” on page 500.

Generating Web Links with the Annotate Facility
Follow these steps if you are adding drill-down links to a Web presentation or if you

are generating an entire Web presentations with PROC GANNO:

1 Plan your Web presentation so that you know how and where you want to apply
Annotate graphical elements with drill-down links. Also determine your drill-down
URLs.

2 Generate an Annotate data set. Elements that can be defined as drill-down hot
zones are generated by Annotate functions that use the HTML variable. To see
which functions use the HTML variable, refer to Figure 24.4 on page 593. To
generate the Annotate data set, see Chapter 24, “Using Annotate Data Sets,” on
page 587.

3 Specify the GIF, JPEG, or PNG device driver using the DEVICE= option in a
GOPTIONS statement.

4 Close the listing destination and open an HTML output file in ODS.

ods listing close;
ods html file="annodril.htm"

style=science;

Generating Web Output with the Annotate Facility Examples 501

5 Generate a GIF, JPEG, or PNG image and identify the Annotate data set. Use the
GANNO procedure or another SAS/GRAPH procedure that uses the ANNOTATE=
option.

6 Close the HTML output file.
7 Generate any additional HTML files or images as needed to provide files that are

named in drill-down URLs.

Examples
For an example of creating web output with the GANNO procedure, see Example 4

on page 719.
For examples of applying Annotate data sets to web output, see “Examples” on page

604.

502

503

C H A P T E R

18
Creating Interactive Treeview
Diagrams

Creating Treeview Diagrams 503

When to Use the Treeview Applet 504
Interactivity Enabled by the Treeview Applet 505

Programming with the DS2TREE Macro for the Treeview Applet 505

Enhancing Presentations for the Treeview Applet 506
DS2TREE Macro Arguments 507

Sample Programs: Treeview Macro 507

Sample Treeview with XML Embedded in the HTML File 507
Results Shown in a Browser 508

SAS Code 508
Sample Treeview with XML Written to an External File 509

SAS Code 509

Treeview with Hotspots 510
SAS Code 510

Creating Treeview Diagrams
The Treeview applet generates node/link diagrams for hierarchical data, with

optional fish-eye distortion that highlights the central area of interest, as shown in the
following figure:

504 When to Use the Treeview Applet Chapter 18

Display 18.1 A Treeview Applet Web Link Diagram

You can scroll across the diagram by selecting off-center nodes or by searching for
nodes. Positioning the cursor over a node can display optional data tips. If you then
right-click, you access a pop-up menu. The menu enables you to highlight or hide
subtrees or drill-down to an optional URL. The menu also enables you to select all
nodes, display all previously hidden nodes, reset the view, display applet help, and
search for nodes using various search parameters.

SAS/GRAPH programming for the Treeview applet differs from some of the other
applets in that it does not use ODS, a device driver specification, or a SAS/GRAPH
procedure. Instead, the DS2TREE macro references data sets to generate and configure
an HTML output file that runs the Treeview applet.

When to Use the Treeview Applet
The Treeview applet is well-suited for the illustration of hierarchical data sets. The

fish-eye distortion factor, coupled with extensive node selection features, means that a
single node/link diagram can accommodate large data sets. Applet parameters can be
set to specify the layout of the diagram. You specify a starting node, and then you
specify how the other nodes are to be drawn in relation to that node. The resulting
diagram can be as complex as the Web link diagram in Display 18.1 on page 504, or as
simple as an organizational tree for a department in a corporation.

If you need a higher degree of configurability to illustrate weighted relationships
between the nodes and links in your diagram, then the Constellation applet might be a
better choice than the Treeview applet, as described in “Creating Constellation
Diagrams” on page 513.

Creating Interactive Treeview Diagrams Programming with the DS2TREE Macro for the Treeview Applet 505

Interactivity Enabled by the Treeview Applet
The following picture shows the pop-up menu that a user can invoke by right-clicking

a Treeview diagram in a browser. The picture shows all the options that are available
for interacting with the diagram. For a description of these options, right-click on any
Treeview diagram and select Treeview Applet Help from the pop-up menu.

Programming with the DS2TREE Macro for the Treeview Applet
The DS2TREE macro generates HTML output files for the Treeview applet. Macro

arguments enable you to generate and format an HTML file and to customize the
appearance of your node/link diagram.

Follow the steps shown in the following code to generate a Web presentation that
runs the Treeview applet.

/* 1. Define the name and storage location of the HTML output file */
/* and the location of the jar files. */
%let htmlfile = your_path_and_filename.htm;
%let jarfiles = http://your_path_to_archive;

/* 2. Define a data set that contains parent-child relationships. */
data myorg;
input name $ empno mgrno deptname $22. deptcode $;
cards;
Peter 2620 1420 Documentation DOC
Linda 6915 1420 Research & Development R&D
Maria 1320 1420 Legal LGL
Vince 1420 1750 Executive EXE
Jim 6710 6915 Quality Assurance QA
Nancy 22560 6915 Quality Assurance QA
Patrick 28470 6915 Quality Assurance QA
Elsa 33075 6915 Development DEV
Clement 22010 6915 Development DEV
Murielle 3020 6915 Development DEV

506 Enhancing Presentations for the Treeview Applet Chapter 18

David 11610 6915 Research RES
;
run;

/* 3. Specify titles and footnotes: (optional). */
title1 ’Organizational Chart’;
footnote1 ’To display the department name, place the cursor over a node.’;
footnote2 ’To rotate the chart, click and drag a node.’;

/* 4. Run the DS2TREE macro. */
/* You must change the CODEBASE= argument (using either http:// */
/* or a directory path such as C:/) to specify the location of your */
/* sas.graph.treeview.jar file and its associated jar files */
/* (sas.graph.nld.jar, sas.graph.j2d.jar). See the CODEBASE= argument in: */
/* ‘‘Arguments for the APPLET Tag’’ on page 536.*/
/* (Make sure that ods listing is open when running macro.) */
ods listing;
%ds2tree(ndata=myorg, /* data sets and files */

codebase=&jarfiles,
xmltype=inline,
htmlfile=&htmlfile,
nid=empno, /* roles of variables */
nparent=mgrno,
ntip=deptname,
nlabel=name,
height=500, /* appearance */
width=600,
tcolor=navy,
fcolor=black);

Display the resulting HTML file in a Web browser to run the Treeview applet and
display the node/link diagram.

The preceding example shows how the arguments of the DS2TREE macro identify a
data set and specify how the variables in that data set are to be interpreted to generate
the diagram. Appearance arguments define the size of the diagram and the color of the
text in the title and footnotes.

For information on generating more complex diagrams for the Treeview applet, see
“Enhancing Presentations for the Treeview Applet” on page 506.

For definitions of all DS2TREE macro arguments, see “DS2TREE Macro Arguments”
on page 507.

Enhancing Presentations for the Treeview Applet
The Treeview applet displays interactive node/link diagrams. The diagrams are

generated in SAS using a hierarchical data set and the DS2TREE macro, as described
in “Programming with the DS2TREE Macro for the Treeview Applet” on page 505.

To enhance Treeview applet presentations, specify additional arguments for the
DS2TREE macro. The following table describes some of the available enhancements
and identifies the DS2TREE arguments that implement them. For a complete list of
macro arguments, see “Macro Arguments” on page 535.

Creating Interactive Treeview Diagrams Sample Treeview with XML Embedded in the HTML File 507

Table 18.1 Treeview Applet Enhancements

Enhancement DS2TREE Argument

Specify a stylesheet to format your HTML
output file.

SSFILE, SSFREF, SSHREF, SSMEDIA, SSREL,
SSREV, SSTITLE, SSTYPE

Specify dash patterns for link lines. LSTIP, LSTIPFAC

Specify a background color, image, or drill-down
URL.

IBACKPOS, IBACKLOC, IBACKURL

Add pop-up data tips to nodes. NTIP, TIPS

Add drill-down URLs to nodes. NURL

Specify an action for the pull-down menu. ACTION, NACTION

Change the amount of fisheye distortion. FACTOR, FISHEYE

Specify a JavaScript response to node selection. SELIFUNC, SELLFUNC, SELUFUNC

Determine layout of diagram. SPREAD, TREEDIR, TREESPAN

DS2TREE Macro Arguments
The arguments of the DS2TREE macro specify the configuration of the HTML output

file, the location of the data that is used to generate the diagram, and the configuration
of the applet’s interactive features.

The DS2TREE macro uses the following syntax:

%DS2TREE(argument1=value1, argument2=value2, ...);

The arguments of the DS2TREE macro can be divided into the following categories:
� “Arguments for the APPLET Tag” on page 536. The CODEBASE argument is

required.
� “DS2TREE and DS2CONST Arguments for Data Definition” on page 537. For

DS2TREE the arguments NDATA and NID are required.
� “Arguments for Generating HTML and XML Files” on page 544.
� “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 545.
� “Arguments for Page Formatting” on page 552.
� “Arguments for Stylesheets” on page 554.
� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 556.
� “Arguments for Character Transcoding” on page 561.

Sample Programs: Treeview Macro
The following sample programs generate Treeview diagrams:
� “Sample Treeview with XML Embedded in the HTML File” on page 507
� “Sample Treeview with XML Written to an External File” on page 509
� “Treeview with Hotspots” on page 510.

Sample Treeview with XML Embedded in the HTML File
This sample program generates a very simple Treeview diagram.

508 Sample Treeview with XML Embedded in the HTML File Chapter 18

Results Shown in a Browser
The following is the Treeview diagram that is generated by the sample code. Notice

the pop-up menu. Because the diagram is displayed by the Treeview applet, it is not
just a static picture. A user can manipulate the diagram, for example, by bringing
selected nodes to the center, spreading out the nodes, and searching for nodes.

SAS Code
The following is the complete SAS code used to generate the Treeview diagram from

a SAS data set. Note the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by the DS2TREE macro. If you want to run this sample, then
change the values of HTMLFILE and CODEBASE to the locations that you want
to use.

� The parameter XMLTYPE=INLINE tells the DS2TREE macro that the XML it
generates from the SAS data set should be included inline in the HTML file.

� The parameter CUTOFF=1 specifies that every node on the graph be labeled. Use
this parameter to suppress node labels for diagrams with numerous nodes.

data father_and_sons;
input id $8. name $15. father $8.;
cards;
aaron Aaron Parker
bob Bob Parker aaron
charlie Charlie Parker aaron
david David Parker aaron
edward Edward Parker david

Creating Interactive Treeview Diagrams Sample Treeview with XML Written to an External File 509

;
run;

/* make sure ods listing is open when running macro */
ods listing;
/* run the macro */
%ds2tree(ndata=father_and_sons, /* data set */

/* specify complete url if jar files are not in same directory as html file */
codebase=http://your_path_to_archive,
xmltype=inline,
htmlfile=your_path_and_filename.htm,
nid=id, /* use this variable as the id */
cutoff=1, /* display the name on every node */
nparent=father,/* this identifies the parent of each node */
nlabel=name, /* display this on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black);

Sample Treeview with XML Written to an External File
This sample program generates the same Treeview as the previous example, “Sample

Treeview with XML Embedded in the HTML File” on page 507, with the difference that
the XML is written to an external file instead of being embedded in the HTML file.

SAS Code
The following is the complete SAS code to generate the Treeview diagram from a SAS

data set. Note the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by the DS2TREE macro. If you want to run this sample, then
change the value of HTMLFILE to something that makes sense for you.

� The parameter XMLTYPE=EXTERNAL tells the DS2TREE that the XML it
generates from the SAS data set should be written to an external file.

� The parameter XMLFILE= specifies the path and file name of the XML file to be
created.

� The parameter XMLURL= specifies how the XML file is to be addressed from
within the HTML file.

� The parameter CUTOFF=1 specifies that every node on the graph be labeled. Use
this parameter with a value between 0 and 1 to suppress node labels for diagrams
with numerous nodes.

data father_and_sons;
input id $8. name $15. father $8.;
cards;
aaron Aaron Parker
bob Bob Parker aaron
charlie Charlie Parker aaron
david David Parker aaron
edward Edward Parker david
;

510 Treeview with Hotspots Chapter 18

run;
goptions reset=all;
/* make sure ods listing is open when running macro */
ods listing;
/* run the macro */

%ds2tree(ndata=father_and_sons, /* data set */
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
xmltype=external,
makexml=y,
xmlurl=http://www.xtz.com/weboutput_treeview2_sample.xml,
xmlfile=u:/public/weboutput_treeview2_sample.xml,
nid=id, /* as the id, use this variable specified here */
cutoff=1, /* display the name on every node */
nparent=father,/* this identifies the parent of each node */
nlabel=name, /* display the value of this variable on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black);

Treeview with Hotspots
This sample program generates the same Treeview as the previous example, “Sample

Treeview with XML Embedded in the HTML File” on page 507, with the difference that
a node is associated with a URL and can be activated by a user double-clicking the node.

SAS Code
The following is the complete SAS code to generate the Treeview diagram from a SAS

data set. Note the following:
� The parameter NURL= specifies that the URL to be opened when the

corresponding node is double-clicked.
� The parameter DRILTARG=_TOP specifies that the HTML file is to be opened in

the same window as the Treeview diagram instead of in a new window, as is the
default.

data father_and_sons;
input id $8. name $15. father $8. url $30.;
cards;
aaron Aaron Parker http://www.xyz.com/index.html
bob Bob Parker aaron http://www.xyz.com/index.html
charlie Charlie Parker aaron http://www.xyz.com/index.html
david David Parker aaron http://www.xyz.com/index.html
edward Edward Parker david http://www.xyz.com/index.html
;
run;
/* make sure ods listing is open when running macro */
ods listing;
/* run the macro */
%ds2tree(ndata=father_and_sons, /* data set */

/* specify complete url if jar files are not in same directory as html file */
codebase=http://your_path_to_archive,
xmltype=inline,

Creating Interactive Treeview Diagrams Treeview with Hotspots 511

htmlfile=your_path_and_filename.htm,
nid=id, /* as the id, use the variable specified here */
cutoff=1, /* display the name on every node */
nparent=father,/* this identifies the parent of each node */
nlabel=name, /* display the value of this variable on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black,
nurl=url,
driltarg=_top);

512

513

C H A P T E R

19
Creating Interactive
Constellation Diagrams

Creating Constellation Diagrams 513

When to Use the Constellation Applet 514
Programming with the DS2CONST Macro for the Constellation Applet 515

Enhancing Presentations for the Constellation Applet 517

DS2CONST Macro Arguments 518
Sample Programs: Constellation Macro 518

Constellation Chart with DATATYPE=ARCS 518

Results Shown in a Browser 519
SAS Code 519

Constellation Chart with DATATYPE=ASSOC 520
Results Shown in a Browser 520

SAS Code 521

Constellation Chart with XML Written to an External File 522
SAS Code 523

Constellation Chart with Hotspots 524

SAS Code 524

Creating Constellation Diagrams
The Constellation Applet provides interactivity for node/link diagrams that illustrate

data that is associative, hierarchical, or requires an arc list. Node and link color and
size can be associated with specified data values.

514 When to Use the Constellation Applet Chapter 19

Display 19.1 A Constellation Applet Affinity Diagram

Interactive features of the Constellation Applet include pop-up data tips for links and
nodes, subsetting of links via an embedded scroll bar, pan and zoom, fish-eye distortion
of a central image area, and several node and link selection modes. You can define
drill-down URLs for nodes, specify menu text for the drill-down action, insert a
background image, and specify a drill-down URL for the background image, among
other enhancements. You can also specify your own JavaScript methods to define
responses to drill-down actions.

The Constellation Applet, like the Treeview and Rangeview applets, differ from the
other applets in that the diagrams that they display are not generated by SAS/GRAPH
procedures. The DS2CONST macro generates and formats an HTML output file, and
specifies the appearance and behavior of the node/link diagram based on values in a
data set.

When to Use the Constellation Applet

The Constellation Applet is best used to illustrate relationships between links and
nodes, which can be shown in affinity, sequence, and Web-click path diagrams, for
example. Colors, link line widths, and link directional indicators can be specified to
illustrate relationships. Pop-up data tips can be specified for nodes and links, along
with drill-down URLs for nodes and for an optional background image. For diagrams
that illustrate associative data, an embedded scroll bar subsets the data in the diagram
dynamically.

The Constellation Applet can be used to display hierarchical data, but so can the
Treeview Applet, which should also be considered for hierarchical diagrams such as
organizational trees, because of its unique layout capabilities. For information on the
Treeview Applet, see “Creating Treeview Diagrams” on page 503.

Creating Interactive Constellation Diagrams Programming with the DS2CONST Macro for the Constellation Applet 515

Programming with the DS2CONST Macro for the Constellation Applet

The DS2CONST macro enables you to generate complete Web presentations for the
Constellation Applet. The macro has a large number of arguments that you can use to
generate and format an HTML output file, configure the diagram, and describe how
data sets and variables are to be applied to the diagram.

The macro arguments are structured so that you can associate a variable with an
aspect of the diagram. The values of the variable are then used for that part of the
diagram. For example, the NLABEL argument specifies the name of the variable whose
values define the text labels that are to be applied to the nodes. Other arguments
provide default values that are used when no variable value is provided.

Descriptions of all of the arguments of the DS2CONST macro are provided in
“DS2CONST Macro Arguments” on page 518.

Follow the steps outlined in the following code to use the DS2CONST macro to
generate a Web presentation for the Constellation Applet.

/* 1. Define the name and storage location of the HTML output file, */
/* and the location of the jar files. */
%let htmlfile = your_path_and_filename.htm;
%let jarfiles = http://your_path_to_archive;

/* 2. Define a nodes data set */
data nodedata;
length nodeLabel $8 nodeId xLoc yLoc 8;
input nodeLabel nodeID xLoc yLoc;
cards;
Snacks 5 375 25
SftDrink 3 25 25
Books 2 200 25
BeerWine 4 200 300
Dairy 1 25 300
Bakery 0 375 300
;
run;

/* 3. Define a links data set */
data linkdata;
length from to value 8 tip $45;
input from to value @13 tip $char45.;
cards;
0 0 0 Bakery => Bakery #0
0 1 0.7 Bakery => Dairy #0.7
0 2 0.1 Bakery => Books #0.1
0 3 0.3 Bakery => SftDrink #0.3
0 4 0.1 Bakery => BeerWine #0.1
0 5 0.2 Bakery => Snacks #0.2
1 0 0.5 Dairy => Bakery #0.5
1 1 0 Dairy => Dairy #0
1 2 0.1 Dairy => Books #0.1
1 3 0.2 Dairy => SftDrink #0.2
1 4 0.3 Dairy => BeerWine #0.3
1 5 0.4 Dairy => Snacks #0.4
2 0 0.1 Books => Bakery #0.1
2 1 0.2 Books => Dairy #0.2

516 Programming with the DS2CONST Macro for the Constellation Applet Chapter 19

2 2 0 Books => Books #0
2 3 0.3 Books => SftDrink #0.3
2 4 0.3 Books => BeerWine #0.3
2 5 0.3 Books => Snacks #0.3
3 0 0.2 SftDrink => Bakery #0.2
3 1 0.3 SftDrink => Dairy #0.3
3 2 0.2 SftDrink => Books #0.2
3 3 0 SftDrink => SftDrink #0
3 4 0.6 SftDrink => BeerWine #0.6
3 5 0.8 SftDrink => Snacks #0.8
4 0 0.2 BeerWine => Bakery #0.2
4 1 0.4 BeerWine => Dairy #0.4
4 2 0.1 BeerWine => Books #0.1
4 3 0.5 BeerWine => SftDrink #0.5
4 4 0 BeerWine => BeerWine #0
4 5 0.9 BeerWine => Snacks #0.9
5 0 0.3 Snacks => Bakery #0.3
5 1 0.4 Snacks => Dairy #0.4
5 2 0.1 Snacks => Books #0.1
5 3 0.5 Snacks => SftDrink #0.5
5 4 0.5 Snacks => BeerWine #0.5
5 5 0 Snacks => Snacks #0
run;

/* 4. Define a title */
title1 ’Grocery Affinity Diagram.’;

/* make sure ods listing is open when running macro */
ods listing;
/* 5. Run the DS2CONST macro */
%ds2const(ndata=nodedata,

ldata=linkdata,
datatype=arcs,
cnode=red,
colormap=y,
height=650,
width=600,
codebase=&jarfiles,
htmlfile=&htmlfile,
nid=nodeID,
nlabel=nodelabel,
nx=xLoc,
ny=yLoc,
lfrom=from,
lto=to,
lvalue=value,
ltip=tip);

Note: You must change the CODEBASE= argument (using either http:// or a
directory path such as C:/) to specify the location of your sas.graph.constapp.jar file and
its associated jar files (sas.graph.nld.jar, sas.graph.j2d.jar). See the CODEBASE=
argument in “Arguments for the APPLET Tag” on page 536. �

Display the resulting HTML file in a Web browser to run the applet and generate the
diagram.

Creating Interactive Constellation Diagrams Enhancing Presentations for the Constellation Applet 517

Arguments in the DS2CONST macro identify the name of the nodes and links data
sets. In the nodes data set, arguments identify a node ID variable and a node label
variable. Other arguments identify the links data set and the variables that define the
nodes at the start and end of each link line.

For information on more complex presentations for the Constellation Applet, see
“Enhancing Presentations for the Constellation Applet” on page 517.

Enhancing Presentations for the Constellation Applet

The Constellation Applet displays interactive node/link diagrams. These diagrams
can show relationships between nodes and links. The Constellation Applet displays
affinity, sequence, and ring diagrams that are generated out of arc, associative, or
hierarchical data sets. The Constellation Applet provides a number of interactive
features by default, as described in “Creating Constellation Diagrams” on page 513.

Enhancements to Constellation Applet presentations are configured in your
SAS/GRAPH program by specifying arguments in the DS2CONST macro. The following
table lists some of the available enhancements and the DS2CONST arguments that
implement them. These enhancements enable you to provide data tips and drill-down
URLs for nodes and links, and to increase the visible distinctions between the data
values that are associated with the nodes and links.

Table 19.1 Constellation Applet Enhancements

Enhancements DS2CONST Arguments

Specify link weights and configure a scroll bar
that controls the display of links based on
weight.

LVALUE, MINLNKWT, SCLNKWT

Configure a fish-eye lens for large diagrams. FACTOR, FISHEYE

Lay out the diagram automatically or as
specified in a data set.

LAYOUT

Specify a stylesheet to format the HTML output
file.

BDCLASS, SEPCLASS, SPCLASS, SSFILE,
SSHREF

See “Arguments for Stylesheets” on page 554.

Add pop-up data tips to nodes and links. LTIP, NTIP

Define responses to node selection by defining
JavaScript methods

SELIFUNC, SELNFUND, SELUFUNC

Define drill-down URLs for nodes and links. LURL, NURL

Specify menu option text for a drill-down action. ACTION, NACTION

Specify a browser window or frame that displays
drill-down URLs.

DRILTARG

Add a background color, image, or drill-down
URL.

IBACKLOC, IBACKPOS, IBACKURL,

Specify text colors, fonts, styles, and sizes. NFNTNAME, NSFNTNAM, CTEXT, CATEXT

See “DS2TREE and DS2CONST Arguments for
Diagram Appearance” on page 545.

518 DS2CONST Macro Arguments Chapter 19

Enhancements DS2CONST Arguments

Specify colors for nodes and links. NCOLVAL, NCOLOR, CNODE, LCOLVAL,
LCOLOR, CLINK

Specify dashed link lines. LSTIP and LSTIPFAC

Note that a number of enhancements apply only to associative data sets when you
specify the macro argument DATATYPE=ASSOC. The macro argument definitions
identify which features apply only to associative data.

The DS2CONST macro requires you to specify node and link data sets. As an
enhancement, you can define a node styles data set that contains style information only.
You can use the node styles data set to standardize the appearance of a series of
diagrams, among other uses.

Reference information on the arguments of the DS2CONST macro is provided in
“DS2CONST Macro Arguments” on page 518.

DS2CONST Macro Arguments
The arguments of the DS2CONST macro specify the configuration of the HTML

output file, the location of the data that is used to generate the diagram, and the
configuration of the applet’s interactive features.

The DS2CONST macro uses the following syntax:

%DS2CONST(argument1=value1, argument2=value2, ...);

The arguments of the DS2CONST macro can be divided into the following categories:
� “Arguments for the APPLET Tag” on page 536. The CODEBASE argument is

required.
� “DS2TREE and DS2CONST Arguments for Data Definition” on page 537. For

DS2CONST the arguments NDATA, NID, LDATA, and LTO are required.
� “Arguments for Generating HTML and XML Files” on page 544.
� “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 545.
� “Arguments for Page Formatting” on page 552.
� “Arguments for Stylesheets” on page 554.
� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 556.
� “Arguments for Character Transcoding” on page 561.

Sample Programs: Constellation Macro
The following sample programs generate these kinds of Constellation diagrams:
� “Constellation Chart with DATATYPE=ARCS” on page 518
� “Constellation Chart with DATATYPE=ASSOC” on page 520
� “Constellation Chart with XML Written to an External File” on page 522
� “Constellation Chart with Hotspots” on page 524.

Constellation Chart with DATATYPE=ARCS
This sample program generates a very simple Constellation diagram. It displays a

number of countries and the languages spoken in those countries.

Creating Interactive Constellation Diagrams Constellation Chart with DATATYPE=ARCS 519

Results Shown in a Browser
The following is the Constellation diagram that is generated by the sample code

shown below. Notice the help window. Because the diagram is displayed by the
Constellation applet, it is not just a static picture. A user can manipulate the diagram,
for example, by moving nodes and searching for nodes. The Mouse Help window in the
following diagram documents for the user what interactivity is available (right-click a
diagram to invoke the window).

SAS Code
The following is the complete SAS code used to generate a Constellation diagram

from a SAS data set. Notice the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by the DS2CONST macro. If you want to run this sample, then
change the value of HTMLFILE to the location where you want the HTML file
stored.

� The parameter NSHAPE= specifies the variable in the SAS data set that encodes
the shape of each node.

� The parameter NCOLOR= specifies the variable in the SAS data set that encodes
the color of each node.

/*Define a nodes data set of countries and languages */
data nodedata;
input nodeLabel $15. shape $10. color $8. size;
cards;
France square red .1
Germany square red .1
Italy square red .1
Belgium square red .1
Switzerland square red .1
Holland square red .1
German triangle blue .1
French triangle blue .1
Italian triangle blue .1
Flemish triangle blue .1

520 Constellation Chart with DATATYPE=ASSOC Chapter 19

Dutch triangle blue .1
;
run;

/*Define a links data set */
data linkdata;
input from $15. to $15.;
cards;
France French
Germany German
Belgium French
Belgium German
Belgium Flemish
Belgium Dutch
Switzerland French
Switzerland German
Switzerland Italian
Italy Italian
Italy German
Holland Dutch
;
run;
goptions reset=all;
/* make sure ods listing is open when running macro */
ods listing;
/*Run the DS2CONST macro*/

%ds2const(ndata=nodedata,
ldata=linkdata,
datatype=arcs,
cnode=red,
colormap=y,
height=400,
width=500,
code=ConstChart,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
nid=nodelabel,
nlabel=nodelabel,
lfrom=from,
lto=to,
fntsize=12,
nshape=shape,
ncolor=color,
nsize=size);

Constellation Chart with DATATYPE=ASSOC
This sample program generates a very simple Constellation diagram with

DATATYPE=ASSOC.

Results Shown in a Browser
The following is the Constellation diagram that is generated by the sample code. A

Constellation diagram with DATATYPE=ASSOC depicts the strength of the

Creating Interactive Constellation Diagrams Constellation Chart with DATATYPE=ASSOC 521

relationships among variables. Variables in the SAS data set determine the size and
color of nodes, as well as the width and color of the lines between nodes. At the bottom
of the picture, notice the slider bar which allows a user to choose how many of the links
on the diagram are displayed. Move the slider to the left, and only the most important
links are displayed. Move the slider to the right, and all of the links are displayed.

SAS Code
The following is the complete SAS code to generate a Constellation diagram from a

SAS data set. Notice the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by DS2CONST. If you want to run this sample, then change the
value of HTMLFILE to something that makes sense for you.

� The parameter NVALUE= specifies the data set variable that is used to determine
the size and color of each node.

� The parameter LVALUE= specifies the data set variable that is used to determine
the width and color of each line between nodes.

data nodedata;
length nodeID value 8 label $11 tip $25;
input nodeID value @11 label $char11. @25 tip $char25.;
cards;
0 6556 depression depression: #6556
1 6322 anxiety anxiety: #6322
2 5980 fatigue fatigue: #5980
3 5286 headache headache: #5286
4 4621 chest pain chest pain: #4621
6 3149 nausea nausea: #3149
;
run;

data linkdata;

522 Constellation Chart with XML Written to an External File Chapter 19

length from to linkvalue 8 tip $40;
input from to linkvalue @13 tip $char40.;
cards;
2 0 5978 #5978, Support:63.0790, Conf:99.9833
4 1 4621 #4621, Support:48.7602, Conf:100.0000
1 0 4307 #4307, Support:45.4469, Conf:68.1272
1 2 3964 #3964, Support:41.8276, Conf:62.7017
2 3 3010 #3010, Support:31.7611, Conf:50.3429
0 3 3009 #3009, Support:31.7506, Conf:47.5957
1 6 2772 #2772, Support:29.2498, Conf:43.8469
4 6 2609 #2609, Support:27.5298, Conf:56.4596
4 0 2606 #2606, Support:27.4982, Conf:56.3947
4 2 2263 #2263, Support:23.8789, Conf:48.9721
3 0 1980 #1980, Support:20.8927, Conf:40.6821
3 1 1701 #1701, Support:17.9487, Conf:34.9497
3 2 1701 #1701, Support:17.9487, Conf:34.9497
1 3 1593 #1593, Support:16.8091, Conf:25.1977
4 3 1152 #1152, Support:12.1557, Conf:24.9297
0 6 623 #623, Support:6.5738, Conf:9.8545
2 6 623 #623, Support:6.5738, Conf:10.4198
6 3 597 #597, Support:6.2995, Conf:20.0268
3 6 372 #372, Support:3.9253, Conf:7.6433
6 0 344 #344, Support:3.6298, Conf:11.5398
run;

/* make sure ods listing is open when running macro */
ods listing;

title1 ’Diagnosis Sequence Diagram.’;
%ds2const(ndata=nodedata,

ldata=linkdata,
datatype=assoc,
minlnkwt=30,
height=450,
width=600,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
colormap=y,
nid=nodeID,
nlabel=label,
nvalue=value,
fntsize=12,
ntip=tip,
lfrom=from,
lto=to,
lvalue=linkvalue,
ltip=tip,
linktype=arrow);

Constellation Chart with XML Written to an External File

This sample program generates the same Constellation diagram as the previous
example,“Constellation Chart with DATATYPE=ASSOC” on page 520, with the

Creating Interactive Constellation Diagrams Constellation Chart with XML Written to an External File 523

difference that the XML is written to an external file instead of being embedded in the
HTML file.

SAS Code
The following is the complete SAS code to generate the Constellation diagram from a

SAS data set. You can notice the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by DS2CONST. If you want to run this sample, then change the
value of HTMLFILE to something that makes sense for you.

� The parameter XMLTYPE=EXTERNAL tells the DS2CONST macro that the XML
that it generates from the SAS data set should be written to an external file.

� The parameter XMLFILE= specifies the path and file name of the XML file to be
created.

� The parameter XMLURL= specifies how the XML file is to be addressed from
within the HTML file.

data nodedata;
length nodeID value 8 label $11 tip $25;
input nodeID value @11 label $char11. @25 tip $char25.;
cards;
0 6556 depression depression: #6556
1 6322 anxiety anxiety: #6322
2 5980 fatigue fatigue: #5980
3 5286 headache headache: #5286
4 4621 chest pain chest pain: #4621
6 3149 nausea nausea: #3149
;
run;

data linkdata;
length from to linkvalue 8 tip $40;
input from to linkvalue @13 tip $char40.;
cards;
2 0 5978 #5978, Support:63.0790, Conf:99.9833
4 1 4621 #4621, Support:48.7602, Conf:100.0000
1 0 4307 #4307, Support:45.4469, Conf:68.1272
1 2 3964 #3964, Support:41.8276, Conf:62.7017
2 3 3010 #3010, Support:31.7611, Conf:50.3429
0 3 3009 #3009, Support:31.7506, Conf:47.5957
1 6 2772 #2772, Support:29.2498, Conf:43.8469
4 6 2609 #2609, Support:27.5298, Conf:56.4596
4 0 2606 #2606, Support:27.4982, Conf:56.3947
4 2 2263 #2263, Support:23.8789, Conf:48.9721
3 0 1980 #1980, Support:20.8927, Conf:40.6821
3 1 1701 #1701, Support:17.9487, Conf:34.9497
3 2 1701 #1701, Support:17.9487, Conf:34.9497
1 3 1593 #1593, Support:16.8091, Conf:25.1977
4 3 1152 #1152, Support:12.1557, Conf:24.9297
0 6 623 #623, Support:6.5738, Conf:9.8545
2 6 623 #623, Support:6.5738, Conf:10.4198
6 3 597 #597, Support:6.2995, Conf:20.0268
3 6 372 #372, Support:3.9253, Conf:7.6433

524 Constellation Chart with Hotspots Chapter 19

6 0 344 #344, Support:3.6298, Conf:11.5398
run;
title1 ’Diagnosis Sequence Diagram.’;

/* make sure ods listing is open when running macro */
ods listing;

%ds2const(ndata=nodedata,
ldata=linkdata,
datatype=assoc,
minlnkwt=30,
height=450,
width=600,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
xmltype=external,
makexml=y,
xmlurl=http://www.xyz.com/Web_output/const_assoc_external.xml,
xmlfile=u://Web_output/const_assoc_external.xml,
colormap=y,
nid=nodeID,
nlabel=label,
nvalue=value,
fntsize=12,
ntip=tip,
lfrom=from,
lto=to,
lvalue=linkvalue,
ltip=tip,
linktype=arrow);

Constellation Chart with Hotspots
This sample program generates the same Constellation diagram as in “Constellation

Chart with DATATYPE=ARCS” on page 518 and adds hotspots to the nodes of the
diagram.

SAS Code
The following is the complete SAS code to generate the Constellation diagram from a

SAS data set. Notice the following:
� The parameter NURL= specifies the variable in the SAS data set that contains the

URL to be linked to when a user double-clicks the node.

/*Define a nodes data set of countries and languages */
data nodedata;
input nodeLabel $15. shape $10. color $8. size url $40.;
cards;
France square red .1 http://www.xyz.com
Germany square red .1 http://www.xyz.com/rnd/webgraphs/
Italy square red .1 http://www.xyz.com

Creating Interactive Constellation Diagrams Constellation Chart with Hotspots 525

Belgium square red .1 http://www.xyz.com/rnd/webgraphs/
Switzerland square red .1 http://www.xyz.com
Holland square red .1 http://www.xyz.com
German triangle blue .1 http://www.xyz.com
French triangle blue .1 http://www.xyz.com/rnd/webgraphs/odssyntax.htm
Italian triangle blue .1 http://www.xyz.com
Flemish triangle blue .1 http://www.xyz.com
Dutch triangle blue .1 http://www.xyz.com
;
run;

/*Define a links data set: */
data linkdata;
input from $15. to $15.;
cards;
France French
Germany German
Belgium French
Belgium German
Belgium Flemish
Belgium Dutch
Switzerland French
Switzerland German
Switzerland Italian
Italy Italian
Italy German
Holland Dutch
;
run;
goptions reset=all;
/* make sure ods listing is open when running macro */
ods listing;
/*Run the DS2CONST macro:*/
%ds2const(ndata=nodedata,

ldata=linkdata,
nurl=url,
datatype=arcs,

cnode=red,
colormap=y,
height=400,
width=500,
code=ConstChart,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
nid=nodelabel,
nlabel=nodelabel,
lfrom=from,
lto=to,
fntsize=12,
nshape=shape,
ncolor=color,
nsize=size);

526

527

C H A P T E R

20
Creating Critical Success Factor
Diagrams

Using the DS2CSF Macro 527

When to Use the Rangeview Applet 528
Programming with the DS2CSF Macro for the Rangeview Applet 528

Enhancing Presentations for the Rangeview Applet 529

DS2CSF Macro Arguments 530
Sample Programs: DS2CSF Macro 530

Sample Diagrams Using DS2CSF 530

Results Shown in a Browser 530
SAS Code 531

Adding a Link to a Critical Success Factor Diagram 532
SAS Code 532

Using the DS2CSF Macro
The Rangeview Applet generates a critical success factor (CSF) diagram, as shown in

the following figure.

Display 20.1 Critical Success Factor Diagram

The critical success factor diagram is fully configurable, based on either the classical
style (shown above) or a style that resembles a digital gauge, as shown in the following
figure.

528 When to Use the Rangeview Applet Chapter 20

Display 20.2 Digital Display

Ranges of values, colors, text sizes, and text fonts are all specified in the
SAS/GRAPH program. You can also specify a drill-down URL that will be displayed in a
specified browser window when the Web user selects any part of the diagram.

When to Use the Rangeview Applet
The Rangeview Applet provides a simple means of displaying a significant value

within a range of values. The drill-down functionality enables you to provide additional
information that is related to that critical success factor. While the level of interactivity
is not high, the applet can generate CSF diagrams quickly, and uses your own style
sheets to standardize the appearance of the diagram.

Programming with the DS2CSF Macro for the Rangeview Applet
The DS2CSF macro generates Web output for the Rangeview Applet. This macro

generates and formats an HTML output file, identifies the location of the Rangeview
Applet’s Java archive, configures the diagram, and provides the data that the applet
uses to display the diagram.

Follow the steps shown within this code to generate an HTML output file that will
display a critical success factor diagram.

/* Define the name and storage location of the HTML output file */
/* and the location of the jar file */
%let htmlfile = your_path_and_filename.htm;
%let jarfile = http://your_path_to_archive;

/* Run a DATA step */
data test;

myvar=80;
run;

/* Specify an optional title */
title1 ’Test Results Indicate Readiness’;

/* Run the DS2CSF macro */
%ds2csf(htmlfile=&htmlfile, /* files and data sets */

archive=rvapplet.jar,
codebase=&jarfile,
openmode=replace,
data=test,
var=myvar, /* CSF variable */

Creating Critical Success Factor Diagrams Enhancing Presentations for the Rangeview Applet 529

csftyp=digital, /* Specify appearance */
bgtype=color,
bg="#E0E0E0",
tcolor="#002288",
tsize=5,
tface="Arial",
fcolor="#002288",
fsize=3,
clabval=red,
clabtxt=fuchsia,
depth=Two_And_A_Half_Dimension,
valuepos=Bottom_Center,
labelpos=Top_Center);

Display the HTML output file in a Web browser to run the Rangeview Applet and
display a critical success factor diagram.

In the preceding example, the arguments of the DS2CSF macro specify the path to
the HTML output file and the Java archive of the Rangeview Applet. The VAR
argument identifies the variable in the data set that is to be illustrated in the diagram.
The value that is to be indicated as the critical success factor is the value for this
variable in the first observation in the data set. A digital-style diagram is specified by
the CSFTYP= argument.

For more information on usages of the Rangeview Applet, see “Enhancing
Presentations for the Rangeview Applet” on page 529.

For definitions of all of the arguments of the DS2CSF macro, see “DS2CSF Macro
Arguments” on page 530.

Enhancing Presentations for the Rangeview Applet
While the Rangeview Applet does not provide interactivity other than a drill-down

URL, a number of enhancements enable you to control the appearance of the diagram,
as described in the following table.

Table 20.1

Enhancement DS2CSF Argument

Specify a stylesheet to format your HTML
output file.

SSFILE, SSHREF, etc.

See “Arguments for Stylesheets” on page 554.

Specify a color for the background, hub, and
outline.

CBACK, CHUB, COUTLINE

Specify a drill-down URL and display target. DRILURL, DRILTARG

530 DS2CSF Macro Arguments Chapter 20

Specify an analog or digital gauge. CSFTYPE

Set the indicator shape, height, width, and color. INDICTYP, HINDIC, WINDIC, CINDIC

DS2CSF Macro Arguments

The DS2CSF macro generates HTML output for the Rangeview Applet. The last
three letters, CSF, stand for critical success factor, which is the type of diagram that is
generated by this applet.

Macro arguments specify the configuration of the HTML output file, the location of
the data used to generate the diagram, and the customizations, such as a drill-down
URL, that you can add to your presentation.

The DS2CSF macro uses the following syntax:

%DS2CSF(argument1=value1, argument2=value2, ...);

The arguments of the DS2CSF macro can be divided into the following categories:

� “Arguments for the APPLET Tag” on page 536

The ARCHIVE and CODEBASE arguments are required.

� “DS2CSF Arguments for Data Definition” on page 561

� “Arguments for Generating HTML and XML Files” on page 544

� “DS2CSF Arguments for Diagram Appearance” on page 562

� “Arguments for Page Formatting” on page 552

� “Arguments for Stylesheets” on page 554

� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 556

� “Arguments for Character Transcoding” on page 561.

Sample Programs: DS2CSF Macro

The following sample programs generate diagrams using the DS2CSF macro:

� “Sample Diagrams Using DS2CSF” on page 530

� “Adding a Link to a Critical Success Factor Diagram” on page 532.

Sample Diagrams Using DS2CSF
A CSF (Critical Success Factor) diagram represents a value in a range of data. This

value can be obtained from a SAS data set variable or an SCL variable. The range of
data used by the CSF is depicted by segments, with each segment containing a
beginning and ending value, and possibly a different color. The number of segments
and their corresponding colors are defined in a RANGE entry that is associated with
the CSF.

Results Shown in a Browser

The sample program displays two forms of CSF—one an analog dial, and the other a
digital display.

Creating Critical Success Factor Diagrams Sample Diagrams Using DS2CSF 531

SAS Code
The following is the complete SAS code to generate a web presentation. Note the

following:

� The HTMLFILE= parameter specifies the name of the HTML file to be produced
by DS2CSF. If you want to run this sample, then change the value of HTMLFILE=
to something that makes sense for you.

� The data set variable X specifies the value to be displayed on the CSF diagram. In
this case, the critical value equals 0.8.

� The parameter

range=sashelp.javagrf.sample1.range

specifies a range entry that defines the range segments and their corresponding
color. In this case, the range entry defines three segments: 0–0.33, 0.33–0.66, and
0.66 to 1.

� The data set variable X specifies the value to be displayed on the CSF diagram. In
this case, the critical value equals 0.8.

data test; x=0.8; label x=’Current Probability’; run;

title ’RangeViewApplet Sample - Classic CSF’;

%ds2csf(data=test,
var=x,
htmlfile=your_path_and_filename.htm,
openmode=replace, pagepart=head,
center=y,

532 Adding a Link to a Critical Success Factor Diagram Chapter 20

it is not in the same directory as the html file */
archive=http://your_path_to_archive,
csftyp=classic, septype=none, cback=#e0e0e0,
bgtype=color, bg="#e0e0e0",
ttag=bold + italicized, tcolor="#002288", tsize=5,
tface="Arial, Helvetica",
range=sashelp.javagrf.sample1.range);

title ’RangeViewApplet Sample - Digital CSF’;

%ds2csf(data=test,
var=x,
htmlfile=your_path_and_filename.htm,
openmode=append, pagepart=foot,
center=y,
archive=rvapplet.jar,
/* specify complete url if not in same directory as the html file */
archive=http://your_path_to_archive,
csftyp=digital, labelpos=Bottom_Center, cback=#e0e0e0,
bgtype=color, bg="#e0e0e0",
ttag=bold + italicized, tcolor="#002288", tsize=5,
tface="Arial, Helvetica",
range=sashelp.javagrf.sample1.range);

Adding a Link to a Critical Success Factor Diagram
You can add a hotspot to a diagram created with the DS2CSF macro. However,

unlike the Treeview and Constellation macros, you can add only a single hotspot to a
diagram, that is, to the diagram as a whole. You can not add hotspots to different
portions of the diagram.

SAS Code
The SAS code creates a diagram and links to the specified URL when a user clicks

anywhere on the diagram. DRILURL= specifies the URL to link to, while
DRILTARG=_self specifies that the new Web page is to be displayed in the same
window as the diagram.

data test; x=0.8; label x=’Current Probability’; run;

title ’RangeViewApplet Sample - Classic CSF’;

%ds2csf(data=test,
var=x,
htmlfile=your_path_and_filename.htm,
openmode=replace, pagepart=head,
center=y,

drilurl=http://www.xyz.com,
archive=rvapplet.jar,
/* specify complete url if not in same directory as the html file */
archive=http://your_path_to_archive,
csftyp=classic, septype=none, cback=#e0e0e0,
bgtype=color, bg="#e0e0e0",
ttag=bold + italicized, tcolor="#002288", tsize=5,

Creating Critical Success Factor Diagrams Adding a Link to a Critical Success Factor Diagram 533

tface="Arial, Helvetica",
range=sashelp.javagrf.sample1.range);

534

535

C H A P T E R

21
Macro Arguments for the
DS2CONST, DS2TREE, DS2CSF,
and META2HTM Macros

Macro Arguments 535

Arguments for the APPLET Tag 536
DS2TREE and DS2CONST Arguments for Data Definition 537

Arguments for Generating HTML and XML Files 544

DS2TREE and DS2CONST Arguments for Diagram Appearance 545
Arguments for Page Formatting 552

Arguments for Stylesheets 554

Arguments for the SAS TITLE and FOOTNOTE Tags 556
Arguments for Character Transcoding 561

DS2CSF Arguments for Data Definition 561
DS2CSF Arguments for Diagram Appearance 562

META2HTM Arguments for Saving the HTML File 564

META2HTM Arguments for Applet Behavior 565
Reserved Names 566

Macro Arguments
Macro arguments specify the configuration of the HTML output file, the location of

the data that is used to generate the diagram, and the configuration of the applet’s
interactive features.

The macros use the following syntax:

%macroname(argument1=value1, argument2=value2, ...);

The macro arguments can be divided into arguments used by all macros, arguments
used by the DS2CSF macro, and arguments used by the META2HTM macro. The
following arguments apply to all macros:

� “Arguments for the APPLET Tag” on page 536. The CODEBASE argument is
required.

� “DS2TREE and DS2CONST Arguments for Data Definition” on page 537. For
DS2TREE the arguments NDATA and NID are required. For DS2CONST the
arguments NDATA, NID, LDATA, and LTO are required.

� “Arguments for Generating HTML and XML Files” on page 544.
� “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 545.
� “Arguments for Page Formatting” on page 552.
� “Arguments for Stylesheets” on page 554.
� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 556.
� “Arguments for Character Transcoding” on page 561.

The following arguments apply only to the DS2CSF macro:

536 Arguments for the APPLET Tag Chapter 21

� “DS2CSF Arguments for Data Definition” on page 561.
� “DS2CSF Arguments for Diagram Appearance” on page 562.

The following arguments apply only to the META2HTM macro:
� “META2HTM Arguments for Saving the HTML File” on page 564. All these

arguments are required for saving the HTML file.
� “META2HTM Arguments for Applet Behavior” on page 565.

Arguments for the APPLET Tag
The following arguments configure the APPLET tag in the HTML output file. The

CODEBASE argument is required.

AHUNITS=PIXELS | PERCENT
specifies the units of the HEIGHT= argument. The default value is PIXELS. See
also the AWUNITS= argument.
Used by: DS2TREE, DS2CONST

ALIGN=position
specifies the alignment of the applet window in the browser window or frame.
Values can be LEFT, RIGHT, TOP, BOTTOM, TEXTTOP, MIDDLE, ABSMIDDLE,
BASELINE, or ABSBOTTOM.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

ALT=text
specifies the text that will be displayed on mouseover by browsers that understand
the tag but cannot run Java applets. The default value is SAS Institute Inc.
applet_name.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

ARCHIVE=filename
specifies the name of the Java archive file(s). This argument is required for
DS2CSF and META2HTM.

Note: The path to the Java archive is specified in the CODEBASE argument. �

The following table shows what archive files to use with each of the macros. For
DS2TREE and DS2CONST, you do not have to specify a value for ARCHIVE=
because the values shown are generated by default.

DS2TREE archive=%str(sas.graph.treeview.jar, sas.graph.nld.jar,
sas.graph.j2d.jar)

DS2CONST archive=%str(sas.graph.constapp.jar, sas.graph.nld.jar,
sas.graph.j2d.jar)

DS2CSF archive=rvapplet.jar

META2HTM archive=metafile.zip

Note: Before SAS 9.1, treeview.jar and constapp.jar also contained the classes
that are now included in the auxiliary JAR files (sas.graph.nld.jar and
sas.graph.j2d.jar). Although you can continue to use the older JAR files by
specifying ARCHIVE=treeview.jar or ARCHIVE=constapp.jar, future versions may
not support these older JAR files. �

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Data Definition 537

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

AWUNITS=PIXELS | PERCENT
specifies the units of the WIDTH= argument. The default value is PIXELS. See
also the HEIGHT= and AHUNITS= arguments.
Used by: DS2TREE, DS2CONST

CODEBASE=path-or-URL
specifies the path of the SAS Java archives specified in the ARCHIVE= argument.

The CODEBASE argument is required. You can specify CODEBASE="." if the
HTML file and Java archive files are in the same directory.

Note: You can specify the location pointed to by the SAS system option
APPLETLOC=, or you can specify a different location. To display the current value
of APPLETLOC, run the following code:

proc options option=appletloc;
run;

The value of the APPLETLOC system option is not used as the default value. �
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

HEIGHT=applet-height
specifies the height of the applet window. The unit of measure is pixels unless
changed by the AHUNITS= argument. The default value is 600 for all macros
except the DS2CSF macro. The default for the DS2CSF macro is 175.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

HSPACE=pixels
specifies the amount of horizontal space, in pixels, to the left and right of the
graph or diagram.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

NAME=applet-name
specifies the name for this instance of the applet. You need to use this argument
only if you have more than one instance of the APPLET tag in your HTML file,
and if you have included your own scripts or DHTML that communicates with or
acts on a particular instance of the applet.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

VSPACE=pixels
specifies the amount of vertical space, in pixels, to the top and bottom of the graph
or diagram.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

WIDTH=applet-width
specifies the width of the applet window. The unit of measure defaults to pixels
unless specified by the AWUNITS= argument. The default value is 800 for all
macros except the DS2CSF macro. The default for the DS2CSF macro is 225.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

DS2TREE and DS2CONST Arguments for Data Definition
The following arguments for the DS2TREE and DS2CONST macros define how the

applet will use the data set to generate the node/link diagram.
For DS2TREE the arguments NDATA and NID are required.
For DS2CONST the arguments NDATA, NID, LDATA, and LTO are required.

538 DS2TREE and DS2CONST Arguments for Data Definition Chapter 21

DATATYPE=ARCS | ASSOC | HIER
specifies the type of the XML data. Valid values are defined as follows:

ARCS
indicates that the data set is in the form of an arc list. This is the default
value.

ASSOC
indicates that the data set is associative. The links can be displayed based on
their weighted values, and node size and link width can represent the
relative size of the node and link values.

HIER
indicates that the data set is hierarchical.

Used by: DS2CONST

LABELS=Y | N
indicates whether or not node labels are displayed in the diagram. The default
value is Y.
Used by: DS2CONST, DS2TREE

LAYOUT=AUTO | USER
when the value is AUTO (default), specifies that the Constellation Applet lays out
the diagram using stress and strain equations. Specifying the value USER
indicates that the node positions are specified in the NX and NY arguments.
Used by: DS2CONST

LCOLOR=variable-name
specifies the name of the variable that determines the color of the link lines. The
values of this variable must be HTML 3.2 color names, or you must use the
LCOLFMT= argument to convert those values to valid color names. The default
color is provided by the CLINK= argument (see “DS2TREE and DS2CONST
Arguments for Diagram Appearance” on page 545).

In the DS2CONST macro, the LCOLOR= argument is overridden by the
LCOLVAL= argument.
Used by: DS2CONST, DS2TREE

LCOLFMT=user-defined-format-name
specifies the name of a user-defined SAS format that converts the values in the
variable named in the LCOLOR= argument to valid HTML color names. Note that
the SAS format does not change any values in the data set. The formatted values
are applied to the diagram only.
Used by: DS2CONST, DS2TREE

LCOLVAL=variable-name
specifies the name of the variable that determines the color mapping of link lines.
This argument is valid only when the value of the DATATYPE= argument is
ASSOC, and only when the value of the COLORMAP= argument is Y. If the
LCOLVAL= argument is not specified, the link colors are determined by the
following arguments in the following order: LCOLOR= (see above) and CLINK=
(see “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page
545).
Used by: DS2CONST

LDATA=data-set-name
specifies the name of the SAS data set that contains the link data that is used to
generate the diagram.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Data Definition 539

This argument is required.
Used by: DS2CONST

LFROM=variable-name
specifies the name of the variable whose values define the nodes at the start of
link lines. The LFROM variable values must be coordinated with the values of the
variables that are named in the NID= and LTO= arguments.

This argument is required.
Used by: DS2CONST

LINKTYPE=LINE | ARROW
when the value is ARROW (default), indicates that link lines are to be drawn with
arrowheads that indicate the direction of flow.
Used by: DS2CONST

LPT=password
specifies the password that is needed for accessing a password-protected link data
set (specified with the LDATA= argument). The LPT= argument is required if the
data set has a READ or PW password. You do not need to specify this argument if
the data set has a WRITE or ALTER password.
Used by: DS2CONST

LSTIP=variable-name
specifies the name of the variable in the data set that determines the stipple
mask. The stipple mask generates dashed or dotted link lines. The value of the
variable must be an integer, which is then converted into a binary value. In the
binary value, a "1" bit means that a pixel is to be drawn and a "0" bit means that
no pixel is to be drawn. For example, if the variable has a value of 61680, the
binary conversion of that value will be 1111000011110000. This stipple mask
generates a dashed link line with dashes and spaces that are four pixels wide. See
also the LSTIPFAC= argument.
Used by: DS2CONST, DS2TREE

LSTIPFAC=variable-name
specifies the name of the variable in the data set whose value specifies a multiplier
for the binary stipple mask (see the LSTIP= argument). The multiplier lengthens
the dashes in the base mask. For example, if the multiplier is 2, a stipple mask
that specifies 4-pixel dashes and 4-pixel spaces will generate link lines with 8-pixel
dashes and spaces.
Used by: DS2CONST, DS2TREE

LTIP=variable-name
specifies the name of the variable in the data set that provides the text that is
displayed in the pop-up data tips windows for links.
Used by: DS2CONST, DS2TREE

LTIPFMT=user-defined-format-name
specifies the name of a user-defined SAS format that is applied to the values in the
variable specified in the LTIP= argument to configure those values for display in
the pop-up data tips window. Note that the SAS format does not change any
values in the data set. The formatted values are applied to the diagram only.
Used by: DS2CONST, DS2TREE

LTO=variable-name
specifies the name of the variable whose values identify the nodes at the ends of
link lines. The LTO variable values must be coordinated with the values of the
variables that are named in the LFROM and NID arguments.

540 DS2TREE and DS2CONST Arguments for Data Definition Chapter 21

This argument is required.

Used by: DS2CONST

LVALUE=variable-name
specifies the name of the variable whose values determine the weights of the link
lines, which determines the color and relative thickness of link lines. The variable
values must be real numbers. The link weights are used with the MINLNKWT=
argument (see below) and the SCLNKWT= argument (see “DS2TREE and
DS2CONST Arguments for Diagram Appearance” on page 545) to control the
display of link lines. The LVALUE= argument is valid only when the value of the
DATATYPE= argument is ASSOC.

Used by: DS2CONST

LWHERE=subset-expression
specifies a WHERE clause that subsets the link data for display in the diagram. If
the expression contains any special characters (for example, % or &), include
%NRBQUOTE in the expression to process those characters correctly. The
following example shows how to correctly specify INT%:

LWHERE=%NRBQUOTE(value="Int%")

See also the NWHERE argument.

Used by: DS2CONST

LWIDTH=variable-name
specifies the name of the variable in the data set that determines the width of the
link lines.

For DS2CONST: When this argument is not specified, the width is determined
by the LVALUE argument. This argument is valid for DS2CONST only when the
value of the DATATYPE argument is ASSOC.

Used by: DS2CONST, DS2TREE

MINLNKWT=minimum-link-weight
specifies the initial minimum link weight, which determines which links are
initially displayed. The initial diagram show only those links that have weights
that are greater than or equal to the minimum weight. In the Constellation Applet,
a scroll bar allows the Web user to change the minimum link weight to change the
number of links that are displayed. Selecting the brower’s Refresh option restores
the intial minimum link weight that is specified in the MINLNKWT argument.
Link weights are determined by the LVALUE argument. This argument is valid
only when the value of the DATATYPE argument is ASSOC.

Used by: DS2CONST

NACTION=variable-name
specifies the name of the variable in the nodes data set that provides the menu
text that is displayed when the Web user selects a node with the right mouse
button. Selecting this menu option text displays the URL that is associated with
that node in the NURL= argument. This argument overrides the ACTION=
argument (see “DS2TREE and DS2CONST Arguments for Diagram Appearance”
on page 545). The default menu option text is Open URL.

Used by: DS2CONST, DS2TREE

NCOLFMT=SAS-format-name
specifies the name of a user-defined SAS format that converts the values in the
variable named in the NCOLOR= argument to valid HTML color names. Note
that the data in the data set is not altered; the formatted value is used in the
hierarchical tree rather than the data value.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Data Definition 541

Used by: DS2CONST, DS2TREE

NCOLOR=variable-name
specifies the variable in the nodes data set that determines the background color
of the nodes, using HTML 3.2 color names or 6-digit hexadecimal RGB values . If
the variable does not contain valid HTML color names, then you can use the
NCOLFMT=argument to convert those values to the HTML color names. See also
the NCOLVAL= and NVALUE=arguments.

Used by: DS2CONST, DS2TREE

NCOLVAL=variable-name
specifies the name of the variable in the nodes data set that determines the color
mapping for the nodes. This argument is valid only when the DATASET=
argument is set to ASSOC, and only when the value of the COLORMAP=
argument is Y. If this argument is not specified, then the node color is determined
by the LVALUE= argument.

Used by: DS2CONST

NDATA=SAS-data-set-name
specifies the SAS data set that contains the node data.

This argument is required.

Used by: DS2CONST, DS2TREE

NFNTNAME=node-font-variable-name
specifies the name of the variable that determines the text font for the node labels.
The variable value can be SERIF, SANSSERIF, DIALOG, DIALOGINPUT, or
MONOSPACED. The default node font is specified by the FNTNAME= argument
(see “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page
545).

Used by: DS2CONST, DS2TREE

NFNTSIZE=variable-name
specifies the name of the variable in the nodes data set that determines the size of
the text font used for node labels. This font size is expressed in points. This
argument overrides the FNTSIZE= argument.

Used by: DS2CONST, DS2TREE

NFNTSTYL=node-font-style-variable-name
specifies the name of the variable that determines the font style for the node label.
The valid values that can be assigned to the variable are BOLD, ITALIC, and
PLAIN.

Used by: DS2CONST, DS2TREE

NID=variable-name
specifies the name of the variable in the nodes data set whose values are to
illustrated as the nodes in the diagram. The node ID variable type can be either
numeric or character. For the DS2CONST macro, the values of the NID variable
must be coordinated with the values of the LFROM and LTO variables.

This argument is required.

Used by: DS2CONST, DS2TREE

NLABEL=node-label-variable-name
specifies the name of the variable that represents the node labels. This variable
type can be either numeric or character.

Used by: DS2CONST, DS2TREE

542 DS2TREE and DS2CONST Arguments for Data Definition Chapter 21

NPARENT=node-parent-variable-name
specifies the name of the variable that represents the parent nodes. This variable
type can be either numeric or character.
Used by: DS2TREE

NPW=password
specifies the password that is needed for accessing a password-protected data set.
This argument is required if the data set has a READ or PW password. You do not
need to specify this argument if the data set has only WRITE or ALTER passwords.
Used by: DS2CONST, DS2TREE

NSCBACK=variable-name
specifies the name of the variable in the node styles data set that determines the
background color of the nodes. The variable values must be HTML 3.2 color
names. The default value is determined by the CNODE= argument (see
“DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 545).
Used by: DS2CONST, DS2TREE

NSCTEXT=variable-name
specifies the name of the variable in the node styles data set that provides the
colors for the node label text. Valid variable values must be HTML 3.2 color
names. The default color is provided by the CATEXT= argument.
Used by: DS2CONST, DS2TREE

NSDATA=SAS-data-set-name
specifies the name of the node styles data set.
Used by: DS2CONST, DS2TREE

NSFNTNAM=variable-name
specifies the name of the variable in the node styles data set that determines the
text font that is to be used for node labels. Valid variable values can be SERIF,
SANSSERIF, DIALOG, DIALOGINPUT, or MONOSPACED. This argument
overrides the FNTNAME= argument.
Used by: DS2CONST, DS2TREE

NSFNTSIZ=variable-name
specifies the name of the variable in the node styles data set that determines the
size of the node label text, in points. This argument overrides the FNTSIZE=
argument.
Used by: DS2CONST, DS2TREE

NSFNTSTY=variable-name
specifies the name of the variable in the node styles data set that determines the
style of the node label text. Valid variable values can be BOLD, ITALIC, or the
default value, PLAIN. This argument overrides the FNTSTYL= argument.
Used by: DS2CONST, DS2TREE

NSHAPE=variable-name
specifies the name of the variable that determines the shape of the nodes. Valid
variable values can be CIRCLE, DIAMOND, NONE, SQUARE, or TRIANGLE. The
default value is SQUARE. This argument overrides the NODESHAPE= argument.
Used by: DS2CONST

NSID=variable-name
specifies the name of the variable in the node styles data set that represents the
nodes.
Used by: DS2CONST, DS2TREE

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Data Definition 543

NSIZE=variable-name
specifies the name of the variable that determines the size of the nodes. The
values of this variable can be real numbers. Node sizes are determined based on
the value of the LAYOUT= argument. When LAYOUT=USER, the values of the
NSIZE variable are interpreted as literal pixel measurements. When
LAYOUT=AUTO, the values of the NSIZE variable determine the size of the nodes
based on the relative size of individual values. The values of the NSIZE variable
can be scaled with the SCLNSIZE= argument (see “DS2TREE and DS2CONST
Arguments for Diagram Appearance” on page 545). This argument is valid only
when the value of the DATATYPE= argument is ASSOC.
Used by: DS2CONST

NSPW=password
specifies the password that is needed to access a password-protected node styles
data set. This argument is required if the data set has a READ or PW password.
You do not need to specify this argument if the data set has only WRITE or
ALTER passwords.
Used by: DS2CONST, DS2TREE

NSTYLE=variable-name
specifies the name of the variable that determines the style of the nodes. This
variable type can be either numeric or character, and the values must correspond
to the node identifiers specified in the NSID= argument.
Used by: DS2CONST, DS2TREE

NSWHERE=subset-expression
specifies a WHERE clause that subsets the node styles data set for display in the
diagram. If the expression contains any special characters (for example, % or &),
then include %NRBQUOTE in the expression to process those characters correctly.
The following example shows how to correctly specify INT%:

NSWHERE=%NRBQUOTE(value="Int%")

Used by: DS2CONST, DS2TREE

NTEXTCOL=variable-name
specifies the name of the variable that determines the color of the text for the node
labels. Valid variable values must be HTML 3.2 color names.
Used by: DS2CONST, DS2TREE

NTIP=variable-name
specifies the name of the variable that provides the data or text that is displayed
in the pop-up data tips window.
Used by: DS2CONST, DS2TREE

NTIPFMT=user-defined-format-name
specifies the name of a user-defined SAS format that is applied to the data tips
variable that is named in the NTIP= argument. Note that the data set is not
altered; the formatted value is used only in the diagram.
Used by: DS2CONST, DS2TREE

NURL=drill-down-URL
specifies the name of the variable that provides the drill-down URLs for the nodes.
These URLs are displayed when the Web user double-clicks on a node or selects
the node with the right mouse button and chooses an option from the pop-up
menu. Menu text is determined by the NACTION= argument above and by the
ACTION= argument in “DS2TREE and DS2CONST Arguments for Diagram
Appearance” on page 545. The default menu option text is Open URL.

544 Arguments for Generating HTML and XML Files Chapter 21

Used by: DS2CONST, DS2TREE

NVALUE=variable-name
specifies the name of the variable that determines the relative node size. This
argument is valid only when DATATYPE=ASSOC.

If you do not specify a particular node color using either the NCOLOR or
NCOLVAL argument (and if COLORMAP=Y), then this argument also determines
a default node color. By default, the largest value of NVALUE is mapped to red,
the median value to green, and the lowest value to blue. Values in between result
in interpolated colors.
Used by: DS2CONST

NWHERE=subset-expression
specifies a WHERE clause that subsets the nodes data set for display in the
diagram. If the expression contains any special characters (for example, % or &),
then include %NRBQUOTE in the expression to process those characters correctly.
The following example shows how to correctly specify INT%:

NWHERE=%NRBQUOTE(value="Int%")

See also the LWHERE= argument.
Used by: DS2CONST, DS2TREE

NX=variable-name
NY=variable-name

specify the variables that determine the locations of the centers of the nodes.
These arguments are valid only when the LAYOUT= argument is set to USER.
The values are expressed in pixels. Positive values are measured from the top-left
corner of the screen. Negative values are measured from the bottom-right corner
of the screen.
Used by: DS2CONST

Arguments for Generating HTML and XML Files
The following arguments determine the name, storage location, and file makeup of

Web presentations that run in the Constellation Applet or the Treeview Applet.

HTMLFILE=external-filename
specifies the name and storage location of the HTML output file. If the external
file does not exist, then it is created for you. Either this argument, or
HTMLFREF=, is required if you specify MAKEHTML=Y. Note: Do not use the
HTMLFILE= argument if you use the HTMLFREF= argument.
Used by: DS2TREE, DS2CONST, DS2CSF

HTMLFREF=fileref
specifies the SAS fileref that identifies the name and storage location of the HTML
output file. If the external file does not exist, then it is created for you. Either this
argument, or HTMLFILE=filename, is required if you specify MAKEHTML=Y.
Note: Do not use the HTMLFREF= argument if you use the HTMLFILE=
argument, and do not use a reserved name (see “Reserved Names” on page 566).
Used by: DS2TREE, DS2CONST, DS2CSF

MAKEHTML=Y | N
specifies whether or not an HTML file is to be generated. The default value is Y,
which generates the HTML output file. If you specify MAKEHTML=N and
MAKEXML=Y, then only an XML file is generated.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Diagram Appearance 545

Used by: DS2TREE, DS2CONST

MAKEXML=Y | N
specifies whether or not an XML file is to be generated. The default value is Y,
which generates the XML output file. If you specify MAKEXML=N and
MAKEHTML=Y, then only an HTML file will be generated. Note that under these
circumstances, you must specify a value for the XMLURL= argument.
Used by: DS2TREE, DS2CONST

OPENMODE=REPLACE | APPEND
indicates whether the new HTML or XML output or both overwrites the
information that is currently in the specified file(s), or if the new output is
appended to the end of the existing file(s). The default value is REPLACE. Specify
APPEND to add your new HTML-enhanced output to the end of an existing file.
Note: OPENMODE=APPEND is not valid if you are writing your resulting HTML
to a partitioned data set (PDS) on z/OS.
Used by: DS2TREE, DS2CONST, DS2CSF

RUNMODE=B | S
specifies whether you are running the DS2TREE macro in batch or server mode.
Batch mode (RUNMODE=B, the default) means that you are submitting the
DS2TREE macro in the SAS Program Editor or you have included it in a SAS
program. Server mode (RUNMODE=S) generates the HTTP header that is
required by Application Dispatcher in the SAS/INTRNET software.
Used by: DS2TREE, DS2CONST, DS2CSF

XMLFILE=external-filename
specifies the name and storage location of the XML output file. If the external file
does not exist, then it is created for you. This argument, or XMLFREF=, is
required if you specify MAKEXML=Y and XMLTYPE=EXTERNAL. Note: Do not
use the XMLFILE= argument if you use the XMLFREF= argument.
Used by: DS2TREE, DS2CONST

XMLFREF=fileref
specifies the SAS fileref that identifies the name and storage location of the XML
output file. If the external file does not exist, then it is created for you. This
argument, or XMLFILE=, is required if you specify MAKEXML=Y and
XMLTYPE=EXTERNAL. Note: Do not use the XMLFREF= argument if you use
the XMLFILE= argument, and do not use a reserved name (see “Reserved Names”
on page 566).
Used by: DS2TREE, DS2CONST

XMLTYPE=INLINE | EXTERNAL
specifies whether the XML output file is to be written to an external file or
included inline with the HTML. The default value is INLINE. If you specify
EXTERNAL you must also specify a value for either the XMLFILE= or
XMLFREF= arguments. This argument is required if you specify MAKEXML=Y.
Used by: DS2TREE, DS2CONST

XMLURL=URL
specifies the URL of the existing file that contains the XML tags that define the
node/link diagram. This argument is required if specified XMLTYPE=EXTERNAL.
Used by: DS2TREE, DS2CONST

DS2TREE and DS2CONST Arguments for Diagram Appearance
The following arguments for the DS2TREE and DS2CONST macros specify

non-default behavior and appearance of the node/link diagram in the respective applet.

546 DS2TREE and DS2CONST Arguments for Diagram Appearance Chapter 21

None of the following arguments are required.

ACTION=text
specifies the default text that is displayed in a pop-up menu when the Web user
selects a node with the right mouse button. Selecting this menu option displays
the URL that is associated with that node in the NURL= argument. This
argument is overridden by the NACTION= argument (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 537). The ACTION=
argument is useful when you want to use a single menu text string for most of the
nodes in your diagram. The default menu option text is Open URL.
Used by: DS2CONST, DS2TREE

ANGLE=link-angle
works with the TREESPAN= argument to determine the direction of growth for
the diagram. The ANGLE= argument is valid only when you do not specify the
TREEDIR= argument. The TREESPAN= argument defines the angular width of
the tree (narrow or wide layout). The TREESPAN angle can be visualized as a V
shape, with the starting node positioned at the base of the V. The rest of the nodes
are laid out between the spreading arms of the V. The ANGLE= argument
specifies the angle of the V shape. By default, the value of the ANGLE= argument
is zero (0) and the V shape opens to the right, as if the letter V was rotated 90
degrees clockwise, to the three-o’clock position. Values of the ANGLE= argument
that are greater than zero rotate the V shape counterclockwise away from the
three-o’clock position. Valid values for the ANGLE= argument range from zero (0)
to 360 degrees.
Used by: DS2TREE

BORDER=Y | N
specifies whether or not a border is drawn around the background area. The
default value is N.
Used by: DS2CONST, DS2TREE

CATEXT=default-text-color
specifies a default color for the text in the diagram, using an HTML 3.2 color name
or a 6-digit hexadecimal RGB value. For DS2CONST, this argument is overridden
by the FNTNAME= argument (see below) and the NTEXTCOL argument (see
“DS2TREE and DS2CONST Arguments for Data Definition” on page 537).
Used by: DS2CONST, DS2TREE

CBACK=color
specifies a background color for the Treeview Applet. The value must be a valid
HTML 3.2 color name.
Used by: DS2TREE

CHANDLE=color
specifies the color of the Collapse/Expand handle on the nodes. The handle is
represented by a small plus sign (+) that is prefixed to the label of the node when
its subtree is collapsed. The value must be a valid HTML color name.
Used by: DS2TREE

CLINK=default-link-color
specifies a default color for the links in the diagram, using an HTML 3.2 color
name or a 6-digit RGB value. For DS2CONST, this argument is overridden by the
LCOLOR= and LCOLVAL= arguments (see “DS2TREE and DS2CONST
Arguments for Data Definition” on page 537).
Used by: DS2CONST, DS2TREE

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Diagram Appearance 547

CNODE=color
specifies the node background color. The value must be a valid HTML color name.
The value specified here can be overridden by specifying a value of TRUE for the
NCOLOR= argument.
Used by: DS2TREE

CNODE=default-node-color
specifies a default background color for the nodes, using an HTML 3.2 color name
or a 6-digit RGB value. This argument is overridden by the NCOLOR=,
NCOLVAL=, NVALUE=, or NSCBACK= arguments (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 537).
Used by: DS2CONST

COLORMAP=N | Y
when the value is N (default), specifies that the Constellation Applet is to use the
NCOLOR= and LCOLOR= arguments (see “DS2TREE and DS2CONST Arguments
for Data Definition” on page 537) to determine node and link colors rather than
using the color map.
Used by: DS2CONST

CSELECT=color
specifies a color for nodes that are selected by the mouse or as the result of a node
search. The value must be a valid HTML 3.2 color name.
Used by: DS2CONST, DS2TREE

CUTOFF=detail-percentage
specifies the percentage of the nodes that will be displayed with node labels. After
the percentage has been reached, nodes are drawn as rectangles. The size of those
rectangles decreases as the distance from the starting node increases. Valid values
range from 0.0 to 1.0 (The decimal value is mapped to a percentage from 0% to
100%). The default value is 1.0. See also the DEPTH argument.
Used by: DS2CONST, DS2TREE

DEPTH=max-path-length
specifies a whole number greater than zero that determines the maximum number
of links that are to be displayed in the node/link diagram. Paths whose lengths
exceed the limit are truncated. This argument affects only the initial display of
the diagram. Nodes that are initially hidden can become visible as a user selects
nodes and navigates around the diagram.

Note that this value is ignored if the value of the CUTOFF= argument is 1.0.
There is no default value for this argument.
Used by: DS2TREE

DRILTARG=target-window-or-frame
specifies the HTML target or the name of the browser window or frame where
drill-down URLs are displayed. The default behavior is to open a new browser
window and reuse it for subsequent drill-down requests. Specifically, the default
value is _BLANK, which is one of several reserved names for targets in HTML.
The value can also be the name of a window or frame in the Web presentation.
Used by: DS2CONST, DS2TREE

DUPCHECK=TRUE | FALSE
specifies whether or not the applet will check for duplicate node IDs. The default
value is FALSE. When set to TRUE, this argument will cause the applet to update
an ID if a duplicate ID is found, instead of creating a new node with the same ID.
This enables you to collect node information from different locations in the data set.
Used by: DS2TREE

548 DS2TREE and DS2CONST Arguments for Diagram Appearance Chapter 21

FACTOR=fish-eye-distortion-factor
specifies the distortion factor for the fish-eye lens. The distortion factor determines
the amount that the central region of the display is to be expanded (or zoomed).
The value specified must be greater than or equal to 1.0. The default value is 1.0,
which represents the lowest amount of distortion. This argument is valid only
when the value of the FISHEYE= argument is Y. The maximum effective value
(beyond which no further distortion is visible) is variable depending upon the
number of nodes in the diagram.

Used by: DS2CONST, DS2TREE

FISHEYE=Y | N
indicates whether or not the diagram is to be displayed with the fish-eye distortion,
which displays the central region of the diagram at a specified size and displays
the rest of the diagram as if it were mapped onto a ball, with the nodes and links
disappearing over a curved horizon. The Web user can move the diagram past the
central region by scrolling or searching for nodes. The amount of distortion used in
the fish-eye lens is determined by the FACTOR= argument. The default value is Y.

Used by: DS2CONST, DS2TREE

FNTNAME=default-node-label-font
specifies the default text font for node labels. Valid values can be SERIF,
SANSSERIF, DIALOG, DIALOGINPUT, or MONOSPACED. This argument is
overridden by the NFNTNAME or NSFNTNAM= arguments (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 537).

Used by: DS2CONST, DS2TREE

FNTSIZE=node-font-size
specifies the size of the node label text font, in points. This argument is overridden
by the NFNTSIZE= argument.

Used by: DS2CONST, DS2TREE

FNTSTYL=node-font-style
specifies the text font style for node labels. Valid values are BOLD, ITALIC, and
PLAIN. PLAIN is the default value. This argument is overridden by the
NFNTSTYL= argument.

Used by: DS2CONST, DS2TREE

IBACKLOC=image-URL
specifies a URL for the image that you want to use in the background of the
diagram. See also the IBACKPOS= argument.

Used by: DS2CONST, DS2TREE

IBACKPOS=CENTER | SCALE | TILE | POSITION
specifies how to display the background image in the IBACKLOC= argument.
Specify one of the following options:

CENTER
centers the image in the browser window without resizing the image.

SCALE
resizes the image to fit the browser window.

TILE
fills the browser window by replicating the image at its original size.

POSITION
positions the image without resizing at the values specified by the IBACKX=
and IBACKY= arguments.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Diagram Appearance 549

Used by: DS2CONST, DS2TREE

IBACKURL=background-drilldown-URL
specifies the URL that is displayed when you click on the background image. This
argument is valid only when the value of the IBACKPOS= argument is
POSITION. If you are including the Powered by SAS logo, then you must use this
argument to link the image to the SAS Web site.

Used by: DS2CONST, DS2TREE

IBACKX=corner-coordinate
IBACKY=corner-coordinate

specifies the x (horizontal) and y (vertical) pixel coordinates of the upper left-hand
corner of the background image. Positive values are measured from the upper-left
corner of the background area. Negative values are measured from the lower-right
corner of the background area. These values are valid only if the value of the
IBACKPOS= argument is POSITION. Always specify both the IBACKX= and
IBACKY= arguments.

Used by: DS2CONST, DS2TREE

NODEBDR=LINE | NONE | FILL | OUTLINE
specifies the appearance of the node border line, using one of the following values:

LINE
show solid border lines around the nodes.

NONE
show no border lines or background.

FILL
show background but no border lines.

OUTLINE
show a border line and background. This is the default value.

Used by: DS2TREE

NODESEP=character(s)
specifies which character(s) should be used to separate the selected nodes in the
return value for the various getSelectedNodes methods. The default separator is a
semicolon (;). If the getSelectedNodesIds method is called, and a JavaScript
method is not specified with the SELIFUNC= argument, then the selected node
IDs are returned as a single string separated by the NODESEP= character(s).

Used by: DS2CONST, DS2TREE

NODESHAP=shape
specifies the shape of the nodes. Valid values can be CIRCLE, DIAMOND, NONE,
SQUARE, or TRIANGLE. The default value is SQUARE. This argument is
overridden by the NSHAPE= argument (see “DS2TREE and DS2CONST
Arguments for Data Definition” on page 537).

Used by: DS2CONST

RBSIZING=Y | N
the default value N indicates that size information from the resource bundle is not
to be used for sizing the two dialog boxes that can be invoked from the pop-up
menu that appears when a user right-mouse-clicks on a diagram. The two dialog
boxes are the About dialog box and the Mouse Help dialog box.

Specify Y for this argument for languages other than English.If you specify Y,
then the height and the width of the dialog box frames are read in from the
resource bundle. This allows translators to set appropriate heights and widths for

550 DS2TREE and DS2CONST Arguments for Diagram Appearance Chapter 21

the frames in the resource bundle, based on the length of the message strings in
each language.
Used by: DS2CONST, DS2TREE

SCLNKWT=Y | N
when the value is Y (default), specifies that the link weight values are to be scaled
into the range of 0–1, which corresponds to 0–100%. When SCLNKWT=Y, the
scroll bar in Constellation Applet displays a percentage of the range of the link
weights. When SCLNKWT=N, the link weights are not scaled and the scroll bar
reflects the actual link weight data values. These values are real numbers that are
specified in the LVALUE= argument (see “DS2TREE and DS2CONST Arguments
for Data Definition” on page 537). The SCLNKWT= argument is valid only when
the value of the DATATYPE= argument is ASSOC. Note that the range of link
weights (maximum minus minimum) must be greater than 2 when SCLNKWT=N.
Otherwise, the scroll bar will not correctly map the link weights.
Used by: DS2CONST

SCLWIDTH=Y | N
when the value is Y (default), indicates that the link width values are to be scaled
into the range of 0–1. Specifying N indicates that the link widths are already
scaled into that range. This argument is valid only when the value of the
DATATYPE= argument is ASSOC.
Used by: DS2CONST

SCNSIZE=Y | N
when the value is Y (default), indicates that the node size values are to be scaled
into the range of 0–1. Specifying N indicates that the node sizes are already scaled
into that range. This argument is valid only when the value of the
DATATYPE= argument is ASSOC. Node sizes are specified with the NSIZE=
argument (see “DS2TREE and DS2CONST Arguments for Data Definition” on
page 537).
Used by: DS2CONST

SELIFUNC=JavaScript-method-name
specifies the name of the JavaScript method that will be used by the
getSelectedNodesIds method. The getSelectedNodesIds method first collects all the
IDs for the selected nodes. Then, if a method is specified with the SELIFUNC=
argument, the getSelectedNodesIds method calls that method and passes to that
method all of the selected node IDs as arguments. If there is no method specified
with the SELIFUNC= argument, then the getSelectedNodesIds method
concatenates all of the IDs into a single string, separates the individual IDs with
the value that is specified by the NODESEP= argument, and returns the string.
The value for this argument is case-sensitive.
Used by: DS2CONST, DS2TREE

SELLFUNC=JavaScript-method-name
specifies the JavaScript method that will be used by the getSelectedNodesLabels
method. The getSelectedNodesLabels method first collects all the labels for the
selected nodes. Then, if a method is specified with the SELLFUNC= argument,
the getSelectedNodesLabels method calls that method and passes to that method
all of the selected node labels as arguments. If there is no method specified with
the SELLFUNC= argument, then the getSelectedNodesLabels method
concatenates all of the labels into a single string, separates the individual labels
with the value that is specified by the NODESEP= argument, and returns the
string. The value for this argument is case-sensitive.
Used by: DS2CONST, DS2TREE

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2TREE and DS2CONST Arguments for Diagram Appearance 551

SELUFUNC=JavaScript-method-name
specifies the JavaScript method that will be used by the getSelectedNodesURLs
method. The getSelectedNodesURLs method first collects all the URLs for the
selected nodes. Then, if a method is specified with the SELUFUNC= argument,
the getSelectedNodesURLs method calls that method and passes to that method
all of the selected node URLs as arguments. If there is no method specified with
the SELUFUNC= argument, then the getSelectedNodesURLs method
concatenates all of the URLs into a single string, separates the individual URLs
with the value specified by the NODESEP= argument, and returns the string. The
value for this argument is case-sensitive.

Used by: DS2CONST, DS2TREE

SHOWLINKS=Y | N
specifies whether initially to display all arc lines between nodes. Specifying N
suppresses all arc lines. The default value is Y.

Note: This argument affects only the initial display. A viewer can
subsequently control which arc lines are displayed by right-mouse clicking and
selecting a Show links option from the pop-up menu. �

Used by: DS2CONST

SPREAD=angular-factor
specifies the angular spreading factor for the layout of the diagram. The value
specified must be greater than or equal to 1.0. The default value is 1.25.

Used by: DS2TREE

TIPS=Y | N
indicates whether or not pop-up data tips are displayed when the cursor is
positioned over nodes or links or both. The default value is Y.

Used by: DS2CONST, DS2TREE

TIPTYPE=TRACKING | STATIONARY
when the value is TRACKING (default), indicates that the pop-up data tips
windows are to move with the cursor while the cursor moves within the area of a
single node or link.

Used by: DS2CONST

TREEDIR=C | D | L | R | U
determines the growth direction of the node/link diagram using the following
values.

C | CIRCULAR
grows the tree in a circular pattern. This is the default value.

D | DOWN
grows the tree from top to bottom using center alignment.

L | LEFT
grows the tree from left to right and top to bottom.

R | RIGHT
grows the tree from right to left and top to bottom.

U | UP
grows the tree from the bottom up using center alignment.

If the value of the TREEDIR= argument is UP or DOWN, then the value of the
TREESPAN= argument is used to set the angular width of the diagram. The
starting node is aligned horizontally in the center of the applet. The diagram

552 Arguments for Page Formatting Chapter 21

grows out of the starting node based on the angular width specified in the
TREESPAN= argument. The wider the angle, the wider the layout of the diagram.

The TREEDIR= argument overrides the ANGLE= argument.
Used by: DS2TREE

TREESPAN=angular-diagram-width
specifies the angular width of the diagram in degrees. Valid values must be
greater than zero and less than 360. The default value is 60. For details, see the
TREEDIR= and ANGLE= arguments.
Used by: DS2TREE

ZOOM=starting-percentage
specifies the zoom value that is used for the initial display of the diagram. After
the initial display, the Web user can change the zoom percentage using the
slider-bar beneath the diagram on the Web page. Selecting the Refresh button on
the browser runs the applet and restores the initial zoom setting. The default
value is 100 percent. The initial diagram can be scaled up with a value greater
than 100 or scaled down with a value less than 100.
Used by: DS2CONST

Arguments for Page Formatting
The following arguments format the HTML output file. The rendering of some of

these arguments may vary in certain browsers. Several of the following arguments
apply only to certain macros, as noted in the descriptions of the arguments.

The BGTYPE=, BRTITLE=, CENTER=, CTEXT=, and DOCTYPE= arguments apply
to the entire page for the current invocation of the macro. If you append data to an
existing HTML page, then the HTML formatting will not change. You may want to use
these arguments only when you replace, rather than append, HTML files.

BDCLASS=body-stylesheet-name
specifies the name of the stylesheet that is to be applied to the body of the HTML
output file.
Used by: DS2TREE, DS2CONST, DS2CSF.

BG=color-or-image
specifies the background color or image, based on the value of the BGTYPE=
argument. The color can be specified as an HTML 3.2 color name or as a 6-digit
hexadecimal RGB value. When BGTYPE=IMAGE, this argument specifies a
background image, using a path or a URL, relative or absolute.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

BGTYPE=NONE | COLOR | IMAGE
specifies the background type, using one of the following values:

NONE
causes the applet to display its default background color. This is the default
value.

COLOR
specifies that the value of the BG= argument must be an HTML 3.2 color
name or hexadecimal RGB value.

IMAGE
specifies that the value of the BG= argument must be the path or URL
pointing to an image file that will be displayed in the background of the
applet window.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros Arguments for Page Formatting 553

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

BRTITLE=browser-window-title
specifies the text that appears in the title bar of the browser window. By default,
no title is displayed.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

CENTER= Y | N
specifies whether or not the graph or diagram is centered in the browser window.
The default value is N.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

CTEXT=default-text-color
specifies a default text color that replaces the default text color in the browser.
Other color arguments can be used to override this new default. The color can be
specified as an HTML 3.2 color name or as a six-digit hexadecimal RGB value.

Used by: DS2TREE, DS2CONST, DS2CSF.

DOCTYPE=DOCTYPE-tag
generates the following DOCTYPE tag by default, which specifies HTML version
3.2:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

To use a different DOCTYPE tag, specify the entire contents of the tag as the
value of the DOCTYPE= argument, including the angle brackets.

If you specify DOCTYPE="", then no DOCTYPE tag is generated in the HTML
output file.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

ENCODE=Y | N
when the value is Y (default), replaces the angle bracket characters (< and >) in
SAS TITLE and FOOTNOTE lines with the HTML character entities (> and
<) respectively. Specifying ENCODE=N causes the browser to interpret the
angle brackets as parts of HTML tags. For example, you would use ENCODE=N if
you wanted to use the following TITLE statement:

title ’Out of Range Data’;

This argument is supported by the DS2CONST, DS2TREE, and DS2CSF macros.

Used by: DS2TREE, DS2CONST, DS2CSF.

PAGEPART=ALL | HEAD | BODY | FOOT
specifies which part or parts of the HTML page are to be written into the HTML
output file. This argument is helpful when are appending HTML output to the end
of an existing HTML file, or when you are using separate files for the head, body,
and foot of your Web page.

ALL
writes the entire HTML file, including metagraphics codes for the
META2HTM macro or the XML tags for the DS2CONST, DS2TREE, and
DS2CSF macros. This is the default value. Do not use this value if you are
appending an existing HTML file.

HEAD
writes the HTML header information and metagraphics codes (for
META2HTM) or XML (for DS2CONST and DS2TREE) into the HTML file.
The header information consists of the HEAD and BODY tags. HTML footer
information is not included.

554 Arguments for Stylesheets Chapter 21

BODY
writes only the metagraphics codes (for META2HTM) or XML tags (for
DS2CONST, DS2TREE, and DS2CSF) into the HTML output file. No head or
foot information is generated in the HTML output file.

FOOT
writes metagraphics codes or XML tags and the </BODY> and </HTML> tags
to conclude the HTML file.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

SASPOWER=logo-image-file
specifies the path or URL, relative or absolute, to the image file of the SAS
Powered logo. In the HTML file, the image appears at the bottom of the page.
Selecting the image displays the SAS home page. By default, the logo is omitted.
To obtain the logo image file, see http://www2.sas.com/dispatcher/index.html. See
also the SPCLASS= argument.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

SEPCLASS=page-separator-stylesheet
specifies the path or URL, relative or absolute, to the style sheet that is used for
the page separator. If the value of the SEPTYPE= argument is RULE, then the
value of the SEPCLASS= argument is used on the CLASS attribute of the HTML
tag <HR>. If the value of the SEPTYPE= argument is IMAGE, then the value of
SEPCLASS= argument is used on the CLASS attribute of the HTML tag .
Used by: DS2TREE, DS2CONST, DS2CSF.

SEPLOC=separator-image
specifies the path or URL, relative or absolute, to the image that you want to use
as the separator between the graphs in your presentation. This argument is valid
only if the value of the SEPTYPE= argument is IMAGE.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

SEPTYPE= IMAGE | NONE | RULE
specifies the type of separator that is used between multiple applets in your
presentation. The valid values are defined as follows:

IMAGE
specifies separate graphs using the image specified in the SEPLOC=
argument.

NONE
specifies not to use a separator between applets.

RULE
inserts a line between applets. This is the default.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM.

SPCLASS=logo-stylesheet-name
specifies the name of the style sheet class that is to be used for the Powered by
SAS logo.
Used by: DS2TREE, DS2CONST, DS2CSF.

Arguments for Stylesheets
DS2CONT, DS2TREE, DS2CSF, and META2HTM enable the following arguments for

style sheet specifications in the HTML output file. See also the BDCLASS=,
SEPCLASS=, and SPCLASS= arguments in “Arguments for Page Formatting” on page
552.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros Arguments for Stylesheets 555

Style sheet arguments reference style information in one of two ways. Most of the
arguments specify parameters in the HTML LINK tag:

<LINK HREF="1qtr98.css" TYPE="text/css" REL="stylesheet">

Use these arguments when you do not want to enter your style information directly into
your HTML file when you create that file.

Other arguments embed the style information into the header of the HTML file. Use
these arguments when you want to collect style information from multiple style sheets.
The end result must create a complete STYLE tag in your HTML file.

You can combine LINK tag arguments with arguments that embed style information,
but you cannot use the same ordinal number in two arguments. For example, you can
specify the arguments SSHREF1= and SSFILE2=, but you cannot specify SSHREF1=
and SSFILE1=.

The following arguments link to two different style sheets and include text comments
for each stylesheet.

ssfile1=comments1.txt, /* embeds text */
sshref2=/style/style1.css, /* links to stylesheet */
sstype2=text/css, /* parameters for style sheets */
ssrel2=stylesheet,
ssfile3=comments2.txt, /* embeds text */
sshref4=/style/style2.css, /* link to stylesheets */
sstype4=text/css,
ssrel4=stylesheet,

SSFILE1–SSFILE5=file-specification
embeds in the HTML file the entire contents of the specified file.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

SSFREF1–SSFREF5=fileref
embeds in the HTML file the entire contents of the file that is referenced by the
SAS fileref.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

SSHREF1–SSHREF5=style-sheet-URL
specifies the URL of the stylesheet in the HREF= attribute of the LINK tag. If you
specify a relative URL, it must be relative to the location of the HTML output file.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

SSMEDIA1–5=media
specifies the media for which the style sheet was designed. The value is applied to
the MEDIA= attribute of the LINK tag. The default value is SCREEN. Examples
of other valid MEDIA values include BRAILLE for tactile feedback devices, and
HANDHELD for small-screen devices.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

SSREL1–5=relationship
specifies the REL= attribute of the LINK tag, which describes the relationship from
the linked file to the HTML file. The value of this tag is generally STYLESHEET.
The arguments SSREL1–5= can also be used with the arguments SSREV1–5 to
link HTML pages in a series. For example, the SSREL1= argument can specify
the next document in the series, and the SSREV2= argument can specify the
reverse relationship, which would be the previous document in the series. Both
arguments, SSRELn= and SSREVn=, can appear in the same LINK tag.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

556 Arguments for the SAS TITLE and FOOTNOTE Tags Chapter 21

SSREV1–5=relationship
specifies the REV= attribute of the LINK tag, which describes the relationship
from the HTML file to the linked file. See the SSREL1–5= argument for details.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

SSTITLE1–5=title-of-linked-page
specifies the TITLE= attribute of the LINK tag. The TITLE= attribute provides a
title for the referenced page. Use this argument when you are using the SSRELn=
and SSREVn= arguments to specify next and previous links in a series of Web
pages.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

SSTYPE1–5=stylesheet-type
specifies the TYPE= attribute of the LINK tag. For cascading style sheets, this
value usually is TEXT/CSS. For JavaScript style sheets, this value is generally
TEXT/JAVASCRIPT.
Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

Arguments for the SAS TITLE and FOOTNOTE Tags
The following arguments determine the content and appearance of the SAS TITLE

and FOOTNOTE tags in the HTML output file.

FCLASS=footnote-style-sheet-name
TCLASS=title-style-sheet-name

specify the name of the style sheet class that is to be used for the SAS TITLE or
FOOTNOTE.
Used by: DS2TREE, DS2CONST, DS2CSF.

FCOLOR=footnote-text-color
TCOLOR=title-text-color

specify the color of the text in the SAS TITLE or FOOTNOTE, using an HTML 3.2
color name or a six-digit hexadecimal RGB value.
Used by: DS2TREE, DS2CONST, DS2CSF.

FFACE=footnote-text-font
TFACE=title-text-font

specify a text font for the SAS TITLE or FOOTNOTE. Valid values are
browser-specific.
Used by: DS2TREE, DS2CONST, DS2CSF.

FSIZE=n | +n | –n
TSIZE=n | +n | –n

specify the size of the text font that is to be used for the SAS TITLE or
FOOTNOTE, where n is an integer. Valid values are browser-specific depending on
how the browser handles the SIZE attribute on the FONT tag.
Used by: DS2TREE, DS2CONST, DS2CSF.

FTAG=tag-string
TTAG=tag-string

specify a text string that the macro translates into one or more tags that will
enclose the SAS TITLE or FOOTNOTE.

The default value is as follows:

PREFORMATTED + HEADER 3

Used by: DS2TREE, DS2CONST, DS2CSF.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros Arguments for the SAS TITLE and FOOTNOTE Tags 557

For each possible value of the TTAG= and FTAG= arguments, the following
table shows the HTML tags that are generated by the macro for the SAS TITLE
and FOOTNOTE lines (the corresponding end tags are generated automatically):

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

NO FORMATTING (none)

STRONG

EMPHASIS

HEADER 1 <H1>

HEADER 2 <H2>

HEADER 3 <H3>

HEADER 4 <H4>

HEADER 5 <H5>

HEADER 6 <H6>

PREFORMATTED TEXT <PRE>

CITATION TEXT <CITE>

COMPUTER CODE TEXT <CODE>

KEYBOARD INPUT TEXT <KBD>

LITERAL TEXT <SAMP>

VARIABLE TEXT <VAR>

BOLD

ITALICIZED TEXT <I>

UNDERLINE TEXT <U>

TYPEWRITER <TT>

BIG TEXT <BIG>

SMALL TEXT <SMALL>

STRIKE OUT TEXT <STRIKE>

DEFINING INSTANCE TEXT <DFN>

PREFORMATTED + STRONG <PRE>

PREFORMATTED + EMPHASIS <PRE>

PREFORMATTED + HEADER 1 <PRE><H1>

PREFORMATTED + HEADER 2 <PRE><H2>

PREFORMATTED + HEADER 3 <PRE><H3>

PREFORMATTED + HEADER 4 <PRE><H4>

PREFORMATTED + HEADER 5 <PRE><H5>

PREFORMATTED + HEADER 6 <PRE><H6>

PREFORMATTED + CITATION <PRE><CITE>

558 Arguments for the SAS TITLE and FOOTNOTE Tags Chapter 21

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

PREFORMATTED + COMPUTER
CODE

<PRE><CODE>

PREFORMATTED + KEYBOARD
INPUT

<PRE><KBD>

PREFORMATTED + LITERAL <PRE><SAMP>

PREFORMATTED + VARIABLE <PRE><VAR>

PREFORMATTED + BOLD <PRE>

PREFORMATTED + ITALICIZED <PRE><I>

PREFORMATTED + TYPEWRITER <PRE><TT>

PREFORMATTED + UNDERLINE <PRE><U>

PREFORMATTED + BIG <PRE><BIG>

PREFORMATTED + SMALL <PRE><SMALL>

PREFORMATTED + STRIKE OUT <PRE><STRIKE>

PREFORMATTED + DEFINING
INSTANCE

<PRE><DFN>

STRONG + EMPHASIS

STRONG + ITALICIZED <I>

STRONG + CITATION <CITE>

STRONG + COMPUTER CODE <CODE>

STRONG + KEYBOARD INPUT <KBD>

STRONG + LITERAL <SAMP>

STRONG + VARIABLE <VAR>

STRONG + TYPEWRITER <TT>

STRONG + BIG <BIG>

STRONG + SMALL <SMALL>

EMPHASIS + CITATION <CITE>

EMPHASIS + COMPUTER CODE <CODE>

EMPHASIS + KEYBOARD INPUT <KBD>

EMPHASIS + LITERAL <SAMP>

EMPHASIS + VARIABLE <VAR>

EMPHASIS + TYPEWRITER <TT>

EMPHASIS + BIG <BIG>

EMPHASIS + SMALL <SMALL>

BOLD + EMPHASIS

BOLD + ITALICIZED <I>

BOLD + CITATION <CITE>

BOLD + COMPUTER CODE <CODE>

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros Arguments for the SAS TITLE and FOOTNOTE Tags 559

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

BOLD + KEYBOARD INPUT <KBD>

BOLD + LITERAL <SAMP>

BOLD + VARIABLE <VAR>

BOLD + TYPEWRITER <TT>

BOLD + BIG <BIG>

BOLD + SMALL <SMALL>

ITALICIZED + CITATION <I><CITE>

ITALICIZED + COMPUTER CODE <I><CODE>

ITALICIZED + KEYBOARD INPUT <I><KBD>

ITALICIZED + LITERAL <I><SAMP>

ITALICIZED + VARIABLE <I><VAR>

ITALICIZED + TYPEWRITER <I><TT>

ITALICIZED + BIG <I><BIG>

ITALICIZED + SMALL <I><SMALL>

STRONG + EMPHASIS + BIG <BIG>

STRONG + CITATION + BIG <CITE><BIG>

STRONG + COMPUTER CODE + BIG <CODE><BIG>

STRONG + KEYBOARD INPUT + BIG <KBD><BIG>

STRONG + LITERAL + BIG <SAMP><BIG>

STRONG + VARIABLE + BIG <VAR><BIG>

STRONG + TYPEWRITER + BIG <TT><BIG>

EMPHASIS + CITATION + BIG <CITE><BIG>

EMPHASIS + COMPUTER CODE +
BIG

<CODE><BIG>

EMPHASIS + KEYBOARD INPUT +
BIG

<KBD><BIG>

EMPHASIS + LITERAL + BIG <SAMP><BIG>

EMPHASIS + VARIABLE + BIG <VAR><BIG>

EMPHASIS + TYPEWRITER + BIG <TT><BIG>

BOLD + EMPHASIS + BIG <BOLD><BIG>

BOLD + ITALICIZED + BIG <BOLD><I><BIG>

BOLD + CITATION + BIG <BOLD><CITE><BIG>

BOLD + COMPUTER CODE + BIG <BOLD><CODE><BIG>

BOLD + KEYBOARD INPUT + BIG <BOLD><KBD><BIG>

BOLD + LITERAL + BIG <BOLD><SAMP><BIG>

BOLD + VARIABLE + BIG <BOLD><VAR><BIG>

BOLD + TYPEWRITER + BIG <BOLD><TT><BIG>

560 Arguments for the SAS TITLE and FOOTNOTE Tags Chapter 21

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

ITALICIZED + CITATION + BIG <I><CITE><BIG>

ITALICIZED + COMPUTER CODE +
BIG

<I><CODE><BIG>

ITALICIZED + KEYBOARD INPUT +
BIG

<I><KBD><BIG>

ITALICIZED + LITERAL + BIG <I><SAMP><BIG>

ITALICIZED + VARIABLE + BIG <I><VAR><BIG>

ITALICIZED + TYPEWRITER + BIG <I><TT><BIG>

STRONG + EMPHASIS + SMALL <SMALL>

STRONG + ITALICIZED + SMALL <I><SMALL>

STRONG + CITATION + SMALL <CITE><SMALL>

STRONG + COMPUTER CODE +
SMALL

<CODE><SMALL>

STRONG + LITERAL + SMALL <SAMP><SMALL>

STRONG + VARIABLE + SMALL <VAR><SMALL>

STRONG + TYPEWRITER + SMALL <TT><SMALL>

EMPHASIS + CITATION + SMALL <CITE><SMALL>

EMPHASIS + COMPUTER CODE +
SMALL

<CODE><SMALL>

EMPHASIS + KEYBOARD INPUT +
SMALL

<KBD><SMALL>

EMPHASIS + LITERAL + SMALL <SAMP><SMALL>

EMPHASIS + TYPEWRITER +
SMALL

<TT><SMALL>

BOLD + EMPHASIS + SMALL <BOLD><SMALL>

BOLD + ITALICIZED + SMALL <BOLD><I><SMALL>

BOLD + CITATION + SMALL <BOLD><CITE><SMALL>

BOLD + COMPUTER CODE +
SMALL

<BOLD><CODE><SMALL>

BOLD + KEYBOARD INPUT +
SMALL

<BOLD><KBD><SMALL>

BOLD + LITERAL + SMALL <BOLD><SAMP><SMALL>

BOLD + VARIABLE + SMALL <BOLD><VAR><SMALL>

BOLD + TYPEWRITER + SMALL <BOLD><TT><SMALL>

ITALICIZED + CITATION + SMALL <I><CITE><SMALL>

ITALICIZED + COMPUTER CODE +
SMALL

<I><CODE><SMALL>

ITALICIZED + KEYBOARD INPUT +
SMALL

<I><KBD><SMALL>

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2CSF Arguments for Data Definition 561

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

ITALICIZED + LITERAL + SMALL <I><SAMP><SMALL>

ITALICIZED + VARIABLE + SMALL <I><VAR><SMALL>

ITALICIZED + TYPEWRITER +
SMALL

<I><TT><SMALL>

Arguments for Character Transcoding
The following arguments allow you to specify a character set or convert character

data to the corresponding Unicode Numeric Character Reference (NCR).

CHARSET=char-set-name
specifies the character set name that will be written into the META tag of the
HTML output file. For information on available character set names, see
http://www.iana.org/assignments/character-sets.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

TRANLIST=transcoding-list-name
specifies the name and location of an existing transcoding list, either user-defined
or from SAS. The transcoding list name must be a four-level name, and the fourth
level must be SLIST, as in the following example:

TRANLIST=SASHELP.HTMLGEN.IDENTITY.SLIST

This argument is required if you are implementing character transcoding.
SAS provides a number of transcoding lists in the SASHELP.HTMLNLS

catalog. For a description of these transcoding lists, and for information on
generating your own transcoding lists, see the SAS Web site at
http://support.sas.com/rnd/web/intrnet/format/lang2.html.

Used by: DS2TREE, DS2CONST, DS2CSF, META2HTM

DS2CSF Arguments for Data Definition
These arguments for the DS2CSF macro define how the data set is to be interpreted

by the Rangeview Applet as it generates the critical success factor graph.

DATA=SAS-data-set-name
specifies the name of the data set that is to be used to generate the graph. The
default data set is the one that was most recently created.

Used by: DS2CSF

LABELS=Y | N
when the value is Y (default), indicates that the graph label and critical success
value are displayed beneath the gauge. Specifying LABELS=N suppresses the
display of the diagram label and critical success value.

Used by: DS2CSF

562 DS2CSF Arguments for Diagram Appearance Chapter 21

PW=password
specifies the password that is needed to access a password-protected data set. This
argument is required if the data set has a READ or PW password. It is not
required if the data set has a WRITE or ALTER password.
Used by: DS2CSF

VAR=variable-name
specifies the name of the variable in the SAS data set that is to be represented in
the graph. The indicated value is the value of this variable in the first observation
in the data set.
Used by: DS2CSF

DS2CSF Arguments for Diagram Appearance
The following arguments allow you to configure your range view diagram to suit the

needs of your Web presentation.

CBACK=color
specifies a background color for the graph. The value must be a valid HTML 3.2
color name or a six-digit hexadecimal RGB value.
Used by: DS2CSF

CHUB=color
specifies a color for the half-circle area in the bottom middle of the classic diagram.
The value must be a valid HTML 3.2 color name or a six-digit hexadecimal RGB
value.
Used by: DS2CSF

CINDIC=color
specifies the color of the indicator in both the classic and the digital styles of the
diagram. The value must be a valid HTML 3.2 color name or a six-digit
hexadecimal RGB value.
Used by: DS2CSF

CLABTXT=color
specifies the color of the text label (and value, in the classic graph) that appear in
a bold text font. The value must be a valid HTML 3.2 color name or a six-digit
hexadecimal RGB value.
Used by: DS2CSF

CLABVAL=color
specifies the color of the data value labels that appear above the gauge. The value
must be a valid HTML 3.2 color name or a six-digit hexadecimal RGB value.
Used by: DS2CSF

COUTLINE=color
specifies the color of the outline that is drawn around the classic or digital gauge.
The value must be a valid HTML 3.2 color name or a six-digit hexadecimal RGB
value.
Used by: DS2CSF

CSFTYPE=CLASSIC | DIGITAL
when the value is CLASSIC (default), specifies that the graph is to be rendered as
an analog gauge with a needle that points to the critical success factor. Specifying
a value of DIGITAL displays a diagram that resembles a liquid-crystal display.

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros DS2CSF Arguments for Diagram Appearance 563

Used by: DS2CSF

CVALUE=color
specifies the color of the critical success value. This value is shown in a bold text
font along with the text label value in the classic graph. In the digital graph, the
value appears in a digital font. The value must be a valid HTML 3.2 color name or
a six-digit hexadecimal RGB value.

Used by: DS2CSF

DEPTH=TWO_DIMENSION | TWO_AND_A_HALF_DIMENSION
when the value is TWO_AND_A_HALF_DIMENSION (default), specifies a
diagram that appears to have a degree of depth.

Used by: DS2CSF

DRILURL=URL
specifies the URL, relative or absolute, that is to be displayed when the user
selects any part of the diagram.

Used by: DS2CSF

DRILTARG=target-window-or-frame
specifies the HTML target or the name of the browser window or frame where
drill-down URLs are to be displayed. The default behavior is to open a new
browser window and reuse it for subsequent drill-down requests. Specifically, the
default value is _BLANK, which is one of several reserved names for targets in
HTML. The DRILTARG value can also be the name of a window or frame in the
Web presentation.

Used by: DS2CSF

HINDIC=indicator-height-percentage
specifies the height of the indicator for the classic diagram (see the CSFTYPE=
argument). Valid values must be greater than zero and less than 100.

Used by: DS2CSF

INDICTYP=indicator-shape
specifies the shape of the indicator for the classic diagram (see CSFTYPE). Valid
values can be ARROW, HARPOON, LINE, NEEDLE, or SPEAR.

Used by: DS2CSF

LABELPOS=text-label-location
specifies the location of the text label that identifies the critical success factor.
Valid values can be TOP_LEFT, TOP_CENTER, TOP_RIGHT, BOTTOM_LEFT,
BOTTOM_CENTER, or BOTTOM_RIGHT.

Used by: DS2CSF

RANGE=range-name
specifies the four-level name of the RANGE entry that defines range values and
colors. For example:

range=sashelp.javagrf.sample1.range

To define a range entry, you can use the BUILD command:

build libname.catname.entryname.RANGE

This opens a window that you use to define the range. Use the scrollbar on the
window to navigate between segments of the range.

Used by: DS2CSF

564 META2HTM Arguments for Saving the HTML File Chapter 21

VALUEPOS=CSF-value-location
specifies the location of the critical success value. Valid values can be TOP_LEFT,
TOP_CENTER, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_CENTER, or
BOTTOM_RIGHT.
Used by: DS2CSF

WINDIC=indicator-width
specifies the width of the critical success indicator, in pixels. The default value is 8.
Used by: DS2CSF

META2HTM Arguments for Saving the HTML File
The META2HTM macro enables the following arguments for generating and saving

an HTML file.

Note: All of the following macro arguments are required. �

CAPTURE=ON | OFF
CAPTURE=ON enables the capture of metagraphics output. Set CAPTURE=ON
above the SAS/GRAPH procedure that will generate metagraphics for the HTML
output file. Set CAPTURE=OFF after you run and quit the SAS/GRAPH
procedure.

The following arguments are enabled when CAPTURE=ON or when
CAPTURE=OFF: CENTER=, HTMLFILE=, HTMLFREF=, OPENMODE=, and
PAGEPART=.

The following arguments are enabled only when CAPTURE=OFF:
SASPOWER=, SEPLOC=, SEPCLASS=, and SPCLASS=.

Any other arguments are valid only when CAPTURE=ON.
This argument is required.

Used by: META2HTM

HTMLFILE=external-filename
specifies the name and path of the HTML file where the output will be written. If
the file you specify does not exist, it is created for you.

This argument is required if HTMLFREF is omitted. HTMLFILE= and
HTMLFREF= are mutually exclusive arguments.
Used by: META2HTM

HTMLFREF=fileref
specifies the fileref that points to the location of the HTML file where the output
will be written. If the file you specify does not exist, then it is created for you. Do
not use a reserved name. See “Reserved Names” on page 566 for more information.

This argument is required if HTMLFILE is omitted. HTMLFREF= and
HTMLFILE= are mutually exclusive arguments.
Used by: META2HTM

OPENMODE=APPEND | REPLACE
indicates whether the new HTML output overwrites the information currently in
the specified file or if the new output is appended to the end of the existing file. The
default value is REPLACE. If you do not want to replace the current contents,then
supply APPEND to add your output to the end of an existing HTML file.

Always use OPENMODE=APPEND with the CAPTURE=OFF argument.
OPENMODE=APPEND is not valid if you are writing in the z/OS operating

environment.
This argument is required.

Used by: META2HTM

DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros META2HTM Arguments for Applet Behavior 565

RUNMODE=B | S
specifies whether you are running the macro in batch or server mode. Batch mode
(the default) means that you are submitting the META2HTM macro in the
Program Editor or you have included it in a SAS program. Server mode is used
with Dispatcher Applications in the SAS/INTRNET software. Specifying server
mode generates an HTTP header that is required by Application Dispatcher.

This argument is required.

Used by: META2HTM

META2HTM Arguments for Applet Behavior
The META2HTM macro enables the following arguments, which are used to control

the behavior of the applet. Many of these arguments specify applet parameters.

CBACK=hex-color
specifies the color of the applet control area, using a six-digit hexadecimal RGB
value.

Used by: META2HTM

CTIPHILT=hex-color
specifies a six-digit hexadecimal RGB value for the color of the graph element that
has been selected to display its pop-up data tips window. The default highlight
color is red. See also the TIPTYPE= argument.

Used by: META2HTM

PAGECTL=Y | N
when the value is N (default), prevents the display of the page-selection control.
For further information, see “Metaview Applet Parameters” on page 475.

Used by: META2HTM

SLIDECTL=Y | N
the default value of N prevents the display of the graph-selection control. For
further information, see “Metaview Applet Parameters” on page 475.

Used by: META2HTM

TIPTYPE=HIGHLIGHT | STICK | FIXED_STICK
specifies the appearance of data tips.

HIGHLIGHT
specifies that the text tip is to appear as a disconnected pop-up window. The
outline of the selected graph element is highlighted in the color specified in
the CTIPHILT= argument. This is the default value.

STICK
specifies that a line will connect the cursor and the selected graph element.
The pop-up text tip window appears above the cursor and follows the cursor
as it moves within the selected graph element.

FIXED_STICK
specifies that a line will be drawn between the text tip pop-up window and
the center of the selected graph element. The text tip window does not move
with the cursor.

See also “Metaview Applet Parameters” on page 475.

Used by: META2HTM

566 Reserved Names Chapter 21

ZOOMCTL=Y | N
specifies whether or not the zoom control appears in the applet control area. By
default, the control is displayed.
Used by: META2HTM

Reserved Names
Do not use the following names as the value of a macro variable:

Libnames and Filerefs
HTML
CATENT
HTMSS

Global Macro Variables
_htmovp
_htmcap
_htmtitl
_htmwher

Data Sets or Views
WORK._BYGRP

Catalogs
WORK._HTMLG_
SASHELP.HTMLNLS

Catalog Entries
SASHELP.HTMLGEN.DSPROP.SLIST
SASHELP.HTMLGEN.IDENTITY.SLIST
SASHELP.HTMLGEN.OUTPROP.SLIST
SASHELP.HTMLGEN.TABPROP.SLIST
SASHELP.HTMLGEN.TAGS.SLIST

567

C H A P T E R

22
Enhancing Web Output

Enhancing Web Output 567

Adding Data Tips to Web Presentations 568
Data Tips in GIF, JPEG, and PNG Files 568

Data Tips in ACTXIMG and JAVAIMG Images 568

Data Tips in Java and ActiveX Web Presentations 568
Data Tips in Metaview Applet Presentations 569

Data Tips in Treeview Diagrams 569

Data Tips in Constellation Charts 569
Data Tips in Critical Success Factor Diagrams 569

Data Tips in Animated GIFs 570
Adding Data Tips with the HTML= Option 570

Adding Drill-Down Links to Web Presentations 571

Links in GIF, JPEG, and PNG Files 571
Links in ACTXIMG and JAVAIMG Images 571

Links in Java and ActiveX Web Presentations 571

Links in Metaview Applet Presentations 572
Links in Treeview Diagrams 572

Links in Constellation Charts 573
Links in Critical Success Factor Diagrams 573

Links in Animated GIFs 573

Adding Links with the HTML= and HTML_LEGEND= Options 574
Working with Link and Enhancement Variables 574

Assigning Values to Link and Enhancement Variables 575

Enhancing Web Output

When you enhance a Web presentation, you specify additional options, arguments, or
parameters to configure and add to the Web presentation that is generated by default.
The number and type of enhancements that are available depend on the type of the
Web presentation. Presentations that run with Web executables (ActiveX Control or
Java applets) enable the largest number of enhancements. Depending upon the type of
Web presentation, enhancements include:

� Using ODS styles to enhance the appearance of graphical output. See “Using ODS
Styles” on page 488.

� Displaying pop-up text when the cursor is over a portion of the diagram. See
“Adding Data Tips to Web Presentations” on page 568.

� Adding hotspots that link to other Web pages. See “Adding Drill-Down Links to
Web Presentations” on page 571.

568 Adding Data Tips to Web Presentations Chapter 22

� Adding annotations to Web presentations. See Chapter 17, “Generating Web
Output with the Annotate Facility,” on page 499.

� Modifying colors in the presentations. See “Specifying Colors in SAS/GRAPH
Programs” on page 92.

� Displaying images as part of a graph. See “Specifying Images in SAS/GRAPH
Programs” on page 106.

� Changing text fonts. See “Specifying Fonts in SAS/GRAPH Programs” on page 75.

Adding Data Tips to Web Presentations
You can add pop-up data tips to most SAS/GRAPH Web presentations. The text is

displayed when the user’s cursor is over a specified area of a graph. See the following
sections for basic information on adding data tips to Web presentations:

� “Data Tips in GIF, JPEG, and PNG Files” on page 568
� “Data Tips in ACTXIMG and JAVAIMG Images” on page 568
� “Data Tips in Java and ActiveX Web Presentations” on page 568
� “Data Tips in Metaview Applet Presentations” on page 569
� “Data Tips in Treeview Diagrams” on page 569
� “Data Tips in Constellation Charts” on page 569
� “Data Tips in Critical Success Factor Diagrams” on page 569
� “Data Tips in Animated GIFs” on page 570.

Data Tips in GIF, JPEG, and PNG Files
For Web output that is generated with ODS and the GIF, JPEG, and PNG device

drivers, SAS adds default data tips using the values of fields in the SAS data set. Also,
if you specify DESCRIPTION= as an option on the SAS/GRAPH procedure, then SAS
adds the text of that description as a data tip for the entire graphic. Specify
DESCRIPTION="" to suppress this default data tip.

You can also add custom data tips to the output of any SAS/GRAPH procedure that
supports the HTML= option. For this technique, see “Adding Data Tips with the
HTML= Option” on page 570.

Data Tips in ACTXIMG and JAVAIMG Images
When you specify DEVICE=ACTIXIMG or JAVAIMG, and use ODS HTML, SAS adds

default data tips using the values of fields in the SAS data set. Also, if you specify
DESCRIPTION= as an option on the SAS/GRAPH procedure, then SAS adds the text of
that description as a data tip for the entire graphic. Specify DESCRIPTION="" to
suppress this default data tip.

By using the HTML= option of a GBARLINE, GCHART, GPLOT (except for
high-low), or GRADAR procedure, you can add custom data tips to graphs created with
the ACTXIMG device driver. For information, see “Adding Data Tips with the HTML=
Option” on page 570. SAS/GRAPH does not directly support adding custom data tips to
Web presentations created with DEVICE=JAVAIMG. You can, however, use any
image-map tool available to you to create an image map for the resulting PNG file.

Data Tips in Java and ActiveX Web Presentations
By default, Web presentations created by the ACTIVEX control or JAVA applets

automatically include data tips using the values of fields in the SAS data set. Use the

Enhancing Web Output Data Tips in Critical Success Factor Diagrams 569

TIPS=NONE parameter to suppress data tips. See “Parameter Reference for Java and
ActiveX” on page 424.

You can provide your own custom data tips to the output of any SAS/GRAPH
procedure that supports the HTML= option. (This feature is supported by the Map
applet but is not currently supported by the Graph applet.) For information on this
technique, see “Adding Data Tips with the HTML= Option” on page 570.

Note: When you provide data-tip text using HTML=‘ALT="variable_name"’ the Java
applets automatically suppress the display of the default data tips. The ActiveX
Control, however, adds your custom text to the default text. To suppress the default
text in ActiveX presentations, use the TipMode=HTML parameter in an ODS
statement. See “Parameter Reference for Java and ActiveX” on page 424 .

For example:

ODS HTML parameters=("TipMode"="HTML")

�

Data Tips in Metaview Applet Presentations
For graphs displayed by the Metaview applet, you can add data tips to the output of

any SAS/GRAPH procedure that supports the HTML= option. For more information,
see “Adding Data Tips with the HTML= Option” on page 570.

Data Tips in Treeview Diagrams
You can add data tip text to a Treeview diagram by including the text in the SAS

data set from which the Treeview is generated. For example, the following data set
specifies a different data-tip for each observation:

data father_and_sons;
input id $8. name $15. father $8. datatip $30.;
cards;
aaron Aaron Parker Data tip for Aaron Parker...
bob Bob Parker aaron Data tip for Bob Parker...
charlie Charlie Parker aaron Data tip for Charlie Parker...
david David Parker aaron Data tip for David Parker...
edward Edward Parker david Data tip for Edward Parker...
;
run;

Use the TIPS, NTIP, and NTIPFMT parameters of DS2TREE (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 537) to control data tip text.

Data Tips in Constellation Charts
You can add data tips to a Constellation diagram by including the text in the SAS

data set from which the diagram is generated, as is done for Treeview diagrams as
shown in “Data Tips in Treeview Diagrams” on page 569. Use the TIPS, NTIP, and
NTIPFMT parameters of DS2CONT (see “DS2TREE and DS2CONST Arguments for
Data Definition” on page 537) to control data-tip text.

Data Tips in Critical Success Factor Diagrams
The Critical Success Factor macro DS2CSF does not support adding data tips.

570 Data Tips in Animated GIFs Chapter 22

Data Tips in Animated GIFs

SAS/GRAPH does not directly support inserting data tips into animated GIFs.

Adding Data Tips with the HTML= Option

You can add custom data tips to the output of any SAS/GRAPH procedure that
supports the HTML= option. Use the HTML option in the following form:

HTML=’ALT="variable_name"’

The following code fragment illustrates the basic technique of adding data tips with
the HTML= option.

/* initialize a data tip variable in the data set */
length rpt $40;

/* assign values to the link variable */
if Region=’Central’ then

rpt=’alt="Central region"’;
else if Region=’South’ then

rpt=’alt="Southern region"’;
else if Region=’West’ then

rpt=’alt="Western region"’;

/* create a chart that uses the data tip variable */
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;

In this case, the HTML= option identifies the variable RPT as containing ALT= plus the
text of data tip to be displayed. The value of RPT, in turn, is set by an IF statement
according to the contents of a SAS data set. The maximum length for the value of the
variable is 1024 characters, including the characters "ALT=".

The following code uses a variable inside the HTML= variable to substitute the
appropriate text for a data tip. It also uses the concatentation operator || to
concatenate the string "region" to the name of the region, and the newline character
’0D’x to create a second output line.

/* initialize a data tip variable in the data set */
length rpt $40;

/* assign values to the link variable */
rpt=’ALT="Region: ’ || trim(left(Region)) || ’0D’x ||

’Second line of text ’ || ’"’;
/* create a chart that uses the data tip variable */
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;

Enhancing Web Output Links in Java and ActiveX Web Presentations 571

For more on the HTML option, see “Adding Links with the HTML= and
HTML_LEGEND= Options” on page 574.

Adding Drill-Down Links to Web Presentations
You can add hotspots to most SAS/GRAPH Web presentations. The hotspots enable a

user to select an element of a graph to open a Web page showing either another graph
or related information. See the following sections for basic information on adding links
to Web presentations:

� “Links in GIF, JPEG, and PNG Files” on page 571

� “Links in ACTXIMG and JAVAIMG Images” on page 571

� “Links in Java and ActiveX Web Presentations” on page 571
� “Links in Metaview Applet Presentations” on page 572

� “Links in Treeview Diagrams” on page 572

� “Links in Constellation Charts” on page 573
� “Links in Critical Success Factor Diagrams” on page 573

� “Links in Animated GIFs” on page 573.

Links in GIF, JPEG, and PNG Files
To add a hotspot link to static images generated with the GIF, JPEG, and PNG

device drivers, use the HTML= option or HTML_LEGEND= option or both, with a
SAS/GRAPH procedure as described in “Adding Links with the HTML= and
HTML_LEGEND= Options” on page 574. The links are implemented in an HTML
image map. The elements in the graph, such as bars or pie slices, become selectable hot
spots in the Web presentation. In your SAS program, drill-down URLs are defined in a
data set variable. SAS generates the image map for you in the HTML output file.

A complete example of hotspots created in this way is shown in “GIF Output with
Hotspot Links” on page 452.

Links in ACTXIMG and JAVAIMG Images
To add a hotspot link to an image created with the ACTXIMG device driver and a

GBARLINE, GCHART, GPLOT (except for high-low), or GRADAR procedure, use the
HTML= option as described in “Adding Links with the HTML= and HTML_LEGEND=
Options” on page 574.

SAS/GRAPH does not directly support hotspots for Web presentations created with
DEVICE=JAVAIMG. You can, however, create an image map for the resulting PNG file
using any image-map tool available to you.

Links in Java and ActiveX Web Presentations
The ActiveX Control and two of the SAS Java applets (Graph and Map) support four

implementations of links in Web presentations. Hotspots are not supported for contour
diagrams in either the ActiveX Control or the Contour applet.

To specify the drill-down mode, use the DRILLDOWNMODE parameter as follows
(for more information, see “Configuring Drill-Down Links with ACTIVEX” on page 392):

572 Links in Metaview Applet Presentations Chapter 22

ODS HTML PARAMETERS=
("DRILLDOWNMODE"="LOCAL"|"SCRIPT"|"URL"|"HTML");

Local mode (Graph applet only)
responds to drill-down actions by dynamically generating and displaying new
graphs based on a subset of the data in the selected graph element. In this mode,
the graphic to be displayed is generated by the applet from data it already has
(rather than being a pre-existing HTML page that you have created yourself). At
each drill-down level, the user can configure the graph type, data subset, variable
roles, and colors.

Script mode
calls a JavaScript method that you specify in your SAS/GRAPH program, and
passes to that method information on the selected graph element or map region. It
is up to you to write the JavaScript to respond to the mouse-click. You can use the
data passed to the JavaScript function to determine what part of the diagram was
clicked on and, therefore, what URL is appropriate to link to. This is the default
drill-down mode for the Map applet.

URL mode
displays URLs that are provided by link variables. The link variables are
identified to the graphics procedure with the HTML= option. The URLs identify
pre-existing HTML files that you will have created yourself. The drill-down
functionality of the URL mode is similar to the drill-down functionality that is
provided by the GIF, JPEG, and PNG device drivers.

HTML mode
generates drill-down URLs based on a substitution pattern that you specify in
your SAS/GRAPH program. The Graph applet and Map applet complete the URL
by inserting the specified data from the graph element that was selected in the
drill-down action. An example link specified in HTML mode is the following:

ods html file=statepop.htm
parameters=("DRILLDOWNMODE"="HTML"

"DRILLPATTERN"=’http://www.state.{&statename}.us’);

In this example, the value of the data set variable STATENAME completes the
drill-down URL.

Note: The variable must be used in the chart. It is not sufficient that it simply
be in the data set. �

Any mode (Graph applet and ActiveX control)
attempts to implement each of the four drill-down modes in succession until a
valid Web destination is found. The order of the attempts is Local (Graph applet
only), Script, URL, and HTML.

Links in Metaview Applet Presentations
To generate drill-down presentations for the Metaview applet, use either the HTML=

or HTML_LEGEND= options or both and an enhancement variable, as introduced in
“Adding Links with the HTML= and HTML_LEGEND= Options” on page 574.

Links in Treeview Diagrams
You can add hotspots to Treeview diagrams so that when a user selects a node

another Web page is opened. The easiest way to add hotspots is to include the URL to

Enhancing Web Output Links in Animated GIFs 573

be linked to in the SAS data set from which the Treeview is generated. For example,
the following data set specifies a different URL for each observation:

data father_and_sons;
input id $8. name $15. father $8. url $30.;
cards;
aaron Aaron Parker http://www.yourdomain.com/aaronparker.html
bob Bob Parker aaron http://www.yourdomain.com/bobparker.html
charlie Charlie Parker aaron http://www.yourdomain.com/charlieparker.html
david David Parker aaron http://www.yourdomain.com/davidparker.html
edward Edward Parker david http://www.yourdomain.com/edwardparker.html
;
run;

A simple, but complete example is shown in “Treeview with Hotspots” on page 510.

Links in Constellation Charts
You can add hotspots to Constellation diagrams so that when a user selects a node

another Web page is opened. The easiest way to add hotspots is to include the URL to
be linked to in the SAS data set from which the diagram is generated, as is done for
Treeview diagrams as shown in “Links in Treeview Diagrams” on page 572. A simple
example of a Constellation diagram with hotspots is shown in “Constellation Chart with
Hotspots” on page 524.

Links in Critical Success Factor Diagrams
You can add a hotspot to a critical success factor diagram created with the DS2CSF

macro. However, unlike the Treeview and Constellation macros, you can add only a
single hotspot to the diagram, i.e., the diagram as a whole. The following code fragment
links to the specified URL when a user clicks anywhere on the diagram. The
DRILURL= option specifies the URL to link to, while DRILTARG=_self specifies that
the new Web page is to be displayed in the same window as the dial.

%ds2csf(data=test,
var=x,
htmlfile=u:/public_html/Web_output/csf.html,
openmode=replace, pagepart=head,
center=y,

drilurl=http://www.sas.com,
archive=rvapplet.jar,
/* specify the complete url for the jar file */
/* if it is not in same directory as the html file */
/* archive=http://sww.sas.com/avd/codebase/rvapplet.jar, */
csftyp=classic, septype=none, cback=#e0e0e0,
bgtype=color, bg="#e0e0e0",
ttag=bold + italicized, tcolor="#002288", tsize=5,
tface="Arial, Helvetica",
range=sashelp.javagrf.sample1.range)

Links in Animated GIFs
SAS/GRAPH does not directly support inserting hotspots into animated GIFs. If you

want to enable linking from an animated GIF, you must use whatever third-party tools

574 Adding Links with the HTML= and HTML_LEGEND= Options Chapter 22

are available to you. You can also make the entire image a hotspot by including the
 tag inside an tag.

Adding Links with the HTML= and HTML_LEGEND= Options
The HTML= and HTML_LEGEND= options can be used in a number of statements

that generate graphs. These options are be used to add drill-down links to Web
presentations that are generated with the following device drivers:

� GIF, JPEG, or PNG
� JAVA and ACTIVEX
� JAVAMETA

In these Web presentations, the HTML= and HTML_LEGEND= options identify a
variable that provides drill-down URLs. This variable is referred to as a link variable
because of its use in establishing links.

The HTML= and HTML_LEGEND= options are also used to implement a number of
different enhancements to Web presentations that run in the Metaview applet. In this
case, the variables that are identified by the HTML= and HTML_LEGEND options are
referred to as enhancement variables because of their broader use than just establishing
links.

Working with Link and Enhancement Variables
To use link or enhancement variables in a Web presentation, you need to define those

variables, add data to those variables, and then identify those variables in the HTML=
option or HTML_LEGEND option or both.

The following code fragment defines a link variable named RPT and assigns that
variable a length of 40 characters:

data regsales;
input Region State Sales;
length rpt $40

Be sure to define your link variable with a length that will be sufficient to contain your
URLs (plus the HREF= option). The maximum length is 1024 characters.

The values of the link variable use the following syntax:

‘HREF=URL<“anchor-name”>’

This syntax is used in the following example:

RPT=’href="reports.html#west"’;

The following table lists the valid values of the link variable:

Enhancing Web Output Adding Links with the HTML= and HTML_LEGEND= Options 575

Table 22.1 Valid Values of the Link Variable

Value Assigned to a Link Destination Variable Implications

’HREF="<path>reports.html"’

’HREF="<path>reports.html#west"’

Tells the browser to look in the file reports.html.
If <path> is not provided, the file must be in the
same location as the HTML file that initiates
the link.

For the value that has #west, go to the output
with the anchor name west.

Users must have access to your file system in
order to access the link target.

’HREF="http://www.company.com/web/
reports.html"’

Tells the browser to go to the Web site address
http://www.company.com/web and look in the file
reports.html.

’HREF="http://www.company.com/web/
reports.html#west"’

For the value that has #west, go to the output
with the anchor name west.

Users must have access to the Web to follow the
links.

’HREF="#west"’ Go to the target with the anchor name west.
The target must be referenced or contained in
the same HTML file as the drill-down graph
that contains the link. For example, if the
drill-down graph is in the file sales.html, then
the target output must be referenced or
contained in sales.html.

Because this target is in the same file as the
drill-down graph, this link will work whether
the output is viewed within your file system or
across the Web.

Assigning Values to Link and Enhancement Variables

The most obvious method of adding these variables to your data set is to manually
add them to the desired observations in your data set. This method is not practical or
feasible in many cases, in which case you can use IF/THEN statements or variable
substitution.

The following picture shows how link variables are assigned to a bar chart. The three
bars represent regional sales for a company’s central, southern, and western regions.

576 Adding Links with the HTML= and HTML_LEGEND= Options Chapter 22

Figure 22.1 Links in Drill-Down Graphs

Each bar in the chart needs to link to a different anchor tag in an HTML file named
reports.html. The anchor names in the linked file are “central,” “south,” and “west.” The
following DATA step uses an IF/THEN statement to assign values to the link variable.

/* create data set REGSALES */
data regsales;

length Region State $ 8;
format Sales dollar8.;
input Region State Sales;
length rpt $40; /* the link dest. variable */

/* assign HREF values to link dest. variable */
if Region=’Central’ then

rpt=’HREF="reports.html#central"’;
else if Region=’South’ then

rpt=’HREF="reports.html#south"’;
else if Region=’West’ then

rpt=’HREF="reports.html#west"’;

/* create a chart that uses the data tip variable */
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;
datalines;

West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

The following table shows the values in the data set REGSALES.

Enhancing Web Output Adding Links with the HTML= and HTML_LEGEND= Options 577

Display 22.1 Values in the REGSALES Data Set

To illustrate the use of variable substitution, assume that you are developing for the
Metaview applet a presentation that uses the HREF drill-down mode of linking. You
need to add an enhancement variable to each observation in the data set. The value of
that variable is a URL that has a common base and a filename that is derived from a
variable in the data set. The following example defines the base URL, defines an
enhancement variable, and uses variable substitution to assign values to the
enhancement variable.

%let htmlpath=http://webServer1/graph/javameta;
data yearsonly;

set prdsummary(where=(_type_ eq 2));
length htmlvar $200;
htmlvar=’href=’||quote("&htmlpath/y"||put(year,4.)||’.htm’);

run;

In the preceding example, the values of the enhancement variable HTMLVAR are
URLs. Each URL combines the base address in HTMLPATH with the value of the
YEAR variable and a filetype of HTM.

578

579

C H A P T E R

23
Troubleshooting Web Output

Troubleshooting Web Output 579

Checking Browser Permissions 582
Using HTML Character Entities 582

Connecting to Web Servers that Require Authentication 583

Removing CLASSPATH Environment Variables 583
Correcting Text Fonts 583

Resolving Colors in Netscape 583

Resolving Differences Between Client and Server Graphs 584

Troubleshooting Web Output
This chapter contains information that you can use to resolve rendering problems on

client workstations.
If you or a member of your audience cannot display your presentation, then refer to

the following table for solutions.
NOTE: to ensure that software requirements have been met, see “What does your

audience need to view the presentation?” on page 380.

Table 23.1 Web Troubleshooting

Symptom Cause Remedy

Can’t access the HTML file. Incorrect URL. Check the URL in the browser.

Network access denied. Check operating environment
permissions for the HTML file.

Check firewall access
permissions for Internet
clients.

Browser can’t display the file. Browser or Java plug—in may
not meet requirements.

Check the requirements. See
“What does your audience need
to view the presentation?” on
page 380.

580 Troubleshooting Web Output Chapter 23

ActiveX control may not have
been installed or may be out of
date.

Install the ActiveX control
manually (see “Manually
Installing the ActiveX Control”
on page 389). Consider
updating the presentation to
prompt users to install the
control (see “Prompting for
Installation of the ActiveX
Control” on page 390).

User attempting to run the
ActiveX control in a browser
other than Internet Explorer.

Switch to the required version
of the Internet Explorer Web
browser.

User has not been
authenticated for that browser
and that Web page.

Check to see if authentication
is needed, and then
authenticate. See “Connecting
to Web Servers that Require
Authentication” on page 583.

Browser doesn’t recognize the
file as HTML.

Ensure that the type of the
HTML file is correctly specified.

Ensure that the DOCTYPE
and MIME tags are correctly
formatted.

Browser permissions too
restrictive.

Check browser permissions.
See “Checking Browser
Permissions” on page 582.

Browser displays blank page. Browser cannot access the
referenced image file.

If not running an applet or
control, check the image file at
the location specified in the
HTML file.

Browser cannot run the applet
or control.

For Java, ensure that the
HTML file is correctly
referencing the Java plug-in
and SAS Java archive. See
“Specifying the Location of
Control and Applet Files
(CODEBASE= and ARCHIVE=
Options)” on page 422.

Check browser permissions for
running Java scripts. See
“Checking Browser
Permissions” on page 582.

In the UNIX operating
environment, remove any
CLASSPATH environment
variables. See “Removing
CLASSPATH Environment
Variables” on page 583.

Open the browser’s Java
Console and trace the source of
the error.

Troubleshooting Web Output 581

Graph is distorted. NOGTITLE or
NOGFOOTNOTE option on the
ODS statement is not properly
reclaiming space.

Use the HPOS= or ASPECT=
GOPTION to restore the
correct aspect. Use hardware
fonts.

Browser displays popup
message
Error: Not enough
virtual memory to produce
plot.

Client RAM is insufficient for
rendering.

Generate a new graph using a
smaller data set or a simpler
graph. If using PROC GMAP,
consider using PROC
GREDUCE.

Graph is not rendering as
specified by the ODS graph
style.

A style attribute may not be
enabled for your ODS
destination.

Ensure that the attribute is
enabled for your ODS
destination. For example, the
URL attribute is not enabled
for the PS destination. Refer to
the table of style attributes for
the STYLE statement of the
TEMPLATE procedure in SAS
Output Delivery System: User’s
Guide.

A style attribute may be
overridden by a global option,
global statement option,
procedure option, or statement
option.

Specify the minimum options
needed for your graph, for
example:goptions
reset=all
device=activex;

In ActiveX, the user gets the
message
There is a pending reboot
for this machine...

1 Virus-scanning software
may be interfering with
the installation of the
control.

2 Other instances of the
control might be running.

1 Turn off any
virus-scanning software
before installing the
control.

2 Be sure to close all
instances of Internet
Explorer before installing
the control.

Text font is incorrect. Java font is defined differently. Change browser fonts or
change the SAS/GRAPH
program. See “Correcting Text
Fonts” on page 583.

Text in browser shows
incorrect characters.

Browser misinterpreting
special characters.

Replace special characters with
character entities. See “Using
HTML Character Entities” on
page 582.

Graph in browser differs from
graph in SAS.

A graphics option or global
statement may be unsupported
or partially supported for that
applet or control. See also
“Resolving Differences Between
Client and Server Graphs” on
page 584.

Refer to the descriptions for
the options you are using and
to Appendix 1, “Summary of
ActiveX and Java Support,” on
page 1507 for information on
whether a statement or option
is supported.

582 Checking Browser Permissions Chapter 23

A default value in the applet or
control is overriding a default
option value.

Specify a value for the option
rather than relying on the
default. See “Resolving
Differences Between Client and
Server Graphs” on page 584.

GPLOT lines drawn in reverse
order on the client.

This change was made
intentionally to maintain the
integrity of plots drawn with
the AREAS= option.

In ActiveX, black-and-white
image is not displayed

ActiveX does not enable 8-bit
grayscales images.

Convert the image to 24-bit
monochrome.

Graph loses attributes after
graph type is changed in the
Web browser.

Some attribute loss is inherent
in graph type changes.

Select the Refresh button in
the Web browser to restore the
original graph.

Changes made through the
Data Options dialog cause the
graph to revert to its original
view.

The graph discards subsetting
information if you make
changes through the Data
Options dialog.

Make any changes needed
through the Data Options
dialog before subsetting the
graph.

Colors wrong in Netscape. Netscape is running without
its own color map.

Run Netscape with the install
option. See “Resolving Colors
in Netscape” on page 583.

Checking Browser Permissions

Access permissions vary from browser to browser, but some form of access control is
enforced in most browsers. To check your permissions, open the browser’s Preferences
or Internet Options window. Then look for the advanced options. Use your browser’s
help system and contact your system support representative as needed to ensure that
the browser permissions allow the following:

� Stylesheets

� Java

� JavaScripts

� Java Console

In the Security tab of the Internet Explorer’s Internet Options window, make sure that
the selected Web content zone enables access to the Web presentation.

Using HTML Character Entities

If a special character in your Web presentation does not resolve in the browser, that
character may need to be changed to a character entity in the source file or in the SAS
program. A character entity is a standardized string of characters that represents a
special character. The browser recognizes the string and replaces it with the special
character when it is formatting the display. One common character entity is > . This
entity represents the greater-than symbol (<).

Lists of standard character entities are provided in HTML reference books and in
HTML references on the Worldwide Web.

Resolving Colors in Netscape 583

For presentations that run in the Constellation, Treeview, and Rangeview applets,
the macros DS2CONST, DS2TREE, and DS2CSF enable the ENCODE argument, which
you can use to automatically replace or not replace angle brackets (“<” and “>”) in
TITLE and FOOTNOTE statements.

Connecting to Web Servers that Require Authentication
If you are unable to run a Java applet or install the ActiveX control, then you may be

trying to access a Web server that requires authentication. To resolve this problem,
access a different file on that server and enter your user ID and password. Redisplaying
your Web presentation should now allow you to access that Web server.

Removing CLASSPATH Environment Variables
In the UNIX operating environment, if the Java applet does not run after you have

verified that your Java archive is correctly specified, then you should remove any
CLASSPATH environment variables that have been set. The Java archive files contain
all the required classes to run the applets. Your CLASSPATH may point to old versions
of the required classes (for example, for use with the webAF software). This can cause
the applets to fail to load. Most applications allow you to specify a CLASSPATH at
startup, by using a startup option. This is often safer for running multiple clients than
using the environment variables.

Correcting Text Fonts
If your presentation displays an incorrect text font on a given client computer, then

the cause may be that the client computer maps a Java logical font name such as
Courier to a different physical font set. If the logical font is not mapped to any physical
font, Java uses a default font. To correct the problem, edit your HTML file or your
SAS/GRAPH program to specify a different logical font name.

For programs that use the JAVA or JAVAMETA device drivers, or that use the
macros DS2CONST, DS2TREE, or DS2CSF, specify one of these logical font names:
Courier, Dialog, DialogInput, Helvetica, Monospaced, Serif, SansSerif, or TimesRoman.
These names are case-sensitive. If you specified them in uppercase letters in your SAS
program, this could be the source of your problem.

The JAVA device driver can use the physical font set Lucida, which is provided in the
Java plug-in. If your Java presentation shows unexpected fonts, switching to the
Lucida font should clear up the problem. For further information on font specifications,
see “Specifying Fonts in SAS/GRAPH Programs” on page 75.

Resolving Colors in Netscape
In the UNIX operating environment, the Netscape browser can run out of available

screen colors and begin using default colors such as black. To alleviate this problem,
run the Netscape program with the INSTALL option, as follows:

netscape -install

584 Resolving Differences Between Client and Server Graphs Chapter 23

Running the Netscape program with the INSTALL option generates a separate color
map for that browser.

Resolving Differences Between Client and Server Graphs

A client graph is rendered on the client’s (recipient’s) system using data sent from
the server. The user may be able to manipulate and interact with the graph. Client
graphs are intended for display on the Web. Graphs generated with the JAVA and
ACTIVEX device drivers, for example, are client graphs.

A server graph is rendered on the server (the machine where the SAS session is
running). Interaction with server graphs is limited to features defined by the server
such as drill-down links and pop-up data tips. A server graph may or may not be
intended for display on the web. Graphs generated with the GIF, JPEG, and PNG
device drivers, for example, are server graphs.

Because of technological differences between SAS, Java, and ActiveX, client graphs
may differ from server graphs even if the graphs are generated with the same SAS
procedure code. In addition, graphs generated with Java may differ from graphs
generated with ActiveX. The graphs may differ in appearance, in the default values
used for certain options, or in the availability of certain features.

For example, differences between client and server graphs may occur if you are using
a global statement or procedure option that is not enabled for that applet or control.
Most global statement and procedure options are fully supported by the client device
drivers. Exceptions are identified in the procedure and statement documentation and
summarized in Appendix 1, “Summary of ActiveX and Java Support,” on page 1507.

In certain cases, differences between client and server graphs can occur when an
applet or control overrides the default value of a procedure option. To resolve this issue,
specify a value for the option rather than relying on the default. For example, consider
a bubble plot that is being displayed in the Graph applet. The default bubble size is 5.
The Graph applet overrides that default with a larger bubble size. To apply a bubble
size of 5, specify BSIZE=5 in the BUBBLE statement, rather than relying on the
default value of the BSIZE= option.

585

P A R T3

The Annotate Facility

Chapter 24.Using Annotate Data Sets 587

Chapter 25.Annotate Dictionary 613

586

587

C H A P T E R

24
Using Annotate Data Sets

Overview 587

Enhancing Existing Graphs 588
Creating Custom Graphs 588

Creating Annotate Graphics 589

About the Annotate Data Set 589
Structure of An Annotate Data Set 589

Annotate Variables 591

Annotate Functions 594
About Annotate Graphics 595

Graphics Elements 595
Coordinates 596

Coordinate Systems 596

Ranges for Cells 598
Internal Coordinates 598

Attribute Variables 599

Creating an Annotate Data Set 599
Using the DATA Step 600

Using Annotate Macros in the DATA Step 600
Effect of Missing Values 601

Producing Graphics Output from Annotate Data Sets 601

Including Annotate Graphics with Procedure Output 601
Producing Only Annotate Graphics Output 601

Using the Annotate Variables for Web Output 602

Annotate Processing Details 602
Order in Which Graphics Elements Are Drawn 602

Controlling the Processing with the WHEN Variable 602
Using BY-Group Processing with the Annotate Facility 603

Using the LIFO Stack 603

Debugging 604
Examples 604

Labeling Cities on a Map 604

Labeling Subgroups in a Vertical Bar Chart 607
Drawing a Circle of Stars 609

Overview

The Annotate facility enables you to generate a special data set of graphics
commands from which you can produce graphics output. This data set is referred to as
an Annotate data set. You can use it to generate custom graphics or to enhance graphics

588 Enhancing Existing Graphs Chapter 24

output from many SAS/GRAPH procedures, including GCHART, GCONTOUR, GMAP,
GPLOT, GPRINT, GRADAR, GSLIDE, and G3D.

Enhancing Existing Graphs
The Annotate facility enhances output from SAS/GRAPH procedures by adding

graphics elements to the output. For example, you can

� label points on a map using map coordinates

� label bars on horizontal and vertical bar charts

� label points on a plot

� create a legend for a three-dimensional graph.

Figure 24.1 on page 588 shows GMAP procedure output annotated with stars and
labels at selected cities.

Figure 24.1 Annotate Graphics Applied to a Map

The program that creates this output is in “Labeling Cities on a Map” on page 604.

Creating Custom Graphs
You can also use an Annotate data set to create custom graphics. For example, you

can use Annotate graphics commands to

� create various types of graphs (including pie charts, bar charts, and plots)

� draw graphics elements such as lines, polygons, arcs, symbols, and text.

Figure 24.2 on page 589 is an example of a custom graph that uses Annotate
commands to draw the graphic elements.

Using Annotate Data Sets Structure of An Annotate Data Set 589

Figure 24.2 Custom Graphics Using Only Annotate Commands

The program that creates this output is in “Drawing a Circle of Stars” on page 609.

Creating Annotate Graphics
In order to create and use Annotate graphics, you must first understand the

structure and functioning of the Annotate data set. For this information see “About the
Annotate Data Set” on page 589. Once you understand the way the data set works, you
can follow these three steps to create Annotate graphics:

1 Determine what you want to draw, and where (location) and how (coordinate
system) you want to position it on the graphics output. (See “About Annotate
Graphics” on page 595.)

2 Build an Annotate data set of graphics commands using the Annotate variables
and functions. (See “Creating an Annotate Data Set” on page 599.)

3 Submit a SAS/GRAPH procedure to produce the graphics output. (See “Producing
Graphics Output from Annotate Data Sets” on page 601.)

About the Annotate Data Set
In an Annotate data set, each observation represents a command to draw a graphics

element or to perform an action. The graphic elements drawn by these commands can
be added to SAS/GRAPH output or displayed with the GANNO or GSLIDE procedure
as a custom graphic.

The observations in an Annotate data set use a set of predefined Annotate variables.
The values of the variables in the observation determine what is done and how it is
done. To create these observations, you assign values to the variables either explicitly
with a DATA step or implicitly with Annotate macros. See “Creating an Annotate Data
Set” on page 599.

The following sections describe the items in an Annotate data set and explain how
SAS/GRAPH software uses the commands in an Annotate data set to create graphics
elements.

Structure of An Annotate Data Set
Output 24.1 is an example of an Annotate data set called TRIANGLE. The

observations in this data set contain the commands that create a text label, move to a

590 Structure of An Annotate Data Set Chapter 24

point in the output, and draw a triangle. (The DATA step that creates TRIANGLE is
shown in “Using the DATA Step” on page 600.)

Output 24.1 Listing of the Annotate Data Set TRIANGLE

OBS FUNCTION X Y HSYS XSYS YSYS STYLE COLOR POSITION SIZE LINE TEXT

1 label 20 85 3 3 3 swissb green 6 6.0 . Sample Annotate Graphics

2 move 28 30 3 3 3 swissb green 6 6.0 . Sample Annotate Graphics

3 draw 68 30 3 3 3 swissb red 6 0.8 1 Sample Annotate Graphics

4 draw 48 70 3 3 3 swissb red 6 0.8 1 Sample Annotate Graphics

5 draw 28 30 3 3 3 swissb red 6 0.8 1 Sample Annotate Graphics

Note: A blank denotes a missing value for a character variable. A ’.’ denotes a
missing value for a numeric variable. �

Each observation in this data set contains complete instructions for drawing a
graphic or moving to a position to draw a graphic. The value of the FUNCTION
variable determines what the observation does. Other variables control how the
function is performed. This list describes each observation in the TRIANGLE and the
task it performs:

1 Create a label. This instruction draws a green label at position 20,85 (in X,Y
coordinates). The value of the FUNCTION variable (LABEL) tells the program
what to do. The values of the coordinate variables X and Y combined with the
values of the coordinate system variables HSYS, XSYS, and YSYS tell where to do
it. The values of the attribute variables STYLE, COLOR, TEXT, POSITION, and
SIZE tell how to do it. These variables specify the font (SWISSB), the color and
text of the label, the position of the label in relation to X and Y (centered on the
point), and the size of the text.

2 Go to the starting point for the triangle. The value of the FUNCTION variable
(MOVE) tells the program to go to the point specified by X and Y. This is the only
instruction in the observation. Notice that the values of the variables specified for
the first observation persist but are not used because they have no effect on the
MOVE function.

3 Draw the first line of the triangle. The value of the FUNCTION variable (DRAW)
tells the program to draw a line from the current point (the one specified by
MOVE in the second observation to the new point specified by X and Y. The value
of the COLOR variable changes to red.

4 Draw the second line of the triangle.
5 Draw the third line of the triangle.

Figure 24.3 on page 591 shows the green title and the red triangle produced by the
TRIANGLE data set and displayed with the GANNOChapter 26, “The GANNO
Procedure,” on page 707 procedure. Notes on the figure in black contain the X and Y
coordinates of the graphics elements.

Using Annotate Data Sets Annotate Variables 591

Figure 24.3 Annotate Output from the TRIANGLE Data Set

Annotate Variables
Annotate variables have predefined names. In each observation, the Annotate facility

looks only for variables with those names. Other variables can be present, but they are
ignored. Conceptually, there are three types of variables:

an action
variable

tells what to do. The only action variable is FUNCTION, which
specifies what graphics element to draw (graphics primitive) or what
action to take (programming function).

positioning
variables

tell where to do it. The positioning variables specify the point at
which to draw the graphics element.

attribute
variables

tell how to do it. The attribute variables specify the characteristics
of the graphics element (for example, color, size, line style, text font).

There is also an HTML variable, which provides linking information when you want
to use the annotate data set to generate a drill-down graph that can be viewed in a Web
browser.

Table 24.1 on page 591 lists all Annotate variables, grouped by task, and briefly
describes each one. See “Annotate Variables” on page 642 for a complete description of
each variable.

Table 24.1 Summary of Annotate Variables

Task Group Variable Description

Variable that defines an
action

FUNCTION specifies a drawing or programming action; Table 24.2 on page
594 describes these actions.

Positioning variables that
determine coordinate
values

GROUP uses the value of the GCHART GROUP= option in place of X or Y

MIDPOINT uses the value of the GCHART MIDPOINT= option in place of X
or Y

592 Annotate Variables Chapter 24

Task Group Variable Description

SUBGROUP uses the value of the GCHART SUBGROUP= option in place of
X or Y

X specifies a numeric horizontal coordinate

Y specifies a numeric vertical coordinate

Z specifies a numeric third dimensional coordinate; used with G3D
procedure only

XC specifies a horizontal character coordinate; only used with data
coordinate systems 1, 2, 7, 8

YC specifies a vertical character coordinate; only used with data
coordinate systems 1, 2, 7, 8

Positioning variables that
contain internal
coordinates

XLAST,
YLAST

contain the X and Y coordinates of the last nontext function

XLSTT,
YLSTT

contain the X and Y coordinates of the last text function

Positioning variables that
specify coordinate systems

HSYS specifies type of units for the SIZE variable

XSYS specifies coordinate system for X or XC coordinates

YSYS specifies coordinate system for Y or YC coordinates

ZSYS specifies coordinate system for Z coordinate (G3D procedure only)

Attribute variables ANGLE angle of text label or starting angle of a pie slice

CBORDER colored border around text or symbol

CBOX colored box behind text or symbol

COLOR color of a graphics primitive

LINE line type to use in drawing or special control over pies and bars

POSITION placement and alignment for text strings

ROTATE angle at which to place individual characters in a text string or
the delta angle (sweep) of a pie slice

SIZE size of an aspect of a graphics primitive; depends on FUNCTION
variable (for TEXT, height of characters; for PIE, pie slice
radius; for DRAW, line thickness; and so on)

STYLE font or pattern for a graphics element, depends on the
FUNCTION variable

TEXT text to use in a label, symbol, or comment

WHEN whether a graphics element is drawn before or after procedure
graphics output

Web variable HTML specifies link information for a drill-down graph

See Figure 24.4 on page 593 for a table that shows you which Annotate functions are
used with which Annotate variables.

Using Annotate Data Sets Annotate Variables 593

Figure 24.4 Annotate Variables used with Annotate Functions

594 Annotate Functions Chapter 24

Annotate Functions
The FUNCTION variable accepts a set of predefined values (functions) that perform

both graphics tasks and programming tasks.
The graphics functions draw the graphics elements that are illustrated in “Graphics

Elements” on page 595.
The programming functions control the internal coordinates, manipulate the LIFO

stack, and help you debug an Annotate data set. These programming functions are
discussed in “Internal Coordinates” on page 598, “Using the LIFO Stack” on page 603,
and “Debugging” on page 604.

Table 24.2 on page 594 summarizes the tasks that are performed by the Annotate
functions. See “Annotate Functions” on page 615 for a complete description of the
FUNCTION variable and its values.

Table 24.2 Summary of Graphics Tasks Performed by Annotate Functions

Task Group If you want to...
Use this
function...

Graphics tasks begin to draw a polygon (starting point) and, optionally, specify a fill color
and pattern

POLY

continue drawing a polygon (additional vertex) and, optionally, specify an
outline color of the polygon

POLYCONT

draw a line from the current (X,Y) position (see MOVE and TXT2CNTL) DRAW

draw a point POINT

draw a rectangle from the current (X,Y) position (see MOVE and
TXT2CNTL); optionally, fill with a pattern

BAR

draw a symbol SYMBOL

draw line from (XLAST, YLAST) coordinates to (XLSTT, YLSTT)
coordinates

DRAW2TXT

draw pie slice, circle, or arc PIE

draw text LABEL

move to the specified point (X,Y) MOVE

put a frame around the area defined by XSYS and YSYS, optionally, fill
with a pattern

FRAME

Programming
tasks

insert a comment in the data set (no action); documentation aid COMMENT

copy (XLAST, YLAST) coordinates to (XLSTT, YLSTT) coordinates CNTL2TXT

copy (XLSTT, YLSTT) coordinates to (XLAST, YLAST) coordinates TXT2CNTL

exchange LSTT and LAST coordinates SWAP

get coordinates of a point on a pie slice outline PIEXY

get values for LAST and LSTT coordinates from LIFO stack POP

put current values of LAST and LSTT coordinates onto LIFO stack PUSH

Using Annotate Data Sets Graphics Elements 595

Task Group If you want to...
Use this
function...

set pie radius and coordinates for center; does not draw a pie PIECNTR

turn on trace of previous values and LIFO stack DEBUG

See Figure 24.4 on page 593 for a table that shows you which Annotate functions
work with which Annotate variables.

About Annotate Graphics
When you create Annotate graphics, you specify these things:
� what to draw (graphics elements)
� where to draw those elements (the coordinates of the position on the output)
� how to draw (characteristics of the element such as size or color).

The following sections describe the components of the graphics output that are
produced by an Annotate data set.

Graphics Elements
In an Annotate data set, the FUNCTION variable determines the graphics element

that is drawn.
The particular graphics elements that you can draw are shown in Figure 24.5 on

page 595 along with the value of the FUNCTION variable or Annotate macro that
draws them.

Figure 24.5 Annotate Graphics Elements

You can control the position of graphics elements in the following ways:
� explicitly, using coordinates that you supply.
� dependently, based on the location of features in the SAS/GRAPH output. For

example, when you use the GCHART procedure, you can label the parts of a

596 Coordinates Chapter 24

subgrouped vertical bar chart by using the SUBGROUP variable in your Annotate
data set. The Annotate facility enables you to label subgroups without having to
specify the actual coordinates of the subgroup bar.

� dependently, based on values that are supplied from other data sets. For example,
you can label the ending point of a plot line in the GPLOT procedure by extracting
the value of the last point in the sorted input data set.

Coordinates
Coordinates specify where to put graphics elements. These variables can contain

coordinate values:
� X, Y, and sometimes Z are used for numeric coordinates.
� XC and YC are used for character coordinates.
� GROUP, MIDPOINT, and SUBGROUP can be used when you annotate output

from procedures such as GCHART. Use these variables to specify coordinates for
horizontal or vertical bar charts.

Coordinates are interpreted in terms of a coordinate system in order to identify a
precise location in the graphics output.

Coordinate Systems
A coordinate system determines how coordinates are interpreted. You specify a

coordinate system to use for each dimension, using the XSYS, YSYS, and ZSYS
variables (for X, Y, and Z, respectively). Use ZSYS to annotate graphics output only
from the G3D procedure.

You also specify a coordinate system for the SIZE variable using the HSYS variable.
HSYS takes the same kinds of values as XSYS, YSYS, and ZSYS. The SIZE variable
specifies the size of a graphics element, such as the width of lines (for example,
FRAME), the radius of pie slices (for example, PIE, PIECNTR, and PIEXY), or the
height of text (for example, LABEL and SYMBOL).

These are the important components of the Annotate coordinate systems:
� Area: Each coordinate system refers to one of three drawing areas: data area,

procedure output area, and graphics output area. Coordinates are measured from
a different origin for each area; they also have different limits. Figure 24.6 on
page 597 shows the areas on the graphics output and the coordinate systems that
use them.

Using Annotate Data Sets Coordinate Systems 597

Figure 24.6 Areas and Their Coordinate Systems

� Units: The units for a coordinate system are based on one of the following:

� data values (for data coordinate systems). The range of values depends on
the range of data expressed along the axes of the graph.

� cells (for coordinate systems for the procedure output area or graphics output
area). The range of values depends on the type of area. See “Ranges for
Cells” on page 598.

� percentages of the total area available, that is, percent of the data area, or
percent of the procedure output area, or percent of the graphics output area.

� Placement: The placement of a coordinate can be absolute or relative. Absolute
coordinates name the exact location for a graphics element in the graphics output.
Relative coordinates name the location with respect to another graphics element in
the output.

Table 24.3 on page 597 describes the coordinate system values for the XSYS, YSYS,
ZSYS, and HSYS variables.

Table 24.3 Coordinate System Values for XSYS, YSYS, ZSYS, and HSYS Variables

Type of
Coordinates Area Units Range

Value for XSYS,
YSYS, ZSYS,
HSYS

Absolute data % 0-100% of axis 1’ *

data values minimum to maximum of axis 2’ *

graphics output area % 0-100% of graphics output area 3’

graphics output area cells 0 to limit of graphics output
area

4’

procedure output area % 0-100% of procedure output area 5’

procedure output area cells 0 to limit of procedure output
area

6’

Relative data % 0-100% of axis 7’ *

598 Internal Coordinates Chapter 24

Type of
Coordinates Area Units Range

Value for XSYS,
YSYS, ZSYS,
HSYS

data values minimum to maximum of axis 8’ *

graphics output area % 0-100% of graphics output area 9’

graphics output area cells 0 to limit of graphics output
area

A’

procedure output area % 0–100% of procedure output
area

B’

procedure output area cells 0 to limit of procedure output
area

C’

*Coordinate systems 1, 2, 7, and 8 are not valid with block, pie or star charts in the GCHART
procedure or surface, prism or block maps with the GMAP procedure.

Ranges for Cells
The available range for coordinate systems that are measured in cells differs by area:

graphics output area
The range of cells that are available for the graphics output area depends on the
device and the number of rows and columns that are set by the HPOS= and
VPOS= graphics options or by the PCOLS and LCOLS device parameters.

procedure output area
As with the graphics output area, the range of cells available for the procedure
output area depends on the device and the number of rows and columns set by the
HPOS= and VPOS= graphics options or by the PCOLS and LCOLS device
parameters. However, the procedure output area is sized after areas for titles and
footnotes are allocated and is reduced accordingly. If you specify that the legend
appear outside of the axis area, the procedure output area also decreases by the
size of the legend.

See “Procedure Output and the Graphics Output Area” on page 34 for descriptions of
the procedure output area and the graphics output area.

Internal Coordinates
The Annotate facility maintains two pairs of internal coordinates that are stored in

internal variables:
� coordinates of the last graphics element drawn or the coordinates from the last

move are stored in the variables XLAST and YLAST
� coordinates of the last text drawn are stored in the variables XLSTT and YLSTT.

Many functions use these internal coordinates as a starting point, relying on the
coordinates that are specified with the function as an ending point. For example, in the
BAR function, the (XLAST, YLAST) coordinate pair is used for the lower left corner; the
position defined by the X and Y variables is used for the upper-right corner. (For
details, see “BAR Function” on page 615.) These internal variables can also provide
default coordinates if X, XC, Y, or YC contains a missing value.

The internal coordinates are automatically updated by some of the Annotate
functions. The text functions, LABEL and SYMBOL, update the (XLSTT,YLSTT)
variables. The BAR, DRAW, MOVE, PIE, and POINT functions update the
(XLAST,YLAST) variables.

Using Annotate Data Sets Creating an Annotate Data Set 599

You cannot explicitly assign a value to XLAST, YLAST, XLSTT, or YLSTT because
they are internal variables. For example, you cannot make this assignment:

xlast=50;

However, you can use several functions to directly manipulate the values of the
internal coordinates. The functions are shown in Figure 24.7 on page 599.

Figure 24.7 Programming Functions That Manipulate System Variables

For a complete description, see “Annotate Internal Coordinates” on page 678.

Attribute Variables
Attribute variables control the appearance of the graphics elements. Each function

uses only a subset of these variables. See Table 24.1 on page 591 for a list of attribute
variables.

What an attribute variable controls often depends on the graphics element to which
it applies. For example, the SIZE variable controls the width of a line when it is used
with FUNCTION=’DRAW’, but it controls the text height when it is used with
FUNCTION=’LABEL’.

For a complete description of the attribute variables and the aspect of the graphics
elements that they control, see “Annotate Variables” on page 642.

Creating an Annotate Data Set

Once you have determined what you are going to draw and how you want it to
appear in the output, you need to build an Annotate data set. Although there are many
ways to create SAS data sets, the most commonly used method for creating Annotate
data sets is with a DATA step that uses either

600 Using the DATA Step Chapter 24

� assignment statements that you explicitly output as separate observations
� Annotate macros, which implicitly assign values to Annotate variables.

Most of the examples in this documentation use a DATA step with assignment
statements. For more information on creating SAS data sets, see SAS Language
Reference: Concepts.

Using the DATA Step
When you use the SAS DATA step with assignment statements, each statement

provides a value for an Annotate variable. After you have assigned all of the variable
values for an observation, you must use an OUTPUT statement to write the observation
to the data set. For example, the following statements create the TRIANGLE data set
shown in Output 24.1:

data triangle;

/* declare variables */
length function style color $ 8 text $ 25;
retain hsys xsys ysys ’3’;

/* create observation to draw the title */
function=’label’; x=20; y=85; position=’6’;

text=’Sample Annotate Graphics’;
style=’swissb’; color=’green’; size=6;
output;

/* create observations to draw the triangle */
function=’move’; x=28; y=30; output;
function=’draw’; x=68; y=30; size=.8; line=1;

color=’red’; output;
function=’draw’; x=48; y=70; output;
function=’draw’; x=28; y=30; output;

run;

proc ganno annotation=triangle;
run;
quit;

Notice that a RETAIN statement sets the values of the HSYS, XSYS, and YSYS
variables. RETAIN statements are useful when you want to select the values for
variables that are required for many functions and the value is the same for all of them.

The SIZE, LINE, and COLOR variables are included with only the first DRAW
function. Using this method to create the data set, the values set in the first DRAW
function carry over to subsequent DRAW functions.

The PROC GANNO takes as input the annotate data set “triangle” created by the
previous DATA step and creates the output shown in Figure 24.3 on page 591.

Using Annotate Macros in the DATA Step
A set of Annotate macros is provided in the SAS sample library. You can use macro

calls in a DATA step to create observations in an Annotate data set. You can also use
Annotate macros and explicit variable assignments together in the same DATA step.
For complete information, see “Annotate Macros” on page 679 and “Using Annotate
Macros” on page 697.

Using Annotate Data Sets Producing Only Annotate Graphics Output 601

Effect of Missing Values
Annotate data sets follow the same rules for missing values as any other SAS data

set. (See SAS Language Reference: Concepts for information on the effect of missing
values in a data set.)

Variables that have a missing value use a default value. For example, if the COLOR
variable has a missing value, then the first color in either the colors list that is defined
by the COLORS= graphics option, if specified, or the device’s default colors list is used.
If the FUNCTION variable has a missing value, LABEL is used. If the X variable is
missing, the value of the XLSTT internal coordinate is used for text functions and the
XLAST internal coordinate is used for nontext functions. See “Annotate Variables” on
page 642 for the default value of each Annotate variable.

You probably should not depend on this effect when you create an Annotate data set.
If the data set is structured so that observations depend on prior observations setting
attributes for them, then you may have extra work to do if you change the order of
observations later.

Sometimes missing values are required to produce the desired results. If you have
calculated the coordinates of a point and have the values stored in (XLAST,YLAST) or
(XLSTT,YLSTT), you can force Annotate to use the internal coordinates by supplying
missing values for the X and Y variables. See “Annotate Internal Coordinates” on page
678 for details on using the (XLAST,YLAST) and (XLSTT,YLSTT) internal coordinates.

Producing Graphics Output from Annotate Data Sets
You can display Annotate graphics in two ways:
� annotate output from a SAS/GRAPH procedure by assigning the Annotate data set

to the PROC statement or the action statement, or both.
� display only the Annotate graphics by assigning the Annotate data set to either

the GANNO or GSLIDE procedure.

Including Annotate Graphics with Procedure Output
To annotate SAS/GRAPH procedure output, you must include the ANNOTATE=

option in the appropriate statement in the procedure. ANNOTATE= must name the
Annotate data set that you have already created. If you want the Annotate graphics to
apply to all graphs produced by a procedure, you should include ANNOTATE= in the
PROC statement. If you want the Annotate graphics to apply only to the graph
produced by an action statement within the procedure, include ANNOTATE= in the
action statement. You can specify Annotate data sets in both places.

When you annotate a SAS/GRAPH procedure, the Annotate graphics are displayed
and stored as part of the graphics output that the procedure produces.

Producing Only Annotate Graphics Output
To produce Annotate graphics without other procedure output, use the GANNO

procedure or the GSLIDE procedure:
� The GANNO procedure produces graphics output consisting only of Annotate

graphics. See Chapter 26, “The GANNO Procedure,” on page 707Chapter 26, “The
GANNO Procedure,” on page 707 for information on displaying or storing Annotate
graphics.

602 Using the Annotate Variables for Web Output Chapter 24

� The GSLIDE procedure can also produce graphics output consisting only of
Annotate graphics. In addition, you can enhance the graphics output with TITLE,
NOTE, and FOOTNOTE statements. See Chapter 44, “The GSLIDE Procedure,”
on page 1277 for details.

Using the Annotate Variables for Web Output
Most of the annotate variables can be used in programs that generate output for the

Web. For more information on the annotate functions and variables, see the Chapter
25, “Annotate Dictionary,” on page 613. For information on using annotate data sets in
Web output, see Chapter 17, “Generating Web Output with the Annotate Facility,” on
page 499.

Annotate Processing Details

Order in Which Graphics Elements Are Drawn
When a procedure uses an Annotate data set, it reads and interprets the observations

one at a time, starting with the first observation and proceeding to the last. The order
of the observations in the data set determines the order in which the graphics elements
are generated. If the coordinates of two graphics elements overlap, the graphics
element produced by an earlier observation can be overwritten by any graphics
elements that are produced by subsequent observations. As a result, graphics elements
can overlay each other and they can also overlay or be overlaid by procedure output.

CAUTION:
Overlay behavior is device-dependent. Most terminals, cameras, and some printers
demonstrate overlay behavior because the process of drawing updates pixels as each
graphics element is drawn. Plotters do not overlay the graphics elements internally
before plotting; they draw graphics elements on top of each other on the paper. The
area where graphics elements overlap shows one color bleeding through the color
that overlays it. To ensure that one graphics element overlays another, use the
WHEN variable. �

Controlling the Processing with the WHEN Variable
The WHEN variable determines the order in which observations in an Annotate data

set are processed. It determines if observations are processed before or after output that
is produced by a SAS/GRAPH procedure. This means that Annotate graphics can be
overlaid by procedure output or can overlay procedure output. By default, Annotate
graphics are drawn before the procedure output.

In effect, you can have two sets of Annotate graphics elements that are generated for
the same output:

� Annotate graphics drawn before procedure output (the default, WHEN=’B’).

� Annotate graphics drawn after procedure output (WHEN=’A’).

Within each set, graphics elements are drawn in the order that they appear in the
Annotate data set and overlay each other as appropriate (on devices that demonstrate
overlay behavior). For details, see the description of the WHEN variable on “WHEN
Variable” on page 666.

Using Annotate Data Sets Using the LIFO Stack 603

Using BY-Group Processing with the Annotate Facility
You can use the Annotate facility with procedures that use BY statements to

annotate each graph that is generated with a BY statement. The Annotate graphics for
each graph are generated depending on the value of the BY variable. To use BY-group
processing with the Annotate facility, your program must meet the following conditions:

� Both the input data set for the procedure and the Annotate data set must contain
the same BY variable.

� The BY variable must be defined as the same type (character or numeric) and
length in both data sets.

� If a label or format is associated with a BY variable in one data set, the same label
or format has to be associated with it in the other data set.

� Both data sets must be sorted by the BY variable.
� The ANNOTATE= option must be specified in an action statement in the

procedure. If you specify the ANNOTATE= option in the PROC statement, the
Annotate graphics are used for all graphs that are generated by the procedure
rather than for unique values of the BY variable.

See “BY Statement” on page 141 for details.

Using the LIFO Stack
The FUNCTION variable supports several programming functions that manipulate

the internal coordinates and provide other utility operations. Several of these functions
use the LIFO stack to track and set variable values.

The LIFO (last-in-first-out) stack is a storage area where you can keep internal
coordinate values for later use. It is useful when you want to save the current values of
(XLAST,YLAST) and (XLSTT,YLSTT) and use them with functions later in the DATA
step.

You store and retrieve values from the stack using the PUSH and POP functions.
The PUSH function copies the current values of XLAST, YLAST, XLSTT, and YLSTT
onto the stack. The POP function copies values from the stack into XLAST, YLAST,
XLSTT, and YLSTT.

LIFO stacks manage the stored data so that the last data stored in the stack is the
first data removed from the stack. This means that a POP function retrieves the values
most recently stored with a PUSH function. Figure 24.8 on page 603 illustrates how
PUSH and POP functions work together.

Figure 24.8 Using PUSH and POP to Store and Retrieve Coordinate Values

604 Debugging Chapter 24

See also “Internal Coordinates” on page 598.

Debugging
You can print your Annotate data set with the PRINT procedure. This is an easy way

to examine the Annotation that you have specified or to debug your program. For
example, a listing such as the one in Output 24.1 provides complete information about
the value that you specify for each variable in every observation.

For more complex problems, the DEBUG function enables you to display the values
of Annotate variables and internal coordinates before and after a function is submitted.
The values are written to the SAS log.

If there is an error in your Annotate data set, one or more diagnostic messages are
printed in the SAS log:

� If an error is found in preprocessing, this message appears:

NOTE: ERROR DETECTED IN ANNOTATE= libref.dataset

� If an error is found as an observation is being read, this message appears:

PROBLEM IN OBSERVATION number-message

where message is the text of the error message.
� If the error limit of 20 errors is reached at any point during processing of the data

set, a termination message similar to this one appears:

ERROR LIMIT REACHED IN ANNOTATE PROCESS

20 TOTAL ERRORS

For an explanation of common diagnostic messages, refer to the Help facility.

Examples
The following examples show how to annotate graphics that are created with SAS/

GRAPH procedures and how to build custom graphics:
� “Labeling Cities on a Map” on page 604
� “Labeling Subgroups in a Vertical Bar Chart” on page 607
� “Drawing a Circle of Stars” on page 609

Other examples that use Annotate data sets are as follows:
� Example 1 on page 710 (and others in that chapter
� Chapter 44, “The GSLIDE Procedure,” on page 1277
� “Drawing a Circle of Stars” on page 609

Labeling Cities on a Map
Features:

Annotate
function:

LABELSYMBOL

Annotate
variables:

HSYS

POSITION

Using Annotate Data Sets Labeling Cities on a Map 605

SIZE

TEXT

WHEN

X and Y

XSYS

YSYS

Sample library
member:

GANCITY

Figure 24.9 Map with Labeled Cities

This example labels a map of the continental United States with the location and
names of three cities. The GMAP procedure draws a map of the U.S. and an Annotate
data set adds the stars and labels.

The DATA step that creates the Annotate data set gets the x and y coordinates of the
cities to be labeled from the MAPS.USCITY data set. Because MAPS.USCITY stores
projected coordinates in the X and Y variables, the DATA step does not need to reassign
the variable values. Also because X and Y contain data values (the map data set
coordinates), the XSYS and YSYS variables specify coordinate system 2, absolute data
values. However, the HSYS variable that controls text height uses coordinate system 3,
percent of the graphics output area.

See Example 4 on page 1180 for an example of labeling a map using map coordinates
in units of latitude and longitude.

See Chapter 35, “The GMAP Procedure,” on page 995 for more information on using
map data sets
.

Note: If the libref MAPS is automatically assigned at your site to the SAS data
library containing the Institute-supplied map data sets, you can omit the LIBNAME
statement. �

606 Labeling Cities on a Map Chapter 24

Assign the libref MAPS, if necessary, and set the graphics environment.

libname maps ’SAS-data-library’;

goptions reset=global gunit=pct border cback=white

colors=(black blue green red)

ftext=swissb htitle=6 htext=3;

Subset the U.S. map data set by omitting Alaska and Hawaii.

data lower48;

set maps.us;

if state ne stfips(’AK’);

if state ne stfips(’HI’);

run;

Create the Annotate data set, CITYSTAR. CITYSTAR contains the commands that draw a star and a label at
each of the three cities. Setting WHEN to A draws the annotation after the map.

data citystar;

length function style color $ 8 position $ 1

text $ 20;

retain xsys ysys ’2’ hsys ’3’

when ’a’;

Include the values of selected variables from MAPS.USCITY. X and Y contain projected coordinates; CITY
contains names; STATE contains FIPS codes. Because there are several Atlantas, a STATE value is necessary.

set maps.uscity(keep=x y city state);

if (city=’Atlanta’ and state=13)

or city=’Chicago’

or city=’Seattle’;

Create the observation that draws the star. The text string V is the character code for the
star figure in the MARKER font assigned by the STYLE variable.

function=’symbol’; style=’marker’; text=’V’; color=’red’; size=5;
output;

Create the observation that labels the city. TEXT is assigned the value of CITY. The font is
SWISSB. SIZE uses the units assigned by HSYS so text height is 5 percent of the height of the
graphics output area. POSITION 8 places the label directly below the city location.

function=’label’; style=’swissb’; text=city; color=’green’;
size=5; position=’8’; output;

run;

Define the title and footnote for the map.

title ’Distribution Center Locations’;
footnote font=swiss j=r ’GANCITY’;

Using Annotate Data Sets Labeling Subgroups in a Vertical Bar Chart 607

Define patterns for the map areas. MEMPTY colors only the state borders.

pattern value=mempty color=blue repeat=49;

Generate the map and assign the annotate data set to the CHORO statement.

proc gmap data=lower48 map=lower48;
id state;
choro state / annotate=citystar discrete nolegend;

run;
quit;

Labeling Subgroups in a Vertical Bar Chart
Features:

Annotate
function:

LABEL (default)

Annotate
variables:

MIDPOINT

POSITION

SUBGROUP

Sample library
member:

GANVBAR

Figure 24.10 Bar Chart with Labeled Subgroups

This example shows how to label subgroups in a vertical bar chart that is generated
by the GCHART procedure. Each bar represents total orders for a city and is

608 Labeling Subgroups in a Vertical Bar Chart Chapter 24

subgrouped by the type of order. The Annotate facility labels each subgroup with the
number of orders for that category. The coordinates that position the subgroup labels
are derived from the values of the GCHART procedure variables CITY (the chart (or
midpoint) variable) and TYPE (the subgroup variable). These variables are assigned to
the corresponding Annotate variable.

See Chapter 29, “The GCHART Procedure,” on page 773 for more information on
creating bar charts.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green red) ctext=black htitle=6
ftitle=swissb htext=4 ftext=swiss;

Create the data set SOLD.

data sold;
length type $ 10;
input city $ units type $;
datalines;

Atlanta 99 Printers
Atlanta 105 Plotters
Atlanta 85 Terminals
Paris 182 Printers
Paris 150 Plotters
Paris 157 Terminals
Sydney 111 Printers
Sydney 136 Plotters
Sydney 100 Terminals
;
run;

Create the Annotate data set, BARLABEL. The MIDPOINT variable uses the values of the
chart variable CITY to provide the X coordinate for the subgroup labels. The SUBGROUP
variable uses the values of the variable TYPE to provide the Y coordinate that vertically
positions the labels in the bar. Because no function is specified, the data set uses the default
function, LABEL. The POSITION value E places the labels just below the top of each subgroup
bar.

data barlabel;
length color style $ 8;
retain color ’white’ when ’a’ style ’swissb’

xsys ysys ’2’ position ’E’ size 4 hsys ’3’;
set sold;
midpoint=city;
subgroup=type;
text=left(put(units,5.));

run;

Define the title and footnote.

Using Annotate Data Sets Drawing a Circle of Stars 609

title ’Orders Received’;
footnote h=3 j=r ’GANVBAR’;

Define axis characteristics. AXIS1 suppresses the vertical axis. AXIS2 drops the midpoint
axis label.

axis1 label=none major=none minor=none style=0
value=none;

axis2 label=none;

Generate a vertical bar chart and assign the Annotate data set to the VBAR statement.

proc gchart data=sold;
vbar city / type=sum

sumvar=units
subgroup=type
width=17
raxis=axis1
maxis=axis2
annotate=barlabel;

run;
quit;

Drawing a Circle of Stars
Features:

Annotate
function:

BAR

CNTL2TXT

FRAME

LABEL

MOVE

PIECNTR

PIEXY

SYMBOL

Annotate
variables:

COLOR

HSYS, XSYS, YSYS

LINE

STYLE

TEXT

X and YXLAST and YLAST

XLSTT and YLSTT

Sample library
member:

GANCIRCL

610 Drawing a Circle of Stars Chapter 24

Figure 24.11 Stars Positioned in a Circle with GANNO

This example shows how to use an Annotate data set to draw a flag that is composed
of a rectangle and four stars. The stars are positioned by placing them on an imaginary
circle. The program uses the PIECNTR and PIEXY functions to find the points on the
circle and the CNTL2TXT programming function to transfer coordinate values. It also
processes Annotate assignment statements in a DO loop. The GANNO procedure
displays the Annotate graphics.

Set the graphics environment.

goptions reset=global cback=white colors=(black);

Create the Annotate data set, FLAG. XSYS, YSYS, and HSYS specify coordinate system 3,
absolute size of the graphics output area.

data flag;
length function style color $ 8 text $ 30;
retain xsys ysys hsys ’3’;

Draw a frame. The FRAME function uses the default color BLACK to draw a frame around
the graphics output area specified by the XSYS and YSYS variables.

function=’frame’; output;

Draw the footnote. The LABEL function draws the text specified in the TEXT variable. X and
Y explicitly position the footnote on the graphics output area.

function=’label’; x=92; y=5; text=’GANCIRCL’;
style=’swiss’; size=3; position=’5’; output;

Using Annotate Data Sets Drawing a Circle of Stars 611

Draw the title. The values of FUNCTION, POSITION, and COLOR remain the same because
no new values are assigned.

x=50; y=90; text=’Flag of Micronesia’;
style=’swissb’; size=6; output;

Draw the background. MOVE specifies the lower left corner of the rectangle that forms the
flag. BAR draws the rectangle using the values of X and Y for the upper right corner. The LINE
value of 3 fills the figure with the specified color.

function=’move’; x=20; y=30; output;
function=’bar’; x=80; y=80; color=’blue’;

line=3; style=’solid’; output;

Draw the circle of stars. The DO loop repeats the processing instructions defined by the
nested assignment statements, placing a star every 90 degrees around the circle. To increase the
number of stars, reduce the size of the angle between them and adjust the ending angle.

do star_ang=0 to 270 by 90;

The PIECNTR function is set to the center of the rectangle. PIEXY calculates a point on the arc
based on the value of STAR_ANG and updates the internal coordinates XLAST and YLAST.

function=’piecntr’; x=50; y=55; size=15; output;
function=’piexy’; size=1; angle=star_ang; output;

The programming function CNTL2TXT copies the values of XLAST and YLAST to the
text-handling coordinates XLSTT and YLSTT. Assigning missing values to X and Y forces the
SYMBOL function to use the values of XLSTT and YLSTT to position the star. The text string V
is the character code for the star figure in the MARKER font assigned by the STYLE variable.

function=’cntl2txt’; output;
function=’symbol’; style=’marker’; text=’V’;

angle=0; color=’white’; size=10; x=.; y=.;
output;

end;
run;

Use the GANNO procedure to process the Annotate data set and generate the
graphics output.

proc ganno annotate=flag;
run;
quit;

612

613

C H A P T E R

25
Annotate Dictionary

Annotate Dictionary Overview 614

Annotate Functions 615
BAR Function 615

CNTL2TXT Function 617

COMMENT Function 619
DEBUG Function 620

DRAW Function 620

DRAW2TXT Function 621
FRAME Function 622

IMAGE Function 625
LABEL Function 626

MOVE Function 627

PIE Function 628
PIECNTR Function 630

PIEXY Function 631

POINT Function 633
POLY Function 634

POLYCONT Function 635
POP Function 638

PUSH Function 639

SWAP Function 639
SYMBOL Function 640

TXT2CNTL Function 641

Annotate Variables 642
ANGLE Variable 642

CBORDER Variable 643
CBOX Variable 644

COLOR Variable 645

FUNCTION Variable 646
GROUP Variable 647

HSYS Variable 649

HTML Variable 651
IMGPATH Variable 652

LINE Variable 652
MIDPOINT Variable 654

POSITION Variable 656

ROTATE Variable 659
SIZE Variable 660

STYLE Variable (Fonts) 661

STYLE Variable (Images) 662
STYLE Variable (Patterns) 662

614 Annotate Dictionary Overview Chapter 25

SUBGROUP Variable 664

TEXT Variable 666
WHEN Variable 666

X Variable 667

XC Variable 668
XSYS Variable 670

Y Variable 673

YC Variable 673
YSYS Variable 674

Z Variable 676
ZSYS Variable 676

Annotate Internal Coordinates 678

XLAST, YLAST Variables 678
XLSTT, YLSTT Variables 678

Annotate Macros 679

%ANNOMAC Macro 679
%BAR, %BAR2 Macros 679

%CENTROID Macro 680
%CIRCLE Macro 681

%CNTL2TXT Macro 681

%COMMENT Macro 682
%DCLANNO Macro 682

%DRAW Macro 683

%DRAW2TXT Macro 683
%FRAME Macro 684

%LABEL Macro 685
%LINE Macro 686

%MAPLABEL Macro 686

%MOVE Macro 687
%PIEXY Macro 688

%POLY, %POLY2 Macro 688

%POLYCONT Macro 689
%POP Macro 690

%PUSH Macro 690
%RECT Macro 691

%SCALE Macro 692

%SCALET Macro 693
%SEQUENCE Macro 694

%SLICE Macro 695

%SWAP Macro 696
%SYSTEM Macro 696

%TXT2CNTL Macro 697
Using Annotate Macros 697

Macro Structure 697

Making the Macros Available 697
Annotate Macro Task Summary 698

Annotate Error Messages 699

Annotate Dictionary Overview
The Annotate facility enables you to generate a special data set of graphics

commands from which you can produce graphics output. This data set is referred to as
an Annotate data set. You can generate a complete graph using an Annotate data set in

Annotate Dictionary BAR Function 615

conjunction with the Chapter 26, “The GANNO Procedure,” on page 707 or Chapter 44,
“The GSLIDE Procedure,” on page 1277 procedures, or you can apply an Annotate data
set to graphics that were generated with procedures such as Chapter 29, “The GCHART
Procedure,” on page 773, Chapter 30, “The GCONTOUR Procedure,” on page 885, and
Chapter 35, “The GMAP Procedure,” on page 995, among others.

In addition, SAS/GRAPH supports the following procedures on the client using Java
or ActiveX:GCHART, GCONTOUR, GMAP, GPLOT, GRADAR, and G3D.

In an Annotate data set, each observation represents a command to draw a graphics
element or perform an action. The observations use a set of predefined “Annotate
Variables” on page 642. “Annotate Functions” on page 615 determine what is to be done
with each observation. “Annotate Macros” on page 679 simplify the process of drawing
a graphics element. “Annotate Error Messages” on page 699 are sent to the SAS log.

For usage information and example programs , refer to “Using Annotate Macros” on
page 697 and Chapter 24, “Using Annotate Data Sets,” on page 587.

Annotate Functions
In an Annotate data set, the value of the FUNCTION variable specifies what action

the observation performs. Annotate functions act in conjunction with Annotate
variables that determine where and how to perform the action. Many of these variables
are function-dependent, that is, what they do depends on the function they are used
with. For example, with the LABEL function the STYLE variable specifies a font; with
the BAR function, STYLE specifies a pattern.

This section describes all of the values of the FUNCTION variable. For each function
it

� describes the function’s action.
� notes whether the function updates the internal coordinate variables XLAST,

YLAST and XLSTT, YLSTT.
� describes how other Annotate variables behave with the function. For a complete

description of each variable, see “Annotate Variables” on page 642.

For a summary of drawing and programming tasks performed by the FUNCTION
variable, see Table 24.2 on page 594 .

The variables that are available for use with each function are listed in Figure 24.4
on page 593.

BAR Function

Draws a rectangle whose lower-left corner is defined by the internal variables (XLAST, YLAST) and
whose upper-right corner is defined by the specified X, Y variable pair. You can define the color of
the fill, the fill pattern, and the edge lines to be drawn.

Updates: XLAST, YLAST

Syntax
FUNCTION=’BAR’;

616 BAR Function Chapter 25

Associated Variables
COLOR=’color’

specifies the color of either the interior of the bar or the outline of the bar. Color
can be any SAS/GRAPH color name. The part of the bar affected depends on the
value of the STYLE variable. If STYLE specifies a pattern or fill, the COLOR
variable determines the color of the interior. If STYLE specifies an empty pattern,
the COLOR variable determines the color of the outline of the bar.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=0...3
specifies the direction in which to adjust the outline of the bar. Use LINE values 1
and 2 to offset a particular bar from an axis or adjoining area. The following figure
illustrates LINE values.

Figure 25.1 LINE Values for Bars

SIZE=thickness
specifies a line thickness for the rectangle

STYLE=’fill-pattern’
specifies the pattern that fills the bar. Fill-pattern can be the following bar and
block patterns:

SOLID
S

a solid fill.

EMPTY
E

an empty fill.

style<density> a shaded pattern:

style can be R | X | L

density can be 1...5

Annotate Dictionary CNTL2TXT Function 617

WHEN=’B’ | ’A’
specifies when to draw the bar in relation to other procedure output. See “WHEN
Variable” on page 666.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

define the upper-right corner of a bar (rectangle) whose lower-left corner is
(XLAST,YLAST). Use the Z variable only when you are annotating output from the
G3D procedure. Figure 25.2 on page 617 illustrates the use of these coordinates.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. The XC variable can be
used only with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for Y or YC variable. The YC variable can only be
used with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

Details
Figure 25.2 on page 617 shows how the XLAST, YLAST, and X, Y variables define the
diagonal corners of the bar. With character data, the XC and YC variables are used in
place of the X and Y variables. The values of the XLAST and YLAST variables are
usually initialized with a MOVE function or another function that updates the XLAST
and YLAST pair. When the XC variable is used, set XSYS=’2’. When the YC variable is
used, set YSYS=’2’.

Figure 25.2 Points Used to Construct a Bar

CNTL2TXT Function

Copies the values of the internal coordinates stored in the variable pairs (XLAST, YLAST) to
(XLSTT, YLSTT).

618 CNTL2TXT Function Chapter 25

Updates: XLSTT, YLSTT

Syntax
FUNCTION=’CNTL2TXT’;

Details
You can use CNTL2TXT to calculate the position of labels on a graph. For example, the
following DATA step uses CNTL2TXT to position a pie slice label in the center of the
arc and just beyond the arc itself, as shown in Figure 25.5 on page 619.

First, use the PIE function to draw the pie slice:

data pielabel;
retain xsys ysys ’3’;
length function style $ 8;
function=’pie’; size=20; x=30; y=30;

style=’empty’; rotate=45; output;

Then use the PIEXY function to calculate a point outside of the arc as shown in
Figure 25.3 on page 618.

/* find a point that is half of the arc (rotate*.5) */
/* and is 4 units beyond the radius (size=1.1) */

function=’piexy’; angle=rotate*.5; size=1.1; output;

Figure 25.3 Position Calculated with the PIEXY Function

At this point, the XLAST and YLAST variables contain the coordinates of the point
that is calculated by PIEXY. However, (XLAST, YLAST) cannot be used directly by text
functions. Use CNTL2TXT to copy the coordinates in (XLAST, YLAST) to the XLSTT
and YLSTT variables, which text functions can use. Figure 25.4 on page 618 shows the
results.

function=’cntl2txt’; output;

Figure 25.4 Coordinates after Using the CNTL2TXT Function

Annotate Dictionary COMMENT Function 619

Now you can use the LABEL function to write the label as shown in Figure 25.5 on
page 619. Specify missing values for the X and Y variables to force LABEL to use the
XLSTT and YLSTT variables instead of the X and Y variables.

/* write the label ’Slice 1’ and position it to */
/* the right of the point stored in XLSTT and YLSTT */

function=’label’; text=’Slice 1’; angle=0; rotate=0;
position=’6’; style=’swissb’; size=4; x=.; y=.;
output;

run;

/* draw the Annotate graphics */
proc ganno anno=pielabel;
run;
quit;

Figure 25.5 Labeled Pie Slice

COMMENT Function

Inserts comments within the Annotate data set. The observations generated by the COMMENT
function are ignored when the data set is processed.

Syntax
FUNCTION=’COMMENT’;

Associated Variables
TEXT=’text-string’

specifies the comment to write to the data set.

620 DEBUG Function Chapter 25

DEBUG Function

Writes the values of internal coordinates and Annotate variables to the SAS log before and after
processing the next command (unless it is DEBUG) in the Annotate DATA step.

Syntax
FUNCTION=’DEBUG’;

DRAW Function

Draws a line in the graphics output from the (XLAST, YLAST) coordinates to the (X, Y) coordinates
specified in the function.

Updates: XLAST, YLAST

Syntax
FUNCTION=’DRAW’;

Associated Variables
COLOR=’color’

specifies the color of the line that is being drawn. Color can be any SAS/GRAPH
color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

LINE=1...46
specifies the line type of the line that is being drawn. See “Specifying Line Types”
on page 207 for an illustration of the line types.

SIZE=line-thickness
specifies the thickness of the line that is being drawn. The units depend on the
value of the HSYS variable. For example, if HSYS=’3’, the SIZE variable is in
units of percent of the graphics output area. If HSYS=’4’, the SIZE variable is in
units of cells of the graphics output area.

As the thickness of the line increases, it may be impossible to center around a
given coordinate. For example, if you specify a thickness of value 2 and HSYS=’4’,

Annotate Dictionary DRAW2TXT Function 621

the first line is drawn at the (X, Y) coordinates. The second is drawn slightly
above the first. The exact amount varies by device, but it is always one pixel in
width. A thickness of value 3 produces one line above, one line at, and one line
below the (X, Y) coordinate position. See Figure 25.6 on page 621 for examples of
line thicknesses.

Figure 25.6 Sample Line Thicknesses Used with the SIZE Variable

1 2 3

WHEN=’B’ | ’A’
specifies when to draw the line in relation to other procedure output. See “WHEN
Variable” on page 666.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the endpoint of a line drawn from (XLAST, YLAST) to (X,Y).

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. The XC variable can be
used only with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. The YC variable can be
used only with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable (PROC G3D only). See “ZSYS
Variable” on page 676 for an explanation of coordinate-system.

DRAW2TXT Function

Draws a line from (XLAST, YLAST) to (XLSTT, YLSTT) without updating any of those variables.

Syntax
FUNCTION=’DRAW2TXT’;

622 FRAME Function Chapter 25

Associated Variables
COLOR=’color’

specifies the line color. Color can be any SAS/GRAPH color name.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

LINE=1...46
specifies the line type of the line that is being drawn. See “Specifying Line Types”
on page 207 for an illustration of the line types.

SIZE=line-thickness
specifies the thickness of the line that is being drawn. See “DRAW Function” on
page 620 for details.

WHEN=’B’ | ’A’
specifies when to draw the line in relation to generation of the procedure output.
See “WHEN Variable” on page 666.

Details
DRAW2TXT is useful for underlining text.

DRAW2TXT does not update the (XLAST, YLAST) or (XLSTT, YLSTT) coordinates;
neither can it interrupt a POLYCONT sequence.

FRAME Function

Draws a border around the portion of the display area defined by the XSYS and YSYS variables.
Optionally specifies a background color for the framed area.

Syntax
FUNCTION=’FRAME’;

Note: The FRAME function is not supported for client-side annotate with Java. �

Associated Variables
COLOR=’color’

specifies the frame color and, if the STYLE variable is specified, fills the interior of
the frame. Color can be any SAS/GRAPH color name.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

Note: The HSYS variable is not supported for client-side output with ActiveX. �

HTML=’link-string’
specifies the text that defines the link for drill-down.

Annotate Dictionary FRAME Function 623

LINE=1...46
specifies the line type with which to draw the frame. See “Specifying Line Types”
on page 207for an illustration of the line types.

SIZE=line-thickness
specifies the thickness of the line with which to draw the frame. See “DRAW
Function” on page 620 for details.

Note: The SIZE variable is not supported for client-side output with ActiveX. �

STYLE=’fill-pattern’
specifies the pattern that fills the area that is bounded by the frame. Fill-pattern
can be the following bar and block patterns:

SOLID
S

a solid fill.

EMPTY
E

an empty fill.

style<density> a shaded pattern:
style can be R | X | L
density can be 1...5

See also the discussion of fill patterns for bars and blocks in VALUE= on page
171.

WHEN=’B’ | ’A’
specifies when to draw the frame in relation to other procedure output. See
“WHEN Variable” on page 666

XSYS=’coordinate-system’
YSYS=’coordinate-system’

define the area to be enclosed by the frame. For example, if XSYS=’1’ and
YSYS=’1’, the frame encloses the axis area as shown in Figure 25.7 on page 623.
See “XSYS Variable” on page 670 and the YSYS variable on “YSYS Variable” on
page 674 for an explanation of coordinate-system.

Figure 25.7 Frame Created When XSYS=’1’ and YSYS=’1’

X

Y

frame when
XSYS = '1' and YSYS = '1'

graphics
output
area

624 FRAME Function Chapter 25

If XSYS=’3’ and YSYS=’3’, the frame encloses the entire graphics output area, as
shown in Figure 25.8 on page 624.

Figure 25.8 Frame Created When XSYS=’3’ and YSYS=’3’

X

Y

graphics
output area
and frame
when XSYX = '3'
and YSYS = '3'

The values for XSYS and YSYS do not have to be the same. If XSYS=’3’ and YSYS=’5’,
the frame encloses the entire width of the graphics output area; however, vertically, the
frame only encloses the procedure output area as shown in Figure 25.9 on page 624.

Figure 25.9 Frame Created When XSYS=’3’ and YSYS=’5’

TITLE 2

FOOTNOTE

graphics
output
area

frame when
XSYS = '3'
and YSYS = '5'

TITLE 1

See “XSYS Variable” on page 670 and “YSYS Variable” on page 674 for an
explanation of these variables and the areas that they affect.

Details
Use FRAME to simulate the CBACK= graphics option on devices (such as plotters) that
do not support that option. For devices that do support the CBACK= graphics option,
FRAME works in addition to that option. FRAME does not alter the (XLAST, YLAST)
coordinates. See “CBACK” on page 266 for more information on CBACK=.

Annotate Dictionary IMAGE Function 625

IMAGE Function

Displays an image in the graphics output from the current (X,Y) coordinates to the (X, Y)
coordinates that are associated with the IMGPATH variable.

Updates: XLAST, YLAST

Syntax

FUNCTION=’IMAGE’;

Associated Variables

HTML=’link-string’
specifies the text that defines the link for drill-down.

IMGPATH=fileref | ’external-file’
specifies the image file to be displayed in the graphics output. The syntax of
external file specifications varies across operating environments.

STYLE = ’TILE’ | ’FIT’;
specifies how the image is to be applied to fill the specified area of the graphics
output. The default value of TILE replicates the image to fill the area. The FIT
value stretches a single instance of the image to fill the area.

X=horizontal-coordinate;
specifies the horizontal coordinate that determines the size of the image displayed
in the graphics output.

Y=vertical-coordinate;
specifies the vertical coordinate that determines the size of the image displayed in
the graphics output.

Z=depth-coordinate;
specifies the depth coordinate for 3D output.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

Details

The following example shows how the IMAGE function adds a single stretched instance
of an image to the graphics output, beginning at the current coordinates and ending at
the specified coordinates:

x=10; y=5; function=’move’ output;
x=35; y=15; imgpath=’/images/gifs/picture.gif’;
style=’fit’;
function=’image’; output;

626 LABEL Function Chapter 25

LABEL Function

Places text in the graphics output. Associated variables can control the color, size, font, base
angle, and rotation of the characters displayed.

Updates: XLSTT, YLSTT

Syntax

FUNCTION=’LABEL’;

Associated Variables

ANGLE=0...360
specifies the baseline angle of the character string with respect to the horizontal.
The pivot point is at (X, Y), and the rotation is in a counterclockwise direction.

CBORDER=’color’ | ’CTEXT’
draws a colored border around the text. Color can be any SAS/GRAPH color name.

CBOX=’color’ | ’CBACK
draws a solid, colored box behind the text. Color can be any SAS/GRAPH color
name.

COLOR=’color’
specifies the color of the text. Color can be any SAS/GRAPH color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

HTML=’link-string’
specifies the text that defines the link for drill-down.

POSITION=’text-position’ | ’0’
controls the text string placement and alignment. Text-position can be one of the
characters 1 through 9, A through F, <, +, or >. Invalid or missing values default
to POSITION=’5’. POSITION should always be a character variable of length 1.
For details, see “POSITION Variable” on page 656.

ROTATE=rotation-angle
specifies the rotation angle of each character in the string. It is equivalent to the
ROTATE= option in the FOOTNOTE, NOTE, and TITLE statements.

SIZE=height
specifies the height of the text string. The SIZE variable units are based on the
value of the HSYS variable.

Annotate Dictionary MOVE Function 627

STYLE=’font’ | "’hardware-font-name’" | ’NONE’
specifies the font with which to draw the text that is specified by the TEXT
variable. See “STYLE Variable (Fonts)” on page 661 for a description of the
various font specifications.

TEXT=’text-string’
specifies the text to be written. Text-string can be up to 200 characters. Define the
TEXT variable with sufficient length to contain all of the characters in your text
string. If you need longer strings, use separate observations and POSITION=’0’ to
continue the text.

WHEN=’B’ | ’A’
specifies when to draw the text strings in relation to other procedure output. See
“WHEN Variable” on page 666

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the start point of the text string. The Z variable can be used only with the
G3D procedure. Optionally, you can modify the placement of the text string with
the POSITION variable.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

MOVE Function

Moves the drawing pointer to a specific location without drawing a line.

Updates: XLAST, YLAST

Syntax
FUNCTION=’MOVE’;

Associated Variables
GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

628 PIE Function Chapter 25

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

WHEN=’B’ | ’A’
specifies when to perform the move in relation to other procedure output. See also
“WHEN Variable” on page 666.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the coordinates to which the pen is to be moved. The Z variable can only be
used with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

Details
Use MOVE to prepare for a DRAW command, a BAR command, or programming
functions.

PIE Function

Draws pie slices in the graphics output.

Updates: XLAST, YLAST to coordinates for center of the slice.

Syntax
FUNCTION=’PIE’;

Associated Variables
ANGLE=starting-angle

specifies the starting angle of the slice arc. The default is 0.00 (horizontal) if the
ANGLE variable is not specified for the first slice. After the first slice, the default
is the ending angle of the slice arc just drawn if ANGLE=. (missing). Therefore,
you can specify consecutive pie slices more easily by omitting the start and end
calculations that are otherwise required. If you want the next slice to start at an

Annotate Dictionary PIE Function 629

angle that is different from the ending angle of the previous slice, you must specify
a value for the ANGLE variable.

COLOR=’color’
specifies the color of the pie slice, if a pattern is specified in the STYLE variable.
If you specify STYLE=’EMPTY’, the COLOR variable also specifies the outline
color of the pie slices. Color can be any SAS/GRAPH color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=0...3
specifies which slice line (or lines) to draw. See Figure 25.10 on page 629 for line
values and their actions. LINE=0 draws only the outside of the arc and enables
you to draw a circle.

Figure 25.10 LINE Values Used with the PIE Function

ROTATE=rotation-angle
specifies the angle of rotation or the delta angle of the slice arc. The default is 0.00.

For example, if you specify these statements, the slice arc that is drawn begins
at 90 degrees (vertical) and ends at 135 degrees (90+45):

function=’pie’; angle=90; rotate=45; output;

The ANGLE variable is internally updated to the end value, 135 degrees. The
value is modified only internally. If a second PIE is used and the ANGLE variable
contains a missing value, the start angle is assumed to be the previous end, or 135
degrees. The arc continues from that point.

If you specify the previous statements and then specify these statements, the
slice begins at 135 degrees (the end angle from the previous slice) and extends
another 45 degrees to the end point, 180 degrees.

function=’pie’; angle=.; rotate=45; output;

This action repeats for every missing angle in the sequence.

SIZE=radius
specifies the radius of the circle being drawn. The SIZE variable uses units that
are determined by the HSYS variable.

630 PIECNTR Function Chapter 25

STYLE=’fill-pattern’
specifies the value of the pattern that fills the pie slices. Fill-pattern can be the
following pie patterns:

PSOLID
PS

a solid fill.

PEMPTY
PE

an empty fill.

Pdensity<style<angle>> a shaded pattern:
density can be 1...5
style can be X | N
angle can be 0...360

For example, if STYLE=’P5N15’, a pie slice with a fill of parallel lines is
produced. The fill uses the heaviest density to draw the lines, and the parallel
lines are drawn at a 15-degree angle from perpendicular to the radius of the pie
slice. See also the discussion of fill patterns for pie and star charts in VALUE= on
page 174.

WHEN=’B’ | ’A’
specifies when to draw the pie slice in relation to other procedure output. See
“WHEN Variable” on page 666.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

define the center of the slice. The pivot point for all slices is the point referenced
by X, Y, and Z (with PROC G3D only). The first PIE command that is issued sets
the center at the (X,Y) value. If subsequent values for X and Y are missing, the
coordinates of the center point are used.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

See Also
“CNTL2TXT Function” on page 617

PIECNTR Function
Sets new center and radius values for later use by the PIEXY function but does not draw an arc.

Annotate Dictionary PIEXY Function 631

Updates: XLAST, YLAST

Syntax
FUNCTION=’PIECNTR’;

Associated Variables
GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

SIZE=radius
specifies the new radius of the pie slice. The new radius is used by a subsequent
PIEXY function. The HSYS variable determines the SIZE variable units.

WHEN=’B’ | ’A’
specifies when to draw the pie slice in relation to other procedure output. See
“WHEN Variable” on page 666

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

define the center and radius of the slice. All slices are referenced from that center.
Use the Z variable only with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

PIEXY Function

Calculates a point on the outline of the slice arc.

Updates: XLAST, YLAST

632 PIEXY Function Chapter 25

Syntax
FUNCTION=’PIEXY’;

Associated Variables
ANGLE=rotation-angle

specifies the angle of rotation when moving around the perimeter of a pie. The
ANGLE variable determines the angle at which the point is located relative to 0
(the three o’clock position). The default is 0.00.

SIZE=radius-multiplier
determines the distance from the center of the slice to the point that is being
calculated. The point’s distance is the current value of the SIZE variable
multiplied by the radius (that is, the SIZE variable) of the previously drawn slice.
To position a graphics element inside the pie slice, set the SIZE variable to less
than 1; to position it outside of the pie slice, set the SIZE variable to greater than
1. For example, if you specify these statements, the point calculated is 1.1 times
the radius (where the radius is taken from the SIZE variable that is used with the
previous FUNCTION=’PIE’ or FUNCTION=’PIECNTR’ observation).

function=’piexy’; size=1.1; output;

WHEN=’B’ | ’A’
specifies when to update the internal coordinate pair (XLAST, YLAST) in relation
to other procedure output. See“WHEN Variable” on page 666.

Details
PIEXY does not draw anything but places the calculated coordinates of the point in the
internal coordinate pair (XLAST, YLAST). Then you can use XLAST and YLAST with
other functions to perform other graphics actions, such as labeling pie slices. If you
need to use the calculated position for a text function, use the SWAP or CNTL2TXT to
put (XLAST, YLAST) into (XLSTT, YLSTT).

PIEXY assumes that a pie slice has been drawn or that FUNCTION=’PIECNTR’ has
been used. Erroneous results can occur if a slice has not been drawn and PIEXY is
invoked.

Figure 25.11 on page 632 shows a pie slice that is drawn with the PIE function.
Figure 25.12 on page 633 shows a point beyond the arc that was calculated using the
PIEXY function.

Figure 25.11 Pie Slice Drawn with the PIE Function

Annotate Dictionary POINT Function 633

Figure 25.12 Point Calculated with the PIEXY Function

See Also
“CNTL2TXT Function” on page 617

POINT Function

Places a single point at the (X, Y) coordinates in the color you specify. The point is one visible
pixel in size.

Updates: XLAST, YLAST

Syntax
FUNCTION=’POINT’;

Associated Variables
COLOR=’color’

specifies the color of the point to be drawn. Color can be any SAS/GRAPH color
name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates when used with HBAR and VBAR charts from the GCHART
procedure. Use these variables only with the data coordinate systems 1, 2, 7, and 8.

WHEN=’B’ | ’A’
specifies when to draw the point in relation to other procedure output. See
“WHEN Variable” on page 666

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the coordinates of the point that is to be drawn. Use the Z variable only
with the G3D procedure.

634 POLY Function Chapter 25

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

POLY Function

Specifies the beginning point of a polygon. Associated variables can define the fill pattern and
color, as well as the line type that outlines the polygon.

Syntax
FUNCTION=’POLY’;

Associated Variables
COLOR=’color’

specifies the color of the interior of the polygon, if a pattern is specified for the
STYLE variable. The outline color is specified with the POLYCONT function.
Color can be any SAS/GRAPH color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with data coordinate systems 1, 2, 7, and 8.

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=1...46
specifies the line type that outlines the polygon. See “Specifying Line Types” on
page 207 for an illustration of the line types.

SIZE=thickness
specifies a line thickness for the polygon

STYLE=’fill-pattern’
specifies the value of the pattern that fills the polygon. Fill-pattern can be the
following map patterns:

MSOLID
MS

a solid pattern

MEMPTY
ME

an empty pattern

Annotate Dictionary POLYCONT Function 635

Mdensity<style<angle>> a shaded pattern:

density can be 1...5

style can be X | N

angle can be 0...360.

For example, if STYLE=’MSOLID’ for the POLY function, the fill area that is
drawn by the POLYCONT sequence uses a solid fill. If STYLE=’M5N15’, the fill
area uses a shaded fill of parallel lines. The fill-pattern value M5N15 specifies that
the lines use the heaviest density, are parallel, and are drawn at a 15-degree angle
from the horizontal. See also the discussion of fill patterns for maps in VALUE=
on page 173.

WHEN=’B’ | ’A’
specifies when to begin the polygon in relation to other procedure output. See
“WHEN Variable” on page 666

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the initial point of the polygon that is being created. Use the Z variable
only with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

Details
Use POLY with POLYCONT to define and fill areas in the graphics output. POLY and
POLYCONT do not update the (XLAST, YLAST) coordinates.

See Also
“POLYCONT Function” on page 635

POLYCONT Function

Continues drawing a polygon begun with the POLY function. POLYCONT specifies each successive
point in the polygon definition.

636 POLYCONT Function Chapter 25

Syntax
FUNCTION=’POLYCONT’;

Associated Variables
COLOR=’color’

specifies the polygon outline color. Color can be any SAS/GRAPH color name. You
can specify an outline color only with the first POLYCONT command in the
sequence; all subsequent POLYCONT commands ignore the COLOR variable. If
you do not specify a color, the POLYCONT function uses the interior color that was
specified with the POLY function.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

WHEN=’B’ | ’A’
specifies when to draw the polygon in relation to other procedure output. See
“WHEN Variable” on page 666

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify a point on the outline of the polygon that is being created. Use the Z
variable only with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X and XC variable. Use the XC variable
only with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y and YC variable. Use the YC variable
only with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

Details
The polygon definition is terminated by a new POLY command or by any of these
functions:

BAR

DRAW

DRAW2TXT

FRAME

Annotate Dictionary POLYCONT Function 637

LABEL

MOVE

PIE

PIECNTR

PIEXY

POINT

SYMBOL

Use POLY and POLYCONT together to draw a polygon. The (X, Y) observation from
the POLY function and the last (X, Y) observation from POLYCONT are assumed to
connect. Thus, you are not required to respecify the first point. For example, these
statements draw a pentagon like the one in Figure 25.13 on page 638:

data house;
retain xsys ysys ’3’;
length function $ 8;

/* start at the lower left corner */
function=’poly’; x=35; y=25; output;

/* move to the lower right corner */
function=’polycont’; x=65; y=25; output;

/* move to the upper right corner */
function=’polycont’; x=65; y=65; output;

/* move to the center top*/
function=’polycont’; x=50; y=80; output;

/* move to the upper left corner and complete the figure */
function=’polycont’; x=35; y=65; output;

run;

proc ganno anno=house;
run;
quit;

638 POP Function Chapter 25

Figure 25.13 Pentagon Produced with the POLY and POLYCONT Functions

(50,80)

POLYCONT POLYCONT

(65,65)(35,65)

POLYCONT

POLYCONT
(65,25)

POLY

(35,25)

Obs. 1

Obs. 2

Obs. 3

Obs. 4Obs. 5

Missing values for the X and Y variables that are specified with POLYCONT are
interpreted differently from the way that they are interpreted with the other functions.
Other functions use the missing values to request a default value. POLYCONT
interprets a missing value as a discontinuity (that is, a hole) in the polygon. If you are
not using the data coordinate system and you specify an X or Y value of –999 in a
POLYCONT observation, the default of (XLAST, YLAST) is used. Missing values
indicate holes and are handled identically in the Annotate facility and the GMAP
procedure. See “Displaying Map Areas and Response Data” on page 1005 for more
information on handling missing values.

POP Function

Removes the (XLAST, YLAST) and (XLSTT, YLSTT) values from the LIFO stack and updates the
internal coordinate pairs with the retrieved values.

Updates: (XLAST, YLAST) and (XLSTT, YLSTT)

Syntax
FUNCTION=’POP’;

Annotate Dictionary SWAP Function 639

Details

Use POP when you want to access the values of (XLAST, YLAST) and (XLSTT, YLSTT)
that you most recently stored with the PUSH function. See the PUSH function for a
description of the LIFO stack.

PUSH Function

Adds current (XLAST, YLAST) and (XLSTT, YLSTT) values to the LIFO stack.

Syntax

FUNCTION=’PUSH’;

Details

The LIFO (last-in-first-out) stack is a storage area where you can keep internal
coordinate values for later use by utility functions without recalculating those values.
LIFO stacks manage the stored data so that the last data stored in the stack is the first
data removed from the stack.

Use the stack to save the current values of (XLAST, YLAST) and (XLSTT, YLSTT)
and use them with functions later in the DATA step. You store and retrieve these
values from the stack with the PUSH and POP functions. The PUSH function copies
the current values of XLAST, YLAST, XLSTT, and YLSTT onto the stack. The POP
function copies values from the stack into XLAST, YLAST. XLSTT, and YLSTT.

SWAP Function

Exchanges values of (XLAST, YLAST) with (XLSTT, YLSTT) and vice versa.

Updates: (XLAST, YLAST) and (XLSTT, YLSTT)

Syntax

FUNCTION=’SWAP’;

Details

Use SWAP when you want to use both the (XLAST, YLAST) and (XLSTT, YLSTT)
coordinates for text and nontext functions, respectively.

640 SYMBOL Function Chapter 25

SYMBOL Function

Places symbols in the graphics output. Associated variables can specify the color, font, and height
of the symbols displayed.

Updates: XLSTT, YLSTT

Syntax
FUNCTION=’SYMBOL’;

Associated Variables
CBORDER=’color’ | ’CTEXT’

draws a colored border around the text. Color can be any SAS/GRAPH color name.

CBOX=’color’ | ’CBACK’
draws a solid, colored box behind the text. Color can be any SAS/GRAPH color
name.

COLOR=’color’
specifies the symbol color. Color can be any SAS/GRAPH color name. The COLOR
variable behaves in the same way as the COLOR= option in the SYMBOL
statement. See COLOR= on page 185 for details

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 649 for an explanation of coordinate-system.

HTML=’link-string’
specifies the text that defines the link for drill-down.

SIZE=height
specifies the height of the symbol that is being drawn, using units determined by
the HSYS variable. The SIZE variable is equivalent to the HEIGHT= option in the
SYMBOL statement. See HEIGHT= on page 187 for details.

STYLE=’font’ | "’hardware-font-name’" | ’NONE’;
specifies the font that is used to draw the symbol that is specified by the TEXT
variable. See “STYLE Variable (Fonts)” on page 661 for a description of the
various font specifications.

When the STYLE variable is used with the SYMBOL function, it behaves the
same as the FONT= option in the SYMBOL statement. By default, no font is
specified and the symbol that is specified by the TEXT variable is taken from the
special symbol table. If you use STYLE to specify a symbol font, such as Marker,
the string that is assigned by the TEXT variable is the character code for a
symbol. If you use STYLE to specify a text font, such as Swiss, the string assigned
by the TEXT variable is displayed as text. See FONT= on page 186 for details.

Annotate Dictionary TXT2CNTL Function 641

TEXT=’special-symbol’ | ’text-string’;
specifies the symbol to be displayed. Special-symbol can be up to eight characters
long. Values for special-symbol are those described in the VALUE= option of the
SYMBOL statement and are illustrated in VALUE= on page 199.

For client-side rendering using ActiveX, the following values are supported:
plus, X, star, square, diamond, triangle, dot, circle, ", #, $, %, =. If a symbol is not
supported, a plus sign (+) is drawn instead.

For client-side rendering using Java, the following values are supported: plus,
X, star, square, diamond, triangle, dot (draws a circle), circle, *, +, >. If a symbol is
not supported, a plus sign (+) is drawn instead.

If you also specify a text font with the STYLE variable, you can specify a text
string that is displayed as the symbol. The maximum length for text-string is 200
characters.

When the TEXT variable is used with the SYMBOL function, it behaves the
same as the VALUE= option in the SYMBOL statement. See VALUE= on page 199
for details.

WHEN=’B’ | ’A’
specifies when to draw the symbols in relation to other procedure output. See
“WHEN Variable” on page 666

Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the point at which the symbol is placed. Use the Z variable only with the
G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 670 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 674 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
676 for an explanation of coordinate-system.

Details
SYMBOL is similar to the LABEL function with these exceptions:

� SYMBOL draws symbols. If you do not specify a font, SYMBOL can use the
symbols found in Figure 7.21 on page 202.

� The text cannot be rotated or angled.
� The text string cannot be longer than eight characters.
� The text string is always centered with respect to x and y.

TXT2CNTL Function

Copies the values (XLSTT, YLSTT) to (XLAST, YLAST), replacing previous values of (XLAST,
YLAST).

642 Annotate Variables Chapter 25

Syntax
FUNCTION=’TXT2CNTL’;

Details
TXT2CNTL allows nontext functions to use the ending position of a text string as a
starting or ending point.

Annotate Variables
When an Annotate data set is processed, the Annotate facility looks at the values of

specific variables in order to draw graphics. This section describes all of the Annotate
variables in alphabetical order. Not all variables are used with all functions. Refer to
the description of the individual functions in “Annotate Functions” on page 615 for more
information about how each variable is used with each function. For a summary of
Annotate variables and their uses, see Table 24.1 on page 591.

ANGLE Variable

Specifies the angle at which the graphics output is drawn.

Type: numeric
Default: function dependent

Syntax
ANGLE=0...360;

Functions
The ANGLE variable is function dependent.

Annotate Dictionary CBORDER Variable 643

If function is... then the ANGLE variable specifies...

LABEL the baseline angle of the character string with respect to the horizontal. With
the LABEL function, the pivot point is at (X,Y) and the direction of rotation is
counterclockwise. The default value is 0.

PIE the starting angle of the slice arc, measured counterclockwise. The default for
the first PIE function is ANGLE=0 (horizontal, or 3:00 postion), or is the
ending point of the arc of the previous slice. Specify a value for the ANGLE
variable if you want the next slice to start at an angle that is different from
the edge of the previous slice, or if you want the first slice to start at an angle
other than horizontal.

PIEXY the angle that works with the SIZE variable to establish the new XLAST,
YLAST point relative to the last pie element established with the PIE or
PIECNTR functions. The angle is measured counterclockwise starting at the
3:00 position. The default value is 0.

CBORDER Variable

Draws a colored border around text or symbols.

Type: character

Length: 8 for color codes and up to 64 for color names

See also: CBOX

Syntax
CBORDER=’color’ | ’CTEXT’;

color
specifies the color that fills the box. The color value can be any SAS/GRAPH color
name. See Chapter 6, “SAS/GRAPH Colors and Images,” on page 91 for more
information about specifying colors.

Specifying a null value for the color value (CBOX=’ ’)cancels the CBOX variable.

CTEXT
draws the border in the same coloras the text or symbol. The text color is determined
by (1) the COLOR variable or (2) the CTEXT=graphics option or (3) the first color in
the colors list.

Functions
You can use the CBORDER variable with these functions:

LABEL

SYMBOL

644 CBOX Variable Chapter 25

Details

Once you have specified CBORDER, it remains in effect for all subsequent observations
that use the LABEL or SYMBOL function and draws a border around all text or
symbols. To turn off the border for subsequent text or symbols, specify CBORDER=’ ’.

To fill the area defined by CBORDER, use the CBOX variable in conjunction with
CBORDER.

CBOX Variable

Draws a solid box behind the text or symbol and fills the box with the specified color.

Type: character

Length: 8 for color codes and up to 64 for color names

See also: CBORDER

Syntax

CBOX=’color’ | ’CBACK’;

color
specifies the color that fills the box. Color is any SAS/GRAPH color name. See
Chapter 6, “SAS/GRAPH Colors and Images,” on page 91 for more information about
specifying colors.

Specifying a null value for color (CBOX=’ ’)cancels the CBOX variable.

CBACK
fills the box with the same color as the background color of the graph. The
background color is either (1) the color specified by the CBACK= graphics option or
(2) the default background color for the device.

Functions

You can use the CBOX variable with these functions:

LABEL

SYMBOL

Details

Once you have specified CBOX, it remains in effect for all subsequent observations that
use the LABEL or SYMBOL function.

The color of the text or symbol within the box is controlled by the COLOR variable.
By default, the solid box has no border. To add a colored border to the box, use the

CBORDER variable in conjunction with CBOX.

Annotate Dictionary COLOR Variable 645

COLOR Variable

Specifies the color used by the function.

Type: character

Length: 8 for color codes and up to 64 for color names

Default:

1 first color in colors list of the COLORS= graphics option

2 first color in device’s default colors list.

Syntax
COLOR=’color’;

color
specifies any SAS/GRAPH color name. See Chapter 6, “SAS/GRAPH Colors and
Images,” on page 91 for more information about specifying colors.

Functions

The COLOR variable is function dependent.

If function is... then the COLOR variable specifies...

BAR the color that outlines and, optionally, fills the bar if a pattern is specified in
the STYLE (patterns)“STYLE Variable (Patterns)” on page 662 variable. If no
pattern is specified, the color value is applied only to the outline of the bar.

DRAW,
DRAW2TXT

the color of the line.

FRAME the color of the outline of the frame. If a fill pattern is specified, color also
determines the color of the inside of the frame.

LABEL the color of the text.

PIE the color for the pie slice if a pattern is specified with the STYLE
(patterns)“STYLE Variable (Patterns)” on page 662 variable. If no pattern is
specified, color determines the color of the outline of the pie slice.

POINT the color of the point.

POLY the fill color for the interior of the polygon if a pattern is specified with the
STYLE variable. If the STYLE variable is missing or EMPTY, color is
ignored. Use the POLYCONT function to specify the outline color.

POLYCONT the color that outlines the polygon when used with the first POLYCONT
function. COLOR is ignored for subsequent POLYCONT functions in the
POLYCONT sequence.

SYMBOL the color that draws the symbol.

646 FUNCTION Variable Chapter 25

FUNCTION Variable

Specifies a graphics command or programming function for the Annotate facility to perform.

Type: character

Length: 8

Default: LABEL

Syntax
FUNCTION=’function-name’;

function-name
specifies the name of an Annotate function. The function-name value can be any of
the following.

BAR draws and, optionally, fills a rectangle.

CNTL2TXT,
DRAW2TXT

copies (XLAST, YLAST) to (XLSTT, YLSTT), overwriting the
previous values of (XLSTT, YLSTT).

COMMENT places comments in your data set. The observation is ignored
when the data set is processed.

DEBUG writes the values of all Annotate variables to the SAS log before
and after the next observation.

DRAW draws a line in the graphics output.

FRAME draws a border around the area defined by XSYS and YSYS and
specifies a background color for the framed area .

IMAGE displays an image in the graphics output from the current (X,Y)
coordinates to the coordinates that are associated with the
IMGPATH variable.

LABEL draws text and is the default for the FUNCTION variable.

MOVE moves to the specified point (does not draw a line).

PIE draws a pie slice, arc, or circle that can be filled.

PIECNTR sets new center and radius values. The PIEXY function can use
this information in a later observation.

PIEXY returns the coordinates of a point on a pie slice. Other functions
can use this information in a later observation.

POINT draws a point.

POLY begins drawing a polygon (first vertex). Use the POLYCONT
function in successive observations to supply the remaining
vertices.

POLYCONT continues drawing a polygon.

POP gets values from the LIFO stack and changes the current value of
(XLAST, YLAST) and (XLSTT, YLSTT) to those values.

Annotate Dictionary GROUP Variable 647

PUSH puts the current values for (XLAST, YLAST) and (XLSTT, YLSTT)
in the LIFO stack.

SWAP exchanges the values of (XLAST, YLAST) and (XLSTT, YLSTT).

SYMBOL draws a symbol. See Figure 7.21 on page 202 for a list of the
symbols.

TXT2CNTL copies the values (XLSTT, YLSTT) to (XLAST, YLAST),
overwriting the previous values of (XLAST, YLAST).

All other variables in the observation that contain the function act as parameters
for the action. For a detailed description of each function and the Annotate variables
that can be used in conjunction with it, see “Annotate Functions” on page 615.

GROUP Variable

Positions graphics elements on the bars of a vertical or horizontal bar chart drawn using the
GROUP= option in the GCHART procedure.

Type: Numeric or character; must match the type of the GROUP= variable used in the
GCHART procedure.
Length: Should match the length of GROUP= variable in the GCHART procedure.
Default: none
Restriction: Used only with vertical or horizontal bar charts produced by the GCHART
procedure.

Syntax
GROUP=group-value;

group-value
references value(s) of the variable that is identified by the GROUP= option in the
GCHART procedure either as a variable name or as an explicit data value.
Group-value can be one of the following:

group-variable the name of a group variable.

group-data-
value

a specific numeric data value.

’group-data-
value’

a specific character data value.

To annotate all the bars in a horizontal or vertical bar chart, specify a variable
name. To annotate a bar chart for a specific value of the GROUP variable, specify a
specific value.

648 GROUP Variable Chapter 25

Functions
You can use the GROUP variable only with the data coordinate systems 1, 2, 7, and 8,
and with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
Using the GROUP variable is similar to using the X and Y variables with data system
coordinates to position graphics elements in a vertical or horizontal bar chart.

Figure 25.14 on page 649 shows how the GROUP variable works with the
SUBGROUP and MIDPOINT variables to label the bars of a vertical bar chart.

Annotate Dictionary HSYS Variable 649

Figure 25.14 Using the GROUP Variable to Position a Label in a Bar Chart

The label showing the number of units that were sold in Dallas in the year 1997 is
positioned by the values that are assigned to these Annotate variables:

� GROUP=YEAR (where YEAR is a variable in the GCHART data set)
� MIDPOINT=CITY (where CITY is a variable in the GCHART data set)
� SUBGROUP=ITEM (where ITEM is a variable in the GCHART data set).

HSYS Variable

Defines the coordinate system and area of the output used by the SIZE variable to display the
Annotate graphics. Additionally, you can use the HSYS variable with client-side annotation with
Java or ActiveX to control the markersize and linesize for the BAR, DRAW, DRAW2TXT, POLY, and
SYMBOL functions.

Type: character
Length: 1

650 HSYS Variable Chapter 25

Default: 4

Syntax

HSYS=’coordinate-system’;

coordinate-system
specifies a value that represents a coordinate system. Values can be 1 through 9 and
A through C as shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

3 9 percentage of graphics output area

4 A cell in graphics output area

5 B percentage of procedure output area

6 C cell in procedure output area

These values are also used by the XSYS and YSYS variables. See “Coordinate
Systems” on page 596 for a description of the areas and coordinate systems.

Functions

You can use HSYS with these functions, all of which also use the SIZE variable:

DRAW

DRAW2TXT

FRAME

LABEL

PIE

PIECNTR

SYMBOL

Details

The coordinate system that you specify with the HSYS variable affects how the function
interprets the value of the SIZE variable. For example, if you use HSYS=’3’ and
SIZE=10 with the DRAW function, the thickness of the line is 10 percent of the graphics
output area. If you use HSYS=’1’ and SIZE=10 with DRAW, the thickness of the line is
10 percent of the data area.

Annotate Dictionary HTML Variable 651

HTML Variable

Defines a link in the HTML file created for a drill-down graph. This link is associated with an area
of the graph and contains valid HTML syntax that can point to a report or another graph that you
want to display when the user drills down on the area.

Type: character
Length: up to 1024

Default: none

Syntax
HTML=’link-string’;

link-string
specifies the text that defines the link for drill-down. For more information about
drill-down graphs and how to specify the link string, see “Adding Links with the
HTML= and HTML_LEGEND= Options” on page 574.

Functions
You can use the HTML variable with these functions:

BAR

FRAME
IMAGE
LABEL

PIE
POLY
SYMBOL

Details
Use a LENGTH statement to set the length of the HTML variable to the longest string
you need for the link string. Be sure to set the HTML value to a null if you continue
writing observations to the annotate data set after you are done assigning links. For
example, the following code defines link information for two squares, but then sets the
HTML variable to null when drawing a frame; otherwise the backgound area within the
frame will use the link information from the last defined HTML value and become a hot
zone in the graph.

data squares;
length function style color $ 8

html text $ 15;
xsys=’3’; ysys=’3’;

/* draw a green square */
color=’green’;
function=’move’; x=10; y=65; output;
function=’bar’; x=30; y=95; style=’solid’;

652 IMGPATH Variable Chapter 25

html=’href=green.gif’; output;

/* draw a red square */
color=’red’;
function=’move’; x=60; y=65; output;
function=’bar’; x=80; y=95;

html=’href=red.gif’; output;

/* draw a blue frame */
function=’frame’; color=’blue’; style=’empty’;

/* set null link for background area in frame */
html=’’; output;

run;

IMGPATH Variable

Specifies an image to be displayed from the current (X,Y) coordinates to the (X,Y) coordinates that
are associated with this variable.

Type: character

Length: 255

Syntax
IMGPATH = fileref | ’external-file’;

fileref
specifies an existing fileref that points to an external image file.

external-file
specifies the full path or full file name of an external image file. The format of the
external file specification varies between operating envirionments.

Details
The IMGPATH variable can be used only with the “IMAGE Function” on page 625.

The manner in which the specified image is to be displayed is determined by the
“STYLE Variable (Images)” on page 662.

LINE Variable

Controls the drawing of a line by determining either the type of line to draw or the relative
position of the line.

Type: numeric

Default for all functions: 1

Annotate Dictionary LINE Variable 653

Syntax

LINE=line-type;

Functions

The behavior and syntax of the LINE variable is function-dependent.

BAR
In the BAR function, valid values for the LINE variable can be 0, 1, 2, or 3. These
values determine how the outline of the bar is to be drawn, as shown in the
following figure.A value of 0 draws the outline all the way around the bar. A value
of 1 draws the outline only on the vertical sides of the bar. A value of 2 draws the
outline only on the horizontal sides of the bar. A value of 3 draws no outline.

Figure 25.15 LINE Values for Bars

DRAW, DRAW2TXT, FRAME, POLY
Valid values are whole numbers from 0 to 46. A value of 0 specifies that the line
not be drawn. A value of 1 specifies a solid line. The remaining values specify
different segmented lines, as illustrated in Figure 7.22 on page 208.

PIE
Valid values are 0, 1, 2, or 3. The value specifies which lines of a pie slice are to be
drawn for the current arc, as shown in Figure 25.16 on page 653.

Figure 25.16 LINE Values Used with the PIE Function

654 MIDPOINT Variable Chapter 25

MIDPOINT Variable

Positions graphics elements on the bars of a vertical or horizontal bar chart drawn by the GCHART
procedure.

Type: Numeric or character; must match the type of the MIDPOINT= variable in the
GCHART procedure.
Length: Should match the length of the MIDPOINT= variable in the GCHART
procedure.
Default: none
Restriction: Used only with vertical or horizontal bar charts produced by the GCHART
procedure.

Syntax
MIDPOINT=midpoint-value;

midpoint-value
references midpoint data value(s) in the GCHART procedure either as a variable
name or as an explicit data value. Midpoint-value can have one of the following
forms:

midpoint-
variable

the name of a midpoint variable.

midpoint-data-
value

a specific numeric data value.

’midpoint-data-
value’

a specific character data value.

Generally, specify a variable name if you want to annotate all of the bars in a
horizontal or vertical bar chart. To annotate a bar chart for a specific value of the
MIDPOINT variable, specify a specific value.

Functions
You can use the MIDPOINT variable only with the data coordinate systems 1, 2, 7, and
8, and with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Annotate Dictionary MIDPOINT Variable 655

Details
Using the MIDPOINT variable is similar to using the X and Y variables to position
graphics elements in a vertical or horizontal bar chart when using data system
coordinates. For example, suppose you produce a vertical bar chart in which the chart
variable CITY produces a bar for each city in a data set. The height of each bar is
determined by the value of the SUMVAR= variable, UNITS.

You can label these bars by assigning the chart variable CITY to the Annotate
MIDPOINT variable. The MIDPOINT variable provides the x coordinate for the label.
By default, Annotate assigns the statistic variable, in this case the SUMVAR= variable,
UNITS, to the Annotate Y variable, which provides the y coordinate for the label.

Figure 25.17 on page 655 shows how the values of the MIDPOINT and Y variables
position the label that shows the number of units sold in Atlanta. The value, which is
calculated and printed by the LABEL function, is 56.

Figure 25.17 Using the MIDPOINT Variable to Position a Label in a Bar Chart

MIDPOINT=Atlanta

Los AngelesChicagoAtlanta City

MIDPOINT=Chicago

MIDPOINT

Y=56

Y=UNITS/2

Y➛UNITS100

56

The labels in this figure are positioned by the values that are assigned to these
Annotate variables:

� MIDPOINT=CITY (where CITY is the chart variable); the MIDPOINT variable
provides the horizontal coordinate in the vertical bar chart.

� Y=UNITS (where UNITS is the SUMVAR= variable); the Y variable provides the
vertical coordinate. By specifying Y=units/2, you can vertically center the label in
the bar.

Note: In a horizontal bar chart, the MIDPOINT variable controls the y coordinate
and the statistic variable controls the x coordinate. �

CAUTION:
Be careful when using MIDPOINT and X and Y variables in the same data set. Using the
MIDPOINT and X variables in an Annotate data set that is used to annotate a VBAR
chart or the MIDPOINT and Y variables in the same data set used to annotate an
HBAR chart can cause unexpected results. When annotating a VBAR chart, the

656 POSITION Variable Chapter 25

Annotate facility uses the MIDPOINT variable as the horizontal coordinate if it
exists in the Annotate data set and ignores the X variable. Consequently, you should
use the MIDPOINT variable as the horizontal coordinate for all observations in an
Annotate data set if you use it for one.

A similar behavior occurs if you use both the MIDPOINT and Y variables in an
Annotate data set that is used to annotate HBAR charts. The MIDPOINT variable is
always used, regardless of whether it has a missing value, and the Annotate facility
ignores the Y variable. In this case, as well, use the MIDPOINT variable for the
vertical coordinate for all observations in an Annotate data set if you use it for one. �

POSITION Variable

Controls placement and alignment of a text string specified by the LABEL function.

Type: character
Length: 1
Default: 5

Syntax
POSITION=’text-position’ | ’0’;

text-position
specifies the placement of the text string in relation to the position that is defined by
the X and Y variables. Text-position can be one of the characters 1 through 9, A
through F, <, +, or >. These characters represent the positions that are described in
the following table:

Position Right Aligned Centered Left Aligned

One cell above 1 2 3

Centered 4 | < 5 | + 6 | >

One cell below 7 8 9

Half cell above A B C

Half cell below D E F

These positions are illustrated in Figure 25.19 on page 658.

’0’
specifies a pause in the string in order to change an attribute, such as the color of the
text.

Annotate Dictionary POSITION Variable 657

Details

Stacking text strings To stack text strings, specify a different position value of each
string. Figure 25.18 on page 657 shows two ways to stack text.

Figure 25.18 Combining POSITION Values to Stack Text

POSITION='2'

POSITION='5'

POSITION='8'

POSITION='B'

POSITION='E'

Positioning numeric labels The <, +, and > positions perform the same function as 4,
5, and 6, respectively, but are recommended only for labels that are numbers. The <, +,
and > positions are especially useful when you are labeling a horizontal bar chart. You
can use <, +, or > if the numbers in your font are significantly smaller than the text and
you are having trouble centering labels. If the numbers in your font are the same
height or close to the same height as the text, you can use positions 4, 5, and 6 to center
the labels.

Note: You cannot stack <, +, and > positions as you can 4, 5, and 6 positions. �

658 POSITION Variable Chapter 25

Figure 25.19 Effect of POSITION Values on Text Strings

POSITION = 'C'

POSITION = '1'

One cell above
Right aligned

POSITION = '2'

One cell above
Centered

POSITION = '3'

One cell above
Left aligned

POSITION = '4'
POSITION = '<'

Centered
Right aligned

POSITION = '6'
POSITION = '>'

Centered
Left aligned

POSITION = '5'
POSITION = '+'

Centered
Centered

POSITION = '7'

One cell below
Right aligned

POSITION = '8'

One cell below
Centered

POSITION = '9'

One cell below
Left aligned

POSITION = 'A'

Half cell above
Right aligned

POSITION = 'B'

Half cell above
Centered

Half cell above
Left aligned

POSITION = 'D'

Half cell below
Right aligned

POSITION = 'E'

Half cell below
Centered

POSITION = 'F'

Half cell below
Left aligned

Changing attributes in the middle of a text string 0 is a special value to use when you
want to pause and then continue a text string. With this value you can change colors,
fonts, and so on in the middle of a line, while retaining the exact position of the text at

Annotate Dictionary ROTATE Variable 659

the pause. When POSITION=’0’, the combined text string is left-justified beginning at
the point that is defined by the X and Y variables. However, you must define missing
values for X for the continuation string. The following Annotate data set changes the
font in the middle of the string. The result is shown in Figure 25.20 on page 659.

data anno;
length style $ 8 text $ 12;
xsys=’3’; ysys=’3’; hsys=’3’; x=5; y=50;

style=’swissb’; size=10; text=’This is the’;
position=’0’; output;

x=.; style=’swissbi’; text=’ ITALIC font’;
output;

run;

Figure 25.20 Using POSITION=’0’ to Change the Attributes of a Text String

ROTATE Variable

Specifies the angle at which to rotate the graphics element.

Type: numeric
Default: 0.00

Syntax
ROTATE=rotation-angle;

Functions
The ROTATE variable is function dependent.

660 SIZE Variable Chapter 25

If function is... then the variable...

PIE specifies the sweep of the generated arc that begins at the angle that is
specified by the ANGLE variable that is used with the PIE function.

LABEL rotates the individual text characters with respect to the baseline.

SIZE Variable

Determines the size of the graphics element with which it is used.

Type: numeric

Length: 8

Default: 1.00 (2 when HSYS=3)

Syntax
SIZE=size-factor;

Functions
The SIZE variable is function dependent.

If function is... then the variable...

DRAW,
DRAW2TXT,
FRAME, POLY, or
POLYCONT

determines the thickness of the line being drawn.

LABEL specifies the height of the text.

PIE or PIECNTR determines the radius of the pie.

PIEXY sets the radius multiplier.

SYMBOL selects the height of the symbol.

Details
The SIZE variable uses the coordinate system that is specified by the “HSYS Variable”
on page 649, which specifies the type of coordinate system used to generate the graph.

As the thickness of the line increases, it may be impossible to center around a given
coordinate. For example, if you specify a thickness of value 2 and HSYS=’4’, the first
line is drawn at the (X, Y) coordinates. The second is drawn slightly above the first. The
exact amount varies by device, but it is always one pixel in width. A thickness of value
3 produces one line above, one line at, and one line below the (X, Y) coordinate position.

Annotate Dictionary STYLE Variable (Fonts) 661

The SIZE variable is equivalent to the HEIGHT= option in the SYMBOL statement.
See HEIGHT= on page 187 for details.

See Figure 25.6 on page 621 for examples of line thicknesses.

Figure 25.21 Sample Line Thicknesses Used with the SIZE Variable

1 2 3

STYLE Variable (Fonts)
Specifies a font for text or symbols produced by the LABEL or SYMBOL functions.

Type: character
Length: Depends on specification.
Default: default hardware font
Not supported by: ActiveX (Partial), Java

Syntax
STYLE=’font’ | “’hardware-font-name’” | ’NONE’;

font
specifies a font. Font can be either the name of a software font that is stored in a
catalog or a hardware font specification of the form HWxxxnnn. For example,
STYLE=’CENTB’ specifies a software font that is stored in the catalog
SASHELP.FONTS. The maximum length for font is 8 characters.

hardware-font-name
specifies the name of a hardware font as shown in the Chartype window of the device
entry. The maximum length for hardware-font-name is 256 characters.
Hardware-font-name must be enclosed in both double and single quotation marks, for
example, STYLE="’Palatino-Italic’".

NONE
specifies the default hardware font.

See Chapter 5, “SAS/GRAPH Fonts,” on page 75 for more information about
specifying fonts.

If the value of the STYLE variable is missing, SAS/GRAPH software searches for a
font specification in this order:

1 the font specified by the FTEXT= graphics option
2 the hardware font, if the device supports one
3 the SIMULATE font.

Details
When the STYLE variable is used with the SYMBOL function, it behaves the same as
the FONT= option in the SYMBOL statement. By default, no font is specified and the

662 STYLE Variable (Images) Chapter 25

symbol that is specified by the TEXT variable is taken from the special symbol table. If
you use STYLE to specify a symbol font, such as Marker, the string that is assigned by
the TEXT variable is the character code for a symbol. If you use STYLE to specify a
text font, such as Swiss, the string assigned by the TEXT variable is displayed as text.
See the FONT= option of the SYMBOL statement for details.

Note: Java does not support the STYLE variable. However, you can use special
symbols from the MARKER font by using the SYMBOL function. �

STYLE Variable (Images)

Determines the appearance of images specified with the IMGPATH variable and the IMAGE function.

Type: character

Default: ’TILE’

Syntax
STYLE=’TILE’ | ’FIT’;

’TILE’
Uses copies of the image to fill the image area.

’FIT’
Stretches one instance of the image to fill the image area.

Details
This version of the STYLE variable can be used only with the “IMAGE Function” on
page 625.

STYLE Variable (Patterns)

Specifies a pattern for bars, pies, frames, and rectangles

Type: character

Length: 8

Default: EMPTY | PEMPTY | MEMPTY

Not supported by: Java (partial), ActiveX (partial)

Syntax
STYLE=’fill-pattern’;

Annotate Dictionary STYLE Variable (Patterns) 663

fill-pattern
specifies a pattern to use with the graphics element. The value for fill-pattern is
function-dependent:

Function
Valid Fill Pattern Values

BAR,FRAME

SOLID | S Fill with a solid color.

EMPTY | E No fill.

style<density> style R for right-slanted fill lines, L for
left-slanted fill lines, or X for crossing fill
lines

density Whole numbers 1 through 5 specify
increasing thickness for the fill lines.

Note: Client-side rendering using Java or ActiveX supports only SOLID and
EMPTY and defaults to EMPTY if any other value is used. �

An illustration of these pattern styles is provided in the definition of the
VALUE= option of the PATTERN statement.

PIE

PSOLID | PS Solid fill.

PEMPTY | PE No fill, the default.

Pdensity<style<angle>>density Whole numbers 1 through 5 specify
increasing thickness for the fill lines.

style N, the default, optionally specifies parallel
fill lines; X optionally specifies crossed fill
lines.

angle Optionally specifies the angle of the fill
lines. Values range from 0 to 360. The
angle is measured counterclockwise from
the horizontal. The default is 0�, which
draws horizontal lines.

Note: Client-side rendering using Java or ActiveX supports only PSOLID and
PEMPTY and defaults to PEMPTY if any other value is used. �

An illustration of these pattern styles is provided in the definition of the
VALUE= option of the PATTERN statement.

POLY

MSOLID | MS Fill with a solid color.

MEMPTY | ME No fill, the default.

Mdensity<style<angle>>density Whole numbers 1 through 5 specify
increasing thickness for the fill lines.

style N, the default, optionally specifies parallel
fill lines; X optionally specifies crossed fill
lines.

angle Optionally specifies the angle of the fill
lines. Values range from 0 to 360. The
angle is measured counterclockwise from

664 SUBGROUP Variable Chapter 25

the vertical. The default is 0�, which draws
vertical lines.

Note: Client-side rendering using Java or ActiveX supports only MSOLID and
MEMPTY and defaults to MEMPTY is any other value is used. �

An illustration of these pattern styles is provided in the definition of the
VALUE= option of the PATTERN statement.

SUBGROUP Variable

Positions graphics elements within subgrouped bars of a vertical or horizontal bar chart produced
by the GCHART procedure.

Type: Numeric or character; must match the type of the SUBGROUP variable used in
the GCHART procedure.
Length: Should match the length of the SUBGROUP= variable in the GCHART
procedure.
Default: none
Restriction: The bar charts must have been produced using the SUBGROUP= option.

Syntax
SUBGROUP=subgroup-value;

subgroup-value
references value(s) of the SUBGROUP= variable in the GCHART procedure either as
a variable name or as an explicit data value. Subgroup-value can have one of the
following forms:

subgroup-
variable

the name of a subgroup variable.

subgroup-data-
value

a specific numeric data value.

subgroup-data-
value

a specific character data value.

Generally, specify a variable name if you want to annotate all of the bars in a
horizontal or vertical bar chart. To annotate a bar chart for a specific value of the
SUBGROUP variable, specify a specific value.

Functions
You can use the SUBGROUP variable only with the data coordinate system 1, 2, 7, or 8,
and with these functions:

BAR

DRAW

LABEL

Annotate Dictionary SUBGROUP Variable 665

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
Using the SUBGROUP variable is similar to using the X and Y variables with data
system coordinates to position the graphics elements in subgroup segments in vertical
and horizontal bar charts.For example, in a vertical bar chart that produces a bar for
each city in a data set, you can easily label the subgroups in each bar by setting
subgroup-variable to the GCHART variable by which the bar is being subgrouped. This
variable provides the y coordinate of the label (so don’t specify a competing value for y,
but instead specify y=. or y=y).

The MIDPOINT variable works well with the SUBGROUP variable to provide the x
coordinate. In this example, if you set the MIDPOINT variable to the GCHART
variable that contains the names of the cities, the MIDPOINT variable provides your x
coordinate. Rather than providing the X and Y variables, you would use the
SUBGROUP and MIDPOINT variables. Figure 25.22 on page 665 shows how the
SUBGROUP variable works with the MIDPOINT variable to label the bars of a vertical
bar chart.

Figure 25.22 Using the SUBGROUP Variable to Position a Label in a Bar Chart

2525

...........

Los AngelesChicago

printerstypewriters copiers

City

Units 100 MIDPOINT=Atlanta
SUBGROUP=typewriters

MIDPOINT

SUBGROUP

Atlanta

The label showing the number of printers sold in Atlanta is positioned by the values
that are assigned to these Annotate variables:

� MIDPOINT=CITY (where CITY is a variable in the GCHART data set)

666 TEXT Variable Chapter 25

� SUBGROUP=ITEM (where ITEM is a variable in the GCHART data set).

TEXT Variable

Specifies the text or symbol to be placed on the graphics output.

Type: character

Length: up to 200

Default: blank string

Syntax
TEXT=’text-string’ | ’special-symbol’;

text-string
specifies the text that is used as a label (LABEL or COMMENT function) or symbol
(SYMBOL function). The maximum length for text-string is 200 characters.

special-symbol
specifies the name of a symbol from the special symbol table that is illustrated in
Figure 7.21 on page 202. The maximum length for special-symbol is eight characters.

Functions
You can use the TEXT variable with these functions:

COMMENT

LABEL

SYMBOL

Details
Define the TEXT variable with sufficient length to contain all of the characters in your
text string. If you need longer strings, use separate observations and POSITION=’0’ to
continue the text.

Use a LENGTH statement to set the length of the TEXT variable if the length of a
text string is longer than one character.

WHEN Variable

Specifies when the function is performed in relation to generating other graphics output for the
procedure or in relation to generating other Annotate graphics.

Type: character

Length: 1

Default: B

Annotate Dictionary X Variable 667

Syntax
WHEN=’B’ | ’A ;

B | A
specifies whether to draw the annotation before (B) or after (A) the graph. These
values are not case sensitive. A missing value is equivalent to specifying B.

Note: Some annotations coded with WHEN=’B’ that work on the server may not
be visible with client-side rendering using Java or ActiveX because the annotations
are drawn behind the backplane. The only solution is to code WHEN=’A’. �

Functions
You can use the WHEN variable with these functions:

BAR

DRAW

DRAW2TXT

FRAME

LABEL

MOVE

PIE

PIECNTR

PIEXY

POINT

POLY

POLYCONT

SYMBOL

Details
Normally, observations in an Annotate data set are processed sequentially. If you use
the WHEN variable, all those observations with a WHEN value of B are processed first,
the procedure output is then processed (if one is to be produced), and finally the
observations with a WHEN value of A are processed.

X Variable

Identifies the x coordinate of where a graphics element is to be drawn.

Type: numeric

Default: value of XLAST or XLSTT

668 XC Variable Chapter 25

Syntax
X=horizontal-coordinate;

Functions
You can use the X variable with these functions:

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Note: The X or XC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the horizontal coordinate. �

Details
Specify a corresponding vertical coordinate when using the X variable. This vertical
coordinate can be specified with the Y, YC, MIDPOINT, or SUBGROUP variables,
depending on the type of graph that you are annotating.

The X variable uses the units that are specified in the XSYS variable. If you use
XSYS=’2’ and the data axis is typed as character, use the XC variable instead of the X
variable.

If the value of the X variable is missing for a function that requires it, the value of
the XLAST variable is used with nontext functions and the value of the XLSTT variable
is used with text functions.

XC Variable

Identifies the x coordinate of a graphics element when the coordinate value is character.

Type: character
Length: Should match that of the plot variable in the procedure.
Default: the value of XLAST or XLSTT
Restrictions: Used only with output from the GCHART and GPLOT procedures. Ignored
if the axes are numeric.

Annotate Dictionary XC Variable 669

Syntax
XC=’character-type-horizontal-coordinate’;

Functions
You can use the XC variable with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The XC variable is the character equivalent of the X variable. Use XC when the axis
values are character. You must also specify a value of 2 (absolute data values) for the
XSYS variable. (See also “XSYS Variable” on page 670.) If you use a value other than 2
for the XSYS variable, the graphics output is not displayed properly.

Figure 25.23 on page 669 illustrates the XC variable.

Figure 25.23 Using the XC and YC Variables with Character Data

670 XSYS Variable Chapter 25

Note: The X or XC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the horizontal coordinate. �

CAUTION:
Do not use the X and XC variables in the same data set. Using both X and XC variables
in the same data set can cause unpredictable results. �

XSYS Variable

Defines the coordinate system and area of the output used by the X and XC variables to display
the Annotate graphics.

Type: character
Length: 1
Default: 4

Syntax
XSYS=’coordinate-system’;

coordinate-system
specifies a value that represents a coordinate system. Values can be 1 through 9 and
A through C as shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

3 9 percentage of graphics output area

4 A cell in graphics output area

5 B percentage of procedure output area

6 C cell in procedure output area

These values are also used by the HSYS and YSYS variables. See “Coordinate
Systems” on page 596 for a description of the areas and coordinate systems.

Functions
You can use the XSYS variable with these functions:

BAR

Annotate Dictionary XSYS Variable 671

DRAW

FRAME

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

The behavior of the XSYS variable is function-dependent for the following functions:.

BAR, DRAW The coordinate system that you specify with the XSYS variable
affects how the function interprets the value of the X or XC variable.
If XC is used, XSYS=’2’ must also be used.

FRAME The XSYS and YSYS variables define the area enclosed by the
frame. To draw a frame that encloses the axis area, use XSYS=’1’
and YSYS=’1’, as shown in the following figure.

Figure 25.24 Frame Created When XSYS=’1’ and YSYS=’1’

X

Y

frame when
XSYS = '1' and YSYS = '1'

graphics
output
area

To draw a frame that encloses the entire graphics output area,
specify XSYS=’3’ and YSYS=’3’, as shown in the following figure.

672 XSYS Variable Chapter 25

Figure 25.25 Frame Created When XSYS=’3’ and YSYS=’3’

X

Y

graphics
output area
and frame
when XSYX = '3'
and YSYS = '3'

To limit the size of the frame to the size of the procedure output
area, specify a value of 5 for XSYS and YSYS.

Note that the values of XSYS and YSYS can differ. You can
specify a frame that occupies the entire width of the graphics output
area and only the vertical width of the procedure output area by
specifying XSYS=’3’ and YSYS=’5’, as shown in the following figure.

Figure 25.26 Frame Created When XSYS=’3’ and YSYS=’5’

TITLE 2

FOOTNOTE

graphics
output
area

frame when
XSYS = '3'
and YSYS = '5'

TITLE 1

Details
The coordinate system that you specify with the XSYS variable affects how the function
interprets the value of the X or XC variable.

Note: Not all coordinate systems can be used with all Annotate variables. For any
restrictions, see the individual variables in this section. �

Annotate Dictionary YC Variable 673

Y Variable

Identifies the y coordinate of where a graphics element is to be drawn.

Type: numeric
Default: value of YLAST or YLSTT

Syntax
Y=vertical-coordinate;

Functions
You can use the Y variable with these functions:

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Note: The Y or YC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the vertical coordinate. �

Details
Specify a corresponding horizontal coordinate when using the Y variable. You can
specify the horizontal coordinate with the X, XC, MIDPOINT, or SUBGROUP variable,
depending on the type of graph you are annotating.

The Y variable uses the units specified in the YSYS variable. If you use YSYS=’2’
and the axis data is type character, use the YC variable instead of the Y variable.

If the value of the Y variable is missing for a function that requires it, the value
YLAST is used for nontext functions and the value of YLSTT is used for text functions.

YC Variable

Identifies the y coordinate of a graphics element when the coordinate value is character.

674 YSYS Variable Chapter 25

Type: character
Length: Should match that of the plot variable in the procedure.
Default: YLAST | YLSTT
Restrictions: Used only with output from the GCHART and GPLOT procedures. Ignored
if the axes are numeric.

Syntax
YC=’character-type-vertical-coordinate’;

Functions
You can use the YC variable with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The YC variable is the character equivalent of the Y variable. Use YC when the axis
values are character. You must also specify a value of 2 (absolute data values) for the
YSYS variable. (See “YSYS Variable” on page 674.) If you use a value other than 2 for
the YSYS variable, the graphics output is not displayed properly.

See Figure 25.23 on page 669 for an illustration of the YC variable.

Note: The X or XC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the horizontal coordinate. �

CAUTION:
Do not use Y and YC variables in the same data set. Using both Y and YC variables in
the same data set can cause unpredictable results. �

YSYS Variable

Defines the coordinate system and area of the output used by Y and YC to display the Annotate
graphics.

Annotate Dictionary YSYS Variable 675

Type: character
Length: 1
Default: 4

Syntax
YSYS=’coordinate-system’;

coordinate-system
specifies a value that represents a coordinate system. Values can be 1 through 9 and
A through C, as shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

3 9 percentage of graphics output area

4 A cell in graphics output area

5 B percentage of procedure output area

6 C cell in procedure output area

These values are also used by the HSYS and XSYS variables. See “Coordinate
Systems” on page 596 for a description of the areas and coordinate systems.

Functions
The YSYS variable is function-dependent, as defined in the “XSYS Variable” on page 670

You can use the YSYS variable with these functions:

BAR

DRAW

FRAME

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The coordinate system that you specify with the YSYS variable affects how the function
interprets the value of the Y or YC variable.

676 Z Variable Chapter 25

Note: Not all coordinate systems can be used with all Annotate variables. For any
restrictions, see the individual variables in this section. �

Z Variable

Identifies the z coordinate of where a graphics element is to be drawn.

Type: numeric
Length: 8
Default: none
Restrictions: On the server, is used only with output from the G3D procedure. For
client-side annotation with Java or ActiveX, you can use the Z variable with GMAP,
GCHART, GCONTOUR, GPLOT, and G3D, for example to add annotations above the
plane of the map.

Syntax
Z=depth-coordinate;

Functions
You can use the Z variable with these functions:

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The Z variable uses the units that are specified in the ZSYS variable.

ZSYS Variable

Defines the coordinate system and area of the output used by Z variable to display the Annotate
graphics.

Annotate Dictionary ZSYS Variable 677

Type: character

Length: 1

Default: 2

Syntax
ZSYS=’coordinate-system’;

coordinate-system
specifies a value that represents a coordinate system. Values can be 1, 2, 7, or 8 as
shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

See “Coordinate Systems” on page 596 for a description of the areas and coordinate
systems.

Functions
You can use the ZSYS variable with these functions:

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The coordinate system that you specify with the ZSYS variable affects how the function
interprets the value of the Z variable.

Note: Not all coordinate systems can be used with all Annotate variables. For any
restrictions, see the individual variables in this section. �

678 Annotate Internal Coordinates Chapter 25

Annotate Internal Coordinates
The Annotate facility maintains two sets of internal coordinates that are stored in

the variable pairs (XLAST, YLAST) and (XLSTT, YLSTT). One set of variables (XLAST,
YLAST) stores coordinate values that are generated by nontext functions and the other
set (XLSTT, YLSTT) stores coordinates generated by text functions. These two variable
pairs supply default values when the X or Y variable contains a missing value.

Both pairs are initially set to 0 and remain 0 until a function updates the values.
You cannot assign explicit values to these variables, but you can manipulate their
values with some of the Annotate functions.

XLAST, YLAST Variables
Track the last values specified for the X and Y variables when X and Y are used with nontext
functions.

Details
The coordinate values that are stored in the (XLAST, YLAST) variables are
automatically updated by these nontext functions: BAR, DRAW, MOVE, PIE, and
POINT. These values are then available for use by other nontext functions that follow
in the DATA step. (The DRAW2TXT graphics function uses XLAST and YLAST but
does not update them.)

Because (XLAST, YLAST) are updated internally, you cannot specify values for them.
However, their values can be manipulated by these programming functions:

CNTL2TXT

PIECNTR

PIEXY

POP

PUSH

SWAP

TXT2CNTL

XLSTT, YLSTT Variables
Track the last position for the X and Y variables when X and Y are used with text-handling
functions.

Details
The coordinate values stored in the (XLSTT, YLSTT) variables are automatically
updated by the LABEL and SYMBOL text functions. These values are then available
for use by other text functions that follow in the DATA step.

Annotate Dictionary %BAR, %BAR2 Macros 679

Because (XLSTT, YLSTT) are updated internally, you cannot specify values for them.
However, their values can be manipulated by these programming functions:

CNTL2TXT

DRAW2TXT

POP

PUSH

SWAP

TXT2CNTL

Annotate Macros
You can use Annotate macros within a SAS DATA step to simplify the process of

creating Annotate observations. With a macro, you specify a function and assign
variable values in one step without having to write explicit variable assignment
statements. You can mix assignment statements and macro calls in the same DATA
step.

This section describes all of the Annotate macros including the complete syntax and
a description of the parameters. For more information on accessing and using macros,
and for a summary of operations performed by the Annotate macros, see “Using
Annotate Macros” on page 697.

%ANNOMAC Macro

Compiles Annotate macros and makes them available for use.

Variables written out: none directly

Syntax
%ANNOMAC;

Details
In a SAS session, you must submit the ANNOMAC macro before you can use the
Annotate macros.

%BAR, %BAR2 Macros

Draws a rectangle using two sets of x/y coordinates, which specify diagonal corners. You can
specify the rectangle’s line type, line color, fill type, and fill color.

Variables written out: COLOR, FUNCTION, LINE, STYLE, X, Y
Internal variables updated: XLAST, YLAST

680 %CENTROID Macro Chapter 25

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%BAR (x1, y1, x2, y2, color, line, style);

%BAR2(x1, y1, x2, y2, color, line, style, width);

x1, y1
specify the location of the first corner of the bar. Values can be numeric coordinates,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 667.

x2, y2
specify the location of second corner of the bar, which is drawn diagonal to the first
corner. Values can be numeric coordinates, numeric constants, or numeric variables.

color
specifies the outline color and optional fill color using a character string without
quotation marks. For details, see the Annotate “COLOR Variable” on page 645.

line
specifies which of the outlines of the bar are to be drawn. The value can be a
number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “LINE Variable” on page 652 for the BAR function.

style
specifies the fill pattern for the bar using a character string without quotation marks.
For valid values, see the Annotate “STYLE Variable (Patterns)” on page 662 for the
BAR function.

width
specifies the width of the outline and optional fill lines. The value can a number, a
numeric constant, or a numeric variable. For details and valid values, see the
Annotate “SIZE Variable” on page 660 for the DRAW function.

%CENTROID Macro

Retrieves the centroids of polygons

Variables written out: X, Y, id variables
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%CENTROID (input-data-set, output-data-set, list-of-id-variables);

input-data-set

Annotate Dictionary %CNTL2TXT Macro 681

specifies a map data set.

output-data-set
contains the id variables and the X and Y variables.

list-of-id-variables
specifies the variables each of which is to be assigned the centroid coordinates of each
observation in the input-data-set. There will be one observation for each unique set
of ID values

%CIRCLE Macro

Draws an empty circle with the center at (x, y).

Variables written out: ANGLE, FUNCTION, ROTATE, SIZE, STYLE, X, Y
Internal variables updated: XLAST, YLAST
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%CIRCLE (x, y, size, color);

x, y
specify coordinates for the center of the circle. Values can be coordinate numbers,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 667.

size
specifies the radius of the circle. The value can be a number, a numeric constant, or
a numeric variable. For details and valid values, see the Annotate “SIZE Variable”
on page 660.

color
specifies the color of the circle using a character string without quotation marks. For
details, see the Annotate“COLOR Variable” on page 645. Use an asterisk (*) to
specify the previous value of the color parameter.

See Also
“%SLICE Macro” on page 695 to draw a filled circle.

%CNTL2TXT Macro

Copies the values of the internal coordinates (XLAST, YLAST) to the text coordinate (XLSTT,
YLSTT).

Variables written out: FUNCTION

682 %COMMENT Macro Chapter 25

Internal variables updated: XLSTT, YLSTT

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%CNTL2TXT;

Details
The %CNTL2TXT macro is useful when you are calculating the position of labels on a
graph. For an example, see “CNTL2TXT Function” on page 617.

%COMMENT Macro

Inserts a comment into an Annotate data set.

Variables written out: FUNCTION, TEXT

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%COMMENT (text-string);

text-string
specifies the text to insert in the Annotate data set. The value can be a a character
string enclosed in quotation marks or the name of a character variable. For details,
see the Annotate“TEXT Variable” on page 666.

%DCLANNO Macro

Automatically sets the correct length and data type for all Annotate variables except the TEXT
variable.

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%DCLANNO;

Annotate Dictionary %DRAW2TXT Macro 683

%DRAW Macro

Draws a line from (XLAST, YLAST) to the specified coordinate.

Variables written out: COLOR, FUNCTION, LINE, SIZE, X, Y
Internal variables updated: XLAST, YLAST
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%DRAW (x, y, color, line, size);

x, y
specify coordinates for the end point of the line. Values can be coordinate numbers,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 667.

color
specifies the color of the line using a character string without quotation marks. For
details, see the Annotate“COLOR Variable” on page 645. Use an asterisk (*) to
specify the previous value of the color parameter.

line
specifies the line type (continuous or segmented). The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “LINE
Variable” on page 652 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid numeric values, see the Annotate“SIZE Variable” on page
660 for the DRAW function.

Details
The point from which the line is drawn is usually set with the MOVE macro.

%DRAW2TXT Macro

Draws a line from the coordinate (XLAST, YLAST) to the text coordinate (XLSTT, YLSTT).

Variables written out: COLOR, FUNCTION, LINE, SIZE
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%DRAW2TXT (color, line, size);

684 %FRAME Macro Chapter 25

color
specifies the color of the line using a character string without quotation marks. For
details, see the Annotate “COLOR Variable” on page 645. Use an asterisk (*) to
specify the previous value of the color parameter.

line
specifies the line type (continuous or segmented). The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “LINE
Variable” on page 652 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the Annotate “SIZE Variable” on page 660 for
the DRAW function.

%FRAME Macro

Draws a border around the portion of the display area defined by the reference system and
optionally fills the area.

Variables written out: COLOR, FUNCTION, LINE, SIZE, STYLE
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%FRAME (color, line, size, style);

color
specifies the outline color and the optional fill color using a character string without
quotation marks. For details, see the Annotate“COLOR Variable” on page 645. Use
an asterisk (*) to specify the previous value of the color parameter.

line
specifies a line type (continuous or segmented) for the frame outline and fill lines. The
value can be a number, a numeric constant, or a numeric variable. For valid numeric
values, see the Annotate“LINE Variable” on page 652 for the DRAW function.

size
specifies the width of the frame outline and fill lines. The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “SIZE
Variable” on page 660 for the DRAW function.

style
specifies the fill pattern for the frame using a character string without quotation
marks. For valid values, see the Annotate “STYLE Variable (Patterns)” on page 662
for the FRAME function.

Details
See “%SYSTEM Macro” on page 696for information on setting the reference system.

Annotate Dictionary %LABEL Macro 685

%LABEL Macro

Places a text label at the specified coordinates.

Variables written out: ANGLE, COLOR, FUNCTION, POSITION, ROTATE, SIZE, STYLE,
TEXT, X, Y
Internal variables updated: XLSTT, YLSTT
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%LABEL (x, y, text-string, color, angle, rotate, size, style, position);

x, y
specifies the location of the text string. Values can be coordinate numbers, numeric
constants, or numeric variables. The position of the text string relative to x, y is
determined by the position parameter. For details, see the Annotate “X Variable” on
page 667.

text-string
specifies the text of the label. The value can be a character variable name or a
character string enclosed in quotation marks. For details, see the Annotate “TEXT
Variable” on page 666.

color
specifies the color of the text string using a character string without quotation
marks. For details, see the Annotate “COLOR Variable” on page 645. Use an
asterisk (*) to specify the previous value of the color parameter.

angle
specifies the angle of the text string with respect to the horizontal. The value can be
a number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “ANGLE Variable” on page 642 for the LABEL function. The x, y
coordinates specify the pivot point, and the position parameter positions the text
relative to x, y.

rotate
specifies the rotation angle of each character in the text string. The value can be a
number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “ROTATE Variable” on page 659.

size
specifies the size of the text string. The value can be a number, a numeric constant,
or a numeric variable. For valid values, see the Annotate “SIZE Variable” on page
660 for the LABEL function.

style
specifies the text font, using a character string without quotation marks. For valid
values, see the Annotate “STYLE Variable (Fonts)” on page 661.

position
specifies the placement and alignment of the text string relative to the x, y
coordinates, using a text string without quotation marks. For valid values, see the
Annotate “POSITION Variable” on page 656.

686 %LINE Macro Chapter 25

%LINE Macro

Draws a line between two sets of coordinates.

Variables written out: COLOR, FUNCTION, LINE, SIZE, X, Y
Internal variables updated: XLAST, YLAST
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%LINE (x1, y1, x2, y2, color, line, size);

x1, y1
specify the coordinates of the start of the line. Values can be numbers, numeric
constants, or numeric variables. For details, see the Annotate “X Variable” on page
667 variable.

x1, y2
specify the coordinates of the end of the line. Values can be numbers, numeric
constants, or numeric variables.

color
specifies the color of the line using a character string without quotation marks. For
valid values, see the Annotate“COLOR Variable” on page 645. Use an asterisk (*) to
specify the previous value of the color parameter.

line
specifies the line type, which can be continuous or segmented. The value can be a
number, a numeric constant, or a numeric variable. For valid values, see the
Annotate“LINE Variable” on page 652 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the Annotate “SIZE Variable” on page 660 for
the DRAW function.

%MAPLABEL Macro

Creates an output data set that can be used with the ANNO= option for PROC GMAP.

Variables written out: FUNCTION, STYLE, COLOR, SIZE, HSYS
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%MAPLABEL (map-dataset,

attr-dataset,output-dataset,label-var,id-list,font=font_name,color=n,size=n,hsys=n);

Annotate Dictionary %MOVE Macro 687

map-dataset
the name of the map to be annotated.

attr-dataset
the name of the dataset containing the text to be shown on each ID value.

output-dataset
the name of the annotate data set created by the macro.

label-var
the name of the label variable to place on the map (the text for annotate).

id-list
the list of ID vars that you would issue in PROC GMAP to create the map. These
values need to be on both the map and the attribute data sets. If you also supply the
SEGMENT variable, then every polygon will get a value. Without the SEGMENT
variable, only one label per ID set will be shown over the collection of polygons. For
instance, Hawaii with SEGMENT gets a label on each island, whereas without
SEGMENT, there is only one label centered on the entire set of islands.

font
specifies a font name for the “STYLE Variable (Fonts)” on page 661 variable.

color
specifies a value for the “COLOR Variable” on page 645 variable.

size
specifies a value for the “SIZE Variable” on page 660 variable. Defaults to 2.

hsys
specifies a value for the “HSYS Variable” on page 649 variable. Defaults to 3.

%MOVE Macro

Moves to the (x, y) coordinate.

Variables written out: FUNCTION, X, Y

Internal variables updated: XLAST, YLAST

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%MOVE (x, y);

x, y
specify new coordinates for the next annotation. Values can be numeric coordinates,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 667.

688 %PIEXY Macro Chapter 25

%PIEXY Macro

Calculates a point in relation to the latest pie slice.

Variables written out: ANGLE, FUNCTION, SIZE, X, Y

Internal variables updated: XLAST, YLAST

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%PIEXY (angle, size);

angle
specifies the angle used to calculate the point, relative to the center of the latest pie
slice. The value can be a number, a numeric constant, or a numeric variable. For
details, see the Annotate “ANGLE Variable” on page 642 for the PIEXY function.

size
specifies the radius multiplier that works with the angle parameter to determine the
location of the point. The value can be a number, a numeric constant, or a numeric
variable. For details and valid values, see the Annotate “SIZE Variable” on page 660
for the PIEXY function.

Details
This macro is useful when you want to label a pie chart or a circle.

When you use this macro, the Annotate facility expects a slice to have been
previously drawn. If a slice has not been drawn or if the “PIECNTR Function” on page
630 has not been processed, you can get erroneous results.

%POLY, %POLY2 Macro

Begins drawing a polygon at the specified coordinates and determines the color, fill pattern, and
line type of the polygon.

Variables written out: FUNCTION, COLOR, LINE, STYLE, X, Y,

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%POLY (x, y, color, style, line);

%POLY2(x, y, color, style, line, width);

Annotate Dictionary %POLYCONT Macro 689

x, y
specify the starting point for a new polygon. Values can be numeric coordinates,
numeric constants, or numeric variables. For details, see the Annotate or the names
of the Annotate variables “X Variable” on page 667.

color
specifies the optional polygon fill color using a character string without quotation
marks. For valid values, see the Annotate“COLOR Variable” on page 645. Use an
asterisk (*) to specify the previous value of the color parameter. To specify the color
of the polygon outline, see the “%POLYCONT Macro” on page 689.

style
specifies the fill pattern for the polygon, using a character string without quotation
marks. For valid values, see the Annotate “STYLE Variable (Patterns)” on page 662
for the POLY function.

line
specifies the polygon’s line type, which can be continuous or segmented. The value
can be a number, a numeric constant, or a numeric variable. For valid values, see the
Annotate“LINE Variable” on page 652 for the POLY function.

width
specifies the width of the polygon’s outline and optional fill lines. The value can be a
number, a numeric constant, or a numeric variable. For details and valid values, see
the Annotate “SIZE Variable” on page 660 for the POLY function.

See Also
“POLY Function” on page 634

%POLYCONT Macro

Continues drawing the polygon to the next specified coordinates.

Variables written out: COLOR, FUNCTION, X, Y

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%POLYCONT (x, y, color);

x, y
specify the end point of the next line in the polygon. Values can be numeric
coordinates, numeric constants, or numeric variables. For details, see the Annotate
“X Variable” on page 667.

color
specifies the color of the polygon outline using a character string without quotation
marks. For valid values, see the Annotate“COLOR Variable” on page 645. Use an
asterisk (*) to specify the previous value of the color parameter.

690 %POP Macro Chapter 25

Details
The first invocation of the %POLYCONT macro in the polygon-drawing sequence
determines the outline color of that polygon. Subsequent color specifications for that
polygon in later invocations of the %POLYCONT macro are ignored.

The polygon fill color and line type are specified in the initial “%POLY, %POLY2
Macro” on page 688 or %POLY2 macro.

%POP Macro

Removes the coordinates (XLAST, YLAST) and (XLSTT, YLSTT) from the LIFO system stack and
updates the internal coordinate pairs with these retrieved values.

Variables written out: FUNCTION
Internal variables updated: XLAST, YLAST, XLSTT, YLSTT
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%POP;

Details
Use the %POP macro when you want to access the values of the XLAST, YLAST,
XLSTT, and YLSTT variables that you previously stored with the %PUSH macro. For
more information, see “XLAST, YLAST Variables” on page 678, “XLSTT, YLSTT
Variables” on page 678, and “%PUSH Macro” on page 690.

%PUSH Macro

Enters the coordinates (XLAST, YLAST) and (XLSTT, YLSTT) in a LIFO system stack.

Variables written out: FUNCTION, internal coordinates
Internal variables updated: XLAST, YLAST, XLSTT, YLSTT
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%PUSH;

Details
The last-in, first-out (LIFO) stack provides a way to save previously calculated
coordinates. It enables you to retain coordinate values for later use by utility functions
without recalculating those values. In order to save coordinate values in the stack, you

Annotate Dictionary %RECT Macro 691

must explicitly push them onto the stack. See “Using the LIFO Stack” on page 603 for a
description of the LIFO stack.

%RECT Macro

Draws a rectangle with diagonal corners at two specified points.

Variables written out: COLOR, FUNCTION, LINE, SIZE, X, Y

Internal variables updated: XLAST, YLAST

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax

%RECT (x1, y1, x2, y2, color, line, size) ;

x1, y1
specify the coordinates of the first corner of the rectangle. Values can be numeric
coordinates, numeric constants, or numeric variables. For details, see the Annotate
“X Variable” on page 667.

x2, y2
specify the coordinates of the second corner of the rectangle, which is drawn diagonal
to the first corner. Values can be numeric coordinates, numeric constants, or numeric
variables.

color
specifies the color of the rectangular line using a character string without quotation
marks. For valid values, see the Annotate“COLOR Variable” on page 645. Use an
asterisk (*) to specify the previous value of the color parameter.

line
specifies the rectangle’s line type, which can be continuous or segmented. The value
can be a number, a numeric constant, or a numeric variable. For details, see the
Annotate “LINE Variable” on page 652 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the “SIZE Variable” on page 660 for the
DRAW function.

Details

The rectangle is drawn such that the first corner is diagonal to the second corner.
The %RECT macro produces rectangles that do not have fill patterns. Use the %BAR

macro to generate filled rectangles. For more information, see “%BAR, %BAR2 Macros”
on page 679.

692 %SCALE Macro Chapter 25

%SCALE Macro

Scales input coordinates relative to the origin (0, 0) based on the relationship between two ranges
of minima and maxima.

Variables written out: X, Y
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%SCALE (ptx, pty, x1, y1, x2, y2, vx1, vy1, vx2, vy2);

ptx, pty
specifies the coordinates to scale. Values can be numbers, numeric constants, or
numeric variables. For details, see the Annotate “X Variable” on page 667.

x1, y1
specifies the minima of the first range. Values can be numbers, numeric constants, or
numeric variables.

x2, y2
specifies the maxima of the first range. Values can be numbers, numeric constants,
or numeric variables.

vx1, vy1
specifies the minima of the second range. Values can be numbers, numeric constants,
or numeric variables.

vx2, vy2
specifies the maxima of the second range. Values can be numbers, numeric constants,
or numeric variables.

Details
The %SCALE macro reduces or enlarges Annotate graphics elements that use
two-dimensional, numeric coordinates. The %SCALE macro does not affect graphics
elements that are drawn with text functions.

The difference between the %SCALE and %SCALET macros is that the %SCALE
macro always places the origin at (0, 0) and plots the new coordinates with respect to
that origin. The %SCALET macro plots the new coordinates with respect to the minima
of the second range. For details, see “%SCALET Macro” on page 693.

The following example uses the %SCALE macro to reduce x and y coordinates by 50
percent, as shown in Figure 25.27 on page 693:

%SCALE(x, y, 0, 0, 100, 100, 0, 0, 50, 50);

Annotate Dictionary %SCALET Macro 693

Figure 25.27 Using the %SCALE Macro to Reduce the Size of a Box

(10,20)

(0,0)

(5,10)

50

50

(60,20)

100

(30,10)

(60,80)

(30,40)

(10,80)

100

(5,40)

%SCALET Macro

Scales input coordinates based on the relationship between two ranges of minima and maxima.
The scaled coordinates are plotted relative to the minima of the second range.

Variables written out: X, Y

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%SCALET (ptx, pty, x1, y1, x2, y2 , vx1, vy1, vx2, vy2);

ptx, pty
specifies the coordinates to scale. Values can be numbers, numeric constants, or
numeric variables. For details, see the Annotate “X Variable” on page 667.

x1, y1
specifies the minima of the original range. Values can be numbers, numeric
constants, or numeric variables.

x1, y2
specifies the maxima of the original range. Values can be numbers, numeric
constants, or numeric variables.

vx1, vy1
specifies the minima of the second range using numeric values. Values can be
numbers, numeric constants, or numeric variables. These coordinates are also used
as the origin against which the scaled point is plotted.

694 %SEQUENCE Macro Chapter 25

vx2, vy2
specifies the maxima of the second range. Values can be numbers, numeric constants,
or numeric variables.

Details

The %SCALET macro reduces or enlarges Annotate graphics elements that use
two-dimensional numeric coordinates. The %SCALET macro does not affect graphics
elements that are drawn with text functions.

The difference between the %SCALET and %SCALE macros is that the SCALET
macro plots the new coordinates with respect to minima of the second range (vx1, vy1).
The %SCALE macro plots the new coordinates with respect to the origin (0, 0).

The following example uses the %SCALET macro reduces x and y coordinates by 50
percent and plots the new coordinates with respect to (50, 0), as shown in Figure 25.28
on page 694:

%SCALET(x, y, 0, 0, 100, 100, 50, 0, 50, 100);

Figure 25.28 Using the %SCALET Macro to Reduce the Size of a Box

50% of
(10,20)

(0,0)

(5,10)

(10,20)

50

50

(55,10)

(60,20)

100

(80,10)

(80,40)

(60,80)

(30,40)
 +
 (50,0)

(10,80)

100

(5,10) with respect to (vxl,cyl) moves (5,10) to (55,10)

(50,0)
(vxl,vyl)

translation

%SEQUENCE Macro

Specifies when to draw Annotate graphics elements, relative to the procedure’s graphics output or
relative to the other Annotate graphics drawn.

Variables written out: WHEN

Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Annotate Dictionary %SLICE Macro 695

Syntax
%SEQUENCE (when);

when
Values can be BEFORE or AFTER, as defined for the Annotate “WHEN Variable” on
page 666.

%SLICE Macro

Draws a arc, pie slice, or circle, with available line types, colors, and fill types.

Variables written out: ANGLE, COLOR, FUNCTION, LINE, ROTATE, SIZE, STYLE, X, Y
Internal variables updated: XLAST, YLAST
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%SLICE (x, y, angle, rotate, size, color, style, line);

x, y
specify the center point of the arc. Values can be numbers, numeric constants, or
numeric variables. For details, see the Annotate “X Variable” on page 667.

angle
specifies the starting point of the arc. The value can be a number, a numeric
constant, or a numeric variable. For details and valid values, see the Annotate
“ANGLE Variable” on page 642 for the PIE function.

rotate
specifies the sweep of the arc. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the Annotate “ROTATE Variable” on page 659
for the PIE function.

size
specifies the radius of the arc. The value can be a number, a numeric constant, or a
numeric variable. For details, see the Annotate “SIZE Variable” on page 660.

color
specifies the color of the arc outline and optional fill using a character string without
quotation marks. For valid values, see the Annotate “COLOR Variable” on page 645.
Use an asterisk (*) to specify the previous value of the color parameter.

style
specifies the fill pattern for the slice or circle, using a character string without
quotation marks. For details and valid values, see the Annotate “STYLE Variable
(Patterns)” on page 662 for the PIE function.

696 %SWAP Macro Chapter 25

line
specifies which lines of a pie slice are to be drawn. The value can be a number, a
numeric constant, or a numeric variable. For valid values and details, see the “LINE
Variable” on page 652 for the PIE function.

%SWAP Macro

Exchanges control between (XLAST, YLAST) and text (XLSTT, YLSTT) coordinates.

Variables written out: FUNCTION
Internal variables updated: XLAST, YLAST, XLSTT, YLSTT
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%SWAP;

%SYSTEM Macro

Defines the Annotate reference systems and the XSYS, YSYS, and HSYS variables.

Variables written out: HSYS, XSYS, YSYS
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%SYSTEM (xsys, ysys, hsys);

xsys, ysys, hsys
specify values that represent a coordinate system and an area of the output, as
defined for the Annotate “XSYS Variable” on page 670. The default is %SYSTEM (4,
4, 4).

Details
Note: Not all coordinate systems are valid with all Annotate variables or all SAS/

GRAPH procedures. See “Annotate Functions” on page 615 for any restrictions that
apply to the variable that you want to use. �

The ZSYS variable cannot be set through this macro. Use an explicit variable
assignment instead:

zsys=’value’; output;

Annotate Dictionary Making the Macros Available 697

See Coordinate Systems“Coordinate Systems” on page 596 for a description of the
areas and coordinate systems.

%TXT2CNTL Macro

Assigns the values of the text (XLSTT, YLSTT) coordinates to the control (XLAST, YLAST)
coordinates.

Variables written out: FUNCTION
Internal variables updated: XLAST, YLAST
Prequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 697.

Syntax
%TXT2CNTL;

Details
Use the %TXT2CNTL macro when you want nontext functions to use the ending
position of a text string as a starting or ending point.

Using Annotate Macros

Macro Structure
The general form of an Annotate macro is

%MACRO (parameters);

In general, the macro name represents a function and the parameters contain the
values for the variables that can be used with the function. All macros except
DCLANNO, SYSTEM, and SEQUENCE output an observation.

The parameters are either numeric or character. Numeric parameters can be
numeric constants or numeric variable names that have been initialized to the
appropriate value. Most character parameters must be expressed as literals, that is
character strings without quotation marks. Exceptions are the text values that are used
with the COMMENT and LABEL macros, which can be expressed as character strings
enclosed in quotation marks or as character variable names.

The Annotate facility assigns the parameter values to the corresponding Annotate
variables. Therefore, the observations in an Annotate data set that is created with
macros that look the same as the ones that you created with assignment statements.

Making the Macros Available
To use Annotate macros, you must provide your program with access to the data set

that contains the macros, and you must compile the macros before you use them. Check

698 Annotate Macro Task Summary Chapter 25

with your SAS Software Consultant to find out if the fileref for the data set that
contains the Annotate macros that are supplied with SAS/GRAPH software is allocated
automatically at your site. Then access the Annotate macros in one of these ways:

� If the fileref is not set automatically, find out where the Annotate macros are
stored and allocate a fileref that points to the data set:

filename fileref ’external-file’;

Then include the Annotate macros in your session:

%include fileref (annomac);

� If the fileref is set automatically, compile the Annotate macros and make them
available by simply submitting the ANNOMAC macro:

%annomac;

Note: The ANNOMAC macro must be run before any other Annotate macros
are used in a SAS session. You will see a message in the SAS log that indicates
that the Annotate macros are now available. The message also shows you how to
get help for using the macros. �

Annotate Macro Task Summary
The following table summarizes the tasks performed by the Annotate macros.

Table 25.1 Tasks with Annotate Macros

If you want to... Use this macro...

assign values of (XLSTT,YLSTT) to
(XLAST,YLAST)

%TXT2CNTL;

begin drawing a polygon %POLY(x, y, color, style, line);

continue drawing a polygon %POLYCONT(x, y, color);

copy (XLAST,YLAST) to (XLSTT,YLSTT) %CNTL2TXT;

declare all variables %DCLANNO;

draw a bar %BAR(x1, y1, x2, y2, color, line, style);

draw a circle %CIRCLE(x, y, size, color);

draw a frame %FRAME(color, line, size, style);

draw a line from (XLAST,YLAST) to
(XLSTT,YLSTT)

%DRAW2TXT(color, line, size);

draw a line from previous point %DRAW(x, y, color, line, size);

draw a line %LINE(x1, y1, x2, y2, color, line, size);

draw a pie slice or arc %SLICE(x, y, angle, rotate, size, color, style, line);

draw a rectangle %RECT(x 1,y 1,x 2,y 2, color, line, size);

draw text %LABEL(x, y, text, color, angle, rotate, size, style, position);

exchange the values of (XLAST,YLAST) and
(XLSTT,YLSTT)

%SWAP;

move to a point near a pie slice %PIEXY(angle, size);

Annotate Dictionary Annotate Error Messages 699

If you want to... Use this macro...

move to a point without drawing %MOVE(x, y);

put values into a stack %PUSH;

retrieve values from a stack %POP;

scale and move input %SCALET(ptx, pty, x0, y0, x1, y1, x0, vy0, vx1, vy1);

scale input %SCALE(ptx, pty, x0, y0, x1, y1, x0, vy0, vx1, vy1);

set the coordinate system for the observation %SYSTEM(xsys, ysys, hsys);

set when to draw an observation %SEQUENCE(when);

write a comment to the data set %COMMENT(text);

Annotate Error Messages

If there is an error in your Annotate data set, one or more diagnostic messages are
printed in the SAS log. A partial list of these messages is supplied here. Annotate data
sets are checked for errors this way:

� If an error is found in preprocessing, this message appears:

NOTE: ERROR DETECTED IN ANNOTATE= libref.dataset

� If an error is found as an observation is being read, this message appears:

PROBLEM IN OBSERVATION number -- message

where message is the text of the error message.

� If the error limit of 20 errors is reached at any point during processing of the data
set, a termination message similar to this one appears:

ERROR LIMIT REACHED IN ANNOTATE PROCESS

20 TOTAL ERRORS

Some common diagnostic messages are explained here.

A CALCULATED COORDINATE LIES OUTSIDE THE VISIBLE AREA
Explanation: The x or y coordinate is outside the display area (defined by HPOS=
and VPOS= values).

User Action: Check for an invalid or misspecified coordinate system value, or x
or y values outside displayed range.

A CALCULATED WINDOW COORDINATE LIES OUTSIDE THE WINDOW AREA
Explanation: the x or y coordinate is outside of the window area. This message
may accompany the message for invalid coordinate system specification.

User Action: Check for an invalid or misspecified coordinate system value, or x
or y values outside displayed range.

A PERCENTAGE VALUE LIES OUTSIDE 0 TO 100 BOUNDARIES
Explanation: The x or y value requested is negative or greater than 100 percent.
This message is informational.

User Action: Check requested value for accuracy.

ANNOTATE MIDPOINT DATATYPE DOES NOT MATCH GCHART- INPUT WAS #
Explanation: The MIDPOINT variable in the Annotate data set is character, and
the GCHART midpoint is numeric or vice versa.

700 Annotate Error Messages Chapter 25

User Action: Check for misspelling or wrong variable assignment, or check for
quotes in the assignment statement.

ANNOTATE GROUP DATATYPE DOES NOT MATCH GCHART- INPUT WAS #
Explanation: The GROUP variable in the Annotate data set is character, and the
GCHART group is numeric or vice versa.

User Action: Check for misspelling or wrong variable assignment, or check for
quotes in the assignment statement.

ANNOTATE SUBGROUP DATATYPE DOES NOT MATCH GCHART- INPUT WAS #
Explanation: The SUBGROUP variable in the Annotate data set is character, and
the GCHART subgroup is numeric or vice versa.

User Action: Check for misspelling or wrong variable assignment, or check for
quotes in the assignment statement.

BOTH OLD AND NEW VARIABLE NAMES ENCOUNTERED IN ANNOTATE=
DATA SET

Explanation: Variables named both MIDPOINT and MIDPNT or SUBGROUP and
SUBGRP occur in the Annotate data set.

User Action: Determine which variable has the proper values for the Annotate
data set and either delete the other variable or rename MIDPNT to MIDPOINT
and SUBGRP to SUBGROUP.

CALCULATED COORDINATES LIE COMPLETELY OFF THE VISIBLE AREA
Explanation: Both the x and y coordinates supplied are outside the visible display
area.

User Action: Check for improper or inappropriate coordinate system
specification or coordinates out of range.

CANNOT HAVE MISSING GROUP VALUE IF GROUPS ARE PRESENT
Explanation: The GROUP variable in the Annotate data set contains a missing
value.

User Action: If the GROUP= option is specified in the GCHART procedure, the
Annotate GROUP variable cannot contain missing values. Remove the missing
value from the request. Check reference system for data-dependent request.

CANNOT HAVE SUBGROUP AND X/Y MISSING IN GCHART STREAM
Explanation: Data coordinate system was requested and the X, Y and
SUBGROUP variables contain missing values.

User Action: The X, Y or SUBGROUP variable must have a value if a data
coordinate system is requested. Check stream for improper request.

CANNOT OMIT GROUP VARIABLE IF GCHART GROUPS ARE PRESENT
Explanation: You used a data coordinate system and specified GROUP= in the
GCHART procedure, but the Annotate data set does not contain the GROUP
variable.

User Action: Supply the GROUP variable in the Annotate data set.

CHARACTER VALUE SHOWN IS NOT ON THE HORIZONTAL AXIS
Explanation: The specified value of the XC variable is not on the x axis of the
graph or chart. The observation is ignored.

User Action: Check for misspelling, for uppercase or lowercase conflict, or for
exclusion in an axis specification.

CHARACTER VALUE SHOWN IS NOT ON THE VERTICAL AXIS
Explanation: The specified value of the YC variable does not occur on the y axis of
the graph or chart. The observation is ignored.

User Action: Check for misspelling, for uppercase or lowercase conflict, or for
exclusion in an axis specification.

Annotate Dictionary Annotate Error Messages 701

CONFLICT BETWEEN PROCEDURE AXIS TYPE AND ANNOTATE DATA TYPE
Explanation: The axis type is character and the x and y coordinates are numeric
or vice versa.

User Action: Check values for proper type matching.

DATA SYSTEM NOT SUPPORTED FOR THIS STATEMENT
Explanation: The data coordinate systems 1, 2, 7, 8 are not permitted for this
statement.

User Action: Choose a different reference system for this observation.

DATA SYSTEM REQUESTED, BUT POINT IS NOT ON GRAPH
Explanation: The coordinate specified is not on displayed graph, and data
coordinate system placement has been requested.

User Action: Check for improper specification of data value or graph axis
parameters, or incorrect system specification. If this occurs, you may be able to
use percent of the data area to position Annotate graphics.

G3D DATA SYSTEM REQUESTED, ALL SYSTEMS NOT DATA DEPENDENT
Explanation: Not all requested XSYS, YSYS, and ZSYS variable values are data
values.

User Action: If one variable in G3D annotation is data-dependent, all variables
must be data-dependent. Either specify all points in the data coordinate system or
use another reference system value.

G3D DATA SYSTEM REQUESTED, VARIABLE CONTAINED MISSING VALUE
Explanation: The X, Y, or Z variable contained a missing value.

User Action: All values in G3D data placement requests must be specified.
Remove the missing value from the request.

INTERNAL SYSTEM STACK OVERFLOW- TOO MANY PUSH FUNCTIONS
Explanation: The limit of stack positions has been exhausted. The maximum
number of stack positions is system-dependent. Each PUSH operation uses one
position; each POP frees one position for re-use.

User Action: Rewrite the program section to decrease the number of values
stored in the stack.

INTERNAL SYSTEM STACK UNDERFLOW- TOO MANY POP FUNCTIONS
Explanation: The POP function has been issued with no values in the LIFO stack.

User Action: Check for unequal numbers of PUSH versus POP functions. They
can be unequal, but you cannot have more values moved with the POP function
than are stored with the PUSH function. At least one PUSH must occur {it before}
a POP can be issued.

LABEL FUNCTION REQUESTED, BUT TEXT VARIABLE NOT ON DATA SET
Explanation: A TEXT variable has not been found for the LABEL function.

User Action: If FUNCTION=’LABEL’, the TEXT variable must contain the
string to be placed in the display area. Check for misspelling of variable name or
specification of the wrong Annotate data set.

LINE VALUE SPECIFIED IS NOT WITHIN LIMITS- 0<=L<=3
Explanation: An invalid special line value has been specified.

User Action: The LINE value specified was not acceptable for
FUNCTION=’BAR’ or the RECT macro. Check function for definition of line values
or previous value used in DATA step prior to this observation.

LINE VALUE SPECIFIED IS NOT WITHIN LIMITS- 1<=L<=46
Explanation: The LINE value specified is not in the range 1 through 46.

User Action: Check for improper specification of data value. Line styles
represented by the LINE values can be found in the line-type table“Specifying
Line Types” on page 207.

702 Annotate Error Messages Chapter 25

MINIMUM VARIABLES NOT MET–AMBIGUITY PREVENTS SELECTION.
Explanation: The combinations of available X, Y, XC, YC, GROUP, MIDPOINT,
and SUBGROUP variables do not identify the data-dependent values uniquely.

User Action: Check variable requirements and respecify.

MINIMUM VARIABLES NOT MET- MUST HAVE X/XC,Y/YC IN DATA SET
Explanation: The X, XC, Y, or YC variables have not been found in the Annotate
data set.

User Action: The X or XC and Y or YC variables must be in the data set. This
message represents a minimum validity check of the supplied Annotate data set.

POLYCONT ENCOUNTERED BEFORE POLY
Explanation: The POLYCONT function was encountered with no POLY function
specification.

User Action: Probable sequencing error. Check for missing POLY command,
improper ordering of polygon points, or interruption of POLY type commands by
other valued functions. Also, check the value of WHEN for a mismatch.

"POLYCONT" INTERRUPTED
Explanation: A POLYCONT definition has been interrupted and resumed in the
Annotate data set. This usually accompanies the error message

POLYCONT ENCOUNTERED BEFORE POLY

User Action: Check data stream for proper order.

POSITION VALUE INVALID- MUST BE ONE OF "0123...9ABCDEF"
Explanation: The value of the POSITION variable is not in range ’0’ through ’9’ or
’A’ through ’F’ or ’<’, ’+’, or ’>’ in a LABEL command.

User Action: Check desired value in POSITION description and correct.

REQUESTED POLYGON CONTAINS TOO MANY VERTICES (OBSERVATIONS)
Explanation: The maximum allocation for polygon points is exhausted. The
maximum number of vertices is limited by a device’s memory.

User Action: Define polygon with fewer points or break polygon into sections.

SYSTEM VALUE INVALID- MUST BE ONE OF "0123...9ABC"
Explanation: The value supplied for the XSYS, YSYS, or HSYS variable is not
valid.

User Action: Check the desired value and correct the data set.

TEXT STRING EXTENDS BEYOND BOUNDARY OF SYSTEM DEFINED
Explanation: The text string is too long.

User Action: Check for excessive SIZE value or shorten the string. This error
could be caused by HSYS=’4’ and a small value of the VPOS graphics option.

USE THE XC VARIABLE FOR DATA VALUES WHEN TYPE IS CHARACTER
Explanation: The X variable is character type in the Annotate data set when it
should be numeric.

User Action: If character data are being plotted, use the XC variable to specify
any data-related points pertaining to character values. If data are not character,
omit quotes in X data value assignment.

USE THE YC VARIABLE FOR DATA VALUES WHEN TYPE IS CHARACTER
Explanation: The Y variable is character type in the Annotate data set when it
should be numeric.

User Action: If character data are being plotted, use the YC variable to specify
any data-related points pertaining to character values. If data are not character,
omit quotes in Y data value assignment.

Annotate Dictionary Annotate Error Messages 703

VALUE SHOWN IS NOT A VALID FONT OR PATTERN TYPE
Explanation: The value of the STYLE variable is not a valid font or pattern.

User Action: Check the value supplied for misspelling, truncation, and support
in the FUNCTION description.

VALUE SHOWN IS NOT A VALID FUNCTION
Explanation: The value in the FUNCTION variable is not recognized as an
available function.

User Action: Check for misspellings or truncation of value. Truncation can be
corrected by specifying a length of 8 bytes in the LENGTH statement in the DATA
step that generates the data set.

VALUE SHOWN IS NOT A VALID SIZE FACTOR
Explanation: The SIZE value of the variable is negative or excessive.

User Action: Check request or calculation for positive value result.

VARIABLE SHOWN HAS IMPROPER LENGTH IN ANNOTATE= DATA SET
Explanation: The length is incorrect for variable indicated. Either the length of
the character string exceeds the length for the variable specified in a LENGTH
statement, or the variable was not specified in a LENGTH statement.

User Action: Make sure the variable length is defined in a length statement and
that the length specified adequately covers the length of the character strings that
are used.

VARIABLE SHOWN IS NOT OF THE PROPER DATA TYPE
Explanation: The data type does not match required type for variable listed.
Either variable type is character where a numeric is required, or numeric where a
character is required.

User Action: Specify proper type for variable as described in “Annotate
Variables” on page 642.

704

705

P A R T4

SAS/GRAPH Procedures

Chapter 26.The GANNO Procedure 707

Chapter 27.The GAREABAR Procedure 725

Chapter 28.The GBARLINE Procedure 739

Chapter 29.The GCHART Procedure 773

Chapter 30.The GCONTOUR Procedure 885

Chapter 31.The GDEVICE Procedure 915

Chapter 32.The GFONT Procedure 939

Chapter 33.The GIMPORT Procedure 969

Chapter 34.The GKEYMAP Procedure 983

Chapter 35.The GMAP Procedure 995

Chapter 36.The GOPTIONS Procedure 1075

Chapter 37.The GPLOT Procedure 1081

Chapter 38.The GPRINT Procedure 1147

Chapter 39.The GPROJECT Procedure 1161

Chapter 40.The GRADAR Procedure 1183

Chapter 41.The GREDUCE Procedure 1213

706

Chapter 42.The GREMOVE Procedure 1223

Chapter 43.The GREPLAY Procedure 1237

Chapter 44.The GSLIDE Procedure 1277

Chapter 45.The GTESTIT Procedure 1285

Chapter 46.The G3D Procedure 1295

Chapter 47.The G3GRID Procedure 1327

Chapter 48.The MAPIMPORT Procedure 1347

707

C H A P T E R

26
The GANNO Procedure

Overview 707

Procedure Syntax 708
PROC GANNO Statement 708

Examples 710

Example 1: Scaling Data-Dependent Output 710
Example 2: Storing Annotate Graphics 713

Example 3: Using the NAME= Option to Produce Multiple Graphs 715

Example 4: Using Annotate Graphics in a Drill-Down Graph 719

Overview

The GANNO procedure displays graphs created by Annotate data sets. The
procedure can also be used to scale data-dependent graphics to fit the graphics output
area. Note that the GANNO procedure ignores all currently defined title and footnote
statements and some graphics option specifications, including BORDER=. To include
titles, footnotes, and graphics options along with your Annotate data set, use the
GSLIDE procedure instead of the GANNO procedure.

By default, both the GANNO and GSLIDE procedures scale graphics output from the
data set to fill the entire graphics area. However, if you are using a data coordinate
system and the data values are so large that some of the graphics elements do not fit in
the graphics output area and are not displayed, you can use the GANNO procedure
with the DATASYS option. This will cause the procedure to scale the output to fit the
available space. The GSLIDE procedure does not have this capability.

Figure 26.1 on page 707 displays output from an Annotate data set.

Figure 26.1 Displaying Annotate Graphics with the GANNO Procedure

708 Procedure Syntax Chapter 26

The program for this graph is in Example 1 on page 710.

Procedure Syntax
Requirements: An input Annotate data set is required.
Supports: Output Delivery System (ODS)

PROC GANNO ANNOTATE=Annotate-data-set
<DATASYS>
<DESCRIPTION=’entry-description’>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set>
<NAME=’entry-name’ | variable-name>;

PROC GANNO Statement

Identifies the Annotate data set and draws the graphics output defined by that data set. Optionally,
it scales the output to accommodate data-dependent coordinate values and specifies an output
catalog.

Syntax

PROC GANNO ANNOTATE=Annotate-data-set
<DATASYS>
<DESCRIPTION=’entry-description’>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set>
<NAME=’entry-name’ | variable-name>;

Required Arguments

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set that includes Annotate variables that identify graphics commands
and parameters.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

Options
Options in the GANNO statement affect all graphs produced by that statement. You

can specify as many options as you want and list them in any order.

DATASYS
indicates that absolute or relative data-dependent coordinates occur in the Annotate
data set and scales the coordinates to fit the graphics output area. Use the DATASYS
option only with Annotate data sets in which the coordinate system variables XSYS,
YSYS, and HSYS specify the values 1, 2, 7, or 8.

The GANNO Procedure PROC GANNO Statement 709

Use the DATASYS option when graphics elements that were created with
data-dependent variables do not fit in the graphics output area. This happens when
the coordinate values generated by the data exceed a range of 0 to 100.

If you omit the DATASYS option, the GANNO procedure attempts to draw each
graphics element according to the data values assigned to it, without scaling the
values. If the range of data values is too large, some graphics elements will not
display.

See also: “Using the DATASYS Option to Scale Graphs” on page 710

Featured in: Example 1 on page 710

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length is
256 characters. The description does not appear on the chart. By default, the
GANNO procedure assigns the description OUTPUT FROM PROC GANNO.

Featured in: Example 2 on page 713

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GANNO procedure. If you omit the libref, the SAS/GRAPH software looks for the
catalog in the temporary library called WORK and creates the catalog if it does not
exist.

See also: “Storing Graphics Output in SAS Catalogs” on page 53

Featured in: Example 2 on page 713

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GANNO
procedure with the HTML= and/or HTML_LEGEND= options.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

See also: Chapter 25, “Annotate Dictionary,” on page 613 and “Adding Links with
the HTML= and HTML_LEGEND= Options” on page 574.

Featured in: Example 4 on page 719

NAME=’entry-name’ | variable-name
specifies one of the following:

� the name of the catalog entry for the graph

� a variable name for each value for which a separate graph is produced.

If the value you assign to the NAME= option is enclosed in quotation marks, the
procedure interprets it as a catalog entry name; if the value is not enclosed in quotes,
the procedure interprets it as a variable name.

The value entry-name specifies the name of the catalog entry for the graph. The
maximum length is 8 characters. The default name is GANNO. If the specified name
duplicates the name of an existing entry, SAS/GRAPH software adds a number to the
duplicate name to create a unique entry, for example, GANNO1.

If you specify variable-name, the GANNO procedure produces a separate graph for
each different value of that variable. In addition, when you specify

710 Examples Chapter 26

NAME=variable-name, each value of the variable is used as the name of the catalog
entry for that graph. A value that is longer than 8 characters is truncated. For
example, if the value is Frankfurt, it is truncated to Frankfur. A second catalog
entry would be Frankfu1. Consequently, you cannot use NAME=’entry-name’ at the
same time.

Note: Specifying NAME=variable-name in the PROC GANNO statement
produces results similar to those produced by the BY statement in a procedure that
supports BY-group processing. See “BY Statement” on page 141 for details. �
Featured in: Example 2 on page 713Example 3 on page 715

Using the DATASYS Option to Scale Graphs
If your Annotate data set specifies a coordinate system that is based on data values

(that is, XSYS, YSYS, and HSYS are assigned the values 1, 2, 7, or 8), the data values
determine the size and location of the graphics elements on the output.

If the procedure that specifies the annotation generates axes (such as GPLOT or
GCHART), by default the axes are scaled to accommodate the full range of data values
and to fit in the procedure output area. Because all values are included in the axes, the
graph displays all the Annotate output that is dependent on data values.

However, if the annotation displays with the GSLIDE or GANNO procedure, which
do not generate axes, the data values may generate coordinate values that exceed the
limits of the graphics output area.

In this case, you can use the DATASYS option to tell the procedure that the Annotate
data set contains data-dependent coordinates and to scale the output accordingly. For
an illustration of this process, see Example 1 on page 710.

When you use the DATASYS option, the GANNO procedure reads the entire input
data set before drawing the graph and creates an output environment that is data
dependent; that is, the environment is based on the minimum and maximum values
that are contained in the data set. It then scales the data to fit this environment so
that all graphics elements can be drawn.

Although the DATASYS option enables you to generate graphs using one of the
data-dependent coordinate systems, it requires that the procedure scan the entire data
set to determine the minimum and maximum data values. You can save this extra pass
of the data set by using data-dependent values only in procedures that generate axes.
Annotate coordinate system 5 (percent of the procedure output area) is recommended
for use with the GANNO procedure. This coordinate system works equally well with
the GSLIDE procedure if you decide to display the annotation with titles and footnotes.

Examples

Example 1: Scaling Data-Dependent Output
Procedure features:

PROC GANNO statement options:
ANNOTATE=
DATASYS

Sample library member: GANSCALE

The GANNO Procedure Example 1: Scaling Data-Dependent Output 711

Figure 26.2 Scaled GANNO Output

This example uses an Annotate data set to scale data-dependent output with the
DATASYS option and create a vertical bar chart of sales for each of six sites. The
values that determine the height of each bar range from 137 to 999. The range of
values is so large that the GANNO procedure cannot fit all of the bars in the output
area without scaling the output. This program uses the DATASYS option to scale the
data values so that the bars fit in the graphics output area.

Set the graphics environment.

goptions reset=global gunit=pct cback=white
colors=(black blue green red);

Create the data set WRLDTOTL. WRLDTOTL contains sales data for six sites. SITENAME
contains the names of the sites. MEAN contains the average sales for each site.

data wrldtotl;
length sitename $ 10;
input sitename $ 1-10 mean 12-15;
datalines;

Paris 999
Munich 571
Tokyo 137
London 273
Frankfurt 546
New York 991
;
run;

712 Example 1: Scaling Data-Dependent Output Chapter 26

Create the Annotate data set, WRLDANNO. XSYS and YSYS specify coordinate system 2
(absolute data values) for X and Y. HSYS specifies coordinate system 3 (percent of the graphics
output area) for SIZE. The SET statement processes every observation in WRLDTOTL.

data wrldanno;
length function color $ 8 text $ 20;
retain line 0 xsys ysys ’2’ hsys ’3’ x 8;
set wrldtotl end=end;

Draw the bars. The MOVE function defines the lower left corner of the bar. The BAR function
draws the bar. Bar height (Y) is controlled by MEAN.

function=’move’; x=x+8; y=20; output;
function=’bar’; y=y+(mean); x=x+9;

style=’empty’; color=’red’; output;

Label the bar with the name of site.

function=’label’; y=0; x=x-4; size=3.5;
position=’E’; style=’swiss’;
color=’blue’; text=sitename; output;

Move to the top of the bar and write the value of MEAN.

function=’move’; y=y+(mean)-3; output;
function=’label’; x=x-1; text=left(put(mean,3.));

position=’5’; style=’swiss’; size=3; output;

After all the observations are processed, add an axis line, title, footnote, and frame.
The MOVE and DRAW functions draw the axis line. The LABEL function writes the title and
the footnote. The FRAME function draws a border around the output.

if end then do;
function=’move’; x=10; y=20; output;
function=’draw’; x=90; y=20; line=1;

size=.5; color=’blue’; output;
function=’label’; x=50; y=95; text=’Projected Sales’;

xsys=’3’; ysys=’3’; position=’5’; style=’swissb’;
size=5; color=’ ’; output;
x=92; y=5; size=3; style=’swiss’; text=’GANSCALE’; output;

function=’frame’; color=’blue’; when=’b’;
style=’empty’; output;

end;
run;

Display the annotate graphics. The ANNOTATE= identifies the data set that contains the
graphics commands. DATASYS tells the procedure to use the maximum and minimum data
values to construct the output environment. In addition, the values of X and Y are scaled to fit
the environment and all of the bars display on the graph.

The GANNO Procedure Example 2: Storing Annotate Graphics 713

proc ganno annotate=wrldanno
datasys;

run;
quit;

Example 2: Storing Annotate Graphics

Procedure features:
PROC GANNO statement options:

DESCRIPTION=
GOUT=
NAME=

Sample library member: GANSQUAR

Figure 26.3 Four Squares

This example creates an Annotate data set that draws four colored squares, displays
the data set as a single graphics output, and stores the output as a catalog entry in a
permanent catalog. In this example, the NAME= option specifies a text string that
identifies the name that is stored with the graphics output in the catalog.

Set the graphics environment.

goptions reset=global gunit=pct cback=white
colors=(black blue green red);

714 Example 2: Storing Annotate Graphics Chapter 26

Create the Annotate data set, SQUARES. XSYS and YSYS specify coordinate system 3
(percent of the graphics output area) for X and Y.

data squares;
length function style color $ 8 text $ 15;
xsys=’3’; ysys=’3’;

Draw the first square. The COLOR variable assigns the color for the square. The FUNCTION
variable selects the operation to be performed by the Annotate facility. The X and Y variables
contain coordinate values. The BAR function draws the square. When the STYLE variable is
used with the BAR function, it selects the fill pattern for the bar.

color=’green’;
function=’move’; x=10; y=65; output;
function=’bar’; x=30; y=95; style=’solid’; output;

Label the first square. The LABEL function creates the label. The POSITION value of 6
left-justifies the text with respect to X and Y. The TEXT variable specifies the text string to be
written.

function=’label’; x=10; y=63; position=’6’;
style=’swissb’; size=2; text=’Green’; output;

Draw and label the second square.

color=’red’;
function=’move’; x=60; y=65; output;
function=’bar’; x=80; y=95; output;
function=’label’; x=60; y=63; position=’6’;

style=’swissb’; size=2; text=’Red’; output;

Draw and label the third square.

color=’blue’;
function=’move’; x=10; y=15; output;
function=’bar’; x=30; y=45; output;
function=’label’; x=10; y=12; position=’6’;

style=’swissb’; size=2; text=’Blue’; output;

Draw and label the fourth square.

color=’gray’;
function=’move’; x=60; y=15; output;
function=’bar’; x=80; y=45; output;
function=’label’; x=60; y=12; position=’6’;

style=’swissb’; size=2; text=’Gray’; output;

Add a footnote.

The GANNO Procedure Example 3: Using the NAME= Option to Produce Multiple Graphs 715

x=88; y=5; position=’5’; size=1.5; style=’swiss’;
text=’GANSQUAR’; output;

Draw a red frame.

function=’frame’; color=’red’; when=’b’;
style=’empty’; output;

run;

Display the annotate graphics. GOUT= assigns the catalog in which the graphics output is
stored. NAME= assigns a name to the entry stored in the WORK.EXCAT catalog.
DESCRIPTION= assigns a description to the catalog entry.

proc ganno annotate=squares
gout=excat
name=’GANSQUAR’
description=’Four squares’;

run;
quit;

Example 3: Using the NAME= Option to Produce Multiple Graphs
Procedure features:

PROC GANNO statement option:
NAME=

Sample library member: GANMULTI

In this example, the GANNO procedure uses the NAME= option to generate multiple
graphs from one Annotate data set. Since NAME= is assigned the variable COLOR, the
GANNO procedure generates separate graphics output for each value of the COLOR, as
shown in Figure 26.4 on page 717, Figure 26.5 on page 718, Figure 26.4 on page 717
and Figure 26.6 on page 718.

Each output is stored as a separate entry in the temporary output catalog
WORK.EXCAT. The entries are named according to the values of COLOR: BLUE, GRAY,
GREEN, and RED. Note that the output for GRAY includes the footnote shown in Example
2 on page 713. The output for RED shows the frame that is generated by the Annotate
data set. The black borders in the other outputs are not generated by the code.

Set the graphics environment.

goptions reset=global gunit=pct cback=white
colors=(black blue green red);

Create the Annotate data set, SQUARES. XSYS and YSYS specify coordinate system 3
(percent of the graphics output area) for X and Y.

716 Example 3: Using the NAME= Option to Produce Multiple Graphs Chapter 26

data squares;
length function style color $ 8 text $ 15;
xsys=’3’; ysys=’3’;

Draw the first square. The COLOR variable assigns the color for the square. The FUNCTION
variable selects the operation to be performed by the Annotate facility. The X and Y variables
contain coordinate values. The BAR function draws the square. When the STYLE variable is
used with the BAR function, it selects the fill pattern for the bar.

color=’green’;
function=’move’; x=10; y=65; output;
function=’bar’; x=30; y=95; style=’solid’; output;

Label the first square. The LABEL function creates the label. The POSITION value of 6
left-justifies the text with respect to X and Y. The TEXT variable specifies the text string to be
written.

function=’label’; x=10; y=63; position=’6’;
style=’swissb’; size=2; text=’Green’; output;

Draw and label the second square.

color=’red’;
function=’move’; x=60; y=65; output;
function=’bar’; x=80; y=95; output;
function=’label’; x=60; y=63; position=’6’;

style=’swissb’; size=2; text=’Red’; output;

Draw and label the third square.

color=’blue’;
function=’move’; x=10; y=15; output;
function=’bar’; x=30; y=45; output;
function=’label’; x=10; y=12; position=’6’;

style=’swissb’; size=2; text=’Blue’; output;

Draw and label the fourth square.

color=’gray’;
function=’move’; x=60; y=15; output;
function=’bar’; x=80; y=45; output;
function=’label’; x=60; y=12; position=’6’;

style=’swissb’; size=2; text=’Gray’; output;

Add a footnote.

x=88; y=5; position=’5’; size=1.5; style=’swiss’;
text=’GANSQUAR’; output;

The GANNO Procedure Example 3: Using the NAME= Option to Produce Multiple Graphs 717

Draw a red frame.

function=’frame’; color=’red’; when=’b’;
style=’empty’; output;

run;

Generate the annotate graphics, separating graphs by color. NAME= identifies the
variable whose values PROC GANNO uses to generate the output. GANNO produces separate
output for each value of COLOR. The COLOR value is the name of the catalog entry.

proc ganno annotate=squares
name=color
gout=excat
description=’Individual squares’;

run;

Figure 26.4 Output for COLOR Value BLUE (WORK.EXCAT.BLUE.GRSEG)

718 Example 3: Using the NAME= Option to Produce Multiple Graphs Chapter 26

Figure 26.5 Output for COLOR Value GRAY (WORK.EXCAT.GRAY.GRSEG)

Figure 26.6 Output for COLOR Value GREEN (WORK.EXCAT.GREEN.GRSEG)

The GANNO Procedure Example 4: Using Annotate Graphics in a Drill-Down Graph 719

Figure 26.7 Output for COLOR Value RED (WORK.EXCAT.RED.GRSEG)

Example 4: Using Annotate Graphics in a Drill-Down Graph
Procedure features:

PROC GANNO statement option:
IMAGEMAP=

Sample library member: GANDRILL

This example creates essentially the same Annotate data set used in Example 2 on
page 713. It draws four colored squares and displays the data set as a single graphics
output.

720 Example 4: Using Annotate Graphics in a Drill-Down Graph Chapter 26

However, this time the example shows you how to use Annotate graphics to generate
a drill-down graph. The example uses the HTML variable in the Annotate data set to
specify linking information that defines each of the four squares as a hot zone. When
the graph is viewed in a browser, you can click on a square to drill down to a related
graph. For example, if you click on the green square, it drills down to a graph that
confirms that you selected the green square.

The example uses the HTML device driver to generate the drill-down graph. To
implement the drill-down capability, the Annotate data set uses the HTML variable to
provide the linking information (see “HTML Variable” on page 651), and the GANNO
procedure uses the IMAGEMAP= option to create an Imagemap data set. The presence
of the HTML variable in the Annotate data set and the IMAGEMAP= option on the
GANNO procedure causes the HTML device driver to generate an image map for the
graph. It writes the image map to the file index.html, which the HTML device driver
creates for displaying Web output (see Chapter 17, “Generating Web Output with the
Annotate Facility,” on page 499).

To prevent the HTML device driver from writing over the contents of index.html
after the drill-down graph has been generated, the example switches to the GIF device
driver. It then runs four GSLIDE procedures to generate the target output. Each
GSLIDE procedure uses the NAME= option to name the graph it produces, ensuring
that the GIF driver creates files named green.gif, blue.gif, red.gif, and gray.gif. These
are the files that are referenced as targets by the strings that are specified for the
Annotate data set’s HTML variable.

Allocate a storage location for all the output files, and set the graphics environment.
The HTML device driver generates output that includes both HTML and GIF files, so the libref
must point to an aggregate storage location. It cannot point to a file.

/* define the output location */
filename webout ’path-to-Web-server’;

/* set the graphics environment */
goptions reset=global gunit=pct

colors=(black blue green red);

The GANNO Procedure Example 4: Using Annotate Graphics in a Drill-Down Graph 721

Create the Annotate data set. The HTML variable is used to define the linking information
for each square. Because the GSLIDE procedures that generate the target output use NAME=
to ensure the output files are named green.gif, red.gif, blue.gif, and gray.gif, strings that
reference those names are assigned to the HTML variable for the appropriate observation in the
data. For the final observation, the HTML variable’s value is set to a null string; otherwise it
would retain the last assigned value, which is href=gray.gif. In that case, the graph’s
background area would be defined as a hot zone that links to file gray.gif. For a description of
the other functions and variables used in the Annotate data set, see Example 2 on page 713.

/* create Annotate data set */
data squares;

length function style color $ 8
html text $ 15;

xsys=’3’; ysys=’3’;

/* draw the green square */
color=’green’;
function=’move’; x=10; y=65; output;
function=’bar’; x=30; y=95; style=’solid’;

html=’href=green.gif’; output;

/* label green square */
function=’label’; x=10; y=63; position=’6’;

style=’swissb’; size=2; text=’Green’; output;

/* draw the red square */
color=’red’;
function=’move’; x=60; y=65; output;
function=’bar’; x=80; y=95;

html=’href=red.gif’; output;

/* label red square */
function=’label’; x=60; y=63; position=’6’;

style=’swissb’; size=2; text=’Red’; output;

/* draw the blue square */
color=’blue’;
function=’move’; x=10; y=15; output;
function=’bar’; x=30; y=45;

html=’href=blue.gif’; output;

/* label blue square */
function=’label’; x=10; y=12; position=’6’;

style=’swissb’; size=2; text=’Blue’; output;

/* draw the gray square */
color=’gray’;
function=’move’; x=60; y=15; output;
function=’bar’; x=80; y=45;

html=’href=gray.gif’; output;

/* label gray square and add a footnote */
function=’label’; x=60; y=12; position=’6’;

style=’swissb’; size=2; text=’Gray’; output;

722 Example 4: Using Annotate Graphics in a Drill-Down Graph Chapter 26

/* draw a blue frame */
function=’frame’; color=’blue’; style=’empty’;

/* set null link for background area in frame */
html=’’; output;

run;

Set the graphics environment for the Web page. DEV= specifies the HTML device driver,
which will create the HTML and GIF files needed for the Web page. GSFNAME= specifies the
libref that points to the storage location that was allocated for the Web output. XPIXELS= and
YPIXELS= define a size in pixels for the graphics area. TRANSPARENCY specifies that the
background areas in all generated graphs should appear to be transparent when the images are
displayed in a browser.

/* set the graphics options for the web page */
goptions dev=html gsfname=webout

xpixels=450 ypixels=400
transparency;

Generate the drill-down graph. IMAGEMAP= specifies ANNOMAP as the name for the
Imagemap data set.

/* generate annotate graphics */
proc ganno annotate=squares

imagemap=annomap
description=’Four squares’;

run;

Change to the GIF driver and generate the target output. DEV= changes the device
driver to GIF so that the target output files will be generated as GIF files. FTEXT= and
CTEXT= specify a font and color for the text in graphics output. PROC GSLIDE is then run four
times to generate the four graphs that will serve as target output for the links that are defined
in the drill-down graph.

/* change to gif driver for target output */
goptions dev=gif ftext=centb ctext=green;

/* generate the target output */
proc gslide wframe=4

cframe=green name=’green’;
note height=20;
note height=10

justify=center
’Green Grass’;

run;

goptions ctext=blue;
proc gslide wframe=4

cframe=blue name=’blue’;
note height=20;
note height=10

justify=center

The GANNO Procedure Example 4: Using Annotate Graphics in a Drill-Down Graph 723

’Blue Sky’;
run;

goptions ctext=red;
proc gslide wframe=4

cframe=red name=’red’;
note height=20;
note height=10

justify=center
’Red Wine’;

run;

goptions ctext=gray;
proc gslide wframe=4

cframe=gray name=’gray’;
note height=20;
note height=10

justify=center
’Gray Mare’;

run;
quit;

724

725

C H A P T E R

27
The GAREABAR Procedure

Overview 725

Concepts 726
Procedure Syntax 727

PROC GAREABAR Statement 727

HBAR, HBAR3D, VBAR, VBAR3D Statements 728
Examples 729

Example 1: A Simple Area Bar Chart 729

Example 2: Area Bar Chart with a Numeric Category Variable 731
Example 3: Area Bar Chart with a Subgrouping 733

Example 4: Area Bar Chart with Subgrouping and RSTAT and WSTAT as Percentages 735

Overview
The GAREABAR procedure enables you to produce an area bar chart showing the

magnitudes of two variables for each category of data. For example, the following area
bar chart shows the sales total for each of three geographical sites. An additional
dimension is graphed for the width variable, namely, the number of sales persons at
each site. One can see from this chart that while the sales total of NY is the greatest,
its number of sales people is also the greatest. In a plain bar chart, the width is the
same for each bar. In an area bar chart, the width and height of each bar is determined
by the value of variables.

726 Concepts Chapter 27

Note: The GAREABAR procedure requires the following:

� a prior GOPTIONS statement where DEV=ACTIVEX or DEV=ACTXIMG, because
PROC GAREABAR only works with the ActiveX control on a Windows system

� a prior ODS HTML statement

� a closing ODS HTML CLOSE statement.

�

Concepts

The GAREABAR procedure produces a chart based on the values of a category
variable. A category variable can be either character or numeric. The GAREABAR
procedure treats all values of a numeric category variable as DISCRETE (such as
quarters 1,2,3,4) even if the values are apparently continuous (such as 1.234 and 4.002).
PROC GAREABAR does not calculate a midpoint.

Also, PROC GCHART, by default, sorts the values of the category variable either
alphabetically or numerically. PROC GAREABAR displays the category variable in data
order (the order in which its values occur in the data set).

For each category variable, PROC GAREABAR graphs the dimensions of two
numeric variables. For the VBAR statement, the SUMVAR variable (response variable)
is graphed along the vertical axis, and the width variable is graphed along the
horizontal axis. Conversely, for the HBAR statement, the SUMVAR variable (response
variable) determines the length of the bar on the horizontal axis, and the width
variable determines the thickness of the bar on the vertical axis.

Both the width variable and the response variable can be displayed as either
percentage or sum. Specify WSTAT=PERCENT or WSTAT=SUM for the width variable,
and specify RSTAT=PERCENT or RSTAT=SUM for the response variable. The default
for both is SUM.

The GAREABAR Procedure PROC GAREABAR Statement 727

In addition, you can use the SUBGROUP option to subgroup the response variable
either by percentage or by sum. Examples of subgrouping are shown in Example 3 on
page 733 and Example 4 on page 735.

Procedure Syntax
Requirements:

GOPTIONS statement with DEV=ACTIVEX | ACTXIMG
ODS HTML statement (before and after)
HBAR, HBAR3D, VBAR, or VBAR3D statement

Global statements: FOOTNOTE, GOPTIONS, TITLE
Supports: RUN-group processing

PROC GAREABAR<DATA=input-data-set>
VBAR category-variable*width-variable </ SUMVAR=response-variable option(s)>;

VBAR3D category-variable*width-variable </ SUMVAR=response-variable
option(s)>;

HBAR category-variable*width-variable< / SUMVAR=response-variable option(s)>;
HBAR3D category-variable*width-variable< / SUMVAR=response-variable

option(s)>;

PROC GAREABAR Statement

Identifies the data set containing the category variable, the response variable (SUMVAR), and the
width variable.

Requirements: An input data set is required. If none is specified, the procedure uses the
most recently created data set.

Syntax

PROC GAREABAR<DATA=input-data-set;>

Requirements

input-data-set
contains the data to be graphed.

GOPTIONS DEV=ACTIVEX|ACTXIMG
PROC GAREABAR requires a GOPTIONS statement where the value of DEV= is
ACTIVEX or ACTXIMG (before the PROC).

ODS HTML
PROC GAREABAR requires an ODS HTML statement (both before and after the
PROC).

728 HBAR, HBAR3D, VBAR, VBAR3D Statements Chapter 27

HBAR, HBAR3D, VBAR, VBAR3D Statements

These statements create area bar charts where each bar shows two dimensions (a width variable
and response variable) for each category variable.

Syntax

HBAR | HBAR3D | VBAR | VBAR3D category-variable*width-variable
</ SUMVAR=response-variable option(s)>;

Required Arguments
All arguments must be in the input data set.

category-variable
is either character or numeric. Defines the category of data to chart. Each category
variable results in a separate bar. If the category-variable is numeric, all its values
are treated as DISCRETE (such as the years 2000, 2001, 2002). No midpoint is
calculated for a numeric category variable.

response-variable
is always numeric. For HBAR and HBAR3D, the length of the each bar along the
horizontal axis represents the response variable. For VBAR and VBAR3D, the height
of the each bar along the vertical axis measures the response variable.

Use the RSTAT option to specify whether the response variable is measured as a
percentage or as a sum. The default is SUM.

width-variable
is always numeric. For HBAR and HBAR3D, the width variable is measured by the
magnitude of each bar along the vertical axis. For VBAR and VBAR3D, the width
variable is measured by the magnitude of each bar along the horizontal axis.

Use the WSTAT option to specify whether the width variable is measured as a
percentage or as a sum. The default is SUM.

Options

CFR= | CFRAME=background-color
specifies a background color for the chart. The specified color must be a valid SAS/
GRAPH color name, or a character variable of length eight whose value is the color.
The default color is white.

CTEXT=text-color
specifies a color for all text on the chart. The specified color must be a valid SAS/
GRAPH color name, or a character variable of length eight whose value is the color.
The default color is black.

DISCRETE
causes the chart to show discrete width role values on the width axis rather than a
continuous axis. If you do not specify DISCRETE, the continuous axis result is
assumed. .

FRAME | NOFRAME
FRAME (the default) draws a frame around the procedure output area. The frame
color is the first color in the colors list.

The GAREABAR Procedure Example 1: A Simple Area Bar Chart 729

NOFRAME suppresses the frame that is drawn around the chart by default.

NAME=
when DEV=ACTXIMG, specifies the name of the graph (PNG file) produced by
GAREABAR. The maximum length for entry-name is eight characters. If the
specified name duplicates the name of an existing entry, then SAS/GRAPH software
overwrites the existing entry.

Use the PATH or GPATH option of the ODS HTML statement or ODS MARKUP
statement to specify the location for storing the .png file.

SUBGROUP=
used to subdivide the response-variable dimension (SUMVAR). A SUBGROUP
variable can be either character or numeric. For example, if the category variable is
company, and the response variable is revenue, then specifying a SUBGROUP of
country will subdivide the revenue for each company according to country. A numeric
example is subdividing revenue by quarters: 1, 2, 3, 4.

WSTAT= | WIDTHSTAT=SUM or PCT | PERCENT
specifies whether the width variable is represented as a percentage or as a sum. The
default is SUM.

RSTAT= | RESPSTAT=SUM or PCT | PERCENT
If SUBGROUP is specified, then RSTAT specifies whether the subgrouping is
represented as a percentage or as a sum. The default is SUM.

If SUBGROUP is not specified, then the response variable can only be SUM.

Examples

Example 1: A Simple Area Bar Chart

Procedure features:

SUMVAR=
Sample library member: GABSUMVR

This example graphs the total sales for each of three geographic sites (Rome, NY,
Lima) along the X axis. Along the Y axis, the relative thickness of each bar shows the
number of salespersons at each site. The chart shows that although NY had the highest
sales (the longest bar), it also had the greatest number of salespersons (as shown by the
thickness of the bar).

730 Example 1: A Simple Area Bar Chart Chapter 27

The procedure for this chart is:

Uncomment this line, and change the output destination to a directory and file name that
makes sense for you.

*filename odsout ’c:\test\filename.htm’;

PROC GAREABAR is only supported with device= ACTIVEX or ACTXIMG.

goptions reset=all dev=activex;
ods html file=odsout;

data totals;
input Site $ Quarter Sales Salespersons;
cards;

Lima 1 4043.97 4
NY 1 8225.26 12
Rome 1 3543.97 6
Lima 2 3723.44 5
NY 2 8595.07 18
Rome 2 5558.29 10
Lima 3 4437.96 8
NY 3 9847.91 24
Rome 3 6789.85 14
Lima 4 6065.57 10
NY 4 11388.51 26
Rome 4 8509.08 16
;

The GAREABAR Procedure Example 2: Area Bar Chart with a Numeric Category Variable 731

Because SUMVAR=SALES, the total sales are plotted along the horizontal axis (HBAR).

Because SITE*SALESPERSONS and WSTAT=PERCENT, the percentage of salespersons at
each site is shown by the relative thickness of each bar along the vertical axis.

proc gareabar data=totals;
hbar site*salespersons /sumvar=sales wstat=PERCENT;

run;

ODS HTML CLOSE causes the HTML file to be written to disk.

ods html close;

The variables in this procedure are as follows:

site the category variable: Lima, NY, Paris

salespersons the width variable, in this case displayed as a percentage along the
vertical axis

sales the response variable (SUMVAR), displayed along the horizontal
axis because, in this case, the statement is HBAR.

Example 2: Area Bar Chart with a Numeric Category Variable

Procedure features:

SUMVAR=
Sample library member: GABSUMVR

This example is similar to Example 1 and shows that the category variable can be
numeric—in this case 1, 2, 3, 4 for the four quarters of a year. The GAREABAR
procedure treats all values of a numeric category variable as DISCRETE and does not
calculate a midpoint even if the values of the category variable are continuous.

This example graphs the total sales for each quarter of the year along the horizontal
axis. The relative thickness of each bar along the vertical axis shows the total number
of salespersons during that quarter. The chart shows that as the number of
salespersons increased from quarter to quarter, the total sales also increased.

732 Example 2: Area Bar Chart with a Numeric Category Variable Chapter 27

The procedure is as follows:

Uncomment this line, and change the output destination to a directory and file name that
makes sense for you.

*filename odsout ’c:\test\filename.htm’;

PROC GAREABAR is only supported with device= ACTIVEX or ACTXIMG.

goptions reset=all dev=activex;
ods html file=odsout;

data totals;
input Site $ Quarter Sales Salespersons;
cards;

Lima 1 4043.97 4
NY 1 8225.26 12
Rome 1 3543.97 6
Lima 2 3723.44 5
NY 2 8595.07 18
Rome 2 5558.29 10
Lima 3 4437.96 8
NY 3 9847.91 24
Rome 3 6789.85 14
Lima 4 6065.57 10
NY 4 11388.51 26
Rome 4 8509.08 16
;

Because SUMVAR=SALES, the total sales are plotted along the horizontal axis (HBAR).

Because QUARTER*SALESPERSONS and WSTAT=PERCENT, the percentage of salespersons
for each quarter is shown by the relative thickness of each bar along the vertical axis.

The GAREABAR Procedure Example 3: Area Bar Chart with a Subgrouping 733

proc gareabar data=totals;
hbar quarter*salespersons / sumvar=sales wstat=PCT;

run;

ODS HTML CLOSE causes the HTML file to be written to disk.

ods html close;

The variables in the example are as follows:

quarter the category variable: quarters 1, 2, 3, and 4

salespersons the width variable, in this case displayed as a percentage along the
vertical axis.

sales the response variable (SUMVAR), displayed along the horizontal
axis.

Example 3: Area Bar Chart with a Subgrouping

Procedure features:

SUBGROUP=
Sample library member: GABSUBGR

This example uses the SUBGROUP= option to display the same magnitudes as
displayed by Examples 1 and 2. Like Example 1, this example shows the total sales for
each of three geographic sites along the horizontal axis. The relative thickness of each
bar along the vertical axis shows the number of salespersons at each site.

In addition, by subgrouping the response variable by quarter, this example shows the
relative percentage of sales for each quarter. Thus, one can see from this chart that NY
(the middle bar) had most of its sales in the fourth quarter, whereas Rome (the topmost
bar) had most of its sales in the first quarter.

The value of SUBGROUP= can be character or numeric.

734 Example 3: Area Bar Chart with a Subgrouping Chapter 27

The procedure is as follows:

Uncomment this line, and change the output destination to a directory and file name that
makes sense for you.

*filename odsout ’c:\test\filename.htm’;

PROC GAREABAR is only supported with device= ACTIVEX or ACTXIMG.

goptions reset=all dev=activex;
ods html file=odsout;

data totals;
input Site $ Quarter $ Sales Salespersons;

cards;
Lima 1 4043.97 4
NY 1 4225.26 12
Rome 1 16543.97 6
Lima 2 3723.44 5
NY 2 4595.07 18
Rome 2 2558.29 10
Lima 3 4437.96 8
NY 3 5847.91 24
Rome 3 3789.85 14
Lima 4 6065.57 10
NY 4 23388.51 26
Rome 4 1509.08 16
;

The GAREABAR Procedure Example 4: Area Bar Chart with Subgrouping and RSTAT and WSTAT as Percentages 735

/* define title */
title1 ’Ratio of Sales to Salespersons by Site’;
title2 ’(with Site subgrouped by Quarter)’;

Because SUMVAR=SALES, the total sales are plotted along the horizontal axis (HBAR).

Because SITE*SALESPERSONS and WSTAT=PERCENT, the percentage of salespersons for
each quarter is shown by the relative thickness of each bar along the vertical axis.

Because SUBGROUP=QUARTER and RSTAT=SUM, the quarters are displayed as absolute
numbers along the horizontal bar.

proc gareabar data=totals;
hbar site*salespersons /sumvar=sales

subgroup=quarter
rstat=SUM
wstat=PCT;

run;
ods html close;

The variables in the example are as follows:

site the category variable: Lima, NY, Rome.

salespersons the width variable, in this case displayed as a percentage
(wstat=PCT) along the vertical axis.

sales the response variable (SUMVAR), displayed as a sum (rstat=SUM)
along the horizontal axis because, in this case, the statement is
HBAR.

quarter quarters 1, 2, 3, and 4, displayed as absolute numbers (rstat=SUM)
along the horizontal bar.

Example 4: Area Bar Chart with Subgrouping and RSTAT and WSTAT as
Percentages

Procedure features:

SUBGROUP=, RSTAT=, WSTAT=

Sample library member: GABWSTAT

This example uses the RSTAT= option, in conjunction with the SUBGROUP= option,
to display the response variable (medals won in the winter Olympics), subgrouped by
the percentage (RSTAT=PCT) of each medal type (gold, silver, bronze). The width
variable is the number of athletes, displayed (in this case along the vertical axis) as the
percentage of athletes (WSTAT=PCT) of each of five different nationalities.

When the SUBGROUP= option is specified, you can use the RSTAT= option to specify
whether the subgrouping is to be displayed as a percentage or as a sum.

736 Example 4: Area Bar Chart with Subgrouping and RSTAT and WSTAT as Percentages Chapter 27

The procedure is as follows:

Uncomment this line, and change the output destination to a directory and file name that
makes sense for you.

*filename odsout ’c:\test\filename.htm’;

PROC GAREABAR is only supported with device= ACTIVEX or ACTXIMG.

ODS LISTING CLOSE prevents the output from going to the OUTPUT window in addition to
disk.

ods listing close;
ods html file=odsout;
goptions dev=activex;

data medals;
input country $15. medaltype $ winter summer athletes;
datalines;
Germany Gold 12 14 176
Germany Silver 16 17 0
Germany Bronze 7 26 0
United States Gold 10 39 210
United States Silver 13 25 0
United States Bronze 11 33 0
Norway Gold 11 4 42
Norway Silver 7 3 0
Norway Bronze 6 3 0
Canada Gold 6 3 157
Canada Silver 3 3 0
Canada Bronze 4 8 0
Russia Gold 6 32 160
Russia Silver 7 28 0

The GAREABAR Procedure Example 4: Area Bar Chart with Subgrouping and RSTAT and WSTAT as Percentages 737

Russia Bronze 3 28 0
;

Because SUMVAR=WINTER, this proc displays the number medals won in the winter Olympics,
subgrouped by the percentage (RSTAT=PCT) of each medal type (gold, silver, bronze). The width
variable is the number of athletes, displayed (in this case along the vertical axis) as the
percentage of athletes (WSTAT=PCT) of each of five different nationalities.

When the SUBGROUP= option is specified, you can use the RSTAT= option to specify whether
the subgrouping is to be displayed as a percentage or as a sum.

PROC GAREABAR data=medals;
hbar country*athletes /sumvar=winter

subgroup=medaltype
wstat=percent
rstat=percent;

run;
quit;

ODS HTML CLOSE causes the HTML file to be written to disk.

ODS LISTING restores subsequent output to the OUTPUT window.

ods html close;
ods listing;

The variables in the example are as follow:

country the category variable: Russia, Canada, Norway, United States,
Germany.

athletes displayed as a percentage (WSTAT=PERCENT) along the vertical
axis.

winter the value of SUMVAR, the number of medals won in the winter
Olympics, displayed along the horizontal axis because, in this case,
the statement is HBAR.

medaltype the value of SUBGROUP, displayed as a percentage
(RSTAT=PERCENT) of each medal type (gold, silver, bronze).

738

739

C H A P T E R

28
The GBARLINE Procedure

Overview 739

About Bar Line Charts 740
About Interpolation Methods 740

Concepts 741

About the Bar Variable 742
About Midpoints 742

Character Values 742

Discrete Numeric Values 743
Continuous Numeric Values 744

Selecting and Ordering Midpoints 744
About the Plot Variable 745

About Chart Statistics 745

Frequency 745
Cumulative Frequency 745

Percentage 746

Cumulative Percentage 746
Sum 746

Mean 746
Calculating Weighted Statistics 746

Missing Values 747

Plot Variable Values Out of Range 747
About Patterns 748

Default Patterns and Outlines 748

User-Defined Patterns, Outlines, and Images 748
Version 6 Patterns 749

Procedure Syntax 749
PROC GBARLINE Statement 750

BAR Statement 751

PLOT Statement 765
Examples 768

Example 1: Producing a Basic Bar Line Graph with Styles 768

Example 2: Calculating Weighted Statistics 770

Overview
The GBARLINE procedure produces bar line charts. Bar line charts are vertical bar

charts with a plot overlay. These charts graphically represent the value of a statistic
calculated for one or more variables in an input SAS data set. The charted variables
can be either numeric or character.

The procedure calculates these statistics:

740 About Bar Line Charts Chapter 28

� frequency or cumulative frequency counts
� percentages or cumulative percentages
� sums
� means.

Use the GBARLINE procedure to
� display and compare exact and relative magnitudes
� examine the contribution of parts to the whole
� analyze where data are out of balance
� display long series of data, showing trends and patterns.

In conjunction with the SYMBOL statement, the GBARLINE procedure can produce
needle plot overlays, and overlay plots with stepped interpolation.

Note: PROC GBARLINE is not supported by Java. �

About Bar Line Charts
Bar line charts display the magnitude of data with bars, each of which represents a

category of data (midpoint). The height of the bars represents the value of the bar
statistic for the corresponding midpoint.

Figure 28.1 on page 740 shows the relationship between petal width and petal length
for three species of flowers. The horizontal axis is the midpoint axis and the vertical
axes are response axes. Each axis is labeled with the variable name. Each species is a
midpoint, so each bar is labeled with the species identifier.

Figure 28.1 Bar Line Graph

About Interpolation Methods
You can produce plot overlays such as needle plot overlays by specifying interpolation

methods with the SYMBOL statement. For PROC GBARLINE, you can use the
SYMBOL statement to

The GBARLINE Procedure Concepts 741

� connect the data points to the zero line on the vertical axis (NEEDLE)

� use a step function to connect the data points (STEP)

� produce overlay plots with unconnected data points (NONE)

� connect data points with straight lines (JOIN).

For bar line graphs, points on the plot overlay are automatically joined, which is
equivalent to specifying the JOIN interpolation method.

“SYMBOL Statement” on page 183 describes the JOIN, NEEDLE, STEP, and NONE
interpolation methods.

Concepts

The GBARLINE procedure produces bar charts based on the values of a bar variable
with plot overlays based on the values of a plot variable. The values of the bar variable
are represented by a set of midpoints. The graph itself displays information about the
bar variable in the form of bar statistics.

Figure 28.2 on page 741 illustrates the parts of a bar line graph.

Figure 28.2 Parts of a Bar Line Graph

Bar line graphs have three axes:

� a midpoint axis that shows the categories of data, based on the bar variable

� a left response axis that displays the scale of values for the bar statistic (based on
the summary variable, if specified)

742 About the Bar Variable Chapter 28

� a right response axis that displays the scale of values for the plot statistic.

The response axes are divided into evenly spaced intervals identified with major tick
marks that are labeled with the corresponding statistic value. Minor tick marks are
evenly distributed between the major tick marks. Each axis is labeled with the variable
name or label.

About the Bar Variable
The bar variable is the variable in the input data set whose value determines the

categories of data represented by the bar. The bar variable generates the midpoints to
which each observation in the data set contribute.

The bar variable can be either character or numeric. Character bar variables contain
character values, which are always discrete. Numeric bar variables fall into two
categories: discrete and continuous.

� Discrete variables contain a finite number of specific numeric values that are to be
represented on the chart. For example, a variable that contains years, such as
1984 or 2002, is a discrete variable.

� Continuous variables contain a range of numeric values that are to be represented
on the chart. For example, a variable of temperature data that contains real
values between 0 and 212 is a continuous variable.

Numeric bar variables are always treated as continuous variables unless the
DISCRETE option is used in the BAR statement.

About Midpoints
Midpoints are the values of the bar variable that identify categories of data. By

default, midpoints are selected or calculated by the procedure. The way the procedure
handles the midpoints depends on whether the values of the bar variable are character,
discrete numeric, or continuous numeric.

Character Values
A character bar variable generates a midpoint for each unique value of the variable.

In the following example, the bar variable CITY contains the names of three different
cities, and each city is a midpoint, resulting in three midpoints for the chart:

The GBARLINE Procedure About Midpoints 743

Figure 28.3 Character Midpoints

By default, character midpoints are arranged in alphabetic order. If a character
variable has an associated format, then the values are arranged in order of the
formatted values.

Discrete Numeric Values
A numeric bar variable used with the DISCRETE option generates a midpoint for

each unique value of the bar variable. In the following example, the numeric variable
YEAR used with the DISCRETE option produces one midpoint for each year:

Figure 28.4 Discrete Numeric Midpoints

744 About Midpoints Chapter 28

By default, numeric midpoints are arranged in ascending order. If the numeric
variable has an associated format, then each formatted value generates a separate
midpoint. Formatted numeric variables are arranged in ascending order according to
their unformatted numeric values.

Continuous Numeric Values
A continuous numeric variable generates midpoints that represent ranges of values.

By default, the GBARLINE procedure determines the ranges, calculates the median
value of each range, and displays the appropriate median value at each midpoint on the
chart. A value that falls exactly halfway between two midpoints is placed in the higher
range.

In the following example, the numeric variable AGE produces five midpoints, each of
which represents a six-year age range; the median value of the range is displayed at
each midpoint:

Figure 28.5 Continuous Numeric Midpoints

By default, midpoints of ranges are arranged in ascending order.

Selecting and Ordering Midpoints
For character or discrete numeric values, you can use the MIDPOINTS= option to

rearrange the midpoints or to exclude midpoints from the chart. For example, to change
the default alphabetic order of the midpoints in Figure 28.3 on page 743, specify

midpoints=’Tokyo’ ’Denver’ ’Seattle’

To exclude the midpoint for Denver, specify

midpoints=’Tokyo’ ’Seattle’

In this case, values excluded by the option are not included in the calculation of the
bar statistic.

You can order or select discrete numeric midpoint values just as you do character
values, but you omit the quotation marks when specifying numeric values.

For continuous numeric variables, use the LEVELS= or MIDPOINTS= option to
change the number of midpoints, to control the range of values each midpoint

The GBARLINE Procedure About Chart Statistics 745

represents, or to change the order of the midpoints. To control the range of values each
midpoint represents, use the MIDPOINTS= option to specify the median value of each
range. For example, to select the ranges 20–29, 30–39, and 40–49, specify

midpoints=25 35 45

Alternatively, to select the number of midpoints that you want and let the procedure
calculate the ranges and medians, use the LEVELS= option.

You can also use formats to control the ranges of continuous numeric variables, but
in that case the values are no longer continuous but become discrete.

Note: You cannot use the MIDPOINTS= option to exclude continuous numeric
values from the chart because values below or above the ranges specified by the option
are automatically included in the first and last midpoints, respectively. To exclude
continuous numeric values from a chart, use a WHERE statement in a DATA step or
the WHERE= DATA set option. �

See also the description of the LEVELS= and MIDPOINTS= options.

About the Plot Variable
The plot variable is the variable in the input data set whose values are used to

generate the overlay plot line. The plot variable is optional, but if specified, it must be a
numeric variable.

To specify a plot variable, use the SUMVAR= option on the PLOT statement:

PLOT / SUMVAR=height;

When you specify a plot variable with the SUMVAR= option, the only statistics
available for the plot are the sum or the mean. You can specify the statistic with the
TYPE= option. SUM (TYPE=SUM) is the default.

If you do not specify a plot variable, then the bar variable is used as the plot variable.
The only statistics available for the plot are percentage, cumulative percentage,
frequency, or cumulative frequency. The default statistic is frequency (TYPE=FREQ).

For more information about these statistics, see “About Chart Statistics” on page 745.
See also the descriptions of the SUMVAR= and TYPE= options for the PLOT statement.

About Chart Statistics
The chart statistics are the statistical values calculated for the bar variables and the

plot variables. The GBARLINE procedure calculates six chart statistics. You can
specify the chart statistics with the TYPE= option. For the bar, the default statistic is
frequency. For the plot, the default statistic is sum.

The examples given in the descriptions of these statistics assume a data set with two
variables, CITY and SALES. The values of CITY are Denver, Seattle, and Tokyo.
There are 21 observations: seven for Denver, nine for Seattle, and five for Tokyo.

Frequency
The frequency statistic is the total number of observations in the data set for each

midpoint. For example, seven observations of the bar variable, CITY, contain the value
Denver, so the frequency for the Denver midpoint is 7.

Cumulative Frequency
The cumulative frequency statistic adds the frequency for the current midpoint to the

frequency of all of the preceding midpoints. For example, the frequency for the Denver

746 About Chart Statistics Chapter 28

midpoint is 7, and the frequency for the next midpoint, Seattle, is 9, so the cumulative
frequency for Seattle is 16.

Percentage
The percentage statistic is calculated by dividing the frequency for each midpoint by

the total frequency count for all midpoints in the chart or group and multiplying it by
100. For example, the frequency count for the Denver midpoint is 7 and the total
frequency count for the chart is 21, so the percentage statistic for Denver is 33.3%.

Cumulative Percentage
The cumulative percentage statistic adds the percentage for the current midpoint to

the percentage for all of the preceding midpoints in the chart or group. For example,
the percentage for the Denver midpoint is 33.3, and the percentage for the next
midpoint, Seattle, is 42.9, so the cumulative percentage for Seattle is 76.2.

Sum
The sum statistic is the total of the values, for each midpoint, for the variable

specified by the SUMVAR= option. For example, if you specify SUMVAR=SALES and
the values of the SALES variable for the seven Denver observations are 8734, 982,
1504, 3207, 4502, 624, and 918, the sum statistic for the Denver midpoint is 20,471.

You must use the SUMVAR= option to specify the variable for which you want the
sum statistic.

Mean
The mean statistic is the average of the values, for each midpoint, for the variable

specified by the SUMVAR= option. For example, if TYPE=MEAN and
SUMVAR=SALES, the mean statistic for the Denver midpoint is 2924.42.

You must use the SUMVAR= option to specify the variable for which you want the
mean statistic.

Calculating Weighted Statistics
By default, each observation is counted only once in the calculation of a chart

statistic. To calculate weighted statistics in which an observation can be counted more
than once, use the FREQ= option. This option identifies a variable whose values are
used as a multiplier for the observation in the calculation of the statistic. If the value of
the FREQ= variable is missing, 0, or negative, then the observation is excluded from
the calculation.

If you use the SUMVAR= option, then the SUMVAR= variable value for an
observation is multiplied by the FREQ= variable value for the observation for use in
calculating the chart statistic.

For example, to use a variable called COUNT to produce weighted statistics, assign
FREQ=COUNT. If you also assign the variable HEIGHT to the SUMVAR= option, then
the following table shows how the values of COUNT and HEIGHT would affect the
statistic calculation:

The GBARLINE Procedure Plot Variable Values Out of Range 747

Value of COUNT Value of HEIGHT Number of times the
observation is used

Value used for
HEIGHT

1 55 1 55

5 65 5 325

. 63 0 -

-3 60 0 -

By default, the percentage and cumulative percentage statistics are calculated based
on the frequency. If you want to graph a percentage or cumulative percentage based on
a sum, then you can use the FREQ= option to specify a variable to use for the "sum"
calculation and specify the PCT statistic, as shown in this example:

freq=count type=pct

Because the variable that is specified by the FREQ= option determines the number of
times an observation is counted, the value of COUNT is the equivalent of the sum
statistic.

See also the descriptions of the TYPE=, SUMVAR=, and FREQ= options.

Note: The FREQ= option is not supported by ActiveX or Java. �

Missing Values
By default, the GBARLINE procedure ignores missing midpoint values for the bar

variable. If you specify the MISSING option, then missing values are treated as a valid
midpoint and are included on the chart.

When the value of the variable that is specified in the FREQ= option is missing, 0, or
negative, the observation is excluded from the calculation of the chart statistic.

When the value of the variable specified in the SUMVAR= option is missing, the
observation is excluded from the calculation of the chart statistic.

If the value of the plot variable is missing, then the GBARLINE procedure does not
include the observation in the plot overlay. If you specify interpolation with a SYMBOL
definition, then the plot is not broken at the missing value.

Plot Variable Values Out of Range
Exclude data values from a plot overlay by restricting the range of axis values with

the RAXIS= options or with the ORDER= option in an AXIS statement. When an
observation contains a value outside of the specified axis range, the GBARLINE
procedure excludes the observation from the plot and issues a message to the log.

If you specify interpolation with a SYMBOL definition, then by default values outside
of the axis range are excluded from interpolation calculations and, as a result, can
change interpolated values for the plot overlay.

To specify that values out of range are included in the interpolation calculations, use
the MODE= option in a SYMBOL statement. When MODE=INCLUDE, values that fall
outside of the axis range are included in interpolation calculations but excluded from
the plot. The default (MODE=EXCLUDE) omits observations that are outside of the
axis range from interpolation calculations. See the MODE= option of in “SYMBOL
Statement” on page 183 for details.

748 About Patterns Chapter 28

About Patterns
When a chart needs one or more patterns, the procedure uses either default patterns

and outlines that are automatically generated by SAS/GRAPH, or patterns, colors,
outlines, and images that are defined by PATTERN statements, graphics options, and
procedure options.

The following sections summarize pattern behavior for the GBARLINE procedure.
For more information, see “PATTERN Statement” on page 169.

Default Patterns and Outlines
In general, the default pattern that the GBARLINE procedure uses is a solid fill that

it rotates once through the colors list, skipping the color that is being used as the
foreground color. The procedure also outlines all areas in the foreground color.
(Typically, the foreground color is the first color in the device’s colors list.)

Specifically, the GBARLINE procedure uses default patterns and outlines when you
do not specify any of the following:

� any PATTERN statements

� the COLORS= graphics options (that is, you use the device’s default colors list and
it has more than one color)

� the COUTLINE= option in the BAR statement.

If you do not specify any of these statements or options, then the GBARLINE
procedure

� selects the first default fill pattern, which is always solid, and rotates it through
the colors list, generating one solid pattern for each color. If the first color in the
device’s colors list is black (or white), then the procedure skips that color and
begins generating patterns with the next color.

� uses the foreground color to outline every patterned area.

If the procedure needs additional patterns, PROC GBARLINE selects the next
default pattern fill (empty) and rotates it through the colors list, skipping the
foreground color as before. The procedure continues in this fashion until it has
generated enough patterns for the chart.

Changing any of these conditions may change or override the default behavior:

� If you specify a colors list with the COLORS= option in a GOPTIONS statement
and the list contains more than one color, then the procedure rotates the default
solid pattern through that list, using every color, even if the foreground color is
black (or white). The default outline color remains the foreground color.

� Whenever there are PATTERN definitions in effect, whether or not the
GBARLINE procedure can use them, the default outline color for all patterns
changes from foreground to SAME, as described in “User-Defined Patterns,
Outlines, and Images” on page 748.

For a description of these graphics options, see Chapter 8, “Graphics Options and
Device Parameters Dictionary,” on page 261.

User-Defined Patterns, Outlines, and Images
You can use PATTERN statements to explicitly specify patterns, including color or fill

type or both. You can also specify images to fill the bars. For complete information on
all patterns, see “PATTERN Statement” on page 169. See also the section on controlling
patterns and colors for each chart type.

The GBARLINE Procedure Procedure Syntax 749

When you use PATTERN statements, the procedure uses the specified patterns until
all of the PATTERN definitions they generate have been used. Then, if more patterns
are required, the procedure returns to the default pattern rotation.

Whenever you specify any PATTERN statement, the default pattern outline changes.
Instead of the foreground color, the outline color is the same as the fill color; for
example, a blue bar has a blue outline. The effect is the same as specifying
COUTLINE=SAME. Even when the procedure runs out of user-defined patterns and
generates default patterns, the outlines continue to match the interior pattern color.

To change the outline color of any pattern, whether it’s a default or user-defined
pattern, use the COUTLINE= option in the BAR statement that generates the chart.

You can use the PATTERN statement to fill specified bars with specified images. For
details, see “Placing Images on the Bars of Two-Dimensional Bar Charts” on page 116.

You can also add background images. The IBACK= goption (see “IBACK” on page
317) specifies image files that fill the background area. For further information,
including a listing of recognized image file types, see “Image File Types Supported by
SAS/GRAPH” on page 106 and “Placing a Background Image” on page 113.

Version 6 Patterns
If you specify the V6COMP graphics option, then the procedure generates patterns

by rotating the appropriate Version 6 default patterns through all of the colors in the
colors list. With V6COMP, all patterns are outlined in the same color as the fill.

Note: The V6COMP graphics option is not supported by ActiveX for graphs
generated by the GBARLINE procedure. �

Procedure Syntax
Requirements:

One BAR statement

Global statements: AXIS, FOOTNOTE, GOPTIONS, PATTERN, TITLE
Reminder: The procedure can include the BY, FORMAT, LABEL, and WHERE
statements also.
Supports:

RUN-group processing
Output Delivery System (ODS)

Not supported by: Java

PROC GBARLINE <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<IMAGEMAP=output-data-set>;

BAR bar-variable </option(s)>;

<PLOT </option(s)>;>

750 PROC GBARLINE Statement Chapter 28

PROC GBARLINE Statement

Identifies the data set containing the chart variables. Optionally specifies annotation.

Requirements: An input data set is required.
Not supported by: Java

Syntax

PROC GBARLINE <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<IMAGEMAP=output-data-set>;

Options
PROC GBARLINE statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs that are produced by the GBARLINE
procedure. To annotate individual graphs, use the ANNOTATE= option in the BAR
statement.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

DATA=input-data-set
specifies the SAS data set that contains the variable(s) to chart. By default, the
procedure uses the most recently created SAS data set.
See also: “SAS Data Sets” on page 29 and “About the Bar Variable” on page 742

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GBARLINE
procedure with the HTML= option.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

The GBARLINE Procedure BAR Statement 751

BAR Statement

Creates vertical bar charts in which the height of the bars represents the value of the bar statistic
for each category of data.

Requirements: One bar variable is required.
Global statements: AXIS, FOOTNOTE, PATTERN, TITLE
Supports: Drill-down functionality
Not supported by: Java

Description
The BAR statement specifies the variable that defines the categories of data to chart.
These statements automatically

� determine the midpoints
� calculate the bar statistic for each midpoint (the default is FREQ)
� scale the response axis and the bars according to the statistic value
� determine bar width and spacing
� assign patterns to the bars; the default bar pattern is SOLID
� draw a frame around the axis area using the first color in the colors list.

You can use statement options to select or order the midpoints (bars), to control the
tick marks on the response axis, to change the type of bar statistic, to display specific
statistics, and to modify the appearance of the chart. You can also specify additional
variables by which to sum the data.

In addition, you can
� use global statements to modify the axes and the bar patterns. See Chapter 7,

“SAS/GRAPH Statements,” on page 121 for more information.
� add titles and footnotes to the chart. See “TITLE, FOOTNOTE, and NOTE

Statements” on page 210 for more information.
� use an Annotate data set to enhance the chart. See Chapter 24, “Using Annotate

Data Sets,” on page 587 for more information.
� display an image in the background of the chart. See “IBACK” on page 317 for

more information.
� display images in the bars of the chart. See the IMAGE= option on page 171 for

the PATTERN statement.

Syntax

BAR bar-variable </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set
CAUTOREF=reference-line-color

CAXIS=axis-color

CERROR=error-bar-color

CFRAME=background-color

COUTLINE=bar-outline-color | SAME

752 BAR Statement Chapter 28

CREF=reference-line-color|(reference-line-color)|reference-line-color-list
CTEXT=text-color
FRAME | NOFRAME
FRONTREF
LAUTOREF=reference-line-type
LREF=reference-line-type|(reference-line-type)|reference-line-type-list
PATTERNID=BY|MIDPOINT
SPACE=bar-spacing
WIDTH=bar-width
WOUTLINE=bar-outline-width

� statistic options
CFREQ
CLM=confidence-level
CPERCENT
ERRORBARS=BARS | BOTH | TOP
FREQ
FREQ=numeric-variable
INSIDE=statistic
MEAN
OUTSIDE=statistic
PERCENT
SUM
SUMVAR=summary-variable
TYPE=statistic

� midpoint options
DISCRETE
LEVELS=number-of-midpoints
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING

� axes options
ASCENDING
AUTOREF
AXIS=AXIS<1...99>
CLIPREF
DESCENDING
MAXIS=AXIS<1...99>
MINOR=number-of-minor-ticks
NOAXIS
NOBASEREF
NOZERO
RANGE
RAXIS=value-list | AXIS<1...99>
REF=value-list

� catalog entry description options

The GBARLINE Procedure BAR Statement 753

DESCRIPTION=’entry-description’

NAME=’string’

� ODS options

HTML=variable

Required Arguments

bar-variable
specifies the variable that defines the categories of data to chart. The variable must
be in the input data set.

See also: “About the Bar Variable” on page 742

Options
Options in the BAR statement affect all graphs that are produced by that statement.

You can specify as many options as you want and list them in any order. For details on
specifying colors, see Chapter 6, “SAS/GRAPH Colors and Images,” on page 91. For
details on specifying images, see “Specifying Images in SAS/GRAPH Programs” on page
106. For a complete description of the graphics options, see Chapter 8, “Graphics
Options and Device Parameters Dictionary,” on page 261.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate charts produced by the BAR statement.

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

ASCENDING
arranges the bars in ascending order of the value of the bar statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the
lengths of the bars. ASCENDING reorders the bars from shortest to longest. The
ordering is left to right.

ASCENDING overrides any midpoint order specified in the MIDPOINTS= option or
specified in the ORDER= option in an AXIS statement assigned to the midpoint axis.

AUTOREF
draws a reference line at each major tick mark on the chart (left) response axis. To
draw reference lines at specific points on the response axis, use the REF= option.

By default, reference lines are drawn in front of the bars. To draw reference lines
behind the bars, use the CLIPREF option.

AXIS=AXIS<1...99>
See RAXIS= on page 761.

CAUTOREF=reference-line-color
specifies the color of reference lines drawn at major tick marks, as determined by the
AUTOREF option. The default color is either the value of the CAXIS= option or the
first color in the color list. To specify a line type for these reference lines, use the
LAUTOREF= option.

CAXIS=axis-color
specifies a color for the response and midpoint axis lines and for the default axis area
frame. If you omit the CAXIS= option, PROC GBARLINE searches for a color
specification in this order:

1 the COLOR= option in AXIS definitions

754 BAR Statement Chapter 28

2 the first color in the colors list (the default).

CERROR=error-bar-color
specifies the color of error bars. The default is the color of the response axis, which is
controlled by the CAXIS= option.

CFRAME=background-color
CFR=background-color

specifies the color with which to fill the axis area.
The axis area color does not affect the frame color, which is always the same as

the midpoint axis line color and controlled by the CAXIS= option. By default, the
axis area is not filled.

The CFRAME= option is overridden by the NOFRAME option.

Note: If the background color, the bar color, and the outline color are the same,
then you will not be able to distinguish the bars. �

CFREQ
displays the cumulative frequency statistic above the bars. A maximum of two
statistics can be printed. This option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ option is specified.
See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar

Line Charts” on page 763

CLIPREF
clips the reference lines at the bars. This makes the reference lines appear to be
behind the bars.

CLM=confidence-level
specifies the confidence intervals to use when drawing error bars. Values for
confidence-level must be greater than or equal to 50 and strictly less than 100. The
default is 95. See ERRORBAR= for details on how error bars are computed and
drawn.

COUTLINE=bar-outline-color | SAME
outlines all bars or bar segments using the specified color. SAME specifies that the
outline color of a bar is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is black

for the ActiveX device. Otherwise, the default outline color is the foreground
color (the first color in the colors list).

� If you specify the PATTERN statement or the V6COMP graphics option, the
default is COUTLINE=SAME.

The COUTLINE= option is not valid when SHAPE=CYLINDER.
See also: “Controlling Bar Line Chart Patterns, Colors, and Images” on page 764

and “About Patterns” on page 748

CPERCENT
CPCT

displays the cumulative percentage statistic above the bars. A maximum of two
statistics can be printed. This option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ, CFREQ, or PERCENT option is specified.
See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar

Line Charts” on page 763

CREF=reference-line-color|(reference-line-color)|reference-line-color-list
CR=reference-line-color|(reference-line-color)|reference-line-color-list

The GBARLINE Procedure BAR Statement 755

specifies colors for reference lines. Specifying a single color without parentheses
applies that color to all reference lines, including lines drawn with the AUTOREF
and REF= options. The CAUTOREF= option overrides the CREF= reference line
color for reference lines drawn with the AUTOREF option. Specifying a single color
in parentheses applies that color only to the first reference line drawn with the REF=
option. Specifying a reference color list applies colors in sequence to successive lines
drawn with the REF= option. The syntax of the color list is of the form (color1 color2
...colorN) or (color1, color2 ..., colorN). The default color for reference lines is either
the value of the CAXIS= option or the first color in the color list. To specify line types
for these reference lines, use the LREF= option.

CTEXT=text-color
specifies the color of all text on the chart that is not otherwise assigned a color. Text
includes axis values and axis labels in the response and midpoint axes; and the
displayed statistics. For the ActiveX device, the default color is black. For other
devices, if you omit the CTEXT= option, PROC GBARLINE searches for a color
specification in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the first color in the colors list (the default).
The CTEXT= option overrides the color specification for the axis label and the tick

mark values in the COLOR= option in an AXIS definition assigned to an axis.
The CTEXT= option is overridden by the COLOR= suboption of a LABEL= or

VALUE= option in an AXIS definition assigned to an axis. In this case the suboption
determines the color of the axis label or the color of the tick mark values, respectively.

DESCENDING
arranges the bars in descending order of the value of the bar statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the
lengths of the bars. DESCENDING reorders the bars from longest to shortest. The
ordering is left to right.

DESCENDING overrides any midpoint order that is specified with the
MIDPOINTS= option or that is specified in the ORDER= option in an AXIS
statement assigned to the midpoint axis.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
the entry-description is 256 characters. The description does not appear on the chart.
By default, the GBARLINE procedure assigns a description of the form GBARLINE
CHART OF variable, where variable is the name of the bar variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to the description of the options on page 222 and to
“Substituting BY Line Values in a Text String” on page 226. The 256-character limit
applies before the substitution takes place for these options; thus, if in the SAS
program the entry-description text exceeds 256 characters, it is truncated to 256
characters, and then the substitution is performed.

The descriptive text is shown in each of the following:

� the "description" portion of the Results window

� the catalog-entry properties that you can view from the Explorer window

� the Table of Contents that is generated when you use CONTENTS= on an ODS
statement (see “Linking to Output through a Table of Contents” on page 495),
assuming the GBARLINE output is generated while the contents page is open

� the Description field of the PROC GREPLAY window.

756 BAR Statement Chapter 28

DISCRETE
treats a numeric bar variable as a discrete variable rather than as a continuous
variable. The GBARLINE procedure creates a separate midpoint and, hence, a
separate bar for each unique value of the bar variable. If the bar variable has a
format associated with it, then each formatted value is treated as a midpoint.

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE. The ORDER= option in an AXIS statement that is
assigned to the midpoint axis can rearrange or exclude discrete midpoint values.

ERRORBAR=BARS | BOTH | TOP
draws confidence intervals for either of the following:

� the mean of the SUMVAR= variable for each midpoint if you specify
TYPE=MEAN

� the percentage of observations assigned to each midpoint if you specify
TYPE=PCT with no SUMVAR= option.

The ERRORBAR= option cannot be used with values of the TYPE= option other than
MEAN or PCT. Valid values for ERRORBAR= are:

BARS
draws error bars as bars half the width of the main bars.

BOTH
draws error bars as two ticks joined by a line (default).

TOP
draws the error bar as a tick for the upper confidence limit that is joined to the top
of the bar by a line.
By default, ERRORBAR= uses a confidence level of 95 percent. You can specify

different confidence levels with the CLM= option.
When you use ERRORBAR= with TYPE=PCT, the confidence interval is based on

a normal approximation. Let TOTAL be the total number of observations, and PCT
be the percentage assigned to a given midpoint. The standard error of the percentage
is approximated as

APSTDERR=100 * SQRT((PCT/100) * (1--(PCT/100)) / TOTAL);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the percentage is computed as

UCLP = PCT + APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

The lower confidence limit for the percentage is computed as

LCLP = PCT - APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

When you use ERRORBAR= with TYPE=MEAN, the sum variable must have at
least two non-missing values for each midpoint. Let N be the number of observations
assigned to a midpoint, MEAN be the mean of those observations, and STD be the
standard deviation of the observations. The standard error of the mean is computed
as

STDERR = STD / SQRT(N);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the mean is computed as

UCLM = MEAN + STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

The lower confidence limit for the mean is computed as

LCLM = MEAN - STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

The GBARLINE Procedure BAR Statement 757

If you want the error bars to represent a given number C of standard errors
instead of a confidence interval, and if the number of observations assigned to each
midpoint is the same, then you can find the appropriate value for the CLM= option
by running a DATA step. For example, if you want error bars that represent one
standard error (C=1) with a sample size of N , you can run the following DATA step
to compute the appropriate value for the CLM= option and assign that value to a
macro variable &LEVEL:

data null;
c = 1;
n = 10;
level = 100 * (1 - 2 * (1 - probt(c, n-1)));
put all;
call symput(’level’,put(level,best12.));
run;

Then when you run the GBARLINE procedure, you can specify CLM=&LEVEL.
Note that this trick does not work precisely if different midpoints have different

numbers of observations. However, choosing an average value for N may yield
sufficiently accurate results for graphical purposes if the sample sizes are large or do
not vary much.

FRAME | NOFRAME
FR | NOFR

specifies whether the axis area frame is drawn. The default is FRAME, which draws
a frame around the axis area. Specifying NOFRAME removes the axis area frame,
including any background color or image. To remove one or more axis elements, use
either the AXIS statement or the NOAXIS option.

The NOFRAME option overrides the CFRAME= option and “IBACK” on page 317.
The color of the frame or backplane outline is the color of the midpoint axis, which

is determined by the CAXIS= option.
If the V6COMP graphics option is in effect, the default value for GRSEGs is

NOFRAME. See “Version 6 Patterns” on page 749 for more information.

FREQ
displays the frequency statistic above the bars. Non-integer values are rounded down
to the nearest integer. A maximum of two statistics can be printed. This option is
ignored if the bars are too narrow to avoid overlapping values. This option overrides
the CFREQ, PERCENT, CPERCENT, SUM, and MEAN options.

See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar
Line Charts” on page 763

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the bar statistic. Each observation is counted the number of times
that is specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, then the observation is not used in the
statistic calculation. Non-integer values of numeric-variable are truncated to
integers. The FREQ= option is valid with all bar statistics.

Because you cannot use TYPE=PERCENT, TYPE=CPERCENT, TYPE=FREQ, or
TYPE=CFREQ with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum.

The statistics will not be affected by applying a format to numeric-variable.

Not supported by: ActiveX, Java

See also: “Calculating Weighted Statistics” on page 746

758 BAR Statement Chapter 28

FRONTREF
specifies that reference lines drawn by the AUTOREF or REF= options should be
drawn in front of the bars.

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with the bars and
point to the data or graph you wish to display when the user drills down on the area.
The values of variable can be up to 1024 characters long. Characters after the
1024-character limit (including any closing quotes) are truncated.

INSIDE=statistic
displays the values of the specified statistic inside the bars. Statistic can be one of
the following:

� FREQ
� CFREQ
� PERCENT | PCT
� CPERCENT | CPCT
� SUM
� MEAN

To display statistics with INSIDE=SUM or INSIDE=MEAN, you must also specify
the SUMVAR= option.
See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar

Line Charts” on page 763

LAUTOREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks, as specified by the
AUTOREF option. The reference-line-type value can be a whole number from 1 to 46.
A value of 1 specifies a solid line; values 2 through 46 specify dashed lines. The
default value 1 draws a solid line. To specify colors for these reference lines, use the
CAUTOREF= option.

LEVELS=number-of-midpoints
specifies the number of midpoints for a numeric bar variable. The range for each
midpoint is calculated automatically, using the algorithm in Terrell and Scott (1985).
The LEVELS= option is ignored if

� the bar variable is character type
� the DISCRETE option is used
� the MIDPOINTS= option is used.

Featured in: Example 1 on page 768

LREF=reference-line-type|(reference-line-type|reference-line-type-list)
LR=reference-line-type|(reference-line-type|reference-line-type-list)

specifies line types for reference lines. Line types are specified as whole numbers
from 1 to 46, with 1 representing a solid line and the other values representing
dashed lines. Specifying a line type without parentheses applies that type to all
reference lines drawn with the AUTOREF and REF= options. Note that the
LAUTOREF= option overrides LREF=reference-line-type for reference lines drawn
with the AUTOREF option. Specifying a single line type in parentheses applies that
line type to the first reference line drawn with the REF= option. Specifying a line
type list applies line types in sequence to successive reference lines drawn with the
REF= option. The syntax of the line-type list is of the form (type1 type2 ...typeN). The
default line type is specified by the AXIS statement’s STYLE= option. By default,
STYLE=1, a solid line. To specify colors for these reference lines, use the CREF=
option.

The GBARLINE Procedure BAR Statement 759

MAXIS=AXIS<1...99>
assigns the specified AXIS definition to the midpoint axis. The MAXIS= option is
ignored if the specified AXIS definition does not exist.

See also: “AXIS Statement” on page 124 and “About Midpoints” on page 742

MEAN
displays the mean statistic above the bars. A maximum of two statistics can be
printed. This option is ignored if the bars are too narrow to avoid overlapping values
or if the FREQ, CFREQ, PERCENT, CPERCENT, or SUM option is specified. MEAN
is ignored unless you also use the SUMVAR= option.

See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar
Line Charts” on page 763

MIDPOINTS=value-list
specifies the midpoint values for the bars. The way you specify value-list depends on
the type of the bar variable.

� For numeric bar variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

n<...n> TO n <BY increment> <n <...n>>

If a numeric variable has an associated format, the specified values must be
the unformatted values.

By default, numeric variable values are treated as continuous (if you omit the
DISCRETE option), and

� the lowest midpoint consolidates all data points from negative infinity to
the median of the first two midpoints

� the highest midpoint consolidates all data points from the median of the
last two midpoints up to infinity

� all other values in value-list specify the median of a range of values, and
the GBARLINE procedure calculates the midpoint values.

If you include the DISCRETE option, then each value in value-list specifies a
unique numeric value.

� For character bar variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see ORDER= on page 130.
If the value-list for either type of variable specifies so many midpoints that the

axis values overwrite each other, then the values may be unreadable. In this case the
procedure writes a warning to the SAS log. On many devices, this problem can be
corrected by either adjusting the size of the text with the HTEXT= graphics option or
by increasing the number of cells in your graphics display using the HPOS= and
VPOS= graphics options.

The ORDER= option in the AXIS statement overrides the order specified in the
MIDPOINTS= option. The BAR statement options ASCENDING and DESCENDING
also override both the MIDPOINTS= and ORDER= options in the AXIS statement.

See also: “About Midpoints” on page 742

760 BAR Statement Chapter 28

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the bar variable is numeric.

MINOR=number-of-minor-ticks
specifies the number of minor tick marks between each major tick mark on the bar
response axis.

The MINOR= option in a bar chart statement overrides the number of minor tick
marks specified in the MINOR= option in an AXIS definition assigned to the
response axis with the RAXIS= option.

MISSING
accepts a missing value as a valid midpoint for the bar variable. By default,
observations with missing values are ignored.

NAME=’string’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GBARLIN. If the name
duplicates an existing entry name, then SAS/GRAPH software uses a number to
generate a unique name—for example, GBARLIN1.

NOAXIS
suppresses all axes, including axis lines, axis labels, axis values, and all major and
minor tick marks. If you specify an axis definition with the MAXIS= or RAXIS=
options, then the axes are generated as defined in the AXIS statement, but then all
lines, labels, values, and tick marks are suppressed. Therefore, axis statement
options such as ORDER=, LENGTH=, and OFFSET= will still be used.

To remove only selected axis elements such as lines, values, or labels, use specific
AXIS statement options.

NOAXIS does not suppress either the default frame or an axis area fill requested
by the CFRAME= option. To remove the axis frame, use the NOFRAME option in the
procedure.

NOBASEREF
suppresses the zero reference line when the SUM or MEAN bar statistic has negative
values.

NOZERO
suppresses any midpoints for which there are no corresponding values of the bar
variable and, hence, no bar.

Note: If a bar is omitted and if you have also specified bar labels with the
VALUE= option in an AXIS statement, then the labels can be shifted and not
displayed with the correct bar. �

OUTSIDE=statistic
displays the values of the specified statistic above the bars. Statistic can be one of
the following:

� FREQ

� CFREQ

� PERCENT | PCT

� CPERCENT | CPCT

� SUM

� MEAN

To display statistics with OUTSIDE=SUM or OUTSIDE=MEAN, you must also
specify the SUMVAR= option.

The GBARLINE Procedure BAR Statement 761

See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar
Line Charts” on page 763

PATTERNID=BY | MIDPOINT
specifies the way fill patterns are assigned. By default, PATTERNID=MIDPOINT.
Values for PATTERNID= are as follows:

BY
changes patterns each time the value of the BY variable changes. All bars use the
same pattern if the GBARLINE procedure does not include a BY statement.

MIDPOINT
changes patterns every time the midpoint value changes.

See also: “Controlling Bar Line Chart Patterns, Colors, and Images” on page 764

PERCENT
PCT

displays the percentages of observations having a given value for the bar variable
above the bars. A maximum of two statistics can be printed. This option is ignored if
the bars are too narrow to avoid overlapping values or if the FREQ or CFREQ option
is specified.
See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar

Line Charts” on page 763

RANGE
displays on the axis of the chart the range of numeric values represented by each
bar. In the graphics output, the less-than symbol (<) and the less-than-or-equal-to
symbol (<=) are used to accurately specify the starting and ending values of each
range. The RANGE option has no affect on axes that represent character data. By
default, the values shown on the axis are determined by the value of the
MIDPOINTS= option on page 759. If specified, the DISCRETE option on page 756
overrides the RANGE option.

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies values for the major tick mark divisions on the response axis or assigns the
specified AXIS definition to the axis. See the MIDPOINTS= option on page 759 for a
description of value-list. By default, the GBARLINE procedure scales the response
axis automatically and provides an appropriate number of tick marks.

You can specify negative values, but negative values are reasonable only when
TYPE=SUM or TYPE=MEAN and one or more of the sums or means are less than 0.
Frequency and percentage values are never less than 0.

For lists of values, a separate major tick mark is created for each individual value.
A warning message is written to the SAS log if the values are not evenly spaced.

If the values represented by the bars are larger than the highest tick mark value,
then the bars are truncated at the highest tick mark.
See also: “AXIS Statement” on page 124

REF=value-list
draws reference lines at the specified points on the bar response axis. See the
MIDPOINTS= option on page 759 for a description of value-list.

Values can be listed in any order, but should be within the range of values
represented by the response axis. A warning is written to the SAS log if any of the
points are off of the axis, and no reference line is drawn for such points. You can use
the AUTOREF option to draw reference lines automatically at all of the major tick
marks.

762 BAR Statement Chapter 28

SPACE=bar-spacing
specifies the amount of space between individual bars. Bar-spacing can be any
non-negative number, including decimal values. Units are character cells. By
default, the GBARLINE procedure calculates spacing based on the size of the axis
area and the number of bars on the chart. Use SPACE=0 to leave no space between
adjacent bars.

The SPACE= option is ignored if the specified spacing requests a chart that is too
large to fit in the space available for the midpoint axis, and a warning message is
issued.

SUM
displays the sum statistic above the bars. A maximum of two statistics can be
printed. This option is ignored if the bars are too narrow to avoid overlapping values
or if the FREQ, CFREQ, PERCENT, or CPERCENT option is specified. SUM is
ignored unless you also use the SUMVAR= option.
See also: “About Chart Statistics” on page 745 and “Displaying Statistics In Bar

Line Charts” on page 763

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GBARLINE
procedure calculates the sum or, if requested, the mean of summary-variable for each
midpoint. The resulting statistics are represented by the length of the bars along the
response axis, and they are displayed at major tick marks.

When you use the SUMVAR= option, the TYPE= option must be either SUM or
MEAN. With the SUMVAR= option, the default is TYPE=SUM.
Featured in: Example 1 on page 768

TYPE=statistic
specifies the bar statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

CFREQ
cumulative frequency

PERCENT PCT
percentage

CPERCENT CPCT
cumulative percentage

� If the SUMVAR= option is used, statistic can be:

SUM
sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ, TYPE=CFREQ, TYPE=PERCENT, or
TYPE=CPERCENT with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum. See also “Calculating Weighted Statistics” on page 746.
See also: “About Chart Statistics” on page 745 for a complete description of statistic

types

WIDTH=bar-width
specifies the width of the bars. By default, the GBARLINE procedure selects a bar
width that accommodates the midpoint values displayed on the midpoint axis using a

The GBARLINE Procedure BAR Statement 763

hardware font and a height of one cell. Units for bar-width are character cells. The
value for bar-width must be greater than 0, but it does not have to be an integer, for
example,

bar site / width=1.5;

If the requested bar width results in a chart that is too large to fit in the space
available for the midpoint axis, then the procedure issues a warning in the log and
ignores the WIDTH= specification. If the specified width is too narrow, the procedure
may display the midpoint values vertically.

WOUTLINE=bar-outline-width
specifies the width of the bar outline in pixels.

The Bar Statistic and the Response Axis
In bar line charts, the scale of values of the bar statistic is displayed on the left

response axis. By default, the response axis is divided into evenly spaced intervals
identified with major tick marks that are labeled with the corresponding statistic value.
Minor tick marks are evenly distributed between the major tick marks unless a log axis
has been requested. For sum and mean statistics, the major tick marks are labeled
with values of the SUMVAR= variable (formatted if the variable has an associated
format). The response axis is also labeled with the statistic type.

Displaying Statistics In Bar Line Charts
Statistic values on bar line charts are not printed by default, so you must explicitly

request a statistic with the FREQ, CFREQ, PERCENT, CPERCENT, SUM, MEAN,
INSIDE=, or OUTSIDE= option.

For graphs generated with the ActiveX device, you can display one statistic for each
bar. For graphs generated with other devices, you can display up to two statistics for
each bar. Statistics can be displayed either above the bars or inside the bars.

To specify a statistic that you want to display above the bars, specify the statistic
option (FREQ, CFREQ, PERCENT, CPERCENT, SUM, or MEAN) or specify
OUTSIDE=statistic. To specify a statistic that you want to display inside the bars,
specify INSIDE=statistic.

For graphs generated with the ActiveX device, the OUTSIDE= option overrides
INSIDE=, and INSIDE= overrides the FREQ, CFREQ, PERCENT, CPERCENT, SUM,
and MEAN options. For graphs generated with other devices, the individual statistic
options override the OUTSIDE= option.

If more than one statistic option is specified, only the highest priority statistic is
displayed. The priority order, from highest to lowest, is as follows:

1 FREQ
2 CFREQ
3 PERCENT
4 CPERCENT
5 SUM
6 MEAN

The bars must be wide enough to accommodate the text. You can adjust the width of
the bars with the WIDTH= option. To control the font and size of the text, use the
HTEXT= and FTEXT= graphics options.

Ordering and Selecting Midpoints
To rearrange character or discrete numeric midpoint values or to select ranges for

numeric values, use the MIDPOINTS= option. Remember that although changing the

764 BAR Statement Chapter 28

number of midpoints for numeric variables may change the range of values for
individual midpoints, it does not change the range of values for the chart as a whole.
For details, see “About Midpoints” on page 742.

Like the MIDPOINTS= option, the ORDER= option in the AXIS statement can
rearrange the order of the midpoints or suppress the display of discrete numeric or
character values. However, the ORDER= option cannot calculate the midpoints for a
continuous numeric variable, or exclude values from the calculations. For details, see
the description of the ORDER= option on page 130.

Controlling Bar Line Chart Patterns, Colors, and Images

Default Patterns and Outlines
Each bar in a bar line chart is filled with a pattern. By default, the procedure

� fills the bars with bar patterns, beginning with the default fill, SOLID, and rotating
it through the colors list. When the solid patterns are exhausted, the procedure
selects the next default bar pattern (empty) and rotates it through the colors list.
It continues in this fashion until all of the required patterns have been assigned.

If you use the device’s default colors and the first color in the list is either black
or white, then the procedure does not create a pattern in that color. If you specify
a colors list with the COLORS= graphics option, then the procedure uses all the
colors in the list to generate the patterns.

� outlines bars using the first color in the colors list.

See “About Patterns” on page 748 for more information on how the GBARLINE
procedure assigns default patterns and outlines.

User-Defined Patterns
To override the default patterns and select fills and colors for the bars, use the
PATTERN statement. Only solid and empty bar patterns are valid; all other pattern
fills are ignored. For a complete description of all bar patterns, see the VALUE= option
on page 171.

Whenever you use PATTERN statements, the default pattern outline color changes to
SAME. That is, the outline color is the same as the fill color. To specify the outline
color, use the COUTLINE= option (see COUTLINE= on page 754).

When Patterns Change
The PATTERNID= option controls when the pattern changes. By default,
PATTERNID=MIDPOINT, which specifies that the pattern changes every time the
midpoint value changes.

Instead of changing the pattern for each midpoint, you can change the pattern for
each BY group by changing the value of the PATTERNID= option. See the
PATTERNID= option on page 761 for details.

Axis Color
By default, axis elements use the first color in the colors list or the colors that are
specified by AXIS statement color options. However, BAR statement options can also
control the color of the axis lines, text, and frame.

To change the color of... Use this option...

the axis text CTEXT=

the axis lines CAXIS=

the area within the frame CFRAME=

The GBARLINE Procedure PLOT Statement 765

Adding Images to Bar Line Charts
You can apply images to the bars and to the backplane frame of bar line charts
developed with the BAR statement. For details, see “Specifying Images in SAS/GRAPH
Programs” on page 106.

PLOT Statement

Creates a plot overlay on top of the bar line chart.

Requirements: If specified, the PLOT statement must be specified after the BAR
statement.

Global statements: AXIS, FOOTNOTE, PATTERN, SYMBOL, TITLE
Supports: Drill-down functionality
Not supported by: Java

Description
The PLOT statement specifies one plot request. This statement automatically

� scales the plot response (right) axis to include the maximum and minimum data
values

� plots data points within the axis
� labels the plot response axis with the name of its variable and displays each major

tick mark value.

You can use statement options to specify a plot variable, manipulate the plot
response axis, modify the appearance of your graph, and describe catalog entries. You
can use SYMBOL definitions to modify plot symbols for the data points, join data
points, or specify other types of interpolations. For more information on the SYMBOL
statement, see “SYMBOL Statement” on page 183.

In addition, you can use global statements to modify the axis, or add titles, footnotes,
and notes to the plot.

Syntax

PLOT </options(s)>;

The PLOT statement is optional, but if specified, it must follow the BAR statement.
If you do not specify a PLOT statement, GBARLINE generates only a bar chart and
duplicates the bar response axis (left axis) as the plot response axis (right axis).

To specify a variable to plot, use the SUMVAR= option. If you do not specify a plot
variable, GBARLINE uses the bar variable as the plot variable. For more information,
see “About the Plot Variable” on page 745 and the description of the SUMVAR= option.

option(s) can be one or more options from any or all of the following categories:
� appearance options:

NOLINE

NOMARKER

766 PLOT Statement Chapter 28

� statistic options:
CFREQ
CPERCENT
FREQ
FREQ=numeric-variable
MEAN
PERCENT
SUM
SUMVAR=plot-variable
TYPE=statistic

� axes options:
ASCENDING
AXIS=AXIS<1...99>
DESCENDING
RAXIS=value-list | AXIS<1...99>
MINOR=number-of-minor-ticks

� ODS options:
HTML=variable

Options
You can specify as many options as you want and list them in any order.

ASCENDING
joins the plot points in ascending order of the value of the plot statistic. By default,
data points are joined in ascending order of the midpoint value.

AXIS=AXIS<1...99>
See RAXIS= on page 767.

DESCENDING
joins the plot points in descending order of the value of the plot statistic. By default,
plot points are arranged in ascending order of the midpoint value.

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the plot statistic. Each observation is counted the number of times
that is specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, then the observation is not used in the
statistic calculation. Non-integer values of numeric-variable are truncated to
integers. The FREQ= option is valid with all plot statistics.

Because you cannot use TYPE=PERCENT, TYPE=CPERCENT, TYPE=FREQ, or
TYPE=CFREQ with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum.

The statistics will not be affected by applying a format to numeric-variable.
Not supported by: ActiveX, Java

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with the plot points.
The links point to the data or graph that you wish to display when the user drills
down on the plot point or area. The values of variable can be up to 1024 characters

The GBARLINE Procedure PLOT Statement 767

long. Characters after the 1024-character limit (including any closing quotes) are
truncated.

Note: This option is supported only by the ActiveX device drivers. �

MINOR=number-of-minor-ticks
specifies the number of minor tick marks that are drawn between each major tick
mark on the plot response axis. Minor tick marks are not labeled. The MINOR=
option overrides the NUMBER= suboption of the MINOR= option in an AXIS
definition. You must specify a positive number.

NOLINE
suppresses the drawing of the line plot overlay, regardless of what is specified in the
SYMBOL statement.

NOMARKER
suppressed the drawing of the marker symbol, regardless of what is specified in the
SYMBOL statement.

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies the major tick mark values for the plot (right) response axis or assigns an
AXIS definition.

The way you specify value-list depends on the type of variable:

� For numeric variables, value-list is either an explicit list of values, or a starting
and an ending value with an interval increment, or a combination of both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment > <n <...n> >

If a numeric variable has an associated format, the specified values must be
the unformatted values.

� For date-time values, value-list includes any SAS date, time, or datetime value
described for the SAS functions INTCK and INTNX, shown here as SAS-value:

’SAS-value’i < ...’SAS-value’i>

’SAS-value’i TO ’SAS-value’ i<BY interval>

SUMVAR=plot-variable
specifies the variable to plot. Plot-variable, if specified, must be numeric. The
GBARLINE procedure calculates the sum or, if requested, the mean of plot-variable
for each midpoint.

When you use the SUMVAR= option, the TYPE= option must be either SUM or
MEAN. With the SUMVAR= option, the default is TYPE=SUM.

Featured in: Example 1 on page 768

See also: “About the Plot Variable” on page 745

TYPE=statistic
specifies the plot statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

CFREQ
cumulative frequency

768 Examples Chapter 28

PERCENT PCT
percentage

CPERCENT CPCT
cumulative percentage

� If SUMVAR= is used, statistic can be one of the following:

SUM
sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ, TYPE=CFREQ, TYPE=PERCENT, or
TYPE=CPERCENT with SUMVAR=, you must use FREQ= to calculate percentages
or frequencies based on a sum.
See also: “About Chart Statistics” on page 745 and “Calculating Weighted

Statistics” on page 746

About SYMBOL Definitions
SYMBOL statements control the appearance of plot symbols and lines, and define

interpolation methods. They can specify
� the shape, size, and color of the plot symbols that mark the data points
� plot line style, color, and width
� an interpolation method for plotting data
� how missing values are treated in interpolation calculations.

SYMBOL definitions are assigned either by default by the GBARLINE procedure or
explicitly with a plot request.

If no SYMBOL definition is currently in effect, the GBARLINE procedure produces a
join interpolation using the default plot symbol. The default plot symbol for ActiveX
device drivers is the square. For other devices, the default symbol is the plus sign (+).

See “SYMBOL Statement” on page 183 for a complete discussion of the features of
the SYMBOL statement.

Examples

Example 1: Producing a Basic Bar Line Graph with Styles
Procedure Features:

BAR statement options:
SUMVAR=
DISCRETE

PLOT statement options:
SUMVAR=

Other Features:
INFORMAT statement

The GBARLINE Procedure Example 1: Producing a Basic Bar Line Graph with Styles 769

FORMAT statement
STYLE= option on the ODS statement

Sample library member: GBLSTOCK

This example produces a basic bar line graph showing the volume and closing price
for each of five days of trading activity on the New York Stock Exchange. The vertical
bars indicate the volume, and the overlay plot graphs the closing price. It uses the ODS
style ANALYSIS.

Set the graphics environment. Some graphics options may override style attributes, so if you
are using a style, specify the minimum goptions needed by your graph.

goptions reset=all device=activex;

Define the odsout fileref. Specify the path of the HTML file where you want ODS to write the
output.

filename odsout ’C:\your_web_path\’;

Open the HTML output destination and specify the ANALYSIS style.

ods html file=’gblstock.htm’ path=odsout style=analysis;

Create the data set NYSE. NYSE contains one observation for each of five workdays. Each
observation includes the date, closing price, and volume.

data nyse;
informat day date9.;
format day date5.;
input day $ high low close volume;

770 Example 2: Calculating Weighted Statistics Chapter 28

volume=volume/1000;
datalines;
02AUG2002 10478.76 10346.24 10426.91 1908809
03AUG2002 11042.92 10298.44 10274.65 1807543
04AUG2002 10498.22 10400.31 10456.43 1500656
05AUG2002 10694.47 10636.32 10762.98 1498403
06AUG2002 10801.12 10695.13 10759.48 1695602
;
run;

Define the title and footnote.

title1 "NYSE Closing Price and Volume By Day";
footnote j=r h=2 ’GBLSTOCK’;

Produce the bar line graph. The SUMVAR= option on the BAR statement specifies the
variable whose values determine the height of the bars. The DISCRETE option creates a
separate midpoint for each unique value of the bar variable. The SUMVAR= option on the PLOT
statement specifies the variable whose values are used to calculate the overlay plot.

proc gbarline data=nyse;
bar day / sumvar=volume discrete;
plot / sumvar=close;
run;

quit;

Close the ODS HTML destination. You must close the HTML destination before you can view
the output with a browser.

ods html close;

Example 2: Calculating Weighted Statistics

Procedure Features:
BAR statement options:

AXIS=
DESCENDING
SUMVAR=

PLOT statement options:
ASCENDING
AXIS=
FREQ=
SUMVAR=

Other Features:
AXIS statement
SYMBOL statement

The GBARLINE Procedure Example 2: Calculating Weighted Statistics 771

Sample library member: GBLWTSTA

This example uses the FREQ= option to calculate weighted statistics for the overlay
plot. During the manufacture of a metal-oxide semiconductor (MOS) capacitor, two
different cleaning processes were used by two manufacturing systems that were
operating in parallel. Process A used a standard cleaning solution, while Process B
used a different cleaning mixture that contained less particulate matter. For five
consecutive days, the causes of failure with each process were recorded.

Set the graphics environment.

goptions reset=all gunit=pct border cback=white
ftitle=swissb ftext=swiss htitle=5
htext=2;

Create the data set FAILURE. Each observation specifies the manufacturing process that
resulted in the defect, the date, the cause of the defects, and the total number of defects for that
date. Each observation also contains a variable, COST, that specifies the cost associated with
that type of defect.

data failure;
label cause = ’Cause of Failure’ ;
input process $ 1-9 day $ 13-19 cause $ 23-36 count 40-41;
datalines;

Process A March 1 Contamination 15
Process A March 1 Corrosion 2
Process A March 1 Doping 1
Process A March 1 Metallization 2
...more data lines...
Process B March 5 Metallization 0
Process B March 5 Miscellaneous 1

772 Example 2: Calculating Weighted Statistics Chapter 28

Process B March 5 Oxide Defect 8
Process B March 5 Silicon Defect 2
;
run;

data failure;
set failure;
if cause=’Contamination’ then cost=3.5;
else if cause=’Metallization’ then cost=10;
else if cause=’Oxide Defect’ then cost=10.5;
else if cause=’Corrosion’ then cost=4.5;
else if cause=’Doping’ then cost=3.6;
else if cause=’Silicon Defect’ then cost=5.4;
else cost=1.0;
output;

run;

Define the title and footnote.

title1 "The Cost of Defects";
footnote j=r h=3 ’GBLWTSTA ’;

Define the labels for the axes.

AXIS1 label=("Defects");
AXIS2 label=("Total Cost");

Specify the symbol, color, and symbol size to use for the overlay plot.

symbol1 v=square c=black h=2;

Produce the bar line graph. The SUMVAR= option on the BAR statement specifies the
variable that determines the height of the bars. The SUMVAR= option on the PLOT statement
specifies the plot variable. GBARLINE multiplies the value of the FREQ= variable by the value
of the COUNT variable, and uses the result to determine the plot points.

proc gbarline data=failure;
bar cause / sumvar=count

axis=axis1
descending;

plot / sumvar=count
freq=cost
axis=axis2
ascending;

run;
quit;

773

C H A P T E R

29
The GCHART Procedure

Overview 774

About Block Charts 774
About Bar Charts 775

About Pie, Detail Pie, and Donut Charts 776

About Star Charts 777
Concepts 778

About Chart Variables 779

Missing Values 779
About Midpoints 780

Character Values 780
Discrete Numeric Values 780

Continuous Numeric Values 781

Selecting and Ordering Midpoints 781
About Chart Statistics 782

Frequency 782

Cumulative Frequency 782
Percentage 782

Cumulative Percentage 783
Sum 783

Mean 783

Calculating Weighted Statistics 783
About Patterns 784

Default Patterns and Outlines 784

User-Defined Patterns, Outlines, and Images 785
Version 6 Patterns 785

Procedure Syntax 785
PROC GCHART Statement 786

BLOCK Statement 787

HBAR, HBAR3D, VBAR, and VBAR3D Statements 796
PIE, PIE3D, and DONUT Statements 818

STAR Statement 833

Examples 842
Example 1: Specifying the Sum Statistic in a Block Chart 842

Example 2: Grouping and Subgrouping a Block Chart 844
Example 3: Specifying the Sum Statistic in Bar Charts 846

Example 4: Subgrouping a 3D Vertical Bar Chart 848

Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart 850
Example 6: Generating Error Bars in a Horizontal Bar Chart 854

Example 7: Creating Bar Charts with Drill-down for the Web 856

Example 8: Specifying the Sum Statistic for a Pie Chart 869
Example 9: Subgrouping a Donut or Pie Chart 872

774 Overview Chapter 29

Example 10: Ordering and Labeling Slices in a Pie Chart 873

Example 11: Assigning Patterns and Identifying Midpoints with a Legend 875
Example 12: Grouping and Arranging Pie Charts 877

Example 13: Specifying the Sum Statistic in a Star Chart 879

Example 14: Charting a Discrete Numeric Variable in a Star Chart 880
Example 15: Creating a Detail Pie Chart 883

References 884

Overview
The GCHART procedure produces six types of charts: block charts, horizontal and

vertical bar charts, pie and donut charts, and star charts. These charts graphically
represent the value of a statistic calculated for one or more variables in an input SAS
data set. The charted variables can be either numeric or character.

The procedure calculates these statistics:
� frequency or cumulative frequency counts
� percentages or cumulative percentages
� sums
� means.

Use the GCHART procedure to
� display and compare exact and relative magnitudes
� examine the contribution of parts to the whole
� analyze where data are out of balance.

About Block Charts
Block charts display the relative magnitude of data with blocks of varying height,

each set in a square that represents a category of data (midpoint). Because block charts
do not use axes, they are most useful when the relative magnitude of the blocks is more
significant than the exact magnitude of any particular block.

Figure 29.1 on page 774 shows a simple block chart of total sales for three
manufacturing sites. Each site is a midpoint and occupies one square. The name of the
site (the midpoint value) is printed below the square. Midpoint values are, by default,
arranged in ascending order from left to right. The label below the midpoint grid names
the chart variable.

Sales for the site (the chart statistic) are represented by the height of the block; sales
amount (the formatted statistic value) is printed below the block. The heading above
the blocks describes the type of statistic, in this case SUM.

Figure 29.1 Block Chart (GCHBKSUM)

The GCHART Procedure About Bar Charts 775

The program for this chart is in Example 1 on page 842. For more information on
producing block charts, see “BLOCK Statement” on page 787.

About Bar Charts
Horizontal and vertical bar charts display the magnitude of data with bars, each of

which represents a category of data (midpoint). The length (or height) of the bars
represents the value of the chart statistic for the corresponding midpoint.

Figure 29.2 on page 775 shows a simple horizontal bar chart of total sales for three
manufacturing sites. Each site is a midpoint and is displayed as a bar. The name of the
site (the midpoint value) is printed on the midpoint axis beside the bar. Midpoint
values are, by default, arranged in ascending order from top to bottom of the chart and
labeled with the name of the chart variable.

The chart statistics, in this case total sales for each site, are represented by the
length of the bars. The response axis displays the scale of values for the chart statistic.
The table of statistics to the right of the bars displays the exact statistic for each bar.
Both a column in the table and the response axis are labeled with the name of the
summary variable and the type of statistic.

Figure 29.2 Horizontal Bar Chart (GCHBRSUM (a))

The program for this chart is Example 3 on page 846.
Figure 29.3 on page 775 shows the same data presented as a vertical bar chart. The

two types of bar charts have essentially the same characteristics, except that horizontal
bar charts by default display a table of statistic values to the right of the bars, while
vertical bar charts can optionally display the statistic value above or inside of each bar.

Figure 29.3 Vertical Bar Chart (GCHBRSUM(b))

776 About Pie, Detail Pie, and Donut Charts Chapter 29

The program for this chart is Example 3 on page 846. For more information on
producing horizontal and vertical bar charts, see “HBAR, HBAR3D, VBAR, and
VBAR3D Statements” on page 796.

About Pie, Detail Pie, and Donut Charts
Pie and donut charts represent the relative contribution of parts to the whole by

displaying data as wedge-shaped "slices" of a circle (either a "pie" or "donut"). Each
slice represents a category of data (midpoint). The size of each slice (length of the arc)
represents the contribution of the corresponding midpoint to the total chart statistic.
Detail pie charts are pie charts with a second pie overlay that shows additional detail
about the data that contributes to each of the outer pie’s slices. Donut charts look like
pie charts except that they have a hole in the middle in which you can place text.

Figure 29.4 on page 776 shows a pie chart of total sales for three manufacturing
sites. Each site is a midpoint and is displayed as a slice. By default, the slices are
ordered counterclockwise beginning at the 3 o’clock position.

Sales for the site (the chart statistic) are represented by the size of the slice. Both
the sales amount (the formatted value of the chart statistic) and the name of the site
(the midpoint value) are printed outside of the slice. You can also label pie slices with
the percentage of the total statistic value that they represent. The heading above the
pie describes the type of statistic (SUM), and names the summary variable (SALES)
and the chart variable (SITE).

Figure 29.4 Pie Chart (GCHPISUM(a))

Figure 29.5 on page 776 show the three-dimensional version of the same pie chart.

Figure 29.5 3D Pie Chart (GCHPISUM(b))

Figure 29.6 on page 777 shows a detail pie chart generated from the same data.

The GCHART Procedure About Star Charts 777

Figure 29.6 Detail Pie Chart (GCHDTPIE)

The programs for these charts are in Example 8 on page 869 and Example 15 on
page 883. For more information on producing pie or donut charts, see “PIE, PIE3D, and
DONUT Statements” on page 818.

About Star Charts
Star charts display data as lines ("spines") radiating from the center of a circle

toward the perimeter. Each spine represents a category of data (midpoint). The length
of a spine represents the magnitude of the chart statistic for that midpoint starting at
the center of the circle, which by default represents 0. The radius of the circle is the
length of the longest spine (greatest statistic value) in the chart. Instead of spines, star
charts can also display the chart statistic as slices, which are enclosed areas formed by
connecting the ends of the spines.

Figure 29.7 on page 777 shows the total sales for the three manufacturing sites as a
star chart. Each site is a midpoint and is displayed as a spine. By default the ends of
the spines are connected and they are ordered counterclockwise beginning at the 3
o’clock position.

Sales for the site (the chart statistic) are represented by the length of the spine. Both
the sales amount (the formatted statistic value) and the name of the site (the midpoint
value) are printed outside of the star chart. You can also label star charts with the
percentage of the total statistic value that they represent. The heading above the chart
describes the type of statistic (SUM), and names the summary variable (SALES) and
the chart variable (SITE).

Figure 29.7 Star Chart (GCHSTSUM)

778 Concepts Chapter 29

The program for this chart is Example 13 on page 879. For more information on
producing star charts, see “STAR Statement” on page 833.

Concepts
The GCHART procedure produces charts based on the values of a chart variable.

These values are represented by a set of midpoints. The chart itself displays
information about the chart variable in the form of chart statistics.

Figure 29.8 on page 778 and Figure 29.9 on page 779 illustrate these terms as well
as other terms used with the GCHART procedure.

Figure 29.8 Terms Used with Bar Charts

legend

table of statistics

major tick mark
value

subgroups

summary variable

response axis
label
type of statistic

response variable
subgroup values

midpoint axis

group axis

group value midpoints

group variable
(group axis label)

chart variable
(midpoint axis label)

response axis

frame

subgroup variable

Bar charts have two axes: a midpoint axis that shows the categories of data, and a
response axis that displays the scale of values for the chart statistic. The response axis
is divided into evenly spaced intervals identified with major tick marks that are labeled
with the corresponding statistic value. Minor tick marks are evenly distributed between
the major tick marks. Each axis is labeled with the chart variable name or label. The
response axis is also labeled with the statistic type.

The GCHART Procedure About Chart Variables 779

Figure 29.9 Terms Used with Pie and Donut Charts

SUM of sales by site

Milan
$46,613

Tokyo
$22,128

Seattle
$41,878

type of statistic

chart variable

summary variable

pie slice

midpoint

midpoint
statistic

Pie charts show statistics based on values of a variable called the chart variable.
Generally, the values of the chart variable are represented by the slices in the chart.
Next to each pie slice a number (or character string) appears that identifies the value or
range of values assigned to that slice by the GCHART procedure. This number (or
character string) is known as the midpoint for that slice. The statistic value for each
midpoint is displayed beneath the midpoint. The slices in the chart represent all the
values of the chart variable included in the chart. The number of degrees included in
each slice represents the statistic value for the midpoint.

About Chart Variables
The chart variable is the variable in the input data set whose values determine the

categories of data represented by the bars, blocks, slices, or spines. The chart variable
generates the midpoints to which each observation in the data set contribute.

The chart variable can be either character or numeric. Character chart variables
contain character values, which are always discrete. Numeric chart variables fall into
two categories: discrete and continuous.

� Discrete variables contain a finite number of specific numeric values that are to be
represented on the chart. For example, a variable that contains years, such as
1984 or 2001, is a discrete variable.

� Continuous variables contain a range of numeric values that are to be represented
on the chart. For example, a variable of temperature data that contains real
values between 0 and 212 is a continuous variable.

Numeric chart variables are always treated as continuous variables unless the
DISCRETE option is used in the action statement.

Missing Values
By default, the GCHART procedure ignores missing midpoint values for the chart

variable. If you specify the MISSING option, then missing values are treated as a valid
midpoint and are included on the chart. Missing values for the group and subgroup
variables are always treated as valid groups and subgroups.

When the value of the variable that is specified in the FREQ= option is missing, 0, or
negative, the observation is excluded from the calculation of the chart statistic.

780 About Midpoints Chapter 29

When the value of the variable specified in the SUMVAR= option is missing, the
observation is excluded from the calculation of the chart statistic.

About Midpoints
Midpoints are the values of the chart variable that identify categories of data. By

default, midpoints are selected or calculated by the procedure. The way the procedure
handles the midpoints depends on whether the values of the chart variable are
character, discrete numeric, or continuous numeric.

Character Values
A character chart variable generates a midpoint for each unique value of the

variable. For example, if the chart variable CITY contains the names of three different
cities, each city is a midpoint, resulting in three midpoints for the chart:

Figure 29.10 Character Midpoints

(In pie charts, midpoint values that compose a small percentage of the total for the
chart may be placed in the OTHER slice and will not produce a separate midpoint.)

By default, character midpoints are arranged in alphabetic order. If a character
variable has an associated format, the values are arranged in order of the formatted
values.

Discrete Numeric Values
A numeric chart variable used with the DISCRETE option generates a midpoint for

each unique value of the chart variable. For example, the numeric variable YEAR used
with DISCRETE produces one midpoint for each year:

The GCHART Procedure About Midpoints 781

Figure 29.11 Discrete Numeric Midpoints

By default, numeric midpoints are arranged in ascending order. If the numeric
variable has an associated format, each formatted value generates a separate midpoint.
Formatted numeric variables are arranged in ascending order according to their
unformatted numeric values.

Continuous Numeric Values
A continuous numeric variable generates midpoints that represent ranges of values.

By default, the GCHART procedure determines the ranges, calculates the median value
of each range, and displays the appropriate median value at each midpoint on the chart.
A value that falls exactly halfway between two midpoints is placed in the higher range.

For example, the numeric variable AGE produces four midpoints, each of which
represents a ten-year age range; the median value of the range is displayed at each
midpoint:

Figure 29.12 Continuous Numeric Midpoints

By default, midpoints of ranges are arranged in ascending order.

Selecting and Ordering Midpoints
For character or discrete numeric values, you can use the MIDPOINTS= option to

rearrange the midpoints or to exclude midpoints from the chart. For example, to change
the default alphabetic order of the midpoints in Figure 29.10 on page 780, specify

midpoints=’Tokyo’ ’Denver’ ’Seattle’

To exclude the midpoint for Denver, specify

782 About Chart Statistics Chapter 29

midpoints=’Tokyo’ ’Seattle’

In this case, values excluded by the option are not included in the calculation of the
chart statistic.

You can order or select discrete numeric midpoint values just as you do character
values, but you omit the quotation marks when specifying numeric values.

For continuous numeric variables, use the LEVELS= or MIDPOINTS= option to
change the number of midpoints, to control the range of values each midpoint
represents, or to change the order of the midpoints. To control the range of values each
midpoint represents, use the MIDPOINTS= option to specify the median value of each
range. For example, to select the ranges 20–29, 30–39, and 40–49, specify

midpoints=25 35 45

Alternatively, to select the number of midpoints that you want and let the procedure
calculate the ranges and medians, use the LEVELS= option.

You can also use formats to control the ranges of continuous numeric variables, but
in that case the values are no longer continuous but discrete.

Note: You cannot use the MIDPOINTS= option to exclude continuous numeric
values from the chart because values below or above the ranges specified by the option
are automatically included in the first and last midpoints, respectively. To exclude
continuous numeric values from a chart, use a WHERE statement in a DATA step or
the WHERE= DATA set option. �

See also the description of the LEVELS= and MIDPOINTS= options for the
appropriate statement.

About Chart Statistics
The chart statistic is the statistical value calculated for the chart variable and

represented by each block, bar, or slice. The GCHART procedure calculates six chart
statistics; the default statistic is frequency.

The examples given in the descriptions of these statistics assume a data set with two
variables, CITY and SALES. The values of CITY are Denver, Seattle, and Tokyo.
There are 21 observations: seven for Denver, nine for Seattle, and five for Tokyo.

Frequency
The frequency statistic is the total number of observations in the data set for each

midpoint. For example, seven observations of the chart variable, CITY, contain the
value Denver, so the frequency for the Denver midpoint is 7.

Cumulative Frequency
The cumulative frequency statistic adds the frequency for the current midpoint to the

frequency of all of the preceding midpoints. For example, the frequency for the Denver
midpoint is 7, and the frequency for the next midpoint, Seattle, is 9, so the cumulative
frequency for Seattle is 16.

You cannot request cumulative frequency with the DONUT, PIE, PIE3D, or STAR
statements.

Percentage
The percentage statistic is calculated by dividing the frequency for each midpoint by

the total frequency count for all midpoints in the chart or group and multiplying it by

The GCHART Procedure About Chart Statistics 783

100. For example, the frequency count for the Denver midpoint is 7 and the total
frequency count for the chart is 21, so the percentage statistic for Denver is 33.3%.

Cumulative Percentage
The cumulative percentage statistic adds the percentage for the current midpoint to

the percentage for all of the preceding midpoints in the chart or group. For example,
the percentage for the Denver midpoint is 33.3, and the percentage for the next
midpoint, Seattle, is 42.9, so the cumulative percentage for Seattle is 76.2.

You cannot request cumulative percentage with the DONUT, PIE, PIE3D, or STAR
statements.

Sum
The sum statistic is the total of the values for the SUMVAR= variable for each

midpoint. For example, if you specify SUMVAR=SALES and the values of the SALES
variable for the seven Denver observations are 8734, 982, 1504, 3207, 4502, 624, and
918, the sum statistic for the Denver midpoint is 20,471.

You must use the SUMVAR= option to specify the variable for which you want the
sum statistic.

Mean
The mean statistic is the average of the values for the SUMVAR= variable for each

midpoint. For example, if TYPE=MEAN and SUMVAR=SALES, the mean statistic for
the Denver midpoint is 2924.42.

You must use the SUMVAR= option to specify the variable for which you want the
mean statistic.

Calculating Weighted Statistics
By default, each observation is counted only once in the calculation of the chart

statistic. To calculate weighted statistics in which an observation can be counted more
than once, use the FREQ= option. This option identifies a variable whose values are
used as a multiplier for the observation in the calculation of the statistic. If the value of
the FREQ= variable is missing, 0, or negative, the observation is excluded from the
calculation.

If you use the SUMVAR= option, then the SUMVAR= variable value for an
observation is multiplied by the FREQ= variable value for the observation for use in
calculating the chart statistic.

For example, to use a variable called COUNT to produce weighted statistics, assign
FREQ=COUNT. If you also assign the variable HEIGHT to the SUMVAR= option, then
the following table shows how the values of COUNT and HEIGHT would affect the
statistic calculation:

Value of
COUNT

Value of
HEIGHT

Number of times the observation
is used

Value used for HEIGHT

1 55 1 55

5 65 5 325

. 63 0 -

-3 60 0 -

784 About Patterns Chapter 29

By default, the percentage and cumulative percentage statistics are calculated based
on the frequency. If you want to chart a percentage or cumulative percentage based on
a sum, you can use the FREQ= option to specify a variable to use for the "sum"
calculation and specify the PCT statistic, as shown in this example:

freq=count type=pct

Because the variable that is used by FREQ= determines the number of times an
observation is counted, the value of COUNT is the equivalent of the sum statistic.

See also the descriptions of the TYPE=, SUMVAR=, and FREQ= options for the
action statements.

About Patterns
When a chart needs one or more patterns, the procedure uses either
� default patterns and outlines that are automatically generated by SAS/GRAPH or
� patterns, colors, outlines, and images that are defined by PATTERN statements,

graphics options, and procedure options.

The following sections summarize pattern behavior for the GCHART procedure. For
more information, see “PATTERN Statement” on page 169.

Default Patterns and Outlines
In general, the default pattern that the GCHART procedure uses is a solid fill that it

rotates once through the colors list, skipping the foreground color. The procedure also
outlines all areas in the foreground color. (Typically, the foreground color is the first
color in the device’s colors list.)

Specifically, the GCHART procedure uses default patterns and outlines when you
� do not specify any PATTERN statements, and
� do not use the CPATTERN= graphics option, and
� do not use the COLORS= graphics options (that is, you use the device’s default

colors list and it has more than one color), and
� do not use the COUTLINE= option in the action statement.

If all of these conditions are true, then the GCHART procedure
� selects the first default fill pattern, which is always solid, and rotates it through

the colors list, generating one solid pattern for each color. If the first color in the
device’s colors list is black (or white), the procedure skips that color and begins
generating patterns with the next color.

� uses the foreground color to outline every patterned area.

If the procedure needs additional patterns, GCHART selects the next default pattern
fill that is appropriate to the type of chart and rotates it through the colors list,
skipping the foreground color as before. The procedure continues in this fashion until it
has generated enough patterns for the chart.

Changing any of these conditions may change or override the default behavior:
� If you specify a colors list with the COLORS= option in a GOPTIONS statement

and the list contains more than one color, the procedure rotates the default solid
pattern through that list, using every color, even if the foreground color is black
(or white). The default outline color remains the foreground color.

� If you specify either COLORS=(one-color) or the CPATTERN= graphics option, the
default fill pattern changes from solid to the list of appropriate hatch patterns.
The procedure uses the specified color to generate one pattern definition for each
hatch pattern in the list. The default outline color remains the foreground color.

The GCHART Procedure Procedure Syntax 785

� Whenever there are PATTERN definitions in effect, whether or not the GCHART
procedure can use them, the default outline color for all patterns changes from
foreground to SAME, as described in the following section.

For a description of these graphics options, see Chapter 8, “Graphics Options and
Device Parameters Dictionary,” on page 261.

User-Defined Patterns, Outlines, and Images
You can use PATTERN statements to explicitly specify patterns, including color or fill

type or both. You can also specify images to fill the bars of two-dimensional bar charts.
For complete information on all patterns, see “PATTERN Statement” on page 169. See
also the section on controlling patterns and colors for each chart type.

When you use PATTERN statements, the procedure uses the specified patterns until
all of the PATTERN definitions they generate have been used. Then, if more patterns
are required, it returns to the default pattern rotation.

Whenever you specify any PATTERN statement, the default pattern outline changes.
Instead of the foreground color, the outline color is the same as the fill color; for
example, a blue bar has a blue outline. The effect is the same as specifying
COUTLINE=SAME. Even when the procedure runs out of user-defined patterns and
generates default patterns, the outlines continue to match the interior pattern color.

To change the outline color of any pattern, whether it’s a default or user-defined
pattern, use the COUTLINE= option in the action statement that generates the chart.

Two-dimensional bar charts created with the HBAR and VBAR statements can use
the PATTERN statement to fill specified bars with specified images. For details, see the
IFRAME= option on page 806 and the IBACK= goption“Controlling Bar Chart Patterns,
Colors, and Images” on page 816.

Other means of including images in charts include adding background images to two-
and three-dimensional bar charts. For two-dimensional bar charts created with HBAR
and VBAR statements, the IBACK= goption“IBACK” on page 317 specifies image files
that fill the backplane frame. To fill the backplane frame of a three-dimensional image
created with the HBAR3D or VBAR3D statements, use the IFRAME= option on page
806. For further information, including a listing of recognized image file types, see
“Image File Types Supported by SAS/GRAPH” on page 106.

Version 6 Patterns
If you specify the V6COMP graphics option, then the procedure generates patterns

by rotating the appropriate Version 6 default patterns through all of the colors in the
colors list. With V6COMP, all patterns are outlined in the same color as the fill.

Procedure Syntax
Requirements: At least one BLOCK, HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D,
DONUT, or STAR statement is required.

Global statements: AXIS, FOOTNOTE, GOPTIONS, LEGEND, PATTERN, TITLE

Reminder: The procedure can include the BY, FORMAT, LABEL, and WHERE
statements as well as the SAS/GRAPHNOTE statement.

Supports:
RUN-group processing
Output Delivery System (ODS)

786 PROC GCHART Statement Chapter 29

PROC GCHART<DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set>;

BLOCK chart-variable(s) </ option(s)>;

HBAR | HBAR3D | VBAR | VBAR3Dchart-variable(s) </ option(s)>;

PIE | PIE3D | DONUT chart-variable(s) </ option(s)>;

STAR chart-variable(s) </ option(s)>;

PROC GCHART Statement

Identifies the data set containing the chart variables. Optionally specifies annotation and an output
catalog.

Requirements: An input data set is required.

Syntax

PROC GCHART<DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set>;

Options
PROC GCHART statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs that are produced by the GCHART
procedure. To annotate individual graphs, use ANNOTATE= in the action statement.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

DATA=input-data-set
specifies the SAS data set that contains the variable(s) to chart. By default, the
procedure uses the most recently created SAS data set.
See also: “SAS Data Sets” on page 29 and “About Chart Variables” on page 779

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GCHART procedure. If you omit the libref, SAS/GRAPH looks for the catalog in
the temporary library called WORK and creates the catalog if it does not exist.
See also: “Storing Graphics Output in SAS Catalogs” on page 53

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GCHART
procedure with the HTML= and/or HTML_LEGEND= options.

The GCHART Procedure BLOCK Statement 787

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

Not supported by: Java, ActiveX

BLOCK Statement

Creates block charts in which the height of the blocks represents the value of the chart statistic for
each category of data.

Requirements: At least one chart variable is required.
Global statements: LEGEND, PATTERN, TITLE, FOOTNOTE
Supports: Drill-down functionality

Description
The BLOCK statement specifies the variable or variables that define the categories of
data to chart. This statement automatically

� determines the midpoints
� calculates the chart statistic for each midpoint (the default is FREQ)
� scales the blocks according to the statistic value
� assigns patterns and colors to the block faces and the grid; the default block

pattern is solid.

You can use statement options to select or order the midpoints (blocks), to change the
type of chart statistic, and to modify the appearance of the chart. You can also specify
additional variables by which to group, subgroup, or sum the data.

Block charts allow grouping, which organizes the blocks into rows based on the
values of a group variable, and subgrouping, which subdivides the blocks into segments
based on the values of a subgroup variable.

In addition, you can use global statements to modify the block patterns and the
legend, as well as add titles, footnotes, and notes to the chart. You can also use an
Annotate data set to enhance the chart.

Note: If you get a message that the chart is too large to display on your terminal or
printer, try one or both of the following: �

� reduce the size of the character cells defined for the output device by specifying
larger values for the HPOS= and VPOS= graphics options

� decrease the size of the chart text with the HTEXT= graphics option.

See “About the Graphics Output Area” on page 34 for details .

Syntax

BLOCK chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set

788 BLOCK Statement Chapter 29

BLOCKMAX=max-value
CAXIS=grid-color
COUTLINE=block-outline-color | SAME
CTEXT=text-color
LEGEND=LEGEND<1...99>
NOHEADING
NOLEGEND
PATTERNID=BY |GROUP |MIDPOINT |SUBGROUP
WOUTLINE=block-outline-width

� midpoint options
DISCRETE
GROUP=group-variable
LEVELS=number-of-midpoints
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING
SUBGROUP=subgroup-variable

� statistic options
FREQ=numeric-variable
G100
SUMVAR=summary-variable
TYPE=statistic

� catalog entry description options
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Separate multiple chart variables with blanks. The values of a chart variable used
with the BLOCK statement have a maximum length of 13.
See also: “About Chart Variables” on page 779

Options
Options in a BLOCK statement affect all graphs produced by that statement. You

can specify as many options as you want and list them in any order. For details on
specifying colors, see Chapter 6, “SAS/GRAPH Colors and Images,” on page 91. For a
complete description of the graphics options, see Chapter 8, “Graphics Options and
Device Parameters Dictionary,” on page 261.

ANNOTATE=Annotate-data-set

The GCHART Procedure BLOCK Statement 789

ANNO=Annotate-data-set
specifies a data set to annotate charts produced by the BLOCK statement.

Note: Annotate coordinate systems 1, 2, 7, and 8 (data system coordinates) are
not valid with block charts. �

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

BLOCKMAX=max-value
specifies the chart statistic value of the tallest block on the chart. This option lets
you produce a series of block charts using the same scale. All blocks are rescaled as
if max-value were the maximum value on the chart.
Not supported by: Java, ActiveX

CAXIS=grid-color
specifies the color for the midpoint grid. By default, the midpoint grid uses the
foreground color (usually the first color in the colors list).

Featured in: Example 2 on page 844

COUTLINE=block-outline-color | SAME
outlines all blocks or all block segments and legend values in the subgroup legend (if
it appears) using the specified color. SAME specifies that the outline color of a block
or a block segment or a legend value is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is black

for the Java or ActiveX devices. Otherwise, the default outline color is the
foreground color (the first color in the colors list).

� If you specify the PATTERN statement or the V6COMP graphics option, the
default is COUTLINE=SAME.

Note: If you specify empty patterns, (VALUE=EMPTY in a PATTERN statement)
you should not change the outline color from the default value, SAME, to a single
color. Otherwise all the outlines will be one color and you will not be able to
distinguish between the empty areas. �

See also: “Controlling Block Chart Patterns and Colors” on page 794 and “About
Patterns” on page 784

Featured in: Example 2 on page 844

Not supported by: Java (partial), ActiveX (partial)

CTEXT=text-color
specifies a color for all text on the chart. Text includes the values and labels for the
midpoint grid, the subgroup legend, and the descriptive statistic values. For the Java
and ActiveX devices, the default color is black. For other devices, if you omit
CTEXT=, PROC GCHART searches for a color specification in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the first color in the colors list (the default).
CTEXT= is overridden by the COLOR= suboption of the LABEL= or VALUE=

option in a LEGEND definition assigned to the subgroup legend. The suboption
determines the color of the legend label or the color of the legend value descriptions,
respectively.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By

790 BLOCK Statement Chapter 29

default, the GCHART procedure assigns a description of the form BLOCK CHART
OF variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to the description of the options on page 222, and
“Substituting BY Line Values in a Text String” on page 226. The 256-character limit
applies before the substitution takes place for these options; thus, if in the SAS
program the entry-description text exceeds 256 characters, it is truncated to 256
characters, and then the substitution is performed.

The descriptive text is shown in each of the following:

� the "description" portion of the Results window

� the catalog-entry properties that you can view from the Explorer window

� the Table of Contents that is generated when you use CONTENTS= on an ODS
statement (see “Linking to Output through a Table of Contents” on page 495),
assuming the GCHART output is generated while the contents page is open

� the Description field of the PROC GREPLAY window

� the data tip text for web output (depending on the device driver you are using).
See “Adding Data Tips to Web Presentations” on page 568 for details.

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
grid square and block for each unique value of the chart variable. If the chart variable
has a format associated with it, each formatted value is treated as a midpoint.

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE.

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

FREQ= is valid with all chart statistics.
Because you cannot use the PERCENT, CPERCENT, FREQ, or CFREQ statistics

with the SUMVAR= option, you must use the FREQ= option to calculate percentages,
cumulative percentages, frequencies, or cumulative frequencies based on a sum.

The statistics will not be affected by applying a format to numeric-variable.

See also: “Calculating Weighted Statistics” on page 783

G100
calculates the percentage and cumulative percentage statistics separately for each
group. When you use G100, the individual percentages reflect the contribution of the
midpoint to the group and total 100 percent for each group. G100 is ignored unless
you also use the GROUP= option.

By default, the individual percentages reflect the contribution of the midpoint to
the entire chart and total 100 percent for the entire chart.

GROUP=group-variable
organizes the data according to the values of group-variable. Group-variable can be
either character or numeric and is always treated as a discrete variable. The group
variable can have up to 12 different values.

GROUP= produces a group grid that contains a separate row of blocks for each
unique value of the group variable. Each row contains a square for each midpoint.
The groups are arranged from front to back in ascending order of the group variable

The GCHART Procedure BLOCK Statement 791

values. These values are printed to the left of each row; the group variable name or
label is printed above the list of group values.

By default, each group includes all midpoints, even if no observations for the group
fall within the midpoint range. Missing values for group-variable are treated as a
valid group.

Featured in: Example 2 on page 844

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with an area of
the chart and point to the data or graph you wish to display when the user drills down
on the area. The values of variable can be up to 1024 characters long. Characters
after the 1024-character limit (including any closing quotes) are truncated.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with a legend
value and point to the data or graph that you wish to display when the user drills
down on the value. The values of variable can be up to 1024 characters long.
Characters after the 1024-character limit (including any closing quotes) are
truncated.

Not supported by: Java, ActiveX

LEGEND=LEGEND<1...99>
assigns the specified LEGEND definition to the legend generated by the
SUBGROUP= option. The LEGEND= option itself does not generate a legend.

LEGEND= is ignored if

� SUBGROUP= is not used.

� the specified LEGEND definition is not in effect.

� the NOLEGEND option is used.

� the PATTERNID= option is set to any value other than SUBGROUP; that is,
the value of PATTERNID= is BY or GROUP or MIDPOINT.

To create a legend based on the chart midpoints instead of the subgroups, use the
chart variable as the subgroup variable:

block city / subgroup=city;

The Java and ActiveX devices do not support all LEGEND statement options. See
“LEGEND Statement” on page 151 for more information.

See also: SUBGROUP= on page 793 and “LEGEND Statement” on page 151

Featured in: Example 2 on page 844

Not supported by: Java (partial), ActiveX (partial)

LEVELS=number-of-midpoints
specifies the number of midpoints for the numeric chart variable. The range for each
midpoint is calculated automatically using the algorithm described in Terrell and
Scott (1985). LEVELS= is ignored if

� the chart variable is character type.

� the DISCRETE option is used.

� the MIDPOINTS= option is used.

MIDPOINTS=value-list
specifies the midpoint values for the blocks. The way you specify value-list depends
on the type of variable:

792 BLOCK Statement Chapter 29

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment> <n <...n>>
If a numeric variable has an associated format, the specified values must be

the unformatted values.
By default, numeric variable values are treated as continuous (if you omit the

DISCRETE option), and
� the lowest midpoint consolidates all data points from negative infinity to

the median of the first two midpoints
� the highest midpoint consolidates all data points from the median of the

last two midpoints up to infinity
� all other values in value-list specify the median of a range of values, and

the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>
If a character variable has an associated format, the specified values must be

the formatted values.

For a complete description of value-list, see the ORDER= on page 130 option in the
AXIS statement.

If value-list for either type of variable specifies so many midpoints that the axis
values overwrite each other, the values may be unreadable. In this case the
procedure writes a warning to the SAS log. On many devices, you can correct
crowded values by increasing the number of cells in your graphics display using the
HPOS= and VPOS= graphics options.
See also: “About Midpoints” on page 780
Featured in: Example 2 on page 844

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric.

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored. Missing values are always valid for
the group and subgroup variables.

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GCHART. If the name duplicates
an existing entry name, thenSAS/GRAPH software adds a number to the duplicate
name to create a unique name—for example, GCHART1.

NOHEADING
suppresses the heading describing the type of statistic. For the Java and ActiveX
devices, NOHEADING is the default. For other devices, by default the heading is
printed at the top of each block chart.
Featured in: Example 2 on page 844

The GCHART Procedure BLOCK Statement 793

Not supported by: Java, ActiveX

NOLEGEND
suppresses the legend automatically generated by the SUBGROUP= option.
NOLEGEND is ignored if the SUBGROUP= option is not used.

PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP
specifies the way fill patterns are assigned. By default, PATTERNID=SUBGROUP.
Values for PATTERNID= are as follows:

BY
changes patterns each time the value of the BY variable changes. All blocks use
the same pattern if the GCHART procedure does not include a BY statement.

GROUP
changes patterns every time the value of the group variable changes. All blocks in
each group (row) use the same pattern, but a different pattern is used for each
group.

MIDPOINT
changes patterns every time the midpoint value changes. If you use the GROUP=
option, the respective midpoint patterns are repeated for each group.

SUBGROUP
changes patterns every time the value of the subgroup variable changes. The
blocks must be subdivided by the SUBGROUP= option for the SUBGROUP value
to have an effect. Without SUBGROUP=, all block faces have the same pattern.

Note: If you use the SUBGROUP= option and specify a PATTERNID= value other
than SUBGROUP, the block segments use the same pattern and are
indistinguishable. �

See also: “Controlling Block Chart Patterns and Colors” on page 794

Featured in: Example 7 on page 856

SUBGROUP=subgroup-variable
divides the blocks into segments according to the values of subgroup-variable.
Subgroup-variable can be either character or numeric and is always treated as a
discrete variable. SUBGROUP= creates a separate segment within each block for
every unique value of the subgroup variable for that midpoint.

If PATTERNID=SUBGROUP (the default setting), each segment is filled with a
different pattern, and a legend providing a key to the patterns is automatically
generated. If the value of PATTERNID= is anything other than SUBGROUP, the
segments are all the same color, the legend is suppressed, and the subgrouping effect
is lost.

By default the legend appears at the bottom of the chart. To modify the legend,
assign a LEGEND definition with the LEGEND= option. To suppress the legend,
specify NOLEGEND.

See also: “LEGEND Statement” on page 151

Featured in: Example 2 on page 844

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of numeric-variable for each midpoint.
The resulting statistics are represented by the height of the blocks in each square.
The values of a summary variable used with the BLOCK statement have a maximum
length of 8.

794 BLOCK Statement Chapter 29

When you use SUMVAR=, the TYPE= option value must be either SUM or MEAN.
With SUMVAR=, the default is TYPE=SUM.
Featured in: Example 1 on page 842

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

CFREQ
cumulative frequency

PERCENT PCT
percentage

CPERCENT CPCT
cumulative percentage

� If SUMVAR= is used, statistic can be either:

SUM
sum (the default)

MEAN
mean

Because you cannot specify the statistics PERCENT, CPERCENT, FREQ, or
CFREQ in conjunction with the SUMVAR= option, you must use FREQ= to calculate
percentages, cumulative percentages, frequencies, or cumulative frequencies based on
a sum. See also “Calculating Weighted Statistics” on page 783.

If you specify TYPE=MEAN and use the SUBGROUP= option, the height of the
block represents the mean for the entire midpoint. The subgroup segments are
proportional to the subgroup’s contribution to the sum for the block.
See also: “About Chart Statistics” on page 782
Featured in: Example 2 on page 844

WOUTLINE=block-outline-width
specifies the width of the block outline in pixels.
Not supported by: Java

Controlling Block Chart Patterns and Colors

Default patterns and outlines
In a block chart, only the front faces of the blocks display patterns. By default, the
procedure

� fills the block faces with bar/block patterns, beginning with the default fill, SOLID,
and rotating it through the colors list. When the solid patterns are exhausted, the
procedure selects the next default bar/block pattern and rotates it through the
colors list. It continues in this fashion until all of the required patterns have been
assigned.

If you use the device’s default colors and the first color in the list is either black
or white, the procedure does not create a pattern in that color. If you specify a
colors list with the COLORS= graphics option, the procedure uses all of the colors
in the list to generate the patterns.

� outlines blocks and block segments using the first color in the colors list.
� colors the midpoint grid with the first color in the colors list.

The GCHART Procedure BLOCK Statement 795

See “About Patterns” on page 784 for more information on how the GCHART
procedure assigns default patterns and outlines.

User-defined patterns
To override the default patterns and select fills and colors for the blocks or block
segments, use the PATTERN statement. Only bar/block patterns are valid; all other
pattern fills are ignored. For a complete description of all bar/block patterns, see the
description of PATTERN statement option VALUE= on page 171.

Whenever you use PATTERN statements, the default pattern outline color changes to
SAME. That is, the outline color is the same as the fill color. To specify the outline
color, use the COUTLINE= on page 789 option.

When patterns change
The PATTERNID= option controls when the pattern changes. By default,
PATTERNID=SUBGROUP. Therefore, when you use the SUBGROUP= option to
subdivide the blocks, the pattern automatically changes each time the subgroup value
changes, and each subdivision of the block displays a different pattern. As a result, the
number of values for the SUBGROUP= variable determines the number of block
patterns on the chart. If you do not subdivide the blocks, all blocks use the same
pattern.

Instead of changing the pattern for each subgroup, you can change the pattern for
each midpoint, each group, or each BY group, by changing the value of the
PATTERNID= option. See the PATTERNID= on page 793 option for details.

Axis color
By default, axis elements use the first color in the colors list. To change the grid color,
use the CAXIS= option. To change the axis text color, use the CTEXT= option.

Controlling Block Chart Text
To control the font and size of text on the chart, use the FTEXT= and HTEXT=

graphics options. See Chapter 8, “Graphics Options and Device Parameters Dictionary,”
on page 261 for a description of these options.

Because block charts do not use AXIS statements, you must use a LABEL statement
instead to suppress the label for the midpoint variable. See Example 2 on page 844.

Displaying Negative or Zero Values
The relative block heights in the chart represent the scaled value of the chart

statistic value for the midpoint. If the statistic has a value of 0 or, in the case of sum
and mean, a negative value, the base of the block is drawn in the square for the
corresponding midpoint. Figure 29.13 on page 796 shows an example of a chart with 0
and negative statistic values.

796 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

Figure 29.13 Block Chart with 0 and Negative Statistic Values

HBAR, HBAR3D, VBAR, and VBAR3D Statements

Create horizontal or vertical bar charts in which the length or height of the bars represents the
value of the chart statistic for each category of data.

Requirements: At least one chart variable is required.
Global statements: AXIS, LEGEND, PATTERN, TITLE, FOOTNOTE
Supports: Drill-down functionality

Description
The HBAR, HBAR3D, VBAR, and VBAR3D statements specify the variable or variables
that define the categories of data to chart. These statements automatically

� determine the midpoints
� calculate the chart statistic for each midpoint (the default is FREQ)
� scale the response axis and the bars according to the statistic value
� determine bar width and spacing
� assign patterns to the bars; the default bar/block pattern is SOLID.
� draw a frame around the axis area using the first color in the colors list.

You can use statement options to select or order the midpoints (bars), to control the
tick marks on the response axis, to change the type of chart statistic, to display specific
statistics, and to modify the appearance of the chart. You can also specify additional
variables by which to group, subgroup, or sum the data.

All bar charts allow grouping, which uses an additional category to organize the bars
into groups, and subgrouping, which divides the bars into segments.

In addition, you can:
� use global statements to modify the axes (including requesting a logarithmic axis),

the bar patterns, and the legend. See Chapter 7, “SAS/GRAPH Statements,” on
page 121 for more information.

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 797

� add titles, footnotes, and notes to the chart. See “TITLE, FOOTNOTE, and NOTE
Statements” on page 210 for more information.

� use an Annotate data set to enhance the chart. See Chapter 24, “Using Annotate
Data Sets,” on page 587 for more information.

� display an image in the background of the chart. For HBAR3D and VBAR3D
charts, see the IFRAME= option on page 806. For HBAR and VBAR charts, see
the IBACK= goption“IBACK” on page 317.

� display images in the bars of an HBAR or VBAR chart. See the PATTERN
statement IMAGE= option on page 171.

Syntax

HBAR | HBAR3D | VBAR | VBAR3D chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set
CAUTOREF=reference-line-color
CAXIS=axis-color
CERROR=error-bar-color
CFRAME=background-color
COUTLINE=bar-outline-color | SAME
CREF=reference-line-color|(reference-line-color)|reference-line-color-list
CTEXT=text-color
FRAME | NOFRAME
GSPACE= group-spacing
IFRAME= fileref | ’external-file’
IMAGESTYLE = TILE | FIT
LAUTOREF=reference-line-type
LEGEND=LEGEND<1...99>
LREF=reference-line-type|(reference-line-type)|reference-line-type-list
NOLEGEND
PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP
SHAPE=3D-bar-shape (HBAR3D and VBAR3D only)
SPACE=bar-spacing
WIDTH=bar-width
WOUTLINE=bar-outline-width

� statistic options
CFREQ
CFREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
CLM=confidence-level
CPERCENT
CPERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
ERRORBAR=BARS | BOTH | TOP
FREQ
FREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
FREQ=numeric-variable
G100

798 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

INSIDE=statistic

MEAN

MEANLABEL=’column-label’ | NONE (HBAR and HBAR3D only)

NOSTATS (HBAR and HBAR3D only)

OUTSIDE=statistic

PERCENT

PERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)

SUM

SUMLABEL=’column-label’ | NONE (HBAR and HBAR3D only)

SUMVAR=summary-variable

TYPE=statistic

� midpoint options

DISCRETE

GROUP=group-variable

LEVELS=number-of-midpoints|ALL

MIDPOINTS=value-list

MIDPOINTS=OLD

MISSING

RANGE

SUBGROUP=subgroup-variable

� axes options

ASCENDING

AUTOREF

AXIS=AXIS<1...99>

CLIPREF

DESCENDING

FRONTREF (HBAR3D and VBAR3D only)

GAXIS=AXIS<1...99>

MAXIS=AXIS<1...99>

MINOR=number-of-minor-ticks

NOAXIS

NOBASEREF

NOZERO

RANGE

RAXIS=value-list | AXIS<1...99>

REF=value-list

� catalog entry description options

DESCRIPTION=’entry-description’

NAME=’entry-name’

� ODS options

HTML=variable

HTML_LEGEND=variable

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 799

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Multiple chart variables must be separated with blanks.
See also: “About Chart Variables” on page 779

Options
Options in an HBAR, HBAR3D, VBAR, or VBAR3D statement affect all graphs that

are produced by that statement. You can specify as many options as you want and list
them in any order. For details on specifying colors, see Chapter 6, “SAS/GRAPH Colors
and Images,” on page 91. For details on specifying images, see “Specifying Images in
SAS/GRAPH Programs” on page 106. For a complete description of the graphics options,
see Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate charts produced by the bar chart statement.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

ASCENDING
arranges the bars in ascending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the
lengths of the bars. ASCENDING reorders the bars from shortest to longest. In
horizontal bar charts the ordering is top to bottom; in vertical bar charts the ordering
is left to right.

If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of the midpoints may be different for each group.

ASCENDING overrides any midpoint order specified with the MIDPOINTS=
option or specified in the ORDER= option in an AXIS statement assigned to the
midpoint axis.

AUTOREF
draws a reference line at each major tick mark on the response axis. To draw
reference lines at specific points on the response axis, use the REF= option.

By default, reference lines in 2D bar charts are drawn in front of the bars. To
draw reference lines behind the bars, use the CLIPREF option.

By default, reference lines in 3D bar charts are drawn on the back plane of the
axis. To draw reference lines in front of the bars, use the FRONTREF option.
Featured in: Example 5 on page 850

AXIS=AXIS<1...99>
See RAXIS= on page 812.

CAUTOREF=reference-line-color
specifies the color of reference lines drawn at major tick marks, as determined by the
AUTOREF option. The default color is either the value of the CAXIS= option or the
first color in the color list. To specify a line type for these reference lines, use the
LAUTOREF= option.

CAXIS=axis-color
specifies a color for the response and midpoint axis lines and for the default axis area
frame. If you omit the CAXIS= option, PROC GCHART searches for a color
specification in this order:

800 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

1 the COLOR= option in AXIS definitions

2 the first color in the colors list (the default).

This option also specifies the default color for all reference lines.

CERROR=error-bar-color
specifies the color of error bars in bar charts. The default is the color of the response
axis, which is controlled by the CAXIS= option.

CFRAME=background-color
CFR=background-color

specifies the color with which to fill the axis area in 2D bar charts or in the
backplane in 3D bar charts.

The axis area color does not affect the frame color, which is always the same as
the midpoint axis line color and controlled by the CAXIS= option. By default, the
axis area in 2D bar charts is not filled.

CFRAME= is overridden by the NOFRAME and IFRAME= options.

Note: If the background color, the bar color, and the outline color are the same,
you may not be able to distinguish the bars. �

Featured in: Example 4 on page 848

CFREQ
displays the cumulative frequency statistic in the table of statistics and above
vertical bars. Default statistics are suppressed when you request specific statistics.
For vertical bar charts, this option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ option is specified.

See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal
Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

CFREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the CFREQ statistic in the table of statistics.
Column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word will break as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify CFREQLABEL=NONE.

Not supported by: Java, ActiveX

CLIPREF
clips the reference lines at the bars. This makes the reference lines appear to be
behind the bars. Because CLIPREF is the default for 3D bar charts, it affects only
2D charts.

Featured in: Example 5 on page 850

CLM=confidence-level
specifies the confidence intervals to use when drawing error bars on a bar chart.
Values for confidence-level must be greater than or equal to 50 and strictly less than
100. The default is 95. See ERRORBAR= for details on how error bars are computed
and drawn.

Featured in: Example 6 on page 854

COUTLINE=bar-outline-color | SAME
outlines all bars or bar segments and legend values in the subgroup legend (if it
appears) using the specified color. SAME specifies that the outline color of a bar or a
bar segment or a legend value is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 801

� If you do not specify a PATTERN statement, the default outline color is black
for the Java or ActiveX devices. Otherwise, the default outline color is the
foreground color (the first color in the colors list).

� If you specify the PATTERN statement or the V6COMP graphics option, the
default is COUTLINE=SAME.

Note: For 2D bar charts, if you specify empty patterns, (VALUE=EMPTY in a
PATTERN statement) you should not change the outline color from the default value,
SAME, to a single color. Otherwise all the outlines will be one color and you will not
be able to distinguish between the empty areas. �

COUTLINE= is not valid when SHAPE=CYLINDER.

See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 816 and
“About Patterns” on page 784

Featured in: Example 3 on page 846, Example 5 on page 850 and Example 6 on
page 854

CPERCENT
CPCT

displays the cumulative percentage statistic in the table of statistics and above
vertical bars. Default statistics are suppressed when you request specific statistics.
For vertical bar charts, this option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ, CFREQ, or PERCENT option is specified.

See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal
Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

CREF=reference-line-color|(reference-line-color)|reference-line-color-list
CR=reference-line-color|(reference-line-color)|reference-line-color-list

specifies colors for reference lines. Specifying a single color without parentheses
applies that color to all reference lines, including lines drawn with the AUTOREF
and REF= options. Note that the CAUTOREF= option overrides CREF= reference
color for reference lines drawn with the AUTOREF option. Specifying a single color
in parentheses applies that color only to the first reference line drawn with the REF=
option. Specifying a reference color list applies colors in sequence to successive lines
drawn with the REF= option. The syntax of the color list is of the form (color1 color2
...colorN) or (color1, color2 ..., colorN). The default color for reference lines is either
the value of the CAXIS= option or the first color in the color list. To specify line types
for these reference lines, use the LREF= option.

CPERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the CPERCENT statistic in the table of
statistics. Column-label can be up to 32 characters long, but a single line of the label
can be no more than 24 characters. By default, a label with more than one word will
break as close to the center of the line as possible. A double space in the string forces
a line break. To suppress the label, specify CPERCENTLABEL=NONE.

Not supported by: Java, ActiveX

CTEXT=text-color
specifies the color of all text on the chart that is not otherwise assigned a color. Text
includes axis values and axis labels in the response, midpoint, and group axes; the
subgroup legend; and the displayed statistics. For the Java and ActiveX devices, the
default color is black. For other devices, if you omit CTEXT=, PROC GCHART
searches for a color specification in this order:

1 the CTEXT= option in a GOPTIONS statement

802 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

2 the first color in the colors list (the default).
CTEXT= overrides the color specification for the axis label and the tick mark

values in the COLOR= option in an AXIS definition assigned to an axis.
CTEXT= is overridden by

� the COLOR= suboption of the LABEL= or VALUE= option in a LEGEND
definition assigned to the subgroup legend. In this case the suboption
determines the color of the legend label or the color of the legend value
descriptions, respectively.

� the COLOR= suboption of a LABEL= or VALUE= option in an AXIS definition
assigned to an axis. In this case the suboption determines the color of the axis
label or the color of the tick mark values, respectively.

DESCENDING
arranges the bars in descending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the lengths
of the bars. DESCENDING reorders the bars from longest to shortest. In horizontal
bar charts the ordering is top to bottom; in vertical bar charts the ordering is left to
right. If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of the midpoints may be different for each group.

DESCENDING overrides any midpoint order that is specified with the
MIDPOINTS= option or that is specified in the ORDER= option in an AXIS
statement assigned to the midpoint axis.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form HBAR CHART OF
variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to the description of the options on page 222, and
“Substituting BY Line Values in a Text String” on page 226. The 256-character limit
applies before the substitution takes place for these options; thus, if in the SAS
program the entry-description text exceeds 256 characters, it is truncated to 256
characters, and then the substitution is performed.

The descriptive text is shown in each of the following:

� the "description" portion of the Results window

� the catalog-entry properties that you can view from the Explorer window

� the Table of Contents that is generated when you use CONTENTS= on an ODS
statement (see “Linking to Output through a Table of Contents” on page 495),
assuming the GCHART output is generated while the contents page is open

� the Description field of the PROC GREPLAY window

� the data tip text for web output (depending on the device driver you are using).
See “Adding Data Tips to Web Presentations” on page 568 for details.

Featured in: Example 7 on page 856

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
bar for each unique value of the chart variable. If the chart variable has a format
associated with it, each formatted value is treated as a midpoint.

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 803

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE. The ORDER= option in an AXIS statement that is
assigned to the midpoint axis can rearrange or exclude discrete midpoint values.
Featured in: Example 7 on page 856

ERRORBAR=BARS | BOTH | TOP
draws confidence intervals on a horizontal or vertical bar chart for either of the
following:

� the mean of the SUMVAR= variable for each midpoint if you specify
TYPE=MEAN

� the percentage of observations assigned to each midpoint if you specify
TYPE=PCT with no SUMVAR= option.

The ERRORBAR= option cannot be used with values of the TYPE= option other than
MEAN or PCT. Valid values for ERRORBAR= are:

BARS
draws error bars as bars half the width of the main bars.

BOTH
draws error bars as two ticks joined by a line (default).

TOP
draws the error bar as a tick for the upper confidence limit that is joined to the top
of the bar by a line.
By default, ERRORBAR= uses a confidence level of 95 percent. You can specify

different confidence levels with the CLM= option.
When you use ERRORBAR= with TYPE=PCT, the confidence interval is based on

a normal approximation. Let TOTAL be the total number of observations, and PCT
be the percentage assigned to a given midpoint. The standard error of the percentage
is approximated as

APSTDERR=100 * SQRT((PCT/100) * (1--(PCT/100)) / TOTAL);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the percentage is computed as

UCLP = PCT + APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

The lower confidence limit for the percentage is computed as

LCLP = PCT - APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

When you use ERRORBAR= with TYPE=MEAN, the sum variable must have at
least two non-missing values for each midpoint. If the GROUP= option is used, each
midpoint within a group must also have two non-missing values. Let N be the
number of observations assigned to a midpoint, MEAN be the mean of those
observations, and STD be the standard deviation of the observations. The standard
error of the mean is computed as

STDERR = STD / SQRT(N);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the mean is computed as

UCLM = MEAN + STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

The lower confidence limit for the mean is computed as

LCLM = MEAN - STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

If you want the error bars to represent a given number C of standard errors
instead of a confidence interval, and if the number of observations assigned to each

804 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

midpoint is the same, then you can find the appropriate value for the CLM= option
by running a DATA step. For example, if you want error bars that represent one
standard error (C=1) with a sample size of N , you can run the following DATA step
to compute the appropriate value for the CLM= option and assign that value to a
macro variable &LEVEL:

data null;
c = 1;
n = 10;
level = 100 * (1 - 2 * (1 - probt(c, n-1)));
put all;
call symput(’level’,put(level,best12.));
run;

Then when you run the GCHART procedure, you can specify CLM=&LEVEL.
Note that this trick does not work precisely if different midpoints have different

numbers of observations. However, choosing an average value for N may yield
sufficiently accurate results for graphical purposes if the sample sizes are large or do
not vary much.
Featured in: Example 6 on page 854

FRAME | NOFRAME
FR | NOFR

specifies whether the 2D axis area frame or the 3D backplane is drawn. The default
is FRAME, which draws a frame around the axis area (in 2D bar charts) or generates
a colored 3D backplane (in 3D bar charts). Specifying NOFRAME removes the axis
area frame from 2D charts, including any background color or image. For 3D charts,
NOFRAME removes the backplane color or image, and leaves the vertical and
horizontal axis planes and axes. To remove these planes, use the NOPLANE option
in the AXIS statement. To remove one or more axis elements, use either the AXIS
statement or the NOAXIS option.

The NOFRAME option overrides the CFRAME= and IFRAME= options and the
IBACK= goption“IBACK” on page 317.

The color of the frame or backplane outline is the color of the midpoint axis, which
is determined by the CAXIS= option.

If the V6COMP graphics option is in effect, the default is NOFRAME.
Featured in: Example 7 on page 856 and Example 6 on page 854

FREQ
displays the frequency statistic in the table of statistics and above vertical bars.
Non-integer values are rounded down to the nearest integer. Default statistics are
suppressed when you request specific statistics. For vertical bar charts, this option is
ignored if the bars are too narrow to avoid overlapping values. This option overrides
the CFREQ, PERCENT, CPERCENT, SUM, and MEAN options.

Featured in: Example 5 on page 850
See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal

Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

FREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the FREQ statistic in the table of statistics.
column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word will break as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify FREQLABEL=NONE.

Featured in: Example 5 on page 850 and Example 6 on page 854

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 805

Not supported by: Java, ActiveX

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
that is specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the
statistic calculation. Non-integer values of numeric-variable are truncated to
integers. FREQ= is valid with all chart statistics.

Because you cannot use TYPE=PERCENT, TYPE=CPERCENT, TYPE=FREQ, or
TYPE=CFREQ with the SUMVAR= option, you must use FREQ= to calculate
percentages, cumulative percentages, frequencies, or cumulative frequencies based on
a sum.

The statistics will not be affected by applying a format to numeric-variable.

See also: “Calculating Weighted Statistics” on page 783

FRONTREF
specifies that reference lines drawn by the AUTOREF or REF= options should be
drawn in front of the bars. By default, reference lines in 3D bar charts are drawn on
the back plane of the axis.

G100
calculates the percentage and cumulative percentage statistics separately for each
group. When you use G100, the individual percentages reflect the contribution of the
midpoint to the group and total 100 percent for each group. G100 is ignored unless
you also use the GROUP= option.

By default, the individual percentages reflect the contribution of the midpoint to
the entire chart and total 100 percent for the entire chart.

GAXIS=AXIS<1...99>
assigns the specified AXIS definition to the group axis. (A group axis is created when
you use the GROUP= option.) You can use the AXIS definition to modify the order of
the groups, the text of the labels, and appearance of the axis. GAXIS= is ignored if
the specified AXIS definition does not exist.

The AXIS statement options MAJOR= and MINOR= are ignored in AXIS
definitions assigned to the group axis because the axis does not use tick marks. A
warning message is written to the SAS log if these options appear in the AXIS
definition.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 124 for more information.

To remove groups from the chart, use the ORDER= option in the AXIS statement.
To suppress the brackets drawn around the values on the group axis in vertical

bar charts, use the NOBRACKETS option in the AXIS statement.

See also: “AXIS Statement” on page 124

Featured in: Example 7 on page 856

Not supported by: Java (partial), ActiveX (partial)

GROUP=group-variable
organizes the data according to values of group-variable. Group-variable can be
either character or numeric and is always treated as a discrete variable.

GROUP= produces a separate group of bars for each unique value of the group
variable. Missing values for group-variable are treated as a valid group. The groups
are arranged in ascending order of the group variable values.

By default, each group includes all midpoints, even if no observations for the group
fall within the midpoint range, meaning that no bar is drawn at the midpoint. Use
the NOZERO option to suppress midpoints with no observations.

806 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

GROUP= also produces a group axis that lists the values that distinguish the
groups. The group axis has no axis line but displays the group variable name or
label. To modify the group axis, assign an AXIS definition with the GAXIS= option.

In horizontal bar charts, the group axis is to the left of the midpoint axis and the
groups are arranged from top to bottom, starting with the lowest value at the top.

In vertical bar charts, the group axis is below the midpoint axis and the groups
are arranged from left to right starting with the lowest value at the left. If the group
label in a vertical bar chart is narrower than all the bars in the group, brackets are
added to the label to emphasize which bars belong in each group. Group brackets are
not displayed if the space between the group values is less than one and one-half
character cells. Use the NOBRACKETS option in the AXIS statement to suppress
the group brackets.
Featured in: Example 7 on page 856

GSPACE=group-spacing
specifies the amount of extra space between groups of bars. Group-space can be any
non-negative number. Units are character cells. Use GSPACE=0 to leave no extra
space between adjacent groups of bars. In this case, the same space appears between
groups of bars as between the bars in the same group.

GSPACE= is ignored unless you also use the GROUP= option. By default, the
GCHART procedure calculates group spacing based on size of the axis area and the
number of bars in the chart.

If the requested spacing results in a chart that is too large to fit in the space
available for the midpoint axis, an error message is written to the SAS log and no
chart is produced.
Featured in: Example 7 on page 856

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with an area of the
chart and point to the data or graph you wish to display when the user drills down
on the area. The values of variable can be up to 1024 characters long. Characters
after the 1024-character limit (including any closing quotes) are truncated.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with a legend value
and point to the data or graph you wish to display when the user drills down on the
value. The values of variable can be up to 1024 characters long. Characters after the
1024-character limit (including any closing quotes) are truncated.
Not supported by: Java, ActiveX

IFRAME=fileref | ’external-file’
identifies the image file you wish to fill the backplane frame of your
three-dimensional bar charts. See also the IMAGESTYLE= option and “Placing a
Backplane Image on Graphs with Frames” on page 115.

This option is overridden by the NOIMAGEPRINT goption“IMAGEPRINT” on
page 318 .

To fill the backplane frame of two-dimensional bar charts, see the IBACK=
goption“IBACK” on page 317 .
Not supported by: Java

IMAGESTYLE= TILE | FIT
for three-dimensional bar charts, specifies whether to use multiple instances of an
image to fill the backplane frame (TILE) or to stretch a single instance of an image to
fill the backplane frame (FIT). The TILE value is the default. See also the IFRAME=
option. Java supports only TILE.

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 807

Not supported by: Java (partial)

INSIDE=statistic
displays the values of the specified statistic inside the bars. For the Java and
ActiveX devices, this option is valid for both horizontal and vertical bar charts. For
other devices, this option is only valid for vertical bar charts.

Statistic can be one of the following:
� FREQ
� CFREQ
� CPERCENT | CPCT
� MEAN
� PERCENT | PCT
� SUM

If the bars are subgrouped, only the following statistics are valid:
� FREQ
� PERCENT | PCT
� SUBPCT
� SUM

With subgroups, PERCENT displays the percent contribution of each subgroup to
the midpoint value of the bar, based on frequency. The PERCENT values for each
subgroup total the percent contribution of the bar to the whole. For example, if the
percent contribution of the whole bar is 60%, the PERCENT statistic for all the
subgroups in that bar will total 60%. To calculate PERCENT based on the
SUMVAR= variable, use the FREQ= and TYPE= options. For details, see
“Calculating Weighted Statistics” on page 783.

SUBPCT displays the percent contribution of each subgroup to the total bar. The
SUBPCT values for each subgroup total the percent contribution to the whole bar.
Because of rounding, the total of the percents may not equal 100.
Featured in: Example 4 on page 848 Example 7 on page 856
See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal

Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

LAUTOREF=reference-line-type
specifies the line type for reference lines at major tick marks, as determined by the
AUTOREF option. Line types are specified as whole numbers from 1 to 46, with 1
representing a solid line and the other values representing dashed lines. The default
value is 1. To specify a color for these reference lines, use the CAUTOREF= option.

LEGEND=LEGEND<1...99>
assigns the specified LEGEND definition to the legend generated by the
SUBGROUP= option. The LEGEND= option itself does not generate a legend.

LEGEND= is ignored if
� SUBGROUP= is not used.
� the specified LEGEND definition is not in effect.
� the NOLEGEND option is used.
� the PATTERNID= option is set to any value other than SUBGROUP; that is,

the value of PATTERNID= is BY or GROUP or MIDPOINT.

To create a legend based on the chart midpoints instead of the subgroups, use the
chart variable as the subgroup variable:

hbar city / subgroup=city;

808 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

The Java and ActiveX devices do not support all LEGEND statement options. See
“LEGEND Statement” on page 151 for more information.

See also: “LEGEND Statement” on page 151 and SUBGROUP= on page 813 option

Featured in: Example 4 on page 848

LEVELS=number-of-midpoints|ALL
specifies the number of midpoints for a numeric chart variable. The range for each
midpoint is calculated automatically, using the algorithm in Terrell and Scott (1985).

If you specify LEVELS=ALL, then all unique midpoint values are graphed. If your
data contains a large number of unique midpoint values (over 200), you can use the
XPIXELS and YPIXELS GOPTIONS to allow the device driver to render a larger
(and more readable) graph.

LEVELS= is ignored if

� the chart variable is character type

� the DISCRETE option is used

� the MIDPOINTS= option is used.

LREF=reference-line-type|(reference-line-type|reference-line-type-list)
LR=reference-line-type|(reference-line-type|reference-line-type-list)

specifies line types for reference lines. Line types are specified as whole numbers
from 1 to 46, with 1 representing a solid line and the other values representing
dashed lines. Specifying a line type without parentheses applies that type to all
reference lines drawn with the AUTOREF and REF= options. Note that the
LAUTOREF= option overrides LREF=reference-line-type for reference lines drawn
with the AUTOREF option. Specifying a single line type in parentheses applies that
line type to the first reference line drawn with the REF= option. Specifying a line
type list applies line types in sequence to successive reference lines drawn with the
REF= option. The syntax of the line-type list is of the form (type1 type2 ...typeN). The
default line type is specified by the AXIS statement’s STYLE= option. By default,
STYLE=1, a solid line. To specify colors for these reference lines, use the CREF=
option.

Not supported by: Java

MAXIS=AXIS<1...99>
assigns the specified AXIS definition to the midpoint axis. The MAXIS= option is
ignored if the specified AXIS definition does not exist.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 124 for more information.

See also: “AXIS Statement” on page 124 and “About Midpoints” on page 780

Featured in: Example 4 on page 848

Not supported by: Java (partial), ActiveX (partial)

MEAN
displays the mean statistic in the table of statistics and above vertical bars. By
default, the column heading in the table includes the name of the variable for which
the mean is calculated. Default statistics are suppressed when you request specific
statistics. For vertical bar charts, this option is ignored if the bars are too narrow to
avoid overlapping values or if the FREQ, CFREQ, PERCENT, CPERCENT, or SUM
option is specified. MEAN is ignored unless you also use the SUMVAR= option.

See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal
Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

MEANLABEL=’column-label’ | NONE (HBAR and HBAR3D only)

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 809

specifies the text of the column label for the MEAN statistic in the table of statistics.
column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word will break as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify MEANLABEL=NONE.

Featured in: Example 6 on page 854

Not supported by: Java, ActiveX

MIDPOINTS=value-list
specifies the midpoint values for the bars. The way you specify value-list depends on
the type of the chart variable.

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

n<...n> TO n <BY increment> <n <...n>>

If a numeric variable has an associated format, the specified values must be
the unformatted values.

By default, numeric variable values are treated as continuous (if you omit the
DISCRETE option), and

� the lowest midpoint consolidates all data points from negative infinity to
the median of the first two midpoints

� the highest midpoint consolidates all data points from the median of the
last two midpoints up to infinity

� all other values in value-list specify the median of a range of values, and
the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see the ORDER= on page 130 option in the
AXIS statement.

If the value-list for either type of variable specifies so many midpoints that the
axis values overwrite each other, the values may be unreadable. In this case the
procedure writes a warning to the SAS log. On many devices, this problem can be
corrected by either adjusting the size of the text with the HTEXT= graphics option or
by increasing the number of cells in your graphics display using the HPOS= and
VPOS= graphics options.

The ORDER= option in the AXIS statement overrides the order specified in the
MIDPOINTS= option. The bar chart statement options ASCENDING and
DESCENDING also override both MIDPOINTS= and ORDER= in the AXIS
statement.

See also: “About Midpoints” on page 780

Featured in: Example 5 on page 850

MIDPOINTS=OLD

810 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric.

MINOR=number-of-minor-ticks
specifies the number of minor tick marks between each major tick mark on the
response axis.

MINOR= in a bar chart statement overrides the number of minor tick marks
specified in the MINOR= option in an AXIS definition assigned to the response axis
with the RAXIS= option.

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored. Missing values are always valid for
group and subgroup variables.

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GCHART. If the name duplicates
an existing entry name, thenSAS/GRAPH software adds a number to the duplicate
name to create a unique name—for example, GCHART1.
Featured in: Example 7 on page 856

NOAXIS
suppresses all axes, including axis lines, axis labels, axis values, and all major and
minor tick marks. If you specify an axis definition with the GAXIS, MAXIS=, or
RAXIS= options, then the axes are generated as defined in the AXIS statement, but
then all lines, labels, values, and tick marks are suppressed. Therefore, axis
statement options such as ORDER=, LENGTH, and OFFSET= will still be used.

To remove only selected axis elements such as lines, values or labels, use specific
AXIS statement options.

NOAXIS does not suppress either the default frame or an axis area fill requested
by the CFRAME= option. To remove the axis frame or the 3D backplane, use the
NOFRAME option in the procedure. To remove the horizontal or vertical axis planes,
use the NOPLANE option in the AXIS statement.

NOBASEREF
suppresses the zero reference line when the SUM or MEAN chart statistic has
negative values.

NOLEGEND
suppresses the legend that is automatically generated by the SUBGROUP= option.
NOLEGEND is ignored if the SUBGROUP= option is not used.

NOSTATS (HBAR and HBAR3D only)
suppresses the table of statistics. NOSTATS suppresses both the default statistics
and specific statistics requested by the FREQ, CFREQ, PERCENT, CPERCENT,
SUM, and MEAN options.
Not supported by: Java

NOZERO
suppresses any midpoints for which there are no corresponding values of the chart
variable and, hence, no bar. NOZERO usually is used with the GROUP= option to
suppress midpoints when not all values of the chart variable are present for every
group or if the chart statistic for the bar is 0.

Note: If a bar is omitted and if you have also specified bar labels with the
VALUE= option in an AXIS statement, the labels may be shifted and not displayed
with the correct bar. �
Featured in: Example 7 on page 856

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 811

Not supported by: Java

OUTSIDE=statistic
displays the values of the specified statistic above the bars. For the Java and ActiveX
devices, this option is valid for both horizontal and vertical bar charts. For other
devices, this option is only valid for vertical bar charts.

Statistic can be one of the following:
� FREQ
� CFREQ
� PERCENT | PCT
� CPERCENT | CPCT
� SUM
� MEAN

Featured in: Example 4 on page 848 and Example 7 on page 856
See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal

Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP
specifies the way fill patterns are assigned. By default, PATTERNID=SUBGROUP.
Values for PATTERNID= are as follows:

BY
changes patterns each time the value of the BY variable changes. All bars use the
same pattern if the GCHART procedure does not include a BY statement.

GROUP
changes patterns every time the value of the group variable changes. All bars in
each group use the same pattern, but a different pattern is used for each group.

MIDPOINT
changes patterns every time the midpoint value changes. If you use the GROUP=
option, the respective midpoint patterns are repeated for each group.

SUBGROUP
changes patterns every time the value of the subgroup variable changes. The bars
must be subdivided by the SUBGROUP= option for the SUBGROUP value to have
an effect. Without SUBGROUP=, all bars have the same pattern.

Note: If you use the SUBGROUP= option and specify a PATTERNID= value other
than SUBGROUP, the bar segments use the same pattern and are
indistinguishable. �
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 816
Featured in: Example 4 on page 848 and Example 7 on page 856

PERCENT
PCT

prints the percentages of observations having a given value for the chart variable in
the table of statistics and above vertical bars. Default statistics are suppressed when
you request specific statistics. For vertical bar charts, this option is ignored if the
bars are too narrow to avoid overlapping values or if the FREQ or CFREQ option is
specified.
See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal

Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

812 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

PERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the PERCENT statistic in the table of
statistics. column-label can be up to 32 characters long, but a single line of the label
can be no more than 24 characters. By default, a label with more than one word will
break as close to the center of the line as possible. A double space in the string forces
a line break. To suppress the label, specify PERCENTLABEL=NONE.

Not supported by: Java, ActiveX

RANGE
displays on the axis of the chart the range of numeric values represented by each
bar. In the graphics output, the starting value of each range is indicated with the
less-than symbol (<), and the ending value is indicated with the
greater-than-or-equal-to symbol (>=). The RANGE option has no affect on axes that
represent character data. By default, the values shown on the axis are determined
by the value of the MIDPOINTS= option on page 809. If specified, the DISCRETE
option on page 802 overrides the RANGE option.

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies values for the major tick mark divisions on the response axis or assigns the
specified AXIS definition to the axis. See the MIDPOINTS= option on page 809 for a
description of value-list. By default, the GCHART procedure scales the response axis
automatically and provides an appropriate number of tick marks.

You can specify negative values, but negative values are reasonable only when
TYPE=SUM or TYPE=MEAN and one or more of the sums or means are less than 0.
Frequency and percentage values are never less than 0.

For lists of values, a separate major tick mark is created for each individual value.
A warning message is written to the SAS log if the values are not evenly spaced.

If the values represented by the bars are larger than the highest tick mark value,
the bars are truncated at the highest tick mark.

If you use a BY statement with the PROC GCHART statement, the same response
axes are produced for each BY group when RAXIS=value-list is used or if there is an
ORDER= list in the AXIS statement assigned to the response axis.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 124 for more information.

See also: “AXIS Statement” on page 124

Featured in: Example 4 on page 848 and Example 7 on page 856

Not supported by: Java (partial), ActiveX (partial)

REF=value-list
draws reference lines at the specified points on the response axis. See the
MIDPOINTS= option on page 809 for a description of value-list.

Values can be listed in any order, but should be within the range of values
represented by the response axis. A warning is written to the SAS log if any of the
points are off of the axis, and no reference line is drawn for such points. You can use
the AUTOREF option to draw reference lines automatically at all of the major tick
marks.

By default, reference lines in 3D bar charts are drawn on the back plane of the
axis. To draw the reference lines in front of the bars, use the FRONTREF option.

SHAPE=3D-bar-shape (HBAR3D and VBAR3D only)
specifies the shape of the bars in charts that are produced with the HBAR3D and
VBAR3D statements. 3D-bar-shape can be one of the following:

� BLOCK | B (the default)

� CYLINDER | C

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 813

� HEXAGON | H

� PRISM | P

� STAR | S

The COUTLINE= option is not valid when SHAPE=CYLINDER.

Featured in: Example 7 on page 856

SPACE=bar-spacing
specifies the amount of space between individual bars or between the bars within
each group if you also use the GROUP= option. Bar-space can be any non-negative
number, including decimal values. Units are character cells. By default, the
GCHART procedure calculates spacing based on the size of the axis area and the
number of bars on the chart. Use SPACE=0 to leave no space between adjacent bars.

SPACE= is ignored if

� you specify the WIDTH= option and are using the Java or ActiveX devices.

� the specified spacing requests a chart that is too large to fit in the space
available for the midpoint axis. In this case, a warning message is issued.

Featured in: Example 4 on page 848 and Example 7 on page 856

SUBGROUP=subgroup-variable
divides the bars into segments according to the values of subgroup-variable.
Subgroup-variable can be either character or numeric and is always treated as a
discrete variable. SUBGROUP= creates a separate segment within each bar for
every unique value of the subgroup variable for that midpoint.

If PATTERNID=SUBGROUP (the default setting), each segment is filled with a
different pattern and a legend that provides a key to the patterns is automatically
generated. If the value of PATTERNID= is anything other than SUBGROUP, the
segments are all the same color, the legend is suppressed, and the subgrouping effect
is lost.

By default the legend appears at the bottom of the chart. To modify the legend,
assign a LEGEND definition with the LEGEND= option. To suppress the legend,
specify NOLEGEND.

See also: “LEGEND Statement” on page 151

Featured in: Example 4 on page 848, Example 7 on page 856 and Example 5 on
page 850

SUM
displays the sum statistic in the table of statistics and above vertical bars. By
default, the column heading in the table includes the name of the variable for which
the sum is calculated. Default statistics are suppressed when you request specific
statistics. For vertical bar charts, this option is ignored if the bars are too narrow to
avoid overlapping values or if the FREQ, CFREQ, PERCENT, or CPERCENT option
is specified. SUM is ignored unless you also use the SUMVAR= option.

See also: “About Chart Statistics” on page 782, “Displaying Statistics in Horizontal
Bar Charts” on page 815, and “Displaying Statistics in Vertical Bar Charts” on
page 815

SUMLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the SUM statistic in the table of statistics.
Column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word will break as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify SUMLABEL=NONE.

Not supported by: Java, ActiveX

814 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of summary-variable for each midpoint.
The resulting statistics are represented by the length of the bars along the response
axis, and they are displayed at major tick marks.

When you use SUMVAR=, the TYPE= option must be either SUM or MEAN. With
SUMVAR=, the default is TYPE=SUM.
Featured in: Example 3 on page 846 and Example 6 on page 854

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

CFREQ
cumulative frequency

PERCENT PCT
percentage

CPERCENT CPCT
cumulative percentage

� If SUMVAR= is used, statistic can be:

SUM
sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ, TYPE=CFREQ, TYPE=PERCENT, or
TYPE=CPERCENT with the SUMVAR= option, you must use FREQ= to calculate
percentages, cumulative percentages, frequencies, or cumulative frequencies based on
a sum. See also “Calculating Weighted Statistics” on page 783.

If you specify TYPE=MEAN and use the SUBGROUP= option, the height or length
of the bar represents the mean for the entire midpoint. The subgroup segments are
proportional to the subgroup’s contribution to the sum for the bar. See also
SUBGROUP= on page 813.
See also: “About Chart Statistics” on page 782 for a complete description of statistic

types
Featured in: Example 6 on page 854

WIDTH=bar-width
specifies the width of the bars. By default, the GCHART procedure selects a bar
width that accommodates the midpoint values displayed on the midpoint axis using a
hardware font and a height of one cell. Units for bar-width are character cells. The
value for bar-width must be greater than 0, but it does not have to be an integer, for
example,

vbar site / width=1.5;

If the requested bar width results in a chart that is too large to fit in the space
available for the midpoint axis, the procedure issues a warning in the log and ignores
the WIDTH= specification. If the specified width is too narrow, the procedure may
display the midpoint values vertically.
Featured in: Example 4 on page 848

WOUTLINE=bar-outline-width

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 815

specifies the width of the outline in pixels. WOUTLINE= affects both the bar and the
subgroup outlines.

Not supported by: Java

The Chart Statistic and the Response Axis
In bar charts, the scale of values of the chart statistic is displayed on the response

axis. By default, the response axis is divided into evenly spaced intervals identified
with major tick marks that are labeled with the corresponding statistic value. Minor
tick marks are evenly distributed between the major tick marks unless a log axis has
been requested. For sum and mean statistics, the major tick marks are labeled with
values of the SUMVAR= variable (formatted if the variable has an associated format).
The response axis is also labeled with the statistic type.

Specifying Logarithmic Axes
Logarithmic axes can be specified with the AXIS statement. See “AXIS Statement” on
page 124 for a complete discussion.

Displaying Statistics in Horizontal Bar Charts
For graphs generated with the Java and ActiveX devices, default statistics are not

generated, but you can display one statistic at the end of each bar. To specify the
statistic, specify the FREQ, CFREQ, PERCENT, CPERCENT, SUM, or MEAN option.

For graphs generated with other devices, the HBAR and HBAR3D statements print a
table of statistic values to the right of the bars. When the value of TYPE= is FREQ,
CFREQ, PERCENT, or CPERCENT, the frequency, cumulative frequency, percentage,
and cumulative percentage statistics are printed next to the bars by default. When
TYPE=SUM, the frequency and sum statistic values are printed by default. When
TYPE=MEAN, the frequency and mean statistic values are printed by default.
However, if you use the FREQ, CFREQ, PERCENT, CPERCENT, SUM, or MEAN
options to request specific statistics, the default statistics are not printed.

For sum and mean, the name of the SUMVAR= variable is added to the heading for
the column of values.

Specifying the Table of Statistics
You can use the FREQ, CFREQ, PERCENT, CPERCENT, SUM, and MEAN options to
select only certain statistics. Without the SUMVAR= option, only the frequency,
cumulative frequency, percentage, and cumulative percentage statistics can be printed.
With SUMVAR=, all statistics, including the sum and mean, can be printed. You can
suppress all statistics with the NOSTATS option.

To change the column labels for any statistic in the table, use one or more of the
statistic column label options: FREQLABEL=, CFREQLABEL=, PERCENTLABEL=,
CPERCENTLABEL=, SUMLABEL=, and MEANLABEL=.

To control the font and size of the text in the table of statistics, use the HTEXT= and
FTEXT= graphics options.

Displaying Statistics in Vertical Bar Charts
Statistic values on vertical bar charts are not printed by default, so you must

explicitly request a statistic with the FREQ, CFREQ, PERCENT, CPERCENT, SUM,
MEAN, INSIDE=, or OUTSIDE= option.

For graphs generated with the Java and ActiveX devices, you can display one
statistic for each bar. For graphs generated with other devices, you can display up to
two statistics. Statistics can be displayed either above the bars or inside the bars.

816 HBAR, HBAR3D, VBAR, and VBAR3D Statements Chapter 29

To specify a statistic that you want to display above the bars, specify the statistic
option (FREQ, CFREQ, PERCENT, CPERCENT, SUM, or MEAN) or specify
OUTSIDE=statistic. To specify a statistic that you want to display inside the bars,
specify INSIDE=statistic.

For graphs generated with the Java and ActiveX devices, the OUTSIDE= option
overrides INSIDE=, and INSIDE= overrides the FREQ, CFREQ, PERCENT,
CPERCENT, SUM, and MEAN options. For graphs generated with other devices, the
individual statistic options override the OUTSIDE= option.

If more than one statistic option is specified, only the highest priority statistic is
displayed. The priority order, from highest to lowest, is as follows:

1 FREQ

2 CFREQ

3 PERCENT

4 CPERCENT

5 SUM

6 MEAN

The bars must be wide enough to accommodate the text. You can adjust the width of
the bars with the WIDTH= option. To control the font and size of the text, use the
HTEXT= and FTEXT= graphics options.

Ordering and Selecting Midpoints
To rearrange character or discrete numeric midpoint values or to select ranges for

numeric values, use the MIDPOINTS= option. Remember that although changing the
number of midpoints for numeric variables may change the range of values for
individual midpoints, it does not change the range of values for the chart as a whole.
For details, see “About Midpoints” on page 780.

Like MIDPOINTS=, the ORDER= option in the AXIS statement can rearrange the
order of the midpoints or suppress the display of discrete numeric or character values.
However, ORDER= cannot calculate the midpoints for a continuous numeric variable, or
exclude values from the calculations. For details, see the description of the ORDER= on
page 130 option.

Controlling Bar Chart Patterns, Colors, and Images

Default Patterns and Outlines
Each bar in a bar chart is filled with a pattern. By default, the procedure

� fills the bars with bar/block patterns, beginning with the default fill, SOLID, and
rotating it through the colors list. When the solid patterns are exhausted, the
procedure selects the next default bar/block pattern and rotates it through the
colors list. It continues in this fashion until all of the required patterns have been
assigned.

Note: 3D bar charts always uses solid patterns. �

If you use the device’s default colors and the first color in the list is either black
or white, the procedure does not create a pattern in that color. If you specify a
colors list with the COLORS= graphics option, the procedure uses all the colors in
the list to generate the patterns.

� outlines bars and bar segments using the first color in the colors list.

See “About Patterns” on page 784 for more information on how the GCHART
procedure assigns default patterns and outlines.

The GCHART Procedure HBAR, HBAR3D, VBAR, and VBAR3D Statements 817

User-Defined Patterns
To override the default patterns and select fills and colors for the bars or bar segments,
use the PATTERN statement. Only bar/block patterns are valid; all other pattern fills
are ignored. For a complete description of all bar/block patterns, see VALUE= on page
171 in “PATTERN Statement” on page 169.

Whenever you use PATTERN statements, the default pattern outline color changes to
SAME. That is, the outline color is the same as the fill color. To specify the outline
color, use the COUTLINE= option (see COUTLINE= on page 800).

When Patterns Change
The PATTERNID= option controls when the pattern changes. By default,
PATTERNID=SUBGROUP. Therefore, when you use the SUBGROUP= option to
subdivide the bars, the pattern automatically changes each time the subgroup value
changes, and each subdivision of the bar displays a different pattern. As a result, the
number of values for the SUBGROUP= variable determines the number of bar patterns
on the chart. If you do not subdivide the bars, all bars use the same pattern.

Instead of changing the pattern for each subgroup, you can change the pattern for
each midpoint, each group, or each BY group by changing the value of PATTERNID=.
See the PATTERNID= on page 811 option for details.

Axis Color
By default, axis elements use the first color in the colors list or the colors that are
specified by AXIS statement color options. However, action statement options can also
control the color of the axis lines, text, and frame.

To change the color of... Use this option...

the axis text CTEXT=

the axis lines CAXIS=

the area within the frame CFRAME=

Adding Images to Bar Charts
You can apply images to the bars and to the backplane frame of two-dimensional bar
charts developed with the HBAR and VBAR statements. In three–dimensional bar
charts, you can apply images to the backplane frame. For details, see “Specifying
Images in SAS/GRAPH Programs” on page 106.

818 PIE, PIE3D, and DONUT Statements Chapter 29

PIE, PIE3D, and DONUT Statements

Create pie or donut charts in which the size of a pie slice represents the value of the chart
statistic for that category of data in relation to the total chart statistic for all categories.

Requirements: At least one chart variable is required.
Global statements: LEGEND, PATTERN, TITLE, FOOTNOTE
Supports: Drill-down functionality

Description
The PIE, PIE3D, and DONUT statements specify the variable or variables that define
the categories of data to chart. These statements automatically

� determine the midpoints.
� calculate the chart statistic for each midpoint (the default is FREQ).
� scale each slice to represent its chart statistic. No slice is drawn if the chart

statistic for the midpoint is 0.
� order the slices by midpoint value in ascending order starting at the three o’clock

position and proceeding counterclockwise around the pie.
� print the slice name (midpoint value) and slice value (chart statistic) beside each

slice.
� assign patterns and colors to the slices. The default pie pattern is PSOLID.

You can use statement options to select or order the midpoints (slices), to change the
type of chart statistic, and to modify the appearance of the chart, including the content
and position of the slice labels, and patterns used by the slices. You can also specify
additional variables by which to group, subgroup, or sum the data. Statement options
can also produce special effects, such as exploded or invisible slices.

Donut and pie charts allow grouping and subgrouping. Grouping creates two or more
separate pie or donut charts that display in rows or columns on one graph.
Subgrouping creates a separate ring of slices within the circle for each value of the
subgroup variable. The concentric rings of the subgrouped pie or donut chart make it
easy to compare slice values between subgroups.

In addition, you can use global statements to modify patterns and legends, as well as
add titles, footnotes, and notes to the chart. You can also use an Annotate data set to
enhance the chart.

Syntax

PIE | PIE3D | DONUT chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set
CFILL=fill-color
COUTLINE=slice-outline-color | SAME
DETAIL_RADIUS=percent (PIE and DONUT only)
EXPLODE=value-list
FILL=SOLID | X
INVISIBLE=value-list

The GCHART Procedure PIE, PIE3D, and DONUT Statements 819

NOHEADING
WOUTLINE=slice-outline-width

� statistic options
FREQ=numeric-variable
SUMVAR=summary-variable
TYPE=statistic

� midpoint options
DISCRETE
LEVELS=number-of-midpoints|ALL
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING
OTHER=percent-of-total

� detail pie options (PIE and DONUT only)
DETAIL=variable
DETAIL_THRESHOLD=percent

� grouping and subgrouping options
ACROSS=number-of-columns
DOWN=number-of-rows
GROUP=group-variable
NOGROUPHEADING
SUBGROUP=subgroup-variable

� slice-ordering options
ANGLE=degrees
ASCENDING
CLOCKWISE
DESCENDING
JSTYLE

� slice-labeling options
CTEXT=text-color
LEGEND | LEGEND=LEGEND<1...99>
MATCHCOLOR
NOLEGEND
OTHERLABEL=’text-string’
PERCENT=ARROW | INSIDE | NONE | OUTSIDE
SLICE=ARROW | INSIDE | NONE | OUTSIDE
VALUE=ARROW | INSIDE | NONE | OUTSIDE

� detail pie slice-labeling options (PIE and DONUT only)
DETAIL_PERCENT=BEST|NONE
DETAIL_SLICE=BEST|NONE
DETAIL_VALUE=BEST|NONE

� donut-labeling options (DONUT only):
DONUTPCT=percent
LABEL=(text argument(s))

� catalog entry description options

820 PIE, PIE3D, and DONUT Statements Chapter 29

DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Separate multiple chart variables with blanks.
See also: “About Chart Variables” on page 779

Options
Options in a PIE, PIE3D, or DONUT statement affect all graphs that are produced

by that statement. You can specify as many options as you want and list them in any
order. For details on specifying colors, see Chapter 6, “SAS/GRAPH Colors and Images,”
on page 91. For a complete description of the graphics options, see Chapter 8, “Graphics
Options and Device Parameters Dictionary,” on page 261.

ACROSS=number-of-columns
draws number-of-columns pies across the procedure output area. ACROSS is ignored
unless you also use the GROUP= option.

If number-of-columns calls for more pies than fit horizontally in the graphics
output area, no pies are drawn and an error message is written to the SAS log.

If the DOWN= option also is used, the pies are drawn in left-to-right and
top-to-bottom order.
Featured in: Example 11 on page 875

ANGLE=degrees
starts the first slice at the specified angle. A value of 0 for degrees corresponds to the
3 o’clock position. Degrees can be either positive or negative. Positive values move
the starting position in the counterclockwise direction; negative values move the
starting position clockwise. By default, ANGLE=0. Successive slices are drawn
counterclockwise from the starting slice.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate charts produced by the PIE, PIE3D, or DONUT
statement.

Note: Annotate coordinate systems 1, 2, 7, and 8 (data system coordinates) are
not valid with pie or donut charts. �
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

ASCENDING
arranges the slices in ascending order of the value of the chart statistic. By default,
slices are arranged in ascending order of midpoint value, without regard to size.
ASCENDING reorders the slices from smallest to largest. The OTHER slice is still
last regardless of its size.

If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of the midpoint values may be different for each pie or donut.

The GCHART Procedure PIE, PIE3D, and DONUT Statements 821

ASCENDING overrides any midpoint order that is specified with the
MIDPOINTS= option.

CFILL=fill-color
specifies one color for all patterns in the chart, regardless of whether the fill is solid
or hatch. For the PIE3D statement, the fill is always solid. For the PIE and DONUT
statements, if no pattern is specified on the PATTERN statement or with the FILL=
option, the procedure starts with the default solid fill and then, beginning with
P2N0, uses each default pie hatch pattern with the specified color. For the outline
color, the procedure uses the foreground color, which is the first color in the colors
lists. Use COUTLINE= to specify a different outline color. CFILL= overrides any
other pattern color specification and controls the color of all slices.
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 816 and

“About Patterns” on page 784
Featured in: Example 10 on page 873

CLOCKWISE
draws the slices clockwise starting at the 12 o’clock position. Although this position
implies ANGLE=90, you can use ANGLE= to specify a different starting angle.
Featured in: Example 11 on page 875

COUTLINE=slice-outline-color | SAME
outlines all slices, rings (subgroups), and legend values (if a legend appears) in the
specified color. SAME specifies that the outline color of a slice or a slice segment or a
legend value is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is black

for the Java or ActiveX devices. Otherwise, the default outline color is the
foreground color (the first color in the colors list).

� If a PATTERN statement or the V6COMP graphics options is specified, the
default is COUTLINE=SAME.

Note: If you specify empty patterns (VALUE=PEMPTY in a PATTERN
statement), you should not change the outline color from the default value, SAME, to
a single color. Otherwise, all of the outlines will be one color and you will not be able
to distinguish between the empty areas. �
See also: “Controlling Slice Patterns and Colors” on page 831 and “About Patterns”

on page 784
Featured in: Example 8 on page 869, Example 9 on page 872 and Example 11 on

page 875

CTEXT=text-color
specifies the color for all text on the chart that is not otherwise assigned a color. Text
includes all slice labels, the chart heading, and group headings if grouping is used.
CTEXT= also affects the color of the slice label arrows. See “Selecting and
Positioning Slice Labels” on page 830.

For the Java and ActiveX devices, the default color is black. For other devices, if
you omit CTEXT=, PROC GCHART searches for a color specification in this order:

1 the CTEXT= option in a GOPTIONS statement
2 the first color in the colors list (the default).
The MATCHCOLOR option overrides the CTEXT= option for slice labels.

Featured in: Example 9 on page 872 and Example 11 on page 875

DESCENDING

822 PIE, PIE3D, and DONUT Statements Chapter 29

arranges the slices in descending order of the value of the chart statistic. By default,
slices are arranged in ascending order of midpoint value, without regard to size.
DESCENDING reorders the slices from largest to smallest. The OTHER slice is still
last, regardless of its size.

If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of midpoint values may be different for each pie or donut.

DESCENDING overrides any midpoint order that is specified with the
MIDPOINTS= option.
Featured in: Example 11 on page 875

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form PIE (or PIE3D or
DONUT) CHART OF variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to the description of the options on page 222, and
“Substituting BY Line Values in a Text String” on page 226. The 256-character limit
applies before the substitution takes place for these options; thus, if in the SAS
program the entry-description text exceeds 256 characters, it is truncated to 256
characters, and then the substitution is performed.

The descriptive text is shown in each of the following:
� the "description" portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

statement (see “Linking to Output through a Table of Contents” on page 495),
assuming the GCHART output is generated while the contents page is open

� the Description field of the PROC GREPLAY window
� the data tip text for web output (depending on the device driver you are using).

See “Adding Data Tips to Web Presentations” on page 568 for details.

DETAIL=variable (PIE and DONUT only)
produces a inner pie overlay whose slices show the major components that comprise
the outer pie’s slice. Variable is the variable whose values are used to construct the
detail pie. If you specify the DETAIL= option and either GROUP= or SUBGROUP=,
then the DETAIL= option is ignored.

DETAIL_PERCENT=BEST|NONE (PIE and DONUT only)
specifies the algorithm to use for displaying the percentage values for the detail pie
slices. NONE turns off the display of the percentage values.

DETAIL_RADIUS=percent (PIE and DONUT only)
determines the size of the detail pie. Percent specifies the percent of the outer pie
radius to use as the detail pie radius. The valid range is 25 to 90. The default is 75.

DETAIL_SLICE=BEST|NONE (PIE and DONUT only)
specifies the algorithm to use for displaying the detail variable labels for the inner
pie slices. NONE turns off the display of the detail variable labels.

DETAIL_THRESHOLD=percent (PIE and DONUT only)
determines if a detail slice is included in the inner pie. Any detail slice comprising
percent or more percent of the whole pie is included. The valid range for percent is 0
to 75. The default is 4.

DETAIL_VALUE=BEST|NONE (PIE and DONUT only)

The GCHART Procedure PIE, PIE3D, and DONUT Statements 823

specifies the algorithm to use for displaying the data values for the detail pie slices.
NONE turns off the display of the data values.

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
slice for each unique value of the chart variable. If the chart variable has a format
associated with it, each formatted value is treated as a midpoint.

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE.

DONUTPCT=percent (DONUT only)
specifies the size of the donut hole in percent of the radius of the whole chart. Values
of percent range from 0 to 99. By default, DONUTPCT=25.
Featured in: Example 9 on page 872

DOWN=number-of-rows
draws number-of-rows pies vertically in the procedure output area. The DOWN=
option is ignored unless you also use the GROUP= option.

If number-of-rows calls for more pies than fit vertically in the graphics area of the
output device, no pies are drawn and an error message is written to the SAS log.

If you also use the ACROSS= option, the pies are drawn in left-to-right and
top-to-bottom order.

EXPLODE=value-list
pulls the specified slices slightly out from the rest of the pie for added emphasis.
Value-list is the list of midpoint values for the slices to be exploded. See the
MIDPOINTS= on page 826 option for a description of value-list.

The values in the value list must match the existing midpoints exactly, including
the case of character midpoints. Any values in the list that do not correspond to
existing midpoints are ignored.

When you use EXPLODE=, the radius is reduced to allow room for exploded slices.
EXPLODE= does not work with subgroups.

Featured in: Example 8 on page 869

FILL=SOLID | X
specifies the fill pattern for all slices in the chart:

SOLID S
rotates a solid fill through the colors list as many times as necessary. This is the
default.

X
rotates a single hatch pattern through the colors list as many times as necessary.
The Java and ActiveX devices and PIE3D do not support FILL=X.
If you use default device colors (the COLORS= option is omitted), the fill skips the

first color in the colors list.
FILL= overrides any pattern that is specified in PATTERN statements.
By default, the outline color is the first color in the colors list. If PATTERN

statements are used to specify colors, the slice outline color matches the slice fill color.
By default, the fill patterns take the colors from the current colors list in rotation.

If any PATTERN statements have been defined, the colors in the PATTERN
definitions are used, in order, before the default color rotation.
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 816 and

“PATTERN Statement” on page 169
Not supported by: Java (partial), ActiveX (partial)

FREQ=numeric-variable

824 PIE, PIE3D, and DONUT Statements Chapter 29

specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

FREQ= is valid with all chart statistics.
Because you cannot use TYPE=PERCENT or TYPE=FREQ with the SUMVAR=

option, you must use FREQ= to calculate percentages and frequencies based on a
sum.

The statistics will not be affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 783

GROUP=group-variable
organizes the data according to values of group-variable and produces a separate pie
(or donut) chart for each unique value of group-variable. Group-variable can be
either character or numeric and is always treated as a discrete variable. Missing
values for group-variable are treated as a valid group. By default, each group
includes only those midpoints with nonzero chart statistic values.

By default, the charts are produced in ascending order of group variable value and
each is drawn on a separate page or display. Therefore, the effect of GROUP= is
essentially the same as using a BY statement except that GROUP= causes the
midpoints with the same value to use the same color and fill pattern. To place more
than one pie on a page or display, use the ACROSS= or DOWN= options, or both.
See also: “BY Statement” on page 141
Featured in: Example 12 on page 877

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with an area of
the chart and point to the data or graph that you wish to display when the user drills
down on the area. The values of variable can be up to 1024 characters long.
Characters after the 1024-character limit (including any closing quotes) are
truncated.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with a legend value
and point to the data or graph that you wish to display when the user drills down on
the value. The values of variable can be up to 1024 characters long. Characters after
the 1024-character limit (including any closing quotes) are truncated.
Not supported by: Java, ActiveX

INVISIBLE=value-list
makes the specified slices invisible, as if they had been removed from the pie. Labels
are not printed for invisible slices. Value-list is the list of midpoint values for the
invisible slices. See the MIDPOINTS= option on page 826 for a description of
value-list.

The values in the value list must match the existing midpoints exactly, including
the case of character midpoints. Any values in the list that do not correspond to
existing midpoints are ignored.

JSTYLE
arranges the midpoints in descending order of the statistic value and draws the slices
clockwise starting at the 12 o’clock position. The JSTYLE option has the same effect
as specifying both the DESCENDING and CLOCKWISE options.

LABEL=(text argument(s)) (DONUT only)

The GCHART Procedure PIE, PIE3D, and DONUT Statements 825

defines the text that is displayed in the donut hole. Text-argument(s) defines the text
or the appearance of the label, or both. Text-argument(s) can be one or more of the
following:

’text-string’
provides the text of the label. Enclose each string in quotation marks. Separate
multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s) that
follows it. Text-description-suboption can be

ANGLE=degrees
COLOR=color
FONT=font
HEIGHT=text-height <units>
JUSTIFY=LEFT | CENTER | RIGHT
ROTATE=degrees
The Java and ActiveX devices do not support all of the suboptions. See “Text

Description Suboptions” on page 829 for a complete description.
Specify as many text strings and text description suboptions as you want, but

enclose them all in one set of parentheses.
Featured in: Example 9 on page 872
Not supported by: Java (partial), ActiveX (partial)

LEGEND | LEGEND=LEGEND<1...99>
generates a legend for the slice names (midpoint values) instead of printing them
beside the slices. The legend displays each slice name and its associated pattern.
This option also suppresses the display of the chart statistic values. To display the
chart statistics, use the VALUE= option.

If you use the SUBGROUP= option, the legend is automatically generated.
However, because patterning is always by midpoint, the legend still describes the
midpoint values, not the subgroups.

Note: If you request a legend and the slices use hatch patterns, the patterns in
the slices are oriented to be visually equivalent to the legend. �

Specifying LEGEND=LEGENDn assigns the specified LEGEND statement to the
legend. The Java and ActiveX devices do not support all LEGEND statement options.
See “LEGEND Statement” on page 151 for more information.
See also: “LEGEND Statement” on page 151 and SUBGROUP= option on page 828
Featured in: Example 9 on page 872 Example 11 on page 875
Not supported by: Java (partial), ActiveX (partial)

LEVELS=number-of-midpoints|ALL
specifies the number of midpoints for a numeric chart variable. The range for each
midpoint is calculated automatically.

If you specify LEVELS=ALL, then all unique midpoint values are graphed. If your
data contains a large number of unique midpoint values (over 200), you can use the
XPIXELS and YPIXELS GOPTIONS to allow the device driver to render a larger
(and more readable) graph.

LEVELS= is ignored if
� the chart variable is character type
� the DISCRETE option is used
� the MIDPOINTS= option is used.

MATCHCOLOR

826 PIE, PIE3D, and DONUT Statements Chapter 29

uses the slice pattern color for all slice labels. MATCHCOLOR overrides the color
that is specified in the CTEXT= option.

MIDPOINTS=value-list
specifies the midpoint values for the slices. The way you specify value-list depends on
the type of variable:

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>
n TO n <BY increment>
<n...> n TO n <BY increment> <n <...n>>
If a numeric variable has an associated format, the specified values must be

the unformatted values.
By default, numeric variable values are treated as continuous (if you omit the

DISCRETE option), and
� the lowest midpoint consolidates all data points from negative infinity to

the median of the first two midpoints
� the highest midpoint consolidates all data points from the median of the

last two midpoints up to infinity
� all other values in value-list specify the median of a range of values, and

the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>
If a character variable has an associated format, the specified values must be

the formatted values.

For a complete description of value-list, see the ORDER= option on page 130 in the
AXIS statement.

Midpoints that represent small percentages are collected into a generic midpoint
named OTHER. See the OTHER= option on page 827 and the OTHERLABEL=
option on page 827 for more information.
See also: “About Midpoints” on page 780
Featured in: Example 10 on page 873

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with a missing value are ignored. Missing values are always valid for
the group and subgroup variable.

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GCHART. If the name duplicates
an existing entry name, thenSAS/GRAPH software adds a number to the duplicate
name to create a unique name—for example, GCHART1.

NOGROUPHEADING

The GCHART Procedure PIE, PIE3D, and DONUT Statements 827

suppresses the headings that are normally printed above each pie when you use the
GROUP= option.

NOHEADING
suppresses the heading that is normally printed at the top of each page or display of
output for all devices except Java and ActiveX. For the Java and ActiveX devices,
NOHEADING is the default.

Featured in: Example 9 on page 872

Not supported by: Java, ActiveX

NOLEGEND
suppresses the legend that is automatically generated by the SUBGROUP= option.
NOLEGEND is ignored if the SUBGROUP= option is not used.

OTHER=percent-of-total
collects all midpoints with chart statistic values less than or equal to percent-of-total
into a generic midpoint named OTHER. The value of percent-of-total can be 0 to 100;
the default value is 4. Therefore, any slice that represents 4 percent or less of the
total is put in the OTHER category.

Note: If you specify a small value for percent-of-total, the GCHART procedure
may not be able to label all of the small slices. �

The OTHER slice is the last slice in the pie, regardless of the order of the slices.
(In other words, it is the slice immediately before the starting slice.)

If only one midpoint falls into the OTHER category, its slice is displayed in its
normal position in the pie and retains its original label. For example, suppose a pie
has these slices and percent values: Coal 35%, Gas 15%, Hydro 5%, and Oil 45%. If
you specify OTHER=5, Hydro remains the third slice instead of becoming the last
slice.

Featured in: Example 11 on page 875 and Example 12 on page 877

OTHERCOLOR=color
specifies the color to use for the OTHER slice. If you omit the OTHERCOLOR=
option, GCHART searches for a color specification in this order:

1 the CFILL= option

2 the COLOR= option in a PATTERN statement

3 the COLOR= in a GOPTIONS statement

4 the default color list.

For more information, see “Controlling Slice Patterns and Colors” on page 831.

OTHERLABEL=’text-string’
specifies a text string up to 16 characters for the label for the OTHER slice. The
default label is OTHER.

Featured in: Example 11 on page 875

PERCENT=ARROW | INSIDE | NONE | OUTSIDE
prints the percentage represented by each slice using the specified labeling method.
For a description of the option values, see “Selecting and Positioning Slice Labels” on
page 830. By default, PERCENT=NONE (percentage is not displayed).

Whether the slice percent displays with or without decimal places, depends on the
range of values across the chart. The only way to control the appearance of these
values is to calculate the percentage with a DATA step or statistical procedure and
use the resulting data set as input to the GCHART procedure. Assign the variable
that contains the calculated percentages to the SUMVAR= option.

Featured in: Example 10 on page 873 and Example 12 on page 877

828 PIE, PIE3D, and DONUT Statements Chapter 29

SLICE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice name (midpoint value) for each slice. For a
description of the option values, see “Selecting and Positioning Slice Labels” on page
830. By default, SLICE=OUTSIDE (the name is outside of the slice).
Featured in: Example 10 on page 873 and Example 12 on page 877

SUBGROUP=subgroup-variable
divides the chart into concentric rings according to the values of subgroup-variable.
For DEVICE=JAVA, subgroups are implemented using drill-down functionality
instead of concentric rings. In the resulting graph, you can select a pie slice to
display subgroup information. Subgroup-variable can be either character or numeric
and is always treated as a discrete variable.

The width of the rings, which is the same for each subgroup, is determined by the
radius of the pie and the size of the donut hole, if any.

By default, the subgroup rings are ordered from the outside in, alphabetically (if
character) or numerically (if numeric). If the JSTYLE option is also used, the order
of the slices within the subgroups is determined by the outermost subgroup. Any
inner subgroup that contains a value that is not in the outer subgroup, places the
new slice for that value either last or just before the "other" slice, if one is present.
That slice order is continued for any remaining subgroups.

Each ring is labeled with its subgroup value; labels are placed to the right of the
chart. If the GROUP= option is also used and if all groups contain the same
subgroups, then only the first (upper left) chart on each page is labeled. If any group
differs in the number of subgroups it contains, then all charts are labeled.

By default the subgroups are outlined in the foreground color. To specify an
outline color, use the COUTLINE= option.

SUBGROUP= automatically generates a legend for the midpoint values (not the
subgroup values) and suppresses display of the chart statistic. By default the legend
appears at the bottom of the chart. To modify the legend, assign a LEGEND
definition. To suppress the legend, specify NOLEGEND. To display the chart
statistic, use the VALUE= option.

If EXPLODE is also used, it is ignored.
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 816 and

“LEGEND Statement” on page 151
Featured in: Example 9 on page 872 and Example 10 on page 873

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of numeric-variable for each midpoint.
The resulting statistics are represented by the size of the slice and displayed beside
of each slice.

When you use SUMVAR=, the TYPE= option must be either SUM or MEAN. With
SUMVAR=, the default is TYPE=SUM.
Featured in: Example 8 on page 869

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

PERCENT PCT
percentage

� If SUMVAR= is used, statistic can be one of the following:

SUM

The GCHART Procedure PIE, PIE3D, and DONUT Statements 829

sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ or TYPE=PERCENT with the SUMVAR=
option, you must use FREQ= to calculate percentages or frequencies based on a sum.

See also: “About Chart Statistics” on page 782 and “Calculating Weighted
Statistics” on page 783

VALUE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice value (chart statistic) for each slice. For a
description of the option values see “Selecting and Positioning Slice Labels” on page
830. By default, VALUE=OUTSIDE (the value is outside the slice).

Featured in: Example 10 on page 873 and Example 11 on page 875

WOUTLINE=slice-outline-width
specifies the width of the outline in pixels. WOUTLINE= affects both the slice and
the subgroup outlines.

Not supported by: Java, ActiveX

Text Description Suboptions
The LABEL= option in the DONUT statement uses text description suboptions to

change the color, height, justification, font, and angle of the following text string(s).

ANGLE=degrees
A=degrees

specifies the angle at which the baseline of the text string(s) is rotated with respect
to the horizontal. A positive value for degrees moves the baseline counterclockwise;
a negative value moves it clockwise. By default, ANGLE=0 (horizontal).

Not supported by: Java

COLOR=color
C=color

specifies the color for the text string(s). The COLOR= suboption stays in effect
until another COLOR= specification is encountered. If you omit COLOR=,
LABEL= uses the first color in the colors list. It ignores the CTEXT= graphics
option. See Chapter 6, “SAS/GRAPH Colors and Images,” on page 91 for details on
specifying color.

FONT=font
F=font

specifies the font for the text string(s). If you omit FONT=, LABEL= uses the font
that is specified by the FTEXT= graphics option. If no font is specified, it uses the
default hardware font, NONE. See Chapter 5, “SAS/GRAPH Fonts,” on page 75 for
details on specifying font. The Java and ActiveX devices do not support all fonts.

Not supported by: Java (partial), ActiveX (partial)

HEIGHT=text-height <units>
H=text-height <units>

specifies the height of the text string(s). Text-height is the number of units. If you
omit HEIGHT=, LABEL= uses the height that is specified by the HTEXT=
graphics option. If no text height is specified and if the default text height is too
large for the donut hole, the size of the label is reduced to fit. Units can be CELLS
| CM | IN | PCT | PT. If you omit units, HEIGHT= uses the unit that is specified
by the GUNIT= graphics option, or the default unit, CELLS.

830 PIE, PIE3D, and DONUT Statements Chapter 29

JUSTIFY=LEFT | CENTER | RIGHT
J=L | C | R

specifies the alignment of the text string(s). By default, JUSTIFY=CENTER.
Not supported by: Java, ActiveX

ROTATE=degrees
specifies the angle at which each character is rotated with respect to the baseline
of the text string. The angle is measured from the current text baseline angle
specified by the ANGLE= suboption. A positive value for degrees rotates the
character counterclockwise; a negative value rotates it clockwise. By default,
ROTATE=0 (parallel to the baseline).
Not supported by: Java

Selecting and Positioning Slice Labels
By default, each slice is labeled with its midpoint value (slice name) and its chart

statistic value (slice value), which are printed outside of the slice. You can control where
and how these labels are displayed with the SLICE= and VALUE= options, respectively.
In addition, each slice can display the percentage its midpoint contributes to the total
chart statistic (slice percent). Use the PERCENT= option to request slice percent.

The SLICE=, VALUE=, and PERCENT= options use the same values:

ARROW
places the text outside the slice and connects the text to the slice with a line. This
labeling method reduces the radius of the pie. The arrow uses the color that is
specified by CTEXT= in the PIE, PIE3D, or DONUT statement. If CTEXT= is
omitted, the arrow uses the first color in the colors list.

INSIDE
places the text inside the slice. The label overlays the slice fill patterns. This
labeling method increases the radius of the pie.

NONE
suppresses the text.

OUTSIDE
places the text outside of the slice.

Figure 29.14 on page 831 illustrates these values.

The GCHART Procedure PIE, PIE3D, and DONUT Statements 831

Figure 29.14 Slice Labeling Methods

The SLICE= and VALUE= options are dependent on each other. If you specify only
VALUE= or only SLICE=, the other option automatically uses the same labeling
method. PERCENT= is independent of these two.

Be careful about the combinations that you specify. For example, if you specify
PERCENT=ARROW and VALUE=OUTSIDE, the line that connects the percentage
information to each slice may overlay the statistic value.

If your pie has many slices, the labels may overlap, particularly if there are several
small slices together. You can correct the overlapping labels by using

� FTEXT= graphics option to decrease the size of the labels.
� the Graphics Editor to adjust the labels by moving or resizing the text.
� ANGLE= to change the orientation of the pie.
� MIDPOINTS= to rearrange slices so that small slices are not together.
� OTHER= to group more midpoints into the OTHER category.
� the HPOS= and VPOS= graphics options to increase the number of cells in your

display. (See “About the Graphics Output Area” on page 34 for details.)

Controlling Slice Patterns and Colors
Pie and donut charts are always patterned by midpoint. Even when you specify

subgrouping, the patterning method does not change from midpoint to subgroup.

Default patterns and outlines
Each slice in a pie or donut chart is filled with a pattern. By default, the procedure

� fills the slices with pie patterns, beginning with the default fill, PSOLID, and
rotating through the colors in the colors list. When the solid patterns are
exhausted, the procedure selects the next default pie pattern and rotates it
through the colors list. It continues in this fashion until all of the required
patterns have been assigned.

Note: PIE3D always uses solid patterns. �
If you use the device’s default colors and the first color in the list is either black

or white, the procedure does not create a pattern in that color. If you specify a
colors list with the COLORS= graphics option, the procedure uses all the colors in
the list to generate the patterns.

832 PIE, PIE3D, and DONUT Statements Chapter 29

� outlines slices and subgroup segments using the first color in the colors list. To
change the outline color, use the COUTLINE= option.

See “About Patterns” on page 784 for more information on how the GCHART
procedure assigns default patterns and outlines.

Controlling patterns
You can control slice patterns and their outlines in several ways.

� To select a different fill for the slices, such as empty or hatched, you can
� request a single hatched fill pattern for all slices by specifying the FILL=X

option on the PIE or DONUT statement. The pattern specified by FILL=X
rotates through the colors list as many times as needed to generate all of the
patterns that are required by the chart. If you specify a single color with
either CFILL= or the graphics option, CPATTERN=, all slices use the same
color as well as the same pattern.

� specify a pattern with the VALUE= option in the PATTERN statement. Only
pie patterns are valid; all other pattern specifications are ignored. For a
complete description of all pie patterns, see VALUE= on page 174 in
“PATTERN Statement” on page 169.

If no color options are specified, the procedure rotates each specified fill
once through the colors list. Otherwise the PATTERN statement generates
one pattern definition for the specified pattern and color. When all of the
specified patterns are exhausted, the procedure starts rotating through the
default pie patterns, beginning with PSOLID.

� To select colors for the slices, you can
� specify a single pattern color with the CFILL= option, or with the

CPATTERN= graphics option, or with a colors list of one color. For the PIE
and DONUT statements, CFILL= starts with the default solid color and uses
the foreground color for outlines, whereas CPATTERN= and a colors list of
one color skip the solid pattern and, beginning with P2N0, use each pie hatch
pattern with the specified color, and use the fill color for the outline color.

� specify only COLOR= in one or more PATTERN statements. In this case, the
procedure creates a solid pattern for each specified color. When it runs out of
PATTERN statements, it returns to the default patterns, beginning with
PSOLID, and rotates them each through the colors list. Whenever you specify
a PATTERN statement, the default outline color is SAME.

� To define specific patterns and colors for the slices, use PATTERN statements and
specify both the VALUE= and COLOR= options. If you provide fewer PATTERN
definitions than the chart requires, the GCHART procedure uses the default
pattern rotation for the slices that are drawn after all of the defined patterns are
exhausted.

Whenever you use PATTERN statements, the default outline color changes to
SAME. That is, the outline color is the same as the fill color. To change the outline
color, use the COUTLINE= option on page 821.

See “About Patterns” on page 784 for more information on how the GCHART
procedure uses patterns and outlines. See “PATTERN Statement” on page 169 for a
description of default pie patterns.

Modifying the Statistic Heading and the Group Heading
By default, the procedure prints a heading at the top of each pie (or donut) chart that

indicates the type of statistic charted and the name of the chart variable– for example,
SUM of SALES by SITE. You can suppress this heading with the NOHEADING option.

The GCHART Procedure STAR Statement 833

When you use the GROUP= option, a heading is printed above each pie indicating
the name of the group variable and its value for the particular pie– for example,
SITE=Paris. You can suppress these headings with the NOGROUPHEADING option.
You can also suppress the variable name SITE= so that only the value Paris remains.
To do this, use a LABEL statement and assign a null value to the variable name, for
example,

label site=’00’x;

Because the AXIS statement cannot be used by the PIE, PIE3D, and DONUT
statements, you should use the FTEXT= and HTEXT= graphics options to control the
font and height of text on the chart. Increasing the value of the HTEXT= graphics
option decreases the size of the pie if any slice labels are positioned outside.

STAR Statement

Creates star charts in which the length of the spines represents the value of the chart statistic for
each category of data or midpoint.

Requirements: At least one chart variable is required.
Global statements: FOOTNOTE, PATTERN, TITLE,
Supports: Drill-down functionality (slices only)
Not supported by: Java, ActiveX

Description
The STAR statement specifies the variable or variables that define the categories of
data to chart. This statement automatically

� determines the midpoints.
� calculates the chart statistic for each midpoint (the default is FREQ).
� scales each spine or slice to represent the chart statistic. Slices or spines are

drawn for all midpoints where the value of the chart statistic is greater than the
value that is specified in the STARMIN= option.

� arranges the spines or slice counterclockwise around the star in ascending order of
midpoint value, starting at the three o’clock position.

� prints the midpoint value and chart statistic beside each spine or slice.
� assigns patterns to the slices.

If all the data to be charted with the STAR statement are positive, the center of the
star represents 0 and the outside circle represents the maximum value. If negative
values are calculated for the chart statistic, the center represents the minimum value
in the data. You can specify other values for the center and outside of the circle with
the STARMIN= and STARMAX= options.

You can also use statement options to select or order the midpoints, to change the
type of chart statistic, and to modify the appearance of the chart, including the content
and position of the spine or slice labels, and patterns that fill the slice. You can specify
additional variables by which to group or sum the data.

Star charts allow grouping, which creates two or more separate charts that display in
rows or columns on one graph.

In addition, you can use global statements to modify patterns as well as add titles,
footnotes, and notes to the chart. You can also use an Annotate data set to enhance the
chart.

834 STAR Statement Chapter 29

Syntax

STAR chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:

� appearance options

ANGLE=degrees

ANNOTATE=Annotate-data-set

CFILL=fill-color

COUTLINE=star-outline-color | SAME

FILL=SOLID | X

NOCONNECT

STARMAX=max-value

STARMIN=min-value

WOUTLINE=slice-outline-width

� statistic options

FREQ=numeric-variable

SUMVAR=summary-variable

TYPE=statistic

� midpoint options

DISCRETE

LEVELS=number-of-midpoints

MIDPOINTS=value-list

MIDPOINTS=OLD

MISSING

� grouping options

ACROSS=number-of-columns

DOWN=number-of-rows

GROUP=group-variable

� labeling options

CTEXT=text-color

MATCHCOLOR

NOGROUPHEADING

NOHEADING

PERCENT=ARROW | INSIDE | NONE | OUTSIDE

SLICE=ARROW | INSIDE | NONE | OUTSIDE

VALUE=ARROW | INSIDE | NONE | OUTSIDE

� catalog entry description options

DESCRIPTION=’entry-description’

NAME=’entry-name’

� ODS options

HTML=variable

The GCHART Procedure STAR Statement 835

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Separate multiple chart variables with blanks.
See also: “About Chart Variables” on page 779

Options
Options in a STAR statement affect all of the graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.
For details on specifying colors, see Chapter 6, “SAS/GRAPH Colors and Images,” on
page 91.

ACROSS=number-of-columns
draws number-of-columns stars across the procedure output area. ACROSS= is
ignored unless you also use the GROUP= option. If number-of-columns calls for more
stars than fit horizontally in the graphics area of the output device, no stars are
drawn and an error message is written to the SAS log.

If you also use the DOWN= option, the star charts are drawn in left-to-right and
top-to-bottom order.

ANGLE=degrees
starts the first slice at the specified angle. A value of 0 for degrees corresponds to the
3 o’clock position. Degrees can be either positive or negative. Positive values move
the starting position counterclockwise; negative values move the starting position
clockwise.

If the star chart uses spines instead of slices, degrees specifies the angle of the
position halfway between the first spine and the last spine.

By default, ANGLE=0, which places the first spine or the center of the first slice of
the star at the 0 degree position. Successive star spines or slices are drawn
counterclockwise from the starting position.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate charts that are produced by the STAR statement.

Note: Annotate coordinate systems 1, 2, 7, and 8 (data system coordinates) are
not valid with star charts. �
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

CFILL=fill-color
specifies one color for all slices in the chart, regardless of whether the fill is solid or
hatch. If no pattern is specified on the PATTERN statement or with the FILL=
option, the procedure starts with the default solid fill and then, beginning with
P2N0, uses each default star hatch pattern with the specified color. For the outline
color, the procedure uses the foreground color, which is the first color in the colors
lists. Use COUTLINE= to specify a different outline color. CFILL= overrides any
other pattern color specification and controls the color of all slices.

COUTLINE=star-outline-color | SAME
specifies the color for the circle that surrounds the star chart and for the slice
outlines or spines.

SAME specifies that the outline color of a slice is the same as the interior pattern
color. Specifying COUTLINE=SAME affects only slice outlines and has no effect on
the color of the circle.

836 STAR Statement Chapter 29

The default circle color is the first color in the colors list (the foreground color).
The default slice outline color depends on the PATTERN statement:
� If you do not specify the PATTERN statement, the default outline color is the

foreground color (the first color in the colors list).
� If you do not specify the PATTERN statement or the V6COMP graphics options,

the default is COUTLINE=SAME.

Note: If you specify empty patterns, (VALUE=PEMPTY in a PATTERN
statement) you should not change the outline color from the default value, SAME, to
a single color. Otherwise all the outlines will be one color and you will not be able to
distinguish between the empty areas. �
See also: “Selecting Patterns for the Star Charts” on page 840 and “About Patterns”

on page 784
Featured in: Example 14 on page 880

CTEXT=text-color
specifies a color for all text on the chart. Text includes all slice labels, the chart
heading, and group headings if grouping is used.

If you omit CTEXT=, PROC GCHART searches for a color specification in this
order:

1 the CTEXT= option in a GOPTIONS statement
2 the first color in the colors list (the default).
The MATCHCOLOR option overrides the CTEXT= option for star slice labels.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form STAR CHART OF
variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to the description of the options on page 222, and
“Substituting BY Line Values in a Text String” on page 226. The 256-character limit
applies before the substitution takes place for these options; thus, if in the SAS
program the entry-description text exceeds 256 characters, it is truncated to 256
characters, and then the substitution is performed.

The descriptive text is shown in each of the following:
� the "description" portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

statement (see “Linking to Output through a Table of Contents” on page 495),
assuming the GCHART output is generated while the contents page is open

� the Description field of the PROC GREPLAY window.

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
star slice for each unique value of the chart variable. If the variable has a format
associated with it, each format value is treated as a separate value.

The LEVELS= option is ignored when you use the DISCRETE option. The
MIDPOINTS= option overrides the DISCRETE option.
Featured in: Example 14 on page 880

The GCHART Procedure STAR Statement 837

DOWN=number-of-rows
draws number-of-rows stars vertically in the procedure output area. The DOWN=
option is ignored unless you also use the GROUP= option. If number-of-rows calls for
more stars than fit vertically in the graphics area of the output device, no stars are
drawn and an error message is written to the SAS log.

If you also use the ACROSS= option, the stars are drawn in left-to-right and
top-to-bottom order.

FILL=SOLID | X
specifies the fill pattern for all slices in the star chart:

SOLID
S

rotates a solid fill through the colors list as many times as necessary. This is the
default.

X
rotates a single hatch pattern through the colors list as many times as necessary.
If you use default device colors (the COLORS= option is omitted), the fill skips the

first color in the colors list.
FILL= overrides any patterns that are specified in PATTERN statements.
By default, the fill patterns take the colors from the current colors list in rotation.

If any PATTERN statements have been defined, the colors in the PATTERN
definitions are used, in order, before the default color rotation.
Featured in: Example 14 on page 880

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
that are specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

FREQ= is valid with all chart statistics.
Because you cannot use TYPE=PERCENT or TYPE=FREQ with the SUMVAR=

option, you must use FREQ= to calculate percentages and frequencies based on a
sum.

The statistics will not be affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 783

GROUP=variable
organizes the data according to values of group-variable and produces a separate star
chart for each unique value of group-variable. Group-variable can be either character
or numeric and is always treated as a discrete variable. Missing values for
group-variable are treated as a valid group.

By default, the charts are produced in ascending order of group variable value and
each is drawn on a separate page or display. Therefore, the effect of GROUP= is
essentially the same as using a BY statement except that GROUP= causes the
midpoints with the same value to use the same color and fill pattern. To place more
than one star chart on a page or display, use the ACROSS= or DOWN= options, or
both.

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with an area of
the chart and point to the data or graph that you wish to display when the user drills
down on the area. Only star charts with slices support drill-down functionality. The
values of variable can be up to 1024 characters long. Characters after the
1024-character limit (including any closing quotes) are truncated.

838 STAR Statement Chapter 29

LEVELS=number-of-midpoints
specifies number of midpoints for a numeric chart variable. The range for each
midpoint is calculated automatically using the algorithm described by Terrell and
Scott (1985). LEVELS= is ignored if

� the chart variable is character type
� the DISCRETE option is used
� the MIDPOINTS= option is used.

MATCHCOLOR
uses the slice pattern color for all slice labels. MATCHCOLOR overrides the color
that is specified in the CTEXT= option. If the chart uses spines instead of slices, the
spine color is used for the slice label and value text.

MIDPOINTS=value-list
specifies the midpoint values for the slices. The way you specify value-list depends on
the type of variable:

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment> <n <...n>>
If a numeric variable has an associated format, the specified values must be

the unformatted values.
By default, numeric variable values are treated as continuous (if you omit the

DISCRETE option), and
� the lowest midpoint consolidates all data points from negative infinity to

the median of the first two midpoints
� the highest midpoint consolidates all data points from the median of the

last two midpoints up to infinity
� all other values in value-list specify the median of a range of values, and

the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>
If a character variable has an associated format, the specified values must be

the formatted values.

For a complete description of value-list, see the ORDER= option on page 130 in the
AXIS statement.
See also: “About Midpoints” on page 780

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with a missing value are ignored. Missing values are always valid for
the group variable.

NAME=’entry-name’

The GCHART Procedure STAR Statement 839

specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GCHART. If the name duplicates
an existing entry name, thenSAS/GRAPH software adds a number to the duplicate
name to create a unique name—for example, GCHART1.

NOCONNECT
draws only star spines without connecting lines. By default, the spines are connected
to form slices.
Featured in: Example 14 on page 880

NOGROUPHEADING
suppresses the headings normally printed above each star when you use the
GROUP= option.

NOHEADING
suppresses the heading normally printed at the top of each page or display of star
chart output.
Featured in: Example 14 on page 880

PERCENT=ARROW | INSIDE | NONE | OUTSIDE
prints the percentage represented by each slice using the specified labeling method.
For a description of the option values see “Selecting and Positioning Spine and Slice
Labels” on page 840. By default, PERCENT=NONE (percentage is not displayed).

SLICE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice name (midpoint value) for each slice. For a
description of the option values, see “Selecting and Positioning Spine and Slice
Labels” on page 840. By default, SLICE=OUTSIDE (the name is outside the slice).

STARMAX=max-value
scales the chart so that the outside (or edge) of the circle represents the value that is
specified by max-value. By default, the value for STARMAX= is the maximum chart
statistic value.

STARMIN=min-value
scales the chart so that the center of the circle represents the value that is specified
by min-value. By default, STARMIN=0. If the chart statistic has negative values, by
default the value for STARMIN= is the minimum chart statistic value.

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of the value of numeric-variable for
each midpoint. The resulting statistics are represented by the size of the slice and
displayed beside each slice.

When you use SUMVAR=, the TYPE= option must be either SUM or MEAN. With
SUMVAR=, the default is TYPE=SUM.
Featured in: Example 13 on page 879

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

PERCENT PCT
percentage
If SUMVAR= is used, statistic can be one of the following:

SUM

840 STAR Statement Chapter 29

sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ or TYPE=PERCENT with the SUMVAR=
option, you must use FREQ= to calculate percentages or frequencies based on a sum.
See also: “About Chart Statistics” on page 782 and “Calculating Weighted

Statistics” on page 783

VALUE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice value (chart statistic) for each slice. For a
description of the option values, see “Selecting and Positioning Spine and Slice
Labels” on page 840. By default, VALUE=OUTSIDE (the value is outside of the slice).

WOUTLINE=slice-outline-width
specifies the width of the outline in pixels. WOUTLINE= affects the slice outlines.

Selecting and Positioning Spine and Slice Labels
By default, each spine or slice is labeled with its midpoint value and its chart

statistic value, which are printed outside of the circle. You can control where and how
these labels are displayed with the SLICE= and VALUE= options, respectively. In
addition, each spine can display the percentage that its midpoint contributes to the total
chart statistic (spine percent). Use the PERCENT= option to request spine percent.

The SLICE=, VALUE=, and PERCENT= options use the same values:

ARROW
places the text outside of the star circle and connects the text to the circle with a
line. The line points to the spine or the center of the slice. The arrow uses the
color that is specified by CTEXT= in the STAR statement. If you omit CTEXT=,
the arrow uses the first color in the colors list.

INSIDE
places the text inside the star circle.

NONE
suppresses the text.

OUTSIDE
places the text outside the star circle.

Figure 29.14 on page 831 illustrates these values.
The SLICE= and VALUE= options are dependent on each other. If you specify only

VALUE= or only SLICE=, the other option automatically uses the same labeling
method. PERCENT= is independent of these two.

Be careful about the combinations that you specify. For example, if you specify
PERCENT=ARROW and VALUE=OUTSIDE, the line that connects the percentage
information to each spine may overlay the statistic value.

Selecting Patterns for the Star Charts
Star charts are always patterned by midpoint.

Default patterns and outlines
Each slice in a star chart is filled with a pattern. By default, the procedure

� fills the slices with star patterns, beginning with the default fill, PSOLID, and
rotating through the colors in the colors list. When the solid patterns are
exhausted, the procedure selects the next default star pattern and rotates it

The GCHART Procedure STAR Statement 841

through the colors list. It continues in this fashion until all the required patterns
have been assigned.

If you use the device’s default colors and the first color in the list is either black
or white, the procedure does not create a pattern in that color. If you specify a
colors list with the COLORS= graphics option, the procedure uses all of the colors
in the list to generate the patterns.

� outlines slices using the first color in the colors list. To change the outline color,
use the COUTLINE= option.

See “About Patterns” on page 784 for more information on how the GCHART
procedure assigns default patterns and outlines.

Controlling patterns
You can control slice patterns and their outlines in several ways.

� To select a different fill for the slices, such as empty or hatched, you can

� request a single hatched fill pattern for all slices by specifying the FILL=X
option on the STAR statement. The pattern that is specified by FILL=X
rotates through the colors list as many times as needed to generate all the
patterns required by the chart. If you specify a single color with either
CFILL= or the graphics option, CPATTERN=, all slices use the same color as
well as the same pattern.

� specify a pattern with the VALUE= option in the PATTERN statement. Only
star patterns are valid; all other pattern specifications are ignored. For a
complete description of all star patterns, see VALUE= on page 174 in
“PATTERN Statement” on page 169.

If no color options are specified, the procedure rotates each specified fill
once through the colors list. Otherwise the PATTERN statement generates
one pattern definition for the specified pattern and color. When all of the
specified patterns are exhausted, the procedure starts rotating through the
default star patterns, beginning with PSOLID.

� To select colors for the slices, you can

� specify a single pattern color with the CFILL= option, or with the
CPATTERN= graphics option, or with a colors list of one color. If you use
CFILL=, the procedure starts with the default solid color and uses the
foreground color for outlines. If you use CPATTERN= or a colors list of one
color, the procedure skips the default solid fill and, beginning with P2N0,
uses each default star hatch pattern with the specified color, and uses the fill
color for the outline color.

� specify only COLOR= in one or more PATTERN statements. In this case, the
procedure creates a solid pattern for each specified color. When it runs out of
PATTERN statements, it returns to the default patterns, beginning with
PSOLID, and rotates them each through the colors list. Whenever you specify
a PATTERN statement, the default outline color is SAME.

� To define specific patterns and colors for the slices, use PATTERN statements and
specify both the VALUE= and COLOR= options. If you provide fewer PATTERN
definitions than the chart requires, the GCHART procedure uses the default
pattern rotation for the slices that are drawn after all defined patterns are
exhausted.

Whenever you use PATTERN statements, the default outline color changes to
SAME. That is, the outline color is the same as the fill color. To change the outline
color, use the COUTLINE= option on page 821.

842 Examples Chapter 29

See “About Patterns” on page 784 for more information on how the GCHART
procedure uses patterns and outlines. See “PATTERN Statement” on page 169 for a
description of default star patterns.

Modifying the Statistic Heading and the Group Heading
By default, the procedure prints a heading at the top of each chart indicating the

type of statistic charted and the name of the chart variable– for example, SUM of
SALES by SITE. You can suppress this heading with the NOHEADING option.

When you use the GROUP= option, a heading is printed above each star indicating
the name of the group variable and its value for the particular star– for example,
SITE=Paris. You can suppress these headings with the NOGROUPHEADING option.
You can also suppress the variable name SITE= so that only the value Paris remains.
To do this, use a LABEL statement and assign a null value to the variable name, as
shown in this example:

label site=’00’x;

Because the AXIS statement cannot be used by the STAR statement, you should use
the FTEXT= and HTEXT= graphics options to control the font and height of text on the
chart. Increasing the value of HTEXT= decreases the size of the star if any slice labels
are positioned outside. For a description of these graphics options, see Chapter 8,
“Graphics Options and Device Parameters Dictionary,” on page 261.

Examples

Example 1: Specifying the Sum Statistic in a Block Chart

Procedure features:
BLOCK statement option:

SUMVAR=
Other features: FORMAT statement
Sample library member: GCHBKSUM

The GCHART Procedure Example 1: Specifying the Sum Statistic in a Block Chart 843

This example produces a block chart of total sales for three sites by charting the
values of the character variable SITE and calculating the sum of the variable SALES
for each site. It prints formatted values of the sales statistics below the blocks.

The chart uses default patterns and colors. The block faces use the default pattern
fill, which is solid. Because a colors list is specified in the GOPTIONS statement, the
default fill color is the first color in the list, blue. The midpoint grid and the block
outlines also use the first color in the list.

All the blocks use the same pattern because by default patterns change for subgroups
and in this chart subgroups are not specified.

Set the graphics environment. CTEXT= specifies the color for all text on the output.
COLORS= specifies the colors list, which is used by the default patterns and outlines.

goptions reset=global gunit=pct border cback=white
ctext=black colors=(blue green red)
ftext=swiss ftitle=swissb
htitle=6 htext=3.5;

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;

Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Parts Paris 1 5543.97
...more data lines...
Tools Sydney 4 1775.74
Tools Atlanta 4 3424.19
Tools Paris 4 6914.25
;

Define title and footnote.

title ’Total Sales’;
footnote j=r ’GCHBKSUM ’;

844 Example 2: Grouping and Subgrouping a Block Chart Chapter 29

Produce the block chart. The BLOCK statement produces a block chart. SUMVAR=
calculates the sum of SALES for each value of the chart variable SITE. With SUMVAR= the
default statistic is SUM. The summary variable SALES is assigned a dollar format.

proc gchart data=reflib.totals;
format sales dollar8.;
block site / sumvar=sales;

run;
quit;

Example 2: Grouping and Subgrouping a Block Chart
Procedure features:

BLOCK statement options:
CAXIS=
COUTLINE=
GROUP=
LEGEND=
MIDPOINTS=
NOHEADING
SUBGROUP=
TYPE=

Other features:
LABEL statement
LEGEND statement
Default pattern rotation

Data set: TOTALS
Sample library member: GCHBKGRP

This example shows average quarterly sales for each department at two of the three
manufacturing sites in the TOTALS data set; it excludes the Paris site from the chart.

The GCHART Procedure Example 2: Grouping and Subgrouping a Block Chart 845

The program groups the chart data (sites) by department, and subgroups department
sales data by quarter. Each site is a midpoint. Because the sites are grouped by
department, each midpoint has a separate square for each department and the height
of the block represents total sales for that department.

The blocks are subgrouped to show how quarterly sales contribute to total sales; each
segment represents sales for a quarter. A legend explaining the subgroup patterns
appears below the midpoint grid.

The subgroups use four default patterns, The first three patterns are created by
rotating the first default fill, solid, through the three colors in the colors list defined in
the GOPTIONS statement. The fourth default pattern is created by using the second
default pattern fill, X1, with the first color in the colors list, blue.

Because the first color in the colors list is also the default color for several other
elements, the program includes several options that override the default: CTEXT=
colors all text, CAXIS= colors the midpoint grid, COUTLINE= colors the pattern
outline. For more information on patterns and colors, see “Controlling Block Chart
Patterns and Colors” on page 794.

Assign the libref and set the graphics environment. COLORS= specifies a colors list that
is used by the default patterns. CTEXT= specifies black for all text.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green red) ctext=black
ftitle=swissb ftext=swiss htitle=4 htext=3;

Define title and footnote.

title ’Average Sales by Department’;
footnote j=r ’GCHBKGRP ’;

Define legend characteristics. LABEL= assigns new text to the legend label. CBORDER=
draws a black frame around the legend.

legend1 cborder=black
label=(’Quarter:’)
position=(middle left outside)
mode=protect
across=1;

Produce the block chart. The LABEL statement suppresses the midpoint and group labels by
assigning a null hexadecimal string to each variable name.

proc gchart data=reflib.totals;
format quarter roman.;
format sales dollar8.;
label site=’00’x dept=’00’x;

846 Example 3: Specifying the Sum Statistic in Bar Charts Chapter 29

TYPE= specifies the chart statistic as the mean value of the summary variable SALES for each
site. MIDPOINTS= selects the two sites and the order in which they appear. GROUP= creates a
separate row of blocks for each different value of DEPT. SUBGROUP= divides each block into
separate segments for the four quarters. LEGEND= assigns the LEGEND1 statement to the
graph. NOHEADING suppresses the default heading that would otherwise appear above the
chart. CAXIS= colors the grid black. COUTLINE= specifies the outline color for the blocks.

block site / sumvar=sales
type=mean
midpoints=’Sydney’ ’Atlanta’
group=dept
subgroup=quarter
legend=legend1
noheading
coutline=black
caxis=black;

run;
quit;

Example 3: Specifying the Sum Statistic in Bar Charts

Procedure features:
HBAR statement options:

SUMVAR=

VBAR3D statement options:

SUMVAR=
COUTLINE=

Other features:
FORMAT statement

PATTERN statement

RUN-group processing

Data set: TOTALS

Sample library member: GCHBRSUM

The GCHART Procedure Example 3: Specifying the Sum Statistic in Bar Charts 847

This example produces two bar charts that show total sales for three sites by
charting the values of the character variable SITE and calculating the sum of the
variable SALES for each site.

In the horizontal bar chart shown above, the summary statistics are printed by
default to the right of the bars and display the formatted values of SALES.

The bars use the default pattern fill, which is solid. Because a colors list is specified
in the GOPTIONS statement, the first default pattern color is the first color in the list.
To avoid having black bars, the program uses a PATTERN statement to specify the
pattern color. Using a PATTERN statement causes the default bar outline color to
match the fill color. All the bars display the same pattern because by default patterns
change for subgroups and in this chart subgroups are not specified.

The output also shows the frame that is drawn by default around the axis area.
The second bar chart is a 3D vertical bar chart, shown in the following output.

Vertical bar charts do not generate a table of statistics and by default do not print any
chart statistics. This chart uses the same pattern as the horizontal bar chart, but the
VBAR3D statement specifies a black outline for the bars.

Assign the libref and set the graphics environment. COLORS= specifies the colors list,
which is used by the default patterns and outlines.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border

colors=(black red blue green)
cback=white ftitle=swissb ftext=swiss
htitle=6 htext=3.5;

Define title and footnote for the first chart.

title1 ’Total Sales’;
footnote1 h=3 j=r ’GCHBRSUM(a) ’;

Specify a color for the pattern. The PATTERN statement explicitly defines RED as the color
for the first solid pattern.

pattern1 color=red;

848 Example 4: Subgrouping a 3D Vertical Bar Chart Chapter 29

Produce the horizontal bar chart. The HBAR statement produces a two-dimensional bar
chart. SUMVAR= calculates the sum of SALES for each value of the chart variable SITE. The
default statistic for SUMVAR= is SUM. The summary variable SALES is assigned a dollar
format.

proc gchart data=reflib.totals;
format sales dollar8.;
hbar site / sumvar=sales;

run;

Produce the vertical bar chart. Because the procedure supports RUN-group processing, you
do not have to repeat the PROC GCHART statement to generate the second chart. The VBAR3D
statement produces a three-dimensional vertical bar chart. The FOOTNOTE1 statement
replaces the previous footnote. COUTLINE= assigns a black outline to the bars.

footnote1 h=3 j=r ’GCHBRSUM(b) ’;
vbar3d site / sumvar=sales

coutline=black;
run;
quit;

Example 4: Subgrouping a 3D Vertical Bar Chart

Procedure features:
VBAR statement options:

CFRAME=
INSIDE=SUBPCT
LEGEND=
MAXIS=
OUTSIDE=SUM
RAXIS=
SPACE=
SUBGROUP=
WIDTH=

Other features:
AXIS statement

FORMAT statement

GOPTIONS statement

OFFSHADOW=

LEGEND statement

PATTERN statement

Data set: TOTALS

Sample library member: GCHBRGRP

The GCHART Procedure Example 4: Subgrouping a 3D Vertical Bar Chart 849

This example subgroups by department the 3D vertical bar chart of total sales for
each site that is shown in Example 3 on page 846. In addition to subdividing the bars
to show the amount of sales for each department for each site, the chart displays
statistics both inside and outside of the bars. OUTSIDE=SUM prints the total sales for
the site above each bar. INSIDE=SUBPCT prints the percent each department
contributed to the total sales for its site inside of each subgroup segment.

The legend has a block-effect shadow whose color matches the backplane. The
graphics option OFFSHADOW= defines the size and position of the block shadow. Both
the LEGEND statement and the AXIS statement use the ORIGIN= option to line up
the legend and the chart by explicitly positioning their lower left corners.

Assign the libref and set the graphics environment. OFFSHADOW= defines the depth of
the block around the legend box. The positive values position the shadow above and to the right
of the legend.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black red green blue) ftitle=swissb
ftext=swiss htitle=6 htext=4
offshadow=(1.5,1.5);

Define title and footnote.

title1 ’Total Sales by Site’;
footnote1 h=3 j=r ’GCHBRGRP ’;

Modify the midpoint axis. LABEL= suppresses the axis label. ORIGIN= positions the left end
of the horizontal axis at a point that is 25% of the width of the graphics output area.

axis1 label=none
origin=(24,);

Modify the response axis. ORDER= specifies the major tick values for the response axis.
OFFSET= moves the top tick mark to the end of the axis line.

axis2 label=none
order=(0 to 100000 by 20000)
minor=(number=1)

850 Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart Chapter 29

offset=(,0);

Modify the legend. LABEL= suppresses the legend label. SHAPE= defines the size of the
legend values. CBORDER= draws a black frame around the legend. CBLOCK= specifies a gray
block that matches the 3D planes. ORIGIN= specifies the same position as in the AXIS1
statement.

legend1 label=none
shape=bar(3,3)
cborder=black
cblock=gray
origin=(24,);

Define pattern characteristics. PATTERN statements define the colors that are assigned to
subgroups. Light colors allow the black labels to show up. Default pattern fill is solid.

pattern1 color=lipk;
pattern2 color=cyan;
pattern3 color=lime;

Produce the vertical bar chart. SUBGROUP= creates a separate bar segment for each
department. INSIDE= prints the subgroup percent statistic inside each bar segment.
OUTSIDE= prints the sum statistic above each bar. WIDTH= makes the bars wide enough to
display the statistics. SPACE= controls the space between the bars. MAXIS= assigns the AXIS1
statement to the midpoint axis. RAXIS= assigns the AXIS2 statement to the response axis.
LEGEND= assigns the LEGEND1 statement to the subgroup legend. CFRAME= specifies the
color for the 3D planes.

proc gchart data=reflib.totals;
format quarter roman.;
format sales dollar8.;
vbar3d site / sumvar=sales

subgroup=dept
inside=subpct
outside=sum
width=9
space=4
maxis=axis1
raxis=axis2
cframe=gray
coutline=black
legend=legend1;

run;
quit;

Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart
Procedure features:

The GCHART Procedure Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart 851

HBAR statement options:
AUTOREF
COUTLINE=
CLIPREF
SUBGROUP=

HBAR3D statement options:
FREQ
FREQLABEL=
MIDPOINTS=

Other features:
AXIS statement
LEGEND statement
PATTERN statement
RUN-group processing

Sample library member: GCHBRMID

This example uses the FITNESS data set to produce a horizontal bar chart that
shows the number of people in each age group in a fitness program.

It charts the numeric variable AGE, with the frequency statistic. Because the values
of AGE are continuous, the procedure automatically divides the ages into ranges and
displays the midpoint of each age range. The frequency statistic calculates the number
of observations in each range. The chart statistic defaults to FREQ because the
SUMVAR= and TYPE= options are omitted. The table of statistics displays all the
statistic values.

The program also subgroups each age group bar to show the number of men and
women in the group. Because the default value for the PATTERNID= option is
SUBGROUP, the procedure automatically assigns a different pattern to each subgroup
and the PATTERNID= option is unnecessary.

PATTERN statements specify the colors for the subgroups. Whenever the GCHART
procedure uses PATTERN statements, the default outline color of the bars changes from
black to the color of the bar. Because this program uses PATTERN statements, it also
uses COUTLINE= to specify a black outline for the bars.

The second part of this example modifies the midpoint axis and the table of statistics,
and uses RUN-group processing to produce the following chart. This part of the
program specifies the midpoint value for each bar and requests only the FREQ statistic
for the table.

852 Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart Chapter 29

Assign the libref and set the graphics environment. Black is the first color in the colors list
and, by default, is used for all text and for the axis lines and frame. Therefore, it is not necessary
to use CTEXT= (GOPTIONS statement) and CAXIS= (HBAR statement) to specify a color.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red) ftext=swiss
ftitle=swissb htitle=6 htext=3.5;

Create the data set FITNESS. FITNESS contains age and sex of participants, as well as the
number of times they exercise each week and their resting heart rate and aerobic power.

data reflib.fitness;
input age sex $ heart exer aero;
datalines;

28 M 86 2 36.6
41 M 76 3 26.7
30 M 78 2 33.8
...more data lines...
29 M 54 3 44.8
48 F 66 2 28.9
36 F 66 2 33.2
;

Define the title and footnote.

title1 ’Fitness Program Participants’;
footnote h=3 j=r ’GCHBRMID(a) ’;

Modify the response axis. OFFSET= moves the first and last tick marks to the ends of the
axis line.

axis1 label=(’Number of People’)
minor=(number=1)
offset=(0,0);

The GCHART Procedure Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart 853

Modify the legend. VALUE= specifies the text that describes the values.

legend1 label=none
value=(’Women’ ’Men’);

Define pattern colors for the subgroups. The procedure automatically assigns a pattern to
each subgroup, using the default fill, SOLID, with the specified color.

pattern1 color=cyan;
pattern2 color=blue;

Produce the first horizontal bar chart. Because neither MIDPOINTS= nor DISCRETE is
used, the procedure automatically selects the midpoints. SUBGROUP= divides the bars
according to the values of SEX and automatically generates a legend. AUTOREF adds reference
lines to the chart at each major tick mark. CLIPREF positions the reference lines behind the
bars. COUTLINE= specifies the outline color for the bars.

proc gchart data=reflib.fitness;
hbar age / subgroup=sex

legend=legend1
autoref
clipref
coutline=black
raxis=axis1;

run;

Define the footnote for the second chart.

footnote h=3 j=r ’GCHBRMID(b) ’;

Modify the response axis for the second chart. ORDER= places major tick marks on the
response axis at intervals of 2.

axis1 order=(0 to 20 by 2)
label=(’Number of People’)
minor=(number=1)
offset=(0,0);

Modify the midpoint axis label for the second chart.

axis2 label=(’Age ’ j=r ’Group’);

Produce the second horizontal bar chart with modified midpoints. MIDPOINTS=
specifies the middle value of the range of values represented by each bar. FREQ requests that
only the frequency statistic appears in the table. FREQLABEL= specifies the text for the
column header in the table of statistics.

854 Example 6: Generating Error Bars in a Horizontal Bar Chart Chapter 29

hbar3d age / midpoints=(20 30 40 50)
freq
freqlabel=’Total in Group’
subgroup=sex
autoref
maxis=axis2
raxis=axis1
legend=legend1
coutline=black;

run;
quit;

Example 6: Generating Error Bars in a Horizontal Bar Chart

Procedure features:
HBAR statement options:

CLM=
COUTLINE=
ERRORBAR=
FREQLABEL=
MEANLABEL=
NOFRAME
SUMVAR=
TYPE=

Other features:
AXIS statement
PATTERN statement

Data set: FITNESS
Sample library member: GCHERRBR

This example uses the FITNESS data set to chart the mean heart rate for each age
group with error bars showing the confidence limits for the average. The response axis
label describes the confidence limit for the error bars. To make the error bars easier to
read, the program suppresses the frame that the procedure draws around the axis area.

The GCHART Procedure Example 6: Generating Error Bars in a Horizontal Bar Chart 855

Descriptive column head labels in the table of statistics replace the statistic names that
appear by default.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red) ftext=swiss
ftitle=swissb htitle=5 htext=3.5;

Define the title and footnote.

title1 ’Average Resting Heart Rate by Age’;
footnote h=3 j=r ’GCHERRBR ’;

Modify the axis labels. AXIS1 is assigned to the response axis and AXIS2 is assigned to the
midpoint axis.

axis1 label=(’Heart Rate’ j=c
’Error Bar Confidence Limits: 95%’)

minor=(number=1);
axis2 label=(’Age’ j=r ’Group’);

Define a color for the bars. The PATTERN statement uses the default fill, SOLID, with the
specified color to create a pattern for the bars. Using a PATTERN statement causes the default
bar outline color to be the same as the fill color. COUTLINE= in the HBAR statement assigns a
black outline.

pattern1 color=cyan;

Produce the horizontal bar chart. SUMVAR= calculates the mean of the variable HEART
for all the observations in each midpoint group. TYPE= specifies the mean statistic for the
summary variable, HEART. FREQLABEL= and MEANLABEL= specify new column labels for
the frequency and mean statistics. ERRORBAR= draws the error bars as empty bars and CLM=
specifies the confidence level. COUTLINE= outlines the bars in black. NOFRAME suppresses
the axis area frame.

proc gchart data=reflib.fitness;
hbar age / type=mean

sumvar=heart
freqlabel=’Number in Group’
meanlabel=’Mean Heart Rate’
errorbar=bars
clm=95
midpoints=(20 30 40 50)
raxis=axis1
maxis=axis2
noframe
coutline=black;

run;

856 Example 7: Creating Bar Charts with Drill-down for the Web Chapter 29

quit;

Example 7: Creating Bar Charts with Drill-down for the Web

Procedure Features:
VBAR3D statement

ODS Features:
ODS HTML statement:

ANCHOR=
BODY=
CONTENTS=
FRAME=
NEWFILE
NOGTITLE
PATH=

Other Features:
AXIS statement
BY statement
FORMAT statement
GOPTIONS statement
LEGEND statement
PATTERN statement
RUN-group processing
TITLE statement
WHERE statement

Sample library member: GCHDDOWN

This example shows how to create 3D bar charts with drill-down functionality for the
Web. In addition to showing how to use the ODS HTML statement and the HTML
options to create the drill-down, the example also illustrates other VBAR3D statement
options.

For creating output with drill-down for the Web, the example shows how to
� explicitly name the HTML files and open and close them throughout the program
� specify names and destination for the GIF files created by the ODS HTML

statement and the GIF device driver
� assign anchor names to the graphics output
� use the HTML= and HTML_LEGEND= procedure options to assign link targets
� use BY-group processing to store multiple graphs in one file or in individual files
� use incremented anchor names and incremented file names.

For more information, see “ODS HTML Statement” on page 164 in Chapter 7, “SAS/
GRAPH Statements,” on page 121.

For creating 3D bar charts, the example shows how to
� group the midpoints, including patterning bars by group, modifying the group axis,

adjusting the space between groups of bars
� identify midpoint values with a legend instead of labeling each bar

The GCHART Procedure Example 7: Creating Bar Charts with Drill-down for the Web 857

� subgroup bars
� remove an axis and its axis plane
� add reference lines.

The introduction to each part lists the VBAR3D options that it features.
The program generates twelve linked bar charts that display data about the world’s

leading grain producers. The data contain the amount of grain produced by five
countries in 1995 and 1996. Each of these countries is one of the three leading
producers of wheat, rice, or corn, worldwide.

The first chart, shown in Figure 29.15 on page 857 as it appears in a browser, is an
overview of the data that shows the total grain production for the five countries for both
years.

Figure 29.15 Browser View of Overview Graph

The next two charts break down grain production by year. These charts are linked to
the legend values in Figure 29.15 on page 857. For example, when you select the legend
value for 1995, the graph in Figure 29.16 on page 858 appears.

858 Example 7: Creating Bar Charts with Drill-down for the Web Chapter 29

Figure 29.16 Browser View of Year Breakdown for 1995

Another group of charts breaks down the data by country. These charts are linked to
the bars. For example, when you drill down on the bar for China in either Figure 29.15
on page 857 or Figure 29.16 on page 858, the graph in Figure 29.17 on page 858 appears.

Figure 29.17 Browser View of Breakdown for China

Finally the data is charted by grain type. These graphs are linked to the bars in
Figure 29.17 on page 858. If you select the legend value or bar for Rice, Figure 29.18
on page 859 appears.

The GCHART Procedure Example 7, Part A 859

Figure 29.18 Browser View of Breakdown for Rice

This program is divided into four parts:
� “Example 7, Part A” on page 859 generates the graph shown in Figure 29.15 on

page 857.
� “Example 7, Part B” on page 864 generates the pair of graphs represented by

Figure 29.16 on page 858.
� “Example 7, Part C” on page 866 generates the five graphs represented by Figure

29.17 on page 858.
� “Example 7, Part D” on page 868 generates the three graphs represented by

Figure 29.18 on page 859.

Example 7, Part A
Features: VBAR3D options:

DES=
DISCRETE
GROUP=
GSPACE=
HTML=
HTML_LEGEND=
NAME=
SUBGROUP=

ODS HTML options:
BODY=
CONTENTS=
FRAME=
GPATH=
NOGTITLE

860 Example 7, Part A Chapter 29

The first part of the program, which includes setting the graphics environment and
creating the data set, does the following:

� Adds three HTML variables to the data set. The variables contain the link targets
for all of the graphs that support drill-down functionality. The HREF values for
the HTML variables in the data set contain this information about the link targets:

� the name of the body file that is the target. BODY= in the ODS HTML
statement names the body file.

� the anchor name of the output if the target file contains more than one
graph. By default, all output is assigned a unique anchor name unless you
specify a name with ANCHOR= in the ODS HTML statement.

� Opens the HTML destination for the frame and contents files and the first body file.
� Creates one grouped 3D vertical bar chart (shown in Figure 29.15 on page 857)

with drill-down on the bars and legend values. The bars, which represent total
production for each year for each country, are grouped and labeled by COUNTRY.
Instead of displaying the year below each bar, the program suppresses the
midpoint values with an AXIS statement and creates a legend that associates bar
color and year. To create the legend, the chart variable YEAR is assigned to the
SUBGROUP= option. Because the chart variable and the subgroup variable are
the same, each bar contains only one "subgroup." As a result, the subgroup legend
has an entry for each value of YEAR, thereby creating a legend for the midpoints.
The values of COUNTRY label each group of bars.

� Assigns the HTML variables that contain link information for the bars and for the
legend values to the HTML= and HTML_LEGEND= options, respectively.

Assign the Web-server path. FILENAME assigns the fileref ODSOUT, which specifies a
destination for the HTML and GIF files produced by the example program. To assign that
location as the HTML destination for program output, ODSOUT is specified later in the
program on the ODS HTML statement’s PATH= option. ODSOUT must point to a Web-server
location if procedure output is to be viewed on the Web.

filename odsout ’path-to-Web-server-space’;

Close the ODS listing destination for procedure output, and set the graphics
environment.To conserve system resources, the graphics output is not displayed in the GRAPH
window, although it is written to the graphics catalog and to the GIF files.

ods listing close;
goptions reset=global gunit=pct

htitle=6 htext=4 ftitle=zapfb ftext=swiss;

Create the data set GRAINLDR. GRAINLDR contains data about grain production in five
countries for 1995 and 1996. The quantities in AMOUNT are in thousands of metric tons.
MEGTONS converts these quantities to millions of metric tons.

data grainldr;
length country $ 3 type $ 5;
input year country $ type $ amount;
megtons=amount/1000;

The GCHART Procedure Example 7, Part A 861

datalines;
1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

Add three HTML variables to GRAINLDR to create the NEWGRAIN data set. Each
HTML variable is assigned the targets for a certain variable value. These targets are specified
by the HREF attribute within an AREA element in the HTML file. Each HREF value specifies
the HTML body file and, optionally, the name of the anchor within the body file that identifies
the target graph. The HTML variable YEARDRILL contains the targets for the values of the
variable YEAR.

data newgrain;
set grainldr;
length yeardrill typedrill countrydrill $ 40;
if year=1995 then

yeardrill=’HREF="year95_body.html"’;
else if year=1996 then

yeardrill=’HREF="year96_body.html"’;

The HTML variable COUNTRYDRILL contains the targets for the values of the variable
COUNTRY. Because the graphs of COUNTRY are in one file, the targets must include the
anchor name.

862 Example 7, Part A Chapter 29

if country=’BRZ’ then
countrydrill=’HREF="country_body.html#country"’;

else if country=’CHN’ then
countrydrill=’HREF="country_body.html#country1"’;

else if country=’IND’ then
countrydrill=’HREF="country_body.html#country2"’;

else if country=’INS’ then
countrydrill=’HREF="country_body.html#country3"’;

else if country=’USA’ then
countrydrill=’HREF="country_body.html#country4"’;

The HTML variable TYPEDRILL contains the names of the files that are the targets for the
values of the variable TYPE.

if type=’Corn’ then
typedrill=’HREF="type1_body.html"’;

else if type=’Rice’ then
typedrill=’HREF="type2_body.html"’;

else if type=’Wheat’ then
typedrill=’HREF="type3_body.html"’;

run;

Create a format for the values of COUNTRY.

proc format;
value $country ’BRZ’ = ’Brazil’

’CHN’ = ’China’
’IND’ = ’India’
’INS’ = ’Indonesia’
’USA’ = ’United States’;

run;

Define pattern colors for all graphs. To avoid solid black patterns (BLACK is the first color
in the colors list), explicitly assign the pattern colors.

pattern1 color=blue;
pattern2 color=green;
pattern3 color=cyan;

Define legend characteristics for all legends. OFFSET= moves the legend down.

legend1 label=none
shape=bar(4,4)
position=(bottom center)
offset=(-3);

Assign the GOPTIONS for ODS HTML destination. DEVICE= generates the SAS/GRAPH
output as GIF files. TRANSPARENCY makes the background of the graphs the same as the
Web-page background. NOBORDER turns off the border around the graphics output area.

The GCHART Procedure Example 7, Part A 863

goptions transparency device=gif noborder;

Open the ODS HTML destination for the ODS graphics output. BODY= names the file for
storing the HTML output. CONTENTS= names the HTML file that contains the table of
contents to the HTML procedure output. The contents file links to each of the body files written
to the HTML destination. FRAME= names the HTML file that integrates the contents and body
files. PATH= specifies the ODSOUT fileref as the HTML destination for all the HTML and GIF
files. NOGTITLE suppress the graph titles from the SAS/GRAPH output and displays them
through the HTML page.

ods html body=’grain_body.html’
frame=’grain_frame.html’
contents=’grain_contents.html’
path=odsout
nogtitle;

Suppress the label and values for the midpoint axis. The midpoint values 1995 and 1996
do not appear below each bar.

axis1 label=none value=none;

Modify the response axis. ANGLE=90 prints the axis label vertically.

axis2 label=(angle=90 ’Metric Tons (millions)’)
minor=(n=1)
order=(0 to 500 by 100)
offset=(0,0);

Suppress the label and order the values for the group axis. Because the values of
COUNTRY are formatted, ORDER= must specify their formatted value.

axis3 label=none
order=(’China’ ’United States’ ’India’

’Indonesia’ ’Brazil’)
split=’ ’;

Define titles and footnote. The footnote uses the catalog entry name to identify the graph.

title1 ’Corn, Rice, and Wheat Production’;
title2 h=2 ’Leading Producers for 1995 and 1996’;
footnote1 j=l h=3 ’click on bars or legend values’ j=r h=3 ’GRAINALL ’;

Generate the vertical bar chart that summarizes all grain production for all countries
for both years. DISCRETE creates a separate bar for each unique value of YEAR. GROUP=
groups the bars by country. To create a legend for midpoint values, SUBGROUP= is assigned
the chart variable. GSPACE= controls the space between the groups of bars.

864 Example 7, Part B Chapter 29

proc gchart data=newgrain;
format country $country.;
vbar3d year / discrete

sumvar=megtons
group=country
subgroup=year
legend=legend1
space=0
width=4
gspace=5
maxis=axis1
raxis=axis2
gaxis=axis3
cframe=grayaa
coutline=black

HTML= specifies COUNTRYDRILL as the variable that contains the targets for the bars.
HTML_LEGEND= specifies YEARDRILL as the variable that contains the targets for the
legend values. Specifying HTML variables causes SAS/GRAPH to add an image map to the
HTML body file. NAME= specifies the name of the catalog entry. Because the PATH=
destination is a file storage location and not a specific file name, the catalog entry name
GRAINALL is automatically assigned to the GIF file. DES= specifies the description that is
stored in the graphics catalog and used in the Table of Contents.

html=countrydrill
html_legend=yeardrill
name=’grainall’
des=’Overview of leading grain producers’;

run;

Example 7, Part B
Features: VBAR3D options:

AUTOREF
HTML=
HTML_LEGEND=
SUBGROUP=
SPACE=
NAME=

ODS HTML options:
BODY=

In the second part, the PROC GCHART step continues, using RUN-group processing
and WHERE statements to produce two graphs of grain production for each year, one of
which is shown in Figure 29.16 on page 858. Each bar represents a country and is
subgrouped by grain type. As before, both the bars and the legend values are links to
other graphs. The bars link to targets stored in COUNTRYDRILL and the legend
values link to targets in TYPEDRILL. These two graphs not only contain links, they are
the link targets for the legend values in Figure 29.15 on page 857. Before each graph is
generated, the ODS HTML statement opens a new body file in which to store the
output. Because each of these graphs is stored in a separate file, the HREF attributes
that are stored in the variable YEARDRILL point only to the file. The name of the file

The GCHART Procedure Example 7, Part B 865

is specified by the BODY= option in the ODS HTML statement. For example, this is the
HREF attribute that points to the graph of 1995 and is stored in the variable
YEARDRILL:

HREF=year95_body.html

YEARDRILL is assigned to the HTML_LEGEND= option in Part A.

Open a new body file for the graph of 1995 production.Assigning a new body file closes
GRAIN_BODY.HTML. The contents and frame files, which remain open, will provide links to all
body files.

ods html body=’year95_body.html’ path=odsout;

Define the title and footnote for the chart.

title1 ’Total Production for 1995’;
footnote1 j=l h=3 ’click on bars or legend values’ j=r h=3 ’YEAR95 ’;

Subset the data for 1995 and generate the vertical bar chart for 1995. AUTOREF draws
a reference line on the backplane for every major tick mark value. SUBGROUP= creates a
separate bar segment for each department. SPACE= controls the space between the bars.
HTML= names the variable that contains the targets for the bars. HTML_LEGEND= names the
variable that contains the targets for the legend values. The GIF files use the catalog entry
name specified by NAME=.

where year=1995;
vbar3d country / sumvar=megtons

subgroup=type
autoref
html=countrydrill
html_legend=typedrill
legend=legend1
cframe=grayaa
space=3
coutline=black
maxis=axis3
raxis=axis2
name=’year95’
des=’Production Breakdown for 1995’;

run;

Open a new body file for the graph of 1996 production.Assigning a new body file closes
YEAR95_BODY.HTML.

ods html body=’year96_body.html’ path=odsout;

Define title and footnote for the second graph.

title1 ’Total Production for 1996’;
footnote1 j=l h=3 ’click on bars or legend values’ j=r h=3 ’YEAR96 ’;

Subset the data for 1996 and generate the vertical bar chart for 1996.

where year=1996;
vbar3d country / sumvar=megtons

subgroup=type

866 Example 7, Part C Chapter 29

autoref
html=countrydrill
html_legend=typedrill
legend=legend1
cframe=grayaa
space=3
coutline=black
maxis=axis3
raxis=axis2
name=’year96’
des=’Production Breakdown for 1996’;

run;
quit;

Example 7, Part C
Features: VBAR3D options:

DES=
GAXIS=
GROUP=
HTML=
NAME=
OUTSIDE=
PATTERNID=
RAXIS=
SHAPE=

ODS HTML options:
BODY=
ANCHOR=

The third part produces the five graphs that show the breakdowns by country. These
graphs are generated with BY-group processing and are all stored in one body file.
When the file is displayed in the browser, all the graphs appear in one frame that can
be scrolled. Because the graphs are stored in one file, the links to them must explicitly
point to the location of each graph in the file, not just to the file. This location is defined
by an anchor. ODS HTML assigns anchor names by default, but you can specify anchor
names with the ANCHOR= option. When the procedure uses BY-group processing to
generate multiple pieces of output, ODS automatically increments the anchor name to
produce a unique name for each graph. This example assigns the base name {mono
country} to ANCHOR=. The graphs created by this part are referenced by the
COUNTRYDRILL variable. With BY-group processing the catalog entry name also
increments automatically. NAME= specifies COUNTRY as the base name for the
graphics output. Because you cannot specify a different description for each graph,
DES= specifies a generic description for the HTML Table of Contents.

Sort the data set for the graphs of production by country.The data must be sorted in
order of the BY variable before running PROC GCHART with BY-group processing.

proc sort data=newgrain out=country;
by country;
run;

The GCHART Procedure Example 7, Part C 867

Open a new body file and specify the base anchor name for the graphs of individual
countries.Assigning a new body file closes YEAR96_BODY.HTML. Because all the graphs
generated by the BY-group processing are stored in one file, each one is automatically assigned
an anchor name. ANCHOR= specifies a base name for these anchors.

ods html body=’country_body.html’
anchor=’country’
gfootnote
path=odsout;

Redefine AXIS2 to change the range of values and suppress all axis elements. Setting
all the label and tick mark options to NONE and assigning a line style of 0 removes the
response axis. NOPLANE removes the 3D axis plane. Specifying ORDER= makes all the graphs
use the same range of values.

axis2 order=(0 to 250 by 50)
label=none
value=none
style=0
major=none
minor=none
noplane;

Suppress the axis label for the midpoint axis.

axis4 label=none;

Suppress the default BY-line and define a title that includes the BY-value. #BYVAL
inserts the value of the BY variable COUNTRY into the title of each report.

options nobyline;
title1 ’Breakdown for #byval(country)’;
footnote1 j=l h=3 ’click on bars’;
footnote2 j=c ’(Millions of Metric Tons)’;

Generate the vertical bar chart of production for each country.GROUP= groups the bars
by country. PATTERNID= assigns patterns by group value. SHAPE= assigns the bar shape.
OUTSIDE= displays the SUM statistic above the bars. RAXIS= assigns the AXIS statement
that removes all exis elements. GAXIS= assigns the AXIS statement that removes the label.
HTML= specifies TYPEDRILL as the variable that contains the targets for the bars. NAME=
specifies the name of the catalog entry. The graphics catalog entry name increments so the GIF
files are named sequentially from COUNTRY to COUNTRY4. The DES= option specifies a
general description that appears in the table of contents for all five graphs.

proc gchart data=country;
format country $country.;
by country;
vbar3d year / discrete

sumvar=megtons
patternid=group

868 Example 7, Part D Chapter 29

group=type
shape=hexagon
outside=sum
html=typedrill
width=9
gspace=3
space=0
cframe=grayaa
raxis=axis2
gaxis=axis4
maxis=axis4
name=’country’
des=’Grain and Year Breakdown’;

run;

Example 7, Part D
Features: VBAR3D options:

INSIDE=
NOZERO

ODS HTML options:
BODY=
NEWFILE=TABLE

Like Part C, this part uses BY-group processing to generate three graphs that show
the three leading producers for each type of grain. The program subsets the data and
suppresses midpoints with no observations. Instead of storing all of the output in one
body file, it stores each graph in a separate file. To do this, the program uses the ODS
HTML option NEWFILE=TABLE. When NEWFILE=TABLE is used with BY-group
processing, each new piece of output automatically generates a new body file and simply
increments the name of the file that is specified by BODY=. Because each graph is
stored in a separate file, the links to these graphs reference only the file name and do
not require an anchor name. The graphs created by this part are referenced by the
TYPEDRILL variable.

Sort the data set for the graphs of leading producers of each grain type.

proc sort data=grainldr out=type;
by type;
run;

Open a new body file.Assigning a new body file closes COUNTRY_BODY.HTML.
NEWFILE=TABLE opens a new body file for each piece of output generated by the procedure.
Each new file increments the name specified by BODY= using the number within the body file
name as the starting number.

ods html body=’type1_body.html’
newfile=table
path=odsout;

Modify the group axis.Because SPLIT= assigns a blank as the split character, the value
United States automatically prints on two lines.

The GCHART Procedure Example 8: Specifying the Sum Statistic for a Pie Chart 869

axis5 label=none
split=’ ’;

Define title and footnote. #BYVAL inserts the value of the BY variable TYPE into the title of
each report.

title1 ’Top Three Producers of #byval(type)’;
title2 ’(In Millions of Metric Tons)’;
footnote j=r h=3 ’TYPE ’;

Generate the vertical bar chart of leading producers for each grain type.BY-group
processing generates a separate graph for each value TYPE. Each new graph generates a new
body file. NOZERO suppresses the midpoints that do not have any observations. INSIDE=
displays the SUM statistic inside the bars.

proc gchart data=type (where=(megtons gt 31));
format country $country.;
by type;
vbar3d year / discrete

sumvar=megtons
group=country
nozero
shape=cylinder
noframe
patternid=group
inside=sum
width=8
maxis=axis4
raxis=axis2
gaxis=axis5
cframe=grayaa
name=’type’
des=’Leading Producers’;

run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination. You must close
the HTML destination before you can view the output with a browser.

ods html close;
ods listing;

Example 8: Specifying the Sum Statistic for a Pie Chart

Procedure features:
PIE statement options:

COUTLINE=

870 Example 8: Specifying the Sum Statistic for a Pie Chart Chapter 29

SUMVAR=
PIE3D statement options:

COUTLINE=
EXPLODE=
SUMVAR=

Other features:
FORMAT statement
RUN-group processing

Data set: TOTALS
Sample library member: GCHPISUM

This example produces two pie charts that show total sales for three sites by charting
the values of the character variable SITE and calculating the sum of the variable
SALES for each site. It represents the statistics as slices of the pie. By default, the
midpoint value and the summary statistic are printed beside each slice.

The pie slices use the default pattern fill, which is solid. Because a colors list is
specified in the GOPTIONS statement, the default solid patterns rotate through the
colors in the list, beginning with the first color, blue. Each slice displays a different
color because, by default, pie charts are patterned by midpoint. Because the default
outline color is also the first color in the list, the example uses the COUTLINE= option
to assign black to the outlines.

The second pie chart is a 3D pie chart with an exploded slice, as shown in the
following output.

The GCHART Procedure Example 8: Specifying the Sum Statistic for a Pie Chart 871

Assign the libref and set the graphics environment. CTEXT= specifies the color for all text
on the output. COLORS= specifies the colors list, which is used by the default patterns and
outlines.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green red) ctext=black
ftitle=swissb ftext=swiss htitle=6 htext=4;

Define title and footnote.

title ’Total Sales’;
footnote j=r ’GCHPISUM(a) ’;

Produce the first pie chart. The PIE statement produces a two-dimensional pie chart.
SUMVAR= calculates the sum of SALES for each value of the chart variable SITE. The default
statistic for SUMVAR= is SUM. The summary variable SALES is assigned a dollar format.
COUTLINE= specifies the outline color for the slices.

proc gchart data=reflib.totals;
format sales dollar8.;
pie site / sumvar=sales

coutline=black;
run;

Define footnote for second pie chart.

footnote j=r ’GCHPISUM(b) ’;

Produce the second pie chart. The PIE3D statement produces a three-dimensional pie chart.
EXPLODE= separates the slice for Paris from the rest of the pie.

872 Example 9: Subgrouping a Donut or Pie Chart Chapter 29

pie3d site / sumvar=sales
coutline=black
explode=’Paris’;

run;
quit;

Example 9: Subgrouping a Donut or Pie Chart

Procedure features:
DONUT statement options:

COUTLINE=
CTEXT=
DONUTPCT=
LABEL=
LEGEND=
NOHEADING
SUBGROUP=

Other features: LEGEND statement

Data set: TOTALS

Sample library member: GCHSBGRP

This example produces a donut chart that is similar to the pie chart in Example 8 on
page 869 in that each slice represents total sales for a site and each slice is a different
color. However, in this donut chart the sites are subgrouped by department, so that
each department is represented as a concentric ring with slices.

Subgrouping suppresses the chart statistic and the midpoint labels. Instead it
automatically labels the rings with the subgroup values and generates a legend that
shows how the patterns are associated with the midpoint values. Subgrouping a pie
chart produces the same results but without the hole in the center.

To allow the donut chart to be as large as possible, the program suppresses the
default heading and moves the legend into the space at the left of the chart.

Assign the libref and set the graphics environment.

The GCHART Procedure Example 10: Ordering and Labeling Slices in a Pie Chart 873

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green red) ctext=black
ftext=swissb ftext=swiss htitle=6 htext=4;

Define title and footnote.

title ’Sales by Site and Department’;
footnote h=3 j=r ’GCHSBGRP ’;

Modify the subgroup legend. LABEL= suppresses the legend label. SHAPE= defines the
shape of the legend values. POSITION=, OFFSET=, and ACROSS= arrange the legend entries
in a column to the left of the pie chart. MODE= allows the legend to occupy the procedure
output area.

legend1 label=none
shape=bar(4,4)
position=(middle left)
offset=(5,)
across=1
mode=share;

Produce the donut chart. SUBGROUP= divides the donut into rings. Each ring represents a
value of the subgroup variable, DEPT. The DONUTPCT= option controls the size of the donut
hole, which contains the text specified by LABEL=. The NOHEADING option suppresses the
default heading that contains the name of the chart variable and the type of statistic.
LEGEND= assigns the LEGEND1 statement to the chart COUTLINE= specifies the outline
color for the slices and subgroup rings. CTEXT= specifies the color used by the donut label and
by the subgroup arrows.

proc gchart data=reflib.totals;
format sales dollar8.;
donut site / sumvar=sales

subgroup=dept
donutpct=30
label=(’All’ justify=center ’Quarters’)
noheading
legend=legend1
coutline=black
ctext=black;

run;
quit;

Example 10: Ordering and Labeling Slices in a Pie Chart
Procedure features:

PIE statement options:
CFILL=

874 Example 10: Ordering and Labeling Slices in a Pie Chart Chapter 29

MIDPOINTS=
PERCENT=ARROW
SLICE=ARROW
SUBGROUP=
VALUE=NONE

Sample library member: GCHLABEL

This example produces a pie chart of sources of energy production for 1995. The
labeled slices represent the percent of total production for each source. Instead of the
sum statistic, each slice displays the percent each midpoint contributes to the whole
pie. Arrows connect the midpoint labels to the slices, which are arranged by the
MIDPOINTS= option so that the small slices are not next to each other and their labels
do not overlap.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red cyan lime gray)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create the data set ENPROD.

ENPROD contains the amount of energy produced (PRODUCED) for seven sources
(ENGYTYPE) for two years (YEAR). The amounts of energy produced are in quadrillion btu.

data reflib.enprod;
input @1 year 4. @6 engytype $8. @16 produced 5.2;
datalines;

1985 Coal 19.33
1985 Gas 19.22
1985 Petro 18.99
...more data lines...
1995 Hydro 3.21
1995 Geotherm .31
1995 Biofuels 2.95
;

The GCHART Procedure Example 11: Assigning Patterns and Identifying Midpoints with a Legend 875

Define title and footnote.

title ’Sources of Energy, 1995’;
footnote h=3 j=r ’GCHLABEL ’;

Produce the pie chart. The WHERE data set option subsets the data for 1995. OTHER=0
specifies that all midpoints, no matter how small, display a slice. MIDPOINTS= assigns the
order of the slices. Each slice displays the percent contribution to total production and the slice
name. VALUE=NONE suppresses the chart statistic. Both SLICE= and PERCENT= are
assigned the ARROW labeling method to point to the slice, but only one arrow line is displayed.
CFILL= specifies a color for the fill used by all slices.

proc gchart data=reflib.enprod (where=(year=1995));
pie engytype / sumvar=produced

other=0
midpoints=’Coal’ ’Geotherm’ ’Petro’

’Biofuels’ ’Gas’ ’Nuclear’
’Hydro’

value=none
percent=arrow
slice=arrow
cfill=cyan
noheading;

run;
quit;

Example 11: Assigning Patterns and Identifying Midpoints with a Legend

Procedure features:
PIE statement options:

COUTLINE=
CTEXT=
DESCENDING
LEGEND=
OTHER=
OTHERLABEL=
VALUE=INSIDE

Other features:
LEGEND statement

PATTERN statement

Data set: ENPROD

Sample library member: GCHLEGND

876 Example 11: Assigning Patterns and Identifying Midpoints with a Legend Chapter 29

This example shows the actual amount of energy that is produced by each source for
1985. It displays the chart statistic inside each slice and uses a legend instead of slice
labels to identify the slices. Pattern colors are assigned explicitly to each energy source.

All of the variables with midpoint values less than or equal to 5 percent of the total
(in this case, biofuels, geotherm, and hydro) are grouped into one slice labeled "Other."
The slices are ordered from largest to smallest based on the statistic value. Although
the "Other" slice is always last, it is in this case also the smallest.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red) ftitle=swissb
ftext=swiss htitle=5 htext=4;

Define a title and footnote.

title1 ’Principle Sources of Energy: 1985’;
title2 font=swissb h=4.5 ’(Amounts in quadrillion btu)’;
footnote h=3 j=r ’GCHLEGND ’;

Define pattern colors. Each value of the chart variable ENGYTYPE is assigned a pattern
whether or not it is displayed as a separate slice. Patterns are assigned to midpoints in the
order the values appear in the data set. Because ENGYTYPE is character, the patterns are
assigned alphabetically. The eighth pattern is for the "other" slice, which is always last.

pattern1 color=black; /* biofuels */
pattern2 color=blue; /* coal */
pattern3 color=green; /* gas */
pattern4 color=gray; /* geothermal */
pattern5 color=lipk; /* hydroelectric */
pattern6 color=lime; /* nuclear */
pattern7 color=cyan; /* petro */
pattern8 color=red; /* other */

The GCHART Procedure Example 12: Grouping and Arranging Pie Charts 877

Modify the legend. LABEL= removes the legend label. VALUE= defines the color for the value
labels; by default legend value color is determined by the CTEXT= option in the procedure
statement. In this case, CTEXT=WHITE, so the legend statement uses the VALUE= option to
override that color specification. ORDER= orders the legend values to match the slice order in
the pie chart.

legend1 label=none
position=(left middle)
offset=(4,)
across=1
order=(’Coal’ ’Gas’ ’Petro’

’Nuclear’ ’Renewable’)
value=(color=black)
shape=bar(4,4);

Create the pie chart. OTHER= collects all the midpoints with statistic values less than or
equal to 5 percent of the total into one slice. OTHERLABEL= specifies the label for the "other"
slice. DESCENDING arranges the slices in descending order of the statistic value. LEGEND=
displays the customized legend created in the LEGEND statement and suppresses the slice
labels. VALUE= places the chart statistics inside the slices. CTEXT= specifies white for the
statistic text. Because CTEXT= also affects the color of the legend text, the LEGEND statement
specifies black text so that the values can be seen. Because the PATTERN statement is used,
the default slice outline matches the fill color; COUTLINE= changes the outline color to black.

proc gchart data=reflib.enprod(where=(year=1985));
pie engytype / sumvar=produced

other=5
otherlabel=’Renewable’
descending
legend=legend1
value=inside
ctext=white
coutline=black
noheading;

run;
quit;

Example 12: Grouping and Arranging Pie Charts
Procedure features:

PIE statement options:
ACROSS=
CLOCKWISE
GROUP=
OTHER=
PERCENT=OUTSIDE
SLICE=OUTSIDE

Other features: PATTERN statement
Data set: ENPROD
Sample library member: GCHPIGRP

878 Example 12: Grouping and Arranging Pie Charts Chapter 29

This example produces two pie charts that shows energy sources by year. Both charts
are displayed on one page and are arranged two across. The program uses the
CLOCKWISE option to arrange the slices, which begin at the 12 o’clock position and
proceed clockwise in alphabetic order of the midpoint.

The chart statistic is suppressed and the midpoint label and the percent of the chart
statistic are displayed outside of the slice.

A different color is defined for each energy type. The patterns are assigned in order
of midpoint value. Some colors do not appear because the slices they represent are
grouped into the OTHER slice, which is assigned the eighth color, red.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red) ftext=swiss
ftext=swissb htitle=5 htext=3.5;

Define title and footnote.

title ’Changes in Energy Production:1985 to 1995’;
footnote j=r ’GCHPIGRP ’;

Define patterns for the pie slices. PATTERN statements define a different solid color for
each midpoint value.

pattern1 color=black; /* biofuels */
pattern2 color=blue; /* coal */
pattern3 color=green; /* gas */
pattern4 color=gray; /* geothermal */
pattern5 color=lipk; /* hydroelectric */
pattern6 color=lime; /* nuclear */
pattern7 color=cyan; /* petro */
pattern8 color=red; /* other */

The GCHART Procedure Example 13: Specifying the Sum Statistic in a Star Chart 879

Produce the pie charts. The WHERE= data set option selects the data for only two years. The
LABEL statement suppresses the variable name, so only the YEAR value is displayed.

proc gchart data=reflib.enprod gout=reflib.excat;
label year=’00’x;

GROUP= creates a separate pie for each year. In combination with GROUP=, ACROSS= draws
two charts across one page. OTHER= collects all the midpoints with statistic values less than or
equal to 5 percent of the total into one slice. CLOCKWISE begins drawing the slices at the 12
o’clock position in alphabetic order of the midpoint. PERCENT=OUTSIDE and
SLICE=OUTSIDE display the labels outside the slices.

pie engytype / sumvar=produced
group=year
across=2
other=5
otherlabel=’Renewable’
clockwise
value=none
slice=outside
percent=outside
coutline=black
noheading;

run;
quit;

Example 13: Specifying the Sum Statistic in a Star Chart

Procedure features:
STAR statement options:

SUMVAR=
Other features: FORMAT statement
Data set: TOTALS
Sample library member: GCHSTSUM

880 Example 14: Charting a Discrete Numeric Variable in a Star Chart Chapter 29

This example produces a star chart of total sales for three sites by charting the
values of the character variable SITE and calculating the sum of the variable SALES
for each site. It represents the statistics as slices of the star. The center of the circle
represents 0 and the edge of the circle represents the largest value, in this case Paris
sales. By default, the spines are joined and filled with a solid pattern to form slices, and
the midpoint value and the formatted values of the sales statistics are printed beside
each slice.

By default, the circle and the slice outlines use the first color in the colors list, in this
case, BLUE.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green red) ctext=black
ftitle=swissb ftext=swiss htitle=6 htext=4;

Define title and footnote.

title ’Total Sales’;
footnote h=3 j=r ’GCHSTSUM ’;

Produce the star chart. SUMVAR= calculates the sum of SALES for each value of the chart
variable SITE. Because the TYPE= option is omitted, the default statistic is sum. The FORMAT
statement assigns a format to the summary variable SALES.

proc gchart data=reflib.totals;
format sales dollar8.;
star site / sumvar=sales;

run;
quit;

Example 14: Charting a Discrete Numeric Variable in a Star Chart
Procedure features:

The GCHART Procedure Example 14: Charting a Discrete Numeric Variable in a Star Chart 881

STAR statement options:
COUTLINE=
DISCRETE
FILL=
NOCONNECT
NOHEADING
SUMVAR=

Sample library member: GCHDSCRT

This example produces two star charts that show the total number of parts that were
rejected each month for a year. The STAR statement uses the DISCRETE option so
that each unique value of the numeric variable DATE is a separate midpoint and has a
separate spine. Each slice displays the formatted midpoint value and the chart
statistic. Specifying FILL=S rotates the solid pattern through all the colors in the colors
list as many times as necessary to provide patterns for all the slices.

The second chart uses the NOCONNECT option so that the chart uses spines instead
of slices.

Set the graphics environment. COLORS= specifies the colors list, which is used by the
default patterns and outlines.

882 Example 14: Charting a Discrete Numeric Variable in a Star Chart Chapter 29

goptions reset=global gunit=pct border cback=white
colors=(black blue green red) ftext=swiss
ftitle=swissb htext=3.5 htitle=6;

Create the data set REJECTS. REJECTS contains data on the number of defective parts
produced at each of three sites for 12 months. BADPARTS is the number of parts that were
rejected at each site for each month.

data rejects;
informat date date9.;
input site $ date badparts;
datalines;

Sydney 01JAN1997 22
Sydney 01FEB1997 26
...more data lines...
Paris 01NOV1997 12
Paris 01DEC1997 19
;

Define title and footnote.

title ’Rejected Parts’;
footnote j=r ’GCHDSCRT(a) ’;

Produce the first star chart. DISCRETE must be specified because the numeric chart
variable, DATE is assigned the WORDDATE3. Using FILL=S fills all the slices with solid
patterns.

proc gchart data=rejects;
format date worddate3.;
star date / discrete

sumvar=badparts
noheading
fill=s;

run;

Define footnote for the second chart.

footnote j=r ’GCHDSCRT(b) ’;

Produce the second star chart with slices and a solid fill. NOHEADING suppresses the
default heading for the star chart. NOCONNECT suppresses the lines that by default join the
ends of the spines. COUTLINE= colors the spines and the circle.

star date / discrete
sumvar=badparts
noheading
noconnect

The GCHART Procedure Example 15: Creating a Detail Pie Chart 883

coutline=red;
run;
quit;

Example 15: Creating a Detail Pie Chart

Procedure Features:
PIE statement options:

DETAIL=
DETAIL_PERCENT=
DETAIL_SLICE=
DETAIL_VALUE=
LEGEND
SUMVAR=

Sample library member: GCHDTPIE

This example produces a normal pie chart with a detail pie overlay. The pie chart
shows percentages of sales for three sites by charting the values of the character
variable SITE and calculating the percentage of the variable SALES for each site. The
detail pie overlay shows the percentages of sales for each DEPT at each SITE. The pie
slices use the colors in the default color list and the default fill, which is solid.

Set the graphics environment. The CBACK= option sets the background color. The FTITLE=
and HTITLE= options set the font and size of the title text. The FTEXT and HTEXT= options
set the font and size of other text, such as slice labels.

goptions reset=all gunit=pct border cback=white
ftitle=swissb ftext=swiss htitle=5
htext=2.5;

Create the data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

884 References Chapter 29

data totals;
length Dept $ 7 Site $ 8;
input Dept Site Quarter Sales;
datalines;

Parts Sydney 1 4043.97
Parts Atlanta 1 6225.26
Parts Paris 1 3543.97
...more data lines
Tools Sydney 4 3817.36
Tools Atlanta 4 4354.18
Tools Paris 4 6511.70
;

Define the title and footnote.

title1 ’Site Sales By Dept (Details)’;
footnote1 h=3 j=r ’GCHDTPIE ’;

Produce the detail pie chart. SUMVAR= calculates the sum of SALES for each value of the
chart variable SITE. DETAIL= produces a inner pie overlay showing the percentage that each
DEPT contributes toward each site’s sales. DETAIL_PERCENT= and DETAIL_SLICE= control
the positioning of the detail slice labels. DETAIL_VALUE= turns off the display of the sales
values for each detail slice.

proc gchart data=totals;
pie site / sumvar=sales

detail=dept
detail_percent=best
detail_value=none
detail_slice=best
legend;

run;
quit;

References

Nelder, J. A. (1976), "A Simple Algorithm for Scaling Graphs," Applied Statistics,
Volume 25, Number 1, London: The Royal Statistical Society.

Terrell, G. R. and Scott, D. W. (1985), "Oversmoothed Nonparametric Density
Estimates," Journal of the American Statistical Association, 80.

885

C H A P T E R

30
The GCONTOUR Procedure

Overview 885

Concepts 885
About Contour Plots 885

Parts of a Contour Plot 886

About the Input Data Set 887
Interpolating Additional Values 887

Procedure Syntax 888

PROC GCONTOUR Statement 888
PLOT Statement 889

Examples 904
Example 1: Generating a Simple Contour Plot 904

Example 2: Labeling Contour Lines 906

Example 3: Specifying Contour Levels 908
Example 4: Using Patterns and Joins 910

References 913

Overview

The GCONTOUR procedure produces plots that represent three-dimensional
relationships. The colors, contours, or surface areas of a contour plot represent the
values of a contour variable at each point in a plane that is formed by a dependent and
an independent variable. The contour variable is applied to the Z axis of the plot, the
dependent variable is applied to the X axis of the plot, and the independent variable is
applied to the Y axis of the plot.

Concepts

About Contour Plots
Contour plots represent the levels of magnitude of a variable z, called the contour

variable, for a position on a plane given by the values of two variables x and y. Contour
lines of different colors and line types show different levels of magnitude of z for
locations of x and y.

Display 30.1 on page 886 shows a simple contour plot that illustrates the percentage
of clay found in soil samples at various locations of a testing site. The x and y axes on
the plot represent a graph of surface height at various x-y locations. The contour lines

886 Parts of a Contour Plot Chapter 30

within the plot represent the locations on the plane that have the clay percentages
specified in the legend. The program for this plot is in Example 1 on page 904.

By default, the GCONTOUR procedure automatically scales the axes to include the
maximum and minimum data values, labels each axis with the name of its variable or
an associated label, and draws a frame around the plot. In addition, it plots values
using seven contour levels of the contour variable, representing those levels with
default colors and line types. Finally, it generates a legend that is labeled with the
contour variable’s name.

Display 30.1 Sample Contour Plot

Parts of a Contour Plot
Some of the terms used in the discussion of the GCONTOUR procedure are

illustrated in Figure 30.1 on page 887.

The GCONTOUR Procedure Interpolating Additional Values 887

Figure 30.1 GCONTOUR Procedure Terms

About the Input Data Set

The GCONTOUR procedure requires data sets that include three numeric variables:
x, y, and z. The observations in the input data set should form a rectangular grid of x
and y values and exactly one z value for each (x, y) combination. For example, data that
contain 5 distinct values of x and 10 distinct values for y should be part of a data set
that contains 50 observations with values for x, y, and z. If a single (x, y) grid location
has more than one associated z value, only the last such observation appears in the plot.

Interpolating Additional Values

By default, the data set must contain values for the z variable for at least 50 percent
of the grid in order for the GCONTOUR procedure to produce a satisfactory plot. If
your data are clustered in relatively small patches over a larger study area, you can use
the PROC GCONTOUR statement’s INCOMPLETE option, which allows plotting of
data when you have values for the z variable for less than 50 percent of the plot grid.

When the GCONTOUR procedure cannot produce a satisfactory contour plot because
of missing values, the SAS/GRAPH software issues an error message, and no graph is
produced. To correct this problem, you can use the G3GRID procedure to process data
sets to be used by the GCONTOUR procedure. The G3GRID procedure interpolates the
necessary values to produce a data set with nonmissing values of the z variable values
for every combination of the x and y variables. The G3GRID procedure can also smooth
data for use with the GCONTOUR procedure. For details, see Chapter 47, “The
G3GRID Procedure,” on page 1327.

You can use the output data set from the G3GRID procedure as the input data set for
the GCONTOUR procedure. For an example of using PROC G3GRID to interpolate
values, see Example 1 on page 904.

888 Procedure Syntax Chapter 30

Procedure Syntax
Requirements: At least one PLOT statement is required.

Global statements: AXIS, FOOTNOTE, GOPTIONS, LEGEND, PATTERN, SYMBOL,
TITLE

Reminder: The procedure can include the BY, FORMAT, LABEL, NOTE, and WHERE
statements.

Supports: Output Delivery System (ODS)

PROC GCONTOUR <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<INCOMPLETE>;

PLOT plot-request </option(s)>;

PROC GCONTOUR Statement

Identifies the data set that contains the plot variables. Optionally specifies annotation and an
output catalog.

Requirements: An input data set is required.

PROC GCONTOUR <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<INCOMPLETE>;

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs produced by the GCONTOUR procedure.
To annotate individual graphs, use ANNOTATE= in the action statement.

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

DATA=input-data-set
identifies the SAS data set that contains the variables to plot. By default, the
procedure uses the most recently created SAS data set.

See also: “SAS Data Sets” on page 29 and “About the Input Data Set” on page 887.

GOUT=< libref. >output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GCONTOUR procedure. If you omit the libref, the SAS/GRAPH software looks for
the catalog in the temporary library called WORK and creates the WORK catalog if
it does not exist.

See also: “Creating and Specifying Catalogs” on page 54

Not supported by: Java, ActiveX

The GCONTOUR Procedure PLOT Statement 889

INCOMPLETE
allows plotting of data when values are missing for more than half of the variables in
the data set.

Not supported by: Java, ActiveX

PLOT Statement

Creates contour plots using values of three numeric variables from the input data set as the
source of the contour coordinates.

Requirements: A plot request is required.

Global statements: AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL, TITLE

Description

The PLOT statement specifies the three variables to plot. Optionally, it controls the
contour levels, labels the plot lines, and modifies axes as well as the general appearance
of the graph. Only one plot request can be specified in a PLOT statement. To specify
multiple plots for a single PROC GCONTOUR statement, use multiple PLOT
statements.

The PLOT statement automatically

� plots the values using seven contour levels of the z variable

� scales the axes to include the maximum and minimum data values

� labels the x and y axes and displays the contour levels in the plot’s legend

� draws a frame around the plot.

You can use global statements to modify the axes, the legend, the contour lines and
contour line labels, and the fill patterns and pattern colors for contour areas. You can
also add titles, footnotes, and notes to the chart, and you can use an Annotate data set
to enhance the appearance of the chart.

PLOT plot-request </option(s)>;

Required Arguments

y*x=z
specifies three numeric variables from the input data set:

y is the variable that is plotted on the vertical axis.

x is the variable that is plotted on the horizontal axis.

z is the variable that is plotted as contour lines, on the Z axis,
which is perpendicular to the plane formed by the X and Y axes.

890 PLOT Statement Chapter 30

Options by Category
option(s) can be one or more options in the following categories:

� appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
COUTLINE=outline-color
CTEXT=text-color
GRID
NOAXIS | NOAXES
NOFRAME

� horizontal axis options:
AUTOHREF
CAUTOHREF=reference-line-color
LAUTOHREF=reference-line-type
CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
HAXIS=AXIS<1...99>
HMINOR=number-of-minor-ticks
HREF=value-list
HREVERSE
LHREF=reference-line-type | (reference-line-type) | reference-line-type-list
XTICKNUM=number-of-ticks

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type
LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=AXIS<1...99>
VMINOR=number-of-minor-ticks
VREF=value-list
VREVERSE
YTICKNUM=number-of-ticks

� contour options:
CLEVELS=color(s)
JOIN
LEGEND=LEGEND<1...99>
LEVELS=value-list
LLEVELS=line-type-list
NLEVELS=number-of-levels
NOLEGEND
PATTERN

� labeling options:
AUTOLABEL | AUTOLABEL=(autolabel-suboptions)

The GCONTOUR Procedure PLOT Statement 891

where autolabel-suboptions can be one or more of these:
CHECK=checking-factor | NONE
MAXHIDE=amount<units>
REVEAL
TOLANGLE=angle

� catalog entry description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

Options
You can specify any of the following options in your PLOT statement, in any order. If

you use a BY statement on the procedure, the options in each PLOT statement affect all
graphs produced by that BY statement.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies an Annotate data set to enhance the charts produced by the PLOT
statement.
See also: Chapter 26, “The GANNO Procedure,” on page 707 and Chapter 25,

“Annotate Dictionary,” on page 613.

AUTOHREF
displays reference lines at major tick marks on the horizontal axis. The positions of
the major tick marks are determined by the HAXIS= or XTICKNUM= option. To
specify colors and line types for these reference lines, use the CAUTOHREF= and
LAUTOHREF= options. To specify labels for these reference lines, use the HAXIS=
option.
Not supported by: Java

AUTOLABEL | AUTOLABEL=(autolabel_suboptions)
automatically labels the contour lines. Autolabel-suboptions“Autolabel Suboptions”
on page 898 allow you to control the appearance of these labels.

The label for each contour line is the value of the z variable for that contour level.
By default, labels are displayed in BEST format. To change the format, use a
FORMAT statement.

When AUTOLABEL is used, the LLEVELS= and CLEVELS= options are ignored
and the SYMBOL“SYMBOL Statement” on page 183 statement controls label text
and contour-line attributes.

Even though AUTOLABEL labels the contour lines, a default legend is still
generated. To suppress the legend, use the NOLEGEND option.
Featured in: Example 2 on page 906
Not supported by: Java, ActiveX

AUTOVREF
displays reference lines at major tick marks on the vertical axis. The number of major
tick marks is determined by the VAXIS= or YTICKNUM= option. To specify colors
and line types for these reference lines, use the CAUTOVREF= and LAUTOVREF=
options. To specify labels for these reference lines, use the VAXIS= option.
Not supported by: Java.

CAUTOHREF=reference-line-color
specifies a color for reference lines drawn at major tick marks on the horizontal axis,
as specified by the AUTOHREF option. The default color for reference lines is

892 PLOT Statement Chapter 30

determined by the CAXIS= option or by the first color in the color list. To specify line
types for these reference lines, use the LAUTOHREF= option. To specify labels for
these reference lines, use the HAXIS= option.

CAUTOVREF=reference-line-color
specifies a color for reference lines drawn at major tick marks on the vertical axis, as
specified by the AUTOVREF option. The default color for reference lines is
determined by the CAXIS= option or by the first color in the color list. To specify line
types for these reference lines, use the LAUTOVREF= option. To specify labels for
these reference lines, use the VAXIS= option.
Not supported by: Java

CAXIS=axis-color
specifies a color for axis lines, tick marks, and reference lines. By default, axes are
displayed in the second color in the colors list.

If you use the CAXIS= option, it may be overridden by the COLOR= suboption of
the MAJOR= or MINOR= option in an AXIS definition.

CFRAME=background-color
CFR=background-color

fills the axis area with the specified color and draws a frame around the axis area.

CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
CH=reference-line-color | (reference-line-color) | reference-line-color-list

specifies the color of reference lines drawn perpendicular to the horizontal axis.
Specifying a single color without parentheses applies that color to all reference lines
drawn with the AUTOHREF and HREF= options. Note that the CAUTOHREF=
option overrides the CHREF= option for lines drawn with the AUTOHREF option.
Specifying a single color in parentheses applies that color only to the first reference
line drawn with the HREF= option. Specifying a color list applies colors sequentially
to successive reference lines drawn with the HREF= option. The syntax of the color
list is of the form (color1 color2... colorN) or (color1, color2..., colorN). Default colors
for reference lines are determined by the CAXIS= option or by the first color in the
color list. To specify line types for these reference lines, use the LHREF= option. To
specify labels for these reference lines, use the HAXIS= option.
Not supported by: Java

CLEVELS=color(s)
specifies a list of colors for plot contour levels. The number of specified colors should
correspond to the number of contour levels since one color represents each level of
contour. If fewer colors are specified than the number of levels in the plot, the
procedure provides default colors from the current colors list. The procedure default
is to rotate through the current colors list for each line type.

This option is ignored if AUTOLABEL is used.

COUTLINE=outline-color
specifies a color for outlining filled areas. This option is ignored unless the PATTERN
option is also used. By default, the outline color is the same as the color of the filled
area.

The default outline color depends on the PATTERN statement. If you do not
specify a PATTERN statement, the default outline color is black for the Java or
ActiveX devices. Otherwise, the default outline color is the foreground color (the first
color in the colors list). If you specify the PATTERN statement or the V6COMP
graphics option, the default is COUTLINE=SAME.

Note: The outline color is the only distinction between empty patterns. Use of
this option makes the patterns look the same when VALUE=EMPTY in PATTERN
definitions. �

The GCONTOUR Procedure PLOT Statement 893

Featured in: Example 4 on page 910

Not supported by: ActiveX (partial)

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions.

For the Java and ActiveX device drivers, the default text color is black. Otherwise,
the default text color is determined in the following order:

1 specified colors on assigned AXIS and LEGEND statements

2 the CTEXT= option in a GOPTIONS statement

3 the first color in the colors list.
For legend text, colors that you specify on an assigned LEGEND statement

override CTEXT=. Thus, a LEGEND statement’s VALUE= color is used for legend
values, and its LABEL= color is used for legend labels.

For axes text, colors that you explicitly specify for values and labels on an
assigned AXIS statement override CTEXT=. Thus, an AXIS statement’s VALUE=
color is used for axis values, and its LABEL= color is used for axis labels. However, if
the AXIS statement specifies only general axis colors with its COLOR= option, the
CTEXT= color overrides that general specification and is used for axis labels and
values; the COLOR= color is still used for all other axis colors, such as tick marks.

If you use a BY statement in the procedure, the color of the BY variable labels is
controlled by the CBY= option in the GOPTIONS statement.

Featured in: Example 4 on page 910

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
CV=reference-line-color | (reference-line-color) | reference-line-color-list

specifies the color of reference lines drawn perpendicular to the vertical axis.
Specifying a single color without parentheses applies that color to all reference lines
drawn with the AUTOVREF and VREF= options. Note that the CAUTOVREF=
option overrides CVREF= option for lines drawn with the AUTOVREF option.
Specifying a single color in parentheses applies that color only to the first reference
line. Specifying a color list applies colors sequentially to successive reference lines.
The syntax of the color list is of the form (color1 color2... colorN) or (color1, color2...,
colorN). Default colors for reference lines are determined by the CAXIS= option or by
the first color in the color list. To specify line types for these reference lines, use the
LVREF= option. To specify labels for these reference lines, use the VAXIS= option.

Not supported by: Java

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCONTOUR procedure assigns a description of the form PLOT OF
y*x=z, where y*x=z is the request specified in the PLOT statement.

GRID
draws reference lines at all major tick marks on both axes and outlines the axis area.
This is the same as specifying both AUTOHREF and AUTOVREF.

Not supported by: ActiveX

HAXIS=AXIS<1...99>
assigns axis characteristics from the corresponding axis definition to the horizontal
(X) axis. If the AXIS statement specifies the REFLABEL= option, labels will be
applied in sequence to all reference lines generated with the AUTOHREF and
HREF= options.

894 PLOT Statement Chapter 30

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 124.

See also: “AXIS Statement” on page 124

Featured in: Example 2 on page 906

Not supported by: Java (partial), ActiveX (partial)

HMINOR=number-of-minor-ticks
HM=number-of-minor-ticks

specifies the number of minor tick marks to draw between each major tick mark on
the horizontal (X) axis. The HMINOR= option overrides the MINOR= option in an
AXIS definition assigned to the horizontal axis.

HREF=value-list
draws one or more reference lines perpendicular to the horizontal axis at points
specified by value-list. See the LEVELS= option for a description of value-list. To
specify colors for these reference lines, use the CHREF= option. To specify line types
for these reference lines, use the LHREF= option. To specify labels for these
reference lines, use the HAXIS= option.

Not supported by: Java

HREVERSE
specifies that the order of the values on the horizontal (X) axis be reversed.

Not supported by: Java

JOIN
combines adjacent grid cells with the same pattern to form a single pattern area.
This option is ignored unless the PATTERN option is also used.

Featured in: Example 4 on page 910

LAUTOHREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the horizontal
axis, as specified by the AUTOHREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default value 1 draws a solid line. To specify colors for
these reference lines, use the CAUTOHREF= option. To specify labels for these
reference lines, use the HAXIS= option.

Not supported by: Java

LAUTOVREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the vertical
axis, as specified by the AUTOVREF option. The reference-line-type value can be a
whole number in the range of 1 to 46. A value of 1 specifies a solid line; values 2
through 46 specify dashed lines. The default value 1 draws a solid line. To specify
colors for these reference lines, use the CAUTOVREF= option. To specify labels for
these reference lines, use the VAXIS= option.

Not supported by: Java

LEGEND=LEGEND<1...99>
assigns a legend definition that specifies the location, text, and appearance of axes on
the plots. To suppress the legend, use the NOLEGEND option. The LEGEND=
option is ignored if the specified LEGEND definition is not currently in effect.

If you use the SHAPE= option in a LEGEND statement, the value LINE is valid.
If you use the PATTERN option, SHAPE=BAR is also valid.

In Web output that uses a Java or ActiveX device driver, the legend will always
appear on the right side of the plot.

The GCONTOUR Procedure PLOT Statement 895

See also: “LEGEND Statement” on page 151
Featured in: Example 2 on page 906
Not supported by: Java (partial), ActiveX (partial)

LEVELS=value-list
specifies values for the z variable for plot contour levels and therefore changes the
number of contour levels. You can specify up to 100 values. This option is ignored if
you use the AUTOLABEL option.

By default, the GCONTOUR procedure plots seven contour levels for the z
variable. These levels occur at every 15th percent of the range between the 5th and
95th percentiles.

For numeric variables, value-list can be an explicit list of values, a starting and an
ending value with an interval increment, or a combination of both forms:

� n <...n>
� n TO n <BY increment>
� n <...n> TO n <BY increment> n <...n>

If a numeric variable has an associated format, the specified values must be the
unformatted values.

By default, the GCONTOUR procedure selects colors and line types for the contour
levels by rotating through the colors list for each line type (1 through 46) until all the
levels have been represented. The level lines on the plot represent the intersection of
a plane, parallel to the X/Y plane, and the surface that is formed by the values of the
z variable. See “Selecting Contour Levels” on page 899 for more information.

You can specify the colors and line types for contour levels. The way to do this
depends on whether AUTOLABEL is used:

� If AUTOLABEL is used, the “SYMBOL Statement” on page 183 controls colors
and line types for contour levels.

� If AUTOLABEL is not used, the CLEVELS= and LLEVELS= options control
colors and line types for contour levels.

As an alternative to representing contour levels with contour lines, you can use
the PATTERN option to fill each level with a solid pattern or with the colors and
patterns specified in PATTERN statements.
Featured in: Example 2 on page 906 and Example 3 on page 908

LHREF=reference-line-type | (reference-line-type) | reference-line-type-list
LH=reference-line-type | (reference-line-type) | reference-line-type-list

specifies line types for reference lines drawn perpendicular to the horizontal axis.
The reference-line-type value can be a whole number from 1 to 46. A value of 1
specifies a solid line; values 2 through 46 specify dashed lines. Specifiying a single
line type without parentheses applies that line type to all reference lines drawn with
the AUTOHREF and HREF= options. Note that the CAUTOHREF= option overrides
LHREF=reference-line-type for lines drawn with the AUTOHREF option. Specifying a
single line type in parentheses applies that line type only to the first reference line
drawn by the HREF= option. Specifying a line-type list applies line types in
sequence to successive reference lines drawn with the HREF= option. The syntax of
the line type list is of the form (type1 type2... type3). The default value of 1 draws a
solid line. To specify colors for these references lines, use the CHREF= option. To
specify labels for these reference lines, use the HAXIS= option.
Not supported by: Java (partial), ActiveX (partial)

LLEVELS=line-type-list
lists line type numbers for plot contour lines. Each line type represents one contour
level, so the number of line types listed should correspond to the number of contour

896 PLOT Statement Chapter 30

levels. Thus, for a contour plot that uses the default seven levels, specify seven line
types.

If fewer line types are specified than the number of levels in the plot, the
procedure provides default line types. With the default, contour levels rotate through
line types 1 through 46, displaying each line type in all of the colors in the colors list
before moving to the next line type. Line type 1 is a solid line and the others are
dashed line. See “Specifying Line Types” on page 207 for available line types.

For colors and lines specified with both the CLEVELS= and LLEVELS= options,
the first contour level is displayed in the first color in the CLEVELS= color list and
in the first line type specified with the LLEVELS= option. The second level is
displayed in the second color and the second line type, and so on.

This option is ignored if AUTOLABEL is used.
Featured in: Example 3 on page 908
Not supported by: Java

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
LV=reference-line-type | (reference-line-type) | reference-line-type-list

specifies line types for reference lines drawn perpendicular to the vertical axis. The
reference-line-type value can be a whole number from 1 to 46. A value of 1 specifies a
solid line; values 2 through 46 specify dashed lines. Specifying a single line type
without parentheses applies that line type to all reference lines drawn with the
AUTOVREF and VREF= options. Note that the CAUTOVREF= option overrides
LVREF=reference-line-type for lines drawn with the AUTOVREF option. Specifying a
single line type in parentheses applies that line type only to the first reference line
drawn by the VREF= option. Specifying a line-type list applies line types in sequence
to successive reference lines drawn with the VREF= option. The syntax of the line
type list is of the form (type1 type2... type3). The default value 1 draws a solid line.
To specify colors for these references lines, use the CVREF= option. To specify labels
for these reference lines, use the VAXIS= option.
Not supported by: Java (partial), ActiveX (partial)

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is 8 characters. The default name is GCONTOUR. If you specify
DEVICE=ACTIXIMG or DEVICE=JAVAIMG, then the name that you specify will be
used for the client image output even in the file exists. For all other devices, if the
name duplicates an existing entry name, SAS/GRAPH adds a number to the
duplicate name to create a unique entry, for example, GCONTOU1.

NLEVELS=number-of-levels
specifies the number of contour levels to plot. Values can be integers from 1 to 100.
The default is NLEVELS=7. The contour levels are computed as follows, where L
represents an array of levels:

� If the value of NLEVELS= is less than 7, then

D = (Zmax - Zmin) / NLEVELS
d = 0.5 * D
L[0] = Zmin + d, L[i] = L[i-1] + D

In this case, each level is the midpoint of a number of ranges equal to the
value of the NLEVELS= option. These ranges exactly cover the range of the z
variable.

� If the value of NLEVELS= is greater than or equal to 7, then

e = 0.05 * (100 - NLEVELS) / 93
d = (Zmax - Zmin) * e
D = ((Zmax - Zmin - 2*d) / (NLEVELS - 1)

The GCONTOUR Procedure PLOT Statement 897

L[0] = Zmin + d, L[i] = L[i-1] + D

In this case, the first and last midpoints are set closer to the minimum and
maximum values of the z variable as the values of NLEVELS= gets closer to
100, and the remaining midpoints are equally spaced between them.

NOAXIS
NOAXES

specifies that a plot have no axes, axis values, or axis labels. The frame is displayed
around the plot unless you use the NOFRAME option.

NOFRAME
suppresses the frame that is drawn by default around the plot area.

NOLEGEND
suppresses the plot legend that describes contour levels and their line types or fill
patterns and colors.

PATTERN
specifies the fill pattern and pattern colors for contour areas. The plot contour levels
are represented by rectangles filled with patterns. The pattern for each rectangle is
determined by calculating the mean of the values of the z variable for the four
corners of the rectangle and assigning the pattern for the level closest to the mean.

By default, the procedure uses a solid pattern for the levels and rotates the
pattern through the colors list. If the V6COMP option is in effect for the GOPTIONS
statement, cross-hatch patterns are used instead of solid patterns. To explicitly
define patterns, use PATTERN definitions for map/plot patterns.

For information on PATTERN statement that are enabled for Web output, see
“PATTERN Statement” on page 169.
See also: “Selecting Contour Levels” on page 899
Featured in: Example 4 on page 910
Featured in: Example 3 on page 908
Not supported by: Java (partial), ActiveX (partial)

VAXIS=AXIS<1...99>
assigns axis characteristics from the corresponding axis definition to the vertical (Y)
axis. If the AXIS statement specifies the REFLABEL= option, labels will be applied
in sequence to all reference lines generated with the AUTOVREF and VREF= options.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 124.
See also: “AXIS Statement” on page 124
Featured in: Example 2 on page 906
Not supported by: Java (partial), ActiveX (partial)

VMINOR=number-of-minor-ticks
VM=number-of-minor-ticks

specifies the number of minor tick marks located between each major tick mark on
the vertical (Y) axis. No values are displayed for minor tick marks. The VMINOR=
option overrides the MINOR= option in an AXIS definition that is assigned to the
vertical axis.

VREF=value-list
draws one or more reference lines perpendicular to the vertical axis at points
specified by value-list. See the LEVELS= option for a description of value-list. To
specify colors for these reference lines, use the CVREF= option. To specify line types
for these reference lines, use the LVREF= option. To specify labels for these reference
lines, use the VAXIS= option.

898 PLOT Statement Chapter 30

Not supported by: Java

VREVERSE
specifies that the order of the values on the vertical axis be reversed.
Not supported by: Java

XTICKNUM=number-of-ticks
YTICKNUM=number-of-ticks

specify the number of major tick marks located on a plot’s X or Y axis, respectively.
The value of number-of-ticks must be 2 or greater. The defaults are XTICKNUM=5
and YTICKNUM=5.

The MAJOR= or ORDER= option in an AXIS definition that is assigned to the X
axis overrides the XTICKNUM= option. The MAJOR= or ORDER= option in an AXIS
definition that is assigned to the Y axis overrides the YTICKNUM= option.

Autolabel Suboptions
The AUTOLABEL= option accepts the following autolabel suboptions.

CHECK=checking-factor | NONE
specifies a collision checking factor that controls collisions between contour label
text and other contour lines or other labels. Values can be integers from 0 to 100,
inclusive, where 0 provides minimal collision checking and 100 provides maximal
collision checking. Fractional values are permitted. The default is CHECK=75.

CHECK=NONE suppresses contour label collision checking and may lessen the
time needed to compute the contour graph.

MAXHIDE=amount <units>
specifies the maximum amount of contour line that can be hidden by contour
labels. The value of amount must be greater than zero.

Valid units are CELLS (horizontal character cell positions), CM (centimeters),
IN (inches), or PCT (percentage of the width of the graphics output area). The
default is MAXHIDE=100PCT. If you omit units, a unit specification is searched
for in this order:

1 the GUNIT= option in a GOPTIONS statement
2 the default unit, CELLS.
If you specify units of PCT or CELLS, the MAXHIDE= suboption calculates the

amount of contour line that can be hidden based on the width of the graphics
output area. For example, if you specify MAXHIDE=50PCT and if the graphics
output area is 9 inches wide, the maximum amount of the contour line that can be
hidden by labels is 4.5 inches.

This option maintains data integrity. It provides a check for overly small
increments in the STEP= option in the SYMBOL statement. Additionally, it can
prevent small contours from being significantly hidden even when the value of
STEP= is sufficiently large.

REVEAL
specifies that the contour lines are visible through the label text as dashed lines.
Line style 33 is used. This option provides a simple way to see all portions of
labeled contours and can be used to inspect the label positions with respect to the
contour lines. It is primarily used for debugging. Occasionally, single-character
contour labels can be placed off center from the clipped portion of the contour line
when the contour line is irregular or jagged.

The GCONTOUR Procedure PLOT Statement 899

TOLANGLE=angle
specifies the maximum angle (the tolerance angle) between any two adjacent
characters of a contour label. The value of angle must be between 1 and 85
degrees. The default is TOLANGLE=30. To force contour labels to fall on very
smooth sections, specify a small tolerance angle.

Selecting Contour Levels
You can use the LEVELS= option to select the contour levels for your plot. You use

LEVELS= values differently, depending on whether you specify the PATTERN option in
the PLOT statement.

When you do not use the PATTERN option, the levels represent the intersection of a
plane (parallel to the X/Yplane at the value of the z variable) and the surface formed by
the data. That is, if you use the data to create a surface plot with the G3D procedure,
the contour lines in a GCONTOUR procedure plot represent the intersection of the
plane and the surface.

For example, suppose that you use the G3D procedure, and your data produces a
surface plot like the one shown in Figure 30.2 on page 899. The same data used with
the following PLOT statement in the GCONTOUR procedure produces a similar contour
plot:

plot y*x=z / levels=-7.5 to 7.5 by 2.5;

The contour lines in Figure 30.3 on page 900 represent the intersection of the surface
in Figure 30.2 on page 899 with planes parallel to the plane formed by the variables x
and y and located at z values of –7.5, –5.0, –2.5, and so on.

Figure 30.2 Surface Plot

900 PLOT Statement Chapter 30

Figure 30.3 Line Contour Levels

When you use the PATTERN option, contour levels are represented by rectangles
filled with patterns. The rectangles are formed by points in the x-y grid. The contour
pattern of a rectangle, or grid cell, is determined by the mean or average value of the z
variable for the four corners of the rectangle. The grid cell is assigned the pattern for
the level closest to the calculated mean. For example, if you have specified contour
levels of 0, 5, and 10, and the plot contains a grid cell with a mean of 100, it is assigned
the pattern for the nearest level: 10. A grid cell with a mean of 7.6 will also be assigned
the pattern for the 10 level.

Figure 30.4 on page 900 shows a contour plot with the PATTERN option that uses
the same data and contour levels as Figure 30.3 on page 900. The pattern for the
rectangle is assigned depending on the mean of the grid values at the four corners. As a
result, two contour plots using the same contour levels can present your data differently
if one plot uses a pattern and the other does not. The contour pattern boundaries do not
correspond to the contour lines shown in Figure 30.3 on page 900.

Figure 30.4 Pattern Contour Levels

The GCONTOUR Procedure PLOT Statement 901

Specifying Axis Order
You can use AXIS statements to modify the text and appearance of plot axes, and

then you can assign the axes to the contour plot with the PLOT statement’s HAXIS=
and VAXIS= options. If the AXIS statement uses an ORDER= option, there are special
considerations for using that AXIS definition with the GCONTOUR procedure.

A list of variable values that are specified with the AXIS statement’s ORDER= option
must contain numbers listed in ascending or descending order; these numbers are
treated as a continuous data range for an axis. Thus, for a contour line or pattern to
span the entire specified range, it is not necessary for the maximum and minimum
values of the list to match exactly with the maximum and minimum data values of the
corresponding x or y variable. For example, suppose that you assign this AXIS
definition to the horizontal (x) axis:

axis1 order=-2.5 to 2.5 by .5

Suppose also that the horizontal axis variable has these values: –5, –4, –3, –2, –1, 0,
1, 2, 3, 4, 5. Depending on the data, contours could extend through the full range of the
ORDER= list rather than from –2 to 2, which are the actual values of the variable
assigned to the horizontal (x) axis. In this case, values are interpolated for the x
variable at any point where the y variable intersects the minimum axis value (–2.5) or
the maximum axis value (2.5). Data values that are outside of the axis range (in this
case, –5, –4, –3, 3, 4, and 5) are clipped from the plot.

When ORDER= lists cause data clipping, internal plotting grids are modified
according to these rules:

� If an ORDER= list causes data clipping on a single axis, linear interpolation
generates the z values of the starting and/or ending column of the plotting grid.
For example, in the previous example, the value of z is interpolated for –2.5 and
2.5 on the horizontal (x) axis.

� If ORDER= lists cause data clipping on both axes, the response variable values of
the new corners are derived by fitting the new x, y location on a plane formed by
three of the original four points of the corresponding grid square.

In addition, if you assign the following AXIS definition to a plot of the same data, the
contour levels on the plot will not extend beyond the range of the data:

axis1 order=-10 to 10 by 1;

To see the effects of the ORDER= option:
� Figure 30.5 on page 902 shows the effects when the range of ORDER= values

matches the range of values for the variables assigned to the horizontal (x) and
vertical (y) axes.

� Figure 30.6 on page 902 shows the effects when the range of ORDER= values is
smaller than the range of data values.

� Figure 30.7 on page 903 shows the effects when the range of ORDER= values is
larger than the range of data values.

902 PLOT Statement Chapter 30

Figure 30.5 AXIS Statement’s ORDER= Option, where Option Values Match
Variable Values

Figure 30.6 ORDER= Option, where the Option Range is Smaller than the Variable
Range

The GCONTOUR Procedure PLOT Statement 903

Figure 30.7 ORDER= Option, where the Option Range is Larger than Variable
Range

Modifying Contour Lines and Labels with the SYMBOL Statement

When you use the AUTOLABEL option, the LLEVELS= and CLEVELS= options are
ignored, and contour-line and label attributes are controlled by the SYMBOL
statement. Defaults are used if not enough SYMBOL statements are specified to match
the number of contour levels.

If a SYMBOL statement does not include a color option, that statement may be
applied to more than one contour level. In this case, the SYMBOL statement is used
once with every color in the colors list and generates more than one SYMBOL
definition. See “SYMBOL Statement” on page 183 for details.

Table 30.1 on page 903 describes how SYMBOL statement options affect contour plot
lines and labels.

Table 30.1 The Effect of SYMBOL Statement Options on Contour Lines and Labels

SYMBOL Statement Option Contour Line or Label Element Affected

LINE=line-type Contour line style

WIDTH=n Contour line thickness

CI=line-color or COLOR=color Contour line color

FONT=font Contour label font

HEIGHT=height Contour label height

CV=color or COLOR=color Contour label color

STEP=distance<units> Minimum distance between labels on the
same contour line

VALUE=’text’ Contour label text

VALUE=NONE Suppresses the contour label text

The SYMBOL statement option INTERPOL= is not supported by the GCONTOUR
procedure.

904 Examples Chapter 30

The STEP= option specifies the minimum distance between contour labels. The lower
the value, the more labels the procedure uses. A STEP= value of less than 10 percent is
ignored by the GCONTOUR procedure and a value of 10 percent is substituted.

For more information, see “SYMBOL Statement” on page 183.

Specifying Text for Contour Labels
To override the default labels that are displayed by the AUTOLABEL option, you can
specify label text for one or more contour lines. To do so, use both the FONT= and
VALUE= options on the SYMBOL statement that is assigned to the contour level.
Default labels are used for contour levels that you do not label.

For example, this SYMBOL1 statement displays the text string Highest in the Swiss
font on the contour line that it modifies:

symbol1 font=swiss value=’Highest’;

You must specify both FONT= and VALUE= or the text is not used. For an example,
see Example 2 on page 906.

Examples

Example 1: Generating a Simple Contour Plot
Procedure features:

PLOT statement
Other features:

FORMAT statement
G3GRID procedure

Sample library member: GCTCLAY1

This example shows a simple contour plot that describes the percentage of clay found
in soil samples at various locations of a testing site. By default, the axes are scaled to

The GCONTOUR Procedure Example 1: Generating a Simple Contour Plot 905

include all data values and are labeled with the names of the axes variables. Values are
plotted with seven contour levels, which are represented by contour lines with default
colors and line types. The default contour levels occur at every 15th percent of the range
between the contour variable’s 5th and 95th percentile. The legend is labeled with the
contour variable’s name and identifies the contour levels that are included in the plot.

This example uses the G3GRID procedure to interpolate clay percentages for grid
cells that do not have percentages in the data. Without the G3GRID procedure, there
are too many missing values for the percentages, and the GCONTOUR procedure
cannot produce a satisfactory contour plot.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create the data set. REFLIB.CLAY contains the percent of clay at various locations of a test
site.

data reflib.clay;
input x y pct_clay;
datalines;

-10 -10 2.316
-10 -9 1.816
-10 -8 2.427
...more data lines...
10 8 .
10 9 .
10 10 .
;

Interpolate values for the contour plot. The interpolated data set is stored in
REFLIB.CLAY2.

proc g3grid data=reflib.clay out=reflib.clay2;
grid y*x=pct_clay / naxis1=21

naxis2=21
join;

run;

Define title and footnote.

title1 ’Clay Content at Site A’;
footnote1 j=r ’ GCTCLAY1 ’;

Generate a simple contour plot. The procedure uses REFLIB.CLAY2, the output data set
from PROC G3GRID. To simplify the legend labels, clay percentages are formatted with no
decimal positions.

906 Example 2: Labeling Contour Lines Chapter 30

proc gcontour data=reflib.clay2;
format pct_clay 2.0;
plot y*x=pct_clay;

run;
quit;

Example 2: Labeling Contour Lines

Procedure features:
PLOT statement options:

AUTOLABEL=
HAXIS=
LEGEND=
LEVELS=
VAXIS=

Other features:
AXIS statement
LEGEND statement
SYMBOL statement

Data set: REFLIB.CLAY2

Sample library member: GCTCLAY2

Display 30.2 A Simple Contour Plot with Labelled Contour Levels

This example modifies Example 1 on page 904 to label contour levels with the
AUTOLABEL option. When AUTOLABEL is used, the SYMBOL statement controls the
labels and attributes of contour lines. In this example, SYMBOL1 defines a text label
for the lowest contour level. Each remaining contour line gets the default label, which
is the contour variable’s value at that contour level. All the contour lines are solid,
which is the default line type for the SYMBOL statement.

The GCONTOUR Procedure Example 2: Labeling Contour Lines 907

This example also uses AXIS statements to limit the plot to one of the contour areas
from the output of Example 1 on page 904, and it uses a LEGEND statement to move
the legend so the procedure has more room for displaying the y axis.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Define title and footnote.

title1 ’Clay Content at Site A’;
footnote1 j=r ’GCTCLAY2’;

Define axes characteristics. AXIS1 uses ORDER= to set major tick marks at 2-unit intervals
from -10 to -4. AXIS2 uses ORDER= to specify 2-unit intervals from -10 to 2. These axes ranges
effectively zoom in on one of the contour areas from Example 1 on page 904.

axis1 order=(-10 to -4 by 2);
axis2 order=(-10 to 2 by 2);

Define legend characteristics. POSITION= centers the legend to the right of the graphics
area, and LABEL= positions the legend label above the legend entries. ACROSS= places legend
entries in rows 1 entry wide.

legend1 position=(right middle)
label=(position=top)
across=1;

Define symbol characteristics. SYMBOL1 specifies a font and text string to label the
lowest-level contour lines. COLOR= ensures that each SYMBOL definition is used only once. In
SYMBOL2, STEP= increases the number of contour labels by placing the labels closer together
than the default distance of 65 percent.

symbol1 height=2.5
font=swissb
value=’lowest’
color=red;

symbol2 height=2.5
step=25pct
color=black;

symbol3 height=2.5
color=blue;

symbol4 height=2.5
color=green;

908 Example 3: Specifying Contour Levels Chapter 30

Generate the contour plot. LEVELS= specifies contour levels from 10 to 90 at 20-unit
intervals. AUTOLABEL= turns on labeling, and CHECK=NONE turns off collision checking so
the maximum number of contour labels can be displayed. HAXIS= and VAXIS= assign AXIS
definitions to the plot. LEGEND= assigns the LEGEND1 definition to the plot.

proc gcontour data=reflib.clay2;
plot y*x=pct_clay / levels=10 to 90 by 20

autolabel=(check=none)
haxis=axis1
vaxis=axis2
legend=legend1;

run;
quit;

Example 3: Specifying Contour Levels
Procedure features:

PLOT statement options:
LEVELS=
LLEVELS=

Sample library member: GCTPOND

Display 30.3 A Contour Plot Generated with Specific Contour Levels

This example generates a contour plot that shows the height or depth of a pond and
its surrounding land. In the example, the PLOT statement uses the LEVELS= and
LLEVELS= options to specify explicit contour levels and line types for the contour plot.
It also uses a LEGEND statement to modify the plot’s default legend.

This example uses the G3GRID procedure to interpolate points for grid cells that do
not have a needed dimension in the data. Without the G3GRID procedure, there are too
many missing values for the point locations, and the GCONTOUR procedure cannot
produce a satisfactory contour plot.

The GCONTOUR Procedure Example 3: Specifying Contour Levels 909

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=3;

Create the data set. REFLIB.POND contains the raw data for a pond floor and surrounding
land.

data reflib.pond;
input vdist hdist height;
datalines;

10 88 0
18 55 -1
24 22.5 -1.67
...more data lines...
64 272.5 -6.25
60 277.5 -6.5
62 277.5 -6.5
;

Define title and footnote.

title ’Bottom Contour of Mill Pond’;
footnote j=r ’ GCTPOND ’;

Define axis characteristics.

axis1 order=(0 to 325 by 25) width=3 minor=(n=4)
label=(’Feet’);

axis2 order=(0 to 100 by 25) width=3 minor=(n=4)
label=(’ Feet’);

Define legend characteristics.

legend1 frame shape=line(7)
label=(position=top j=c ’Height or Depth (in feet)’);

Interpolate points for the contour plot.

proc g3grid data=reflib.pond out=reflib.pondgrid;
grid vdist*hdist=height / naxis1=100 naxis2=100;

run;

Generate the contour plot. LEVELS= specifies the values of the contour levels. LLEVELS=
sets the line types for the contour lines. Solid lines identify negative contour levels, and dashed
lines identify positive contour levels.

910 Example 4: Using Patterns and Joins Chapter 30

proc gcontour data=reflib.pondgrid;
plot vdist*hdist=height /levels= -30 -12 -7 -3 0 3 5 7 12

llevels= 1 1 1 1 1 2 2 2 2 2
legend=legend1
haxis=axis1
vaxis=axis2;

run;
quit;

Example 4: Using Patterns and Joins

Procedure features:
PLOT statement options:

COUTLINE=
CTEXT=
JOIN
PATTERN

Sample library member: GCTPATRN

Display 30.4 A Contour Plot that uses Contour Lines

This example demonstrates the differences between using lines and patterns to
represent contour levels. It first uses a simple PLOT statement to generate the default
output, which uses lines to represent contour levels.

As shown in the following output, the example then modifies the PLOT statement by
specifying the PATTERN option, which uses patterns to distinguish between contour
levels. Additional PLOT statement options outline filled areas in gray and specify green
text for all text on the axes and in the legend.

The GCONTOUR Procedure Example 4: Using Patterns and Joins 911

Display 30.5 A Contour Plot that uses Patterns

Finally, as shown by the following output, the example uses the JOIN option to
combine the patterns in grid cells for the same contour level. Additional options
enhance the plot by modifying the axes and framing the legend.

Display 30.6 A Contour Plot with Joined Cells

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create the data set. REFLIB.SWIRL is generated data that produces a symmetric contour
pattern, which is useful for illustrating the PATTERN option.

912 Example 4: Using Patterns and Joins Chapter 30

data reflib.swirl;
do x= -5 to 5 by 0.25;

do y= -5 to 5 by 0.25;
if x+y=0 then z=0;
else z=(x*y)*((x*x-y*y)/(x*x+y*y));
output;

end;
end;

run;

Define title and footnote for the default output.

title ’Simple Contour Plot’;
footnote j=r ’GCTPATR1 ’;

Generate a simple contour plot.

proc gcontour data=reflib.swirl;
plot y*x=z;

run;

Define title and footnote for second plot.

title ’Representing Contour Levels with Patterns’;
footnote j=r ’GCTPATR2 ’;

Generate the contour plot. PATTERN fills the contour levels with solid patterns.
COUTLINE= names the color that outlines the grid cells. CTEXT= names a color for axes and
legend text.

proc gcontour data=reflib.swirl;
plot y*x=z / pattern

coutline=gray
ctext=green;

run;

Define title and footnote for last plot.

title ’Joining the Patterns in a Contour Plot’;
footnote j=r ’GCTPATR3 ’;

Define axis and legend characteristics for last plot. Blanks are used to suppress tick
labels at positions -2.5 and 2.5.

axis1 label=none value=(’’ ’ ’ ’0’ ’ ’ ’5’)
color=red width=3;

axis2 label=none value=(’’ ’ ’ ’0’ ’ ’ ’5’)

The GCONTOUR Procedure References 913

color=red width=3;

legend frame;

Generate the last contour plot. JOIN combines grid cells for the same contour levels.

proc gcontour data=reflib.swirl;
plot y*x=z / pattern

join
haxis=axis1
vaxis=axis2
legend=legend1;

run;
quit;

References

Snyder, W.V. (1978), "Contour Plotting [J6] ," ACM Transactions on Mathematical
Software, 4, 290–294.

914

915

C H A P T E R

31
The GDEVICE Procedure

Overview 916

Concepts 916
About Device Catalogs 916

About the Current Catalog 916

Search Order of Device Catalogs 917
Ways to Use the GDEVICE Procedure 917

Windowing Mode 918

Program Mode 918
Procedure Syntax 920

PROC GDEVICE Statement 920
ADD Statement 921

COPY Statement 924

DELETE Statement 925
FS Statement 925

LIST Statement 925

MODIFY Statement 926
QUIT Statement 927

RENAME Statement 927
Using the GDEVICE Procedure 928

Using the GDEVICE Windows 928

GDEVICE Window Commands 929
GDEVICE Window Descriptions 929

DIRECTORY Window 929

Detail window 930
Parameters window 930

Gcolors window 931
Chartype window 931

Colormap window 931

Metagraphics window 932
Gprolog window 932

Gepilog window 933

Gstart window 933
Gend window 933

Host File Options window 933
Host Commands window 934

Creating or Modifying Device Entries 934

Creating a New Device Entry 935
Modifying an Existing Device Entry 935

Changing Device Parameters Temporarily 935

Examples 936
Example 1: Creating a Custom Device Entry with Program Statements 936

916 Overview Chapter 31

Overview

The GDEVICE procedure is a tool for examining and changing the parameters of the
graphics device driver catalog entries used with SAS/GRAPH software. With the
GDEVICE procedure, you can use either the GDEVICE windows or GDEVICE
procedure statements to

� list the device entries stored in any DEVICES catalog

� view the parameters for any device entry

� create and modify new device entries

� copy, modify, rename, or delete existing device entries.

See Chapter 3, “Device Drivers,” on page 41 for a discussion of device drivers and
device entries, as well directions for selecting device drivers and changing the settings
of device parameters.

For a complete list of Institute-supplied device entries supported by your operating
environment, see the SASHELP.DEVICES catalog that is supplied with SAS/GRAPH
software.

Concepts

About Device Catalogs
Device entries are stored in SAS catalogs that are named libref.DEVICES. Device

entries for your operating environment that are supplied with SAS/GRAPH software
are stored in the Institute-supplied catalog, SASHELP.DEVICES.

Custom device entries are typically stored in a catalog named GDEVICEn.DEVICES
(where n can be any number from 0 to 9). However, device entries that have been
created or modified by a system administrator specifically for your site also may be
stored in SASHELP.DEVICES. (On multi-user systems, the SAS Support Consultant is
usually the person who has write access to the SASHELP.DEVICES catalog and makes
any changes.)

About the Current Catalog
When the GDEVICE procedure determines which catalog it should use, it searches

for the catalog in the following order:

1 the catalog name specified in the CATALOG= option in the PROC GDEVICE
statement

2 the catalog associated with the GDEVICE0 libref, if the libref has been assigned

3 the Institute-supplied catalog, SASHELP.DEVICES. (SASHELP.DEVICES is
usually write-protected and is opened in browse mode.)

The first catalog it finds becomes the current catalog.
You can specify the current catalog by

� using the CATALOG= option in the PROC GDEVICE statement (this is required
to open a driver entry in update mode)

� assigning the GDEVICE0 libref to the appropriate catalog.

The GDEVICE Procedure Ways to Use the GDEVICE Procedure 917

Search Order of Device Catalogs
When you specify a device driver, SAS/GRAPH software looks only into catalogs with

certain librefs and names to find a device entry for that driver. It searches these
catalogs sequentially in the following order:

1 If the libref GDEVICE0 has been assigned to a SAS library, SAS/GRAPH software
looks in that library for a catalog named DEVICES. If the GDEVICE0.DEVICES
catalog exists, it is checked for the specified device entry. If the device entry is not
there, SAS/GRAPH software looks next for a library with the libref GDEVICE1
and for a catalog named DEVICES in that library. The search is repeated for the
sequence of librefs through GDEVICE9.

2 If SAS/GRAPH fails to find the specified device entry in any DEVICES catalog in
the libraries GDEVICE0 through GDEVICE9, or if before locating the specified
device entry it encounters in that sequence an undefined libref or a library that
does not contain a DEVICES catalog, it jumps to SASHELP.DEVICES to search
for the device entry. For example, if a GDEVICE0 libref is allocated but this
library does not contain a DEVICES catalog, SAS/GRAPH software jumps to the
SASHELP.DEVICES catalog, without searching for a GDEVICE1.DEVICES
catalog, even if it exists. (SASHELP.DEVICES is the device catalog supplied with
SAS/GRAPH software. SASHELP is one of the standard librefs defined
automatically whenever you start your SAS session; you do not need to issue a
LIBNAME statement to define it.)

3 If the specified device entry is not found in the SASHELP.DEVICES catalog, you
receive an error message.

Since the GDEVICE0.DEVICES catalog is the first place that SAS/GRAPH software
looks, you always should assign that libref to the library containing your personal
catalog of device entries, if you have one. If for some reason you have personal device
catalogs in more than one SAS data library, assign them librefs in the sequence
GDEVICE0, GDEVICE1, GDEVICE2, and so on.

Note: As stated above, the search for entries terminates if there is a break in the
sequence; the catalog GDEVICE1.DEVICES is not checked if the libref GDEVICE0 is
undefined, or if GDEVICE0 does not contain a catalog named DEVICES. �

To cancel or redefine the libref GDEVICEn, first clear the current graphics options:

goptions reset=all;

You can then redefine the libref with another LIBNAME statement. To cancel a
libref, use a null LIBNAME statement.

Ways to Use the GDEVICE Procedure
There are two ways to use the GDEVICE procedure:
� browse or edit the fields in the GDEVICE procedure windows (windowing mode)
� submit GDEVICE procedure statements in a SAS program (program mode).

If you run SAS software in a windowing environment (the SAS Display Manager
System, for example), you can use either the GDEVICE procedure windows or the
GDEVICE procedure statements. In a windowing environment, the GDEVICE
procedure automatically opens the GDEVICE procedure windows.

If you run SAS software in a non-windowing environment (such as line-mode or
batch), you can use only GDEVICE procedure statements. In a non-windowing
environment, the GDEVICE procedure automatically uses program mode.

Both methods provide identical functionality and allow you to display or modify
device parameters, or create new device entries.

918 Ways to Use the GDEVICE Procedure Chapter 31

Windowing Mode
In a windowing environment, open the GDEVICE windows by submitting the PROC

GDEVICE statement without the NOFS option:

proc gdevice;

This opens the DIRECTORY window in browse mode. This window lists all of the
device entries in the current catalog. (See “About the Current Catalog” on page 916.)

To open the DIRECTORY window in edit mode, or to specify a different catalog,
include the CATALOG= option in the PROC GDEVICE statement.

From the DIRECTORY window you can select the device entry you want to work
with and open other GDEVICE windows in which you can view or modify device
parameters. For more information, see “Using the GDEVICE Windows” on page 928.

In a windowing environment, you can switch between the GDEVICE windows and
program statements while you are running the procedure. See the “FS Statement” on
page 925 and the NOFS window command in the SAS Help facility for SAS/GRAPH.

To exit the GDEVICE windows, submit the End command or close the window.

Program Mode
If you are in a non-windowing or batch environment, the GDEVICE procedure

automatically starts in program mode. If you are in a windowing environment, specify
the NOFS option to start the GDEVICE procedure in program mode:

proc gdevice nofs;

By default, the GDEVICE procedure accesses the current catalog in browse mode and
prompts you in the LOG to enter additional program statements. (See “About the
Current Catalog” on page 916.) To specify the current catalog, include the CATALOG=
option in the PROC GDEVICE statement.

Once you start the GDEVICE procedure, you can enter and run additional
statements without re-entering the PROC GDEVICE statement. For example, the
following statement generates a listing of the device parameters for the PSCOLOR
device entry that is stored in the Institute-supplied catalog, SASHELP.DEVICES:

list pscolor;

PROC GDEVICE procedure output is displayed in the Output window. Output 31.1
shows the listing generated by the LIST statement.

The GDEVICE Procedure Ways to Use the GDEVICE Procedure 919

Output 31.1 Sample Device Entry Listing Generated in Program Mode

GDEVICE procedure
Listing from SASHELP.DEVICES - Entry PSCOLOR

Orig Driver: PSCOLOR Module: SASGDPSL Model: 1251
Description: PostScript color--RGB color defs Type: PRINTER
*** Institute-supplied ***
Lrows: 0 Xmax: 8.500 IN Hsize: 8.000 IN Xpixels: 2550
Lcols: 0 Ymax: 11.000 IN Vsize: 8.500 IN Ypixels: 3300
Prows: 68 Horigin: 0.218 IN
Pcols: 80 Vorigin: 1.496 IN
Aspect: 0.000 Rotate:
Driver query: Y Queued messages: N

Paperfeed: 0.000 IN

OPTIONS

Erase: Autofeed: Y Chartype: 1
Swap: Cell: Maxcolors: 256
Autocopy: Characters: Repaint: 0
Handshake: XONXOFF Circlearc: Gcopies: 0

Dash: Gsize: 0
Prompt - startup: Fill: Speed: 0

end graph: Piefill: Fillinc: 0
mount pen: Polyfill: Maxpoly: 1450
chg paper: Symbol: Lfactor: 0

Pensort: N
Promptchars: ’000A010D05000000’X
Devopts: ’FD9230402C130000’X
UCC: ’0001’X

Cback: WHITE
Color list:

BLACK RED GREEN BLUE CYAN
MAGENTA YELLOW GRAY

CHARTYPE RECORDS

Chartype Rows Cols Font Name Scalable
1 89 85 Courier Y
2 89 85 Courier-Oblique Y
.
{ob ...more hardware fonts...}
.

34 89 85 Bookman-LightItalic Y
35 89 85 Bookman-DemiItalic Y

Gend: ’0A’X

FILE INFORMATION

Gaccess: sasgastd>sasgraph.ps
Gsfname: Gsfmode: PORT Gsflen: 0
Trantab: Devmap:
Devtype: DISK
Gprotocol:
Fileclose: DRIVERTERM
Hostspec:

HOST INFORMATION

You can exit the GDEVICE procedure in these three ways:

� Submit the END, QUIT, or STOP statement.

� Submit another PROC statement or DATA step.

� Exit your SAS session.

920 Procedure Syntax Chapter 31

Procedure Syntax
Requirements: Statements other than the PROC GDEVICE statement can be used only
in a non-windowing or batch environment. In these environments, at least one
statement is required to give GDEVICE an action to perform. In a windowing
environment, only the PROC GDEVICE statement is required. In program mode, at
least one additional statement is required, and you can submit as many of each
statement as you want.

Note: You must have write access to the device catalog in order to modify, add, or
delete entries.

Supports: Output Delivery System (ODS LISTING).

PROC GDEVICE <CATALOG=< libref.>SAS-catalog>
<BROWSE>
<NOFS>;

ADDnew-device-entry
required-parameters
<optional-parameters>;

COPYdevice-entry
<FROM=<libref.>SAS-catalog>
<NEWNAME=new-device-entry>;

DELETE device-entry;

FS;

LIST device-entry | _ALL_ | _NEXT_ | _PREV_ | DUMP>;

MODIFY device-entry
parameter(s)

QUIT | END | STOP;

RENAME device-entry NEWNAME=new-entry-name;

PROC GDEVICE Statement

Starts the procedure and determines whether it runs in windowing mode or program mode.
Optionally identifies a device catalog and determines how that catalog is opened.

PROC GDEVICE <CATALOG=< libref.>SAS-catalog>
<BROWSE>
<NOFS>;

Options
Options used in the PROC GDEVICE statement affect the way you use the procedure.

BROWSE
opens a catalog in browse mode. You cannot modify a catalog when you open it with
the BROWSE option. If you are running in program mode when you use BROWSE,
you can use only the FS, LIST, QUIT, END, or STOP statements.

The GDEVICE Procedure ADD Statement 921

CATALOG=<libref.>SAS-catalog
CAT=<libref.>SAS-catalog
C=<libref.>SAS-catalog

specifies the catalog containing device information. If you do not specify a catalog,
the procedure opens the first catalog found in the search order of catalogs in browse
mode. (See “About the Current Catalog” on page 916. for information on how the
GDEVICE procedure determines which catalog to use.)

To edit the device entries in a catalog, you must use the CATALOG= option.

NOFS
specifies that you are using program mode. In windowing environments, the
GDEVICE windows are the default and you must specify NOFS to start GDEVICE in
program mode.

ADD Statement

Adds a new device entry to the catalog selected by the CATALOG= option in the PROC GDEVICE
statement. The device entry is initialized with NULL values for most parameters.

Requirements: You must have write access to the device catalog in order to add entries,
and use CATALOG= in the PROC GDEVICE statement.
Restriction: Not valid in browse mode.

ADD new-device-entry
required-parameters
<optional-parameters>;

required-parameters are all of the following:
MODULE=driver-module

XMAX=width <IN | CM>
YMAX=height <IN | CM>
XPIXELS=width-in-pixels

YPIXELS=height-in-pixels

plus one or both of the following parameter pairs:
LCOLS=landscape-columns

LROWS=landscape-rows

or
PCOLS=portrait-columns

PROWS=portrait-rows

optional-parameters can be one or more of the following:
ASPECT=scaling-factor

AUTOCOPY=Y | N
AUTOFEED=Y | N
CBACK=background-color

CELL=Y | N

922 ADD Statement Chapter 31

CHARACTERS=Y | N
CHARREC=(charrec-list(s))
CHARTYPE=hardware-font-chartype
CIRCLEARC=Y | N
CMAP=(’from-color : to-color’ <...,’from-color-n : to-color-n’>)
COLORS=(<colors-list>)
COLORTYPE=NAME | RGB | HLS | GRAY | CMY | CMYK | HSV | HSB
DASH=Y | N
DASHLINE=’dashed-line-hex-string’X
DESCRIPTION=’text-string’
DEVMAP=device-map-name | NONE
DEVOPTS=’hardware-capabilities-hex-string’X
DEVTYPE=device-type
DRVINIT1=’system-command(s)’
DRVINIT2=’system-command(s)’
DRVQRY | NODRVQRY
DRVTERM1=’system-command(s)’
DRVTERM2=’system-command(s)’
ERASE=Y | N
FILECLOSE=DRIVERTERM | GRAPHEND
FILL=Y | N
FILLINC=0...9999
FORMAT=CHARACTER | BINARY
GACCESS=output-format | ’output-format > destination’
GCOPIES=current-copies
GEND=’string’ <...’string-n’>
GEPILOG=’string’ <...’string-n’>
GPROLOG=’string’ <...’string-n’>
GPROTOCOL=module-name
GSFLEN=record-length
GSFMODE=APPEND | REPLACE | PORT
SFNAME=fileref
GSIZE=lines
GSTART=’string’ <...’string-n’>
HANDSHAKE=HARDWARE | NONE | SOFTWARE | XONXOFF
HEADER=’command’
HEADERFILE=fileref
ORIGIN=horizontal-offset <IN | CM>
HOSTSPEC=’text string’
HSIZE=horizontal-size <IN | CM>
ID=’description’
INTERACTIVE=USER | GRAPH | PROC
LFACTOR=line-thickness-factor
MAXCOLORS=number-of-colors
MAXPOLY=number-of-vertices

The GDEVICE Procedure ADD Statement 923

MODEL=model-number

NAK=’negative-handshake-response’X

PAPERFEED=feed-increment <IN | CM>

PATH=angle-increment

PENSORT=Y | N

PIEFILL=Y | N

POLYGONFILL=Y | N

POSTGRAPH1=’system-command(s)’

POSTGRAPH2=’system-command(s)’

PREGRAPH1=’system-command(s)’

PREGRAPH2=’system-command(s)’

PROCESS=’command’

PROCESSINPUT=fileref

PROCESSOUTPUT=fileref

PROMPT=0...7

PROMPTCHARS=’prompt-chars-hex-string’X

QMSG | NOQMSG

RECTFILL=’rectangle-fill-hex-string’X

REPAINT=redraw-factor

ROTATE=LANDSCAPE | PORTRAIT

ROTATION=angle-increment

SPEED=pen-speed

SWAP=Y | N

SYMBOL=Y | N

SYMBOLS=’hardware-symbols-hex-string’X

TRAILER=’command’

TRAILERFILE=fileref

TRANTAB=table | user-defined-table

TYPE= CAMERA | CRT | EXPORT | PLOTTER | PRINTER

UCC=’control-characters-hex-string’X

VORIGIN=vertical-offset <IN | CM>

VSIZE=vertical-size <IN | CM>

Required Arguments

new-device-entry
specifies the one-level name of the new device entry. New-device-entry must be a
valid name for a SAS catalog entry for your operating environment and cannot
already exist in the current catalog.

required-parameters
all required parameters for the ADD statement correspond to device parameters of
the same name. Refer to Chapter 8, “Graphics Options and Device Parameters
Dictionary,” on page 261 for a description of each parameter.

924 COPY Statement Chapter 31

Options
All optional parameters for the ADD statement correspond to device parameters of

the same name. Refer to Chapter 8, “Graphics Options and Device Parameters
Dictionary,” on page 261 for a description of each parameter.

Note: The COLORS= device parameter is not required; the device entry will be
created if you do not use it. However, the GDEVICE procedure issues an error message
if you do not specify at least one color for COLORS=. �

Details
The ADD statement is rarely used because it initializes parameter values to NULL

and you have to set values for all the parameters. The best way to add a new driver is
to copy an existing driver and modify it.

COPY Statement

Copies a device entry and places the copy in the current catalog. The original device entry can be
either in the current catalog or in a different catalog.

Requirements: You must have write access to the catalog to which the device entry is
being copied.

Restriction: Not valid in browse mode.

See also: “Creating or Modifying Device Entries” on page 934

Featured in: Example 1 on page 936

COPY device-entry where;

Where where must be one or both of the following:

FROM=<libref.>SAS-catalog

NEWNAME=new-device-entry

Required Arguments

device-entry
specifies the one-level name of the device entry to copy. The entry must exist in
either the current catalog (the default) or the catalog specified by FROM=.

FROM=<libref.>SAS-catalog
names the catalog from which to copy device-entry.

NEWNAME=new-device-entry
specifies a name for the copy of the device entry that is placed in the current catalog.
New-device-entry must be a valid name for a SAS catalog entry and cannot already
exist in the current catalog.

If you copy device entries across catalogs and you do not specify a new name, the
GDEVICE procedure uses the original name for the new device entry.

The GDEVICE Procedure LIST Statement 925

DELETE Statement

Deletes the device entry from the current catalog.

Requirements: You must have write access to the current catalog to delete a device entry
from it, and use CATALOG= in the PROC GDEVICE statement.
Restriction: Not valid in browse mode.
Caution: A device entry cannot be restored once it has been deleted. Depending on the
environment in which you are using the GDEVICE procedure, you may be asked to
verify that you really want to delete the entry.

DELETE device-entry;

Required Arguments

device-entry
specifies the one-level name of device entry to delete. The entry must exist in the
current catalog.

FS Statement

Switches from program mode to the GDEVICE windows.

Requirements: You must be running SAS software in a windowing environment.

FS;

Options
No options.

LIST Statement

Lists all of the parameters of the specified device entry in the Output window.

Default: _ALL_
See also: “Program Mode” on page 918

LIST <device-entry>
<_ALL_>
<_NEXT_>

926 MODIFY Statement Chapter 31

<_PREV_>
<DUMP>;

Options

device-entry
specifies the one-level name of the device entry whose contents you want to list. The
entry must exist in the current catalog.

ALL
lists only the name, description, and creation date of all device entries in the current
catalog. This is the default. If no entries exist in the catalog, the GDEVICE
procedure issues a message.

NEXT
lists the contents of the next device entry. The GDEVICE procedure lists the first
entry in the catalog if no entries have been previously listed.

PREV
lists the contents of the previous device entry. If you have not previously listed the
contents of a device entry, the GDEVICE procedure issues the following message:

No objects preceding current object.

DUMP
lists detailed information on all device entries in the current catalog. Depending on
the number of device entries in the catalog, the DUMP option can create a large
amount of output.

MODIFY Statement

Changes the values in a device entry.

Requirements: You must have write access to the current catalog to modify a device
entry, and use CATALOG= in the PROC GDEVICE statement.

Restriction: Not valid in browse mode.

See also: “Creating or Modifying Device Entries” on page 934

Featured in: Example 1 on page 936

MODIFY device-entry
parameter(s);

Required Arguments

device-entry
specifies the one-level name of the device entry that you want to modify. The entry
must exist in the current catalog.

The GDEVICE Procedure RENAME Statement 927

parameter(s)
are the parameters you want to modify. These can be any of the parameters listed in
the ADD statement, whether listed as required or optional for ADD. See “ADD
Statement” on page 921 for a complete list. Refer to Chapter 8, “Graphics Options
and Device Parameters Dictionary,” on page 261 for a description of each parameter.

Details
To modify a device entry, create your own catalog and then copy the device entries

you need into it. You can then change your personal copies of the device entries without
affecting the original drivers in SASHELP.DEVICES. (To copy device entries, use the
COPY statement, the COPY command available after you choose Import Device Entry
from the DIRECTORY window’s File menu, or the CATALOG procedure, which is part
of base SAS.

CAUTION:
Be careful when modifying device entries in program mode. In program mode, you
cannot cancel any modifications you have just made. To change a value you have
modified, you must use another MODIFY statement to replace the original value or
reset it to its default. (In the GDEVICE windows, you can type the CANCEL
command in the command line to cancel changes you have made to the fields.) �

QUIT Statement

Saves all modifications made to device entries during the procedure and exits the GDEVICE
procedure.

QUIT | END | STOP;

Options
No options.

RENAME Statement

Changes the name of the device entry to the name specified in the statement.

Requirements: You must have write access to the current catalog to rename a device
entry, and use CATALOG= in the PROC GDEVICE statement.
Restriction: Not valid in browse mode.

RENAME device-entry
NEWNAME=new-entry-name;

928 Using the GDEVICE Procedure Chapter 31

Required Arguments

device-entry
specifies the one-level name of the device entry that you want to rename. The entry
must exist in the current catalog.

NEWNAME=new-entry-name
specifies the new entry name. New-entry-name must be a valid name for a SAS
catalog entry and cannot already exist in the current catalog. If the name already
exists, the GDEVICE procedure issues an error message.

Using the GDEVICE Procedure

Using the GDEVICE Windows
You can use the GDEVICE windows instead of program mode to view, modify, copy,

create, or delete device entries. You perform tasks in the GDEVICE windows by
entering values in the fields, by using the pulldown menus, and by issuing commands
from the command line.

These are the thirteen GDEVICE windows in order of appearance:
� Directory Window

� Detail Window
� Parameters Window

� Gcolors Window
� Chartype Window
� Colormap Window

� Metagraphics Window
� Gprolog Window

� Gepilog Window
� Gstart Window

� Gend Window
� Host File Options Window
� Host Commands Window

The fields in these windows represent device entry parameters. The GDEVICE
windows group the device parameters by topic, to make it easy for you to review or
modify the entry. If you open the device entry in edit mode, you can modify the fields
directly. For a description of each field, see the corresponding parameter in Chapter 8,
“Graphics Options and Device Parameters Dictionary,” on page 261 or refer to the SAS
Help facility. For a complete list of device parameters, see “ADD Statement” on page
921.

Note: The parameters are sometimes an abbreviation of the field names, but the
correspondence should be clear. For example, in the Detail window, the "Driver query"
field corresponds to the DRVQRY parameter, and the "Queued messages" field
corresponds to the QMSG parameter. �

This section briefly describes the GDEVICE windows; for a complete description of
each window and its fields, refer to the SAS Help facility.

The GDEVICE Procedure Using the GDEVICE Windows 929

GDEVICE Window Commands
You can navigate and manipulate the GDEVICE windows by entering commands on

the command line or selecting them from the menus. For a complete description of all
the GDEVICE window commands, refer to the SAS Help facility.

Note: In a Windows environment, the GDEVICE commands are presented on
pop-up menus rather than on the menubar. Right-click a GDEVICE window to access a
pop-up menu. �

GDEVICE Window Descriptions

DIRECTORY Window
This window appears when you start the GDEVICE procedure in window mode. It

lists all the device entries in the default catalog or the catalog you specified in the
PROC GDEVICE statement. You can use it to

� copy, rename, or delete device entries in the catalog

� select a device entry whose parameters you want to browse or edit.

You can enter these commands in the Directory window selection field:

B | S
open the Detail window and browse (B) or, if you are in edit mode, edit (S) the
selected device entry.

D
delete the selected device entry. You cannot restore a device entry once it has been
deleted.

E
open the Detail window and edit the selected device entry.

R
rename the device entry and/or description.

You cannot edit the TYPE and UPDATED fields in the Directory Window.

Figure 31.1 The DIRECTORY Window

930 Using the GDEVICE Windows Chapter 31

Detail window
This window contains device parameters that control basic characteristics of the

device, for example, the size of the graphics output area.

Figure 31.2 The Detail Window

From this window you can access any of the subsidiary GDEVICE windows by
� entering the name of the window on the command line
� selecting the window from the Tools pulldown
� opening the subsidiary windows in order of appearance by using the View pulldown

and choosing Next Screen, or using the NEXTSCR command on the command line.

Parameters window
This window includes additional device parameters that affect the way graphs are

drawn. For example, you choose whether certain graphics primitives are drawn by your
hardware or by SAS/GRAPH software, whether to feed paper to printers or plotters
automatically, and whether to have SAS/GRAPH software prompt you with messages
under certain conditions.

Note: If the device does not support a hardware characteristic, the catalog entry
cannot enable the support. �

Figure 31.3 The Parameters Window

The GDEVICE Procedure Using the GDEVICE Windows 931

Gcolors window
This window lists the colors that the device driver uses by default. When you do not

explicitly specify the color of a graphics feature in your program or in a GOPTIONS
statement, SAS/GRAPH software uses this list to determine what color to use.

Figure 31.4 The Gcolors Window (partial view)

Chartype window
This window lists the hardware fonts that the device can use, along with information

about the size of the characters. The Chartype value is the value you can use to
reference a font in another window. For example, you would enter a Chartype number
in the Parameters window’s Chartype field.

Figure 31.5 The Chartype Window (partial view)

Colormap window
This window allows you to specify a color map for the device. The FROM field

specifies the name to assign to the color designated by the color value, and the TO field
specifies a SAS/GRAPH color name up to eight characters long. Once you have defined
the color mapping, you can use the new color name in any color option. For example, if
your device entry maps the color name DAFFODIL to the SAS color value PAOY, you
can specify COLOR=DAFFODIL on any statement that supports a COLOR= option, and
the driver will map this to the color value PAOY.

932 Using the GDEVICE Windows Chapter 31

Figure 31.6 The Colormap Window (partial view)

Metagraphics window

This window is used by all drivers that support multiple color spaces, for example,
RGB or CMYK. It is also used if the device entry is a Metagraphics (user-written)
driver. Metagraphics drivers are created when an Institute-supplied device entry
cannot be adapted to support your graphics device. For information about Metagraphics
drivers, contact Technical Support.

Do not alter the fields in the Metagraphics window unless you are changing the color
scheme (colortype), or building a Metagraphics driver.

Figure 31.7 The Metagraphics Window

Gprolog window

This window enables you to specify one or more hexadecimal strings that are sent to
the device just before graphics commands are sent. Additional commands can be sent
with the PREGPROLOG= and POSTGPROLOG= graphics options. See Chapter 8,
“Graphics Options and Device Parameters Dictionary,” on page 261 for details.

Figure 31.8 The Gprolog Window (partial view)

The GDEVICE Procedure Using the GDEVICE Windows 933

Gepilog window
This window enables you to specify one or more hexadecimal strings that are sent to

the device just after graphics commands are sent. Additional commands can be sent
with the PREGEPILOG= and POSTGEPILOG= graphics options. See Chapter 8,
“Graphics Options and Device Parameters Dictionary,” on page 261 for details.

Figure 31.9 The Gepilog Window (partial view)

Gstart window
This window enables you to specify one or more hexadecimal strings that are placed

at the beginning of each record of graphics data.

Figure 31.10 The Gstart Window (partial view)

Gend window
This window enables you to specify one or more hexadecimal strings that are placed

at the end of each record of graphics data.

Figure 31.11 The Gend Window (partial view)

Host File Options window
This window controls the output destination and formatting of the data stream

produced by the driver. (Most of these values can also be specified with the GOPTIONS

934 Creating or Modifying Device Entries Chapter 31

statement and with the FILENAME statement. See also “Exporting SAS/GRAPH
Output with Program Statements” on page 62.)

Figure 31.12 The Host File Options Window

Host Commands window
This window stores the host commands issued at driver initialization, before and

after each graph is produced, and at driver termination. These commands are typically
used to send graphics output to a hardcopy device such as a printer or a plotter.

Figure 31.13 The Host Commands Window

Creating or Modifying Device Entries
In order to add, modify, or delete device entries, you must have write access to the

catalog. On multi-user systems, the SAS support consultant is usually the only person
who has write access to the SASHELP.DEVICES catalog and can make any changes.
Therefore, when creating new entries or modifying existing ones, individual users
usually work in a personal catalog. Be sure the catalog in which you store new or
modified device entries is named DEVICES.

To use a device entry stored in a personal catalog, you must assign the GDEVICEn
libref to the library that contains the device catalog. See “About Device Catalogs” on
page 916.

The GDEVICE Procedure Creating or Modifying Device Entries 935

It is a good idea to give a new or modified device entry a name that is different from
the original. Then, if you want to use the original device, SAS/GRAPH can find that
device when it searches the device catalogs. Remember that SAS/GRAPH searches the
GDEVICEn libraries before it searches SASHELP.DEVICES and uses the first device it
finds whose name matches the one you have specified. (See “Search Order of Device
Catalogs” on page 917.)

For example, suppose there is a customized copy of PSCOLOR in your
GDEVICE0.DEVICES catalog as well as the original in SASHELP.DEVICES. If you
specify DEV=PSCOLOR and if the libref GDEVICE0 is assigned, SAS/GRAPH will
search GDEVICE0.DEVICES first and use the copy of PSCOLOR stored there. Unless
you cancel the GDEVICE0 libref, SAS/GRAPH will never find the original in
SASHELP.DEVICES.

Creating a New Device Entry
Typically you create a new device entry by copying an existing device and modifying

its parameters to suit your needs. You can copy and modify a device entry in two ways:
� Use the DIR command on the command line to open the DIRECTORY window, and

then use the COPY command to make a copy of an existing device entry. Then edit
the new entry and modify its parameters. The existing device entry can be from
any catalog. (See the SAS Help facility for information on using GDEVICE
windows and commands.)

� In program mode, use the COPY statement to make a copy of the device entry and
use the MODIFY statement to change the parameters (see Example 1 on page 936).

If you want to start with a blank device entry and fill in values for the parameters,
use the EDIT command from the DIRECTORY window or use the ADD statement with
program mode PROC GDEVICE.

With either method, you must provide values for the parameters listed in “Required
Arguments” on page 923. If you copy and modify an existing entry, all the required
parameters will already have values. If you create a new entry with GDEVICE
windows, you are prompted to fill in the appropriate fields.

Note: When you change a field in an Institute-supplied device entry (either the
original device entry in SASHELP.DEVICES or a copy), SAS/GRAPH software asks
whether you really want to change the entry. Answer Y to change the entry or N to
cancel the operation. �

Modifying an Existing Device Entry
Typically, you modify an existing device entry when you want to change the device

parameters permanently in order to customize a device entry. The process is similar to
creating a new entry in that you usually begin by copying the entry you want to modify
into your personal catalog and making the changes there. See Example 1 on page 936
for an example of creating a custom device entry.

Changing Device Parameters Temporarily
You can change some device parameters temporarily by overriding their settings with

graphics options in a GOPTIONS statement. In this case, the settings remain in effect
until you change them or end your SAS session. For details, see “Overriding Device
Parameters Temporarily” on page 46.

936 Examples Chapter 31

Examples
The following examples illustrate major features of the GDEVICE procedure.

Example 1: Creating a Custom Device Entry with Program Statements
Procedure features:

COPY statement
MODIFY statement

Other features:
PROC GTESTIT

Sample library member: GDVCSTOM

This example shows how to use GDEVICE procedure statements to modify a device
entry by copying the original entry into a personal catalog and changing the device
parameters. You can submit these statements one at a time or together.

This example permanently changes the default colors list for the PSCOLOR device
entry. The contents of the original PSCOLOR entry are shown in Output 31.1. The new
device entry is illustrated in the PROC GTESTIT output above.

Assign the libref GDEVICE0. The LIBNAME statement assigns the libref to the aggregate
file storage location that contains (or will contain) the DEVICES catalog.

libname gdevice0 ’SAS-data-library’;

Start the GDEVICE procedure. NOFS causes GDEVICE to use program mode. CATALOG=
assigns GDEVICE0.DEVICES as the current catalog. If the DEVICES catalog does not already
exist in the library, it is automatically created.

The GDEVICE Procedure Example 1: Creating a Custom Device Entry with Program Statements 937

proc gdevice nofs catalog=gdevice0.devices;

Copy the original device entry from SASHELP.DEVICES to the current catalog.
NEWNAME= specifies a name for the copy of PSCOLOR that is placed in
GDEVICE0.DEVICES. The name of a catalog entry cannot exceed eight characters.

copy pscolor from=sashelp.devices newname=mypscol;

Modify the new entry. DESCRIPTION= specifies a new device description that appears in the
catalog listing. COLORS= defines a new colors list.

modify mypscol
description=’PSCOLOR with new colors list’
colors=(black blue green red gray cyan

lime lipk);

Exit the procedure.

quit;

Test the new device entry. The TARGET= graphics option specifies the new device. Since
GDEVICE0 is already defined, SAS/GRAPH looks first in that catalog for the specified device
entry. The GTESTIT procedure produces a test picture that show the new colors list and a
listing in the LOG.

goptions target=mypscol;
proc gtestit pic=1;
run;

938

939

C H A P T E R

32
The GFONT Procedure

Overview 939

About Displaying Fonts 940
About Creating Fonts 940

Concepts 940

About Fonts 940
About the Libref GFONT0 941

Procedure Syntax 942

PROC GFONT Statement 942
Creating a Font 951

The Font Data Set 951
Font Data Set Variables 952

Creating a Font Data Set 958

The Kern Data Set 958
Kern Data Set Variables 959

Creating a Kern Data Set 959

The Space Data Set 960
Space Data Set Variables 960

Creating a Space Data Set 961
Examples 962

Example 1: Displaying Fonts and Character Codes 962

Example 2: Creating Figures for a Symbol Font 964

Overview
The GFONT procedure displays new or existing fonts and creates user-generated

fonts for use in SAS/GRAPH programs. These fonts can contain standard Roman
alphabet characters, foreign language characters, symbols, logos, or figures.

The GFONT procedure
� displays SAS/GRAPH software fonts

� displays fonts that were previously generated with the GFONT procedure
(user-generated fonts)

� displays hardware font that are available on your device and have a corresponding
Chartype value

� displays the character codes or hexadecimal values that are associated with the
characters in a font

� creates stroked fonts or polygon fonts.

Each of these activities has its own requirements, its own process, and its own
options (although some options are valid for either process). In this chapter, each topic

940 About Displaying Fonts Chapter 32

to which this distinction applies is divided into two sections: "Displaying Fonts" and
"Creating Fonts."

About Displaying Fonts
You can use the GFONT procedure to display a font when you want to do one of the

following:
� review the characters that are available in Institute-supplied fonts, hardware

fonts, or user-generated fonts
� see the character codes or the hexadecimal values that are associated with the

characters in a font.

When you display a font, you can modify the color and height of displayed font
characters, draw reference lines around the characters, or display the associated
character codes or hexadecimal values. See Example 1 on page 962.

About Creating Fonts
You can use the GFONT procedure to create and store fonts of your own design. The

GFONT procedure is not limited to creating alphabet fonts. You can use it to create and
store any series of figures that you can draw using X and Y coordinates or that you can
digitize. The characters or figures in a font can be displayed with any SAS/GRAPH
statement or option that allows for font specification and a text string (for example, a
TITLE statement). See “Creating a Font” on page 951 for details.

Concepts

About Fonts
Some specialized terms are associated with font characteristics. The capline of a font

is the highest point of a normal uppercase letter. The baseline is the line upon which
the characters rest. The font maximum is the highest vertical coordinate in a font. The
font minimum is the lowest vertical coordinate in a font. Figure 32.1 on page 940
illustrates these GFONT procedure terms:

Figure 32.1 Parts of a Font

Specialized terms also exist for types of fonts. The term uniform font refers to a font
in which all of the characters occupy exactly the same amount of space, even though the

The GFONT Procedure About the Libref GFONT0 941

characters themselves are different sizes. Each character in a uniform font is placed in
the center of its space, and a fixed amount of space is added between characters. A
proportional font is a font in which each character occupies a space that is proportional
to its actual width (for example, m occupies more space than i). The characters in a
stroked font are drawn with discrete line segments or circular arcs. Figure 32.2 on page
941 illustrates a stroked font with several characters from the Simplex font.

Figure 32.2 Characters from a Stroked Font

Figure 32.3 on page 941 illustrates two types of polygon fonts: filled (CENTBI) and
outline (CENTBIE). A filled font is a polygon font in which the areas between the lines
are solid. An outline font is a polygon font in which the areas are empty.

Figure 32.3 Filled and Outline Characters from Polygon Fonts

All font characters, regardless of whether they are stroked or polygon, are drawn
with line segments. In the GFONT procedure, the term line segment means a
continuous line that can change direction. For example, the letter C in Figure 32.2 on
page 941 is drawn with one line segment, while the letter A can be drawn with two.

Polygon characters can also be drawn with one or more line segments. In a polygon
font, one character can be made up of a single polygon, multiple polygons, or polygons
with holes. For example, the letter C in Figure 32.3 on page 941 is a single polygon
with one line segment. The question mark (?) is made up of two polygons, each drawn
with a separate line segment. The letter A is one polygon with a hole in it. It is drawn
with one line segment that is broken to form the outer boundary of the figure and the
boundary of the hole.

About the Libref GFONT0
The GFONT procedure stores user-generated fonts in the location that is associated

with the libref GFONT0. Therefore, before you create a font or display a user-generated
font, you must submit a LIBNAME statement that associates the libref GFONT0 with
the location where the font is to be stored, as follows:

942 Procedure Syntax Chapter 32

libname gfont0 ’SAS-data-library’;

Since the GFONT0 library is the first place that SAS/GRAPH software looks for fonts,
you should always assign that libref to the library that contains your personal fonts. If
for some reason you have personal fonts in more than one SAS data library, assign
them librefs in the sequence GFONT0, GFONT1, GFONT2, and so forth. The search for
entries terminates if there is a break in the sequence; the catalog GFONT1.FONTS is
not checked if the libref GFONT0 is undefined. If the libref GFONT0 is not defined, by
default SAS/GRAPH software begins searching for fonts in SASHELP.FONTS.

To cancel or redefine the libref GFONTn, submit the following statement:

goptions reset=all fcache=0;

Note that when you specify RESET=ALL, all graphics options are reset to their
default values. Once you have cleared the font cache, you can redefine the libref with
another LIBNAME statement.

Procedure Syntax
Requirements: A font name is required. To display a font, include NOBUILD. To create a
font, include DATA=.

Global statements: FOOTNOTE, TITLE
Reminder: The procedure can include the SAS/GRAPH NOTE statement.

Supports: Output Delivery System (ODS)

PROC GFONT NAME=font-name|hardware-font-name
mode
<display-option(s)>
<creation-option(s)>;

PROC GFONT Statement

The PROC GFONT statement can either create user-defined fonts or display existing software fonts.
Therefore, it names the font to be created or displayed. If the procedure creates a font it names
the input data set. Optionally, the procedure modifies the design and appearance of the fonts that
you create or display, and specifies a destination catalog for graphics output.

Syntax

PROC GFONT NAME=font-namehardware-font-name
mode
<display-option(s)>
<creation-option(s)>;

� mode must be one of the following:
DATA=font-data-sethardware-font-name

NOBUILD

The GFONT Procedure Displaying Fonts: Required Arguments, Options 943

� display-option(s) can be one or more of the following:
CTEXT=text-color
GOUT=<libref.>output-catalog
HEIGHT=character-height<units>
NOKEYMAP
NOROMAN
NOROMHEX
REFCOL=reference-line-color
REFLINES
ROMCOL=code-color
ROMFONT=font
ROMHEX
ROMHT=height<units>
SHOWALL
SHOWROMAN

� creation-option(s) can be one or more of the following:
BASELINE=y
CAPLINE=y
CHARSPACETYPE=DATA | FIXED | NONE | UNIFORM
CODELEN=1 | 2
FILLED
KERNDATA=kern-data-set
MWIDTH=character-width
NODISPLAY
NOKEYMAP
RESOL=1...4
ROMHEX
SHOWROMAN
SPACEDATA=space-data-set
UNIFORM

For more detail on using the GFONT syntax, see “Displaying Fonts: Required
Arguments, Options” on page 943 and “Creating Fonts: Required Arguments, Options
”on page 946.

Displaying Fonts: Required Arguments, Options

Required Arguments for Displaying Fonts

NAME=font-name | hardware-font-name
N=font-name | hardware-font-name

specifies the font to be displayed. Font-name can be the name of a SAS software font
or a font you previously created. Any hardware font that is available on your device
and has a corresponding Chartype value may be used. The hardware-font-name must
be enclosed in quotes.

944 Displaying Fonts: Required Arguments, Options Chapter 32

See also: “Specifying Alternative Hardware Fonts” on page 80 , “Chartype window”
on page 931, and Chapter 5, “SAS/GRAPH Fonts,” on page 75.

NOBUILD
NB

specifies that the GFONT procedure is to display an existing font. The NOBUILD
argument tells the procedure that no font is being generated and not to look for an
input data set.
Featured in: Example 1 on page 962.
To display a user-generated font, you must define libref GFONT0. See “About the

Libref GFONT0” on page 941.

Options for Displaying Fonts

Options that can be used for either font display or font creation are described here
and in “Options for Creating Fonts” on page 947.

Options that display a font can be used when you create a font if you also display it
(that is, the NODISPLAY option is not used in the PROC GFONT statement). However,
none of the display options affect the design and appearance of the stored font except
the NOKEYMAP, SHOWROMAN, and ROMHEX options.

When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points

If you omit units, a unit specification is searched for in this order:
1 the value of GUNIT= in a GOPTIONS statement
2 the default unit, CELLS.

CTEXT=text-color
CT=text-color

specifies a color for the body of the characters. If you do not use the CTEXT= option,
a color specification is searched for in the following order:

1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.

The CTEXT= value is not stored as part of the font.

Featured in: Example 2 on page 964.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the display
of the font. The GOUT option is ignored if you use the NODISPLAY option in the
PROC GFONT statement. You can use the GREPLAY procedure to view the output
that is stored in the catalog. If you omit the libref, SAS/GRAPH looks for the catalog
in the temporary library called WORK and creates the catalog if it does not exist.
See also: “Storing Graphics Output in SAS Catalogs” on page 53.

HEIGHT=character-height<units>

The GFONT Procedure Displaying Fonts: Required Arguments, Options 945

H=character-height<units>
specifies the height of the font characters in number of units, n. Height is measured
from the minimum font measurement to the capline. By default, HEIGHT=2.
Featured in: Example 1 on page 962.

NOKEYMAP
specifies that the current key map is ignored when displaying the font and its
character codes or hexadecimal values. If you do not use the NOKEYMAP option
when you display a font, the current key map remains in effect. If any characters in
the font are not available through the current key map, they are not displayed and a
warning is issued in the SAS log. This happens when the key map is asymmetrical,
that is, not all characters in the font are mapped into the current key map.

Displaying a font using the NOKEYMAP option enables you to see all of the
characters in the font, including those that are not mapped into your current key
map. Note that only those characters that are mapped into your current key map are
available (that is, those that are displayed when you display the font without the
NOKEYMAP option).
See also: Chapter 5, “SAS/GRAPH Fonts,” on page 75, Chapter 34, “The GKEYMAP

Procedure,” on page 983, and theNOKEYMAP option on page 949 for Creating
Fonts.

NOROMAN
NR

turns off the automatic display of character codes that are produced when you use
the SHOWROMAN option during font creation.

NOROMHEX
NOHEX

turns off the automatic display of hexadecimal values that are produced when you
use the ROMHEX option during font creation.

REFCOL=reference-line-color
specifies a color for reference lines. By default, the first color in the colors list is used.

REFLINES
draws reference lines around each displayed character. Vertical reference lines show
the width of the character. Horizontal reference lines show the font maximum and
the font minimum, as well as the baseline and the capline. See Figure 32.1 on page
940 for an illustration of the placement of reference lines.

ROMCOL=code-color
RC=code-color

specifies the color of the character codes or hexadecimal values that are displayed
with the SHOWROMAN and ROMHEX options. If you do not use the ROMCOL=
option, a color specification is searched for in the following order:

1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.
The ROMCOL= value is not stored as part of the font.

Featured in: Example 1 on page 962.

ROMFONT=font
RF=font

specifies the font for character codes and hexadecimal values that are displayed by
the SHOWROMAN and ROMHEX options. If you do not use the ROMFONT= option,
a font specification is searched for in the following order:

1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font, NONE.

946 Creating Fonts: Required Arguments, Options Chapter 32

Featured in: Example 1 on page 962.

ROMHEX
HEX

displays hexadecimal values below the font characters. If you use both the ROMHEX
and SHOWROMAN options, both the character codes and the hexadecimal values are
displayed. You also can use the ROMHEX option when you create a font.
See also: the ROMHEX option on page 950.

ROMHT=height<units>
RH=height<units >

specifies the height of the character codes and the hexadecimal values that are
displayed with the SHOWROMAN and ROMHEX options in number of units, n. If
you do not use the ROMHT= option, a height specification is searched for in the
following order:

1 the HTEXT= option in a GOPTIONS statement
2 the default, ROMHT=1.

Featured in: Example 1 on page 962.

SHOWALL
displays the font with a space for every possible character position whether or not a
font character exists for that position. The characters that are displayed are those
available under your current key map, unless you use the NOKEYMAP option. The
SHOWALL option usually is used in conjunction with the ROMHEX option, in which
case all possible hexadecimal values are displayed. If, under your current key map, a
font character is available for a position, it displays above the hexadecimal value. If
no character is available for a position, the space above the hexadecimal value is
blank. You can use the SHOWALL option to show where undefined character
positions fall in the font.

SHOWROMAN
SR

displays character codes below the font characters even if they are not displayed
automatically with the font. If you use both the SHOWROMAN and ROMHEX
options, both the character codes and the hexadecimal values are displayed. You can
also use the SHOWROMAN option when you create a font.
See also: “About Creating Fonts” on page 940
Featured in: Example 1 on page 962.

Details
To display a font, you must specify the name of the font with the NAME= argument

and include the NOBUILD argument. For example, to display the Weather font with
character codes that are displayed in the Swiss font, use the following statement:

proc gfont name=weather nobuild romfont=swiss;

Creating Fonts: Required Arguments, Options

Required Arguments for Creating Fonts

NAME=font-name
N=font-name

The GFONT Procedure Creating Fonts: Required Arguments, Options 947

assigns a name to the font that you create. Font-name is the name of a catalog entry
and must be a valid SAS name of no more than eight characters. Do not use the
name of an Institute-supplied font or NONE for the name of a font.
Featured in: Example 2 on page 964.

DATA=font-data-set
specifies the SAS data set that the GFONT procedure uses to build the font. The
data set must be sorted by the variables CHAR and SEGMENT. By default, the
procedure uses the most recently created data set as the font data set.
See also: “SAS Data Sets” on page 29.
Featured in: Example 2 on page 964.
When you create a font, you must define the libref GFONT0. See “About the Libref

GFONT0” on page 941 for details.

Note: If a user-generated font has the same name as an Institute-supplied font and
if the libref GFONT0 has been defined, the user-generated font is used because
GFONT0 is searched first. �

Options for Creating Fonts

Options that can be used for either font display or font creation are described here
and in “Options for Displaying Fonts” on page 944.

Options that display a font can be used when you create a font if you also display it
(that is, the NODISPLAY option is not used in the PROC GFONT statement). However,
none of the display options affect the design and appearance of the stored font except
the NOKEYMAP, SHOWROMAN, and ROMHEX options.

When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points

If you omit units, a unit specification is searched for in this order:
1 the value of GUNIT= in a GOPTIONS statement
2 the default unit, CELLS.

BASELINE=y
B=y

specifies the vertical coordinate in the font data set that is the baseline of the
characters. The baseline is the line upon which the letters rest. If you do not use the
BASELINE= option, the GFONT procedure uses the lowest vertical coordinate of the
first character in the font data set.

CAPLINE=y
C=y

specifies the vertical coordinate in the font data set that is the capline of the
characters. The capline is the highest point of normal Roman capitals. If you do not
use the CAPLINE= option, the GFONT procedure uses the highest vertical coordinate
in the font data set, in which case the capline and the font maximum are the same.
See Figure 32.1 on page 940 for an illustration of capline and font maximum.

948 Creating Fonts: Required Arguments, Options Chapter 32

If you use the CAPLINE= option, then when the GFONT procedure calculates the
height of a character, any parts of the character that project above the capline are
ignored in the calculation.

You can use this option to prevent an accented capital like A from being shortened
to accommodate the accent. For example, if you do not use the CAPLINE= option,
the capline and the font maximum are the same and the A is shortened to make
room for the accent below the capline. However, if CAPLINE= is used, the top of the
letter A is at the capline, and the accent is drawn above the capline and below the
font maximum.

CHARSPACETYPE=DATA | FIXED | NONE | UNIFORM
CSP=DATA | FIXED | NONE | UNIFORM

specifies the type of intercharacter spacing. The following are valid values:

DATA
specifies that the first observation for each character sets the width of that
character. When CHARSPACETYPE=DATA, the PTYPE variable is required, and
the observation that specifies the width of the character must have a PTYPE value
of W. See “The Font Data Set” on page 951 for details on the PTYPE variable.

Intercharacter spacing is included in the character’s width. For example, if the
first observation for the letter A specifies a character width of 10 units and the A
itself occupies only 8 units, the remaining 2 units serve as intercharacter spacing.

Note: The character can extend beyond the width that you specified in the first
observation if desired. �

FIXED
adds a fixed amount of space between characters based on the font size. The width
of the individual character is determined by the data that generate the character.

NONE
specifies that no space is added between characters. The width of the individual
character is determined by the data that generate the character. This type of
spacing is useful for script fonts in which the characters should appear connected.

UNIFORM
specifies that the amount of space that is used for each character is uniform rather
than proportional. This means that each character occupies the same amount of
space. For example, in uniform spacing the letters m and i occupy the same
amount of space, whereas in proportional spacing m occupies more space than i.
In uniform spacing, the character is always centered in the space and a fixed space
is added between characters.

When UNIFORM is specified, the amount of space that is used for each
character is one of the following:

� by default, the width of the widest character in the font.
� the width specified by the MWIDTH= option. See the MIDWIDTH= option on

page 949 for details.

Specifying CHARSPACETYPE=UNIFORM is the same as using the UNIFORM
option.

Note: By default, CHARSPACETYPE=FIXED. �

CODELEN=1 | 2
specifies the length in bytes of the CHAR variable. By default, CODELEN=1. To
specify double-byte character sets for languages such as Chinese, Japanese, or
Korean, use CODELEN=2. If you specify a double-byte character set, you cannot
specify kerning or space adjustment with the KERNDATA= or SPACEDATA= options.

The GFONT Procedure Creating Fonts: Required Arguments, Options 949

FILLED
F

specifies that the characters in a user-generated polygon font are filled.

Featured in: Example 2 on page 964.

KERNDATA=kern-data-set
KERN=kern-data-set

specifies the SAS data set that contains kerning information. When the
KERNDATA= option is used during font creation, the data that are contained in the
kern data set are applied to the font and stored with it. You cannot specify kerning
for a double-byte character set that is created by using the option CODELEN=2.

See also: “The Kern Data Set” on page 958.

MWIDTH=character-width
specifies the width of a character in a uniform font, where character-width is the
number of font units. The MWIDTH= option is only valid when you specify uniform
spacing by using the UNIFORM option or when you specify
CHARSPACETYPE=UNIFORM. If you do not use MWIDTH=, the default is the
width of the widest character in the font (usually the letter m).

Typically, you use the MWIDTH= option to tighten the spacing between
characters. To do this, specify a smaller value (narrower width) for character-width.
Figure 32.4 on page 949 shows the effect of decreasing the space that is allowed for
uniformly spaced characters.

Figure 32.4 Using the MWIDTH= Option to Modify Spacing

See also: the CHARSPACETYPE= option on page 948 and the UNIFORM option on
page 951.

NODISPLAY
ND

specifies that the GFONT procedure is not to display the font that it is creating.

NOKEYMAP
specifies that the current key map is ignored when you generate and use the font
that is being created, and that the character codes you enter are not mapped in any
way before being displayed. As a result, the generated font is never affected by any
setting of the KEYMAP= graphics option.

CAUTION:
Fonts generated with the NOKEYMAP option are never affected by any setting of the
KEYMAP= graphics option. �

950 Creating Fonts: Required Arguments, Options Chapter 32

By default, the NOKEYMAP option is not used; in which case, when you build a
font, the current key map is applied to the values in the CHAR variable.

However, your current key map may not be symmetrical; that is, two or more
input character codes may be mapped to the same output character. For example, if
A is mapped to B, then both A and B map to B, but nothing maps to A. In this case,
more than one code in your input data set can map to the same character in the
resulting font. For example, if A and B are values of CHAR, both map to B. If this
happens, a message that indicates the problem characters is displayed in the SAS
log. To solve this problem, you can do one of the following:

� change the character code of one of the characters
� eliminate one of the characters
� use the NOKEYMAP option.

When you use the NOKEYMAP option, your font works correctly only if the end
user’s host or controller encoding is the same as the encoding used to create the
input data set.
See also: the NOKEYMAP option on page 945 for Displaying Fonts and Chapter 34,

“The GKEYMAP Procedure,” on page 983.

RESOL=1...4
R=1...4

controls the resolution of the fonts by specifying the number of bytes (1 through 4)
for storing coordinates in the font. The GFONT procedure provides three resolution
levels (RESOL=3 produces the same resolution level as RESOL=4). By default,
RESOL=1.

The higher the number, the closer together the points that define the character
can be spaced. A high value specifies a denser set of points for each character so that
the characters approximate smooth curved lines at very large sizes. RESOL=2 works
well for most applications; RESOL=3 or 4 may be too dense to be practical.

The table below shows the resolution number and the maximum number of
distinct points that can be defined horizontally or vertically.

Resolution Number of Distinct Points

2 32,766

3 2,147,483,646

4 2,147,483,646

Featured in: Example 2 on page 964.

ROMHEX
HEX

specifies that hexadecimal values display automatically below the font characters
when the GFONT procedure displays the font. If you use the ROMHEX option for a
font that you create, you can later use the NOROMHEX option to suppress display of
the hexadecimal values.
See also: the SHOWROMAN option on page 950, the ROMHEX option on page 946

for Displaying Fonts, and the NOROMHEX option on page 945.

SHOWROMAN
SR

specifies that character codes display automatically below the font characters when
the GFONT procedure displays the font. If you use the SHOWROMAN option for a

The GFONT Procedure Creating a Font 951

font you create, you can later use the NOROMAN option to suppress display of the
character codes.

See also: the ROMHEX option on page 946, the SHOWROMAN option for
Displaying Fonts, and the NOROMAN option on page 945.

SPACEDATA=space-data-set
SPACE=space-data-set

specifies the SAS data set that contains font spacing information. When you use the
SPACEDATA= option during font creation, the data contained in the space data set
are applied to the font and stored with it. You cannot specify space adjustment for a
double-byte character set that is created by using the option CODELEN=2.

See also: “The Space Data Set” on page 960.

UNIFORM
U

specifies that characters are spaced uniformly rather than proportionately. Using the
UNIFORM option is the same as specifying CHARSPACETYPE=UNIFORM.

See also: the CHARSPACETYPE= option on page 948 and the MWIDTH= option on
page 949.

Creating a Font

To create a font, you must create a data set that contains font information. Typically,
you use a DATA step to create a SAS data set from which the GFONT procedure
generates the font. The data set is referred to as the font data set and you can specify it
with the DATA= argument.

To produce the font, invoke the GFONT procedure and specify the data set that
contains the font information. In addition you can include options to modify the design
and appearance of the font. For example, the following statement uses the data set
FONTDATA to generate the font MYLOGO:

proc gfont data=fontdata name=mylogo;

For a demonstration of the font creation process, see Example 2 on page 964.
The GFONT procedure uses three types of data sets: the font data set, the kern data

set, and the space data set. Each type of data set must contain certain variables and
meet certain requirements. The following sections explain what each data set contains,
how it is built, and what the requirements of the variables are.

The Font Data Set

The font data set consists of a series of observations that include the horizontal and
vertical coordinate values and line segment numbers that the GFONT procedure uses to
generate each character. In addition, each observation must include a character code
that is associated with the font character and is used to specify the font character in a
text string. The font data set also determines whether the font is stroked or polygon. A
font data set that generates a polygon font produces an outline font by default. You can
use the FILLED option with the same data set to generate a filled font.

The variables in the font data set must be assigned certain names and types. The
table below summarizes the characteristics of the variables which are described further
in “Font Data Set Variables” on page 952.

952 Creating a Font Chapter 32

Table 32.1 Font Data Set Variables

Variable Description Type Length Valid Values
With Stroked
Fonts

With Polygon
Fonts

CHAR the character
code
associated
with the font
character

character 1 or 2 keyboard
characters
or
hexadecimal
values

required required

LP the type of
line segment
being drawn,
either a line
or a polygon

character 1 L or P optional required

PTYPE the type of
data in the
observation

character 1 V or C or W optional optional

SEGMENT the number
of the line
segment or
polygon being
drawn

numeric number required required

X the
horizontal
coordinate

numeric number required required

Y the vertical
coordinate

numeric number required required

Font Data Set Variables

CHAR
provides a code for the character or figure that you are creating. CHAR is a
character variable with a length of 1 or 2 and is required for all fonts.

CAUTION:
Using reserved or undefined hexadecimal codes as CHAR values may require the use
of the NOKEYMAP option. �

The CHAR variable takes any character as its value, including characters that
you can enter from your keyboard and hexadecimal values from ’00’x to ’FF’x. (If
you use hexadecimal values as CHAR values, your font may not work correctly
under a key map that is different from the one under which the font was created
because positions that are not defined in one key map may be defined in another.)

When you specify the code character in a text string, the associated font
character is drawn. For example, if you create a Roman alphabet font, typically
the characters you specify for CHAR are keyboard characters that match the
character in the font. All of the observations that build the letter A have a CHAR
value of A. When you specify ’A’ in a text string this produces A in the output.

However, if you build a symbol font, the symbols may not have corresponding
keyboard characters. In that case, you select a character or hexadecimal value to

The GFONT Procedure Creating a Font 953

represent each symbol in the font and assign it to CHAR. For example, in the
Special font, the letter G is assigned as the code for the fleur-de-lis symbol. When
you specify the code in a text string, the associated symbol displays.

If the CODELEN= option is set to 2, the values for CHAR represent two
characters, such as AA, or a four-digit hexadecimal value, such as ’00A5’x.

LP
tells the GFONT procedure whether the coordinates of each segment form a line or
a polygon. LP is a character variable with a length of 1. It is required for polygon
fonts but optional for stroked fonts. You can assign the LP variable either of the
following values:

L lines

P polygons.
Every group of line segments with an LP value of P is designated as a polygon;

if the observations do not draw a completely closed figure, the program closes the
figure automatically. For example, the following observations do not contain an LP
variable. They produce a shape like the one in Figure 32.5 on page 953.

OBS CHAR SEG X Y

1 b 1 1 1

2 b 1 1 3

3 b 1 3 3

4 b 1 3 1

Figure 32.5 Using a LP Value of Line

LP (continued)
An LP variable with a value of P for all observations added to the data set
produces a complete box like the one in Figure 32.6 on page 954.

OBS CHAR SEG X Y LP

1 b 1 1 1 P

2 b 1 1 3 P

3 b 1 3 3 P

4 b 1 3 1 P

954 Creating a Font Chapter 32

Figure 32.6 Using a LP Value of Polygon

LP (continued)
The LP variable allows you to mix lines and polygons when you create characters
in a font. For example, the following observations produce the single figure that is
composed of a polygon and a line segment, as shown in Figure 32.7 on page 954:

OBS CHAR SEG X Y LP

1 b 1 1 1 P

2 b 1 1 3 P

3 b 1 3 3 P

4 b 1 3 1 P

5 b 2 0 0 L

6 b 2 2 4 L

7 b 2 4 0 L

Figure 32.7 Mixing LP Values of Line and Polygon

PTYPE

The GFONT Procedure Creating a Font 955

tells the GFONT procedure what type of data are in the observation. PTYPE is a
character variable of length 1 that is optional for both stroked and polygon fonts.
For each observation, the PTYPE variable assigns a characteristic to the point
that is determined by the X and Y values. You can assign the PTYPE variable any
of the following values:

V normal point in the line segment

C center of a circular arc joining two V points

W width value for CHARSPACETYPE=DATA.
If the GFONT procedure encounters the sequence V-C-V in consecutive

observations, it draws an arc that connects the two V points and has its center at
the C point. If a circle cannot be centered at C and pass through both V points,
the results are unpredictable. Arcs are limited to 106 degrees or less.

If you specify an observation with a PTYPE value of W, it must always be the
first observation for a character. Instead of providing digitizing data to the
procedure, the observation gives the minimum and maximum X values for the
character. Note that in this case, the Y variable observation actually contains the
maximum X value. Usually, these values include a little extra space for
intercharacter spacing. Use a PTYPE of W only if you have specified
CHARSPACETYPE=DATA; otherwise, the points are ignored. For more
information on intercharacter spacing, see the description of the
CHARSPACETYPE= option.

If you do not specify a PTYPE variable in the font data set, all points are
assumed to be V-type points.

The following observations illustrate how the PTYPE variable is used to draw
an arc similar to Figure 32.8 on page 956. (After the figure was generated, a grid
was overlaid on it to show the location of the points.) A comment following each
observation explains its function.

OBS CHAR SEG X Y LP PTYPE Comment

1 a 1 40 60 P W define width of
character as 20
font units,
which is the
number of units
from left
margin, 40, to
right margin,
60

2 a 1 45 40 P V start line
segment at
position 45,40

3 a 1 45 50 P V draw a line to
position 45,50,
which is start
point of arc

956 Creating a Font Chapter 32

OBS CHAR SEG X Y LP PTYPE Comment

4 a 1 45 40 P C draw an arc
whose center is
at 45,40

5 a 1 55 40 P V finish drawing
the arc at 55,40

Figure 32.8 Using the PTYPE Variable to Create an Arc

PTYPE (continued)
Note the following:

� Three observations are required to draw the arc: observation 3 and
observation 5 denote the start point and endpoint of the arc, respectively, and
observation 4 locates the center of the arc.

� The figure is closed because the line segments have an LP value of P
(polygon).

� The font that contains the figure of the arc was generated with a PROC
GFONT statement like the following:

proc gfont data=arc name=arcfig charspacetype=data filled ;

Note that the GFONT procedure uses the CHARSPACETYPE= option with
a value of DATA to specify that the first observation sets the width of the
character. The FILLED option fills the area of the arc.

SEGMENT
numbers the line segments that compose a character or symbol. SEGMENT is a
numeric variable that is required for both polygon and stroked fonts. All the
observations for a given line segment have the same segment number. The
segment number changes when a new line segment starts.

When the GFONT procedure draws a stroked character with more than one line
segment (for example, the letter E), or a polygon character with a hole (for
example, the letter A), it needs to know when one line stops and where the next
line begins. There are two ways to do this, as follows:

1 Change the segment number when a new line segment starts. If the value of
LP is L (line), a change in segment numbers tells the GFONT procedure not
to connect the last point in line segment 1 and the first point in line segment
2. If the value of LP is P (polygon), a change in segment numbers causes both
of the following:

The GFONT Procedure Creating a Font 957

� The last point in line segment 1 is joined to the first point in line
segment 1, thus closing the polygon.

� The program starts a new polygon. If the value of CHAR has not
changed, the new polygon is part of the same character.

Use this method for characters that are composed of two polygons, such as
a question mark (?). If you draw a polygon with a hole in it, such as the letter
A, use the second method.

2 Keep the same segment number for all lines, but insert an observation with
missing values for X and Y between the observation that marks the end of
the first line and the observation that begins the next line. For example, if
you are drawing the letter O, insert an observation with a missing value
between the line that draws the outer circle and the beginning of the line
that draws the inner circle.

The first method is preferred, unless you are creating a polygon character with
a hole in it. In this case, you should separate the lines with a missing value and
keep the same segment numbers. (Note that if you use separate line segments
when you create a polygon with a hole, the results may be unpredictable.) For
example, observations such as the following from a data set called BOXES were
used to draw the hollow square in Figure 32.9 on page 958. The data points that
form the figure are laid out on a grid shown next to the square.

OBS CHAR SEG X Y LP

1 b 1 1 1 P

2 b 1 1 3 P

3 b 1 3 3 P

4 b 1 3 1 P

5 b 1 - - P

6 b 1 0 0 P

7 b 1 0 4 P

8 b 1 4 4 P

9 b 1 4 0 P

Note that observation 5, which has missing values for X and Y, separates the
observations that draw the inner box from those that draw the outer box and that
the segment number is the same for all the observations. Figure 32.9 on page 958
was generated with a GFONT statement like the following:

proc gfont data=boxes name=boxes filled;

Note that the FILLED option is included and that only the space between the
two squares is filled.

958 Creating a Font Chapter 32

Figure 32.9 Drawing Nested Polygons

X and Y
specify the horizontal and vertical coordinates of the points for each character.
These variables must be numeric, and they must be named X and Y for the
horizontal and vertical coordinates, respectively. Their values describe the position
of the points on the character. These values can be in any range that you choose,
but both variables must describe the character in the same scale or font units. In
other words, 10 horizontal units must be the same distance as 10 vertical units.
You should define vertical coordinates for all characters on the same baseline.

Note: When you specify PTYPE=W, both X and Y contain horizontal coordinate
values. �

Creating a Font Data Set
You can create a font data set by digitizing the shape of the characters or figures

either manually or with special digitizing equipment. To create a font data set by
digitizing the characters manually, follow these steps:

1 Determine the coordinate points for each line segment by drawing the characters
on a grid.

2 Lay out the observations for each character. Each observation describes a move
from one point to another along a line segment. For each line segment, enter the
coordinate points in the order in which they are drawn. For a stroked font, when
you start a new line segment, change the segment number. For a polygon font,
when you start a new polygon, change the line segment number.

If the polygon has a hole in it, as in the letter O, keep the line segment number
and separate the lines with a missing value. Use the same value for CHAR for all
of the observations that describe one character.

3 Create a SAS data set that contains the variables CHAR, SEGMENT, X, and Y,
and read in the data for each observation. Include the variables LP and PTYPE if
necessary.

4 Sort the data set by CHAR and SEGMENT.
5 Assign the font data set with the DATA= argument.

This process is illustrated in Example 2 on page 964.

The Kern Data Set
The kern data set consists of observations that specify how much space to add or

remove between any two characters when they appear in combination. This process,

The GFONT Procedure Creating a Font 959

called kerning, increases or decreases space between the characters. Kerning usually is
applied to certain pairs of characters that, because of their shape, have too much space
between them. Reducing the space between characters may allow part of one character
to extend over the body of the next. Examples of some combinations that should be
kerned are AT, AV, AW, TA, VA, and WA.

You can apply kerning to the intercharacter spacing that you specify with the
CHARSPACETYPE= option (except for uniform fonts). You can refine the kerning of
your characters as little or as much as you like. You assign the kern data set with the
KERNDATA= option.

Kern Data Set Variables
The kern data set must contain these variables:

CHAR1
specifies the first character in the pair to be kerned. CHAR1 is a character
variable with a length of 1.

CHAR2
specifies the second character in the pair to be kerned. CHAR2 is a character
variable with a length of 1.

XADJ
specifies the amount of space to add or remove between the two characters. XADJ
is a numeric variable that uses the same font units as the font data set. The value
of XADJ specifies the horizontal adjustment to be applied to CHAR2 whenever
CHAR1 is followed immediately by CHAR2. Negative numbers decrease the
spacing, and positive numbers increase the spacing.

Creating a Kern Data Set
Each observation in a kern data set names the pair of characters to be kerned and

the amount of space to be added or deleted between them. To create a kern data set,
follow these steps:

1 Select the pairs of characters to be kerned, and specify the space adjustment (in
font units) for each pair as a positive number (more space) or negative number
(less space).

2 Create a SAS data set that contains the variables CHAR1, CHAR2, and XADJ;
produce one observation for each pair of characters and the corresponding space
adjustment.

data kern1;
input char1 $ char2 $ xadj;
datalines;

A T -4
D A -3
T A -4
;

3 Assign the kern data set with the KERNDATA= option.

proc gfont data=fontdata
name=font2
charspacetype=data
kerndata=kern1
nodisplay;

run;

960 Creating a Font Chapter 32

Figure 32.10 on page 960 illustrates how you can use the KERNDATA= option to
create a font in which the space between specified pairs of letters is reduced. The
characters A, D, and T are shown as the word DATA. The first line uses the unkerned
font, FONT1, and the second line uses the kerned font, FONT2. Note that the
characters in FONT2 are spaced more closely than the characters in FONT1.

The following title statements specify the kerned and unkerned fonts and are used
with the GSLIDE procedure to produce Figure 32.10 on page 960:

title2 lspace=6 f=font1 h=10 j=l ’DATA’;
title3 lspace=4 f=font2 h=10 j=l ’DATA’;

Figure 32.10 Comparison of Kerned and Unkerned Text

The Space Data Set
As the height (point size) of a font increases, less space is required between letters in

relation to their height. If the point size decreases, more space may be needed. The
space data set tells the GFONT procedure how much to increase or decrease the
intercharacter spacing for a given point size. Like kerning, spacing is added to or
subtracted from the intercharacter spacing that is specified by the CHARSPACETYPE=
option. However, kerning applies the adjustment to specified pairs of characters, while
spacing is applied uniformly to all characters.

Values that are specified in the space data set are added to the normal intercharacter
spacing and any kerning data. Normal intercharacter spacing is determined by the
CHARSPACETYPE= option.

Space Data Set Variables
The space data set must contain these variables:

SIZE
specifies the point size of the font. SIZE is a numeric variable.

ADJ
specifies the spacing adjustment for the point size in hundredths (1/100) of a point.
(A point is equal to 1/72 of an inch.) ADJ is a numeric variable. Positive values for

The GFONT Procedure Creating a Font 961

the ADJ variable increase the spacing between characters; negative values reduce
the space.

Creating a Space Data Set
Each observation in a space data set specifies a point size (SIZE) and the amount of

space (ADJ) to be added or subtracted between characters when a font of that point size
is requested. When you specify a point size that is not in the space data set, the
adjustment for the next smaller size is used. To create a space data set, follow these
steps:

1 Determine the amount of adjustment that is required for typical point sizes;
positive numbers increase spacing, and negative numbers decrease spacing.

2 Create a SAS data set that contains the variables SIZE and ADJ; produce one
observation for each point size and corresponding space adjustment.

data space1;
input size adj;
datalines;

6 40
12 0
18 -40
24 -90
30 -150
36 -300
42 -620
;

3 Assign the space data set with the SPACEDATA= option.

proc gfont data=fontdata
name=font3
charspacetype=data
spacedata=space1
nodisplay;

run;

Figure 32.11 on page 962 illustrates how to use the SPACEDATA= option to generate
a font in which intercharacter spacing is adjusted according to the height of the
characters. The characters A, D, and T are shown as the word DATA. Each pair of lines
displays the word DATA and at the same size uses first the font with spacing
adjustment (FONT3) and then the original font (FONT1). Note that as the size of the
characters increases, the space between them decreases.

The following title statements are used with the GSLIDE procedure to produce
Figure 32.11 on page 962:

title2;
title3 f=font3 h=.25in j=l ’DATA’; /* 18 points */
title4 f=font1 h=.25in j=l ’DATA’;
title5;
title6 f=font3 h=.50in j=l ’DATA’; /* 36 points */
title7 f=font1 h=.50in j=l ’DATA’;
title8;
title9 f=font3 h=1.0in j=l ’DATA’; /* 72 points */
title10 f=font1 h=1.0in j=l ’DATA’;

962 Examples Chapter 32

Figure 32.11 Comparison of Text with and without Spacing Adjustments

Examples
The following examples illustrate major features of the GFONT procedure.

Example 1: Displaying Fonts and Character Codes

Procedure features:
GFONT statement options:

HEIGHT=
NOBUILD
ROMCOL=
ROMFONT=
ROMHT=
SHOWROMAN

Sample library member: GFODISFO

The GFONT Procedure Example 1: Displaying Fonts and Character Codes 963

Figure 32.12 Display of the Greek Font with Character Codes (GFODISFO)

This example illustrates the SHOWROMAN option, which displays the character
codes that are associated with the font characters that are being displayed. A display
such as this one shows which keyboard character you enter to produce the Greek
character you want. In addition, this example shows how to modify the appearance of
both the font characters and the character codes when they are displayed.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Define title and footnote.

title ’The GREEK Font with Character Codes’;
footnote j=r ’GFODISFO ’;

Display the GREEK font with character codes. NOBUILD indicates that the font specified
in the NAME= argument is an existing font. HEIGHT= specifies the height of the Greek
characters. ROMCOL=, ROMFONT=, and ROMHT= assign the color, type style, and height of
the character codes. SHOWROMAN displays the character codes.

proc gfont name=greek
nobuild
height=3.7
romcol=red
romfont=swissl
romht=2.7
showroman;

run;

964 Example 2: Creating Figures for a Symbol Font Chapter 32

quit;

Example 2: Creating Figures for a Symbol Font

Procedure features:
GFONT statement options:

CTEXT=
DATA=
FILLED
NAME=
RESOL=

Other features:
LIBNAME statement

Sample library member: GFOCRFIG

Figure 32.13 Display of Symbols For Characters

This example shows how to create three simple figures for a symbol font. Each figure
is laid out on a grid that is 64 font units square. The third figure is a circle with a slash
through it. Figure 32.14 on page 965 shows the figure and some of its coordinate points
laid out on a grid.

The GFONT Procedure Example 2: Creating Figures for a Symbol Font 965

Figure 32.14 Diagram of Circle with Slash Figure

Assign the librefs and set the graphics environment. The LIBNAME statement associates
the libref GFONT0 with the SAS data library in which the font catalog is stored.

libname gfont0 ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create the font data set FIGURES for a triangle, a heart, and a circle with slash. The
first figure, a right-pointing triangle that is assigned the character code A, is a polygon drawn
with three straight lines.

data figures;
input char $ ptype $ x y segment lp $;
datalines;

A W 0 64 0 P /* triangle pointing right */
A V 4 4 1 P
A V 60 32 1 P
A V 4 60 1 P
A V 4 4 1 P

The second figure, a heart that is assigned the character code B, uses the PTYPE variable
combination V-C-V to draw the arcs that make up the top of the heart. Each side requires two
arcs. Since the arcs are continuous, the observation that marks the end of one arc is also the
beginning of the next arc. The heart drawing begins at the bottom point and continues
counterclockwise.

B W 0 64 0 P /* heart */
B V 32 2 1 P
B V 44 17 1 P
B V 58 40 1 P
B C 46 47 1 P
B V 56 58 1 P
B C 46 47 1 P

966 Example 2: Creating Figures for a Symbol Font Chapter 32

B V 32 52 1 P
B C 18 47 1 P
B V 8 58 1 P
B C 18 47 1 P
B V 6 40 1 P
B V 20 17 1 P
B V 32 2 1 P

The third figure, a circle with a slash through it that is assigned the character code C, is
composed of three polygons: a circle and two empty arcs. An observation with missing values
separates the observations defining each of the three polygons. The outer circle is defined by the
first group of observations. The empty arcs are drawn with three continuous arcs using the
PTYPE variable pattern V-C-V-C-V-C-V. The straight line that closes the arc is drawn
automatically by the GFONT procedure in order to complete the polygon. Because all the
polygons are part of one character, the continuous space they define is filled.

C W 0 64 0 P /* circle with slash */
C V 32 64 1 P
C C 32 32 1 P
C V 64 32 1 P
C C 32 32 1 P
C V 32 0 1 P
C C 32 32 1 P
C V 0 32 1 P
C C 32 32 1 P
C V 32 64 1 P
C V . . 1 P
C V 12.4 18.1 1 P
C C 32 32 1 P
C V 8 32 1 P
C C 32 32 1 P
C V 32 56 1 P
C C 32 32 1 P
C V 45.9 51.6 1 P
C V . . 1 P
C V 51.6 45.9 1 P
C C 32 32 1 P
C V 56 32 1 P
C C 32 32 1 P
C V 32 8 1 P
C C 32 32 1 P
C V 18.1 12.4 1 P
;

Define the title and footnote.

title ’A Font of Three Figures’;
footnote j=r ’GFOCRFIG ’;

The GFONT Procedure Example 2: Creating Figures for a Symbol Font 967

Generate and display the font FIGURES. The DATA= argument names the input data set
that is used to generate the font. The NAME= argument names the font that the procedure
generates and automatically stores it in the GFONT0 catalog. (Note that you do not need to
specify GFONT0.) FILLED specifies a filled polygon font. CTEXT= specifies the color of the
figures in the font display. The color specification is not stored with the font. RESOL= is set to 2
to improve the resolution of the lines. By default, the newly generated font is displayed (the
NODISPLAY option is not used).

proc gfont data=figures
name=figures
filled
height=.75in
ctext=red
showroman
romht=.5in
resol=2;

run;
quit;

968

969

C H A P T E R

33
The GIMPORT Procedure

Overview 969

Concepts 970
About Importing Graphics 970

Specifying a Fileref 970

Importing the File 970
CGM Elements Not Supported 971

About Color Mapping 971

About Pattern Mapping 971
About Font Mapping 972

Procedure Syntax 972
PROC GIMPORT Statement 973

MAP Statement 974

SCALE Statement 975
TRANSLATE Statement 976

Examples 976

Example 1: Creating and Importing a CGM 977
Example 2: Adjusting the Graphics Output 979

References 981

Overview

The GIMPORT procedure enables you to import into SAS/GRAPH software graphics
output that is produced with other software applications, graphics output that is
produced by SAS/GRAPH software, or graphics output that is produced on other
machines. The GIMPORT procedure takes as its input a computer graphics metafile
(CGM) and produces graphics output that can be displayed in your SAS/GRAPH session
and stored in a SAS catalog. This graphics output can be reviewed and played like any
other SAS/GRAPH output using the GREPLAY procedure. The GIMPORT procedure
may also write any of the following information to the log:

� any elements used in the CGM that the procedure cannot process

� color mapping information when a color in a CGM is not available on the
destination device

� a list of fonts that are used by the application that produced the CGM.

Note: In addition to the GIMPORT procedure, you can use commands in the File
pull-down menu in the Image Editor, Graph Editor, and Graph window to import other
graphic formats such as GIF, TIFF, and WMF. �

970 Concepts Chapter 33

Concepts

About Importing Graphics
A computer graphics metafile (CGM) is a graphics output file that is created

according to a standard (ANSI X3.122). Since many graphics applications, including
SAS/GRAPH software, can generate and import CGMs, these files can be read by

different applications programs or used on different machines.
The GIMPORT procedure imports a CGM with which a fileref has been associated.

Using the CGM as input, the procedure displays the graphics output and creates a
catalog entry. The following sections address how to assign the fileref to the external
file (CGM) and how to import the file.

Specifying a Fileref
You must assign a fileref to the external file that contains the CGM that you want to

use as input so that the GIMPORT procedure can locate it. You can do this with a
FILENAME statement that has the following form:

FILENAMEcgm-fileref’external-file’;

Replace cgm-fileref with any fileref name that you want. Replace ’external-file’ with
the complete file name of the CGM. You can omit the FILENAME statement if you have
already defined the fileref. You can also specify a fileref with a host command in some
operating environments. See “FILENAME Statement” on page 28 for additional
information.

Importing the File
The PROC GIMPORT statement reads the input CGM and displays the graphics

output. When the CGM is displayed using only the PROC GIMPORT statement, the
resulting graphics output may not be sized or positioned correctly for the device on
which it is displayed. In these cases, you can use the SCALE and TRANSLATE
statements to adjust the size and location of the new graphics output.

In addition, if the CGM contains the FONT LIST element, the procedure lists in the
log the fonts used in the CGM. You can change these fonts to SAS software fonts using
the MAP statement. If you do not change these fonts to SAS software fonts, the
GIMPORT procedure uses a default font.

Because it is easier to determine what adjustments the graphics output needs after it
has been displayed, you may want to follow these steps:

1 Import the CGM and display the graphics output using only the PROC GIMPORT
statement.

2 Decide what adjustments you want to make to the size and position of the
graphics output.

3 If the procedure lists the fonts that are used by the CGM, decide what font
substitutions you want to make.

4 Run the procedure again with the appropriate MAP, SCALE, or TRANSLATE
statements.

Note: Once you have determined the correct values for the SCALE and
TRANSLATE statements for the graphics output produced by a particular CGM, you

The GIMPORT Procedure About Pattern Mapping 971

can use the same values for all other graphics output that is generated by the same
software application. �

CGM Elements Not Supported
The GIMPORT procedure does not support certain CGM elements. If the input CGM

contains any of the following elements, the GIMPORT procedure writes a message to
the log noting that the procedure cannot process them:

� the CELL ARRAY primitive element (a bitmap CGM file)
� the CHARACTER SPACING attribute element
� the APPLICATION DATA element
� the ESCAPE element.

These elements are rarely used and their absence should not affect the graphics
output produced by the GIMPORT procedure.

About Color Mapping
If the CGM specifies colors for the graphics elements that it generates, you may or

may not be able to map them to the color that you want in your SAS/GRAPH output,
depending on the way these colors are specified in the CGM.

You cannot change the color mapping if, in the CGM, the COLOUR SELECTION
MODE element is set to DIRECT. In this case, the colors are explicitly defined by the
CGM and you cannot change them. However, if the CGM was created with a
SAS/GRAPH CGM device driver, you can control the colors by specifying the

appropriate colors when you create the graphics output or by changing the colors in the
CGM device entry and re-creating the CGM. See Chapter 31, “The GDEVICE
Procedure,” on page 915 for details. In addition, you can use a color map with the
GREPLAY procedure to remap the colors. In the color map, the FROM color must be
specified in RGB format, but the TO color can be any valid color name. See Chapter 43,
“The GREPLAY Procedure,” on page 1237 for details on color maps.

You can change the color mapping if the COLOUR SELECTION MODE element is
set to INDEXED and there is no color table defined in the CGM file. In this case, you
can map the colors from the CGM to the colors of your choice by using the COLORS=
graphics option when you run the GIMPORT procedure. The CGM colors are mapped to
match the order of the colors in the colors list. If the procedure cannot reproduce the
colors specified in the CGM, the following message is written to the log:

WARNING: Invalid color index n encountered.
It has been mapped to color-name.

Note: The color name from the CGM is converted to the RGB format for
SAS/GRAPH color names; that is, WHITE is converted to CXFFFFFF, and so on. See

Chapter 6, “SAS/GRAPH Colors and Images,” on page 91 for details. �

About Pattern Mapping
If the CGM contains pattern specifications, you may be able to map them to patterns

of your choice using SAS/GRAPH PATTERN definitions.
If the CGM defines a PATTERN TABLE, then the patterns defined by this table are

the patterns that are used and you cannot change them.

972 About Font Mapping Chapter 33

If a PATTERN TABLE is not defined in the CGM, under certain conditions you may
be able to use SAS/GRAPH PATTERN definitions to control the patterns that are used.
If INTERIOR STYLE is set to PATTERN and if a PATTERN TABLE INDEX has been
specified, then the GIMPORT procedure uses the PATTERN TABLE INDEX to look up
SAS/GRAPH PATTERN definitions. If patterns are defined, the procedure uses the

first available pattern. For example, if the PATTERN TABLE INDEX n has been
defined, the procedure uses SAS/GRAPH PATTERN definition n. If the SAS/GRAPH
PATTERN definition is not the correct pattern type, the procedure modifies the pattern
as necessary. If no PATTERN definitions are currently in effect, an INVALID PATTERN
TABLE INDEX warning is issued and no pattern is used.

About Font Mapping
By default, the GIMPORT procedure maps all of the fonts in the CGM to the font

that is specified by the FTEXT= graphics option. If the FTEXT= graphics option is not
used, the default is the hardware font NONE. However, you may be able to specify a
different font either by mapping the fonts or by using a graphics option.

When the CGM is imported, a numbered list of the fonts that are used in the CGM
may be displayed in the LOG window. These are the fonts that were available to the
application that originally generated the CGM. Depending on how the fonts are
represented in the CGM, you may be able to map these fonts to fonts of your choice.

If the font and text in the imported graphics output are produced with move and
draw commands that are included in the CGM, then no font name appears in the LOG
window and the font cannot be mapped to a different one.

If the fonts used in the imported graphics output are represented in the CGM as a
font name accompanied by a text string, they can be mapped to SAS/GRAPH fonts
using the MAP statement. You can use the MAP statement if the message "WARNING:
Invalid font index n. Font has been mapped to font-name" appears in the LOG window
after the list of fonts. This means that font n in the list could not be reproduced and was
mapped to the font specified in the FTEXT= graphics option or to the hardware font.
You can map this font to a SAS/GRAPH software font of your choice using the MAP
statement. See “MAP Statement” on page 974 for more information on mapping fonts.

You can also specify a font with the FTEXT= or CHARTYPE= graphics options if
both of the following conditions are true:

� The font has not been mapped with a MAP statement.
� The CGM font contains a font name and text rather than the move and draw

commands that draw the text in the specified font. In the latter case, the font
name is not included in FONT LIST.

However, using a graphics option causes all fonts to be mapped to the one that is
specified. See Chapter 5, “SAS/GRAPH Fonts,” on page 75 for details of font
specification and Example 2 on page 979.

Procedure Syntax
Supports: Output Delivery System (ODS)

PROC GIMPORT FILEREF=cgm-fileref | ’external-file’
FILETYPE=CGM
FORMAT=BINARY | CHARACTER | CLEARTEXT
<GOUT=<libref.>output-catalog>;

The GIMPORT Procedure PROC GIMPORT Statement 973

MAP ’cgm-font’ TO font ;
SCALE X=factor | Y=factor | X=factor Y=factor;
TRANSLATE X=offset | Y=offset | X=offset Y=offset;

PROC GIMPORT Statement

Identifies the input file to be processed, and specifies its file type and format. Optionally specifies
an output catalog.

Syntax

PROC GIMPORT FILEREF=cgm-fileref | ’external-file’
FILETYPE=CGM
FORMAT=BINARY | CHARACTER | CLEARTEXT
<GOUT=<libref.>output-catalog>;

Required Arguments

FILEREF=cgm-fileref | ’external-file’
specifies the computer graphics metafile (CGM) that is input for PROC GIMPORT.
Following are the possible values for FILEREF=:

cgm-fileref
a fileref that is associated with the CGM and that has been previously defined
using a FILENAME statement or host command.

’external-file’
the complete file name of the CGM that you want to import. See the operating
system companion for your system for valid values for external-file.

Featured in: Example 2 on page 979.

FILETYPE=CGM
specifies the type of the input file, that is, the graphics standard to which the file
conforms. CGM is the only valid value for the FILETYPE= argument. If the
FILETYPE= argument is omitted, an error is issued and the procedure stops.
Featured in: Example 2 on page 979.

FORMAT=BINARY | CHARACTER | CLEARTEXT
specifies the format of the input file. CGMs can be encoded in one of the following
three formats:

BINARY
specifies binary encoding. It is not printable.

CHARACTER
specifies an encoding suitable for transfer through networks that cannot support
binary transfers. It is printable but not readable.

CLEARTEXT
specifies a text format that can be read using a standard text editor.
Most graphics packages use BINARY format. If you specify the wrong format, an

"ERROR: Unable to interpret the CGM file" message is issued and the procedure
stops. If this occurs, try a different format.

974 MAP Statement Chapter 33

Featured in: Example 2 on page 979.

Options

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GIMPORT procedure. If you omit the libref, SAS/GRAPH looks for the catalog in the
temporary library called WORK and creates the catalog if it does not exist.

See also: “Storing Graphics Output in SAS Catalogs” on page 53.

MAP Statement

Substitutes a SAS/GRAPH software font for a font in the CGM.

Requirements: Submit a separate MAP statement for each CGM font that you want to
map.

Tip: You can submit multiple MAP statements with the procedure.

Featured in: Example 2 on page 979.

Syntax

MAP ’cgm-font’ TO font;

Required Arguments

’cgm-font’
identifies a font in the CGM. The name of the font must be enclosed in single
quotation marks and written exactly as it appears in the font list; cgm-font is case
sensitive. Do not include the font list number in cgm-font.

font
specifies the SAS/GRAPH font to which the CGM font is mapped. You can specify
software fonts or hardware fonts for the destination device. You can also use fonts
that are created by the GFONT procedure.

Note: Remember to specify the libref GFONT0 with a LIBNAME statement if
font is a user-generated font. �

By default, the GIMPORT procedure maps all of the CGM fonts to the font
specified by the FTEXT= graphics option or, if the FTEXT= graphics option is not
used, to the default hardware font, NONE.

Details
If the CGM includes the FONT LIST element, the GIMPORT procedure

automatically lists the CGM font names in the log. Use this list to select the fonts for
mapping. For example, suppose the font list includes the following entry:

3. Times Roman

The GIMPORT Procedure SCALE Statement 975

If the LOG window displays the message "WARNING: Invalid font index n," you can
map the Times Roman font to the SAS/GRAPH font CENTX with the following
statement:

map ’Times Roman’ to centx;

SCALE Statement

Enlarges or reduces the graphics output by increasing or decreasing the values of the x and y
coordinates.

Requirements: You can submit only one SCALE statement.
Tip: You can submit the SCALE statement alone or in conjunction with the
TRANSLATE statement, but the SCALE statement is always processed first.
Featured in: Example 2 on page 979.

Syntax

SCALE X=factor | Y=factor | X=factor Y=factor;

Required Arguments
At least one of the following arguments is required; both may be used and can be

listed in either order:

X=factor
specifies the enlargement or reduction of the values of the x coordinates. Factor is
the number by which these values are multiplied and cannot be less than or equal to
0. By default, X=1. Values less than 1 reduce the size of the graphics output while
values greater than 1 increase the size of the graphics output. There is no limit on
the size of factor.

Y=factor
specifies the enlargement or reduction of the values of the y coordinates. Factor is
the number by which these values are multiplied and cannot be less than or equal to
0. By default, Y=1. Values less than 1 reduce the size of the graphics output while
values greater than 1 increase the size of the graphics output. There is no limit on
the size of factor.

Details
If the shapes in the imported graphics output are too narrow, you can make them

wider by increasing the values of the x coordinate. To make the elements in the
graphics output twice as wide, specify X=2. To make them half as high, specify Y=.5.

For example, if the values of the x coordinates range from 5 to 50 and if in the SCALE
statement the factor for X= is specified as 2, then the values of all of the x coordinates
are multiplied by 2 and the range of these values increases. The new range is 10 to 100.
And if the values of the y coordinates range from 0 to 25 and if in the SCALE statement
the factor for Y= is specified as .5, then the values of all of the y coordinates are
multiplied by .5 and the range of these values decreases. The new range is 0 to 12.5.

If you specify a factor that causes the graphics output to exceed the size of the
graphics output area, the procedure draws as much of the graphics output as will fit in
the available space.

976 TRANSLATE Statement Chapter 33

TRANSLATE Statement

Adjusts the location on the display of the graphics output imported by the procedure. Graphics
output can be shifted left or right by offsetting the x values or shifted up or down by offsetting the
y values.

Requirements: You can submit only one TRANSLATE statement.
Tip: You can submit the TRANSLATE statement alone or in conjunction with the
SCALE statement but the SCALE statement is always processed first.
Featured in: Example 2 on page 979.

Syntax

TRANSLATE X=offset | Y=offset | X=offset Y=offset ;

Required Arguments
At least one of the following arguments is required; both may be used and can be

listed in either order:

X=offset
specifies the number of units in percent of the display area to move the graphics
output right (positive numbers) or left (negative numbers). The value of offset is
added to the value of the x coordinate. By default, X=0.

Y=offset
specifies the number of units in percent of the display area to move the graphics
output up (positive numbers) or down (negative numbers). The value of offset is
added to the value of the y coordinate. By default, Y=0.

Details
The TRANSLATE statement adjusts the position of the graphics output without

changing its size. The amount of the offset that is specified for X= or Y= in the
TRANSLATE statement is the amount that the graphics output is moved.

For example, suppose your imported graphics output is positioned in the upper-left
corner of the display. To move it right 10% and down 5%, use the following statement:

translate x=10 y=-5;

Examples
The following examples illustrate major features of the GIMPORT procedure. For

illustration purposes, these examples create a CGM using SAS/GRAPH software and
import the resulting CGM by using the GIMPORT procedure. Ordinarily, you would use
the GIMPORT procedure to import graphics output that is generated by another
software package.

Note: Because this example uses a CGM device driver to produce a graphics stream
file, you may need to respecify a device driver for your output device. In addition, these
examples use the HSIZE= and VSIZE= graphics options to set a specific size for the
graphics output area for the CGM so that the second example can illustrate the use of

The GIMPORT Procedure Example 1: Creating and Importing a CGM 977

the SCALE and TRANSLATE statements. Depending on the output device that you are
using, you may need to adjust the HSIZE= and VSIZE= values in this example and the
values in the SCALE and TRANSLATE statements in the second example. �

Example 1: Creating and Importing a CGM

Procedure features:
GIMPORT statement options:

FILEREF=
FILETYPE=
FORMAT=

Other features:
FILENAME statement
GOPTIONS stratement

Sample library member: GIPCRCGM

This example creates a CGM in binary format by directing SAS/GRAPH output to a
graphics stream file (GSF) and using a CGM device driver. It uses the GIMPORT
procedure to import the resulting CGM into SAS/GRAPH where it can be viewed and
stored in a catalog. (See Chapter 2, “SAS/GRAPH Programs,” on page 25 for additional
information on catalog entries and graphics stream files.) The output shows the
imported version of the graphic. Note that the output uses the default font because the
specified fonts are unavailable. Example 2 on page 979 shows how to map these fonts to
get the output that you want. Also see “About Font Mapping” on page 972 for
additional information.

Assign the fileref for a graphics stream file and set the graphics environment. Set
graphics stream file characteristics, and select the CGM device driver for binary CGM.

978 Example 1: Creating and Importing a CGM Chapter 33

filename gsasfile ’external-file’;
goptions reset=global gunit=pct border cback=white

colors=(black)
gaccess=gsasfile gsfmode=replace
noprompt device=cgm
hsize=5 in vsize=5 in
vpos=60 hpos=150;

Define titles and footnote for slide.

title1 f=script h=7 ’Title One is SCRIPT Font’;
title2 f=centb h=5 ’Title Two is CENTB Font’;
title3 f=zapf h=5 ’Title Three is ZAPF Font’;
footnote h=3 f=swiss j=r ’GIPCRCGM ’;

Generate a slide. The graphics output is stored in the GSF file that was specified with the
fileref and in the GOPTIONS statement.

proc gslide;
run;
quit;

Reset the graphics environment.

goptions reset=goptions border cback=white
colors=(black);

Import the GSF file created by the CGM device driver. FILEREF= specifies the fileref
where the CGM is located. FILETYPE= specifies the type of file to be imported. FORMAT=
specifies the format of the CGM being imported.

proc gimport fileref=gsasfile
filetype=cgm
format=binary;

run;

Output 33.1 shows the font list that is displayed in the log file. The font list contains
all of the fonts that are used by the CGM. The warning messages following the font list
indicate which fonts can be remapped using the MAP statement.

The GIMPORT Procedure Example 2: Adjusting the Graphics Output 979

Output 33.1 Font List

.

.

.

NOTE: These fonts are used in this CGM file. You may use the MAP statement
to map these fonts to SAS/GRAPH

fonts.
1. SIMPLEX
2. BRUSH
3. CENTB
4. CENTBE
5. CENTBI
6. CENTBIE
7. CENTX
8. CENTXE
9. CENTXI
10. CENTXIE
11. GERMAN
12. GITALIC
13. DUPLEX
14. COMPLEX
15. TRIPLEX
16. TITALIC
17. ITALIC
18. OLDENG
19. SCRIPT
20. CSCRIPT
21. SWISS
22. SWISSE
23. SWISSB
24. SWISSBE
25. SWISSBI
26. SWISSBIE
27. SWISSX
28. SWISSXE
29. SWISSXB
30. SWISSXB
31. SWISSXBE
32. SWISSI
33. SWISSIE
34. SWISSL
35. SWISSLE
36. ZAPF
37. ZAPFE
38. ZAPFB
39. ZAPFBE
40. ZAPFBI
41. ZAPFBIE
42. ZAPFI
43. ZAPFIE
WARNING: Unspecified font index 19. Font has been mapped to the default font.
WARNING: Unspecified font index 3. Font has been mapped to the default font.
WARNING: Unspecified font index 36. Font has been mapped to the default font.
WARNING: Unspecified font index 21. Font has been mapped to the default font.
.
.
.

Example 2: Adjusting the Graphics Output
Procedure features:

SCALE statement
TRANSLATE statement

980 Example 2: Adjusting the Graphics Output Chapter 33

MAP statement
Sample library member: GIPGROUT

This example imports the CGM file that was created in the earlier example and
modifies the output. This example uses the SCALE and TRANSLATE statements to
correct the size and position of the imported CGM. The MAP statement is also used to
substitute a SAS/GRAPH software font for a font in the CGM.

Assign the fileref for a GSF file and set the graphics environment.

filename gsasfile ’external-file’;
goptions reset=goptions gunit=pct border cback=white

colors=(black) htitle=6 htext=3
vpos=60 hpos=150;

Import the GSF file created by the CGM device driver. The SCALE statement specifies
the scale factor for the values of the x and y coordinates. The TRANSLATE statement specifies
the amount that the imported graphics output should be moved horizontally and vertically. The
MAP statements remap the fonts shown in the first example.

proc gimport fileref=gsasfile filetype=cgm format=binary;
scale x=.7 y=.8;
translate x=3.5 y=10;
map ’SCRIPT’ to script;
map ’CENTB’ to centb;
map ’ZAPF’ to zapf;
map ’SWISS’ to swiss;

run;

Output 33.2 shows the font list that is displayed in the log file. Note that no warning
messages follow the font list because all of the fonts that are used in the CGM have
been remapped.

The GIMPORT Procedure References 981

Output 33.2 Font List

.

.

.

NOTE: These fonts are used in this CGM file. You may use the MAP statement
to map these fonts to SAS/GRAPH

fonts.
1. SIMPLEX
2. BRUSH
3. CENTB
4. CENTBE
5. CENTBI
6. CENTBIE
7. CENTX
8. CENTXE
9. CENTXI
10. CENTXIE
11. GERMAN
12. GITALIC
13. DUPLEX
14. COMPLEX
15. TRIPLEX
16. TITALIC
17. ITALIC
18. OLDENG
19. SCRIPT
20. CSCRIPT
21. SWISS
22. SWISSE
23. SWISSB
24. SWISSBE
25. SWISSBI
26. SWISSBIE
27. SWISSX
28. SWISSXE
29. SWISSXB
30. SWISSXB
31. SWISSXBE
32. SWISSI
33. SWISSIE
34. SWISSL
35. SWISSLE
36. ZAPF
37. ZAPFE
38. ZAPFB
39. ZAPFBE
40. ZAPFBI
41. ZAPFBIE
42. ZAPFI
43. ZAPFIE
.
.
.

References

ANSI X3.122–1986, Computer Graphics Metafile for the Storage and Transfer of
Picture Description Information.

Arnold, D.B. and Bono, P.R. (1988), CGM and CGI: Metafile Interface Standards for
Computer Graphics, New York: Springer-Verlag.

982

983

C H A P T E R

34
The GKEYMAP Procedure

Overview 983

Concepts 983
About Key Maps and Device Maps 983

What Key Maps Do 985

What Device Maps Do 986
Using Key Maps and Device Maps 986

Asymmetrical Maps 986

Seeing What Characters in a Font are Available 987
About the GKEYMAP Data Set 987

GKEYMAP Data Set Variables 987
Procedure Syntax 988

PROC GKEYMAP Statement 988

Examples 990
Example 1: Modifying a Key Map 990

Overview
The GKEYMAP procedure creates key maps and device maps that compensate for

differences between the way that characters are encoded internally by SAS/GRAPH
software and the way that they are encoded by different operating environments and
output devices. In addition, the GKEYMAP procedure can create SAS data sets from
existing key maps and device maps, either Institute-supplied or user-generated. This
capability is useful when you want to make minor alterations in a large key map or
device map and you do not want to or cannot re-create the original data set with a
DATA step.

The Institute supplies key maps for many keyboard configurations and
operating-environment character representations. Your SAS Software Consultant
should have selected the appropriate key map for your site. If the Institute-supplied
device maps and key maps do not meet your needs, you can use this procedure to
modify an existing map or create a new one.

Concepts

About Key Maps and Device Maps
The characters A through Z (upper- and lowercase), 0 through 9, and many symbols

and national characters are represented by a set of hexadecimal codes. However, a

984 About Key Maps and Device Maps Chapter 34

character may be represented by one code for the keyboard, another code for the
operating environment, and yet another for the output device. To resolve these
differences, SAS/GRAPH software stores all characters using its own internal encoding
scheme, which is a set of hexadecimal values that are associated with all supported
characters. Figure 34.1 on page 985 shows these internal character encoding (ICE)
codes. To view such a table for yourself, run the following code, which uses the Swiss
font:

goptions keymap=none;
proc gfont nb name=swiss hex;
run;
quit;

To accommodate differences in the encoding of characters, you must be able to
translate the hexadecimal codes generated by your keyboard or operating environment
into the corresponding SAS/GRAPH internal encoding. A key map gives you this ability.

You also must be able to convert the internal encoding that is used by
SAS/GRAPHsoftware to the codes required to produce the corresponding hardware
characters on your output device. A device map gives you this ability.

Key maps and device maps are SAS catalog entries. Institute-supplied key maps and
device maps are stored in the catalog SASHELP.FONTS. User-generated key maps and
device maps are stored in the catalog GFONT0.FONTS. Key maps are stored with the
extension KEYMAP (for example, GERMAN.KEYMAP), and device maps are stored
with the extension DEVMAP (for example, DEFAULT.DEVMAP).

The GKEYMAP Procedure About Key Maps and Device Maps 985

Figure 34.1 SAS/GRAPH Internal Character Encoding

Note: Positions 00-1F are reserved. SAS Institute reserves the right to change, at
any time, the character displayed and the hexidecimal code returned for all undefined
codes. �

What Key Maps Do
A key map changes the code generated by a keyboard key to the value corresponding

to the SAS/GRAPH internal character encoding. Otherwise, a different character (or no
character) may be drawn when the character is requested in a SAS/GRAPH software
font.

Key maps are required when the code that is sent to the operating environment does
not match the SAS/GRAPH internal encoding for the character corresponding to the key
that is pressed. They are useful for generating a character in a software font that is not

986 About Key Maps and Device Maps Chapter 34

available on your keyboard or when the same key on different keyboards sends a
different character to the operating environment. They are also useful for creating new
characters by combining existing characters with accent characters (called diacritics).

Note: In Figure 34.1 on page 985, the diacritic characters specified by the codes D2
through DB are backspaced before being drawn and can be used to create new
characters (characters resulting from codes B0 through B7, B9, and BA are not
backspaced before being drawn). See Example 1 on page 990 for an example of using a
diacritic character as an accent. Two commonly used characters have already been
created for you: the character located in position F0 of the ICE table could be created
by combining DA with an uppercase C, and the character located in position BC could
be created by combining DB with an uppercase G. �

What Device Maps Do
A device map maps the code stored in the SAS/GRAPH internal encoding to the code

required to reproduce the character on the output device when a particular hardware
character is requested in a SAS/GRAPH program.

You usually use device maps in these two situations:
� reversing the translation performed by key maps (if needed). To display the proper

hardware character, you must use a device map to convert the SAS/GRAPH
internal encoding of the character back to the encoding that the device expects.

� accounting for differences between the code that represents a character on the
operating environment and the code or codes required to generate the same
character as a hardware character on an output device. The problem can be
further complicated if you have multiple output devices, each with its own way of
generating a particular character using hardware text.

Using Key Maps and Device Maps
You use key maps and device maps by specifying them with the KEYMAP= or

DEVMAP= options in a GOPTIONS statement. You also can specify a device map by
filling in the DEVMAP field in the Detail window of the device entry for the device
driver that you are using.

For example, if you use the GKEYMAP procedure to generate a key map called
MYKEYMAP, you can specify it with a statement like this:

goptions keymap=mykeymap;

Once you specify MYKEYMAP as your current key map, you can press a key and the
code it generates is translated by MYKEYMAP into the ICE code that is specified by
the key map.

When you specify a device map with the DEVMAP= graphics option and you use a
hardware character set, mapped characters are converted from their SAS/GRAPH
internal encoding to the codes required to display the corresponding characters on your
device. See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page
261 for more information on the KEYMAP= and DEVMAP= graphics options.

Asymmetrical Maps
It is possible, and sometimes necessary, to define a key map or device map that is not

symmetrical (that is, two or more input character codes map to the same output
character code). For example, if you define a key map to map the keyed character A to
the internal encoding for B, the keyed characters A and B both map to the internal
encoding for B, but no code maps to A. This situation may make it impossible for you to
display certain characters defined in software fonts.

The GKEYMAP Procedure About the GKEYMAP Data Set 987

Seeing What Characters in a Font are Available
To see what characters in a font can be displayed if a particular key map is used, do

the following:
1 Use the KEYMAP= option in a GOPTIONS statement to specify the key map that

you are interested in.
2 Then, use the GFONT procedure with the ROMHEX option to display the font

that you want to use.

The hexadecimal values and corresponding font characters that are displayed are the
ones available under the specified map. If the map is not symmetrical, a warning is
issued. See Chapter 32, “The GFONT Procedure,” on page 939 for more information on
using hexadecimal values to display special characters.

About the GKEYMAP Data Set
To generate a key map or device map, you must create a data set that contains the

mapping information and use that data set as input for the GKEYMAP procedure. The
mapping information is specified as values for the variables in the data set, which
should contain one observation for each character or key to be mapped. Any characters
not specified in the data set are passed through the map unchanged.

GKEYMAP Data Set Variables
To provide information on the character mapping that is to be performed for a key

map or a device map, you must use a variable named FROM to specify the character
that you are mapping from, and a variable named TO to specify the character to map
to. For key maps, these are the only variables in the data set. For device maps, you
may also need variables named CHARTYPE and TOLEN.

Here are definitions for these variables:

CHARTYPE
specifies which hardware character set to use when a device requires that you
select an alternate character set in order to display certain characters.
CHARTYPE is a numeric variable.

All of the characters in the TO string for a particular FROM value must use the
same character set. The CHARTYPE variable is required if you use the
MULTFONT option in the PROC GKEYMAP statement; otherwise, it is ignored.
(The CHARTYPE variable is always ignored when you are creating a key map.)
The CHARTYPE value must match a value listed in the Chartype field in the
Chartype window of the device entry for the device to which the map is applied.
However, you can set the CHARTYPE variable to a missing value to specify that
the character can be drawn in any hardware character set.

FROM
specifies the character you are mapping from. FROM is a character variable. For
each observation, the FROM variable should contain a single character value. Any
characters after the first are ignored. The data set must be sorted by the FROM
variable.
Featured in: Example 1 on page 990

TO
specifies the string that the character in the FROM variable is mapped to. TO is a
character variable.

For device maps, if the TO variable contains more than one character, you must
also specify TYPE=MAP1N in the PROC GKEYMAP statement to indicate that a

988 Procedure Syntax Chapter 34

single FROM character is being mapped to multiple TO characters. In addition,
you must include the TOLEN variable in the data set to specify the length of each
TO string. If you specify TYPE=MAP11 in the PROC GKEYMAP statement or if
you do not use the TYPE= option, only the first byte of the TO string is recognized.
Featured in: Example 1 on page 990

TOLEN
specifies the length of the string in the TO variable. TOLEN is a numeric variable.
The TOLEN variable is used only with device maps and is required if you specify
TYPE=MAP1N in the PROC GKEYMAP statement; otherwise, it is ignored.

Procedure Syntax
Requirements: The NAME= argument is always required. To create a key map or device
map, the DATA= argument is required. To output a data set, the OUT= argument is
required.

PROC GKEYMAP NAME=map-name
data-set-argument
<option(s)>;

PROC GKEYMAP Statement

The PROC GKEYMAP Statement names the key map or device map to be created or output as a
data set. If the procedure creates a key map or a device map, it identifies the data set that is
used as input. If it outputs a map, it identifies the data set to which the map is written.

Syntax

PROC GKEYMAP NAME=map-name
data-set-argument
<option(s)>;

data-set-argument must be one or more of the following:
DATA=keymap-data-set
OUT=output-data-set

option(s) can be one or more of the following:
DEVICE=device-name
DEVMAP | KEYMAP
TYPE=MAP11 | MAP1N
MULTFONT

The GKEYMAP Procedure PROC GKEYMAP Statement 989

Required Arguments

NAME=map-name
identifies the map that is to be created or converted to a SAS data set. Key maps are
stored as map-name. KEYMAP, and device maps are stored as map-name. DEVMAP.
The value of the KEYMAP or DEVMAP option determines the type of map and the
extension added to map-name. It is possible to use the same map-name value for
both a key map and a device map.

If you create a key map or device map, the map is stored as an entry in the catalog
GFONTn.FONTS where n is a number from 1 to 9, and you must use a LIBNAME
statement to specify a libref for GFONTn. See “About the Libref GFONT0” on page
941 for details.

If you specify an existing key map or device map, SAS/GRAPH software searches
for the map using the same search path that it uses to search for fonts. See “Font
Locations” on page 77 for details .
Featured in: Example 1 on page 990.

DATA=keymap-data-set
identifies the input data set for the GKEYMAP procedure. Used only when you are
creating a key map or device map.
See also: “SAS Data Sets” on page 29 and “About the GKEYMAP Data Set” on page

987.
Featured in: Example 1 on page 990.

OUT=output-data-set
identifies the output data set to which the data from a key map or device map are to
be written. Used only when you output an existing key map or device map as a SAS
data set.
Featured in: Example 1 on page 990.

Options
You can specify as many options as you want and list them in any order.

DEVICE=device-name
specifies the device driver that a device map is associated with, where device-name is
the name of an entry in a device catalog. DEVICE= is not required when creating a
device map, but it can be used if you want to limit the use of the device map to one
particular driver. If you do not use DEVICE=, the device map can be used with any
device. DEVICE= is valid only if you are creating a device map.

DEVMAP | KEYMAP
specifies whether you are working with a device map or a key map. The default is
KEYMAP unless you use an option that can be used only with DEVMAP. This option
also specifies the type of map you are outputting as a data set.
Featured in: Example 1 on page 990.

TYPE=MAP11 | MAP1N
specifies whether you are mapping characters in a device map one-to-one or
one-to-many. If you specify TYPE=MAP11 (the default), each character in a graphics
text string is mapped to only one character on the output device. If you specify
TYPE=MAP1N, a single character in a graphics text string can be mapped to
multiple characters on the output device. For example, if two characters have to be
sent to the graphics output device to display a single hardware character, specify
TYPE=MAP1N. Specify TYPE=MAP1N only when you create a device map.

990 Examples Chapter 34

MULTFONT
specifies that an alternate hardware character set is required to display one or more
characters in the device map. Specify the MULTFONT option only when you create a
device map.

Creating a Data Set from an Existing Key Map or Device Map
To generate a data set from an existing key map or device map, follow these steps:
1 Specify the name of the key map or device map with the NAME= argument. If the

map is user generated, you must first submit a LIBNAME statement to associate
the libref GFONT0 with the location where the map is stored, and NAME= must
specify the name that was specified for the key map or device map when it was
created. If the map is an Institute-supplied map, it is located in the catalog
SASHELP.FONTS, and you do not need to submit a LIBNAME statement to
access it.

2 In the OUT= argument, specify the name of the data set to which the data are to
be written. By default, the data set is written to the temporary library WORK.

3 Use the DEVMAP option if a device map is selected.
4 Optionally, use the PRINT procedure to display the newly created data set (most

values will be unprintable, so you should use a $HEX2. format for the FROM and
TO variables).

Creating and Using Key Maps and Device Maps
To create and use a key map or device map, follow these steps:
1 Submit a LIBNAME statement that associates the libref GFONT0 with the

location where your map is to be stored.
2 Create a data set that contains the mapping information you need. You can use a

DATA step to create all of the mapping information for the key map or device map,
or you can create a data set from an existing key map or device map, then update
that data set with the mappings that you need. This process is illustrated in
Example 1 on page 990.

3 Use the GKEYMAP procedure to create the key map or device map, using as input
the data set that contains the mapping information. The GKEYMAP procedure
stores the map in the catalog GFONT0.FONTS.

4 Use the KEYMAP= or DEVMAP= option in a GOPTIONS statement to assign the
key map or device map in your SAS session. The specified map is used
automatically in your SAS/GRAPH programs. (The device map is used only when
you use a hardware character set.)

Examples

Example 1: Modifying a Key Map

Procedure features:
GKEYMAP options:

DATA=

The GKEYMAP Procedure Example 1: Modifying a Key Map 991

KEYMAP
NAME=
OUT=

Other features:
DATA step
GOPTIONS procedure
GOPTIONS statement
LIBNAME statement
SORT procedure

Sample library member: GKYMODIF

This example shows how to change multiple characters in an existing key map. It
assumes that the national characters ß and ã are not on your keyboard, so you want to
create a key map that provides them.

To provide the ß character, this example’s key map converts the @ character into the
SAS/GRAPH internal encoding for (’B8’x). Whenever the @ character is typed in text
that is displayed with a software font, the character ß is drawn instead. In this case,
the replacement character uses the text position that would have been used by the
typed character.

Note: Once you have modified your key map so that @ is mapped to ß, you can no
longer generate @ in a software font from your keyboard when the key map is in effect. �

To provide the ã character, which is not on the keyboard or in the ICE table, this
example’s key map converts the asterisk (*) into the SAS/GRAPH internal encoding for
the accent character ’D5’x (a tilde). In this case, when the character * is typed, the
resulting tilde does not take up a text position but is backspaced and used as an accent
over the character preceding it in the text. To create the ã character, therefore, the text
must contain the two characters a*.

Note: The example updates the current key map rather than creating a new key
map so that all of the other character mapping in the key map remains in effect. �

Assign the libref and set the graphics environment. LIBNAME associates the libref
GFONT0 with the location of the SAS data library where your device maps and key maps are
stored.

992 Example 1: Modifying a Key Map Chapter 34

libname gfont0 ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htext=6;

Determine the name of the current key map. The SAS log in Output 34.1 shows that the
keymap name is DEFAULT.

proc goptions
option=keymap;

run;

Copy the DEFAULT key map to a temporary SAS data set. NAME= specifies the
DEFAULT key map as input to the procedure. OUT= specifies the data set TEMP, which is
created from the specified key map.

proc gkeymap name=default
out=temp;

run;

Create data set NEW. NEW will be used to create the key map for the character conversions.
Values for the FROM variable are the keyboard characters to be converted. Values for the TO
variable are hexadecimal codes from the SAS ICE table. OUTPUT is required to write a
separate observation for each character to be mapped.

data new;
from=’@’;
to=’b8’x;
output;
from=’*’;
to=’d5’x;
output;

run;

Sort data set NEW and update data set TEMP with the mapping information. The data
set NEW must be sorted by the FROM variable before its observations can be used to update
data set TEMP.

proc sort data=new;
by from;

data temp;
update temp new;
by from;

run;

Create a new key map from the modified data set. NAME= assigns a name to the new key
map. DATA= specifies the data set TEMP as input to the procedure. KEYMAP specifies that the
map being generated is a key map (the default).

The GKEYMAP Procedure Example 1: Modifying a Key Map 993

proc gkeymap name=mykeymap
data=temp
keymap;

run;

Specify the new key map in a GOPTIONS statement. KEYMAP= specifies the name of the
new key map so that when the characters @ and a* are specified in TITLE statements, the
characters ß and ã are displayed in the output.

goptions keymap=mykeymap;

Print two titles with the special characters. The character @ is typed where the character
ß should print, and the character * is typed after the character it will accent.

title1 ’Kaiserstra@e’;
title2 ’Sa*o Paulo’;
footnote j=r ’GKYMODIF ’;
proc gslide;
run;
quit;.
’

Output 34.1 Log from GOPTIONS Procedure

SAS/GRAPH software options and parameters
(executing in DMS Process environment)

KEYMAP=DEFAULT Input character map for hardware and software
text

994

995

C H A P T E R

35
The GMAP Procedure

Overview 996

About Block Maps 996
About Choropleth Maps 997

About Prism Maps 998

About Surface Maps 998
Concepts 999

About Map Data Sets 999

About Traditional Data Sets 999
Required Variables 999

Segment Variable 1000
LONG and LAT Variables 1000

Traditional Map Data Sets Containing X, Y, LONG, and LAT 1000

Traditional Map Data Sets Containing Only X and Y 1001
About Feature Tables 1001

$GEOREF format 1001

Merging Feature Tables with Response Data Sets 1001
Viewing Map Data Sets 1001

Speciality Map Data Sets 1003
About Response Data Sets 1003

Using the Response Data Set with the Map Data Sets 1003

About Response Variables 1004
About Response Levels 1004

About Identification Variables 1005

Displaying Map Areas and Response Data 1005
Summary of Use 1006

Accessing SAS Maps Online 1006
Procedure Syntax 1007

PROC GMAP Statement 1007

ID Statement 1009
BLOCK Statement 1009

CHORO Statement 1017

PRISM Statement 1022
SURFACE Statement 1030

Using FIPS Codes and Province Codes 1033
Using Formats for Maps 1035

SAS/GRAPH Map Data Sets Reference Information 1038

Accessing Detailed Descriptions of Map Data Sets 1038
Customizing SAS/GRAPH Map Data Sets 1039

Subsetting Traditional Map Data Sets 1039

Reducing Traditional Map Data Sets 1040
Projecting Traditional Map Data Sets 1040

996 Overview Chapter 35

Controlling the Display of Lakes 1041

Creating Traditional Map Data Sets 1041
Creating a Unit Area that is a Single Polygon 1042

Creating a Unit Area that Contains Multiple Polygons 1042

Creating a Unit Area that Contains Enclosed Polygons as Holes 1043
Creating a Unit Area that Contains Enclosed Polygons as Cities 1044

Examples 1045

Example 1: Producing a Simple Block Map 1045
Example 2: Specifying Response Levels in a Block Map 1047

Example 3: Assigning a Format to the Response Variable 1049
Example 4: Producing a Simple Choropleth Map 1052

Example 5: Creating Maps with Drill-down for the Web 1054

Example 6: Labeling the States on a U.S. Map 1061
Example 7: Producing a Simple Prism Map 1063

Example 8: Specifying Midpoints in a Prism Map 1065

Example 9: Producing a Simple Surface Map 1066
Example 10: Rotating and Tilting a Surface Map 1068

Example 11: Creating a Map Using the Feature Table 1069

Overview
The GMAP procedure produces two-dimensional (choropleth) or three-dimensional

(block, prism, and surface) color maps that show variations of a variable value with
respect to an area. A wide assortment of map data sets are available with SAS/GRAPH
software.

Use the GMAP procedure to
� produce maps
� summarize data that vary by physical area
� show trends and variations of data between geographic areas
� highlight regional differences or extremes.

About Block Maps
Block maps display a block at the approximate center of each map area to convey

information about response variable values. The height of each block represents a
response level. The height is not directly proportional to the value of the response
variable. Instead, the block heights increase in order of the response levels.

Figure 35.1 on page 997 shows a simple block map of hazardous waste sites that are
installed in each state. The number of sites in each state (the response value) is
represented by the height of the block.

The GMAP Procedure About Choropleth Maps 997

Figure 35.1 Block Map

The program for this map is in Example 1 on page 1045. For more information on
producing block maps, see “BLOCK Statement” on page 1009.

About Choropleth Maps
Two-dimensional (choropleth) maps indicate levels of magnitude or response levels of

the corresponding response variable by filling map areas with different colors and
patterns.

Figure 35.2 on page 997 shows a choropleth map of hazardous waste sites that are
installed in each state. The number of sites in each state (the response value) is
represented by the pattern that is assigned to the state.

Figure 35.2 Two-dimensional (Choropleth) Map

The program for this map is in Example 4 on page 1052.
You can also produce a simple choropleth map that shows an outline of a map’s areas

by specifying your map data set as both the map data set and the response data set in a
GMAP statement and adding a PATTERN statement with VALUE=EMPTY. For more

998 About Prism Maps Chapter 35

information on the PATTERN statement, see “PATTERN Statement” on page 169. For
more information on producing choropleth maps, see “CHORO Statement” on page 1017.

About Prism Maps
Prism maps use polyhedrons (raised polygons) in the shape of each map area to

convey information about response variable values. The height of each polyhedron, or
prism, represents an ordinal level of the response variable. Prism heights increase in
order of response levels. That is, the lowest prisms correspond to the first level, and the
tallest prisms correspond to the last level.

You can alter the perspective of the map by selecting a viewing position (the point in
space from which you view the map). You can also change the position of the light
source so that the shadowing on the prisms enhances the illusion of height.

Figure 35.3 on page 998 shows a prism map of hazardous waste sites installed in
each state. The number of sites in each state (the response value) is represented by the
height of the state.

Figure 35.3 Prism Map

The program for this map is in Example 7 on page 1063. For more information on
producing prism maps, see “PRISM Statement” on page 1022.

About Surface Maps
Surface maps display a spike at the approximate center of each map area to convey

information about response variable values. The height of the spike corresponds to the
relative value of the response variable, not to the actual value of the response variable.
Thus, a spike that represents a value of 100 may not be exactly 10 times higher than a
spike that represents a value of 10. Map area boundaries are not drawn.

Surface maps provide no clear map area boundaries and no legend. Thus, surface
maps provide a simple way to judge relative trends in the response data but are an
inappropriate way to represent specific response values.

Figure 35.4 on page 999 shows a surface map of hazardous waste sites that are
installed in each state. The number of sites in each state (the response value) is
represented by the height of the spike.

The GMAP Procedure About Traditional Data Sets 999

Figure 35.4 Surface Map

The program for this map is in Example 9 on page 1066. For more information on
producing surface maps, see “SURFACE Statement” on page 1030.

Concepts

Map data sets and response data sets are used in the GMAP procedure. These data
sets must contain the required variables or the procedure stops and you get an error
message. Depending on the type of map data set used, the map and response data sets
can be used individually in the GMAP procedure or merged into a single data set to be
used in the GMAP procedure. Each data set must contain the same identification
variable.

About Map Data Sets
There are two types of map data sets: traditional map data sets and feature tables.

Each uses a different data arrangement to store the spatial information needed to
create maps. All of the map data delivered with SAS/GRAPH is available in both the
traditional map data set and feature table format.

About Traditional Data Sets
A traditional map data set is a SAS data set that contains coordinates that define the

boundaries of map areas, such as states or counties.

Required Variables
A traditional map data set must contain at least these variables:

� a numeric variable named X that contains the horizontal coordinates of the
boundary points. The value of this variable could be either projected or
unprojected. If unprojected, X represents longitude.

� a numeric variable named Y that contains the vertical coordinates of the boundary
points. The value of this variable could be either projected or unprojected. If
unprojected, Y represents latitude.

1000 About Traditional Data Sets Chapter 35

� one or more variables that uniquely identify the areas in the map. Map area
identification variables can be either character or numeric and are indicated in the
ID statement.

The X and Y variable values in the traditional map data set do not have to be in any
specific units because they are rescaled by the GMAP procedure based on the minimum
and maximum values in the data set. The minimum X and Y values are in the lower-left
corner of the map, and the maximum X and Y values are in the upper-right corner.

Traditional map data sets in which the X and Y variables contain longitude and
latitude should be projected before you use them with PROC GMAP. See Chapter 39,
“The GPROJECT Procedure,” on page 1161 for details.

Segment Variable
Optionally, the traditional map data set also can contain a variable named

SEGMENT to identify map areas that comprise noncontagious polygons. Each unique
value of the SEGMENT variable within a single map area defines a distinct polygon. If
the SEGMENT variable is not present, each map area is drawn as a separate closed
polygon that indicates a single segment.

The observations for each segment of a map area in the map data set must occur in
the order in which the points are to be joined. The GMAP procedure forms map area
outlines by connecting the boundary points of each segment in the order in which they
appear in the data set, eventually joining the last point to the first point to complete
the polygon.

LONG and LAT Variables
In addition to the variables described in “Required Variables” on page 999, the

SAS/GRAPH map data sets can also contain the following variables:

� a numeric variable named LONG containing the unprojected longitude (in radians
or degrees) of the boundary points

� a numeric variable named LAT containing the unprojected latitude (in radians or
degrees) of the boundary points.

The GMAP procedure uses the values of the X and Y variables to draw the map.
Therefore, if you want to produce an unprojected map by using the values in LONG and
LAT, you would have to rename LONG and LAT to X and Y first.

SAS/GRAPH software includes a number of predefined map data sets. These data
sets are described in “Viewing Map Data Sets” on page 1001.

Traditional Map Data Sets Containing X, Y, LONG, and LAT
Most of the traditional map data sets that are provided with SAS/GRAPH software

contain four coordinate variables (X, Y, LONG, and LAT). In this case, X and Y are
always projected values that will be used by the SAS/GRAPH procedures (by default). If
you need to use the unprojected values that are contained in the LONG and LAT
variables, then you must

1 drop the existing X and Y variables

2 rename the LONG and LAT variables to X and Y.

The MAP= value in the GMAP procedure automatically uses X and Y. See “Input Map
Data Sets that Contain Both Projected and Unprojected Values” on page 1164 for more
details.

The GMAP Procedure Viewing Map Data Sets 1001

Traditional Map Data Sets Containing Only X and Y
The traditional map data sets that contain X and Y variables (and no LONG and

LAT variables), are usually projected maps. However, there are a few traditional map
data sets for the US and Canada that contain X and Y values that are unprojected
longitude and latitude. In this case, you will need to use the GPROJECT procedure to
project the map (see Chapter 39, “The GPROJECT Procedure,” on page 1161).

Note: You can determine whether a SAS traditional map data set is projected or
unprojected by looking at the description of each variable that is displayed when you
use the CONTENTS procedure or by browsing the MAPS.METAMAPS data set. �

About Feature Tables

An alternative to using the traditional map data set is the feature table. While the
traditional map data set stores the spatial information across multiple observations, the
feature table uses a data arrangement to store all of the spatial information in a single
variable value. The feature table’s data arrangement uses the $GEOREF SAS/GRAPH
format.

$GEOREF format
The $GEOREF format stores spatial information in binary data streams, making it

possible to store as a single variable value all the information needed to draw a map
area. Thus, the feature tables use only a single observation for each map area, and they
treat a field of spatial information just like any other information that can be added to
a data set. Each $GEOREF value points to a corresponding traditional map data set to
retrieve the coordinate values. The traditional map data set associated with the feature
table must be located in the SAS library with the feature table for GMAP to proceed
correctly.

To locate the variable that contains the spatial information, run PROC CONTENTS
on a feature table. In the Output window, the variable containing the spatial
information will have $GEOREF as the value in the column labelled Format.

Note: Some feature tables, like MAPS.NAMES, have more than one $GEOREF
format variable. �

Merging Feature Tables with Response Data Sets
To display response data with a feature table, the feature table must be merged with

a response data set. The merged data set is then specified by the DATA= option in the
PROC GMAP statement. The combined data set can be used repeatedly for generating
maps, without having to merge the map and response data again.

First, a PROC SORT must be used to sort the response and feature tables by a
variable that is present within both the data sets. Once sorted, the data sets can then
be merged with a SQL or DATA step MERGE with the BY variable being the variable
used to sort the data sets. Once the data set is merged, the $GEOREF formatted
variable from the feature table becomes the new data set’s identification variable to be
used in the GMAP procedure. See Example 11 on page 1069 for more details.

Viewing Map Data Sets
When viewed in SAS, a data set is displayed as a table, with the variable names or

labels displayed as column headings and the variable values arranged in columns and

1002 Viewing Map Data Sets Chapter 35

rows. The data sets that contain geometry objects describe a map by its spatial
features, so their data tables are referred to as feature tables. Because feature tables
store the spatial information in a single variable value, the spatial data and response
data is viewed as a 1:1 ratio. The traditional MAP data sets define map areas using
geometric coordinates, so their data tables are also referred to as geometry tables.
Traditional map data sets store the geometric coordinates across multiple observations.

In the MAPS library, there is a data set named METAMAPS, which contains meta
data about all of the data sets that are delivered in the library. Among the meta data in
MAPS.METAMAPS are the following four variables, which you can use to determine
which feature table corresponds to a particular geometry table:

Table 35.1

Variable Description

MEMNAME Identifies the names of all of the data sets that are delivered in the
MAPS library.

MEMCODE Indicates whether a data set represents a feature table (F) or a
geometry table (G).

F_TABLE Indicates the corresponding feature table for a geometry table. This
variable is blank for rows that contain meta data about a feature
table.

F_GEOCOL Indicates the variable, in the feature table, whose values encapsulate
the geometry object.

For example, consider the data sets MAPS.ASIA, MAPS.STATES, and MAPS.US.
Each of these represents a geometry table, and to locate the corresponding feature
tables, you would look in MAPS.METAMAPS to find the MEMNAME values ASIA,
STATES, and US. Here are the relevant values on those rows:

Table 35.2

MEMNAME MEMCODE F_TABLE F_GEOCOL

Asia G NAMES CONT95_GEO

STATES G US2 GEO_STATE

US G US2 _MAP_GEOMETRY_

From these values, you can see that the data sets that are named ASIA, STATES,
and US all represent geometry tables because their MEMCODE values are G. The
feature table corresponding to the ASIA data set is the data set NAMES, which stores

The GMAP Procedure About Response Data Sets 1003

the spatial information in the variable CONT95_GEO. The feature tables corresponding
to STATES and US are both in the data set US2. The spatial information corresponding
to STATES is stored in the variable GEO_STATE, and the spatial information
corresponding to US is stored in the variable _MAP_GEOMETRY_.

Speciality Map Data Sets
There are several map data sets available with SAS/GRAPH software that allow you

to easily label maps:

MAPS.USCENTER
contains the coordinates of the visual center of each state in the U.S. and
Washington, D.C., as well as coordinates in the ocean for states that are too small
to contain a label. There are two pairs of variables for locating labels using
Annotate data sets. The X and Y variables are projected and can be used with the
MAPS.US and MAPS.USCOUNTY data sets. The LONG and LAT variables are
unprojected longitude and latitude in degrees and can be used with the
MAPS.STATES, MAPS.COUNTIES, and MAPS.COUNTY data sets.

MAPS.USCITY
contains the locations of selected cities in the U.S. Many city names occur in more
than one state, so you may have to subset by state to avoid duplication. There are
two pairs of variables for locating labels using Annotate data sets. The X and Y
variables contain projected coordinates and can be used with the MAPS.US and
MAPS.COUNTY data sets. The LONG and LAT variables contain the unprojected
longitude and latitude in degrees. These can be used to place labels on the
MAPS.STATES, MAPS.COUNTIES, or MAPS.COUNTIES data sets.

MAPS.CANCENS
contains the names of the Canadian census divisions. You can use
MAPS.CANCENS with the MAPS.CANADA and MAPS.CANADA3 data sets.

For details on each of these data sets, see the MAPS.METAMAPS data set.

About Response Data Sets
A response data set is a SAS data set that contains
� one or more response variables that contain data values that are associated with

map areas. Each value of the response variable is associated with a map area in
the map data set.

� identification variables that identify the map area to which a response value
belongs. These variables must be the same as those that are contained in the map
data set.

The response data set can contain other variables in addition to these required
variables.

Using the Response Data Set with the Map Data Sets
The traditional map data set and the response data set must be used independently

in the PROC GMAP statement, where the response data set is specified by the DATA=
option and the traditional map data set is specified by the MAP= option. The values of
the map area ID variables in the response data set determine the map areas to be
included on the map. Unless the ALL option is used in the PROC GMAP statement,
only the map areas with response values are shown on the map. As a result, you do not

1004 About Response Data Sets Chapter 35

need to subset your map data set if you are mapping only a small section of the map.
However, if you map the same small section frequently, then create a subset of the map
data set for efficiency.

If you have a response data set named WORK.SITES, then the syntax for using
GMAP might resemble the following:

/* if necessary, define a libref pointing to the SAS maps library */
libname maps ’SAS-data-library’;
/* generate a map */
proc gmap map=maps.us data=work.sites;

id state;
choro region/discrete;

run;
quit;

A feature table and response data set are merged using a variable contained in both
data sets. The new combined data set becomes the DATA= value in the PROC GMAP
statement. When the response data set and the feature table are merged into one, do
not use MAP=map-data-set in the PROC GMAP statement. The $GEOREF formatted
variable is the ID variable for the combined data set. See Example 11 on page 1069 for
more details.

Note: Response data that does not correspond to a map feature will be included in
the legend. �

About Response Variables
The GMAP procedure can produce block, choropleth, prism, and surface maps for

both numeric and character response variables. Numeric variables fall into two
categories: discrete and continuous.

� Discrete variables contain a finite number of specific numeric values that are to be
represented on the map. For example, a variable that contains only the values
1989 or 1990 is a discrete variable.

� Continuous variables contain a range of numeric values that are to be represented
on the map. For example, a variable that contains any real value between 0 and
100 is a continuous variable.

Numeric response variables are always treated as continuous variables unless the
DISCRETE option is used in the action statement.

About Response Levels
Response levels are the values that identify categories of data on the graph. The

categories that are shown on the graph are based on the values of the response
variable. Based on the type of the response variable, a response level can be determined
by any of the following:

� a character value

� the MIDPOINTS= option

� a range of numeric values

� a specific numeric value.

When response levels are determined by a character value, the GMAP procedure
treats each unique value as a response level. For example, if the response variable

The GMAP Procedure Displaying Map Areas and Response Data 1005

contains the names of ten regions, each region will be a response level, resulting in ten
response levels.

When character response levels are determined by the MIDPOINTS= option, any
response variable values that do not match one of the specified response level values
are ignored.

When response levels are determined by a range of numeric values, each response
level has the same number of observations. These options are exceptions to this:

� The LEVELS= option specifies the number of response levels to be used on the
map.

� The DISCRETE option causes the numeric variable to be treated as a discrete
variable.

� The MIDPOINTS= option chooses specific response level values as medians of the
value ranges.

If the response variable values are continuous, then the GMAP procedure assigns
response level intervals automatically unless you specify otherwise. The response levels
represent a range of values rather than a single value.

When response levels are determined by specific numeric values, and the DISCRETE
option is specified, one level is created for each value. If the response variable has an
associated format, then each formatted value is represented by a different response
level. Formatted values are truncated to 16 characters.

The BLOCK, CHORO, and PRISM statements assign patterns to response levels. In
CHORO and PRISM maps, response levels are shown as map areas. However, in
BLOCK maps, response levels are shown as blocks. The default fill pattern for the
response level is solid.

PATTERN statements can define the fill patterns and colors for both blocks and map
areas. PATTERN definitions that define valid block patterns are applied to the blocks
(response levels), and PATTERN definitions that define valid map patterns are applied
to map areas.

See “PATTERN Statement” on page 169 for more information on fill pattern values
and default pattern rotation.

About Identification Variables
For traditional map data sets and response data sets, id-variable(s) identify the map

areas (for example, counties, states, or provinces) that make up the map. A unit area or
map area is a group of observations with the same ID value. The GMAP procedure
matches the value of the response variables for each map area in the response data set
to the corresponding map area in the traditional map data set in order to create the
output graphs.

With feature tables, the geo-variable, or $GEOREF formatted variable containing the
spatial information, is the identification variable. Each observation in a feature table
has a unique $GEOREF formatted variable value. When merging the feature table with
the response data set using a SQL or DATA step statement, the identification variable
can be any variable that is contained within both data sets. Once the merged data set
has been created, the geo-variable is used in the PROC GMAP ID statement for the
merged feature table and response data set. See Example 11 on page 1069 for more
details.

Displaying Map Areas and Response Data
Whether the GMAP procedure draws a map area and whether it displays patterns

for response values depends on the contents of the response data set and on the ALL

1006 Summary of Use Chapter 35

and MISSING options. The following table describes the conditions under which the
procedure does or does not display map areas and response data.

If the response data set... And if... Then the procedure...

includes the map area the map area has a response
value

draws the map area and
displays the response data

includes the map area the map area has no response
value (that is, the value is
missing)

draws the map area but leaves
it empty

includes the map area the map area has no response
value and the MISSING option
is used in the map statement

draws the map area and
displays a response level for
the missing value

does not include the map area the ALL option is used in the
PROC GMAP statement

draws the map area but leaves
it empty

does not include the map area the ALL option is not used does not draw the map area

Summary of Use
To use the GMAP procedure, you must do the following:

1 If necessary, issue a LIBNAME statement for the SAS data library that contains
the map data set that you want to display.

2 If using a traditional map data set, determine what processing needs to be done to
the map data set before it is displayed. Use the GPROJECT, GREDUCE, and
GREMOVE procedures or a DATA step to perform the necessary processing.

3 Issue a LIBNAME statement for the SAS data set that contains the response data
set, or use a DATA step to create a response data set.

4 If using a traditional map data set, use the PROC GMAP statement to identify the
map data set as the MAP= value and response data set as the DATA= value.

5 If using a feature table, use PROC SORT to individually sort the feature table and
response data set by a variable common to both data sets. Next, use SQL or the
DATA step MERGE to merge the feature table with the response data set by using
a variable common to both data sets. Use the combined data set as the DATA=
value in the PROC GMAP statement (do not include MAP= in the PROC GMAP
statement).

6 Use the ID statement to name the id-variable(s) or the geo-variable.

7 Use a BLOCK, CHORO, PRISM, or SURFACE statement to identify the response
variable and generate the map.

Accessing SAS Maps Online
Visit SAS Maps Online to download data updates, sample SAS/GRAPH programs

that use the map data sets delivered with SAS/GRAPH, and GIF images of maps. SAS
Maps Online is located at the following URL:

http://support.sas.com/rnd/datavisualization/mapsonline/html/

The GMAP Procedure PROC GMAP Statement 1007

Procedure Syntax
Requirements: One ID statement (see “ID Statement” on page 1009)and at least one
CHORO (see “CHORO Statement” on page 1017), BLOCK (see “BLOCK Statement” on
page 1009), PRISM (see “PRISM Statement” on page 1022), or SURFACE (see
“SURFACE Statement” on page 1030)statement is required.
Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE
Reminder: The GMAP procedure can include the BY (see “BY Statement” on page 141),
FORMAT, LABEL, and WHERE statements as well as the “TITLE, FOOTNOTE, and
NOTE Statements” on page 210.
Supports: RUN-group processing, Output Delivery System (ODS)

PROC GMAP <MAP=map-data-set>
DATA=response-data-set | feature-table
<ALL>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set>;

ID id-variable(s) | geo-variable;
BLOCK response-variable(s) </ option(s)>;
CHORO response-variable(s) </ option(s)>;
PRISM response-variable(s)</ option(s)>;
SURFACE response-variable(s) </ option(s)>;

PROC GMAP Statement

Identifies the map data set and the response data set that contain the variables associated with
the map. If the response data set and the feature table have been merged, the statement
identifies the merged map data set. The statement optionally causes the procedure to display all
map areas and specifies annotation and an output catalog.

Requirements: Both a map data set and a response data set are required. This can
include a traditional map data set and response data set or a merged response data set
and feature table.

PROC GMAP <MAP=map-data-set>
DATA=response-data-set | feature-table
<ALL>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set>;

Required Argument

DATA=response-data-set | feature-table
identifies the SAS data set that contains the response values or the response values
and the spatial information that are evaluated and represented on the map. If a

1008 PROC GMAP Statement Chapter 35

response data set is specified, it must contain the same identification variable or
variables as the map data set, along with the values of the response variable. If a
feature table is specified, it must contain response data information and spatial
geometry information. By default, the GMAP procedure uses the most recently
created SAS data set.

See Also: “Concepts” on page 999, “SAS Data Sets” on page 29, and “About
Feature Tables” on page 1001.

Options

PROC GMAP statement options affect all of the graphs that are produced by the
procedure.

ALL
specifies that all maps generated by the procedure should include every map area
from the map data set, even if the response data set does not include an observation
for the map area.

When you use the ALL option and a BY statement in a RUN group, the maps
generated for each BY group include every map area from the map data set.

See also: “Displaying Map Areas and Response Data” on page 1005, CEMPTY= and
the MISSING options.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all of the maps that are produced by the GMAP
procedure. To annotate individual maps, use the ANNOTATE= option in the action
statement.

Note: You can use the %MAPLABEL Macro to create the Annotate-data-set. See
“%MAPLABEL Macro” on page 686 for more information. �

See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GMAP procedure for later replay. You can use the GREPLAY procedure to view
the graphs stored in the catalog. If you do not use the GOUT= option, catalog entries
are written to the default catalog WORK.GSEG, which is erased at the end of your
session.

Not supported by: Java, ActiveX

See also: “Storing Graphics Output in SAS Catalogs” on page 53.

IMAGEMAP=output-data-set
creates a temporary SAS data set that contains information about the graph that is
replayed from the graphics catalog. The information in the image map data set
includes the shape and coordinates of the elements in the graph, along with values
that were associated with those elements in variables that were identified for that
purpose in the HTML= and/or HTML_LEGEND= options. The image map data set
can be used to generate an HTML image map in an HTML output file using the
IMAGEMAP macro. The IMAGEMAP macro takes two arguments, the name of the
image map data set and the name or fileref of an HTML output file, as shown in the
following example:

%imagemap(imgmapds, myimgmap.html);

Not supported by: Java, ActiveX

The GMAP Procedure BLOCK Statement 1009

MAP=map-data-set
names a SAS traditional map data set that contains the Cartesian coordinates for
the boundary points of each map area. The traditional map data set must contain
the same identification variable or variables as the response data set being used.
This statement is required if a feature table is not being used.
See also: “About Traditional Data Sets” on page 999.

ID Statement

Identifies the variable or variables in the input data set(s) that define map areas.

Requirements: At least one id-variable or geo-variable is required.

ID id-variable(s) | geo-variable;

Required Arguments

id-variable(s)
identifies one or more variables in the map and response data sets that define map
area. This argument is used only when map and response data sets are specified. If
a feature table is specified, then specify the geo-variable argument.

Every variable that is listed in the ID statement must appear in both the map and
response data sets. The variable identified by the id-variable(s) argument can be of
type numeric or character and should have the same name, type, and length in both
the response and map data sets.
See also: “About Identification Variables” on page 1005.
Featured in: Example 1 on page 1045, Example 3 on page 1049, and Example 4 on

page 1052.

geo-variable
identifies the $GEOREF formatted variable in the feature table containing the
spatial geometry information for the map. The variable identified by the geo-variable
argument must be of character type.
See also: “About Identification Variables” on page 1005.
Featured in: Example 11 on page 1069.

BLOCK Statement

Creates three-dimensional block maps on which levels of magnitude of the specified response
variables are represented by blocks of varying height, pattern, and color.

Requirements: At least one response variable is required. The ID statement must be used
in conjunction with the BLOCK statement.
Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE

1010 BLOCK Statement Chapter 35

Description
The BLOCK statement specifies the variable or variables that contain the data that

are represented on the map by blocks of varying height, pattern, and color. This
statement automatically

� determines the midpoints ranges
� scales the blocks
� assigns patterns to the block faces and map areas. (See “About Block Maps and

Patterns” on page 1016 for more information.)

You can use statement options to enhance the appearance of the map. For example,
you can specify the width and shape of the blocks, the outline colors for the blocks and
the map areas, and the angle of view. Other statement options control the response
levels.

In addition, you can use global statements to modify the block patterns, the map
patterns, and the legend, as well as to add titles and footnotes to the map. You can also
use an Annotate data set to enhance the map.

BLOCK response-variable(s) </ option(s)>;

The option(s) argument can be one or more of the following:
� appearance options:

ANNOTATE=Annotate-data-set
BLOCKSIZE=size
CBLKOUT=block-outline-color | SAME
CEMPTY=empty-area-outline-color
COUTLINE=area-outline-color | SAME
SHAPE=3D-block-shape
WOUTLINE=block-outline-width
XSIZE=map-width <units>
YSIZE=map-height <units>
XVIEW=x
YVIEW=y
ZVIEW=z

� mapping options:
AREA=n | response-variable-name
DISCRETE
LEVELS=number-of-response-levels | ALL
MIDPOINTS=value-list | OLD
MISSING

� legend options:
CTEXT=text-color
LEGEND=LEGEND<1...99>
NOLEGEND

� description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable

The GMAP Procedure BLOCK Statement 1011

HTML_LEGEND=variable

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. Each response variable produces a separate map. All variables must be in the
input data set. Multiple response variables are separated with blanks. Blocks are
not drawn for missing values for the response variable unless you use the MISSING
option in the BLOCK statement.

See also: “About Response Variables” on page 1004.

Options
Options in a BLOCK statement affect all of the maps that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate onto maps that are produced by the BLOCK
statement. Annotate coordinate systems 1, 2, 7, and 8 are not valid with block maps.

Note: You can use the %MAPLABEL Macro to create the Annotate-data-set. See
“%MAPLABEL Macro” on page 686 for more information. �

See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

AREA=n | response-variable-name
specifies that a different map pattern be used for the surface of each map area or
group of map areas on the map.

The value of n indicates which variable in the ID statement determines the groups
that are distinguished by a surface pattern. By default, all map unit areas are drawn
using the same surface fill pattern. If your ID statement has only one map area
identification variable, then use AREA=1 to indicate that each map area surface uses
a different pattern. If you have more than one variable in your ID statement, then
use n to indicate the position of the variable that defines groups that will share a
pattern. When you use the AREA= option, the map data set should be sorted in order
of the variables in the ID statement.

A column name defined in either the MAP= or DATA= data sets may be indicated
with the column-name value. If the column name exists in both the MAP= and
DATA= data sets, the column in the map= data set will be used. When column-name
is used, the areas will be colored based on the AREA= value. Duplicate AREA=
values may have different patterns assigned

By default, using the AREA= option fills map areas by rotating the default hatch
patterns through the colors list, beginning with the M2N0 pattern. The default
outline color depends on the PATTERN statement:

� If you do not specify a PATTERN statement, the default outline color is black
for the Java or ActiveX devices. Otherwise, the default outline color is the
foreground color (the first color in the colors list).

� If you specify the PATTERN statement or the V6COMP graphics option, the
default is COUTLINE=SAME.

1012 BLOCK Statement Chapter 35

You can specify pattern fills or colors or both with PATTERN statements that
specify map/plot patterns. A separate PATTERN definition is needed for each
specified area.

See also: “PATTERN Statement” on page 169.

Featured in: Example 3 on page 1049.

BLOCKSIZE=size
specifies the width of the blocks. The unit of size is the character cell width for the
selected output device. By default, BLOCKSIZE=2.

Featured in: Example 5 on page 1054.

CBLKOUT=block-outline-color | SAME
outlines all blocks in the specified color. The SAME value specifies that the outline
color of a block, a block segment, or a legend is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If no PATTERN statements are specified, then the default outline color is the

foreground color (the first color in the colors list).

� If a PATTERN statement or the V6COMP graphics option is specified, then the
default is CBLKOUT=SAME.

CBLKOUT= is not valid when SHAPE=CYLINDER.

Note: If you specify empty block patterns (VALUE=EMPTY in a PATTERN
statement), you should not change the outline color from the default value, SAME, to
a single color. Otherwise all the outlines will be one color and you will only be able to
distinguish between empty areas by their size. Empty block patterns
(VALUE=EMPTY in a PATTERN statement) are not supported by
DEVICE=ACTIVEX. �

Featured in: Example 1 on page 1045 and Example 3 on page 1049.

CEMPTY=empty-area-outline-color
outlines empty map areas in the specified color. This option affects only map areas
that are empty. Empty map areas are generated in block maps only when a map
area is omitted from the response data set and the ALL option is included in the
PROC GMAP statement.

The default outline color is the same as the default COUTLINE= color.

Not supported by: Java
See also: ALL on page 1008 and “Displaying Map Areas and Response Data” on

page 1005.

COUTLINE=area-outline-color | SAME
outlines non-empty map areas in the specified color. When
COUTLINE=area-outline-color and DEVICE=JAVA or ACTIVEX, both empty and
non-empty map areas are outlined. The SAME value specifies that the outline color
of a map area is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:

� If you do not specify a PATTERN statement, the default outline color is black
for the Java or ActiveX devices. Otherwise, the default outline color is the
foreground color (the first color in the colors list).

� If you specify the PATTERN statement or the V6COMP graphics option, the
default is COUTLINE=SAME.

Note: If you specify empty map patterns (VALUE=EMPTY in a PATTERN
statement), then you should not change the outline color from the default value

The GMAP Procedure BLOCK Statement 1013

SAME. Otherwise all the outlines will be one color and you will not be able to
distinguish between the empty areas. Empty block patterns (VALUE=EMPTY in a
PATTERN statement) are not supported by DEVICE=ACTIVEX. �

Featured in: Example 3 on page 1049.

CTEXT=text-color
specifies a color for the text in the legend. If you omit the CTEXT= option, a color
specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the default, the first color in the colors list.
The CTEXT= color specification is overridden if you also use the COLOR=

suboption of a LABEL= or VALUE= option in a LEGEND definition that is assigned
to the map legend. The COLOR= suboption determines the color of the legend label
or the color of the legend value descriptions, respectively.

For the Java and ActiveX devices, the default color is black.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies a descriptive string up to 256 characters long, that appears in the
description field of the catalog entry for the map. The description does not appear on
the map. By default, the GMAP procedure assigns a description of the form BLOCK
MAP OF variable, where variable is the name of the map variable.

Featured in: Example 5 on page 1054.

DISCRETE
treats a numeric, formatted response variable as though it has discrete values rather
than continuous values. When you use DISCRETE, the response variable values are
not grouped into ranges; instead, the GMAP procedure uses a separate response level
(block height, pattern, and color) for each value of the formatted response variable.

The LEVELS= option is ignored when you use the DISCRETE option.
Use this option only if your numeric response variable is assigned a user-written

format.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �

Featured in: Example 3 on page 1049 .

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with an area of
the map and point to the data or graph you wish to display when the user drills
down on the area.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with a legend
value and point to the data or graph you want to display in response to drill-down
input from the user.

Not supported by: Java, ActiveX

LEGEND=LEGEND<1...99>
specifies the LEGEND statement to associate with the map. The LEGEND= option is
ignored if the specified LEGEND definition is not currently in effect. In the GMAP
procedure, the BLOCK statement produces a legend unless you use the NOLEGEND
option. If you use the SHAPE= option in a LEGEND statement, only the value BAR
is valid. Most of the LEGEND options described in “LEGEND Statement” on page

1014 BLOCK Statement Chapter 35

151 are supported by both Java and ActiveX. If a LEGEND option is not supported
by Java or ActiveX, it is noted in the LEGEND option definition.
Not supported by: Java (partial), ActiveX (partial)
See also: “LEGEND Statement” on page 151.
Featured in: Example 2 on page 1047 and Example 5 on page 1054.

LEVELS=number-of-response-levels | ALL
number-of-response-levels specifies the number of response levels that are to be
graphed when the response variables are continuous. Each level is assigned a
different block height, pattern, and color combination.

If you specify DEVICE=ACTIVEX or DEVICE=ACTXIMG, and if you specify
LEVELS=ALL, then a color ramp is used to assign each response value a continuous
color scheme. The response values are assigned lighter and darker values of a color
scheme to express lower and higher response values. When used with all other
devices, the LEVELS=ALL and DISCRETE options behave exactly the same. For
more information, see the DISCRETE option on page 1013.

If you do not use the LEVELS= option or the DISCRETE option, the GMAP
procedure determines the number of response levels by using the formula FLOOR(1
+ 3.3 log(n)), where n is the number of unique identification variable values for map
areas.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).

Note: LEVELS=ALL is a . �

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (block height, pattern, and color combination).

For numeric response variables, value-list is either an explicit list of values or a
starting and an ending value with an interval increment, or a combination of both
forms:

n <...n>
n TO n <BY increment>
n <...n > TO n <BY increment> <n<...n>>
By default, the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example,

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA only uses
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30-80, but midpoints were specified at 25, 50, 75,and 100, only 50 and 75 are
used.

For character response variables, value-list is a list of unique character values
enclosed in quotes and separated by blanks:

’value-1’ <...’value-n’>

midpoints=’Midwest’ ’Northeast’ ’Northwest’

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

The GMAP Procedure BLOCK Statement 1015

You can selectively exclude some response variable values from the map, as shown
here:

midpoints=’Midwest’

Only those observations for which the response variable exactly matches one of the
values listed in the MIDPOINTS= option are shown on the map. As a result,
observations may be excluded inadvertently if values in the list are misspelled or if
the case does not match exactly.

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976). Specifying GOPTIONS V6COMP serves
the same purpose.
Not supported by: Java (partial)
Featured in: Example 5 on page 1054.

MISSING
accepts a missing value as a valid level for the response variable.
See also: “Displaying Map Areas and Response Data” on page 1005.

NAME=’entry-name’
If you specify DEVICE=ACTXIMG or DEVICE=JAVAIMG, then the name that you
specify will be used for the client image output even in the file exists. For all other
devices, if the name duplicates an existing entry name, SAS/GRAPH specifies the
name of the catalog entry for the map. The maximum length for entry-name is 8
characters. The default name is GMAP. If the specified name duplicates the name of
an existing entry, SAS/GRAPH appends a number to the duplicate name to create a
unique name, for example, GMAP1.
Featured in: Example 5 on page 1054.

NOLEGEND
suppresses the legend.

SHAPE=3D-block-shape
specifies the shape of the blocks. Use this option to enhance the look of the block
shape, or to specify a different shape. When using the SHAPE= option, only solid fill
patterns will be used. The value of 3D-block-shape can be one of the following:

� BLOCK | B
� CYLINDER | C
� HEXAGON | H
� PRISM | P
� STAR | S

The CBLKOUT= option is not valid when SHAPE=CYLINDER.

WOUTLINE=block-outline-width
specifies the width, in pixels, of the outline for all outlined blocks and for the outline
of the map areas.
Not supported by: Java

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the physical dimensions of the map to be drawn. By default, the map uses the
entire procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for map-width or map-height that are greater than the
dimensions of the procedure output area, the map is drawn using the default size.

1016 BLOCK Statement Chapter 35

Not supported by: Java, ActiveX

XVIEW=x
YVIEW=y
ZVIEW=z

specify coordinates of the viewing position in the reference coordinate system. In this
system, the four corners of the map lie on the X-Y plane at coordinates (0,0,0), (0,1,0),
(1,1,0), and (1,0,0). No axes are actually drawn on the maps that are produced by
PROC GMAP. Your viewing position cannot coincide with the viewing reference point
at coordinates (0.5,0.5,0), the center of the map. The value for z cannot be negative.

If you omit the XVIEW=, YVIEW=, and ZVIEW= options, the default coordinates
are (0.5, −2, 3). This viewing position is well above and to the south of the center of
the map. You can specify one, two, or all three of the view coordinates; any that you
do not specify are assigned the default values. While you can use the XVIEW= and
YVIEW= options with DEVICE=JAVA, ZVIEW= can not be used with DEVICE=JAVA.
Not supported by: Java (partial)
Featured in: Example 2 on page 1047.

Figure 35.5 on page 1016 shows the position of the viewing reference point, as well
as the default viewing position.

Figure 35.5 Viewing Position and Viewing Reference Point

About Block Maps and Patterns
Block maps are different from other maps in that they display two different types of

areas that use patterns:
� the blocks themselves, which represent the response levels
� the map areas from which the blocks rise.

By default, the blocks use solid pattern fills and the map areas use a hatch pattern of
slanting lines. The map areas in block maps are the only map areas that by default do
not use solid fills. The map areas and their outlines use the first color in the colors list
regardless of whether the list is the device’s default colors list or one specified with the
COLORS= option in a GOPTIONS statement.

The BLOCK statement has the following options that explicitly control the outline
colors used by the blocks and the map areas.

� CBLKOUT=
� CEMPTY=

The GMAP Procedure CHORO Statement 1017

� COUTLINE=

In addition the AREA= option controls how the map areas are patterned.
When you use PATTERN statements to define the patterns for the map, you must be

sure to specify the correct type of pattern for the area. The blocks use bar/block
patterns and the map areas use map/plot patterns. See “PATTERN Statement” on page
169 for more information on specifying patterns.

Note: If you specify only one PATTERN statement and include only the COLOR=
option, that color will be used for both the blocks and the map areas. For example, this
statement makes the blocks solid blue and the map areas blue hatch. �

pattern1 color=blue;

Note: Empty block patterns (VALUE=EMPTY in a PATTERN statement) are not
supported by DEVICE=ACTIVEX. �

CHORO Statement

Creates two-dimensional maps in which values of the specified response variables are
represented by varying patterns and colors.

Requirements: At least one response variable is required. The ID statement must be used
in conjunction with the CHORO statement
Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE

Description
The CHORO statement specifies the variable or variables that contain the data

represented on the map by patterns that fill the map areas. This statement
automatically

� determines the midpoints
� assigns patterns to the map areas.

You can use statement options to enhance the appearance of the map, for example,
by selecting the colors and patterns that fill the map areas. Other statement options
control the selection of ranges for the response variable.

In addition, you can use global statements to modify the map area patterns and
legend, as well as add titles and footnotes to the map. You can also use an Annotate
data set to enhance the map.

CHORO response-variable(s) </ option(s)>;

option(s) can be one or more from any of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
CEMPTY=empty-area-outline-color
COUTLINE=area-outline-color | SAME
WOUTLINE=area-outline-width
XSIZE=map-width<units>

1018 CHORO Statement Chapter 35

YSIZE=map-height <units>
XVIEW=x
YVIEW=y
ZVIEW=z

� mapping options:
DISCRETE
LEVELS=number-of-response-levels | ALL
MIDPOINTS=value-list | OLD
MISSING

� legend options:
CTEXT=text-color
LEGEND=LEGEND<1...99>
NOLEGEND

� description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. Each response variable produces a separate map. All variables must be in the
input data set. Multiple response variables are separated with blanks.

Missing values for the response variable are not considered valid response values
unless you use the MISSING option on the CHORO statement.

Response variables can be either numeric or character in type. Numeric response
variables are normally grouped into ranges, or response levels, as determined by the
MIDPOINTS= or LEVELS= options. Each response level is assigned a different
combination of pattern and color. Character response variables are assigned unique
response levels, as are numeric variables when the DISCRETE option is specified.
See also: “About Response Variables” on page 1004.

Options
Options in a CHORO statement affect all graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate onto maps that are produced by the CHORO
statement.

Note: You can use the %MAPLABEL Macro to create the Annotate-data-set. See
“%MAPLABEL Macro” on page 686 for more information. �
See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

The GMAP Procedure CHORO Statement 1019

Featured in: Example 6 on page 1061.

CEMPTY=empty-area-outline-color
outlines empty map areas in the specified color. This option affects only the empty
map areas, which are generated in choro maps either

� when there is no response value for a map area and the MISSING option is not
used, or

� when a map area is omitted from the response data set and the ALL option is
included in the PROC GMAP statement.

The default outline color is the same as the default COUTLINE= color.
Not supported by: Java
See also: ALL on page 1008 and “Displaying Map Areas and Response Data” on

page 1005.

COUTLINE=area-outline-color | SAME
outlines non-empty map areas in the specified color. When
COUTLINE=area-outline-color and DEVICE=JAVA or ACTIVEX, both empty and
non-empty map areas are outlined. The value SAME specifies that the outline color
of a map area is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If no PATTERN statement is specified, the default outline color is the

foreground color (the first color in the colors list).
� If a PATTERN statement or the V6COMP graphics option is specified, the

default is COUTLINE=SAME.

Note: If you specify empty map patterns (VALUE=EMPTY in a PATTERN
statement), then you should not change the outline color from the default value
SAME to a single color. Otherwise all the outlines will be one color and you will not
be able to distinguish between the empty areas. �
Featured in: Example 4 on page 1052.

CTEXT=text-color
specifies a color for the text in the legend. If you omit the CTEXT= option, a color
specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.
The CTEXT= color specification is overridden if you also use the COLOR=

suboption of a LABEL= or VALUE= option in a LEGEND definition that is assigned
to the map legend. The COLOR= suboption determines the color of the legend label
or the color of the legend value descriptions, respectively.

For the Java and ActiveX devices, the default color is black.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies a descriptive string up to 256 characters long that appears in the
description field of the catalog entry for the map. The description does not appear on
the map. By default, the GMAP procedure assigns a description of the form
CHOROPLETH MAP OF map_variable.
Featured in: Example 5 on page 1054.

DISCRETE
generates a unique response value (pattern and color combination) for each numeric
response variable.

1020 CHORO Statement Chapter 35

The LEVELS= option is ignored when you use the DISCRETE option.
Be sure to use this option if your numeric response variable is assigned a

user-written format.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �
Featured in: Example 5 on page 1054 and Example 11 on page 1069.

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with an area of
the map and point to the data or graph you wish to display when you drill down on
the area.
Featured in: Example 5 on page 1054.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with a legend
value and point to the data or graph you wish to display when you drill down on the
value.
Not supported by: Java, ActiveX
Featured in: Example 5 on page 1054.

LEGEND=LEGEND<1...99>
assigns the specified LEGEND statement that is to be applied to the map. The
LEGEND= option is ignored if the specified LEGEND definition is not currently in
effect. In the GMAP procedure, the CHORO statement produces a legend by default
unless you specify the NOLEGEND option. If you use the SHAPE= option in a
LEGEND statement, then only the value BAR is valid. Most of the LEGEND options
described in “LEGEND Statement” on page 151 are supported by both Java and
ActiveX. If a LEGEND option is not supported by Java or ActiveX, it is noted in the
LEGEND option definition.
Not supported by: Java (partial), ActiveX (partial)
See also: “LEGEND Statement” on page 151.
Featured in: Example 2 on page 1047.

LEVELS=number-of-response-levels | ALL
specifies the number of response levels to be graphed for numeric response variables,
when the DISCRETE or MIDPOINTS= options are not specified. Each response level
is assigned a different combination of color and fill pattern.

If you specify DEVICE=ACTIVEX or DEVICE=ACTXIMG, and if you specify
LEVELS=ALL, then a color ramp is used to assign each response value a continuous
color scheme. The response values are assigned lighter and darker values of a color
scheme to express lower and higher response values. When used with all other
devices, the LEVELS=ALL and DISCRETE options behave exactly the same. For
more information, see the DISCRETE option on page 1019.

If the LEVELS= option is not used, the GMAP procedure determines the number
of response levels by using the formula FLOOR(1+3.3 log(n)), where n is the number
of unique map area identification variable values.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).

Note: LEVELS=ALL is a . �
Featured in: Example 2 on page 1047.

The GMAP Procedure CHORO Statement 1021

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (pattern and color combination).

For numeric response variables, the value-list argument is either an explicit list of
values, a starting and an ending value with an interval increment, or a combination
of both forms:

n <...n>
n TO n <BY increment >
n <...n> TO n <BY increment > n <...n>
By default the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example,

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA only uses
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30-80, but midpoints were specified at 25, 50, 75,and 100, only 50 and 75 are
used.

For character response variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>
The values are character strings enclosed in single quotation marks and separated

by blanks. For example,

midpoints=’Midwest’ ’Northeast’ ’Northwest’

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

You can selectively exclude some response variable values from the map, as shown
here:

midpoints=’Midwest’

The only observations that are shown on the map are those observations for which
the response variable exactly matches one of the values that are listed in the
MIDPOINTS= option. As a result, observations may be excluded inadvertently if
values in the list are misspelled or if the case does not match exactly.

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976). Specifying GOPTIONS V6COMP serves
the same purpose.

Not supported by: Java (partial)
Featured in: Example 8 on page 1065.

MISSING
accepts a missing value as a valid level for the response variable.
See also: “Displaying Map Areas and Response Data” on page 1005.

NAME=’entry-name’
If you specify DEVICE=ACTXIMG or DEVICE=JAVAIMG, then the name that you
specify will be used for the client image output even in the file exists. For all other
devices, if the name duplicates an existing entry name, SAS/GRAPH specifies the
name of the catalog entry for the map. The maximum length of the entry-name value
is eight characters. The default name is GMAP. If the specified name duplicates the

1022 PRISM Statement Chapter 35

name of an existing entry, SAS/GRAPH appends a number to the duplicate name to
create a unique entry, for example, GMAP1.

Featured in: Example 5 on page 1054.

NOLEGEND
suppresses the legend.

Featured in: Example 6 on page 1061.

WOUTLINE=area-outline-width
specifies the width of all map area outlines, in pixels.

Not supported by: Java

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the physical dimensions of the map. By default, the map uses the entire
procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for units that are greater than the dimensions of the
procedure output area, the map is drawn using the default size.

If you specify either the XSIZE= or YSIZE= option without specifying the other
option, the GMAP procedure scales the dimension for the option that was not
specified to retain the original shape of the map.

Not supported by: Java, ActiveX

XVIEW=x
YVIEW=y
ZVIEW=y

specify coordinates of the viewing position in the reference coordinate system. In this
system, the four corners of the map lie on the X-Y plane at coordinates (0,0,0), (0,1,0),
(1,1,0), and (1,0,0). No axes are actually drawn on the maps that are produced by
PROC GMAP. Your viewing position cannot coincide with the viewing reference point
at coordinates (0.5,0.5,0), the center of the map. The value for z cannot be negative.

If you omit the XVIEW=, YVIEW=, and ZVIEW= options, the default coordinates
are (0.5, −2, 3). This viewing position is well above and to the south of the center of
the map. You can specify one, two, or all three of the view coordinates; any that you
do not specify are assigned the default values. While you can use the XVIEW= and
YVIEW= options with DEVICE=JAVA, ZVIEW= can not be used with DEVICE=JAVA.

Figure 35.5 on page 1016 shows the position of the viewing reference point, as well
as the default viewing position.

Not supported by: Java (partial)

PRISM Statement

Creates three-dimensional prism maps in which levels of magnitude of the specified response
variables are represented by polyhedrons (raised polygons) of varying height, pattern, and color.

Requirements: At least one response variable is required. You must use the ID statement
in conjunction with the PRISM statement.

Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE

The GMAP Procedure PRISM Statement 1023

Description
The PRISM statement specifies the variable or variables that contain the data that

are represented on the map by raised map areas. This statement automatically

� determines the midpoints ranges or midpoints

� assigns patterns to the map areas.

You can use statement options to control the ranges of the response values, specify
the angle of view, and enhance the appearance of the map.

In addition, you can use global statements to modify the map area patterns and the
legend, as well as add titles and footnotes to the map. You can also use an Annotate
data set to enhance the map.

Note: For maps that contain intersecting polygons or polygons within polygons,
extremely complicated maps, or maps that contain line segments that cross, use the
GREDUCE procedure to reduce and simplify the map if necessary. �

PRISM response-variable(s) </ option(s)>;

The option(s) can be one or more options from any or all of the following categories:

� appearance options:

ANNOTATE=Annotate-data-set

CEMPTY=empty-area-outline-color

COUTLINE=area-outline-color | SAME

WOUTLINE=area-outline-width

XLIGHT=x

YLIGHT=y

XSIZE=map-width <units>

YSIZE=map-height <units>

XVIEW=x

YVIEW=y

ZVIEW=x

� mapping options:

AREA=n | response-variable-name

DISCRETE

LEVELS=number-of-response-levels | ALL

MIDPOINTS=value-list | OLD

MISSING

� legend options:

CTEXT=text-color

LEGEND=LEGEND<1...99>

NOLEGEND

� description options:

DESCRIPTION=’entry-description’

NAME=’entry-name’

� ODS options

HTML=variable

HTML_LEGEND=variable

1024 PRISM Statement Chapter 35

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. Each response variable produces a separate map. All variables must be in the
input data set. Multiple response variables are separated with blanks.

Missing values for the response variable are not considered valid unless you use
the MISSING option.

Response variables can be either numeric or character. By default, and as
determined by the LEVELS= or MIDPOINTS= values, numeric response variables
are grouped into ranges, or response levels. Each response level is assigned a
different prism height and a different pattern and color combination.

Character variables and numeric variables (when you use the DISCRETE option)
have a unique response level for each unique response variable value.

See also: “About Response Variables” on page 1004.

Options
Options in a PRISM statement affect all of the graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate onto the maps that are produced by the PRISM
statement. Annotate coordinate systems 1, 2, 7, and 8 are not valid with Prism maps.

Note: You can use the %MAPLABEL Macro to create the Annotate-data-set. See
“%MAPLABEL Macro” on page 686 for more information. �

See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

AREA=n| response-variable-name
specifies that a different map pattern be used for the surface of each map area or
group of map areas on the map.

The value of n indicates which variable in the ID statement determines the groups
that are distinguished by a surface pattern. By default, all map unit areas are drawn
using the same surface fill pattern. If your ID statement has only one map area
identification variable, then use AREA=1 to indicate that each map area surface uses
a different pattern. If you have more than one variable in your ID statement, then
use n to indicate the position of the variable that defines groups that will share a
pattern. When you use the AREA= option, the map data set should be sorted in order
of the variables in the ID statement.

A column name defined in either the MAP= or DATA= data sets may be indicated
with the response-variable-name value. If the column name exists in both the MAP=
and DATA= data sets, then the column in the MAP= data set will be used. When
column-name is used, the areas will be colored based on the AREA= value. Duplicate
AREA= values may have different patterns assigned.

By default, the AREA= option fills map areas by rotating the default hatch
patterns through the colors list, beginning with the M2N0 pattern. The default
outline color depends on the PATTERN statement:

� If no PATTERN statement is specified, the default outline color is the
foreground color (the first color in the colors list).

� If a PATTERN statement or the V6COMP graphics option is specified, the
default is COUTLINE=SAME.

The GMAP Procedure PRISM Statement 1025

You can specify pattern fills or colors or both with PATTERN statements that
specify map/plot patterns. A separate PATTERN definition is needed for each
specified area.
See also: “PATTERN Statement” on page 169.
Featured in: Example 3 on page 1049.

CEMPTY=empty-area-outline-color
outlines empty map areas in the specified color. Empty map areas are generated in
prism maps either

� when there is no response value for a map area and the MISSING option is not
used, or

� when a map area is omitted from the response data set and the ALL option is
included in the PROC GMAP statement.

The default outline color is the same as the default COUTLINE= color.
Not supported by: Java
See also: ALL on page 1008 and “Displaying Map Areas and Response Data” on

page 1005.

COUTLINE=area-outline-color | SAME
outlines non-empty map areas in the specified color. When
COUTLINE=area-outline-color and DEVICE=JAVA or ACTIVEX, both empty and
non-empty map areas are outlined. SAME specifies that the outline color of a map
area is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If no PATTERN statement is specified, the default outline color is the

foreground color (the first color in the colors list).
� If a PATTERN statement or the V6COMP graphics option is specified, the

default is COUTLINE=SAME.

Note: If you specify empty map patterns (VALUE=EMPTY in a PATTERN
statement), you should not change the outline color from the default value SAME to
a single color. Otherwise, all the outlines will be one color and you will not be able to
distinguish between the empty areas. Empty block patterns (VALUE=EMPTY in a
PATTERN statement) are not supported by DEVICE=ACTIVEX. �
Featured in: Example 7 on page 1063.

CTEXT=text-color
specifies a color for the text in the legend. If you omit the CTEXT= option, a color
specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.
The CTEXT= color specification is overridden if you also use the COLOR=

suboption of a LABEL= or VALUE= option in a LEGEND definition assigned to the
map legend. The COLOR= suboption determines the color of the legend label or the
color of the legend value descriptions, respectively.

For the Java and ActiveX devices, the default color is black.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the map. The maximum length for
entry-description is 256 characters. By default, the GMAP procedure assigns a
description of the form PRISM MAP OF map_variable.

1026 PRISM Statement Chapter 35

DISCRETE
generates a separate response level (prism height, color, and surface pattern) for each
different value of the formatted response variable. The LEVELS= option is ignored
when you use the DISCRETE option.

Use this option if your numeric response variable is assigned a user-written format.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �
Featured in: Example 5 on page 1054 and Example 11 on page 1069 (with the

CHORO statements).

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with an area of
the map and point to the data or graph that are displayed in response to drill-down
input.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with legend
values and point to the data or graphs that are displayed in response to drill-down
input.
Not supported by: Java, ActiveX

LEGEND=LEGEND<1...99>
specifies the LEGEND definition to associate with the map. LEGEND= is ignored if
the specified LEGEND definition is not currently in effect. In the GMAP procedure,
the PRISM statement produces a legend unless you use the NOLEGEND option. If
you use the SHAPE= option in a LEGEND statement, only the value BAR is valid.
Most of the LEGEND options described in “LEGEND Statement” on page 151 are
supported by both Java and ActiveX. If a LEGEND option is not supported by Java
or ActiveX, it is noted in the LEGEND option definition.
Not supported by: Java (partial), ActiveX (partial)
See also: “LEGEND Statement” on page 151
Featured in: Example 8 on page 1065.

LEVELS=number-of-response-levels | ALL
specifies the number of response levels to be graphed when the response variables
are numeric and the DISCRETE and MIDPOINTS= options are not specified. Each
response level is assigned a different prism height, surface pattern, and color
combination.

If you specify DEVICE=ACTIVEX or DEVICE=ACTXIMG, and if you specify
LEVELS=ALL, then a color ramp is used to assign each response value a continuous
color scheme. The response values are assigned lighter and darker values of a color
scheme to express lower and higher response values. When used with all other
devices, the LEVELS=ALL and DISCRETE options behave exactly the same. For
more information, see the DISCRETE option on page 1026.

If neither the LEVELS= option nor the DISCRETE option is used, then the GMAP
procedure determines the number of response levels by using the formula
FLOOR(1+3.3 log(n)), where n is the number of unique map area identification
variable values.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).

Note: LEVELS=ALL is a . �

The GMAP Procedure PRISM Statement 1027

Featured in: Example 2 on page 1047.

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (prism height, pattern, and color combination).

For numeric response variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or an combination of both
forms:

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > n <...n>
By default the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example,

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA only uses
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30-80, but midpoints were specified at 25, 50, 75,and 100, only 50 and 75 are
used.

For character response variables, value-list has this form:
’value-1’ <...’value-n’>
The values are character strings enclosed in single quotation marks and separated

by blanks. For example,

midpoints=’Midwest’ ’Northeast’ ’Northwest’

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

You can selectively exclude some response variable values from the map, as shown
here:

midpoints=’Midwest’

Only those observations for which the response variable exactly matches one of the
values listed in the MIDPOINTS= option are shown on the map. As a result,
observations may be inadvertently excluded if values in the list are misspelled or if
the case does not match exactly.

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976). Specifying GOPTIONS V6COMP serves
the same purpose.
Not supported by: Java (partial)
Featured in: Example 8 on page 1065.

MISSING
accepts a missing value as a valid level for the response variable.
See also: “Displaying Map Areas and Response Data” on page 1005.

NAME=’entry-name’
When you specify DEVICE=ACTXIMG or DEVICE=JAVAIMG, specifies the name
that will be used for the client image output even in the file exists. For all other
devices, if the name duplicates an existing entry name, then SAS/GRAPH specifies
the name of the catalog entry for the map. The maximum length for entry-name is
eight characters. The default name is GMAP. If the specified name duplicates an

1028 PRISM Statement Chapter 35

existing name, then SAS/GRAPH software appends a number to the duplicate name
to create a unique entry, for example, GMAP1.

NOLEGEND
suppresses the legend.

WOUTLINE=area-outline-width
specifies the width, in pixels, of all map area outlines.
Not supported by: Java, ActiveX

XLIGHT=x
YLIGHT=y

specify the coordinates of the imaginary light source in the map coordinate system.
The position of the light source affects the way the sides of the map polygons are
shaded. Although you can specify any point for the light source using the XLIGHT=
and YLIGHT= options, the light source is actually placed in one of only four positions.

Table 35.3 on page 1028 shows how the point you specify is positioned.

Table 35.3 Light Source Coordinates

Specified Light Source Light Source Position

in quadrants I or II, or on the X or +Y axis behind the map (point A), and all side polygons
are shadowed

on or within approximately 10 degrees of the Y
axis

the viewing position (point D), and none of the
side polygons are shadowed

in quadrant III (except within 10 degrees of
the Y axis)

to the left of the map (point B), and the
right-facing sides of polygons are shadowed

in quadrant IV (except within 10 degrees of the
Y axis)

to the right of the map (point C), and the
left-facing side polygons are shadowed

Figure 35.6 on page 1029 illustrates the light source positions. Assume that your
viewing position, selected by the XVIEW=, YVIEW=, and ZVIEW= options, is point D.

The GMAP Procedure PRISM Statement 1029

Figure 35.6 Coordinates of Imagined Light Source in a Map Coordinate System

By default, the light source position is the same as the viewing position specified
by the XVIEW=, YVIEW=, and ZVIEW= options. The light source position cannot
coincide with the viewing reference point (0.5,0.5), which corresponds with the
position directly above the center of the map.
Not supported by: Java, ActiveX
See also: XVIEW= on page 1029.
Featured in: Example 8 on page 1065.

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the dimensions of the map that you are drawing. By default, the map uses
the entire procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for map-width and map height that are greater than the
dimensions of the procedure output area, the map is drawn using the default size. If
you specify one value and not the other, the dimension is adjusted to maintain the
correct aspect ratio.
Not supported by: Java, ActiveX

XVIEW=x
YVIEW=y
ZVIEW=z

specify the viewing position coordinates for the map. In this system, the four corners
of the map lie on the X-Y plane at coordinates (0, 0, 0), (0, 1, 0), (1, 1, 0), and (1, 0, 0).

The viewing position cannot coincide with the viewing reference point at
coordinates (0.5, 0.5, 0).

The value for z cannot be negative.
If you omit the XVIEW=, YVIEW=, and ZVIEW= options, the default coordinates

are (0.5, −2,3). This viewing position is well above and to the south of the center of
the map. One, two, or all three view coordinates can be specified; any that are not
specified are assigned the default values.

1030 SURFACE Statement Chapter 35

Figure 35.5 on page 1016 shows the position of the viewing reference point, as well
as the default viewing position.

To ensure that the polygon edges are distinguishable, the angle from vertical must
be less than or equal to 45 degrees. If you specify a ZVIEW= value such that this
condition cannot be satisfied (that is, a very small value), PROC GMAP increases the
ZVIEW= value automatically so that the angle is 45 degrees or less. While you can
use the XVIEW= and YVIEW= options with DEVICE=JAVA, ZVIEW= can not be
used with DEVICE=JAVA.
Not supported by: Java (partial)
Featured in: Example 8 on page 1065.

SURFACE Statement

Creates three-dimensional surface maps in which levels of magnitude of the specified response
variables are represented by spikes of varying height.

Requirements: At least one response variable is required and must be numeric. The ID
statement must be used in conjunction with the SURFACE statement.
Global statements: FOOTNOTE, TITLE
Not supported by: Java, ActiveX

Description
The SURFACE statement specifies the variable or variables that contain the data

that are represented on the map by raised map areas. This statement automatically
determines the midpoints. You can use statement options to control spike proportions,
specify the angle of view, and modify the general appearance of the map. For example,
you can select the color and number of lines for the representation of the surface area.
You can control the selection of spike heights and base widths.

In addition, you can use global statements to add titles and footnotes to the map.
You can also enhance the map with an Annotate data set.

SURFACE response-variable(s) </ option(s)>;

option(s) can be one or more of the following:
� appearance options:

ANNOTATE=Annotate-data-set
CBODY=surface-map-color
CONSTANT=n
NLINES=number-of-lines
ROTATE=degrees
TILT=degrees
XSIZE=map-width <units>
YSIZE=map-height <units>

� description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

The GMAP Procedure SURFACE Statement 1031

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. The response-variable must be numeric and must contain only positive values.
Each response variable produces a separate map. All variables must be in the input
data set. Multiple response variables are separated with blanks.

The GMAP procedure scales response variables for presentation on the map. The
height of the spikes on the map correspond to the relative value of the response
variable, not to the actual value of the response variable. However, when the viewing
angle is changed, the spikes may not appear this way. The spikes in the front may
appear to be higher than the spikes in the back, which represent greater values.

See also: “About Response Variables” on page 1004.

Options
SURFACE statement options affect all maps that are produced by that statement.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate onto maps that are produced by the SURFACE
statement. Annotate coordinate systems 1, 2, 7, and 8 are not valid with surface
maps.

Note: You can use the %MAPLABEL Macro to create the Annotate-data-set. See
“%MAPLABEL Macro” on page 686 for more information. �

See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

CBODY=surface-map-color
specifies the color that is used to draw the surface map. By default, the first color in
the current colors list is used.

CONSTANT=n
specifies a denominator to use in the distance decay function. This function
determines the base width of the spike that is drawn at each map area center.

By default, CONSTANT=10. Values greater than 10 yield spikes that are wider at
the base. Values less than 10 yield spikes that are narrower at the base.

Let xk and yk represent the coordinates, and zk represent the function value at the
center of each map area. The zk values are scaled from 1 to 11. A square grid of x by
y points (where the size of the grid is the NLINES= option value) and the associated
function value f(x,y) are generated from the map area center value using this formula:

� ��� �� �
�

� ���� � ����� ���

where

�� � � ��
�

� � ��
�

and

1032 SURFACE Statement Chapter 35

�
� ������ ��	
�� � ���������������� � �

�
� �� � ���	����	�

Featured in: Example 10 on page 1068.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the map. The maximum length for
entry-description is 256 characters. By default, the GMAP procedure assigns a
description of the form SURFACE MAP OF variable, where variable is the name of
the map variable.

NAME=’entry-name’
When you specify DEVICE=ACTXIMG or DEVICE=JAVAIMG, specifies the name
that will be used for the client image output even in the file exists. For all other
devices, if the name duplicates an existing entry name, then SAS/GRAPH specifies
the name of the catalog entry for the map. The maximum length for entry-name is
eight characters. The default name is GMAP. If the specified name duplicates the
name of an existing entry, then SAS/GRAPH software appends a number to the
duplicate name to create a unique entry, for example, GMAP1.

NLINES=number-of-lines
N=number-of-lines

specifies the number of lines used to draw the surface map. Values can range from
50 to 100; the higher the value, the more solid the map appears and the more
resources used. By default, NLINES=50.

Featured in: Example 10 on page 1068.

ROTATE=degrees
specifies the degrees of the angle at which to rotate the map about the Z axis in the
map coordinate system. The degrees argument can be any angle. Positive values
indicate rotation in the counterclockwise direction. By default, ROTATE=70. The
ROTATE= option also affects the direction of the lines that are used to draw the
surface map.

Featured in: Example 10 on page 1068.

TILT=degrees
specifies the degrees of the angle at which to tilt the map about the X axis in the
map coordinate system. The value of degrees can be 0 to 90. Increasing values cause
the map to tilt backward and makes the spikes more prominent. Decreasing values
make the map shape more distinguishable and the spikes less prominent. TILT=90
corresponds to viewing the map edge-on, while TILT=0 corresponds to viewing the
map from directly overhead. By default, TILT=70.

Featured in: Example 10 on page 1068.

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the physical dimensions of the map. By default, the map uses the entire
procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for map-width and map-height that are greater than the
dimensions of the procedure output area, the map is drawn using the default size.
And if you specify only one dimension, the other is scaled to maintain the aspect ratio.

The GMAP Procedure Using FIPS Codes and Province Codes 1033

Using FIPS Codes and Province Codes

The map area identification variable in some SAS/GRAPH map data sets contain
standardized numeric codes. The data sets for the United States contain a variable
whose values are FIPS (Federal Information Processing Standards) codes. The data
sets for Canada contain standard province codes or census division codes. When you
use the GMAP procedure with a traditional map data set, the variables that identify
map areas in your response data set must have the same values as the map area
identification variables in the traditional map data set.

If both a feature table and a response data set contain FIPS Codes or Province
Codes, then once both data sets have been sorted, a SQL or DATA step MERGE can be
used to merge the two data sets using the variable containing the codes. However, with
the merged response and feature table, the identification variable used in the GMAP
procedure must be the $GEOREF formatted variable that contains the spatial
information. See “$GEOREF format” on page 1001 for more information.

If the map area identification variables in your response data set are state or
province names or abbreviations, convert them to FIPS codes or province codes before
using the response data set with one of the map data sets supplied by SAS. Table 35.4
on page 1033 lists the FIPS codes for the United States and Table 35.5 on page 1034
lists the standard codes for Canadian provinces.

Table 35.4 U.S. FIPS Codes

FIPS Code State FIPS Code State

01 Alabama 30 Montana

02 Alaska 31 Nebraska

04 Arizona 32 Nevada

05 Arkansas 33 New Hampshire

06 California 34 New Jersey

08 Colorado 35 New Mexico

09 Connecticut 36 New York

10 Delaware 37 North Carolina

11 District of Columbia 38 North Dakota

12 Florida 39 Ohio

13 Georgia 40 Oklahoma

15 Hawaii 41 Oregon

16 Idaho 42 Pennsylvania

17 Illinois 44 Rhode Island

18 Indiana 45 South Carolina

19 Iowa 46 South Dakota

20 Kansas 47 Tennessee

21 Kentucky 48 Texas

22 Louisiana 49 Utah

23 Maine 50 Vermont

1034 Using FIPS Codes and Province Codes Chapter 35

FIPS Code State FIPS Code State

24 Maryland 51 Virginia

25 Massachusetts 53 Washington

26 Michigan 54 West Virginia

27 Minnesota 55 Wisconsin

28 Mississippi 56 Wyoming

29 Missouri 72 Puerto Rico

Table 35.5 Canadian Province Codes

Province Code Province

10 Newfoundland

11 Prince Edward Island

12 Nova Scotia

13 New Brunswick

24 Quebec

35 Ontario

46 Manitoba

47 Saskatchewan

48 Alberta

59 British Columbia

60 Yukon

61 Northwest Territories

Note: The ID variables in Canadian maps are character. �

The CNTYNAME data set contains a cross-reference of names and FIPS codes for all
counties in the United States. The CANCENS data set contains a cross-reference of
census district names and codes for Canadian provinces.

Base SAS software provides several functions that convert state names to FIPS codes
and vice versa. The following table lists these functions and a brief description of each.
See SAS Language Reference: Dictionary for more information.

Table 35.6 FIPS and Postal Code Functions

Function Description

STFIPS converts state postal code to FIPS state code

STNAME converts state postal code to state name in upper case

STNAMEL converts state postal code to state name in mixed case

FIPNAME converts FIPS code to state name in upper case

The GMAP Procedure Using Formats for Maps 1035

FIPNAMEL converts FIPS code to state name in mixed case

FIPSTATE converts FIPS code to state postal code

Using Formats for Maps

You can specify an output map area name or numeric value using one of the
predefined formats for maps. The following prefixes are used in the names of the
formats for maps:

CONT Continent

CNTRY Country

GLC Geographic Location Code, distributed by Government Services
Administration. USA

ISO International Standard Organization

The formats for maps are located in the SASHELP.MAPFMTS catalog. See the
MAPS.NAMES table to view all the continent and country names and corresponding
GLC, ISO, and numeric representation for the continent values.

To use one of the formats for maps, you must specify the SASHELP.MAPFMTS
catalog on the FMTSEARCH= option on a SAS OPTIONS statement:

options fmtsearch=(sashelp.mapfmts);

In addition to using the PUT statement (as shown in the examples in the following
table), the formats can also be invoked using a FORMAT statement.

FORMAT DESCRIPTION EXAMPLE OUTPUT

contfmt use a continent’s
numeric value to output
the continent’s name

cont= 91

put(cont,contfmt.);

North America

$cntrysl use a country’s short
name in uppercase to
output the country’s
long name in uppercase

name=’IRAN’

put(name,cntrysl.);

IRAN, ISLAMIC
REPUBLIC OF

glcnlu use the GLC numeric
code to output the
country’s long name in
uppercase

id=460

put(id,glclu.);

IRAN, ISLAMIC
REPUBLIC OF

glcnsu use the GLC numeric
code to output the
country’s short name in
uppercase

id=460

put(id,glcnsu.);

IRAN

glcnsm use the GLC numeric
code to output the
country’s name in mixed
case

id=460

put(id,glcnsm.);

Iran

1036 Using Formats for Maps Chapter 35

FORMAT DESCRIPTION EXAMPLE OUTPUT

$glcalu use the GLC alpha code
to output the country’s
long name in uppercase

country=’IR’

put(country,glcalu.);

IRAN, ISLAMIC
REPUBLIC OF

$glcsua use the country’s short
name in uppercase to
output the GLC alpha
code name

name=’IRAN’

put(name,glcsua.);

IR

glcna use the country’s GLC
numeric code to output
the country’s GLC alpha
code

id=460

put(id,glcna.);

IR

$glcsun use the country’s short
name in uppercase to
output the country’s
GLC numeric code

name=’IRAN’

put(name,glcsun.);

460

$glcan use the country’s GLC
alpha code to output the
country’s GLC numeric
code

country=’IR’

put(country,glcan.);

460

$glcsma use the country’s short
name in mixed-case to
output the country’s
GLC alpha code

mixname=’Iran’

put(mixname,glcsma.);

IR

$glcsmn use the country’s short
name in mixed-case to
output the country’s
GLC numeric code

mixname=’Iran’

put(mixname,glcsmn.);

460

$glcprov use a province/city name
appended by || as a
delimiter, followed by
the country’s GLC alpha
code to output a
province||country code,
the province/city code,
and the country’s GLC
alpha numeric code

provname=’TEHRAN||IR’

put(provname,glcprov.);

8250460

8250 — province/
city code

460 — country GLC
numeric code

$isosu2a use the country’s short
name in uppercase to
output the country’s
ISO alpha2 code

name=’IRAN’

put(name,$isosu2a.);

IR

$isosu3a use the country’s name
in uppercase to output
the country’s ISO
alpha3 code

name=’IRAN’

put(name,$isosu3a.);

IRN

$isosun use the country’s short
name in uppercase to
output the country’s
ISO numeric code

name=’IRAN’

put(name,isosun.);

364

The GMAP Procedure Using Formats for Maps 1037

FORMAT DESCRIPTION EXAMPLE OUTPUT

ison2a use the country’s ISO
numeric code to output
the country’s ISO
alpha2 code

iso=364

put(iso,ison2a.);

IR

ison3a use the country’s ISO
numeric code to output
the country’s ISO
alpha3 code

iso=364

put(iso,ison3a.);

IRN

isonlu use the country’s ISO
numeric code to output
the country’s long name
in uppercase

iso=364

put(iso,isonlu.);

IRAN, ISLAMIC
REPUBLIC OF

isonsu use the country’s ISO
numeric code to output
the country’s short
name in uppercase

iso=364

put(iso,isonsu.);

IRAN

isoa2lu use the country’s ISO
alpha2 code to output
the country’s long name
in uppercase

alpha2=’IR’

put(alpha2,isoa2lu.);

IRAN, ISLAMIC
REPUBLIC OF

isoa2su use the country’s ISO
alpha2 code to output
the country’s short
name in uppercase

alpha2=’IR’

put(alpha2,isoa2lu.);

IRAN

isoa3lu use the country’s ISO
alpha3 code to output
the country’s long name
uppercase

alpha3=’IRN’

put(alpha3,isoa3lu.);

IRAN, ISLAMIC
REPUBLIC OF

isoa3su use the country’s ISO
alpha3 code to output
the country’s short
name in uppercase

alpha3=’IRN’
put(alpha3,isoa3su.);

IRAN

$isoa2n use the country’s ISO
alpha2 code to output
the country’s ISO
numeric code

alpha2=’IR’

put(alpha2,$isoa2n.);

364

$isoa3n use the country’s ISO
alpha3 code to output
the country’s ISO
numeric code

alpha3=’IRN’

put(alpha3,$isoa3n.);

364

$isosm2a use the country’s short
name in mixed-case to
output the country’s
ISO alpha2 code

mixname=’Iran’

put(mixname,$isosn2a.);

IR

1038 SAS/GRAPH Map Data Sets Reference Information Chapter 35

FORMAT DESCRIPTION EXAMPLE OUTPUT

$isosm3a use the country’s short
name in mixed-case to
output the country’s
ISO alpha3 code

mixname=’Iran’

put(mixname,$isosn3a.);

IRN

$isosmn use the country’s short
name in mixed-case to
output the country’s
ISO numeric code

mixname=’Iran’

put(mixname,$isosmn.);

364

SAS/GRAPH Map Data Sets Reference Information
Before using your map data sets, contact your SAS Support Consultant to verify the

name and location of the SAS data library that contains the map data sets at your site.
Many sites automatically assign a libref of MAPS to the SAS data library that contains
the SAS-supplied map data sets. However, if you use the map data sets regularly and
your site does not automatically assign a libref to the data library that contains the
map data sets, you can add a LIBNAME statement to your AUTOEXEC file that
defines the location of the map data set library. If you do this, the libref for the maps is
established automatically whenever you begin a SAS session.

Accessing Detailed Descriptions of Map Data Sets
You may need detailed information on the map data sets in order to determine their

type, size, the variables they contain, or, in the case of traditional data sets, whether
they are projected or unprojected. You can get this information by using the
CONTENTS or DATASETS procedure, or browsing the MAPS.METAMAPS (see
“Viewing Map Data Sets” on page 1001) data set in the MAPS library (or the library
where your SAS-supplied map data sets reside). If the libref MAPS has automatically
been assigned, you can see a complete list of map data sets by viewing the
MAPS.METAMAPS data set. See

These statements list the map data sets in the SAS data library that is assigned to
the libref MAPS:

libname maps ’SAS-data-library’;

proc datasets lib=maps;
run;

Note: Be sure to replace SAS-data-library with the location of the SAS data library
that contains map data sets at your site. �

The following statements provide detailed information on a traditional map data set,
including the number of observations, the variables in each data set, and a description
of each variable:

libname maps ’SAS-data-library’;

proc contents data=maps.canada3;

The GMAP Procedure Customizing SAS/GRAPH Map Data Sets 1039

run;

To see the contents and descriptions of all of the SAS-supplied map data sets you can
specify DATA=MAPS._ALL_ in the CONTENTS procedure. See the Base SAS
Procedures Guide for more information on the CONTENTS and DATASETS procedures.

Customizing SAS/GRAPH Map Data Sets
You can customize the area that is displayed on your map by using only part of a

particular map data set. There are several ways to accomplish this. You can use
WHERE processing or a DATA step to subset the map data to be used by the GMAP
procedure.

With the traditional map data set, you can also use the GPROJECT procedure to
create a rectangular subset of a map data set by using minimum and maximum
longitude and latitude values.

You can combine traditional map data sets in either of these situations:

� The map data sets to be combined were originally projected together.

� The map data sets all contain the same type of coordinates. That is, all are in
radians or all are in degrees.

SAS-supplied traditional map data sets that have coordinates expressed only as
longitude and latitude, with variable names LONG and LAT, must be renamed X and Y
and should be projected before displaying.

Subsetting Traditional Map Data Sets
Some of the SAS/GRAPH map data sets contain a large number of observations.

Programs that use only a few states or provinces will run faster if you exclude the
unused portion of the map data set or use an already reduced map data set. SAS
provides several ways to accomplish this. One is to use the WHERE statement or
WHERE= data set option within the GMAP procedure to select only the states or
provinces you want.

The WHERE statement and WHERE= data set option are most useful when you
produce a simple map and do not need to make any other changes to the data set. For
example, to use only the observations for Quebec in the CANADA traditional map data
set, begin the GMAP procedure with this statement:

proc gmap map=maps.canada(where=(province=24));

To use only North Carolina in US2MERGED, a data set created by using SQL or
DATA step MERGE on the feature table US2 and a response data set also containing
the variable STATE, the GMAP procedure would begin with the following statement:

proc gmap data=work.us2merged(where=(STATE=37));

The WHERE= data set option applies only to the data set that you specify in the
argument in which the WHERE= option appears. If you use the WHERE statement,
the WHERE condition applies to the traditional map data set and the response data
sets or the merged response and feature table.

Another approach is to use a DATA step to create a subset of the larger data set.
This code illustrates another way to extract the observations for Quebec from the
CANADA traditional map data set:

data quebec;
set maps.canada(where=(province=24));

1040 Customizing SAS/GRAPH Map Data Sets Chapter 35

This code illustrates another way to extract North Carolina data from the US2
feature table:

data ncarolina;
set maps.us2(where=(STATE=37));

This approach is most useful when you want to create a permanent subset of a map
data set or when you need to make additional changes to the map data set.

Also see Chapter 42, “The GREMOVE Procedure,” on page 1223 for an example how
to use GREMOVE to create a regional map from one of the traditional map data sets
that are supplied with SAS/GRAPH.

Reducing Traditional Map Data Sets
A reduced map data set is one that can be used to draw a map that retains the

overall appearance of the original map but that contains fewer points, requires
considerably less storage space, and can be drawn much more quickly. You can improve
performance by plotting fewer observations for each map area. You reduce a traditional
map data set when you subset it on the variable DENSITY. You can add the variable
DENSITY to a map data set by using the GREDUCE procedure. For more information,
see Chapter 41, “The GREDUCE Procedure,” on page 1213.

An unreduced map data set contains all of the coordinates that were produced when
the map was digitized. This type of map data set has more observations than most
graphics output devices can accurately plot. Some unreduced map data sets already
contain a DENSITY variable like the one calculated by the GREDUCE procedure, so it
is not necessary to use the GREDUCE procedure to process these data sets. Values for
DENSITY range from 0 through 6 (the lower the density, the coarser the boundary line).

A statement of this form excludes all points with a density level of 2 or greater:

proc gmap map=maps.states(where=(density<2));

The resulting map is much coarser than one drawn by using all of the observations
in the data set, but it is drawn much faster.

Another way to create a reduced map data set is to use a DATA step to exclude
observations with larger density values:

data states;
set maps.states(where=(density<2));

Projecting Traditional Map Data Sets
Map data can be stored as unprojected or projected coordinates. Unprojected map

data contains spherical coordinates, that is, longitude and latitude values usually
expressed in radians.*

Each of the feature tables in the MAPS library are projected. A few traditional map
data sets that are provided with SAS/GRAPH contain only unprojected coordinates and
should be projected before you use them. They are

CANADA3
CANADA4
COUNTIES
COUNTY
STATES

Projected map data contains Cartesian coordinates. The GMAP procedure is
designed to plot maps by using projected map data sets. Feature tables store the

* If your data is in degrees, then it can be converted to radians by multiplying by the degree-to-radian constant [atan(1)/45].

The GMAP Procedure Creating Traditional Map Data Sets 1041

projected data in the $GEOREF formatted variable (see “$GEOREF format” on page
1001). Most SAS/GRAPH traditional map data sets contain projected coordinates that
are stored as X and Y.

If the projection supplied with the traditional map data set does not meet your needs,
then you can use the GPROJECT procedure (on unprojected map coordinates) to create
a different projection. For more information on traditional map data sets with
unprojected coordinates, see “Traditional Map Data Sets Containing X, Y, LONG, and
LAT” on page 1000. You should select a projection method that least distorts the
regions that you are mapping. (All projection methods inherently distort map regions.)
See Chapter 39, “The GPROJECT Procedure,” on page 1161 for more information.

Note: Using an unprojected traditional map data set with the GMAP procedure can
cause your map to be reversed and distorted. �

Controlling the Display of Lakes
Some countries contain a lake that is located completely within a single unit area.

Occasionally these lakes can be a problem when mapping traditional map data sets. In
addition, displaying lakes may not be appropriate for some applications. In these cases,
you may want to remove the lakes from the map data set before you proceed.

Traditional map data sets that contain coordinates for a lake that is located within a
single internal division are identified by the presence of the numeric variable LAKE.
The value of LAKE is 1 for points that correspond to lakes and 0 otherwise. The
following statements illustrate how to delete the lakes from your traditional map data
sets using WHERE processing:

proc gmap map=maps.chile(where=(lake=0))
data=maps.chile;

id id;
choro id / levels=1 nolegend;
title box=1 f=none h=4

’Chile with Lakes Removed’;
run;

You can also create a new traditional map data set that is a subset of the traditional
map data set:

data nolake;
set maps.chile;
if lake=0;

run;

Creating Traditional Map Data Sets
In addition to using map data sets that are supplied with SAS/GRAPH software, you

can also create your own map data sets. Map data sets are not limited to geographic
data; you use them to define other spaces such as floor plans or street diagrams.

A unit area is defined by observations in the map data set that have the same
identification (ID) variable value. A unit area may be composed of a single polygon or a
collection of polygons. A polygon is defined by all of the observations that have the
same SEGMENT variable value within the same unit area.

� If the unit area is a single polygon, then all values of SEGMENT are the same.
� If the unit area contains multiple polygons, such as islands, then the SEGMENT

variable has multiple values. For example, in the MAPS.US data set, the state of
Hawaii (a unit area) contains six different values in the SEGMENT variable, one
for each island in the state.

1042 Creating Traditional Map Data Sets Chapter 35

� If the unit area contains enclosed polygons, such as lakes, then the SEGMENT
variable has one value but the interior polygon is defined by separate boundaries.
To separate boundaries, a missing X and Y value must be inserted at the
separation point. For example, in the CANADA2 data set supplied with SAS/
GRAPH, the map data for the Northwest Territories (a unit area) use enclosed
polygons for two lakes.

Creating a Unit Area that is a Single Polygon
This DATA step creates a SAS data set that contains coordinates for a unit area with

a single polygon, a square:

data square;
input id x y;
datalines;

1 0 0
1 0 40
1 40 40
1 40 0
;

This data set does not have a SEGMENT variable.

Creating a Unit Area that Contains Multiple Polygons
Use different values of the SEGMENT variable to create separate polygons within a

single unit area. For example, this DATA step assigns two values to the SEGMENT
variable. The resulting data set produces a single unit area that contains two polygons,
as shown in Figure 35.7 on page 1043:

data map;
input id $ 1-8 segment x y;
datalines;

square 1 0 0
square 1 0 4
square 1 4 4
square 1 4 0
square 2 5 5
square 2 5 7
square 2 7 7
square 2 7 5
;

The GMAP Procedure Creating Traditional Map Data Sets 1043

Figure 35.7 Single Unit Area with Two Segments (Polygons)

Creating a Unit Area that Contains Enclosed Polygons as Holes
Use separate boundaries to create an enclosed polygon (that is, a polygon that falls

within the primary polygon for a single segment). The separate boundaries are
separated from the primary polygon boundary by missing values for X and Y. For
example, the data set that is created by this DATA step produces the map shown in
Figure 35.8 on page 1044:

data map;
input id $ 1-8 segment x y;
datalines;

square 1 0 0
square 1 0 4
square 1 4 4
square 1 4 0
square 1 . .
square 1 1 1
square 1 2 2
square 1 3 1
;

1044 Creating Traditional Map Data Sets Chapter 35

Figure 35.8 Single Unit Area with Hole

Creating a Unit Area that Contains Enclosed Polygons as Cities
Ordinarily, if one unit area is surrounded by another, the pattern of the external unit

area is drawn over the pattern for the internal one, instead of around it. Avoid this
problem by adding an observation to the map data for the external unit area with
missing values for X and Y, followed by the coordinates of the internal unit area, but
using the ID values for the external unit area. For example, this DATA step creates a
data set that produces the map shown in Figure 35.9 on page 1045:

data map;
input id $ 1-8 segment x y;
datalines;

square 1 0 0
square 1 0 4
square 1 4 4
square 1 4 0
square 1 . .
square 1 1 1
square 1 2 2
square 1 3 1
triangle 1 1 1
triangle 1 2 2
triangle 1 3 1
;

The GMAP Procedure Example 1: Producing a Simple Block Map 1045

Figure 35.9 Unit Area within a Unit Area

Note: A single map segment (a section of a unit area with a single value of the
SEGMENT variable) cannot contain multiple polygons without at least one observation
with missing values for X and Y. All segments within the map data sets that are
supplied by SAS/GRAPH contain a single polygon that can have one or more separate
boundaries, each separated by an observation with missing values for X and Y. �

Examples
The following examples include features from one or more of the GMAP statements.

Example 1: Producing a Simple Block Map

Procedure features:
ID statement
BLOCK statement option:

CBLKOUT=
Sample library member: GMPSIMPL

1046 Example 1: Producing a Simple Block Map Chapter 35

This example produces a block map that shows the total number of hazardous waste
sites in each state in 1997. Since the DISCRETE option is not used, the response
variable is assumed to have a continuous range of values. Because neither the
LEVELS= nor MIDPOINTS= option is used, the GMAP procedure selects a number of
levels based on the number of map areas and then calculates the appropriate response
levels.

The blocks use the default pattern, which is a solid fill that rotates through the
colors list. Because the colors list is specified in the GOPTIONS statement, all colors
are used in the rotation. CBLKOUT= outlines the blocks in black, instead of using the
default outline color, which is the first color in the list– in this case, BLUE.

The map areas use the default pattern for map areas in a block map. This is the first
hatch pattern for maps, M2N0. By default, both the fill and the outline use the first
color in the colors list.

Assign the libref and set the graphics environment. COLORS= specifies the colors list,
which is used by the default patterns and outlines. CTEXT= specifies the color for all text on the
output.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green lime lipk cyan red)
ctext=black ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...

The GMAP Procedure Example 2: Specifying Response Levels in a Block Map 1047

3 WV 6
8 WY 3
;

Define title and footnote for map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPSIMPL’;

Produce the block map. The ID statement specifies the variable that is in both the map data
set and the response data set and defines map areas. The BLOCK statement specifies the
variable in the response data set that contains the response values for each of the map areas.
CBLKOUT= specifies the color for the block outlines.

proc gmap map=maps.us data=sites;
id state;
block sites / cblkout=black;

run;
quit;

Example 2: Specifying Response Levels in a Block Map

Procedure features:
BLOCK statement options:

LEGEND=
LEVELS=
SHAPE=
XVIEW=
ZVIEW=

Other features:
LEGEND statement
PATTERN statement

Sample library member: GMPLEVEL

1048 Example 2: Specifying Response Levels in a Block Map Chapter 35

This example uses LEVELS= to specify the number of response levels for the blocks.
LEVELS= tells GMAP how many response levels and GMAP calculates the quantiles.
Eight PATTERN statements explicitly define a color for each of these response levels.

A single PATTERN statement uses the REPEAT= option to define an empty map/plot
pattern outlined in black for all the map areas.

The example also changes the viewpoint by rotating the map to provide a better view
of the northeast states. As a result, the blocks appear shorter.

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ctext=black ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Define title and footnote for map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPLEVEL’;

The GMAP Procedure Example 3: Assigning a Format to the Response Variable 1049

Define the patterns for the blocks. PATTERN statements 1-8 specify bar/block patterns and
cannot be used by the map areas. They are applied to the blocks in order of the response level.

pattern1 value=solid color=lime;
pattern2 value=solid color=cyan;
pattern3 value=solid color=green;
pattern4 value=solid color=blue;
pattern5 value=solid color=lipk;
pattern6 value=solid color=red;
pattern7 value=solid color=gray;
pattern8 value=solid color=black;

Define a pattern for the map areas. PATTERN9 defines a single map pattern that is
repeated for each of the 50 map areas (states). The pattern is an empty fill with a black border.
VALUE= defines a map/plot pattern, which cannot be used by the blocks. Specifying a color
causes PATTERN9 to generate only one pattern definition. REPEAT= specifies the number of
times to repeat the pattern definition.

pattern9 value=empty color=black repeat=50;

Define legend characteristics. LABEL= produces a two line label and places it to the left of
the legend values. FRAME draws a border around the legend using the first color in the colors
list.

legend1 value=(justify=left)
label=(’Number’ justify=left ’of Sites:’

position=(middle left))
frame;

Produce the block map. LEVELS= specifies the number of response levels for the graph.
SHAPE= draws the blocks as 3D cylinders. XVIEW= changes the viewpoint for the map so that
the map appears to be slightly rotated. ZVIEW= raises the height of the viewpoint. LEGEND=
assigns the LEGEND1 statement to the map legend.

proc gmap map=maps.us data=sites;
id state;
block sites / levels=8

shape=cylinder
xview=0.75
zview=5
legend=legend1;

run;
quit;

Example 3: Assigning a Format to the Response Variable

Procedure features:
BLOCK statement options:

1050 Example 3: Assigning a Format to the Response Variable Chapter 35

AREA=
CBLKOUT=
COUTLINE=
DISCRETE
WOUTLINE=

Other features:
FORMAT statement
LEGEND statement
PATTERN statement

Sample library member: GMPFORMT

This example creates a format that defines the ranges of values for the response
values and assigns this format to the response variable. These ranges appear in the
legend and make the map easier to understand. When a format is assigned to a
numeric response variable, the DISCRETE option must be used so that each formatted
value is treated as a separate response level.

The example also patterns the map areas by region. To do this, both data sets must
contain the ID variable, REGION. The response data set, SITES, already contains
REGION, so the program only needs to add it to the map data set. Then the map data
set is sorted by both the ID variables, REGION and STATE. Finally, the AREA= option
specifies that the ID variable REGION is the one by which the map areas are patterned.

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create map data set STATES1 by adding REGION to the MAPS.US map data set.

The GMAP Procedure Example 3: Assigning a Format to the Response Variable 1051

data states1;
set maps.us;
select;

when (state in (9,23,25,33,44,50)) region=1;
when (state in (34,36)) region=2;
when (state in (10,11,24,42,51,54)) region=3;
when (state in (1,12,13,21,28,37,45,47)) region=4;
when (state in (17,18,26,27,39,55)) region=5;
when (state in (5,22,35,40,48)) region=6;
when (state in (19,20,29,31)) region=7;
when (state in (8,30,38,46,49,56)) region=8;
when (state in (4,6,15,32)) region=9;
otherwise region=10;

end;
run;

Sort the new map data set. The map data must be sorted in the order of the ID variables.

proc sort data=states1 out=states2;
by region state;

run;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Create a format for SITES. SITESFMT. defines and labels the ranges of values for SITES.

proc format;
value sitesfmt low-24=’0-24’

25-49=’25-49’
50-74=’50-74’
75-99=’75-99’
100-high=’over 100’;

run;

Define title and footnote for map.

1052 Example 4: Producing a Simple Choropleth Map Chapter 35

title1 ’Hazardous Waste Site Installations (1997)’;
footnote j=r ’GMPFORMT’;

Define a hatch pattern for the map areas. PATTERN1 defines a dense hatch pattern for the
map areas. Because there are four colors in the colors list, the pattern rotation must be repeated
three times to create enough patterns for the ten regions.

pattern1 value=m3n0 r=3;

Define a solid pattern for the blocks. PATTERN2 through PATTERN6 define the patterns
for the block surfaces.

pattern2 value=solid color=green;
pattern3 value=solid color=cyan;
pattern4 value=solid color=lime;
pattern5 value=solid color=blue;
pattern6 value=solid color=red;

Define legend characteristics.

legend1 shape=bar(2,4)
value=(j=l)
label=(’Number’ j=l ’of Sites:’)
frame;

Produce the block maps. The FORMAT statement assigns SITESFMT. to the response
variable. DISCRETE specifies that each formatted value is a separate response level. AREA=
specifies that the map surface should be patterned by the first variable in the ID statement,
REGION. CBLKOUT= and COUTLINE= specify the color that outlines the blocks and the
regions, respectively. WOUTLINE= specifies the width of the block outline in pixels.

proc gmap map=states2 data=sites;
format sites sitesfmt.;
id region state;
block sites / discrete

area=1
legend=legend1
shape=block
cblkout=black
coutline=black
woutline=3;

run;
quit;

Example 4: Producing a Simple Choropleth Map
Procedure features:

The GMAP Procedure Example 4: Producing a Simple Choropleth Map 1053

ID statement
CHORO statement option:

COUTLINE=

Sample library member: GMPCHORO

This example produces a choropleth (2D) map that shows the total number of
hazardous waste sites in each state in 1997. Since the DISCRETE option is not used,
the response variable is assumed to have a continuous range of values. Because neither
the LEVELS= nor MIDPOINTS= option is used, the GMAP procedure selects a number
of levels based on the number of map areas and then calculates the appropriate
response levels. The legend shows the midpoint value of each level.

The map areas use the default pattern, which is a solid fill that rotates through the
colors list. Because the colors list is specified in the GOPTIONS statement, all colors
are used in the rotation. COUTLINE= outlines the map areas in gray, instead of the
default outline color, which is the first color in the list, in this case, BLUE.

Assign the libref and set the graphics environment. COLORS= specifies the colors list,
which is used by the default patterns and outlines. CTEXT= specifies the color for all text on the
output.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green lime lipk cyan red)
ctext=black ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;
input region stcode $ sites;

1054 Example 5: Creating Maps with Drill-down for the Web Chapter 35

state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Define title and footnote for map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPCHORO’;

Produce the choropleth map. The ID statement specifies the variable that is in both the map
data set and the response data set that defines map areas. COUTLINE= specifies the color for
the map area outlines.

proc gmap map=maps.us data=sites;
id state;

choro sites / coutline=gray;
run;
quit;

Example 5: Creating Maps with Drill-down for the Web

Procedure Features:
CHORO statement options:

DES=
DISCRETE
HTML=
NAME=

BLOCK statement options:
BLOCKSIZE=
DES=
MIDPOINTS=
NAME=

ODS Features:
ODS HTML statement :

BODY=
CONTENTS=
FRAME=
NOGTITLE
PATH=

Other Features:
BY statement
GOPTIONS statement
LEGEND statement

The GMAP Procedure Example 5: Creating Maps with Drill-down for the Web 1055

PATTERN statement
TITLE statement

Sample library member: GMPDRILL

This example shows how to create a 2D choropleth map with simple drill-down
functionality for the Web. When this map is displayed in a browser, you can select an
area of the map and display additional information about the data.

The example explains how to use the ODS HTML statement and the HTML
procedure options to create the drill-down. It shows how to

� explicitly name the HTML files and open and close them throughout the program

� use BY-group processing with ODS HTML, including storing multiple graphs in
one file and incrementing anchor names, catalog entry names, and graphics file
names

� use the PATH= option to specify the destination for the HTML and GIF files
created by the ODS HTML statement

� use the NAME= option to name the graphics catalog entries

� assign anchor names to the graphics output with the ANCHOR= option in the
ODS HTML statement

� add an HTML HREF string to a data set to define a link target

� assign link targets with the HTML= procedure option

� use DES= to control the text of the table of contents entry

� suppress the titles in the GIF files and display them in the HTML file.

For more information, see “ODS HTML Statement” on page 164.
The example also illustrates other CHORO and BLOCK statement options.
The program produces one choro map that shows Environmental Protection Agency

(EPA) regions and block maps of the states in each region. Each block map shows the
number of hazardous waste sites for each state in the selected region. Figure 35.10 on
page 1055 shows the map of the EPA regions.

Figure 35.10 Browser View of Regional Map

Figure 35.11 on page 1056 shows the block map that appears when you select Region
5 in the map.

1056 Example 5: Creating Maps with Drill-down for the Web Chapter 35

Figure 35.11 Browser View of Region 5 Block Map

Assign the libref and the Web-server path. FILENAME assigns the fileref ODSOUT, which
specifies a destination for the HTML and GIF files produced by the example program. To assign
that location as the HTML destination for program output, ODSOUT is specified later in the
program on the ODS HTML statement’s PATH= option. ODSOUT must point to a Web-server
location if procedure output is to be viewed on the Web.

libname maps ’SAS-MAPS-library’;
filename odsout ’path-to-Web-server-space’;

Close the ODS Listing destination for procedure output, and set the graphics
environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. Thus, the graphics output is not displayed in the GRAPH
window, although it is written to the catalog.

ods listing close;
goptions reset=global gunit=pct cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3.5;

Create the data set SITES. SITES contains the FIPS codes for each state and the total
number of hazardous waste sites installed in each state. The STFIPS function converts state
postal codes to FIPS state codes.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

1 AK 12
4 AL 7
4 AR 12

The GMAP Procedure Example 5: Creating Maps with Drill-down for the Web 1057

2 AZ 10
1 CA 90
1 CO 15
5 CT 15
5 DE 18
4 FL 52
4 GA 15
1 HI 4
3 IA 16
1 ID 8
3 IL 38
3 IN 30
3 KS 10
4 KY 16
4 LA 15
5 MA 30
4 MD 13
5 ME 12
3 MI 72
3 MN 30
3 MO 22
4 MS 1
1 MT 8
4 NC 22
3 ND 0
3 NE 10
5 NH 18
5 NJ 105
2 NM 9
1 NV 1
5 NY 78
3 OH 34
2 OK 10
1 OR 10
5 PA 100
5 RI 12
4 SC 26
3 SD 2
4 TN 14
2 TX 26
1 UT 12
4 VA 25
5 VT 8
1 WA 49
3 WI 40
5 WV 6
1 WY 3
;

Add the HTML variable to SITES and create the NEWSITES data set. The HTML
variable REGIONDRILL contains the targets for the values of the variable REGION.

1058 Example 5: Creating Maps with Drill-down for the Web Chapter 35

data newsites;
length regiondrill $40;
set sites;
if region=1 then

regiondrill=’HREF="hazsite_statebody.html#Region1"’;
if region=2 then

regiondrill=’HREF="hazsite_statebody.html#Region2"’;
if region=3 then

regiondrill=’HREF="hazsite_statebody.html#Region3"’;
if region=4 then

regiondrill=’HREF="hazsite_statebody.html#Region4"’;
if region=5 then

regiondrill=’HREF="hazsite_statebody.html#Region5"’;
run;

Assign graphics options for producing the ODS HTML output. DEVICE=GIF causes the
ODS HTML statement to generate the graphics output as GIF files. TRANSPARENCY causes
the graphics output to use the Web-page background as the background of the graph.

goptions device=gif transparency;

Open the ODS HTML destination. BODY= names the file for storing HTML output.
CONTENTS= names the HTML file that contains the table of contents to the HTML procedure
output. The contents file links to each of the body files written to the HTML destination.
FRAME= names the HTML file that integrates the contents and body files. NOGTITLE suppress
the graph titles from the SAS/GRAPH output and displays them through the HTML page.
PATH= specifies the ODSOUT fileref as the HTML destination for all the HTML and GIF files.

ods html body=’hazsite_mapbody.html’
contents=’hazsite_contents.html’
frame=’hazsite_frame.html’
nogtitle
path=odsout;

Define the title and footnote for the map of the EPA regions.

title1 ’Hazardous Waste Sites in EPA Regions (1997)’;
footnote1 h=3 j=l ’click on a map region’ j=r ’GMPDRIL1’;

Define a map pattern for each region. Each PATTERN statement defines one map/plot
pattern. The patterns are assigned to the map areas that represent the EPA regions

pattern1 value=msolid color=blue;
pattern2 value=msolid color=green;
pattern3 value=msolid color=red;
pattern4 value=msolid color=lime;
pattern5 value=msolid color=cyan;

The GMAP Procedure Example 5: Creating Maps with Drill-down for the Web 1059

Generate the regional map. The ID statement specifies the variable that defines the map
areas and is in both the map data set and the response data set. DISCRETE specifies that each
value of the numeric response variable, STATE, be treated as a separate response level. HTML=
specifies REGIONDRILL as the variable that contains the targets for the map regions.
Specifying HTML variables causes SAS/GRAPH to add an image map to the HTML body file.
DES= specifies the description that is stored in the catalog and used in the Table of Contents.
NAME= specifies the name of the graphics catalog entry. Because the PATH= destination is a
file storage location and not a specific file name, the catalog entry name EPAMAP is
automatically assigned to the GIF file.

proc gmap map=maps.us data=newsites;
id state;
choro region / discrete

html=regiondrill
coutline=black
nolegend
des=’EPA Regional Map’
name=’epamap’;

run;
quit;

Open a new body file for the state maps. Assigning a new body file closes
HAZSITE_MAPBODY.HTML. The contents and frame files, which remain open, will provide
links to all body files. ANCHOR= specifies the name of the anchor that identifies the link target.
This name is automatically incremented when the graphics output is generated. GTITLE uses
titles in the GIF files.

ods html body=’hazsite_statebody.html’
anchor=’Region1’
gtitle
path=odsout;

Assign new graphics options for ODS HTML output. The active device is still GIF.

goptions notransparency
border;

Sort the response data set NEWSITES in order of the BY variable. The data must be in
sorted order before running the GMAP procedure with BY-group processing.

proc sort data=newsites;
by region;

run;

Define legend characteristics for the state maps. VALUE= specifies text for the legend
values that describes the ranges specified by MIDPOINTS= in the BLOCK statement.

legend1 shape=bar(3,4)
label=(’Number of Sites’

position=(top center))

1060 Example 5: Creating Maps with Drill-down for the Web Chapter 35

value=(j=l ’0-24’ ’25-49’ ’50-74’ ’75-99’ ’over 100’)
frame;

Define a pattern for the map areas. Because the procedure uses BY-group processing to
generate the maps, all map areas use the same map pattern.

pattern1 value=ms color=gray;

Define the patterns for the blocks.

pattern2 value=solid color=lipk;
pattern3 value=solid color=cyan;
pattern4 value=solid color=green;
pattern5 value=solid color=blue;
pattern6 value=solid color=red;

Suppress the default BY-line and define a title that includes the BY-values. #BYVAL
inserts the value of the BY variable into the title of each block map.

options nobyline;
title1 ’Wastes Sites per State in Region #byval(region)’;
footnote1 h=3 j=r ’GMPDRIL2’;

Generate the block maps for each region. MIDPOINTS= defines the midpoints of the
ranges described in the legend. NAME= is a full 8 characters ending in 1 so the incremented
names match the regions. NAME= specifies the name of the first catalog entry. Because
BY-group processing generates multiple graphs from one BLOCK statement, the name assigned
by NAME= is incremented to provide a unique name for each piece of output. These names are
automatically assigned to the GIF files. DES= specifies the description that is stored in the
catalog and used in the Table of Contents. Because BY-group processing is used, the same
description is assigned to all the output.

proc gmap map=maps.us data=newsites;
by region;
id state;
block sites / midpoints=(12 37 62 87 112)

legend=legend1
shape=cylinder
blocksize=4
coutline=black
des=’State Maps’
name=’states01’;

run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination. You must close
the HTML destination before you can view the output with a browser.

The GMAP Procedure Example 6: Labeling the States on a U.S. Map 1061

ods html close;
ods listing;

Example 6: Labeling the States on a U.S. Map

Procedure features:
CHORO statement options:

ANNOTATE=
NOLEGEND

Other features:
Annotate Facility

Sample library member: GMPLABEL

This example uses the MAPS.USCENTER data set and the Annotate facility to add
postal code labels to each state. The program first builds an Annotate data set that
contains the instructions for drawing the labels. Some of the labels are in the center of
the state and others use external labeling with leader lines. The CHORO statement
assigns the Annotate data set to the map.

Note: The coordinates in MAPS.USCENTER have been projected to match
coordinates in the MAPS.US data set. �

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

1062 Example 6: Labeling the States on a U.S. Map Chapter 35

Create annotate data set, CENTER, from MAPS.USCENTER. The annotate data set labels
each state with a two-letter abbreviation. MAPS.USCENTER provides the x and y coordinates
for the labels. FLAG, which is initially turned off, signals when external labeling is in effect.
The labels are drawn after the map because the value of WHEN is a (after). The FIPSTATE
function converts the FIPS codes to state postal codes.

data center;
length function $ 8;
retain flag 0 xsys ysys ’2’ hsys ’3’ when ’a’

style ’swiss’;
set maps.uscenter

(where=(fipstate(state) ne ’DC’)
drop=long lat);

The FIPSTATE function creates the label text by converting the FIPS codes from
MAPS.USCENTER to two-letter postal codes.

function=’label’;
text=fipstate(state);
size=2.5;
position=’5’;

If the labeling coordinates are outside the state (OCEAN=’Y’), Annotate adds the label and
prepares to draw the leader line. Note: OCEAN is a character variable and is, therefore, case
sensitive. OCEAN=’Y’ must specify an uppercase Y.

if ocean=’Y’ then
do;

position=’6’;
output;
function=’move’;
flag=1;

end;

When external labeling is in effect, Annotate draws the leader line and resets the flag.

else if flag=1 then
do;

function=’draw’;
size=.25;
flag=0;

end;
output;

run;

Define title and footnote for map.

title ’Positioning State Labels with MAPS.USCENTER’;
footnote j=r ’GMPLABEL’;

The GMAP Procedure Example 7: Producing a Simple Prism Map 1063

Define pattern characteristics. PATTERN1 defines a single map pattern that is repeated for
each of the 50 map areas (states). The pattern is an empty fill with a blue border. VALUE=
defines a map/plot pattern, which cannot be used by the blocks. Specifying a color causes
PATTERN1 to generate only one pattern definition. REPEAT= specifies the number of times to
repeat the pattern definition.

pattern1 value=mempty color=blue repeat=50;

Produce the choropleth map. NOLEGEND suppresses the legend. ANNOTATE= specifies
the data set to annotate the map.

proc gmap data=maps.us map=maps.us;
id state;
choro state / nolegend

annotate=center;
run;
quit;

Example 7: Producing a Simple Prism Map

Procedure features:
ID statement
PRISM statement option:

COUTLINE=

Sample library member: GMPPRISM

This example produces a prism map of the hazardous waste sites. Since the
DISCRETE option is not used, the response variable is assumed to have a continuous
range of values. Because neither the LEVELS= nor MIDPOINTS= option is used, the
GMAP procedure selects a number of levels based on the number of map areas and
then calculates the appropriate response levels.

1064 Example 7: Producing a Simple Prism Map Chapter 35

The map areas use the default pattern, which is a solid fill that rotates through the
colors list. Because the colors list is specified in the GOPTIONS statement, all colors
are used in the rotation. COUTLINE= outlines the map areas in gray, instead of the
default outline color, which is the first color in the list, in this case, BLUE.

Since the XVIEW=, YVIEW=, and ZVIEW= options are not used, the default viewing
position, above and to the east and south of the center of the map, is used. Since the
XLIGHT= and YLIGHT= options are not used, none of the side polygons of the prisms
are shadowed. The light source is the same as the viewing position.

Assign the libref and set the graphics environment. COLORS= specifies the colors list,
which is used by the default patterns and outlines. CTEXT= specifies the color for all text.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green lime lipk cyan red)
ctext=black ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Define title and footnote for the map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPPRISM’;

Produce the prism map. The ID statement specifies the variable in the map data set and the
response data set that defines map areas. COUTLINE= specifies the map area outline color.

proc gmap map=maps.us data=sites;
id state;
prism sites / coutline=gray;

run;
quit;

The GMAP Procedure Example 8: Specifying Midpoints in a Prism Map 1065

Example 8: Specifying Midpoints in a Prism Map

Procedure features:
PRISM statement options:

LEGEND=
MIDPOINTS=
XLIGHT=
XVIEW=
ZVIEW=

Other features:
LEGEND statement

Sample library member: GMPMIDPT

This example explicitly specifies the midpoints for three response levels. Each
response level uses the default solid pattern and a color from the colors list.

The example also changes the map viewpoint and light source.

Assign the libref and set the graphics environment. COLORS= specifies the colors list,
which is used by the default patterns and outlines. CTEXT= specifies the color for all text.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(blue green red) ctext=black
ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;

1066 Example 9: Producing a Simple Surface Map Chapter 35

input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Define title and footnote for map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPMIDPT’;

Define legend characteristics. CBORDER= draws a black frame around the legend. If
FRAME were specified, it would be BLUE, the first color in the colors list.

legend shape=bar(4,4)
value=(j=l)
label=(’Number of Sites:’

j=l ’(midpoint of range)’)
cborder=black;

Produce the prism map. MIDPOINTS= specifies three response levels for the map. XLIGHT=
moves the light source to the right and adds shadows to the left-side polygons of the prisms.
XVIEW= and ZVIEW= shift the viewing point to the right and upward, respectively. This
reduces the number of prisms that are partially hidden by taller neighbors.

proc gmap map=maps.us data=sites;
id state;
prism sites / midpoints=25 50 75

xlight=5
xview=.75
zview=5
legend=legend
coutline=gray;

run;
quit;

Example 9: Producing a Simple Surface Map

Procedure features:
SURFACE statement

Sample library member: GMPSURFA

The GMAP Procedure Example 9: Producing a Simple Surface Map 1067

This example produces a surface map that shows the total number of hazardous
waste sites in each state in 1997. Because the CONSTANT= and NLINES= options are
not used, the GMAP procedure draws a surface that consists of 50 lines and uses the
default decay function to calculate spike height and base width. And because the
ROTATE= and TILT= options are not used, the map is rotated 70 degrees around the Z
axis and tilted 70 degrees with respect to the X axis.

Assign the libref and set the graphics environment. COLORS= specifies the colors list. By
default the map uses the first color in the list.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Define title and footnote for the map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPSURFA’;

1068 Example 10: Rotating and Tilting a Surface Map Chapter 35

Produce the surface map. The ID statement specifies the variable in the map data set and
the response data set that defines the map areas.

proc gmap map=maps.us data=sites;
id state;
surface sites;

run;
quit;

Example 10: Rotating and Tilting a Surface Map
Procedure features:

SURFACE statement options:
CONSTANT=
NLINES=
ROTATE=
TILT=

Sample library member: GMPROSUR

This example tilts and rotates the surface map and uses more lines to draw the
surface.

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create response data set SITES. This data set contains a map area identification variable,
STATE, and a response variable, SITES. The STFIPS function is used to convert the state
postal codes to FIPS state codes. STATE contains the FIPS codes for each state and matches the
values of STATE in the MAPS.US data set. SITES contains the total number of waste sites
installed in the state.

The GMAP Procedure Example 11: Creating a Map Using the Feature Table 1069

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7...moredata lines...
3 WV 6
8 WY 3
;

Define title and footnote for the map.

title1 ’Hazardous Waste Site Installations (1997)’;
footnote1 j=r ’GMPROSUR’;

Produce the surface map. CONSTANT= specifies a value that is less than the default value
so the spikes are narrower at the base. NLINES= specifies the maximum number of map lines,
which gives the best map shape resolution. ROTATE= and TILT= adjust the map orientation to
make the crowded spikes in the northeast portion of the map easier to distinguish.

proc gmap map=maps.us data=sites;
id state;
surface sites / constant=4

nlines=100
rotate=40
tilt=60;

run;
quit;

Example 11: Creating a Map Using the Feature Table

Procedure Features:
ID statement
CHORO statement option:

DISCRETE
ODS Features:

ODS HTML statement:
BODY=

Other Features:
MERGE statement
GOPTIONS statement

Sample library member: GMPSPATL

When you use a feature table on PROC GMAP, you merge the feature table with your
response data set before generating a map, storing the combined data in a new data set.

1070 Example 11: Creating a Map Using the Feature Table Chapter 35

On PROC GMAP, you use the DATA= option to name the combined data set, and you
use the ID statement to identify the variable that contains the spatial information.

To illustrate the use of a feature table, assume you want to generate a map of the
United States. Rather than using the traditional map data set MAPS.US, you want to
use its corresponding feature table. To determine which feature table corresponds to a
traditional map data set, look in the MAPS.METAMAPS data set:

� The feature table MAPS.US2 corresponds to the traditional map data set
MAPS.US.

� In MAPS.US2, the values of the variable _MAP_GEOMETRY_ encapsulate the
geometry object.

The sample program uses the following procedures and statements:
� PROC SORT sorts the current data set, WORK.SITES, by the values of variable

STATE. This prepares SITES for a merge with the feature table MAPS.US2, which
is delivered with SAS/GRAPH. The variable STATE identifies the map areas in
both SITES and MAPS.US2.

� PROC SORT sorts the feature table MAPS.US2. The OUT= option specifies that
the sorted data be written to a new data set WORK.MAPS.

� In the DATA step, the MERGE statement merges the feature table with the
response data. The combined data set is saved to a new data set named BOTH.
The data set BOTH is stored in WORK, a temporary library. To use the combined
data set in other SAS/GRAPH programs, you would need to save the merged data
set to a permanent library.

� On the PROC GMAP statement, the DATA= option points to the combined data
set, BOTH. The ID statement specifies _MAP_GEOMETRY_ as the variable that
contains the spatial data. Because both the map and response data are stored in a
single data set, the MAP= option is not required on the PROC GMAP statement.

The following example creates the response data set SITES and merges it with the
feature table US2. It then uses the combined data set to generate a map as a
SAS/GRAPH Control for ActiveX.

Specify a valid file name and assign the libref for the SAS Maps library. This program
generates one HTML file. FILENAME assigns the fileref ODSOUT, which specifies a destination
for the HTML file that is produced by the sample program. ’External-html-file’ needs to be
replaced with the complete path specifying where the files will be located. The following two
lines are the only lines that need to be changed to run the program.

The GMAP Procedure Example 11: Creating a Map Using the Feature Table 1071

filename odsout ’external-html-file’ ;
libname maps ’SAS-data-library’;

Create the data set SITES with regional data. Sites contains a region number for each
state and the total number of hazardous waste sites in each state. The STFIPS function
converts the state postal codes to FIPS state codes.

data sites;
length stcode $ 2;
input region stcode $ sites;
state=stfips(stcode);
datalines;

6 AR 12
10 AK 7
4 AL 12
9 AZ 10
9 CA 90
8 CO 15
1 CT 15
3 DE 18
4 FL 52
4 GA 15
9 HI 4
7 IA 16
10 ID 8
5 IL 38
5 IN 30
7 KS 10
4 KY 16
6 LA 15
1 MA 30
3 MD 13
1 ME 12
5 MI 72
5 MN 30
7 MO 22
4 MS 1
8 MT 8
4 NC 22
8 ND 0
7 NE 10
1 NH 18
2 NJ 105
6 NM 9
9 NV 1
2 NY 78
5 OH 34
6 OK 10
10 OR 10
3 PA 100
1 RI 12
4 SC 26
8 SD 2
4 TN 14
6 TX 26

1072 Example 11: Creating a Map Using the Feature Table Chapter 35

8 UT 12
3 VA 25
1 VT 8
10 WA 49
5 WI 40
3 WV 6
8 WY 3
;

Sort the response and the feature tables in the order of the BY variable. By default,
the first PROC SORT sorts the response data set created in the code above. Both sorted data
sets are stored in the SAS temporary library WORK. To allow the data sets to be merged, the
same BY variable is used to sort both the response and feature tables.

proc sort;
by state;

run;

proc sort data=maps.us2 out=maps;
by state;

run;

Merge the data sets.

data both;
merge maps sites;
by state;

run;

Specify the ACTIVEX driver and HTML output. To conserve system resources, ODS
LISTING CLOSE closes the Listing destination for procedure output. In the program’s ODS
HTML statement, the BODY= option names the file for storing HTML output. ODSOUT is
defined in the beginning of the code in the FILENAME statement.

goptions reset=all device=activex;
ods listing close;
ods html body=’odsout.html’
path=odsout;

Define title and footnote for the map.

title1 ’Region Map Created with a Feature Table’;
footnote1 j=r ’GMPSPATL’;

Generate the choropleth map using the merged response data set and feature table.
The ID variable is the $GEOREF formatted variable containing the spatial information.
DISCRETE specifies that each level of REGION is a separate response level.

The GMAP Procedure Example 11: Creating a Map Using the Feature Table 1073

proc gmap data=both;
id _map_geometry_;
choro region/discrete;

run;
quit;

Close the HTML destination and open the listing destination. The HTML destination
must be closed before you can view the output with a browser. ODS LISTING opens the Listing
destination again so that the destination is again available for displaying output during this
SAS session.

ods html close;
ods listing;

1074

1075

C H A P T E R

36
The GOPTIONS Procedure

Overview 1075

Procedure Syntax 1076
PROC GOPTIONS Statement 1077

Examples 1078

Example 1: Displaying TITLE and FOOTNOTE Statements 1078
Example 2: Displaying Graphics Options without the Description 1079

Overview
The GOPTIONS procedure provides information about the values of graphics options

and the global statement definitions that are currently in effect in your session. The
values displayed are either the defaults of the current device driver or user-defined
values that have been assigned in your SAS session. You can use the GOPTIONS
procedure to

� list the current values of all of the graphics options, or of one specified option
� display the values of all of the AXIS, FOOTNOTE, LEGEND, PATTERN,

SYMBOL, and TITLE definitions that are currently in effect.

Note: Do not confuse the GOPTIONS procedure with the GOPTIONS statement.
The GOPTIONS procedure lists the values that are defined in a GOPTIONS statement
as well as in any other global statement definitions. See “GOPTIONS Statement” on
page 146 for a list of the graphics options that you can set with the GOPTIONS
statement. See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on
page 261 for a complete description of each graphics option. �

The list of graphics options displays in the SAS LOG window and includes the names
of the options, the current values, and a brief description of each one. You can use
PROC GOPTIONS statement options to control what information is listed and where it
appears in the LOG window. Output 36.1 contains part of a sample LOG listing.

1076 Procedure Syntax Chapter 36

Output 36.1 Parital Output from the GOPTIONS Procedure

SAS/GRAPH software options and parameters
(executing in DMS Programming Environment environment)

NOADMGDF GDDM driver output an ADMGDF file
ASPECT= Aspect ratio (width/height) for software characters
NOAUTOCOPY Automatic hardcopy after display
NOAUTOFEED Automatic paper feed after plot
NOAUTOSIZE Change character cell size to preserve device

catalog rows and columns
BAUD= Communications line speed
BINDING=NOBINDING Binding edge
NOBORDER Draw a border around display or plot
CBACK= Background color
CBY= BY line color
CELL Hardware characters must be on cell boundaries
CHARACTERS Use hardware characters
CHARTYPE= Select hardware font
CIRCLEARC Use hardware circle/arc generator
NOCOLLATE Collate output
COLORS=() Default color list
CPATTERN= Default pattern color
CSYMBOL= Default symbol color
CTEXT= Default text color
CTITLE= Default title, footnote and note color
DASH Use hardware dashed line generator
DASHSCALE= Dash pattern scale factor
DELAY= Animation delay time in milliseconds
DEVADDR= IBM Device address, qname, or node name
DEVICE= Default device driver
DEVMAP=DEFAULT Output character map for hardware text
DISPLAY Display graph on device
DISPOSAL=NONE Image animation disposal method
DRVINIT= Host command executed before driver initialization
DRVTERM= Host command executed after driver termination
NODUPLEX Duplex printing
NOERASE Erase graph upon completion
FASTTEXT Use quicker, less precise, integer font rendering

routines; generally unsuitable for multiple device
or templated replay situations.

Note: All of the graphics options that are displayed by the GOPTIONS procedure
are described in Chapter 8, “Graphics Options and Device Parameters Dictionary,” on
page 261. �

Procedure Syntax
PROC GOPTIONS <option(s)>;

The GOPTIONS Procedure PROC GOPTIONS Statement 1077

PROC GOPTIONS Statement

Lists the graphics options, and their values and descriptions in the LOG window. Optionally, it
lists the currently defined global statements. By default, each listed item is displayed on a
separate line.

Syntax

PROC GOPTIONS <option(s)>;

option(s) can be one or more options from the following categories:
� item request options

AXIS
FOOTNOTE
LEGEND
OPTION=graphics-option
PATTERN
SYMBOL
TITLE

� listing format options
CENTIMETERS
NOLIST
NOLOG
SHORT

Options
You can specify as many options as you want and list them in any order.

AXIS
A

requests a list of all current AXIS definitions. AXIS also lists the current values for
all graphics options, unless you use the NOLIST option. If you have not defined any
AXIS statements, the GOPTIONS procedure issues a message.

CENTIMETERS
CM

displays the values of the HORIGIN=, HSIZE=, PAPERFEED=, PAPERLIMIT=,
VORIGIN=, and VSIZE= graphics options in units of centimeters (CM). These
graphics options use units of IN or CM only, and their values are always stored as
inches even if you specify CM. Therefore, the GOPTIONS procedure displays these
values in inches, unless you specify the CENTIMETERS option.

Note: The CENTIMETERS option does not affect the graphics options that can
use unit specifications of CELLS, CM, IN, PCT, and PT. �

FOOTNOTE
F

requests a list of all of the current FOOTNOTE and TITLE definitions. FOOTNOTE
also lists the current values for all of the graphics options, unless you use the
NOLIST option. If you have not defined any FOOTNOTE or TITLE statements, the
GOPTIONS procedure issues a message.

1078 Examples Chapter 36

Featured in: Example 1 on page 1078

LEGEND
L

requests a list of all of the current LEGEND definitions. LEGEND lists the current
values for all of the graphics options, unless you use the NOLIST option. If you have
not defined any LEGEND statements, the GOPTIONS procedure issues a message.

NOLIST
N

suppresses the display of graphics options. Use the NOLIST option in conjunction
with the appropriate statement request option when you want to list only the current
AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL, or TITLE definitions.
Featured in: Example 1 on page 1078

NOLOG
displays the output in the OUTPUT window instead of the LOG window.

OPTION=graphics-option
requests information on the specified graphics option. For these options, requesting
one displays the value of both:

� HSIZE= and VSIZE=
� HPOS= and VPOS=
� XMAX= and YMAX=
� XPIXELS= and YPIXELS=

PATTERN
P

requests a list of all of the current PATTERN definitions. PATTERN lists the current
values for all of the graphics options, unless you use the NOLIST. If you have not
defined any PATTERN statements, the GOPTIONS procedure issues a message.

SHORT
suppresses the descriptions of the graphics options and displays the graphics options
values in an alphabetical list in paragraph form.
Featured in: Example 2 on page 1079

SYMBOL
S

requests a list of all of the current SYMBOL definitions. SYMBOL lists the current
values for all of the graphics options, unless you use the NOLIST. If you have not
defined any SYMBOL statements, the GOPTIONS procedure issues a message.

TITLE
T

requests a list of all of the current TITLE and FOOTNOTE definitions. TITLE lists
the current values for all of the graphics options, unless you use the NOLIST option.
If you have not defined any FOOTNOTE or TITLE statements, the GOPTIONS
procedure issues messages.

Examples

Example 1: Displaying TITLE and FOOTNOTE Statements
Procedure features:

The GOPTIONS Procedure Example 2: Displaying Graphics Options without the Description 1079

PROC GOPTIONS statement:
FOOTNOTE
NOLIST

Sample library member: GOPTIFT

This example uses the FOOTNOTE option to display the current definitions of both
the FOOTNOTE and TITLE statements. It also uses the NOLIST option to suppress
the list of graphics options. Output 36.2 shows the listing that appears in the LOG.

Output 36.2 Using the NOLIST Option (GOPTIFT)

TITLE1 HEIGHT=6 COLOR=BLUE FONT=SWISSB ’Production Quality’ ;
TITLE2 HEIGHT=4 COLOR=BLUE FONT=SWISSB ’January through June’;

FOOTNOTE1 HEIGHT=3 COLOR=GREEN FONT=SWISS ’Data from SASDATA.QUALITY’ ;

FOOTNOTE2 HEIGHT=3 COLOR=GREEN FONT=SWISS ’* denotes approximations’ ;

Clear all global statements.

goptions reset=global;

Define titles and footnotes.

title1 h=6 c=blue f=swissb ’Production Quality’;
title2 h=4 c=blue f=swissb ’January through June’;
footnote1 h=3 c=green f=swiss ’Data from SASDATA.QUALITY’;
footnote2 h=3 c=green f=swiss ’* denotes approximations’;

Produce the listing. The NOLIST and FOOTNOTE options control the information that
appears in the LOG window.

proc goptions nolist footnote;
run;

Example 2: Displaying Graphics Options without the Description
Procedure features:

PROC GOPTIONS statement:
SHORT

Sample library member: GOPSHORT

This example uses the SHORT option to display only the values of graphics options
without the description of each graphics option. Output 36.3 shows the listing that
appears in the LOG window.

1080 Example 2: Displaying Graphics Options without the Description Chapter 36

Output 36.3 Using the SHORT Option (GOPSHORT)

SAS/GRAPH software options and parameters
(executing in DMS Programming Environment environment)

NOADMGDF ASPECT= NOAUTOCOPY NOAUTOFEED NOAUTOSIZE BAUD= BINDING=NOBINDING
BORDER CBACK= CBY= CELL CHARACTERS CHARTYPE= CIRCLEARC NOCOLLATE COLORS=(BLUE
GREEN RED) CPATTERN=BLUE CSYMBOL= CTEXT=RED CTITLE=GREEN DASH DASHSCALE=
DELAY= DEVADDR= DEVICE= DEVMAP=DEFAULT DISPLAY DISPOSAL=NONE DRVINIT= DRVTERM=
NODUPLEX NOERASE FASTTEXT FBY= FCACHE=3 FILECLOSE= FILL FILLINC= FONTRES=NORMAL
FTEXT=SWISSB FTITLE= FTRACK=TIGHT GACCESS= GCLASS=G GCOPIES=(0, 20)
GDDMCOPY=FSCOPY GDDMNICKNAME= GDDMTOKEN= GDEST=LOCAL GEND= GEPILOG= GFORMS=
NOGOPT10 NOGOPT11 NOGOPT12 NOGOPT13 NOGOPT14 NOGOPT15 GOPTINT1=0 GOPTINT2=0
GOPTDBL1= GOPTDBL2= GOPTSTR1= GOPTSTR2= GOUTMODE=APPEND GOUTTYPE=INDEPENDENT
GPROLOG= GPROTOCOL= GRAPHRC GSFLEN= GSFMODE=PORT GSFNAME= NOGSFPROMPT GSIZE=
GSTART= GUNIT=PERCENT GWAIT= GWRITER=SASWTR HANDSHAKE= HBY=4 HORIGIN= HPOS=
HSIZE= HTEXT=3 HTITLE=6 INBIN= INTERPOL= ITERATION= NONINTERLACED
KEYMAP=DEFAULT LFACTOR= OFFSET= OFFSHADOW=(0.0625 in., -0.0625 in.) OUTBIN=
PAPERFEED= PAPERLIMIT= PAPERSIZE= PAPERTYPE= PENMOUNTS= PENSORT PIEFILL NOPCLIP
POLYGONCLIP POLYGONFILL POSTGEPILOG= POSTGRAPH= POSTGPROLOG= PPDFILE=
PREGEPILOG= PREGRAPH= PREGPROLOG= PROMPT PROMPTCHARS=’000A010D05000000’X
RENDER=MEMORY RENDERLIB=WORK REPAINT= NOREVERSE NOROTATE SIMFONT= SPEED= NOSWAP
SYMBOL TARGETDEVICE= NOTRANSPARENCY TRANTAB= UCC= NOUSERINPUT NOV5COMP NOV6COMP
VORIGIN= VPOS= VSIZE= XMAX= XPIXELS= YMAX= YPIXELS=

Set the graphics environment. The values of the graphics options specified in this statement
appear in the LOG listing.

goptions reset=global gunit=pct border
ftext=swissb htitle=6 htext=3
ctext=red cpattern=blue ctitle=green
colors=(blue green red) hby=4;

Produce the listing. The SHORT option suppresses the display of the description of each
graphics option.

proc goptions short;
run;

1081

C H A P T E R

37
The GPLOT Procedure

Overview 1081

About Plots of Two Variables 1082
About Plots with a Classification Variable 1083

About Bubble Plots 1083

About Plots with Two Vertical Axes 1084
About Interpolation Methods 1085

Concepts 1085

Parts of a Plot 1085
About the Input Data Set 1086

Missing Values 1087
Values Out of Range 1087

Sorted Data 1087

Logarithmic Axes 1087
Procedure Syntax 1088

PROC GPLOT Statement 1088

BUBBLE Statement 1090
BUBBLE2 Statement 1098

PLOT Statement 1101
PLOT2 Statement 1115

Examples 1120

Example 1: Generating a Simple Bubble Plot 1120
Example 2: Labeling and Sizing Plot Bubbles 1122

Example 3: Adding a Right Vertical Axis 1124

Example 4: Plotting Two Variables 1126
Example 5: Connecting Plot Data Points 1129

Example 6: Generating an Overlay Plot 1131
Example 7: Filling Areas in an Overlay Plot 1134

Example 8: Plotting Three Variables 1135

Example 9: Plotting with Different Scales of Values 1138
Example 10: Creating Plots with Drill-down for the Web 1141

Overview
The GPLOT procedure plots the values of two or more variables on a set of

coordinate axes (X and Y). The coordinates of each point on the plot correspond to two
variable values in an observation of the input data set. The procedure can also generate
a separate plot for each value of a third (classification) variable. It can also generate
bubble plots in which circles of varying proportions representing the values of a third
variable are drawn at the data points.

The procedure produces a variety of two-dimensional graphs including

1082 About Plots of Two Variables Chapter 37

� simple scatter plots
� overlay plots in which multiple sets of data points display on one set of axes
� plots against a second vertical axis
� bubble plots
� logarithmic plots (controlled by the AXIS statement).

In conjunction with the SYMBOL statement the GPLOT procedure can produce join
plots, high-low plots, needle plots, and plots with simple or spline-interpolated lines.
The SYMBOL statement can also display regression lines on scatter plots.

The GPLOT procedure is useful for
� displaying long series of data, showing trends and patterns
� interpolating between data points
� extrapolating beyond existing data with the display of regression lines and

confidence limits.

About Plots of Two Variables
Plots of two variables display the values of two variables as data points on one

horizontal axis (X) and one vertical axis (Y). Each pair of X and Y values forms a data
point.

The following figure shows a simple scatter plot that plots the values of the variable
HEIGHT on the vertical axis and the variable WEIGHT on the horizontal axis. By
default, the PLOT statement scales the axes to include the maximum and minimum
data values and displays a plus sign (+) at each data point. It labels each axis with the
name of its variable or an associated label and displays the value of each major tick
mark.

Figure 37.1 Scatter Plot of Two Variables (GPLVRBL1(a))

The program for this plot is in Example 4 on page 1126. For more information on
producing scatter plots, see “PLOT Statement” on page 1101.

The GPLOT Procedure About Bubble Plots 1083

You can also overlay two or more plots (multiple sets of data points) on a single set of
axes and you can apply a variety of interpolation techniques to these plots. See “About
Interpolation Methods” on page 1085.

About Plots with a Classification Variable
Plots that use a classification variable produce a separate set of data points for each

unique value of the classification variable and display all sets of data points on one set
of axes.

The following figure shows multiple line plots that compare yearly temperature
trends for three cities. The legend explains the values of the classification variable,
CITY.

Figure 37.2 Plot of Three Variables with Legend (GPLVRBL2(a))

By default, plots with a classification variable generate a legend. In the code that
generates the plot for Example 8 on page 1135, a SYMBOL statement connects the data
points and specifies the plot symbol that is used for each value of the classification
variable (CITY). The program for this plot is in Example 8 on page 1135. For more
information on how to produce plots with a classification variable, see “PLOT
Statement” on page 1101.

About Bubble Plots
Bubble plots represent the values of three variables by drawing circles of varying

sizes at points that are plotted on the vertical and horizontal axes. Two of the variables
determine the location of the data points, while the values of the third variable control
the size of the circles.

Figure 37.3 on page 1084 shows a bubble plot in which each bubble represents a
category of engineer that is shown on the horizontal axis. The location of each bubble in

1084 About Plots with Two Vertical Axes Chapter 37

relation to the vertical axis is determined by the average salary for the category. The
size of each bubble represents the number of engineers in the category relative to the
total number of engineers in the data.

By default, the BUBBLE statement scales the axes to include the maximum and
minimum data values and draws an unlabeled circle at each data point. It labels each
axis with the name of its variable or an associated label and displays the value of each
major tick mark.

Figure 37.3 Bubble Plot (GPLBUBL1)

The program for this plot is in Example 1 on page 1120. For more information on
producing bubble plots, see “BUBBLE Statement” on page 1090.

About Plots with Two Vertical Axes
Plots with two vertical axes have a right vertical axis that can

� display the same variable values as the left axis

� display left axis values in a different scale

� plot a second response (Y) variable, thereby producing one or more overlay plots.

In the following figure, the right axis displays the values of the vertical coordinates
in a different scale from the scale that is used for the left axis.

The GPLOT Procedure Parts of a Plot 1085

Figure 37.4 Plot with a Right Vertical Axis (GPLSCVL1)

The program for this plot is in Example 9 on page 1138. For more information on
how to produce plots with a right vertical axis, see “PLOT2 Statement” on page 1115
and “BUBBLE2 Statement” on page 1098.

About Interpolation Methods
In addition to these graphs, you can produce other types of plots such as box plots or

high-low-close plots by specifying various interpolation methods with the SYMBOL
statement. Use the SYMBOL statement to

� connect the data points with straight lines

� specify regression analysis to fit a line to the points and, optionally, display lines
for confidence limits

� connect the data points to the zero line on the vertical axis

� display the minimum and maximum values of Y at each X value and mark the
mean value, display standard deviations that connect the data points with lines or
bars, generate box plots, or plot high-low-close stock market data

� specify that a pattern fill the polygon that is defined by data points

� smooth plot lines with spline interpolation

� use a step function to connect the data points

“SYMBOL Statement” on page 183 describes all interpolation methods.

Concepts

Parts of a Plot
Some terms used with GPLOT procedure are illustrated in Figure 37.5 on page 1086

and Figure 37.6 on page 1086.

1086 About the Input Data Set Chapter 37

Figure 37.5 GPLOT Procedure Terms

Figure 37.6 Additional GPLOT Procedure Terms

About the Input Data Set
The input data set that is used by the GPLOT procedure must contain at least one

variable to plot on the horizontal axis and one variable to plot on the vertical axis.
Typically, the horizontal axis shows an independent variable (time, for example), and
the vertical axis shows a dependent variable (temperature, for example). Variables can

The GPLOT Procedure About the Input Data Set 1087

be character or numeric. Graphs are automatically scaled to the values of the character
data or to include the values of numeric data, but you can control scaling with
procedure options or with associated AXIS statements.

Missing Values
If the value of either of the plot variables is missing, the GPLOT procedure does not

include the observation in the plot. If you specify interpolation with a SYMBOL
definition, the plot is not broken at the missing value. To break the plot line or area fill
at the missing value, use the PLOT statement’s SKIPMISS option. SKIPMISS is
enabled only for JOIN interpolations.

Values Out of Range
Exclude data values from a graph by restricting the range of axis values with the

VAXIS= or HAXIS= options or with the ORDER= option in an AXIS statement. When
an observation contains a value outside of the specified axis range, the GPLOT
procedure excludes the observation from the plot and issues a message to the log.

If you specify interpolation with a SYMBOL definition, by default values outside of
the axis range are excluded from interpolation calculations and as a result may change
interpolated values for the plot. Values that are omitted from interpolation calculations
have a particularly noticeable effect on the high-low interpolation methods: HILO, STD,
and BOX. In addition, regression lines and confidence limits will represent only part of
the original data.

To specify that values out of range are included in the interpolation calculations, use
the MODE= option in a SYMBOL statement. When MODE=INCLUDE, values that fall
outside of the axis range are included in interpolation calculations but excluded from
the plot. The default (MODE=EXCLUDE) omits observations that are outside of the
axis range from interpolation calculations. See the MODE= option of the SYMBOL
statement in “SYMBOL Statement” on page 183 for details.

Sorted Data
Data points are plotted in the order in which the observations are read from the data

set. Therefore, if you use any type of interpolation that generates a line, sort your data
by the horizontal axis variable.

Logarithmic Axes
If your data contain logarithmic values or if the data values vary over a wide range

or contain large values, you may want to specify a logarithmic axis for the horizontal or
vertical axis. Logarithmic axes can be specified with the AXIS statement options
LOGBASE= and LOGSTYLE=. See “AXIS Statement” on page 124 for a complete
discussion.

1088 Procedure Syntax Chapter 37

Procedure Syntax
Requirements: At least one PLOT or BUBBLE statement is required. A PLOT2 or
BUBBLE2 statement can be used in conjunction with a PLOT or BUBBLE statement.

Global statements: AXIS“AXIS Statement” on page 124, FOOTNOTE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210, GOPTIONS“GOPTIONS Statement”
on page 146, LEGEND“LEGEND Statement” on page 151, PATTERN“PATTERN
Statement” on page 169, SYMBOL“SYMBOL Statement” on page 183, TITLE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210

Reminder: The procedure can include BY, FORMAT, LABEL, WHERE, and NOTE
statements.

Supports: RUN-group processing Output Delivery System (ODS)

PROC GPLOT <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set >
<UNIFORM>;

BUBBLE plot-request(s) </option(s)>;
BUBBLE2 plot-request(s) </option(s)>;

PLOT plot-request(s) </option(s)>;
PLOT2 plot-request(s) </option(s)>;

PROC GPLOT Statement

Identifies the data set that contains the plot variables. Optionally specifies uniform axis scaling for
all graphs as well as annotation and an output catalog.

Requirements: An input data set is required.

Syntax

PROC GPLOT <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>
<IMAGEMAP=output-data-set >
<UNIFORM>;

Options

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs that are produced by the GPLOT
procedure. To annotate individual graphs, use ANNOTATE= in the action statement.

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

The GPLOT Procedure PROC GPLOT Statement 1089

DATA=input-data-set
specifies the SAS data set that contains the variables to plot. By default, the
procedure uses the most recently created SAS data set.
See also: “SAS Data Sets” on page 29 and “About the Input Data Set” on page 1086.

GOUT=< libref. >output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GPLOT procedure. If you omit the libref, SAS/GRAPH looks for the catalog in
the temporary library called WORK and creates the catalog if it does not exist.
See also: “Storing Graphics Output in SAS Catalogs” on page 53.

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The IMAGEMAP= option can be used only if the PLOT or PLOT2
statements are used, and the PLOT or PLOT2 statement must use the HTML=
option or the HTML_LEGEND= option or both.

If HTML= is used on the PLOT or PLOT2 statement, the plot points are defined as
hot zones, unless AREA= is also used, in which case there are not plot points and the
areas between plot lines are defined as hot zones. If HTML_LEGEND= is used, the
legend symbols are defined as hot zones. Information for the links is stored in the
variables referenced by the HTML= and/or HTML_LEGEND= options.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

UNIFORM
specifies that the same axis scaling is used for all graphs that are produced by the
procedure. By default, the range of axis values for each axis is based on the minimum
and maximum values in the data and, therefore, may vary from graph to graph and
among BY groups. Using the UNIFORM option forces the value range for each axis to
be the same for all graphs. Thus, if the procedure produces multiple graphs with both
left and right vertical axes, the UNIFORM option scales all of the left axes the same
and all of the right axes the same, based on the minimum and maximum data values.

In addition, UNIFORM forces the assignment of SYMBOL statements for the
category variable without regard to the BY-group variable, and, if a legend is
generated, makes the legend the same across graphs.
Not supported by: Java, ActiveX

1090 BUBBLE Statement Chapter 37

BUBBLE Statement
Creates bubble plots in which a third variable is plotted against two variables represented by the
horizontal and vertical axes; the value of the third variable controls the size of the bubble.

Requirements: At least one plot request is required.
Global statements: AXIS“AXIS Statement” on page 124, FOOTNOTE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210, TITLE“TITLE, FOOTNOTE, and
NOTE Statements” on page 210

Description
The BUBBLE statement specifies one or more plot requests that name the horizontal
and left vertical axis variables and the variable that controls the size of the bubbles.
This statement automatically

� centers each circle at a data point that is determined by the values of the vertical
and horizontal axes variables

� scales the axes to include the maximum and minimum data values
� labels each axis with the name of its variable or associated label
� displays each major tick mark value
� draws circles for values that are located within the axes.

You can use statement options to control axis scaling, draw reference lines, modify
the appearance of axes, control the display of the bubbles, specify a backplane color or
image, and specify annotation.

In addition, you can use global statements to modify axes (AXIS statement), and add
text to the graph (TITLE, NOTE, and FOOTNOTE statements). You can also use the
Annotate data set to enhance the plot.

Syntax
BUBBLE plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� bubble appearance options:

BCOLOR=bubble-color
BFONT=font
BLABEL
BSCALE=AREA | RADIUS
BSIZE=multiplier

� plot appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
CTEXT=text-color
FRAME | NOFRAME
GRID
HREVERSE
IFRAME= fileref | ’external-file’
IMAGESTYLE = TILE | FIT
NOAXIS

� horizontal axis options:
AUTOHREF

The GPLOT Procedure BUBBLE Statement 1091

CAUTOHREF=reference-line-color

CHREF=reference-line-color | (reference-line-color) | reference-line-color-list

HAXIS=value-list | AXIS<1...99>

HMINOR=number-of-minor-ticks

HREF=value-list

HZERO

LAUTOHREF=reference-line-type

LHREF=reference-line-type | (reference-line-type) | reference-line-type-list

� vertical axis options:

AUTOVREF

CAUTOVREF=reference-line-color

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list

LAUTOVREF=reference-line-type

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list

VAXIS=value-list | AXIS<1...99>

VMINOR=number-of-minor-ticks

VREF=value-list

VREVERSE

VZERO

� catalog entry description options:

DESCRIPTION=’entry-description’

NAME=’entry-name’

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph. All variables must
be in the input data set. Multiple plot requests are separated with blanks. A plot
request must have this form:

y-variable*x-variable=bubble-size
plots the values of two variables and draws a circle (bubble) at each data point.
The value of the third variable determines the size of the bubble.

y-variable
variable plotted on the left vertical axis.

x-variable
variable plotted on the horizontal axis.

bubble-size
variable that dictates the size of the bubbles. Bubble-size must be numeric. If
the value of bubble-size is positive, bubbles are drawn with a solid line; if it is
negative, bubbles are drawn with a dashed line.

Note: If you specify the JAVA, JAVAMETA, or JAVAIMG device drivers, then either
the x-variable or the y-variable must be numeric. �

1092 BUBBLE Statement Chapter 37

Options
Options in a BUBBLE statement affect all graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate plots that are produced by the BUBBLE statement.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

AUTOHREF
draws reference lines at all major tick marks on the horizontal axis. To specify line
types for these reference lines, use the LAUTOHREF= option. To specify colors for
these reference lines, use the CAUTOHREF= option. To specify labels for these
reference lines, use the HAXIS= option.

AUTOVREF
draws reference lines at all major tick marks on the vertical axis. To specify line
types for these reference lines, use the LAUTOVREF= option. To specify colors for
these reference lines, use the CAUTOVREF= option. To specify labels for these
reference lines, use the VAXIS= option.

BCOLOR=bubble-color
specifies the color for the bubbles. If you omit the BCOLOR= option, the first color in
the colors list is used for the bubble color.
Featured in: Example 2 on page 1122 and Example 3 on page 1124.

BFONT=font
specifies the font to use for bubble labels. See Chapter 5, “SAS/GRAPH Fonts,” on
page 75for details on how to specify font. If you omit the BFONT= option, a font
specification is searched for in this order:

1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font.

See also: The BLABEL option for information on the location and color of labels.
Featured in: Example 2 on page 1122.
Not supported by: Java, ActiveX

BLABEL
labels the bubbles with the values of the third variable. If the variable has a format,
the formatted value is used. By default, bubbles are not labeled.

The procedure normally places labels directly outside of the circle at 315 degrees
rotation. If a label in this position does not fit in the axis area, other 45-degree
placements (that is, 45, 135, and 225 degrees) are attempted. If the label cannot be
placed at any of the positions (45, 135, 225, or 315 degrees) without being clipped,
the label is omitted. However, labels may collide with other bubbles or previously
placed labels.

Labels display in the color specified by the CTEXT= option. If you omit CTEXT=,
the default is the first color in the colors list.
Featured in: Example 2 on page 1122.

BSCALE=AREA | RADIUS
specifies whether the bubble-scaling proportion is based on the area of the circles or
the radius measure. By default, BSCALE=AREA.

The value that is assigned to the BSCALE= option affects how large the bubbles
appear in relation to each other. For example, suppose the third variable value is
twice as big for one bubble as it is for another. If BSCALE=AREA, the area of the
larger bubble will be twice the area of the smaller bubble. If BSCALE=RADIUS, the

The GPLOT Procedure BUBBLE Statement 1093

radius of the larger bubble will be twice the radius of the smaller bubble and the
larger bubble will have more than twice the area of the smaller bubble.

Not supported by: Java, ActiveX

BSIZE=multiplier
specifies an overall scaling factor for the bubbles so that you can increase or decrease
the size of all bubbles by this factor. By default, BSIZE=5. If you specify BSIZE=0,
then the default size is used instead.

In Web output, the Java applets and the ActiveX Control override the default
value. To prevent this override, specify a value for the BSIZE= option, rather than
relying on the default value.

Featured in: Example 2 on page 1122 andExample 2 on page 1122.

Not supported by: Java (partial), ActiveX (partial)

CAUTOHREF=reference-line-color
specifies colors for reference lines drawn at major tick marks on the horizontal axis,
as specified by the AUTOHREF option. The default color is either the value of the
CAXIS= option or the first color in the color list. To specify line types for these
reference lines, use the LAUTOHREF= option. To specify labels for these reference
lines, use the HAXIS= option.

CAUTOVREF=reference-line-color
specifies colors for reference lines drawn at major tick marks on the vertical axis, as
specified by the AUTOVREF option. The default color is either the value of the
CAXIS= option or the first color in the color list. To specify line types for these
reference lines, use the LAUTOVREF= option. To specify labels for these reference
lines, use the VAXIS= option.

CAXIS=axis-color
CA=axis-color

specifies the color for the axis line and all major and minor tick marks. By default,
the procedure uses the first color in the colors list.

If you use the CAXIS= option, it may be overridden by

1 the COLOR= option in an AXIS definition, which in turn is overridden by

2 the COLOR= suboption of the MAJOR= or MINOR= option in an AXIS
definition.

Featured in: Example 2 on page 1122 and Example 3 on page 1124.

CFRAME=background-color
CFR=background-color

fills the axis area with the specified color. If the FRAME option is also in effect, the
procedure determines the color of the frame according to the precedence list given for
the FRAME option description. If the IFRAME= option is in effect, the specified
image fills the axis area instead of the specified color.

CHREF=reference-line-color | (reference-line-color)
CH=reference-line-color | (reference-line-color)

specifies the color of reference lines drawn perpendicular to the horizontal axis. This
option affects reference lines drawn with the AUTOHREF, HREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOHREF= option overrides the CHREF= option for lines drawn with the
AUTOHREF option. Specifying a single color in parentheses applies that color only to
the first reference line drawn with the HREF= option. Specifying a color list applies
colors sequentially to successive reference lines drawn with the HREF= option. The
syntax of the color list is of the form (color1 color2... colorN) or (color1, color2...,
colorN). Default colors for reference lines are determined by the CAXIS= option or by

1094 BUBBLE Statement Chapter 37

the first color in the color list. To specify line types for these reference lines, use the
LHREF= option. To specify labels for these reference lines, use the HAXIS= option.

CTEXT=text-color
C=text-color

specifies the color for all text on the axes, including tick mark values, axis labels, and
bubble labels.

If you omit the CTEXT= option, a color specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the default, the first color in the colors list.
If you use the CTEXT= option, it overrides the color specification for the axis label

and the tick mark values in the COLOR= option in an AXIS definition that is
assigned to the axis.

If you use CTEXT=, the color specification is overridden in this situation: if you
also use the COLOR= suboption of a LABEL= or VALUE= option in an AXIS
definition that is assigned to the axis, that suboption determines the color of the axis
label or the color of the tick mark values, respectively.

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
CV=reference-line-color | (reference-line-color) | reference-line-color-list

specifies the color of reference lines drawn perpendicular to the vertical axis. This
option affects reference lines drawn with the AUTOVREF, VREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOVREF= option overrides the CVREF= option for lines drawn with the
AUTOVREF option. Specifying a single color in parentheses applies that color only to
the first reference line drawn with the VREF= option. Specifying a color list applies
colors sequentially to successive reference lines drawn with the VREF= option. The
syntax of the color list is of the form (color1 color2... colorN) or (color1, color2...,
colorN). Default colors for reference lines are determined by the CAXIS= option or by
the first color in the color list. To specify line types for these reference lines, use the
LVREF= option. To specify labels for these reference lines, use the VAXIS= option.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the plot. The maximum length for
entry-description is 256 characters. The description does not appear on the plot. By
default, the procedure assigns a description of the form BUBBLE OF
variable*variable=variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. For more information, refer to the description of the option on
page 222, and the discussion of “Substituting BY Line Values in a Text String” on
page 226. The 256-character limit applies before the substitution takes place for
these options; thus, if in the SAS program the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.

The descriptive text is shown in the "description" portion of each of the following:

� in the Results window

� among the catalog-entry properties that you can view from the Explorer window

� in the Table of Contents that is generated when you use CONTENTS= option on
an ODS statement, assuming that the GPLOT output is generated while the
contents page is open. See “Linking to Output through a Table of Contents” on
page 495.

� in the Description field of the PROC GREPLAY window

The GPLOT Procedure BUBBLE Statement 1095

FRAME | NOFRAME
FR | NOFR

specifies whether a frame is drawn around the axis area. The default is FRAME;
however, if the V6COMP option is in effect on the GOPTIONS statement, the default
is NOFRAME. If you also use a BUBBLE2 or PLOT2 statement and your plotting
statements have conflicting frame specifications, FRAME is used.

For the frame color, a specification is searched for in this order:

1 the CAXIS= option

2 the COLOR= option in the AXIS definition assigned to the vertical axis

3 the COLOR= option in the AXIS definition assigned to the horizontal axis

4 the default, the first color in the colors list.
To fill the axis area with a background color, use the CFRAME= option.
To fill the axis area with a background image, use the IFRAME= option.

GRID
draws reference lines at all major tick marks on both axes. You get the same result
when you use all of these options in a BUBBLE statement: AUTOHREF,
AUTOVREF, FRAME, LVREF=34, and LHREF=34. The line type for GRID is 34.

The line color is the color of the axis.

HAXIS=value-list | AXIS<1 . . . 99>
specifies major tick mark values for the horizontal axis or assigns an axis definition.
For a description of value-list, see the HAXIS= on page 1108 option for the PLOT
statement. To assign labels to horizontal reference lines, specify an axis definition
that contains the REFLABEL= option. Labels will be applied in sequence to all
reference lines drawn with the AUTOHREF and HREF= options.

If you assign an axis definition that does not currently exist, the option is ignored.
By default, the procedure scales the axis and provides an appropriate number of tick
marks.

If data values fall outside of the range that is specified by the HAXIS= option,
then by default the outlying data values are not used in interpolation calculations.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 124.

See also: “About the Input Data Set” on page 1086 for more information on values
out of range.

Featured in: Example 2 on page 1122.

Not supported by: Java (partial), ActiveX (partial)

HMINOR=number-of-minor-ticks
HM=number-of-minor-ticks

specifies the number of minor tick marks that are drawn between each major tick
mark on the horizontal axis. Minor tick marks are not labeled. The HMINOR=
option overrides the NUMBER= suboption of the MINOR= option in an AXIS
definition. You must specify a positive number.

Featured in: Example 2 on page 1122.

HREF=value-list
draws one or more reference lines perpendicular to the horizontal axis at points that
are specified by value-list. For a description of value-list see the HAXIS= on page
1108 option for the PLOT statement. To specify colors for these reference lines, use
the CHREF= option. To specify line types for these reference lines, use the LHREF=
option. To specify labels for these reference lines, use the HAXIS= option.

1096 BUBBLE Statement Chapter 37

HREVERSE
specifies that the order of the values on the horizontal axis be reversed. For Web
output that is generated with a Java device driver, the horizontal axis data must be
numeric.
Not supported by: Java (partial)

HZERO
specifies that tick marks on the horizontal axis begin in the first position with a
value of zero. The HZERO request is ignored if negative values are present for the
horizontal variable or if the horizontal axis has been specified with the HAXIS=
option.

IFRAME=fileref | ’external-file’
identifies the image file you wish to apply to the backplane of the plot. See also the
IMAGESTYLE= option and “Placing a Backplane Image on Graphs with Frames” on
page 115. The IFRAME= option is overridden by the NOIMAGEPRINT
goption“IMAGEPRINT” on page 318.
Not supported by: Java

IMAGESTYLE= TILE | FIT
specifies whether to tile the image to fill the backplane or to stretch the image to fit
the backplane. The TILE value is the default. See also the IFRAME= option.

LAUTOHREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the horizontal
axis, as specified by the AUTOHREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default value 1 draws a solid line. To specify colors for
these reference lines, use the CAUTOHREF= option. To specify labels for these
reference lines, use the HAXIS= option.

LAUTOVREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the vertical
axis, as specified by the AUTOVREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default value 1 draws a solid line. To specify colors for
these reference lines, use the CAUTOVREF= option. To specify labels for these
reference lines, use the VAXIS= option.

LHREF=reference-line-type | (reference-line-type) | reference-line-type-list
LH=reference-line-type | (reference-line-type) | reference-line-type-list

specifies line types for reference lines drawn perpendicular to the horizontal axis.
The reference-line-type value can be a whole number from 1 to 46. A value of 1
specifies a solid line; values 2 through 46 specify dashed lines. This option affects
reference lines drawn with the AUTOHREF, HREF, and GRID options. Specifying a
single line type without parentheses applies that line type to all reference lines. The
LAUTOHREF= option overrides the LHREF= option for lines drawn with the
AUTOHREF option. Specifying a single line type in parentheses applies that line
type only to the first line drawn with the HREF= option. Specifying a line-type list
applies line types in sequence to successive reference lines drawn with the HREF=
option. The syntax of the line type list is of the form (type1 type2... typeN). The
default value 1 draws a solid line. To specify colors for these references lines, use the
CHREF= option. To specify labels for these reference lines, use the HAXIS= option.

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
LV=reference-line-type | (reference-line-type) | reference-line-type-list

specifies line types for reference lines drawn perpendicular to the vertical axis. The
reference-line-type value can be a whole number from 1 to 46. A value of 1 specifies a

The GPLOT Procedure BUBBLE Statement 1097

solid line; values 2 through 46 specify dashed lines. This option affects reference
lines drawn with the AUTOVREF, VREF, and GRID options. Specifying a single line
type without parentheses applies that line type to all reference lines. The
LAUTOVREF= option overrides the LVREF= option for lines drawn with the
AUTOVREF option. Specifying a single line type in parentheses applies that line
type only to the first line drawn by the VREF= option. Specifying a line-type list
applies line types in sequence to successive reference lines drawn with the VREF=
option. The syntax of the line type list is of the form (type1 type2... typeN). The
default value 1 draws a solid line. To specify colors for these references lines, use the
CVREF= option. To specify labels for these reference lines, use the VAXIS= option.

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GPLOT. If you specify
DEVICE=ACTIXIMG or DEVICE=JAVAIMG, then the name that you specify will be
used for the Java or ActiveX device driver image output even in the file exists. For
all other devices, if the name duplicates an existing entry name, SAS/GRAPH adds a
number to the duplicate name to create a unique entry, for example, GPLOT1.

NOAXIS
NOAXES

suppresses the axes, including axis lines, axis labels, all major and minor tick marks,
and tick mark values.

VAXIS=value-list | AXIS<1...99>
specifies the major tick mark values for the vertical axis or assigns an axis definition.
For a description of the value-list, see the HAXIS= option on page 1108 of the PLOT
statement. To assign labels to reference lines, specify an axis definition that contains
the REFLABEL= option. Labels will be applied in sequence to all reference lines
defined with the AUTOVREF and VREF= options.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 124.

Featured in: Example 2 on page 1122 and Example 3 on page 1124.

Not supported by: Java (partial), ActiveX (partial)

VMINOR=number-of-minor-ticks
VM=number-of-minor-ticks

specifies the number of minor tick marks that are drawn between each major tick
mark on the vertical axis. Minor tick marks are not labeled. VMINOR= overrides the
NUMBER= suboption of the MINOR= option in an AXIS definition. You must specify
a positive number.

Featured in: Example 2 on page 1122.

VREF=value-list
draws one or more reference lines perpendicular to the vertical axis at points that
are specified by value-list. For a description of the value-list, see the HAXIS= option
on page 1108 of the PLOT statement. To specify colors for reference lines, use the
CVREF= option. To specify line types for these reference lines, use the LVREF=
option. To specify labels for these reference lines, use the VAXIS= option.

VREVERSE
specifies that the order of the values on the vertical axis should be reversed.

VZERO
specifies that tick marks on the vertical axis begin in the first position with a zero.
The VZERO request is ignored if the vertical variable either contains negative values

1098 BUBBLE2 Statement Chapter 37

or has been ordered with the VAXIS= option or the ORDER= option in an AXIS
statement.

Controlling the Display of Bubbles
The BUBBLE statement draws circles only for values that are located within the

axes. Observations with values that lie outside of the axis area are not plotted. If a
bubble size value causes a bubble to overlap the axis, the bubble is clipped against the
axis line. The bubbles for the highest axis value and lowest axis value may be clipped
unless you modify the axes in either of the following ways:

� by offsetting the first and last values
� by adding values to the range that is represented by the axis.

Specify the range of values on an axis with the HAXIS= or VAXIS= option, or with
AXIS definitions.

To add a right vertical axis, use a BUBBLE2 statement.

BUBBLE2 Statement

Creates a second vertical axis on the right side of a graph produced by an accompanying BUBBLE
or PLOT statement. A second variable can be plotted against this axis.

Requirements: You cannot use the BUBBLE2 statement alone. You can use it only with
a BUBBLE or PLOT statement. At least one plot request is required.
Global statements: AXIS“AXIS Statement” on page 124, FOOTNOTE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210, TITLE“TITLE, FOOTNOTE, and
NOTE Statements” on page 210

Description
The BUBBLE2 statement specifies one or more plot requests that name the horizontal
and right vertical axis variables and the variable that controls the size of the bubbles.
This statement automatically

� scales the axes to include the maximum and minimum data values
� labels each axis with the name of its variable or an associated label
� displays each major tick mark value
� draws circles for values that are located within the axes.

You can use statement options to control right vertical axis scaling, draw reference
lines on the right vertical axis, control the display of the bubbles, display a background
color or image, and specify annotation.

In addition, you can use global statements to modify the axes (AXIS statement), and
add text to the graph (TITLE, NOTE, and FOOTNOTE statements). You can also use
the Annotate data set to enhance the plot.

Syntax

BUBBLE2 plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� bubble appearance options:

The GPLOT Procedure BUBBLE2 Statement 1099

BCOLOR=bubble-color
BFONT=font
BLABEL
BSCALE=AREA | RADIUS
BSIZE=multiplier

� plot appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
CTEXT=text-color
FRAME | NOFRAME
GRID
NOAXIS | NOAXES

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type
LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=number-of-minor ticks
VREF=value-list
VREVERSE
VZERO

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph. All variables must
be in the input data set. Multiple plot requests are separated with blanks. A plot
request must have this form:

y-variable*x-variable=bubble-size
plots the values of two variables and draws a circle (bubble) at each data point.
The value of the third variable determines the size of the bubble. All variables
must be in the input data set.

y-variable
variable plotted on the right vertical axis; typically it is different from y-variable
in the accompanying BUBBLE or PLOT statement.

x-variable
variable plotted on the horizontal axis; it is the same as x-variable in the
accompanying BUBBLE or PLOT statement.

bubble-size
variable that dictates the size of the bubbles. Bubble-size must be numeric. If
the value of bubble-size is positive, bubbles are drawn with a solid line; if it is
negative, bubbles are drawn with a dashed line.

1100 BUBBLE2 Statement Chapter 37

Options
Options for the BUBBLE2 statement are identical to those for the BUBBLE

statement except for these options, which are ignored if specified:

AUTOHREF

CAUTOHREF=

CHREF=

DESCRIPTION=

HAXIS=

HMINOR=

HREF=

HZERO=

IFRAME=

IMAGESTYLE =

LAUTOHREF=

LHREF=

NAME=

See “BUBBLE Statement” on page 1090 for complete descriptions of options used
with the BUBBLE2 statement.

Coordinating BUBBLE and BUBBLE2 Plot Requests
The BUBBLE2 statement draws circles only for values that are located within the

axes. Bubbles are not drawn for values that lie outside of the axis range. If a bubble
size value causes a bubble to overlap the axis, the bubble is clipped against the axis line.

In the BUBBLE2 statement, either y-variable or bubble-size may differ from the
variables in the BUBBLE statement. Here are some possible combinations of plot
requests for BUBBLE and BUBBLE2 statement pairs and how they affect the plot:

� The vertical axis variables Y and Y2 are different, but the bubble size variable, S,
is the same in both:

bubble y*x=s;
bubble2 y2*x=s;

These plot requests generate a plot in which both sets of bubbles have the same
value (size) but different locations on the graph.

� The vertical axis variables are the same, Y, but the bubble size variables, S and
S2, are different:

bubble y*x=s;
bubble2 y*x=s2;

The resulting plot has two identical vertical axes and two sets of concentric
bubbles of different sizes.

� Both the vertical axis variables, Y and Y2, and the bubble size variables, S and S2,
are different:

bubble y*x=s;
bubble2 y2*x=s2;

These plot requests produce the equivalent of an overlay plot in which two
different sets of bubbles plotted against different vertical axes are displayed on the
same graph.

The GPLOT Procedure PLOT Statement 1101

The plot requests on the BUBBLE and BUBBLE2 statements must be evenly
matched, for example:

bubble y*x=s b*a=c;
bubble2 y2*x=s b2*a=c2;

These statements produce two graphs each with two vertical axes. The first pair of
plot requests (Y*X=S and Y2*X=S) produce one graph in which the variable X is plotted
on the horizontal axis, the variable Y is plotted on the left axis, and the variable Y2 is
plotted on the right axis. In this pair, the value of S is the same for both requests. The
second pair of plot requests (B*A=C and B2*A=C2) produce another graph in which the
variable A is plotted on the horizontal axis, the variable B is plotted on the left axis,
and the variable B2 is plotted on the right axis.

Any modifications to horizontal axes specifications must be identical for both
statements; if they are different, the BUBBLE2 axis specification is ignored.

If the scale of values for the left and right vertical axes is the same and you want
both axes to represent the same range of values, specify the range with a VAXIS=
option in both the BUBBLE and BUBBLE2 statements.

PLOT Statement
Creates plots in which one variable is plotted on the horizontal axis and a second variable is
plotted on the left vertical axis.

Requirements: At least one plot request is required.
Global statements: AXIS“AXIS Statement” on page 124, FOOTNOTE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210, LEGEND“LEGEND Statement” on
page 151, PATTERN“PATTERN Statement” on page 169, SYMBOL“SYMBOL
Statement” on page 183, TITLE“TITLE, FOOTNOTE, and NOTE Statements” on page
210
Supports: Drill-down functionality

Description
The PLOT statement specifies one or more plot requests that name the horizontal and
left vertical axis variables, and optionally a third classification variable. This statement
automatically

� scales the axes to include the maximum and minimum data values
� plots data points within the axes
� labels each axis with the name of its variable and displays each major tick mark

value.

You can use statement options to manipulate the axes, modify the appearance of your
graph, and describe catalog entries. You can use SYMBOL definitions to modify plot
symbols for the data points, join data points, draw regression lines, plot confidence
limits, or specify other types of interpolations. For more information on the SYMBOL
statement, see “About SYMBOL Definitions” on page 1114.

In addition, you can use global statements to modify the axes; add titles, footnotes,
and notes to the plot; or modify the legend if one is generated by the plot. You can also
use an Annotate data set to enhance the plot.

Syntax
PLOT plot-request(s) </option(s)>;

1102 PLOT Statement Chapter 37

option(s) can be one or more options from any or all of the following categories:
� plot options:

AREAS=n
GRID
LEGEND | LEGEND=LEGEND<1...99>
NOLEGEND
OVERLAY
REGEQN
SKIPMISS

� appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
COUTLINE=outline-color
CTEXT=text-color
FRAME | NOFRAME
HREVERSE
IFRAME= fileref | ’external-file’
IMAGESTYLE = TILE | FIT
NOAXIS | NOAXES

� horizontal axis options:
AUTOHREF
CAUTOHREF=reference-line-color
CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
HAXIS=value-list | AXIS<1...99>
HMINOR=number-of-minor-ticks
HREF=value-list
HZERO
LAUTOHREF=reference-line-type
LHREF=reference-line-type | (reference-line-type) | reference-line-type-list

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type
LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=number-of-minor-ticks
VREF=value-list
VREVERSE
VZERO

� catalog entry description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options:

The GPLOT Procedure PLOT Statement 1103

HTML=variable

HTML_LEGEND=variable

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph, unless you specify
OVERLAY. All variables must be in the input data set. Multiple plot requests are
separated with blanks. You can plot character or numeric variables. A plot request
can be any of these:

y-variable*x-variable<=n>
plots the values of two variables and, optionally, assigns a SYMBOL definition to
the plot.

y-variable
variable plotted on the left vertical axis.

x-variable
variable plotted on the horizontal axis.

n
number of the nth generated SYMBOL definition.

Note: The nth generated SYMBOL definition is not necessarily the same as the
nth SYMBOL statement. Plot requests of the form y-variable*x-variable=n assign
the SYMBOL definition that is designated by n to the plot that is produced by
y-variable*x-variable. For more information, see “About Plot Requests that Assign
a SYMBOL Definition” on page 1114. �

(y-variable(s))*(x-variable(s))
plots the values of two or more variables and produces a separate graph for each
combination of Y and X variables. That is, each Y*X pair is plotted on a separate
set of axes, unless you specify OVERLAY.

y-variable(s)
variables plotted on the left vertical axes.

x-variable(s)
variables plotted on the horizontal axes.
If you use only one y-variable or only one x-variable, omit the parentheses for

that variable, for example,

plot (temp rain)*month;

This plot request produces two plots, one of TEMP and MONTH and one of
RAIN and MONTH.

y-variable*x-variable=third-variable
plots the values of two variables against a third classification variable

y-variable
variable plotted on the left vertical axis.

x-variable
variable plotted on the horizontal axis.

1104 PLOT Statement Chapter 37

third-variable
classification variable against which y-variable and x-variable are plotted.
Third-variable can be character or numeric, but numeric variables should
contain discrete rather than continuous values, or should be formatted to
provide discrete values.
A separate plot (set of data points) is produced for each unique value of

third-variable; all plots are drawn on the same set of axes, and a legend is
automatically generated to show the plot symbol and color for each value of the
classification variable.

Note: If a BY statement is used to produce multiple plots, you can make the
legend the same across graphs by specifying the UNIFORM option in the PROC
GPLOT statement. �

The following plot request produces a graph with a plot line for each
department and a legend that shows the plot symbol for each department:

plot sales*weekday=dept;

For an example of a plot that specifies a third-variable, see Example 8 on page
1135.

You can use more than one type of plot request in a single PLOT statement (provided
that you do not specify OVERLAY), for example

plot temp*month rain*month=2;

Options
Options in a PLOT statement affect all graphs that are produced by that statement.

You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate plots that are produced by the PLOT statement.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

AREAS=n
fills all the areas below plot line n with a pattern. The value of n specifies which
areas to fill:

� AREAS=1 fills the first area.
� AREAS=2 fills both the first and second areas, and so forth.

If you specify a value for AREAS= that is greater than the number of bounded
areas in the plot, the area between the top plot line and the axis frame is filled.

Before an area can be filled, the data points that border the area must be joined by
a line. Use a SYMBOL statement with one of these interpolation methods to join the
data points:

INTERPOL=JOIN
INTERPOL=STEP
INTERPOL=Rseries

INTERPOL=SPLINE | SM | L
See “SYMBOL Statement” on page 183 for details on interpolation methods.
By default, the AREAS= option fills areas by rotating a solid pattern through the

colors list, starting with the first color in the list. If it needs more patterns, it rotates
hatch patterns, beginning with the M2N0 pattern. See “PATTERN Statement” on
page 169 for more information on map/plot patterns. However, if the V6COMP
graphics option is in effect, or if color is limited to a single color with the

The GPLOT Procedure PLOT Statement 1105

CPATTERN= or COLORS= graphic options, the solid pattern is skipped and the first
default pattern is M2N0. If the COLORS= graphic option specifies a single color, use
as many SYMBOL statements as you have areas to fill in the plot because the
INTERPOL= setting does not automatically apply to multiple symbol definitions.

Note: If your device’s default colors list is in effect and the first color in the list is
black, color rotation begins with the second color in the list (no solid black patterns),
unless the V6COMP graphics option is in effect. See “How Default Patterns and
Outlines Are Generated” on page 178 for more information. �

You can alter the default pattern behavior by specifying patterns and colors on
PATTERN statements that specify map and plot patterns. A separate PATTERN
definition is needed for each specified area.

If you specify PATTERN statements, AREAS= uses the lowest numbered
PATTERN statement first. If it runs out of patterns, it uses the default behavior for
map and plot patterns. See “PATTERN Statement” on page 169 for details.

Pattern definitions are assigned to the areas below the plot lines in the order the
plots are drawn. The first area is that between the horizontal axis and the plot line
that is drawn first. The second area is that above the first plot line and below the
plot line that is drawn second, and so forth. If the line that is drawn second lies
below the line that is drawn first, the second area is hidden when the first is filled.
The plots with the lower line values must be drawn first to prevent one area fill from
overlaying another. If the lines cross, only the part of an area that is above the
previous line is visible.

Therefore, if you produce multiple plots by submitting multiple plot requests and
using the OVERLAY option, the plot requests must be ordered in the PLOT
statement so that the plot request that produces the lowest line values is the first
(leftmost) plot request, the plot request that produces the next lowest line values is
the second plot request, and so on.

If you produce multiple plots with a y-variable*x-variable=third-variable plot
request, the lines are plotted in order of increasing third variable values. Therefore,
the data must be recoded so that the lowest value of the third variable produces the
lowest plot line, the next lowest value produces the next lowest plot line, and so on.

AREAS= works only if all plot lines are generated by the same PLOT or PLOT2
statement.

If you use the VALUE= option in the SYMBOL statement, some symbols may be
hidden. If reference lines are also specified with AREAS=, they are drawn behind the
pattern fill.

Featured in: Example 7 on page 1134.

AUTOHREF
draws reference lines at all major tick marks on the horizontal axis. If the AREAS=
option is also used, the filled areas cover the reference lines. To draw lines on top of
the filled areas, use the ANNOTATE= option in either the PROC GPLOT statement
or the PLOT statement. To specify line types for these reference lines, use the
LAUTOHREF= option. To specify colors for these reference lines, use the
CAUTOHREF= option. To specify labels for these reference lines, use the HAXIS=
option.

AUTOVREF
draws reference lines at all of the major tick marks on the vertical axis. If you also
use the AREAS= option, the filled areas cover the reference lines. To draw lines on
top of the filled areas, use the ANNOTATE= option in either the PROC GPLOT
statement or the PLOT statement. To specify line types for these reference lines, use
the LAUTOVREF= option. To specify colors for these reference lines, use the
CAUTOVREF= option. To specify labels for these reference lines, use the VAXIS=
option.

1106 PLOT Statement Chapter 37

CAUTOHREF=reference-line-color
specifies colors for reference lines drawn at major tick marks on the horizontal axis,
as specified by the AUTOHREF option. The default color is either the value of the
CAXIS= option or the first color in the color list. To specify line types for these
reference lines, use the LAUTOHREF= option. To specify labels for these reference
lines, use the HAXIS= option.

CAUTOVREF=reference-line-color
specifies colors for reference lines drawn at major tick marks on the vertical axis, as
specified by the AUTOVREF option. The default color is either the value of the
CAXIS= option or the first color in the color list. To specify line types for these
reference lines, use the LAUTOVREF= option. To specify labels for these reference
lines, use the VAXIS= option.

CAXIS=axis-color
CA=axis-color

specifies the color for the axis line and all major and minor tick marks. By default,
the procedure uses the first color in the colors list.

If you use the CAXIS= option, it may be overridden by
� the COLOR= option in an AXIS definition, which in turn is overridden by
� the COLOR= suboption of the MAJOR= or MINOR= option in an AXIS

definition for major and minor tick marks.

Featured in: Example 5 on page 1129.

CFRAME=background-color
CFR=background-color

fills the axis area with the specified color. If the FRAME option is also in effect, the
procedure determines the color of the frame according to the precedence list given
later in the FRAME option description. If the IFRAME= option is in effect, an image
will appear in the background instead of the color.

CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
CH=reference-line-color | (reference-line-color) | reference-line-color-list

specifies the color of reference lines drawn perpendicular to the horizontal axis. This
option affects reference lines drawn with the AUTOHREF, HREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOHREF= option overrides the CHREF= option for reference lines drawn
with the AUTOHREF option. Specifying a single color in parentheses applies that
color only to the first reference line drawn with the HREF= option. Specifying a color
list applies colors sequentially to successive reference lines drawn with the HREF=
option. The syntax of the color list is of the form (color1 color2 ...colorN) or (color1,
color2, ...colorN). The default color for reference lines is determined by the CAXIS=
option or by the first color in the color list. To specify line types for these reference
lines, use the LHREF= option. To specify labels for these reference lines, use the
HAXIS= option.

COUTLINE=outline-color
specifies the color of the outline that is drawn around filled areas. The filled areas
are generated when the SYMBOL statement or GOPTIONS statement specifies
INTERPOL on page 191=map/plot-pattern. The default outline color is black for
ActiveX devices. Otherwise, the default color is the first color in the colors list. The
COUTLINE= option cannot be used with the PATTERN statement. The
COUTLINE= option overrides the SYMBOL statement option CO=.
Not supported by: Java

CTEXT=text-color
C=text-color

The GPLOT Procedure PLOT Statement 1107

specifies the color for all text on the axes, including tick mark values and axis labels.
If the PLOT request generates a legend, the CTEXT= option also colors the legend
label and the value descriptions.

If you omit the CTEXT= option, a color specification is searched for in this order:
1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.
If you use the CTEXT= option, it overrides the color specification for the axis label

and the tick mark values in the COLOR= option in an AXIS definition that is
assigned to the axis.

If you use the CTEXT= option, the color specification is overridden in one or more
of these situations:

� If you also use the COLOR= suboption of a LABEL= or VALUE= option in a
AXIS definition that is assigned to the axis, that suboption determines the color
of the axis label or the color of the tick mark values, respectively.

� If you also use the COLOR= suboption of a LABEL= or VALUE= option in a
LEGEND definition that is assigned to the legend, it determines the color of the
legend label or the color of the legend value descriptions, respectively.

Featured in: Example 5 on page 1129

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
CV=reference-line-color | (reference-line-color) | reference-line-color-list

specifies the color of reference lines drawn perpendicular to the vertical axis.
Specifying a single color without parentheses applies that color to reference lines
drawn with the AUTOVREF and VREF= options. The CAUTOVREF= option
overrides the CVREF= option for reference lines drawn with the AUTOVREF option.
Specifying a single color in parentheses applies that color only to the first reference
line drawn with the VREF= option. Specifying a color list applies colors sequentially
to successive reference lines drawn with the VREF= option. The syntax of the color
list is of the form (color1 color2 ...colorN) or (color1, color2, ...colorN). The default
color for reference lines is determined by the CAXIS= option or by the first color in
the color list. To specify line types for these reference lines, use the LVREF= option.
To specify labels for these reference lines, use the VAXIS= option.

For needle plots that are generated with a Java or ActiveX device driver, the value
of the CVREF= option is not applied to the default reference line that is drawn at
zero when the minimum value of the vertical axis is less than zero. The color of this
line is the first color in the color list, which is black by default.
Featured in: Example 5 on page 1129
Not supported by: Java (partial), ActiveX (partial)

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the plot. The maximum length for
entry-description is 256 characters. The description does not appear on the plot. By
default, the procedure assigns a description of the form PLOT OF
y-variable*x-variable, where y-variable and x-variable are the names of the plot
variables.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. For more information refer to the description of the text-string on
page 222 option and the section that discusses “Substituting BY Line Values in a
Text String” on page 226. The 256-character limit applies before the substitution
takes place for these options; thus, if in the SAS program the entry-description text
exceeds 256 characters, it is truncated to 256 characters, and then the substitution is
performed.

1108 PLOT Statement Chapter 37

The descriptive text is shown in the "description" portion of each of the following:
� in the Results window
� among the catalog-entry properties that you can view from the Explorer window
� in the Table of Contents that is generated when you use the CONTENTS=

option on an ODS statement. This assumes that the GPLOT output is
generated while the contents page is open. See “Linking to Output through a
Table of Contents” on page 495.

� in the Description field of the PROC GREPLAY window

FRAME | NOFRAME
FR | NOFR

specifies whether a frame is drawn around the axis area. The default is FRAME;
however, if the V6COMP option is in effect on the GOPTIONS statement, the default
is NOFRAME. If you also use a BUBBLE2 or PLOT2 statement and your plotting
statements have conflicting frame specifications, FRAME is used.

For the frame color, a specification is searched for in this order:
1 the CAXIS= option
2 the COLOR= option in the AXIS definition assigned to the vertical axis
3 the COLOR= option in the AXIS definition assigned to the horizontal axis
4 the default, the first color in the colors list.
To fill the axis area with a background color, use the CFRAME= option.
To fill the axis area with a background image, use the IFRAME= option.

GRID
draws reference lines at all major tick marks on both axes. You get the same result
when you use all of these options in a PLOT statement: AUTOHREF, AUTOVREF,
FRAME, LVREF=34, and LHREF=34. The line type for GRID is 34. The line color is
the color of the axis. When specified in a PLOT2 statement, the reference lines are
drawn on the vertical axis on the right side of the plot.

HAXIS=value-list | AXIS<1 . . . 99>
specifies major tick mark values for the horizontal axis or assigns an axis definition.
By default, the procedure scales the axis and provides an appropriate number of tick
marks. To assign labels to reference lines, use an axis definition that contains the
REFLABEL= option. The labels will be applied in sequence to all reference lines
defined with the AUTOHREF and HREF= options.

The way you specify value-list depends on the type of variable:
� For numeric variables, value-list is either an explicit list of values, or a starting

and an ending value with an interval increment, or a combination of both forms:
n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > <n <...n> >
If a numeric variable has an associated format, the specified values must be

the unformatted values.
� For date-time values, value-list includes any SAS date, time, or datetime value

described for the SAS functions INTCK and INTNX, shown here as SAS-value:
’SAS-value’i < ...’SAS-value’i>
’SAS-value’i TO ’SAS-value’ i<BY interval>

� For character variables, value-list is a list of unique character values enclosed in
quotation marks and separated by blanks:

’value-1’ < ...’value-n’>

The GPLOT Procedure PLOT Statement 1109

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see the ORDER= on page 130 option in the
AXIS statement.

If data values fall outside of the range that is specified by the HAXIS= option, then
by default the outlying data values are not used in interpolation calculations. See
“About the Input Data Set” on page 1086 for more information on values out of range.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 124.

Featured in: Example 4 on page 1126,Example 5 on page 1129, and Example 9 on
page 1138.

Not supported by: Java (partial), ActiveX (partial)

HMINOR=number-of-minor-ticks
HM=number-of-minor-ticks

specifies the number of minor tick marks drawn between each major tick mark on
the horizontal axis. Minor tick marks are not labeled. The HMINOR= option
overrides the NUMBER= suboption of the MINOR= option in an AXIS definition. You
must specify a positive number.

Featured in: Example 4 on page 1126,Example 5 on page 1129, and Example 9 on
page 1138.

HREF=value-list
draws one or more reference lines perpendicular to the horizontal axis at points
specified by value-list. See the HAXIS= option for a description of value-list. If the
AREAS= option is also used, the filled areas cover the reference lines. To draw lines
on top of the filled areas, use the ANNOTATE= option on either the PROC GPLOT or
the PLOT statement. To specify colors for these reference lines, use the CHREF=
option. To specify line types for these reference lines, use the LHREF= option. To
specify labels for these reference lines, use the HAXIS= option.

HREVERSE
specifies that the order of the values on the horizontal axis be reversed. For Web
output that is generated with a Java device driver, the horizontal axis data must be
numeric.

Not supported by: Java (partial)

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
output file that is generated by ODS. These links are associated with the plot points,
or if AREA= is used, with the areas between plot lines. The links point to the data or
graph that you wish to display when the user drills down on the plot point or area.
The maximum length for the value of this variable is 1024 characters.

Note that the HTML= option is functional only when a single PLOT or PLOT2
statement appears in the PROC GPLOT procedure.

Not supported by: Java (partial), ActiveX (partial)

HTML_LEGEND=variable
identifies the variable in the input data set whose values are used to create links in
the HTML output file that is generated by ODS. When the HTML output file is
displayed in a Web browser, clicking on an element in the legend displays the URL
that was specified for that legend element, based on the value of the variable that is
named as the value of the HTML_LEGEND option. The maximum length for the

1110 PLOT Statement Chapter 37

value of this variable is 1024 characters. To see an example that generates a
drill-down graph using ODS, see Example 10 on page 1141.
Not supported by: Java, ActiveX

HZERO
specifies that tick marks on the horizontal axis begin in the first position with a
value of zero. The HZERO request is ignored if negative values are present for the
horizontal variable or if the horizontal axis has been specified with the HAXIS=
option.

IFRAME=fileref | ’external-file’
identifies the image file you wish to apply to the backplane frame of the plot. See
also the IMAGESTYLE= option and “Placing a Backplane Image on Graphs with
Frames” on page 115. The IFRAME= option is overridden by the NOIMAGEPRINT
goption“IMAGEPRINT” on page 318.

For Web output that is generated with the ACTIVEX or ACTXIMG device drivers,
Not supported by: Java

IMAGESTYLE= TILE | FIT
specifies whether to tile multiple instances of the image to fill the backplane frame
(TILE) or to stretch a single instance of the image to fill the backplane frame (FIT).
The TILE value is the default. See also the IFRAME= option.
Not supported by: Java

LAUTOHREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the horizontal
axis, as specified by the AUTOHREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default value 1 draws a solid line. To specify colors for
these reference lines, use the CAUTOHREF= option. To specify labels for these
reference lines, use the HAXIS= option.

LAUTOVREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the vertical
axis, as specified by the AUTOVREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default value 1 draws a solid line. To specify colors for
these reference lines, use the CAUTOVREF= option. To specify labels for these
reference lines, use the VAXIS= option.

LEGEND | LEGEND=LEGEND<1...99>
generates a legend or specifies the legend to use for the plot.

� a PLOT statement that includes the OVERLAY option does not automatically
generate a legend. In these plot types, use LEGEND to produce a default
legend, or LEGEND=LEGENDn to assign a defined LEGEND statement to the
plot. The default legend is centered below the axis frame and identifies which
colors and plot symbols represent the y-variables that you specify for the plots.

� a plot request of the form y-variable*x-variable=third-variable automatically
generates a default legend that identifies which colors and plot symbols
represent each value of the classification variable. In these plot types, override
the default by using LEGEND=LEGENDn to assign a defined LEGEND
statement to the plot.

If you use the SHAPE= option in a LEGEND statement, the value SYMBOL is
valid. If you use the PLOT statement’s AREAS= option, SHAPE=BAR is also valid.
See also: “LEGEND Statement” on page 151.
Featured in: Example 6 on page 1131.

The GPLOT Procedure PLOT Statement 1111

LHREF=reference-line-type | (reference-line-type) | reference-line-type-list
LH=reference-line-type | (reference-line-type) | reference-line-type-list

specifies line types for reference lines drawn perpendicular to the horizontal axis. The
reference-line-type value can be a whole number from 1 to 46. A value of 1 specifies a
solid line; values 2 through 46 specify dashed lines. This option affects reference lines
drawn with the AUTOHREF, HREF, and GRID options. Specifying a single line type
without parentheses applies that line type to all reference lines. The LAUTOHREF=
option overrides the LHREF= option for lines drawn with the AUTOHREF option.
Specifying a single line type in parentheses applies that line type only to the first
reference lines drawn with the HREF= option. Specifying a line-type list applies line
types in sequence to successive reference lines drawn with the HREF= option. The
syntax of the line type list is of the form (type1 type2... typeN). The default value 1
draws a solid line. To specify colors for these references lines, use the CHREF=
option. To specify labels for these reference lines, use the HAXIS= option.

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
LV=reference-line-type | (reference-line-type) | reference-line-type-list

specifies line types for reference lines drawn perpendicular to the vertical axis. The
reference-line-type value can be a whole number from 1 to 46. A value of 1 specifies a
solid line; values 2 through 46 specify dashed lines. This option affects reference
lines drawn with the AUTOVREF, VREF, and GRID options. Specifying a single line
type without parentheses applies that line type to all reference lines. The
LAUTOVREF= option overrides the LVREF= option for lines drawn with the
AUTOVREF option. Specifying a single line type in parentheses applies that line
type only to the first line drawn with the VREF= option. Specifying a line-type list
applies line types in sequence to successive reference lines drawn with the VREF=
option. The syntax of the line type list is of the form (type1 type2... typeN). The
default value 1 draws a solid line. To specify colors for these references lines, use the
CVREF= option. To specify labels for these reference lines, use the VAXIS= option.

For needle plots that are generated with a Java or ActiveX device driver, the value
of the LVREF= option is not applied to the default reference line that is drawn at
zero when the minimum value of the vertical axis is less than zero. This line is solid
(not dashed).

Featured in: Example 5 on page 1129.

Not supported by: Java (partial), ActiveX (partial)

NAME= ’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GPLOT. If you specify
DEVICE=ACTIXIMG or DEVICE=JAVAIMG, then the name that you specify will be
used for the Java or ActiveX device driver image output even in the file exists. For
all other devices, if the name duplicates an existing entry name, SAS/GRAPH adds a
number to the duplicate name to create a unique entry, for example, GPLOT1.

NOAXIS
NOAXES

suppresses the axes, including axis lines, axis labels, all major and minor tick marks,
and tick mark values.

NOLEGEND
suppresses the legend that is generated by a plot request of the type
y-variable*x-variable=third-variable.

OVERLAY
places all the plots that are generated by the PLOT statement on one set of axes.
The axes are scaled to include the minimum and maximum values of all of the

1112 PLOT Statement Chapter 37

variables, and the variable names or labels associated with the first pair of variables
label the axes.

The OVERLAY option produces a legend if you include the LEGEND or the
LEGEND=n option in the PLOT statement.

OVERLAY is not enabled with plot requests of the form
y-variable*x-variable=third-variable. However, you can achieve an overlay effect by
using a PLOT and PLOT2 statement.

When generating output for the Web with the JAVA, JAVAMETA, or JAVAIMG
device drivers, the OVERLAY option cannot be used in the PLOT statement in
combination with the global statement SYMBOL. This applies only when the
SYMBOL statement uses the INTERPOL= option, and when the INTERPOL= option
has the values BOX, HILO, or STD. For Java output using the PLOT2 statement,
INTERPOL=BOX|HILO|STD cannot be used in a SYMBOL statement, with or
without the OVERLAY option.
Featured in: Example 6 on page 1131 and Example 7 on page 1134.
Not supported by: Java (partial)

REGEQN
displays the regression equation that is specified in the INTERPOL= option of the
SYMBOL statement in the lower left hand corner of the plot. You cannot modify the
format that is used for the equation.

The GPLOT regression equation is computed from the screen coordinates of the
markers. Therefore, a graph might not display if the chart area for the plot becomes
so small that markers cannot be drawn because there are no coordinates from which
to build the regression equation. In such cases, the regression equation is no longer
meaningful.
Featured in: Example 4 on page 1126.
Not supported by: Java, ActiveX

SKIPMISS
breaks a plot line or an area fill at occurrences of missing values of the Y variable.
By default, plot lines and area fills are not broken at missing values. SKIPMISS is
available only with JOIN interpolation. If SKIPMISS is used, observations should be
sorted by the independent (horizontal axis) variable. If the plot request is
y-variable*x-variable=third-variable, observations should also be sorted by the values
of the third variable.
See also: “About the Input Data Set” on page 1086.

VAXIS=value-list | AXIS<1...99>
specifies the major tick mark values for the vertical axis or assigns an axis definition.
See the HAXIS= option for a description of the value-list. To assign labels to
reference lines, use an axis definition that contains the REFLABEL= option. The
labels will be applied in sequence to all reference lines defined with the AUTOVREF
and VREF= options.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 124.
Featured in: Example 4 on page 1126 and Example 5 on page 1129.
Not supported by: Java (partial), ActiveX (partial)

VMINOR=number-of-minor-ticks
VM=number-of-minor-ticks

specifies the number of minor tick marks that are drawn between each major tick
mark on the vertical axis. Minor tick marks are not labeled. The VMINOR= option
overrides the NUMBER= suboption of the MINOR= option in an AXIS definition. You
must specify a positive number.

The GPLOT Procedure PLOT Statement 1113

Featured in: Example 5 on page 1129.

VREF=value-list
draws one or more reference lines perpendicular to the vertical axis at points that are
specified by the value-list . See the HAXIS= option for a description of the value-list.
If the AREAS= option is also used, the filled areas cover the reference lines. To draw
lines on top of the filled areas, use the ANNOTATE= option in either the PROC
GPLOT statement or the PLOT statement. To specify colors for these reference lines,
use the CVREF= option. To specify line types for these reference lines, use the
LVREF= option. To specify labels for these reference lines, use the VAXIS= option.

Featured in: Example 5 on page 1129.

VREVERSE
specifies that the order of the values on the vertical axis be reversed.

VZERO
specifies that tick marks on the vertical axis begin in the first position with a zero.
The VZERO request is ignored if the vertical variable either contains negative values
or has been ordered with the VAXIS= option or the ORDER= option in an AXIS
statement.

Plot Requests with Multiple Variables

Plot requests with multiple variables produce a separate plot for every Y*X pair,
unless you specify OVERLAY. For example, this statement produces four plots (the
actual plots are produced on separate pages). See Figure 37.7 on page 1113

plot (y b)*(x a);

Figure 37.7 Graphs Generated by Multiple Plot Requests

1114 PLOT Statement Chapter 37

About SYMBOL Definitions
SYMBOL statements control the appearance of plot symbols and lines, and define

interpolation methods. They can specify
� the shape, size, and color of the plot symbols that mark the data points
� plot line style, color, and width
� an interpolation method for plotting data
� how missing values are treated in interpolation calculations.

SYMBOL definitions are assigned either by default by the GPLOT procedure or
explicitly with a plot request.

If no SYMBOL definition is currently in effect, the GPLOT procedure produces a
scatter plot of the data points using the default plot symbol, the plus sign (+). If you
need more than one SYMBOL definition, the procedure rotates through the current
colors list to produce symbols of different colors. If the current colors list contains only
one color, or if all the colors are used, additional plot symbols are used.

If SYMBOL definitions have been defined but not explicitly assigned by a plot
request of the form y-variable*x-variable=n, the procedure assigns them in the order in
which they are generated. For example, this statement creates three plots:

plot y*x b*a s*r;

The procedure assigns the first generated SYMBOL definition to Y*X, the second
generated SYMBOL definition to B*A, and the third to S*R.

If more SYMBOL definitions are needed than have been defined, the procedure uses
the default definitions for the plots that remain.

See “SYMBOL Statement” on page 183.

About Plot Requests that Assign a SYMBOL Definition
Plot requests of the form y-variable*x-variable=n are useful when you use the

OVERLAY option to produce multiple plots on one graph and you want to assign a
particular SYMBOL definition to each plot.

With plot requests of this type it is important to remember that a single SYMBOL
statement can generate multiple SYMBOL definitions, so that the SYMBOL definition
that is designated by n may not be the same as the SYMBOL statement of the same
number. That is, the third SYMBOL definition is not necessarily the same as the
SYMBOL3 statement. See “SYMBOL Statement” on page 183 for more information on
the SYMBOL statement.

The GPLOT Procedure PLOT2 Statement 1115

PLOT2 Statement

Produces one or more plots with the vertical axis on the right side of the graph against which a
second variable can be plotted.

Requirements: You cannot use the PLOT2 statement alone. It can be used only with a
PLOT or BUBBLE statement. At least one plot request is required.
Global statements: AXIS“AXIS Statement” on page 124, FOOTNOTE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210, LEGEND“LEGEND Statement” on
page 151, PATTERN“PATTERN Statement” on page 169, SYMBOL“SYMBOL
Statement” on page 183, TITLE“TITLE, FOOTNOTE, and NOTE Statements” on page
210

Description
The PLOT2 statement specifies one or more plot requests that name the horizontal and
right vertical axis variables. This statement automatically

� plots data points within the axes
� scales the axes to include the maximum and minimum data values
� labels each axis with the name of its variable and displays each major tick mark

value.

You can use statement options to manipulate the axes and modify the appearance of
your graph. You can use SYMBOL definitions to modify plot symbols for the data
points, join data points, draw regression lines, plot confidence limits, or specify other
types of interpolation. For more information on the SYMBOL statement see “About
SYMBOL Definitions” on page 1114.

Note: When using PLOT2 to generate output with the JAVA or ACTIVEX device
drivers, and when the global statement SYMBOL is used, the value of the SYMBOL
statement option INTERPOL= cannot be BOX, STD, or HILO. �

In addition, you can use global statements to modify the axes; add titles, footnotes,
and notes to the plot; or modify the legend if one is generated by the plot. You can also
use an Annotate data set to enhance the plot.

Syntax

PLOT2 plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� plot options:

AREAS=n
GRID
LEGEND | LEGEND=LEGEND<1...99>
NOLEGEND
OVERLAY
REGEQN
SKIPMISS

� appearance options:
ANNOTATE=Annotate-data-set

1116 PLOT2 Statement Chapter 37

CAXIS=axis-color

CFRAME=background-color

COUTLINE=outline-color

CTEXT=text-color

FRAME | NOFRAME
NOAXIS | NOAXES

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list

HREVERSE
LAUTOVREF=reference-line-type

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=n

VREF=value-list

VREVERSE
VZERO

� ODS options:
HTML=variable

HTML_LEGEND=variable

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph, unless you specify
OVERLAY. All variables must be in the input data set. Multiple plot requests are
separated with blanks. A plot request can be any of these:

y-variable*x-variable<=n>
plots the values of two variables and, optionally, assigns a SYMBOL definition to
the plot.

y-variable
variable plotted on the right vertical axis.

x-variable
variable plotted on the horizontal axis.

n
number of the nth generated SYMBOL definition.

(y-variable(s))*(x-variable(s))
plots the values of two or more variable and produces a separate graph for each
combination of Y and X variables.

y-variable(s)
variables plotted on the right vertical axes.

x-variable(s)
variables plotted on the horizontal axes.

The GPLOT Procedure PLOT2 Statement 1117

y-variable*x-variable=third-variable
plots the values of two variables against a third classification variable

y-variable
variable plotted on the right vertical axis.

x-variable
variable plotted on the horizontal axis.

third-variable
classification variable against which y-variable and x-variable are plotted.
Third-variable can be character or numeric, but numeric variables should
contain discrete rather than continuous values, or should be formatted to
provide discrete values.

For more information about plot requests, see “PLOT Statement” on page 1101.
In a PLOT2 plot request, the X variable for the horizontal axis must be the same

as in the accompanying PLOT or BUBBLE statement. Typically, the Y variable for
the right vertical axis is different.
Use the same types of plot requests with a PLOT2 statement that you use with a

PLOT statement, but a PLOT2 statement always plots the values of y-variable on the
right vertical axis.

Options
Options for the PLOT2 statement are identical to those for the PLOT statement

except for these options, which are ignored if you specify them:

AUTOHREF

CAUTOHREF=

CHREF=

DESCRIPTION=

HAXIS=

HMINOR=

HREF=

HZERO=

IFRAME=

IMAGESTYLE =

LAUTOHREF=

LHREF=

NAME=

See “PLOT Statement” on page 1101 for descriptions of options that you can use with
the PLOT2 statement.

Matching Plot Requests
The plot requests in both the PLOT and PLOT2 statements must be evenly matched

as in this example:

plot y*x b*a;
plot2 y2*x b2*a;

These statements produce two graphs, each with two vertical axes. The first pair of
plot requests (Y*X and Y2*X) produce one graph in which X is plotted on the horizontal
axis, Y is plotted on the left axis, and Y2 is plotted on the right axis. The second pair of

1118 PLOT2 Statement Chapter 37

plot requests (B*A and B2*A) produce another graph in which A is plotted on the
horizontal axis, B is plotted on the left axis, and B2 is plotted on the right axis.

Using Multiple Plot Requests
Plot requests of the form (y-variable(s))*(x-variable(s)). Both the PLOT and PLOT2
statements generate multiple graphs (the actual plots are produced on separate pages).
See Figure 37.8 on page 1118

plot (y b)*(x a);
plot2 (y2 b2)*(x a);

Figure 37.8 Diagram of Graphs Produced by Multiple Plot Requests in PLOT and
PLOT2 Statements

Requesting Plots of Three Variables with a Legend
When both the PLOT and PLOT2 statements use plot requests of the form
y-variable*x-variable=third-variable, each statement generates a separate legend. If the
third variable has two values, these statements produce one graph with four sets of
data points. See Figure 37.9 on page 1119. The figure assumes SYMBOL statements
are used to specify the plot symbols that are shown and to connect the data points with
straight lines.

plot y*x=z;
plot2 y2*x=z;

The GPLOT Procedure PLOT2 Statement 1119

Figure 37.9 Diagram of Multiple Plots on One Graph

Using a Second Vertical Axis

Displaying the Same Values in a Different Scale
If your data contain the same variable values in two different scales, such as height in
inches and height in centimeters, you can display one scale of values on the left axis
and the other scale of values on the right axis. If both vertical axes are calibrated so
that they represent the same range of values, then for each observation of X the data
points for Y and Y2 are the same.

For example, if Y is height in inches and Y2 is height in centimeters and if the Y axis
values range from 0 to 84 inches and the Y2 axis values range from 0 to 213.36
centimeters, the plot will be like the diagram shown in Figure 37.10 on page 1119.

Figure 37.10 Right Axis with Different Scale of Values

For plots such as these, the PLOT2 statement should use a SYMBOL statement that
specifies INTERPOL=NONE and VALUE=NONE.

Displaying Different Values
If your data contain variables with different data values (such as height and weight),
you can display one type of data on the left axis and another type of data on the right
axis. Because the Y variable and the Y2 variable contain different data, two sets of
data points are displayed on the graph. For example, if Y is height and Y2 is weight,
the plot will be like the diagram in Figure 37.11 on page 1120.

1120 Examples Chapter 37

Figure 37.11 Right Axis with Different Values and Different Scale

Displaying the Same Scale on Both Axes
If your data contain two sets of values for the same type of data, you can use the
PLOT2 statement to generate a right axis that is calibrated the same as the left axis so
that the data points on the right of the graph are easier to read. For example, if Y is
high temperatures and Y2 is low temperatures, you can create a graph like the diagram
in Figure 37.12 on page 1120.

Figure 37.12 Right Axis with Same Scale of Values

To scale both axes the same, specify the same range of values either with the VAXIS=
option in both the PLOT and PLOT2 statements, or with AXIS statements.

Using PATTERN and SYMBOL Definitions
The PLOT2 statement uses PATTERN and SYMBOL definitions in the same way the

PLOT statement does. These definitions are assigned in order first to the PLOT
statement and then to the PLOT2 statement.

For more information, see“About SYMBOL Definitions” on page 1114.

Examples

Example 1: Generating a Simple Bubble Plot
Procedure features:

The GPLOT Procedure Example 1: Generating a Simple Bubble Plot 1121

BUBBLE statement option:
HAXIS=

Other features:
AXIS statement
FORMAT statement

Sample library member: GPLBUBL1

This example shows a bubble plot in which each bubble represents a category of
engineer. The plot shows engineers on the horizontal axis and average salaries on the
vertical axis. Each bubble’s vertical location is determined by the average salary for the
category. Each bubble’s size is determined by the number of engineers in the category:
the more engineers, the larger the bubble.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=4;

Create the data set. The data set JOBS contains average salary data for several categories of
engineer. It also indicates the number of engineers in each category.

data jobs;
length eng $5;

1122 Example 2: Labeling and Sizing Plot Bubbles Chapter 37

input eng dollars num;
datalines;

Civil 27308 73273
Aero 29844 70192
Elec 22920 89382
Mech 32816 19601
Chem 28116 25541
Petro 18444 34833
;

Define titles and footnote.

title1 ’Member Profile’;
title2 ’Salaries and Number of Member Engineers’;
footnote h=3 j=r ’GPLBUBL1 ’;

Define axis characteristics. OFFSET= specifies an offset for the tick marks so that bubbles
near an axis are not clipped.

axis1 offset=(5,5);

Generate bubble plot. HAXIS= assigns the AXIS1 statement to the horizontal axis. The
salary averages are assigned a dollar format.

proc gplot data=jobs;
format dollars dollar9.;
bubble dollars*eng=num / haxis=axis1;

run;
quit;

Example 2: Labeling and Sizing Plot Bubbles
Procedure features:

BUBBLE statement options:
BCOLOR=
BFONT=
BLABEL
BSIZE=
CAXIS=
HAXIS=
VAXIS=
VMINOR

Other features:
AXIS statement

Data set: JOBS on page 1121
Sample library member: GPLBUBL2

The GPLOT Procedure Example 2: Labeling and Sizing Plot Bubbles 1123

This example modifies the code in Example 1. It shows how BUBBLE statement
options control the appearance of bubbles and their labels. It also shows how AXIS
statements can modify the plot axes.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=4;

Define titles and footnote.

title1 ’Member Profile’;
title2 h=4 ’Salaries and Number of Member Engineers’;
footnote1 h=3 j=r ’GPLBUBL2 ’;

Define axis characteristics. AXIS1 suppresses the horizontal axis label and uses OFFSET= to
move the first and last major tick mark values away from the vertical axes so bubbles are not
clipped. AXIS2 uses ORDER= to set major tick mark intervals. This could be done with VAXIS=
on the BUBBLE statement, but then you could not suppress the axis label and alter other axis
characteristics.

axis1 label=none
offset=(5,5)
width=3

1124 Example 3: Adding a Right Vertical Axis Chapter 37

value=(height=4);
axis2 order=(0 to 40000 by 10000)

label=none
major=(height=1.5)
minor=(height=1)
width=3
value=(height=4);

Generate bubble plot. VMINOR= specifies one minor tick mark for the vertical axis.
BCOLOR= colors the bubbles. BLABEL labels each bubble with the value of variable NUM, and
BFONT= specifies the font for labeling text. BSIZE= increases the bubble sizes by increasing
the scaling factor size to 12. CAXIS= colors the axis lines and all major and minor tick marks.

proc gplot data=jobs;
format dollars dollar9. num comma7.0;
bubble dollars*eng=num / haxis=axis1

vaxis=axis2
vminor=1
bcolor=red
blabel
bfont=swissi
bsize=12
caxis=blue;

run;
quit;

Example 3: Adding a Right Vertical Axis

Procedure features:
BUBBLE2 statement options:

BCOLOR=
BSIZE=
CAXIS=
VAXIS=

Data set: JOBS on page 1121
Sample library member: GPLAXIS1

The GPLOT Procedure Example 3: Adding a Right Vertical Axis 1125

This example modifies Example 2 on page 1122 to show how a BUBBLE2 statement
generates a right vertical axis that displays the values of the vertical coordinates in a
different scale from the scale that is used for the left vertical axis. Salary values are
scaled by dollars on the left vertical axis and by yen on the right vertical axis.

BUBBLE and BUBBLE2 statement options control the size and appearance of the
bubbles and their labels. In particular, the VAXIS options calibrate the axes so that the
data points are identical and only one set of bubbles appears.

Note: If the data points are not identical, two sets of bubbles are displayed. �

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=3;

Create the data set JOBS2 and calculate variable YEN. The DATA step uses a SET
statement to read the JOBS data set.

data jobs2;
set jobs;
yen=dollars*125;

run;

Define titles and footnote.

title1 ’Member Profile’;

1126 Example 4: Plotting Two Variables Chapter 37

title2 h=4 ’Salaries and Number of Member Engineers’;
footnote j=r ’ GPLAXIS1 ’;

Define horizontal-axis characteristics.

axis1 offset=(5,5)
label=none
width=3
value=(h=4);

Generate bubble plot with second vertical axis. In the BUBBLE statement, HAXIS=
specifies the AXIS1 definition and VAXIS= scales the left axis. In the BUBBLE2 statement,
VAXIS= scales the right axis. Both axes represent the same range of monetary values. The
BUBBLE and BUBBLE2 statements ensure that the bubbles generated by each statement are
identical by coordinating specifications on BCOLOR=, which colors the bubbles; BSIZE=, which
increases the size of the scaling factor to 12; and CAXIS=, which colors the axis lines and all
major and minor tick marks. Axis labels and major tick mark values use the default color, which
is the first color in the colors list.

proc gplot data=jobs2;
format dollars dollar7. num yen comma9.0;
bubble dollars*eng=num / haxis=axis1

vaxis=10000 to 40000 by 10000
hminor=0
vminor=1
blabel
bfont=swissi
bcolor=red
bsize=12
caxis=blue;

bubble2 yen*eng=num / vaxis=1250000 to 5000000 by 1250000
vminor=1
bcolor=red
bsize=12
caxis=blue;

run;
quit;

Example 4: Plotting Two Variables
Procedure features:

PLOT statement options:
HAXIS=
HMINOR=
REGEQN
VAXIS=

Other features:

The GPLOT Procedure Example 4: Plotting Two Variables 1127

RUN-group processing
SYMBOL statement

Sample library member: GPLVRBL1

In this example, the PLOT statement uses a plot request of the type
y-variable*x-variable to plot the variable HEIGHT against the variable WEIGHT. The
plot shows that weight generally increases with size.

This example then requests the same plot with some modifications. As shown by the
following output, the second plot request specifies a regression analysis with confidence
limits, and scales the range of values along the vertical and horizontal axes. It also
displays the regression equation specified for the SYMBOL statement. Because the
procedure supports RUN-group processing, you do not have to repeat the PROC GPLOT
statement to generate the second plot.

1128 Example 4: Plotting Two Variables Chapter 37

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=4;

Create the data set. STATS contains the heights and weights of numerous individuals.

data stats;
input height weight;
datalines;

69.0 112.5
56.5 84.0
...more data lines...
67.0 133.0
57.5 85.0
;

Define title and footnotes.

title ’Study of Height vs Weight’;
footnote1 h=3 j=l ’ Source: T. Lewis & L. R. Taylor’;
footnote2

h=3 j=l ’ Introduction to Experimental Ecology’
j=r ’GPLVRBL1(a) ’;

Generate a default scatter plot.

proc gplot data=stats;
plot height*weight;

The GPLOT Procedure Example 5: Connecting Plot Data Points 1129

run;

Redefine footnotes to make room for the regression equation.

footnote1; /* this clears footnote1 */
footnote2 h=3 j=r ’GPLVRBL1(b) ’;

Define symbol characteristics. INTERPOL= specifies a cubic regression analysis with
confidence limits for mean predicted values. VALUE=, HEIGHT=, and CV= specify a plot
symbol, size, and color. CI=, CO=, and WIDTH= specify colors and a thickness for the
interpolation and confidence-limits lines.

symbol1 interpol=rcclm95
value=diamond
height=3
cv=red
ci=blue
co=green
width=2;

Generate scatter plot with regression line. HAXIS= and VAXIS= define the range of axes
values. HMINOR= specifies one minor tick mark between major tick marks. REGEQN displays
the regression equation specified on the SYMBOL1 statement.

plot height*weight / haxis=45 to 155 by 10
vaxis=48 to 78 by 6
hminor=1
regeqn;

run;
quit;

Example 5: Connecting Plot Data Points

Procedure features:
PLOT statement option:

CAXIS=
CTEXT
CVREF
HAXIS
HMINOR=
LVREF=
VAXIS=
VMINOR=
VREF

1130 Example 5: Connecting Plot Data Points Chapter 37

Other features:
SYMBOL statement

Sample library member: GPLDTPT1

In this example, the PLOT statement uses a plot request of the type
y-variable*x-variable to plot the variable HIGH against the variable YEAR to show the
annual highs of the Dow Jones Industrial Average over several decades.

This example uses a SYMBOL statement to specify a plot symbol and connect data
points with a straight line. In addition, the example shows how PLOT statement
options can add reference lines and modify the axes (AXIS statements are not used).

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=4;

Create the data set. STOCKS contains yearly highs and lows for the Dow Jones Industrial
Average, and the dates of the high and low values each year.

data stocks;
input year @7 hdate date9. @15 high

@24 ldate date9. @32 low;
format hdate ldate date9.;
datalines;

1955 30DEC55 488.40 17JAN55 388.20
1956 06APR56 521.05 23JAN56 462.35
...more data lines...

The GPLOT Procedure Example 6: Generating an Overlay Plot 1131

1994 31JAN94 3978.36 04APR94 3593.35
1995 13DEC95 5216.47 30JAN95 3832.08
;

Define title and footnote.

title1 ’Dow Jones Yearly Highs’;
footnote1 h=3 j=l ’ Source: 1997 World Almanac’

j=r ’ GPLDTPT1 ’;

Define symbol characteristics. SYMBOL1 defines the symbol that marks the data points and
specifies its height and color. INTERPOL=JOIN joins the data points with straight lines.

symbol1 color=red
interpol=join
value=dot
height=3;

Generate the plot and modify the axis values. HAXIS= sets major tick marks for the
horizontal axis. VAXIS= sets major tick marks for the vertical axis. HMINOR= and VMINOR=
specify the number of tick marks between major tick marks.

proc gplot data=stocks;
plot high*year / haxis=1955 to 1995 by 5

vaxis=0 to 6000 by 1000
hminor=3
vminor=1

Add reference lines and specify colors. VREF= draws reference lines on the vertical axis at
three marks. LVREF= specifies the line style (dashed) for the lines; CVREF= specifies blue as
the line color. CAXIS= colors the axis lines and all major and minor tick marks. CTEXT=
specifies red for all plot text, including axis labels and major tick mark values.

vref=1000 3000 5000
lvref=2
cvref=blue
caxis=blue
ctext=red;

run;
quit;

Example 6: Generating an Overlay Plot

Procedure features:
PLOT statement options:

LEGEND=

1132 Example 6: Generating an Overlay Plot Chapter 37

OVERLAY
Other features:

LEGEND statement
SYMBOL statement

Data set: STOCKS on page 1130
Sample library member: GPLOVRL1

In this example, one PLOT statement plots both the HIGH and LOW variables
against the variable YEAR using two plot requests. The OVERLAY option on the PLOT
statement determines that both plot lines appear on the same graph. The other PLOT
options scale the vertical axis, add a reference line to the plot, and specify the number
of minor tick marks on the axes. The SYMBOL, AXIS, and LEGEND statements modify
the plot symbols, axes, and legend.

Note: If the OVERLAY option were not specified, each plot request would generate a
separate graph. �

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=4;

Define title and footnote.

title1 ’Dow Jones Yearly Highs and Lows’;
footnote1 h=3 j=l ’ Source: 1997 World Almanac’

j=r ’GPLOVRL1 ’;

The GPLOT Procedure Example 6: Generating an Overlay Plot 1133

Define symbol characteristics. Each SYMBOL statement specifies a color, symbol type, and
size for the plot symbols, and connects the data points with a straight line. SYMBOL2 specifies
a solid triangle as the plot symbol by combining FONT=MARKER with VALUE=C.

symbol1 color=red
interpol=join
value=dot
height=3;

symbol2 font=marker value=C
color=blue
interpol=join
height=2;

Define axis characteristics.

axis1 order=(1955 to 1995 by 5) offset=(2,2)
label=none
major=(height=2) minor=(height=1)
width=3;

axis2 order=(0 to 6000 by 1000) offset=(0,0)
label=none
major=(height=2) minor=(height=1)
width=3;

Define legend characteristics. LABEL= suppresses the legend label. SHAPE= specifies a
width and height for legend values. POSITION= centers the legend inside the top of the axis
frame. MODE= shares the legend area with other graphics elements.

legend1 label=none
shape=symbol(4,2)
position=(top center inside)
mode=share;

Generate two plots and display them on the same set of axes. OVERLAY specifies that
both plot lines appear on the same graph. LEGEND= assigns the LEGEND1 definition to the
graph.

proc gplot data=stocks;
plot high*year low*year / overlay legend=legend1

vref=1000 to 5000 by 1000 lvref=2
haxis=axis1 hminor=4
vaxis=axis2 vminor=1;

run;
quit;

1134 Example 7: Filling Areas in an Overlay Plot Chapter 37

Example 7: Filling Areas in an Overlay Plot

Procedure features:
PLOT statement options:

AREAS=
OVERLAY

Other features:
GOPTIONS statement
SYMBOL statement

Data set: STOCKS on page 1130

Sample library member: GPLFILL1

This example uses the AREAS= option in the PLOT statement to fill the areas that
are under the plot lines. As in the previous example, two plots are overlaid on the same
graph.

Set the graphics environment. COLORS= sets the area colors. CTEXT= sets the color for all
text.

goptions reset=global gunit=pct border cback=white
colors=(blue red) ctext=black
ftitle=swissb ftext=swiss htitle=6 htext=4;

Define title and footnote.

The GPLOT Procedure Example 8: Plotting Three Variables 1135

title1 ’Dow Jones Yearly Highs and Lows’;
footnote1 h=3 j=l ’ Source: 1997 World Almanac’

j=r ’GPLFILL1 ’;

Define symbol characteristics. INTERPOL= specifies a line to connect data points. The line
creates the fill boundary.

symbol1 interpol=join;

Define axis characteristics.

axis1 order=(1955 to 1995 by 5) offset=(2,2)
label=none
major=(height=2)
minor=(height=1);

axis2 order=(0 to 6000 by 1000) offset=(0,0)
label=none
major=(height=2)
minor=(height=1);

Generate a plot with filled areas. The plot requests are ordered to draw the lowest plot first.
Area 1 occupies the space between the lowest (first) plot line and the horizontal axis, and area 2
is below the highest (second) plot line. This arrangement prevents the pattern for area 1 from
overlaying the pattern for area 2. AREAS=2 fills all the areas below the second plot line.

proc gplot data=stocks;
plot low*year high*year / overlay

haxis=axis1
hminor=4
vaxis=axis2
vminor=1
caxis=black
areas=2;

run;
quit;

Example 8: Plotting Three Variables

Procedure features:
PLOT classification variable

Other features:
AXIS statement
SYMBOL statement
RUN-group processing

Sample library member: GPLVRBL2

1136 Example 8: Plotting Three Variables Chapter 37

This example shows that when your data contain a classification variable that groups
the data, you can use a plot request of the form y-variable*x-variable=third-variable to
generate a separate plot for every formatted value of the classification variable, which
in this case is CITY. With this type of request, all plots are drawn on the same graph
and a legend is automatically produced and explains the values of third-variable. The
default legend uses the variable name CITY for the legend label and the variable values
for the legend value descriptions. Because no LEGEND definition is used in this
example, the font and height of the legend label and the legend value descriptions are
set by the graphics options FTEXT= and HTEXT=. Height specifications in the
SYMBOL statement do not affect the size of the symbols in the legend values.

This example then modifies the plot request. As shown in the following output, the
plot is enhanced by using different symbol definitions for each plot line, changing axes
labels, and scaling the vertical axes differently.

The GPLOT Procedure Example 8: Plotting Three Variables 1137

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=3;

Create the data set. CITYTEMP contains the average monthly temperatures of three cities:
Raleigh, Minneapolis, and Phoenix.

data citytemp;
input month faren city $;
datalines;
1 40.5 Raleigh
1 12.2 Minn
1 52.1 Phoenix
...more data lines...
12 41.2 Raleigh
12 18.6 Minn
12 52.5 Phoenix

;

Define title and footnote.

title1 ’Average Monthly Temperature’;
footnote1 j=l ’ Source: 1984 American Express’;
footnote2 j=l ’ Appointment Book’

j=r ’GPLVRBL2(a) ’;

Define symbol characteristics. This statement specifies that a straight line connect data
points, and that the data points be represented by a 3-unit-high dot. Because no color is
specified, the default color behavior is used and each line is a different color.

symbol1 interpol=join
value=dot
height=3;

Generate a plot of three variables. The plot request draws one plot on the graph for each
value of CITY and produces a legend that defines CITY values.

proc gplot data=citytemp;
plot faren*month=city / hminor=0;

run;

Modify FOOTNOTE2 to reference new output.

footnote2 j=l ’ Appointment Book’
j=r ’GPLVRBL2(b) ’;

1138 Example 9: Plotting with Different Scales of Values Chapter 37

Define new symbol characteristics. SYMBOL statements are assigned to the values of CITY
in alphabetical order. For example, the value Minn is assigned SYMBOL1.

symbol1 color=green interpol=spline
width=2 value=triangle
height=3;

symbol2 color=blue interpol=spline
width=2 value=circle
height=3;

symbol3 color=red interpol=spline
width=2 value=square
height=3;

Define new axis characteristics. AXIS1 suppresses the axis label and specifies month
abbreviations for the major tick mark labels. AXIS2 specifies a two-line axis label and scales the
axis to show major tick marks at every 10 degrees from 0 to 100 degrees.

axis1 label=none
value=(’JAN’ ’FEB’ ’MAR’ ’APR’ ’MAY’ ’JUN’

’JUL’ ’AUG’ ’SEP’ ’OCT’ ’NOV’ ’DEC’)
order = 1 to 12 by 1
offset=(2)

width=3;
axis2 label=(’Degrees’ justify=right ’Fahrenheit’)

order=(0 to 100 by 10)
width=3;

Enhance the legend.

legend1 label=none value=(tick=1 ’Minneapolis’);

Generate the enhanced plot. Because the procedure supports RUN-group processing, you do
not have to repeat the PROC GPLOT statement to generate the second plot.

plot faren*month=city / haxis=axis1 hminor=0
vaxis=axis2 vminor=1
caxis=red legend=legend1;

run;
quit;

Example 9: Plotting with Different Scales of Values
Procedure features:

PLOT statement options:
HAXIS=
HMINOR=

The GPLOT Procedure Example 9: Plotting with Different Scales of Values 1139

PLOT and PLOT2 statement options:
CAXIS=
VAXIS=
VMINOR=

Other features:
AXIS statement
SYMBOL statement

Sample library member: GPLSCVL1

This example shows how a PLOT2 statement generates a right axis that displays the
values of the vertical coordinates in a different scale from the scale that is used for the
left axis.

In this plot of the average monthly temperature for Minneapolis, temperature
variables that represent degrees centigrade (displayed on the left axis) and degrees
Fahrenheit (displayed on the right axis) are plotted against the variable MONTH.
Although the procedure produces two sets of data points, it calibrates the axes so that
the data points are identical and it displays only one plot.

This example uses SYMBOL statements to define symbol definitions. By default, the
SYMBOL1 statement is assigned to the plot that is generated by the PLOT statement,
and SYMBOL2 is assigned to the plot generated by the PLOT2 statement.

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=6 htext=3;

Create the data set and calculate centigrade temperatures. MINNTEMP contains
average monthly temperatures for Minneapolis.

1140 Example 9: Plotting with Different Scales of Values Chapter 37

data minntemp;
input @10 month

@23 f2;
c2=(f2-32)/1.8;
output;
datalines;

01JAN83 1 1 40.5 12.2 52.1
01FEB83 2 1 42.2 16.5 55.1

...more data lines...
01NOV83 11 4 50.0 32.4 59.8
01DEC83 12 1 41.2 18.6 52.5
;

Define title and footnote.

title1 ’Average Monthly Temperature for Minneapolis’;
footnote1 j=l ’ Source: 1984 American Express’;
footnote2 j=l ’ Appointment Book’

j=r ’GPLSCVL1 ’;

Define symbol characteristics. INTERPOL=NEEDLE generates a horizontal reference line
at zero on the left axis and draws vertical lines from the data points to the reference line. CI=
specifies the color of the interpolation line and CV= specifies the color of the plot symbol.

symbol1 interpol=needle
ci=blue
cv=red
width=3
value=star
height=3;

Define symbol characteristics for PLOT2. SYMBOL2 suppresses interpolation lines and
plotting symbols; otherwise, they would overlay the lines or symbols displayed by SYMBOL1.

symbol2 interpol=none
value=none;

Define axis characteristics. In the AXIS2 and AXIS3 statements, ORDER= controls the
scaling of the axes. Both axes represent exactly the same range of temperature, and the
distance between the major tick marks on both axes represent an equivalent quantity of degrees
(10 for centigrade and 18 for Fahrenheit).

axis1 label=none
value=(’JAN’ ’FEB’ ’MAR’ ’APR’ ’MAY’ ’JUN’

’JUL’ ’AUG’ ’SEP’ ’OCT’ ’NOV’ ’DEC’)
offset=(2)
width=3;

axis2 label=(’Degrees’ justify=right ’ Centigrade’)
order=(-20 to 30 by 10)
width=3;

The GPLOT Procedure Example 10: Creating Plots with Drill-down for the Web 1141

axis3 label=(h=3 ’Degrees’ justify=left ’Fahrenheit’)
order=(-4 to 86 by 18)
width=3;

Generate a plot with a second vertical axis. HAXIS= specifies the AXIS1 definition.
VAXIS= specifies AXIS2 and AXIS3 definitions in the PLOT and PLOT2 statements. CAXIS=
colors the axis lines and all major and minor tick marks. Axis labels and major tick mark values
use the default color. VMINOR= specifies the number of minor tick marks for each axis.

proc gplot data= minntemp;
plot c2*month / caxis=red

haxis=axis1 hminor=0
vaxis=axis2 vminor=1;

plot2 f2*month / caxis=red
vaxis=axis3
vminor=1;

run;
quit;

Example 10: Creating Plots with Drill-down for the Web

Procedure features:
PLOT statement options:

HTML=
HTML_LEGEND=

ODS features:
ODS HTML statement:

BODY=
NOGTITLE
PATH=

Other features:
BY statement
GOPTIONS statement

Sample library member: GPLDRIL1

This example shows how to create a plot with simple drill-down functionality for the
Web. If you display the plot in a Web browser, you can select any plot point or legend
symbol to display a report on monthly temperatures for the selected city.

The example explains how to use an ODS statement such as ODS HTML to generate
a graph with drill-down links. It shows how to:

� explicitly name the HTML files and direct the different types of output to different
files

� use BY-group processing with ODS, and determine the anchor names for the
different pieces of output

� use the PATH= option to specify the destination for the HTML and GIF files
created by the ODS statement

1142 Example 10: Creating Plots with Drill-down for the Web Chapter 37

� add an HTML HREF string to a data set to define a link target
� assign link targets with the HTML= and HTML_LEGEND= procedure options
� suppress the titles in the GIF files and display them in the HTML file.

For more information on drill-down graphs, see “Adding Drill-Down Links to Web
Presentations” on page 571.

This program modifies the code from sample GPLVRBL2, which shows how to
generate separate plots for the formatted values of a classification variable. In this
example, the code implements drill-down capability for the plot, enabling you to select
any plot point or legend symbol to drill down to a report on the yearly temperatures for
the corresponding city. The following figure shows the drill-down plot as it is viewed in
a Browser.

The following figure shows the report that appears when you select any plot point or
legend symbol that corresponds to the data for Raleigh.

The GPLOT Procedure Example 10: Creating Plots with Drill-down for the Web 1143

Assign the fileref to the Web-server path. FILENAME assigns the fileref ODSOUT, which
specifies a destination for the HTML and GIF files produced by the example program. ODSOUT
must point to a Web-server location if procedure output is to be viewed on the Web. Later in the
program, PATH=ODSOUT is specified on the ODS HTML statement, which directs program
output to that location.

filename odsout ’path to Web server space’;

Close the ODS listing destination for output. To conserve system resources, use ODS
LISTING to close the Listing destination for procedure output. Thus, the graphics output is not
displayed in the GRAPH window, although it is written to the catalog.

ods listing close;

Assign graphics options for producing the ODS output. DEVICE=GIF causes ODS to
generate the graphics output as GIF files. TRANSPARENCY causes the graphics output to use
the Web-page background as the background of the graph. NOBORDER suppresses the border
around the graphics output area, which makes the border treatment the same as that for the
non-graphics output that is generated by the example.

goptions reset=global gunit=pct
colors=(black red blue green)
ftext=swiss ftitle=swissb htitle=6 htext=3
device=gif transparency noborder;

1144 Example 10: Creating Plots with Drill-down for the Web Chapter 37

Open the HTML destination. PATH= specifies the ODSOUT fileref as the HTML destination
for all the HTML and GIF files produced by the program. BODY= names the HTML file for
storing the drill-down plot. NOGTITLE suppresses the graph title from the SAS/GRAPH output
and displays it through the HTML page. ODS automatically assigns anchor names to each
piece of output that is generated while the HTML destination is open.

ods html path=odsout
body=’city_plots.html’
nogtitle;

Create the data set CITYTEMP. CITYTEMP contains the average monthly temperatures for
three cities.

data citytemp;
input Month Fahrenheit City $;
datalines;
1 40.5 Raleigh
1 12.2 Minn
1 52.1 Phoenix
2 42.2 Raleigh
2 16.5 Minn
2 55.1 Phoenix
3 49.2 Raleigh
3 28.3 Minn
3 59.7 Phoenix
4 59.5 Raleigh
4 45.1 Minn
4 67.7 Phoenix
5 67.4 Raleigh
5 57.1 Minn
5 76.3 Phoenix
6 74.4 Raleigh
6 66.9 Minn
6 84.6 Phoenix
7 77.5 Raleigh
7 71.9 Minn
7 91.2 Phoenix
8 76.5 Raleigh
8 70.2 Minn
8 89.1 Phoenix
9 70.6 Raleigh
9 60.0 Minn
9 83.8 Phoenix

10 60.2 Raleigh
10 50.0 Minn
10 72.2 Phoenix
11 50.0 Raleigh
11 32.4 Minn
11 59.8 Phoenix
12 41.2 Raleigh
12 18.6 Minn
12 52.5 Phoenix

;

The GPLOT Procedure Example 10: Creating Plots with Drill-down for the Web 1145

Add the HTML variable to CITYTEMP and create the NEWTEMP data set. The HTML
variable CITYDRILL contains the target locations to associate with the different values of the
variable CITY. Each location for CITYDRILL references the file city_reports.html, which this
program will create. Each location ends with the default anchor name (IDX1, IDX2, and IDX3)
that ODS assigns to the target output when it creates that output in file city_reports.html.

data newtemp;
set citytemp;
length citydrill $ 40;
if city=’Minn’ then

citydrill=’HREF="city_reports.html#IDX1"’;
else if city=’Phoenix’ then

citydrill=’HREF="city_reports.html#IDX2"’;
else if city=’Raleigh’ then

citydrill=’HREF="city_reports.html#IDX3"’;

Define titles and footnotes and a symbol definition for the plots.

title1 ’Average Monthly Temperature’;
footnote1 j=l h=3 ’ Click a data point or legend symbol’

j=r ’GPLDRIL1 ’;

symbol1 interpol=join
value=dot
height=3;

Generate the plot. Both HTML= and HTML_LEGEND= specify CITYDRILL as the variable
that contains the targets for the drill-down links. HTML= determines that each plot point will
be a hot zone that links to target output, and HTML_LEGEND= determines that the legend
symbols will be hot zones that link to target output. This GPLOT procedure generates the first
piece of output in this program; thus, the plot receives the first default anchor name, which is
IDX.

proc gplot data=newtemp;
plot fahrenheit*month=city / hminor=0

html=citydrill
html_legend=citydrill;

run;
quit;

Change the HTML file. BODY= opens a new HTML file for storing the reports for city
temperatures. The new file is assigned the name city_reports.html, which is the file name
assigned above to variable CITYDRILL as part of its target-link locations. The reports that are
generated later in this program will all be written to this one HTML file.

ods html path=odsout
body=’city_reports.html’;

Sort data set NEWTEMP in order by city.

proc sort data=newtemp;
by city month;

run;

Clear the footnotes, and suppress the default BY-line.

1146 Example 10: Creating Plots with Drill-down for the Web Chapter 37

goptions reset=footnote;
option nobyline;

Print a report of monthly temperatures for each city. The BY statement determines that a
separate report is generated for each city. Thus, the REPORT procedure generates three pieces
of output. To assign anchor locations to this new output, ODS increments the last anchor name
that was used (IDX), and therefore assigns the anchor names IDX1, IDX2, and IDX3 to the
output. These are the anchor locations that were specified above as the anchor locations for
variable CITYDRILL.

title1 ’Monthly Temperatures in #byval(city)’;
proc report data=newtemp nowindows;

by city;
column city month fahrenheit;
define city / noprint group;
define month / display group;
define Fahrenheit / display group;

run;

Close the HTML destination, and open the LISTING destination.

ods html close;
ods listing;

1147

C H A P T E R

38
The GPRINT Procedure

Overview 1147

Concepts 1148
About External Text Files 1148

Procedure Syntax 1148

PROC GPRINT Statement 1148
Examples 1153

Example 1: Specifying Color Text 1153

Example 2: Adjusting the Size of Characters 1156

Overview
The GPRINT procedure converts a text file into graphics output that can be

displayed or printed on a graphics output device. You can enhance the output with
TITLE, NOTE, and FOOTNOTE statements, or include Annotate graphics, or both.
Like output from any other SAS/GRAPH procedure, output from the GPRINT procedure
can be stored in catalogs and replayed with the GREPLAY procedure.

You can use the GPRINT procedure when you want to create graphics output from
tabular material, reports, or any external text file produced by the SAS System or other
software application. To display text and graphics generated by SAS/GRAPH software,
use the GSLIDE procedure.

Figure 38.1 on page 1147 shows a graphics output generated by the GPRINT
procedure from SAS output generated by the MEANS procedure. Titles and footnotes
have been added, and the Swiss font has been assigned to the procedure output text.

Figure 38.1 Graph Generated with the GPRINT Procedure

1148 Concepts Chapter 38

Concepts

About External Text Files
External text files are files that you have stored outside of SAS. They can be created

in several different ways. Four common methods are as follows:
� save the contents of the OUTPUT or LOG window to an external file with the

FILE command
� direct the output from SAS procedures to an external file using the PRINTTO

procedure and a FILENAME statement
� direct the output from a SAS data step to an external file using the FILE and PUT

statements
� create a text file from another software application such as a text editor or a

spreadsheet program.

Note: Depending on the operating environment and the method used to generate
the file, external text files may contain carriage-control characters. For more
information on carriage-control characters, see the NOCC option on page 1150. �

You can use a FILENAME statement or host command to specify a fileref that points
to the location of the external text file that you want to print. This external file serves
as the input file for the GPRINT procedure.

Procedure Syntax
Global statements: FOOTNOTE, GOPTIONS, TITLE

Reminder: The procedure can include the NOTE statement.
Supports: Output Delivery System (ODS)

PROC GPRINT FILEREF=fileref
<option(s)>;

PROC GPRINT Statement

The PROC GPRINT statement identifies the external file to be converted to graphics output.
Optionally, specifies the text color, a destination catalog for graphics output, and an Annotate data
set.

Syntax

PROC GPRINT FILEREF=fileref
<option(s)>;

option(s) can be one or more of the following:

The GPRINT Procedure PROC GPRINT Statement 1149

ANNOTATE=Annotate-data-set
CTEXT=text-color
DESCRIPTION=’entry-description’
GOUT=<libref.>output-catalog
NAME=’entry-name’
NOCC
O

Required Arguments

FILEREF=fileref
specifies the fileref that is associated with the external file that will be used as input
to the GPRINT procedure. Fileref must have been previously defined in a
FILENAME statement or host command.
See also: “FILENAME Statement” on page 28.
Featured in: Example 2 on page 1156.

Options
Options in the PROC GPRINT statement affect all graphs that the statement

produces. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate the output that the GPRINT procedure produces.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

CTEXT=text-color
specifies the color in which the procedure displays the text from the input file.

If you do not use the CTEXT= option, a color specification is searched for in the
following order:

1 the CTEXT= option in a GOPTIONS statement
2 the default, the first color in the colors list.
The CTEXT= option in the PROC GPRINT statement does not affect titles and

footnotes generated by TITLE and FOOTNOTE definitions.
Featured in: Example 1 on page 1153.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GPRINT procedure assigns the description OUTPUT FROM PROC
GPRINT.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GPRINT procedure. If you omit the libref, SAS/GRAPH looks for the catalog in the
temporary library called WORK and creates the catalog if it does not exist.
See also: “Storing Graphics Output in SAS Catalogs” on page 53.

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length for
entry-name is 8 characters. The default name is GPRINT. If the specified name
duplicates the name of an existing entry, SAS/GRAPH software adds a number to the
duplicate name to create a unique entry, for example, GPRINT1.

1150 PROC GPRINT Statement Chapter 38

NOCC
tells the procedure that the external text file does not contain carriage-control
characters. If you include the NOCC option, the procedure assumes that the first
character on each line of the input file is a text character and not a carriage-control
character. If you omit the NOCC option, the characters in column one are read as
carriage-control characters. If they are valid carriage-control characters, the
GPRINT procedure recognizes and executes them. If they are not valid
carriage-control characters, the GPRINT procedure issues an error message.

O
causes a 0 (numeric zero) to be converted to the letter O in the output. This option
circumvents the use of a numeric zero with an interior slash that is present on some
devices.

Adjusting SAS Output and Graphics Output
The size of SAS output (or other text) in columns and rows and the size of graphics

output are independently controlled. Depending on the result you want, you can do
either of the following:

� Adjust the size of your SAS output (or other text) to fit the available space on your
graph.

� Adjust the dimensions of the graphics output area and the size of the cells within
the graphics output area to control the size of the characters that are displayed as
graphics output by the GPRINT procedure.

You can adjust the size (columns and rows) of any other external text file that you
use as input to the GPRINT procedure. Although the following sections explain how to
adjust the size of SAS output, the general process can be applied to any text file.

SAS Output Size
SAS output prints in pages. The length (in number of rows) and the width (in number
of columns) of the page are determined by the PAGESIZE= and LINESIZE= options,
respectively. Each character of SAS output occupies one column of space in a row (one
cell), as shown in Figure 38.2 on page 1150.

Figure 38.2 SAS Output Size

Graphics Output Size
Graphics output is drawn in the graphics output area, which is also divided into cells.
The overall dimensions of the graphics output area (width and height) are determined
by the values of the device parameters XMAX and YMAX. These values, which
determine the aspect ratio of the graphics output area, can be temporarily reduced with
the HSIZE= and VSIZE= graphics options.

The GPRINT Procedure PROC GPRINT Statement 1151

The number of columns and rows that fill the area is determined by the values of the
LCOLS or PCOLS and LROWS or PROWS device parameters. These values, which
determine the size and aspect ratio of a cell, can be temporarily altered with the
HPOS= and VPOS= graphics options. The more columns and rows there are in a given
area, the smaller the cells are. Therefore, using HPOS= and VPOS= to change the
number of columns and rows also changes the size of the cells and may change the size
of the characters. However, it does not affect the overall dimensions of the graph. For
details, see “Maintaining the aspect ratio of cells” on page 1152.

See “Procedure Output and the Graphics Output Area” on page 34 for a complete
description of the graphics output area and Chapter 2, “SAS/GRAPH Programs,” on
page 25 for information on device parameters and graphic options.

Matching Sizes
When you use the GPRINT procedure to convert SAS output to graphics output, you
may need to manipulate the dimensions of either or both to get the proper size
characters in the graphics output and to avoid truncating lines. Adjustment may be
necessary in the following situations:

� If the number of rows per page in the SAS output (PAGESIZE=) exceeds the
number of rows in the graphics output area (LROWS or PROWS), then the
GPRINT procedure produces additional pages of graphics output.

� If the number of rows per page in the SAS output (PAGESIZE=) is much less than
the number of rows in the graphics output area (LROWS or PROWS), then the
output does not fill the graphics output area.

� If the width of a line of SAS output (LINESIZE=) exceeds the number of columns
in the graphics output area (LCOLS or PCOLS), then the GPRINT procedure
truncates the line.

� If the width of SAS output (LINESIZE=) is much less than the number of columns
in the graphics output area (LCOLS or PCOLS), then the output does not fill the
graphics output area.

You can adjust the size of the SAS output or the size of the graphics output, or both.

Adjusting the size of the SAS output
The following steps show you how to use the PAGESIZE= and LINESIZE= options to
adjust the page size of the SAS output to fit the size of the graphics output area.

1 Use the GDEVICE procedure to determine the number of rows (LROWS or
PROWS) and the number of columns (LCOLS or PCOLS) on the graphics device
that you intend to use. See Chapter 31, “The GDEVICE Procedure,” on page 915
for details.

2 Determine the number of columns and rows that you are going to use for SAS/
GRAPH titles and footnotes. (If you specify height in units of CELLS, each unit of
height equals one row.)

3 Use the OPTIONS statement to set the PAGESIZE= option equal to the number of
rows on the device minus the number of positions to be used by TITLE and
FOOTNOTE definitions. Set the LINESIZE= option equal to the number of
columns on the device minus the number of positions used by titles and footnotes
if the titles and footnotes are positioned vertically.

4 Produce the SAS output.

Adjusting the size of the graphics output
The following steps show you how to use the HPOS= and VPOS= graphics options to
adjust the number of columns and rows in the graphics output area on the output
device so that it can accommodate the page size of your SAS output.

1152 PROC GPRINT Statement Chapter 38

1 Determine the number of columns (LINESIZE=) and rows (PAGESIZE=) in the
SAS output.

2 Use the GOPTIONS statement to set the VPOS= graphics option equal to the
number of rows in the SAS output plus the number of rows to be used by TITLE
and FOOTNOTE definitions. Set the HPOS= graphics option equal to the number
of columns in the SAS output plus the number of columns to be used by titles and
footnotes if the titles and footnotes are positioned vertically.

3 Produce the GPRINT output.

Similarly, adjusting the overall dimensions of the graphics output area with the
HSIZE= and VSIZE= graphics options may affect the size and possibly the aspect ratio
of the cells.

Note: Changing the values of the HPOS= and VPOS= graphics options changes the
size of the cells and consequently of characters in the output. On devices with
nonscalable hardware fonts, changing the aspect ratio with HPOS= and VPOS= causes
the Simulate font to be used instead of hardware characters. However, if you specify
software fonts, the change in aspect ratio may be ignored. See “Using Fonts” on page
1152 and “Using Hardware Fonts” on page 78 for more information . �

Maintaining the aspect ratio of cells
If you change the values of the HPOS= and VPOS= graphics options to control the size
of characters or to match the rows and columns of the external text file, you should try
to maintain the same ratio of columns to rows as the original values of the device
parameters. For example, suppose you have SAS output with 50 columns and 10 rows,
and a graphics device that has 80 columns and 32 rows. The aspect ratio of the device
is 5:2. If you print 10 rows of output on a device with 32 rows, you will have 22 blank
lines. You can reduce the number of blank lines and increase the size of the characters
by reducing the number of rows in the graphics output area with VPOS=. If, in addition
to the 10 rows of output, you allow four lines of space for titles and two lines of space
for a footnote, you need a total of 16 rows. Therefore, assigning a value of 20 to VPOS=
should produce readable text and plenty of space. If VPOS=20, setting HPOS= to 50
retains the original aspect ratio of the device (80:32 or 5:2).

Note that this method allows space for titles and footnotes in terms of rows; the
actual size of the titles and footnotes depends on the height specification you use. Using
the unit CELLS to define the height of titles and footnotes makes it easier to calculate
precisely how much space is available.

Using Fonts
By default, the GPRINT procedure uses the default hardware font with a height of 1

cell to display the text from the external file. However, if you specify a nonscalable
hardware font, SAS/GRAPH may use the Simulate font instead. See Chapter 5, “SAS/
GRAPH Fonts,” on page 75 for details.

Font and height specifications for titles and footnotes are determined by the TITLE
and FOOTNOTE definitions. See “TITLE, FOOTNOTE, and NOTE Statements” on
page 210 for details.

To specify a font and height for the text, use the FTEXT= and HTEXT= graphics
options. If you specify a software font, it is best to use a uniform font such as Swiss
Uniform so that your text will be evenly spaced.

CAUTION:
Changes in the aspect ratio of cells made with the HPOS= and VPOS= graphics options are
ignored if you specify software fonts. Change the aspect ratio in the device entry if you
want the software characters proportioned to fit the new aspect ratio. �

The GPRINT Procedure Example 1: Specifying Color Text 1153

If you specify a software font and change the aspect ratio of the cells with the
HPOS= and VPOS= graphics options, the change in aspect ratio is ignored and the
procedure continues to draw the font in the original proportions. As a result, your text
may not fit the graphics output area.

However, if you want the software characters to reflect a change in aspect ratio or if
you want the characters to fit the new aspect ratio even if they are distorted, use the
LCOLS or PCOLS and LROWS or PROWS device parameters in the device entry to
change the aspect ratio of the cells. Using the device entry to specify a change in the
aspect ratio enables you to distort the characters. See Chapter 31, “The GDEVICE
Procedure,” on page 915 for more information on changing device parameters.

Examples

Example 1: Specifying Color Text

Procedure features:
GPRINT procedure options:

CTEXT=
Other features:

GOPTIONS statement
TIMEPLOT procedure

Sample library member: GPRCOLOR

This example creates the REFLIB.DOWHLC data set and generates a graph with
color text from output that is produced by the TIMEPLOT procedure. The TIMEPLOT
procedure is not a graphics procedure and produces text output only. (See Base SAS
Procedures Guide for details on the TIMEPLOT procedure.)

The first part of this example uses the TIMEPLOT procedure with the newly created
REFLIB.DOWHLC data set as input to produce Output 38.1:

1154 Example 1: Specifying Color Text Chapter 38

Output 38.1 SAS Output from the TIMEPLOT Procedure

date min max
6310 6960

--
02JAN1997 | l-----------c------h | |
03JAN1997 | l---------c----h | |
06JAN1997 | l-----c-----|-h |
07JAN1997 | l-----------c-h| |
08JAN1997 | l---c-------|-h |
09JAN1997 | l----------c----h |
10JAN1997 | l---------|------c--h |
13JAN1997 | | l-----c-----h |
14JAN1997 | | l------c-----h |
15JAN1997 | | l-----c------h |
16JAN1997 | | l-------c----h |
17JAN1997 | | l---------c--h |
20JAN1997 | | l-----@ |
21JAN1997 | | l----------c----h |
22JAN1997 | | l----c-----h |
23JAN1997 | | l---c------------------h |
24JAN1997 | l------c---------h |
27JAN1997 | l--|--c--------h |
28JAN1997 | l-|--c---------------h |
29JAN1997 | l---h------c |
30JAN1997 | | l---------c--h |
31JAN1997 | | l---c---------h |

--

The second part of this example takes the output generated by the TIMEPLOT
procedure and converts it to a graph by using the GPRINT procedure. Figure 38.3 on
page 1154 shows the graph with color text, a title, and a footnote:

Figure 38.3 GPRINT Procedure Output with Enhanced Text (GPRCOLOR)

The GPRINT Procedure Example 1: Specifying Color Text 1155

Assign the libref and set the graphics environment. HTEXT= assigns the height for the
text in the default unit, cells.

libname reflib ’SAS-data-library’;
goptions reset=global border cback=white

colors=(black blue green red)
ftitle=swissb htitle=3pct
htext=.8 ftext=none
hsize=7in vsize=5in;

Assign the fileref OUT to the external file.

*filename out ’external-file’;

Create the data set REFLIB.DOWHLC.

data reflib.dowhlc;
input date date9. high low close;
format date date9.;
datalines;

02JAN1997 6511.38 6318.96 6442.49
03JAN1997 6586.42 6437.10 6544.09
...more data lines...
30JAN1997 6845.03 6719.96 6823.86
31JAN1997 6912.37 6769.99 6813.09
;

Suppress the date line and page numbers and set the linesize and pagesize.

options nodate nonumber linesize=80 pagesize=60;

Specify the destination for all subsequent procedure output.

proc printto print=out new;
run;

Generate TIMEPLOT graph output. It is sent to external file.

proc timeplot data=reflib.dowhlc;
plot low close high / overlay hiloc ref=mean(low)

npp axis=6310 to 6960 by 10;
id date;

run;

Reset destination for printed output to default.

proc printto;
run;

1156 Example 2: Adjusting the Size of Characters Chapter 38

Define title and footnote.

title ’TIMEPLOT of Dow-Jones Averages’;
footnote h=3 pct f=swiss

j=l ’ L=Low’ ’ C=Close’ ’ H=High’
j=r ’GPRCOLOR ’;

Generate graph from the external file and specify text color. CTEXT= assigns a color to
the text produced by the GPRINT procedure.

proc gprint fileref=out ctext=red;
run;

Example 2: Adjusting the Size of Characters

Procedure features:
GPRINT statement options:

FILEREF=
Other features:

FILENAME statement
GOPTIONS statement
PRINT procedure
PRINTTO procedure

Data set: REFLIB.DOWHLC (see Example 1 on page 1153)
Sample library member: GPRCHARA

This example creates a graph from a text file and increases the size of the text. The
first part of this example uses the PRINT procedure to create an external file that
contains SAS output. The GPRINT procedure is used to import the text file into a
graph. Because the LINESIZE= option (columns) is set to 76 and the PAGESIZE=
option (rows) is set to 24, the output is small and occupies only a portion of the page, as
shown in Figure 38.4 on page 1157:

The GPRINT Procedure Example 2: Adjusting the Size of Characters 1157

Figure 38.4 GPRINT Procedure Output with No Adjustments (GPRCHARA(a))

In the second part of this example, the number of columns and rows in the graphics
output area is reduced with the HPOS= and VPOS= graphic options. Thus, the size of
the characters in the graph increase, as shown in Figure 38.5 on page 1157:

Figure 38.5 GPRINT Procedure Output with Adjusted Sizing (GPRCHARA(b))

Assign the libref and set the graphics environment. FTEXT= in the GOPTIONS statement
specifies the default hardware font. (This is the default setting.)

libname reflib ’SAS-data-library’;
goptions reset=global border cback=white

colors=(black blue green red)
ftitle=swissb ftext=none
hsize=7in vsize=5in
hpos=142 vpos=68;

1158 Example 2: Adjusting the Size of Characters Chapter 38

Assign the fileref DOW to the external file. The fileref DOW is associated with the external
file where the output from PROC PRINT is stored.

filename dow ’external-file’;

Suppress the date line and page numbers. Set the line and page size.

options nodate nonumber linesize=76 pagesize=24;

Specify the destination for all subsequent procedure output. The PRINTTO procedure
directs the SAS output to the external file that the GPRINT procedure subsequently uses as
input. PRINT= directs all printed procedure output to the file referenced by the fileref DOW.
NEW causes the output file to be replaced each time the program is run.

proc printto print=dow new;
run;

Send the output to the destination file. The PRINT procedure generates the text and sends
it to the external file specified by PROC PRINTTO.

proc print data=reflib.dowhlc;
run;

Reset destination for printed output to the default. The destination for printed output is
reset to the default by resubmitting PROC PRINTTO with no options.

proc printto;
run;

Define title and footnote.

title ’Dow-Jones Averages’;
footnote h=3 pct f=swiss j=r ’GPRCHARA(a) ’;

Generate graph from the external file. FILEREF= specifies the external file that is used as
input. NOCC is omitted because the input text file contains carriage-control characters.

proc gprint fileref=dow;
run;

Reduce HPOS= and VPOS= to increase cell size.

goptions hpos=75 vpos=30;

The GPRINT Procedure Example 2: Adjusting the Size of Characters 1159

Define the footnote.

footnote h=3 pct f=swiss j=r ’GPRCHARA(b) ’;

Generate adjusted graph.

proc gprint fileref=dow;
run;

1160

1161

C H A P T E R

39
The GPROJECT Procedure

Overview 1161

Concepts 1163
About the Input Map Data Set 1163

Input Map Data Sets that Contain Only Unprojected Values 1163

Input Map Data Sets that Contain Both Projected and Unprojected Values 1164
About Coordinate Values 1164

About Types of Map Projections 1165

Albers’ Equal-Area Projection 1165
Lambert’s Conformal Projection 1166

Gnomonic Projection 1167
Procedure Syntax 1167

PROC GPROJECT Statement 1168

ID Statement 1171
Using the GPROJECT Procedure 1172

Selecting Projections 1172

Controlling Projection Criteria 1172
Clipping Map Data Sets 1173

Examples 1173
Example 1: Using Default Projection Specifications 1174

Example 2: Emphasizing Map Areas 1177

Example 3: Clipping an Area from the Map 1178
Example 4: Projecting an Annotate Data Set 1180

References 1182

Overview
The GPROJECT procedure processes traditional map data sets by converting

spherical coordinates (longitude and latitude) into Cartesian coordinates for use by the
GMAP procedure. The process of converting coordinates from spherical to Cartesian is
called projecting. In many of the traditional map data sets available with SAS/GRAPH
software, the observation values are stored as longitude and latitude coordinates on a
sphere (which means the map is unprojected). When these observations are plotted by
the GMAP procedure, which is designed to plot points on a two-dimensional plane, the
resulting map is often reversed and elongated as a result of forcing the curved map
surface onto a flat plane.

The GPROJECT procedure enables you to use one of several map projection
techniques to project the coordinates in a traditional map data set into a
two-dimensional plane while attempting to minimize the distortion of area, distance,
direction, and shape properties of the original sphere. (The earth is not precisely
spherical and the GPROJECT procedure does not attempt to correct this small

1162 Overview Chapter 39

distortion.) The output map data set that is produced by the procedure contains
Cartesian coordinates that can be displayed correctly using the GMAP procedure.

The GPROJECT procedure also can create a rectangular subset of the input map
data set by excluding all points with longitude and latitude values that fall outside of a
specified range. This provides a handy way to reduce the size of the map data set if you
need only a portion of a larger map.

The GPROJECT procedure does not produce any graphics output. Instead, it
produces an output map data set, which typically becomes the input map data set for
the GMAP procedure (see Chapter 35, “The GMAP Procedure,” on page 995).

Figure 39.1 on page 1162 and Figure 39.2 on page 1163 illustrate the effect of using
GPROJECT defaults (Albers projection with standard parallels that are calculated by
the procedure) to project a typical map data set with coordinates that are stored as
longitude and latitude.

The program for the following maps can be seen in Example 1 on page 1174.

Figure 39.1 Map before Projection (GPJDEFLT(a))

The GPROJECT Procedure About the Input Map Data Set 1163

Figure 39.2 Map after Projection (GPJDEFLT(b))

Concepts

About the Input Map Data Set
The input map data set must be in traditional map data set format (see “About

Traditional Data Sets” on page 999), and it must contain these variables:
� a numeric variable named X that contains the longitude coordinates of the map

boundary points.

� a numeric variable named Y that contains the latitude coordinates of the map
boundary points.

� one or more identification variables that uniquely identify the unit areas in the
map. These variables are listed in the ID statement.

The X and Y variables contain the values that are to be projected.
In addition, the input map data set also can contain

� a numeric variable named SEGMENT that distinguishes nonconterminous
segments of the unit areas.

� a numeric variable named DENSITY that can be used to affect the output from
PROC GPROJECT. See “Clipping Map Data Sets” on page 1173 for more
information.

Other variables in the input map data set do not affect the GPROJECT procedure.

Input Map Data Sets that Contain Only Unprojected Values

Note: Projection is appropriate for map data sets in which the X and Y variable
values represent longitude and latitude. Some of the map data sets that are supplied
with SAS/GRAPH have already been projected; such data set should not be projected
again. �

The following is a list of all of the Institute-supplied data sets that contain X and Y
variables whose values are unprojected:

1164 About Coordinate Values Chapter 39

CANADA3
CANADA4
COUNTIES
COUNTY
STATES

See Example 1 on page 1174 for an illustration of this type of input map data set and
the variables it contains.

Input Map Data Sets that Contain Both Projected and Unprojected Values
Most traditional map data sets contain both sets of variables (X, Y and LONG, LAT)

for projected and unprojected maps. In these cases, the X and Y variables will produce
a projected map so you do not need to use the GPROJECT procedure. However, you
may want to use the LONG and LAT variables to reproject the map using a different
projection type. To do this you must first rename the LONG and LAT variables. It is
necessary to rename the LONG and LAT variables because the GPROJECT procedure
looks for variables that are named X and Y by default. You can create a new map data
set using the OUT= option, drop the current X and Y variables, and rename the LONG
and LAT variables. Your new data set will then contain unprojected values in X and Y.
The following statements illustrate how to do this:

proc gproject data=map.austral
(drop=x y rename=(long=x lat=y))
out=newaust;

id id;
run;

For additional information on the supplied SAS/GRAPH map data sets, see “About
Map Data Sets” on page 999 and the METAMAPS data set in your maps data set
directory.

About Coordinate Values
Figure 39.3 on page 1164 shows the standard coordinate system for map data sets

with coordinates in longitude and latitude. For the longitude and latitude values (below
and to the right of the figure, respectively) the upper value is expressed in degrees and
the lower value is expressed in radians. A radian is approximately 57.3 degrees.

Figure 39.3 Longitude and Latitude Coordinates

prime meridian

west longitude east longitude
north pole

north latitude

equator

south latitude

south pole

 180o 90o 0o −90o −180o

 3.1416 1.5708 0.0 −1.5708 −3.1416

90o

1.5708

0o

0.0

−90o

−1.5708

The GPROJECT Procedure About Types of Map Projections 1165

By default, the GPROJECT procedure assumes that the units for the input
coordinate values are radians and that values for the horizontal coordinate increase
from east to west across the map. If your map coordinates are stored as degrees of arc,
use the DEGREE option in the PROC GPROJECT statement. If the horizontal
coordinate values in the map increase west-to-east rather than east-to-west, use the
EASTLONG option in the PROC GPROJECT statement. See “Options” on page 1168
for details of DEGREE and EASTLONG.

The unprojected map data sets that are provided with SAS/GRAPH can be projected
if you use the default procedure characteristics: coordinate units in the data sets are
radians, and horizontal values increase east-to-west.

About Types of Map Projections
The GPROJECT procedure performs three different types of projection: Albers’

equal-area projection with two standard parallels (the default method), Lambert’s
conformal projection with two standard parallels, or the gnomonic projection (an
azimuthal equidistant projection).

These sections describe the basic theory of each projection method. For comparison,
Figure 39.4 on page 1165 shows an unprojected map of the northern hemisphere.

Figure 39.4 Unprojected Map

Albers’ Equal-Area Projection
The Albers’ projection is a conic projection from the surface of the sphere to a cone

secant to the sphere, cutting it at two standard parallels of latitude. The axis of the cone
coincides with an extension of the polar axis of the sphere. Each section of the resulting
map bears a constant ratio to the area of the sphere. In general, distortion in shape
tends to increase toward the poles in latitudes outside of the two standard parallels.

The Albers’ projection is well suited to portray areas of large and small east-to-west
extent and produces satisfactory results in most cases. However, both standard
parallels must lie on the same side of the equator, so this method may not be suitable
for map data sets of large north-to-south extent that span the equator. For those map
data sets, use the gnomonic projection method.

Figure 39.5 on page 1166 illustrates an Albers’ equal-area projection of the northern
hemisphere.

1166 About Types of Map Projections Chapter 39

Figure 39.5 Albers’ Projection

Lambert’s Conformal Projection
The Lambert’s projection is obtained from a secant cone in the same manner as

Albers’ projection. In the Lambert’s projection, meridians of longitude are straight lines
that radiate from the apex of the cone, while parallels of latitude are concentric circles.
The Lambert’s projection is somewhat better than the Albers’ projection at representing
the original shape of projected unit areas, while the Albers’ projection is somewhat
better at representing relative sizes of projected unit areas.

The Lambert’s projection is ideal for navigational charts and maps of relatively small
east-to-west extent. However, as in the Albers’ projection, both standard parallels must
lie on the same side of the equator, so this method may not be suitable for map data sets
that span the equator. For those map data sets, use the gnomonic projection method.

Figure 39.6 on page 1166 illustrates a Lambert’s conformal projection of the northern
hemisphere.

Figure 39.6 Lambert’s Projection

The GPROJECT Procedure Procedure Syntax 1167

Gnomonic Projection
The gnomonic projection is a planar projection from the surface of the sphere directly

onto an imaginary plane tangent to the sphere at the map projection pole. By default,
the projection pole is placed at the center of the map data set that is to be projected, but
you can specify the projection pole to be anywhere on the surface of the sphere. (See
thePOLELAT= and POLELONG option on page 1170.)

In the gnomonic projection, distortion increases as the distance from the map pole
increases. Because of this distortion, the PROC GPROJECT procedure deletes all of the
observations that lie more than 85 degrees from the map pole. The gnomonic projection
is best suited for mapping areas of small east-to-west extent.

Figure 39.7 on page 1167 illustrates a gnomonic projection of the northern
hemisphere.

Figure 39.7 Gnomonic Projection

Procedure Syntax
Requirements: Exactly one ID statement is required.

PROC GPROJECT <option(s)>;
ID id-variable(s);

1168 PROC GPROJECT Statement Chapter 39

PROC GPROJECT Statement

Identifies the input and output map data sets. Optionally specifies the type of projection, and
criteria for clipping and projection.

Requirements: An input map data set is required.

Syntax

PROC GPROJECT <option(s)>;

option(s) can be one or more options from any or all of the following categories:
� data set options:

DATA=input-map-data-set
OUT=output-map-data-set

� projection options:
PARADIV=n
PARALEL1=latitude
PARALEL2=latitude
POLELAT=latitude
POLELONG=longitude
PROJECT=ALBERS | GNOMON | LAMBERT | NONE

� coordinate options:
ASIS | DUPOK
DEGREE
EASTLONG

� clipping options:
LATMIN=min-latitude
LATMAX=max-latitude
LONGMIN=min-longitude
LONGMAX=max-longitude

Options

ASIS
DUPOK

specify that observations for which the projected values for the X and Y variables are
identical to those in the previous observation should be retained. By default,
successive identical observations are deleted.

DATA=input-map-data-set
identifies the map data set to be processed. By default, the procedure uses the most
recently created SAS data set.
See also: “About the Input Map Data Set” on page 1163 and“SAS Data Sets” on

page 29.
Featured in: Example 4 on page 1180.

The GPROJECT Procedure PROC GPROJECT Statement 1169

DEGREE
DEG

specifies that the units for the longitude (X variable) and latitude (Y variable)
coordinates are degrees of arc. By default, coordinate units are considered to be
radians.

EASTLONG
EAST

specifies that the longitude (X variable) values in the input map data set increase to
the east. By default, longitude values increase to the west.

LATMAX=max-latitude
specify the maximum latitude that will be included in the projection. Any unit areas
that cross the selected latitude are clipped and closed along the specified parallels.
The LATMAX= and LATMIN= options do not have to be paired; you can specify a
maximum latitude without specifying a minimum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, PROC GPROJECT treats
the value of max-latitude as degrees. When PROJECT=NONE, the procedure treats
the value as a Cartesian coordinate.

Featured in: Example 3 on page 1178.

LATMIN=min-latitude
specify the minimum latitude that will be included in the projection. Any unit areas
that cross the selected latitude are clipped and closed along the specified parallels.
The LATMAX= and LATMIN= options do not have to be paired; you can specify a
minimum latitude without specifying a maximum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, PROC GPROJECT treats
the value of min-latitude as degrees. When PROJECT=NONE, the procedure treats
the value as a Cartesian coordinate.

Featured in: Example 3 on page 1178.

LONGMAX=max-longitude
specify the maximum longitude to be included in the projection. Any unit areas that
cross the selected longitude are clipped and closed along the specified meridians. The
LATMAX= and LATMIN= options do not have to be paired; you can specify a
maximum longitude without specifying a minimum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, PROC GPROJECT treats
the value of max-longitude as degrees. When PROJECT=NONE, the procedure treats
the value as a Cartesian coordinate.

Featured in: Example 3 on page 1178.

LONGMIN=min-longitude
specify the minimum longitude to be included in the projection. Any unit areas that
cross the selected longitude are clipped and closed along the specified meridians. The
LATMAX= and LATMIN= options do not have to be paired; you can specify a
minimum longitude without specifying a maximum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, the GPROJECT procedure
treats the value of min-longitude as degrees. When PROJECT=NONE, the procedure
treats the value as a Cartesian coordinate.

Featured in: Example 3 on page 1178.

OUT=output-map-data-set
names the new map data set, which contains the coordinates of the new unit areas
that are created by the GPROJECT procedure.

By default, the GPROJECT procedure names the new data set that uses the
DATAn naming convention. That is, the procedure uses the name WORK.DATAn,

1170 PROC GPROJECT Statement Chapter 39

where n is the next unused number in sequence. Thus, the first automatically named
data set is DATA1, the second is DATA2, and so on.

Featured in: Example 4 on page 1180.

PARADIV=n
specifies the divisor that computes the values used for standard parallels for the
Albers’ or Lambert’s projections when explicit values are not provided. By default
PARADIV=4, which causes standard parallels to be set at 1/4 and 3/4 of the range of
latitude values in the input map data set.

See also: PARALEL1= and PARALEL2= option

PARALEL1=latitude

PARALEL2=latitude

specify values for the standard parallels that are used in the Albers’ or Lambert’s
projection. Latitude must be in degrees. Positive values indicate north of the equator,
and negative values indicate south of the equator. These options are ignored for the
gnomonic projection.

By default, the GPROJECT procedure calculates values for the standard parallels.
The defaults are chosen to minimize the distortion inherent in the projection process.
The algorithm used is

PARALEL1 = minlat + R / PD

PARALEL2 = maxlat - R / PD

where:

R
is the range of latitude values in the input map data set.

PD

is the PARADIV= value (see the discussion of the PARADIV= option).

minlat
is the minimum latitude value in the input map data set.

maxlat
is the maximum latitude value in the input map data set.
If you do not use PARALEL1= or PARALEL2=, or you omit either option, the

GPROJECT procedure uses the calculated value for the missing parameter.
The standard parallels, whether explicitly specified or supplied by the procedure,

must lie on the same side of the equator. If they do not, PROC GPROJECT prints an
error message and stops (the procedure may calculate standard parallels that lie on
opposite sides of the equator). When projecting a map data set that contains unit
areas that cross the equator, you may have to explicitly specify standard parallels
that both lie on the same side of the equatMor. If this causes excessive distortion of
the map, you may be able to use the gnomonic projection instead of the Albers’ or
Lambert’s projection because the gnomonic technique has no such limitations at the
equator.

POLELAT=latitude
POLELONG=longitude

specify a projection pole to use for the gnomonic projection. The projection pole is the
point at which the surface of the sphere touches the surface of the imaginary plane
onto which the map is projected. POLELAT= specifies the latitude of the projection
point.

The GPROJECT Procedure ID Statement 1171

Units for latitude are degrees; positive values indicate north of the equator, and
negative values indicate south of the equator. POLELONG= gives the longitude for
the projection point. Units for longitude are degrees; positive values indicate west of
the prime meridian, and negative values indicate east of the prime meridian (unless
EASTLONG also has been used in the PROC GPROJECT statement).

If you do not use POLELAT= or POLELONG=, or you omit either option, PROC
GPROJECT uses values for the position of the center of the unit areas that are
defined by the DATA= data set for the missing parameter.

Note: The map that is defined by the input map data set should not contain
points more than 85 degrees (1.48353 radians) from the projection pole; all points
that exceed this value are deleted from the output map data set. �
Featured in: Example 2 on page 1177.

PROJECT=ALBERS | LAMBERT | GNOMON | NONE
specifies the projection method to apply to the map data set. Values for PROJECT=
are as follows:

ALBERS
specifies Albers’ equal-area projection with two standard parallels.

LAMBERT
specifies Lambert’s conformal projection with two standard parallels.

GNOMON
specifies the gnomonic projection, which is an azimuthal projection.

NONE
specifies that no projection should be performed. Use this option in conjunction
with the LATMIN=, LATMAX=, LONGMIN=, and LONGMAX= options to perform
clipping without projection (for example, on map data sets that have already been
projected).
By default, PROJECT=ALBERS.

Note: There are several additional projections available. These projections are
experimental and are not supported by SAS Institute Technical Support. They are:
ADAMS, AITOFF, APIANUS, ARAGO, BEHRMANN, BRAUN, CYLINDRI,
ECKERT1, ECKERT3, ECKERT5, EQUIRECT or MARINUS, GALL, KVRSKY7,
MILLER1, MILLER2 , ORTHO, PARABOLI, PETERS, PUTNINS4, ROBINSON,
STEREO, WINKEL2.

You must specify the EASTLONG option to use any of these experimental
projections. �

See also: “About Types of Map Projections” on page 1165.
Featured in: Example 2 on page 1177.

ID Statement
Identifies the variable or variables that define the hierarchy of the current unit areas in the input
map data set.

Requirements: At least one id-variable is required.
Featured in: Example 1 on page 1174.

Syntax
ID id-variable(s);

1172 Using the GPROJECT Procedure Chapter 39

Required Arguments

id-variable(s)
specifies one or more variables in the input map data set that identify unit areas.
Id-variable can be either numeric or character.

Each group of observations with a different ID variable value is evaluated as a
separate unit area.

Using the GPROJECT Procedure
The GPROJECT procedure uses a default projection method and default projection

criteria to project your map data set. If you do not want to use these defaults, you can
use PROC GPROJECT statement options to

� select the map projection method
� specify the map projection criteria
� create a rectangular subset of the input map data set.

The following sections describe how you can use PROC GPROJECT statement
options to select your own projection method and projection criteria.

Selecting Projections
Except when projecting map data sets that cover large areas, all three types of

projections (Albers’, Lambert’s, and gnomonic) produce relatively similar results when
you use default projection criteria, so you usually do not need to be concerned about
which projection method to use when you produce maps solely for graphics output.

However, the default projection criteria may be unsuitable in some circumstances. In
particular, the default specifications fail when the map that is being projected extends
on both sides of the equator. On other occasions, you may want to select a projection
method to achieve a particular effect.

For the Albers’ and Lambert’s projections, the two standard parallels must both lie
on the same side of the equator. PROC GPROJECT stops with an error message if this
condition is not met, regardless of whether you explicitly specify parallel values or let
the procedure calculate default values. See the descriptions of the PARALEL1= and
PARALEL2= option on page 1170 for more information on how to specify the two
standard parallels.

Controlling Projection Criteria
For both the Albers’ and Lambert’s projections, PROC GPROJECT calculates

appropriate standard parallels. You can override either or both of these selections if you
explicitly specify values for the PARALEL1= or PARALEL2= option. You can influence
the selection of default parallels if you use the PARADIV= option. See “Options” on
page 1168 for more information on these options.

For the gnomonic projection, PROC GPROJECT determines the longitude and
latitude of the approximate center of the input map data set area. You can override
either or both of these selections if you explicitly specify values for the POLELAT= or
POLELONG= option. See “Options” on page 1168 for more information.

The clipping options, discussed in “Clipping Map Data Sets” on page 1173, can also
influence the calculations of the default standard parallels by changing the minimum
and maximum coordinate values.

The GPROJECT Procedure Examples 1173

Clipping Map Data Sets
The GPROJECT procedure can create rectangular subsets of the input map data set.

This capability provides a way to extract a portion of a larger map if you do not need all
the original unit areas for your graph. The procedure enables you to clip unit area
boundaries at specified parallels of latitude or meridians of longitude or both. Unit areas
that fall completely outside of the specified clipping limits are excluded from the output
map data set. Unit areas bisected by the clipping limits are closed along the clipping
parallels and meridians, and all points outside of the clipping limits are excluded.

If the input map data set contains the DENSITY variable, any new vertex points and
corners that are created by PROC GPROJECT are assigned a DENSITY value of 0 in
the output map data set. This enables you to use a subset of the clipped map without
using PROC GREDUCE to assign new DENSITY values. (See Chapter 41, “The
GREDUCE Procedure,” on page 1213 for information on how to reduce the number of
points that you need to draw a map.)

You can specify the minimum latitude to be retained in the output map data set with
LATMIN= and the maximum latitude with LATMAX= . Minimum and maximum
longitude values are specified with LONGMIN= and LONGMAX=, respectively. See
“Options” on page 1168 for more details on these options.

This is how the PROC GPROJECT interprets the clipping longitude and latitude
values:

� If you specify PROJECT=NONE in the PROC GPROJECT statement, the
procedure assumes that the input map data set is already projected and the
clipping longitude and latitude values are Cartesian coordinates. In this case,
LATMAX= and LATMIN= specify the top and bottom edges, respectively, of the
area that you want to extract, and LONGMAX= and LONGMIN= specify right and
left edges, respectively.

You must be familiar with the range of values in the X and Y variables in order
to select appropriate clipping limits. Use the MEANS or SUMMARY procedure in
base SAS to determine the range of values in X and Y. See the Base SAS
Procedures Guide for more information.

� If PROJECT=ALBERS, LAMBERT, or GNOMON, the clipping values are treated
as degrees.

Depending on the size and position of the clipped area and the type of projection that
is performed, the resulting map may not be exactly rectangular. PROC GPROJECT
performs clipping before projection, so the clipped area may be distorted by the
projection process.

To produce a clipped area with a rectangular shape, use PROC GPROJECT in two
steps:

1 Project the map using the appropriate projection method and projection criteria.
2 Project the map using PROJECT=NONE, and use LATMIN=, LATMAX=,

LONGMIN=, and LONGMAX= to clip the map.

See Example 3 on page 1178, for an example of clipping an area from an unprojected
map data set.

Examples
The following examples illustrate major features of the GPROJECT procedure.

Because these examples use map data sets that are supplied with SAS/GRAPH , you
may need to replace SAS-data-library in the LIBNAME statement with the actual

1174 Example 1: Using Default Projection Specifications Chapter 39

location of the SAS data library that contains the Institute-supplied map data sets on
your system. Contact your SAS Software Consultant for the location of the map data
sets at your site. If your site automatically assigns the libref MAPS to the SAS data
library that contains the Institute-supplied map data sets, delete the LIBNAME
statement in these examples.

Example 1: Using Default Projection Specifications

Procedure features:
ID statement

Other features:
LIBNAME statement

Sample library member: GPJDEFLT

This example demonstrates the effect of using PROC GPROJECT on an unprojected
map data set without specifying any options. Because PROJECT= is not used in the
PROC GPROJECT statement, the Albers’ equal-area projection method is used by
default. PROC GPROJECT supplies defaults for the standard parallels that minimize
distortion of the projected map areas.

Figure 39.8 Map before Projection (GPJDEFLT(a))

Figure 39.8 on page 1174 illustrates the output produced the US48 map data set,
which contains only unprojected values, X and Y. Output 39.1 shows the variables in
the data set.

The GPROJECT Procedure Example 1: Using Default Projection Specifications 1175

Output 39.1 The US48 Data Set

US48 Data Set

OBS STATE SEGMENT DENSITY X Y

1 1 1 3 1.48221 0.56286
2 1 1 3 1.48226 0.56234
3 1 1 3 1.48304 0.56231

.

.

.

The GPROJECT procedure is used with the US48 map data set as input to create the
projected map data set, US48PROJ. The values for X and Y in this new data set are
projected (cartesian). Output 39.2 shows the variables in the data set.

Output 39.2 The US48PROJ Data Set

US48PROJ Data Set

OBS X Y DENSITY STATE SEGMENT

1 0.16068 -0.073470 3 1 1
2 0.16069 -0.073993 3 1 1
3 0.16004 -0.074097 3 1 1
.
.
.

The new projected map data set, US48PROJ, is used to create the projected map,
Figure 39.9 on page 1175.

Figure 39.9 Map after Projection (GPJDEFLT(b))

1176 Example 1: Using Default Projection Specifications Chapter 39

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create reduced continental U.S. map data set and remove Alaska, Hawaii, and Puerto
Rico.

data us48;
set maps.states;
if state ne 2 and state ne 15 and state ne 72;
if density<4;

run;

Define title and footnote for unprojected map.

title ’United States Map’;
footnote j=r ’GPJDEFLT(a) ’;

Define pattern characteristics.

pattern value=mempty repeat=50 color=blue;

Show unprojected map.

proc gmap map=us48 data=us48 all;
id state;
choro state / nolegend;

run;

Project map data set using all default criteria. The ID statement identifies the variable in
the input map data set that defines unit areas.

proc gproject data=us48
out=us48proj;

id state;
run;

Define footnote for projected map.

footnote j=r ’GPJDEFLT(b) ’;

Show projected map.

The GPROJECT Procedure Example 2: Emphasizing Map Areas 1177

proc gmap map=us48proj
data=us48proj all;

id state;
choro state / nolegend;

run;
quit;

Example 2: Emphasizing Map Areas
Procedure features:

PROC GPROJECT options:

POLELAT=
POLELONG=
PROJECT=

Sample library member: GPJEMPHS

This example uses the gnomonic projection method to create a map in which the east
coast of the United States appears disproportionately large compared to the west coast.

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create reduced continental U.S. map data set and remove Alaska, Hawaii, and Puerto
Rico.

data us48;
set maps.states;

1178 Example 3: Clipping an Area from the Map Chapter 39

if state ne 2 and state ne 15 and state ne 72;
if density<4;

run;

Project map onto a plane centered in the Pacific. PROJECT= specifies the projection
method for the map data set. POLELONG= and POLELAT= specify a projection pole for the
gnomonic projection. In this example, the pole is positioned in the Pacific Ocean.

proc gproject data=us48
out=skew
project=gnomon
polelong=160
polelat=45;

id state;
run;

Define title and footnote for the map.

title ’United States Map’;
footnote j=r ’GPJEMPHS ’;

Define pattern characteristics.

pattern value=mempty repeat=49 color=blue;

Show the projected map.

proc gmap map=skew data=skew all;
id state;
choro state / nolegend;

run;
quit;

Example 3: Clipping an Area from the Map

Procedure features:
PROC GPROJECT options:

LONGMAX=
LONGMIN=
LATMAX=
LATMIN=

Sample library member: GPJCLIPP

The GPROJECT Procedure Example 3: Clipping an Area from the Map 1179

This example uses the clipping capabilities of PROC GPROJECT to create a map of
the states in the United States that border the Gulf of Mexico. Because the PROJECT=
option is not used in the GPROJECT procedure, the Albers’ equal-area projection
method is used by default.

Assign the librefs and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Clip and project rectangular subset of the map. LONGMIN= and LONGMAX= specify the
minimum and maximum longitudes to be included in the map projection. LATMIN= and
LATMAX= specify the minimum and maximum latitudes to be included in the map projection.

proc gproject data=maps.states
out=gulf
longmin=81
longmax=98
latmin=25
latmax=33;

where density<5;
id state;

run;

Define title and footnote for the map.

title ’Northern Gulf Coast’;
footnote j=r ’GPJCLIPP ’;

Define pattern characteristics.

pattern value=mempty repeat=7 color=blue;

1180 Example 4: Projecting an Annotate Data Set Chapter 39

Show the clipped map.

proc gmap map=gulf data=gulf all;
id state;
choro state / nolegend;

run;
quit;

Example 4: Projecting an Annotate Data Set
Procedure features:

PROC GPROJECT options:
DATA=
OUT=

ID statement
Other features:

CHORO statement
Annotate data set

Sample library member: GPJANNOT

This example illustrates how to project an Annotate data set for use with a map data
set. It labels the locations of Miami, Boston, and Bangor on the map shown in the
second example. Because the X and Y variables in the USCITY data set already have
been projected to match the US data set, they cannot be used with the map that is
produced by the second example. To properly label the projected map, the example uses
the same projection method for the city coordinates as the method that is used for the
map coordinates. This example illustrates how to use the same projection method for
both data sets.

Assign the librefs and set the graphics environment.

The GPROJECT Procedure Example 4: Projecting an Annotate Data Set 1181

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create reduced continental U.S. map data set and remove Alaska, Hawaii, and Puerto
Rico.

data us48;
set maps.states;
if state ne 2 and state ne 15 and state ne 72;
if density<4;

run;

Create Annotate data set CITIES from the MAPS.USCITY data set. The unprojected
LONG and LAT variable values are converted to radians and substituted for the projected X and
Y variable values. LONG and LAT are converted by multiplying them by the arccosine of −1 and
dividing that amount by 180. The cities are each assigned a value for the NEWST variable,
sequentially beginning at 100.

data cities(drop=state rename=(newst=state));
set maps.uscity(keep=lat long city state);
length function style color $ 8

position $ 1 text $ 20;
retain function ’label’ xsys ysys ’2’

hsys ’1’ when ’b’ newst 100;
if state=12 and city=’Miami’ or

state=25 and city=’Boston’ or
state=23 and city=’Bangor’;

newst+1; color=’blue’; size=10; text=’T’;
position=’5’;
style=’marker’; x=long*arcos(-1)/180;
y=lat*arcos(-1)/180; output;

newst+1; color=’blue’; size=4;
text=’ ’||city;
position=’6’; style=’swissb’; output;

run;

Create data set ALL by combining data set US48 and data set CITIES.

data all;
set us48 cities;

run;

Project the ALL data set. DATA= specifies the data set to be projected. OUT= specifies the
name of the new projected data set that is created. The ID statement identifies the variable in
the input map data set that defines map areas.

proc gproject data=all
out=allp

1182 References Chapter 39

project=gnomon
polelong=160
polelat=45;

id state;
run;

Separate the projected data set into the CITIESP Annotate data set and the US48P
map data set.

data citiesp us48p;
set allp;
if state>100 then output citiesp;
else output us48p;

run;

Define title and footnote for the map.

title1 ’Distribution Center Locations’;
title2 ’East Coast’;
footnote j=r ’GPJANNOT ’;

Define pattern characteristics.

pattern value=mempty repeat=49 color=blue;

Show the annotated map. The CHORO statement displays the projected map and annotates
it using the projected Annotate data set.

proc gmap data=us48p map=us48p all;
id state;
choro state

/ nolegend
annotate=citiesp;

run;
quit;

References

Pearson, F., II (1977), "Map Projection Equations," Report Number TR-3624, Naval
Surface Weapons Center, Dahlgren Laboratory, March, 1977.

Richardus, P. and Adler, R.K. (1972), Map Projections, Amsterdam: North-Holland
Publishing Company; New York: American Elsevier Publishing Company.

Robinson, A.H. (1978), Elements of Cartography, New York: John Wiley & Sons, Inc.

1183

C H A P T E R

40
The GRADAR Procedure

Overview 1183

Procedure Syntax 1184
PROC GRADAR Statement 1184

CHART Statement 1185

Examples 1196
Example 1: Generating the Data Set for the GRADAR Examples 1196

Example 2: Producing a Basic Radar Chart 1198

Example 3: Overlaying Radar Charts 1199
Example 4: Tiling Radar Charts 1201

Example 5: Using Multiple Classification Variables in Radar Charts 1202
Example 6: Filling the Stars in Radar Charts 1204

Example 7: Using Images in Radar Charts 1205

Example 8: Changing the Star Type in Radar Charts 1207
Example 9: Using Color and Line Styles in Radar Charts 1208

Example 10: Specifying the Mode for a Radar Chart 1209

Example 11: Assigning Axis Definitions to Axis Spokes 1210

Overview
The GRADAR procedure creates radar (or star) charts that show the relative

frequency of data measures in quality control or market research problems. On a radar
chart, the chart statistics are displayed along spokes that radiate from the center of the
chart (hence the term “star” charts). The charts are often stacked on top of one another
with reference circles, thus giving them the look of a radar screen. By default, the chart
vertices—the points where the statistical values intersect the spokes—are based on the
frequencies associated with the levels of a single numeric variable, but they can be
scored with a weight variable. Non-integer values of the chart variable are truncated to
integers. The measures can be displayed in decreasing order, the order in which they
appear in the input data, increasing order of internal values, or lexicographic order of
variable names.

Note: The Java applet does not support client-side rendering of GRADAR charts. �

1184 Procedure Syntax Chapter 40

Procedure Syntax
Requirements: At least one CHART statement is required.
Global Statements: AXIS“AXIS Statement” on page 124, FOOTNOTE“TITLE,
FOOTNOTE, and NOTE Statements” on page 210, GOPTIONS“GOPTIONS Statement”
on page 146, TITLE“TITLE, FOOTNOTE, and NOTE Statements” on page 210
Reminder: The procedure can include the BY, FORMAT, LABEL, and WHERE
statements as well as SAS/GRAPH NOTE statement.
Supports: Output Delivery System (ODS)

PROC GRADAR <DATA=input-data-set>
<GOUT=<libref.>output-catalog>
<ANNOTATE=Annotate-data-set>;

CHART chart-variable(s) </ option(s)>;

PROC GRADAR Statement

Identifies the data set that contains the plot variables. Optionally specifies an output catalog.

Requirements: An input data set is required.

Syntax

PROC GRADAR <DATA=input-data-set>

The GRADAR Procedure CHART Statement 1185

<GOUT=<libref.>output-catalog>
<ANNOTATE=Annotate-data-set;>

Options
PROC GRADAR statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs that are produced by the GRADAR
procedure. To annotate individual graphs, use ANNOTATE= in the CHART
statement.
See also: SAS/GRAPH Reference, Volumes 1 and 2 for more information on the

Annotate data set

DATA=input-data-set
specifies the SAS data set that contains the variable(s) to chart. By default, the
procedure uses the most recently created SAS data set.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GRADAR procedure.

CHART Statement

Creates the radar charts in which the length of the vertices along the spines represent the values
of the chart statistic for the data categories.

Requirements: At least one chart variable is required.
Global statements: AXIS, TITLE, FOOTNOTE, and NOTE

Syntax

CHART chart-variable(s) </ option(s)>;

option(s) can be one or more of the following:
ACROSS=variable
ANNOTATE=Annotate-data-set
CAXIS=grid-color
CFRAME=background-color | (variable)
CFRAMESIDE=color
CFRAMETOP=color
CSPOKES=spoke-color
CSTARCIRCLES=color | (colors-list)
CSTARFILL=color | (colors-list)
CSTARS=color | (colors-list)
CTEXT=text-color
CTILES=(variable) | color

1186 CHART Statement Chapter 40

DESCRIPTION=’entry-description’
DOWN=variable
FONT=font
FREQ=variable
FRAME | NOFRAME
HEIGHT=height
HTML=variable
HTML_LEGEND=variable
IFRAME=fileref | ’external-image-file’
IMAGESTYLE=TILE | FIT
INBORDER
INHEIGHT=value
INTERTILE=value
LAST=’variable’
LSPOKE=linetype
LSTARCIRCLES=(linetypes)
LSTARS=(linetypes)
MAXNVERT=n
MAXVERT=n
MISSING
MODE=SHARE | PROTECT | RESERVE
NAME=’entry-name’
NCOLS=n
NROWS=n
NOFRAME
NOZEROREF
ORDERACROSS=FREQ | DATA | INTERNAL | FORMATTED | EXTERNAL
OTHER=’variable’
OVERLAY=overlay-variable
SPIDER | SPIDERWEB
SPKLABEL=CATEGORY | NONE
STARAXIS = (AXIS<1...99><, . . . ,AXIS<1...99>>)
STARCIRCLES=(values)
STARFILL= lists of (SOLID | EMPTY) one for each star.
STARINRADIUS=value
STARLEGEND=CLOCK | CLOCK0 | NUMBER | DEGREES | NONE
STARLEGENDLAB=’legend-label’
STAROUTRADIUS=value
STARSTART=value
STARTYPE=CORONA | POLYGON | RADIAL | SPOKE | WEDGE
SUMVAR=summary-variable
TILELEGEND=variable
TILELEGLABEL=’label’
WAXIS=n
WEIGHT=numeric-variable

The GRADAR Procedure CHART Statement 1187

WFRAME=n
WSPOKES=n
WSTARCIRCLES=(line-widths)
WSTARS=line-widths | (line-widths)

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to be charted. The
values of the chart variable determine the spokes in the corresponding radar chart.
These values are the observations in the reference data set for the chart variable.
You must have at least three observations in the data set as it takes three points to
define a plane. Technically, you can create a GRADAR chart with only one or two
observations, but a true chart will not display.

Options
Options in a CHART statement affect all graphs produced by that statement. You

can specify as many options as you want and list them in any order.

ACROSS=variable
ACROSSVAR=variable

generates a radar chart for each value of the specified variable, and displays the
charts from left-to-right across the graphics area. If used with the DOWN= option,
the charts are drawn in left-to-right and top-to-bottom order. To limit the number of
columns and/or rows that are displayed, use the NCOLS= and NROWS= options.
Used with the ORDERACROSS= option.
Featured in: Example 4 on page 1201 and Example 5 on page 1202.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate charts produced by the CHART statement.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587

CAXIS=grid-color
CAXES=grid-color
CA=grid-color

specifies a color for the chart frame. The specified color must be a valid SAS/GRAPH
color name. If you omit the CAXIS= option, PROC GRADAR uses the first color in
the colors list as the chart frame’s color.
Not supported by: ActiveX

CFRAME=background-color | (variable)
CFR=background-color | (variable)

fills the frame area with the specified color. You can specify a valid SAS/GRAPH color
name, or a character variable of length eight whose value is the background color.
Featured in: Example 2 on page 1198 and Example 9 on page 1208.

CFRAMESIDE=color | (variable)
specifies the color for filling the frame area for the row labels displayed along the left
side of a chart. The specified color must be a valid SAS/GRAPH color name, or a
character variable of length eight whose value is the background color. If a label is
associated with the classification variable, the specified color is also used to fill the
frame area for this label. By default, these areas are not filled.

1188 CHART Statement Chapter 40

Featured in: Example 5 on page 1202

CFRAMETOP=color | (variable)
specifies the color for filling the frame area for the column labels that are displayed
across the top of a chart. The specified color must be a valid SAS/GRAPH color
name, or a character variable of length eight whose value is the color. If a label is
associated with the classification variable, the specified color is also used to fill the
frame area for this label. By default, these areas are not filled.
Featured in: Example 5 on page 1202

CSPOKES=spoke-color | (variable)
CSPOKE=spoke-color

specifies a color to use for the spokes in a chart. The specified color must be a valid
SAS/GRAPH color name, or a character variable of length eight whose value is the
color. By default, the spokes are colored by the first color in the colors list.
Featured in: Example 7 on page 1205

CSTARCIRCLES=color | (colors-list)
CSTARCIRCLE=color | (colors-list)

specifies a color or list of colors for the circles that are requested with the
STARCIRCLES= option. All specified colors must be valid SAS/GRAPH color names,
or a character variable of length eight whose value is the color. By default, the color
specified with the CSTARS= option is used. If CSTARS= is not specified, the first
color in the colors list is used.
Featured in: Example 3 on page 1199

CSTARFILL=color | (colors-list)
specifies a color or colors for filling the interior of stars that are produced for a radar
chart. All specified colors must be valid SAS/GRAPH color names.

� If the OVERLAY= option is not used, each chart contains only one star. In that
case, specify a single fill color for the star. If the ACROSS= and/or DOWN=
options are used, the specified color is applied to each star in the tiled display.

� If the OVERLAY= option is used, the chart contains multiple stars. In that
case, specify a list of colors in parentheses. Be sure that there are at least as
many colors in the list as there are stars in the chart. If you do not specify
enough colors for each star in the chart to have a separate color, the default
color list is used to assign colors to additional stars. The color for the star
positioned at subgroup n on the chart is the value of the color corresponding to
the color at position n in the list of colors.

By default, the interior of the stars is empty. For empty stars, use the CSTARS=
option to specify a color for the star outline.

If CSTARFILL= is specified and CSTARS= is not specified for the outline, then the
outline is the same as CSTARFILL.

If CSTARFILL= is not specified and STARFILL=SOLID, then the star is filled
with the color that is specified on CSTARS=.

If STARFILL= is not set or is set to EMPTY, then CSTARFILL= is ignored.
Featured in: Example 6 on page 1204

CSTARS=color | (colors-list)
CSTAR=color | (colors-list)

specifies a color or colors for the outlines of stars that are produced for a radar chart.
All specified colors must be valid SAS/GRAPH color names.

� If the OVERLAY= option is not used, each chart contains only one star. In that
case, specify a single color for the star. If the ACROSS= and/or DOWN= options
are used, the specified color is applied to each star in the tiled display.

The GRADAR Procedure CHART Statement 1189

� If the OVERLAY= option is used, the chart contains multiple stars. In that
case, specify a list of colors in parentheses. Be sure that there are at least as
many colors in the list as there are stars in the chart. If you do not specify
enough colors for each star in the chart to have a separate color, the default
color list is used to assign colors to additional stars. The color for the star
positioned at subgroup n on the chart is the value of the color corresponding to
the color at position n in the list of colors.

By default, the colors in the devices are used, starting with the second color.

Featured in: Example 2 on page 1198 and Example 9 on page 1208.

CTEXT=text-color
specifies a color for all text on the chart. The specified color must be a valid SAS/
GRAPH color name, or a character variable of length eight whose value is the color.
For ActiveX devices, the default color is black. For other devices, if you omit
CTEXT=, PROC GRADAR searches for a color specification in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the first color in the GOPTIONS colors list (the default).

CTILES=(variable) | color
CTILE=(variable) | color

specifies a character variable of length eight whose values are the fill colors for the
tiles in a radar chart. By default, the tiles are not filled. The values of the specified
variable must be identical for all observations with the same level of the
classification variables. The same color can be used to fill more than one tile. Use the
special value, EMPTY, to indicate that a tile is not to be filled.

Alternatively, CTILES= can specify a valid SAS/GRAPH color name to color all the
tiles the same color.

The CTILES= option cannot be used in conjunction with the NOFRAME option or
the CFRAME= option. You can use the TILELEGEND= option in conjunction with
the CTILES= option to add an explanatory legend for the CTILES= colors at the
bottom of the chart.

Not supported by: ActiveX

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters long. The description does not appear on the
chart. By default, the GRADAR procedure assigns a description of the form RADAR
CHART OF variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. The 256-character limit applies before the substitution takes place
for these options; thus, if in the SAS program the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.

The descriptive text is shown in the "description" portion of each of the following:

� the Results window

� the catalog-entry properties that you can view from the Explorer window

� the Table of Contents that is generated when you use CONTENTS= on an ODS
HTML statement (assuming the GRADAR output is generated while the
contents page is open)

� the Description field of the PROC GREPLAY window.

1190 CHART Statement Chapter 40

DOWN=variable
DOWNVAR=variable

generates a radar chart for each value of the specified variable, and displays the
charts from top-to-bottom in the graphics area. If used with the ACROSS= option,
the charts are drawn in left-to-right and top-to-bottom order. To limit the number of
columns and/or rows that are displayed, use the NCOLS= and NROWS= options.

Featured in: Example 5 on page 1202.

FONT=font
specifies the font for all text strings in the radar chart. If you omit FONT=, the font
that is specified by the FTEXT= graphics option is used.

Featured in: Example 7 on page 1205.

FREQ=variable
specifies a frequency variable whose value provides the counts (numbers of
occurrences) of the values of the process variable. Specifying a FREQ= variable is
equivalent to replicating the observations in the input data set. The FREQ= variable
must be a numeric variable with non-negative integer values. If you specify more
than one process variable on the CHART statement, the FREQ= variable values are
used with each process variable. If you do not specify a FREQ= variable, each value
of the process variable is counted exactly once.

Featured in: Example 2 on page 1198.

FRAME | NOFRAME
FRAME (the default) draws a frame around the procedure output area. By default,
the frame color is the first color in the colors list. If you want to specify a different
color for the frame, use the CFRAME= option for a filled frame, and CAXIS= for only
the frame outline color.

NOFRAME suppresses the frame that is drawn around the chart by default. The
NOFRAME option cannot be specified in conjunction with the CFRAME= or
CTILES= options.

Not supported by: ActiveX

HEIGHT=height
HLABEL=height

specifies the height in percent screen units of text for labels and legends. This option
should be used only in conjunction with the FONT= option. The HEIGHT= option
takes precedence over the HTEXT= option in a GOPTIONS statement.

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. The maximum length for the value of this
variable is 1024 characters.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with a legend
value and point to the data or graph you wish to display when the user drills down
on the value. The maximum length for the value of this variable is 1024 characters.

IFRAME=fileref | ’external-image-file’
specifies an image file to use on the chart’s frame. Fileref must be a valid SAS fileref
up to eight characters long and must have been previously assigned with a
FILENAME statement. External-image-file must specify the complete file name of
the image file you want to use. The format of external-image-file varies across
operating environments. For more information, see “Placing a Backplane Image on
Graphs with Frames” on page 115.

The GRADAR Procedure CHART Statement 1191

Featured in: Example 7 on page 1205.
Not supported by: ActiveX

IMAGESTYLE=TILE | FIT
specifies the way to display the image file that is specified on the IFRAME= option.
TILE copies the image as many times as needed to fit the frame. FIT stretches the
image so that a single copy fits within the frame.

Note: When used with IFRAME, the IMAGESTYLE option must be within the
PROC statement. When used with IBACK, the IMAGESTYLE option goes on the
GOPTIONS statement. �
Featured in: Example 7 on page 1205.

INBORDER
requests an inside border around the chart (this border is inside the chart’s frame).
Not supported by: ActiveX

INHEIGHT=value
specifies the height in percent screen units of text used inside the frame of the chart,
such as sample size legends and bar labels. This does not change the size of titles or
footnotes.
Not supported by: ActiveX

INTERTILE=value
INTERCHART=value

specifies the distance in horizontal percent screen units between tiles (cells) in a
chart and is used only with the ACROSS= and/or DOWN= options. By default, the
tiles are contiguous (value=0).
Featured in: Example 5 on page 1202.

LAST=’category’
specifies that the spoke corresponding to the category is displayed to the left of the
start angle. The category must be a formatted value of the process variable and must
be enclosed in quotes.
Not supported by: ActiveX

LSPOKE=linetype
specifies a line type for the spokes in a radar chart. The default linetype is 1, which
produces a solid line.

LSTARCIRCLES=(linetypes)
LSTARCIRCLE=(linetypes)

specifies one or more line types for the circles requested with the STARCIRCLES=
option. The number of line types should match the number of circles requested as
follows:

starcircles = (0.0 1.0 0.25 0.5)
lstarcircles = (1 1 2 2)

The line types are paired with the circles in the order specified. The default linetype
is 1, which produces a solid line.

LSTARS=(linetypes)
LSTAR=(linetypes)

specifies the line types for the outlines of stars that are produced for a radar chart.
� If the OVERLAY= option is not used, each chart contains only one star. In that

case, specify a single line type for the star.
� If the OVERLAY= option is used, the chart contains multiple stars. In that

case, specify a list of line types in parentheses. Be sure that there are at least

1192 CHART Statement Chapter 40

as many line types in the list as there are stars in the chart. The line type for
the star positioned at subgroup n on the chart is the value of the line type
corresponding to the color at position n in the list of line types.

By default, the outlines rotate through different line types and colors. To specify
line colors, use the CSTARS= option.
Featured in: Example 9 on page 1208.

MAXNVERT=n
MAXVERT=n

specifies the maximum number of vertices, from 1 to 360, in the radar chart. Either
spelling of the option is accepted. The MAXNVERT= or MAXVERT= options are for
use with the OTHER= option.

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored. Missing values are always valid for
the overlay variables.
Not supported by: ActiveX

MODE=SHARE | PROTECT | RESERVE
specifies the display mode for a radar chart. The following keywords are available:

SHARE shares the drawing space between the text and the graph.

PROTECT shares the drawing space but maintains a solid rectangle (using
the background color) behind the text. This is useful when the
text is illegible because of the iframe image or cframe color.

RESERVE reduces the size of the text and graph in order to accommodate
both. RESERVE is the default.

Featured in: Example 10 on page 1209.

NAME=’entry-name’
specifies a string, up to 8 characters long. Default: RADAR. The name duplicates an
existing entry name and SAS/GRAPH software adds a number to the duplicate name
to create a unique name—for example, RADAR1.

NCOLS=n
NCOL=n

specifies the number of columns in a chart. You can use the NCOLS= option in
conjunction with the NROWS= option. By default, NCOLS=1 and NROWS=2 if one
classification variable is specified, and NCOLS=2 and NROWS=2 if two classification
variables are specified. If used with the ACROSS= and DOWN= options, the default
number of columns and rows are calculated by the number of classifications for the
variables that are listed on ACROSS= and DOWN=. In that case, you can use
NCOLS= and NROWS= to limit the number of columns and rows that are specified.
Featured in: Example 5 on page 1202.
Not supported by: ActiveX

NOFRAME
suppresses the frame that is otherwise drawn around the chart by default. The
NOFRAME option cannot be specified in conjunction with the CFRAME= or
CTILES= options

NOZEROREF
turns off the zero reference line when negative values are plotted. When a negative
value is plotted, a dashed line indicates the zero position. You can not change the
appearance of this zero reference line, but you can turn it off with the NOZEROREF
option. The zero reference line does not appear if there are no negative values plotted.

The GRADAR Procedure CHART Statement 1193

NROWS=n
NROW=n

specifies the number of rows in a chart. You can use the NROWS= option in
conjunction with the NCOLS= option. See NCOLS= for details. By default,
NROWS=1.
Featured in: Example 5 on page 1202.
Not supported by: ActiveX

ORDERACROSS=FREQ | DATA | INTERNAL | FORMATTED | EXTERNAL
Specifies the display order for the values of the ACROSS=variable.
Not supported by: ActiveX

OTHER=’category’
specifies a new category that merges all categories not selected because of the
MAXNVERT= or MAXVERT= option. The category should be specified as a
formatted value of the process variable. The OTHER= option is applicable only if you
also specify the MAXNVERT= or MAXVERT= option.

OVERLAY=overlay-variable
OVERLAYVAR=overlay-variable

creates a comparative radar chart using the levels of the overlay variable. All charts
are displayed in the same set of spokes. This option cannot be used with the
ACROSS= or DOWN= options.
Featured in: Example 3 on page 1199.

SPIDERWEB | SPIDER
displays lines connecting the points where tick marks would be instead of displaying
the tick marks, using the same number of points for all axes as for the first axis. The
default number of web lines is three.

If there is an axis statement along with the SPIDERWEB option, then the web
gets its values such as number, thickness, and color from the MAJOR=() values for
the axis drawn at the first position (default is 12 o’clock).

SPKLABEL=CATEGORY | NONE
labels the chart spokes with the category of the variable that is being charted.
NONE suppresses the labels. The default is CATEGORY; however, if the
STARLEGEND= option is specified, the default is NONE.

STARAXIS= (AXIS<1...99><, . . . ,AXIS<1...99>>)
STARAXES= (AXIS<1...99><, . . . ,AXIS<1...99>>)

assigns one or more axis definitions to the axis spokes in the radar chart. GRADAR
displays axis spokes clockwise, starting at the 12 o’clock position. The axis
definitions that are specified using the STARAXIS= option are assigned consecutively
to the spokes, starting from the first spoke. For example, STARAXIS=(AXIS3, AXIS1,
AXIS2) assigns the AXIS3 statement’s definition to the first axis spoke (at the 12
o’clock position), the AXIS1 statement’s definition to the second axis spoke, and the
AXIS2 statement’s definition to the third axis spoke.

The axis definitions are assigned consecutively, and you cannot skip a spoke. For
example, to assign a definition to the seventh spoke, you must also assign definitions
to the first six spokes. However, you do not have to assign definitions to all of the
spokes. Any remaining axis spokes on the GRADAR chart are displayed with the
default settings. For example, if the STARAXIS= option specifies three definitions
and the chart has more than three axis spokes, the fourth and remaining spokes are
displayed with the default settings. If there are more definitions specified than there
are axis spokes in the chart, the excess definitions are ignored.
Featured in: Example 11 on page 1210.
Not supported by: ActiveX

1194 CHART Statement Chapter 40

STARCIRCLES=(values)
STARCIRCLE=(values)

specifies reference circles that are superimposed on the stars that are produced for a
radar chart. All of the circles are displayed and centered at each point plotted on the
primary chart. The value determines the diameter of the circle as follows: a value of
0.0 specifies a circle with the inner radius, which displays a circle at the minimum
data value, and a value of 1.0 specifies a circle with the outer radius, which is the
length of the spokes in the chart. In general, a value of h specifies a circle with a
radius equal to inradius + h (outradius - inradius).

For example, the values 0.0 and 1.0 correspond to an inner circle and an outer
circle. The value 0.5 specifies a circle with a radius of inradius + 0.5 (outradius -
inradius), or a circle halfway between the inner circle and the outer circle. Likewise,
the value 0.25 specifies a circle one-fourth of the way from the inner circle to the
outer circle.

To specify the line types for the circles, use the LSTARCIRCLES= option. To
specify colors for the circles, use the CSTARCIRCLES= option.

Featured in: Example 3 on page 1199.

STARFILL= lists of (SOLID | EMPTY) one for each star
determines whether the star(s) in the radar chart are empty or filled with a solid
color. Valid values are EMPTY (the default) and SOLID. If there are multiple stars
in the chart, specify, in parentheses, a separate value for each star.

If STARFILL=SOLID and CSTARFILL= is not specified, then the star is filled
with the color specified on the CSTARS= option.

If STARFILL= is not set or is set to EMPTY, then CSTARFILL= is ignored.

Featured in: Example 6 on page 1204.

STARINRADIUS=value
STAROUTRADIUS=value

STARINRADIUS= specifies inner radius of stars. The value must be specified in
horizontal percent screen values, and it must be less than the value that is specified
with the STAROUTRADIUS= option. The inner radius of a star is the distance from
the center of the star to the circle that represents the lower limit of the standardized
vertex variables. The lower limit can correspond to the minimum value, a multiple of
standard deviations below the mean, or a lower specification limit. The default value
is one-third of the outer radius.

Not supported by: ActiveX

STARLEGEND=CLOCK | CLOCK0 | NUMBER | DEGREES | NONE
specifies the style of the legend used to identify the vertices of stars that are
produced for a radar chart. The following keywords are available:

CLOCK identifies the vertex variables by their positions on the clock
(starting with 12:00).

CLOCK0 identifies the vertex variables by their positions on the clock
(starting with 0:00 corresponding to 12:00).

NUMBER identifies the vertex variables by numbers, with 1 corresponding
to 12 o’clock.

DEGREES identifies the vertex variables by angles in degrees, with 0
degrees corresponding to 12 o’clock.

NONE suppresses the legend. This is the default.

Featured in: Example 4 on page 1201.

STARLEGENDLAB=’legend-label’

The GRADAR Procedure CHART Statement 1195

specifies the label displayed to the left of the legend for stars requested with the
STARLEGEND= option. The label can be up to 16 characters and must be enclosed
in quotes. The default label is Vertices:.
Featured in: Example 4 on page 1201.
Not supported by: ActiveX

STARSTART=value
specifies the vertex angle for the first variable that is specified on the CHART
statement. Vertex angles for the remaining variables are uniformly spaced clockwise
and assigned in the order listed. You can specify the value in the following ways:

� Clock position: If you specify the value as a time literal (between ’0:00’T and
’12:00’T), the corresponding clock position is used for the first vertex variable.
For example, ’12:00’T indicates the 12 o’clock position, ’03:00’T the 3 o’clock
position (90 degrees), and ’09:00’T the 9 o’clock position (270 degrees).

� Degrees:To specify a value in degrees you must specify a negative number. (This
is to distinguish degrees from clock values, which are stored internally as
positive numbers.) If you specify a negative number, the absolute value is used
for the first vertex angle in degrees. Here, 0 degrees corresponds to 12:00, −90
degrees to 3:00, and −270 degrees to 9:00. Always specify the value in degrees
as a negative number.

The default value is zero, so the first vertex variable is positioned at 12:00.

STARTYPE=CORONA | POLYGON | RADIAL | SPOKE | WEDGE
specifies the style of the stars that are produced for a radar chart. The following
keywords are available:

CORONA polygon with star-vertices emanating from the inner circle

POLYGON closed polygon

RADIAL rays emanating from the center

SPOKE rays emanating from the inner circle

WEDGE closed polygon with rays from the center to the full spoke length
(this is the default).

Featured in: Example 5 on page 1202 and Example 8 on page 1207.

SUMVAR=summary-variable
specifies the variable used to calculate the sum or means.

TILELEGEND=variable
specifies a variable used to add a legend for CTILES= colors. The variable can have a
formatted length less than or equal to 32. If a format is associated with the variable,
then the formatted value is displayed. The TILELEGEND= option must be used in
conjunction with the CTILES= option for filling the tiles in a chart. If CTILES= is
specified and TILELEGEND= is not specified, a color legend is not displayed.

The values of the CTILES= and TILELEGEND= variables should be consistent for
all observations with the same level of the classification variables. The value of the
TILELEGEND= variable is used to identify the corresponding color value of the
CTILES= variable in the legend.
Not supported by: ActiveX

TILELEGLABEL=’label’
specifies a label displayed to the left of the legend that is created when you specify a
TILELEGEND= variable. The label can be up to 16 characters and must be enclosed
in quotes. The default label is Tiles:.
Not supported by: ActiveX

1196 Examples Chapter 40

WFRAME=n
WAXIS=n

specifies the width in pixels for the frame lines. The default width is 1.
Not supported by: ActiveX

WEIGHT=numeric-variable
specifies a weight variable used to construct weighted radar charts. The WEIGHT=
variable must be numeric, and its values must be non-negative (non-integer values
are permitted). If a WEIGHT= variable is not provided for a chart variable, the
weights applied to that chart variable are assumed to be 1.
Not supported by: ActiveX

WSPOKES=line-width
WSPOKE=line-width

specifies the width in pixels of the spokes in a radar chart. The default width is 1.

WSTARCIRCLES=(line-widths)
WSTARCIRCLE=(line-widths)

specifies the width in pixels of the outline of circles requested by the STARCIRCLES=
option. The default width is 1. Works only if STARCIRCLES is specified.

WSTARS=line-width | (line-widths)
WSTAR=line-width | (line-widths)

specifies the width in pixels of the outline of stars that are produced for a radar
chart. The default width is 1.
Featured in: Example 3 on page 1199.

Examples

Example 1: Generating the Data Set for the GRADAR Examples
Procedure features: Data set generation
Sample library member: GGDDSGR1

All of the GRADAR procedure examples in this help system use the data from this
SAS code. You must submit this code before you can run any of the other examples for
GRADAR.

During the manufacture of a metal-oxide semiconductor (MOS) capacitor, different
cleaning processes were used by two manufacturing systems that were operating in
parallel. Process A used a standard cleaning solution, while Process B used a different
cleaning mixture that contained less particulate matter. For five consecutive days the
causes of failure with each process were observed, recorded, and saved in the SAS data
set called FAILURE.

data failure;
label cause = ’Cause of Failure’ ;
input process $ 1-9 day $ 13-19 cause $ 23-36 count 40-41;
datalines;

Process A March 1 Contamination 15
Process A March 1 Corrosion 2

The GRADAR Procedure Example 1: Generating the Data Set for the GRADAR Examples 1197

Process A March 1 Doping 1
Process A March 1 Metallization 2
Process A March 1 Miscellaneous 3
Process A March 1 Oxide Defect 8
Process A March 1 Silicon Defect 1
Process A March 2 Contamination 16
Process A March 2 Corrosion 3
Process A March 2 Doping 1
Process A March 2 Metallization 3
Process A March 2 Miscellaneous 1
Process A March 2 Oxide Defect 9
Process A March 2 Silicon Defect 2
Process A March 3 Contamination 20
Process A March 3 Corrosion 1
Process A March 3 Doping 1
Process A March 3 Metallization 0
Process A March 3 Miscellaneous 3
Process A March 3 Oxide Defect 7
Process A March 3 Silicon Defect 2
Process A March 4 Contamination 12
Process A March 4 Corrosion 1
Process A March 4 Doping 1
Process A March 4 Metallization 0
Process A March 4 Miscellaneous 0
Process A March 4 Oxide Defect 10
Process A March 4 Silicon Defect 1
Process A March 5 Contamination 23
Process A March 5 Corrosion 1
Process A March 5 Doping 1
Process A March 5 Metallization 0
Process A March 5 Miscellaneous 1
Process A March 5 Oxide Defect 8
Process A March 5 Silicon Defect 2
Process B March 1 Contamination 8
Process B March 1 Corrosion 2
Process B March 1 Doping 1
Process B March 1 Metallization 4
Process B March 1 Miscellaneous 2
Process B March 1 Oxide Defect 10
Process B March 1 Silicon Defect 3
Process B March 2 Contamination 9
Process B March 2 Corrosion 0
Process B March 2 Doping 1
Process B March 2 Metallization 2
Process B March 2 Miscellaneous 4
Process B March 2 Oxide Defect 9
Process B March 2 Silicon Defect 2
Process B March 3 Contamination 4
Process B March 3 Corrosion 1
Process B March 3 Doping 1
Process B March 3 Metallization 0
Process B March 3 Miscellaneous 0
Process B March 3 Oxide Defect 10
Process B March 3 Silicon Defect 1

1198 Example 2: Producing a Basic Radar Chart Chapter 40

Process B March 4 Contamination 2
Process B March 4 Corrosion 2
Process B March 4 Doping 1
Process B March 4 Metallization 0
Process B March 4 Miscellaneous 3
Process B March 4 Oxide Defect 7
Process B March 4 Silicon Defect 1
Process B March 5 Contamination 1
Process B March 5 Corrosion 3
Process B March 5 Doping 1
Process B March 5 Metallization 0
Process B March 5 Miscellaneous 1
Process B March 5 Oxide Defect 8
Process B March 5 Silicon Defect 2
run;
quit;

Example 2: Producing a Basic Radar Chart

Procedure features:
FREQ=

CSTARS=

CFRAME=

Sample library member: GGDPBRC1

In a radar chart, the vertices are determined by the levels of a single variable, which
is specified on the CHART statement. In this example, the variable CAUSE is specified
as the chart variable. The spokes in the chart start at the twelve o’clock position and go
in a clockwise order. The output shows that Contamination and Oxide Defects are the
most frequently occurring problems.

This example features the following options:

� FREQ= specifies variable COUNT to score vertex lengths. Thus, the values of
COUNT weigh the contribution of each observation in the computation of the chart
statistic.

� CSTARS= specifies a color for the star’s outline.

� CFRAME= specifies a color to use to fill the chart’s axis area.

To run the code in this example, you must first generate the FAILURE data setExample
1 on page 1196.

proc gradar data=failure;
chart cause / freq=count

cstars=red
cframe=ltgray;

run;
quit;

The GRADAR Procedure Example 3: Overlaying Radar Charts 1199

Example 3: Overlaying Radar Charts

Procedure features:
OVERLAY=

Sample library member: GGDOVRC1

The most typical way that radar charts are displayed is to overlay the charts on top
of each other. To produce an overlay chart, use the OVERLAY= option on the CHART
statement. On OVERLAY=, specify a classification variable whose values will
determine the charts to be overlaid. This example shows two blocks of code. The first
block generates a simple overlay chart, and the second block uses options to enhance
the chart appearance.

In the following example, OVERLAY= specifies variable DAY as the overlay variable.
To run the code in this example, you must generate the FAILURE data set Example 1
on page 1196.

proc gradar data=failure;
chart cause / freq=count

overlay=day;
run;
quit;

1200 Example 3: Overlaying Radar Charts Chapter 40

The code above relies on default settings. You can enhance a chart by specifying
additional options. The code below specifies variable PROCESS as the overlay variable
and features the following options:

� STARCIRCLES= determines that two reference circles are superimposed on the
star charts. The value 1.0 determines that a circle with a radius equal to the
spoke length is displayed. The value 0.5 determines that a circle is displayed half
way between the outer circle and the smallest circle (value 0.0) that could be
drawn for the chart. The value 0.0 would display a circle at the minimum data
value, which does not mean that it is actually 0. For example, for data values of 4,
8, 10, and 12, STARCIRCLES=(0.0 1.0) would draw circles at 4 and 12.

� CSTARCIRCLES= determines that both circles are colored black. If this option
were not used, both stars would be colored with the first color that is listed on
CSTARS=.

� CSTARS= determines that the first star, which represents Process A, is colored
red, and that the second star, which represents Process B, is colored blue.

� WSTARS= specifies pixel widths for the outlines of both stars. A separate width is
required for each star.

proc gradar data=failure;
chart cause / freq=count

overlay=process
starcircles=(0.5 1.0)
cstarcircles=black
cstars=(red blue)
wstars=(2 2)
cframe=ltgray;

run;
quit;

The GRADAR Procedure Example 4: Tiling Radar Charts 1201

Example 4: Tiling Radar Charts
Procedure features:

ACROSS=
INTERTILE=
STARLEGEND=CLOCK
STARLEGENDLAB=

Sample library member: GGDTLRC1

As an alternative to overlaying multiple radar charts Example 3 on page 1199, you
can tile charts horizontally, vertically, or in both directions Example 5 on page 1202
using the ACROSS= and/or DOWN= options. Each cell in the output corresponds to a
level of the classification variable. By default, the cells are arranged in alphabetical
order of the values of the variable from top to bottom. The key cell is the left cell
(corresponding to PROCESS = Process A in this example).

The output in this example shows that the main difference in the Radar frequencies
for Process A and Process B is a drop in contamination using Process B.

This example features the following options:
� ACROSS= specifies variable PROCESS as the categorical variable whose values

determine the number of charts that are tiled.
� INTERTILE= specifies 0.5 percent screen units as the distance between tiles in

the chart.
� STARLEGEND=CLOCK generates a legend that identifies spoke positions. Value

CLOCK determines that the positions are identified using a clock metaphor.
� STARLEGENDLAB= specifies the category-legend label Failure Causes:.

To run the code in this example, you must generate the FAILURE data setExample 1 on
page 1196.

1202 Example 5: Using Multiple Classification Variables in Radar Charts Chapter 40

proc gradar data=failure;
chart cause / across=process

freq=count
intertile=0.5
cframe=CXB3B2BF
cframetop=CX83838C
starlegend=clock
starlegendlab=’Failure Causes’
cstars=red;

run;
quit;

Example 5: Using Multiple Classification Variables in Radar Charts

Procedure features:
ACROSS=
DOWN=
CFRAMENLEG=
CFRAMETOP=
CFRAMESIDE=
STARTYPE=
INTERTILE=
NCOLS=
NROWS=

Sample library member: GGDMCVR1

You can study the effects of two classifications simultaneously with a two-way
comparative radar chart. This arrangement provides the opportunity to discover both
one-way marginal effects and interaction effects. To produce the chart, use both the
ACROSS= and DOWN= options.

The GRADAR Procedure Example 5: Using Multiple Classification Variables in Radar Charts 1203

This example features the following options:
� ACROSS= specifies variable DAY as the variable whose values determine the rows

in the chart matrix.
� DOWN= specifies variable PROCESS as the variable whose values determine the

columns in the chart matrix.
� CFRAMENLEG= specifies that the legend be framed and filled with the specified

color.
� CFRAMETOP= specifies a color for the top labels.
� CFRAMESIDE= specifies a color for the side labels.
� STARTYPE= determines that the stars are displayed with rays emanating from

the inner circle.
� INTERTILE= specifies the distance between cells in the tiled chart.
� NCOLS= specifies the number of columns in the chart.
� NROWS= specifies the number of rows in the chart.

To run the code in this example, you must generate the FAILURE data set Example 1
on page 1196.

proc gradar data=failure;
chart cause / across=day

down=process
freq=count
cframe=CXB3B2BF
cframetop=CX83838C
cframeside=cx83838c
startype=spoke
intertile=1
ncols=5
nrows=2
starlegend=clock
spklabel=none;

run;
quit;

1204 Example 6: Filling the Stars in Radar Charts Chapter 40

Example 6: Filling the Stars in Radar Charts
Procedure features:

STARFILL=
CSTARFILL=

Sample library member: GGDFSRC1

By default, the stars in a radar chart are empty. To fill the stars with a solid color,
use STARFILL=SOLID. When the stars are solid filled, the outline of each underlying
star and the spokes in the chart are drawn on top of the stars so that each chart can be
easily seen.

This example features the following options:
� STARFILL= specifies a solid fill for each of the two stars that are generated by the

program. Because the default fill is EMPTY, STARFILL= must specify SOLID two
times; otherwise, the first star would be solid filled, but the second star would be
empty.

� CSTARFILL= specifies colors for the two stars.

To run the code in this example, you must generate the FAILURE data set Example 1
on page 1196.

proc gradar data=failure;
chart cause / overlay=process

freq=count
cstarfill=(red blue)
starfill=(solid solid)
cframe= ltgray;

The GRADAR Procedure Example 7: Using Images in Radar Charts 1205

run;
quit;

Example 7: Using Images in Radar Charts

Procedure features:
IBACK=
IMAGESTYLE=
CSPOKES=

Sample library member: GGDUIRC1

As with other SAS/GRAPH procedures, the GRADAR procedure enables you to
display images in your charts. You can display the image in the graph background area
using on the IBACK= graphics option. Or you can display the image on the chart’s
frame using the GRADAR procedure’s IFRAME= option. Either way, you can use an
IMAGESTYLE= option to indicate the image treatment.

This example shows both techniques. To run the code that is shown, you must
generate the FAILURE data set Example 1 on page 1196.

The first block of code displays an image in the graph background area. It features
the following options:

� IBACK= on the GOPTIONS statement specifies the image file.

� IMAGESTYLE= on the GOPTIONS statement specifies that the image be scaled to
fit within the chart’s background area.

� CSPOKES= on the GRADAR procedure specifies a color for the chart spokes so
that they can be easily seen against the background image.

1206 Example 7: Using Images in Radar Charts Chapter 40

filename backimg ’C:\My Documents\sas\gradar\iback_image.gif’;
/* use of the IBACK= option on the GOPTIONS statement */
goptions iback=backimg imagestyle=tile;

proc gradar data=failure;
chart cause / overlay=process

freq=count
cstarfill=(black brown)
starfill=(solid solid)
cspokes=blue
ctext=blue;

run;
quit;

In this next block of code, the image is displayed in the radar chart’s frame, so only
GRADAR options are used to specify the image. The code features the following options:

� IFRAME= specifies the image file to display in the frame.

� IMAGESTYLE= specifies that the image be scaled to fit within the frame.

� FONT= specifies a font for all of the chart text so that it can be easily seen against
the background image.

goptions reset=all; /* cancel the previous iback option */
filename frameimg ’C:\My Documents\sas\gradar\clouds.gif’;
/* use the IFRAME= option in the CHART statement */
proc gradar data=failure;

chart cause / overlay=process
freq=count
cstarfill=(black brown)
starfill=(solid solid)
iframe=frameimg
imagestyle=fit

The GRADAR Procedure Example 8: Changing the Star Type in Radar Charts 1207

font=centb;
run;
quit;

Example 8: Changing the Star Type in Radar Charts
Procedure features:

OVERLAY=
FREQ=
STARTYPE=

Sample library member: GGDCSTR1

By default, the stars in a radar chart are displayed as wedges. You can specify an
alternative style with the STARTYPE= option. This example specifies
STARTYPE=CORONA.

To run the code in this example, you must generate the FAILURE data setExample 1
on page 1196.

proc gradar data=failure;
chart cause / overlay=process

1208 Example 9: Using Color and Line Styles in Radar Charts Chapter 40

freq=count
startype=corona;

run;
quit;

Example 9: Using Color and Line Styles in Radar Charts

Procedure features:
CSTARS=
LSTARS=
CFRAME=

Sample library member: GGDUCLS1

For overlay charts with multiple stars, the lines for the stars are rotated through
different line styles and colors so that the different stars can be easily seen. Rather
than relying on the default rotation patterns, you can control the line colors and line
styles with the CSTARS= and LSTARS= options.

This example features the following options:

� CSTARS= specifies a different color for each of the star outlines in the chart. In
this example the colors are specified as hexadecimal values, but you can use any
valid SAS/GRAPH color names.

� LSTARS= specifies a solid line as the line style for each star outline.

� CFRAME= specifies a background color to display on top of the image that is
specified on the GOPTIONS statement’s IBACK= option.

To run the code in this example, you must generate the FAILURE data set Example 1
on page 1196.

The GRADAR Procedure Example 10: Specifying the Mode for a Radar Chart 1209

goptions htext=.95 cell iback=’external-file’
border ftext=centb;

proc gradar data=failure;
chart cause / overlay=day

freq=count
cstars=(cxdc0369, cx261e62,

cx0099b6, cxb0885, cxffa300)
cframe=cxccffcc
starlegend=none
wstars=2 2 2 2 2
lstars=1 1 1 1 1
;

run;
quit;

Example 10: Specifying the Mode for a Radar Chart
Procedure features:

MODE=
ACROSS=
FREQ=

Sample library member: GGDSMRC1

The MODE= option specifies the display mode for a radar chart. If a radar chart is
generated without the MODE= option set, the labels are sometimes too small and
illegible. This example uses the SHARE= keyword, which is one of three keywords
available for the MODE= option. The SHARE= keyword shares the drawing space

1210 Example 11: Assigning Axis Definitions to Axis Spokes Chapter 40

between the text and the graph. The result is that the text is enlarged and becomes
legible.

To run the code in this example, you must generate the FAILURE data set Example
1 on page 1196.

proc gradar data=failure;
chart cause / across=process

mode=share
freq=count
;

run;
quit;

Example 11: Assigning Axis Definitions to Axis Spokes
Procedure features:

STARAXIS=
FREQ=

Sample library member: GGDADAS1

The STARAXIS= option allows you to assign axis definitions to spokes in a radar
chart. In this example, three axis defintions are specified. However, there are seven
spokes in the radar chart. Spokes one and three are colored the same because they both
use the definition axis1. Spoke two uses the definition axis3. Spoke 4 uses the
definition axis2, and spokes five through seven receive the default settings.

The GRADAR Procedure Example 11: Assigning Axis Definitions to Axis Spokes 1211

To run the code in this example, you must generate the FAILURE data set Example
1 on page 1196.

axis1 color=red
label=(’weight’)
major=(height=.75 width=3)
width=3;

axis2 color=blue
label=(’height’);

axis3 color=green;

proc gradar data=failure;
chart cause / staraxis=(axis1, axis3, axis1, axis2)

freq=count;
run;
quit;

1212

1213

C H A P T E R

41
The GREDUCE Procedure

Overview 1213

Concepts 1215
About the Input Map Data Set 1215

About Unmatched Area Boundaries 1215

Procedure Syntax 1215
PROC GREDUCE Statement 1216

ID Statement 1217

Using the GREDUCE Procedure 1218
Specifying Density Levels 1218

Subsetting a Map Data Set 1220
Examples 1220

Example 1: Reducing the Map of Canada 1220

References 1222

Overview
The GREDUCE procedure processes map data sets so that they can draw simpler

maps with fewer boundary points. It creates an output map data set that contains all of
the variables in the input map data set plus a new variable named DENSITY. For each
observation in the input map data set, the procedure determines the significance of that
point for maintaining a semblance of the original shape and gives the observation a
corresponding DENSITY value.

You can then use the value of the DENSITY variable to create a subset of the
original map data set. The observations in the subset can draw a map that retains the
overall appearance of the original map but contains fewer points, requires considerably
less storage space, and can be drawn much more quickly.

GREDUCE does not produce any graphics output. Instead, it produces an output
map data set that can become either

� the input map data set for the GMAP procedure
� the input map data set for a DATA step that removes points from the map.

Figure 41.1 on page 1214 and Figure 41.2 on page 1214 illustrate the effect of
reduction on a typical map data set. Figure 41.1 on page 1214 uses observations with
all DENSITY values as input to the GMAP procedure.

1214 Overview Chapter 41

Figure 41.1 CANADA2 Map before Reduction (GRDCANAD(a))

Figure 41.2 on page 1214 uses only those observations with a DENSITY value of 0 or
2 as input to the GMAP procedure.

Figure 41.2 CANADA2 Map after Reduction (GRDCANAD(b))

The program for these maps is in Example 1 on page 1220.
The reduced map shown in Figure 41.2 on page 1214 retains the overall shape of the

original but requires only 463 observations compared to the 4302 observations that are
needed to produce the map in Figure 41.1 on page 1214.

Note: Many of the map data sets that are supplied by SAS Institute already have
been processed by GREDUCE. If the map data set contains a DENSITY variable, you
do not need to process the data set using GREDUCE. �

See also Chapter 42, “The GREMOVE Procedure,” on page 1223 for more information
on how to

� combine groups of unit areas into larger unit areas to create regional maps
� remove some of the boundaries in a map and create a subset of a map that

combines the original areas.

The GREDUCE Procedure Procedure Syntax 1215

Concepts

About the Input Map Data Set
The input map data set must be a traditional map data set and contain these

variables:
� a numeric variable named X that contains the horizontal coordinates of the map

boundary points.
� a numeric variable named Y that contains the vertical coordinates of the map

boundary points.
� one or more identification variables that uniquely identify the unit areas in the

map. These variables are listed in the ID statement.

It also can contain
� one or more variables that identify groups of unit areas (for BY-group processing)
� the variable SEGMENT, which distinguishes nonconterminous segments of the

unit areas.

Any other variables in the input map data set do not affect the GREDUCE procedure.

About Unmatched Area Boundaries
If you are using map data sets in which area boundaries do not match precisely (for

example, if the boundaries were digitized with a different set of points), PROC
GREDUCE will not be able to identify common boundaries properly, and this results in
abnormalities in your maps. These abnormalities include mismatched borders, missing
vertex points, stray lines, gaps, and distorted polygons.

If the points in the area boundaries match up except for precision differences, round
each X and Y value in your map data set accordingly, using the DATA step function
ROUND before using PROC GREDUCE. (See SAS Language Reference: Dictionary for
information on the ROUND function.)

For example, if the map data set APPROX has horizontal and vertical coordinate
values for interior boundaries of unit areas that are exactly equal only to three decimal
places, then this DATA step creates a new map data set, EXACT, that will be better
suited for use with PROC GREDUCE:

data exact;
set approx;
if x ne . then x=round(x,.001);
if y ne . then y=round(y,.001);

run;

See “About Map Data Sets” on page 999 for additional information on map data sets.

Procedure Syntax
Requirements: Exactly one ID statement is required.
Reminder: The procedure can include the BY statement.

PROC GREDUCE <option(s)>;

1216 PROC GREDUCE Statement Chapter 41

ID id-variable(s);

PROC GREDUCE Statement

Identifies the input and output map data sets. Optionally specifies the reduction criteria.

Requirements: An input map data set is required.

Syntax

PROC GREDUCE <option(s)>;

option(s) can be one or more options from any or all of the following categories:

� data set options:

DATA=input-map-data-set

OUT=output-map-data-set

� level options:

E1=min-distance

E2=min-distance

E3=min-distance

E4=min-distance

E5=min-distance

N1=max-points

N2=max-points

N3=max-points

N4=max-points

N5=max-points

Options

DATA=input-map-data-set
identifies the map data set that you want to process. By default, the procedure uses
the most recently created SAS data set.

See also: “About the Input Map Data Set” on page 1215and “SAS Data Sets” on
page 29.

E1=min-distance
E2=min-distance
E3=min-distance
E4=min-distance
E5=min-distance

specify the minimum distance that a point must lie from a straight line segment to
be included at density level 1, 2, 3, 4, or 5, respectively. That is, in a reduced curve of
three points, the middle point is at least a distance that is min-distance from a
straight line between the two outside points.

The GREDUCE Procedure ID Statement 1217

Express min-distance values in the units for the coordinate system of the input
map data set. For example, if the input map data set contains coordinates that are
expressed in radians, express the min-distance values in radians.

Specify the En= values in decreasing order. For example, the E2= value should be
less than the E1= value and so on.

N1=max-points
N2=max-points
N3=max-points
N4=max-points
N5=max-points

specify that for density level 1, 2, 3, 4, or 5, the boundary of a unit area should
contain no more than max-points points.

Specify the Nn= values in increasing order. For example, the N2= value should be
greater than or equal to the N1= value and so on.

By default, if you omit Nn= and En = , the GREDUCE procedure calculates values
for the five Nn = parameters using this formula:

�� � �� �������

Here Nmax is the maximum number of points in any unit area in the input map
data set. However, the restriction that the number of points for any level cannot be
less than the number of points in level 0 still applies.

OUT=output-data-set
names the new map data set, which contains all of the observations and variables in
the original map data set plus the new DENSITY variable. If the input map data set
contains a variable named DENSITY, the GREDUCE procedure replaces the values
of the variable in the output map data set. The original values of the DENSITY
variable from the input map data set are not included in the output map data set.

By default, the GREDUCE procedure names the new data set that uses the
DATAn naming convention. That is, the procedure uses the name WORK.DATAn,
where n is the next unused number in sequence. Thus, the first automatically named
data set is DATA1, the second is DATA2, and so on.

ID Statement

Identifies the variable or variables that define the hierarchy of the current unit areas in the input
map data set.

Requirements: At least one id-variable is required.
Featured in: Example 1 on page 1220.

Syntax

ID id-variable(s);

1218 Using the GREDUCE Procedure Chapter 41

Required Arguments

id-variable(s)
specifies one or more variables in the input map data set that identify unit areas.
Id-variable(s) can be either numeric or character.

Each group of observations with a different ID variable value is evaluated as a
separate unit area.

Using the GREDUCE Procedure

Specifying Density Levels
GREDUCE uses default criteria for determining the appropriate DENSITY variable

value for each observation in the input map data set. If you do not want to use the
default criteria, use PROC GREDUCE options to select

� the maximum number of observations for each DENSITY level
� the minimum distance that an intermediate point must lie from a line between

two end points to be included in the level.

If you do not explicitly specify criteria, the procedure computes and uses default
values.

GREDUCE creates seven density levels, numbered 0 through 6. Specify criteria for
density levels 1 through 5. You cannot define criteria for level 0, which is reserved for
map vertex points, such as common corners of unit areas. You also cannot define
criteria for level 6, which is assigned to those points that do not meet the criteria for
any lower level.

Specify the maximum number of observations per density level using Nn= in the
PROC GREDUCE statement, and specify the minimum point distance using En= . You
must have knowledge of the X and Y variable values in the particular input map data
set to determine appropriate values for En=. See the En= and Nn= option on page 1216
for details.

Figure 41.3 on page 1219 illustrates how to use the minimum distance parameter to
determine which points belong in a particular density level. At density level n, only
point C lies at a distance greater than the En= value (70) from a line between points A
and B. Thus, after reduction only point C remains between points A and B at density
level n, and the resulting reduced boundary is shown in Figure 41.4 on page 1219. See
Douglas and Peucker (1973) for details of the algorithm used.

The GREDUCE Procedure Specifying Density Levels 1219

Figure 41.3 Points in Data Set before Reduction

Figure 41.4 Points in Data Set at Density n after Reduction

GREDUCE uses the usual Euclidean distance formula to determine the distance
between points. For example, the distance d between the points (x0,y0) and (x1,y1) is
GREDUCE uses the usual Euclidean distance formula to determine the distance
between points. For example, the distance d between the points (x0,y0) and (x1,y1) is

� � ��� ���
� � ��� ���

�

If this distance function is not suitable for the coordinate system in your input map
data set, transform the X and Y values to an appropriate coordinate system before
using GREDUCE. An example of inappropriate coordinates is latitude and longitude
values around one of the poles. In this case, the data values should be projected before
they are reduced. See Chapter 39, “The GPROJECT Procedure,” on page 1161 for more
information on map projection.

If you specify both Nn= and En= values for a density level, GREDUCE attempts to
satisfy both criteria. However, the number of points for any level is never reduced
below the number of points in density level 0. If you specify a combination of Nn= or
En= values such that the resulting DENSITY values are not in order of increasing

1220 Subsetting a Map Data Set Chapter 41

density, a note is printed in the SAS log, and the DENSITY values are calculated in
increasing order of density.

Subsetting a Map Data Set
A map data set that is processed by GREDUCE does not automatically result in a

map that uses fewer points. By default, the GMAP procedure produces a map that uses
all of the points in the map data set, even if the data set has been processed by the
GREDUCE procedure. To decrease the number of points that produce the map, you
must create a subset of the original data set using a DATA step or the WHERE= data
set option. For example, to create a subset of a map that uses only the DENSITY
values 0, 1, and 2, use this DATA step:

data smallmap;
set map;
if density <= 2;

run;

Alternatively, you can use WHERE= in the PROC GMAP statement:

proc gmap map=map(where=(density<=2))
data=response;

Note: GREDUCE does not reduce the size of the output map data set compared to
the input map data set. By default, the output map data set from PROC GREDUCE
will be larger than the input map data set because it contains all of the variables and
observations from the original data set, with the addition of the DENSITY variable if it
was not present in the original data set. If the input map data set already had a
DENSITY variable, the output map data set will be the same size as the input map
data set. �

Examples
The following example illustrates major features of the GREDUCE procedure.

Because the example uses one of the map data sets that are supplied with SAS/GRAPH
, you may need to replace SAS-data-library in the LIBNAME statement with the actual
location of the SAS data library that contains the Institute-supplied map data sets on
your system. Contact your SAS Software Consultant for the location of the map data
sets at your site. If your site automatically assigns the libref MAPS to the SAS data
library that contains the Institute-supplied map data sets, delete the LIBNAME
statement in this example.

Example 1: Reducing the Map of Canada
Procedure features:

ID statement
Other features:

PROC GMAP option:
WHERE=

The GREDUCE Procedure Example 1: Reducing the Map of Canada 1221

Sample library member: GRDCANAD

In this example, the GREDUCE procedure creates the DENSITY variable for the
CANADA2 map data set that is provided with SAS/GRAPH . First, the map is
displayed at its original density by using the GMAP procedure. Second, the map is
displayed by using density values of 0 to 2.

Assign the libref and set the graphics environment.

libname maps ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Define titles and footnotes for the first map.

title1 ’Canada’;
title2 h=4 ’Using all DENSITY values’;

1222 References Chapter 41

footnote1 j=l ’ From SAS/GRAPH
’ ’02’x

’ Software CANADA2 Data Set’;
footnote2 j=r ’GRDCANAD(a) ’;

Define pattern characteristics.

pattern value=mempty repeat=12 color=blue;

Show the unreduced map. The ID statement specifies the variable in the map data set that
defines unit areas.

proc gmap map=maps.canada2 data=maps.canada2 all;
id province;
choro province / nolegend;

run;

The GREDUCE procedure creates a new map data set, CAN2, containing a DENSITY
variable. The ID statement specifies the variable in the map data set that defines unit areas.

proc greduce data=maps.canada2 out=can2;
id province;

run;

Define title and footnote for the second map.

title2 h=4 ’Using only DENSITY values 0 to 2’;
footnote2 j=r ’GRDCANAD(b) ’;

Show reduced map with density levels 0-2. WHERE= selects map coordinates with the
appropriate DENSITY values.

proc gmap map=can2(where=(density<3))
data=can2 all;

id province;
choro province / nolegend;

run;
quit;

References

Douglas, D.H. and Peucker, T.K. (1973), "Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or Its Caricature," The Canadian
Cartographer, 10, 112–122.

1223

C H A P T E R

42
The GREMOVE Procedure

Overview 1223

Concepts 1224
About the Input Map Data Set 1224

About the Output Map Data Set 1225

About Unmatched Area Boundaries 1225
Procedure Syntax 1226

PROC GREMOVE Statement 1226

BY Statement 1227
ID Statement 1228

Examples 1228
Example 1: Removing State Boundaries from U.S. Map 1228

Example 2: Creating an Outline Map of Africa 1232

Overview
The GREMOVE procedure processes a map data set that is used as input. It does

not produce any graphics output. Instead, it produces an output data set that typically
becomes the input map data set for the GMAP procedure (see Chapter 35, “The GMAP
Procedure,” on page 995). The GREMOVE procedure combines unit areas defined in a
map data set into larger unit areas by removing shared borders between the original
unit areas. For example, Figure 42.1 on page 1224 and Figure 42.2 on page 1224 show
combined unit areas in a typical map data set by removing state boundaries to create
regional census divisions.

1224 Concepts Chapter 42

Figure 42.1 Map before Removing Borders (GRMUSMAP(a))

Figure 42.2 Map after Removing Borders (GRMUSMAP(b))

The program for these maps is shown in Example 1 on page 1228.

Concepts
The GREMOVE procedure processes the input map data set to remove internal

boundaries and creates a new map data set. The PROC GREMOVE statement
identifies the input and output map data sets. The ID statement identifies the variable
or variables in the input map data set that define the current unit areas. The BY
statement identifies the variable or variables in the input map data set that define the
new unit areas.

About the Input Map Data Set
The input map data set must be in traditional map data set format (see “About Map

Data Sets” on page 999) and it must contain these variables:

The GREMOVE Procedure About Unmatched Area Boundaries 1225

� a numeric variable named X that contains the horizontal coordinates of the map
boundary points.

� a numeric variable named Y that contains the vertical coordinates of the map
boundary points.

� one or more variables that uniquely identify the current unit areas in the map.
These variables are listed in the ID statement. Each group of observations with a
different ID variable value is evaluated as a separate unit area.

� one or more variables that identify the new unit areas to be created in the output
map data set. These variables are listed in the BY statement.

It may also contain the variable SEGMENT, which is used to distinguish
non-conterminous segments of the same unit areas. Other variables may exist in the
input map data set, but they do not affect the GREMOVE procedure and they will not
be carried into the output map data set.

About the Output Map Data Set
The output map data set contains the newly defined unit areas. These new unit

areas are created by removing all interior line segments from the original unit areas.
All variables in the input map data set except X, Y, SEGMENT, and the variables listed
in the BY statement are omitted from the output map data set.

The output map data set may contain missing X, Y coordinates to construct any
polygons that have enclosed boundaries (like lakes or combined regions that have one or
more hollow interior regions).

The SEGMENT variable in the output map data set is ordered according to the size
of the bounding box around the polygon that it describes. A SEGMENT value of 1
describes the polygon whose bounding box is the largest in the unit area and so on.
This information is useful for removing small polygons that clutter up maps.

All current unit areas with common BY-variable value(s) are combined into a single
unit area in the output map data set. The new unit area contains

� all boundaries that are not shared, such as islands and lakes
� all boundaries that are shared by two different BY groups.

About Unmatched Area Boundaries
If you are using map data sets in which area boundaries do not match precisely (for

example, if the boundaries were digitized with a different set of points), PROC
GREMOVE will not be able to identify common boundaries properly, resulting in
abnormalities in your output data set.

If the points in the area boundaries match up except for precision differences, before
using PROC GREMOVE round each X and Y value in your map data set accordingly,
using the DATA step function ROUND. See SAS Language Reference: Dictionary for
information on the ROUND function.

For example, if you have a map data set named APPROX in which the horizontal
and vertical coordinate values for interior boundaries of unit areas are exactly equal
only to three decimal places, this DATA step creates a new map data set, EXACT, that
is better suited for use with the GREMOVE procedure:

data exact;
set approx;
if x ne . then x=round(x,.001);
if y ne . then y=round(y,.001);

run;

1226 Procedure Syntax Chapter 42

Procedure Syntax
Requirements: The BY and ID statements are required.

PROC GREMOVE <DATA=input-map-data-set>
<OUT=output-map-data-set>;

BY <DESCENDING>variable-l
<...<DESCENDING>variable-n>
<NOTSORTED>;

ID variable(s);

PROC GREMOVE Statement

Identifies the input and output map data sets.

Requirements: An input map data set is required.

Syntax

PROC GREMOVE <DATA=input-map-data-set>
<OUT=output-map-data-set>;

Options

DATA=input-map-data-set
specifies the map data set that is to be processed. By default, the procedure uses the
most recently created SAS data set. The GREMOVE procedure expects the
observations in the input map data set to be sorted in ascending order of the
BY-variable values.
See also: “About the Input Map Data Set” on page 1224 and “SAS Data Sets” on

page 29.
Featured in: Example 2 on page 1232.

OUT=output-data-set
names the new map data set, which contains the coordinates of the new unit areas
created by the GREMOVE procedure. By default, the GREMOVE procedure names
the new data set using the DATAn naming convention. That is, the procedure uses
the name WORK.DATAn, where n is the next unused number in sequence. Thus, the
first automatically named data set is DATA1, the second is DATA2, and so on.
See also: “About the Output Map Data Set” on page 1225.
Featured in: Example 2 on page 1232.

The GREMOVE Procedure BY Statement 1227

BY Statement

Lists the variable or variables that identify the new unit areas.

Requirements: At least one variable is required.

See also: “BY Statement” on page 141.

Featured in: Example 1 on page 1228.

Syntax

BY <DESCENDING>variable-l
<...<DESCENDING>variable-n>
<NOTSORTED>;

Required Arguments

variable(s)
identifies one or more variables in the input map data set that define the new unit
areas. Variable(s) can be either numeric or character.

The BY variables in the input map data set become the ID variables for the output
map data set.

Options

DESCENDING
indicates that the input map data set is sorted in descending order. By default, the
GREMOVE procedure expects all BY-variable values to appear in ascending order.

This option affects only the variable that immediately follows the option.

NOTSORTED
indicates that observations with the same BY-variable values are to be grouped as
they are encountered without regard for whether the values are in alphabetical or
numerical order. NOTSORTED can appear anywhere in the BY statement. It affects
all of the variables that are specified in the statement. NOTSORTED overrides
DESCENDING if both appear in the same BY statement.

Ordering Observations
To sort the input map data set, use the SORT procedure in base SAS, for example

/* arrange the observations in desired order */
proc sort data=mapdata out=mapsort;

by state;
run;

/* remove the county boundaries */
proc gremove data=mapsort out=newmap;

by state;
id county;

run;

1228 ID Statement Chapter 42

Notice that the GREMOVE procedure uses the same BY statement as the SORT
procedure.

See the Base SAS Procedures Guide for further information on the SORT procedure.

Note: If an observation is encountered for which the BY-variable value is out of the
proper order, the GREMOVE procedure stops and issues an error message. �

ID Statement

Identifies the variable or variables that define the hierarchy of the current unit areas in the input
map data set.

Requirements: At least one id-variable is required.

Featured in: Example 1 on page 1228.

Syntax

ID id-variable(s);

Required Arguments

id-variable(s)
specifies one or more variables in the input map data set that identify the unit areas
to be combined. These variables are not included in the output map data set.
Id-variable(s) can be either numeric or character.

See also: “About the Input Map Data Set” on page 1224.

Examples

The following examples illustrate major features of the GREMOVE procedure.

Example 1: Removing State Boundaries from U.S. Map

Procedure features:
BY statement
ID statement

Other features:
SORT procedure
MERGE procedure
LIBNAME statement

Sample library member: GRMUSMAP

The GREMOVE Procedure Example 1: Removing State Boundaries from U.S. Map 1229

This example processes the MAPS.US map data set, supplied with SAS/GRAPH, to
produce a new map data set containing boundaries for the U.S. Bureau of the Census
divisions. Because the MAPS.US map data set does not contain a variable to identify
any unit area other than states, this example creates a map data set that contains the
census divisions and that can be processed with the GREMOVE procedure.

The STATE variable in the MAPS.US data set, containing numeric FIPS codes for
each state, is used as the BY-variable to merge the CBSTATES and MAPS.US data
sets. Output 42.1 shows the variables that are present in the data set before using the
GREMOVE procedure:

Output 42.1 The MAPS.US Data Set

MAPS.US Data Set
OBS STATE SEGMENT X Y

1 1 1 0.16175 -0.10044
2 1 1 0.12305 -0.10415
3 1 1 0.12296 -0.10678
.
.
.

1524 56 1 -0.18757 0.15035
1525 56 1 -0.10158 0.13997
1526 56 1 -0.10398 0.11343

And Figure 42.3 on page 1229 shows the map before processing:

Figure 42.3 Map before Removing Borders (GRMUSMAP(a))

Output 42.2 shows the variables that are present in the data set after you use the
GREMOVE procedure. Notice that the new map data set contains a new variable called
DIVISION:

1230 Example 1: Removing State Boundaries from U.S. Map Chapter 42

Output 42.2 The REMSTATE Data Set

REMSTATE Data Set
OBS X Y SEGMENT DIVISION

1 0.29825 0.17418 1 1
2 0.29814 0.17820 1 1
3 0.30206 0.18045 1 1
.
.
.

1082 -0.18715 -0.16010 8 9
1083 -0.18747 -0.15971 8 9
1084 -0.18747 -0.15951 8 9

Figure 42.4 on page 1230 shows the new map after PROC GREMOVE has removed
interior state boundaries.

Figure 42.4 Map after Removing Borders (GRMUSMAP(b))

Assign the libref and set the graphics environment. If the libref MAPS is already
assigned, omit the LIBNAME statement.

libname maps ’SAS-maps-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create data set CBSTATES. This data set includes a variable, DIVISION, that contains the
number of the U.S. Bureau of the Census division for the state. This data step converts letter
codes to numeric FIPS codes that match those in the STATE variable of MAPS.US.

data cbstates;
length state 8 stcode $ 2 division 4;
input stcode division;

The GREMOVE Procedure Example 1: Removing State Boundaries from U.S. Map 1231

state=stfips(stcode);
drop stcode;
datalines;

CT 1
MA 1
...more data lines...
OR 9
WA 9
;

Sort data set in FIPS-code order. Create a sorted data set, CBSORT. It can be properly
match-merged with the MAPS.US map data set, which is already sorted in FIPS-code order.

proc sort data=cbstates out=cbsort;
by state;

run;

Add DIVISION variable to map data set by merging the CBSORT data set with
MAPS.US. Create a new map data set, USCB, that contains all of the state boundary
coordinates from the MAPS.US data set plus the added variable DIVISION.

data uscb;
merge cbsort maps.us;
by state;

run;

Sort data set in DIVISION order. Sort USCB by the DIVISION variable to create the
DIVSTATE data set.

proc sort data=uscb out=divstate;
by division;

run;

Remove interior boundaries within divisions. BY specifies the variable, DIVISION, in the
input map data set that identifies the new unit areas. ID specifies the variable, STATE, in the
input map data set that identifies the current unit areas.

proc gremove data=divstate out=remstate;
by division;
id state;

run;

Define title and footnote for map.

title ’U.S. State Map’;
footnote j=r ’GRMUSMAP(a) ’;

1232 Example 2: Creating an Outline Map of Africa Chapter 42

Define pattern characteristics.

pattern value=mempty repeat=48 color=blue;

Show the original map.

proc gmap map=maps.us data=maps.us all;
id state;
choro state / nolegend;

run;

Define new title and footnote for map.

title ’U.S. Census Division Map’;
footnote j=r ’GRMUSMAP(b) ’;

Show the regional map. ID specifies the variable, DIVISION, that identifies the unit areas in
the processed data set. CHORO specifies DIVISION as the response variable.

proc gmap map=remstate data=remstate all;
id division;
choro division / nolegend;

run;
quit;

Example 2: Creating an Outline Map of Africa

Procedure features:
PROC GREMOVE options:

DATA=
OUT=

Other features:
GMAP procedure

Sample library member: GRMAFRIC

This example processes the MAPS.AFRICA map data set, supplied with SAS/
GRAPH, to produce a new map data set that contains no internal boundaries. This is
done by adding a new variable, REGION, to the map data set and setting it equal to 1.
Unit areas from the input map data set that have the same BY-variable value are
combined into one unit area in the output map data set. Output 42.3 shows the
variables present in the original map data set:

The GREMOVE Procedure Example 2: Creating an Outline Map of Africa 1233

Output 42.3 The MAPS.AFRICA Data Set

MAPS.AFRICA Data Set
OBS ID SEGMENT X Y

1 125 1 0.57679 1.43730
2 125 1 0.57668 1.43467
3 125 1 0.58515 1.42363
.
.
.

3462 990 1 1.04249 0.50398
3463 990 1 1.04184 0.50713
3464 990 1 1.04286 0.50841

Figure 42.5 on page 1233 shows the map before processing:

Figure 42.5 Map before Removing Borders (GRMAFRIC(a))

The new AFRICA map data set is created with a new variable, REGION. Output
42.4 shows the variables that are present in the new map data set created by the
GREMOVE procedure:

Output 42.4 The AFRICA Data Set

AFRICA Data Set
OBS X Y SEGMENT REGION

1 0.24826 1.02167 1 1
2 0.25707 1.02714 1 1
3 0.26553 1.03752 1 1
.
.
.

982 1.19071 1.30043 3 1
983 1.18675 1.30842 3 1
984 1.18518 1.32822 3 1

1234 Example 2: Creating an Outline Map of Africa Chapter 42

Figure 42.6 on page 1234 shows the new map after PROC GREMOVE has removed
all of the interior boundaries:

Figure 42.6 Map after Removing Borders (GRMAFRIC(b))

Assign the libref and set the graphics environment.

libname maps ’SAS-maps-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss htitle=6 htext=3;

Create the NEWAF data set. This new map data set contains all the variables in the SAS/
GRAPH supplied MAPS.AFRICA map data set plus the added variable REGION.

data newaf;
set maps.africa;
region=1;

run;

Remove the unit areas from the AFRICA data set. DATA= specifies the input map data set
and OUT= specifies the output map data set. The input map data set has a variable called
REGION that is used as the BY-variable to identify the new unit areas. The ID statement
specifies the current unit areas from the input map data set.

proc gremove data=newaf out=africa;
by region;
id id;

run;

The GREMOVE Procedure Example 2: Creating an Outline Map of Africa 1235

Define the title and footnote.

title ’Africa with Boundaries’;
footnote j=r ’GRMAFRIC(a) ’;

Define pattern characteristics.

pattern value=mempty r=50 color=blue;

Display the original map.

proc gmap map=maps.africa data=maps.africa all;
id id;
choro id / nolegend;

run;

Define a new title and footnote for the map.

title ’Africa without Boundaries’;
footnote j=r ’GRMAFRIC(b) ’;

Display the map with no boundaries. ID specifies the variable, REGION, that identifies the
unit areas in the processed data set.

proc gmap data=africa map=africa;
id region;
choro region / nolegend;

run;
quit;

1236

1237

C H A P T E R

43
The GREPLAY Procedure

Overview 1238

Concepts 1239
About Catalog Entries 1239

Duplicate Entry Names 1240

Ways to Use the GREPLAY Procedure 1241
Windowing Environment 1241

Code-based Statements 1241

Procedure Syntax 1242
PROC GREPLAY Statement 1243

? Statement 1246
BYLINE Statement 1247

CC Statement 1247

CCOPY Statement 1247
CDEF Statement 1248

CDELETE Statement 1249

CMAP Statement 1250
COPY Statement 1250

DELETE Statement 1251
DEVICE Statement 1251

FS Statement 1252

GOUT Statement 1252
GROUP Statement 1252

IGOUT Statement 1253

LIST Statement 1253
MODIFY Statement 1254

MOVE Statement 1255
NOBYLINE Statement 1256

PREVIEW Statement 1256

QUIT Statement 1256
REPLAY Statement 1257

TC Statement 1257

TCOPY Statement 1258
TDEF Statement 1259

TDELETE Statement 1262
TEMPLATE Statement 1262

TREPLAY Statement 1263

Using the GREPLAY Procedure 1264
Using the GREPLAY Windows 1264

GREPLAY Window Commands 1264

PROC GREPLAY Window 1265
PRESENTATION Window 1265

1238 Overview Chapter 43

DIRECTORY Window 1265

TEMPLATE DESIGN Window 1265
COLOR MAPPING Window 1266

Managing Catalog Entries 1267

Replaying Catalog Entries 1268
Creating Templates and Color Maps 1268

Replaying Graphics Output in a Template 1270

Examples 1270
Example 1: Creating a Template 1270

Example 2: Replaying Graphics Output in a Template 1272
Example 3: Creating a Color Map 1274

Overview
The GREPLAY procedure displays and manages graphics output that is stored in

SAS catalogs. The GREPLAY procedure also creates templates and color maps that you
can use when you replay your graphics output. The GREPLAY procedure operates in
both windowing and line-mode environments.

With the GREPLAY procedure, you can
� select one or more catalog entries from the same catalog for replay and route them

to your display or other devices, such as plotters and printers.
� use, create, or modify templates. You can use templates to describe positioning on a

single display for the graphics output that is stored in one or more catalog entries.
� use, create, or modify color maps. Color maps enable you to change the colors in

graphics output by mapping existing colors to new colors.
� manage entries in SAS catalogs by

� creating logical groupings of catalog entries that contain graphics output
� renaming, deleting, or copying catalog entries that contain graphics output,

templates, and color maps
� rearranging catalog entries that contain graphics output.

� create new graphics output by replaying one or more catalog entries into panels
within a template.

Figure 43.1 on page 1239 shows four catalog entries that were replayed into a
template and displayed as a single graph.

The GREPLAY Procedure About Catalog Entries 1239

Figure 43.1 Graphics Output in a Template

For an example of replaying graphics in a template, see Example 2 on page 1272.

Concepts

About Catalog Entries
The GREPLAY procedure uses three kinds of catalog entries:

graphics output
catalog entries of type GRSEG. The catalog in which these entries are stored is
referred to as the input-catalog and output-catalog. The input-catalog is the
catalog that contains the graphics output, stored in catalog entries, that you want
to replay. You can change the input catalog during a catalog management session.
The output-catalog is the catalog in which graphics output that is produced by the
template facility is stored. The output catalog is also the destination of copied
catalog entries.

templates
catalog entries of type TEMPLATE. This catalog is referred to as the
template-catalog. The template-catalog is the catalog that stores templates that
are created by the GREPLAY procedure. The template catalog also may contain
previously created templates that you want to modify or templates to use for
replaying your graphics output. SASHELP.TEMPLT is the Institute-supplied
template catalog.

color maps
catalog entries of type CMAP. This catalog is referred to as color-map-catalog. The
color-map-catalog is the catalog that stores color maps that are created by the
GREPLAY procedure. The color map catalog also may contain previously created
color maps that you want to modify or color maps to use when you replay your
graphics output. Note that image entries may exist in this catalog but are not
recognized by the GREPLAY procedure.

1240 About Catalog Entries Chapter 43

Note: Image entries may exist in the catalog but are not recognized by PROC
GREPLAY. �

You can store all of the previous entry types in a single SAS catalog, or you can store
them in separate catalogs and use a different catalog for each type of entry. A single
SAS catalog may contain graphics output, color maps, and templates.

Because the GREPLAY procedure operates on catalog entries, you must assign at
least one catalog before you can perform any tasks. The GREPLAY procedure has
several ways to assign the catalogs, as shown in Table 43.1 on page 1240.

Table 43.1 Assigning Catalogs

Catalog Ways to Assign

input IGOUT= option in the PROC GREPLAY statement

IGOUT statement

IGOUT field in the PROC GREPLAY window

output GOUT= option in the PROC GREPLAY statement

GOUT statement

GOUT field in the PROC GREPLAY window

template TC= option in the PROC GREPLAY statement

TC statement

TC field in the PROC GREPLAY window

color
map

CC= option in the PROC GREPLAY statement

CC statement

CC field in the PROC GREPLAY window

In addition, you can assign a current template, which you can use when you replay
graphics output, and a current color map, which you can use to remap colors when you
replay graphics output. To assign the current template, use one of the following:

� the TEMPLATE= option in the PROC GREPLAY statement
� the TEMPLATE statement
� the Template field in the PROC GREPLAY window.

To assign the current color map, use one of the following:
� the CMAP= option in the PROC GREPLAY statement
� the CMAP statement
� the Cmap field in the PROC GREPLAY window.

Duplicate Entry Names
If you try to create a catalog entry with the same name as an existing entry, the

GREPLAY procedure uses the following naming conventions to prevent duplication of
the name.

� For names that are fewer than eight characters, the procedure adds a number to
the end of the name. For example, if you copy an entry that is named PLOT to a
catalog that already contains an entry with that name, the procedure assigns the
name PLOT1 to the new copy.

� For names that are eight characters long, the procedure drops the last character
from the name before it adds the suffix. For example, if you copy an entry

The GREPLAY Procedure Ways to Use the GREPLAY Procedure 1241

TITLEONE to a catalog that already contains an entry with that name, the
procedure assigns the name TITLEON1 to the copied entry.

� Template entries that contain individual entries will reserve the individual entry
names as well as the template entry name.

The GREPLAY procedure uses the same technique for the names of entries that
contain graphics output that is produced by the template facility.

Ways to Use the GREPLAY Procedure
You can use the GREPLAY procedure to replay or manage catalog entries in two

different ways:

� by browsing or editing the fields in the GREPLAY procedure windows (see Figure
43.2 on page 1264)

� by submitting code-based GREPLAY procedure statements (see “Code-based
Statements” on page 1241).

If you are running SAS software in a nonwindowing environment (such as line mode
or batch), you can only submit code-based GREPLAY statements. However, if you are
running SAS software in a windowing environment, you can use either the GREPLAY
windows or the GREPLAY statements.

If your device supports a windowing environment, the GREPLAY procedure
automatically opens the GREPLAY procedure windows. Otherwise, the GREPLAY
procedure expects you to submit GREPLAY procedure statements.

Windowing Environment
To invoke the GREPLAY windows, submit the PROC GREPLAY statement without

the NOFS option, as follows:

proc greplay;
run;

SAS/GRAPH then opens the PROC GREPLAY window. For more information, see
“Using the GREPLAY Procedure” on page 1264.

If you are in a windowing environment, you can switch between the windows and
code-based statements while you run the procedure. See the “FS Statement” on page
1252 and the NOFS window command in the SAS Help facility.

Code-based Statements
If you do not use the GREPLAY windows, you can use code-based statements to

replay or manage the catalog entries. The GREPLAY procedure automatically uses
code-based statements if you do not have a windowing device or if you are running the
GREPLAY procedure in a batch environment. To use the GREPLAY procedure with
code-based statements on a windowing device, submit the PROC GREPLAY statement
with the NOFS option as follows:

proc greplay nofs;

Once you submit the PROC GREPLAY statement, you can enter and submit
statements and run them without re-entering the PROC GREPLAY statement.

You can exit the GREPLAY procedure with code-based statements in two ways:

� submit the END, QUIT, or STOP statement

� submit another PROC statement or DATA step.

1242 Procedure Syntax Chapter 43

Procedure Syntax
Requirements: Use statements other than the PROC GREPLAY statement only in a
nonwindowing or batch environment, or with the NOFS option. In these environments
at least one additional statement is required.
Note: You must have write access to a catalog in order to modify, add, or delete device
entries. Only GRSEG entry types may be replayed with the GREPLAY procedure.
Supports: RUN-group processing Output Delivery System (ODS)

PROC GREPLAY <BYLINE>
<CC=color-map-catalog>
<CMAP=color-map-entry>
<FS>
<GOUT=<libref.>output-catalog>
<IGOUT=<libref.>input-catalog>
<IMAGEMAP=output-data-set>
<NOBYLINE>
<NOFS>
<PRESENTATION>
<TC=template-catalog>
<TEMPLATE=template-entry>;

? required –argument;
BYLINE;
CC color-map-catalog;
CCOPY <color-map-catalog.>color-map-entry<.CMAP>;
CDEF color-map-entry

<color-definition(s)>
<DES=’entry-description’>;

CDELETE color-map-entry(s) | _ALL_;
CMAP color-map-entry;
COPY entry-id(s) | _ALL_;
DELETE entry-id(s) | _ALL_;
DEVICE device-name;
FS;
GOUT < libref.>output-catalog;
GROUP entry-id(s);
IGOUT < libref.>input-catalog ;
LIST required-argument;
MODIFY modify-pair(s);
MOVE entry-id-1 AFTER | BEFORE entry-id-2;
NOBYLINE;
PREVIEW template-entry(s) | _ALL_ ;
QUIT | END | STOP;
REPLAY entry-id(s) | _FIRST_ | _LAST_ | _ALL_ ;
TC template-catalog;
TCOPY <template-catalog.>template-entry<.TEMPLATE>;
TDEF template-entry

The GREPLAY Procedure PROC GREPLAY Statement 1243

<panel definition(s)>
<DES=’entry-description’>;

TDELETE template-entry(s) | _ALL_ ;
TEMPLATE template-entry;
TREPLAY select-pair(s);

PROC GREPLAY Statement

Determines whether the procedure starts in a windowing or nonwindowing environment, and
whether the session is used for catalog management or output presentation.

Syntax

PROC GREPLAY <BYLINE>
<CC=color-map-catalog>
<CMAP=color-map-entry>
<FS>
<GOUT=<libref.>output-catalog>
<IGOUT=<libref.>input-catalog>
<IMAGEMAP=output-data-set>
<NOBYLINE>
<NOFS>
<PRESENTATION>
<TC=template-catalog>
<TEMPLATE=template-entry>;

Options
Each PROC GREPLAY statement option has an equivalent statement that you can

use instead.

BYLINE
specifies that the BY statement information for the SAS catalog entries should be
displayed. The BY statement information appears directly beneath the primary
description of the entry. By default, the BY statement information is displayed.

CC=color-map-catalog
identifies the color map catalog to be used with the GREPLAY procedure. Use the
CMAP= option to assign a current color map that is contained in color-map-catalog.

To assign a current color map or create new color maps, you must assign a color
map catalog with the CC= option.

To replay graphics output using a color map, you must assign a color map catalog
and a current color map with the CC= and CMAP= options.
Featured in: Example 3 on page 1274.

CMAP=color-map-entry
assigns a current color map to use when replaying graphics output, where
color-map-entry names an existing color map in the catalog specified in the CC=
option. If color-map-entry is not in the catalog, an error message is written to the
SAS log. Color-map-entry must have a catalog entry type of CMAP.

If you do not specify a color map catalog using the CC= option when using the
CMAP= option, a warning message is written to the SAS log.

1244 PROC GREPLAY Statement Chapter 43

To replay graphics output using a color map, you must assign a color map catalog
and a current color map with the CC= and CMAP= options.

FS
specifies that the GREPLAY procedure should use windows. By default, if your
device supports windows, the GREPLAY procedure uses windows. If your device does
not support windows, the procedure begins execution in line-mode and the FS option
has no effect.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GREPLAY procedure. In addition, catalog entries that contain graphics output
can be copied to output-catalog. If you omit the libref, SAS/GRAPH looks for the
catalog in the temporary library called WORK and creates the catalog if it does not
exist. Output-catalog can be the same catalog that is specified in the IGOUT= option.

To copy catalog entries, you must assign an input and, optionally, an output
catalog with the IGOUT= and GOUT= options.
See also: “Storing Graphics Output in SAS Catalogs” on page 53
Featured in: Example 2 on page 1272.

IGOUT=<libref.>input-catalog
specifies the input catalog to use with the GREPLAY procedure. The input catalog
that you specify with the IGOUT= option should be a catalog that contains the
graphics output that will be replayed. If you omit the libref, SAS/GRAPH looks for
the catalog in the temporary library called WORK. Input-catalog can be the same
catalog that you specified in the GOUT= option.

To move, group, or delete catalog entries or to replay graphics output, you must
assign an input catalog with the IGOUT= option.

To copy catalog entries, you must assign an input and, optionally, an output
catalog with the IGOUT= and GOUT= options.
Featured in: Example 2 on page 1272.

IMAGEMAP=output-data-set
must be used in conjuntion with the REPLAY statement (see “REPLAY Statement”
on page 1257). The IMAGEMAP= option creates a temporary SAS data set that
contains information about the graph that is replayed from the graphics catalog. The
information in the image map data set includes the shape and coordinates of the
elements in the graph, along with values that were associated with those elements in
variables that were identified for that purpose in the HTML= and/or
HTML_LEGEND= options. The image map data set can be used to generate an
HTML image map in an HTML output file using the IMAGEMAP macro. The
IMAGEMAP macro takes two arguments, the name of the image map data set and
the name or fileref of an HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page
574

NOBYLINE
suppresses the BY statement information for the SAS catalog entries. The BY
statement information appears directly beneath the primary description of the entry.
By default, the BY statement information is displayed.

NOFS
specifies that the GREPLAY procedure should use line mode. By default, if your
device supports windows, the GREPLAY procedure uses windows. If your device does
not support windows, the procedure uses line mode, regardless of whether you used
the FS option or the NOFS option.

The GREPLAY Procedure PROC GREPLAY Statement 1245

Featured in: Example 1 on page 1270.

PRESENTATION
specifies that the GREPLAY procedure should open the PRESENTATION window
and use the catalog specified by the IGOUT= option as the input catalog. The
PRESENTATION option is often used in applications to prevent the application users
from deleting or reordering the catalog entries. You can only replay graphics output
from the PRESENTATION window; you cannot manage catalogs or create templates
and color maps from this window.

You must use the IGOUT= option when you use the PRESENTATION option. The
PRESENTATION option overrides the NOFS option on full-screen devices.

TC=template-catalog
identifies the template catalog to use with the GREPLAY procedure. Use the
TEMPLATE= option to assign a current template from template-catalog.

To assign a current template or create new templates, you must assign a template
catalog with the TC= option.

To replay graphics output in a template, you must assign a template catalog and a
current template with the TC= and TEMPLATE= options.
Featured in: Example 1 on page 1270.

TEMPLATE=template-entry
assigns a current template to use when replaying graphics output where
template-entry names an existing template in the template catalog that is specified in
the TC= option. If template-entry is not in the catalog, an error message is written to
the SAS log. Template-entry must have a catalog entry type of TEMPLATE.

When you use the TEMPLATE= option, you must also specify the name of a
template catalog with the TC= option. Otherwise, a warning message is written to
the SAS log.
Featured in: Example 2 on page 1272.

Details
When you submit the PROC GREPLAY statement, the mode of operation depends on

both the environment in which the statement is submitted and whether the NOFS
option is included, as shown in Table 43.2 on page 1245.

Table 43.2 Ways of Invoking the GREPLAY Procedure

Environment Statement Result

windowing PROC GREPLAY; GREPLAY procedure
windows

windowing PROC GREPLAY NOFS; line mode

nonwindowing PROC GREPLAY; line mode

You can switch back and forth between windows and line-mode within a session.

1246 ? Statement Chapter 43

? Statement

Prints the current value of certain PROC GREPLAY options or of the current device driver.

Procedure output: Output is sent to the SAS log.

Syntax

? required–argument;

required-argument must be one of the following:

CC

CMAP

DEVICE

GOUT

IGOUT

TC

TEMPLATE

Required Arguments

CC
prints the name of the current color map catalog. If no color map catalog has been
assigned, the GREPLAY procedure issues a message.

CMAP
prints the name of the current color map. If no color map has been assigned, the
GREPLAY procedure issues a message.

DEVICE
DEV

prints the name of the current device driver.

GOUT
prints the name of the current output catalog. If you did not assign an output
catalog, the GREPLAY procedure issues a message.

IGOUT
prints the name of the current input catalog. If you did not assign an input catalog,
the GREPLAY procedure issues a message.

TC
prints the name of the current template catalog. If you did not assign a template
catalog, the GREPLAY procedure issues a message.

TEMPLATE
prints the name of the current template. If you did not assign a template, the
GREPLAY procedure issues a message.

The GREPLAY Procedure CCOPY Statement 1247

BYLINE Statement

Displays BY statement information directly beneath the primary description of the catalog entries
when you list the contents of the input catalog.

Note: BY statement information is displayed by default.

See also: NOBYLINE statement

Syntax

BYLINE;

CC Statement

Specifies a color map catalog and allows you to change the color map catalog without exiting the
procedure.

Syntax

CC color-map-catalog;

Required Arguments

color-map-catalog
identifies the SAS catalog where color maps should be stored or the name of a SAS
catalog containing color maps.

CCOPY Statement

Copies a color map from another catalog to the color map catalog or creates a duplicate copy of a
color map within the color map catalog.

Requirements: Assign a color map catalog before using the CCOPY statement.

See also: CC statement

Syntax

CCOPY <color-map-catalog.>color-map-entry<.CMAP>;

1248 CDEF Statement Chapter 43

Required Arguments

<color-map-catalog.>color-map-entry <.CMAP>
identifies the color map entry to be copied.

color-map-catalog
is the SAS catalog that contains the color map to be copied.

color-map-entry
is the name of the entry color map.

CMAP
is the catalog entry type.

If a color map of the same name already exists in the color map catalog, the
GREPLAY procedure creates a new name.

See also: “Duplicate Entry Names” on page 1240

Details
To copy a color map from another catalog to the color map catalog, use the CC

statement to specify color-map-catalog as the catalog from which the color map should
be copied. For example, the following statements copy HP.CMAP from the catalog
named ONE.CCAT to the catalog named TARGET.CLRMAP:

libname target ’SAS-data-library’;
libname one ’SAS-data-library’;

proc greplay nofs;
cc target.clrmap;
ccopy one.ccat.hp.cmap;

quit;

To create a duplicate copy of a color map, simply omit color-map-catalog from your
CCOPY statement. For example, to create a duplicate copy of the color map named
HP.CMAP in the color map catalog, use the following statement:

ccopy hp.cmap;

CDEF Statement

Defines or modifies a color map in the color map catalog.

Requirements: Assign a color map catalog before using the CDEF statement.

See also: CC statement

Featured in: Example 3 on page 1274

Syntax

CDEF color-map-entry
<color-definition(s)>
<DES=’entry-description’>;

The GREPLAY Procedure CDELETE Statement 1249

color-definition has the following form:

color-number / from-color:to-color

color-definition has the following form: color-number / from-color:to-color

Required Arguments

color-map-entry
identifies an existing or new color map. Color-map-entry is the name of a catalog
entry.

If the color map name is not in the color map catalog, then the procedure creates a
new color map. If the color map name is already in the color map catalog, then the
procedure modifies or adds to that color map.

Options

color-number / from-color:to-color
specifies a color pair and how it is defined.

color-number
specifies the number of a color pair.

from-color:to-color
defines the colors that are being mapped:

from-color
is the color to be mapped.

to-color
is the new color that replaces from-color in the replayed graphics output.

DES=’entry-description’
specifies a description of the catalog entry for the color map. The maximum length
for the entry-description is 256 characters. By default, the GREPLAY procedure
assigns a description of **** NEW COLOR MAP **** to the color map.

CDELETE Statement

Deletes one or more color maps from the current color map catalog.

Caution: The GREPLAY procedure does not prompt you to confirm your request to
delete color maps.

Alias: CDEL

Syntax

CDELETE color-map-entry(s) | _ALL_ ;

1250 CMAP Statement Chapter 43

Required Arguments

color-map-entry(s)
identifies one or more color maps that you want to delete from the color map catalog.
You can submit a single entry or a list of entries in one CDELETE statement.

ALL
deletes all of the color maps from the color map catalog.

CMAP Statement

Assigns the current color map to be used when replaying graphics output.

Requirements: Assign a color map catalog before using the CMAP statement.

See also: CC statement

Featured in: Example 3 on page 1274

Syntax

CMAP color-map-entry;

Required Arguments

color-map-entry
identifies an existing color map, contained in the color map catalog, to use when
replaying your graphics output. If the color map is not in the current color map
catalog, the GREPLAY procedure issues an error message in the SAS log.

COPY Statement

Copies one or more catalog entries containing graphics output from the input catalog to the output
catalog.

Requirements: Assign an input catalog and an output catalog before using the COPY
statement.

Note: You cannot use the COPY statement to create a duplicate of an entry containing
graphics output in the same catalog. You can have only one copy of an entry containing
graphics output in a catalog.

See also: GOUT and IGOUT statements

Syntax

COPY entry-id(s) | _ALL_ ;

The GREPLAY Procedure DEVICE Statement 1251

Required Arguments
One of the following is required:

entry-id(s)
is the number or name of a catalog entry, or the number or name of a group of
entries to be copied from the input catalog to the output catalog. Entries must
contain graphics output. Multiple entry-id(s) can contain both numbers and names.

ALL
copies all of the graphics output entries in the input catalog to the output catalog.

DELETE Statement

Deletes SAS catalog entries containing graphics output from the current input catalog.

Caution: The GREPLAY procedure does not prompt you to confirm your request to
delete an entry containing graphics output.
Alias: DEL

Syntax

DELETE entry-id(s) | _ALL_ ;

Required Arguments
One of the following is required:

entry-id(s)
is the number or name of a catalog entry, or the number or name of a group of
entries to be deleted from the input catalog. Entries must contain graphics output.
Multiple entry-id(s) can contain both numbers and names.

ALL
deletes all of the graphics output entries in the input catalog.

DEVICE Statement

Specifies the device driver.

Requirements: You must specify a device driver that your graphics device can support
and that is available in your SAS session.
Alias: DEV

Syntax

DEVICE device-name;

Required Arguments

1252 FS Statement Chapter 43

device-name
specifies the device driver to use when you replay graphics output. The device driver
that you specify becomes the current device and is used for subsequent replays until
you submit another DEVICE statement or change the device driver in another way.

FS Statement

Switches from line mode to the GREPLAY procedure windows.

Requirements: Your device must support windows.
See also: NOFS on page 1244

Syntax

FS;

GOUT Statement

Assigns the current output catalog used by the GREPLAY procedure.

Note: You may change the output catalog without exiting the procedure by using the
GOUT statement.

Syntax

GOUT < libref.>output-catalog;

Required Arguments

<libref.>output-catalog
identifies the SAS catalog that you want to use as an output catalog. By default, the
output catalog is WORK.GSEG.

GROUP Statement

Creates groups of entries in the current input catalog.

Syntax

GROUP entry-id(s);

The GREPLAY Procedure LIST Statement 1253

Required Arguments

entry-id(s)
is the number or name of a catalog entry that contains graphics output. All of the
entries that are specified in the GROUP statement are included in a single group
with a group header. You can submit a single entry or a list of entries with a single
GROUP statement. A list of entries can contain both entry numbers and entry names.

Details
You can manage and display groups of entries with the DELETE, COPY, and

REPLAY statements in the same way that you manage single entries.
Only one group can be created per group statement. The default name for a group

header is GROUP. The default description for the group header is *** new group ***.
The GREPLAY procedure uses a naming convention to avoid duplicate names. See
“Duplicate Entry Names” on page 1240 for more information on the naming convention.

To change the name (and description) of a group, use the MODIFY statement.

IGOUT Statement
Assigns the current input catalog used by the GREPLAY procedure.

Note: You may change the input catalog without exiting the procedure by using the
IGOUT statement.

Syntax
IGOUT <libref.>input-catalog;

Required Arguments

<libref.>input-catalog
identifies the SAS catalog with entries that contain graphics output that you want to
replay.

LIST Statement
Prints entries in the input, template, and color map catalogs, as well as the contents of templates
and color maps.

Procedure output: The output from the LIST statement is sent to the SAS log.
Note: Entries are listed in the order of their creation date.
Featured in: Example 3 on page 1274

Syntax
LIST required-argument;

1254 MODIFY Statement Chapter 43

required-argument must be one of the following:
CC
CMAP
IGOUT
TC
TEMPLATE

Required Arguments
One of the following is required:

CC
prints the color maps that are in the current color map catalog. If the catalog
contains both templates and color maps, only color maps are listed.

CMAP
prints the From and To color values in the current color map.

IGOUT
prints the number, names, and descriptions of the entries in the input catalog that
contains graphics output. In addition, the type of graphics output (dependent or
independent) is shown.

TC
prints the templates in the current template catalog. If the catalog contains both
templates and color maps, only the templates are listed.

TEMPLATE
prints the panel definition values of the current template.

MODIFY Statement

Changes the name, description, and BY statement information of entries or group headers in the
input catalog.

Syntax

MODIFY modify-pair(s);

modify-pair(s) has the following form:
entry-id / entry-description(s)

Required Arguments

entry-id / entry-description(s)
specifies the entry to modify.

entry-id
is the number or name of a catalog entry, or the number or name of a group of
entries in the input catalog. Entries must contain graphics output. Multiple
entry-id(s) can contain both numbers and names.

entry-description(s)

The GREPLAY Procedure MOVE Statement 1255

must be at least one of the following:

BYLINE=’character-string’
specifies a character string that can be used for additional information or for BY
statement information. Character-string can be up to 40 characters long and
must be enclosed in quotation marks. BY statement information appears
directly beneath the primary description of the catalog entry.

NAME=’entry-name’
specifies the new name of the catalog entry for the graph. The maximum length
for entry-name is eight characters. If the specified name duplicates the name of
an existing entry, SAS/GRAPH software adds a number to the duplicate name
to create a unique entry.

Note: The value for entry-name can be either with or without quotation
marks. �

DES=’entry-description’
specifies the description of the catalog entry for the graph. The maximum
length for entry-description is 256 characters. The description does not appear
on the graph.

MOVE Statement

Rearranges entries in the input catalog by moving entries either before or after other entries.

Syntax

MOVE entry-id-1 AFTER | BEFORE entry-id-2;

Required Arguments

entry-id-1
is the name or number of an existing catalog entry or a group header that is to be
moved.

entry-id-2
is the name or number of an existing catalog entry or a group header. Entry-id-1 can
be placed before or after entry-id-2.

AFTER | BEFORE
specifies whether entry-id-1 should be moved before or after entry-id-2.

Details

To move an entire group, use the name of the group for entry-id-1. To move an entry
into a group, move the entry after a group header or before or after an entry in the
group. For example, this statement moves the entry CHART3 into the group that is
named NEW_SALES:

move chart3 after new_sales;

1256 NOBYLINE Statement Chapter 43

NOBYLINE Statement

Suppresses BY statement information.

Note: By default, the BY statement information is displayed.
See also: BYLINE statement

Syntax

NOBYLINE;

PREVIEW Statement

Displays the panel outlines for one or more templates using the current device. Use the TC
statement to specify the template catalog before using the PREVIEW statement.

Tip: When you preview a list of templates, press END or ENTER to preview the next
template in the list.
Note: The graphics output produced when you preview a template is stored in a catalog
named WORK.GTEM, which is deleted at the end of your session.

Syntax

PREVIEW template-entry(s) | _ALL_ ;

Required Arguments
One of the following is required:

template-entry(s)
identifies one or more template entries that are contained in the current template
catalog. You can preview one entry or a list of entries with one PREVIEW statement.

ALL
previews all of the templates in the current template catalog.

QUIT Statement

Exits the GREPLAY procedure.

Aliases: END, STOP

Syntax

QUIT;

The GREPLAY Procedure TC Statement 1257

REPLAY Statement

Selects one or more entries for replay from the current input catalog.

Note: If any entries specified in a REPLAY statement are not found in the input catalog,
PROC GREPLAY issues a message in the SAS log and continues to replay valid entries.

Alias: PLAY

Syntax

REPLAY entry-id(s) | _FIRST_ | _LAST_ | _ALL_ ;

Required Arguments

One of the following is required:

entry-id(s)
is the number or name of a catalog entry, or the number or name of a group of
entries in the input catalog. Entries must contain graphics output. Multiple
entry-id(s) can contain both numbers and names. For example, this statement
specifies both the entry named GRAPH and the third entry in the catalog:

replay graph 3;

ALL
replays all of the entries in the input catalog.

FIRST
replays the first entry in the input catalog.

LAST
replays the last entry in the input catalog.

TC Statement

Specifies the template catalog for the GREPLAY procedure.

Note: SASHELP.TEMPLT is the Institute-supplied template catalog.

Tip: Use the TC statement to change the template catalog without exiting the
procedure.

Syntax

TC template-catalog;

1258 TCOPY Statement Chapter 43

Required Arguments

template-catalog
identifies the SAS catalog where templates are to be stored or identifies the name of
a SAS catalog that contains templates.

TCOPY Statement

Copies templates from another catalog to the template catalog or creates a duplicate copy of a
template within the template catalog.

Requirements: Assign a template catalog before using the TCOPY statement.
See also: TC statement

Syntax

TCOPY <template-catalog.>template-entry<.TEMPLATE>;

Required Arguments

<template-catalog.>template-entry<.TEMPLATE>
identifies the template entry that is to be copied.

template-catalog
is the SAS catalog that contains the template that is to be copied.

template-entry
is the template entry name.

TEMPLATE
is the catalog entry type. If a template of the same name already exists in the
template catalog, the GREPLAY procedure creates a new name.
See also: “Duplicate Entry Names” on page 1240

Details
To copy a template from another catalog to the template catalog, specify

template-catalog as the catalog from which the template should be copied. For example,
if you want to copy NEWTEMP.TEMPLATE from the catalog named ONE.TEMPLT to
the catalog named TARGET.TEMPLT, use the following statements:

libname target ’SAS-data-library’;
libname one ’SAS-data-library’;

proc greplay nofs;
tc target.templt;
tcopy one.templt.newtemp.template;

quit;

To create a duplicate copy of a template, simply omit template-catalog from your
TCOPY statement. For example, to create a duplicate copy of a template named
NEWTEMP within the template catalog, you could use the following statement:

The GREPLAY Procedure TDEF Statement 1259

tcopy newtemp.template;

TDEF Statement

Defines or modifies templates in the current template catalog.

Requirements: Assign a template catalog before using the TDEF statement.

See also: TC statement

Featured in: Example 1 on page 1270

Syntax

TDEF template-entry
<panel-definition(s)>
<DES=’entry-description’>;

panel-definition has the following form:

panel-number / <panel-option(s)>

panel-option(s) can be one or more of the following:
CLIP
COLOR=border-color
COPY=panel-number
DEF
DELETE
LLX=x
LLY=y
LRX=x
LRY=y
ROTATE=degrees
SCALEX=factor
SCALEY=factor
ULX=x
ULY=y
URX=x
URY=y
XLATEX=distance
XLATEY=distance

Required Arguments

template-entry
identifies an existing or a new template. If the template is not in the template
catalog, the procedure creates it. If the template is already in the template catalog,
the procedure modifies or makes additions to that template.

Only template-entry is required, but if you specify only the template name without
any options, no changes are made to an existing template and no new template is
created.

1260 TDEF Statement Chapter 43

Options

CLIP
specifies that any panels behind this panel should be clipped. If clipping is in effect
for a panel, only the graphics output that is to be placed in that panel can appear in
the space that the panel occupies, unless a previous panel occupies all or part of that
space.

COLOR=border-color
specifies the color of the panel border. If you omit border-color, then no border is
displayed around the panel when you replay graphics output in the panel. If you
preview a template that contains a panel without a border color, the GREPLAY
procedure uses the first color in the colors list as the outline for the border.

COPY=panel-number
specifies the number of the panel definition that is to be copied to this panel.

DEF
specifies a default panel. A default panel has the following characteristics:

Panel Corner Coordinates

lower left (0,0)

upper left (0,100)

upper right (100,100)

lower right (100,0)

DELETE
DEL

deletes the panel.

DES=’entry-description’
specifies the description of the catalog entry for the template. The maximum length
for entry-description is 256 characters. By default, the procedure uses *** new
template *** for the description.

LLX=x
specifies the X coordinate of the lower-left corner of the panel. Units for x are
percentage of the graphics output area.

LLY=y
specifies the Y coordinate of the lower-left corner of the panel. Units for y are
percentage of the graphics output area.

LRX=x
specifies the X coordinate of the lower-right corner of the panel. Units for x are
percentage of the graphics output area.

LRY=y
specifies the Y coordinate of the lower-right corner of the panel. Units for y are
percentage of the graphics output area.

panel-number
identifies the number of the panel that is being defined or modified.

ROTATE=degrees

The GREPLAY Procedure TDEF Statement 1261

specifies the rotation angle for the panel. The coordinates of the panel corners are
automatically adjusted.

SCALEX=factor
specifies the scale factor for the X coordinates in the panel. You can use this scale
factor to increase or decrease the size of the panel in the X direction or to reverse the
X coordinates for the panel.

SCALEY=factor
specifies the scale factor for Y coordinates in the panel. You can use this scale factor
to increase or decrease the size of the panel in the Y direction or to reverse the Y
coordinates for the panel.

ULX=x
specifies the X coordinate of the upper-left corner of the panel. Units for x are
percentage of the graphics output area.

ULY=y
specifies the Y coordinate of the upper-left corner of the panel. Units for y are
percentage of the graphics output area.

URX=x
specifies the X coordinate of the upper-right corner of the panel. Units for x are
percentage of the graphics output area.

URY=y
specifies the Y coordinate of the upper-right corner of the panel. Units for y are
percentage of the graphics output area.

XLATEX=distance
specifies the distance to move the X coordinates of the panel. Units for distance are
percentage of the graphics output area.

XLATEY=distance
specifies the distance to move the Y coordinates of the panel. Units for distance are
percentage of the graphics output area.

Details
Use coordinate values that are less than 0 and greater than 100 in the LLX=, LLY=,

LRX=, LRY=, ULX=, ULY=, URX=, and URY= options to zoom in on the graphics
output. That is, you can see only that part of the replayed graphics output in the range
from 0 to 100 percent of the graphics output area.

The values that you supply for the SCALEX= and SCALEY= options are used to
change the size and orientation of the panel. The scale factors are used for the
corresponding X and Y coordinates of the panel. For example, if you specify

scalex=.5
scaley=2

the X coordinates are scaled to half the original size, and the Y coordinates are scaled
to twice the original size.

If you supply a scale factor of 0, all of the coordinates are set to the same value. If
you use a scale factor of 1, nothing happens. If you use a scale factor greater than 1,
the values of the coordinates are increased and hence the size of the panel increases. If
you use a scale factor less than 1 but greater than 0, the values of the coordinates are
decreased and hence the size of the panel decreases. If you use a negative scale factor,
the coordinates are reversed and hence the panel (and any graphics output replayed in
the panel) is reversed.

1262 TDELETE Statement Chapter 43

TDELETE Statement

Deletes templates from the template catalog.

Caution: The GREPLAY procedure does not prompt you to confirm your request to
delete templates.
Alias: TDEL

Syntax

TDELETE template-entry(s) | _ALL_ ;

Required Arguments
One of the following is required:

template-entry(s)
identifies a template that is to be deleted from the template catalog. You can submit
a single entry or a list of entries in a single TDELETE statement.

ALL
deletes all of the templates in the template catalog.

TEMPLATE Statement

Assigns a current template to use when replaying graphics output.

Requirements: Assign a template catalog before using the TEMPLATE statement.
Note: If you specify a template that is not in the current template catalog or if you
specify a template before you have assigned a template catalog, the GREPLAY
procedure issues an error message.
Featured in: Example 1 on page 1270

Syntax

TEMPLATE template-entry;

Required Arguments

template-entry
identifies an existing template to use when replaying graphics output. Use the
TREPLAY statement to replay graphics output in the template.

The GREPLAY Procedure TREPLAY Statement 1263

TREPLAY Statement

Copies one or more entries from the graphics input catalog into a new entry in the graphics output
catalog, using positioning information provided by the current template.

Requirements: Before issuing the TREPLAY statement, first specify a graphics input
catalog with the “IGOUT Statement” on page 1253, assign a template catalog with the
“TC Statement” on page 1257, and choose a template with the “TEMPLATE Statement”
on page 1262.
Alias: TPLAY
Featured in: Example 2 on page 1272

Syntax

TREPLAY select-pairs<DES="entry-description" NAME="entry-name">;

select-pairs are of the following form:
template-panel-number1:entry-id1 < ...template-panel-numberN:entry-idN>

Required Arguments

template-panel-number:entry-id
specifies the panel number and the name of a catalog entry.

template-panel-number
determines the postion of the graph in the new entry in the graphics output
catalog, based on the position of the specified panel in the current template.

entry-id
specifies the name or number of the entry in the graphics input catalog that is to
be added to the new entry in the graphics output catalog.

Options

DES="entry-
description"

adds a description to the new entry in the graphics output catalog.
The description is truncated after 40 characters.

NAME="entry-
name"

names the new entry in the graphics output catalog. The name must
begin with a letter and continue with up to seven more letters,
numbers, or underscores. If the NAME= option is not specified, the
new entry is named TEMPLATE by default. If an entry named
TEMPLATE already exists in the graphics output catalog, the new
entry is named TEMPLATx, where x is a unique number. This
naming convention also applies if the value of the NAME= option
already exists in the graphics output catalog.

Details
When you replay existing GRSEG entries in a template, the GREPLAY procedure

creates new graphics output that is stored in the output catalog.

1264 Using the GREPLAY Procedure Chapter 43

You can replay as many entries as you want in a single TREPLAY statement as
shown here:

treplay 1:plot1 2:plot2 3:chart1;

PLOT1 will be placed in panel 1 of the current template, PLOT2 will be placed in
panel 2, and CHART1 will be placed in panel 3. You can use entry numbers in the place
of entry names.

Using the GREPLAY Procedure

Using the GREPLAY Windows
You can use the GREPLAY windows instead of code-based statements to replay and

manage catalog entries. You perform tasks that use the GREPLAY procedure windows
by entering values in the fields that are displayed in the windows and by issuing
commands from the command line.

There are five GREPLAY windows:
� PROC GREPLAY window
� PRESENTATION window
� DIRECTORY window
� TEMPLATE DESIGN window
� COLOR MAPPING window.

Figure 43.2 on page 1264 shows how these windows relate to each other. Each
window can be scrolled forward or backward as needed to display additional fields and
information.

Figure 43.2 GREPLAY Procedure Windows

PROC
GREPLAY

DIRECTORY

CC
TC

COLOR
MAPPING

TEMPLATE
DESIGN

PRESENTATION

EDIT.entry
BROWSE.entry

PRESENTATION

EDITentry.TEMPLATE
BROWSEentry.TEMPLATE

EDITentry.CMAP
BROWSEentry.CMAP

GREPLAY Window Command

This section briefly describes the GREPLAY windows; for a complete description of
each window and its fields, refer to the SAS Help facility.

GREPLAY Window Commands
You can navigate and manipulate the GREPLAY windows by entering commands on

the command line or by selecting them from the menus. For a complete description of
all the GREPLAY window commands, refer to the SAS Help facility.

The GREPLAY Procedure Using the GREPLAY Windows 1265

PROC GREPLAY Window

This window is the first to appear when you submit the PROC GREPLAY statement
on a full-screen device without the PRESENTATION or NOFS option. You can use it to
both replay graphics output and to manage catalog entries that contain graphics output.

Display 43.1 The PROC GREPLAY Window

PRESENTATION Window

This window is a modified version of the PROC GREPLAY window that enables you
to replay graphics output while it prevents you from deleting entries or changing
templates and color maps. Once you have created and organized your catalog, you may
want to use the PRESENTATION window in an application for replaying graphics
output.

DIRECTORY Window

This window lists the names of the catalog entries, gives a brief description of each,
and indicates the date on which each entry was created or last changed. Although all
catalog entry types are displayed in the DIRECTORY window, you can manage only
entries of type CMAP or TEMPLATE from this window.

Display 43.2 The DIRECTORY Window

TEMPLATE DESIGN Window

This window lets you design templates that you can use to present graphics output.
You design a template by specifying the coordinates of its panels and determining the
order in which the template panels are filled. Once you enter coordinates for a panel,
you can alter them easily by using the Scale, Xlate (translate), and Rotate utility fields.
These utility fields recalculate coordinate values automatically.

1266 Using the GREPLAY Windows Chapter 43

Display 43.3 The TEMPLATE DESIGN Window

COLOR MAPPING Window
This window allows you to map colors in existing graphics output to new colors when

you replay the graphics output. When you replay graphics output that is contained in a
catalog entry and assign a current color map, any color in the graphics output that
appears in the From column of the color map is mapped to the corresponding color in
the To column of the color map. Using a color map does not change the contents of the
replayed graphics output and does not produce new graphics output unless a template
is also used.

Display 43.4 The COLOR MAPPING Window

The GREPLAY Procedure Managing Catalog Entries 1267

Table 43.3 GREPLAY Procedure Windows

If you are in the... and you want to open the... then...

PROC GREPLAY statement PROC GREPLAY window Submit the PROC GREPLAY
statement without using the
PRESENTATION or NOFS
options.

PRESENTATION window Submit the PROC GREPLAY
statement and include the
PRESENTATION and IGOUT=
options.

PROC GREPLAY window PRESENTATION window Specify a catalog and issue the
PRES command.

DIRECTORY window Specify a template catalog and
issue the TC command.

OR

Specify a color map catalog and
issue the CC command.

TEMPLATE DESIGN window Specify a template catalog and
issue the following command:
edit template-name.template

COLOR MAPPING window Specify a color map catalog and
issue the following command:
edit color-map-name.cmap

DIRECTORY window TEMPLATE DESIGN window Place an S beside the name of
an existing template.

OR

Issue the following command:

edit template-name.template

COLOR MAPPING window Place an S beside the name of
an existing color map.

OR

Issue the following command:

edit color-map-name.cmap

Managing Catalog Entries
You can replay entries or perform a variety of catalog management tasks with

GREPLAY code-based statements. Table 43.4 on page 1268 lists several common tasks
and the statements that you use to perform them.

1268 Replaying Catalog Entries Chapter 43

Table 43.4 Ways of Performing Common GREPLAY Procedure Tasks

Task Code-based Statement

copy graphics output (GRSEGs)
from the input catalog to the
output catalog*

COPY statement

arrange GRSEG entries into
logical groupings

GROUP statement

reorder the entries MOVE statement

delete unneeded GRSEG entries DELETE statement

change entry names and
descriptions of entries in the input
catalog

MODIFY statement

replay an entry from the input
catalog

REPLAY statement

replay an entry in a template
panel

TREPLAY statement

*You must assign an output catalog before copying graphics
output.

Replaying Catalog Entries
To select catalog entries for replay, first assign an input catalog that contains the

graphics output that is to be replayed. Then assign the entry with the REPLAY
statement.

For example, the following statements replay the GRSEG entry named GRAPH1
from the catalog MYLIB.GRAPHS, which is assigned with the IGOUT= option:

libname mylib ’SAS-data-library’;

proc greplay igout=mylib.graphs nofs;
replay graph1;

run;
quit;

If you do not specify an output catalog with the GOUT= option in the PROC
statement of the SAS/GRAPH procedure that creates the graphics output, the graphics
output is automatically stored in the WORK.GSEG catalog. Replay the graphics output
that is stored in this catalog as follows:

proc greplay nofs;
igout work.gseg;
replay _all_;

run;
quit;

Creating Templates and Color Maps
You can use the GREPLAY procedure to create templates and color maps. You can

use templates to replay graphics output from several catalog entries on a single display,

The GREPLAY Procedure Creating Templates and Color Maps 1269

or to change the shape or size of graphics output. You can use color maps to remap
colors when replaying graphics output.

A color map is a list of up to 256 pairs of colors that enables you to change the colors
in graphics output by mapping the original colors to a list of new colors. Color maps are
useful for controlling how colors that are not available on the current device are
remapped.

When you assign a current color map and replay graphics output that is stored in a
catalog entry, any color in your graphics output that appears in the From column of the
color map is mapped to the corresponding color in the To column of the color map. The
new colors are not saved with the graphics output, and you do not create new graphics
output when you use a color map to replay graphics output.

Table 43.5 Ways of Performing Common GREPLAY Procedure Tasks

Task In line mode

assign a color map catalog CC statement

copy a color map from another
catalog

CCOPY statement

define or modify a color map in
the current catalog

CDEF statement

assign a color map to use when
you replay graphics output

CMAP statement

delete unneeded entries DELETE statement

assign a template catalog TC statement

copy a template from another
catalog

TCOPY statement

delete a template TDELETE statement

define a template TDEF statement

display the panel outlines for a
template

PREVIEW statement

assign a template to use when you
replay graphics output

TEMPLATE statement

replay an entry in a template
panel

TREPLAY statement

Before you create a template, you must assign a template catalog. If you are use the
GREPLAY procedure in line mode, use the TDEF statement to define a template and
the PREVIEW statement to preview a template. For example, the following statements
define and preview a template named TEMPLT:

tdef templt 1/def;
preview templt;

Before you create a color map, you must assign a color map catalog. If you use the
GREPLAY procedure in line mode, use the CDEF statement to define a color map. For
example, the following statement defines a color map named CLRMAP:

cdef clrmap 1 / cyan : blue;

1270 Replaying Graphics Output in a Template Chapter 43

Replaying Graphics Output in a Template
You can use the GREPLAY procedure to create new graphics output by replaying

existing graphics output in templates. You can create your own templates, or you canuse
the templates that are provided with SAS/GRAPH software and stored in the catalog
SASHELP.TEMPLT . To view the templates that are provided with SAS/GRAPH, open
the SAS Explorer window, and click the TEMPLT folder under SASHELP library.

Before you can replay graphics output in a template, you must assign a template
catalog and a current template, as well as an input catalog. Then assign the entries to
the template with the TREPLAY statement.

For example, the following statements replay the entries GRAPH1 and GRAPH2 into
the V2 template, which is stored in the catalog SASHELP.TEMPLT. The TC statement
specifies the catalog that contains the template, and the TEMPLATE statement
specifies the template. The TREPLAY statement assigns each entry to a panel. (The V2
template has two panels, so there is an assignment for panel 1 and panel 2.)

proc greplay igout=mylib.graphs nofs;
tc sashelp.templt;
template v2;
treplay 1:graph1 2:graph2;

run;

When you replay graphics output in a template, the new graphics output that is
created by the GREPLAY procedure is automatically provided a default name and is
stored in the output catalog, WORK.GSEG.

Templates are often used to describe positioning for replaying graphics output from
several catalog entries on a single display.

Examples
The following examples illustrate major features of the GREPLAY procedure.

Example 1: Creating a Template
Procedure features:

GREPLAY statement options:
NOFS
TC=

TDEF statement
TEMPLATE statement

Sample library member: GRECRTM1

This example creates a template with five panels. Four of the panels are small and
equal in size. The fifth panel is a large, full-size panel that can be used later to display
a common title or footnote for the entire template (see). In this example, the LIST
statement displays the template contents in the log. Output 43.1 shows the template
definition that is written to the log file. The template that is defined here is also used
in Example 2 on page 1272.

The GREPLAY Procedure Example 1: Creating a Template 1271

Set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swiss htitle=6 htext=3

Start the GREPLAY procedure. NOFS starts the procedure in line-mode. TC=assigns
TEMPCAT as the template catalog.

proc greplay tc=reflib.tempcat nofs;

Define a template with four panels. The TDEF statement defines a template named
NEWTEMP and places it in the previously defined template catalog. Each definition identifies
the panel number and specifies the coordinates of the four corners. The panels are arranged
within the template as follows: panel 1 is lower left; panel 2 is upper left; panel 3 is upper right;
panel 4 is lower right; panel 5 is the full size so that it can contain a common title and footnote
for all the template entries. COLOR= draws a border for each panel in the specified color.

tdef newtemp des=’Five panel template’

1/llx=0 lly=10
ulx=0 uly=50
urx=50 ury=50
lrx=50 lry=10
color=blue

2/llx=0 lly=50
ulx=0 uly=90
urx=50 ury=90
lrx=50 lry=50
color=red

3/llx=50 lly=50
ulx=50 uly=90
urx=100 ury=90
lrx=100 lry=50
color=green

4/llx=50 lly=10
ulx=50 uly=50
urx=100 ury=50
lrx=100 lry=10
color=cyan

5/llx=0 lly=0
ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=0
color=lipk;

1272 Example 2: Replaying Graphics Output in a Template Chapter 43

Assign the current template. The TEMPLATE statement assigns the newly created template
NEWTEMP as the current template.

template newtemp;

Write the contents of the current template to the log.

list template;
quit;

Output 43.1 Defining a Template (GRECRTM1)

.

.

.

64 /* list contents of current template */
65 list template;

NEWTEMP Five panel template

Pan Clp Color Ll-x Ll-y Ul-x Ul-y Ur-x Ur-y Lr-x Lr-y

1 BLUE 0.0 10.0 0.0 50.0 50.0 50.0 50.0 10.0
2 RED 0.0 50.0 0.0 90.0 50.0 90.0 50.0 50.0
3 GREEN 50.0 50.0 50.0 90.0 100.0 90.0 100.0 50.0
4 CYAN 50.0 10.0 50.0 50.0 100.0 50.0 100.0 10.0
5 LIPK 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0

66 quit;
.
.
.

Example 2: Replaying Graphics Output in a Template

Procedure features:
GREPLAY statement options:

GOUT=
IGOUT=
TEMPLATE=

TREPLAY statement

Other features:
PROC GSLIDE

Sample library member: GRERGOT1

The GREPLAY Procedure Example 2: Replaying Graphics Output in a Template 1273

The TREPLAY statement replays into the template NEWTEMP four catalog entries
that contain graphics output. The NEWTEMP template is defined in Example 1 on
page 1270. It contains four equally sized panels and one large, full-size panel. Note
that assignments are made to all but one of the panels. Because the fourth panel is not
listed in the TREPLAY statement, it does not appear in the graphics output. The
HSIZE= and VSIZE= options are adjusted and then reset to default in order to reflect
the dimensions of the different-sized template panels.

Set the graphics environment. HSIZE= and VSIZE= are set for the dimensions of template
panels 1, 2, 3, and 4.

goptions gunit=pct border
cback=white colors=(black blue green red)
ftext=swiss htitle=8 htext=5
hsize=4in vsize=3.8in;

Generate three graphs in the permanent catalog GRAFCAT. The GSLIDE procedure
creates three text slides and stores them in GRAFCAT as specified by the GOUT= option. By
default, these are stored as GSLIDE, GSLIDE1, and GSLIDE2.

proc gslide gout=grafcat;
title c=red ’Graph Number 1’;
footnote h=3 j=r ’GRERGOT1(a) ’;

run;
title ’Graph Number 2’;
footnote h=3 j=r ’GRERGOT1(b) ’;

run;
title ’Graph Number 3’;
footnote h=3 j=r ’GRERGOT1(c) ’;

run;

Reset HSIZE= and VSIZE= to the default values and generate a text slide with PROC
GSLIDE. Resetting the HSIZE and VSIZE values enables you to create a text slide with the
proper aspect ratio for use in template panel 5.

1274 Example 3: Creating a Color Map Chapter 43

goptions hsize=0in vsize=0in;
proc gslide gout=grafcat;

title ’Common Title’;
footnote ’Common Footnote’;

run;

Start the GREPLAY procedure. IGOUT= assigns GRAFCAT as the input catalog. GOUT=
assigns EXCAT as the output catalog. TEMPLATE= assigns NEWTEMP as the current
template. Remember, the NEWTEMP template is defined in Example 1.

proc greplay igout=grafcat gout=excat
tc=tempcat nofs;
template=newtemp;

Write the contents of the current template to the log.

list template;

Replay three graphs into template. The TREPLAY statement assigns three entries to panels
in the NEWTEMP template. Each assignment is a panel number and the name of a graphics
output entry. Names are the default names assigned by the GSLIDE procedure.

treplay 1:gslide
2:gslide1
3:gslide2
5:gslide3;

quit;

Example 3: Creating a Color Map

Procedure features:
GREPLAY statement option:

CC=
GOUT=

CDEF statement
CMAP statement
LIST statement

Sample library member: GRECRCM1

This example uses the CDEF statement to define a color map. The LIST statement is
used in this example to display the color map definition in the log. Output 43.2 shows a
partial listing of the log.

Set the graphics environment.

The GREPLAY Procedure Example 3: Creating a Color Map 1275

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swissb htitle=6 htext=3;

Start the GREPLAY procedure. CC= assigns CLRMAP as the color map catalog. GOUT=
specifies the permanent catalog in which to place the graphics output.

proc greplay cc=clrmap gout=excat nofs;

Define a color map. The CDEF statement defines a color map named MYCOLOR that
contains three color pairs.

cdef mycolor des=’Special Color Map’
1 / pink : red
2 / cyan : blue
3 / lig : green;

Specify current color map and write contents to the log. The CMAP statement assigns
MYCOLOR as the current color map. The contents of CMAP are listed in the log.

cmap mycolor;
list cmap;

quit;

Output 43.2 Defining a Color Map (GRECRCM1)

.

.
75 /* list the contents of the color map */
76 list cmap;

MYCOLOR Special Color Map

FROM TO

1 PINK RED
2 CYAN BLUE
3 LIG GREEN

77 quit;
.

1276

1277

C H A P T E R

44
The GSLIDE Procedure

Overview 1277

About Text Slides 1277
About Annotate Output 1278

Procedure Syntax 1278

PROC GSLIDE Statement 1279
Examples 1282

Example 1: Producing Text Slides 1282

Example 2: Displaying Annotate Graphics 1283

Overview

The GSLIDE procedure is useful for creating text slides for presentations. You can
overlay text slides on other graphics output with the GREPLAY procedure. The
GSLIDE procedure produces graphics output that consists of text and straight lines
that are generated by TITLE, FOOTNOTE, and NOTE statements. In addition, the
procedure provides an easy way to add titles, notes, and footnotes to output that is
produced entirely with an Annotate data set.

About Text Slides
Text slides contain text and graphics that are generated by SAS/GRAPH statements.

To display an external text file as graphics output, use the GPRINT procedure.
Figure 44.1 on page 1277 shows a slide containing text that was produced with

TITLE, FOOTNOTE, and NOTE statements.

Figure 44.1 Text Slide Produced by the GSLIDE Procedure (GSLTEXTS)

1278 About Annotate Output Chapter 44

The program for this slide is in Example 1 on page 1282.

About Annotate Output
Annotate output is generated by commands that are stored in an Annotate data set.

Use the GSLIDE procedure to display Annotate output when you want to include
TITLE and FOOTNOTE statements on the output and use certain graphics options
such as BORDER. To display Annotate graphics without these, use the GANNO
procedure. See Chapter 24, “Using Annotate Data Sets,” on page 587 for more
information on creating and displaying Annotate data sets.

Figure 44.2 on page 1278 shows output from an Annotate data set that is displayed
with titles and footnotes that were generated by TITLE and FOOTNOTE statements.

Figure 44.2 Output from an Annotate Data Set Displayed with the GSLIDE
Procedure (GSLANNOT)

The program for this slide is in Example 2 on page 1283.

Procedure Syntax
Requirements: At least one of these is required: a TITLE, FOOTNOTE, or NOTE
statement; an appearance option; the BORDER graphics option.
Global statements: FOOTNOTE, TITLE
Reminder: The procedure can include the SAS/GRAPH NOTE statement.
Supports: RUN-group processing Output Delivery System (ODS)

PROC GSLIDE <option(s)>;

The GSLIDE Procedure PROC GSLIDE Statement 1279

PROC GSLIDE Statement

Creates a text slide. Optionally, it provides a border, specifies annotation, and assigns an output
catalog. This is the only statement in the procedure.

Syntax

PROC GSLIDE <option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set

BORDER

CFRAME=frame-color

FRAME

IFRAME= fileref | ’external-file’

IMAGESTYLE = TILE | FIT
LFRAME=line-type

WFRAME=n

� description options:
DESCRIPTION=’entry-description’

GOUT=<libref.>output-catalog

NAME=’entry-name’

� HTML option:
<IMAGEMAP=output-data-set>

Options
You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set that includes Annotate variables that identify graphics commands
and parameters.
See also: Chapter 24, “Using Annotate Data Sets,” on page 587.

Featured in: Example 2 on page 1283.

BORDER
draws a border around the graphics output area, which includes the title area, the
footnote area, and the procedure output area. A color specification for the border is
searched for in the following order:

1 the CTITLE= option in a GOPTIONS statement

2 the CTEXT= option in a GOPTIONS statement

3 the default, the first color in the colors list.
See also: “Adding Frames, Borders, and Images” on page 1281.

Featured in: Example 1 on page 1282.

CFRAME=frame-color

1280 PROC GSLIDE Statement Chapter 44

draws a frame around the procedure output area in the specified color. If you use
both the CFRAME= and FRAME options, FRAME is ignored. If you use the
IFRAME= option, the specified image fills the background of the slide.

Note: CFRAME= does not color the background of the slide. �

See also: “Adding Frames, Borders, and Images” on page 1281.

Featured in: Example 1 on page 1282.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GSLIDE procedure assigns the description OUTPUT FROM PROC
GSLIDE.

FRAME
draws a frame around the procedure output area. By default, the frame color is the
first color in the colors list. If you want to specify a different color for the frame, use
the CFRAME= option instead. The FRAME option is overriden by the IFRAME=
option, which fills the backplane frame with an image.

See also: “Adding Frames, Borders, and Images” on page 1281.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GSLIDE procedure. If you omit the libref, SAS/GRAPH looks for the catalog in the
temporary library called WORK and creates the catalog if it does not exist.

See also: “Storing Graphics Output in SAS Catalogs” on page 53.

IFRAME=fileref | ’external-file’
identifies the image file you wish to apply to the backplane of the plot. See also the
IMAGESTYLE= option. The IFRAME= option is overidden by the NOIMAGEPRINT
goption.

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GSLIDE
procedure with the HTML= and/or HTML_LEGEND= options.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page
574 and “HTML Variable” on page 651.

IMAGESTYLE= TILE | FIT
specifies whether to tile the image to fill the backplane or to stretch the image to fit
the backplane. The TILE value is the default. See also the IFRAME= option.

LFRAME=line-type
specifies the line type for a frame and draws a frame around the procedure output
area. Values for line-type are 1 through 46. Line types are shown in Figure 7.22 on
page 208. By default, LFRAME=1, which produces a solid line.

NAME=’entry-name’

The GSLIDE Procedure PROC GSLIDE Statement 1281

specifies the name of the catalog entry for the graph. The maximum length for
entry-name is eight characters. The default name is GSLIDE. If the specified name
duplicates the name of an existing entry, SAS/GRAPH software adds a number to
the duplicate name to create a unique entry, for example, GSLIDE1.

WFRAME=n
specifies the width of the frame where n is a number. The thickness of the frame
increases directly with n, but the thickness of the line may vary from device to
device. By default, WFRAME=1, which is the thinnest line. The WFRAME= option
also draws the frame.
See also: “Adding Frames, Borders, and Images” on page 1281.
Featured in: Example 1 on page 1282.

Adding Frames, Borders, and Images
Like the BORDER option in a GOPTIONS statement, the BORDER option in the

PROC GSLIDE statement draws a box around the graphics output area. However, the
border generated by the GSLIDE procedure remains in effect only for the duration of
the procedure.

Both BORDER options use the color specified by the CTITLE= or CTEXT= graphics
option if either of these options is used; otherwise, the border color is the first color in
the colors list.

While the BORDER option draws a box around the graphics output area, the
FRAME option draws a box or frame around the procedure output area. In this case,
titles and footnotes are outside of the frame. (See “Procedure Output and the Graphics
Output Area” on page 34 for a description of the procedure output area.) Use FRAME
to draw a frame in the default color, line type, and width. Otherwise, use one or more of
the CFRAME=, LFRAME=, or WFRAME= options.

You can specify a colored frame with the CFRAME= option. Note that CFRAME=
does not fill the procedure output area with color. However, you can use the CBACK=
graphics option to provide a background color for the graphics output area. You can
specify the type of line for the frame with the LFRAME= option and the width of the
frame with the WFRAME= option.

You can also use the IFRAME= option to fill the background of your slide with an
image. If an image is specified, it completely fills the background of the slide, obscuring
any frame or border specifications.

Using Data-Dependent Coordinates
If you use the GSLIDE procedure with Annotate data sets that contain

data-dependent coordinates, the resulting coordinate values may exceed the range of 0
to 100 used by the graphics output area, and some of the output may not be displayed.
In this case, use the GANNO procedure, which can scale the output to fit the available
space. See also Chapter 26, “The GANNO Procedure,” on page 707 for details .

Using RUN Groups
Although the GSLIDE procedure has no action statements, it can use RUN-group

processing to display all currently defined titles, footnotes, and notes, as well as
specified annotation, each time you submit a RUN statement. TITLE and FOOTNOTE
statements that are defined while the GSLIDE procedure is active remain in effect after
the procedure ends. NOTE definitions remain in effect until the GSLIDE procedure
ends, at which time they are canceled. To cancel NOTE definitions while the procedure
is active, specify RESET=NOTE in a GOPTIONS statement or submit a null NOTE
statement. See “RUN-Group Processing” on page 33 for details.

1282 Examples Chapter 44

Examples

Example 1: Producing Text Slides

Procedure features:
PROC GSLIDE options:

BORDER
CFRAME=
WFRAME=

Other features:
NOTE statement

Sample library member: GSLTEXTS

This example uses FOOTNOTE, NOTE, and TITLE statements to produce a text
slide. PROC GSLIDE statement options add both a border and a frame.

Set the graphics environment.

goptions reset=global gunit=pct cback=blue
colors=(white) ftext=swissb htitle=12 htext=4;

Define titles and footnotes.

title color=pink ’New Directions’;
footnote1 j=l ’ ABC Engineering, Inc’;
footnote2 j=l ’ January 1998’

j=r h=3 f=swiss ’GSLTEXTS ’;

The GSLIDE Procedure Example 2: Displaying Annotate Graphics 1283

Generate the slide and define additional text. BORDER draws a box around the entire
graphics output area. CFRAME= draws a red box around the procedure output area.
WFRAME= specifies the thickness of the frame. The first NOTE statement, which has no text,
simply leaves a large blank line above the text specified by the second NOTE statement. The
second JUSTIFY= causes a line break.

proc gslide border
cframe=red
wframe=4;

note height=20;
note height=10

justify=center ’Goals and strategies’
justify=center ’for the coming year’;

run;
quit;

Example 2: Displaying Annotate Graphics
Procedure features:

PROC GSLIDE option:
ANNOTATE=

Other features:
Annotate data set

Sample library member: GSLANNOT

In this example, the GSLIDE procedure displays Annotate graphics along with
current TITLE and FOOTNOTE definitions. See Chapter 24, “Using Annotate Data
Sets,” on page 587 for information on creating Annotate data sets.

Set the graphics environment.

goptions reset=global gunit=pct cback=white
colors=(black blue green red)

1284 Example 2: Displaying Annotate Graphics Chapter 44

ftitle=swissb htitle=6 ftext=swiss htext=3;

Create the Annotate data set, ART. ART contains the commands that draw the design of
triangles.

data art;
length function color style $ 8;
input function $ x y color $ style $;
xsys=’5’; ysys=’5’;
datalines;

poly 30 20 blue solid
polycont 50 20 . .
polycont 40 50 . .
poly 50 20 green x1
polycont 70 50 . .
polycont 60 50 . .
poly 40 50 red l1
polycont 60 50 . .
polycont 50 80 . .
;

Define title and footnotes displayed by the procedure. FOOTNOTE statements 4 and 5
have no text and are angled vertically to add space on the left and right sides between the
border of the output and the frame that surrounds the procedure output area.

title ’Number 17’;
footnote1 h=4 ’"Art is anything you can get away with."’;
footnote2 j=r h=4 ’D. H. Benson ’;
footnote3 j=r ’GSLANNOT ’;
footnote4 h=3 angle=90;
footnote5 h=3 angle=-90;

Display the annotate graphics on the slide with the title and footnotes. The GSLIDE
procedure displays the graphics elements drawn by the commands in the Annotate data set
specified by the ANNOTATE= option.

proc gslide annotate=art
border
wframe=6
cframe=red;

run;
quit;

1285

C H A P T E R

45
The GTESTIT Procedure

Overview 1285

About the Pictures 1286
About the LOG 1289

Procedure Syntax 1290

PROC GTESTIT Statement 1290
Examples 1291

Example 1: Testing a GOPTIONS Statement 1291

Example 2: Displaying, Changing and Verifying the Colors List for a Device Driver 1292

Overview
The GTESTIT procedure is a diagnostic tool for testing the installation of SAS/

GRAPH software and the configuration of your device. Use the GTESTIT procedure
when you want to

� test a new device
� test the settings of a device driver that you are developing
� identify the colors and some of the SAS/GRAPH lines and fills for your device
� review some of your current settings of device parameters and graphics options
� test changes in settings of device parameters and graphics options.

The GTESTIT procedure produces three pictures that help you determine the
configuration of your graphics device and graphics options and parameters. Refer to
“About the Pictures” on page 1286 for examples of the pictures. Although it does not
show the settings of all device parameters and graphics options, the GTESTIT
procedure does show some of the most commonly used ones.

If you use a GOPTIONS statement to change one or more graphics options for the
current SAS session, or if you run the GDEVICE procedure to change the parameter
settings for your device, you can use the GTESTIT procedure to confirm that those
changes took effect.

For example, if you use the GOPTIONS statement to set HPOS=45 and
COLORS=(RED GREEN), you can display picture 1 in the GTESTIT procedure to
confirm that the graphics output area is divided into 45 columns and that foreground
colors have been limited to red and green.

1286 About the Pictures Chapter 45

See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261,
Chapter 31, “The GDEVICE Procedure,” on page 915, and Chapter 3, “Device Drivers,”
on page 41 for more information on setting graphics options and device parameters.

About the Pictures
Figure 45.1 on page 1286 shows a test pattern and gives the values of some of the

device settings that are currently in effect. Table 45.1 on page 1288 describes the
graphics options and device parameters that are displayed in the picture. The values of
most of the displayed settings are determined by device parameters that are specified in
the catalog entry for the current device or by graphics options that are specified in a
GOPTIONS statement.

Note: The following two statements do not return the same parameters when used
with PICTURE=1: �

goptions dev=xcolor target=ps nodisplay;
goptions dev=ps nodisplay;

The LOG window for picture 1, shown in Output 45.1, lists some of the same settings
that are displayed by picture 1, plus some additional settings.

Figure 45.1 Picture 1 of the GTESTIT Procedure

D = P S L M O N O B = 1 2 0 0 R = 2 5 C = 7 0 P = 2 5 6
H = 1 6 W = 8 M A X = * * * D = C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R F = 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 S = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O P T S = D 5 9 2 2 4 4 0 0 9 2 8 0 0 0 0 N C O L O R S = 1

B L A C K
F = 1

L
E
F
T

R
I
G
H
T

S A S G D D M X

S A M P L E

C

B O T T O M S A S / G R A P H T E S T P A T T E R N

T O P

E S R 1 L 1 X 1 R 5 L 5 X 5

A C E G I K

Picture 2 tests your device’s ability to draw lines. Picture 2 always displays in the
first color of the current colors list. Figure 45.2 on page 1287 shows picture 2 of the
GTESTIT procedure.

The GTESTIT Procedure About the Pictures 1287

Figure 45.2 Picture 2 of the GTESTIT Procedure

Picture 3 tests your device’s ability to draw simple polygons, polygons with multiple
boundaries (also known as holes), ellipses, and justified text. Figure 45.3 on page 1287
shows picture 3 of the GTESTIT procedure.

Figure 45.3 Picture 3 of the GTESTIT Procedure

Table 45.1 on page 1288 explains the values displayed in picture 1 of the GTESTIT
procedure. It also provides the equivalent graphics option or device parameter. Chapter
8, “Graphics Options and Device Parameters Dictionary,” on page 261 includes a
complete description of the graphics options and device parameters.

1288 About the Pictures Chapter 45

Table 45.1 GTESTIT Values Displayed in Picture 1

GTESTIT
Value

Equivalent
Graphics Option or
Device Parameter Description

D= DEVICE= shows the device driver you are
using.

B= shows the baud rate for the device.

R= VPOS= shows the number of rows.

C= HPOS= shows the number of columns.

P= MAXCOLORS= shows the total number of colors
(foreground and background) that
your device can display. If your
device can display more than 15
colors, picture 1 shows only 15
colors, but the LOG window lists all
of the available colors.

H= shows the height of character cells in
pixels.

W= shows the width of character cells in
pixels.

MAX= MAXPOLY= shows the maximum number of
vertices that can be processed by a
hardware polygon command. If
MAX=0, then the number of vertices
is unbounded. If MAX=***, then the
value is greater than 999.

D= * DASHLINE= shows the hardware dashed-line
patterns available. The value
displayed is a hexadecimal string.

RF= * RECTFILL= shows the hardware rectangle-fill
patterns available. The value
displayed is a hexadecimal string.

S= * SYMBOLS= shows the hardware symbols
available. The value displayed is a
hexadecimal string.

OPTS= * DEVOPTS= shows the other hardware options
available. The value displayed is a
hexadecimal string.

NCOLORS= COLORS= shows the number of colors in the
colors list or the number of
foreground colors.

The GTESTIT Procedure About the LOG 1289

GTESTIT
Value

Equivalent
Graphics Option or
Device Parameter Description

F= FILLINC= shows the solid fill increment (the
number of pixels between strokes
when doing a solid fill).

* In the device entry, this field may be blank. If blank, the value displayed by
the GTESTIT procedure comes from an internal default in the device driver.

About the LOG

shows a sample of the information that appears in the LOG window after running
picture 1 in the GTESTIT procedure. An asterisk (*) after the P=, MAX=, or F= option
indicates that the value for that option is greater than 999.

Output 45.1 Sample Log from GTESTIT Procedure

1 proc gtestit picture=1;
2 run;
3 quit;
D=PSCOLOR B=1200 R= 25 C= 70 P=256
H= 16 W= 9 MAX=*** D=C000000000000000
RF=8000800000000000 S=0000000000000000
OPTS=D59A244009280000 NCOLORS= 1
Background color = WHITE
Color 1 = BLACK
Ratio = 0.71429
Hsize = 5.99539
Vsize = 4.28242
F=1

Table 45.2 on page 1289 lists GTESTIT values that appear only in the LOG window
for picture 1: these values do not appear in the picture itself. Table 45.2 on page 1289
also provides the equivalent graphics option or device parameter. Chapter 8, “Graphics
Options and Device Parameters Dictionary,” on page 261 contains complete information
about the graphics options and device parameters.

Table 45.2 GTESTIT Values Shown in the LOG Window

GTESTIT
Value

Equivalent
Graphics Option or
Device Parameter Description

Background
color=

CBACK= tells the background color used.

Color1=...Colorn=COLORS= lists the default colors list for the
device. N is equal to the NCOLORS=
value.

Ratio= ASPECT= shows the aspect ratio of the device,
which is the ratio of width to height
of character cells.

1290 Procedure Syntax Chapter 45

GTESTIT
Value

Equivalent
Graphics Option or
Device Parameter Description

Hsize= HSIZE= shows the horizontal size of the area
used on the device for the graphics
display. The default unit is inches.

Vsize= VSIZE= shows the vertical size of the area
used on the device for the graphics
display. The default unit is inches.

Procedure Syntax
Supports: Output Delivery System (ODS)

PROC GTESTIT <PICTURE=1 | 2 | 3>
<GOUT=< libref.>output-catalog>;

PROC GTESTIT Statement

Syntax

PROC GTESTIT <PICTURE=1 | 2 | 3>
<GOUT=<libref.>output-catalog>;

Options

GOUT=< libref. >output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GTESTIT procedure. If you omit the libref, SAS/GRAPH looks for the catalog in the
temporary library called WORK and creates the catalog if it does not exist.

See also: “Storing Graphics Output in SAS Catalogs” on page 53

PICTURE=1 | 2 | 3
PIC=1 | 2 | 3

indicates the number of the test pattern to display. By default, all three display. If
you include more than one PICTURE= option, the GTESTIT procedure displays only
the last picture you specify.

Values for PICTURE= are

1
shows available colors and patterns, line types, and fills.

2
shows the test pattern for continuous drawing ability.

The GTESTIT Procedure Example 1: Testing a GOPTIONS Statement 1291

3
shows the test pattern for drawing polygons, ellipses, and justified text.

Examples

Example 1: Testing a GOPTIONS Statement
Features:

GOPTIONS statement
GTESTIT procedure

Sample library member: GITTGOS1

D = P S L M O N O B = 1 2 0 0 R = 2 5 C = 7 0 P = 2 5 6
H = 1 6 W = 8 M A X = * * * D = C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R F = 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 S = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O P T S = D 5 9 2 2 4 4 0 0 9 2 8 0 0 0 0 N C O L O R S = 1

B L A C K
F = 1

L
E
F
T

R
I
G
H
T

S A S G D D M X

S A M P L E

C

B O T T O M S A S / G R A P H T E S T P A T T E R N

T O P

E S R 1 L 1 X 1 R 5 L 5 X 5

A C E G I K

This example illustrates how you can use the GTESTIT procedure to confirm the
settings specified on a GOPTIONS statement. In this example, the GOPTIONS
statement enlarges the size of the elements in the graphics output by decreasing the
number of columns from the default number of columns for the device, resets the font to
the default, and specifies a limited colors list.

Set the graphics environment. HPOS= selects 45 columns. VPOS= selects 25 rows. FTEXT=
resets the font to the default font. COLORS= can determine the colors displayed in picture 1
and listed in the LOG, and the value of NCOLORS=.

goptions hpos=45
vpos=25
ftext=
colors=(blue red green);

Display the first picture of the GTESTIT procedure.

1292 Example 2: Displaying, Changing and Verifying the Colors List for a Device Driver Chapter 45

proc gtestit picture=1;
run;
quit;

Example 2: Displaying, Changing and Verifying the Colors List for a Device
Driver

Features:

1 GOPTIONS statement
2 GOPTIONS COLORS= option
3 GTESTIT procedure

The colors that SAS/GRAPH uses for the elements of a graph are determined, in
order of precedence, by:

1 The presence in a GOPTIONS statement of options that control the color of
elements (for example, GOPTIONS CTEXT= to control the color of text).

2 The COLORS= option on a GOPTIONS statement
3 The default color list for the device driver for which the graph is being prepared.

For more information on the order in which SAS/GRAPH chooses colors, see
“Defining and Using a Colors List” on page 93

You can use PROC GTESTIT to display the default color list for a device driver. For
example, the following procedure displays the default color list for graphs prepared for
the ActiveX control.

goptions reset=all device=activex;
proc gtestit picture=1;
run;
quit;

Running this procedure shows the default color list for the device ActiveX, as seen in
the following output from PROC GTESTIT:

The GTESTIT Procedure Example 2: Displaying, Changing and Verifying the Colors List for a Device Driver 1293

The following procedure uses the COLORS= option of the GOPTIONS statement to
change (temporarily) the color list for the device driver ActiveX. Then, it invokes PROC
GTESTIT to verify that the color list is changed. The color list is changed at most for
the duration of the SAS session. Use the GDEVICE procedure to change the color list
permanently.

goptions reset=all
device=activex
colors=(red, green, blue, yellow);

proc gtestit picture=1;
run;
quit;

The following output from PROC GTEST shows that the color list for ActiveX has
changed:

The following code resets the color list for the ActiveX device to the default, and then
reissues PROC GTESTIT to verify that the colors have been reset:

1294 Example 2: Displaying, Changing and Verifying the Colors List for a Device Driver Chapter 45

goptions colors=()
device=activex;

proc gtestit picture=1;
run;
quit;

The following output confirms that the default color list has been re-established:

1295

C H A P T E R

46
The G3D Procedure

Overview 1295

About Surface Plots 1295
About Scatter Plots 1296

Concepts 1297

Parts of a Three-dimensional Plot 1297
About the Input Data Set 1298

Data for Surface Plots 1298

Data for Scatter Plots 1298
Changing Data Ranges 1298

About Rotating and Tilting the Plot 1299
About Controlling the Axes 1299

Procedure Syntax 1300

PROC G3D Statement 1300
PLOT Statement 1301

SCATTER Statement 1305

Examples 1314
Example 1: Generating a Default Surface Plot 1314

Example 2: Rotating a Surface Plot 1316
Example 3: Tilting Surface Plot 1317

Example 4: Generating a Simple Scatter Plot 1318

Example 5: Using Shapes in Scatter Plots 1320
Example 6: Rotating a Scatter Plot 1323

References 1325

Overview
The G3D procedure produces three-dimensional graphs that plot one vertical

variable (z) for a position on a plane that is specified by two horizontal variables (x and
y). The coordinates of each point correspond to the values of three numeric variable
values in an observation of the input data set. The observation may contain values in
the form y=f(x, y) or independent values such as the altitude at a given longitude and
latitude. With the G3D procedure you can generate surface graphs with the PLOT
statement or scatter plots with the SCATTER statement.

About Surface Plots
Surface plots show the three-dimensional shape of your data and are useful for

examining data trends. The plots represent the shape of the surface that is described
by the values of two horizontal variables, x and y, and a third vertical variable, z. The

1296 About Scatter Plots Chapter 46

values of the horizontal variables are plotted on x and y axes, which form a horizontal
plane. The values of the vertical variable are plotted on a z axis, rising above that
plane to form a three-dimensional surface.

Figure 46.1 on page 1296 shows an example of a surface plot that uses all default
settings for the plot. The axes are scaled to include the maximum and minimum values
for each of the plotted variables x, y, and z. Each variable’s value range is divided into
three even intervals, which form the major axes tick marks, and the axes are labeled
with the names of the plotted variables or associated labels. The horizontal plane
formed by the x and y axes is rotated 70� around the z axis and also tilted 70� toward
you, and the plot is colored with the colors that are defined in the current colors list.

Figure 46.1 Sample G3D Surface Plot

The program for this plot is shown in Example 1 on page 1314. For more information
on producing surface plots, see “PLOT Statement” on page 1301.

About Scatter Plots
Scatter plots are three-dimensional plots that are similar to surface plots, but they

represent the data as points instead of surfaces. Scatter plots show trends or
concentrations in the data by classifying the data by size, color, shape, or a combination
of these features. As with surface plots, the values of the x and y variables in scatter
plots form a horizontal plane, and the values of the z variable rise above that plane.
Rather than forming a surface, however, the values of the z variable are represented as
individual symbols that can be optionally connected to the horizontal plane with lines
called needles.

Figure 46.2 on page 1297 shows a simple scatter plot. As with surface plots, default
settings for scatter plots scale the axes to include the maximum and minimum values
for each of the plotted variables x, y, and z, and divide each variable’s value range into
three even intervals to form the major axes tick marks. Default settings also rotate the
horizontal plane 70� around the z axis and tilt it 70� toward you, label each axis with
the name of the plotted variable or an associated label, and color the plot with colors
that are defined in the current colors list. The default settings also add reference lines
to the horizontal plane to mark the major x and y axes tick marks, and represent each
data point with a pyramid, which is connected to the horizontal plane with a needle.

The G3D Procedure Parts of a Three-dimensional Plot 1297

Figure 46.2 Sample G3D Scatter Plot

The program for this plot is shown in Example 4 on page 1318. For more information
on producing scatter plots, see “SCATTER Statement” on page 1305.

Concepts

Parts of a Three-dimensional Plot

Figure 46.3 G3D Procedure Terms

1298 About the Input Data Set Chapter 46

About the Input Data Set
The G3D procedure requires data sets that include three numeric variables: two

horizontal variables plotted on the x and y axes that define an x-y plane, and a vertical
variable plotted on the z axis rising from the { it x-y} plane.

Data for Surface Plots

For surface plots, the observations in the input data set should form an evenly
spaced grid of horizontal (x and y) values and exactly one vertical (z) value for each of
these combinations. For example, data that contains 5 distinct values for x and 10
distinct values for y should be part of a data set that contains 50 observations with
values for x, y, and z.

Only one z point is plotted for each combination of x and y. For example, you cannot
draw a sphere using the PLOT statement. If there is more than one observation for a
combination of x and y in the data set, only the last such point is used.

For the G3D procedure to produce a satisfactory surface plot, the data set must
contain nonmissing z values for at least 50 percent of the grid cells. When the G3D
procedure cannot produce a satisfactory surface plot because of missing z values, the
SAS/GRAPH software issues a warning message and a graph may not be produced. To
correct this problem, process the data set with the G3GRID procedure and use the
processed data set as the input data set for G3D. The G3GRID procedure interpolates
the necessary values to produce a data set with nonmissing z values for every
combination of x and y. The G3GRID procedure can also smooth data for use with the
G3D procedure. See Chapter 47, “The G3GRID Procedure,” on page 1327 for more
information on the G3GRID procedure.

Data for Scatter Plots

An input data set for scatter plots must include at least two observations that
contain different values for each of the three variables that are specified in the plot
request so that the G3D procedure can scale the axes. If the data set does not meet
these requirements, the SAS/GRAPH software issues an error message and no graph is
produced.

For scatter plots, only one z value is plotted for a combination of x and y. For
example, you cannot draw a sphere using the SCATTER statement. If there is more
than one observation for a combination of x and y in the data set, only the last point is
used. See “Simulating an Overlaid Scatter Plot” on page 1310 for information on
producing scatter plots with more than one vertical value for each x,y combination.

Changing Data Ranges

By default for both surface plots and scatter plots, the range of the z axis is defined
by the minimum and maximum z values in the input data set. Restrict or expand the
range of the z axis by using the ZMIN= and ZMAX= options in the PLOT or SCATTER
statement. To restrict the range of an x or y axis, use a WHERE statement in the PROC
step or a WHERE or IF statement in a DATA step to create a subset of the data set.

Note: AXIS and LEGEND definitions are not supported by the G3D procedure. Use
the Annotate facility or TITLE, FOOTNOTE, and NOTE statements to produce legends,
tick mark values, and axis labels. See “About Controlling the Axes” on page 1299 and
“SCATTER Statement” on page 1305 for information on controlling axis labels and tick
mark values with PLOT statement and SCATTER statement options. �

The G3D Procedure About Controlling the Axes 1299

About Rotating and Tilting the Plot
For both surface plots and scatter plots, you can rotate the x-y plane about the z

axis, or tilt the plot toward you. When you rotate a plot, you can view data from any
angle around the three-dimensional graph. This is useful for bringing into view data
points that were previously hidden by other data points on a plot. Tilting a plot enables
you to accentuate the location of data points.

Figure 46.4 on page 1299 shows how rotating and tilting can change the viewing
angle of a graph.

Note: At certain combinations of tilt and rotation angles, the tick mark values may
overlap. �

Figure 46.4 Rotating and Tilting a Graph

About Controlling the Axes
Because the relationship between a plot’s surface and the actual data values can be

difficult to interpret, you can improve a graph by changing the number of tick marks on
the axes or restricting the range of the vertical (z) variable.

The G3D procedure does not support AXIS definitions; however, you can use PLOT
or SCATTER statement options to

� suppress the axes
� suppress axis labels
� suppress tick mark values
� specify the number of tick marks
� specify minimum and maximum values for the z axis
� specify whether grid lines connect axis tick marks.

You can also change the font and height of axis labels and axis values by specifying
the desired font and height with the FTEXT= and HTEXT= options on a GOPTIONS
statement.

For information on how to reverse the values on an axis, see “Reversing Values on an
Axis” on page 1312.

1300 Procedure Syntax Chapter 46

Procedure Syntax
Requirements: At least one PLOT or SCATTER statement is required.

Global statements: FOOTNOTE, GOPTIONS, TITLE

Reminder: The procedure can include the BY, FORMAT, LABEL, NOTE, and WHERE
statements.

Supports: Output Delivery System (ODS)

PROC G3D <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>;

PLOT plot-request</options>;

SCATTER plot-request</option(s)>;

PROC G3D Statement

Identifies the data set that contains the plot variables. Optionally specifies annotation and an
output catalog.

Requirements: An input data set is required.

Syntax

PROC G3D <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=<libref.>output-catalog>;

Options

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all of the graphs that are produced by the G3D
procedure. To annotate individual graphs, use ANNOTATE= in the action statement.

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

DATA=input-data-set
specifies the SAS data set that contains the variables to plot. By default, the
procedure uses the most recently created SAS data set.

See also: “SAS Data Sets” on page 29“About the Input Data Set” on page 1298

GOUT=< libref. >output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the G3D procedure. If you omit the libref, the SAS/GRAPH software places the
output in the temporary catalog WORK.GSEG. The output catalog is created if it
doesn’t already exist.

See also: “Storing Graphics Output in SAS Catalogs” on page 53

The G3D Procedure PLOT Statement 1301

PLOT Statement

Creates three-dimensional surface plots using values of three numeric variables from the input
data set.

Requirements: Exactly one plot request is required.
Global statements: FOOTNOTE, TITLE

Description
The PLOT statement specifies one plot request that identifies the three numeric
variables to plot. This statement automatically

� scales the axes to include the maximum and minimum values for each of the
plotted variables x, y, and z

� divides the value range for each variable into three even intervals, which are
represented by four major tick marks on the axis

� rotates the x-y plane 70� around the z axis and tilts it 70� toward you, labeling
each axis with the name of the plotted variable or an associated label

� colors the plot with colors that are defined in the current colors list: axis labels
and tick mark labels display in the first color from the list, axes display in the
second color, the top of the surface plot displays in the third color, and the bottom
of the surface plot (if visible) displays in the fourth color.

You can use statement options to modify any of the three plot axes as well as the
general appearance of the graph, control the viewing angle, and specify characteristics
for reference lines.

In addition, you can use global statements to add text to the graph, and an Annotate
data set to enhance the plot.

Syntax

PLOT plot-request </option(s)>;

plot-request must be
y*x=z

option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
CBOTTOM=bottom-surface-color
CTOP=top-surface-color
ROTATE=angle-list
SIDE
TILT=angle-list
XYTYPE=1 | 2 | 3

� axes options:
CAXIS=axis-color
CTEXT=text-color
GRID
NOAXIS | NOAXES

1302 PLOT Statement Chapter 46

NOLABEL

XTICKNUM=number-of-ticks

YTICKNUM=number-of-ticks

ZMAX=max-value

ZMIN=min-value

ZTICKNUM=number-of-ticks

� catalog entry description options:

DESCRIPTION=’entry-description’

NAME=’entry-name’

Required Arguments

y*x=z
specifies three numeric variables from the input data set:

y
is one of the variables that is plotted on the horizontal (x-y) plane.

x
is another of the variables that is plotted on the horizontal (x-y) plane.

z
is the variable that is plotted on the vertical (z) axis.

Options
Options in a PLOT statement affect all graphs that are produced by that statement.

You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate plots that are produced by the PLOT statement.

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

CAXIS=axis-color
specifies a color for axis lines and tick marks. By default, axes are displayed in the
second color in the current colors list.

CBOTTOM=bottom-surface-color
specifies a color for the bottom of the plot surface. By default, the bottom surface is
displayed in the fourth color in the current colors list.

Featured in: Example 2 on page 1316

CTEXT=text-color
specifies a color for all text on the axes, including tick mark values and axis labels. If
you omit this option, a color specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the default, the first color in the colors list.

CTOP=top-surface-color
specifies a color for the top of the plot surface. By default, the top surface is
displayed in the third color in the current colors list.

Featured in: Example 2 on page 1316

The G3D Procedure PLOT Statement 1303

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length is
256 characters. The description does not appear on the chart. By default, the
procedure assigns a description of the form PLOT OF y*x=z, where y*x=z is the
request that is specified in the PLOT statement.

GRID
draws reference lines at the major tick marks on all axes.
Featured in: Example 2 on page 1316

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length is 8
characters. The default name is G3D. If you specify DEVICE=ACTIXIMG or
DEVICE=JAVAIMG, then the name that you specify will be used for the client image
output even in the file exists. For all other devices, if the name duplicates an existing
entry name, SAS/GRAPH adds a number to the duplicate name to create a unique
entry, for example, G3D1.

NOAXIS
NOAXES

specifies that a plot have no axes, axis labels, or tick mark values.

NOLABEL
specifies that a plot have no axis labels or tick mark values. Use this option if you
want to generate axis labels and tick mark values with an Annotate data set.

ROTATE=angle-list
specifies one or more angles at which to rotate the x-y plane about the perpendicular
z axis. The units are degrees. The default value is 70. The angle-list value is either
an explicit list of values, or a starting and an ending value with an interval
increment, or a combination of both forms:

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > <n <...n> >
The values specified in the angle-list value can be negative or positive and can be

larger than 360�. For example, a rotation angle of 45� can also be expressed as

rotate=405
rotate=-315

You can specify a sequence of angles to produce separate graphs for each angle.
The angles that are specified in the ROTATE= option are paired with any angles that
are specified with the TILT= option. If one option contains fewer values than the
other, the last value in the shorter list is paired with the remaining values in the
longer list.
See also: TILT= option on page 1303
Featured in: Example 2 on page 1316

SIDE
produces a surface graph with a side wall.
Featured in: Example 3 on page 1317

TILT=angle-list
specifies one or more angles at which to tilt the graph toward you. The units are
degrees and the default value is 70. The angle-list value is either an explicit list of
values, or a starting and an ending value with an interval increment, or a
combination of both forms:

1304 PLOT Statement Chapter 46

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > <n <...n> >
The values that are specified in the angle-list value must be 0 through 90.
You can specify a sequence of angles to produce separate graphs for each angle.

The angles that are specified in the TILT= option are paired with any angles that are
specified with the ROTATE= option. If one option contains fewer values than the
other, the last value in the shorter list is paired with the remaining values in the
longer list.
See also: ROTATE= option on page 1303
Featured in: Example 3 on page 1317

XTICKNUM=number-of-ticks
YTICKNUM=number-of-ticks
ZTICKNUM=number-of-ticks

specify the number of major tick marks that are located on a plot’s x, y, or z axis,
respectively. The value must be 2 or greater. The default value is 4 for all three
options.
Featured in: Example 2 on page 1316

XYTYPE=1 | 2 | 3
specifies the direction of lines that are used to represent the surface. XYTYPE=1
displays the surface by using lines that represent y axis values. That is, it only
draws lines that are parallel to the x axis. XYTYPE=2 displays the surface by using
lines that represent x axis values, and draws only lines that are parallel to the y
axis. XYTYPE=3 displays the surface by using lines that represent values for both
the x and y axes. The default is XYTYPE=3. See Figure 46.5 on page 1305 for an
example of the effect of XYTYPE= on the appearance of the surface.

ZMAX=max-value
ZMIN=min-value

specify the maximum and minimum values that are displayed on a plot’s z axis. By
default, the z axis is defined by the minimum and maximum z values that are in the
data set. Defining the ZMIN= and ZMAX= options to be greater than the minimum
and maximum values in the data set extends the plot’s z axis. Defining the ZMIN=
and ZMAX= options to be less than the minimum and maximum values in the data
set displays all z values in the range of ZMIN-to-ZMAX. Values that exceed that
range are displayed at the values of the ZMIN= or ZMAX= options.

The value of the ZMAX= option must be greater than the value of the ZMIN=
option.
Featured in: Example 2 on page 1316

Changing the Surface Appearance
Use the XYTYPE= option to change the appearance of the plot surface. This option

lets you select the direction of the lines that form the surface plot. Figure 46.5 on page
1305 shows examples of each type of plot surface.

The G3D Procedure SCATTER Statement 1305

Figure 46.5 Surface Appearance for Different XYTYPE= Values

SCATTER Statement

Creates three-dimensional scatter plots using values of three numeric variables from the input
data set.

Requirements: Exactly one plot request is required.
Global statements: FOOTNOTE, TITLE
Alias: SCAT

Description
The SCATTER statement specifies one plot request that identifies the three numeric
variables to plot. This statement automatically

� scales the axes to include the maximum and minimum values for each of the
plotted variables x, y, and z.

� divides the range for each variable into three even intervals that are represented
by four major tick marks on the axis.

� uses reference lines to mark the major tick marks on the x and y axes.
� rotates the x-y plane 70� around the z axis and tilts it 70� toward you, labeling

each axis with the name of the plotted variable or an associated label.
� uses the colors that are defined in the current colors list: axis labels and tick mark

labels display in the first color from the colors list, axes in the second color, and
data points in the third color.

� represents each data point with a pyramid that is connected to the horizontal
plane with a needle.

You can use statement options to modify any of the three plot axes as well as the
general appearance of the graph, control the viewing angle, and specify characteristics
for reference lines. In addition, if the needles drawn from the data points to the base
plane complicate a graph, you can suppress them.

1306 SCATTER Statement Chapter 46

You can use global statements to add text to the graph, and an Annotate data set to
enhance the plot.

Syntax

SCATTER plot-request </ option(s)>;

plot-request must be
y*x=z

option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
COLOR=’data-point-color’ | data-point-color-variable
NONEEDLE
ROTATE=angle-list
SHAPE=’symbol-name’ | shape-variable
SIZE=symbol-size | size-variable
TILT=angle-list

� axes options:
CAXIS=axis-color
CTEXT=text-color
GRID
NOAXIS | NOAXES
NOLABEL
XTICKNUM=number-of-ticks
YTICKNUM=number-of-ticks
ZMAX=max-value
ZMIN=min-value
ZTICKNUM=number-of-ticks

� catalog entry description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

Required Arguments

y*x=z
specifies three numeric variables from the input data set:

y
is one of the variables that is plotted on the horizontal (x-y) plane.

x
is another of the variables that is plotted on the horizontal (x-y) plane.

z
is the variable that is plotted on the vertical (z) axis.

The SCATTER statement does not require a full grid of observations for the
horizontal variable.

The G3D Procedure SCATTER Statement 1307

Options
Options in a SCATTER statement affect all graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate plots that are produced by the SCATTER statement.

See also: Chapter 24, “Using Annotate Data Sets,” on page 587

CAXIS=axis-color
specifies a color for axis lines and tick marks. By default, axes display in the second
color in the colors list.

Featured in: Example 6 on page 1323

COLOR=’data-point-color’ | data-point-color-variable
specifies a color name or a character variable in the input data set whose values are
color names. These color values determine the color or colors of the shapes that
represent a plot’s data points. Color values must be valid color names for the device
that is used. By default, plot shapes display in the third color in the current colors
list.

Using a list of colors in the value of the data-point-color-variable enables you to
assign different colors to the shapes to classify data.

Featured in: Example 5 on page 1320

CTEXT=text-color
specifies a color for all text on the axes, including tick mark values and axis labels. If
you omit this option, a color specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement

2 the default, the first color in the colors list.

DESCRIPTION=’entry-description’
DES=’entry-description’

specifies the description of the catalog entry for the chart. The maximum length for
is 256 characters. The description does not appear on the chart. By default, the
procedure assigns a description of the form SCATTER OF y*x=z, where y*x=z is the
request that is specified in the SCATTER statement.

GRID
draws reference lines at the major tick marks on all axes.

Featured in: Example 5 on page 1320

NAME=’entry-name’
specifies the name of the catalog entry for the graph. The maximum length is eight
characters. The default name is G3D. If you specify DEVICE=ACTIXIMG or
DEVICE=JAVAIMG, then the name that you specify will be used for the client image
output even in the file exists. For all other devices, if the name duplicates an existing
entry name, SAS/GRAPH adds a number to the duplicate name to create a unique
entry, for example, G3D1.

NOAXIS
NOAXES

specifies that a plot have no axes, axis labels, or tick mark values.

NOLABEL
specifies that a plot have no axis labels or tick mark values. Use this option if you
want to generate axis labels and tick mark values with an Annotate data set.

1308 SCATTER Statement Chapter 46

NONEEDLE
specifies that a plot have no lines that connect the shapes representing data points to
the x-y plane. The NONEEDLE option option has no effect when SHAPE=’PILLAR’
or SHAPE=’PRISM’.
Featured in: Example 5 on page 1320

ROTATE=angle-list
specifies one or more angles at which to rotate the x-y plane about the perpendicular
z axis. The units are degrees and the default value is 70. The angle-list value can be
a list of values, a starting and an ending value with an interval increment, or a
combination of both forms:

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > <n <...n> >
The angle-list value(s) can be negative or positive and can be larger than 360�. For

example, a rotation angle of 45� can also be expressed

rotate=405
rotate=-315

You can specify a sequence of angles to produce separate graphs for each angle.
The angles that are specified in the ROTATE= option are paired with any angles that
are specified with the TILT= option. If one option contains fewer values than the
other, the last value in the shorter list is paired with the remaining values in the
longer list.
See also: TILT= option on page 1309.
Featured in: Example 6 on page 1323

SHAPE=’symbol-name’ | shape-variable
specifies a symbol name or a character variable whose values are symbol names.
Symbols represent a scatter plot’s data points. By default, SHAPE=’PYRAMID’.

Values for symbol-name are

BALLOON

CLUB

CROSS

CUBE

CYLINDER

DIAMOND

FLAG

HEART

PILLAR

POINT

PRISM

PYRAMID

SPADE

SQUARE

STAR.
Figure 46.6 on page 1309 illustrates these symbol types with needles.

The G3D Procedure SCATTER Statement 1309

Figure 46.6 Scatter Plot Symbols

cube
cylinder
pillar

balloon
star
prism

heart
club
diamond

spade
cross
flag

square
point

pyramid

If you specify SHAPE=’symbol-name’, all data points are drawn in that shape. For
example, the procedure draws all data points as balloons when you specify

shape=’balloon’

If you specify SHAPE=shape-variable, the shape of the data point is determined by
the value of the shape variable for that observation. For example, the procedure uses
the value of the variable CLASS for a particular observation as the shape for that
data point when you specify

shape=class

Using a list of values in the variable named in SHAPE=shape-variable enables you
to assign different shapes to the data points to classify data.
Featured in: Example 5 on page 1320

SIZE=symbol-size | size-variable
specifies either a constant or a numeric variable, the values of which determine the
size of symbol shapes on the scatter plot.

If you specify SIZE=symbol-size, all data points are drawn in that size. For
example, if you specify SIZE=3, the procedure draws all symbol shapes three times
the normal size. By default, SIZE=1.0. The units are in default symbol size.

If you specify SIZE=size-variable, the size of the data point is determined by the
value of the size variable for that observation. For example, when you specify
SIZE=CLASS, the procedure uses the value of the variable CLASS for each
observation as the size of that data point. If you use a list of sizes as the value of the
variable named in SIZE=size-variable, you can assign different sizes to the data
points to classify data.
Featured in: Example 6 on page 1323

TILT=angle-list
specifies one or more angles at which to tilt the graph toward you. The units are
degrees and the default value is 70. The value can be a list, a starting and an ending
value with an interval increment, or a combination of both forms:

n <...n>
n TO n <BY increment>

1310 SCATTER Statement Chapter 46

n <...n> TO n <BY increment > <n <...n> >
The values that are specified in angle-list must be 0 through 90.
You can specify a sequence of angles to produce separate graphs for each angle.

The angles that are specified in the TILT= option are paired with any angles that are
specified with the ROTATE= option. If one option contains fewer values than the
other, the last value in the shorter list is paired with the remaining values in the
longer list.

See also: ROTATE= option on page 1308

XTICKNUM=number-of-ticks
YTICKNUM=number-of-ticks
ZTICKNUM=number-of-ticks

specify the number of major tick marks that are located on a plot’s x, y, or z axis,
respectively. The valuesmust be 2 or greater. For all three options, the default value
is 4.

Featured in: Example 6 on page 1323

ZMAX=max-value
ZMIN=min-value

specify the maximum and minimum values that are displayed on a plot’s z axis. By
default, the z axis is defined by the minimum and maximum z values in the data.
You can use the ZMIN= and ZMAX= options to extend the z axis beyond this range.
The value that is specified by ZMAX= must be greater than that specified by ZMIN=.
If you specify a ZMAX= or ZMIN= value within the actual range of the z variable
values, the plot’s data values are clipped at the specified level.

Featured in: Example 6 on page 1323

Changing the Appearance of the Points
Use the COLOR=, SHAPE=, and SIZE= options to change the appearance of your

scatter plot or to classify data using color, shape, size, or any combination of these
features. Figure 46.6 on page 1309 illustrates the shape names that you can specify in
the SHAPE= option. For example, to make all of the data points red balloons at twice
the normal size, use

scatter y*x=z /color=’red’ shape=’balloon’ size=2;

To size your points according to the values of the variable TYPE in your input data
set, use

scatter y*x=z / size=type;

For an example, see Example 5 on page 1320.

Simulating an Overlaid Scatter Plot
You can approximate an overlaid scatter plot by graphing multiple values for the

vertical (z) variables for a single (x, y) position in a single scatter plot. To do this, add a
small value to the value of one of the horizontal variables (x or y) to give the
observation a slightly different (x, y) position. Thus, you enable the procedure to plot
both values of the vertical (z) variable. Represent each different vertical (z) variable
with a different symbol, size, or color. The resulting plot appears to be multiple plots
overlaid on the same axes.

For example, suppose you want to graph a data set that contains two values for the
vertical variable Z for each combination of variables X and Y. You could produce the
original data set with a DATA step like this:

The G3D Procedure SCATTER Statement 1311

data planes;
input x y z shape $;
datalines;

1 1 1 PRISM
1 2 1 PRISM
1 3 1 PRISM
2 1 1 PRISM
2 2 1 PRISM
2 3 1 PRISM
3 1 1 PRISM
3 2 1 PRISM
3 3 1 PRISM
1 1 2 BALLOON
1 2 2 BALLOON
1 3 2 BALLOON
2 1 2 BALLOON
2 2 2 BALLOON
2 3 2 BALLOON
3 1 2 BALLOON
3 2 2 BALLOON
3 3 2 BALLOON
;

The SHAPE variable is assigned a different value for each different Z value for a
single combination of X and Y values.

Ordinarily, the SCATTER statement only plots the Z value for the last observation
for a single combination of X and Y. However, you can use a DATA step to assign a
slightly different x, y position to all observations where Z is greater than 1:

data planes2;
set planes;
if z > 1 then x = x + .000001;

run;

Then you can use a SCATTER statement to produce a plot like the one in Figure 46.7
on page 1312:

proc g3d data=planes2;
scatter x*y=z / zmin=0 shape=shape;

run;
quit;

1312 SCATTER Statement Chapter 46

Figure 46.7 Simulated Overlaid Scatter Plot

Reversing Values on an Axis
Although you can use the SCATTER statement’s ROTATE option to alter the view of

a plot and therefore the general orientation, you cannot use SCATTER statement
options to reverse axis values for one of the plot variables. To do this, you can multiply
that variable’s values by -1 to reverse the values themselves, which has the result of
reversing the axis when those values are used to generate a plot. You should then use
PROC FORMAT to define a format that displays the variable’s values as they exist in
the original data.

For example, the following code generates the scatter plot shown in Figure 46.8 on
page 1313:

data original;
input y x z;
datalines;

-1.15 1 .01
-1.00 2 .02
1.20 3 .03
1.25 4 .04
1.50 5 .05
2.10 1 .06
2.15 2 .07
2.20 3 .08
2.25 4 .09
2.30 5 .10

;

title1 ’Default Y Axis Order’;

/* default Y axis order */
proc g3d data=original;

scatter y * x = z;
run;

The G3D Procedure SCATTER Statement 1313

Figure 46.8 Default Y-Axis Order

To reverse the Y axis in the plot that is shown in Figure 46.8 on page 1313, you can
write a DATA step like the following to reverse the Y values and, therefore, reverse the
Y axis when the values are plotted:

data minus_y;
set original;
y=-y;

run;

The previous code creates the MINUS_Y data set by reading the ORIGINAL data set,
and then multiplying the values of variable Y by -1. Although plotting Y values from
the MINUS_Y data set would reverse values on the Y axis, it would misrepresent the
original data. Such a plot would label the axis with the negative-Y values. You can
correct the problem by using PROC FORMAT to display Y values as they are stored in
the ORIGINAL data set:

proc format;
picture reverse

low - < 0 = ’09.00’
0 < - high = ’09.00’ (prefix=’-’)
0 = ’09.00’;

run;

Here, the PICTURE statement defines a picture format named REVERSE, which you
can refer to in DATA and PROC steps by using the name followed by a period. A
picture format is a template for printing numbers. The ’09.00’ specifications are digit
selectors that indicate which digits or columns in the variable values will display in
output; columns that do not have a specified digit selector will not be displayed in
output. Thus, a picture format for displaying the values of variable Y needs a column
for a minus sign, a column for units, and two columns for decimals. The digit selector 0
specifies that no leading zeros will display in a column, and the digit selector 9 specifies
that a leading zero will display in a column.

The PICTURE statement defines this new picture format for three data ranges. The
lowest value in the data up to but not including zero will display with no prefix, which
means negative values will display without a minus sign. All values above (but not
including) zero to the highest value in the data will be displayed with the specified
prefix, which in this case is a minus sign. Because zero is excluded from both ranges, it
is assigned its own picture with no prefix.

You can now assign the REVERSE format to the Y values from the MINUS_Y data
set and use Y to generate a scatter plot. The resulting plot displays Y’s negative values
without a prefix, and its positive values display with a minus sign prefix. This
effectively represents Y values as they are stored internally in the ORIGINAL data set,
thus correcting the data misrepresentation that results from multiplying Y by -1.

1314 Examples Chapter 46

The following code generates the scatter plot shown in Figure 46.9 on page 1314:

title1 ’Reverse Y Axis Order’;

/* reverses order of default Y axis */
proc g3d data=minus_y;

format y reverse.;
scatter y * x = z;

run;
quit;

Figure 46.9 Reverse Y-Axis Order

Examples

Example 1: Generating a Default Surface Plot

Procedure features:
PLOT statement

Sample library member: GTDSURFA

The G3D Procedure Example 1: Generating a Default Surface Plot 1315

Figure 46.10 A Surface Plot with Default Option Values

This example shows a surface plot that reveals the shape of a generated data set
named HAT. The PLOT statement in this example relies entirely on procedure defaults.
The axes are scaled to include all data values and are labeled with the names of the
axes variables. The axes major tick marks are divided into three even intervals, and
the horizontal plane is rotated 70� around the z axis and tilted 70� toward you. The plot
is displayed with the colors that the GOPTIONS statement defines for the colors list.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create the data set.REFLIB.HAT is generated data that produces a symmetric surface
pattern, which is useful for illustrating the PLOT statement and its options.

data reflib.hat;
do x=-5 to 5 by 0.25;

do y=-5 to 5 by 0.25;
z=sin(sqrt(x*x+y*y));
output;

end;
end;

run;

Define title and footnote.

title ’Surface Plot of HAT Data Set’;
footnote j=r ’GTDSURFA’;

1316 Example 2: Rotating a Surface Plot Chapter 46

Generate the surface plot.

proc g3d data=reflib.hat;
plot y*x=z;

run;
quit;

Example 2: Rotating a Surface Plot
Procedure Features

PLOT statement options:
CBOTTOM=
CTOP=
GRID
ROTATE=
YTICKNUM=
ZMAX=
ZMIN=
ZTICKNUM=

Data set: REFLIB.HAT on page 1315
Sample library member: GTDROTAT

Figure 46.11 A Rotated Surface Plot

This example rotates the surface plot that is shown in Example 4 on page 1318 and
enhances its axes by adding reference lines and increasing the number of tick marks on
the y and z axes. It also raises the plot above the horizontal x-y plane.

Assign the libref and set the graphics environment.

The G3D Procedure Example 3: Tilting Surface Plot 1317

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Define title and footnote.

title ’Surface Plot of HAT Data Set’;
footnote j=r ’GTDROTAT’;

Generate the surface plot. GRID draws reference lines for all x, y, and z axis tick marks.
ROTATE= specifies a rotation angle of 45�. CTOP= and CBOTTOM= change the colors of the
plot’s top and bottom surfaces. YTICKNUM= and ZTICKNUM= specify the number of tick
marks for the y and z axes. ZMIN= and ZMAX= specify minimum and maximum values for the
z axis. Data that exceeds the range of ZMIN-to-ZMAX is displayed at the value of ZMIN or
ZMAX. Specifying a ZMIN= value that is below the minimum value in the data effectively raises
the plot above the horizontal plane.

proc g3d data=reflib.hat;
plot y*x=z / grid

rotate=45
ctop=red
cbottom=black
yticknum=5
zticknum=5
zmin=-3
zmax=1;

run;
quit;

Example 3: Tilting Surface Plot

Procedure features:
PLOT statement options:

SIDE
TILT=

Data set: REFLIB.HAT on page 1315
Sample library member: GTDTILT

1318 Example 4: Generating a Simple Scatter Plot Chapter 46

Figure 46.12 A Tilted Surface Plot

This example modifies that shown in Example 1 on page 1314 by tilting the surface
plot 15� toward you and adding a side wall.

Assign the libref and set the graphics environment.

goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Define title and footnote.

title ’Surface Plot of HAT Data Set’;
footnote j=r ’GTDTILT’;

Generate the surface plot. SIDE draws a side wall for the graph. TILT= specifies a tilt angle
of 15� for the plot, which doesn’t affect the default rotation of 70�.

proc g3d data=work.hat;
plot y*x=z / side

tilt=15;
run;
quit;

Example 4: Generating a Simple Scatter Plot
Procedure features:

SCATTER statement
Sample library member: GTDSCATR

The G3D Procedure Example 4: Generating a Simple Scatter Plot 1319

Figure 46.13 A Scatter Plot with Default Procedure Options

This example shows a scatter plot that examines the results of measuring the petal
length, petal width, and sepal length for the flowers of three species of iris. The
SCATTER statement in this example relies entirely on procedure defaults, which scale
the axes to include all data values, label the axes with the names of the axes variables,
divide the axes into three even intervals, rotate the horizontal plane 70� around the z
axis and tilt it 70� toward you, and display the plot with the colors that are defined for
the colors list. The data points are represented by pyramids, which are connected to the
horizontal plane with needles.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create data set. REFLIB.IRIS contains petal and sepal measurements for the flowers of three
iris species, which are identified by species numbers.

data reflib.iris;
input sepallen sepalwid petallen petalwid spec_no;
datalines;

50 33 14 02 1
64 28 56 22 3
...more data lines...
63 33 60 25 3
53 37 15 02 1
;

1320 Example 5: Using Shapes in Scatter Plots Chapter 46

Define titles and footnotes.

title1 ’Iris Species Classification’;
title2 ’Physical Measurement’;
title3 ’Source: Fisher (1936) Iris Data’;
footnote1 j=l ’ Petallen: Petal Length in mm.’

j=r ’Sepallen: Sepal Length in mm. ’;
footnote2 j=l ’ Petalwid: Petal Width in mm.’

j=r ’Sepal Width not shown ’;
footnote3 j=r ’GTDSCATR’;

Generate a simple scatter plot.

proc g3d data=reflib.iris;
scatter petallen*petalwid=sepallen;

run;
quit;

Example 5: Using Shapes in Scatter Plots

Procedure features:
SCATTER statement options:

COLOR=
GRID
NONEEDLE
SHAPE=

Other features:
DATA step
LABEL statement
NOTE statement

Data set: REFLIB.IRIS (see Example 4 on page 1318)
Sample library member: GTDSHAPE

The G3D Procedure Example 5: Using Shapes in Scatter Plots 1321

Figure 46.14 A Scatter Plot with Special Shapes

This program modifies that shown in Example 4 on page 1318 to use shape symbols
and color to distinguish information for various iris species. It also uses NOTE
statements to simulate a plot legend.

The program then generates a second plot to modify the first. As shown by the
following output, the second plot request suppresses the needles that connect data
points to the horizontal plane, and adds reference lines to make it easier to interpret
data values. It also labels the plot axes with descriptive text.

Figure 46.15 A Scatter Plot with Reference Lines and Axis Labels

Assign the libref and set the graphics environment.

1322 Example 5: Using Shapes in Scatter Plots Chapter 46

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create data set. REFLIB.IRIS2 uses a DATA step to read and modify the REFLIB.IRIS data
set. The DATA step adds a variable that identifies the iris species. It also adds two additional
variables that store shape and color values for each iris species. These shapes and colors will
distinguish iris species in the plot.

data reflib.iris2;
set reflib.iris;
length species $12. colorval $8. shapeval $8.;
if spec_no=1 then

do;
species=’setosa’;
shapeval=’club’;
colorval=’blue’;

end;
if spec_no=2 then

do;
species=’versicolor’;
shapeval=’diamond’;
colorval=’red’;

end;
if spec_no=3 then

do;
species=’virginica’;
shapeval=’spade’;
colorval=’green’;

end;
run;

Define titles and footnotes.

title1 ’Iris Species Classification’;
title2 ’Physical Measurement’;
title3 ’Source: Fisher (1936) Iris Data’;
footnote1 j=l ’ Petallen: Petal Length in mm.’

j=r ’Petalwid: Petal Width in mm. ’;
footnote2 j=l ’ Sepallen: Sepal Length in mm.’

j=r ’Sepal Width not shown ’;
footnote3 j=r ’GTDSHAPE(a)’;

Generate the plot. COLOR= specifies the variable that contains color information for the iris
species. SHAPE= specifies the variable that contains shape information for the iris species.

proc g3d data=reflib.iris2;
scatter petallen*petalwid=sepallen

/ color=colorval
shape=shapeval;

The G3D Procedure Example 6: Rotating a Scatter Plot 1323

Create a legend using NOTE statements. The first NOTE statement clears any existing
notes. The second NOTE statement identifies the color key used for the different iris species.

note;
note j=r ’Species: ’ c=green ’Virginica ’

j=r c=red ’Versicolor ’
j=r c=blue ’Setosa ’;

run;

Define new title and footnotes.

title3;
footnote1 j=l ’ Source: Fisher (1936) Iris Data’;
footnote2 j=r ’GTDSHAPE(b)’;

Generate the plot. NONEEDLE suppresses the line drawn from the x-y plane to the plot
point. GRID draws reference lines for x, y, and z axis tick marks.

proc g3d data=reflib.iris2;
scatter petallen*petalwid=sepallen

/ noneedle
grid
color=colorval
shape=shapeval;

Change the axes labels. To improve axes labels, the LABEL statement associates labels with
variable names.

label petallen=’Petal Length’
petalwid=’Petal Width’
sepallen=’Sepal Length’;

run;
quit;

Example 6: Rotating a Scatter Plot
Procedure features:

SCATTER statement options
CAXIS=
ROTATE=
SIZE=
XTICKNUM
YTICKNUM=
ZMAX=
ZMIN=
ZTICKNUM=

1324 Example 6: Rotating a Scatter Plot Chapter 46

Other features: DATA step

Sample library member: GTDROTSC

Figure 46.16 A Rotated Scatter Plot

This example produces a scatter plot of humidity data. It uses color to distinguish
air temperature ranges. The plot is rotated -15�.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=4;

Create data set REFLIB.HUMID. The DATA step varies color according to specified
air-temperature ranges.

data reflib.humid;
length colorval $ 8.;
label wtemp=’Wet-Bulb Temp’;
label relhum=’Rel. Humidity’;
label atemp=’ Air Temp.’;
input atemp wtemp relhum;
if atemp<26 then colorval="blue";
else if atemp>=26 and atemp<+52 then colorval="red";
else if atemp>=52 and atemp<+78 then colorval="green";
else if atemp>=78 and atemp<+104 then colorval="lib";
else if atemp>104 then colorval="pink ";
datalines;

The G3D Procedure References 1325

0 1 67
0 2 33
...more data lines...
130 34 29
130 35 28
;

Define title and footnotes.

title ’Relative Humidity in Percent’;
footnote1 j=l ’ Source: William L. Donn, Meteorology, Fourth Edition’;
footnote2 j=r ’GTDROTSC’;

Generate the plot. CAXIS= specifies a color for the axis lines and tick marks. ROTATE=
specifies a rotation angle for the plot. SIZE= specifies the size of the plot symbols.
XTICKNUM=, YTICKNUM=, and ZTICKNUM= specify the number of tick marks for the x, y,
and z axes. ZMIN= and ZMAX= specify the minimum and maximum values for the z axis. Z-axis
values that exceed the values of the ZMAX= and ZMIN= options will be displayed at the value
of ZMAX= or ZMIN=.

proc g3d data=reflib.humid;
scatter atemp*wtemp=relhum

/ shape=’pillar’
color=colorval
caxis=blue
rotate=-15
size=.5
yticknum=5
xticknum=2
zticknum=4
zmin=0
zmax=100;

run;
quit;

References

Fisher, R.A. (1936), "The Use of Multiple Measurements in Taxonomic Problems,"
Annals of Eugenics, 7, 179–188.

Watkins, S.L. (1974), "Algorithm 483, Masked Three-Dimensional Plot Program with
Rotations (J6)," in Collected Algorithms from ACM, New York: Association for
Computing Machinery.

1326

1327

C H A P T E R

47
The G3GRID Procedure

Overview 1327

Concepts 1329
About the Input Data Set 1329

Multiple Vertical Variables 1329

Horizontal Variables Along a Nonlinear Curve 1329
About the Output Data Set 1329

Interpolation Methods 1329

Default Bivariate Interpolation 1330
Spline Interpolation 1330

Spline Smoothing 1331
Procedure Syntax 1331

PROC G3GRID Statement 1332

GRID Statement 1333
Examples 1336

Example 1: Using the Default Interpolation Method 1336

Example 2: Using Spline Interpolation and a Smoothed Spline 1339
Example 3: Using Partial Spline Interpolation 1342

Example 4: Using Spline Interpolation 1343
References 1346

Overview
The G3GRID procedure processes an existing SAS data set to create a data set that

the G3D or GCONTOUR procedure can use to produce three-dimensional surface or
contour plots. The procedure creates a data set whose horizontal (x and y) variable
values form a complete grid, and it interpolates the value of the vertical (z) variables for
each point on the x-y plane.

Using the G3GRID procedure, you can
� Create a rectangular grid of interpolated or smoothed values from irregularly

spaced observations for use in a three-dimensional surface or contour plot.
� Complete a rectangular grid of interpolated or smoothed values for an input data

set that has an insufficient number of observations to produce a three-dimensional
surface or contour plot.

� Interpolate or smooth data for a three-dimensional graph.

The G3GRID procedure does not produce graphics output. Instead, it produces an
output data set that you can use as the input data set for the G3D or GCONTOUR
procedure.

Figure 47.1 on page 1328 and Figure 47.2 on page 1328 illustrate the effect of the
G3GRID procedure on data.

1328 Overview Chapter 47

Figure 47.1 on page 1328 shows a collection of data points, where z=f(x, y). These
points are randomly distributed and cannot be displayed with a G3D surface plot,
although they can be displayed with a scatter plot.

Figure 47.1 Scatter Plot of Data Set Before G3GRID Processing

Figure 47.2 on page 1328 shows a surface plot of the data set that is created by a
G3GRID interpolation of the original data set shown in Figure 47.1 on page 1328.

Figure 47.2 Surface Plot of Data Set After G3GRID Processing

Note: The evenly distributed horizontal (x, y) data points form a grid for the
three-dimensional graph. �

The G3GRID Procedure Interpolation Methods 1329

Concepts

About the Input Data Set
The input data set must contain at least three numeric variables:
� two horizontal variables, (x, y)
� one or more vertical variables, z through z-n, that will be interpolated or smoothed

as if it were a function of the two horizontal variables.

The procedure can process multiple vertical variables for each pair of horizontal
variables that you specify. If you specify more than one vertical variable, the G3GRID
procedure performs a separate analysis and produces interpolated or smoothed values
for each vertical variable. If more than one observation in the input data set has the
same values for both horizontal variables, x and y, a warning message is printed, and
only the first such point is used in the interpolation.

By default, the interpolation is performed after both variables are similarly scaled
because the interpolation methods assume that the scales of x and y are comparable.

Multiple Vertical Variables
In the GRID statement, you can name multiple vertical variables (z through z-n) and

produce a data set that contains two horizontal variables and multiple vertical
variables. You can use the resulting data set to produce plots of the relationships of the
two horizontal variables to different vertical variables.

Horizontal Variables Along a Nonlinear Curve
If the points that are generated by the horizontal variables tend to lie along a curve,

a poor interpolation or spline may result. In such cases, the vertical variable(s) and one
of the horizontal variables should be modeled as a function of the remaining horizontal
variable. You can use a scatter plot of the two horizontal variables to help determine
the appropriate function.

If the horizontal variable points are collinear, the procedure interpolates the function
as constant along lines perpendicular to the line in the plane that is generated by the
input data points.

About the Output Data Set
The output data set contains the two horizontal variables, the interpolated or

smoothed vertical variables, and the BY variables, if any. If the GRID statement’s
SMOOTH= option is used, the output data set also contains a variable named _SMTH_,
with a value equal to that of the smoothing parameter.

You can control both the number of x and y values in the output data set and the
values themselves. In addition, you can specify an interpolation method.

Interpolation Methods
The G3GRID procedure can use one of three interpolation methods: bivariate

interpolation (the default), spline interpolation, and smoothed spline interpolation.

1330 Interpolation Methods Chapter 47

Default Bivariate Interpolation
Unless you specify the SPLINE option, the G3GRID procedure is an interpolation

procedure. That is, it calculates z values for x, y points that are missing from the input
grid. The surface that is formed by the interpolated data passes precisely through the
data points in the input data set.

This default method of interpolation works best for fairly smooth functions with
values given at uniformly distributed points in the plane. If the data points in the input
data set are erratic, the default interpolated surface can be erratic.

This default method is a modification of that described by Akima (1978). This
method consists of

1 dividing the plane into nonoverlapping triangles that use the positions of the
available points

2 fitting a bivariate fifth degree polynomial within each triangle
3 calculating the interpolated values by evaluating the polynomial at each grid point

that falls in the triangle.

The coefficients for the polynomial are computed based on
� the values of the function at the vertices of the triangle
� the estimated values for the first and second derivatives of the function at the

vertices.

The estimates of the first and second derivatives are computed using the n nearest
neighbors of the point, where n is the number specified in the GRID statement’s
NEAR= option. A Delauney triangulation (Ripley 1981, p. 38) is used for the default
method. The coordinates of the triangles are available in an output data set if
requested by the OUTTRI= option in the PROC G3GRID statement.

Spline Interpolation
If you specify the SPLINE option, a method is used that produces an interpolation or

smoothing that is optimally smooth in a certain sense (Harder and Desmarais 1972,
Meinguet 1979). The surface that is generated can be thought of as one that would be
formed if a stiff, thin metal plate were forced through or near the given data points. For
large data sets, this method is substantially more expensive than the default method.

The function u, formed when you specify the SPLINE option, is determined by letting

�� � ��� � ���

� � ��� ��

and

� �� � �� ���
� � �� ���

�
���

� ��� �� � ��
������ ��� ��� � �� � ���� ���

The G3GRID Procedure Procedure Syntax 1331

where

� ��� �� � � � ��� � � � � �

The coefficients c1, c2,..., cn and d1, d2, d3 of this polynomial are determined by these
equations:

��� ���� ��� � � �

and

�
�
� � �

where

E
is the n n matrix E(ti, tj)

I
is the n n identity matrix

�

is the smoothing parameter that is specified in the SMOOTH= option

c
is (c1 ,..., cn)

z
is (z1 ,..., zn)

d
is (d1, d2, d3)

T
is the n 3 matrix whose ith row is (1, xi, yi).

See Wahba (1979) for more detail.

Spline Smoothing
To produce a smoothed spline, you can use the GRID statement’s SMOOTH= option

with the SPLINE option. The value or values specified in the SMOOTH= option are
substituted for � in the equation that is described in “Spline Interpolation” on page
1330. A smoothed spline trades closeness to the original data points for smoothness. To
find a value that produces the best balance between smoothness and fit to the original
data, you can try several values for the SMOOTH= option.

Procedure Syntax
Requirements: Exactly one GRID statement is required.
Reminder: The procedure can include the SAS/GRAPH BY statement.
Supports: Output Delivery System (ODS)

1332 PROC G3GRID Statement Chapter 47

PROC G3GRID <DATA=input-data-set>
<OUT=output-data-set>
<OUTTRI=output-data-set>;

GRID grid-request </option(s)>;

PROC G3GRID Statement

Identifies the input data set. Optionally specifies one or two output data sets.

Requirements: An input data set is required.

Syntax

PROC G3GRID <DATA=input-data-set>
<OUT=output-data-set>
<OUTTRI=output-data-set>;

Options

DATA=input-data-set
specifies the SAS data set that contains the variables to process. By default, the
procedure uses the most recently created SAS data set.

See also: “SAS Data Sets” on page 29 and “About the Input Data Set” on page 1329

OUT=output-data-set
specifies the output data set. The data set contains any BY variables that you
specify, the interpolated or smoothed values of the vertical variables (z through z-n),
and the coordinates for all grid positions on the horizontal (x-y) plane. If you specify
smoothing, the output data set also contains a variable named _SMTH_, whose value
is a smoothing parameter. The observations in this data set are ordered by any
variables that you specify with a BY statement. By default, the output of PROC
G3GRID creates WORK.DATA1.

Depending on the shape of the original data and the options you use, the output
data set may contain values for the vertical (z through z-n) values that are outside of
the range of the original values in the data set.

Featured in: Example 1 on page 1336

OUTTRI=output-data-set
specifies an additional output data set that contains triangular coordinates. The data
set will contain any BY variables that you specify, the two horizontal variables giving
the horizontal (x -y) plane coordinates of the input points, and a variable named
TRIANGLE that uses integer values to label the triangles. The observations in this
data set are ordered by any variables that you specify with a BY.

The data set contains three observations for each value of the variable
TRIANGLE. The three observations give the coordinates of the three vertices of the
triangle. Points on the convex hull of the input data set of points are also assumed to
lie in degenerate triangles whose other vertices are at infinity. The points in the
convex hull can be recovered by keeping only those triangles with exactly two
missing vertices.

The G3GRID Procedure GRID Statement 1333

By default, no OUTTRI= data set is produced. OUTTRI= is not valid when you
specify the SPLINE option in the GRID statement.

GRID Statement

Specifies the three numeric variables for interpolation or smoothing. Optionally specifies the
number of observations (x and y values) in the output data set; output values for the two horizontal
variables x,y; and the interpolation method for the vertical variables.

Requirements: Exactly one grid request is required.

Syntax

GRID grid-request </option(s)>;

grid-requestmust be:
y*x=z(s)

grid-request must be
y*x=z(s)

option(s) can be one or more options from any or all of the following categories:
� grid options:

AXIS1=ascending-value-list
AXIS2=ascending-value-list
NAXIS1=n
NAXIS2=n

� interpolation options:
JOIN
NEAR=n
NOSCALE
PARTIAL
SMOOTH=ascending-value-list
SPLINE

Required Arguments

y*x=z(s)
specifies three or more numeric variables from the input data set:

y
is one of the variables that forms the horizontal (x-y) plane.

x
is another of the variables that forms the horizontal (x-y) plane.

z(s)
is one or more vertical variables for the interpolation.

1334 GRID Statement Chapter 47

Although the GRID statement can specify only two horizontal variables, it can
include multiple vertical variables. Separate vertical variables with blanks:

grid x*y=z w u v;

Options

AXIS1=ascending-value-list
specifies a list of numeric values to assign to the first (y) variable in the grid request
for the output data set. Numbers that you specify with this option determine the
number of values for y and override a value that you specify with the NAXIS1=
option. The ascending-value-list must be arranged in ascending order. It can be an
explicit list of values, a starting and an ending value with an interval increment, or a
combination of both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment > <n <...n> >

Featured in: Example 1 on page 1336 and Example 4 on page 1343

AXIS2=ascending-value-list
specifies a list of numeric values to assign to the second (x) variable in the grid
request for the output data set. Numbers that you specify with this option determine
the number of values for x and override a value that you specify with the NAXIS2=
option. The ascending-value-list must be arranged in ascending order. The value can
be an explicit list, a starting and an ending value with an interval increment, or a
combination of both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment > <n <...n> >

Featured in: Example 1 on page 1336 and Example 4 on page 1343

JOIN
uses a linear interpolation within a set of triangular regions that are formed from
the input data set. This interpolation method creates values in the range of the
initial values of the vertical variable, but the resulting interpolated surface may not
be smooth.

NAXIS1=n
specifies the number of values for the first (y) variable in the grid request for the
output data set. You can determine the actual values used for y by taking the
minimum and maximum values of y and dividing the range into n–1 equal sections.
By default, NAXIS1=11.

A value specified with NAXIS1= is ignored if values are also specified with AXIS1=.

NAXIS2=n
specifies the number of values for the second (x) variable in the grid request for the
output data set. You can determine the actual values that are used for x by taking
the minimum and maximum values of x and dividing the range into n–1 equal
sections. By default, NAXIS2=11.

A value specified with NAXIS2= is ignored if values are also specified with AXIS2=.

NEAR=n
specifies the number of nearest data points to use for computing the estimates of the
first and second derivatives. As NEAR= values become larger, time and computation

The G3GRID Procedure GRID Statement 1335

costs increase significantly. NEAR= is ignored if you specify SPLINE. The value of n
must be greater than or equal to 3. By default, NEAR=3.

If the number of input data points is insufficient for the number that you specify
with NEAR=, a smaller number of data points is used.

Featured in: Example 3 on page 1342

NOSCALE
specifies that the x and y variables not be scaled to the same range before
interpolation. By default, the interpolation is performed after both variables are
similarly scaled because the interpolation methods assume that the scales of x and y
are comparable.

PARTIAL
specifies that a spline be used to estimate the derivatives for the biquintic polynomial
interpolation. A bivariate spline is fit to the nearest neighbors and used to estimate
the needed derivatives. This option produces results that are less smooth than those
produced by the SPLINE option and uses fewer computer resources. However, the
results produced by PARTIAL are smoother than those that are produced by the
default. If you use both PARTIAL and the SPLINE option, PARTIAL is ignored.

Featured in: Example 3 on page 1342

SMOOTH=ascending-value-list
specifies a list of numbers for smoothing parameters. Use this option only when you
also use the SPLINE option. The ascending-value-list must be arranged in ascending
order. The value can be an explicit list, a starting and an ending value with an
interval increment, or a combination of both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment > <n <...n> >
For each value � of the smoothing parameter, a function u (x, y) is formed that

minimizes

�

�
�
�
��� � ��� �� ��

�
� ������

� ��

��

����

where n is the number of data points and the pairs (xj, yj)are the available points,
with corresponding function values zj (Wahba 1979).

The higher the value of the smoothing parameter, the smoother the resulting
interpolation. The lower the smoothing parameter, the closer the resulting surface is
to the original data points. A smoothing parameter of 0 produces the same results as
the SPLINE option without SMOOTH=.

This procedure repeats for each value of the smoothing parameter. The output
data set that you specify in the OUT= option contains the interpolated values, the
values of the grid points, and the values of the smoothing parameter in the variable
SMTH. The output data set contains a separate grid for each value of the
smoothing parameter.

Featured in: Example 2 on page 1339

SPLINE
specifies the use of a bivariate spline (Harder and Desmarais 1972, Meinguet 1979)
to interpolate or to form a smoothed estimate if you also use the SMOOTH= option.
This option results in the use of an order n3 algorithm, where n is the number of

1336 Examples Chapter 47

input data points. Consequently, this method can be time-consuming. If you use
more than 100 input points, the procedure may use excessive time.
Featured in: Example 2 on page 1339 and Example 4 on page 1343

Controlling Observations in the Output Data Set
By default, the G3GRID procedure produces a data set with 121 observations for

combinations of 11 values for each of the horizontal variables, x and y. To create a data
set with a different number of observations, use the GRID statement’s NAXIS1= or
NAXIS2= options to specify the number of the values of y or x, respectively. Or, use the
GRID statement’s AXIS1= or AXIS2= options to specify the actual values for y or x,
respectively.

Table 47.1 on page 1336 shows the number of observations that will be in the output
data set if you use any of these options.

Table 47.1 Number of Observations Contained in the Output Data Set

Options Specified Number of Observations in Output Data Set

None 121

AXIS1= (number of values for AXIS1=) * 11

AXIS2= (number of values for AXIS2=) * 11

NAXIS1= (value of NAXIS1=) * 11

NAXIS2= (value of NAXIS2=) * 11

AXIS1=, AXIS2= (number of values for AXIS1=) * (number of values for AXIS2=)

AXIS1=, NAXIS1= (number of values for AXIS1=) * 11

AXIS1=, NAXIS2= (number of values for AXIS1=) * (value of NAXIS2=)

AXIS2=, NAXIS1= (number of values for AXIS2=) * (value of NAXIS1=)

AXIS2=, NAXIS2= (number of values for AXIS2=) * 11

NAXIS1=, NAXIS2= (value of NAXIS1=) * (value of NAXIS2=)

If you specify multiple smoothing parameters, the number of observations in the
output data set will be the number shown in Table 47.1 on page 1336 multiplied by the
number of smoothing values that you specify in the SMOOTH= option. If you use
BY-group processing, multiply the number in the table by the number of BY groups.

Depending on the shape of the original data and the options that you specify, the
output data set may contain values for the vertical (z) values that are outside of the
range of the original values in the data set.

Examples

Example 1: Using the Default Interpolation Method

Procedure features:

The G3GRID Procedure Example 1: Using the Default Interpolation Method 1337

G3GRID statement options:
OUT=

GRID statement options:
AXIS1=
AXIS2=

Other features:
DATA step
G3D procedure

Sample library member: GTGDEFIN

Figure 47.3 A Scatter Plot Showing Data Before Interpolation

This example demonstrates the default interpolation method that is used by the
GRID statement. The example first generates a scatter plot of random data to show the
concentration of data values before processing with the G3GRID procedure. The
original data do not contain enough combinations of x, y, and z values to generate a
surface plot with the G3D procedure, or a contour plot with the GCONTOUR procedure.

The example then runs the G3GRID procedure to interpolate additional x, y, and z
values. Because no interpolation method is specified, the default interpolation method
is used. The resulting output data set is used as input to the G3D procedure, which
generates the surface plot shown in the following output.

1338 Example 1: Using the Default Interpolation Method Chapter 47

Figure 47.4 A Surface Plot Generated After Interpolation

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=3;

Create data set. REFLIB.NUMS uses a set of randomly sampled points to create the data used
in this and all remaining examples in this chapter.

data reflib.nums;
keep x y z;
do i=1 to 30;

x=10*ranuni(33)-5;
y=10*ranuni(35)-5;
z=sin(sqrt(x*x+y*y));
output;

end;
run;

Define title and footnote.

title ’Scatter Plot of NUMS Data Set’;
footnote j=r ’GTGDEFIN(a)’;

Generate the scatter plot.

proc g3d data=reflib.nums;
scatter y*x=z;

The G3GRID Procedure Example 2: Using Spline Interpolation and a Smoothed Spline 1339

run;

Process points with PROC G3GRID. OUT= on G3GRID specifies a name for a temporary
output data set. GRID specifies the variables Y*X=Z for the output data set. AXIS@@@ 1

proc g3grid data=reflib.nums out=default;
grid y*x=z / axis1=-5 to 5 by .5

axis2=-5 to 5 by .5;
run;

Define new title and footnote.

title ’Surface Plot after Default Interpolation’;
footnote j=r ’GTGDEFIN(b)’;

Generate a surface plot. The G3D procedure uses as its input data set the G3GRID
procedure’s output data set.

proc g3d data=default;
plot y*x=z;

run;
quit;

Example 2: Using Spline Interpolation and a Smoothed Spline

Procedure features:
GRID statement options:

SMOOTH=
SPLINE

Data set: REFLIB.NUMS (see Example 1 on page 1336)
Sample library member: GTGSISS

1340 Example 2: Using Spline Interpolation and a Smoothed Spline Chapter 47

Figure 47.5 A Surface Plot Generated After Spline Interpolation

This example extends Example 1 on page 1336 to specify a spline interpolation
method on the GRID statement. The output data set, when used in PROC G3D,
generates a smoother surface plot than the surface plot that results from the default
interpolation.

This example then specifies a smoothed spline interpolation method on the GRID
statement. As shown by the following output, the resulting surface plot is smoother still.

Figure 47.6 A Surface Plot Generated After Smoothed Spline Interpolation

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

The G3GRID Procedure Example 2: Using Spline Interpolation and a Smoothed Spline 1341

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=5 htext=3;

Define title and footnote.

title ’Surface Plot After Spline Interpolation’;
footnote j=r ’GTGSISS(a)’;

Process points with PROC G3GRID. SPLINE specifies the bivariate spline method for the
data set interpolation.

proc g3grid data=reflib.nums out=spline;
grid y*x=z / spline

axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Generate a surface plot.

proc g3d data=spline;
plot y*x=z ;

run;

Define title and footnote for second plot.

title ’Surface Plot After Smoothed Spline Interpolation’;
footnote j=r ’GTGSISS(b)’;

Process points with PROC G3GRID. SMOOTH= specifies the smoothing parameter to use
during spline interpolation.

proc g3grid data=reflib.nums out=smoothed;
grid y*x=z / spline

smooth=.05
axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Generate a surface plot.

proc g3d data=smoothed;
plot y*x=z;

run;
quit;

1342 Example 3: Using Partial Spline Interpolation Chapter 47

Example 3: Using Partial Spline Interpolation
Procedure features:

GRID statement options:
NEAR
PARTIAL

Data set: REFLIB.NUMS (see Example 1 on page 1336)
Sample library member: GTGPART

Figure 47.7 A Surface Plot Generated After Partial Interpolation

This example specifies a partial spline interpolation method on the GRID statement,
using eight nearest neighbors for computing the estimates of the first and second
derivatives. The output data set, when used in PROC G3D, generates a smoother
surface plot than the surface plot that results from the default interpolation shown in
Example 1 on page 1336, but not as smooth as the surface plot that results from the
spline interpolation shown in Example 2 on page 1339.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=3;

Define title and footnote.

title ’Surface Plot after Partial Interpolation’;
footnote j=r ’GTGPART’;

The G3GRID Procedure Example 4: Using Spline Interpolation 1343

Process points with PROC G3GRID. PARTIAL specifies that a spline be used to estimate the
derivatives for the biquintic polynomial interpolation. NEAR= specifies the number of nearest
neighbors to be used for computing the estimates of the first and second derivatives.

proc g3grid data=reflib.nums out=partial;
grid y*x=z / partial

near=8
axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Generate the surface plot.

proc g3d data=partial;
plot y*x=z;

run;
quit;

Example 4: Using Spline Interpolation

Procedure features:
GRID statement options:

AXIS1=
AXIS2=
SPLINE

Data set: REFLIB.NUMS (see Example 1 on page 1336)
Sample library member: GTGSPLIN

1344 Example 4: Using Spline Interpolation Chapter 47

Figure 47.8 A Contour Plot Generated After Default Interpolation

Figure 47.9 A Contour Plot Generated After Spline Interpolation

This example demonstrates the default and spline interpolation methods when used
by the GCONTOUR procedure to generate contour plots from the resulting output data
sets.

Assign the libref and set the graphics environment.

libname reflib ’SAS-data-library’;
goptions reset=global gunit=pct border cback=white

colors=(black blue green red)
ftext=swiss ftitle=swissb htitle=6 htext=3;

The G3GRID Procedure Example 4: Using Spline Interpolation 1345

Define title and footnote.

title ’Contour Plot after Default Interpolation’;
footnote j=r ’GTGSPLIN(a)’;

Define axis characteristics.

axis1 width=3;

Process points with PROC G3GRID.

proc g3grid data=reflib.nums out=numdef;
grid y*x=z / axis1=-5 to 5 by .5

axis2=-5 to 5 by .5;
run;

Generate the contour after default interpolation.

proc gcontour data=numdef;
plot y*x=z / haxis=axis1 vaxis=axis1;

run;

Define new title and footnote.

title ’Contour Plot after Spline Interpolation’;
footnote j=r ’GTGSPLIN(b)’;

Process points with PROC G3GRID. SPLINE specifies the bivariate spline method for the
data set interpolation.

proc g3grid data=reflib.nums out=numspl;
grid y*x=z / spline

axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Show the contour after spline interpolation.

proc gcontour data=numspl;
plot y*x=z / haxis=axis1 vaxiss=axis1;

run;
quit;

1346 References Chapter 47

References

Akima, Hiroshi (1978), "A Method of Bivariate Interpolation and Smooth Surface
Fitting for Irregularly Distributed Data Points," ACM Transaction on Mathematical
Software, 4, 148–159.

Harder, R.L. and Desmarais, R.N. (1972), "Interpolation Using Surface Splines,"
Journal of Aircraft, 9, 189–191.

Meinguet, Jean (1979), "Multivariate Interpolation at Arbitrary Points Made
Simple," Journal of Applied Mathematics and Physics, 30, 292–304.

Ripley, B.D. (1981), Spatial Statistics, New York: John Wiley & Sons, Inc.

Wahba, Grace (1979), "How to Smooth Curves and Surfaces with Splines and
Cross-validation," in U.S. Army Research Office Report 79–2, Proceedings of the 24th
Conference on the Design of Experiments.

1347

C H A P T E R

48
The MAPIMPORT Procedure

Overview 1347

Procedure Syntax 1348
PROC MAPIMPORT Statement 1348

Examples 1349

Example 1: Including All Variables from the SHP Shapefile 1349
Example 2: Including Selected Variables from the SHP Shapefile 1350

Example 3: Excluding a Variable from the SHP Shapefile 1350

Example 4: Including Selected Variables from the DBF Shapefile 1350

Overview
The MAPIMPORT procedure enables you to import ESRI shapefiles (spatial data

formats) and process the SHP files into SAS/GRAPH traditional map data sets. See
“About Traditional Data Sets” on page 999 for more information. The shapefiles file
types are described in the following table:

Table 48.1 Shapefiles File Types

File Extension Description

.dbf identification information (field-identifier names
and values) assigned to specific polygon(s)

.shx shape information for the polygon(s) that
compose the map.

Note: These files are used with .shp
files and cannot be imported by
themselves. �

.shp combines the shape information for the
polygon(s) that compose the map and the
identification information (field-identifier names
and values) assigned to the specific polygon(s)

1348 Procedure Syntax Chapter 48

Procedure Syntax
Requirements: The name and location of an output data set and the complete path for
the input data file.
Reminder: The single quotes surrounding field identifiers are optional when the field
identifiers follow the SAS naming convention. Single quotes are required for field
identifiers that are non-standard SAS names. When field identifiers placed in single
quotes are non-standard SAS names, the field identifiers are converted to a standard
SAS name in the traditional map data set. For more information about the standard
SAS naming convention, see names in the SAS Language in SAS Language Reference:
Concepts. For more information on how invalid field identifiers placed in single quotes
are renamed, see the SAS System option VALIDVARNAME in SAS/ACCESS for
Relational Databases: Reference.

PROC MAPIMPORT
OUT= traditional-map-data-set
DATAFILE= ’path-to-shapefile’
<CONTENTS>;
<CREATE_ID_>;
<SELECT <’>field-identifier-1<’><...< ’>field-identifier-n<’>>>;
<EXCLUDE <’>field-identifier-1<’><...< ’>field-identifier-n<’>>>;
<RENAME <’>field-identifier-1<’>=SAS-variable-name-1<...< ’>field-identifier-
n<’>=SAS-variable-name-n>>;

PROC MAPIMPORT Statement

Identifies the input ESRI SHAPEFILE and converts this map into a SAS/GRAPH traditional map data
set.

Requirements: The name and location of an output data set and the complete path for
the input data file.

PROC MAPIMPORT
OUT= traditional-map-data-set
DATAFILE= ’path-to-shapefile’
<CONTENTS>;
<CREATE_ID_>;
<SELECT <’>field-identifier-1<’><...< ’>field-identifier-n<’>>>;
<EXCLUDE <’>field-identifier-1<’><...< ’>field-identifier-n<’>>>;
<RENAME <’>field-identifier-1<’>=SAS-variable-name-1<...< ’>field-identifier-
n<’>=SAS-variable-name-n>>;

Required Arguments

OUT= traditional-map-data-set
specifies the name of the traditional map data set created.

The MAPIMPORT Procedure Example 1: Including All Variables from the SHP Shapefile 1349

DATAFILE= ’path-to-shapefile’
specifies the path and filename of the shapefile that is read and processed.

Note: By default, all of the fields in a shapefile are included in the traditional map
data set. To only include specific fields in the traditional map data set, use the SELECT
statement. To exclude specific fields from being in the traditional map data set, use the
EXCLUDE statement . �

Optional Argument

CONTENTS
displays information about the SHAPEFILE, including field identifier names and
types.

CREATE_ID_
creates a map ID variable named _ID_ with a unique value for each polygon in the
map. This variable will be created automatically if the .dbf file is missing.

Optional Statements

SELECT field-identifier-n
selects only the specified fields in the SHAPEFILE to be included in the traditional
map data set.

EXCLUDE field-identifier-n
excludes the specified fields in the SHAPEFILE from being in the traditional map
data set.

RENAME field-identifier-n= SAS-variable-name-1
renames the specified fields in the traditional map data set. By default the field
identifiers in the SHAPEFILE will be the SAS variable names in the traditional map
data set.

Note: Field identifiers that are invalid SAS variable names must be placed in single
quotes. A field identifier placed in single quotes will be automatically renamed to a
valid SAS variable name using the SELECT or EXCLUDE statement. To change the
field identifier to a specific valid SAS variable name, use the RENAME statement. �

Examples
The following examples use shapefiles with the .shp and .dbf extensions. Replace the

shapefiles locations, filenames, and field-identifiers with information from your
shapefiles to run these examples.

Example 1: Including All Variables from the SHP Shapefile
In the following example,World30.shp contains polygons that compose a political

boundary world map. All the field identifiers in the World30.shp file will be included in
the traditional map data set, MYWORLD, created in the SASUSER library.

1350 Example 2: Including Selected Variables from the SHP Shapefile Chapter 48

PROC MAPIMPORT OUT=sasuser.myworld DATAFILE=’C:\world30.shp’;
run;

Example 2: Including Selected Variables from the SHP Shapefile

In the following example, the STATES.SHP file contains polygons that compose the
political boundaries of a U.S. states map. Only the STATE_FIPS (the state FIPS codes),
STATE_NAME (the state name), and STATE_ABBR (the two letter state abbreviation)
variables are included in the traditional map data set, MYSTATES, which will be
created in the SASUSER library. STATE_FIPS will be renamed FIPS, STATE_NAME
will be renamed STATE, and STATE_ABBR will be renamed ABBREV in the
MYSTATES map data set.

PROC MAPIMPORT OUT=sasuser.mystates DATAFILE=’C:\states.shp’;
SELECT STATE_FIPS STATE_NAME STATE_ABBR;
RENAME STATE_FIPS=FIPS STATE_NAME=STATE STATE_ABBR=ABBREV;

run;

Example 3: Excluding a Variable from the SHP Shapefile

In the following example, the STATES.SHP file contains polygons that compose the
political boundaries of a U.S. state map. The variable OTHER is excluded from the
traditional map data set, MYSTATES2, created in the SASUSER library.

PROC MAPIMPORT OUT=sasuser.mystates2 DATAFILE=’C:\states.shp’;
EXCLUDE OTHER;

run;

Example 4: Including Selected Variables from the DBF Shapefile

In the following example, the STATES.DBF file contains the identification
information (field-identifier names and values) applied to the U.S. states polygon map.
Only the STATE_FIPS (the state FIPS codes), STATE_NAME (the state names), and
STATE_ABBR (the two letter state abbreviations) variables are included in the
traditional map data set, MYDATA, which will be created in the SASUSER library.
STATE_FIPS will be renamed FIPS, STATE_NAME will be renamed STATE, and
STATE_ABBR will be renamed ABBREV in the MYDATA map data set.

PROC MAPIMPORT OUT=sasuser.mydata DATAFILE=’C:\states.dbf’;
SELECT STATE_FIPS STATE_NAME STATE_ABBR;
RENAME STATE_FIPS=FIPS STATE_NAME=STATE STATE_ABBR=ABBREV;

run;

1351

P A R T5

The Data Step Graphics Interface

Chapter 49.The DATA Step Graphics Interface 1353

Chapter 50.DATA Step Graphics Interface Dictionary 1401

1352

1353

C H A P T E R

49
The DATA Step Graphics
Interface

Overview 1354

Syntax 1355
Requirements 1356

Applications of the DATA Step Graphics Interface 1356

Enhancing Existing Graphs 1356
Creating Custom Graphs 1356

Using the DATA Step Graphics Interface 1357

Summary of Use 1357
Producing and Storing DSGI Graphs 1357

Structure of DSGI Data Sets 1358
Using SAS/GRAPH Global Statements with DSGI 1358

Operating States 1359

The Current Window System 1359
Debugging DSGI Programs 1360

DSGI Graphics Summary 1360

DSGI Functions 1360
DSGI Routines 1364

Creating Simple Graphics with DSGI 1367
Setting Attributes for Graphics Elements 1368

How Operating States Control the Order of DSGI Statements 1370

Functions That Change the Operating State 1370
Order of Functions and Routines 1371

Bundling Attributes 1373

Attributes That Can Be Bundled for Each Graphics Primitive 1373
Assigning Attributes to a Bundle 1374

Selecting a Bundle 1375
Defining Multiple Bundles for a Graphics Primitive 1375

How DSGI Selects the Value of an Attribute to Use 1375

Disassociating an Attribute from a Bundle 1376
Using Viewports and Windows 1376

Defining Viewports 1377

Clipping around Viewports 1377
Defining Windows 1377

Activating Transformations 1378
Inserting Existing Graphs into DSGI Graphics Output 1379

Generating Multiple Graphics Output in One DATA Step 1380

Processing DSGI Statements in Loops 1380
Examples 1381

Vertically Angling Text 1381

Changing the Reading Direction of the Text 1384
Using Viewports in DSGI 1385

1354 Overview Chapter 49

Scaling Graphs by Using Windows 1388

Enlarging an Area of a Graph by Using Windows 1391
Using GASK Routines in DSGI 1394

Generating a Drill-down Graph Using DSGI 1395

See Also 1399

Overview
The DATA Step Graphics Interface (DSGI) enables you to create graphics output

within the DATA step or from within an SCL application. Through DSGI, you can call
the graphics routines used by SAS/GRAPH software to generate an entire custom graph
or to add features to an existing graph. You can use DSGI to write a custom graphics
application in conjunction with all the power of the programming statements accessible
by the DATA step.

DSGI provides many of the same features as the Annotate facility, but it also has
many advantages over the Annotate facility.

� You can use DSGI functions and routines through SCL.
� You can save disk space. DSGI graphics can be generated through the DATA step

without creating an output data set. The graphics output is stored as a catalog
entry in the catalog you select and, optionally, is displayed after the DATA step is
submitted.

� DSGI generates graphics faster than the Annotate facility. With the Annotate
facility, you must first create a data set and then submit a PROC step to display
the graphics output. In DSGI, you eliminate the PROC step because the graphics
output is generated after the DATA step.

� DSGI supports viewports and windows, which enable you to specify the
dimensions, position, and scale of the graphics output. They also allow you to
include multiple graphs in the same graphics output.

You should consider using the Annotate facility for enhancing procedure output and
using DSGI for creating custom graphics without using a graphics procedure.

DSGI is based upon the Graphics Kernal System (GKS) standard, although it does
not follow a strict interpretation, nor is it implemented on a particular level of GKS.
GKS was used to provide a recognizable interface to the user. Because of its modularity,
the standard allows for enhancements to DSGI without the side effect of converting
programs between versions of SAS/GRAPH software.

This chapter explains the concepts used to create graphics output with DSGI. The
discussion provides an overview of the functions and routines used in DSGI. For
complete details of each function and routine, see Chapter 50, “DATA Step Graphics
Interface Dictionary,” on page 1401.

Display 49.1 on page 1355 shows a pie chart that was created entirely with DSGI
functions. Display 49.2 on page 1355 is an example of a text slide that was created with
DSGI statements.

The DATA Step Graphics Interface Syntax 1355

Display 49.1 Exploded Pie Chart Generated with the DSGI

Display 49.2 Text Slide Created Using the DSGI

Syntax
DSGI uses GASK routines and functions to draw graphics elements. These

statements have the following syntax:

CALL GASK(operator, arguments);

return-code-variable=function-name (operator, arguments);

where

arguments are the additional required variables or values for the routine or
function.

1356 Requirements Chapter 49

return-code-
variable

is an arbitrary name and can be any numeric variable name. It will
hold the return code upon execution of the function.

function-name is the DSGI command you want to execute and must be one of the
following: GDRAW, GINIT, GPRINT, GRAPH, GSET, or GTERM.

operator is a character string that names the function you either want to
submit or for which you want the current settings. When used with
functions, operator can take different values depending on
function-name.

Requirements
When using DSGI statements, the following formats for arguments must be used:
� All x and y coordinates are expressed in units of the current window system. (See

“The Current Window System” on page 1359 for details.)
� The arguments used with DSGI functions can be expressed as either constants or

variables. The arguments used with GASK routines must be variable names since
values are returned through them. See Chapter 50, “DATA Step Graphics
Interface Dictionary,” on page 1401 for a complete explanation of each argument
used with DSGI functions and routines.

� All arguments that are character constants must be enclosed in either single or
double quotation marks.

Applications of the DATA Step Graphics Interface
With the DATA Step Graphics Interface you can
� enhance existing graphs
� create custom graphs.

Enhancing Existing Graphs
You can use DSGI to enhance graphs that were previously generated by using

SAS/GRAPH procedures. You can add text and other graphics elements. You can also
alter the appearance of the existing graph by scaling or reducing it. To enhance a graph
produced by a SAS/GRAPH graphics procedure, you must insert the existing graph into
graphics output being generated with DSGI.

To insert a graph, you must provide DSGI with the following information:
� the catalog in which the existing graph is located
� the name of the existing graph
� the coordinates of the place in the graphics output where you want to insert the

existing graph
� a square coordinate system ((0,0) to (100,100))
� the statements to draw enhancements to the existing graph.

The coordinates that DSGI uses to position existing graphs, enhancements to that
graph, or graphics elements are based on units of percent of the window system
currently defined. See “Using Viewports and Windows” on page 1376.

Creating Custom Graphs
You can produce custom graphs with DSGI without using a data set to produce the

graphics output. DSGI enables you to generate

The DATA Step Graphics Interface Producing and Storing DSGI Graphs 1357

� arcs
� bars
� ellipses
� elliptical arcs
� lines
� markers
� pie slices
� polygons (filled areas)
� text.

To create custom graphs, you must provide the system with the following information:
� DSGI statements to draw graphics elements
� the coordinates of the graphics elements in the output.

In addition, you can specify the color, pattern, size, style, and position of these
graphics elements.

Using the DATA Step Graphics Interface
The following sections provide general information about using DSGI, including

general steps for using DSGI, how to produce and store graphs, how the data sets used
with DSGI are structured, how SAS/GRAPH global statements can be used with DSGI,
and how to debug DSGI programs. The sections also explain some of the basic concepts
of DSGI, including information about operating states and windowing systems.

Summary of Use
To generate graphics output using DSGI, you generally follow these steps:
1 On a grid that matches the dimensions of the graphics output, sketch the output

you want to produce.
2 Determine the coordinates of each graphics element.
3 In the DATA step, write the program to generate the graphics output. The basic

steps are to

a initialize DSGI
b open a graphics segment
c generate graphics elements
d close the graphics segment
e end DSGI.

4 Submit the DATA step with a final RUN statement to display the output.

Note: The DISPLAY graphics option must be in effect for the graphics output to be
displayed. See Chapter 8, “Graphics Options and Device Parameters Dictionary,” on
page 261 for more information about the DISPLAY graphics option. �

Producing and Storing DSGI Graphs
When you create or enhance graphs with DSGI, the DSGI graphics are displayed and

stored as part of the graphics output. When you execute the DATA step, DSGI creates a
catalog entry using the name from the GRAPH(’CLEAR’, . . .)function.

1358 Structure of DSGI Data Sets Chapter 49

By default, DSGI uses the name DSGI if you have not specified a name with the
GRAPH(’CLEAR’, . . .)function. By default, the catalog entry is stored in WORK.GSEG
unless you specify another catalog with the GSET(’CATALOG’, . . .)function.

If you generate another graph using a name that matches an existing catalog entry
in the current catalog, DSGI uses the default naming conventions for the catalog entry.
See “Names and Descriptions of Catalog Entries” on page 55 for a description of the
conventions used to name catalog entries.

If you want to store your output in a permanent library or in a different temporary
catalog, you must use the GSET(’CATALOG’, . . .)function. This function allows you to
specify the libref and catalog name for the output catalog. Before you use the
GSET(’CATALOG’, . . .)function, you must allocate the libref using a LIBNAME
statement.

You can redisplay DSGI graphics output stored in catalog entries using the
GREPLAY procedure or the GRAPH window.

Structure of DSGI Data Sets
The DSGI DATA step is usually not written to produce an output data set. Unlike

data sets created by the Annotate facility, which contain observations for each graphics
element drawn, DSGI does not usually create an observation for each graphics
primitive. Only variables created in the DATA step are written to the output data set.

You can output as many observations to the data set as you want. To output these
values, you must use the OUTPUT statement. You can also use any other valid SAS
DATA step statements in a DSGI DATA step. See SAS Language Reference: Dictionary
for information about the statements used in the DATA step.

Using SAS/GRAPH Global Statements with DSGI
You can use some SAS/GRAPH global statements with DSGI programs. DSGI

recognizes FOOTNOTE, GOPTIONS, and TITLE statements; however, it ignores AXIS,
LEGEND, NOTE, PATTERN, and SYMBOL statements.

FOOTNOTE and TITLE statements affect DSGI graphics output the same way as
they affect other SAS/GRAPH procedure output. When TITLE and FOOTNOTE
statements are used, the output from DSGI statements is placed in the procedure
output area. See “Placement of Graphic Elements in the Graphics Output Area” on page
39 for an explanation of how space in graphics output is allocated to titles and footnotes.

Some DSGI functions override the graphics options. The following table lists the
DSGI functions that directly override graphics options. For details about the graphics
options, see Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page
261.

DSGI Function
Graphics Option
That Is Overridden

GSET(’CBACK’, . . .) CBACK=

GSET(’COLREP’, . . .) COLORS=

GSET(’DEVICE’, . . .) DEVICE=

GSET(’HPOS’, . . .) HPOS=

GSET(’HSIZE’, . . .) HSIZE=

GSET(’VPOS’, . . .) VPOS=

GSET(’VSIZE’, . . .) VSIZE=

The DATA Step Graphics Interface The Current Window System 1359

DSGI Function
Graphics Option
That Is Overridden

GSET(’TEXCOLOR’, . . .) CTEXT=

GSET(’TEXFONT’, . . .) FTEXT=

GSET(’TEXHEIGHT’, . . .) HTEXT=

Operating States
The operating state of DSGI determines which functions and routines may be issued

at any point in the DATA step. You can only submit a function or routine when the
operating state is appropriate for it. See “How Operating States Control the Order of
DSGI Statements” on page 1370 for a discussion of how functions and routines should
be ordered within the operating states.

The operating states defined by DSGI are

GKCL facility closed, the initial state of DSGI. No graphical resources have
been allocated.

GKOP facility open. When DSGI is open, you may check the settings of the
attributes.

SGOP segment open. At this point, graphics output primitives may be
generated.

WSAC workstation active. When the workstation is active, it can receive
DSGI statements.

WSOP workstation open. In this implementation, the graphics catalog,
either the default or the one specified through the
GSET(’CATALOG’, . . .)command, is opened or created.

Refer to individual functions and routines in Chapter 50, “DATA Step Graphics
Interface Dictionary,” on page 1401 for the operating states from which that function or
routine can be issued.

The Current Window System
When DSGI draws graphics, it evaluates x and y coordinates in terms of the current

window system, either a window you have defined or the default window system. Unless
you define and activate a different window, DSGI uses the default window system.

The default window system assigns two arbitrary systems of units to the x and y
axes. The default window guarantees a range of 0 through 100 in one direction (usually
the y direction) and at least 0 through 100 in the other (usually the x direction). The
ranges depend on the dimensions of your device. You can use the GASK(’WINDOW’, . .
.)routine to determine the dimensions of your default window system.

You can define the x and y ranges to be any numeric range. For example, you can use
− 1000 to +2000 on the x axis and 30 to 35 on the y axis. The units used are arbitrary.

1360 Debugging DSGI Programs Chapter 49

Debugging DSGI Programs
When DSGI encounters an error in a program, it flags the statement in the SAS log

and displays a description of the error. (To receive SAS System messages,
GSET(’MESSAGE’, . . .)must be ON.) The description provides you with an
explanation of the error. The description may also provide a return code. If you get a
return code, you can refer to “Return Codes for DSGI Routines and Functions” on page
1501 for a description of the error and why it might have occurred.

Some of the most common errors in DSGI programs are

� syntax errors

� an invalid number of arguments for the function or routine

� a function or routine being executed in an operating state that is not correct for
the function or routine.

DSGI Graphics Summary

The following sections summarize the functions and routines you can use to create
graphics output with DSGI.

DSGI Functions
DSGI provides functions that

� initialize and terminate DSGI

� generate graphics elements

� control the appearance of graphics elements by setting attributes

� control the overall appearance of the graphics output

� perform management operations for the catalog

� control messages issued by DSGI.

Table 49.1 on page 1360 summarizes the types of operations available and the
functions used to invoke them. Refer to Chapter 50, “DATA Step Graphics Interface
Dictionary,” on page 1401 for details about each function.

Table 49.1 DATA Step Graphics Interface Functions

DSGI
Operations Associated Function

Function
Description

Bundling Attributes (valid values for xxx are FIL, LIN,
MAR, and TEX)

GSET(’ASF’, . . .) sets the aspect
source flag of an
attribute

GSET(’xxxINDEX’, . . .) selects the bundle
of attributes to use

GSET(’xxxREP’, . . .) assigns attributes
to a bundle

Setting Attributes That Affect Graphics Elements

The DATA Step Graphics Interface DSGI Functions 1361

DSGI
Operations Associated Function

Function
Description

color index GSET(’COLREF’), . . .) assigns a color
name to color index

fill area GSET(’FILCOLOR’, . . .) selects the color of
the fill area

GSET(’FILSTYLE’, . . .) selects the pattern
when FILTYPE is
HATCH or
PATTERN

GSET(’FILTYPE’, . . .) specifies the type of
interior for the fill
area

GSET(’HTML’, . . .) specifies the HTML
string to invoke
when an affected
DSGI graphic
element in a web
page is clicked

line GSET(’LINCOLOR’, . . .) selects the color of
the line

GSET(’LINTYPE’, . . .) sets the type of line

GSET(’LINWIDTH’, . . .) specifies the width
of the line

marker GSET(’MARCOLOR’, . . .) selects the color of
the marker

GSET(’MARSIZE’, . . .) determines the size
of the marker

GSET(’MARTYPE’, . . .) sets the type of
marker drawn

text GSET(’TEXALIGN’, . . .) specifies horizontal
and vertical
alignment of text

GSET(’TEXCOLOR’, . . .) selects the color of
the text

GSET(’TEXFONT’, . . .) sets the font for the
text

GSET(’TEXHEIGHT’, . . .) selects the height of
the text

GSET(’TEXPATH’, . . .) determines reading
direction of text

GSET(’TEXUP’, . . .) selects the angle of
text

Setting Attributes That Affect Entire Graph

GSET(’ASPECT’, . . .) sets the aspect ratio

1362 DSGI Functions Chapter 49

DSGI
Operations Associated Function

Function
Description

GSET(’CATALOG’, . . .) selects the catalog
to use

GSET(’CBACK’, . . .) selects the
background color

GSET(’DEVICE’, . . .) specifies the output
device

GSET(’HPOS’, . . .) sets the number of
columns in the
graphics output
area

GSET(’HSIZE’, . . .) sets the width of
the graphics output
area in units of
inches

GSET(’VPOS’, . . .) sets the number of
rows in the
graphics output
area

GSET(’VSIZE’, . . .) sets the height of
the graphics output
area in units of
inches

Managing Catalogs

GRAPH(’COPY’, . . .) copies a graph to
another entry
within the same
catalog

GRAPH(’DELETE’, . . .) deletes a graph

GRAPH(’INSERT’, . . .) inserts a previously
created graph into
the currently open
segment

GRAPH(’RENAME’, . . .) renames a graph

Drawing Graphics Elements

arc GDRAW(’ARC’, . . .) draws a circular arc

bar GDRAW(’BAR’, . . .) draws a rectangle
that can be filled

ellipse GDRAW(’ELLIPSE’, . . .) draws an oblong
circle that can be
filled

elliptical arc GDRAW(’ELLARC’, . . .) draws an elliptical
arc

fill area GDRAW(’FILL’, . . .) draws a polygon
that can be filled

The DATA Step Graphics Interface DSGI Functions 1363

DSGI
Operations Associated Function

Function
Description

line GDRAW(’LINE’, . . .) draws a single line,
a series of
connected lines, or
a dot

marker GDRAW(’MARK’, . . .) draws one or more
symbols

pie GDRAW(’PIE’, . . .) draws a pie slice
that can be filled

text GDRAW(’TEXT’, . . .) draws a character
string

Initializing DSGI

GINIT() initializes DSGI

GRAPH(’CLEAR’, . . .) opens a segment to
receive graphics
primitives

Handling Messages

GDRAW(’MESSAGE’, . . .) prints a message in
the SAS log

GPRINT(code) prints the
description of a
DSGI error code

GSET(’MESSAGE’, . . .) turns message
logging on or off

Ending DSGI

GRAPH(’UPDATE’, . . .) closes the currently
open segment and,
optionally, displays
it

GTERM() ends DSGI

Activating Transformations

GET(’TRANSNO’, . . .) selects the
transformation
number of the
viewport or window
to use

Defining Viewports

GSET(’CLIP’, . . .) turns clipping on or
off

GSET(’VIEWPORT’, . . .) sets the coordinates
of the viewport and
assigns it a
transformation
number

1364 DSGI Routines Chapter 49

DSGI
Operations Associated Function

Function
Description

Defining Windows

GSET(’WINDOW’, . . .) sets the coordinates
of the window and
assigns it a
transformation
number

DSGI Routines
DSGI routines return the values set by some of the DSGI functions. Table 49.2 on

page 1364 summarizes the types of values that the GASK routines can check. Refer to
Chapter 50, “DATA Step Graphics Interface Dictionary,” on page 1401 for details about
each routine.

Table 49.2 DATA Step Graphics Interface Routines

DSGI
Operations Associated Routine Routine Description

Checking Attribute Bundles (valid values for xxx are FIL,
LIN, MAR, and TEX)

GASK(’ASK’, . . .) returns the aspect
source flag of the
attribute

GASK(’xxxINDEX’, . . .) returns the index of the
active bundle

GASK(’xxxREP’, . . .) returns the attributes
assigned to the bundle

Checking Attribute Settings

color index GASK(’COLINDEX’, . . .) returns the color indices
that currently have
colors assigned to them

GASK(’COLREP’, . . .) returns the color name
assigned to the color
index

fill area GASK(’FILCOLOR’, . . .) returns the color of the
fill area

GASK(’FILSTYLE’, . . .) returns the index of the
pattern when the
FILTYPE is HATCH or
PATTERN

GASK(’FILTYPE’, . . .) returns the index of the
type of interior

The DATA Step Graphics Interface DSGI Routines 1365

DSGI
Operations Associated Routine Routine Description

GASK(’HTML’, . . .) finds the HTML string
that is in effect when
one of the following
graphic elements is
drawn: bar, ellipse, fill,
mark, pie, and text.

line GASK(’LINCOLOR’, . . .) returns the color index
of the color of the line

GASK(’LINTYPE’, . . .) returns the index of the
type of line

GASK(’LINWIDTH’, . . .) returns the width of the
line

marker GASK(’MARCOLOR’, . . .) returns the color index
of the color of markers

GASK(’MARSIZE’, . . .) returns the size of
markers

GASK(’MARTYPE’, . . .) returns the index of the
type of marker drawn

text GASK(’TEXALIGN’, . . .) returns the horizontal
and vertical alignment
of text

GASK(’TEXCOLOR’, . . .) returns the color index
of the color of text

GASK(’TEXEXTENT’, . . .) returns the coordinates
of text extent rectangle
and the text
concatenation point of
the character string

GASK(’TEXFONT’, . . .) returns the text font

GASK(’TEXHEIGHT’, . . .) returns the height of
text

GASK(’TEXPATH’, . . .) returns the reading
direction of text

GASK(’TEXUP’, . . .) returns the character up
vector in x vector and y
vector

Checking Attributes That Affect Entire Graph

GASK(’ASPECT’, . . .) returns the aspect ratio

GASK(’CATALOG’, . . .) returns the current
catalog

GASK(’CBACK’, . . .) returns the background
color

GASK(’DEVICE’, . . .) returns the current
output device

1366 DSGI Routines Chapter 49

DSGI
Operations Associated Routine Routine Description

GASK(’HPOS’, . . .) returns the number of
columns in the graphics
output area

GASK(’HSIZE’, . . .) returns the width of the
graphics output area in
units of inches

GASK(’MAXDISP’, . . .) returns the dimensions
of maximum display
area for the device in
meters and pixels

GASK(’VPOS’, . . .) returns the number of
rows in the graphics
output area

GASK(’VSIZE’, . . .) returns the height of the
graphics output area in
units of inches

Querying Catalogs

GASK(’GRAPHLIST’, . . .) returns the names of
graphs in the current
catalog

GASK(’NUMGRAPH’, . . .) returns the number of
graphs in the current
catalog

GASK(’OPENGRAPH’, . . .) returns the name of the
currently open graph

Checking System Status

GASK(’STATE’, . . .) returns the current
operating state

GASK(’WSACTIVE’, . . .) returns whether or not
the workstation is active

GASK(’WSOPEN’, . . .) returns whether or not
the workstation is open

Checking Transformation Definitions

GASK(’TRANS’, . . .) returns the coordinates
of the viewport and
window associated with
the transformation

GASK(’TRANSNO’, . . .) returns the active
transformation number

Checking Viewport Definitions

GASK(’CLIP’, . . .) returns the status of
clipping

The DATA Step Graphics Interface Creating Simple Graphics with DSGI 1367

DSGI
Operations Associated Routine Routine Description

GASK(’VIEWPORT’, . . .) returns the coordinates
of the viewport assigned
to the transformation
number

Checking Window Definitions

GASK(’WINDOW’, . . .) returns the coordinates
of the window assigned
to the transformation
number

Creating Simple Graphics with DSGI
Within any DSGI program, you need to follow these basic steps:
1 Initialize DSGI.

The function that initializes DSGI is GINIT(). GINIT() loads the graphics
sublibrary, opens a workstation, and activates a workstation.

2 Open a graphics segment.
Before you can submit graphics primitives, you must submit the

GRAPH(’CLEAR’, . . .) function. GRAPH(’CLEAR’, . . .) opens a graphic segment
so that graphics primitives can be submitted.

3 Generate graphics elements.
DSGI can generate arcs, bars, ellipses, elliptical arcs, lines, markers, pie slices,

polygons (fill areas), and text. These graphics elements are all produced with the
GDRAW function using their associated operator names.

GDRAW functions can only be submitted when a graphics segment is open.
Therefore, they must be submitted between the GRAPH(’CLEAR’, . . .) and
GRAPH(’UPDATE’, . . .) functions.

4 Close the graphics segment.
Once the attribute and graphics statements have been entered, you must

submit statements to close the graphics segment and output the graph. The
GRAPH(’UPDATE’, . . .) function closes the graphic segment currently open and,
optionally, displays the graphics output.

5 End DSGI.
The GTERM() function ends DSGI by deactivating and closing the workstation,

and closing the graphics sublibrary. It frees any memory allocated by DSGI.
Note: You must execute a RUN statement at the end of the DATA step to

display the output.

Figure 49.1 on page 1368 outlines the basic steps and shows the functions used to
initiate steps 1, 2, 4, and 5. Step 3 can consist of many types of functions. The
GDRAW(’LINE’, . . .)function is used as an example.

1368 Creating Simple Graphics with DSGI Chapter 49

Figure 49.1 Basic Steps Used in Creating DSGI Graphics Output

Notice that there are two pairs of functions that work together within a DSGI DATA
step (shown by a and b in Figure 49.1 on page 1368). The first pair, GINIT() and
GTERM(), begin and end DSGI. Within the first pair, the second pair, GRAPH(’CLEAR’,
. . .)and GRAPH(’UPDATE’, . . .)begin and end a graphics segment. You can repeat
these pairs within a single DATA step to produce multiple graphics output; however,
the relative positions of these functions must be maintained within a DATA step. See
“Generating Multiple Graphics Output in One DATA Step” on page 1380 for more
information about producing multiple graphics outputs from one DATA step.

The order of these steps is controlled by DSGI operating states. Before any DSGI
function or routine can be submitted, the operating state in which that function or
routine can be submitted must be active. See “How Operating States Control the Order
of DSGI Statements” on page 1370.

Setting Attributes for Graphics Elements
The appearance of the graphics elements is determined by the settings of the

attributes. Attributes control such aspects as height of text; text font; and color, size,
and width of the graphics element. In addition, the HTML attribute determines
whether the element provides a link to another graphic or web page. Attributes are set
and reset with GSET functions. GASK routines return the current setting of the
attribute specified.

Each graphics primitive is associated with a particular set of attributes. Its
appearance or linking capability can only be altered by that set of attributes. Table 49.3
on page 1369 lists the operators used with GDRAW functions to generate graphics
elements and the attributes that control them.

The DATA Step Graphics Interface Creating Simple Graphics with DSGI 1369

Table 49.3 Graphics Output Primitive Functions and Associated Attributes

Graphics
Output
Primitive Functions Associated Attributes

Arc GDRAW(’ARC’, . . .) HTML, LINCOLOR,
LININDEX, LINREP,
LINTYPE,
LINWIDTH

Bar GDRAW(’BAR’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Ellipse GDRAW(’ELLIPSE’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Elliptical Arc GDRAW(’ELLARC’, . . .) HTML, LINCOLOR,
LININDEX, LINREP,
LINTYPE,
LINWIDTH

Fill Area GDRAW(’FILL’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Line GDRAW(’LINE’, . . .) HTML, LINCOLOR,
LININDEX, LINREP,
LINTYPE,
LINWIDTH

Marker GDRAW(’MARK’, . . .) HTML, MARCOLOR,
MARINDEX,
MARREP, MARSIZE,
MARTYPE

Pie GDRAW(’PIE’, . . .) FILCOLOR,
FILINDEX, FILREP,
FILSTYLE,
FILTYPE, HTML

Text GDRAW(’TEXT’, . . .) HTML, TEXALIGN,
TEXCOLOR,
TEXFONT,
TEXHEIGHT,
TEXINDEX,
TEXPATH, TEXREP,
TEXUP

Attribute functions must precede the graphics primitive they control. Once an
attribute is set, it controls any associated graphics primitives that follow. If you want to
change the setting, you can issue another GSET(attribute, . . .)function with the new
setting.

1370 Creating Simple Graphics with DSGI Chapter 49

If you do not set an attribute before you submit a graphics primitive, DSGI uses the
default value for the attribute. Refer to Chapter 50, “DATA Step Graphics Interface
Dictionary,” on page 1401 for the default values used for each attribute.

How Operating States Control the Order of DSGI Statements
Each DSGI function and routine can only be submitted when certain operating states

are active. This restriction affects the order of functions and routines within the DATA
step. Generally, the operating states within a DATA step follow this order:

GKCL WSAC SGOP WSAC GKCL

Functions That Change the Operating State
The functions described earlier in steps 1, 2, 4, and 5 actually control the changes to

the operating state. For example, the GINIT() function must be submitted when the
operating state is GKCL, the initial state of DSGI. GINIT() then changes the operating
state to WSAC. The GRAPH(’CLEAR’, . . .)function must be submitted when the
operating state is WSAC and before any graphics primitives are submitted. The reason
it precedes graphics primitives is that it changes the operating state to SGOP, the
operating state in which you can submit graphics primitives. The following list shows
the change in the operating state due to specific functions:

GINIT() GKCL � WSAC

GRAPH(’CLEAR’, . . .) WSAC � SGOP

GRAPH(’UPDATE’, . . .) SGOP � WSAC

GTERM() WSAC � GKCL

Because these functions change the operating state, you must order all other
functions and routines so that the change in operating state is appropriate for the
functions and routines that follow. The following program statements show how the
operating state changes from step to step in a typical DSGI program. They also
summarize the functions and routines that can be submitted under each operating
state. The functions that change the operating state are included as actual statements.
Refer to “Operating States” on page 1402 for the operating states from which functions
and routines can be submitted.

data dsname;

/* GKCL - initial state of DSGI; can execute: */
/* 1. GSET functions that set attributes */
/* that affect the entire graphics output */
/* 2. some catalog management functions */
/* (some GRAPH functions) */

/* Step 1 - initialize DSGI */
rc=ginit();

/* WSAC - workstation is active; can execute: */
/* 1. most GASK routines */
/* 2. some catalog management functions */
/* (some GRAPH functions) */

The DATA Step Graphics Interface Creating Simple Graphics with DSGI 1371

/* 3. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 2 - open a graphics segment */
rc=graph(’clear’, ’text’);

/* SGOP - segment open; can execute: */
/* 1. any GASK routine */
/* 2. any GDRAW function */
/* 3. some catalog management functions */
/* (some GRAPH functions) */
/* 4. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 3 - execute graphics primitives */
rc = gdraw(’line’, 2, 30,50,50,50);

/* Step 4 - close the graphics segment */
rc=graph(’update’);

/* WSAC - workstation is active; can execute: */
/* 1. most GASK routines */
/* 2. some catalog management functions */
/* (some GRAPH functions) */
/* 3. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 5 - end DSGI */
rc=gterm();

/* GKCL - initial state of DSGI */
run;

Order of Functions and Routines

Functions and routines within each operating state can technically be submitted in
any order; however, once an attribute is set, it remains in effect until the end of the
DATA step or until you change its value. If you are producing multiple graphics output
within the same DATA step, the attributes for one output affect the ones that follow.
Attributes are not reset until after the GTERM() function is submitted.

Notice that you can set attributes for the graphics primitives in several places. As
long as the functions that set the attributes are executed before the graphics primitives,
they will affect the graphics output. If you execute them after a graphics primitive, the
primitive is not affected. See “Setting Attributes for Graphics Elements” on page 1368.

The following program statements illustrate a more complex DSGI program that
produces Display 49.3 on page 1373 when submitted. Notice that all attributes for a
graphics primitive are executed before the graphics primitive. In addition, the GINIT()
and GTERM() pairing and the GRAPH(’CLEAR’) and GRAPH(’UPDATE’) pairing are
maintained within the DATA step. Refer to “Operating States” on page 1402 for the
operating states in which each function and routine can be submitted.

1372 Creating Simple Graphics with DSGI Chapter 49

/* set the graphics environment */
goptions reset=global gunit=pct border

hsize=7 in vsize=5 in
targetdevice=pscolor;

/* execute a DATA step with DSGI */
data dsname;

/* initialize SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* assign colors to color index */
rc=gset(’colrep’, 1, ’blue’);
rc=gset(’colrep’, 2, ’red’);

/* define and display titles */
rc=gset(’texcolor’, 1);
rc=gset(’texfont’, ’swissb’);
rc=gset(’texheight’, 6);
rc=gdraw(’text’, 45, 93, ’Simple Graphics Output’);

/* change the height and */
/* display second title */

rc=gset(’texheight’, 4);
rc=gdraw(’text’, 58, 85, ’Created with DSGI’);

/* define and display footnotes */
/* using same text font and */
/* color as defined for titles */

rc=gset(’texheight’, 3);
rc=gdraw(’text’, 125, 1, ’GDSORDER ’);

/* define and draw bar */
rc=gset(’lincolor’, 2);
rc=gset(’linwidth’, 5);
rc=gdraw(’line’, 2, 72, 72, 30, 70);
rc=gdraw(’line’, 2, 52, 92, 50, 50);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

The DATA Step Graphics Interface Bundling Attributes 1373

Display 49.3 Simple Graphics Output Generated with DSGI

Bundling Attributes
DSGI allows you to bundle attributes. As a result, you can select a group of attribute

values rather than having to select each one individually. This feature is useful if you
use the same attribute settings over and over within the same DATA step.

To use an attribute bundle, you assign the values of the attributes to a bundle index.
When you want to use those attributes for a graphics primitive, you select the bundle
rather than set each attribute separately.

Attributes That Can Be Bundled for Each Graphics Primitive
Each graphics primitive has a group of attributes associated with it that can be

bundled. Only the attributes in that group can be assigned to the bundle. Table 49.4 on
page 1373 shows the attributes that can be bundled for each graphics primitive.

Note: You do not have to use attribute bundles for all graphics primitives if you use
a bundle for one. You can define bundles for some graphics primitives and set the
attributes individually for others. �

However, if the other graphics primitives are associated with the same attributes you
have bundled and you do not want to use the same values, you can use other bundles to
set the attributes, or you can set the attributes back to ’INDIVIDUAL’.

Table 49.4 Attributes That Can Be Bundled for Each Graphics Primitive

Graphics Output Primitive
Associated Attributes
That Can Be Bundled

GDRAW(’ARC’, . . .) LINCOLOR, LINTYPE,
LINWIDTH

GDRAW(’BAR’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’ELLARC’, . . .) LINCOLOR, LINTYPE,
LINWIDTH

1374 Bundling Attributes Chapter 49

Graphics Output Primitive
Associated Attributes
That Can Be Bundled

GDRAW(’ELLIPSE’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’FILL’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’LINE’, . . .) LINCOLOR, LINTYPE,
LINWIDTH

GDRAW(’MARK’, . . .) MARCOLOR,
MARSIZE, MARTYPE

GDRAW(’PIE’, . . .) FILCOLOR, FILSTYLE,
FILTYPE

GDRAW(’TEXT’, . . .) TEXCOLOR, TEXFONT

Assigning Attributes to a Bundle
To assign values of attributes to a bundle, you must
� assign the values to a numeric bundle index with the GSET(’xxx REP’, . . .

)function. Each set of attributes that can be bundled uses a separate GSET(’xxx
REP’, . . .)function, where xxx is the appropriate prefix for the set of attributes to
be bundled. Valid values for xxx are FIL, LIN, MAR, and TEX.

� set the aspect source flag (ASF) of the attributes to ’BUNDLED’ before you use the
bundled attributes. You can use the GSET(’ASF’, . . .)function to set the ASF of
an attribute. You need to execute a GSET(’ASF’, . . .)function for each attribute
in the bundle.

The following example assigns the text attributes, color, and font, to the bundle
indexed by the number 1. As shown in the GSET(’TEXREP’, . . .)function, the color for
the bundle is green, the second color in the COLOR= graphics option. The font for the
bundle is the ’ZAPF’ font. (See “COLREP” on page 1467 for an explanation of how
colors are used in DSGI.)

goptions colors=(red green blue);

data dsname;
.
. /* other DATA step statements */
.

/* associate the bundle with the index 1 */
rc=gset(’texrep’, 1, 2, ’zapf’);

.

. /* more statements */

.
/* assign the text attributes to a bundle */

rc=gset(’asf’, ’texcolor’, ’bundled’);
rc=gset(’asf’, ’texfont’, ’bundled’);

/* draw the text */
rc=gdraw(’text’, 50, 50, ’Today is the day.’);

The bundled attributes are used when an associated GDRAW function is executed. If
the ASF of an attribute is not set to ’BUNDLED’ at the time a GDRAW function is
executed, DSGI searches for a value to use in the following order:

The DATA Step Graphics Interface Bundling Attributes 1375

1 the current value of the attribute
2 the default value of the attribute.

Selecting a Bundle
Once you have issued the GSET(’ASF’, . . .)and GSET(’xxx REP’, . . .)functions, you

can issue the GSET(’xxx INDEX’, . . .)function to select the bundle. The following
statement selects the bundle defined in the previous example:

/* invoke the bundle of text attributes */
rc=gset(’texindex’, 1);

The 1 in this example corresponds to the index number specified in the
GSET(’TEXREP’, . . .)function.

Defining Multiple Bundles for a Graphics Primitive
You can set up more than one bundle for graphics primitives by issuing another

GSET(’xxx REP’, . . .)function with a different index number. If you wanted to add a
second attribute bundle for text to the previous example, you could issue the following
statement:

/* define another attribute bundle for text */
rc=gset(’texrep’, 2, 3, ’swiss’);

When you activate the second bundle, the graphics primitives for the text that
follows will use the third color, blue, and the SWISS font.

Note: When using a new bundle, you do not need to reissue the GSET(’ASF’, . . .)
functions for the attributes that will be bundled. Once the ASF of an attribute has been
set, the setting remains in effect until it is changed. �

How DSGI Selects the Value of an Attribute to Use
Attributes that are bundled override any of the same attributes that are individually

set. For example, you assign the line color green, the type 1, and the width 5 to a line
bundle with the following statements:

goptions colors=(red green blue);
rc=gset(’asf’, ’lincolor’, ’bundled’);
rc=gset(’asf’, ’linwidth’, ’bundled’);
rc=gset(’asf’, ’lintype’, ’bundled’);
rc=gset(’linrep’, 3, 2, 5, 1);

In subsequent statements, you activate the bundle, select other attributes for the
line, and then draw a line:

/* activate the bundle */
rc=gset(’linindex’, 3);

/* select other attributes for the line */
rc=gset(’lincolor’, 3);
rc=gset(’linwidth’, 10);
rc=gset(’lintype’, 4);

/* draw a line from point (30,50) to (70,50) */
rc=gdraw(’line’, 2, 30, 70, 50, 50);

The color, type, and width associated with the line bundle are used rather than the
attributes set just before the GDRAW(’LINE’, . . .)function was executed. The line that

1376 Using Viewports and Windows Chapter 49

is drawn is green (the second color from the colors list of the COLORS= graphics
option), 5 units wide, and solid (line type 1).

During processing, DSGI chooses the value of an attribute using the following logic:

1 Get the index of the active line bundle.

2 Check the ASF of the LINCOLOR attribute. If the ASF is ’INDIVIDUAL’, the
value selected with GSET(’LINCOLOR’, . . .) is used; otherwise, the LINCOLOR
associated with the bundle index is used.

3 Check the ASF of the LINTYPE attribute. If the ASF is ’INDIVIDUAL’, the value
selected with GSET(’LINTYPE’, . . .) is used; otherwise, the LINTYPE associated
with the bundle index is used.

4 Check the ASF of the LINWIDTH attribute. If the ASF is ’INDIVIDUAL’, the
value selected with GSET(’LINWIDTH’, . . .) is used; otherwise, the LINWIDTH
associated with the bundle index is used.

5 Draw the line using the appropriate color, type, and width for the line.

Disassociating an Attribute from a Bundle
To disassociate an attribute from a bundle, use the GSET(’ASF’, . . .)function to

reset the ASF of the attribute to ’INDIVIDUAL’. The following program statements
demonstrate how to disassociate the attributes from the text bundle:

/* disassociate an attribute from a bundle */
rc=gset(’asf’, ’texcolor’, ’individual’);
rc=gset(’asf’, ’texfont’, ’individual’);

Using Viewports and Windows
In DSGI, you can define viewports and windows. Viewports enable you to subdivide

the graphics output area and insert existing graphs or draw graphics elements in
smaller sections of the graphics output area. Windows define the coordinate system
within a viewport and enable you to scale the graph or graphics elements drawn within
the viewport.

The default viewport is defined as (0,0) to (1,1) with 1 being 100 percent of the
graphics output area. If you do not define a viewport, graphics elements or graphs are
drawn using the default.

The default window is defined so that a rectangle drawn from window coordinates
(0,0) to (100,100) is square and fills the display in one dimension. The actual
dimensions of the default window are device dependent. Use the
GASK(’WINDOW’, . . .) routine to find the exact dimensions of your default window.
You can define a window without defining a viewport. The coordinate system of the
window is used with the default viewport.

If you define a viewport, you can position it anywhere in the graphics output area.
You can define multiple viewports within the graphics output area so that more than
one existing graph, part of a graph, or more than one graphics element can be inserted
into the graphics output.

Transformations activate both a viewport and the associated window. DSGI
maintains 21 (0 through 20) transformations. By default, transformation 0 is active.
Transformation 0 always uses the entire graphics output area for the viewport and
maps the window coordinates to fill the viewport. The definition of the viewport and
window of transformation 0 may not be changed.

By default, the viewports and windows of all the other transformations (1 through
20) are set to the defaults for viewports and windows. If you want to define a different
viewport or window, you must select a transformation number between 1 and 20.

The DATA Step Graphics Interface Using Viewports and Windows 1377

You generally follow these steps when defining viewports or windows:

� Define the viewport or window.

� Activate the transformation so that the viewport or window is used for the output.

These steps can be submitted in any order; however, if you use a transformation you
have not defined, the default viewport and window are used. Once you activate a
transformation, the graphics elements drawn by the subsequent DSGI functions are
drawn in the viewport and window associated with that transformation.

Defining Viewports
You can define a viewport with the GSET(’VIEWPORT’, n, . . .)function, where n is

the transformation number of the viewport you are defining. You can also use this
function to define multiple viewports, each containing a portion of the graphics output
area. You can then place a separate graph, part of a graph, or graphics elements within
each viewport.

The following program statements divide the graphics output area into four subareas:

/* define the first viewport, indexed by 1 */
rc=gset(’viewport’, 1, .05, .05, .45, .45);

/* define the second viewport, indexed by 2 */
rc=gset(’viewport’, 2, .55, .05, .95, .45);

/* define the third viewport, indexed by 3 */
rc=gset(’viewport’, 3, .55, .55, .95, .95);

/* define the fourth viewport, indexed by 4 */
rc=gset(’viewport’, 4, .05, .55, .45, .95);

Once you define the viewports, you can insert existing graphs or draw graphics
elements in each viewport by activating the transformation of that viewport.

Clipping around Viewports
When you use viewports, you also may need to use the clipping feature. Even though

you have defined the dimensions of your viewport, it is possible for graphics elements to
display past its boundaries. If the graphics elements are too large to fit into the
dimensions you have defined, portions of the graphics elements actually display outside
of the viewport. To ensure that only the portions of the graphics elements that fit
within the dimensions of the viewport display, turn the clipping feature on by using the
GSET(’CLIP’, . . .)function. For details, see “CLIP” on page 1467.

Defining Windows
You can define a window by using the GSET(’WINDOW’,n, . . .)function, where n is

the transformation number of the window you are defining. If you are defining a
window for a viewport you have also defined, n must match the transformation number
of the viewport.

You can scale the x and y axes differently for a window. The following program
statements scale the axes for each of the four viewports defined earlier in "Defining
Viewpoints":

/* define the window for viewport 1 */
rc=gset(’window’, 1, 0, 50, 20, 100);

1378 Using Viewports and Windows Chapter 49

/* define the window for viewport 2 */
rc=gset(’window’, 2, 0, 40, 20, 90);

/* define the window for viewport 3 */
rc=gset(’window’, 3, 10, 25, 45, 100);

/* define the window for viewport 4 */
rc=gset(’window’, 4, 0, 0, 100, 100);

See “Scaling Graphs by Using Windows” on page 1388 for an example of using
windows to scale graphs.

Note: When you define a window for a viewport, the transformation numbers in the
GSET(’VIEWPORT’, . . .)and GSET(’WINDOW’, . . .)functions must match in order
for DSGI to activate them simultaneously. �

Activating Transformations
Once you have defined a viewport or window, you must activate the transformation

in order for DSGI to use the viewport or window. To activate the transformation, use
the GSET(’TRANSNO’,n, . . .)function where n has the same value as n in
GSET(’VIEWPORT’,n, . . .)or GSET(’WINDOW’,n, . . .).

The following program statements illustrate how to activate the viewports and
windows defined in the previous examples:

/* define the viewports */
.
.
.
/* define the windows */
.
.
.
/* activate the first transformation */

gset(’transno’, 1);
.
. /* graphics primitive functions follow */
.

/* activate the second transformation */
gset(’transno’, 2);
.
. /* graphics primitive functions follow */
.

/* activate the third transformation */
gset(’transno’, 3);
.
. /* graphics primitive functions follow */
.

/* activate the fourth transformation */
gset(’transno’, 4);
.
. /* graphics primitive functions follow */
.

When you activate these transformations, your display is logically divided into four
subareas as shown in Figure 49.2 on page 1379.

The DATA Step Graphics Interface Inserting Existing Graphs into DSGI Graphics Output 1379

Figure 49.2 Graphics Output Area Divided into Four Logical Transformations

If you want to use the default viewport and window after selecting different ones,
execute the GSET(’TRANSNO’, 0) function to reselect the default transformation for
DSGI.

Inserting Existing Graphs into DSGI Graphics Output
You can insert existing graphs into graphics output you are creating. The graph you

insert must be in the same catalog in which you are currently working. Follow these
steps to insert an existing graph:

1 Use the GSET(’CATALOG’, . . .)function to set the output catalog to the catalog
that contains the existing graph.

Note: Unless you are using the WORK library, you must have previously
defined the libref in a LIBNAME statement or window when using
GSET(’CATALOG’, . . .). �

2 Define a viewport with the dimensions and position of the place in the graphics
output where you want to insert the existing graph. GSET(’VIEWPORT’,n, . . .)
defines a viewport and GSET(’WINDOW’,n, . . .)defines a window.

3 Define a window as (0,0) to (100,100) so that the inserted graph is not distorted.
The graph must have a square area defined to avoid the distortion. If your device
does not have a square graphics output area, the window defaults to the units of
the device rather than (0,0) to (100,100) and may distort the graph.

4 Activate the transformation number n, as defined in the viewport function, and
possibly in the window function, using GSET(’TRANSNO’, n, . . .).

5 Use the GRAPH(’INSERT’, . . .)function with the name of the existing graph.

The following program statements provide an example of including an existing graph
in the graphics output being created. The name of the existing graph is ’MAP’. ’LOCAL’
points to the library containing the catalog ’MAPCTLG’. The coordinates of the viewport
are percentages of the graphics output area. SAS-data-library refers to a permanent
SAS data library.

Example Code 49.1 Graphics Output Area Divided into Four Logical Transformations

libname local ’SAS-data-library’;

1380 Generating Multiple Graphics Output in One DATA Step Chapter 49

.

.

.
/* select the output catalog to the */
/* catalog that contains ’map’ */

rc=gset(’catalog’, ’local’, ’mapctlg’);
.
.
.

/* define the viewport to contain the */
/* existing graph */

rc=gset(’viewport’, 1, .25, .45, .75, .9);
rc=gset(’window’, 1, 0, 0, 100, 100);

/* set the transformation number to the one */
/* defined in the viewport function */

rc=gset(’transno’, 1);

/* insert the existing graph */
rc=graph(’insert’, ’map’);

These statements put the existing graph ’MAP’ in the upper half of the graphics
output.

Generating Multiple Graphics Output in One DATA Step
You can produce more than one graphics output within the same DATA step. All

statements between the GRAPH(’CLEAR’, . . .)and GRAPH(’UPDATE’, . . .)functions
will produce one graphics output.

Each time the GRAPH(’UPDATE’, . . .)function is executed, a graph is displayed.
After the GTERM() function is executed, no more graphs are displayed for the DATA
step. The GINIT() function must be executed again to produce more graphs.

CAUTION:
Be careful using global SAS/GRAPH statements when you are producing multiple output
from within the DATA step. �

If you use global SAS/GRAPH statements when producing multiple output from one
DATA step, the last definition of the statements is used for all displays.

Processing DSGI Statements in Loops
You can process DSGI statements in loops to draw a graphics element multiple times

in one graphics output or to produce multiple output. If you use loops, you must
maintain the GRAPH(’CLEAR’, . . .)and GRAPH(’UPDATE’, . . .)pairing within the
GINIT() and GTERM() pairing. (See Figure 49.1 on page 1368.) The following program
statements illustrate how you can use DSGI statements to produce multiple graphics
output for different output devices:

data _null_;
length d1-d5 $ 8;
input d1-d5;
array devices{5} d1-d5;

The DATA Step Graphics Interface Examples 1381

.

.

.
do j=1 to 5;

rc=gset(’device’, devices{j});
.
.
.
rc=ginit();
.
.
.
do i=1 to 5;

rc=graph(’clear’);
rc=gset(’filcolor’, i);
rc=gdraw(’bar’, 45, 45, 65, 65);
rc=graph(’update’);

end;
.
.
.
rc=gterm();

end;
cards;

tek4105 hp7475 ps qms800 ibm3279
;
run;

The inner loop produces five graphs for each device. Each graphics output produced
by the inner loop consists of a bar. The bar uses a different color for each graph. The
outer loop produces all of the graphs for five different devices. A total of 25 graphs is
generated by these loops.

Examples
The following examples show different applications for DSGI and illustrate some of

its features such as defining viewports and windows, inserting existing graphs, angling
text, using GASK routines, enlarging a segment of a graph, and scaling a graph.

These examples use some additional graphics options that may not be used in other
examples in this book. Because the dimensions of the default window vary across
devices, the TARGETDEVICE=, HSIZE=, and VSIZE= graphics options are used to
make the programs more portable. The COLORS= graphics option provides a standard
colors list.

Refer to Chapter 50, “DATA Step Graphics Interface Dictionary,” on page 1401 for a
complete description of each of the functions used in the examples.

Vertically Angling Text
This example generates a pie chart with text that changes its angle as you rotate

around the pie. DSGI positions the text by aligning it differently depending on its
location on the pie. In addition, DSGI changes the angle of the text so that it aligns
with the spokes of the pie.

This example illustrates how global statements can be used with DSGI. In this
example, FOOTNOTE and TITLE statements create the footnotes and title for the
graph. The GOPTIONS statement defines general aspects of the graph. The COLORS=

1382 Examples Chapter 49

graphics option provides a colors list from which the colors referenced in
GSET(’xxx COLOR’, . . .)functions are selected.

The following program statements produce Display 49.4 on page 1383:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote and title */
footnote1 j=r ’GDSVTEXT ’;
title1 ’Text Up Vector’;

/* execute DATA step with DSGI */
data vector;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define and display arc */
/* with intersecting lines */

rc=gset(’lincolor’, 2);
rc=gset(’linwidth’, 5);
rc=gdraw(’arc’, 84, 50, 35, 0, 360);
rc=gdraw(’line’, 2, 49, 119, 51, 51);
rc=gdraw(’line’, 2, 84, 84, 15, 85);

/* define height of text */
rc=gset(’texheight’, 5);

/* mark 360 degrees on the arc */
/* using default align */

rc=gdraw(’text’, 121, 50, ’0’);

/* set text to align to the right and */
/* mark 180 degrees on the arc */

rc=gset(’texalign’, ’right’, ’normal’);
rc=gdraw(’text’, 47, 50, ’180’);

/* set text to align to the center and */
/* mark 90 and 270 degrees on the arc */

rc=gset(’texalign’, ’center’, ’normal’);
rc=gdraw(’text’, 84, 87, ’90’);
rc=gdraw(’text’, 84, 9, ’270’);

/* reset texalign to normal and */
/* display coordinate values or quadrant */

rc=gset(’texalign’, ’normal’, ’normal’);
rc=gdraw(’text’, 85, 52, ’(0.0, +1.0)’);

/* rotate text using TEXUP and */

The DATA Step Graphics Interface Examples 1383

/* display coordinate values or quadrant */
rc=gset(’texup’, 1.0, 0.0);
rc=gdraw(’text’, 85, 49, ’(+1.0, 0.0)’);

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */

rc=gset(’texup’, 0.0, -1.0);
rc=gdraw(’text’, 83, 50, ’(0.0, -1.0)’);

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */

rc=gset(’texup’, -1.0, 0.0);
rc=gdraw(’text’, 83, 52, ’(-1.0, 0.0)’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 49.4 Text Angled with the GSET(’TEXUP’, ...) Function

This example illustrates the following features:
� The COLORS= graphics option provides a colors table to be used with the

GSET(’LINCOLOR’, . . .)function.
� The HSIZE= graphics option provides a standard width for the graphics output

area.
� The VSIZE= graphics option provides a standard height for the graphics output

area.
� The TARGETDEVICE= graphics option selects the standard color PostScript

driver to use as the target device.
� The GINIT() function begins DSGI.
� The GRAPH(’CLEAR’) function sets the graphics environment. Because the

function does not specify a name for the catalog entry, DSGI will use the default
name ’DSGI’.

1384 Examples Chapter 49

� The GSET(’TEXHEIGHT’, . . .), GSET(’LINCOLOR’, . . .), and
GSET(’LINWIDTH’, . . .)functions set attributes of the graphics primitives. The
COLORS= graphics option provides a colors table for the GSET(’LINCOLOR’, 2)
function to reference. In this example, the color indexed by 2 is used to draw lines.
Since no other colors table is explicitly defined with GSET(’COLREP’, . . .)
functions, DSGI looks at the colors list and chooses the color indexed by 2 (the
second color in the list) to draw the lines.

� The GDRAW(’ARC’, . . .)function draws an empty pie chart. The arguments of
the GDRAW(’ARC’, . . .)function provide the coordinates of the starting point, the
radius, and the beginning and ending angles of the arc.

� The GDRAW(’LINE’, . . .)function draws a line. It provides the type of line, the
coordinates of the beginning point, and the coordinates of the ending point.

� The GDRAW(’TEXT’, . . .)function draws the text. It sets the coordinates of the
starting point of the text string as well as the text string to be written.

� The GSET(’TEXALIGN’, . . .)function aligns text to the center, left, or right of the
starting point specified in the GDRAW(’TEXT’, . . .)function.

� The GSET(’TEXUP’, . . .)function determines the angle at which the text is to be
written.

� The GRAPH(’UPDATE’, . . .)function closes the graphics segment.
� The GTERM() function ends DSGI.

Changing the Reading Direction of the Text
This example changes the reading direction of text. Notice that the data set name is

NULL. No data set is created as a result of this DATA step; however, the graphics
output is generated. The following program statements produce Display 49.5 on page
1385:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote and title */
footnote1 j=r ’GDSDIREC ’;
title1 ’Text Path’;

/* execute DATA step with DSGI */
data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define height of text */
rc=gset(’texheight’, 5);

/* display first text */
rc=gdraw(’text’, 105, 50, ’Right’);

The DATA Step Graphics Interface Examples 1385

/* change text path so that text reads from */
/* right to left and display next text */

rc=gset(’texpath’, ’left’);
rc=gdraw(’text’, 65, 50, ’Left’);

/* change text path so that text reads up */
/* the display and display next text */

rc=gset(’texpath’, ’up’);
rc=gdraw(’text’, 85, 60, ’Up’);

/* change text path so that text reads down */
/* the display and display next text */

rc=gset(’texpath’, ’down’);
rc=gdraw(’text’, 85, 40, ’Down’);

/* display the graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 49.5 Reading Direction of the Text Changed with the GSET(’TEXPATH’, ...) Function

Features not explained earlier in "Vertically Angling Text" are described here:

� DATA _NULL_ causes the DATA step to be executed, but no data set is created.

� The GSET(’TEXPATH’, . . .)function changes the direction in which the text reads.

Using Viewports in DSGI
This example uses the GCHART procedure to generate a graph, defines a viewport in

which to display it, and inserts the GCHART graph into the graphics output being
created by DSGI. Display 49.6 on page 1387 shows the pie chart created by the
GCHART procedure. Display 49.7 on page 1388 shows the same pie chart after it has
been inserted into a DSGI graph.

1386 Examples Chapter 49

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=4
colors=(black blue green red)
hsize=7 in vsize=7 in
targetdevice=pscolor;

/* create data set TOTALS */
data totals;

length dept $ 7 site $ 8;
do year=1996 to 1999;

do dept=’Parts’,’Repairs’,’Tools’;
do site=’New York’,’Atlanta’,’Chicago’,’Seattle’;

sales=ranuni(97531)*10000+2000;
output;

end;
end;

end;
run;

/* define the footnote */
footnote1 h=3 j=r ’GDSVWPTS ’;

/* generate pie chart from TOTALS */
/* and create catalog entry PIE */

proc gchart data=totals;
format sales dollar8.;
pie site

/ type=sum
sumvar=sales
midpoints=’New York’ ’Chicago’ ’Atlanta’ ’Seattle’
fill=solid
cfill=green
coutline=blue
angle=45
percent=inside
value=inside
slice=outside
noheading
name=’GDSVWPTS’;

run;

/* define the titles */
title1 ’Total Sales’;
title2 ’For Period 1996-1999’;

/* execute DATA step with DSGI */
data piein;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

The DATA Step Graphics Interface Examples 1387

/* define and activate viewport for inserted graph */
rc=gset(’viewport’, 1, .15, .05, .85, .90);
rc=gset(’window’, 1, 0, 0, 100, 100);
rc=gset(’transno’, 1);

/* insert graph created from GCHART procedure */
rc=graph(’insert’, ’GDSVWPTS’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 49.6 Pie Chart Produced with the GCHART Procedure

1388 Examples Chapter 49

Display 49.7 Pie Chart Inserted into DSGI Graph by Using a Viewport

Features not explained in previous examples are described here:
� A graph can be created by another SAS/GRAPH procedure and inserted into DSGI

graphics output. In this case, the NAME= option in the PIE statement of the
GCHART procedure names the graph, ’GDSVWPTS’, to be inserted.

� The GSET(’VIEWPORT’, . . .)function defines the section of the graphics output
area into which GDSVWPTS is inserted. The dimensional ratio of the viewport
should match that of the entire graphics output area so that the inserted graph is
not distorted.

� The GSET(’WINDOW’, . . .)function defines the coordinate system to be used
within the viewport. In this example, the coordinates (0,0) to (100,100) are used.
These coordinates provide a square area to insert the graph and preserve the
aspect ratio of the GCHART graph.

� The GSET(’TRANSNO’, . . .)function activates the transformation for the defined
viewport and window.

� The GRAPH(’INSERT’, . . .)function inserts the existing graph, ’GDSVWPTS’,
into the one being created with DSGI. If no viewport has been explicitly defined,
DSGI inserts the graph into the default viewport, which is the entire graphics
output area.

Scaling Graphs by Using Windows
This example uses the GPLOT procedure to generate a plot of AMOUNT*MONTH

and store the graph in a permanent catalog. DSGI then scales the graph by defining a
window in another DSGI graph and inserting the GPLOT graph into that window.
Display 49.8 on page 1390 shows the plot as it is displayed with the GPLOT procedure.
Display 49.9 on page 1391 shows how the same plot is displayed when the x axis is
scaled from 15 to 95 and the y axis is scaled from 15 to 75.

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in

The DATA Step Graphics Interface Examples 1389

targetdevice=pscolor;

/* create data set EARN, which holds month */
/* and amount of earnings for that month */

data earn;
input month amount;
datalines;

1 2.1
2 3
3 5
4 6.4
5 9
6 7.2
7 6
8 9.8
9 4.4
10 2.5
11 5.75
12 4.35
;
run;

/* define the footnote for the first graph */
footnote1 j=r ’GDSSCALE(a) ’;

/* define axis and symbol characteristics */
axis1 label=(color=green ’Millions of Dollars’)

order=(1 to 10 by 1)
value=(color=green);

axis2 label=(color=green ’Months’)
order=(1 to 12 by 1)
value=(color=green Tick=1 ’Jan’ Tick=2 ’Feb’ Tick=3 ’Mar’

Tick=4 ’Apr’ Tick=5 ’May’ Tick=6 ’Jun’
Tick=7 ’Jul’ Tick=8 ’Aug’ Tick=9 ’Sep’
Tick=10 ’Oct’ Tick=11 ’Nov’ Tick=12 ’Dec’);

symbol value=M font=special height=8 interpol=join
color=blue width=3;

/* generate a plot of AMOUNT * MONTH, */
/* and store in member GDSSCALE */

proc gplot data=earn;
plot amount*month

/ haxis=axis2
vaxis=axis1
name=’GDSSCALE’;

run;

/* define the footnote and titles for */
/* second graph, which will scale output */

footnote1 j=r ’GDSSCALE(b) ’;
title1 ’XYZ Corporation Annual Earnings’;
title2 h=4 ’Fiscal Year 1999’;

1390 Examples Chapter 49

/* execute DATA step with DSGI using */
/* catalog entry created in previous */
/* plot, but do not create a data set */
/* (determined by specifying _NULL_) */

data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define viewport and window for inserted graph */
rc=gset(’viewport’, 1, .20, .30, .90, .75);
rc=gset(’window’, 1, 15, 15, 95, 75);
rc=gset(’transno’, 1);

/* insert graph previously created */
rc=graph(’insert’, ’GDSSCALE’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

Display 49.8 Plot Produced with the GPLOT Procedure

The DATA Step Graphics Interface Examples 1391

Display 49.9 Plot Scaled by Using a Window in DSGI

One feature not explained in previous examples is described here:
� The GSET(’WINDOW’, . . .)function scales the plot with respect to the viewport

that is defined. The x axis is scaled from 15 to 95, and the y axis is scaled from 15
to 75. If no viewport were explicitly defined, the window coordinates would be
mapped to the default viewport, the entire graphics output area.

Enlarging an Area of a Graph by Using Windows
This example illustrates how you can enlarge a section of a graph by using windows.

In the first DATA step, the program statements generate graphics output that contains
four pie charts. The second DATA step defines a window that enlarges the bottom-left
quadrant of the graphics output and inserts ’GDSENLAR’ into that window. The
following program statements produce Display 49.10 on page 1393 from the first DATA
step, and Display 49.11 on page 1393 from the second DATA step:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote for the first graph */
footnote1 j=r ’GDSENLAR(a) ’;

/* execute DATA step with DSGI */
data plot;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’, ’GDSENLAR’);

/* define and draw first pie chart */

1392 Examples Chapter 49

rc=gset(’filcolor’, 4);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 30, 75, 22, 0, 360);

/* define and draw second pie chart */
rc=gset(’filcolor’, 1);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 30, 25, 22, 0, 360);

/* define and draw third pie chart */
rc=gset(’filcolor’, 3);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 90, 75, 22, 0, 360);

/* define and draw fourth pie chart */
rc=gset(’filcolor’, 2);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 90, 25, 22, 0, 360);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

/* define the footnote for the second graph */
footnote1 j=r ’GDSENLAR(b) ’;

/* execute DATA step with DSGI */
/* that zooms in on a section of */
/* the previous graph */

data zoom;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* define and activate a window */
/* that will enlarge the lower left */
/* quadrant of the graph */

rc=gset(’window’, 1, 0, 0, 50, 50);
rc=gset(’transno’, 1);

/* insert the previous graph into */
/* window 1 */

rc=graph(’insert’, ’GDSENLAR’);

/* display graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

The DATA Step Graphics Interface Examples 1393

Display 49.10 Four Pie Charts Generated with DSGI

Display 49.11 Area of the Graph Enlarged by Using Windows

Features not explained in previous examples are described here:

� The GSET(’WINDOW’, . . .)function defines a window into which the graph is
inserted. In this example, no viewport is defined, so the window coordinates map
to the default viewport, which is the entire graphics output area. The result of
using the default viewport is that only the portion of the graph enclosed by the
coordinates of the window is displayed.

� The GRAPH(’INSERT’, . . .)function inserts a graph that was previously
generated with DSGI. If you want to insert output created by DSGI, the output to
be inserted must be closed.

1394 Examples Chapter 49

Using GASK Routines in DSGI
This example illustrates how to invoke GASK routines and how to display the

returned values in the SAS log and write them to a data set.
This example assigns a predefined color to color index 2 and then invokes a GASK

routine to get the name of the color associated with color index 2. The value returned
from the GASK call is displayed in the log and written to a data set. Output 49.1 shows
how the value appears in the log. Output 49.2 shows how the value appears in the data
set in the OUTPUT window.

/* execute DATA step with DSGI */
data routine;

/* declare character variables used */
/* in GASK subroutines */

length color $ 8;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* set color for color index 2 */
rc=gset(’colrep’, 2, ’orange’);

/* check color associated with color index 2 and */
/* display the value in the LOG window */

call gask(’colrep’, 2, color, rc);
put ’Current FILCOLOR =’ color;
output;

/* end DSGI */
rc=graph(’update’);
rc=gterm();

run;

/* display the contents of ROUTINE */
proc print data=routine;
run;

The DATA Step Graphics Interface Examples 1395

Output 49.1 Checking the Color Associated with a Particular Color Index

3 /* execute DATA step with DSGI */
4 data routine;
5
6 /* declare character variables used */
7 /* in GASK subroutines */
8 length color $ 8;
9
10 /* prepare SAS/GRAPH software */
11 /* to accept DSGI statements */
12 rc=ginit();
13 rc=graph(’clear’);
14
15 /* set color for color index 2 */
16 rc=gset(’colrep’, 2, ’orange’);
17
18 /* check color associated with color index 2 and */
19 /* display the value in the LOG window */
20 call gask(’colrep’, 2, color, rc);
21 put ’Current FILCOLOR =’ color;
22 output;
23
24 /* end DSGI */
25 rc=graph(’update’);
26 rc=gterm();
27 run;

Current FILCOLOR =ORANGE

Output 49.2 Writing the Value of an Attribute to a Data Set

The SAS System 13:50 Tuesday, December 22, 1998 1

Obs color rc

1 ORANGE 0

Features not explained in previous examples are described here:
� The GSET(’COLREP’, . . .)function assigns the predefined color ’ORANGE’ to the

color index 2.
� GASK routines check the current value of an attribute. In this example, the

GASK(’COLREP’, . . .)function returns the color associated with color index 2.
� A PUT statement displays the value of the COLOR argument in the log.
� An OUTPUT statement writes the value of COLOR to the ROUTINE data set.
� The GRAPH(’UPDATE’) function closes the graphics segment.
� The PRINT procedure displays the contents of the ROUTINE data set.

Generating a Drill-down Graph Using DSGI
This example uses ODS processing with DSGI to generate a drill-down graph. To get

the drill-down capability, you use the GSET(’HTML’,...) function to specify a URL that
points to the location of the target output. This HTML string can be used with the
following graphic element types drawn in the code after the string is set: BAR,
ELLIPSE, FILL, MARK, PIE, and TEXT. The example uses a PIE element type.

Note: The example assumes users will access the output through a file system
rather than accross the Web, so the HTML string uses a file specification rather than a

1396 Examples Chapter 49

full URL. For information on bringing SAS/GRAPH output to the Web, see Chapter 9,
“Introducing SAS/GRAPH Output for the Web,” on page 369. �

This example also includes a FILENAME statement to allocate an aggregate storage
location for the HTML and GIF files produced by the code. You should replace the term
path-to-Web-server with the location where you want to store the files.

In the example, the ODS HTML statement is used to create a body file named
dsgi.htm. When file dsgi.htm is viewed in a Web browser, it displays a solid pie chart,
as shown in Display 49.12 on page 1397. To drill down to the graph shown in Display
49.13 on page 1398, click anywhere in the pie chart. This example uses PROC GSLIDE
to create the simple graphic that is used for the target output:

/* This is the only line you have to */
/* change to run the program. Specify */
/* a location in your file system. */

*filename odsout ’path-to-Web-server’;

/* close the listing destination */
ods listing close;

/* set the graphics environment */
goptions reset=global gunit=pct noborder

ftitle=swissb htitle=6
ftext=swiss htext=3
colors=(black blue)
hsize=5 in vsize=5 in
device=gif;

/* define tile and footnote for graph */
title1 ’Drill-down Graph’;
footnote1 j=l ’ Click in pie chart’

j=r ’GDSDRILL ’;

ods html body=’dsgi.htm’
path=odsout;

/* execute DATA step with DSGI */
data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph(’clear’);

/* set a value for the html variable */
rc=gset(’html’, ’href="blue.htm"’);

/* define and draw a pie chart */
rc=gset(’filcolor’, 2);
rc=gset(’filtype’, ’solid’);
rc=gdraw(’pie’, 55, 50, 22, 0, 360);

/* generate graph and end DSGI */
rc=graph(’update’);
rc=gterm();

run;

goptions ftext=centb ctext=blue;

The DATA Step Graphics Interface Examples 1397

/* open a new body file for the */
/* target output */

ods html body=’blue.htm’
path=odsout;

title1;
footnote1;
proc gslide wframe=4

cframe=blue
name=’blue’;
note height=20;
note height=10

justify=center
’Blue Sky’;

run;
quit;

ods html close;
ods listing;

Display 49.12 Drill-down Graph Generated with DSGI

1398 Examples Chapter 49

Display 49.13 Target Output for Drill-down Graph

Features not explained in previous examples are described here:
� FILENAME allocates a storage location for the HTML and GIF files that are

produced by the program.
� To conserve system resources, ODS LISTING CLOSE closes the Listing

destination.
� On the GOPTIONS statement, DEVICE=GIF tells SAS/GRAPH to generate a GIF

file for each GRSEG that is created in the code. The GIF files are needed to
display the graphics output in a Web browser.

� On the first ODS HTML statement, BODY= specifies a name for the file that will
reference the pie chart that is generated with DSGI. PATH= specifes the output
location that was allocated by the FILENAME statement.

� In the DATA step, the presence of the GSET(’HTML’,...) function causes
SAS/GRAPH to create the pie chart as a drill-down graph. The HTML string
’href=“blue.htm”’ will be used as the value for the HREF attribute in the image
map that SAS/GRAPH creates for the drill-down capability. The image map will be
created in the body file dsgi.htm, because that is the file that references the pie
chart. (The target output file blue.htm does not exist yet, but it will be created by
the GSLIDE procedure later in the program.)

� The second ODS HTML file specifies a new body file. Thus, the first body file
dsgi.htm is closed, and the new body file blue.htm is opened. File blue.htm is the
file that is identified as the target output by the HREF value on the
GSET(’HTML’,...) function.

� PROC GSLIDE produces the graphic that is used as the target output for the
drill-down graph.

� ODS HTML CLOSE closes the HTML destination, and ODS LISTING opens the
Listing destination for subsequent output during the SAS session.

The DATA Step Graphics Interface See Also 1399

See Also

“Storing Graphics Output in SAS Catalogs” on page 53
for an explanation of graphics catalogs and catalog entries

Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261
for complete information about graphics options

“TITLE, FOOTNOTE, and NOTE Statements” on page 210
for details of using the TITLE and FOOTNOTE statements

“GOPTIONS Statement” on page 146
for details of using the GOPTIONS statement

Chapter 24, “Using Annotate Data Sets,” on page 587
for an explanation of the Annotate facility

Chapter 50, “DATA Step Graphics Interface Dictionary,” on page 1401
for complete information on the functions and routines used with DSGI

SAS Language Reference: Dictionary
for information about additional functions and statements that can be used in the
DATA step

1400

1401

C H A P T E R

50
DATA Step Graphics Interface
Dictionary

Overview 1401

Operating States 1402
Utility Functions 1402

GASK Routines 1404

GDRAW Functions 1446
GRAPH Functions 1457

GSET Functions 1462

Return Codes for DSGI Routines and Functions 1501
See Also 1502

References 1503

Overview
This chapter contains detailed descriptions of each command used in the DATA Step

Graphics Interface (DSGI).
The following commands are associated with DSGI:
1 utility functions

� GINIT
� GPRINT
� GTERM

2 GASK routines
3 GDRAW functions
4 GRAPH functions
5 GSET functions

Each routine or function is followed by an alphabetical listing of the operators used
with it. For each operator, this chapter provides the statement syntax, other argument
definitions, and notes about using the functions and routines, operating states, and
return codes. Operating states are summarized in “Operating States” on page 1359.

The syntax for all routines and functions contains the argument return-code-variable.
This argument must be a numeric variable name and can be a different variable name
for each routine.

The return-code-variable argument is used to debug DSGI programs. It contains the
return code of the routine or function call. If the return code is any value other than 0,
the routine or function did not execute properly.

Each routine and function has a different set of possible return codes. The return
codes are listed in the heading for the routine or function. Refer to “Return Codes for
DSGI Routines and Functions” on page 1501 for an explanation of the return codes.

1402 Operating States Chapter 50

Operating States
This list summarizes the operating states in DSGI. For a detailed discussion of

operating states, see “Operating States” on page 1359.

GKCL facility closed, initial state of DSGI.

GKOP facility open. DSGI is open. You may check the settings of attributes.

SGOP segment open. Graphics output can be generated.

WSAC workstation active. You can issue DSGI statements.

WSOP workstation open. The graphics catalog is opened or created.

Utility Functions
Utility functions enable you to initialize a session for DSGI, print error messages,

and terminate the session.

GINIT
Initializes DSGI

Operating States: GKCL
Return Codes: 0, 1, 26, 301, 307
Resulting Operating State: WSAC

Syntax
return-code-variable=GINIT();

Description
The GINIT function performs three functions: it readies the library that contains
SAS/GRAPH graphics routines, it opens a workstation, and it activates it. A workstation
is a Graphics Kernel Standard (GKS) concept. GKS allows for multiple workstations to
be open at the same time; however, for DSGI applications, you always use exactly one
workstation. This function moves the operating state from GKCL to WSAC.

See Also

“GTERM” on page 1403

GPRINT

Prints the specified interface error message

DATA Step Graphics Interface Dictionary GTERM 1403

Operating States: All
Return Codes: 0

Syntax
return-code-variable=GPRINT(code);

Description
The GPRINT function displays the message that corresponds to the error code entered.
You can use this routine if you have disabled automatic error logging but still want to
display the message associated with a return code you have received.

Argument Definitions
code numeric constant or numeric variable name; should be the value of a

return code received from some previous function.

See Also

“MESSAGE” on page 1485

GTERM

Terminates DSGI

Operating States: WSAC
Return Codes: 0, 3
Resulting Operating State: GKCL

Syntax
return-code-variable=GTERM();

Description
The GTERM function performs three functions: it deactivates the workstation, closes
the workstation, and closes the library that contains SAS/GRAPHroutines. This
function should be issued to free memory allocated by DSGI. This function moves the
operating state from WSAC to GKCL.

See Also

“GINIT” on page 1402

1404 GASK Routines Chapter 50

GASK Routines
When you use GASK routines, remember the following:
� All arguments are required.
� Most arguments are expressed as variable names. You can use any valid SAS

variable name.
� If character arguments are expressed as character strings, they must be enclosed

in quotation marks.
� All character variable names used as arguments must be declared in a previous

LENGTH statement.
� GASK routines do not change the operating state.
� PUT statements display a value returned by a routine in the SAS log.
� OUTPUT statements write a value that is returned by a routine to a data set.

GASK routines enable you to check these current attribute settings:

ASF

ASPECT

CATALOG

CBACK

CLIP

COLINDEX

COLREP

DEVICE

FILCOLOR

FILINDEX

FILREP

FILSTYLE

FILTYPE

GRAPHLIST

HPOS

HSIZE

HTML

LINCOLOR

LININDEX

LINREP

LINTYPE

LINWIDTH

MARCOLOR

MARINDEX

DATA Step Graphics Interface Dictionary ASF 1405

MARREP

MARSIZE

MARTYPE

MAXDISP

NUMGRAPH

OPENGRAPH

PATREP

STATE

TEXALIGN

TEXCOLOR

TEXEXTENT

TEXFONT

TEXHEIGHT

TEXINDEX

TEXPATH

TEXREP

TEXUP

TRANS

TRANSNO

VIEWPORT

VPOS

VSIZE

WINDOW

WSACTIVE

WSOPEN

ASF

Finds whether an aspect source flag is bundled or separate

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’ASF’, attribute, status, return-code-variable);

Description
The GASK(’ASF’, . . .)routine returns the aspect source flag (ASF) of a particular
attribute. Possible ASF values are BUNDLED (associated with a bundle index) and

1406 ASPECT Chapter 50

INDIVIDUAL (separate from a bundle index). GASK(’ASF’, . . .)returns the default
value INDIVIDUAL if you have not set the ASF for an attribute.

Argument Definitions
attribute character string enclosed in quotes or character variable name with

one of the following values:
� FILCOLOR
� FILSTYLE
� FILTYPE
� LINCOLOR
� LINTYPE
� LINWIDTH
� MARCOLOR
� MARSIZE
� MARTYPE
� TEXCOLOR
� TEXFONT.

status character variable name; returns either the value BUNDLED or
INDIVIDUAL.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“ASF” on page 1463
“FILCOLOR” on page 1469
“FILSTYLE” on page 1471
“FILTYPE” on page 1473
“LINCOLOR” on page 1476
“LINTYPE” on page 1479
“LINWIDTH” on page 1479
“MARCOLOR” on page 1480
“MARSIZE” on page 1483
“MARTYPE” on page 1483
“TEXCOLOR” on page 1488
“TEXFONT” on page 1489

ASPECT

Finds the aspect ratio

Operating States: All

DATA Step Graphics Interface Dictionary CATALOG 1407

Return Codes: 0

Syntax
CALL GASK(’ASPECT’, aspect, return-code-variable);

Description
The GASK(’ASPECT’, . . .)routine returns the current aspect ratio used to draw
graphics output. GASK(’ASPECT’, . . .)searches for the current aspect ratio in the
following order:

1 the aspect ratio set with the GSET(’ASPECT’, . . .)function

2 the ASPECT= graphics option

3 the device’s default aspect ratio found in the device entry. For more information on
device entries, see Chapter 31, “The GDEVICE Procedure,” on page 915.

Argument Definitions
aspect numeric variable name; returns the aspect ratio.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

ASPECT= graphics option (see “ASPECT” on page 262)

“ASPECT” on page 1465

CATALOG

Finds the catalog for the graphs

Operating States: All

Return Codes: 0

Syntax
CALL GASK(’CATALOG’, libref, memname, return-code-variable);

Description
The GASK(’CATALOG’, . . .)routine returns the libref and the name of the current
output catalog. GASK(’CATALOG’, . . .)returns the default catalog, WORK.GSEG, if
no other catalog has been specified with the GSET(’CATALOG’, . . .)function.

1408 CBACK Chapter 50

Argument Definitions
libref character variable name; returns the libref of the library in which

the current catalog is stored.

memname character variable name; returns the name of the current output
catalog.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“CATALOG” on page 1465
“NUMGRAPH” on page 1427
“OPENGRAPH” on page 1428

CBACK

Finds the background color

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’CBACK’, cback, return-code-variable);

Description
The GASK(’CBACK’, . . .)routine returns the current background color.
GASK(’CBACK’, . . .)searches for the current background color in the following order:

1 the background color selected with the GSET(’CBACK’, . . .)function
2 the CBACK= graphics option
3 the default background color for the device found in the device entry. For more

information about device entries, see Chapter 31, “The GDEVICE Procedure,” on
page 915.

Argument Definitions
cback character variable name; returns the background color name.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

CBACK= graphics option (see “CBACK” on page 266)

DATA Step Graphics Interface Dictionary COLINDEX 1409

“CBACK” on page 1466

CLIP

Finds whether clipping is on or off

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 55, 56

Syntax
CALL GASK(’CLIP’, status);

Description
The GASK(’CLIP’, . . .)routine checks whether clipping outside of viewports is enabled
or disabled. One of the two following messages is displayed when this routine is called:

NOTE: Clipping is ON.

or

NOTE: Clipping is OFF.

Clipping is OFF by default.

Argument Definitions
status numeric variable name; returns the current setting, 55 (ON) or 56

(OFF), for clipping.

See Also
“CLIP” on page 1467

COLINDEX

Finds the color indexes that have colors associated with them

Operating States: SGOP

Return Codes: 0, 4, 86, 87

Syntax
CALL GASK(’COLINDEX’, n, index-array, return-code-variable);

1410 COLREP Chapter 50

Description
The GASK(’COLINDEX’, . . .)routine returns the color indexes that currently have
colors assigned to them.

Argument Definitions
n numeric constant or numeric variable name; tells how many color

indexes you want returned. If n is expressed as a variable, the
variable must be initialized. The variable returns the number of
colors currently assigned. If n is expressed as a constant, it will not
return this value.

index-array list of numeric variables into which the used color index numbers
are returned. The list of variable names can be members of an array
or OF argument lists (where the arguments are variables). If you
are using an array, index-array must have been declared as an
array. The dimension of the array is determined by the number of
color indexes you want returned. Refer to the discussion of ARRAY
in SAS Language Reference: Dictionary for more information about
OF argument lists.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“COLREP” on page 1410
“COLREP” on page 1467

COLREP

Finds the color name associated with a color index

Operating States: SGOP
Return Codes: 0, 4, 86, 87

Syntax
CALL GASK(’COLREP’, color-index, color, return-code-variable);

Description
The GASK(’COLREP’, . . .)routine returns the predefined SAS color name associated
with a color index. GASK(’COLREP’, . . .)searches for the current color assigned to a
color index in the following order:

1 the color selected by the GSET(’COLREP’, . . .)function.
2 the COLORS= graphics option. If color-index is 2, the routine returns the second

color from the colors list of the COLORS= graphics option.

DATA Step Graphics Interface Dictionary DEVICE 1411

3 the device’s default colors list found in the device entry. If color-index is 2, the
routine returns the second color from the default colors list.

See “SAS Color Names and RGB Values” on page 99 for a list of SAS predefined color
names.

Argument Definitions
color-index numeric constant; indicates the color index for which you want to

check the color. Valid values are 1 to 256, inclusive.

color character variable name; returns the color name associated with
color-index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“COLINDEX” on page 1409
“COLREP” on page 1467

DEVICE

Finds the output graphics device

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’DEVICE’, device, return-code-variable);

Description
The GASK(’DEVICE’, . . .)routine returns the current device driver. This routine
returns the device driver set by one of the following methods:

� the GSET(’DEVICE’, . . .)function
� the DEVICE= graphics option
� the device driver you entered in the DEVICE prompt window
� the device driver you entered in the OPTIONS window.

There is no default value for a device driver. To use DSGI, you must specify a device
driver. For more information about setting device drivers, see “Selecting a Device
Driver” on page 43.

Argument Definitions
device character variable name; returns the name of the device driver.

1412 FILCOLOR Chapter 50

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

DEVICE= graphics option (see “DEVICE” on page 279)

“DEVICE” on page 1468

FILCOLOR

Finds the color index of the color to be used to draw fill areas

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’FILCOLOR’, color-index, return-code-variable);

Description
The GASK(’FILCOLOR’, . . .)routine returns the current fill color. If a
GSET(’FILCOLOR’, . . .)function has not been previously submitted,
GASK(’FILCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color assigned to a color name with the GSET(’COLREP’, . . .)function

2 the nth color in the colors list of the COLORS= graphics option

3 the nth color in the device’s default colors list found in the device entry.

Argument Definitions
color-index numeric variable name; returns the color index of the fill color

currently selected.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)

“COLREP” on page 1410

“COLREP” on page 1467

“FILCOLOR” on page 1469

DATA Step Graphics Interface Dictionary FILREP 1413

FILINDEX

Finds the bundle of fill area attributes that is active

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’FILINDEX’, index, return-code-variable);

Description
The GASK(’FILINDEX’, . . .)routine asks which fill bundle is active. If no fill bundles
have been previously defined with GSET(’FILREP’, . . .)or activated with
GSET(’FILINDEX’, . . .), GASK(’FILINDEX’, . . .)returns the default value, 1.

Argument Definitions
index numeric variable name; returns the index of the fill bundle currently

selected.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“FILREP” on page 1413
“FILREP” on page 1470
“FILINDEX” on page 1470

FILREP

Finds the fill area attributes associated with a bundle index

Operating States: GKOP, WSOP, WSAC, SGOP
Return Codes: 0, 8, 75, 76

Syntax
CALL GASK (’FILREP’, index, color-index, interior, style-index, return-code-variable);

Description
The GASK(’FILREP’, . . .)routine returns the color, type of interior, and fill pattern
associated with a specific fill bundle. If the bundle indicated by index has not been

1414 FILSTYLE Chapter 50

previously defined with the GSET(’FILREP’, . . .)function, DSGI issues the following
error message:

ERROR: A representation for the specified fill area index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the fill bundle

to check. Valid values are 1 to 20, inclusive. If index is expressed as
a variable, the variable must be initialized to a value between 1 and
20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index that is returned
corresponds to a color specification in the following order:

1 a color index assigned to a color name with the
GSET(’COLREP’, . . .)function

2 the nth color in the colors list of the COLORS= graphics option
3 the nth color in the device’s default colors list found in the

device entry.

interior character variable name; returns the style of the interior associated
with the bundle index – that is, one of the following values:

� HATCH
� HOLLOW
� PATTERN
� SOLID.

style-index numeric variable name; returns the index of the fill pattern
associated with the bundle. See the “FILSTYLE” on page 1471 for
the fill patterns represented by style-index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“FILINDEX” on page 1413
“COLREP” on page 1467
“FILREP” on page 1470
“FILSTYLE” on page 1471

FILSTYLE

Finds the style of the fill area when FILTYPE is PATTERN or HATCH

Operating States: GKOP, SGOP, WSAC, WSOP

DATA Step Graphics Interface Dictionary FILTYPE 1415

Return Codes: 0, 8

Syntax
CALL GASK(’FILSTYLE’, style-index, return-code-variable);

Description
The GASK(’FILSTYLE’, . . .)routine returns the current fill style of the interior when
FILTYPE is PATTERN or HATCH. If no fill style has been previously selected with the
GSET(’FILSTYLE’, . . .)function, GASK(’FILSTYLE’, . . .)returns the default value, 1.

Argument Definitions
style-index numeric variable name; returns the index of the fill pattern

associated with the bundle. See the “FILSTYLE” on page 1471 for
the interior styles represented by style-index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“FILTYPE” on page 1415
“FILSTYLE” on page 1471
“FILTYPE” on page 1473

FILTYPE

Finds the type of the interior of the fill area

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’FILTYPE’, interior, return-code-variable);

Description
The GASK(’FILTYPE’, . . .)routine returns the current fill type. If no fill type has been
previously selected with the GSET(’FILTYPE’, . . .)function, GASK(’FILTYPE’, . . .
)returns the default value, HOLLOW.

Argument Definitions
interior character variable name; returns the fill type that is active, that is,

one of the following values:

1416 GRAPHLIST Chapter 50

� HATCH
� HOLLOW
� PATTERN
� SOLID.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“FILSTYLE” on page 1414
“FILTYPE” on page 1415

GRAPHLIST

Finds the names of segments in the current catalog

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’GRAPHLIST’, n, name-array, return-code-variable);

Description
The GASK(’GRAPHLIST’, . . .)routine lists the first n names of the graphs that are in
the current catalog. If a catalog has not been previously specified with the
GRAPH(’CATALOG’, . . .)function, the routine returns names from the default catalog,
WORK.GSEG.

The names returned are any of the following:
� those specified in the GRAPH(’CLEAR’, . . .)function
� if the name is omitted from the GRAPH(’CLEAR’ . . .)function, some form of

DSGI: for example, DSGI, DSGI1, or DSGI2.
� the name specified in the NAME= option of a graphics procedure
� graphs previously created by other graphics procedures and already in the catalog.

Argument Definitions
n numeric variable name; tells the maximum number of graph names

you want returned. If you express n as a variable, the variable must
be initialized to the maximum number of graph names you want
returned.

name-array list of character variable names into which the graph names will be
returned. The list of variable names can be members of an array or
OF argument lists (where the arguments are variables). If you are
using an array, name-array must be declared as an array. The

DATA Step Graphics Interface Dictionary HPOS 1417

dimension of the array is determined by the number of color indexes
you want returned. See the discussion for ARRAY in SAS Language
Reference: Dictionary for more information about OF argument lists.

return-code-
variable

numeric variable names; returns the return code of the routine call.

See Also

“CLEAR” on page 1457

HPOS

Finds the number of columns

Operating States: All

Return Codes: 0

Syntax
CALL GASK(’HPOS’,hpos, return-code-variable);

Description
The GASK(’HPOS’, . . .)routine returns the number of columns currently in the
graphics output area. GASK(’HPOS’, . . .)searches for the current number of columns
in the following order:

1 the value selected in the GSET(’HPOS’, . . .)function

2 the value of the HPOS= graphics option

3 the device’s default HPOS value found in the device entry.

Argument Definitions
hpos numeric variable name; returns the number of columns in the

graphics output area.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HSIZE” on page 1418

“HPOS” on page 1474

HPOS= graphics option (see “HPOS” on page 315)

1418 HSIZE Chapter 50

HSIZE

Finds the horizontal dimension of the graphics output area

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’HSIZE’, hsize, return-code-variable);

Description
The GASK(’HSIZE’, . . .)routine returns the current horizontal dimension, in inches, of
the graphics output area. GASK(’HSIZE’, . . .)searches for the current horizontal
dimension in the following order:

1 the value selected in the GSET(’HSIZE’, . . .)function
2 the value of the HSIZE= graphics option
3 the device’s default HSIZE found in the device entry.

Argument Definitions
hsize numeric variable name; the size of the graphics output area in the x

dimension (in inches).

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HPOS” on page 1417
“HSIZE” on page 1475
HSIZE= graphics option (see “HSIZE” on page 315)

HTML

Finds the HTML string that is in effect when one of the following graphic elements is drawn: bar,
ellipse, fill, mark, pie, and text.

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’HTML’, string, return-code-variable);

DATA Step Graphics Interface Dictionary LINCOLOR 1419

Description
The GASK(’HTML’, . . .)routine returns the current HTML string. If a GSET(’HTML’,
. . .)function has not been previously submitted, GASK(’HTML’, . . .)returns the
default value, null.

Argument Definitions
string the HTML string invoked when an affected DSGI graphic element in

a web page is clicked.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“BAR” on page 1448
“ELLIPSE” on page 1450
“FILL” on page 1451
“MARK” on page 1453
“PIE” on page 1455
“TEXT” on page 1456
“HTML” on page 1475

LINCOLOR

Finds the current setting of the color to be used to draw lines

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LINCOLOR’, color-index, return-code-variable);

Description
The GASK(’LINCOLOR’, . . .)routine returns the current line color. If a
GSET(’LINCOLOR’, . . .)function has not been previously submitted,
GASK(’LINCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color specified in a GSET(’COLREP’, . . .)function
2 the nth color in the colors list of the COLORS= graphics option
3 the nth color in the device’s default colors list.

Argument Definitions
color-index numeric variable name; returns the color index of the current line

color.

1420 LININDEX Chapter 50

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“COLREP” on page 1410
“COLREP” on page 1467
“LINCOLOR” on page 1476

LININDEX

Finds the index of the bundle of line attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LININDEX’, index, return-code-variable);

Description
The GASK(’LININDEX’, . . .)routine returns the current line bundle. If no line
bundles have been previously defined with GSET(’LINREP’, . . .)or activated with
GSET(’LININDEX’, . . .), GASK(’LININDEX’, . . .)returns the default value, 1.

Argument Definitions
index numeric variable name; returns the index of the current line bundle.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“LINREP” on page 1420
“LININDEX” on page 1477
“LINREP” on page 1478

LINREP

Finds the bundle of line attributes associated with an index

DATA Step Graphics Interface Dictionary LINTYPE 1421

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 60, 61

Syntax
CALL GASK (’LINREP’, index, color-index, width, type, return-code-variable);

Description
The GASK(’LINREP’, . . .)routine returns the color, width, and line type associated
with a specific line bundle. If the bundle indicated by index has not been previously
defined with the GSET(’LINREP’, . . .)function, DSGI issues the following error
message:

ERROR: A representation for the specified line type index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the fill bundle

to check. Valid values are 1 to 20, inclusive. If index is expressed as
a variable, the variable must be initialized to a value between 1 and
20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index returned corresponds to
a color specification in the following order:

1 a color index assigned with the GSET(’COLREP’, . . .)function
2 the nth color in the colors list of the COLORS= graphics option
3 the nth color in the device’s default colors list.

width numeric variable name; returns the line width (in pixels) associated
with the bundle.

type numeric variable name; returns the index of the line type associated
with the bundle. Refer to Figure 7.22 on page 208 for
representations of the line types.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“COLREP” on page 1410
“LININDEX” on page 1420
“COLREP” on page 1467
“LINREP” on page 1478

LINTYPE
Finds the line type

1422 LINWIDTH Chapter 50

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LINTYPE’, type, return-code-variable);

Description
The GASK(’LINTYPE’, . . .)routine returns the current line type. If no line type was
previously selected with the GSET(’LINTYPE’, . . .)function, GASK(’LINTYPE’, . . .
)returns the default value, 1.

Argument Definitions
type numeric variable name; returns the index of the line type currently

selected. Refer to Figure 7.22 on page 208 for representations of the
line types.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“LINTYPE” on page 1479

LINWIDTH

Finds the line thickness

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LINWIDTH’, width, return-code-variable);

Description
The GASK(’LINWIDTH’, . . .)routine returns the current line width. If a line width
has not been previously selected with the GSET(’LINWIDTH’, . . .)function,
GASK(’LINWIDTH’, . . .)returns the default value, 1.

Argument Definitions
width numeric variable name; returns the current line width (in units of

pixels).

DATA Step Graphics Interface Dictionary MARCOLOR 1423

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“LINWIDTH” on page 1479

MARCOLOR

Finds the color index of the color to be used to draw markers

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’MARCOLOR’, color-index, return-code-variable);

Description
The GASK(’MARCOLOR’, . . .)routine returns the current marker color. If a
GSET(’MARCOLOR’, . . .)function has not been previously submitted,
GASK(’MARCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color selected in a GSET(’COLREP’, . . .)function

2 the nth color in the colors list of the COLORS= graphics option

3 the nth color in the device’s default colors list.

Argument Definitions
color-index numeric variable name; returns the color index of the current

marker color.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)

“COLREP” on page 1410

“COLREP” on page 1467

“MARCOLOR” on page 1480

1424 MARINDEX Chapter 50

MARINDEX

Finds the index of the bundle of marker attributes currently selected

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’MARINDEX’, index, return-code-variable);

Description
The GASK(’MARINDEX’, . . .)routine returns the current marker bundle. If no marker
bundles have been previously defined with GSET(’MARREP’, . . .)or activated with
GSET(’MARINDEX’, . . .), GASK(’MARINDEX’, . . .)returns the default value, 1.

Argument Definitions
index numeric variable name; returns the index of the marker bundle

currently selected.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“MARREP” on page 1424
“MARINDEX” on page 1481
“MARREP” on page 1482

MARREP

Finds the bundle of marker attributes associated with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 64, 65

Syntax
CALL GASK(’MARREP’, index, color-index, size, type, return-code-variable);

Description
The GASK(’MARREP’ . . .)routine returns the color, size, and type of marker
associated with a specific marker bundle. If the bundle indicated by index has not been

DATA Step Graphics Interface Dictionary MARSIZE 1425

previously defined with the GSET(’MARREP’, . . .)function, DSGI issues the following
error message:

ERROR: A representation for the specified marker index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the index of

the fill bundle to check. Valid values are 1 to 20, inclusive. If index
is expressed as a variable, the variable must be initialized to a value
between 1 and 20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index returned corresponds to
a color specification in the following order:

1 a color index assigned with the GSET(’COLREP’, . . .)function
2 the nth color in the colors list of the COLORS= graphics option
3 the nth color in the device’s default colors list.

size numeric variable name; returns the marker size in units of the
current window system.

type numeric variable name; the index of the marker type associated
with the bundle. See the “MARTYPE” on page 1483 for an
explanation of the marker indexes.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)

“COLREP” on page 1410

“COLREP” on page 1467

“MARINDEX” on page 1481

“MARREP” on page 1482

“MARTYPE” on page 1483

MARSIZE

Finds the size of markers

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’MARSIZE’, size, return-code-variable);

1426 MARTYPE Chapter 50

Description
The GASK(’MARSIZE’, . . .)routine returns the current marker size. If no marker size
has been previously selected with the GSET(’MARSIZE’, . . .)function,
GASK(’MARSIZE’, . . .)returns the default value, 1.

Argument Definitions
size numeric variable name; returns the marker size in units of the

current window system.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“MARSIZE” on page 1483

MARTYPE

Finds the kind of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’MARTYPE’, type, return-code-variable);

Description
The GASK(’MARTYPE’, . . .)routine returns the current marker type. If no marker
type has been previously selected with the GSET(’MARTYPE’, . . .)function,
GASK(’MARTYPE’, . . .)returns the default value, 1.

Argument Definitions
type numeric variable name; returns the index of the marker type

currently selected. See the function “MARTYPE” on page 1483 for
an explanation of the indexes for markers.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“MARTYPE” on page 1483

DATA Step Graphics Interface Dictionary NUMGRAPH 1427

MAXDISP
Finds the maximum display area size

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK (’MAXDISP’, units, x-dim, y-dim, x-pixels, y-pixels, return-code-variable);

Description
The GASK(’MAXDISP’, . . .)routine returns the dimensions of the maximum display
area for the device. This routine is useful when you need to know the maximum display
area in order to determine the aspect ratio or to scale a graph.

There is a difference between the maximum display size returned when the operating
state is not SGOP and when it is SGOP. The full addressable display area is returned
when the operating state is not SGOP, and the display area minus room for titles and
footnotes is returned when the operating state is SGOP.

Argument Definitions
units numeric variable name; returns a 1 to show that x-dim and y-dim

are in meters.

x-dim numeric variable name; returns the dimension, in meters, in the x
direction.

y-dim numeric variable name; returns the dimension, in meters, in the y
direction.

x-pixels numeric variable name; returns the number of pixels in the x
direction.

y-pixels numeric variable name; returns the number of pixels in the y
direction.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HSIZE” on page 1418
“VSIZE” on page 1443
“HSIZE” on page 1475
“VSIZE” on page 1499

NUMGRAPH
Finds the number of graphs in the current catalog

1428 OPENGRAPH Chapter 50

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’NUMGRAPH’, n, return-code-variable);

Description
The GASK(’NUMGRAPH’, . . .)routine returns how many graphs are in the current
catalog. The catalog checked is the catalog selected in the GSET(’CATALOG’, . . .
)function, if specified; otherwise, it is the default catalog, WORK.GSEG.

Argument Definitions
n numeric variable name; returns the number of graphs in the current

catalog.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“CATALOG” on page 1407

“CATALOG” on page 1465

OPENGRAPH

Finds the name of the segment currently open

Operating States: SGOP

Return Codes: 0, 4

Syntax
CALL GASK(’OPENGRAPH’, name, return-code-variable);

Description
The GASK(’OPENGRAPH’, . . .)routine returns the name of the graph that is
currently open.

The name returned is one of the following:

� the name specified in the GRAPH(’CLEAR’, . . .)function

� if the name is omitted from the GRAPH(’CLEAR’, . . .)function, some form of
DSGI: for example, DSGI, DSGI1, and DSGI2.

DATA Step Graphics Interface Dictionary PATREP 1429

Argument Definitions
name character variable name; returns the name of the graph that is

currently open.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“CLEAR” on page 1457

PATREP

Finds the pattern name assigned to a style index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8. 79

Syntax
CALL GASK(’PATREP’, index, pattern-name, hatch-name, return-code-variable);

Description
The GASK(’PATREP’, . . .)routine returns the pattern name assigned to a style index.

Argument Definitions
index numeric variable name; returns the index of the pattern currently

selected.

pattern-name character variable name; returns the name of the pattern at the
specified index.

hatch-name character variable name; returns the name of the hatch at the
specified index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

1430 STATE Chapter 50

See Also

“PATREP” on page 1485

STATE

Finds the current operating state of DSGI

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’STATE’, status);

Description
The GASK(’STATE’, . . .)routine returns the current operating state of DSGI.

Argument Definitions
status character variable name; returns one of the following values:

� GKCL
� GKOP
� SGOP
� WSAC
� WSOP.

See Also

“WSACTIVE” on page 1445
“WSOPEN” on page 1445

TEXALIGN

Finds the horizontal and vertical alignment of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXALIGN’, halign, valign, return-code-variable);

DATA Step Graphics Interface Dictionary TEXCOLOR 1431

Description
The GASK(’TEXALIGN’, . . .)routine returns the current horizontal and vertical text
alignment. If no values have been previously selected with the GSET(’TEXALIGN’, . . .
)function, GASK(’TEXALIGN’, . . .)returns the default value NORMAL for both halign
and valign.

Argument Definitions
halign character variable name; indicates the horizontal alignment set by

the GSET(’TEXALIGN’, . . .)function; returns one of the following
values:

� CENTER

� LEFT

� NORMAL

� RIGHT.

valign character variable name; indicates the vertical alignment set by the
GSET(’TEXALIGN’, . . .)function; returns one of the following
values:

� BASE

� BOTTOM

� HALF

� NORMAL

� TOP.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXPATH” on page 1436

“TEXUP” on page 1438

“TEXALIGN” on page 1486

TEXCOLOR

Finds the color index of the color currently selected to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’TEXCOLOR’, color-index, return-code-variable);

1432 TEXCOLOR Chapter 50

Description
The GASK(’TEXCOLOR’, . . .)routine returns the current text color. If a
GSET(’TEXCOLOR’, . . .)function has not been previously submitted,
GASK(’TEXCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color specified in a GSET(’COLREP’, . . .)function
2 the nth color in the colors list of the COLORS= graphics option

3 the nth color in the device’s default colors list.

Argument Definitions
color-index numeric variable name; returns the color index of the color used to

draw text.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary TEXEXTENT 1433

See Also

COLORS= graphics option (see “COLORS” on page 272)

“COLREP” on page 1410

“COLREP” on page 1467

“TEXCOLOR” on page 1488

TEXEXTENT

Finds the text extent rectangle and concatenation point for a specified text string

Operating States: SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK (’TEXEXTENT’, x, y, string, x-end, y-end, x1, x2, x3, x4, y1, y2, y3, y4,
return-code-variable);

Description
The GASK(’TEXEXTENT’, . . .)routine returns the text extent rectangle and text
concatenation point for a specified text string. All text extent coordinates returned are
in units of the current window system. If no text string is specified for string,
GASK(’TEXEXTENT’, . . .)does not return values for the other arguments.

The text attributes and bundles affect the values returned by this query. See Figure
50.1 on page 1433 for a diagram of the text extent rectangle (in the figure, x,y is always
the place where the text string starts).

Figure 50.1 Text Extent Diagram

Argument Definitions
x numeric variable name; x coordinates are in units based on the

current window system; returns x coordinate after justification. The
variable used to specify x must be initialized.

y numeric variable name; y coordinates are in units based on the
current window system; returns y coordinate after justification. The
variable used to specify y must be initialized.

1434 TEXFONT Chapter 50

string character string enclosed in single quotation marks or a character
variable name; a set of characters for which the text extent
rectangle and text concatenation point are calculated.

x-end numeric variable name; returns the x coordinate of the point at
which the next text string may be concatenated.

y-end numeric variable name; returns the y coordinate of the point at
which the next text string may be concatenated.

x1, x2, x3, x4,
y1, y2, y3, y4

numeric variable names; return the text extent rectangles of the text
strings as shown in Figure 50.1 on page 1433.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“WINDOW” on page 1444

“TEXT” on page 1456

TEXFONT

Finds the font used to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’TEXFONT’, font, return-code-variable);

Description
The GASK(’TEXFONT’ . . .)routine returns the current text font. GASK(’TEXFONT’, .
. .)searches for the current font in the following order:

1 the value selected in the GSET(’TEXFONT’, . . .)function, if specified

2 the value of the FTEXT= graphics option, if specified

3 the device’s default hardware font if the device supports a hardware font

4 the SIMULATE font.

Argument Definitions
font character variable name; returns the font name.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary TEXHEIGHT 1435

See Also

FTEXT= graphics options in (see “FTEXT” on page 294)
“TEXFONT” on page 1489

TEXHEIGHT

Finds the character height of the text strings

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXHEIGHT’, height, return-code-variable);

Description
The GASK(’TEXHEIGHT’, . . .)routine returns the current text height.
GASK(’TEXHEIGHT’, . . .)searches for the current text height in the following order:

1 the value selected in the GSET(’TEXHEIGHT’, . . .)function, if specified
2 the value of the HTEXT= graphics option, if specified
3 the default text height, 1.

Argument Definitions
height numeric variable name; returns the character height in units of the

current window system.

return-code-
variable

numeric variable name; returns the return code of the routine call.

1436 TEXINDEX Chapter 50

See Also

“TEXHEIGHT” on page 1490
HTEXT= graphics options (see “HTEXT” on page 316)

TEXINDEX

Finds the index of the bundle of text attributes currently selected

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXINDEX’, index, return-code-variable);

Description
The GASK(’TEXINDEX’, . . .)routine returns the current text bundle. If no text
bundles have been previously defined with GSET(’TEXREP’, . . .)or activated with
GSET(’TEXINDEX’, . . .), GASK(’TEXINDEX’, . . .)returns the default value, 1.

Argument Definitions
index numeric variable name; returns the text bundle index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXREP” on page 1437
“TEXREP” on page 1492
“TEXINDEX” on page 1490

TEXPATH

Finds the direction of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

DATA Step Graphics Interface Dictionary TEXREP 1437

Syntax
CALL GASK(’TEXPATH’, path, return-code-variable);

Description
The GASK(’TEXPATH’, . . .)routine returns the current text path (reading direction).
If TEXPATH has not been previously selected with the GSET(’TEXPATH’, . . .
)function, GASK(’TEXPATH’, . . .)returns the default value, RIGHT. See the
“TEXPATH” on page 1491 for an illustration of text paths.

Argument Definitions
path character variable name; returns one of the following values:

� DOWN

� LEFT

� RIGHT

� UP.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXALIGN” on page 1430

“TEXUP” on page 1438

“TEXPATH” on page 1491

TEXREP

Finds the attribute settings associated with a text bundle

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 68, 69

Syntax
CALL GASK(’TEXREP’, index, color-index, font, return-code-variable);

Description
The GASK(’TEXREP’, . . .)routine returns the color and font associated with a specific
text bundle. If the bundle indicated by index has not been previously defined with the
GSET(’TEXREP’, . . .)function, DSGI issues the following error message:

ERROR: A representation for the specified text index has
not been defined on this workstation.

1438 TEXUP Chapter 50

Argument Definitions
index numeric constant or numeric variable name; indicates the fill bundle

to check. Valid values are 1 to 20, inclusive. If index is expressed as
a variable, the variable must be initialized to a value between 1 and
20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index that is returned
corresponds to a color specification in the following order:

1 a color index assigned with the GSET(’COLREP’, . . .)function
2 the nth color in the colors list of the COLORS= graphics option
3 the nth color in the device’s default colors list.

font character variable name; returns the text font associated with the
bundle.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“COLREP” on page 1410
“COLREP” on page 1467
“TEXREP” on page 1492

TEXUP

Finds the orientation (angle) of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXUP’, up-x, up-y, return-code-variable);

Description
The GASK(’TEXUP’, . . .)routine returns the character up vector values. If TEXUP
has not been previously selected with the GSET(’TEXUP’, . . .)function,
GASK(’TEXUP’, . . .)returns the default values for x and y, 0 and 1. See the “TEXUP”
on page 1493 for an explanation of the vector values.

Argument Definitions
up-x numeric variable name; returns the x component of the vector.

up-y numeric variable name; returns the y component of the vector.

DATA Step Graphics Interface Dictionary TRANS 1439

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXALIGN” on page 1430
“TEXPATH” on page 1436
“TEXUP” on page 1493

TRANS

Finds the viewport and window coordinates associated with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 50

Syntax
CALL GASK (’TRANS’, n, vllx, vlly, vurx, vury, wllx, wlly, wurx, wury,
return-code-variable);

Description
The GASK(’TRANS’, . . .)routine returns the viewport and window coordinates
associated with a particular transformation number. GASK(’TRANS’, . . .)returns the
default coordinates for viewports and windows if other coordinates have not been
defined for the transformation specified.

Argument Definitions
n numeric constant or numeric variable name; indicates the number of

the transformation to check. Valid values are 0 to 20, inclusive. If n
is expressed as a variable, the variable must be initialized to a value
between 0 and 20.

vllx numeric variable name; returns the x coordinate of the lower-left
viewport corner.

vlly numeric variable name; returns the y coordinate of the lower-left
viewport corner.

vurx numeric variable name; returns the x coordinate of the upper-right
viewport corner.

vury numeric variable name; returns the y coordinate of the upper-right
viewport corner.

wllx numeric variable name; returns the x coordinate of the lower-left
window corner.

wlly numeric variable name; returns the y coordinate of the lower-left
window corner.

1440 TRANSNO Chapter 50

wurx numeric variable name; returns the x coordinate of the upper-right
window corner.

wury numeric variable name; returns the y coordinate of the upper-right
window corner.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANSNO” on page 1440
“VIEWPORT” on page 1441
“WINDOW” on page 1444
“TRANSNO” on page 1496
“VIEWPORT” on page 1497
“WINDOW” on page 1500

TRANSNO

Finds the number of the transformation to be used

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TRANSNO’, n, return-code-variable);

Description
The GASK(’TRANSNO’, . . .)routine returns the current transformation. If a
transformation has not been previously selected with the GSET(’TRANSNO’, . . .
)function, GASK(’TRANSNO’, . . .)returns the number of the default transformation, 0.

Argument Definitions
n numeric variable name; returns the number of the current

transformation.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANS” on page 1439
“VIEWPORT” on page 1441
“WINDOW” on page 1444

DATA Step Graphics Interface Dictionary VIEWPORT 1441

“VIEWPORT” on page 1497
“WINDOW” on page 1500
“TRANSNO” on page 1496

VIEWPORT

Finds coordinates of the viewport associated with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 50

Syntax
CALL GASK(’VIEWPORT’, n, llx, lly, urx, ury, return-code-variable);

Description
The GASK(’VIEWPORT’, . . .)routine returns the coordinates of the viewport
associated with the specified transformation. If a viewport has not been defined with
the GSET(’VIEWPORT’, . . .)function for the specified transformation, n,
GASK(’VIEWPORT’, . . .)returns the default coordinates for the viewport, (0,0) and
(1,1).

Argument Definitions
n numeric constant or numeric variable name; indicates the

transformation number assigned to the viewport to check. Valid
values are 0 to 20, inclusive. If n is expressed as a variable, the
variable must be initialized to a value between 0 and 20.

llx numeric variable name; returns the x coordinate of the lower-left
corner.

lly numeric variable name; returns the y coordinate of the lower-left
corner.

urx numeric variable name; returns the x coordinate of the upper-right
corner.

ury numeric variable name; returns the y coordinate of the upper-right
corner.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANS” on page 1439
“TRANSNO” on page 1440
“WINDOW” on page 1444

1442 VPOS Chapter 50

“TRANSNO” on page 1496
“VIEWPORT” on page 1497
“WINDOW” on page 1500

VPOS

Finds the number of rows

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’VPOS’, vpos, return-code-variable);

Description
The GASK(’VPOS’, . . .)routine returns the current number of rows in the graphics
output area. GASK(’VPOS’, . . .)searches for the current number of rows in the
following order:

1 the value selected in the GSET(’VPOS’, . . .)function
2 the value of the VPOS= graphics option
3 the device’s default VPOS value found in the device entry.

Argument Definitions
vpos numeric variable name; returns the number of rows in the graphics

output area.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary VSIZE 1443

See Also

“HPOS” on page 1417

“VSIZE” on page 1443

“VPOS” on page 1498

VPOS= graphics option (see “VPOS” on page 360)

VSIZE

Finds the vertical dimension of the graphics output area

Operating States: All

Return Codes: 0

Syntax
CALL GASK(’VSIZE’, vsize, return-code-variable);

Description
The GASK(’VSIZE’, . . .)routine returns the current vertical dimension, in inches, of
the graphics output area. GASK(’VSIZE’, . . .)searches for the current vertical
dimension in the following order:

1 the value selected in the GSET(’VSIZE’, . . .)function

2 the value of the VSIZE= graphics option

3 the device’s default VSIZE found in the device entry.

Argument Definitions
vsize numeric variable name; returns the size of the graphics output area

in the y dimension (in inches).

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HSIZE” on page 1418

“VPOS” on page 1442

“VSIZE” on page 1499

VSIZE= graphics option (see “VSIZE” on page 361)

1444 WINDOW Chapter 50

WINDOW

Finds the coordinates of the window associated with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50

Syntax
CALL GASK(’WINDOW’, n, llx, lly, urx, ury, return-code-variable);

Description
The GASK(’WINDOW’, . . .)routine returns the coordinates of the window associated
with the specified transformation number. If no window has been defined with the
GSET(’WINDOW’, . . .)function for transformation n, GASK(’WINDOW’, . . .)returns
the default window coordinates, which are device dependent.

Argument Definitions
n numeric constant or numeric variable name; indicates the

transformation number of the window to check. Valid values are 0 to
20, inclusive. If n is expressed as a variable, the variable must be
initialized to a value between 0 and 20.

llx numeric variable name; returns the x coordinate of the lower-left
corner.

lly numeric variable name; returns the y coordinate of the lower-left
corner.

urx numeric variable name; returns the x coordinate of the upper-right
corner.

ury numeric variable name; returns the y coordinate of the upper-right
corner.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANS” on page 1439

“TRANSNO” on page 1440

“VIEWPORT” on page 1441

“TRANSNO” on page 1496

“VIEWPORT” on page 1497

“WINDOW” on page 1500

DATA Step Graphics Interface Dictionary WSOPEN 1445

WSACTIVE

Finds whether the interface is active

Operating States: All
Return Codes: 29, 30

Syntax
CALL GASK(’WSACTIVE’, status);

Description
The GASK(’WSACTIVE’, . . .)routine asks if the workstation is active. When the
workstation is active, you can execute certain DSGI routines and functions.

Argument Definitions
status numeric variable name; returns either 29 (active) or 30 (inactive).

See Also

“STATE” on page 1430
“WSOPEN” on page 1445

WSOPEN

Finds whether the interface is open

Operating States: All
Return Codes: 24, 25

Syntax
CALL GASK(’WSOPEN’, status);

Description
The GASK(’WSOPEN’, . . .)routine asks if the workstation is open. If a workstation is
open, the graphics catalog can be accessed.

Argument Definitions
status numeric variable name; returns either 24 (open) or 25 (closed).

1446 GDRAW Functions Chapter 50

See Also

“WSACTIVE” on page 1445

GDRAW Functions
GDRAW functions create graphics elements. Each GDRAW operator is associated

with a set of GSET operators that control its attributes. For example, the color, height,
and font for the GDRAW(’TEXT’, . . .)function are controlled by GSET(’TEXCOLOR’, .
. .), GSET(’TEXHEIGHT’, . . .), and GSET(’TEXFONT’, . . .), respectively. For a
complete list of the attributes associated with each GDRAW function, see Table 49.2 on
page 1364. The complete graph is displayed after the GRAPH(’UPDATE’, . . .)function
is submitted.

When using GDRAW functions, remember the following:
� All arguments must be specified.
� All arguments are specified as variables or constants. If you express an argument

as a variable, the variable must be initialized.
� All character arguments that are expressed as character strings must be enclosed

in quotes.
� All character variable names used as arguments must be declared in a LENGTH

statement.
� All character constants must be enclosed in single or double quotes.

GDRAW functions:
� ARC
� BAR
� ELLARC
� ELLIPSE
� FILL
� IMAGE
� LINE
� MARK
� MESSAGE
� PIE
� TEXT

ARC

Draws a circular arc

Operating States: SGOP
Return Codes: 0, 4, 61, 86

Syntax
return-code-variable=GDRAW(’ARC’, x, y, radius, start, end);

DATA Step Graphics Interface Dictionary ARC 1447

Description
The GDRAW(’ARC’, . . .)function draws a circular arc. The line attributes and bundles
affect the appearance of this primitive. See Table 49.2 on page 1364 for a list of these
attributes. Figure 50.2 on page 1447 illustrates the arguments used with
GDRAW(’ARC’, . . .).

Figure 50.2 Arguments Used with the GDRAW(’ARC’, ...) Function

Argument Definitions
x numeric constant or numeric variable name; specifies the x

coordinate of the position of the arc on the display; x coordinates are
in units based on the current window system.

y numeric constant or numeric variable name; specifies the y
coordinate of the position of the arc on the display; y coordinates are
in units based on the current window system;

radius numeric constant or numeric variable name; the arc radius size is in
units based on the current window system.

start numeric constant or numeric variable name; the starting angle of
the arc is in degrees, with 0 degrees at 3 o’clock.

end numeric constant or numeric variable name; the ending angle of the
arc is in degrees, with 0 degrees at 3 o’clock.

See Also

“ELLARC” on page 1449

“PIE” on page 1455

“LINCOLOR” on page 1476

“LININDEX” on page 1477

“LINREP” on page 1478

“LINTYPE” on page 1479

“LINWIDTH” on page 1479

1448 BAR Chapter 50

BAR

Draws a rectangle

Operating States: SGOP
Return Codes: 0, 4, 76, 79, 80, 86

Syntax
return-code-variable=GDRAW(’BAR’, x1, y1, x2, y2);

Description
The GDRAW(’BAR’, . . .)function draws a rectangular bar whose sides are parallel to
the sides of the display area. The fill attributes and bundles affect the appearance of
this graphics element. See Table 49.2 on page 1364 for a list of these attributes. Figure
50.3 on page 1448 illustrates the arguments used with GDRAW(’BAR’, . . .).

Figure 50.3 Points that Draw a Bar

Argument Definitions
x1 numeric constant or numeric variable name; refers to the x

coordinate of one corner of the bar.

y1 numeric constant or numeric variable name; refers to the y
coordinate of one corner of the bar.

x2 numeric constant or numeric variable name; refers to the x
coordinate of the corner of the bar that is diagonally opposite to the
corner of (x1,y1).

y2 numeric constant or numeric variable name; refers to the y
coordinate of the corner of the bar that is diagonally opposite to the
corner of (x1,y1).

See Also

“FILL” on page 1451
“FILCOLOR” on page 1469

“FILINDEX” on page 1470

DATA Step Graphics Interface Dictionary ELLARC 1449

“FILREP” on page 1470
“FILTYPE” on page 1473
“FILSTYLE” on page 1471
“HTML” on page 1475

ELLARC

Draws an elliptical arc

Operating States: SGOP
Return Codes: 0, 4, 61, 86

Syntax
return-code-variable =GDRAW(’ELLARC’, x, y, major, minor, start, end, angle);

Description
The GDRAW(’ELLARC’, . . .)function draws a hollow section of an ellipse. The line
attributes and bundles affect the appearance of this primitive. See Table 49.2 on page
1364 for a list of these attributes. Figure 50.4 on page 1449 illustrates the arguments
used with GDRAW(’ELLARC’, . . .)and GDRAW(’ELLIPSE’, . . .).

Figure 50.4 Arguments Used with GDRAW(’ELLARC’,...) function and
GDRAW(’ELLIPSE’,...) function

Argument Definitions
x numeric constant or numeric variable name; x coordinates are in

units based on the current window system.

y numeric constant or numeric variable name; y coordinates are in
units based on the current window system.

major numeric constant or numeric variable name; the major axis lengths
for the elliptical arc.

1450 ELLIPSE Chapter 50

minor numeric constant or numeric variable name; the minor axis lengths
for the elliptical arc.

start numeric constant or numeric variable name; the starting angle from
the major axis, in degrees, for the elliptical arc with 0 degrees
beginning at the major axis.

end numeric constant or numeric variable name; the ending angle from
the major axis, in degrees, for the elliptical arc with 0 degrees at 3
o’clock.

angle numeric constant or numeric variable name; the angle that the major
axis of the elliptical arc has to 0 degrees (with 0 degrees at 3 o’clock).

See Also

“ELLIPSE” on page 1450

“LINCOLOR” on page 1476

“LINTYPE” on page 1479

“LINWIDTH” on page 1479

“LINREP” on page 1478

“LININDEX” on page 1477

ELLIPSE

Draws an ellipse

Operating States: SGOP

Return Codes: 0, 4, 76, 79, 80, 86

Syntax
return-code-variable =GDRAW(’ELLIPSE’, x, y, major, minor, start, end, angle);

Description
The GDRAW(’ELLIPSE’, . . .)function draws a filled section of an ellipse. The fill
attributes and bundles affect the appearance of this primitive. See Table 49.2 on page
1364 for a list of these attributes. Figure 50.4 on page 1449 illustrates the arguments
used with GDRAW(’ELLARC’, . . .)and GDRAW(’ELLIPSE’, . . .).

Argument Definitions
x numeric constant or numeric variable name; the x coordinate of the

position of the ellipse on the display.

y numeric constant or numeric variable name; the y coordinate of the
position of the ellipse on the display.

DATA Step Graphics Interface Dictionary FILL 1451

major numeric constant or numeric variable name; the major axis length
for the ellipse.

minor numeric constant or numeric variable name; the minor axis length
for the ellipse.

start numeric constant or numeric variable name; the starting angle for
the ellipse from the major axis, with 0 degrees beginning at the
major axis.

end numeric constant or numeric variable name; the ending angle for
the ellipse from the major axis, with 0 degrees at 3 o’clock.

angle numeric constant or numeric variable name; the angle that the
major axis of the ellipse has to 0 degrees, with 0 degrees at 3 o’clock.

See Also

“ELLARC” on page 1449
“FILCOLOR” on page 1469
“FILINDEX” on page 1470
“FILREP” on page 1470
“FILTYPE” on page 1473
“HTML” on page 1475

FILL

Draws a filled area

Operating States: SGOP
Return Codes: 0, 4, 76, 79, 80, 86, 100, 301

Syntax
return-code-variable=GDRAW(’FILL’, n, x-values, y-values);

Description
The GDRAW(’ILL’ . . .)function draws a filled polygon. The fill attributes and bundles
affect the appearance of this primitive. See Table 49.2 on page 1364 for a list of these
attributes.

Note: All of the x coordinates are listed in the function first, followed by the y
coordinates. This primitive takes the first n values and stores them as x coordinates.
The next n values are stored as y coordinates. �

Argument Definitions
n numeric constant or numeric variable name; the number of vertices

(x and y pairs) in the polygon. You can specify a missing value (.) for

1452 IMAGE Chapter 50

n. If n is missing, the number of vertices is computed from the
number of x and y arguments.

x-values list of numeric constants, variables, or OF arguments that describe
the x coordinates for the vertices in units based on the current
window system.

y-values list of numeric constants, variables, or OF arguments that describe
the y coordinates for the vertices in units based on the current
window system.

See Also

“BAR” on page 1448
“FILCOLOR” on page 1469
“FILINDEX” on page 1470
“FILREP” on page 1470
“FILTYPE” on page 1473
“FILSTYLE” on page 1471
“HTML” on page 1475

IMAGE

Displays an image

Operating State: SGOP
Return Codes: 0, 150

Syntax
return-code-variable=GDRAW(’IMAGE’, ’external-file’, x1, y1, x2, y2, ’style’);

Description
The GDRAW(’IMAGE’, . . .) function displays the specified image within opposing pairs
of coordinates. The format of the external image file varies between operating
environments. The (x1, y1) coordinate pair specifies one corner of the image, and the
(x2, y2) coordinate pair specifies the opposite corner of the image. The style parameter
must be either ’TILE’ to copy the image as many times as necessary to fill the area, or
’FIT’ to stretch one instance of the image to fill the area.

LINE

Draws a polyline

DATA Step Graphics Interface Dictionary MARK 1453

Operating States: SGOP

Return Codes: 0, 4, 61, 86, 100, 301

Syntax
return-code-variable=GDRAW(’LINE’, n, x-values, y-values);

Description
The GDRAW(’LINE’ . . .)function draws one line, a series of connected lines, or a dot.
The line attributes and bundles affect the appearance of this primitive. See Table 49.2
on page 1364 for a list of these attributes.

Note: All of the x coordinates are listed in the function first, followed by the y
coordinates. This primitive takes the first n values and stores them as x coordinates
and the next n values and stores them as y coordinates. �

Argument Definitions
n numeric constant or numeric variable name; the number of vertices

(x and y pairs) in the polygon. You can specify a missing value (.) for
n. If n is missing, the number of vertices is computed from the
number of x and y pairs.

x-values list of numeric constants, variables, or OF arguments that describe
the x coordinates for the vertices in units based on the current
window system.

y-values list of numeric constants, variables, or OF argument lists that
describe the y coordinates for the vertices in units based on the
current window system.

See Also

“FILCOLOR” on page 1469

“LININDEX” on page 1477

“LINREP” on page 1478

“LINTYPE” on page 1479

“LINWIDTH” on page 1479

MARK

Draws a polymarker

Operating States: SGOP

Return Codes: 0, 4, 65, 86, 100, 301

1454 MESSAGE Chapter 50

Syntax
return-code-variable=GDRAW (’MARK’, n, x-values, y-values);

Description
The GDRAW(’MARK’, . . .)function draws a series of symbols. The marker attributes
and bundles affect the appearance of this primitive. See Table 49.2 on page 1364 for a
list of these attributes. Refer to the “MARTYPE” on page 1483 for a list of symbols that
you can draw with GDRAW(’MARK’, . . .).

Note: All of the x coordinates are listed in the function first, followed by the y
coordinates. This primitive takes the first n values and stores them as x coordinates
and the next n values and stores them as y coordinates. �

Argument Definitions
n numeric constant or numeric variable name; the number of times

the symbol is drawn. You can specify a missing value (.) for n. If n
is missing, the number of vertices is calculated from the number of x
and y pairs.

x-values list of numeric constants, variables, or OF arguments that describe
the x coordinates of the symbols in units based on the current
window system.

y-values list of numeric constants, variables, or OF arguments that describe
the y coordinates of the symbols in units based on the current
window system.

See Also

“TEXT” on page 1456
“HTML” on page 1475
“MARCOLOR” on page 1480
“MARINDEX” on page 1481
“MARREP” on page 1482
“MARTYPE” on page 1483

MESSAGE

Prints a message in the SAS log

Operating States: All
Return Codes: 0

Syntax
return-code-variable=GDRAW(’MESSAGE’, message);

DATA Step Graphics Interface Dictionary PIE 1455

Description
The GDRAW(’MESSAGE’, . . .)function prints a message in the SAS log. This function
may be used for debugging applications or for printing custom messages for your
application.

Argument Definitions
message character string enclosed in quotes or character variable name; the

text to be printed in the log.

See Also

“MESSAGE” on page 1485

“GPRINT” on page 1402

PIE

Draws a filled circle or section of a filled circle

Operating States: SGOP

Return Codes: 0, 4, 76, 79, 80, 86

Syntax
return-code-variable=GDRAW(’PIE’, x, y, radius, start, end);

Description
The GDRAW(’PIE’, . . .)function draws a filled section of a circular arc. The fill
attributes and bundles affect the appearance of this primitive. See Table 49.2 on page
1364 for a list of these attributes.

Argument Definitions
x numeric constant or numeric variable name; x coordinates are in

units based on the current window system.

y numeric constant or numeric variable name; y coordinates are in
units based on the current window system.

radius numeric constant or numeric variable name; the pie radius size in
units based on the current window system.

start numeric constant or numeric variable name; the starting angle of
the pie, with 0 degrees at 3 o’clock on the unit circle.

end numeric constant or numeric variable name; the ending angle of the
pie, with 0 degrees at 3 o’clock on the unit circle.

1456 TEXT Chapter 50

See Also

“ARC” on page 1446
“FILCOLOR” on page 1469
“FILINDEX” on page 1470
“FILREP” on page 1470
“FILTYPE” on page 1473
“FILSTYLE” on page 1471
“HTML” on page 1475

TEXT

Draws a text string

Operating States: SGOP
Return Codes: 0, 4, 69, 86

Syntax
return-code-variable=GDRAW(’TEXT’, x, y, string);

Description
The GDRAW(’TEXT’, . . .)function draws a text string. The text attributes and bundles
affect the appearance of this primitive. See Table 49.2 on page 1364 for a list of these
attributes.

Argument Definitions
x numeric constant or numeric variable name; x coordinates are in

units based on the current window system.

y numeric constant or numeric variable name; y coordinates are in
units based on the current window system.

string character string enclosed in quotes or character variable name; a set
of characters to be drawn on the output beginning at position (x,y).

See Also

“MARK” on page 1453
“HTML” on page 1475
“TEXCOLOR” on page 1488
“TEXINDEX” on page 1490
“TEXREP” on page 1492
“TEXHEIGHT” on page 1490

DATA Step Graphics Interface Dictionary CLEAR 1457

GRAPH Functions
GRAPH functions perform library management tasks from within the DATA Step

Graphics Interface. These functions can only be performed on one catalog at a time.
They cannot be performed across catalogs. For example, you cannot copy a graph from
one catalog to another.

When using GRAPH functions, remember the following:
� All arguments are specified as variables or constants. If you express an argument

as a variable, the variable must be initialized.
� All character arguments expressed as character strings must be enclosed in quotes.
� All character variable names used as arguments must be declared in a LENGTH

statement.
� All character constants must be enclosed in single or double quotes.

GRAPH functions:
� CLEAR
� COPY
� DELETE
� INSERT
� PLAY
� RENAME
� UPDATE

CLEAR

Opens a graphics segment for output

Operating States: WSAC
Return Codes: 0, 3, 301, 302
Resulting Operating State: SGOP

Syntax
return-code-variable=GRAPH (’CLEAR’<, name> <, des><, byline>);

Description
The GRAPH(’CLEAR’, . . .)function opens a graphics segment for output in the current
catalog. The first parameter, ’CLEAR’, is the only required one. The values of name,
des, and byline are displayed in catalog listings and in catalog information in the
GREPLAY procedure.

If the name specified is an existing graph, DSGI will suffix the name with a number.
For example, if PIE is chosen for the name and it already exists, DSGI will name the

1458 COPY Chapter 50

output PIE1; the next time the code is submitted, DSGI names the output PIE2, and so
forth.

This function moves the operating state from WSAC to SGOP.

Argument Definitions
name character string enclosed in quotes or character variable name; gives

a name to the graph to be opened. If name is not specified, DSGI
assigns the graph a name that is some form of DSGI: for example,
DSGI, DSGI1, and DSGI2.

des character string enclosed in quotes or character variable name; gives
a description to the graph to be opened. If des is not specified, DSGI
assigns the following description to the catalog entry: Graph from
DATA Step Graphics Interface.

by-line character string enclosed in quotes or character variable name; gives
another line of description for the graph. The byline appears under
the titles on the graph. DSGI does not provide a default byline.

See Also

“OPENGRAPH” on page 1428
“UPDATE” on page 1461

COPY

Copies a graph

Operating States: GKOP, WSOP, WSAC, SGOP
Return Codes: 0, 8, 307

Syntax
return-code-variable=GRAPH(’COPY’, name, new-name);

Description
The GRAPH(’COPY’, . . .)function copies a graph to another catalog entry. The graph
to be copied must be closed and be in the current catalog. You cannot copy from one
catalog to another. The new graph will also be in the current catalog.

Argument Definitions
name character string enclosed in quotes or character variable name;

name of the graph to be copied.

new-name character string enclosed in quotes or character variable name;
name of the graph to be created.

DATA Step Graphics Interface Dictionary INSERT 1459

See Also

“CATALOG” on page 1407
“DELETE” on page 1459
“INSERT” on page 1459
“CATALOG” on page 1465

DELETE

Deletes a graph

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 4, 8, 307

Syntax
return-code-variable=GRAPH(’DELETE’, name);

Description
The GRAPH(’DELETE’, . . .)function deletes a graph in the current catalog. The graph
does not have to be closed to be deleted.

Argument Definitions
name character string enclosed in quotes or character variable name; the

name of the graph to delete.

See Also

“CATALOG” on page 1407
“COPY” on page 1458
“CATALOG” on page 1465

INSERT

Inserts a previously created segment into the currently open graph

Operating States: SGOP
Return Codes: 0, 4, 302, 307

1460 PLAY Chapter 50

Syntax
return-code-variable=GRAPH(’INSERT’, name);

Description
The GRAPH(’INSERT’, . . .)function inserts a graph into the currently open graph.
The graph to be inserted must be closed and be in the current catalog.

Argument Definitions
name character string enclosed in quotes or character variable name; the

name of a graph to be inserted.

See Also

“CATALOG” on page 1407
“COPY” on page 1458
“CATALOG” on page 1465

PLAY
Displays the specfied graph on your output

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 307

Syntax
return-code-variable=GRAPH(’PLAY’, graph-name);

Description
The GRAPH(’PLAY’, . . .)function displays the specified graph on your output.

Argument Definitions
graph-name character variable name; the name of the graph you would like to

play.

See Also

“UPDATE” on page 1461

RENAME
Renames a graph

DATA Step Graphics Interface Dictionary UPDATE 1461

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 307

Syntax
return-code-variable=GRAPH(’RENAME’, name, new-name);

Description
The GRAPH(’RENAME’, . . .)function renames a graph. The graph to be renamed
must be in the current catalog and be closed.

Argument Definitions
name character string enclosed in quotes or character variable name; the

name of the closed graph that is to be changed.

new-name character string enclosed in quotes or character variable name; the
new name for the graph.

See Also

“CATALOG” on page 1407
“INSERT” on page 1459
“CATALOG” on page 1465

UPDATE

Completes the currently open graph and (optionally) displays it

Operating States: SGOP
Return Codes: 0, 4
Resulting Operating State: WSAC

Syntax
return-code-variable=GRAPH(’UPDATE’ <, ’show’>);

Description
The GRAPH(’UPDATE’, . . .)function closes the graph currently open and displays it.
DSGI operates in buffered mode, so the picture is never displayed until this function is
called.

This function can be called only once for the currently open graph. Therefore, you
cannot incrementally build a graph; however, you can close the currently open graph
and later insert it into another graph within the same DATA step.

This function moves the operating state from SGOP to WSAC.

1462 GSET Functions Chapter 50

Argument Definitions
show character string, optional; valid values are SHOW and NOSHOW. If

SHOW is specified, the graph is displayed. If NOSHOW is specified,
the graph is closed and not displayed.

See Also

“CLEAR” on page 1457

GSET Functions
GSET functions allow you to set attributes for the graphics elements. Some GSET

functions set the attributes for a subset of graphics primitives. For example, attributes
prefixed by FIL control the appearance of the graphics primitives GDRAW(’BAR’, . . .),
GDRAW(’ELLIPSE’, . . .), GDRAW(’FILL’, . . .), and GDRAW(’PIE’, . . .). See Table
49.2 on page 1364 for a complete list of the attributes that control the appearance of the
graphics primitives.

Some GSET functions affect the appearance of the entire graphics output. For
example, GSET(’HPOS’, . . .)and GSET(’VPOS’, . . .)set the number of columns and
rows for the output. See each GSET function for the aspect of the graphics output that
it controls.

When using GSET functions, remember the following:
� All arguments must be specified.
� All arguments are specified as variables or constants. If you express an argument

as a variable, the variable must be initialized.
� All character arguments that are expressed as character strings must be enclosed

in quotation marks.
� All character variable names used as arguments must be declared in a LENGTH

statement.
� All character constants must be enclosed in single or double quotation marks.

GSET functions:

ASF

ASPECT

CATALOG

CBACK

CLIP

COLREP

DEVICE

FILCOLOR

FILINDEX

FILREP

FILSTYLE

FILTYPE

DATA Step Graphics Interface Dictionary ASF 1463

HPOS

HSIZE

HTML

LINCOLOR

LININDEX

LINREP

LINTYPE

LINWIDTH

MARCOLOR

MARINDEX

MARREP

MARSIZE

MARTYPE

MESSAGE

PATREP

TEXALIGN

TEXCOLOR

TEXFONT

TEXHEIGHT

TEXINDEX

TEXPATH

TEXREP

TEXUP

TRANSNO

VIEWPORT

VPOS

VSIZE

WINDOW

ASF

Specifies an aspect source flag to bundle or separate attributes

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Default Value: INDIVIDUAL

1464 ASF Chapter 50

Syntax
return-code-variable=GSET(’ASF’, attribute, status);

Description
The GSET(’ASF’, . . .)function sets an attribute’s aspect source flag (ASF) so that it
can be used in a bundle (BUNDLED) or individually (INDIVIDUAL).

If an attribute’s ASF is set to ’BUNDLED’, it cannot be used outside of a bundle. It
must be defined in a GSET(’xxxREP’, . . .)function and activated with a
GSET(’xxxINDEX’, . . .)function, where xxx can have one of the following values: FIL,
LIN, MAR, TEX.

If an attribute’s ASF is set to ’INDIVIDUAL’, it cannot be used with a bundle. In
this case, the attribute is set with a GSET(’attribute’, . . .). The values of attribute are
listed in "Argument Definitions."

Argument Definitions
attribute character string enclosed in quotes or character variable name with

one of the following values:
� FILCOLOR
� FILSTYLE
� FILTYPE
� LINCOLOR
� LINTYPE
� LINWIDTH
� MARCOLOR
� MARSIZE
� MARTYPE
� TEXCOLOR
� TEXFONT.

status character string enclosed in quotation marks or character variable
name; accepts either the value BUNDLED or INDIVIDUAL.

See Also

“ASF” on page 1405
“FILCOLOR” on page 1469
“FILSTYLE” on page 1471
“FILTYPE” on page 1473
“LINCOLOR” on page 1476
“LINTYPE” on page 1479
“LINWIDTH” on page 1479
“MARCOLOR” on page 1480
“MARSIZE” on page 1483
“MARTYPE” on page 1483
“TEXCOLOR” on page 1488

DATA Step Graphics Interface Dictionary CATALOG 1465

“TEXFONT” on page 1489

ASPECT
Specifies the aspect ratio

Operating States: GKCL
Return Codes: 0, 1, 90, 307
Default Value: 0.0

Syntax
return-code-variable=GSET(’ASPECT’, aspect);

Description
The GSET(’ASPECT’, . . .)function sets the aspect ratio used to draw graphics output.
GSET(’ASPECT’, . . .)affects only pies, arcs, and software text.

Argument Definitions
aspect numeric constant or numeric variable name; specifies the aspect

ratio and cannot be less than 0.

See Also

ASPECT= graphics option (see “ASPECT” on page 262)
“ASPECT” on page 1406

CATALOG
Specifies the catalog for the graphs

Operating States: GKCL
Return Codes: 0, 1
Default Values: libref = WORK, catalog-name=GSEG

Syntax
return-code-variable=GSET(’CATALOG’, libref, catalog-name);

Description
The GSET(’CATALOG’, . . .)function makes the specified catalog the current catalog in
which to store graphs generated with DSGI. GSET(’CATALOG’, . . .)creates the catalog
if it does not exist.

1466 CBACK Chapter 50

The values of libref and catalog-name cannot exceed eight characters. The number of
characters allowed for a catalog name varies across operating environments; see the
SAS companion for your operating system. Libref should have been defined through the
LIBNAME statement.

Argument Definitions
libref character string enclosed in quotation marks or character variable

name; points to the library that contains the catalog.

catalog-name character string enclosed in quotation marks or character variable
name; specifies the catalog name to be used.

See Also

“CATALOG” on page 1407
“GRAPHLIST” on page 1416
“NUMGRAPH” on page 1427

CBACK

Specifies the background color

Operating States: GKCL
Return Codes: 0, 1
Default Value: 1. CBACK= graphics option, if specified; 2. device’s default background
color.

Syntax
return-code-variable=GSET(’CBACK’, cback);

Description
The GSET(’CBACK’, . . .)function sets the background color. GSET(’CBACK’, . . .)has
the same effect as the CBACK= graphics option.

Argument Definitions
cback character string enclosed in quotation marks or character variable

name; can contain any predefined SAS color name. See “SAS Color
Names and RGB Values” on page 99 for a list of predefined SAS
color names.

See Also

CBACK= graphics option (see “CBACK” on page 266)

DATA Step Graphics Interface Dictionary COLREP 1467

“CBACK” on page 1408

CLIP

Specifies whether clipping is on or off

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0

Default Value: OFF

Syntax
return-code-variable=GSET(’CLIP’, status);

Description
The GSET(’CLIP’, . . .)function activates or suppresses clipping around the current
viewport.

Argument Definitions
status character string enclosed in quotation marks or character variable

name; valid values are ON and OFF. When ON is used, the graphics
elements outside of the specified viewport are not displayed. If you
turn clipping OFF, the graphics elements outside of the defined
viewport are displayed.

See Also

“CLIP” on page 1409

“VIEWPORT” on page 1441

“VIEWPORT” on page 1497

COLREP

Associates a color name with a certain color index

Operating States: SGOP

Return Codes: 0, 4, 86

Default Values: 1. colors list of COLORS= graphics option; 2. device’s default colors list

1468 DEVICE Chapter 50

Syntax
return-code-variable=GSET(’COLREP’, color-index, color);

Description
The GSET(’COLREP’, . . .)function associates a predefined SAS color name with a color
index. Many of the GASK routines and GSET functions use color-index as an argument.

If this function is not used, DSGI searches for a color specification in the following
order:

1 the nth color in the colors list of the COLORS= graphics option
2 the nth color in the device’s default colors list.

Argument Definitions
color-index numeric constant or numeric variable name; a number from 1 to 256

that identifies a color.

color character string enclosed in quotation marks or character variable
name; a predefined SAS color name. See “SAS Color Names and
RGB Values” on page 99 for a list of predefined SAS color names.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“COLINDEX” on page 1409
“COLREP” on page 1410

DEVICE

Specifies the output graphics device

Operating States: GKCL
Return Codes: 0, 1
Default Value: 1. DEVICE= graphics option, if specified; 2. value entered in DEVICE
prompt window; 3. value entered in OPTIONS window

Syntax
return-code-variable=GSET(’DEVICE’, device);

Description
The GSET(’DEVICE’, . . .)function selects the device driver.

Argument Definitions
device character string enclosed in quotation marks or character variable

name; the name of the driver you will be using. Device must match

DATA Step Graphics Interface Dictionary FILCOLOR 1469

one of the device entries in the SASHELP.DEVICES catalog or one
of your personal device catalogs, GDEVICE0.DEVICES through
GDEVICE9.DEVICES. Refer to “About Device Catalogs” on page 916
for more information about catalogs that store device entries.

See Also

DEVICE= graphics option (see “DEVICE” on page 279)
“DEVICE” on page 1411

FILCOLOR

Specifies the color index of the color used to draw fill areas

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 85
Default Value: 1

Syntax
return-code-variable=GSET(’FILCOLOR’, color-index);

Description
The GSET(’FILCOLOR’, . . .)function selects the color index of the color used to draw
fill areas. The aspect source flag (ASF) of FILCOLOR must be set to ’INDIVIDUAL’ for
this attribute to be used outside of a fill bundle.

DSGI searches for a color to assign to the index in the following order:
1 the color specified for the index in a GSET(’COLREP’, . . .)function

2 the nth color in the colors list of the COLORS= graphics option
3 the nth color in the device’s default colors list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the index of

the color to be used. Valid values are 1 to 256, inclusive.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“ASF” on page 1463
“COLREP” on page 1467
“FILCOLOR” on page 1412

“FILREP” on page 1470

1470 FILINDEX Chapter 50

FILINDEX

Specifies the index of the bundle of fill area attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 75
Default Value: 1

Syntax
return-code-variable=GSET(’FILINDEX’, index);

Description
The GSET(’FILINDEX’, . . .)function activates a particular fill bundle. The aspect
source flag (ASF) for FILCOLOR, FILSTYLE, and FILTYPE must be set to ’BUNDLED’
before the associated GDRAW function is executed if you want the bundled values to be
used when the affected graphics element is drawn.

Argument Definitions
index numeric constant or numeric variable name; specifies the index

number of the fill bundle. Valid values are 1 to 20, inclusive.

See Also

“FILINDEX” on page 1413
“ASF” on page 1463
“FILREP” on page 1470

FILREP

Associates a bundle of fill attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 75, 78, 85
Default Value: none

Syntax
return-code-variable =GSET(’FILREP’, index, color-index, interior, style-index);

DATA Step Graphics Interface Dictionary FILSTYLE 1471

Description
The GSET(’FILREP’, . . .)function assigns a color, type of interior, and style of the
interior to a specific fill bundle. The aspect source flags for FILCOLOR, FILTYPE, and
FILSTYLE must be set to ’BUNDLED’ before the associated GDRAW function is
executed if you want the bundled values to be used when the affected graphics element
is drawn.

Argument Definitions
index numeric constant or numeric variable name; indicates the index to

be used with the bundle. Valid values are 1 to 20, inclusive. If index
is expressed as a variable, the variable name must be initialized to a
value between 1 and 20.

color-index numeric constant or numeric variable name; indicates the index of
the color to be used. Valid values are 1 to 256, inclusive. The color
index should represent one of the following:

� a color index assigned with the GSET(’COLREP’, . . .)function
� the nth color in the colors list of the COLORS= graphics option
� the nth color in the device’s default colors list.

interior character string enclosed in quotation marks or character variable
name; indicates the type of interior. Valid values are

� HATCH
� HOLLOW
� PATTERN
� SOLID.

style-index numeric constant or numeric variable name; indicates the index of
the style to be used. Valid values are 1 to 15, inclusive, when
FILTYPE is PATTERN, or 1 to 60, inclusive, when FILTYPE is
HATCH. See the GSET(’FILSTYLE’, . . .)function“FILSTYLE” on
page 1471 for a table of the patterns used for each style index. If
interior is HOLLOW or SOLID, style-index is ignored.

See Also

“FILREP” on page 1413
“ASF” on page 1463
“COLREP” on page 1467
“FILCOLOR” on page 1469
“FILINDEX” on page 1470
“FILSTYLE” on page 1471
“FILTYPE” on page 1473

FILSTYLE
Specifies the style of the interior of the fill area when the FILTYPE is PATTERN or HATCH

1472 FILSTYLE Chapter 50

Operating State: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 78

Default Value: 1

Syntax
return-code-variable=GSET(’FILSTYLE’, style-index);

Description
The GSET(’FILSTYLE’, . . .)function activates a particular fill pattern when FILTYPE
is specified as either PATTERN or HATCH. The aspect source flag (ASF) must be set to
’INDIVIDUAL’ for this attribute to be used outside of a fill bundle.

Table 50.1 Style Index Table

Value PATTERN HATCH Value PATTERN HATCH

1 X1 M1X 31 M3N045

2 X2 M1X030 32 M3N060

3 X3 M1X045 33 M3N090

4 X4 M1X060 34 M3N120

5 X5 M1N 35 M3N135

6 L1 M1N030 36 M3N150

7 L2 M1N045 37 M4X

8 L3 M1N060 38 M4X030

9 L4 M1N090 39 M4X045

10 L5 M1N120 40 M4X060

11 R1 M1N135 41 M4N

12 R2 M1N150 42 M4N030

13 R3 M2X 43 M4N045

14 R4 M2X030 44 M4N060

15 R5 M2X045 45 M4N090

16 M2X060 46 M4N120

17 M2N 47 M4N135

18 M2N030 48 M4N150

19 M2N045 49 M5X

20 M2N060 50 M5X030

21 M2N090 51 M5X045

22 M2N120 52 M5X060

23 M2N135 53 M5N

24 M2N150 54 M5N030

25 M3X 55 M5N045

DATA Step Graphics Interface Dictionary FILTYPE 1473

Value PATTERN HATCH Value PATTERN HATCH

26 M3X030 56 M5N060

27 M3X045 57 M5N090

28 M3X060 58 M5N120

29 M3N 59 M5N135

30 M3N030 60 M5N150

Argument Definitions
style-index numeric constant or numeric variable name. Valid values are 1 to

15, inclusive, when FILTYPE is PATTERN, or 1 to 60, inclusive,
when FILTYPE is HATCH. See Table 49.1 on page 1360 for value
specifications.

See Also

“FILSTYLE” on page 1414

“ASF” on page 1463

“FILREP” on page 1470

“FILTYPE” on page 1473

FILTYPE

Specifies the type of the interior of the fill area

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 78

Default Value: HOLLOW

Syntax
return-code-variable=GSET(’FILTYPE’, interior);

Description
The GSET(’FILTYPE’, . . .)function selects a particular type of interior fill. If FILTYPE
is set to HATCH or PATTERN, the GSET(’FILSTYLE’, . . .)function determines the
type of hatch or pattern fill used. The aspect source flag (ASF) for FILTYPE must be
set to ’INDIVIDUAL’ for this attribute to be used outside of a fill bundle.

Argument Definitions
interior character string or character variable name; indicates the type of

interior fill. Valid values are

� HATCH

1474 HPOS Chapter 50

� HOLLOW
� PATTERN
� SOLID.

See Also

“ASF” on page 1463
“FILREP” on page 1470
“FILSTYLE” on page 1471

HPOS

Specifies the number of columns

Operating States: GKCL
Return Codes: 0, 1, 90, 307
Default Value: 1. HPOS= graphics option, if specified; 2. device’s default HPOS setting

Syntax
return-code-variable=GSET(’HPOS’, hpos);

Description
The GSET(’HPOS’, . . .)function sets the number of columns in the graphics output
area. GSET(’HPOS’, . . .)has the same effect as the HPOS= graphics option. See
“HPOS” on page 315 for more information. You can reset the HPOS value by
submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;

goptions hpos=0;

Argument Definitions
hpos numeric constant or numeric variable name; specifies the number of

horizontal columns; must be greater than 0.

See Also

“HPOS” on page 1417
“HSIZE” on page 1418
“VPOS” on page 1442
HPOS= graphics option (see “HPOS” on page 315)

DATA Step Graphics Interface Dictionary HTML 1475

HSIZE

Specifies the horizontal dimension of the graphics output area

Operating States: GKCL

Return Codes: 0, 1, 90, 307

Default Value: 1. HSIZE= graphics option, if specified; 2. HSIZE device parameter

Syntax
return-code-variable=GSET(’HSIZE’, hsize);

Description
The GSET(’HSIZE’, . . .)function sets the horizontal dimension, in inches, of the
graphics output area. GSET(’HSIZE’, . . .)affects the dimensions of the default
window. You can reset the HSIZE value by submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;

goptions hsize=0;

Argument Definitions
hsize numeric constant or numeric variable name; specifies the horizontal

dimension, in inches, of the graphics output area; must be greater
than 0.

See Also

“HSIZE” on page 1418

“HPOS” on page 1474

“VSIZE” on page 1499

HSIZE= graphics option (see “HSIZE” on page 315)

HTML

Specifies the HTML string to invoke when an affected DSGI graphic element in a web page is
clicked

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Default Value: null

1476 LINCOLOR Chapter 50

Syntax
return-code-variable=GSET(’HTML’, ’string’);

Description
The GSET(’HTML’, . . .)function sets the HTML string to invoke when an affected
DSGI graphic element in a web page is clicked. The HTML string is used with ODS
processing to create a drill-down graph. The string value is used as the value for the
HREF= attribute in the image map that implements the drill-down capability.

The value for string must be HREF= followed by a valid URL that is specified in
double quotation marks, as in

rc = GSET(’HTML’, ’HREF="http://www.sas.com/"’);

The HTML string can be used by any of the following graphic element types drawn
in the code: BAR, ELLIPSE, FILL, MARK, PIE, and TEXT. The string applies to all of
these element types that are drawn after the string is set. To change the HTML string,
set a new value. To turn off the HTML string, specify a null string:

rc = GSET(’HTML’, ’’);

For more information on drill-down graphs, see “Adding Drill-Down Links to Web
Presentations” on page 571. For an example of how to use DSGI to generate a
drill-down graph, see “Generating a Drill-down Graph Using DSGI” on page 1395.

Argument Definitions
string the HTML string. The string must be enclosed in single quotation

marks and must begin with HREF= followed by a URL that is
enclosed in double quotation marks.

See Also

“HTML” on page 1418

“BAR” on page 1448

“ELLIPSE” on page 1450

“FILL” on page 1451

“MARK” on page 1453

“PIE” on page 1455

“TEXT” on page 1456

LINCOLOR

Specifies the color index of the color used to draw lines

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 85

Default Value: 1

DATA Step Graphics Interface Dictionary LININDEX 1477

Syntax
return-code-variable=GSET(’LINCOLOR’, color-index);

Description
The GSET(’LINCOLOR’, . . .)function selects the index of the color used to draw lines.
The aspect source flag (ASF) for LINCOLOR must be set to ’INDIVIDUAL’ for this
attribute to be used outside of a line bundle.

DSGI searches for a color specification in the following order:

1 the color specified for the index in a GSET(’COLREP’, . . .)function

2 the nth color in the colors list of the COLORS= graphics option

3 the nth color in the device’s default colors list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the index of

the color to use. Valid values are 1 to 256, inclusive.

See Also

COLORS= graphics option (see “COLORS” on page 272)

“LINCOLOR” on page 1419

“ASF” on page 1463

“COLREP” on page 1467

“LINREP” on page 1478

LININDEX

Specifies the index of the bundle of line attributes

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 60

Default Value: 1

Syntax
return-code-variable=GSET(’LININDEX’, index);

Description
The GSET(’LININDEX’, . . .)function activates a particular line bundle. The aspect
source flags (ASF) of LINCOLOR, LINTYPE, and LINWIDTH must be set to
’BUNDLED’ before the associated GDRAW function is executed if you want the bundled
values to be used when the affected graphics element is drawn.

1478 LINREP Chapter 50

Argument Definitions
index numeric constant or numeric variable name; indicates the index of

the bundle to activate. Valid values are 1 to 20, inclusive.

See Also

“LININDEX” on page 1420
“ASF” on page 1463
“LINREP” on page 1478

LINREP

Associates a bundle of line attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 60, 62, 85, 90
Default Value: none

Syntax
return-code-variable=GSET (’LINREP’,index, color-index, width, type);

Description
The GSET(’LINREP’, . . .)function assigns a color, width, and line type to a specific
line bundle. The aspect source flags (ASF) for LINCOLOR, LINWIDTH, and LINTYPE
must be set to ’BUNDLED’ before the associated GDRAW function is executed if you
want the bundled values to be used when the affected graphics element is drawn.

Argument Definitions
index numeric constant or numeric variable name; indicates the number

for the bundle to use as an index. Valid values are 1 and 20,
inclusive. If index is expressed as a variable, the variable must be
initialized to a value between 1 and 20.

color-index numeric constant or numeric variable name; specifies the index of
the color to use. Valid values are 1 to 256, inclusive. The color index
should represent one of the following:

� a color index assigned with the GSET(’COLREP’, . . .)function
� the nth color in the colors list of the COLORS= graphics option
� the nth color in the device’s default colors list.

width numeric constant or numeric variable name; indicates the width of
the line; must be greater than 0.

type numeric constant or numeric variable name; indicates the type of
line. Valid values are 1 to 46, inclusive. See Figure 7.22 on page 208
for representations of the different line types.

DATA Step Graphics Interface Dictionary LINWIDTH 1479

See Also

“ASF” on page 1463
“COLREP” on page 1467
“LINCOLOR” on page 1476
“LININDEX” on page 1477
“LINREP” on page 1478
“LINTYPE” on page 1479
“LINWIDTH” on page 1479

LINTYPE

Specifies the line type

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 62
Default Value: 1

Syntax
return-code-variable=GSET(’LINTYPE’, type);

Description
The GSET(’LINTYPE’, . . .)function selects a line type. See Figure 7.22 on page 208 for
representations of the different line types. The aspect source flag (ASF) for LINTYPE
must be set to ’INDIVIDUAL’ for this attribute to be used outside of a line bundle.

Argument Definitions
type numeric constant or numeric variable name; indicates the type of

line to use. Valid values are 1 to 46, inclusive.

See Also

“LINTYPE” on page 1421
“ASF” on page 1463
“LINREP” on page 1478

LINWIDTH

Specifies the thickness of the line

1480 MARCOLOR Chapter 50

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 90
Default Value: 1

Syntax
return-code-variable=GSET(’LINWIDTH’, width);

Description
The GSET(’LINWIDTH’, . . .)function selects a line width in units of pixels. The
aspect source flag (ASF) for LINWIDTH must be set to ’INDIVIDUAL’ for this attribute
to be used outside of a line bundle.

Argument Definitions
width numeric constant or numeric variable name; specifies the width of

the line in pixels; must be greater than 0.

See Also

“LINWIDTH” on page 1422
“ASF” on page 1463
“LINREP” on page 1478

MARCOLOR

Specifies the color index of the color used to draw markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 85
Default Value: 1

Syntax
return-code-variable=GSET(’MARCOLOR’, color-index);

Description
The GSET(’MARCOLOR’, . . .)function selects the color index of the color used to draw
markers. The aspect source flag (ASF) of MARCOLOR must be set to ’INDIVIDUAL’ for
this attribute to be used outside of a marker bundle.

DSGI searches for a color specification in the following order:
1 the color specified for the index in a GSET(’COLREP’, . . .)function
2 the nth color in the colors list of the COLORS= graphics option

DATA Step Graphics Interface Dictionary MARINDEX 1481

3 the nth color in the device’s default colors list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the index of

the color to use. Valid values are 1 to 256, inclusive.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“MARCOLOR” on page 1423
“ASF” on page 1463
“COLREP” on page 1467
“MARREP” on page 1482

MARINDEX

Specifies the index of the bundle of marker attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 64
Default Value: 1

Syntax
return-code-variable=GSET(’MARINDEX’, index);

Description
The GSET(’MARINDEX’, . . .)function activates the marker bundle indicated by index.
The aspect source flag (ASF) for MARCOLOR, MARTYPE, and MARSIZE must be set
to ’BUNDLED’ before the GDRAW(’MARK’, . . .)function is executed if you want the
bundled values to be used when the marker is drawn.

Argument Definitions
index numeric constant or numeric variable name; the number of the

bundle to activate. Valid values are 1 to 20, inclusive.

See Also

“MARINDEX” on page 1424
“ASF” on page 1463
“MARREP” on page 1482

1482 MARREP Chapter 50

MARREP

Associates a bundle of marker attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 64, 66, 85, 90

Default Value: none

Syntax
return-code-variable=GSET (’MARREP’,index, color-index, size, type);

Description
The GSET(’MARREP’, . . .)function assigns a color, size, and type of marker to a
specific marker bundle. The aspect source flag (ASF) of MARCOLOR, MARSIZE, and
MARTYPE must be set to ’BUNDLED’ before the GDRAW(’MARK’, . . .)function is
executed if you want the bundled values to be used when the marker is drawn.

Argument Definitions
index numeric constant or numeric variable name; defines the bundle

index number. Valid values are 1 to 20, inclusive.

color-index numeric constant or numeric variable name; indicates the color
index of the color to use. Valid values are 1 to 256, inclusive. The
color index should represent one of the following:

� a color index assigned to a color name with the
GSET(’COLREP’, . . .)function

� the nth color in the colors list of the COLORS= graphics option

� the nth color in the device’s default colors list.

size numeric constant or numeric variable name; indicates the size of the
marker in units of the current window system; must be greater than
0.

type numeric constant or numeric variable name; specifies the type of
marker to use; valid values are 1 to 67, inclusive. See Table 50.2 on
page 1484 for a table of the symbols used for each marker type.

See Also

“ASF” on page 1463

“COLREP” on page 1467

“MARCOLOR” on page 1480

“MARINDEX” on page 1481

“MARSIZE” on page 1483

“MARTYPE” on page 1483

DATA Step Graphics Interface Dictionary MARTYPE 1483

MARSIZE

Selects the size of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 90
Default Value: 1

Syntax
return-code-variable=GSET(’MARSIZE’, size);

Description
The GSET(’MARSIZE’, . . .)function sets the marker size in units of the current
window system. The aspect source flag (ASF) of MARSIZE must be set to
’INDIVIDUAL’ for this attribute to be used outside of a marker bundle.

Argument Definitions
size numeric constant or numeric variable name; indicates the size of the

marker in units of the current window system; must be greater than
0.

See Also

“MARSIZE” on page 1425
“ASF” on page 1463
“MARREP” on page 1482

MARTYPE

Selects the kind of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 66
Default Value: 1

Syntax
return-code-variable=GSET(’MARTYPE’, type);

Description
The GSET(’MARTYPE’, . . .)function determines the type of marker drawn. See Figure
7.21 on page 202 for representations of the symbols described in Table 50.2 on page

1484 MARTYPE Chapter 50

1484. The aspect source flag (ASF) of MARTYPE must be set to ’INDIVIDUAL’ for this
attribute to be used outside of a marker bundle.

Table 50.2 Symbol Indexes Used with DSGI

Values and Markers

1 plus 24 K 46 9

2 x 25 L 47 lozenge

3 star 26 M 48 spade

4 square 27 N 49 heart

5 diamond 28 O 50 diamond

6 triangle 29 P 51 club

7 hash 30 Q 52 shamrock

8 Y 31 R 53 fleur-de-
lis

9 Z 32 S 54 star

10 paw 33 T 55 sun

11 point 34 U 56 Mercury

12 dot 35 V 57 Venus

13 circle 36 W 58 Earth

14 A 37 0 59 Mars

15 B 38 1 60 Jupiter

16 C 39 2 61 Saturn

17 D 40 3 62 Uranus

18 E 41 4 63 Neptune

19 F 42 5 64 Pluto

20 G 43 6 65 moon

21 H 44 7 66 comet

22 I 45 8 67 asterisk

23 J

Argument Definitions
type numeric constant or numeric variable name; indicates the index of

the marker to draw. Valid values are 1 to 67, inclusive. See Table
50.2 on page 1484 for value specifications.

See Also

“MARTYPE” on page 1426
“ASF” on page 1463

DATA Step Graphics Interface Dictionary PATREP 1485

“MARREP” on page 1482

MESSAGE

Specifies whether the interface error message system is enabled or disabled

Operating States: All

Return Codes: 0

Default Value: ON

Syntax
return-code-variable=GSET(’MESSAGE’, status);

Description
The GSET(’MESSAGE’, . . .)function activates or suppresses automatic error logging.

Argument Definitions
status character string enclosed in quotation marks or character variable

name; indicates whether messages should be displayed. Valid values
are ON and OFF. When ON is used, messages are automatically
generated by the DSGI based on the return code from the function.
If you set MESSAGE to OFF, no messages are automatically printed.
You may choose to do this if you want to print custom messages for
your application or decide which error message you want printed.

See Also

“MESSAGE” on page 1454

“GPRINT” on page 1402

PATREP

Specifies the pattern name of a style index for a particular fill type.

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 79

Default value: 1

1486 TEXALIGN Chapter 50

Syntax
return-code-variable=CALL GSET(’PATREP’, index, pattern-name, hatch-name);

Description
The GSET(’PATREP’, . . .)function sets a pattern of a style index for a particular fill
type.

Argument Definitions
index numeric variable name; indicates the index of the pattern to be used.

pattern-name character variable name; sets the name of the pattern at the
specified index.

hatch-name character variable name; sets the name of the hatch at the specified
index.

See Also

“PATREP” on page 1429

TEXALIGN

Specifies the horizontal and vertical alignment of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8
Default values: halign=NORMAL, valign=NORMAL

Syntax
return-code-variable=GSET(’TEXALIGN’, halign, valign);

Description
The GSET(’TEXALIGN’, . . .)function sets a particular type of horizontal and vertical
alignment for text strings. Figure 50.5 on page 1487 illustrates halign.

DATA Step Graphics Interface Dictionary TEXALIGN 1487

Figure 50.5 Halign Values

Figure 50.6 on page 1487 illustrates valign.

Figure 50.6 Valign Values

Argument Definitions
halign character string enclosed in quotation marks or character variable

name. Valid values are
CENTER
LEFT
NORMAL (the natural alignment based on the text path);

alignment is chosen according to the following logic:

1 If TEXPATH is ’RIGHT’, then NORMAL is ’LEFT’.
2 Otherwise, if TEXPATH is ’LEFT’, then NORMAL is

’RIGHT’.
3 Otherwise, the text string is centered.

RIGHT.

valign character string enclosed in quotation marks or character variable
name. Valid values are

BASE (alignment based on the baseline of the text string)
BOTTOM (alignment based on the bottom of the text string)
HALF (alignment based on the vertical midpoint of the string)
NORMAL (natural alignment based on the text path); alignment

is chosen according to the following logic:

1488 TEXCOLOR Chapter 50

1 If TEXPATH is ’RIGHT’ or TEXPATH is ’LEFT’, then
NORMAL is ’BASE’.

2 Otherwise, if TEXPATH is ’UP’, then NORMAL is
’BOTTOM’.

3 Otherwise, if TEXPATH is ’DOWN’, then NORMAL is
’TOP’.

TOP (alignment based on the top of the string).

See Also

“TEXALIGN” on page 1430

“TEXT” on page 1456

“TEXPATH” on page 1491

“TEXUP” on page 1493

TEXCOLOR

Specifies the color index of the color used to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 85

Default Value: 1

Syntax
return-code-variable=GSET(’TEXCOLOR’, color-index);

Description
The GSET(’TEXCOLOR’, . . .)function selects the color for text. The aspect source flag
(ASF) of TEXCOLOR must be set to ’INDIVIDUAL’ for this attribute to be used outside
of a text bundle.

The value of GSET(’TEXCOLOR’, . . .)can be used in a text bundle. See the
“TEXREP” on page 1492 for information on how to define a text bundle.

DSGI searches for a color specification in the following order:

1 the color specified for the index in a GSET(’COLREP’, . . .)function

2 the nth color from the colors list of the COLORS= graphics option

3 the nth color in the device’s default colors list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the color

index of the color to be used. Valid values are 1 to 256, inclusive.

DATA Step Graphics Interface Dictionary TEXFONT 1489

See Also

COLORS= graphics option (see “COLORS” on page 272)
“TEXCOLOR” on page 1431
“ASF” on page 1463
“COLREP” on page 1467
“TEXREP” on page 1492

TEXFONT

Specifies the font used to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8
Default values: 1. FTEXT= graphics option, if specified; 2. hardware font, if possible; 3.
SIMULATE font

Syntax
return-code-variable=GSET(’TEXFONT’, font);

Description
The GSET(’TEXFONT’, . . .)function selects a SAS/GRAPH font for the text. The
aspect source flag (ASF) of TEXFONT must be set to ’INDIVIDUAL’ for this attribute to
be used outside of a text bundle. See “Font Lists” on page 82 for a list of valid
SAS/GRAPH fonts. You may also use fonts you have created using the GFONT
procedure.

Argument Definitions
font character string enclosed in quotation marks or character variable

name; the name of a font that can be accessed by SAS/GRAPH
software. If you want to use the hardware font, submit

rc=gset(’texfont’, ’ ’);

When DSGI is used with long font names, the font name must be in double quotation
marks that are embedded in single quotation marks, as in ’“HW font name”’.

1490 TEXHEIGHT Chapter 50

See Also

FTEXT= graphics options (see “FTEXT” on page 294)
“TEXFONT” on page 1434
“ASF” on page 1463
“TEXREP” on page 1492

TEXHEIGHT

Specifies the character height of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 73
Default Value: 1. HTEXT= graphics option, if specified; 2. 1 unit

Syntax
return-code-variable=GSET(’TEXHEIGHT’, height);

Description
The GSET(’TEXHEIGHT’, . . .)function sets the height for text. GSET(’TEXHEIGHT’,
. . .)affects text the same way as the HTEXT= graphics option.

Argument Definitions
height numeric constant or numeric variable name; indicates height in

units based on the current window system; must be greater than 0.

See Also

“TEXHEIGHT” on page 1435
HTEXT= graphics options (see “HTEXT” on page 316)

TEXINDEX

Specifies the index of the bundle of text attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 68
Default Value: 1

DATA Step Graphics Interface Dictionary TEXPATH 1491

Syntax

return-code-variable=GSET(’TEXINDEX’, index);

Description

The GSET(’TEXINDEX’, . . .)function activates the text bundle indicated by index.
The aspect source flag (ASF) for TEXCOLOR and TEXFONT must be set to
’BUNDLED’ before the GDRAW(’TEXT’, . . .)function is executed if you want the
bundled values to be used when the text is drawn.

Argument Definitions

index numeric constant or numeric variable name; indicates the number of
the bundle to activate. Valid values are 1 to 20, inclusive.

See Also

“TEXINDEX” on page 1436

“ASF” on page 1463

“TEXREP” on page 1492

TEXPATH

Specifies the direction of the text string

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Default Value: RIGHT

Syntax

return-code-variable=GSET(’TEXPATH’, path);

Description

The GSET(’TEXPATH’, . . .)function selects a particular type of text path. Text path
determines the direction in which the text string reads. Figure 50.7 on page 1492
illustrates the text paths that can be used with DSGI.

1492 TEXREP Chapter 50

Figure 50.7 TEXPATH Values

Argument Definitions
path character string enclosed in quotation marks or character variable

name; specifies the direction in which the text will read. Valid
values are

� DOWN

� LEFT

� RIGHT

� UP.

See Also

“TEXPATH” on page 1436

“TEXT” on page 1456

“TEXALIGN” on page 1486

“TEXUP” on page 1493

TEXREP

Associates a bundle of text attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 68, 85

Default Value: none

Syntax
return-code-variable=GSET (’TEXREP’,index, color-index, font);

DATA Step Graphics Interface Dictionary TEXUP 1493

Description
The GSET(’TEXREP’, . . .)function assigns a color and font to a particular text bundle.
The aspect source flags (ASF) of TEXCOLOR and TEXFONT must be set to
’BUNDLED’ before the GDRAW(’TEXT’, . . .)function is executed if you want the
bundled values to be used when the text is drawn.

Argument Definitions
index numeric constant or numeric variable name; specifies the number to

use as an index for the bundle; valid values are 1 to 20, inclusive. If
index is expressed as a variable, the variable must be initialized to a
value between 1 and 20.

color-index numeric constant or numeric variable name; indicates the color to
use; valid values are 1 to 256, inclusive. The color index should
represent one of the following:

� a color index assigned with the GSET(’COLREP’, . . .)function
� the nth color in the colors list of the COLORS= graphics option
� the nth color in the device’s default colors list.

font character string enclosed in quotation marks or character variable
name; names the font to use with the bundle. See “Font Lists” on
page 82 for a list of valid SAS/GRAPH fonts. You may also use fonts
you have created using the GFONT procedure.

See Also

COLORS= graphics option (see “COLORS” on page 272)
“TEXREP” on page 1437
“ASF” on page 1463
“COLREP” on page 1467
“TEXINDEX” on page 1490

TEXUP
Specifies the orientation (angle) of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 74
Default Values: upx=0, upy=1

Syntax
return-code-variable=GSET(’TEXUP’,upx, upy);

Description
The GSET(’TEXUP’, . . .)function sets the angle of the text string. DSGI uses the
values of character up vectors to determine the angle of a text string. The character up

1494 TEXUP Chapter 50

vector has two components, upx and upy, that describe the angle at which the text
string is placed. The angle is calculated with the following formula:

angle=atan(upx/upy)

Effectively, when DSGI is calculating the angle for the text, it uses upx and upy as
forces that are pushing the string toward an angle. The natural angle of text in the upx
direction is toward the 6 o’clock position. In the upy direction, text naturally angles at
the 3 o’clock position. If upx is greater than upy, the text is angled toward 6 o’clock. If
upy is greater than upx, the text is angled toward 3 o’clock. Figure 50.8 on page 1494
shows the angle of text when the values for upx and upy are (0.0, 1.0) and (1.0, 0.0).

Figure 50.8 Natural Angle of Text

As you change the values of upx and upy, the coordinate that has the highest value is
taken as the angle, and the lowest value as the offset. Figure 50.9 on page 1495 shows
the angle of text when the character up vector values (+1.0, +0.5) are used.

DATA Step Graphics Interface Dictionary TEXUP 1495

Figure 50.9 Varying the Angle of Text

You can use the following macro to convert angles measured in degrees to character
up vectors:

%macro angle(x);
if mod(&x, 180)=90 then do;

if mod(&x,270) = 0 then
xup = 1.0;

else
xup = -1.0;

rc = gset(’texup’, xup, 0.0);
end;

else do;
b = mod(&x, 360);
/* adjust y vector for 2nd and 3rd quadrants */
if b > 90 and b lt 270 then

yup = -1.0;
else

yup = 1.0;
a=&x*1.7453292519943300e-002;
xup = tan(-a);
/* adjust x vector for 3rd quadrant */
if b > 180 and b le 270 then

xup = -xup;
rc = gset(’texup’, xup, yup);
end;

%mend angle;

data _null_;
rc = ginit();
rc = graph(’clear’, ’angle’);
rc = gset(’texalign’, ’left’, ’base’);
rc = gset(’texheight’, 5);
rc = gset(’texfont’, ’swissl’);
%angle(180);
rc = gdraw(’text’, 50, 50, ’180’);
%angle(80);

1496 TRANSNO Chapter 50

rc = gdraw(’text’, 50, 50, ’80’);
%angle(600);
rc = gdraw(’text’, 50, 50, ’600’);
rc = graph(’update’);
rc = gterm();
run;

Argument Definitions
upx numeric constant or numeric variable name; if upy is 0, upx cannot

be 0.

upy numeric constant or numeric variable name; if upx is 0, upy cannot
be 0.

See Also

“TEXUP” on page 1438

“TEXT” on page 1456

“TEXALIGN” on page 1486
“TEXPATH” on page 1491

TRANSNO

Specifies the number of the transformation to be used

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50

Default Value: 0

Syntax
return-code-variable=GSET(’TRANSNO’, n);

Description
The GSET(’TRANSNO’, . . .)function activates the viewport and/or window you have
defined for the specified transformation number. If you have not defined both a
viewport and window for a transformation, the default is used for the one missing.

You can select 0 as the active transformation, but you cannot define a viewport or
window for that transformation number. A transformation of 0 activates the default
viewport, (0,0) to (1,1), and window, which is device dependent.

Argument Definitions
n numeric constant or numeric variable name; indicates the viewport

and/or window to activate; should correspond to the n used in the

DATA Step Graphics Interface Dictionary VIEWPORT 1497

GSET(’VIEWPORT’, . . .)and/or GSET(’WINDOW’, . . .)functions.
Valid values are 0 to 20, inclusive.

See Also

“TRANS” on page 1439

“TRANSNO” on page 1440

“VIEWPORT” on page 1441

“WINDOW” on page 1444

“VIEWPORT” on page 1497

“WINDOW” on page 1500

VIEWPORT

Associates a viewport with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50, 51, 52

Default Values: llx=0, lly=0, urx=1, ury=1

Syntax
return-code-variable=GSET(’VIEWPORT’, n, llx, lly, urx, ury);

Description
The GSET(’VIEWPORT’, . . .)function defines a viewport and associates it with the
transformation number, n. See the “TRANSNO” on page 1496 for information on how to
activate the viewport. See the “WINDOW” on page 1500 for information on how to
define a window to be used within the viewport.

Argument Definitions
n numeric constant or numeric variable name; specifies the

transformation number of the viewport. Valid values are 1 to 20,
inclusive.

llx numeric constant or numeric variable name; defines the x
component of the lower-left corner of the viewport; must not exceed
the value of urx; cannot be less than 0. Units are based on percent
of the graphics output area.

lly numeric constant or numeric variable name; defines the y
component of the lower-left corner of the viewport; must not exceed
the value of ury; cannot be less than 0. Units are based on percent
of the graphics output area.

1498 VPOS Chapter 50

urx numeric constant or numeric variable name; defines the x component
of the upper-right corner of the viewport; cannot be greater than 1.
Units are based on percent of the graphics output area.

ury numeric constant or numeric variable name; defines the y component
of the upper-right corner of the viewport; cannot be greater than 1.
Units are based on percent of the graphics output area.

See Also

“VIEWPORT” on page 1441

“WINDOW” on page 1500

“TRANSNO” on page 1496

“TRANSNO” on page 1440

“TRANS” on page 1439

“WINDOW” on page 1444

VPOS

Specifies the number of rows

Operating States: GKCL

Return Codes: 0, 1, 90, 307

Default Values: 1. VPOS=graphics option, if specified; 2. device’s default VPOS value

Syntax
return-code-variable=GSET(’VPOS’, vpos);

Description
The GSET(’VPOS’, . . .)function sets the number of rows in the graphics output area.
GSET(’VPOS’, . . .)has the same effect on graphics output as the VPOS= graphics
option.

You can reset the VPOS value by submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;

goptions vpos=0;

Argument Definitions
vpos numeric constant or numeric variable name; specifies the number of

rows in the graphics output area; must be greater than 0.

DATA Step Graphics Interface Dictionary VSIZE 1499

See Also

“VPOS” on page 1442

“HPOS” on page 1474

“VSIZE” on page 1499

VPOS= graphics option (see “VPOS” on page 360)

VSIZE

Specifies the vertical dimension of the graphics output area

Operating States: GKCL

Return Codes: 0, 1, 90, 307

Default Values: 1. VSIZE= graphics option, if specified; 2. device’s default VSIZE value

Syntax

return-code-variable=GSET(’VSIZE’, vsize);

Description

The GSET(’VSIZE’, . . .)function sets the vertical dimension, in inches, of the graphics
output area. GSET(’VSIZE’, . . .)affects the dimensions of the default window.

You can reset the VSIZE value by submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;
goptions vsize=0;

Argument Definitions

vsize numeric constant or numeric variable name; indicates the vertical
dimension for the graph in inches; must be greater than 0.

See Also

“VSIZE” on page 1443

“HSIZE” on page 1475

“VPOS” on page 1498

VSIZE= graphics option (see “VSIZE” on page 361)

1500 WINDOW Chapter 50

WINDOW

Associates a window with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50, 51

Default Values: llx=0, lly=0; urx and ury are device dependent

Syntax
return-code-variable=GSET (’WINDOW’, n, llx, lly, urx, ury);

Description
The GSET(’WINDOW’, . . .)function defines a window and associates it with a
transformation number. See the “TRANSNO” on page 1496 for information on how to
activate a window. See the “VIEWPORT” on page 1497 for information on how to define
a viewport for a window.

Argument Definitions
n numeric constant or numeric variable name; specifies the

transformation number of the window. Valid values are 1 to 20,
inclusive.

llx numeric constant or numeric variable name; defines the x
component of the lower-left corner of the window; must not exceed
the value of urx. Units are based on percent of the active viewport.

lly numeric constant or numeric variable name; defines the y
component of the lower-left corner of the window; must not exceed
the value of ury. Units are based on percent of the active viewport.

urx numeric constant or numeric variable name; defines the x
component of the upper-right corner of the window. Units are based
on percent of the active viewport.

ury numeric constant or numeric variable name; defines the y
component of the upper-right corner of the window. Units are based
on percent of the active viewport.

See Also

“TRANS” on page 1439

“TRANSNO” on page 1440

“VIEWPORT” on page 1441

“WINDOW” on page 1444

“TRANSNO” on page 1496

“VIEWPORT” on page 1497

DATA Step Graphics Interface Dictionary Return Codes for DSGI Routines and Functions 1501

Return Codes for DSGI Routines and Functions

0 Function completed successfully.

1 DATA Step Graphics Interface should be in GKCL state; the
statement is out of place within the DATA step.

3 DATA Step Graphics Interface should be in WSAC state; the
statement is out of place within the DATA step.

4 DATA Step Graphics Interface should be in SGOP state; the
statement is out of place within the DATA step.

7 DATA Step Graphics Interface should be in WSOP, WSAC, or SGOP
state; the statement is out of place within the DATA step.

8 DATA Step Graphics Interface should be in GKOP, WSOP, WSAC, or
SGOP state; the statement is out of place within the DATA step.

24 Workstation is open.

25 Workstation is not open.

26 Workstation cannot be opened.

29 Workstation is active.

30 Workstation is not active.

50 Invalid transformation number; transformation numbers must be in
the range 0 to 20; viewports and windows cannot be defined for
transformation 0.

51 Transformation is not a well-defined rectangle; transformations
must have coordinates for four vertices.

52 Viewport coordinates are out of range; coordinates must be within
dimensions of graphics output area for the device.

55 Clipping is on.

56 Clipping is off.

60 Bad line index; index numbers must be in the range 1 to 20.

61 No bundle defined for the line index; a GSET(’LINREP’, . . .
)function has not been submitted for the referenced line index.

62 Line type is less than or equal to 0 or greater than 46; type must be
in the range 1 to 46.

64 Invalid marker index; index numbers must be in the range 1 to 20.

65 No bundle defined for the polymarker index; a GSET(’MARREP’, . .
.)function has not been submitted for the referenced marker index.

66 Marker type is less than or equal to 0 or greater than 67; type must
be in the range 1 to 67.

68 Invalid text index; index numbers must be in the range 1 to 20.

69 No bundle defined for the text index; a GSET(’TEXREP’, . . .
)function has not been submitted for the referenced text index.

1502 See Also Chapter 50

73 Character height is less than or equal to 0; height must be greater
than 0.

74 Both components of the character up vector are 0; both X and Y of a
character up vector cannot be 0.

75 Invalid fill index; index numbers must be in the range 1 to 20.

76 No bundle defined for the fill index; a GSET(’FILREP’, . . .)function
has not been submitted for the referenced fill index.

78 Style index is less than or equal to 0 or greater than 60; style
indexes must be in the range of 1 to 60.

79 Invalid pattern index.

86 Invalid color index; color index is out of the range 1 to 256 or is not
numeric.

87 No color name defined for the color index

90 Value is less than 0; value must be greater than or equal to 0.

150 External image file cannot be accessed. The image file either cannot
be accessed, or the image file is in an unsupported format, or the
image data is incomplete or otherwise corrupt.

301 Out of memory; your workstation does not have enough memory to
generate the graph.

302 Out of room for graph; your device cannot display the size of the
graph.

307 Error occurred in program library management; a GRAPH function
did not execute properly.

See Also

Chapter 3, “Device Drivers,” on page 41
for information about specifying device drivers.

Chapter 8, “Graphics Options and Device Parameters Dictionary,” on page 261
for descriptions of graphics options and device parameters

Chapter 5, “SAS/GRAPH Fonts,” on page 75
for information about the fonts available in SAS/GRAPH software

Chapter 6, “SAS/GRAPH Colors and Images,” on page 91
for information about specifying colors in SAS/GRAPH programs

“GOPTIONS Statement” on page 146
for an explanation of setting graphics options with the GOPTIONS statement

“PATTERN Statement” on page 169
for information about specifying patterns with DSGI

“SYMBOL Statement” on page 183
for representations of the markers that can be used with DSGI

Chapter 49, “The DATA Step Graphics Interface,” on page 1353
for a complete explanation of using DSGI statements to produce graphs

DATA Step Graphics Interface Dictionary References 1503

Chapter 31, “The GDEVICE Procedure,” on page 915
for information about device entries

The discussion for ARRAY in SAS Language Reference: Dictionary
for an explanation of OF argument lists

References

Enderle, G.; Kansy, K.; and Pfaff, G. (1985), Computer Graphics Programming:
GKS–The Graphics Standard Springer-Verlag New York, Inc.

1504

1505

P A R T6

Appendixes

Appendix 1.Summary of ActiveX and Java Support 1507

Appendix 2.Recommended Reading 1547

1506

1507

A P P E N D I X

1
Summary of ActiveX and Java
Support

Introduction 1508

Global Statements 1508
AXIS Statement 1508

Text Description Suboptions 1509

Tick Mark Description Suboptions 1509
GOPTIONS Statement 1510

LEGEND Statement 1514

LEGEND Statement Text Description Suboptions 1515
PATTERN Statement 1515

SYMBOL Statement 1516
POINTLABEL= Label Description Options 1517

TITLE and FOOTNOTE Statements 1517

PROC GAREABAR 1518
PROC GBARLINE 1519

PROC GCHART 1521

Text Description Suboptions 1525
PROC GCONTOUR 1526

PROC GMAP 1527
PROC GPLOT 1530

PROC GRADAR 1535

PROC G3D 1537
Annotate Functions 1539

BAR 1539

DRAW 1539
DRAW2TXT 1540

FRAME 1540
IMAGE 1540

LABEL 1541

MOVE 1541
PIE 1542

PIECNTR 1542

PIEXY 1543
POINT 1543

POLY 1543
POLYCONT 1544

SYMBOL 1544

1508 Introduction Appendix 1

Introduction
The following tables summarize which options and annotate variables are supported

or partially supported by Java and ActiveX. Partial support for options that refer to
global statements, such as the GAXIS= option, indicates that some but not all AXIS
statement options are supported. Partial support may also indicate that an option
works differently for the server than it does for the Java and ActiveX device drivers, or
that an option works for one or more applets but not for all. For a complete description
of each option or variable, refer to the documentation for the option or variable.

Global Statements

AXIS Statement

Table A1.1 ActiveX and Java Support for the AXIS Statement

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes Yes

INTERVAL= Yes Yes

LABEL= Yes (partial) Yes (partial)

LENGTH= No No

LOGBASE= Yes No

LOGSTYLE= Yes No

MAJOR= Yes Yes

MINOR= Yes Yes

NOBRACKETS No No

NOPLANE Yes Yes

OFFSET= Yes No

ORDER= Yes (partial) Yes (partial)

ORIGIN= No No

REFLABEL= No No

SPLIT= No No

STYLE= Yes Yes

Summary of ActiveX and Java Support AXIS Statement 1509

Option Supported by ActiveX? Supported by Java?

VALUE= Yes (partial) Yes (partial)

WIDTH= Yes (partial) No

Text Description Suboptions
Text description suboptions are used by the LABEL=, REFLABEL=, and VALUE=

options.

Table A1.2 ActiveX and Java Support for AXIS Text Description Suboptions

Option Supported by ActiveX? Supported by Java?

ANGLE=
A=

Yes Yes (partial)

AUTOREF Yes No

COLOR=
C=

Yes Yes

FONT=
F=

Yes Yes (partial)

HEIGHT=
H=

Yes Yes

JUSTIFY=
J=

Yes No

POSITION= No No

ROTATE=
R=

Yes Yes (partial)

TICK=
T=

No No

Tick Mark Description Suboptions
Tick mark description suboptions are used by the MAJOR= and MINOR= options to

change the color, height, width, and number of the tick marks to which they apply.

Table A1.3 ActiveX and Java Support for Tick Mark Description Suboptions

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes Yes

HEIGHT=
H=

No No

1510 GOPTIONS Statement Appendix 1

Option Supported by ActiveX? Supported by Java?

NUMBER=
N=

Yes Yes

WIDTH=
W=

Yes Yes (partial)

GOPTIONS Statement
You must specify the ODS USEGOPT statement for the CTEXT=, CTITLE=, FTEXT=,

FTITLE=, HTEXT=, and HTITLE= options to work for the Java and ActiveX devices.
See “Controlling the Text Font, Size, and Color” on page 493 for more information.

Table A1.4 ActiveX and Java Support for the GOPTIONS Statement

Option Supported by ActiveX? Supported by Java?

ADMGDF
NOADMGDF

No No

ASPECT= No No

AUTOCOPY
NOAUTOCOPY

No No

AUTOFEED
NOAUTOFEED

No No

AUTOSIZE= No No

BINDING= No No

BORDER Yes Yes

CBACK= Yes Yes

CBY= No No

CELL No No

CHARACTERS
NOCHARCTERS

No No

CHARTYPE= No No

CIRCLEARC
NOCIRCLEARC

No No

COLLATE
NOCOLLATE

No No

COLORS= Yes Yes

CPATTERN= No No

CSYMBOL= No No

CTEXT= Yes Yes (partial)

CTITLE= Yes Yes

DASH
NODASH

No No

DASHSCALE= No No

Summary of ActiveX and Java Support GOPTIONS Statement 1511

Option Supported by ActiveX? Supported by Java?

DELAY= No No

DEVADDR= No No

DEVICE= Yes Yes

DEVMAP= No No

DISPLAY
NODISPLAY

No No

DISPOSAL= No No

DRVINIT= No No

DRVTERM= No No

DUPLEX
NODUPLEX

No No

ERASE
NOERASE

No No

EXTENSION No No

FASTTEXT
NOFASTTEXT

No No

FBY= No No

FCACHE= No No

FILECLOSE= No No

FILEONLY
NOFILEONLY

No No

FILL
NOFILL

No No

FILLINC= No No

FONTRES= No No

FTEXT= Yes (partial) Yes (partial)

FTITLE= Yes Yes

FTRACK= No No

GACCESS= No No

GCLASS= No No

GCOPIES= No No

GDDMCOPY= No No

GDDMNICKNAME= No No

GDDMTOKEN= No No

GDEST= No No

GEND= No No

GEPILOG= No No

GFORMS= No No

GOUTMODE= No No

1512 GOPTIONS Statement Appendix 1

Option Supported by ActiveX? Supported by Java?

GPROLOG= No No

GPROTOCOL= No No

GRAPHRC
NOGRAPHRC

No No

GSFLEN= No No

GSFMODE= No No

GSFNAME= No No

GSFPROMPT
NOGSFPROMPT

No No

GSIZE= No No

GSTART= No No

GUNIT= Yes (partial) Yes (partial)

GWAIT= No No

GWRITER= No No

HANDSHAKE= No No

HBY= No No

HORIGIN= No No

HPOS= No No

HSIZE= Yes (partial) Yes (partial)

HTEXT= Yes Yes (partial)

HTITLE= Yes Yes

IBACK= Yes Yes (partial)

IMAGEPRINT
NOIMAGEPRINT

No No

IMAGESTYLE= Yes No

INTERLACED
NOINTERLACED

No No

INTERPOL= No No

ITERATION= No No

KEYMAP= No No

LFACTOR= No No

OFFSHADOW= No No

PAPERDEST= No No

PAPERFEED= No No

PAPERLIMIT= No No

PAPERSIZE= No No

PAPERSOURCE= No No

PAPERTYPE= No No

Summary of ActiveX and Java Support GOPTIONS Statement 1513

Option Supported by ActiveX? Supported by Java?

PCLIP
NOPCLIP

No No

PENMOUNTS= No No

PENSORT
NOPENSORT

No No

PIEFILL
NOPIEFILL

No No

POLYGONCLIP
NOPOLYGONCLIP

No No

POLYGONFILL
NOPOLYGONFILL

No No

POSTGEPILOG= No No

POSTGPROLOG= No No

POSTGRAPH= No No

PPDFILE= No No

PREGEPILOG= No No

PREGPROLOG= No No

PREGRAPH= No No

PROMPT
NOPROMPT

No No

PROMPTCHARS= No No

RENDER= No No

RENDERLIB= No No

REPAINT= No No

RESET Yes Yes

REVERSE
NOREVERSE

No No

ROTATE= No No

ROTATE
NOROTATE

No No

SIMFONT= No No

SPEED= No No

SWAP
NOSWAP

No No

SWFONTRENDER
NOSWFONTRENDER

No No

SYMBOL
NOSYMBOL

No No

TARGETDEVICE= No No

TRANSPARENCY
NOTRANSPARENCY

No No

1514 LEGEND Statement Appendix 1

Option Supported by ActiveX? Supported by Java?

TRANTAB= No No

UCC= No No

USERINPUT
NOUSERINPUT

No No

VORIGIN= No No

VPOS= No No

VSIZE= Yes (partial) Yes (partial)

V6COMP
NOV6COMP

Yes (partial) Yes (partial)

XMAX= No No

XPIXELS= Yes (partial) Yes (partial)

YMAX= No No

YPIXELS= Yes (partial) Yes (partial)

LEGEND Statement

Table A1.5 ActiveX and Java Support for the LEGEND Statement

Option Supported by ActiveX? Supported by Java?

ACROSS= Yes Yes

CBLOCK= Yes No

CBORDER= Yes Yes

CFRAME= Yes Yes

CSHADOW= Yes Yes

DOWN= Yes Yes

FRAME Yes Yes

FWIDTH= No No

LABEL= Yes (partial) Yes (partial)

MODE= No No

OFFSET= No No

ORDER= No No

ORIGIN= No No

POSITION= Yes Yes

Summary of ActiveX and Java Support PATTERN Statement 1515

Option Supported by ActiveX? Supported by Java?

SHAPE= No No

VALUE= Yes (partial) Yes (partial)

LEGEND Statement Text Description Suboptions
Text description suboptions are used by the LABEL= and VALUE= options to change

the color, height, justification, font, and angle of either default text or specified text
strings. See LABEL= and VALUE=.

Table A1.6 ActiveX and Java Support for LEGEND Text Description Suboptions

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes Yes

FONT=
F=

Yes Yes

HEIGHT=
H=

Yes Yes

JUSTIFY=
J=

Yes Yes

POSITION= Yes No

ROTATE= No No

TICK=
T=

Yes Yes

PATTERN Statement

Table A1.7 ActiveX and Java Support for the PATTERN Statement

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes (partial) Yes (partial)

REPEAT=
R=

Yes (partial) Yes (partial)

IMAGE= Yes (partial) Yes (partial)

IMAGESTYLE= Yes (partial) Yes (partial)

VALUE=bar/block-pattern
V=bar/block-pattern

Yes (partial) Yes (partial)

VALUE=map/plot-pattern
V=map/plot-pattern

Yes (partial) Yes (partial)

1516 SYMBOL Statement Appendix 1

Option Supported by ActiveX? Supported by Java?

VALUE=pie/star-pattern
V=pie/star-pattern

Yes (partial) Yes (partial)

VALUE=HWxxxnnn Yes (partial) Yes (partial)

SYMBOL Statement

Table A1.8 ActiveX and Java Support for the SYMBOL Statement

Option Supported by ActiveX? Supported by Java?

BWIDTH= Yes Yes

CI= Yes Yes

CO= Yes Yes

COLOR=
C=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

CV= Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

FONT= No No

HEIGHT=
H=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

INTERPOL=BOX
I=BOX

Yes Yes (partial)

INTERPOL=HILO
I=HILO

Yes Yes (partial)

INTERPOL=JOIN
I=JOIN

Yes Yes

INTERPOL=L
I=L

Yes Yes

INTERPOL=map/plot-pattern
I=map/plot-pattern

Yes Yes (partial)

INTERPOL=NEEDLE
I=NEEDLE

Yes Yes

INTERPOL=NONE
I=NONE

Yes Yes

INTERPOL=R
I=R

Yes Yes (partial)

INTERPOL=SM
I=SM

Yes No

INTERPOL=SPLINE
I=SPLINE

Yes Yes

INTERPOL=STD
I=STD

Yes Yes (partial)

Summary of ActiveX and Java Support TITLE and FOOTNOTE Statements 1517

Option Supported by ActiveX? Supported by Java?

INTERPOL=STEP
I=STEP

Yes Yes

LINE=
L=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

MODE= Yes Yes (partial)

POINTLABEL= Yes (partial) Yes (partial)

REPEAT=

R=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

STEP=
S=

No No

VALUE=
V=

Yes (partial for GPLOT)
No (GCONTOUR)

Yes (partial for GPLOT)
No (GCONTOUR)

WIDTH=
W=

Yes (partial for GPLOT)
No (GCONTOUR)

Yes (partial for GPLOT)
No (GCONTOUR)

POINTLABEL= Label Description Options

Table A1.9 ActiveX and Java Support for POINTLABEL Description Suboptions

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes No

FONT=
F=

Yes No

HEIGHT=
H=

Yes No

JUSTIFY=
J=

No No

POSITION= No No

"#var" | "#x:#y <$char>" "#y:#x
$<char>"

Yes (partial) Yes (partial)

TITLE and FOOTNOTE Statements

Table A1.10 ActiveX and Java Support for TITLE and FOOTNOTE Statements

Option Supported by ActiveX? Supported by Java?

ANGLE= No No

BCOLOR= Yes Yes

BLANK= No No

1518 PROC GAREABAR Appendix 1

Option Supported by ActiveX? Supported by Java?

BOX= No No

BSPACE= No No

COLOR= Yes Yes

DRAW= No No

FONT= Yes Yes

HEIGHT= Yes (partial) Yes (partial)

JUSTIFY= Yes Yes

LANGLE= No No

LINK= Yes Yes

LSPACE= No No

MOVE= No No

ROTATE= No No

UNDERLIN= Yes (partial) Yes (partial)

PROC GAREABAR

Table A1.11 ActiveX and Java Support for GAREABAR

Statement Option Supported by ActiveX? Supported by Java?

PROC GAREABAR DATA= Yes No

HBAR and VBAR NAME= Yes No

RSTAT=
RESPSTAT=
RESPONSESTAT=

Yes No

SUBGROUP= Yes No

SUMVAR= Yes No

WSTAT=
WIDTHSTAT=

Yes No

Summary of ActiveX and Java Support PROC GBARLINE 1519

PROC GBARLINE

Table A1.12 ActiveX and Java Support for PROC GBARLINE

Statement Option Supported by ActiveX? Supported by Java?

PROC GBARLINE ANNOTATE=
ANNO=

Yes No

DATA= Yes No

IMAGEMAP= No No

BAR ANNOTATE=
ANNO=

Yes No

ASCENDING Yes No

AUTOREF Yes No

AXIS= Yes No

CAUTOREF= Yes No

CAXIS= Yes No

CERROR= Yes No

CFRAME=
CFR=

Yes No

CFREQ Yes No

CLIPREF Yes No

CLM= Yes No

COUTLINE= Yes No

CPERCENT
CPCT

Yes No

CREF= Yes No

CTEXT= Yes No

DESCENDING Yes No

DESCRIPTION=
DES=

Yes No

DISCRETE Yes No

ERRORBAR= Yes No

FRAME
NOFRAME
FR
NOFR

Yes No

FREQ Yes No

FREQ=numeric-
variable

No No

FRONTREF Yes No

1520 PROC GBARLINE Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

HTML= Yes No

INSIDE= Yes No

LAUTOREF= Yes No

LEVELS= Yes No

LREF=
LR=

Yes No

MAXIS= Yes (partial) No

MEAN Yes No

MIDPOINTS=value-
list

Yes No

MIDPOINTS=OLD Yes No

MINOR= Yes No

MISSING Yes No

NAME= Yes No

NOAXIS Yes No

NOBASEREF Yes No

NOZERO Yes No

OUTSIDE= Yes No

PATTERNID= Yes No

PERCENT

PCT

Yes No

RANGE Yes No

RAXIS=
AXIS=

Yes (partial) No

REF= Yes No

SPACE= Yes No

SUM Yes No

SUMVAR= Yes No

TYPE= Yes No

WIDTH= Yes No

WOUTLINE= Yes No

PLOT ASCENDING Yes No

AXIS= Yes No

FREQ=numeric-
variable

No No

HTML= No No

MINOR= Yes No

NOLINE Yes No

Summary of ActiveX and Java Support PROC GCHART 1521

Statement Option Supported by ActiveX? Supported by Java?

NOMARKER Yes No

RAXIS=
AXIS=

Yes No

SUMVAR= Yes No

TYPE= Yes No

PROC GCHART

Table A1.13 ActiveX and Java Support for PROC GCHART

Statement Option Supported by ActiveX? Supported by Java?

PROC GCHART ANNOTATE=
ANNO=

Yes Yes

DATA= Yes Yes

GOUT= Yes Yes

IMAGEMAP= No No

BLOCK ANNOTATE=
ANNO=

Yes Yes

BLOCKMAX= No No

CAXIS= Yes Yes

COUTLINE= Yes (partial) Yes (partial)

CTEXT= Yes Yes

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

FREQ= Yes Yes

G100 Yes Yes

GROUP= Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS=value-
list

Yes Yes

MIDPOINTS=OLD Yes Yes

MISSING Yes Yes

NAME= Yes Yes

NOHEADING No No

1522 PROC GCHART Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

NOLEGEND Yes Yes

PATTERNID= Yes Yes

SUBGROUP= Yes Yes

SUMVAR= Yes Yes

TYPE= Yes Yes

WOUTLINE= Yes No

HBAR, HBAR3D,
VBAR, and VBAR3D

ANNOTATE=
ANNO=

Yes Yes

ASCENDING Yes Yes

AUTOREF Yes Yes

AXIS= Yes Yes

CAUTOREF= Yes Yes

CAXIS= Yes Yes

CFRAME=
CFR=

Yes Yes

CERROR= Yes Yes

CFREQ Yes Yes

CFREQLABEL= No No

CLIPREF Yes Yes

CLM= Yes Yes

COUTLINE= Yes Yes

CPERCENT
CPCT

Yes Yes

CPERCENTLABEL= No No

CREF= Yes Yes

CTEXT= Yes Yes

DESCENDING Yes Yes

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

ERRORBAR= Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

FREQ Yes Yes

FREQLABEL= No No

FREQ=numeric-
variable

Yes Yes

Summary of ActiveX and Java Support PROC GCHART 1523

Statement Option Supported by ActiveX? Supported by Java?

FRONTREF Yes Yes

G100 Yes Yes

GAXIS= Yes (partial) Yes (partial)

GROUP= Yes Yes

GSPACE= Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

IFRAME= Yes No

IMAGESTYLE= Yes Yes (partial)

INSIDE= Yes Yes

LAUTOREF= Yes Yes

LEGEND= Yes Yes

LEVELS= Yes Yes

LREF=
LR=

Yes No

MAXIS= Yes (partial) Yes (partial)

MEAN Yes Yes

MEANLABEL= No No

MIDPOINTS=value-
list

Yes Yes

MIDPOINTS=OLD Yes Yes

MINOR= Yes Yes

MISSING Yes Yes

NAME= Yes Yes

NOAXIS Yes Yes

NOBASEREF Yes Yes

NOLEGEND Yes Yes

NOSTATS Yes No

NOZERO Yes No

OUTSIDE= Yes Yes

PATTERNID= Yes Yes

PERCENT

PCT

Yes Yes

PERCENTLABEL= No No

RANGE Yes Yes

RAXIS=
AXIS=

Yes (partial) Yes (partial)

REF= Yes Yes

1524 PROC GCHART Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

SHAPE= Yes Yes

SPACE= Yes Yes

SUBGROUP= Yes Yes

SUM Yes Yes

SUMLABEL= No No

SUMVAR= Yes Yes

TYPE= Yes Yes

WIDTH= Yes Yes

WOUTLINE= Yes No

PIE, PIE3D, and
DONUT

ACROSS= Yes Yes

ANGLE= Yes Yes

ANNOTATE=
ANNO=

Yes Yes

ASCENDING Yes Yes

CFILL= Yes Yes

CLOCKWISE Yes Yes

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCENDING Yes Yes

DESCRIPTION=
DES=

Yes Yes

DETAIL= Yes Yes

DETAIL_PERCENT= Yes Yes

DETAIL_RADIUS= Yes Yes

DETAIL_SLICE= Yes Yes

DETAIL_THRESHOLD= Yes Yes

DETAIL_VALUE= Yes Yes

DISCRETE Yes Yes

DONUTPCT= Yes Yes

DOWN= Yes Yes

EXPLODE= Yes Yes

FILL= Yes (partial) Yes (partial)

FREQ= Yes Yes

GROUP= Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

INVISIBLE= Yes Yes

Summary of ActiveX and Java Support Text Description Suboptions 1525

Statement Option Supported by ActiveX? Supported by Java?

JSTYLE Yes Yes

LABEL= Yes (partial) Yes (partial)

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MATCHCOLOR Yes Yes

MIDPOINTS=value-
list

Yes Yes

MIDPOINTS=OLD Yes Yes

MISSING Yes Yes

NAME= Yes Yes

NOGROUPHEADING Yes Yes

NOHEADING No No

NOLEGEND Yes Yes

OTHER= Yes Yes

OTHERCOLOR= Yes Yes

OTHERLABEL= Yes Yes

PERCENT= Yes Yes

SLICE= Yes Yes

SUBGROUP= Yes Yes

SUMVAR= Yes Yes

TYPE= Yes Yes

VALUE= Yes Yes

WOUTLINE= Yes No

STAR No No

Text Description Suboptions

Text description suboptions are used by the LABEL= option in the DONUT
statement.

Table A1.14 ActiveX and Java Support for LABEL Text Description Suboptions

Option Supported by ActiveX? Supported by Java?

ANGLE=
A=

Yes No

COLOR=
C=

Yes Yes

FONT=
F=

Yes (partial) Yes (partial)

1526 PROC GCONTOUR Appendix 1

Option Supported by ActiveX? Supported by Java?

HEIGHT=
H=

Yes Yes

JUSTIFY=
J=

No No

ROTATE=
R=

Yes No

PROC GCONTOUR

Table A1.15 ActiveX and Java Support for PROC GCONTOUR

Statement Option Supported by ActiveX? Supported by Java?

PROC GCONTOUR ANNOTATE=
ANNO=

Yes Yes

DATA= Yes Yes

GOUT= No No

INCOMPLETE No No

PLOT ANNOTATE=
ANNO=

Yes Yes

AUTOHREF Yes No

AUTOLABEL= No No

AUTOVREF Yes No

CAUTOHREF= Yes No

CAUTOVREF= Yes No

CAXIS= Yes Yes

CFRAME=
CFR=

Yes Yes

CHREF=
CH=

Yes No

CLEVELS= Yes Yes

COUTLINE= Yes (partial) Yes

CTEXT= Yes Yes

CVREF=
CV=

Yes No

DESCRIPTION=
DES=

Yes Yes

GRID Yes No

HAXIS= Yes (partial) Yes (partial)

Summary of ActiveX and Java Support PROC GMAP 1527

Statement Option Supported by ActiveX? Supported by Java?

HMINOR=
HM=

Yes Yes

HREF= Yes No

HREVERSE= Yes No

JOIN Yes Yes

LAUTOHREF= Yes No

LAUTOVREF= Yes No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

LHREF=
LH=

Yes (partial) Yes (partial)

LLEVELS= Yes No

LVREF=
LV=

Yes (partial) Yes (partial)

NAME= Yes Yes

NLEVELS= Yes Yes

NOAXIS
NOAXES

Yes Yes

NOFRAME Yes Yes

NOLEGEND Yes Yes

PATTERN Yes (partial) Yes (partial)

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes No

VREVERSE Yes No

XTICKNUM=
YTICKNUM=

Yes Yes

PROC GMAP

Table A1.16 ActiveX and Java Support for PROC GMAP

Statement Option Supported by ActiveX? Supported by Java?

PROC GMAP MAP= Yes Yes

ALL Yes Yes

ANNOTATE=
ANNO=

Yes Yes

1528 PROC GMAP Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

DATA= Yes Yes

GOUT= No No

IMAGEMAP= No No

ID Yes Yes

BLOCK ANNOTATE=
ANNO=

Yes Yes

AREA= Yes Yes

BLOCKSIZE= Yes Yes

CBLKOUT= Yes Yes

CEMPTY= Yes No

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NAME= Yes Yes

NOLEGEND Yes Yes

SHAPE= Yes Yes

WOUTLINE= Yes No

XSIZE=
YSIZE=

No No

XVIEW=
YVIEW=
ZVIEW=

Yes Yes (partial)

CHORO ANNOTATE=
ANNO=

Yes Yes

CEMPTY= Yes No

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

HTML= Yes Yes

Summary of ActiveX and Java Support PROC GMAP 1529

Statement Option Supported by ActiveX? Supported by Java?

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NAME= Yes Yes

NOLEGEND Yes Yes

WOUTLINE= Yes No

XSIZE=
YSIZE=

No No

XVIEW=
YVIEW=
ZVIEW=

Yes Yes (partial)

PRISM ANNOTATE=
ANNO=

Yes Yes

AREA= Yes Yes

CEMPTY= Yes No

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NAME= Yes Yes

NOLEGEND Yes Yes

WOUTLINE= No No

XLIGHT=
YLIGHT=

No No

XSIZE=
YSIZE=

No No

1530 PROC GPLOT Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

XVIEW=
YVIEW=
ZVIEW=

Yes Yes (partial)

SURFACE No No

PROC GPLOT

When used with the JAVA or JAVAMETA device driver, the BUBBLE statement must
have at least one axis that is assigned to a numeric variable.

Table A1.17 ActiveX and Java Support for PROC GPLOT

Statement Option Supported by ActiveX? Supported by Java?

PROC GPLOT ANNOTATE=
ANNO=

Yes Yes

DATA= Yes Yes

GOUT= Yes Yes

IMAGEMAP= Yes Yes

UNIFORM No No

BUBBLE ANNOTATE=
ANNO=

Yes Yes

AUTOHREF Yes Yes

AUTOVREF Yes Yes

BCOLOR= Yes Yes

BFONT= No No

BLABEL Yes Yes

BSCALE= No No

BSIZE= Yes (partial) Yes (partial)

CAUTOHREF= Yes Yes

CAUTOVREF= Yes Yes

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

CHREF=
CH=

Yes Yes

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

Summary of ActiveX and Java Support PROC GPLOT 1531

Statement Option Supported by ActiveX? Supported by Java?

DESCRIPTION=
DES=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HAXIS= Yes (partial) Yes (partial)

HMINOR=
HM=

Yes Yes

HREF= Yes Yes

HREVERSE Yes Yes (partial)

HZERO Yes Yes

IFRAME= Yes No

IMAGESTYLE= Yes No

LAUTOHREF= Yes Yes

LAUTOVREF= Yes Yes

LHREF=
LH=

Yes Yes

LVREF=
LV=

Yes Yes

NAME= Yes Yes

NOAXIS
NOAXES

Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

BUBBLE2 ANNOTATE=
ANNO=

Yes Yes

AUTOVREF Yes Yes

BCOLOR= Yes Yes

BFONT= No No

BLABEL Yes Yes

BSCALE= No No

BSIZE= Yes (partial) Yes (partial)

CAUTOVREF= Yes Yes

1532 PROC GPLOT Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

LAUTOVREF= Yes Yes

LVREF=
LV=

Yes Yes

NOAXIS
NOAXES

Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

PLOT ANNOTATE=
ANNO=

Yes Yes

AREAS= Yes Yes (partial)

AUTOHREF Yes Yes

AUTOVREF Yes Yes

CAUTOHREF= Yes Yes

CAUTOVREF= Yes Yes

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

CHREF=
CH=

Yes Yes

COUTLINE= Yes No

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes (partial) Yes (partial)

Summary of ActiveX and Java Support PROC GPLOT 1533

Statement Option Supported by ActiveX? Supported by Java?

DESCRIPTION=
DES=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HAXIS= Yes (partial) Yes (partial)

HMINOR=
HM=

Yes Yes

HREF= Yes Yes

HREVERSE Yes Yes (partial)

HTML= Yes (partial) Yes (partial)

HTML_LEGEND= No No

HZERO Yes Yes

IFRAME= Yes No

IMAGESTYLE= Yes No

LAUTOHREF= Yes Yes

LAUTOVREF= Yes Yes

LEGEND= Yes Yes

LHREF=
LH=

Yes Yes

LVREF=
LV=

Yes (partial) Yes (partial)

NAME= Yes Yes

NOAXIS
NOAXES

Yes Yes

NOLEGEND Yes Yes

OVERLAY Yes Yes (partial)

REGEQN No No

SKIPMISS Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

PLOT2 With INTERPOL=
BOX, HILO, or STD

No No

1534 PROC GPLOT Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

ANNOTATE=
ANNO=

Yes Yes

AREAS= Yes Yes (partial)

AUTOVREF Yes Yes

CAUTOVREF= Yes Yes

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

COUTLINE= Yes No

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HTML= Yes (partial) Yes (partial)

HTML_LEGEND= No No

LAUTOVREF= Yes Yes

LEGEND= Yes Yes

LVREF=
LV=

Yes Yes

NAME= Yes Yes

NOAXIS
NOAXES

Yes Yes

NOLEGEND Yes Yes

OVERLAY Yes Yes (partial)

REGEQN No No

SKIPMISS Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

Summary of ActiveX and Java Support PROC GRADAR 1535

Statement Option Supported by ActiveX? Supported by Java?

VREVERSE Yes Yes

VZERO Yes Yes

PROC GRADAR

Table A1.18 ActiveX and Java Support for PROC GRADAR

Statement Option Supported by ActiveX? Supported by Java?

PROC GRADAR ANNOTATE= Yes No

DATA= Yes No

GOUT= Yes No

CHART ACROSS=
ACROSSVAR=

Yes No

ANNOTATE=
ANNO=

No No

CAXIS=
CAXES=
CA=

No No

CFRAME=
CFR=

Yes No

CFRAMESIDE= Yes No

CFRAMETOP= Yes No

CSPOKES=
CSPOKE=

Yes No

CSTARCIRCLES=
CSTARCIRCLE=

Yes No

CSTARFILL= Yes No

CSTARS=
CSTAR=

Yes No

CTEXT= Yes No

CTILES=
CTILE=

No No

DESCRIPTION=
DES=

Yes No

DOWN=
DOWNVAR=

Yes No

FONT= Yes No

FREQ= Yes No

FRAME
NOFRAME

No No

1536 PROC GRADAR Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

HEIGHT=
HLABEL=

Yes No

HTML= Yes No

HTML_LEGEND= Yes No

IFRAME= No No

IMAGESTYLE= Yes No

INBORDER No No

INHEIGHT= No No

INTERTILE=
INTERCHART=

Yes No

LAST= No No

LSPOKE= Yes No

LSTARCIRCLES=
LSTARCIRCLE=

Yes No

LSTARS=
LSTAR=

Yes No

MAXNVERT=
MAXVERT=

Yes No

MISSING No No

MODE= Yes No

NAME= Yes No

NCOLS=
NCOL=

No No

NOZEROREF Yes No

NROWS=
NROW=

No No

ORDERACROSS= No No

OTHER= Yes No

OVERLAY=
OVERLAYVAR=

Yes No

SPIDERWEB
SPIDER

Yes No

SPKLABEL= Yes No

STARAXIS=
STARAXES=

No No

STARCIRCLES=
STARCIRCLE=

Yes No

STARFILL= Yes No

STARINRADIUS=
STAROUTRADIUS=

No No

STARLEGEND= Yes No

Summary of ActiveX and Java Support PROC G3D 1537

Statement Option Supported by ActiveX? Supported by Java?

STARLEGENDLAB= No No

STARSTART= Yes No

STARTYPE= Yes No

SUMVAR= Yes No

TILELEGEND= No No

TILEGLABEL= No No

WAXIS= No No

WEIGHT= No No

WSPOKES=
WSPOKE=

Yes No

WSTARCIRCLES=
WSTARCIRCLE=

Yes No

WSTARS=
WSTAR=

Yes No

PROC G3D

Table A1.19 ActiveX and Java Support for PROC G3D

Statement Option Supported by ActiveX? Supported by Java?

PROC G3D ANNOTATE=

ANNO=

Yes Yes

DATA= Yes Yes

GOUT= Yes Yes

PLOT ANNOTATE=

ANNO=

Yes Yes

CAXIS= Yes Yes

CBOTTOM= No No

CTEXT= No No

CTOP= No No

DESCRIPTION=

DES=

Yes Yes

GRID Yes Yes

NAME= Yes Yes

NOAXIS

NOAXES

Yes Yes

NOLABEL Yes Yes

1538 PROC G3D Appendix 1

Statement Option Supported by ActiveX? Supported by Java?

ROTATE= Yes (partial) Yes (partial)

SIDE Yes Yes

TILT= Yes (partial) Yes (partial)

XTICKNUM=

YTICKNUM=

ZTICKNUM=

Yes Yes

XYTYPE= Yes No

ZMAX=

ZMIN=

Yes No

SCATTER ANNOTATE=

ANNO=

Yes Yes

CAXIS= Yes Yes

COLOR= Yes Yes

CTEXT= Yes Yes

DESCRIPTION=

DES=

Yes Yes

GRID Yes Yes

NAME= Yes Yes

NOAXIS

NOAXES

Yes Yes

NOLABEL Yes Yes

NONEEDLE Yes Yes

ROTATE= Yes (partial) No

SHAPE= Yes Yes

SIZE= Yes Yes

TILT= Yes No

XTICKNUM=

YTICKNUM=

ZTICKNUM=

Yes Yes

ZMAX=

ZMIN=

Yes Yes (partial)

Summary of ActiveX and Java Support DRAW 1539

Annotate Functions

BAR

Table A1.20 ActiveX and Java Support for the BAR Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

HTML Yes No

LINE Yes (Partial) Yes (Partial)

MIDPOINT Yes Yes

SIZE Yes Yes

STYLE Yes (Partial) Yes (Partial)

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

DRAW

Table A1.21 ActiveX and Java Support for the DRAW Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

HSYS No Yes

LINE Yes Yes

MIDPOINT Yes Yes

SIZE No Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

1540 DRAW2TXT Appendix 1

Variable Supported by ActiveX? Supported by Java?

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

DRAW2TXT

Table A1.22 ActiveX and Java Support for the DRAW2TXT Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

HSYS No Yes

LINE Yes Yes

SIZE No Yes

WHEN Yes Yes

FRAME

Table A1.23 ActiveX and Java Support for the FRAME Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes No

HSYS No No

HTML Yes No

LINE Yes No

SIZE Yes No

STYLE Yes No

WHEN Yes No

XSYS, YSYS Yes No

IMAGE

Table A1.24 ActiveX and Java Support for the IMAGE Function

Variable Supported by ActiveX? Supported by Java?

HTML Yes No

IMGPATH Yes No

STYLE Yes No

Summary of ActiveX and Java Support MOVE 1541

Variable Supported by ActiveX? Supported by Java?

WHEN Yes No

X, Y Yes No

XSYS, YSYS Yes No

LABEL

Table A1.25 ActiveX and Java Support for the LABEL Function

Variable Supported by ActiveX? Supported by Java?

ANGLE No No

CBORDER Yes Yes

CBOX Yes Yes

COLOR Yes Yes

GROUP Yes Yes

HSYS No No

HTML Yes No

MIDPOINT Yes Yes

POSITION Yes (Partial) Yes (Partial)

ROTATE No No

SIZE No Yes

STYLE Yes (Partial) No

SUBGROUP Yes Yes

TEXT Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

MOVE

Table A1.26 ActiveX and Java Support for the MOVE Function

Variable Supported by ActiveX? Supported by Java?

GROUP Yes Yes

MIDPOINT Yes Yes

SUBGROUP Yes Yes

1542 PIE Appendix 1

Variable Supported by ActiveX? Supported by Java?

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

PIE

Table A1.27 ActiveX and Java Support for the PIE Function

Variable Supported by ActiveX? Supported by Java?

ANGLE Yes Yes

COLOR Yes Yes

GROUP Yes Yes

HSYS No Yes

HTML Yes No

LINE Yes (Partial) Yes (Partial)

MIDPOINT Yes Yes

ROTATE Yes Yes

SIZE Yes Yes

STYLE Yes (Partial) Yes (Partial)

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

PIECNTR

Table A1.28 ActiveX and Java Support for the PIECNTR Function

Variable Supported by ActiveX? Supported by Java?

GROUP Yes Yes

HSYS No Yes

MIDPOINT Yes Yes

SIZE Yes Yes

SUBGROUP Yes Yes

Summary of ActiveX and Java Support POLY 1543

Variable Supported by ActiveX? Supported by Java?

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

PIEXY

Table A1.29 ActiveX and Java Support for the PIEXY Function

Variable Supported by ActiveX? Supported by Java?

ANGLE Yes Yes

SIZE Yes Yes

WHEN Yes Yes

POINT

Table A1.30 ActiveX and Java Support for the POINT Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

MIDPOINT Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes (Partial)

XC, YC Yes Yes (Partial)

XSYS, YSYS, ZSYS Yes Yes (Partial)

POLY

Table A1.31 ActiveX and Java Support for the POLY Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

HTML Yes No

1544 POLYCONT Appendix 1

Variable Supported by ActiveX? Supported by Java?

LINE Yes No

MIDPOINT Yes Yes

SUBGROUP Yes Yes

SIZE No Yes

STYLE Yes (Partial) Yes (Partial)

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

POLYCONT

Table A1.32 ActiveX and Java Support for the POLYCONT Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

MIDPOINT Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

SYMBOL

Table A1.33 ActiveX and Java Support for the SYMBOL Function

Variable Supported by ActiveX? Supported by Java?

CBOX No No

CBORDER No No

COLOR Yes Yes

GROUP Yes Yes

SUBGROUP Yes Yes

HSYS No Yes

HTML Yes No

Summary of ActiveX and Java Support SYMBOL 1545

Variable Supported by ActiveX? Supported by Java?

MIDPOINT Yes Yes

SIZE Yes Yes

STYLE Yes (Partial) Yes (Partial)

TEXT Yes (Partial) Yes (Partial)

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

1546

1547

A P P E N D I X

2
Recommended Reading

Recommended Reading 1547

Recommended Reading

Here is the recommended reading list for this title:
� Annotate: Simply the Basics
� The How-To Book for SAS/GRAPH Software
� Multiple-Plot Displays: Simplified with Macros
� Output Delivery System: The Basics
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Output Delivery System: User’s Guide
� SAS System for Statistical Graphics
� Visualizing Categorical Data

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57320
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=55203
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=58314
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=58087
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57918
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57918
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57918
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=56143
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=56571

1548

1549

Glossary

absolute coordinates
coordinates measured from the origin of the coordinate system. In two-dimensional
graphs, the origin is (0,0). In three-dimensional graphs, the origin is (0,0,0). See also
relative coordinates.

aspect ratio
the ratio of width to height (that is, width divided by height) in an output area such
as a display, plotter, or film recorder. In SAS/GRAPH software, the ASPECT=
graphics option simulates a change in the aspect ratio of the display, causing fonts
and circles to be compressed horizontally or vertically or both.

axis
a one-dimensional line representing the zero point on a scale used to plot values of
x,y, or z coordinates. In SAS/GRAPH software, in two dimensions, the X axis
represents the horizontal plane, and the Y axis represents the vertical plane. In
three dimensions, the X axis represents width, the Y axis represents depth, and the
Z axis represents height. See also Cartesian coordinate system. The term axis may
also refer collectively to the axis line, the major and minor tick marks, the major tick
mark values, and the axis label.

axis area
an area bounded by axes. In SAS/GRAPH software, this area may be enclosed by an
axis frame. See also frame.

baseline
in a font, the imaginary line upon which the characters rest.

block map
a three-dimensional map that uses blocks of varying heights to represent the value of
a variable for each map area.

border
in SAS/GRAPH software, the line drawn around the entire graphics output area.
This area includes the title and footnote areas as well as the procedure output area.
See also frame.

boundary
in the GMAP procedure, a separating line or point that distinguishes between two or
more unit areas or segments.

1550 Glossary

BY group
all observations with the same values for all BY variables.

BY-group processing
the process of using the BY statement to process observations that are ordered,
grouped, or indexed according to the values of one or more variables. Many SAS
procedures and the DATA step support BY-group processing.

BY variable
a variable named in a BY statement whose values define groups of observations to
process.

Cartesian coordinate system
the two- or three-dimensional coordinate system in which perpendicular axes meet at
the origin (0,0) or (0,0,0). Typically, Cartesian coordinate axes are called X, Y, and Z.
See also axis.

Cartesian coordinates
values that locate a point in two- or three-dimensional space. Each value represents
units measured along an X, Y, or Z axis. See also Cartesian coordinate system.

capline
the highest point of a normal uppercase letter. In some fonts, the capline may be
above the top of the letter to allow room for an accent.

catalog
See SAS catalog.

catalog entry
See entry type and SAS catalog entry.

cell
a unit of measure defined by the number of rows and the number of columns in the
graphics output area. See also aspect ratio.

CGM
an abbreviation for computer graphics metafile. A CGM is a graphics output file
written in the internationally recognized format for describing computer graphics
images. This standardization allows any image in a CGM to be imported and
exported among different systems without error or distortion.

character string
one or more alphanumeric or other keyboard characters or both.

character value
a value that can contain alphabetic characters, numeric characters 0 through 9, and
other special characters. See also character variable.

character variable
a variable whose values can consist of alphabetic and special characters as well as
numeric characters.

chart
a graph in which graphics elements (bars, pie slices, and so on) show the magnitude
of a statistic. The graphics elements can represent one data value or a range of data
values.

chart statistic
the statistical value calculated for the chart variable: frequency, cumulative
frequency, percentage, cumulative percentage, sum, or mean.

Glossary 1551

chart variable
a variable in the input data set whose values are categories of data represented by
bars, blocks, slices, or spines.

choropleth map
a two-dimensional map that uses color and fill pattern combinations to represent
different categories or levels of magnitude.

class variable
in some SAS procedures, a variable used to group, or classify, data. Class variables
can be character or numeric. Class variables can have continuous values, but they
typically have a few discrete values that define the classifications of the variable.

classification variable
See class variable.

CMYK
a color-coding scheme that specifies a color in terms of levels of cyan, magenta,
yellow, and black components. The levels of each component range from 0 to 255. See
also HLS, HSV, and RGB.

color map
a table that is used to translate the original colors in graphics output to different
colors when replaying graphics output using the GREPLAY procedure. The table is
contained in a catalog entry.

color, predefined
one of the set of colors for which SAS/GRAPH software defines and recognizes names,
for example, BLACK, BLUE, and CYAN.

color, user-defined
a color expressed in CMYK, HLS, HSV, RGB, or gray-scale format. See also CMYK,
HLS, HSV, RGB, and gray scale.

colors list
the list of foreground colors available for the graphics output. The colors list is either
the default list established from the device entry or the list established from the
colors specified with the COLORS= graphics option.

computer graphics metafile
See CGM.

confidence limits
the upper and lower values of a confidence interval. There is a percentage of
confidence (typically 95%) that the true value of the parameter being estimated lies
within the interval.

contour plot
a three-variable plot that uses line styles or patterns to represent levels of magnitude
of z corresponding to x and y coordinates.

coordinate system
the context in which to interpret coordinates. Coordinate systems vary according to
their origin, limits, and units. See also Cartesian coordinate system.

coordinates
the values representing the location of a data point or a graphics element along the
X, Y, and Z axes. Coordinate values are measured from the origin of the coordinate
system.

1552 Glossary

data area
the portion of the graphics output area in which data values are displayed. In the
Annotate facility, the data area defines a coordinate system. In plots and bar charts,
the data area is bounded by axes; in choropleth maps, the data area is bounded by
the edge of the unit areas. See also graphics output area, procedure output area, and
coordinate system.

data value
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation. In the rectangular structure of a SAS data
set, intersection of a row and a column.

date value
See SAS date value.

default
(1) The setting of a value, parameter, or argument used by the SAS System if the
user does not specify a setting.

(2) the value, parameter, or option setting used by the SAS System if the user
specifies no particular setting.

density value
a value assigned to each observation in a map data set reflecting the amount of detail
(resolution) contributed by the observation.

dependent variable
a variable whose value is determined by the value of another variable or set of
variables.

device driver
a routine that generates the specific machine-language commands needed to display
graphics output on a particular device. SAS/GRAPH device drivers take
device-independent graphics information produced by SAS/GRAPH procedures and
create the commands required to produce the graph on the particular device.

device entry
a SAS catalog entry that stores the values of device parameters (or the
characteristics) that are used with a particular output device.

device map
a catalog entry used to convert the SAS/GRAPH internal encoding for one or more
characters to the device-specific encoding needed to display the character(s) in
hardware text on a particular graphics output device. See also hardware character
set.

device parameter
a value in a device entry that defines a default behavior or characteristic of a device
driver. Some device parameters can be overridden by graphics options. See also
graphics option.

display
the area of the monitor that displays what the software presents to you.

display manager
See SAS Display Manager System.

entry type
a characteristic of a SAS catalog entry that identifies its structure and attributes to
the SAS System. When you create an entry, the SAS System automatically assigns
the entry type as part of the name.

Glossary 1553

export
to put a SAS catalog entry containing graphics output into a format that can be
moved to another software product.

feature table
a SAS data set that uses the $GEOREF format to store geometric coordinates for
each unique map area in a single variable value. See also $GEOREF format,
geo-variable, map area, map data set, and traditional map data set.

fileref
a name temporarily assigned to an external file or to an aggregate storage location
that identifies it to the SAS System. You assign a fileref with a FILENAME
statement or with an operating system command.

fill pattern
a design of parallel or crosshatched lines, solid colors, or empty space used to fill an
area in a graph.

font
a complete set of all the characters of the same design and style. The characters in a
font can be figures or symbols as well as alphanumeric characters. See also type style.

font maximum
in the GFONT procedure, the highest vertical coordinate in a font.

font minimum
in the GFONT procedure, the lowest vertical coordinate in a font.

font units
in the GFONT procedure, units defined by the range of coordinates specified in the
font data set. For example, a font in which the vertical coordinates range from 10 to
100 has 90 font units.

font, hardware
a font stored in an output device. See also font, software.

font, software
a font in which the characters are drawn by graphics software. See also font,
hardware.

format
an instruction the SAS System uses to display or write each value of a variable. Some
formats are supplied by SAS software. Other formats can be written by the user with
the FORMAT procedure in base SAS software or with SAS/TOOLKIT software.

frame
a box enclosing a group of graphics elements. In GSLIDE procedure output, the
frame encloses the procedure output area. In GPLOT, GCHART, and GCONTOUR
procedure output, the frame encloses the axis area. In a legend, the frame encloses
the legend label and entries. See also border.

geo-variable
the $GEOREF formatted variable in a feature table that stores the spatial
information as a geometry object. When a feature table is used, this variable is
specified in the ID statement of the GMAP procedure. See also $GEOREF variable,
identification variable, and feature table.

$GEOREF format
a geometric coordinate data arrangement that stores all the spatial information as a
geometry object contained in a single variable. This format, which is used by feature
tables, references to the geometry objects that encapsulate the points, lines, and
polygons necessary to render a map. See also geo-variable and feature table.

1554 Glossary

global statement
a SAS statement that you can specify anywhere in a SAS program.

graph
a visual representation of data showing the variation of a variable in comparison to
one or more other variables.

graphics element
a discrete visual part of a picture. For example, a bar in a chart and a plot’s axis
label are both graphics elements.

graphics device
See graphics output device.

graphics option
a value specified in a GOPTIONS statement that controls some attribute of the
graphics output. The values specified remain in effect only for the duration of the
SAS session. Some graphics options override device parameters.

graphics output
output from a graphics program that can be stored as a catalog entry of type GRSEG,
or as a graphics stream file. Graphics output can be displayed or printed on a
graphics output device. See also graphics output device and graphics stream file
(GSF).

graphics output area
the area of a graphics output device where the graphics output is displayed or drawn.
Typically, the graphics output area occupies the full drawing area of the device, but
the dimensions of the graphics output area can be changed with graphics options or
device parameters. See also procedure output area and graphics output device.

graphics output device
any terminal, printer, or other output device capable of displaying or producing
graphics output. See also graphics output.

graphics stream file (GSF)
a file containing device-dependent graphics commands from a SAS/GRAPH device
driver. This file can be sent to a graphics device or to other software packages.

gray scale
a color-coding scheme that specifies a color in terms of gray components. Gray-scale
color codes are commonly used with some laser printers and PostScript devices.

grid request
in the G3GRID procedure, the request specified in a GRID statement that identifies
the horizontal variables that identify the x-y plane and one or more z variables for
the interpolation.

group variable
a variable in the input data set used to categorize chart variable values into groups.

GSF
See graphics stream file (GSF).

HLS
a color-coding scheme that specifies a color in terms of its hue, lightness, and
saturation components. Hue is the color, lightness is the percentage of white, and
saturation is the attribute of a color that determines its relative strength and its
departure from gray. Lightness and saturation added to the hue produce a specific
shade. See also CMYK, HSV, and RGB.

Glossary 1555

HSV (or HSB)
a color-coding scheme that specifies a color in terms of its hue, saturation, and value
(or brightness) components. Hue is the color, saturation is the attribute of a color
that determines its relative strength and its departure from gray, and value or
brightness is its departure from black. See also CMYK, HLS, and RGB.

identification variable
a variable common to both the traditional map data set and the response data set
that the ID statement of the GMAP procedure uses to associate each pair of map
coordinates and each response value with a unique map area. See also response
variable and traditional map data set.

import
(1) to read a computer graphics metafile (CGM) and store the graphics output in a
SAS catalog. Use the GIMPORT procedure to import the CGM. (2) to restore a SAS
transport file to its original form (a SAS data library, a SAS catalog, or a SAS data
set) in the format appropriate to the host operating system. Use the CIMPORT
procedure to import a SAS transport file created by the CPORT procedure.

independent variable
a variable that does not depend on the value of another variable; in a two-dimensional
plot, the independent variable is usually plotted on the x (horizontal) axis.

interpolate
to estimate values between two or more known values.

justify
to position text in relation to the left or right margin or the center of the line.

key map
a SAS catalog entry used to translate the codes generated by the keys on a keyboard
into their corresponding SAS/GRAPH internal character encoding. See also device
map.

label
(1) in the AXIS and LEGEND statements and GPLOT and GCHART procedures, the
text that names the variable associated with an axis, a legend, or a bubble in a
bubble plot. By default, this text is the name of a variable or of a label previously
assigned with a LABEL statement. The text of a label also can be specified with the
LABEL= option. (2) in special cases of pie charts and star charts in the GCHART
procedure, the midpoint value and the value of the chart statistic for a slice or spine.
(3) in the Annotate facility, the text displayed by the LABEL function or macro.

latitude
the angular measure between the equator and the circle of parallel on which a point
lies.

legend
refers collectively to the legend value, the legend value description, the legend label,
and the legend frame.

libref
the name temporarily associated with a SAS data library. For example, in the name
SASUSERS.ACCOUNTS, the name SASUSER is the libref. You assign a libref with
a LIBNAME statement or with operating system control language. See also
first-level name.

longitude
the angular measure between the reference meridian and the plane intersecting both
poles and a point. The reference meridian, called the prime meridian, is assigned a

1556 Glossary

longitude of 0, and other longitude values are measured from there in appropriate
angular units (degrees or radians, for example).

major tick marks
the points on an axis that mark the major divisions of the axis scale. See also minor
tick marks.

map
a graphic representation of an area, often a geographic area, but also any other area
of any size. See also device map and key map.

map area
a polygon or group of polygons on a map, for example, a state, province, or country.
In a traditional map data set, a map area consists of all the observations with the
same values for the identification variable or variables. In a feature table, each
unique geo-variable value is a map area. Map areas are also called unit areas. See
also geo-variable, identification variable, map data set, feature table, and traditional
map data set.

map data set
a SAS data set that contains the spatial information the GMAP procedure uses to
draw a map. See also feature table and traditional map data set.

meridian
an imaginary circle of constant longitude around the surface of the earth
perpendicular to the equator. See also parallel.

midpoint
a value that represents one data value or the middle of a range of data values. When
a midpoint represents a range of values, the algorithm used to calculate it depends
on the procedure.

minor tick marks
the divisions of the axis scale that fall between major tick marks. See also major tick
marks.

needle plot
a plot in which a vertical line connects each data point to the horizontal axis (two
dimensions) or the horizontal plane (three dimensions).

numeric variable
a variable that can contain only numeric values. By default, the SAS System stores
all numeric variables in floating-point representation.

observation
a row in a SAS data set. An observation is a collection of data values associated with
a single entity, such as a customer or state. Each observation contains one data value
for each variable. See also variable.

offset
(1) in a legend, the distance between the edge of the legend or the edge of the legend
frame and the axis frame or the border surrounding the graphics output area. (2) on
an axis, the distance from the origin to either the first major tick mark or the
midpoint of the first bar, or the distance from the last major tickmark or the
midpoint of the last bar to the end of the axis.

origin
(1) in a three-dimensional coordinate system, the point at which the X, Y, and Z axes
intersect, defined by the coordinates (0,0,0). In a two-dimensional coordinate system,
the point at which the X and Y axes intersect, defined by the coordinates (0,0). (2) in
the AXIS statement, the origin is the point at which the axis line begins (the left end

Glossary 1557

of the horizontal axis or the bottom of the vertical axis). In the LEGEND statement,
the origin is the location of the lower-left corner of the legend. (3) in the graphics
output area, the lower-left corner.

palette
the range of colors that can be generated on a graphics device. See also colors list.

panel
in the GREPLAY procedure, a part of the template in which one or more pictures can
be displayed. A template can contain one or more panels.

parallel
an imaginary circle of constant latitude around the surface of the earth parallel to
the equator. See also meridian.

pattern type
the set of fill patterns that are valid for a particular type of graph. The PATTERN
statement supports three pattern types: bar and block patterns, map and plot
patterns, and pie and star patterns. See also fill pattern.

pen mounts
on a pen plotter, the holders for the drawing pens.

pie chart
a chart made up of a circle divided by radial lines used to display the relative
contribution of each part to the whole.

plot
a graph showing the relationship between variables. The coordinates of each point on
the graph represent the values you plot. See also coordinates.

plot line
the line joining the data points in a plot.

plotter
a class of graphics devices that typically use pens to draw hardcopy output.

polygon
a closed, geometric figure bounded by lines or arcs. Polygons can be filled in to
represent a surface.

polygon font
a font in which the characters are drawn with enclosed areas that can be filled or
empty. See also stroked font.

prism map
a three-dimensional map that uses prisms (polyhedrons with two parallel surfaces) of
varying height to indicate the ordinal magnitude of a response variable.

procedure output area
the portion of the graphics output area where the output from a graphics procedure
is displayed. See also graphics output area and data area.

projection
a two-dimensional map representation of unit areas on the surface of a sphere, for
example, geographic regions on the surface of the Earth.

regression analysis
an analysis of the nature of the relationship between two or more variables,
expressed as a mathematical function. On a scatter plot, this relationship is
diagrammed as a line drawn through data points. A straight line indicates simple
regression; a curve indicates a higher-order regression.

1558 Glossary

relative coordinates
the coordinates measured from a point other than the origin, usually the endpoint of
the last graphics element drawn. See also absolute coordinates.

relative move
a move that repositions the graphics element by a specified distance from its current
location. See also absolute move.

replay
to display graphics output that is stored in a catalog entry.

response data set
a SAS data set the GMAP procedure uses that contains data values associated with
map areas and one or more identification variables. See also identification variable,
response values, and response variable.

response levels
the individual values or ranges of values into which the GMAP or GCHART
procedure divides the response variable. See also midpoint.

response values
values of a response variable that the GMAP procedure represents on a map as
different pattern/color combinations, or as raised map areas (prisms), spikes, or
blocks of different heights. The GCHART procedure represents response values as
bars, slices, spines, or blocks. See also midpoint.

response variable
the SAS data set variable in a response data set the GMAP procedure uses that
contains data values associated with a map area. Response variables used by the
GCHART procedure contain data values associated with bars, slices, spines, or blocks.
See also chart variable, response data set, response levels, and response values.

RGB
a color-coding scheme that specifies a color in terms of levels of red, green, and blue
components. The levels of each component range from 0 to 255. See also CMYK,
HLS, and HSV.

rotate
in the graphics editor, to turn a graphics object about its axis.

RUN group
in SAS procedures, a set of statements ending with a RUN statement.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain several different types of catalog
entries.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to the SAS System. See also entry type.

SAS data library
a collection of one or more SAS files that are recognized by the SAS System and that
are referenced and stored as a unit. Each file is a member of the library.

SAS data set
descriptor information and its related data values organized as a table of
observations and variables that can be processed by the SAS System. A SAS data set
can be either a SAS data file or a SAS data view.

Glossary 1559

SAS date value
an integer representing a date in the SAS System. The integer represents the
number of days between January 1, 1960, and another specified date. (For example,
the SAS date value 366 represents the calendar date January 1, 1961.)

SAS Display Manager System
an interactive, windowing interface to SAS System software. Display manager
commands can be issued by typing them on the command line, pressing function
keys, or selecting items from the PMENU facility. Within one session, many different
tasks can be accomplished, including preparing and submitting programs, viewing
and printing results, and debugging and resubmitting programs.

scatter plot
a two- or three-dimensional plot showing the joint variation of two (or three)
variables from a group of observations. The coordinates of each point in the plot
correspond to the data values for a single observation.

segment
in the GMAP procedure, a polygon that is a part of a unit area consisting of more
than one polygon. For example, consider a map of Hawaii. The representation of the
single unit area (the state) consists of a group of individual segments (the islands),
each of which is a separate polygon. In the GFONT procedure, a segment is a single
continuous line that forms part of all of a character or symbol.

software font
See font, software.

spine
a line on a star chart used to represent the relative value of the chart statistic for a
midpoint. Spines are drawn outward from the center of the chart.

spline
a method of interpolation in which a smooth line or surface connects data points.

standard deviation
a statistical measure of the variability of a group of data values. This measure,
which is the most widely used measure of the dispersion of a frequency distribution,
is equal to the positive square root of the variance.

string
See character string.

stroked font
a font in which the characters are drawn with discrete line segments or circular arcs.
See also polygon font.

subgroup variable
the variable in the input data set for a chart that is used to proportionally fill areas
of the bars or blocks on the chart.

summary variable
a variable in an input data set whose values the GCHART procedure totals or
averages to produce the sum or mean statistics, respectively.

surface map
a three-dimensional map that uses spikes of varying heights to indicate levels of
relative magnitude.

surface plot
a three-dimensional graph that displays a grid-like surface formed by the values of
the vertical (Z) variable plotted on a plane specified by the X and Y variables.

1560 Glossary

template
in the GREPLAY procedure, a framework that enables you to display one or more
pictures on a page.

text string
See character string.

tilt angle
the measure in degrees from the horizontal axis to the major axis of an object.

traditional map data set
a SAS data set that contains variables whose values are x, y coordinates that define
points that are the boundaries of map areas, such as states or counties. Each
observation also contains an identification variable whose value identifies the map
area to which the point belongs. See also identification variable, map area, map data
set, and feature table.

type style
a typeface design and its variations, for example, Swiss, Swiss Bold, and Swiss Italic.
See also font.

unit area
See map area.

user-definable colors
the colors that can be defined using SAS color names, or CMYK (cyan, magenta,
yellow, black), RGB (red, green, blue), HLS (hue, lightness, saturation), HSV (hue,
saturation, value), or gray-scale color equivalents.

value
the text that labels a major tick mark on an axis. Also, in a legend, a value is a line,
bar, or shape that the legend explains.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations. See also macro variable.

variable type
the classification of a variable as either numeric or character. Type is an attribute of
SAS variables.

WORK data library
the SAS data library automatically defined by the SAS System at the beginning of
each SAS session or SAS job. It contains SAS files that are temporary by default.
When the libref USER is not defined, the SAS System uses WORK as the default
library for SAS files created with one-level names.

X axis
in a two-dimensional plot, the horizontal axis. In a three-dimensional plot, the X axis
is the axis perpendicular to the Y-Z plane.

Y axis
in a two-dimensional plot, the vertical axis. In a three-dimensional plot, the Y axis is
the axis perpendicular to the X-Z plane.

Z axis
in a three-dimensional plot, the axis perpendicular to the X-Y plane.

Index 1561

Index

(pound sign), variables as plot point labels 198
? statement, GREPLAY procedure 1246

Numbers
3D charts

3D bar charts 130
3D pie charts 6

A
A= option

AXIS statement 136, 225
LABEL= option, DONUT statement 829
TITLE, FOOTNOTE, and NOTE state-

ments 213, 225
A option, GOPTIONS procedure 1077
access permissions, browsers 582
accuracy of color representation 105
ACROSS= option

CHART statement, GRADAR proce-
dure 1187, 1201

LEGEND statement options 152
PIE and DONUT statements 820
STAR statement 835

ACROSSVAR= option, CHART statement 1187
ACTION= macro argument 546
action statements 26
ActiveX Control 370, 385, 387

authentication 583
drill-down links 392
drill-down tags 412
embedded graphics in Microsoft Word 393,

395
generating output for 391
installing and uninstalling 389
interactive contour plots 394
internationalization 392

ActiveX control file (.exe file)
location of 422

ACTIVEX device driver 381, 388
data tips for 568
drill-down links in presentations 571

ActiveX parameters and attributes 421
ActiveX support 1508

Annotate functions 1539
AXIS statement 1508
G3D procedure 1537

GAREABAR procedure 1518
GBARLINE procedure 1519
GCHART procedure 1521
GCONTOUR procedure 1526
GMAP procedure 1527
GOPTIONS statement 1510
GPLOT procedure 1530
GRADAR procedure 1535
LEGEND statement 1514
PATTERN statement 1515
SYMBOL statement 1516
TITLE and FOOTNOTE statements 1517

ACTXIMG device driver 377, 381, 388
data tips for 568
drill-down links in images 571
GIF, JPEG, PNG vs. 440
ODS with 447
Web presentations, developing 442

ADD statement, GDEVICE procedure 921
ADMGDF option 262
Africa, creating outline map of 1232
AFTER option, MOVE statement 1255
AHUNITS= macro argument 536
Albers’ projections 1165

clipping map areas 1178
default projection specifications 1174
projection criteria 1172
when to use 1172

ALIGN= macro argument 536
alignment

axis labels 127, 133, 135, 137
axis values 137
character cells 268
legend labels 153
legend text 158, 159
legend values 157
legends 155, 162
plot print labels 197
text in graphics output 218

ALL option, GMAP procedure 1008
ALL option, GMAP statement 144
ALT= macro argument 536
alternative hardware fonts 80
AMBIENT= parameter, JAVA and ActiveX 427
anchors 168, 259
angle, rotation

angling text in pie charts 1381
axis labels 127, 133, 135, 136
donut chart labels 829, 830
hardware text rotation 330

landscape orientation of graphics output
area 34, 322, 323, 349

orientation of graphics output area 34
portrait orientation of graphics output

area 34, 332, 344, 349
print orientation 349
printing orientation 349
rotating and tilting surface map 1068
surface and scatter plots 1299, 1316, 1323
text in graphics output 213, 219, 222
text in pie charts 1381

ANGLE= macro argument 546
ANGLE= option

AXIS statement 136, 225
LABEL= option, DONUT statement 829
PIE and DONUT statements 820
STAR statement 835
TITLE, FOOTNOTE, and NOTE state-

ments 213, 225
ANGLE variable, Annotate facility 642
animation 378, 457

creating sequences of 458
delay between graphs 278
graphics options for 459
repeating as loop 321
sample programs 459, 463

ANNO= option
BAR statement 753
BLOCK statement, GCHART procedure 788
BLOCK statement, GMAP procedure 1011
BUBBLE statement 1092
CHART statement, GRADAR procedure 1187
CHORO statement 1018
G3D procedure 1300
GANNO procedure 708
GBARLINE procedure 750
GCHART procedure 786
GCONTOUR procedure 888
GMAP procedure 1008
GPLOT procedure 1088
GPRINT procedure 1149
GRADAR procedure 1185
GSLIDE procedure 1279, 1283
HBAR and VBAR statements 799
PIE and DONUT statements 820
PLOT statement, G3D procedure 1302
PLOT statement, GCONTOUR procedure 891
PLOT statement, GPLOT procedure 1104
PRISM statement 1024
SCATTER statement, G3D procedure 1307

1562 Index

STAR statement 835
SURFACE statement 1031

%ANNOMAC macro, Annotate facility 679
Annotate data sets 587, 599

applying to web output 500
missing values 601
observation and structure of 589
producing graphics output 601

annotate facility
examples 597

Annotate facility 14, 588, 614
ActiveX and Java support for 1539
Annotate graphics in drill-down graphs 719
coordinates 596
debugging 604
drill-down links, generating 500
DSGI vs. 1354
error messages, list of 699
functions 594, 615
graphic elements and formatting 595
images, displaying 118
in text slides 1278, 1283
internal coordinates 678
macro data sets 23
macros, how to use 697
macros for 679, 697
processing details 602
producing multiple graphs 715
projecting an Annotate data set 1180
scaling data-dependent output 710
scaling graphs 710
storing Annotate graphics 713
variables 591, 599, 602, 642
Web output, generating 499

Annotate macros 600
ANNOTATE= option 500, 601

BAR statement 753
BLOCK statement, GCHART procedure 788
BLOCK statement, GMAP procedure 1011
BUBBLE statement 1092
CHART statement, GRADAR procedure 1187
CHORO statement 1018
G3D procedure 1300
GANNO procedure 708
GBARLINE procedure 750
GCHART procedure 786
GCONTOUR procedure 888
GMAP procedure 1008
GPLOT procedure 1088
GPRINT procedure 1149
GRADAR procedure 1185
GSLIDE procedure 1279, 1283
HBAR and VBAR statements 799
PIE and DONUT statements 820
PLOT statement, G3D procedure 1302
PLOT statement, GCONTOUR procedure 891
PLOT statement, GPLOT procedure 1104
PRISM statement 1024
PROC statement 145
SCATTER statement, G3D procedure 1307
STAR statement 835
SURFACE statement 1031

Any mode drill-down mode, Java 401
APPLET element (HTML), macro arguments

for 536
APPLETLOC= system option 399, 423
arc-drawing capability, device 270

ARC function (DSGI) 1446
ARCHIVE= macro argument 536
ARCHIVE= option 422
arcs

drawing with Annotate facility 631, 632
drawing with DSGI 1446
writing in, DSGI for 1455

area bar charts 725
ActiveX and Java support for 1518
chart with numeric category variable 731
chart with subgrouping 733
chart with subgrouping and variable percent-

ages 735
simple area bar chart 729
syntax and options 727

area boundaries, unmatched
GREDUCE procedure and 1215
GREMOVE procedure and 1215

AREA element (HTML) 260
AREA= option

BLOCK statement 1011
PRISM statement 1024

areas, Annotate graphics 596
AREAS= option, PLOT statement 1104, 1134
array of arguments, callback method 408
ASCENDING option

BAR statement 753
HBAR and VBAR statements 799
PIE and DONUT statements 820
PLOT statement 766

ASCII-to-EBCDIC translation 358
ASF function (DSGI) 1405, 1464
ASIS option, GPROJECT procedure 1168
ASPECT function (DSGI) 1407, 1465
ASPECT= option 263
aspect ratio 263

maintaining for cells 1152
asymmetrical keymaps and device maps 986
attributes, JAVA and ActiveX parameters and at-

tributes 421
ATTRIBUTES= option, ODS statements 421
audience for presentations, considering 380
AUTOCOPY option 263
AUTOFEED option 264
AUTOHREF option

BUBBLE statement 1092
PLOT statement, GCONTOUR procedure 891
PLOT statement, GPLOT procedure 1105

AUTOLABEL and AUTOLABEL= options,
PLOT statement 891, 903, 906

automatic paper feed 264, 327
AUTOREF option

BAR statement 753
HBAR and VBAR statements 799

AUTOREF= option, AXIS statement op-
tions 136

AUTOSIZE= graphics option 265
AUTOVREF option

BUBBLE statement 1092
PLOT statement, GCONTOUR procedure 891
PLOT statement, GPLOT procedure 1105

AWUNITS= macro argument 541
axes 124

axis definitions 1193
colors, bar line charts 765
colors, block charts 795

colors, CAXIS= option for 753, 789, 799,
892,,

contour plots 886, 901
labels 127, 133
line type 134
logarithmic 127, 229, 815, 1087
offset 130
origins 133
plots with two vertical axes 1084, 1119, 1124
scatter plots, reversing 1312
splines in star charts 1193, 1210
suppressing, NOAXES option for 897, 1097,

1111, 130
suppressing, NOAXIS option for 760, 810,

897, 1097,
surface and scatter plots 1299
tick marks 129
tick marks, ordering 226

AXIS= option
BAR statement 753, 761
HBAR and VBAR statements 812
PLOT statement 766, 767

AXIS option, GOPTIONS procedure 1077
AXIS statement 27, 123, 124

ActiveX and Java support for 1508
GCONTOUR procedure 886
logarithmic axes 229
ordering datetime tick marks 226

AXIS1= and AXIS2= options, GRID state-
ment 1334, 1336

B
B= option, GFONT procedure 947
BACKCOLOR= parameter, JAVA 427
background color

graphics output area 266
image transparency 357
legends 152
text in graphics output 215

background images 113, 318, 319
BACKGROUNDCOLOR= parameter, Metaview

Applet 475
backplane images 115
%BAR, %BAR2 macro, Annotate facility 680
bar charts 5

3D plane 130
basics 775
drill-down functionality in 856
error bars in horizontal bar chart 854
group brackets on axis 130
images on bars of 116
midpoints and statistics in horizontal bar

chart 851
patterns, outlines, and colors 171, 816
subgroup labels 607
subgrouping in pie or donut chart 848
subgrouping in vertical bar chart 848
sum statistic, specifying (example) 846
vocabulary of 778
with Web drill-down (example) 255

BAR function, Annotate facility 616, 1539
BAR function, DSGI 1448
bar line charts 739, 796

ActiveX and Java support for 1519
BAR statement, GBARLINE procedure 751

Index 1563

basic graph with styles (example) 768
colors and images 764
interpolation methods 740
missing values 747
parts of 741
patterns and outlines 748, 764
plot overlays 765
PLOT statement, GBARLINE procedure 765
statistics in, displaying 763
SYMBOL statement, GBARLINE proce-

dure 768
symbols 768
syntax and options 749

BAR statement, GBARLINE procedure 751,
1519

bar statistics 741, 763
bar variables 741, 742, 745
bars, drawing with DSGI 1448
baseline, font 940, 947
baseline, text in graphics output 213, 219

rotating characters from 222
underlining 223

BASELINE= option, GFONT procedure 947
batch environment, GDEVICE procedure in 918

switching to 925, 1252
batch mode 32
BC= option, TITLE, FOOTNOTE, and NOTE

statements 215, 225
BCOLOR= option

BUBBLE statement 1092
TITLE, FOOTNOTE, and NOTE state-

ments 215, 225
BDCLASS= macro argument 552
BEFORE option, MOVE statement 1255
BFONT= option, BUBBLE statement 1092
BG= macro argument 552
BGTYPE= macro argument 552
BINDING= option 265
Bitstream fonts, rendering 82, 293, 346

spacing between letters 295
bivariate interpolation 1330
BL= option, TITLE, FOOTNOTE, and NOTE

statements 225
BLABEL option, BUBBLE statement 1092
black and white, reversing 353
BLANK= option, TITLE, FOOTNOTE, and

NOTE statements 215, 225
blank spaces, removing from data values 414
block charts 4

basics 774
BLOCK statement syntax 787
grouping and subgrouping in (example) 844
negative and zero values 795
patterns, outlines, and colors 794
sum statistic, specifying (example) 842
text in 795

block effects for legends 152, 163
block maps 11, 996

assigning formats to response variables (exam-
ple) 1049

drill-down functionality in maps (exam-
ple) 1054

identification variables 1005
patterns 1016
predefined formats for 1035
producing simple block map (example) 1045
response levels 1004

specifying response levels (example) 1047
syntax and options 1010

BLOCK statement, GCHART procedure
ActiveX and Java support for 1521
block chart with sum statistic (example) 842
syntax and options 787

BLOCK statement, GMAP procedure 1010
ActiveX and Java support for 1527
assigning formats to response variables (exam-

ple) 1049
drill-down functionality in maps (exam-

ple) 1054
producing simple block map (example) 1045
specifying response levels (example) 1047

BLOCKMAX= option, BLOCK statement 144,
789

BLOCKSIZE= option, BLOCK statement 1012
BO= option, TITLE, FOOTNOTE, and NOTE

statements 215, 225
body, animation 458
BODY= argument, ODS HTML statement 165
body files for graphics output 491
BODY= option, ODS HTML statement 491
BORDER= graphics option 266
BORDER= macro argument 546
BORDER option, GSLIDE procedure 1279,

1281
borders

Annotate facility to draw 622
graphics output area 266, 1281
legends 152

BOX= option, TITLE, FOOTNOTE, and NOTE
statements 215, 225

box plots 185, 187
creating and modifying (example) 233
line width 201

boxes around graphics output text 215, 216
brackets, bar charts 130
BROWSE option, GDEVICE procedure 920
browser permissions 582
BRTITLE= macro argument 553
BS= option, TITLE, FOOTNOTE, and NOTE

statements 216, 225
BSCALE= option, BUBBLE statement 1092
BSIZE= option, BUBBLE statement 1093
BSPACE= option, TITLE, FOOTNOTE, and

NOTE statements 216, 225
bubble plots 8, 1083, 1090

adding right vertical axis (example) 1124
controlling bubble display 1098
coordinating BUBBLE and BUBBLE2 plots re-

quests 1100
generating simple bubble plots (exam-

ple) 1121
labeling and sizing plot bubbles (exam-

ple) 1122
BUBBLE statement, GPLOT procedure 1090

ActiveX and Java support for 1530
controlling bubble display 1098
coordinating with BUBBLE2 statements 1100
generating simple bubble plots (exam-

ple) 1121
labeling and sizing plot bubbles (exam-

ple) 1122
BUBBLE2 statement, GPLOT procedure 1098

ActiveX and Java support for 1530
adding right vertical axis (example) 1124

coordinating with BUBBLE statements 1100
bundling attributes, DSGI 1373
BWIDTH= option, SYMBOL statement 185
BY lines 143
BY statement 26, 124, 141

Annotate facility with 603
color of BY lines 267
displaying with (suppressing from) catalog en-

tries 1247, 1256
fonts FOR BY lines 289
generating chart series (example) 240
GREMOVE procedure 1227
height of BY lines 312
RUN-group processing 33

#BYLINE option, text string specifications 222
BYLINE statement, GREPLAY procedure 1243,

1247
#BYVAL option, text string specifications 223
#BYVAR option, text string specifications 223,

226

C
C= option

AXIS statement options 126, 136, 139
BUBBLE statement 1094
GFONT procedure 947
LABEL= option, DONUT statement 829
LEGEND statement options 158
PLOT statement, GPLOT procedure 1106
POINTLABEL= specification 197
SYMBOL statement 185, 206
TITLE, FOOTNOTE, and NOTE state-

ments 216
CA= option

BUBBLE statement 1093
CHART statement, GRADAR procedure 1187
PLOT statement, GPLOT procedure 1106

callback method, JavaScript 407
Canada

census division data 1003, 1033
reducing map of (example) 1220

capline, font 940, 947
CAPLINE= option, GFONT procedure 947
CAPTURE= argument, META2HTM macro 564
carriage return at record ends 300
Cartesian coordinates, projecting spherical coordi-

nates into 1161
basic usage of GPROJECT procedure 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement, GPROJECT procedure 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options, GPROJECT proce-

dure 1168
types of map projections 1165

Cartographic font 87
CAT command 55
catalog entries 1239

BY line 143
changing information about 1254
copying or duplicating 1251, 1263

1564 Index

deleting from catalogs 1251
displaying BY statement information

with 1247
duplicate entry names 1240
grouping 1253
managing 1267
names for 63
names for image output files 445
printing 1254
replacing 70
replaying 1268
selecting for replay 1257

CATALOG function (DSGI) 1407, 1465
CATALOG= option, GDEVICE procedure 921
category variables 726
CATEXT= macro argument 546
CAUTOHREF= option

BUBBLE statement 1093
PLOT statement, GCONTOUR procedure 891
PLOT statement, GPLOT procedure 1106

CAUTOREF= option
BAR statement 753
HBAR and VBAR statements 799

CAUTOVREF= option
BUBBLE statement 1093
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106

CAXES= option, CHART statement 1187
CAXIS= option

BAR statement 753
BLOCK statement 789
BUBBLE statement 1093
CHART statement 1187
HBAR and VBAR statements 799
PLOT statement, G3D procedure 1302
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106
SCATTER statement, G3D procedure 1307

CBACK= argument, META2HTM macro 565
CBACK function (DSGI) 1408, 1466
CBACK= macro argument 546, 562
CBACK= option 266
CBLKOUT= option, BLOCK statement 1012
CBLOCK= option, LEGEND statement 152,

163
CBODY= option, SURFACE statement 1031
CBORDER= option, LEGEND statement op-

tions 152
CBORDER variable, Annotate facility 643
CBOTTOM= option, PLOT statement 1302
CBOX variable, Annotate facility 644
CBY= graphics option 267
CC option

? statement, GREPLAY procedure 1246
LIST statement, GREPLAY procedure 1254

CC= option, GREPLAY procedure 1243
CC statement, GREPLAY procedure 1247
CCOPY statement, GREPLAY procedure 1248
CDEF statement, GREPLAY procedure 1249,

1274
CDELETE statement, GREPLAY proce-

dure 1250
CELL option 268
CEMPTY= option

BLOCK statement 1012
CHORO statement 1019
PRISM statement 1025

census division data, Canada 1003, 1033
CENTER= macro argument 553
CENTIMETERS option, GOPTIONS proce-

dure 1077
%CENTROID macro, Annotate facility 680
CERROR= option

BAR statement 753
HBAR and VBAR statements 800

CFILL= option
PIE and DONUT statements 821
STAR statement 835

CFR= option
BAR statement 754
CHART statement, GRADAR procedure 1187
HBAR and VBAR statements 728, 800
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106

CFRAME= option
BAR statement 754
CHART statement, GRADAR proce-

dure 1187, 1208
GSLIDE procedure 1279, 1281
HBAR and VBAR statements 800
LEGEND statement options 152
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106

CFRAMESIZE= option, CHART state-
ment 1187

CFRAMETOP= option, CHART statement 1188
CFREQ option

BAR statement 754
HBAR and VBAR statements 800

CFREQLABEL= option, HBAR and VBAR state-
ments 800

CGMs (computer graphics metafiles)
adjusting graphics output (example) 979
creating and importing (example) 977
elements not supported 971
font substitutions 974

CH= option
BUBBLE statement 1093
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106

CHANDLE= macro argument 546
CHAR variable (font data sets) 952
CHAR1, CHAR2 variables (kern data sets) 959
character bar variables 742
character cells 36

alignment 268
as units of measurement 38
aspect ratio of 1152
size of 265

character chart variables 780
character codes 81
character codes, displaying 946, 950, 962
character transcoding 561
characters

adjusting character size in output (exam-
ple) 1156

as axis values 131
as legend values 155
HTML entities 582
prefixing output records 309
prompts 343
special plot symbols 200

characters, mapping to keyboard 983
asymmetrical 986

basics of 983
creating and using 990
GKEYMAP data sets 987
GKEYMAP data sets, generating 990
ignoring 945, 949
modifying (example) 990

CHARACTERS option 268
CHARREC= option, GODEVICE proce-

dure 269
CHARSET= macro argument 561
CHARSPACETYPE= option, GFONT proce-

dure 948
CHART statement, GRADAR procedure

ActiveX and Java support for 1535
assigning axis definitions to axis spokes (exam-

ple) 1210
changing star type in radar charts (exam-

ple) 1207
color and line styles in radar charts (exam-

ple) 1208
filling stars in radar charts (example) 1204
images in radar charts (example) 1205
multiple classification variables in radar charts

(example) 1202
overlaying radar charts (example) 1199
producing basic radar chart (example) 1198
specifying mode for radar charts (exam-

ple) 1209
syntax and options 1185
tiling radar charts (example) 1201

chart statistics
GBARLINE procedure 745, 778
GCHART procedure 782, 815
horizontal bar chart (example) 851

chart variables 778, 779, 780
charts 4

drill-down functionality, ActiveX 392
CHARTYPE= graphics option 79, 270
CHARTYPE variable (GKEYMAP data set) 987
Chartype window (GDEVICE) 931
CHECK= suboption, AUTOLABEL= op-

tion 898
CHORO statement, GMAP procedure 1017

ActiveX and Java support for 1527
creating maps using feature tables (exam-

ple) 1069
drill-down functionality in maps (exam-

ple) 1054
labeling U.S. states in choropleth map (exam-

ple) 1061
producing simple choropleth map (exam-

ple) 1053
projecting an Annotate data set (exam-

ple) 1180
choropleth maps 11, 997

creating maps using feature tables (exam-
ple) 1069

drill-down functionality in maps (exam-
ple) 1054

identification variables 1005
labeling U.S. states in choropleth map (exam-

ple) 1061
predefined formats for 1035
producing simple choropleth map (exam-

ple) 1053
response levels 1004
syntax and options 1017

Index 1565

CHREF= option
BUBBLE statement 1093
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106

CHUB= macro argument, DS2CSF macro 562
CI= option, SYMBOL statement 185, 206
CIMPORT procedure 56
CINDIC= macro argument, DS2CSF macro 562
circle-drawing capability, device 270
%CIRCLE macro, Annotate facility 681
circle of stars, drawing (example) 609
CIRCLEARC option 270
circles, writing in (DSGI) 1455
city map data (U.S.) 1003
CLABTXT= macro argument, DS2CSF

macro 562
CLABVAL= macro argument, DS2CSF

macro 562
classification variables, plotting 1083
CLASSPATH environmental variables 583
CLEAR function (DSGI) 1457
CLEVELS= option, PLOT statement 892, 903
client graphs vs. server graphs 584
CLINK= macro argument 546
CLIP function (DSGI) 1409, 1467
CLIP options, TDEF statement 1260
clipped polygons 331, 335
clipping around viewports (DSGI) 1377
clipping map data sets 1039, 1173, 1213, 12

example of 1178
reducing map of Canada (example) 1220

CLIPREF option
BAR statement 754
HBAR and VBAR statements 800

CLIPTIPS= parameter, JAVA 427
CLM= option

BAR statement 754
HBAR and VBAR statements 800

CLOCKWISE option, PIE and DONUT state-
ments 821, 878

closed destinations, ODS 489
closing

GRAPH window 49
GSF (graphics stream file) 290

CM option, GOPTIONS procedure 1077
CMAP option

? statement, GREPLAY procedure 1246
LIST statement, GREPLAY procedure 1254

CMAP= option, GREPLAY procedure 271,
1243

CMAP statement, GREPLAY procedure 1250
%CMY macro 100
CMYK color scheme 95
%CMYK macro 101
CNODE= macro argument 547
%CNS macro 101
CNS (SAS Color Naming Scheme) 97, 99
CNTL2TXT function, Annotate facility 618
CO= option, SYMBOL statement 185, 206
CODEBASE attribute, OBJECT element

(HTML) 399, 424
CODEBASE= macro argument 541
CODEBASE= option 422
CODEBASE parameter, APPLET element

(HTML) 399
CODELEN= option, GFONT procedure 948
COLINDEX function (DSGI) 1409

COLLATE option 271
collating printed output 271
color codes

CMYK scheme 96
gray-scale scheme 99
HLS scheme 97
HSV and HBS schemes 98
RGB scheme 95

color lists 93
default 94
managing colors list for device driver (exam-

ple) 1291
COLOR MAPPING window (GREPLAY) 1266
color maps 1239

copying or duplicating 1248
creating 1268, 1274
defining or modifying in catalogs 1249
deleting from catalogs 1250
printing contents of 1254
specifying/assigning 271, 1247, 1250
transporting 58

COLOR= option
AXIS statement options 126, 136, 139
LABEL= option, DONUT statement 829
LEGEND statement options 158
PATTERN statement 170
POINTLABEL= specification 197
SCATTER statement, G3D procedure 1307,

1310
SYMBOL statement 185, 206
TDEF statement, GREPLAY procedure 1260
TITLE, FOOTNOTE, and NOTE state-

ments 216
color schemes 95
COLOR variable, Annotate facility 645
%COLORMAC macro 100
COLORMAP= macro argument 547
Colormap window (GDEVICE) 931
COLORNAMELIST= parameter, JAVA 427
COLORNAMES= parameter, JAVA 427
colors 92

active, number of (plotters) 333
axes 126, 136
axes, CAXIS= option for 753, 789, 799, 892,,
axis labels 126, 127, 133, 135,
axis tick marks 126, 129, 139
axis values 136
bar charts 816
bar line charts 764
block charts 794
borders 276
bubble plots 1092
BY lines 143, 267
contour plot lines and labels 903
default, specifying 92, 272
donut chart labels 829
graphics output area 266
image transparency 357
legend label 153
legend text 158
legend values 157
legends 152
managing colors list for device driver (exam-

ple) 1291
mapping 971
maximum display at once 324
Netscape troubleshooting 583

ODS styles 94
output text (example) 1153
patterns 274
pie and donut chart slices 831
plot print labels 197
plot symbols 93, 185, 206, 231, 2
plotting in order of 333
reference lines 892, 893, 1093, 1094
reversing black and white 353
star charts 1188, 1204, 1208
text in graphics output 93, 215, 216
titles, footnotes, and notes 276, 493
utility macros for 100

COLORS= graphics option 93, 178, 272
COLORSCHEME= parameter, JAVA and Ac-

tiveX 428
COLORTYPE= option, GDEVICE proce-

dure 273
COLREP function (DSGI) 1410, 1468
columns, legends 152
columns in graphics output area 3, 36, 274, 315,

322
COMMENT function, Annotate facility 619
%COMMENT macro, Annotate facility 682
comments 279
communications ports, how output is written

to 306
confidence intervals 756, 803, 854

error bars in horizontal bar chart (exam-
ple) 854

HBAR and VBAR statements 803
confidence limits 192
conformal projections 1166, 1172
CONSTANT= option, SURFACE state-

ment 1031
constant-width (uniform) fonts 940, 951
Constellation applet 373, 513

chart with simple arcs (example) 518
chart with weighted arcs (example) 520
data tips with 569
drill-down functionality 572, 573
DS2CONST macro with 515
hotspots 524
when to use 514
XML written to external file (example) 522

CONTENTS= argument, ODS HTML state-
ment 166

contents files 495
CONTENTS option, MAPIMPORT proce-

dure 1349
CONTENTS= option, ODS statements 495
continent formats for maps 1035
continuous output stream 296
continuous paper feed 264, 327
continuous variables

bar variables 742, 744
chart variables 779, 781
map variables 1004

Contour applet 372
parameters for, list of 424

contour labels, size of 187
contour lines

colors for 185, 206
distance between labels 199
fonts 186
size of 201
type of 196, 207

1566 Index

contour plots 10, 885
ActiveX and Java support for 1526
axes 886, 901
AXIS statement, GCONTOUR procedure 886
contour levels, specifying 895, 899, 908
contour levels, specifying (example) 908
interactive, with ActiveX (example) 394
interpolation methods 887
labels for contour lines (example) 906
missing values 887, 889
modifying lines and labels with SYMBOL

statement 903
PATTERN statement, GCONTOUR proce-

dure 169
patterns 173
patterns and joins in contour plots (exam-

ple) 910
patterns and joins in (example) 910
PLOT statement, GCONTOUR procedure 889
simple, generating (example) 904
simple contour plot, generating (example) 904
spline interpolation (example) 1343

contour variables 885
control characters, device 359
converting

between RGB and HLS colors 103
graphics output 56, 59

coordinates, projecting from spherical to Carte-
sian 1161

basic usage of GPROJECT procedure 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement, GPROJECT procedure 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options, GPROJECT proce-

dure 1168
types of map projections 1165

coordinates and coordinate systems
Annotate facility 596
data-dependent, GSLIDE with 1281
longitude and latitude 1164
templates, changing 1259

COPY function (DSGI) 1458
COPY= option, TDEF statement 1260
COPY statement

custom device entry, creating (example) 936
GDEVICE procedure 924
GREPLAY procedure 1251

copying
catalog entries 1251, 1263
color maps 1248
numbers of print copies 298
templates 1258

country formats for maps 1035
COUTLINE= macro argument, DS2CSF

macro 562
COUTLINE= option

BAR statement 754
BLOCK statement, GCHART procedure 789
BLOCK statement, GMAP procedure 1012
CHORO statement 1019
HBAR and VBAR statements 800
patterns 180

PIE and DONUT statements 821
PLOT statement, GCONTOUR procedure 892
PLOT statement, GPLOT procedure 1106
PRISM statement 1025
STAR statement 835

CPATTERN= graphics option 171, 274
patterns 179
patterns and 180

CPCT option
BAR statement 754
HBAR and VBAR statements 801

CPERCENT option
BAR statement 754
HBAR and VBAR statements 801

CPERCENTLABEL= option, HBAR and VBAR
statements 801

CPORT procedure 56
CR= option

BAR statement 754
HBAR and VBAR statements 801

CREATE_ID_, MAPIMPORT procedure 1349
creating graphs interactively 395
CREF= option

BAR statement 754
HBAR and VBAR statements 801

critical success factor (CSF) diagrams
drill-down functionality 573
DS2CSF macro 527, 528
hotspots 532
sample diagrams 530

CSELECT= macro argument 547
CSF diagrams

drill-down functionality 573
DS2CSF macro 527, 528
hotspots 532
sample diagrams 530

CSFTYPE= macro argument, DS2CSF
macro 562

CSHADOW= option, LEGEND statement op-
tions 153, 163

CSP= option, GFONT procedure 948
CSPOKE= and CSPOKES= options, CHART

statement 1188
CSTAR= option, CHART statement 1188
CSTARCIRCLE= and CSTARCIRCLES= op-

tions, CHART statement 1188
CSTARFILL= option, CHART statement 1188,

1204
CSTARS= option, CHART statement 1188,

1208
CSYMBOL= graphics option 207, 275
CT=, GFONT procedure 944
CTEXT= macro argument 553
CTEXT= option

BAR statement 755
BLOCK statement, GCHART procedure 789
BLOCK statement, GMAP procedure 1013
BUBBLE statement 1094
CHART statement, GRADAR procedure 1189
CHORO statement 1019
GFONT procedure 944
GPRINT procedure 1149, 1153
HBAR and VBAR statements 728, 801
PIE and DONUT statements 821
PLOT statement, G3D procedure 1302
PLOT statement, GCONTOUR procedure 893
PLOT statement, GPLOT procedure 1106

PRISM statement 1025
SCATTER statement, G3D procedure 1307
STAR statement 836

CTEXT= options, GOPTIONS statement 225,
276

CTILE= and CTILES= options, CHART state-
ment 1189

CTIPHILT= argument, META2HTM macro 565
CTITLE= graphics option 225, 276
CTOP= option, PLOT statement 1302
cumulative frequency statistic 745, 782
cumulative percentage statistic 746, 783
current window system, DSGI 1359
curve-drawing capability, device 270
custom graphs, creating with DSGI 1356
CUTOFF= macro argument 547
CV= option

BUBBLE statement 1094
PLOT statement, GCONTOUR procedure 893
PLOT statement, GPLOT procedure 1107
SYMBOL statement 186, 206

CVALUE= macro argument, DS2CSF
macro 563

CVREF= option
BUBBLE statement 1094
PLOT statement, GCONTOUR procedure 893
PLOT statement, GPLOT procedure 1107

D
D= option, TITLE, FOOTNOTE, and NOTE

statements 217
DASH option 277
dashed lines

hardware-generated 277
lengths of dashes, scaling 278

DASHLINE= option, GDEVICE procedure 277
DASHSCALE= graphics option 278
data-dependent coordinates with GSLIDE proce-

dure 1281
data library for rendered fonts 347
DATA= macro argument, DS2CSF macro 561
DATA= option

G3D procedure 1300
G3GRID procedure 1332
GBARLINE procedure 750
GCHART procedure 786
GCONTOUR procedure 888
GFONT procedure 946
GKEYMAP procedure 989
GMAP procedure 1001, 1007
GPLOT procedure 1089
GPROJECT procedure 1168
GRADAR procedure 1185
GREDUCE procedure 1216
GREMOVE procedure 1226

data sets 29
contour plots, input for 887
DSGI data sets 1358
font data sets 951, 952, 958
generating for radar/star charts (exam-

ple) 1196
GKEYMAP data sets 987
kern data sets 949, 958, 959
locking, automatic 31
space data sets 960

Index 1567

three-dimensional graphs 1298
DATA step 27

Annotate data sets 600
data tips in Web presentations 568
data values, formatting 413
DATAFILE= option, MAPIMPORT proce-

dure 1349
DATASYS option, GANNO procedure 708, 710
DATATIPHIGHLIGHTCOLOR= parameter,

Metaview Applet 475
DATATIPSTYLE= parameter, Metaview Ap-

plet 475
DATATYPE= macro argument 538
date-time information

as axis values, ordering 131
ordering axis tick marks (example) 226

%DCLANNO macro, Annotate facility 683
DDLEVEL# applet parameter 405
DDLEVEL= parameter, JAVA and ActiveX 428
DEBUG function, Annotate facility 620
debugging

Annotate facility 604
DSGI programs 1360

DEF option, TDEF statement 1260
DEFAULTTARGET= graphics option 476
DEFINE STYLE statement, TEMPLATE proce-

dure 489
DEG option, GPROJECT procedure 1169
DEGREE option, GPROJECT procedure 1169
DEL option, TDEF statement 1260
delay between displayed graphs 278, 310
DELAY= graphics option 459
DELETE function (DSGI) 1459
DELETE option, TDEF statement 1260
DELETE statement, GDEVICE procedure 925
DELETE statement, GREPLAY procedure 1251
deleting

blanks from data values 414
catalog entries 1251
color maps 1250
graphics output, after display 285, 287
polygon overlap 331, 335
replacing/overwriting files 70
templates 1262

density values, map data sets 1218
DENSITY variable (map data sets) 1039, 1213
DEPTH= macro argument 547, 563
DES= option

BLOCK statement, GCHART procedure 789
BLOCK statement, GMAP procedure 1013
BUBBLE statement 1094
CDEF statement, GREPLAY procedure 1249
CHART statement, GRADAR procedure 1189
CHORO statement 1019
GANNO procedure 709
GPRINT procedure 1149
GSLIDE procedure 1280
HBAR and VBAR statements 802
PIE and DONUT statements 822
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 893
PLOT statement, GPLOT procedure 1107
PRISM statement 1025
SCATTER statement, G3D procedure 1307
STAR statement 836
SURFACE statement 1032
TDEF statement, GREPLAY procedure 1260

TREPLAY statement, GREPLAY proce-
dure 1263

DES option, BAR statement 755
DESCENDING option

BAR statement 755
BY statement 142, 1227
HBAR and VBAR statements 802
PIE and DONUT statements 821
PLOT statement 766

DESCRIPTION= option
BAR statement 755
BLOCK statement, GCHART procedure 789
BLOCK statement, GMAP procedure 1013
BUBBLE statement 1094
CHART statement, GRADAR procedure 1189
CHORO statement 1019
GANNO procedure 709
GDEVICE procedure 279
GPRINT procedure 1149
GSLIDE procedure 1280
HBAR and VBAR statements 802
ODS statements 496
PIE and DONUT statements 822
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 893
PLOT statement, GPLOT procedure 1107
PRISM statement 1025
SCATTER statement, G3D procedure 1307
STAR statement 836
SURFACE statement 1032

descriptions of catalog entries 55
destinations, ODS 489
DETAIL= option, PIE and DONUT state-

ments 822, 883
DETAIL_= options, PIE and DONUT state-

ments 822, 883
DEV option, ? statement 1246
DEVADDR= GOPTIONS statement 279
device catalogs 916, 917
device drivers 41

assigning 43
comparisons between 440
controlling output with 45
entries and catalogs 916
Listing available 44
managing colors list of (example) 1292
selecting 43
Web output 369

device drivers, specifying 1251
device entries 42, 916

browsing contents of 44
creating or modifying 72, 934
custom, creating (example) 936
transporting 58

DEVICE function (DSGI) 1411, 1468
device-generated graphics

circles and arcs 271
dashed lines 277
line thickness 323
pie filling 334
plot symbols 354
polygon-fill 336
rectangle-fill 345
vertices, maximum drawn 324

DEVICE= graphics option 52, 72, 280
static graphics 439

device maps 983
asymmetrical 986
basics of 986
creating and using 990
GKEYMAP data sets 987
GKEYMAP data sets, generating 990
specifying 280

DEVICE option, ? statement 1246
DEVICE= option, GKEYMAP procedure 989
device parameters 42, 261

complete list of, alphabetical 262
modifying 45

DEVICE statement, GREPLAY procedure 1251
devices

capabilities of, listing 281
colors list, default 94
external dimensions, display 34
hardware patterns 176, 181
how output is written to 306
identifying type of 283
location of, for output 279
model numbers 324
nicknames for 299
portability between 40
sending strings to 301, 303
specifying type of 358
user input, enabling 360

DEVMAP= graphics option 280, 986
DEVMAP= option, GDEVICE procedure 280
DEVMAP option, GKEYMAP procedure 989
DEVOPTS= option, GDEVICE procedure 281
DEVTYPE= option, GDEVICE procedure 283
diagnostic messages, Annotate facility 699
diagrams, CSF

drill-down functionality 573
DS2CSF macro 527, 528
hotspots 532
sample diagrams 530

direct display 50
DIRECT= parameter, JAVA and ActiveX 428
DIRECTORY window (GDEVICE) 929
DIRECTORY window (GREPLAY) 1265
DISABLE DRILLDOWN applet parameter 414
disabling drill-down functionality 414
DISCRETE option

BAR statement 743, 756
BLOCK statement, GCHART procedure 790
BLOCK statement, GMAP procedure 1013
CHORO statement 1019
GCHART procedure statements 780
HBAR and VBAR statements 728, 802
PIE and DONUT statements 823
PRISM statement 1026
STAR statement 836

discrete variables
bar variables 742, 743
chart variables 779, 780
charting in star chart (example) 881
map variables 1004

DISPLAY environment variable, batch mode 32
display size (lines) 308
DISPLAY statement 284
displaying fonts 940, 943
DISPOSAL= graphics option 459
DISPOSAL statement 285
DOCTYPE= macro argument 553

1568 Index

documentation, SAS/GRAPH
online help, locations for 385

donut charts 6
basics 776
labels 829
slice labels and formatting 830
statistic and group headings 827, 832
subgrouping in (example) 848
terms used with 778

DONUT statement, GCHART procedure
ActiveX and Java support for 1521
subgrouping in pie or donut chart (exam-

ple) 848
syntax and options 818

DONUTPCT= option, DONUT statement 823
DOWN= option

CHART statement, GRADAR procedure 1190
LEGEND statement options 153
PIE and DONUT statements 823
STAR statement 837

DOWNVAR= option, CHART statement 1190
DRAW function, Annotate facility 620, 1539
%DRAW macro, Annotate facility 683
DRAW= option, TITLE, FOOTNOTE, and NOTE

statements 217
DRAW2TXT function, Annotate facility 622,

1540
%DRAW2TXT macro, Annotate facility 684
DRAWIMAGE= parameter, JAVA 428
drawing areas, Annotate graphics 596
DRAWMISSING= parameter, JAVA 428
DRAWSIDES= parameter, JAVA 428
drill-down functionality 571

Annotate facility for 500
Annotate graphics in drill-down graphs (exam-

ple) 719
bar charts with (example) 255, 856
choropleth map (example) 1054
constellation charts 524
creating plots with (example) 1141
critical success factor diagrams 532
generating drill-down graphs using DSGI (ex-

ample) 1395
GIF output hotspots (example) 452
treeview diagrams 510

drill-down links
ActiveX 392
disabling 414
Java applets 400
levels for, customizing 405

drill-down tags 411, 412
DRILLDOWN= parameter, JAVA and Ac-

tiveX 428
DRILLDOWNMODE applet parameter 401,

408
DRILLDOWNMODE parameter 571
DRILLDOWNMODE= parameter, JAVA and Ac-

tiveX 429
DRILLFUNC= parameter, JAVA and Ac-

tiveX 428
DRILLPATTERN= parameter, JAVA and Ac-

tiveX 429
DRILLTARGET applet parameter 410, 413
DRILLTARGET= parameter, JAVA and Ac-

tiveX 429
DRILTARG= macro argument 547, 563
DRILTARG= option 573

DRILURL= macro argument, DS2CSF
macro 563

DRILURL= option 573
driver modules 325
driver termination 286
drivers, initializing 285
drop shadows, legends 153, 163
DRVINIT1= and DRVINIT2= options, GDEVICE

procedure 285
DRVINIT1= and DRVINIT2= options, GOP-

TIONS statement 285
DRVQRY= option, GDEVICE procedure, execut-

ing before driver initialization 286
DRVTERM1= and DRVTERM2= options, GDE-

VICE procedure 286
DRVTERM1= and DRVTERM2= options, GOP-

TIONS statement 286
DS2CONST macro 383, 515

arguments of 518, 535
arguments of, character transcoding 561
arguments of, data definition 537
arguments of, diagram appearance 545
arguments of, file generation 544
arguments of, page formatting 552
arguments of, titles and footnotes format-

ting 556
chart with simple arcs (example) 518
chart with weighted arcs (example) 520
enhancing presentations for 517
hotspots 524
stylesheets, macro arguments for 554
XML written to external file (example) 522

DS2CSF macro 383
arguments of 530, 535
arguments of, character transcoding 561
arguments of, data definition 561
arguments of, diagram appearance 562
arguments of, page formatting 552
arguments of, titles and footnotes format-

ting 556
drill-down functionality 573
enhancing presentations for 529
hotspots 532
sample diagrams 530
stylesheets, macro arguments for 554

DS2TREE macro 383
arguments of 507, 535
arguments of, character transcoding 561
arguments of, data definition 537
arguments of, diagram appearance 545
arguments of, file generation 544
arguments of, page formatting 552
arguments of, titles and footnotes format-

ting 556
enhancing presentations for 506
stylesheets, macro arguments for 554

DSGI (DATA Step Graphics Interface) 15,
1354, 1401

Annotate facility vs. 1354
attributes for graphics elements 1368, 1373
creating simple graphics 1367
examples of using 1381
functions and routines 1360
GASK routines 1394, 1404
GDRAW functions, list of 1446
global statements with 1358
GRAPH functions, list of 1457

GSET functions, list of 1462
how to use 1357
images, displaying 119
inserting graphs into DSGI output 1379
operating states 1359, 1370, 1402
processing statements in loops 1380
return codes, list of 1501
syntax 1355
utility functions, list of 1402
viewports and windows 1376, 1385

DUPCHECK= macro argument 547
duplex printing 265, 287
DUPLICATEVALUES= parameter, JAVA 429
DUPOK option, GPROJECT procedure 1168

E
E1=, ..., E5= options, GREDUCE proce-

dure 1216
EAST option, GPROJECT procedure 1169
EASTLONG option, GPROJECT proce-

dure 1169
EBCDIC-to-ASCII translation 358
editable output 296
editing

device entries 72
graphics output 55

Electronic font 87
ELLARC function (DSGI) 1449
ELLIPSE function (DSGI) 1450
ellipses, drawing with DSGI 1449, 1450
EMPTY variable, Annotate facility 662
ENCODE= macro argument 553
engines 31
enhancement variables in Web presentations 574
Enterprise Guide 2.0 395
equal-area map (Albers__##APOSTROPHE##__)

projections 1165
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
projection criteria 1172
when to use 1172

ERASE= graphics option 287
ERASE= option, GDEVICE procedure 287
erasing

blanks from data values 414
graphics output, after display 285, 287
replacing/overwriting files 70

ERRORBAR= option
BAR statement 756
HBAR and VBAR statements 803
horizontal bar charts (example) 854

errors, sizing 40
errors and error messages, Annotate facility 699
ESRI files, importing as map data sets 1347,

1348
examples 1349

example programs 21
examples 19
EXCLUDE statement, MAPIMPORT proce-

dure 1349
executable driver modules 325
executable module 42
EXPLODE= option, PIE and DONUT state-

ments 823

Index 1569

exporting graphics output 59
interactively 62
modified device entries for 72
program statements for 62

exporting output interactively 62
EXTENSION= graphics option 288
external dimensions, device 34
external files 1148

file extensions for 288
names for 63
replacing 70

external files, converting text to graphics out-
put 1147

adjusting character size in output (exam-
ple) 1156

adjusting output size 1150
external text files, about 1148
fonts 1152
specifying color text in output (exam-

ple) 1153
syntax and options, GPRINT procedure 1149

F
F option

GFONT procedure 949
GOPTIONS procedure 1077
AXIS statement options 136
LABEL= option, DONUT statement 829
LEGEND statement options 158
POINTLABEL= specification 197
SYMBOL statement 186
TITLE, FOOTNOTE, and NOTE state-

ments 217
FACHE= graphics option 290
FACTOR= macro argument 548
FASTTEXT= graphics option 288
FBY= graphics option 289
FCLASS= macro argument 556
FCOLOR= macro argument 556
feature tables 1001

creating maps using (example) 1069
merging map data sets with 1001, 1069

FFACE= macro argument 556
FILCOLOR function (DSGI) 1412, 1469
FILE= argument, ODS HTML statement 165
file extensions 288
file specifications for data sets 30
FILECLOSE= graphics option 290
FILECLOSE= option, GDEVICE procedure 290
filename extensions 63
FILENAME statement 444

storing in device entry 314
FILENAME statements 27, 28
FILEONLY= graphics option 291
FILEREF= option

GIMPORT procedure 973
GPRINT procedure 1149

filerefs 970
FILEREP function (DSGI) 1413
files

image file types 106
replacing/overwriting 70
sending strings to 301, 303
storing graphics output as 291

files, converting text to graphics output 1147
adjusting character size in output (exam-

ple) 1156
adjusting output size 1150
external text files, about 1148
fonts 1152
specifying color text in output (exam-

ple) 1153
syntax and options, GPRINT procedure 1149

FILETYPE= option, GIMPORT procedure 973
FILINDEX function (DSGI) 1413, 1470
filing images 114
FILL function (DSGI) 1451
FILL= graphics option 292
FILL= option

PIE and DONUT statements 823
STAR statement 837

FILL= option, GDEVICE procedure 292
filled fonts 941
FILLED option, GFONT procedure 949
FILLINC= graphics option 292
FILLINC= option, GDEVICE procedure 292
FILLPOLYGONEDGES= parameters, JAVA and

ActiveX 430
FILREP function (DSGI) 1470
FILSTYLE function (DSGI) 1415, 1472
FILTYPE function (DSGI) 1415, 1471
FIPS codes 1003, 1033

labeling U.S. states in choropleth map (exam-
ple) 1061

FISHEYE= macro argument 548
fixed-length output records 296
flow control, device 311
FNTNAME= macro argument 548
FNTSIZE= macro argument 548
FNTSTYL= macro argument 548
font data sets 951

creating 958
variables for, list of 952

FONT= option 158
AXIS statement options 136
CHART statement, GRADAR procedure 1190
LABEL= option, DONUT statement 829
POINTLABEL= specification 197
SYMBOL statement 186, 904
TITLE, FOOTNOTE, and NOTE state-

ments 217
FONT= specification 76
FONTLIST command 76
FONTRES= graphics option 293
fonts 75

ActiveX and 392
axis labels 127, 133, 136
axis values 136
basics about 940
bubble plots 1092
BY lines 143, 289
complete list of 82
contour plot labels 903
creating and storing 940, 946, 951
creating figures for symbols font (exam-

ple) 964
default 77, 78, 268, 270
displaying 940, 943
displaying with character codes (exam-

ple) 962
donut chart labels 829

full names for 80
GFONT0 library 941
GPRINT procedure and 1152
graphics output text 294
Java and 400
kern data sets 949, 958, 959
legend label 153
legend text 158
legend values 157
listing available 76
listing available characters 987
mapping 972
maximum and minimum 940
open at one time 290
plot point label 197
plot symbols 186
rendering 82, 289, 295, 346, 3
rendering, data library for 347
resolution 293
scaling in graphics output 274, 350, 351
space data sets 960
specifications for 76
substituting for imported CGMs 974
text in graphics output 217
titles and footnotes 295, 493
transporting 58
troubleshooting 583
where stored 77, 82

FOOTNOTE element (HTML), macro arguments
for 556

FOOTNOTE option, GOPTIONS proce-
dure 1077, 1079

FOOTNOTE statement 27, 123, 210, 224
ActiveX and Java support for 1517
BY statement with 145
displaying with GOPTIONS procedure (exam-

ple) 1079
footnotes 211, 224

angle of rotation 213, 219, 222
boxes around 215, 216
colors for 215, 216, 276
default characteristics, setting 225
defining text of 222, 226
fonts for 217
hyperlinks for 220
justification 218
ODS output 492, 493
positioning 39, 221
size of 218, 316
spacing around 221
text breaks 225
underlining 223

footnotes macro, arguments for 556
foreground colors

default, defining 272
reversing black and white 353

FORMAT= attribute 108, 113
FORMAT= option, GDEVICE procedure 294
FORMAT= option, GIMPORT procedure 973
FORMAT statement 27
formatting

axis labels 127, 133, 135
axis tick marks 129, 139
axis values 135
BY lines 143
contour plot lines and labels 903
donut chart labels 829

1570 Index

legend label 153
legend values 157
legends 150
maps 1035
pie and donut chart slice labels 830, 873
Web output 488

FR option
BAR statement 757
BUBBLE statement 1095
HBAR and VBAR statements 804
PLOT statement, GPLOT procedure 1108

FRAME= argument, ODS HTML statement 166
FRAME function, Annotate facility 1540
frame. legend 153
%FRAME macro, Annotate facility 684
FRAME option

BAR statement 757
BUBBLE statement 1095
CHART statement, GRADAR procedure 1190
GSLIDE procedure 1280
HBAR and VBAR statements 728, 804
PLOT statement, GPLOT procedure 1108

FRAME= option, LEGEND statement op-
tions 153

FRAME= option, ODS statements 498
frames

backplane images 115
images on 115, 806, 1096, 1110
ODS output 497

frames, drawing 1281
FREQ and FREQ= options

BAR statement 757
BLOCK statement 790
CHART statement, GRADAR procedure 1190
GCHART procedure statements 783
HBAR and VBAR statements 804, 805
PIE and DONUT statements 823
PLOT statement 746, 766
STAR statement 837
weighted statistics, bar line chart (exam-

ple) 770
FREQLABEL= option, HBAR and VBAR state-

ments 804
FREQNAME= parameters, JAVA and Ac-

tiveX 430
frequency statistic 745, 782
frequency variable, specifying

BAR statement 757
BLOCK statement 790
CHART statement, GRADAR procedure 1190
GCHART procedure statements 783
HBAR and VBAR statements 804, 805
PIE and DONUT statements 823
PLOT statement 746, 766
STAR statement 837
weighted statistics, bar line chart (exam-

ple) 770
FROM variable (GKEYMAP data set) 987
FRONTREF option

BAR statement 758
HBAR and VBAR statements 805

FS option, GREPLAY procedure 1244
FS statement, GDEVICE procedure 925
FS statement, GREPLAY procedure 1252
FSIZE= macro argument 556
FTEXT= option

GIMPORT procedure 972

GOPTIONS statement 225, 294
FTITLE= graphics option 225, 295
FTRACK= graphics option 295
FUNCTION variable, Annotate facility 595, 646
functions, Annotate 594, 615
FWIDTH= option, LEGEND statement op-

tions 153

G
G_ COLOR= parameters, JAVA and Ac-

tiveX 430
G_ COLORV= parameters, JAVA and Ac-

tiveX 430
G_ DEP= parameters, JAVA and ActiveX 430
G_ DEPTH= parameters, JAVA and Ac-

tiveX 430
G_ DEPTHV= parameters, JAVA and Ac-

tiveX 430
G_ DEPV= parameters, JAVA and ActiveX 430
G_ GROUP= parameters, JAVA and Ac-

tiveX 431
G_ GROUPV= parameters, JAVA and Ac-

tiveX 431
G_ INDEP= parameters, JAVA and ActiveX 431
G_ INDEPV= parameters, JAVA and Ac-

tiveX 431
G_ LABEL= parameters, JAVA and Ac-

tiveX 431
G_ LABELV= parameters, JAVA and Ac-

tiveX 431
G_ SUBGR= parameters, JAVA and Ac-

tiveX 431
G100 option

BLOCK statement 790
HBAR and VBAR statements 805

G3D procedure 1295
ActiveX and Java support for 1537
generating default surface plot (exam-

ple) 1314
generating simple scatter plot (example) 1318
input data sets 1298
PLOT statement 1301
rotating scatter plot (example) 1323
rotating surface plot (example) 1316
SCATTER statement 1305
shapes in (example) 1320
syntax and options 1300
tilting surface plots (example) 1317

G3GRID procedure 887, 1327
controlling observations in output data

set 1336
GRID statement, G3GRID procedure 1333
interpolation methods 1329
simple contour plot, generating (example) 905
spline interpolation, partial (example) 1342
spline interpolation, with smoothed spline (ex-

ample) 1339
spline interpolation (example) 1343
syntax and options 1332
using default interpolation method (exam-

ple) 1337
GACCESS= graphics option 72, 296
GACCESS= option, GDEVICE procedure 296

GANNO procedure 601, 707
Annotate graphics in drill-down graphs (exam-

ple) 719
producing multiple graphs (example) 715
scaling data-dependent output (example) 710
scaling graphs with DATASYS option 710
storing Annotate graphics (example) 713
syntax and options 708
Web output, generating 500

GAREABAR procedure 725
ActiveX and Java support for 1518
chart with numeric category variable (exam-

ple) 731
chart with subgrouping and variable percent-

ages (example) 735
chart with subgrouping (example) 733
simple area bar chart (example) 729
syntax and options 727

GASK routines
DSGI 1394
list of, reference 1404

GAXIS= option, HBAR and VBAR state-
ments 805

GBARLINE procedure 739, 796
ActiveX and Java support for 1519
BAR statement 751
basic graph with styles (example) 768
interpolation methods 740
missing values 747
patterns and outlines 748
PLOT statement 765
SYMBOL statement 768
syntax and options 749
V6COMP graphics option 749
weighted statistics, calculating (example) 770

GCHART procedure 785
ActiveX and Java support for 1521
bar chart with sum statistic (example) 846
block chart with sum statistic (example) 842
BLOCK statement 787
BY-group processing with (example) 240
BY statement 144
discrete numeric variables, in star chart (exam-

ple) 881
DONUT statement 818
drill-down functionality in bar chart (exam-

ple) 856
DSGI viewport with (example) 1385
error bars in horizontal bar chart (exam-

ple) 854
grouping and subgrouping in block chart (ex-

ample) 844
HBAR and VBAR statements 796
legends for pie chart patterns and midpoints

(example) 875
midpoints and statistics in horizontal bar chart

(example) 851
missing values 779
PATTERN statement 169
patterns 171
patterns and outlines 174, 784
pie and donut chart slice labels (example) 873
PIE and PIE3D statements 818
pie chart with sum statistic (example) 842
star chart with sum statistic (example) 879
STAR statement 833
subgroup labels (example) 607

Index 1571

subgrouping in pie or donut chart (exam-
ple) 848

subgrouping in vertical bar chart (exam-
ple) 848

syntax and options 785, 888
V6COMP graphics option 785

GCLASS= graphics option 298
Gcolors window (GDEVICE) 931
GCONTOUR procedure 885

ActiveX and Java support for 1526
AXIS statement 886
contour levels, specifying (example) 908
missing values 887, 889
PATTERN statement 169
patterns 173
patterns and joins in contour plots (exam-

ple) 910
PLOT statement 889
simple contour plot, generating (example) 904
spline interpolation (example) 1343

GCOPIES= graphics option 298
GCOPIES= option, GDEVICE procedure 298
GDDM device driver

device nicknames 299
patterns 181
writing ADMGDF or GDF files 262

GDDMCOPY= graphics option 299
GDDMTOKEN= graphics option 299
GDEST= graphics option 300
GDEVICE procedure 42, 916

ADD statement 921
COPY statement 924
creating or modifying device entries 934
custom device entry, creating (example) 936
default hardware fonts 79
DELETE statement 925
FS statement 925
LIST statement 926
Listing available drivers 44
MODIFY statement 926
QUIT statement 927
RENAME statement 928
syntax and options 920
windowing and program modes 917
windowing mode, using 928

GDEVICE windows 261
GDF files, writing with GDM driver 262
GDRAW function, DSGI 119, 1446
G_drill-down tags 412
GEND= graphics option 300
GEND= option, GDEVICE procedure 300
Gend window (GDEVICE) 933
$GEOREF format 1001
Gepilog field, device entries 336, 338, 339
GEPILOG= graphics option 301
GEPILOG= option, GDEVICE procedure 301
Gepilog window (GDEVICE) 933
Geprolog field, device entries 337
GFONT procedure 939

creating figures for symbols font (exam-
ple) 964

creating fonts 940, 946, 951
displaying fonts 940, 943
displaying fonts and character codes (exam-

ple) 962
syntax and options 942

GFONT0 library 941

GFOOTNOTE= option, ODS HTML state-
ment 492

GFORMS= graphics option 302
GIF device driver 382

ACTXIMG, JAVAIMG vs. 440
data tips for 568
developing web presentations 443
drill-down links in images 571
HTML files, generating 445
names for image output files 445

GIF output
generating with ODS (example) 450
hyperlinks in (example) 452

GIF presentations 377
GIFANIM device driver 378, 457

graphics options for presentations 459
sample programs 459, 463

GIMPORT procedure 969
adjusting graphics output (example) 979
basics of importing graphics 970
creating and importing CGM (example) 977
MAP statement 974
mapping colors 971
SCALE statement 975, 979
syntax and options 973
TRANSLATE statement 976, 979

GINIT function (DSGI) 1402
GKEYMAP data sets 987, 990
GKEYMAP procedure 983

asymmetrical maps 986
creating maps 990
modifying keymaps (example) 990
syntax and options 989

global statements 14, 27, 33, 123, 135
GMAP procedure 169, 996, 1006

ActiveX and Java support for 1527
assigning formats to response variables (exam-

ple) 1049
BLOCK statement 1010
BY statement 144
CHORO statement 1017
creating maps using feature tables (exam-

ple) 1069
drill-down functionality in maps (exam-

ple) 1054
ID statement 1009
labeling U.S. states in choropleth map (exam-

ple) 1061
midpoints in prism map, specifying (exam-

ple) 1065
PRISM statement 1023
projecting an Annotate data set (exam-

ple) 1180
response levels 1004
response levels in block map, specifying (ex-

ample) 1047
rotating and tilting surface map (exam-

ple) 1068
simple block map (example) 1045
simple choropleth map (example) 1053
simple prism map (example) 1063
simple surface map (example) 1066
specialty map data sets 1003
SURFACE statement 1030
syntax and options 1007

gnomonic projections 1167
emphasizing map areas (example) 1177

projection criteria 1172
when to use 1172

GOPTIONS procedure 1075
displaying graphics options without descrip-

tions (example) 1079
displaying TITLE and FOOTNOTE statements

(example) 1079
syntax and options 1077
using with GOPTIONS statement 1075

GOPTIONS statement 27, 123, 146, 261, 2
ActiveX and Java support for 1510
resetting options 348
testing with GTESTIT procedure (exam-

ple) 1291
using with GOPTIONS procedure 1075

GOUT= option
GANNO procedure 709
GCHART procedure 786
GCONTOUR procedure 888
GFONT procedure 944
GIMPORT procedure 974
GMAP procedure 1008
GPLOT procedure 1089
GPRINT procedure 1149
GRADAR procedure 1185
GREPLAY procedure 1244
GSLIDE procedure 1280
GTESTIT procedure 1290
PROC statement 54

GOUT option, ? statement 1246
GOUT statement, GREPLAY procedure 1252
GOUTMODE= graphics option 302
GPLOT procedure 169, 1081

ActiveX and Java support for 1530
adding right vertical axis (example) 1124
BUBBLE statement 1090
BUBBLE2 statement 1098
BY statement 144
connecting plot data points (example) 1129
different scales of values (example) 1138
filling areas in overlay plot (example) 1134
generating overlay plot (example) 1131
generating simple bubble plots (exam-

ple) 1121
input data set 1086
labeling and sizing plot bubbles (exam-

ple) 1122
PATTERN statement 1120
plot basics 1085
PLOT statement 1101, 1117
PLOT2 statement 1115
plots with drill-down for Web (example) 1141
plotting three variables (example) 1135
plotting two variables (example) 1126
scaling graphs with DSGI windows (exam-

ple) 1388
SYMBOL statement 204, 1114, 1120
syntax and options 1088

GPRINT function (DSGI) 1403
GPRINT procedure 1147

adjusting character size in output (exam-
ple) 1156

adjusting output size 1150
external text files, about 1148
fonts 1152
specifying color text in output (exam-

ple) 1153

1572 Index

syntax and options 1149
GPROJECT procedure 1161

basic usage 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options 1168
types of map projections 1165

GPROLOG= graphics option 303
GPROLOG= option, GDEVICE procedure 303
Gprolog window (GDEVICE) 932
GPROTOCOL= graphics option 303
GPROTOCOL= option, GDEVICE proce-

dure 303
GRADAR procedure 1183

ActiveX and Java support for 1535
assigning axis definitions to axis spokes (exam-

ple) 1210
changing star type in radar charts (exam-

ple) 1207
CHART statement 1185
color and line styles in radar charts (exam-

ple) 1208
filling stars in radar charts (example) 1204
generating data set for (example) 1196
images in radar charts (example) 1205
multiple classification variables in radar charts

(example) 1202
overlaying radar charts (example) 1199
producing basic radar chart (example) 1198
specifying mode for radar charts (exam-

ple) 1209
syntax and options 1184
tiling radar charts (example) 1201

GRADIENTBACKGROUND= parameters, JAVA
and ActiveX 431

GRADIENTENDCOLOR= parameters, JAVA and
ActiveX 431

GRADIENTSTARTCOLOR= parameters, JAVA
and ActiveX 431

Graph applet 372
disabling drill-down functionality 414
drill-down tags 412
Local drill-down example 415
Local drill-down mode 400, 401, 402, 405,,
parameters for, list of 424
Script drill-down example 416

GRAPH functions, DSGI 1456
Graph-N-Go 15
GRAPH window 49, 62

printing from 52
size of 50

graphics, importing 969
adjusting graphics output (example) 979
basics of importing graphics 970
creating and importing CGM (example) 977
MAP statement, GIMPORT procedure 974
mapping colors 971
SCALE statement 979
SCALE statement, GIMPORT procedure 975
syntax and options 973

TRANSLATE statement, GIMPORT proce-
dure 976, 979

graphics catalogs 53
accessing 53
converting 59
duplicate entry names 1240
listing and managing entries 55
replacing 70
specifying/assigning 1252, 1253

graphics editor 55
Graphics Editor window, printing from 52
graphics elements, creating DSGI 119, 1446
graphics files, saving and printing 51
graphics options 14, 146, 261

animations, configuring 459
complete list of, alphabetical 262
displaying without description (exam-

ple) 1079
ODS output with 493
overriding device parameters 46
resetting 348

graphics output 34, 48, 584
adjusting character size in output (exam-

ple) 1156
Annotate data sets 601
Annotate graphics with 601
appending strings to records 300
appending to or replacing catalogs 302
background images 318, 319
body files 491
controlling with device drivers 45
default destinations for 291
destination for 307
display size, in lines 308
displaying 49
displaying images in 319
editing 55
erasing after display 285, 287
exporting 59, 62
file formats 60
generating for ActiveX 391
generating output for Java 398
how written, specifying 306
positioning 39
prefixing records 309
previewing as if on different device 52, 356
protocol module, specifying 303
queuing for log messages 345
relaying graphics output in templates 1272
replaying in templates 1270
resizing 975
reversing black and white 353
size 1150
specifying color text in output (exam-

ple) 1153
suppressing display of 284
transporting and converting 56

graphics output, converting text files to 1147
adjusting character size in output (exam-

ple) 1156
adjusting output size 1150
external text files, about 1148
fonts 1152
specifying color text in output (exam-

ple) 1153
syntax and options, GPRINT procedure 1149

graphics output, importing 969
adjusting graphics output (example) 979
basics of importing graphics 970
creating and importing CGM (example) 977
MAP statement, GIMPORT procedure 974
mapping colors 971
SCALE statement 979
SCALE statement, GIMPORT procedure 975
syntax and options 973
TRANSLATE statement, GIMPORT proce-

dure 976, 979
graphics output area 34

Annotate facility 598
border around 266
columns in 36, 274, 322, 332
maximum colors allowed 93, 324
multiple device output 40
offset between graphs and 314, 360
rows in 3, 36, 323, 344, 350,
size of 316, 361, 363, 364,

graphics output names 63
graphics output text

colors for 276
fonts 294
size of 316

GRAPHLIST function (DSGI) 1416
GRAPHRC= graphics option 305
graphs 4

background images 318
box plots 185, 187, 201, 233
BY lines 143
client vs. server rendering 584
creating interactively 395
displaying in timed series 310
enhancing with DSGI 1356
positioning 39
redrawing (overdrawing) 348
saving to files 66, 68
suppressing display of 284

gray scale color scheme 96, 99
GREDUCE procedure 1039, 1213

ID statement 1218
reducing map of Canada (example) 1220
specifying density levels 1218
syntax and options 1216
unmatched area boundaries 1215

GREMOVE procedure 1223
BY statement 1227
ID statement 1228
outline map of Africa, creating (exam-

ple) 1232
removing U.S. state boundaries (exam-

ple) 1228
syntax and options 1226

GREPLAY procedure 55, 1238
catalog entries, about 1239
creating templates and color maps 1268,

1270, 1274
device color limitations 105
how to use 1241
managing catalog entries 1267
relaying graphics output in templates 1270,

1272
replaying catalog entries 1268
switching between line more and procedure

windows 1252
syntax and options 1243

Index 1573

TC statement 1258
GREPLAY procedure, statements of

? statement 1246
BYLINE statement 1247
CC statement 1247
CCOPY statement 1248
CDEF statement 1249
CDELETE statement 1250
CMAP statement 1250
COPY statement 1251
DELETE statement 1251
DEVICE statement 1251
FS statement 1252
GOUT statement 1252
GROUP statement 1253
IGOUT statement 1253
LIST statement 1254
MODIFY statement 1254
MOVE statement 1255
NOBYLINE statement 1256
PREVIEW statement 1256
QUIT statement 1257
REPLAY statement 1257
TCOPY statement 1258
TDEF statement 1259
TDELETE statement 1262
TEMPLATE statement 1262
TREPLAY statement 1263
windows for, using 1264

GRID option
BUBBLE statement 1095
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 893
PLOT statement, GPLOT procedure 1108
SCATTER statement, G3D procedure 1307

GRID statement, G3GRID procedure 1333
spline interpolation, partial (example) 1342
spline interpolation, with smoothed spline (ex-

ample) 1339
spline interpolation (example) 1343
using default interpolation method (exam-

ple) 1337
group brackets, bar charts 130
group heading

pie and donut charts 826, 833
star charts 839, 842

GROUP= option
BLOCK statement 790
HBAR and VBAR statements 805
PIE and DONUT statements 824
STAR statement 837

GROUP statement, GREPLAY procedure 1253
GROUP variable, Annotate facility 647
grouping abbreviations 141
grouping and subgrouping

block chart (example) 844
pie charts (example) 877
pie or donut chart (example) 848
vertical bar chart (example) 848

GRSEG catalog entries 1239
GSET functions, DSGI 1462
GSF (graphics stream file) 60, 64

assigning 72
closing 290
how output is written to 306
output format and destination 296
prompt messages to 308

protocol module, specifying 303
record length 305
saving graphics to files 64, 66, 68
where written, specifying 307

GSFLEN= graphics option 305
GSFMODE= graphics option 64, 306, 459

animated sequences, creating 458
GSFMODE= option, GDEVICE procedure 306
GSFNAME= graphics option 64, 307, 459
GSFNAME= option, GDEVICE procedure 307
GSFPROMPT= graphics option 308
GSIZE= graphics option 308
GSLIDE procedure 601, 1277

Annotate graphics, displaying 1278, 1283
data-dependent coordinates 1281
instead of GANNO procedure 707
producing text slides (example) 1282
syntax and options 1279

GSPACE= option, HBAR and VBAR state-
ments 806

GSTART= graphics option 309
GSTART= option, GDEVICE procedure 309
Gstart window (GDEVICE) 933
GTERM function (DSGI) 1403
GTESTIT procedure 1285

LOG window 1289
managing colors list for device driver (exam-

ple) 1291
syntax and options 1290
testing GOPTIONS statement (example) 1291

GTITLE= option, ODS HTML statement 492
GUNIT= graphics option 40, 310
GWAIT= graphics option 50, 310
GWRITER= graphics option 311

H
H= option

AXIS statement 136, 139
GFONT procedure 944
LABEL= option, DONUT statement 829
LEGEND statement options 158
POINTLABEL= specification 197
SYMBOL statement 187
TITLE, FOOTNOTE, and NOTE state-

ments 218
HANDSHAKE= graphics option 311
HANDSHAKE= option, GDEVICE proce-

dure 311
handshaking 311, 325
hardware fonts 76, 78

alternative 80
default 78, 268, 270
device map, specifying 280
scaling in graphics output 274, 350, 351
specifying for device 269, 292
when not found 351

hardware-generated graphics
circles and arcs 271
dashed lines 277
line thickness 323
pie filling 334
plot symbols 354
polygon-fill 336
rectangle-fill 292, 345
vertices, maximum drawn 324

hardware-oriented color schemes 95
hardware patterns 176
HAXIS= option

BUBBLE statement 1095
PLOT statement, GCONTOUR proce-

dure 886, 893
PLOT statement, GPLOT procedure 1108

HBAR and HBAR3D statements
bar chart with sum statistic (example) 846
error bars in horizontal bar chart (exam-

ple) 854
GAREABAR procedure 728
GCHART procedure 796, 1521
midpoints and statistics (example) 851

HBY= graphics option 312
HEADER= option, GDEVICE procedure 313
HEADER records 313
HEADERFILE= option, GDEVICE proce-

dure 313
headers for animation sequences 458
HEIGHT= macro argument 537
HEIGHT= option

AXIS statement 136, 139
CHART statement, GRADAR procedure 1190
GFONT procedure 944
LABEL= option, DONUT statement 829
LEGEND statement options 158
POINTLABEL= specification 197
SYMBOL statement 187
TITLE, FOOTNOTE, and NOTE state-

ments 218
HELPLOCATION= graphics option 476
HELPLOCATION= parameters, JAVA and Ac-

tiveX 432
HEX option, GFONT procedure 946, 951
hexadecimal character values 81
hexadecimal values for font characters, display-

ing 946, 951
high-low plots 8, 189
HINDIC= macro argument, DS2CSF macro 563
HITEXT= graphics option 225
HLABEL= option, CHART statement 1190
HLS color scheme 96, 97, 98

converting to RGB 103
%HLS2RGB macro 102
HM= option

BUBBLE statement 1095
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1109

HMINOR= option
BUBBLE statement 1095
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1109

HONORASPECT= parameter, JAVA 432
HORIGIN device parameter 35
HORIGIN= graphics option 314
HORIGIN= option, GDEVICE procedure 314
horizontal bar charts 5

basics 775
error bars in (example) 854
midpoints and statistics in (example) 851
statistics in, displaying 815
terms used with 778

horizontal resolution, device 35
host commands, executing

after driver initialization 286
after graph production 337

1574 Index

before graph production 339
Host Commands window (GDEVICE) 934
Host File Options window (GDEVICE) 933
HOSTSPEC= option, GDEVICE procedure 314
HPLJxxxx drives, patterns 181
HPOS function (DSGI) 1417, 1474
HPOS= graphics option 36, 315, 1151

aspect ratio 1152
HREF attribute 259
HREF= option

BUBBLE statement 1095
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1109

HREVERSE option
BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1029

HSIZE device parameter 35
HSIZE function (DSGI) 1418, 1475
HSIZE= graphics option 35, 316, 1150
HSIZE= option, GDEVICE procedure 316
%HSL macro 101
HSPACE 537
HSV color scheme 96, 98
%HSV macro 102
HSYS variable, Annotate facility 650
HTEXT= graphics option 316
HTITLE= graphics option 225, 317
HTML character entities 582
HTML destination, ODS 489
HTML drill-down mode, Java 401, 410, 419,

572
HTML files, creating with ODS HTML (exam-

ple) 245
HTML function (DSGI) 1419, 1476
HTML= option

BAR statement 758
BLOCK statement, GCHART procedure 791
BLOCK statement, GMAP procedure 1013
CHART statement, GRADAR procedure 1190
CHORO statement 1020
data tips, adding 570
drop-down links 574
GCHART procedure 259
HBAR and VBAR statements 806
PIE and DONUT statements 824
PLOT statement 766
PLOT statement, GPLOT procedure 1109
PRISM statement 1026
STAR statement 837

HTML pages
bar chart with drill-down (example) 255
combining graphs and reports (example) 248

HTML variable, Annotate facility 651
HTMLFILE= macro argument 544
HTMLFREF= macro argument 544, 564
HTML_LEGEND= option

BLOCK statement, GCHART procedure 791
BLOCK statement, GMAP procedure 1013
CHART statement, GRADAR procedure 1190
CHORO statement 1020
drop-down links 574
HBAR and VBAR statements 806
PIE and DONUT statements 824
PLOT statement, GPLOT procedure 1109
PRISM statement 1026

hyperlinks
drill-down, ActiveX 392
drill-down, Java 400
GIF output hotspots (example) 452
tables of contents 495
tables of pages 496
titles and footnotes as 220

HZERO option
BUBBLE statement 1096
PLOT statement, GPLOT procedure 1110

I
I= option, SYMBOL statement 187
IBACK= graphics option 113, 318

images in radar charts (example) 1205
IBACKLOG= macro argument 548
IBACKPOS= macro argument 548
IBACKURL= macro argument 549
IBACKX=, IVBACKY= macro arguments 549
IBM printers

external writes with 311
JES form name 302
JES SYSOUT destination 300
output class 297

ID= option, GDEVICE procedure 318
ID statement

GMAP procedure 1009, 1527
GPROJECT procedure 1172
GREDUCE procedure 1218
GREMOVE procedure 1228

identification variables 1005
IFRAME= option 115

BUBBLE statement 1096
CHART statement, GRADAR procedure 1190
GSLIDE procedure 1280
HBAR and VBAR statements 806
PLOT statement, GPLOT procedure 1110

IGOUT option
? statement, GREPLAY procedure 1246
LIST statement, GREPLAY procedure 1254

IGOUT= option, GREPLAY procedure 1244
IGOUT statement, GREPLAY procedure 1253
IMAGE function, Annotate facility 1540
IMAGE function, DSGI 1452
image maps 259
IMAGE= option, PATTERN statement 116, 171
IMAGEMAP= option

GANNO procedure 709, 719
GBARLINE procedure 750
GCHART procedure 786
GMAP procedure 1008
GPLOT procedure 1089
GREPLAY procedure 1244
GSLIDE procedure 1280

IMAGEPOSX= parameter, JAVA 432
IMAGEPRINT GOPTIONS statement 319
images 106

Annotate facility to draw 625
as graph background 318, 319
as pattern fills 171
background 113
backplane 115
bar charts 817
bar line charts 748, 765
disabling as output 319

displaying with Annotate facility 118
displaying with DSGI 119, 1452
file types, list of 106
in star charts (example) 1205
in text slides 1281
interlacing 320
on chart bars 116
reading 107
transparent 357
writing 107, 110

IMAGESTYLE= graphics option 114, 319
IMAGESTYLE= option

BUBBLE statement 1096
CHART statement, GRADAR proce-

dure 1191, 1205
GSLIDE procedure 1280
HBAR and VBAR statements 806
PATTERN statement 171
PLOT statement, GPLOT procedure 1110

IMGPATH variable, Annotate facility 652, 662
importing graphics 969

adjusting graphics output (example) 979
basics of 970
creating and importing CGM (example) 977
mapping colors 971
resizing graphics 975

INBORDER option, CHART statement 1191
INCOMPLETE option, GCONTOUR proce-

dure 887, 889
INDICTYP= macro argument, DS2CSF

macro 563
INHEIGHT= option, CHART statement 1191
initializing drivers, executing before 285
input (user), enabling 360
INSERT function (DSGI) 1460
INSIDE= option

BAR statement 758
HBAR and VBAR statements 807

installation of SAS/GRAPH software, test-
ing 1285

managing colors list for device driver (exam-
ple) 1291

testing GOPTIONS statement (example) 1291
installing ActiveX controls 389
installing Java plug-in 424
integer-based font rendering 289
interactive Metagraphics output 357, 469

character rotation angle 350
description string 318
enhancing Web presentations for 474
hardware text rotation angle 330
interactivity of 320
META2HTM macro with 471
negative handshaking response 325
ODS with 470
run-time controls 471
sample programs 478
TRAILER records 356
translating metafile into device com-

mands 339
user-written part, files for 340, 341

INTERACTIVE= option, GDEVICE proce-
dure 320

INTERCHART= option, CHART state-
ment 1191

interface drivers 42
INTERLACED GDEVICE procedure 321

Index 1575

INTERLACED GOPTIONS statement 321
interlacing images 320
internal coordinates, Annotate facility 598, 678
internationalization

ActiveX and 392
Java and 400
Metaview Applet 474

INTERPOL= graphics option 321
INTERPOL= option, SYMBOL statement 185,

187
interpolation

bar line charts 740
box plots 185, 187, 201, 233
connecting data points with straight lines 190
contour plots 887
data value inclusion 197
default method, specifying 205
default value for 321
high-low plots 189
language 190
needle plots 191
regression analysis 192
regression analysis plots 192
smoothing plot lines 190
spline interpolation 194, 205, 1330
spline interpolation, example 1339, 1342,

1343
step plots 196

interpolation methods
default interpolation method, GRID statement

(example) 1337
G3GRID procedure 1329
plots 1085
spline interpolation, partial (example) 1342
spline interpolation, with smoothed spline (ex-

ample) 1339
spline interpolation (example) 1343

INTERTILE= option, CHART statement 1191,
1201

INTERVAL= option, AXIS statement op-
tions 127

INVISIBLE= option, PIE and DONUT state-
ments 824

ITERATION= graphics option 321, 459

J
J= option

AXIS statement options 137
LABEL= option, DONUT statement 830
LEGEND statement options 158
POINTLABEL= specification 197
TITLE, FOOTNOTE, and NOTE state-

ments 218, 225
Java applets 370, 371, 385, 419

authentication 583
CLASSPATH environmental variables 583
drill-down example (Local mode) 415
drill-down example (Script mode) 416
drill-down example (URL mode) 417
drill-down links, configuring 400
generating output for 398
interactivity for 397
internationalization 400

Java archive files
location of 422

JAVA device driver 381, 398
data tips for 568
drill-down links in presentations 571

Java parameters and attributes 421
Java plug-in

installing 424
location of 424

Java support 1508
Annotate functions 1539
G3D procedure 1537
GAREABAR procedure 1518
GBARLINE procedure 1519
GCHART procedure 1521
GCONTOUR procedure 1526
GMAP procedure 1527
GOPTIONS statement 1510
GPLOT procedure 1530
GRADAR procedure 1535
LEGEND statement 1514
PATTERN statement 1515
SYMBOL statement 1516
TITLE and FOOTNOTE statements 1517

JAVAIMG device driver 377, 381
data tips for 568
drill-down links in images 571
GIF, JPEG, PNG vs. 440
Web presentations, developing 442

JAVAMETA device driver 382, 469, 470
enhancing Web presentations for 474
META2HTM macro with 471
run-time controls 471
sample programs 478

JavaScript callback method 407
JOIN option

GRID statement, G3GRID procedure 1334
PLOT statement, GCONTOUR procedure 894

joins, contour plots (example) 910
JPEG device driver 382

ACTXIMG, JAVAIMG vs. 440
data tips for 568
developing web presentations 443
drill-down links in images 571
HTML files, generating 445
names for image output files 445

JPEG presentations 377
JSTYLE option, PIE and DONUT state-

ments 824
justification

axis labels 127, 133, 135
donut chart labels 830
legend label 153
legend text 158
legend values 157
plot print labels 197
text in graphics output 218

JUSTIFY= option
AXIS statement options 137
LABEL= option, DONUT statement 830
LEGEND statement options 158
POINTLABEL= specification 197
TITLE, FOOTNOTE, and NOTE state-

ments 218, 225

K
kern data sets 958

creating 959
specifying 949
variables for, list of 959

KERN= option, GFONT procedure 949
KERNDATA= option, GFONT procedure 949,

959
KEYMAP= graphics option 321, 986
KEYMAP option, GKEYMAP procedure 989
keymaps (mapping characters to keys) 983

asymmetrical 986
basics of 983
creating and using 990
GKEYMAP data sets 987
GKEYMAP data sets, generating 990
ignoring 945, 949
modifying (example) 990

L
L option, GOPTIONS procedure 1078
L= option, SYMBOL statement 196, 207
LA= option, TITLE, FOOTNOTE, and NOTE

statements 219
LABEL function, Annotate facility 1541
%LABEL macro, Annotate facility 685
LABEL= option

AXIS statement 1509
AXIS statement options 127
DONUT statement 824, 1525
LEGEND statement 1515
LEGEND statement options 153

LABEL statement 28
ActiveX 392
Java applets, internationalization and 400

LABELPOS= macro argument, DS2CSF
macro 563

labels
axes 127, 133
bubbles in bubble plots 1092
BY lines 143
contour lines 199
contour plot lines (examples) 906
contour plots 903
donut charts 829
legends 153
pie chart slices 830, 873
plot bubbles (example) 1122
plot points 197
size of 1190
splines in star charts 1193
star charts 840

LABELS= macro argument 538, 561
lakes, displaying in maps 1041
Lambert’s conformal projections 1166, 1172
landscape orientation 34, 322, 323, 349
language, interpolation 190
language elements, SAS/Graph 26
LANGUAGE= option, TITLE, FOOTNOTE, and

NOTE statements 219
languages

ActiveX and 392
Java and 400

LAST= option, CHART statement 1191

1576 Index

LAT variable (map data sets) 1000
latitude coordinates 1164
LATMAX= option, GPROJECT procedure 1169
LATMIN= option, GPROJECT procedure 1169
LAUTOHREF= option

BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1110

LAUTOREF= option
BAR statement 758
HBAR and VBAR statements 807

LAUTOVREF= option
BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1110

LAYOUT= macro argument 538
LCOLFMT= macro argument 538
LCOLOR= macro argument 538
LCOLS device parameter 36, 1151
LCOLS= option, GDEVICE procedure 322
LCOLVAL= macro argument 538
LDATA= macro argument 538
LEFTMARGIN GDEVICE procedure 316
LEFTMARGIN GOPTIONS statement 316
LEGEND and LEGEND= options

BLOCK statement, GCHART procedure 791
BLOCK statement, GMAP procedure 1013
CHORO statement 1020
GOPTIONS procedure 1078
HBAR and VBAR statements 807
PIE and DONUT statements 825
PLOT statement, GCONTOUR procedure 894
PLOT statement, GPLOT procedure 1110
PRISM statement 1026

LEGEND statement 27, 124, 151, 318
ActiveX and Java support for 1514
filling areas in overlay plot (example) 1134
generating overlay plot (example) 1131
legends for patterns and midpoints (exam-

ple) 875
LEGENDFONT= parameter, JAVA 432
LEGENDHEIGHTPERCENT= parameter,

JAVA 432
LEGENDIT= parameter, JAVA 432
LEGENDPERCENT= parameter, JAVA 432
legends 39

drop shadows 326
formatting 150
offset 154, 163
origins 155, 163
pie chart patterns and midpoints (exam-

ple) 875
plots with three variables 1118
spacing around 154, 163

LEGENDWIDTHPERCENT= parameter,
JAVA 432

LENGTH= option, AXIS statement options 127
LEVELOFDETAIL= parameter, JAVA 432
LEVELS= option

BAR statement 758
BLOCK statement, GCHART procedure 791
BLOCK statement, GMAP procedure 1014,

1047
CHORO statement 1020
HBAR and VBAR statements 808
PIE and DONUT statements 825

PLOT statement, GCONTOUR proce-
dure 895, 899, 908

PRISM statement 1026
STAR statement 838

LFACTOR= graphics option 323
LFACTOR= option, GDEVICE procedure 323
LFRAME= option, GSLIDE procedure 1280,

1281
LFROM= macro argument 539
LH= option

BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 895
PLOT statement, GPLOT procedure 1111

LHREF= option
BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 895
PLOT statement, GPLOT procedure 1111

LIBNAME statements 28, 29, 30
librefs 30
LIFO stack 603, 639
light source coordinates, prism maps 1028
LIGHTING= parameter, JAVA 433
LINCOLOR function (DSGI) 1419, 1477
LINE function (DSGI) 1453
%LINE macro, Annotate facility 686
LINE= option, SYMBOL statement 196, 207
line plots 7
line segments for drawing fonts 941, 956
line smoothing 190

language, interpolation 190
spline interpolation 194, 205, 1330
spline interpolation, example 1339, 1342,

1343
line types

axis 134
default line thickness 323
plots 196, 207
spokes in star charts 1191, 1208

LINE variable, Annotate facility 653
lines

dashed, hardware-generated 277
dashed, length of 278
displaying with DSGI 1453
in graphics output area 217
testing ability to draw 1286

lines, drawing with Annotate facility 622
LINESIZE= option 1150, 1151
LININDEX function (DSGI) 1420, 1477
LINK element (HTML) 555
LINK= option, TITLE, FOOTNOTE, and NOTE

statements 220
link variables in Web presentations 574
linking to output

Tables of Contents 495
Tables of Pages 496

LINKTYPE= macro argument 539
LINREP function (DSGI) 1421, 1478
LINTYPE function (DSGI) 1422, 1479
LINWIDTH function (DSGI) 1422, 1480
LIST statement, GDEVICE procedure 926
LIST statement, GREPLAY procedure 1254
listing destination, ODS 489
LLEVELS= option, PLOT statement 895, 903,

908
LLX= and LLY= options, TDEF statement 1260
LOADFUNC= parameter, JAVA 433

Local drill-down mode, Java 400, 401, 572
default behavior 402
example 415
levels of, customizing 405

local fonts 78
local statements, RUN-group processing 33
LOCALE= parameter, JAVA 433
locking data sets automatically 31
LODCOUNT= parameter, JAVA 433
log, writing in (DSGI) 1454
log messages, waiting to display 345
LOG window, GTESTIT procedure 1289
logarithmic axes 127, 229

block charts 815
plots 1087

LOGBASE= option, AXIS statement 127, 128,
229

LOGRESOURCES= graphics option 476
LOGRESOURCES parameter, Metaview Ap-

plet 475
LOGSTYLE= option, TITLE, FOOTNOTE, and

NOTE statements 229
LONG variable (map data sets) 1000
longitude coordinates 1164
LONGMAX= option, GPROJECT proce-

dure 1169
LONGMIN= option, GPROJECT proce-

dure 1169
looping animation 321
LP variable (font data sets) 953
LPT= macro argument 539
LR= option

BAR statement 758
HBAR and VBAR statements 808

LREF= option
BAR statement 758
HBAR and VBAR statements 808

LROWS device parameter 36, 1151
LROWS= option, GDEVICE procedure 323
LRX= and LRY= options, TDEF statement 1260
LS= option, TITLE, FOOTNOTE, and NOTE

statements 221
LSPACE= option, TITLE, FOOTNOTE, and

NOTE statements 221
text break and 225

LSPOKE= option, CHART statement 1191
LSTAR= and LSTARS= options, CHART state-

ment 1191, 1208
LSTIP= macro argument 539
LSTIPFAC= macro argument 539
LTIP= macro argument 539
LTIPFMT= macro argument 539
LTO= macro argument 539
LV= option

BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 896
PLOT statement, GPLOT procedure 1111

LVALUE= macro argument 540
LVREF= option

BUBBLE statement 1096
PLOT statement, GCONTOUR procedure 896
PLOT statement, GPLOT procedure 1111

LWHERE= macro argument 540
LWIDTH= macro argument 540

Index 1577

M
M= option, TITLE, FOOTNOTE, and NOTE

statements 221, 225
macro variables, names for 566
macros, Web output 369
MAJOR= option, AXIS statement 129, 1509
major tick marks 129, 138

formatting 139
offset 130
scatter plots 1310
suboptions, list of 1509
surface plots 1304
with datetime values (example) 226

MAKEHTML= macro argument 544
MAKEXML= macro argument 545
Map applet 372, 419

drill-down tags 412
parameters for, list of 424
Script drill-down example 416

map areas 1005
clipping (example) 1178
combining by removing internal bound-

aries 1223, 1226, 1227, 12
emphasizing (example) 1177
unmatched, GREDUCE procedure with 1215
unmatched, GREMOVE procedure with 1215

map data sets 23, 999
creating 1041
customizing 1039
density values 1218
importing ESRI files as 1347, 1348, 1349
lakes, displaying 1041
merging feature tables with 1001, 1069
ordering observations 1227
outline map of Africa, creating (exam-

ple) 1232
projecting 1040
reference information 1038
removing internal boundaries 1223, 1226,

1227, 12
removing U.S. state boundaries (exam-

ple) 1228
response data sets 1001, 1003
specialty 1003
subsetting or reducing (clipping) 1039, 1173,

1178, 12
traditional map data sets 999
viewing 1001

map data sets, projecting coordinates from spheri-
cal to Cartesian 1161

basic usage of GPROJECT procedure 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement, GPROJECT procedure 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options, GPROJECT proce-

dure 1168
types of map projections 1165

MAP element (HTML) 260
MAP= option, GMAP procedure 1009
MAP statement, GIMPORT procedure 974

MAPIMPORT procedure 1347, 1348
examples 1349

%MAPLABEL macro, Annotate facility 687
mapping characters to keyboard 983

asymmetrical 986
basics of 983
creating and using 990
GKEYMAP data sets 987
GKEYMAP data sets, generating 990
ignoring 945, 949
modifying (example) 990

mapping colors 971
mapping fonts 972
mapping patterns 971
maps 11, 996

assigning formats to response variables (exam-
ple) 1049

creating maps using feature tables (exam-
ple) 1069

default projection specifications, using (exam-
ple) 1174

drill-down functionality, ActiveX 392
drill-down functionality in maps (exam-

ple) 1054
emphasizing map areas (example) 1177
feature tables 1001
FIPS codes 1033
predefined formats for 1035
producing simple block map (example) 1045
producing simple choropleth map (exam-

ple) 1053
producing simple prism map (example) 1063
producing simple surface map (example) 1066
response levels 1004
rotating and tilting surface map (exam-

ple) 1068
SAS Maps Online 1006
specialty map data sets 1003
specifying midpoints in prism map 1065
specifying response levels in block map 1047

MARCOLOR function (DSGI) 1423, 1480
margins, graphics output area 34
MARINDEX function (DSGI) 1424, 1481
Marker font 87
MARREP function (DSGI) 1424, 1482
MARSIZE function (DSGI) 1425, 1483
MARTYPE function (DSGI) 1426, 1483
MATCHCOLOR option

PIE and DONUT statements 825
STAR statement 838

math font 85
MAXCOLORS device parameter 105
MAXCOLORS= option, GDEVICE proce-

dure 324
MAXDISP function (DSGI) 1427
MAXHIDE suboption, AUTOLABEL= op-

tion 898
maximum, font 940
MAXIS= option

BAR statement 759
HBAR and VBAR statements 808

MAXNVERT= option, CHART statement 1192
MAXPOLY= option, GDEVICE procedure 324
MAXVERT= option, CHART statement 1192
MEAN option

BAR statement 759
HBAR and VBAR statements 808

mean statistic 746, 783
MEANLABEL option, HBAR and VBAR state-

ments 808
memory, open software fonts 290
MENUREMOVE= parameter, JAVA 433
MERGE statement 1069
MESSAGE function (DSGI) 1485
message queuing 345
messages, writing in, DSGI for 1455
META2HTM macro 384

arguments of 478, 535
arguments of, applet behavior 565
arguments of, page formatting 552
arguments of, saving HTML files 564
embedding multiple instances of Metaview Ap-

plet (example) 483
producing Web presentation (example) 481
stylesheets, macro arguments for 554

metacodes 469
outputting with HTML from ODS (exam-

ple) 478
page-selecting slider control 472
slide-show control 473

METACODES= graphics option 476
metacodes parameter, Metaview Applet 472
metacodes zoom control 473
METACODESLABEL= graphics option 476
Metagraphics device drivers 73

color space specification 273
header generation 313
metacode file format 294
patterns 181

Metagraphics output, interactive 357, 469
character rotation angle 350
description string 318
enhancing Web presentations for 474
hardware text rotation angle 330
interactivity of 320
META2HTM macro with 471
negative handshaking response 325
ODS with 470
run-time controls 471
sample programs 478
TRAILER records 356
translating metafile into device com-

mands 339
user-written part, files for 340, 341

Metagraphics window (GDEVICE) 932
Metaview applet 375, 469, 470

data tips with 569
drill-down functionality 572
enhancing Web presentations for 474
META2HTM macro with 471
multiple instances on HTML page (exam-

ple) 483
non-English resources and fonts 474
parameters, list of 475
run-time controls 471
sample programs 478

Microsoft Excel, embedded graphs in (exam-
ple) 395

Microsoft Word, embedded graphics in (exam-
ple) 393, 395

MIDPOINT variable, Annotate facility 654
midpoints, bar variables 741, 742, 759

selecting and ordering 744, 763

1578 Index

midpoints, chart variables 778, 780
horizontal bar chart (example) 851
pie charts (example) 875
selecting and ordering 781, 816

MIDPOINTS= option
BAR statement 759
BLOCK statement, GCHART procedure 791
BLOCK statement, GMAP procedure 1014
CHORO statement 1021
GCHART procedure statements 782
HBAR and VBAR statements 809, 816
PIE and DONUT statements 826
PRISM statement 1027
STAR statement 838

MINILEGENDFONTSIZE= parameter,
JAVA 433

minimum, font 940
MINLNKWT= macro argument 540
MINOR= option

AXIS statement 129, 1509
BAR statement 760
HBAR and VBAR statements 810
PLOT statement 767

minor tick marks 129, 138
formatting 139
suboptions, list of 1509
with datetime values (example) 226

MISSING option
BAR statement 747, 760
BLOCK statement, GCHART procedure 792
BLOCK statement, GMAP procedure 1015
CHART statement, GRADAR procedure 1192
CHORO statement 1021
GCHART procedure statements 779
HBAR and VBAR statements 810
PIE and DONUT statements 826
PRISM statement 1027
STAR statement 838

missing values
GBARLINE procedure 747
GCHART procedure 779
GCONTOUR procedure 887, 889
in Annotate data sets 601
plot data sets 1087, 1112
star charts 1192

MISSINGCOLOR= parameter, JAVA 434
MODE= option

CHART statement, GRADAR proce-
dure 1192, 1209

LEGEND statement 154, 163
SYMBOL statement 197

model number, output device 324
MODEL= option, GDEVICE procedure 324
MODIFY statement

custom device entry, creating (example) 936
GDEVICE procedure 926
GREPLAY procedure 1254

MODULE= option, GDEVICE procedure 325
MOVE function, Annotate facility 627, 1541
%MOVE macro, Annotate facility 687
MOVE= option, TITLE, FOOTNOTE, and NOTE

statements 221, 225
MOVE statement, GREPLAY procedure 1255
MULTFONT option, GKEYMAP procedure 990
multiline

axis values 134
legend labels 159

multiple classification variables in radar charts
(example) 1202

Music font 88
MWIDTH= option, GFONT procedure 949

N
N= option

AXIS statement options 140
GFONT procedure 943, 946
SURFACE statement 1032

N option, GOPTIONS procedure 1078
N1=, ..., N5= options, GREDUCE proce-

dure 1217
NACTION= macro argument 540
NAK= option, GDEVICE procedure 325
NAME= macro argument 537
NAME= option 63

BLOCK statement, GCHART procedure 792
BLOCK statement, GMAP procedure 1015
BUBBLE statement 1097
CHART statement, GRADAR procedure 1192
CHORO statement 1021
GANNO procedure 709, 715
GFONT procedure 943, 946
GKEYMAP procedure 989
GPRINT procedure 1149
GSLIDE procedure 1280
HBAR and VBAR statements 729, 810
PIE and DONUT statements 826
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 896
PLOT statement, GPLOT procedure 1111
PRISM statement 1027
SCATTER statement, G3D procedure 1307
STAR statement 838
SURFACE statement 1032
TREPLAY statement, GREPLAY proce-

dure 1263
NAME= parameter, JAVA 434
names

anchors 168
Annotate facility 591, 599, 602
BY line catalog entries 143
catalog entries 55
colors 95, 99
data sets 30
device entries 928
device nicknames 299
executable driver modules 325
filename extensions 63, 288
fonts 76, 80, 81
graphics output 63
image output files 445
macro variables 566
paper type 330
predefined graph styles (ODS) 489

natural device drivers 42
NAVIGATERENDERMODE= parameter,

JAVA 434
NAXIS1= and NAXIS2= options, GRID state-

ment 1334, 1336
NB option, GFONT procedure 944
NCOL= and NCOLS= options, CHART state-

ment 1192
NCOLVAL= macro argument 541

ND option, GFONT procedure 949
NDATA= macro argument 541
NEAR= option, GRID statement 1334
needle plots 191
negative values, block charts 795
Netscape colors, troubleshooting 583
NEWFILE= option, ODS HTML statement 492
NEWNAME= option, RENAME statement 928
NFNTNAME= macro argument 541
NFNTSIZE= macro argument 541
NFNTSTYL= macro argument 541
NID= macro argument 541
NLABEL= macro argument 541
NLEVELS= option, PLOT statement 896
NLINES option, SURFACE statement 1032
NOADMGDF option 262
NOAUTOCOPY option 263
NOAUTOFEED option 264
NOAXES option

BUBBLE statement 1097
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1111
SCATTER statement, G3D procedure 1307

NOAXIS option
BAR statement 760
BUBBLE statement 1097
HBAR and VBAR statements 810
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1111
SCATTER statement, G3D procedure 1307

NOBASEREF option
BAR statement 760
HBAR and VBAR statements 810

NOBOT= option, ODS HTML statement 167
NO_BOTTOM_MATTER= option, ODS HTML

statement 167
NOBRACKETS option, AXIS statement op-

tions 130
NOBUILD option, GFONT procedure 944
NOBYLINE option, GREPLAY proce-

dure 1244, 1256
NOCC option, GPRINT procedure 1150
NOCELL option 268
NOCHARACTERS option 268
NOCIRCLEARC option 270
NOCOLLATE option 271
NOCONNECT option, STAR statement 839
NODASH option 277
node-link diagrams 373, 503, 513

chart with simple arcs (example) 518
chart with weighted arcs (example) 520
data tips with 569
drill-down functionality 572, 573
DS2CONST macro with 515
hotspots 524
when to use 514
XML written to external file (example) 522

NODEBDR= macro argument 549
NODESEP= macro argument 549
NODESHAP= macro argument 549
NODISPLAY option, GFONT procedure 949
NODISPLAY statement 284
NODRVQRY= option, GDEVICE procedure, exe-

cuting before driver initialization 286
NOERASE= graphics option 287

Index 1579

NOERASE= option, GDEVICE procedure 287
NOFASTTEXT= graphics option 288
NOFILEONLY= graphics option 291
NOFILL= graphics option 292
NOFILL= option, GDEVICE procedure 292
NOFR option

BAR statement 757
BUBBLE statement 1095
HBAR and VBAR statements 804
PLOT statement, GPLOT procedure 1108

NOFRAME option
BAR statement 757
BUBBLE statement 1095
CHART statement, GRADAR proce-

dure 1190, 1192
HBAR and VBAR statements 728, 804
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1108

NOFS option
GDEVICE procedure 921
GREPLAY procedure 1241, 1244

NOGFOOTNOTE= option, ODS HTML state-
ment 492

NOGRAPHRC= graphics option 305
NOGROUPHEADING option

PIE and DONUT statements 826, 833
STAR statement 839, 842

NOGTITLE= option, ODS HTML state-
ment 492

NOHEADING option
BLOCK statement 792
PIE and DONUT statements 827, 832
STAR statement 839, 842

NOHEX option, GFONT procedure 945
NOIMAGEPRINT GOPTIONS statement 120,

319
NOIMAGEPRINT graphics option 120, 319
NOJSOOBJECT= parameter, JAVA 434
NOKEYMAP option, GFONT procedure 945,

949
NOLABEL option

PLOT statement, G3D procedure 1303
SCATTER statement, G3D procedure 1307

NOLEGEND option
BLOCK statement, GCHART procedure 793
BLOCK statement, GMAP procedure 1015
CHORO statement 1022
HBAR and VBAR statements 810
PIE and DONUT statements 827
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1111
PRISM statement 1028

NOLINE option, PLOT statement 767
NOLIST option, GOPTIONS procedure 1078,

1079
NOLOG option, GOPTIONS procedure 1078
NOMARKER option, PLOT statement 767
non-roman alphabet fonts 85
NONE font 77
NONEEDLE option, SCATTER statement 1308
NONINTERLACED GDEVICE procedure 321
NONINTERLACED GOPTIONS statement 321
NOPIEFILL GDEVICE procedure 334
NOPIEFILL GOPTIONS statement 334
NOPLANE option, AXIS statement options 130
NOPROMPT= graphics option 50, 310
NOROMAN option, GFONT procedure 945

NOROMHEX option, GFONT procedure 945
NOSCALE option, GRID statement 1335
NOSTATS option, HBAR and HBAR3D state-

ments 810
NOTE statement 26, 124, 210, 224

BY statement with 145
RUN-group processing 33

notes 211, 224
angle of rotation 213, 219, 222
boxes around 215, 216
colors for 215, 216, 276
default characteristics, setting 225
defining text of 222, 226
fonts for 217
justification 218
positioning 221
size of 218, 316
spacing around 221
text breaks 225
underlining 223

NOTOP= option, ODS HTML statement 167
NO_TOP_MATTER= option, ODS HTML state-

ment 167
NOTRANSPARENCY GOPTIONS state-

ment 357
NOTRANSPARENCY= graphics option 459
NOTSORTED= option, BY statement 142, 1227
NOUSERINPUT= graphics option 459
NOZERO option

BAR statement 760
HBAR and VBAR statements 810

NOZEROREF option, CHART statement 1192
NPARENT= macro argument 542
NPW= macro argument 542
NR option, GFONT procedure 945
NROW= and NROWS= options, CHART state-

ment 1193
NSCBACK= macro argument 542
NSCTEXT= macro argument 542
NSDATA= macro argument 542
NSFNTNAM= macro argument 542
NSFNTSIZ= macro argument 542
NSFNTSTY= macro argument 542
NSHAPE= macro argument 542
NSID= macro argument 542
NSIZE= macro argument 543
NSPW= macro argument 543
NSTYLE= macro argument 543
NSWHERE= macro argument 543
NTEXTCOL= macro argument 543
NTIP= macro argument 543
NTIPFMT= macro argument 543
NUMBER= option, AXIS statement options 140
numeric bar variables 742, 743
numeric chart variables 779, 780, 781

charting in star chart (example) 881
numeric map variables 1004
NUMGRAPH function (DSGI) 1428
NURL= macro argument 543
NVALUE= macro argument 544
NWHERE= macro argument 544
NX=, NY= macro arguments 544

O
O option, GPRINT procedure 1150

OBJECT element (HTML) 421
observations

in Annotate data sets 589
ordering for input map data sets 1227

ODS destinations 489
ODS HTML statement 124, 164, 167

bar chart with drill-down (example) 255
destination, specifying 168
multiple graphs and reports in Web page (ex-

ample) 248
Web page, creating (example) 245

ODS output 487
ACTXIMG device driver with (example) 447
body files 491
frames for 497
GIF output, generating (example) 450
graphic options with 493
JAVAMETA driver with 470
metacodes (example) 478
non-graphics output on Web pages 494
RUN-group processing 490
static graphics 440
Table of Contents 495
Tables of Pages 496
titles and footnotes, controlling 492

ODS statements 28
generating presentations 382
JAVA and ActiveX parameters and at-

tributes 421
ODS RTF statement, graphics in Microsoft

Word (example) 393
ODS USEGOPT statement 493
PARAMETERS= statement for applet parame-

ters 477
ODS styles 94, 488
offset

angle of rotation 222
axes 130
between Bitstream font letters 295
between display area and graphic 360
between displayed area and graph 314
between fill lines 292
between graphs and display 314, 360
contour plot labels 904
fonts 948, 951, 960, 961
legend 154, 163
legends 154, 163
text in graphics output 216, 221

OFFSET= option
AXIS statement options 130
LEGEND statement options 154, 163

OFFSHADOW= graphics option 326
online help, locations for 385
open destinations, ODS 489
OPENGRAPH function (DSGI) 1428
OPENMODE= argument, META2HTM

macro 564
OPENMODE= macro argument 545
OPTION= option, GOPTIONS procedure 1078
OPTIONS statement 28
ORDER= option

AXIS statement options 130, 135, 747, 816,
LEGEND statement options 155

ORDERACROSS= option, CHART state-
ment 1193

ordering
axis values 130

1580 Index

legend values 155
midpoints, bar variables 744, 763
midpoints, chart variables 781, 816
slices in pie charts (example) 873

ORIGIN= option, AXIS statement options 133
ORIGIN= option, LEGEND statement op-

tions 155, 163
origins

axes 133
legends 155, 163

OTHER= option
CHART statement, GRADAR procedure 1193
PIE and DONUT statements 827

OTHERCOLOR= option, PIE and DONUT state-
ments 827

OTHERLABEL= option, PIE and DONUT state-
ments 827

out-of-range plot variables 747, 1087
OUT= option

G3GRID procedure 1332
GKEYMAP procedure 989
GPROJECT procedure 1169
GREDUCE procedure 1217
GREMOVE procedure 1226
MAPIMPORT procedure 1348

outline fonts 941
OUTLINECOLOR= parameters, JAVA and Ac-

tiveX 434
outlines

bar charts 816
block charts 794
colors 180
default 178
GBARLINE procedure 748, 764
GCHART procedure 784
outline map of Africa, creating (exam-

ple) 1232
slice colors and patterns 831
star charts 840

OUTLINES= parameter, JAVA 434
output names 63
output printer bins 326
OUTSIDE= option

BAR statement 760
HBAR and VBAR statements 811

OUTTRI= option, G3GRID procedure 1332
overdrawing graphs 348
OVERFLOWCOLOR= parameters, JAVA and Ac-

tiveX 434
OVERLAY= option

CHART statement, GRADAR proce-
dure 1193, 1199

PLOT statement, GPLOT procedure 1111,
1131, 1134

overlay plots 1111, 1131, 1134
overlaying graphics, Annotate facility 602
overlaying radar charts (example) 1199
OVERLAYVAR= option, CHART state-

ment 1193
overriding

colors list 94
device parameters 46

overwriting files 70

P
P option, GOPTIONS procedure 1078
PAGE= argument, ODS HTML statement 166
page files 496
PAGE= option, ODS statements 497
page-selecting slider control 472
PAGECONTROLENABLED= graphics op-

tion 476
PAGECTL= argument, META2HTM macro 565
PAGEPART= macro argument 553
PAGESIZE= option 1150, 1151
paints, plot 190
paper feed 264, 327
paper size 328
paper type, specifying 330
PAPERDEST= graphics option 326
PAPERFEED= graphics option 327
PAPERFEED= option, GDEVICE proce-

dure 327
PAPERLIMIT= graphics option 328
PAPERSIZE= graphics option 328
PAPERSOURCE= graphics option 329
PAPERTYPE= graphics option 330
PARADIV= option, GPROJECT proce-

dure 1170, 1172
PARALEL1= and PARALEL2= options, GPRO-

JECT procedure 1170, 1172
parallels

calculating 1172
parameters

JAVA and ActiveX 421, 427
PARAMETERS= option, ODS statements 421
PARAMETERS= statement, ODS statement 477
Parameters window (GDEVICE) 930
parametric language interpolation 190
PARTIAL option, GRID statement 1335
partial spline interpolation (example) 1342
PATH= option, GDEVICE procedure 330
PATH= option, ODS HTML statement 491
PATREP function (DSGI) 1498, 1501
PATTERN definitions, BY statement with 145
PATTERN option

GOPTIONS procedure 1078
PLOT statement, GCONTOUR proce-

dure 897, 899
PATTERN statement 27, 124, 169

ActiveX and Java support for 1515
altering/canceling 177
GBARLINE procedure 748, 764
GCHART procedure 784
GPLOT procedure 1120
images on bar chart bars 116

PATTERNID= option
BAR statement 761, 764
BLOCK statement 793, 795
BY line 144
HBAR and VBAR statements 811, 817

patterns and fills 169
bar charts 171, 816
block charts 794
block maps 1016
built-in pie-fill capability 334
built-in polygon-fill capability 336
built-in rectangle capability 345
built-in rectangle-fill capability, device 292
color for 274

contour plots 173
contour plots (example) 910
default 177
fill color 170
filling area between plot lines (example) 236
for symbol plots 191
GBARLINE procedure 748, 764
GCHART procedure 784
hardware patterns 176, 181
images as fill elements 171
images on bar chart bars 116
mapping 971
outline colors 180
pattern sequences 182
pie and donut chart slices 831
pie and donut charts 875
pie and star charts 174
plots 1120
spacing between fill lines 292
star charts 840

PATTERNSTRIP applet parameter 410, 414
PATTERNSTRIP= parameters, JAVA and Ac-

tiveX 434
PCLIP= graphics option 331
PCOL device parameter 36
PCOLS device parameter 1151
PCOLS= option, GDEVICE procedure 332
PCT option

BAR statement 761
HBAR and VBAR statements 811

PEMPTY variable, Annotate facility 662
pen speed, plotters 352
PENMOUNTS= graphics option 105, 333
pens, active 333
PENSORT= graphics option 333
PENSORT= option, GDEVICE procedure 333
PERCENT option

BAR statement 761
HBAR and VBAR statements 811
PIE and DONUT statements 827
STAR statement 839, 840

percentage statistic 746, 782
percentiles, box plots 185, 187, 201, 233
PERCENTLABEL= option, HBAR and VBAR

statements 812
permanent data sets 29
PIC= option, GTESTIT procedure 1290
PICTURE= option, GTESTIT procedure 1290
PIE and PIE3D statements, GCHART procedure

ActiveX and Java support for 1521
detail pie chart, creating (example) 883
grouping and arranging pie charts (exam-

ple) 877
legends for patterns and midpoints (exam-

ple) 875
pie chart with sum statistic (example) 842
subgrouping in pie or donut chart (exam-

ple) 848
syntax and options 818

pie charts 6
angling text in (example) 1381
basics 776
detail pie chart, creating (example) 883
grouping and arranging (example) 877
legends for patterns and midpoints (exam-

ple) 875
patterns 174

Index 1581

slice colors and patterns 831
slice labels and formatting 830, 873
statistic and group headings 827, 832
subgrouping in (example) 848
sum statistic, specifying (example) 842
terms used with 778

pie-fill capability, device 334
PIE function, Annotate facility

ActiveX and Java support for 1542
pie slices, drawing with Annotation facil-

ity 628
PIE statement, BY statement with 144
PIECNTR function, Annotate facility 1542
PIEFILL GDEVICE procedure 334
PIEFILL GOPTIONS statement 334
PIEXY function, Annotate facility 1543
%PIEXY macro, Annotate facility 688
PLAY function (DSGI) 1460
plot data sets 1086
plot lines 196, 207

filling area between plot lines (example) 236
type of 196

PLOT statement
contour levels, specifying (example) 908
labels for contour lines (example) 906
patterns and joins in contour plots (exam-

ple) 910
simple contour plot, generating (example) 904

PLOT statement, G3D procedure 1301
ActiveX and Java support for 1537
generating default surface plot (exam-

ple) 1314
rotating surface plot (example) 1316
tilting surface plots (example) 1317

PLOT statement, GBARLINE procedure 765
ActiveX and Java support for 1519
syntax and options 765

PLOT statement, GCONTOUR procedure
ActiveX and Java support for 1526
syntax and options 889

PLOT statement, GPLOT procedure 1101
ActiveX and Java support for 1530
connecting plot data points (example) 1129
different scales of values (example) 1138
filling areas in overlay plot (example) 1134
generating overlay plot (example) 1131
matching PLOT2 statements 1117
plots with drill-down for Web (example) 1141
plotting three variables (example) 1135
plotting two variables (example) 1126

plot symbols 1114, 1120
altering or canceling 203
bar line charts 768
built-in drawing capability 354
colors for 93, 185, 206, 275
colors for, rotating through (example) 231
default 209
displaying with DSGI 1454
fonts of 186
in Annotate graphics output 640
interpolation 321
scatter plots 1308, 1320
size of 187, 201
specifying for plot points 205

plot variables 741, 745
chart statistics 745
out of range 747

PLOT2 statement, GPLOT procedure 1115
ActiveX and Java support for 1530
different scales of values (example) 1138
matching PLOT statements 1117

plots
basics of 1085
box plots 185, 187, 201, 233
classification variables with 1083
connecting plot data points (example) 1129
different scales of values in (example) 1138
drill-down functionality (example) 1141
filling areas in overlay plot (example) 1134
generating overlay plot (example) 1131
generating simple bubble plots (exam-

ple) 1121
high-low plots 8, 189
interpolation methods 1085
labeling and sizing plot bubbles (exam-

ple) 1122
missing values 1087, 1112
needle plots 191
out-of-range variables 747
overlay plots 1111, 1131, 1134
patterns 1120
plotting three variables (example) 1135
plotting two variables (example) 1126
regression analysis 192
regression analysis plots 192
right vertical axis to bubble plot (exam-

ple) 1124
standard deviations 194
step plots 196
symbols in 1114, 1120
three variables and legend 1118
two variables 1082
two vertical axes 1084, 1119, 1124
with multiple variables 1113

plotters
active pens or colors 333
drawing elements in color order 333
paper size 328
pen speed 352

PNG device driver 382
ACTXIMG, JAVAIMG vs. 440
data tips for 568
developing web presentations 443
drill-down links in images 571
HTML files, generating 445
names for image output files 445

PNG presentations 377
developing Web presentations 442

POINT function, Annotate facility 1543
POINTLABEL= option, SYMBOL state-

ment 197, 1517
points, drawing with Annotate facility 633
points, plot

labels for 197
specifying for plot points 199
symbols for, specifying 199, 205

POLELAT= option, GPROJECT proce-
dure 1170, 1177

POLELONG= option, GPROJECT proce-
dure 1170, 1177

%POLY, %POLY2 macro, Annotate facility 689
POLY function, Annotate facility 1543
POLYCONT function, Annotate facility 1544
%POLYCONT macro, Annotate facility 689

polygon-fill capability, device 336
polygon fonts 941
POLYGONCLIP= graphics option 335
POLYGONFILL= graphics option 336
POLYGONFILL= option, GDEVICE proce-

dure 336
polygons

clipped (intersecting) 331, 335
drawing with Annotate facility 634
drawing with DSGI 1451
map data sets, creating 1041
testing ability to draw 1287
vertices, maximum drawn 324

%POP macro, Annotate facility 690
portability 40
portrait orientation 34, 332, 344, 349
ports, how output is written to 306
POSITION= option

AXIS statement options 138
LEGEND statement options 155, 159, 162,

163
POINTLABEL= specification 198

POSITION variable, Annotate facility 656
positioning

Annotate graphics 596, 597
axis labels 127, 133, 135, 138
BY lines 143
donut chart labels 830
graphics element 39
graphics output, imported 976
legend label 153
legend text 159
legends 155, 162
pie and donut chart slice labels 830, 873
plot point labels 198
prism map light sources 1028
star chart slice labels 840
text in graphics output 221
titles and footnotes, ODS output 492

POSTGEPILOG= graphics option 336
POSTGRAPH= graphics option 337
POSTGRAPH= option, GDEVICE proce-

dure 337
pound sign #, variables as plot point labels 198
PPD file, location of 338
PPDFILE= graphics option 338
predefined color names 97, 99
predefined graph styles (ODS) 489
PREGEPILOG= graphics option 338
PREGPROLOG= graphics option 339
PREGRAPH= graphics option 339
PREGRAPH= option, GDEVICE procedure 339
PRESENTATION option, GREPLAY proce-

dure 1245
PRESENTATION window (GREPLAY) 1265
PREVIEW statement, GREPLAY proce-

dure 1256
previewing device output 356
previewing output 52
printing 51

automatic 263
collating output 271
copies to print 298
duplex 287
duplex, binding edge for 265
flow control 311
graph orientation 349

1582 Index

graphics files 51
IBM printers 297, 300, 302, 311
output bin, specifying 326
paper feed 264, 327
paper size 328
paper tray, specifying 329
paper type, specifying 330
PPD file, location of 338
previewing output 52, 356
protocol module, specifying 303
redrawing (overdrawing) graphs 348
reverse printing 349

prism maps 11, 998, 1023
identification variables 1005
predefined formats for 1035
producing simple prism map (example) 1063
response levels 1004
specifying midpoints in prism map (exam-

ple) 1065
PRISM statement, GMAP procedure

ActiveX and Java support for 1527
producing simple prism map (example) 1063
specifying midpoints in prism map (exam-

ple) 1065
syntax and options 1023

PROC GREPLAY window 1265
PROC statement 26
procedure output area 39

Annotate facility 598
procedure termination, step code at 305
procedures 26

product codes for 21
PROCESSINPUT= option, GDEVICE proce-

dure 340
PROCESSOUTPUT= option, GDEVICE proce-

dure 340
product codes for procedures 21
program mode, GDEVICE procedure 918

switching to 925, 1252
programs, SAS/Graph 25

running 31
PROJECT= option, GPROJECT proce-

dure 1171, 1177
projecting coordinates from spherical to Carte-

sian 1161
basic usage of GPROJECT procedure 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement, GPROJECT procedure 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options, GPROJECT proce-

dure 1168
types of map projections 1165

projecting map data sets 1040
PROJECTION= parameter, JAVA 434
PROJECTIONRATIO= parameter, JAVA 434
PROMPT= graphics option 341
prompt messages to GSF 64, 308, 459
PROMPTCHARS= graphics option 343
PROMPTCHARS= option, GDEVICE proce-

dure 343
prompting to install ActiveX control 389

prompts
characters for, specifying 343
specifying if used 341

proportional fonts 940
protocol module, specifying 303
PROWS device parameter 36, 1151
PROWS= option, GDEVICE procedure 344
PTYPE variable (font data sets) 954
%PUSH macro, Annotate facility 690
PUT statement 409

animated GIF (example) 460, 463
PW= macro argument, DS2CSF macro 562

Q
QMSG= option, GDEVICE procedure 345
QUIT statement 28, 33

GDEVICE procedure 927
GREPLAY procedure 1257
RUN-group processing 490

R
R= option

GFONT procedure 950
PATTERN statement 171, 183
POINTLABEL= specification 198
SYMBOL statement 210
TITLE, FOOTNOTE, and NOTE state-

ments 222
radar charts (star charts) 6, 1183

ActiveX and Java support for 1535
assigning axis definitions to axis spokes (exam-

ple) 1210
basics 777
changing star type (example) 1207
CHART statement, GRADAR procedure 1185
color and line styles in (example) 1208
discrete numeric variables, charting (exam-

ple) 881
filling stars (example) 1204
generating data set for (example) 1196
images in (example) 1205
labels 840
mode for, specifying (example) 1209
multiple classification variables in (exam-

ple) 1202
overlaying (example) 1199
patterns 174
patterns and outlines 840
producing basic (example) 1198
statistic and group headings 839, 842
sum statistic, specifying (example) 879
syntax and options, GRADAR proce-

dure 1184
tiling (example) 1201

RANGE= macro argument, DS2CSF macro 563
RANGE option

BAR statement 761
HBAR and VBAR statements 812

Rangeview applet
drill-down functionality 573
DS2CSF macro 527, 528
hotspots 532

sample diagrams 530
RAXIS= option

AXIS statement 747
BAR statement 761
HBAR and VBAR statements 812
HBAR statement 144
PLOT statement 767
VBAR statement 144

RBSIZING= macro argument 549
RC= option, GFONT procedure 945
reading direction of text, changing (exam-

ple) 1384
reading image file types 107
record length, GSF, origins 305
%RECT macro, Annotate facility 691
rectangle-fill capability, device 292, 345
rectangles, drawing with Annotate facility 616
RECTFILL= option, GDEVICE procedure 345
redrawing graphs 348
reducing map data sets 1039, 1213, 1220

reducing map of Canada (example) 1220
REF= option

BAR statement 761
HBAR and VBAR statements 812

REFCOL= option, GFONT procedure 945
reference-line labels, axis 133, 136
reference lines

colors 892, 893, 1093, 1094
REFLABEL= option, AXIS statement op-

tions 133, 136, 1509
REFLINES option, GFONT procedure 945
REGEQN option, PLOT statement 1112
regression analysis plots 192
regression plots 7
RENAME function (DSGI) 1461
RENAME statement, GDEVICE procedure 928
RENAME statement, MAPIMPORT proce-

dure 1349
RENDER= graphics option 346
rendering fonts 82, 289

Bitstream fonts 295, 346
resolution, setting 293
software fonts 353
storing font files 347

RENDERLIB= graphics option 347
RENDERMODE= parameter, JAVA 435
RENDEROPTIMIZE= parameter, JAVA 435
RENDERQUALITY= parameter, JAVA 435
REPAINT= graphics option 348
REPAINT= option, GDEVICE procedure 348
REPEAT= option, PATTERN statement 171,

183
REPEAT= option, SYMBOL statement 210
repeating animation loops 321
replacing external files 70
REPLAY statement, GREPLAY procedure 1257
replaying graphs, device color limitations 105
reserved names, macro variables 566
RESET= graphics option 348
resetting graphics options 150, 348
RESOL= option, GFONT procedure 950
resolution

display device 363, 364, 365
fonts 950
image interlacing 320
software fonts 293

RESOURCES= graphics option 476

Index 1583

RESOURCESFONTNAME= graphics op-
tion 477

response axis, bar charts 815
response axis, bar line charts 763
response data sets 1003

assigning formats to response variables, block
map (example) 1049

identification variables 1005
merging feature tables with 1001

response levels
maps 1004
specifying in block maps (example) 1047
specifying midpoints in prism map (exam-

ple) 1065
RESPSTAT= option, HBAR and VBAR state-

ments 729
RETAIN statement 600
return characters at record ends 300
return codes 305, 1501
REVEAL suboption, AUTOLABEL= op-

tion 898
REVERSE= graphics option 349
reversing black and white 353
RF= option, GFONT procedure 945
RGB color scheme 95

converting to HLS 103
%RGB macro 102
%RGB2HLS macro 103
RH= option, GFONT procedure 946
RIGHTMARGIN= option, GDEVICE proce-

dure 316
RIGHTMARGIN= option, GOPTIONS state-

ment 316
roles 411
Roman alphabet text fonts 84
ROMCOL= option, GFONT procedure 945
ROMFONT= option, GFONT procedure 945
ROMHEX= option, GFONT procedure 946, 951
ROMHT= option, GFONT procedure 946
ROTATE= graphics option 349
ROTATE= option

GDEVICE procedure 349
LABEL= option, DONUT statement 830
PLOT statement, G3D procedure 1303
SCATTER statement, G3D procedure 1308,

1312
SURFACE statement 1032, 1068
TDEF statement, GREPLAY procedure 1260
TITLE, FOOTNOTE, and NOTE state-

ments 222
ROTATE variable, Annotate facility 659
rotating graphs for printing 349
rotating plot symbols through colors (exam-

ple) 231
ROTATION= option, GDEVICE procedure 350
rows

in graphics output area 36, 323, 350, 361
legends 153

ROWS= option, GDEVICE procedure 350
RSTAT= option, HBAR and VBAR state-

ments 729, 735
RUN-group processing 33

GSLIDE procedure 1281
ODS and 490

RUN statement 26, 144
run-time controls in presentations 471
RUNMODE= macro argument 545, 565

running programs 31

S
S option, GOPTIONS procedure 1078
sample programs 21
SAS Color Naming Scheme (CNS) 97, 99
SAS/GRAPH software installation, testing 1285,

1291
SAS Maps Online 1006
SAS output 48, 1150
SASPOWER= macro argument 554
SCALABLE= option, GDEVICE procedure 351
%SCALE macro, Annotate facility 692
SCALE statement, GIMPORT procedure 975,

979
%SCALET macro, Annotate facility 693
SCALEX= and SCALEY= options, TDEF state-

ment 1261
scaling

dash length in lines 278
graphs with DSGI windows 1388
hardware fonts 274, 350, 351

scatter plots 7, 9, 1296
appearance of points 1310
axes, controlling 1299
axes, reversing values on 1312
connecting plot data points (example) 1129
data ranges 1298
generating simple scatter plot (example) 1318
input data sets 1298
plotting three variables (example) 1135
plotting two variables (example) 1126
rotating and tilting 1299
rotating (example) 1323
shapes in (example) 1320
simulating overlaid scatter plots 1310
three-dimensional, syntax for 1305

SCATTER statement, G3D procedure 1305
ActiveX and Java support for 1537
generating simple scatter plot (example) 1318
rotating scatter plot (example) 1323
shapes in (example) 1320

SCLNKWT= macro argument 550
SCLWIDTH= macro argument 550
SCNSIZE= macro argument 550
Script drill-down mode, Java 400, 413, 572

example 416
searching device catalogs 917
SEGMENT variable (font data sets) 956
SEGMENT variable (map data sets) 1000
SELECT statement, MAPIMPORT proce-

dure 1349
SELIFUNC= macro argument 550
SELLFUNC= macro argument 550
SELUFUNC= macro argument 551
SEPCLASS= macro argument 554
SEPLOC= macro argument 554
SEPTYPE= macro argument 554
%SEQUENCE macro, Annotate facility 695
server graphs vs. client graphs 584
shadow color, legends 153
shadowing, legend frames 326
shape, legend values 156
SHAPE= option

BLOCK statement, GMAP procedure 1015

HBAR and VBAR statements 812
LEGEND statement options 156
SCATTER statement, G3D procedure 1308,

1310, 1320
shapes in scatter plots 1308, 1320
SHORT option, GOPTIONS procedure 1078,

1079
SHOWALL option, GFONT procedure 946
SHOWBACKDROP= parameter, JAVA 435
SHOWLEGEND= parameter, JAVA 436
SHOWLINKS= macro argument 551
SHOWROMAN option, GFONT procedure 946,

950, 962
SIDE option, PLOT statement 1303
SIMFONT= graphics option 351
simple plot lines 7
SIMPLEDEPTHSORT= parameter, JAVA 436
SIMPLETHRESHOLD= parameter, JAVA 436
SIMULATE font 77
SINGULAR= option, POINTLABEL= specifica-

tion 199
singularities, checking for 199
size

aspect ratio 263, 1152
axis labels 127, 133, 135, 136
axis tick marks 129, 139, 140
axis values 136
boxes in box plots 185
bubbles in bubble plots 1092
BY lines 143, 312
character cells 37, 38, 265
contour labels 187
contour lines 201
contour plot labels 903
dash length in lines 278
display, in lines 308
donut chart labels 829
enlarging graph areas with DSGI windows (ex-

ample) 1391
errors in sizing 40
fonts 269
GRAPH window 50
graphics output 1150
graphics output, imported 975
graphics output text 316
legend frame 153
legend frame drop shadows 326
legend label 153
legend values 156, 157
line thickness, default 323
paper 328
paper feed increments 327
plot bubbles (example) 1122
plot print labels 197
plot symbols 187, 201
record length, to GSF 305
scatter plot points 1309, 1310
splines in star charts 1196
text in graphics output 218
titles and footnotes 317, 493
units of measurement 38, 310

size, graphics output area 316, 361, 363, 364,
columns in 36, 274, 315, 322, 3
rows in 36, 323, 350, 361

SIZE= option, SCATTER statement 1309, 1310
SIZE variable, Annotate facility 660
SKIPMISS option, PLOT statement 1112

1584 Index

%SLICE macro, Annotate facility 695
SLICE= option

PIE and DONUT statements 828
STAR statement 839, 840

SLIDECTL= option, META2HTM macro 473,
565

SLIDESHOWCONTROLENABLED= graphics
option 477

SLIDESHOWENABLED parameter, ODS state-
ments 473

smooth line fit 193
SMOOTH= option, GRID statement 1329,

1331, 1335, 13
smoothing plot lines 190
software fonts 76, 351

listing available 76
open at one time 290
rendering 353
resolution 293
where stored 82

sorting
grouped observations 142
map data set observations 1227
plot data set observations 1087

space data sets 960
variables for, list of 960

SPACE= option
BAR statement 762
GFONT procedure 951

SPACEDATA= option, GFONT procedure 951,
961

spacing
angle of rotation 222
between Bitstream font letters 295
between display area and graphic 360
between displayed area and graph 314
between fill lines 292
contour plot labels 904
fonts 948, 951, 960, 961
legends 154, 163
text in graphics output 216, 221

SPCLASS= macro argument 554
special characters 81

HTML entities 582
Special font 89
special plot symbols 200
SPEED= graphics option 352
speed of plotter pens 352
SPEED= option, GDEVICE procedure 352
spherical coordinates, converting to Carte-

sian 1161
basic usage of GPROJECT procedure 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement, GPROJECT procedure 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options, GPROJECT proce-

dure 1168
types of map projections 1165

SPIDER option, CHART statement 1193
SPIDERWEB option, CHART statement 1193
SPKLABEL= option, CHART statement 1193

spline interpolation 194, 205, 1330
GRID statement (example) 1339, 1342, 1343

SPLINE option, GRID statement 1330, 1335,
1339

spline smoothing 1331, 1339
splines in star charts

axis definitions 1210
colors 1188, 1208
labels for 1193
line types 1191, 1208
size 1196

SPLIT= option, AXIS statement options 134
SPREAD= macro argument 551
SR option, GFONT procedure 946, 950
SSFILE1=, ..., SSFILE5= macro arguments 555
SSFREF1=, ..., SSFREF5= macro argu-

ments 555
SSHREF1=, ..., SSHREF5= macro argu-

ments 555
SSMEDIA1=, ..., SSMEDIA5= macro argu-

ments 555
SSREL1=, ..., SSREL5= macro arguments 555
SSREV1=, ..., SSREV5= macro arguments 556
SSTITLE1=, ..., SSTITLE5= macro argu-

ments 556
SSTYPE1=, ..., SSTYPE5= macro argu-

ments 556
STACKED= parameter, JAVA 436
STACKPERCENT= parameter, JAVA 436
standard deviations 194
STAR statement, GCHART procedure

BY statement with 144
discrete numeric variables, charting (exam-

ple) 881
star chart with sum statistic (example) 879
syntax and options 833

STARAXES= option, CHART statement 1193
STARAXIS= option, CHART statement 1193,

1210
STARCIRCLE= option, CHART statement 1194
STARCIRCLES= option, CHART state-

ment 1194
STARFILL= option, CHART statement 1194,

1204
STARINRADIUS= option, CHART state-

ment 1194
STARLEGEND= option, CHART state-

ment 1194, 1201
STARLEGENDLAB= option, CHART state-

ment 1194, 1201
STARMAX= option, STAR statement 839
STARMIN= option, STAR statement 839
STAROUTRADIUS= option, CHART state-

ment 1194
stars, drawing circle of (example) 609
STARSTART= option, CHART statement 1195
STARTYPE= option, CHART statement 1195,

1207
STATE function (DSGI) 1430
state map data (U.S.) 1003

removing U.S. state boundaries (exam-
ple) 1228

statement options 46
statements, SAS/GRAPH 123

global 14, 27, 33, 123
static graphics 439

creating with ODS 440

developing presentations with GIF, JPEG,
PNG 443

presentations developed with ACTXIMG,
JAVAIMG 442

sample programs for 447
static images in presentations 370, 371, 376
statistic heading

pie and donut charts 827, 832
star charts 839, 842

step codes 305
STEP= option, SYMBOL statement 199, 904
step plots 196
stock market high, low, close data 189
storing

Annotate graphics (example) 713
clipped polygons 331
DSGI graphs 1357
fonts 77
graphics catalogs 53, 55, 59, 70
graphics files 51, 60
graphics output as files 64, 66, 68, 291
Java archive 399
Java plug-in 424
online help 385
PPD file 338
rendered font files 346, 347

strings
appending to graphics data records 300
prefixing output records 309
sending to devices or files 301, 303

stroked fonts 940
STYLE= option, AXIS statement options 134
STYLE= option, ODS statements 489
style variable, annotate facility 660
styles, ODS 488
stylesheets, macro arguments for 554
SUBGROUP= option

BLOCK statement 793, 795
HBAR and VBAR statements 729, 733, 735,

813
PIE and DONUT statements 828

SUBGROUP variable, Annotate facility 664
subgrouping

block chart (example) 844
pie charts (example) 877
pie or donut chart (example) 848
vertical bar chart (example) 848

subsetting map data sets 1039, 1173, 1178, 12
example of 1178
reducing map of Canada (example) 1220

substitution strings
drill-down tags as 411
removing blanks from data values 414
variables as 410

success factor diagrams
drill-down functionality 573
DS2CSF macro 527, 528
hotspots 532
sample diagrams 530

SUM option
BAR statement 762
HBAR and VBAR statements 813

sum statistic 746, 783
bar chart (example) 846
block chart (example) 842
pie chart (example) 842
star chart (example) 879

Index 1585

SUMLABEL= option, HBAR and VBAR state-
ments 813

SUMVAR= option
bar chart with sum statistic (example) 846
BAR statement 762
block chart with sum statistic (example) 842
BLOCK statement 793
CHART statement, GRADAR procedure 1195
HBAR and VBAR statements 814
PIE and DONUT statements 828
pie chart with sum statistic (example) 842
PLOT statement 745, 767
star chart with sum statistic (example) 879
STAR statement 839

suppressing axes
BAR statement 760
BUBBLE statement 1097
HBAR and VBAR statements 810
PLOT statement, G3D procedure 1303
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1111
SCATTER statement, G3D procedure 1307

surface maps 12, 998, 1030
axes, controlling 1299
identification variables 1005
predefined formats for 1035
producing simple surface map (example) 1066
response levels 1004
rotating and tilting 1299
rotating and tilting surface map (exam-

ple) 1068
surface plots 9, 1295

appearance of surface 1304
data ranges 1298
input data sets 1298
rotating (example) 1316
three-dimensional, syntax for 1301
tilting (example) 1317

surface plots, three-dimensional, processing data
for 887, 1327

controlling observations in output data
set 1336

GRID statement, G3GRID procedure 1333
interpolation methods 1329
simple contour plot, generating (example) 905
spline interpolation, partial (example) 1342
spline interpolation, with smoothed spline (ex-

ample) 1339
spline interpolation (example) 1343
syntax and options, G3GRID procedure 1332
using default interpolation method (exam-

ple) 1337
SURFACE statement, GMAP procedure 1030

producing simple surface map (example) 1066
rotating and tilting surface map (exam-

ple) 1068
SURFACESIDECOLOR= parameter, JAVA 436
SWAP function, Annotate facility 639
SWAP= graphics option 353
%SWAP macro, Annotate facility 696
SWAP= option, GDEVICE procedure 353
SWFONTRENDER= graphics option 353
SYMBOL definitions, BY statement with 145
symbol fonts, creating figures for 964
SYMBOL function, Annotate facility 1544
SYMBOL= graphics option 354, 1078
SYMBOL= option, GDEVICE procedure 354

SYMBOL statement 27, 124, 183
ActiveX and Java support for 1516
altering or canceling 203
box plots, modifying (example) 233
GBARLINE procedure 740, 768
GCONTOUR procedure 903
GPLOT procedure 1114, 1120
internationalization 392
Java applets, internationalization and 400
rotating plot symbols through colors (exam-

ple) 231
SYMBOLS= option, GDEVICE procedure 354
syntax conventions 17
system fonts 76
%SYSTEM macro, Annotate facility 696

T
T= option, AXIS statement options 138
T option, GOPTIONS procedure 1078
T= option, LEGEND statement options 160
tables of contents 495, 497
tables of pages 496, 497
TARGETDEVICE= graphics option 52, 72,

105, 354
TC option

? statement, GREPLAY procedure 1246
LIST statement, GREPLAY procedure 1254

TC= option, GREPLAY procedure 1245
TC statement, GREPLAY procedure 1258
TCOPY statement, GREPLAY procedure 1258
TDEF statement, GREPLAY procedure 1259
TDELETE statement, GREPLAY proce-

dure 1262
TEMPLATE DESIGN window (GRE-

PLAY) 1265
TEMPLATE option

? statement, GREPLAY procedure 1246
LIST statement, GREPLAY procedure 1254

TEMPLATE= option, GREPLAY proce-
dure 1245

TEMPLATE statement, GREPLAY proce-
dure 1262

templated graphs 13
templates 1239

copying or duplicating 1258
creating 1268, 1270
defining or modifying in catalogs 1259
deleting 1262
panel outlines for, displaying 1256
printing contents of 1254
relaying graphics output in templates 1272
replaying graphics output in 1270
specifying/assigning 1258, 1262
transporting 58

temporary data sets 29
terminating drivers 286
test pattern, GTESTIT procedure 1286
testing installation of SAS/GRAPH soft-

ware 1285
managing colors list for device driver (exam-

ple) 1291
testing GOPTIONS statement (example) 1291

TEXALIGN function (DSGI) 1430, 1486
TEXCOLOR function (DSGI) 1431, 1488
TEXEXTENT function (DSGI) 1433

TEXFONT function (DSGI) 1434, 1489
TEXHEIGHT function (DSGI) 1435, 1490
TEXINDEX function (DSGI) 1436, 1491
TEXPATH function (DSGI) 1437, 1491
TEXREP function (DSGI) 1437, 1492
text 1456

adjusting character size in output (exam-
ple) 1156

angle of 330
as axis values 131, 134
as legend values 155, 157
axis text, formatting 135
block charts 795
BY lines 143
contour plot labels, specifying 904
donut chart labels 829
HTML entities 582
in Annotate graphics output 626
reading direction, changing (example) 1384
specifying color text in output (exam-

ple) 1153
text color 276
text files, converting to graphics output 1147

adjusting character size in output (exam-
ple) 1156

adjusting output size 1150
external text files, about 1148
fonts 1152
specifying color text in output (exam-

ple) 1153
syntax and options, GPRINT procedure 1149

text slides for presentations 12, 13, 1277
Annotate graphics, displaying 1278, 1283
multiple graphs on same slide 13
producing (example) 1282
slide-show control 473

TEXT variable, Annotate facility 666
TEXUP function (DSGI) 1438, 1493
three-dimensional plots 9
tick marks, axes 129, 138

formatting 139
offset 130
scatter plots 1310
suboptions, list of 1509
surface plots 1304
with datetime values (example) 226

TICK= option, AXIS statement options 138
TICK= option, LEGEND statement options 160
TILELEGEND= option, CHART state-

ment 1195
TILELEGLABEL= option, CHART state-

ment 1195
tiling radar charts (example) 1201
TILT= option

PLOT statement, G3D procedure 1303
SCATTER statement, G3D procedure 1309
SURFACE statement 1032, 1068

tilting
surface and scatter plots 1299, 1317
surface maps (example) 1068

TIPBACKCOLOR= parameter, JAVA 436
TIPBORDERCOLOR= parameter, JAVA 436
TIPMODE= parameters, JAVA and ActiveX 437
TIPS= macro argument 551
TIPS= parameters, JAVA and ActiveX 437
TIPSTEMSIZE= parameters, JAVA and Ac-

tiveX 437

1586 Index

TIPTEXTCOLOR= parameters, JAVA and Ac-
tiveX 437

TIPTYPE= argument, META2HTM macro 565
TIPTYPE= macro argument 551
TITLE graphics option 1078, 1079
TITLE statement 27, 124, 210, 224

ActiveX and Java support for 1517
BY statement with 145
displaying with GOPTIONS procedure (exam-

ple) 1079
enhancing titles (example) 238

titles 211, 224
angle of rotation 213, 219
boxes around 215, 216
colors for 215, 216, 276
default characteristics, setting 225
defining text of 222, 226
enhancing (example) 238
fonts 295
fonts, color, and size (ODS output) 493
fonts for 217
hyperlinks for 220
justification 218
ODS output 492
positioning 39, 221
size of 218, 316, 317
spacing around 221
text breaks 225
underlining 223

titles macro, arguments for 556
TO variable (GKEYMAP data set) 987
tokens, GDDM 299
TOLANGLE= suboption, AUTOLABEL= op-

tion 899
TOLEN variable (GKEYMAP data set) 988
traditional map data sets 999

creating 1041
identification variables 1005
lakes, displaying 1041
projecting 1040
response data sets with 1003
subsetting or reducing (clipping) 1039, 1173,

1178, 12
traditional map data sets, projecting coordinates

from spherical to Cartesian 1161
basic usage of GPROJECT procedure 1172
clipping map areas (example) 1178
default projection specifications, using (exam-

ple) 1174
emphasizing map areas (example) 1177
ID statement, GPROJECT procedure 1172
input map data sets 1163
projecting an Annotate data set (exam-

ple) 1180
syntax and options, GPROJECT proce-

dure 1168
types of map projections 1165

TRAILER= option, GDEVICE procedure 356
TRAILER records 356, 357
TRAILERFILE= option, GDEVICE proce-

dure 357
trailers, animation 458
TRANLIST= macro argument 561
TRANS function (DSGI) 1439
transformations, DSGI 1378

TRANSLATE statement, GIMPORT proce-
dure 976

adjusting graphics output (example) 979
translation table, ASCII-to-EBCDIC 358
TRANSNO function (DSGI) 1439, 1496
transparency, image 357
TRANSPARENCY GOPTIONS statement 357
TRANSPARENCY= graphics option 459
transporting and converting graphics output 56
TRANTAB= graphics option 358
TRANTAB= option, GDEVICE procedure 358
tray, paper 329
TREEDIR= macro argument 551
TREESPAN= macro argument 552
Treeview applet 372, 503

data tips with 569
drill-down functionality 572
DS2TREE macro with 505
enhancing presentations for 506
hotspots 510
when to use 504
XML embedded in HTML file (example) 507
XML written to external file (example) 509

TREPLAY statement, GREPLAY proce-
dure 1263

relaying graphics output in templates 1270,
1272

troubleshooting
Annotate data sets 604
SAS/GRAPH software installation 1285
Web output 579

trueness of color 105
TTAG= macro argument 556
two-dimensional bar charts 116
two-sided printing 265, 287
TXT2CNTL function, Annotate facility 642
%TXT2CNTL macro, Annotate facility 697
TYPE= option

BAR statement 762
BLOCK statement 794
GDEVICE procedure 358
GKEYMAP procedure 989
HBAR and VBAR statements 814
PIE and DONUT statements 828
PLOT statement 767
STAR statement 839

U
U option, GFONT procedure 951
U= option, TITLE, FOOTNOTE, and NOTE

statements 223, 225
UCC= graphics option 359
UCC= option, GDEVICE procedure 359
UCC values 359
ULX= and ULY= options, TDEF state-

ment 1261
unclipped polygons, storing 331
UNDERFLOWCOLOR= parameters, JAVA and

ActiveX 437
UNDERLIN= option, TITLE, FOOTNOTE, and

NOTE statements 223, 225
underlining in titles, footnotes, and notes 223
Unicode references for character data 561
uniform fonts 940, 951

UNIFORM option
GFONT procedure 951
GPLOT procedure 144, 1089

uninstalling ActiveX Control 390
unit area (maps) 1005
units of measurement 38, 310

Annotate graphics 597
unmatched area boundaries

GREDUCE procedure and 1215
GREMOVE procedure and 1225

UPDATE function (DSGI) 1461
URL drill-down mode, Java 401, 409, 572

example 417
URL= option, ODS HTML statement 167
URX= and URY= options, TDEF state-

ment 1261
U.S. city map data 1003
U.S. state map data 1003

removing U.S. state boundaries (exam-
ple) 1228

user-defined control characters, device 359
user input, enabling 360
USERFMT= parameters, JAVA and ActiveX 437
USERINPUT= graphics option 459

V
V= option, SYMBOL statement 199, 205
V6COMP graphics option 362, 749, 785

patterns 181
VALUE= option

AXIS statement 134, 1509
LEGEND statement 1515
PATTERN statement 171
PIE and DONUT statements 829
STAR statement 840
SYMBOL statement 199, 205, 904

VALUEPOS= macro argument, DS2CSF
macro 564

values on axes 134
order of 130
splitting (multiline) 134

values on legends
order of 155
size and shape of 156

VAR= macro argument, DS2CSF macro 562
variable roles 411
variables

Annotate facility 591, 599, 602, 642
as substitution strings 410
bar variables 741, 742, 745
chart variables 778, 779, 780
classification, plotting 1083
contour variables 885
declaring as plot point labels 198
font data sets 952
GKEYMAP data sets 987
identification variables 1005
identification variables, maps 1005
kern data sets 959
link and enhancement variables in presenta-

tions 574
macro variable names 566
multiple classification variables in radar charts

(example) 1202
plot variables 741, 745, 747

Index 1587

plotting three variables (example) 1135
plotting two variables (example) 1126
space data sets 960

variance 195
VAXIS= option

BUBBLE statement 1097
PLOT statement, GCONTOUR proce-

dure 886, 897
PLOT statement, GPLOT procedure 1112

VBAR and VBAR3D statements
drill-down functionality in bar chart (exam-

ple) 856
GAREABAR procedure 728
GCHART procedure 796, 1521
subgrouping in vertical bar chart (exam-

ple) 848
vector graphics files, rendering software

fonts 353
Version 6, SAS/GRAPH

defaults for programs 362
patterns 181

vertical axes, multiple in plots 1084, 1119, 1124
vertical bar charts 5, 775

BAR statement, GBARLINE procedure 751,
1519

statistics in, displaying 815
subgroup labels (example) 607
subgrouping in (example) 848
terms used with 778

vertical resolution, device 35
vertices, maximum drawn 324
VIEW2D= parameters, JAVA and ActiveX 437
VIEWPOINT=2D= parameter, JAVA 438
VIEWPORT function (DSGI) 1441, 1497
viewports, DSGI 1376, 1385
VM= option

BUBBLE statement 1097
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1112

VMINOR= option
BUBBLE statement 1097
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1112

VORIGIN device parameter 35
VORIGIN= graphics option 360
VPOS function (DSGI) 1442, 1498
VPOS= graphics option 36, 1151, 1152
VREF= option

BUBBLE statement 1097
PLOT statement, GCONTOUR procedure 897
PLOT statement, GPLOT procedure 1113

VREVERSE option
BUBBLE statement 1097
PLOT statement, GCONTOUR procedure 898
PLOT statement, GPLOT procedure 1113

VSIZE device parameter 35
VSIZE function (DSGI) 1443, 1499
VSIZE= graphics option 35, 361, 1150
VSIZE= option, GDEVICE procedure 361
VSPACE= macro argument 537
VZERO option

BUBBLE statement 1097
PLOT statement, GPLOT procedure 1113

W
W= option, AXIS statement options 140
W= option, SYMBOL statement 201
WAXIS= option, CHART statement 1195
Weather font 89
Web browsers

installing ActiveX control 389
Netscape colors, resolving 583

Web output
Annotate facility for 499
Annotate variables for 601
developing for Metaview Applet 469
developing with ACTXIMG and JAVAIMG

drivers 442
enhancing with GIF, JPEG, PNG drivers 443
generating presentations 382
HTML files, generating with ODS 445
multiple instances of Metaview Applet (exam-

ple) 483
naming conventions for image files 445
ODS styles for 488
page formatting, macro arguments for 552
presentation features 379
presentation types 370, 378
producing with META2.HTM macro (exam-

ple) 481
run-time controls 471
static graphics 439
stylesheets, macro arguments for 554
troubleshooting 579

Web pages
bar chart with drill-down (example) 255
combining graphs and reports (example) 248
creating with ODS HTML (example) 245

WEIGHT= option, CHART statement 1196
weighted statistics

GBARLINE procedure 746, 770
GCHART procedure 783

WFRAME= option
CHART statement, GRADAR procedure 1195
GSLIDE procedure 1281

WHEN variable, Annotate facility 602, 667
WHERE= data set option, subsetting map data

sets 1039
WHERE statement 28, 1039

RUN-group processing 33
white and black, reversing 353
WIDTH= macro argument 537
WIDTH= option

AXIS statement options 140
BAR statement 762
HBAR and VBAR statements 814
SYMBOL statement 201

WIDTHSTAT= option, HBAR and VBAR state-
ments 729

WINDIC= macro argument, DS2CSF macro 564
WINDOW function (DSGI) 1444, 1500
windowing mode, GDEVICE procedure 918,

928
switching to program mode 925, 1252

windowing mode, GREPLAY procedure 1241
windows, DSGI 1376

enlarging graph areas with DSGI windows (ex-
ample) 1391

scaling graphs with (example) 1388
WORK data library 30

WOUTLINE= option

BLOCK statement, GMAP procedure 1015

CHORO statement 1022

PIE and DONUT statements 829

PRISM statement 1028

STAR statement 840

writing image files types 107, 110

WSACTIVE function (DSGI) 1445

WSOPEN function (DSGI) 1445

WSPOKE= and WSPOKES= options, CHART
statement 1196

WSTAR= option, CHART statement 1196

WSTARCIRCLE= and WSTARCIRCLES= op-
tions, CHART statement 1196

WSTARS= option, CHART statement 1196

WSTAT= option, HBAR and VBAR state-
ments 729

chart with subgrouping and variable percent-
ages (example) 735

X
X= option

SCALE statement 975

TRANSLATE statement 976

X variable, Annotate facility 668

X variable, map data sets 1000

XADJ variable (kern data sets) 959

XBINS= parameter, JAVA 437

XC variable, Annotate facility 669

XLAST variable, Annotate facility 678

XLATEX= and XLATEY= options, TDEF state-
ment 1261

XLIGHT= option, PRISM statement 1028

XLSTT variable, Annotate facility 678

XMAX device parameter 34, 35, 1150

XMAX= graphics option 363

XMAX= option, GDEVICE procedure 363

XMLFILE= macro argument 545

XMLFREF= macro argument 545

XMLTYPE= macro argument 545

XMLURL= macro argument 545

XPIXELS device parameter 35

XPIXELS= graphics option 35, 364, 459

XPIXELS= option, GDEVICE procedure 364

XSIZE= option

BLOCK statement, GMAP procedure 1015

CHORO statement 1022

PRISM statement 1029

SURFACE statement 1032

XSYS variable, Annotate facility 670

XTICKNUM= option

PLOT statement, G3D procedure 1304

PLOT statement, GCONTOUR procedure 898

SCATTER statement, G3D procedure 1310

XVIEW= option

BLOCK statement, GMAP procedure 1016

CHORO statement 1022

PRISM statement 1029

XYTYPE= option, PLOT statement 1304

1588 Index

Y
Y= option

SCALE statement 975
TRANSLATE statement 976

Y variable, Annotate facility 673
Y variable, map data sets 1000
YBINS= parameter, JAVA 437
YC variable, Annotate facility 674
YLAST variable, Annotate facility 678
YLIGHT= option, PRISM statement 1028
YLSTT variable, Annotate facility 678
YMAX device parameter 34, 35, 1150
YMAX= graphics option 365
YMAX= option, GDEVICE procedure 365
YPIXELS device parameter 35
YPIXELS= graphics option 35, 365, 459
YPIXELS= option, GDEVICE procedure 365
YSIZE= option

BLOCK statement, GMAP procedure 1015
CHORO statement 1022

PRISM statement 1029

SURFACE statement 1032

YSYS variable, Annotate facility 675

YTICKNUM= option

PLOT statement, G3D procedure 1304

PLOT statement, GCONTOUR procedure 898

SCATTER statement, G3D procedure 1310

YVIEW= option

BLOCK statement, GMAP procedure 1016

CHORO statement 1022

PRISM statement 1029

Z
z/OS operating environment, JAVAIMG driver

with 443

Z variable, Annotate facility 676

zero values, block charts 795

ZMAX= option
PLOT statement, G3D procedure 1304
SCATTER statement, G3D procedure 1310

ZMIN= option
PLOT statement, G3D procedure 1304
SCATTER statement, G3D procedure 1310

zoom controls 473
ZOOM= macro argument 552
ZOOMCONTROLENABLED= graphics op-

tion 477
ZOOMCONTROLMAX= graphics option 477
ZOOMCONTROLMIN= graphics option 477
ZOOMCTL= argument, META2HTM

macro 566
ZSYS variable, Annotate facility 677
ZTICKNUM= option

PLOT statement, G3D procedure 1304
SCATTER statement, G3D procedure 1310

ZVIEW= option
BLOCK statement, GMAP procedure 1016
CHORO statement 1022
PRISM statement 1029

Your Turn

If you have comments or suggestions about SAS/GRAPH® 9.1 Reference, please send
them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

.

	Table of Contents
	Contents

	What’s New
	Overview
	Details
	Procedures
	SYMBOL Statement
	Graphics Options
	The Annotate Facility
	SAS Maps Online Application
	Pop-up Data Tips for Web Graphics
	Server-Side Rendering
	Client Support for Annotation
	Client Support for ODS Styles
	ActiveX Control
	Java Constellation Applet and DS2CONST Macro
	Java Treeview Applet and DS2TREE Macro
	Java Contour Applet
	Java Graph Applet
	User-Defined Formats
	Colors
	Fonts
	PAGEFIT Attribute for PostScript
	GTITLE and GFOOTNOTE Options for the ODS Statement
	Enhancements in SAS/GRAPH Documentation

	SAS/GRAPH Concepts
	Introduction to SAS/GRAPH Software
	Overview
	Generating Graphs
	Charts
	Two-Dimensional Plots
	Three-Dimensional Plots
	Maps
	Creating Text Slide and Presentation Graphics
	Enhancing Graphics Output (graphs and text slides)
	Creating Custom Graphics

	About this Book
	Audience
	Prerequisites

	Conventions Used in This Book
	Syntax Conventions
	Conventions for Examples and Output

	Information You Should Know
	Support Personnel
	Sample Programs
	Map Data Sets
	Annotate Macros Data Set

	SAS/GRAPH Programs
	Overview
	Language Elements
	SAS/GRAPH Procedures
	SAS/GRAPH Global Statements
	Annotate DATA Step
	Other SAS Language Statements

	SAS Data Sets
	Temporary and Permanent SAS Data Sets
	Data Set Requirements
	Automatic Data Set Locking

	Using Engines with SAS/GRAPH Software
	Running SAS/GRAPH Programs
	Modes of Operation
	Running in Batch Mode
	RUN-Group Processing

	Procedure Output and the Graphics Output Area
	About the Graphics Output Area
	Placement of Graphic Elements in the Graphics Output Area
	Making Programs Portable

	Device Drivers
	Overview
	About Device Drivers
	Types of Device Drivers
	How Device Drivers Are Assigned

	Selecting a Device Driver
	Viewing the List of Available Device Drivers
	Browsing the Contents of a Device Entry
	Specifying a Device Driver in a SAS Session

	Controlling Output with Device Drivers
	Modifying Device Parameters Permanently
	Overriding Device Parameters Temporarily

	SAS/GRAPH Output
	About SAS/GRAPH Output
	What You Can Do With SAS/GRAPH Output

	Displaying Graphics Output on Monitors or Terminals
	Displaying Graphs with the GRAPH Window
	Displaying Graphs with Direct Display

	Printing Graphics Output
	Printing Directly to the Device
	Saving and Printing a Graphics File
	Printing From a Window
	Previewing Output

	Storing Graphics Output in SAS Catalogs
	Accessing Catalogs from Different Versions of SAS
	Creating and Specifying Catalogs
	Names and Descriptions of Catalog Entries
	Listing and Managing Catalog Entries

	Modifying SAS/GRAPH Output
	Transporting and Converting Graphics Output
	Transporting Catalogs across Operating Environments
	Converting Catalogs to a Different Version of SAS

	About Exporting SAS/GRAPH Output
	About Graphics Stream Files
	About Graphics File Formats
	Ways to Export SAS/GRAPH Output

	Exporting SAS/GRAPH Output Interactively
	Exporting SAS/GRAPH Output with Program Statements
	General Information
	Saving One Graph to a File
	Saving Multiple Graphs to One File
	Saving Multiple Graphs to Multiple Files
	Replacing Existing External Files
	Other Ways to Assign the Destination

	Exporting SAS/GRAPH Output Using Modified Device Entries

	SAS/GRAPH Fonts
	Overview
	Specifying Fonts in SAS/GRAPH Programs
	Font Specifications
	Default Fonts
	Font Locations

	Using Hardware Fonts
	Default Hardware Fonts
	Specifying the Full Font Name
	Specifying Alternative Hardware Fonts

	Specifying Special Characters
	Using SAS/GRAPH Software Fonts
	Rendering Fonts
	Font Lists

	SAS/GRAPH Colors and Images
	Using SAS/GRAPH Colors and Images
	Specifying Colors in SAS/GRAPH Programs
	Specifying Default Colors in a GOPTIONS Statement
	Defining and Using a Colors List
	Color-Naming Schemes
	Colors and Device Capabilities

	Specifying Images in SAS/GRAPH Programs
	Image File Types Supported by SAS/GRAPH
	Reading and Writing Image File Types
	Placing a Background Image
	Placing a Backplane Image on Graphs with Frames
	Placing Images on the Bars of Two-Dimensional Bar Charts
	Using Annotate to Display an Image
	Using DSGI to Display an Image
	Disabling and Enabling Image Output

	SAS/GRAPH Statements
	Overview
	AXIS Statement
	Using the AXIS Statement
	Assigning AXIS Definitions

	BY Statement
	Preparing Data for BY-Group Processing
	Controlling BY Lines
	Naming the Catalog Entries
	Using the BY Statement

	FOOTNOTE Statement
	GOPTIONS Statement
	Using the GOPTIONS Statement
	Graphics Option Processing

	LEGEND Statement
	Using the LEGEND Statement
	Positioning the Legend
	Creating Drop Shadows and Block Effects

	NOTE Statement
	ODS HTML Statement
	Using the ODS HTML Statement

	PATTERN Statement
	Using the PATTERN Statement
	About Default Patterns
	Working with PATTERN Statements
	Specifying Device-Dependent Hardware Patterns
	Understanding Pattern Sequences

	SYMBOL Statement
	Using the SYMBOL Statement
	Controlling Consecutive SYMBOL Statements
	Setting Definitions for PROC GPLOT
	Using Color
	Specifying Line Types
	Using Generated Symbol Sequences

	TITLE, FOOTNOTE, and NOTE Statements
	Using TITLE and FOOTNOTE Statements
	Using the NOTE Statement
	Using Multiple Options
	Setting Defaults
	Using Options That Can Reset Other Options
	Substituting BY Line Values in a Text String

	Example 1. Ordering Axis Tick Marks with SAS Datetime Values
	Example 2. Specifying Logarithmic Axes
	Example 3. Rotating Plot Symbols through the Colors List
	Example 4. Creating and Modifying Box Plots
	Example 5. Filling the Area between Plot Lines
	Example 6. Enhancing Titles
	Example 7. Using BY-group Processing to Generate a Series of Charts
	Example 8. Creating a Simple Web Page with the ODS HTML Statement
	Example 9. Combining Graphs and Reports in a Web Page
	Example 10. Creating a Bar Chart with Drill-down for the Web
	Details
	Building an HREF value
	Creating an image map
	Referencing SAS/GRAPH output

	See Also

	Graphics Options and Device Parameters Dictionary
	Introduction
	Specifying Graphics Options and Device Parameters
	Specifying Units of Measurement

	Dictionary of Graphics Options and Device Parameters

	Bringing SAS/GRAPH Output to the Web
	Introducing SAS/GRAPH Output for the Web
	Which Device Driver or Macro Do I Use?
	Types of Web Presentations Available
	Presentations That Use The ActiveX Control
	Presentations That Use Java Applets
	Presentations that Use Static Images

	Selecting a Type of Web Presentation
	How is the graphical output produced?
	What features are supported for each type of presentation?
	What does your audience need to view the presentation?
	Recommendations

	Generating Web Presentations
	Using ODS with a SAS/GRAPH Procedure
	Using DS2TREE, DS2CONST, and DS2CSF Macros
	Using META2HTM with a SAS/GRAPH Procedure

	Changing the Location of Online Help for Java and ActiveX

	Creating Interactive Output for ActiveX
	Overview
	When to Use the ACTIVEX Device Driver
	Installing the ActiveX Control
	Manually Installing the ActiveX Control
	Configuring Your Program to Prompt Users to Install the ActiveX Control
	Prompting for Installation of the ActiveX Control
	Uninstalling the ActiveX Control

	Generating Output for ActiveX
	About Languages and Special Fonts in ActiveX

	Configuring Drill-Down Links with ACTIVEX
	ActiveX Examples
	Embedding ActiveX Graphs in Word Files
	Generating an Interactive Contour Plot in ActiveX

	Creating Graphs Interactively
	Creating Graphs
	Inserting the ActiveX Control into Microsoft Word Documents

	Creating Interactive Output for Java
	Overview
	When to Use the JAVA Device Driver
	Generating Output for Java
	About Languages and Special Fonts in Java

	Configuring Drill-Down Links for Java and ActiveX
	Setting the Drill-Down Mode
	Configuring the Local Drill-Down Mode
	Configuring the Script Drill-Down Mode
	Configuring the URL Drill-Down Mode
	Configuring the HTML Drill-Down Mode
	Understanding Variable Roles
	Using Drill-Down Tags
	Configuring the Drill-down Response
	Removing Blank Spaces from Data Values
	Disabling the Drill-Down Functionality

	Examples of Interactive Java Output
	Local Drill-Down Mode
	Script Drill-Down Mode
	URL Drill-Down Mode
	HTML Drill-Down Mode

	Attributes and Parameters for Java and ActiveX
	Specifying Parameters and Attributes for Java and ActiveX
	Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options)
	Specifying the Location of the Java Plug-In (CODEBASE= Attribute)

	Parameter Reference for Java and ActiveX
	Parameter Definitions

	Generating Static Graphics
	What is a Static Graphic?
	Creating a Static Graphic with ODS
	ACTXIMG and JAVAIMG Device Drivers Compared to GIF, JPEG, and PNG Device Drivers
	GIF, JPEG, and PNG Device Drivers
	ACTXIMG and JAVAIMG Device Drivers
	Output From Different Device Drivers Compared

	Developing Web Presentations with the JAVAIMG and ACTXIMG Device Drivers
	Using JAVAIMG in z/OS
	When to Use the JAVAIMG or ACTXIMG Device Driver

	Developing Web Presentations with the GIF, JPEG, and PNG Device Drivers
	When to Use the GIF, JPEG, and PNG Device Drivers
	Generating One or More GIF, JPEG, PNG Output Files Without ODS
	Generating an HTML Output File with ODS and the GIF, PNG, or JPEG Device Driver

	Naming Conventions Used for Image Output Files
	Enhancing Web Presentations Generated with the GIF, JPEG, or PNG Device Driver
	Generating Drill-Down Web Presentations with the GIF, JPEG, or PNG Device Driver

	Sample Programs for Static Images
	Using ODS with the ACTXIMG Device Driver
	Generating GIF Output Using ODS
	GIF Output with Hotspot Links

	Generating Web Animation with GIFANIM
	Developing Web Presentations with the GIFANIM Device Driver
	When to Use the GIFANIM Device Driver
	Creating an Animated Sequence
	Preparing the Header
	Preparing the Body
	Preparing the Trailer

	GOPTIONs for Configuring GIFANIM Presentations
	Sample Programs: GIFANIM
	Sample Animated GIF, with HTML from PUT Statements
	Generating an Animated Web Presentation with the GIFANIM Device Driver

	Generating Interactive Metagraphics Output
	Developing Web Presentations for the Metaview Applet
	Using ODS with JAVAMETA
	Using the META2HTM Macro
	Adding Run-Time Controls to a Presentation
	Page-Selection Slider Control
	Slide-Show Control
	Zoom Control

	Enhancing Web Presentations for the Metaview Applet
	Specifying Non-English Resource Files and Fonts
	Metaview Applet Parameters
	Specifying Applet Parameters Using the ODS PARAMETERS= Statement

	META2HTM Macro Arguments
	Sample Programs: Metaview Applet
	Metacode Output with HTML from ODS
	Producing a Web Presentation with the META2HTM Macro
	Embedding Multiple Instances of the Metaview Applet on the Same HTML Page with META2HTM

	Managing Web Output with ODS
	Overview of ODS Enhancements for Web Output
	Using ODS Styles
	Managing ODS Destinations
	ODS and Procedures that Support RUN-Group Processing
	Specifying Body Files for Displaying Graphs
	Controlling Titles and Footnotes with ODS Output
	Controlling Where Titles and Footnotes are Rendered
	Controlling the Text Font, Size, and Color

	Adding Non-Graphics Output to a Web Page
	Linking to Output through a Table of Contents
	Linking to Output through a Table of Pages
	Using Frames to Display ODS Output

	Generating Web Output with the Annotate Facility
	Overview of Generating Web Output with the Annotate Facility
	Generating Web Output with the Annotate Facility
	When to Use PROC GANNO to Generate Web Output
	When to Apply Annotate Data Sets to Web Output
	Generating Web Links with the Annotate Facility

	Examples

	Creating Interactive Treeview Diagrams
	Creating Treeview Diagrams
	When to Use the Treeview Applet
	Interactivity Enabled by the Treeview Applet
	Programming with the DS2TREE Macro for the Treeview Applet

	Enhancing Presentations for the Treeview Applet
	DS2TREE Macro Arguments
	Sample Programs: Treeview Macro
	Sample Treeview with XML Embedded in the HTML File
	Sample Treeview with XML Written to an External File
	Treeview with Hotspots

	Creating Interactive Constellation Diagrams
	Creating Constellation Diagrams
	When to Use the Constellation Applet
	Programming with the DS2CONST Macro for the Constellation Applet

	Enhancing Presentations for the Constellation Applet
	DS2CONST Macro Arguments
	Sample Programs: Constellation Macro
	Constellation Chart with DATATYPE=ARCS
	Constellation Chart with DATATYPE=ASSOC
	Constellation Chart with XML Written to an External File
	Constellation Chart with Hotspots

	Creating Critical Success Factor Diagrams
	Using the DS2CSF Macro
	When to Use the Rangeview Applet
	Programming with the DS2CSF Macro for the Rangeview Applet

	Enhancing Presentations for the Rangeview Applet
	DS2CSF Macro Arguments
	Sample Programs: DS2CSF Macro
	Sample Diagrams Using DS2CSF
	Adding a Link to a Critical Success Factor Diagram

	Macro Arguments for the DS2CONST, DS2TREE, DS2CSF, and META2HTM Macros
	Macro Arguments
	Arguments for the APPLET Tag
	DS2TREE and DS2CONST Arguments for Data Definition
	Arguments for Generating HTML and XML Files
	DS2TREE and DS2CONST Arguments for Diagram Appearance
	Arguments for Page Formatting
	Arguments for Stylesheets
	Arguments for the SAS TITLE and FOOTNOTE Tags
	Arguments for Character Transcoding
	DS2CSF Arguments for Data Definition
	DS2CSF Arguments for Diagram Appearance
	META2HTM Arguments for Saving the HTML File
	META2HTM Arguments for Applet Behavior
	Reserved Names

	Enhancing Web Output
	Enhancing Web Output
	Adding Data Tips to Web Presentations
	Data Tips in GIF, JPEG, and PNG Files
	Data Tips in ACTXIMG and JAVAIMG Images
	Data Tips in Java and ActiveX Web Presentations
	Data Tips in Metaview Applet Presentations
	Data Tips in Treeview Diagrams
	Data Tips in Constellation Charts
	Data Tips in Critical Success Factor Diagrams
	Data Tips in Animated GIFs
	Adding Data Tips with the HTML= Option

	Adding Drill-Down Links to Web Presentations
	Links in GIF, JPEG, and PNG Files
	Links in ACTXIMG and JAVAIMG Images
	Links in Java and ActiveX Web Presentations
	Links in Metaview Applet Presentations
	Links in Treeview Diagrams
	Links in Constellation Charts
	Links in Critical Success Factor Diagrams
	Links in Animated GIFs
	Adding Links with the HTML= and HTML_LEGEND= Options

	Troubleshooting Web Output
	Troubleshooting Web Output
	Checking Browser Permissions
	Using HTML Character Entities
	Connecting to Web Servers that Require Authentication
	Removing CLASSPATH Environment Variables
	Correcting Text Fonts
	Resolving Colors in Netscape
	Resolving Differences Between Client and Server Graphs

	The Annotate Facility
	Using Annotate Data Sets
	Overview
	Enhancing Existing Graphs
	Creating Custom Graphs
	Creating Annotate Graphics

	About the Annotate Data Set
	Structure of An Annotate Data Set
	Annotate Variables
	Annotate Functions

	About Annotate Graphics
	Graphics Elements
	Coordinates
	Coordinate Systems
	Internal Coordinates
	Attribute Variables

	Creating an Annotate Data Set
	Using the DATA Step
	Using Annotate Macros in the DATA Step
	Effect of Missing Values

	Producing Graphics Output from Annotate Data Sets
	Including Annotate Graphics with Procedure Output
	Producing Only Annotate Graphics Output
	Using the Annotate Variables for Web Output

	Annotate Processing Details
	Order in Which Graphics Elements Are Drawn
	Using BY-Group Processing with the Annotate Facility
	Using the LIFO Stack
	Debugging

	Examples
	Labeling Cities on a Map
	Labeling Subgroups in a Vertical Bar Chart
	Drawing a Circle of Stars

	Annotate Dictionary
	Annotate Dictionary Overview
	Annotate Functions
	Annotate Variables
	Annotate Internal Coordinates
	Annotate Macros
	Using Annotate Macros
	Macro Structure
	Making the Macros Available
	Annotate Macro Task Summary

	Annotate Error Messages

	SAS/GRAPH Procedures
	The GANNO Procedure
	Overview
	Procedure Syntax
	Examples

	The GAREABAR Procedure
	Overview
	Concepts
	Procedure Syntax
	Examples

	The GBARLINE Procedure
	Overview
	About Bar Line Charts
	About Interpolation Methods

	Concepts
	About the Bar Variable
	About Midpoints
	About the Plot Variable
	About Chart Statistics
	Missing Values
	Plot Variable Values Out of Range
	About Patterns

	Procedure Syntax
	Examples

	The GCHART Procedure
	Overview
	About Block Charts
	About Bar Charts
	About Pie, Detail Pie, and Donut Charts
	About Star Charts

	Concepts
	About Chart Variables
	About Midpoints
	About Chart Statistics
	About Patterns

	Procedure Syntax
	Examples
	References

	The GCONTOUR Procedure
	Overview
	Concepts
	About Contour Plots
	Parts of a Contour Plot
	About the Input Data Set
	Interpolating Additional Values

	Procedure Syntax
	Examples
	References

	The GDEVICE Procedure
	Overview
	Concepts
	About Device Catalogs
	Ways to Use the GDEVICE Procedure

	Procedure Syntax
	Using the GDEVICE Procedure
	Using the GDEVICE Windows
	Creating or Modifying Device Entries

	Examples

	The GFONT Procedure
	Overview
	About Displaying Fonts
	About Creating Fonts

	Concepts
	About Fonts
	About the Libref GFONT0

	Procedure Syntax
	Displaying Fonts: Required Arguments, Options
	Creating Fonts: Required Arguments, Options

	Creating a Font
	Examples

	The GIMPORT Procedure
	Overview
	Concepts
	About Importing Graphics
	About Color Mapping
	About Pattern Mapping
	About Font Mapping

	Procedure Syntax
	Examples
	References

	The GKEYMAP Procedure
	Overview
	Concepts
	About Key Maps and Device Maps
	About the GKEYMAP Data Set

	Procedure Syntax
	Examples

	The GMAP Procedure
	Overview
	About Block Maps
	About Choropleth Maps
	About Prism Maps
	About Surface Maps

	Concepts
	About Map Data Sets
	About Traditional Data Sets
	About Feature Tables
	Viewing Map Data Sets
	Speciality Map Data Sets
	About Response Data Sets
	About Identification Variables
	Displaying Map Areas and Response Data
	Summary of Use
	Accessing SAS Maps Online

	Procedure Syntax
	Using FIPS Codes and Province Codes
	Using Formats for Maps
	SAS/GRAPH Map Data Sets Reference Information
	Accessing Detailed Descriptions of Map Data Sets
	Customizing SAS/GRAPH Map Data Sets
	Creating Traditional Map Data Sets

	Examples

	The GOPTIONS Procedure
	Overview
	Procedure Syntax
	Examples

	The GPLOT Procedure
	Overview
	About Plots of Two Variables
	About Plots with a Classification Variable
	About Bubble Plots
	About Plots with Two Vertical Axes
	About Interpolation Methods

	Concepts
	Parts of a Plot
	About the Input Data Set

	Procedure Syntax
	Examples

	The GPRINT Procedure
	Overview
	Concepts
	About External Text Files

	Procedure Syntax
	Examples

	The GPROJECT Procedure
	Overview
	Concepts
	About the Input Map Data Set
	About Coordinate Values
	About Types of Map Projections

	Procedure Syntax
	Using the GPROJECT Procedure
	Selecting Projections
	Controlling Projection Criteria
	Clipping Map Data Sets

	Examples
	References

	The GRADAR Procedure
	Overview
	Procedure Syntax
	Examples

	The GREDUCE Procedure
	Overview
	Concepts
	About the Input Map Data Set
	About Unmatched Area Boundaries

	Procedure Syntax
	Using the GREDUCE Procedure
	Specifying Density Levels
	Subsetting a Map Data Set

	Examples
	References

	The GREMOVE Procedure
	Overview
	Concepts
	About the Input Map Data Set
	About the Output Map Data Set
	About Unmatched Area Boundaries

	Procedure Syntax
	Examples

	The GREPLAY Procedure
	Overview
	Concepts
	About Catalog Entries
	Ways to Use the GREPLAY Procedure

	Procedure Syntax
	Using the GREPLAY Procedure
	Using the GREPLAY Windows
	Managing Catalog Entries
	Replaying Catalog Entries
	Creating Templates and Color Maps
	Replaying Graphics Output in a Template

	Examples

	The GSLIDE Procedure
	Overview
	About Text Slides
	About Annotate Output

	Procedure Syntax
	Examples

	The GTESTIT Procedure
	Overview
	About the Pictures
	About the LOG

	Procedure Syntax
	Examples

	The G3D Procedure
	Overview
	About Surface Plots
	About Scatter Plots

	Concepts
	Parts of a Three-dimensional Plot
	About the Input Data Set
	About Rotating and Tilting the Plot
	About Controlling the Axes

	Procedure Syntax
	Examples
	References

	The G3GRID Procedure
	Overview
	Concepts
	About the Input Data Set
	Multiple Vertical Variables
	Horizontal Variables Along a Nonlinear Curve
	About the Output Data Set
	Interpolation Methods

	Procedure Syntax
	Examples
	References

	The MAPIMPORT Procedure
	Overview
	Procedure Syntax
	Examples

	The Data Step Graphics Interface
	Overview
	Syntax
	Requirements

	Applications of the DATA Step Graphics Interface
	Enhancing Existing Graphs
	Creating Custom Graphs

	Using the DATA Step Graphics Interface
	Summary of Use
	Producing and Storing DSGI Graphs
	Structure of DSGI Data Sets
	Using SAS/GRAPH Global Statements with DSGI
	Operating States
	The Current Window System
	Debugging DSGI Programs

	DSGI Graphics Summary
	DSGI Functions
	DSGI Routines
	Creating Simple Graphics with DSGI
	Bundling Attributes
	Using Viewports and Windows
	Inserting Existing Graphs into DSGI Graphics Output
	Generating Multiple Graphics Output in One DATA Step
	Processing DSGI Statements in Loops
	Examples
	See Also

	DATA Step Graphics Interface Dictionary
	Overview
	Operating States
	Utility Functions

	GASK Routines
	GDRAW Functions
	GRAPH Functions
	GSET Functions
	Return Codes for DSGI Routines and Functions
	See Also
	References

	Appendixes
	Summary of ActiveX and Java Support
	Introduction
	Global Statements
	AXIS Statement
	GOPTIONS Statement
	LEGEND Statement
	PATTERN Statement
	SYMBOL Statement
	TITLE and FOOTNOTE Statements

	PROC GAREABAR
	PROC GBARLINE
	PROC GCHART
	Text Description Suboptions

	PROC GCONTOUR
	PROC GMAP
	PROC GPLOT
	PROC GRADAR
	PROC G3D
	Annotate Functions
	BAR
	DRAW
	DRAW2TXT
	FRAME
	IMAGE
	LABEL
	MOVE
	PIE
	PIECNTR
	PIEXY
	POINT
	POLY
	POLYCONT
	SYMBOL

	Recommended Reading
	Recommended Reading

	Glossary
	Index

